WorldWideScience

Sample records for plasma spray applications

  1. Plasma spray technology process parameters and applications

    International Nuclear Information System (INIS)

    Sreekumar, K.P.; Karthikeyan, J.; Ananthapadmanabhan, P.V.; Venkatramani, N.; Chatterjee, U.K.

    1991-01-01

    The current trend in the structural design philosophy is based on the use of substrate with the necessary mechanical properties and a thin coating to exhibit surface properties. Plasma spray process is a versatile surface coating technique which finds extensive application in meeting advance technologies. This report describes the plasma spray technique and its use in developing coatings for various applications. The spray system is desribed in detail including the different variables such as power input to the torch, gas flow rate, powder properties, powder injection, etc. and their interrelation in deciding the quality of the coating. A brief write-up on the various plasma spray coatings developed for different applications is also included. (author). 15 refs., 15 figs., 2 tabs

  2. Synthesis and Characterization of Calcium Phosphate Powders for Biomedical Applications by Plasma Spray Coating

    OpenAIRE

    Sasidharan Pillai, Rahul

    2015-01-01

    This PhD work mainly focus on the synthesis and characterization of calcium phosphate powders for plasma spray coating. The preparation of high temperature phase stabilized βTCP and HA/βTCP powders for plasma spray coating applications has been the topic of investigation. Nowadays plasma sprayed coatings are widely used for biomedical applications especially in the dental and orthopaedic implantation field. Previously Ti based alloys were widely used for the orthopaedic and dental implant ap...

  3. Study of Multi-Function Micro-Plasma Spraying Technology

    International Nuclear Information System (INIS)

    Wang Liuying; Wang Hangong; Hua Shaochun; Cao Xiaoping

    2007-01-01

    A multi-functional micro-arc plasma spraying system was developed according to aerodynamics and plasma spray theory. The soft switch IGBT (Insulated Gate Bipolar Transistor) invert technique, micro-computer control technique, convergent-divergent nozzle structure and axial powder feeding techniques have been adopted in the design of the micro-arc plasma spraying system. It is not only characterized by a small volume, a light weight, highly accurate control, high deposition efficiency and high reliability, but also has multi-functions in plasma spraying, welding and quenching. The experimental results showed that the system can produce a supersonic flame at a low power, spray Al 2 O 3 particles at an average speed up to 430 m/s, and make nanostructured AT13 coatings with an average bonding strength of 42.7 MPa. Compared to conventional 9M plasma spraying with a higher power, the coatings with almost the same properties as those by conventional plasma spray can be deposited by multi-functional micro-arc plasma spraying with a lower power plasma arc due to an improved power supply design, spray gun structure and powder feeding method. Moreover, this system is suitable for working with thin parts and undertaking on site repairs, and as a result, the application of plasma spraying will be greatly extended

  4. Radio-frequency plasma spraying of ceramics

    International Nuclear Information System (INIS)

    Okada, T.; Hamatani, H.; Yoshida, T.

    1989-01-01

    This study was aimed at developing a novel spraying process using a radio-frequency (rf) plasma. Experiments of Al 2 O 3 and ZrO 2 - 8 wt% Y 2 O 3 spraying showed that the initial powder size was the most important parameter for depositing dense coatings. The optimum powder sizes of Al 2 O 3 and ZrO 2 - 8 wt% Y 2 O 3 were considered to be around 100 and 80 μm, respectively. The use of such large-size powders compared with those used by conventional dc plasma spraying made it possible to deposit adherent ceramics coatings of 150 to 300 μm on as-rolled SS304 substrates. It was also shown that low particle velocity of about 10 m/s, which is peculiar to rf plasma spraying, was sufficient for particle deformation, though it imposed a severe limitation on the substrate position. These experimental results prove that rf plasma spraying is an effective process and a strong candidate to open new fields of spraying applications

  5. Influence of spray parameters on the microstructure and mechanical properties of gas-tunnel plasma sprayed hydroxyapatite coatings

    International Nuclear Information System (INIS)

    Morks, M.F.; Kobayashi, Akira

    2007-01-01

    For biomedical applications, hydroxyapatite (HA) coatings were deposited on 304 stainless steel substrate by using a gas tunnel type plasma spraying process. The influences of spraying distances and plasma arc currents on the microstructure, hardness and adhesion properties of HA coatings were investigated. Microstructure observation by SEM showed that HA coatings sprayed at low plasma power have a porous structure and poor hardness. HA coatings sprayed at high plasma power and short spraying distance are characterized by good adhesion and low porosity with dense structure. Hardness increased for HA coatings sprayed at shorter spraying distance and higher plasma power, mainly due to the formation of dense coatings

  6. Plasma spraying of beryllium and beryllium-aluminum-silver alloys

    International Nuclear Information System (INIS)

    Castro, R.G.; Stanek, P.W.; Elliott, K.E.; Jacobson, L.A.

    1994-01-01

    A preliminary investigation on plasma-spraying of beryllium and a beryllium-aluminum-4% silver alloy was done at the Los Alamos National Laboratory's Beryllium Atomization and Thermal Spray Facility (BATSF). Spherical Be and Be-Al-4%Ag powders, which were produced by centrifugal atomization, were used as feedstock material for plasma-spraying. The spherical morphology of the powders allowed for better feeding of fine (<38 μm) powders into the plasma-spray torch. The difference in the as-deposited densities and deposit efficiencies of the two plasma-sprayed powders will be discussed along with the effect of processing parameters on the as-deposited microstructure of the Be-Al-4%Ag. This investigation represents ongoing research to develop and characterize plasma-spraying of beryllium and beryllium-aluminum alloys for magnetic fusion and aerospace applications

  7. Plasma spraying of beryllium and beryllium-aluminum-silver alloys

    International Nuclear Information System (INIS)

    Castro, R.G.; Stanek, P.W.; Elliott, K.E.; Jacobson, L.A.

    1993-01-01

    A preliminary investigation on plasma-spraying of beryllium and a beryllium-aluminum 4% silver alloy was done at the Los Alamos National Laboratory's Beryllium Atomization and Thermal Spray Facility (BATSF). Spherical Be and Be-Al-4%Ag powders, which were produced by centrifugal atomization, were used as feedstock material for plasma-spraying. The spherical morphology of the powders allowed for better feeding of fine (<38 μm) powders into the plasma-spray torch. The difference in the as-deposited densities and deposit efficiencies of the two plasma-sprayed powders will be discussed along with the effect of processing parameters on the as-deposited microstructure of the Be-Al-4%Ag. This investigation represents ongoing research to develop and characterize plasma-spraying of beryllium and beryllium-aluminum alloys for magnetic fusion and aerospace applications

  8. Hydrogen permeation properties of plasma-sprayed tungsten

    International Nuclear Information System (INIS)

    Anderl, R.A.; Pawelko, R.J.; Hankins, M.R.; Longhurst, G.R.; Neiser, R.A.

    1994-01-01

    Tungsten has been proposed as a plasma-facing component material for advanced fusion facilities. This paper reports on laboratory-scale studies that were done to assess the hydrogen permeation properties of plasma-sprayed tungsten for such applications. The work entailed deuterium permeation measurements for plasma-sprayed (PS) tungsten coatings, sputter-deposited (SP) tungsten coatings, and steel substrate material using a mass-analyzed, 3 keV D + 3 ion beam with fluxes of similar 6.5x10 19 D/m 2 s. Extensive characterization analyses for the plasma-sprayed tungsten coatings were made using Auger spectrometry and scanning electron microscopy (SEM). Observed permeation rates through composite PS-tungsten/steel specimens were several orders of magnitude below the permeation levels observed for SP-tungsten/steel composite specimens and pure steel specimens. Characterization analyses indicated that the plasma-sprayed tungsten coating had a nonhomogeneous microstructure that consisted of splats with columnar solidification, partially-melted particles with grain boundaries, and void regions. Reduced permeation levels can be attributed to the complex microstructure and a substantial surface-connected porosity. ((orig.))

  9. Hydrogen permeation properties of plasma-sprayed tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Anderl, R.A. (Idaho National Engineering Lab., EG and G Idaho Inc., Idaho Falls, ID (United States)); Pawelko, R.J. (Idaho National Engineering Lab., EG and G Idaho Inc., Idaho Falls, ID (United States)); Hankins, M.R. (Idaho National Engineering Lab., EG and G Idaho Inc., Idaho Falls, ID (United States)); Longhurst, G.R. (Idaho National Engineering Lab., EG and G Idaho Inc., Idaho Falls, ID (United States)); Neiser, R.A. (Sandia National Laboratories, Albuquerque, NM 87185 (United States))

    1994-09-01

    Tungsten has been proposed as a plasma-facing component material for advanced fusion facilities. This paper reports on laboratory-scale studies that were done to assess the hydrogen permeation properties of plasma-sprayed tungsten for such applications. The work entailed deuterium permeation measurements for plasma-sprayed (PS) tungsten coatings, sputter-deposited (SP) tungsten coatings, and steel substrate material using a mass-analyzed, 3 keV D[sup +][sub 3] ion beam with fluxes of similar 6.5x10[sup 19] D/m[sup 2] s. Extensive characterization analyses for the plasma-sprayed tungsten coatings were made using Auger spectrometry and scanning electron microscopy (SEM). Observed permeation rates through composite PS-tungsten/steel specimens were several orders of magnitude below the permeation levels observed for SP-tungsten/steel composite specimens and pure steel specimens. Characterization analyses indicated that the plasma-sprayed tungsten coating had a nonhomogeneous microstructure that consisted of splats with columnar solidification, partially-melted particles with grain boundaries, and void regions. Reduced permeation levels can be attributed to the complex microstructure and a substantial surface-connected porosity. ((orig.))

  10. Process development for synthesis and plasma spray deposition of LaPO4 and YPO4 for nuclear applications

    International Nuclear Information System (INIS)

    Chakravarthy, Y.; Sreekumar, K.P.; Jayakumar, S.; Thiyagarajan, T.K.; Ananthapadmanabhan, P.V.; Das, A.K.; Gantayet, L.M.; Krishnan, K.

    2009-01-01

    Rare earth phosphates are geologically very stable and considered as potential matrix material for nuclear waste disposal and also for many high temperature thermal barrier and corrosion barrier applications involving molten metals. This paper focuses on developmental studies related to synthesis, thermal stability and plasma spray deposition of LaPO 4 and YPO 4 . The rare earth phosphates were synthesized by chemical method from their respective oxide materials using ortho phosphoric acid. The as-precipitated powders were converted to thermal spray grade powder by compaction, sintering and crushing. Thermal stability of these phosphates up to their melting point was determined by arc plasma melting, followed by X-ray diffraction. Results indicate that LaPO 4 and YPO 4 melt congruently without decomposition. Plasma spray deposition was carried out using the in-house 40 kW atmospheric plasma spray system. Adherent coatings could be deposited on various substrates by optimizing the plasma spray parameters. (author)

  11. Thermal plasma spraying for SOFCs: Applications, potential advantages, and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Hui, Rob; Wang, Zhenwei; Jankovic, Jasna; Yick, Sing; Maric, Radenka; Ghosh, Dave [National Research Council Institute for Fuel Cell Innovation, 4250 Wesbrook Mall, Vancouver, BC V6T 1W5 (Canada); Kesler, Olivera [National Research Council Institute for Fuel Cell Innovation, 4250 Wesbrook Mall, Vancouver, BC V6T 1W5 (Canada); Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC V6T 1Z4 (Canada); Rose, Lars [National Research Council Institute for Fuel Cell Innovation, 4250 Wesbrook Mall, Vancouver, BC V6T 1W5 (Canada); Department of Materials Engineering, University of British Columbia, 309-6350 Stores Road, Vancouver, BC V6T 1Z4 (Canada)

    2007-07-10

    In this article, the applications, potential advantages, and challenges of thermal plasma spray (PS) processing for nanopowder production and cell fabrication of solid oxide fuel cells (SOFCs) are reviewed. PS processing creates sufficiently high temperatures to melt all materials fed into the plasma. The heated material can either be quenched into oxide powders or deposited as coatings. This technique has been applied to directly deposit functional layers as well as nanopowder for SOFCs application. In particularly, low melting point and highly active electrodes can be directly fabricated on zirconia-based electrolytes. This is a simple processing technique that does not require the use of organic solvents, offering the opportunity for flexible adjustment of process parameters, and significant time saving in production of the cell and cost reduction compared with tape casting, screen printing and sintering processing steps. Most importantly, PS processing shows strong potential to enable the deposition of metal-supported SOFCs through the integrated fabrication of membrane-electrode assemblies (MEA) on porous metallic substrates with consecutive deposition steps. On the other hand, the application of PS processing to produce SOFCs faces some challenges, such as insufficient porosity of the electrodes, the difficulty of obtaining a thin (<10 {mu}m) and dense electrolyte layer. Fed with H{sub 2} as the fuel gas and oxygen as the oxidant gas, the plasma sprayed cell reached high power densities of 770 mW cm{sup -2} at 900 C and 430 mW cm{sup -2} at 800 C at a cell voltage of 0.7 V. (author)

  12. Direct morphological comparison of vacuum plasma sprayed and detonation gun sprayed hydroxyapatite coatings for orthopaedic applications.

    Science.gov (United States)

    Gledhill, H C; Turner, I G; Doyle, C

    1999-02-01

    Hydroxyapatite coatings on titanium substrates were produced using two thermal spray techniques vacuum plasma spraying and detonation gun spraying. X-ray diffraction was used to compare crystallinity and residual stresses in the coatings. Porosity was measured using optical microscopy in conjunction with an image analysis system. Scanning electron microscopy and surface roughness measurements were used to characterise the surface morphologies of the coatings. The vacuum plasma sprayed coatings were found to have a lower residual stress, a higher crystallinity and a higher level of porosity than the detonation gun coatings. It is concluded that consideration needs to be given to the significance of such variations within the clinical context.

  13. High quality ceramic coatings sprayed by high efficiency hypersonic plasma spraying gun

    International Nuclear Information System (INIS)

    Zhu Sheng; Xu Binshi; Yao JiuKun

    2005-01-01

    This paper introduced the structure of the high efficiency hypersonic plasma spraying gun and the effects of hypersonic plasma jet on the sprayed particles. The optimised spraying process parameters for several ceramic powders such as Al 2 O 3 , Cr 2 O 3 , ZrO 2 , Cr 3 C 2 and Co-WC were listed. The properties and microstructure of the sprayed ceramic coatings were investigated. Nano Al 2 O 3 -TiO 2 ceramic coating sprayed by using the high efficiency hypersonic plasma spraying was also studied. Compared with the conventional air plasma spraying, high efficiency hypersonic plasma spraying improves greatly the ceramic coatings quality but at low cost. (orig.)

  14. Plasma sprayed thermoregulating coatings

    International Nuclear Information System (INIS)

    Kudinov, V.V.; Puzanov, A.A.; Zambrzhitskij, A.P.; Soboleva, V.V.

    1979-01-01

    Shown is the possibility of plasma spraying application for thermoregulating coating formation. Given are test results of service properties of BeO, Al 2 O 2 plasma coatings on the substrates of the MA2-1 magnesium alloy. Described is a device for studying durability of coating optical parameters under ultraviolet irradiation in deep vacuum. Dynamics of absorption coefficient, growth caused by an increase in absorption centers amount under such irradiation is investigated

  15. Analysis of processes in DC arc plasma torches for spraying that use air as plasma forming gas

    International Nuclear Information System (INIS)

    Frolov, V; Ivanov, D; Toropchin, A

    2014-01-01

    Developed in Saint Petersburg State Polytechnical University technological processes of air-plasma spraying of wear-resistant, regenerating, hardening and decorative coatings used in number of industrial areas are described. The article contains examples of applications of air plasma spraying of coatings as well as results of mathematical modelling of processes in air plasma torches for spraying

  16. Hydrogen permeation properties of plasma-sprayed tungsten*1

    Science.gov (United States)

    Anderl, R. A.; Pawelko, R. J.; Hankins, M. R.; Longhurst, G. R.; Neiser, R. A.

    1994-09-01

    Tungsten has been proposed as a plasma-facing component material for advanced fusion facilities. This paper reports on laboratory-scale studies that were done to assess the hydrogen permeation properties of plasma-sprayed tungsten for such applications. The work entailed deuterium permeation measurements for plasma-sprayed (PS) tungsten coatings, sputter-deposited (SP) tungsten coatings, and steel substrate material using a mass-analyzed, 3 keV D 3+ ion beam with fluxes of ˜6.5 × 10 19 D/m 2 s. Extensive characterization analyses for the plasma-sprayed tungsten coatings were made using Auger spectrometry and scanning electron microscopy (SEM). Observed permeation rates through composite PS-tungsten/steel specimens were several orders of magnitude below the permeation levels observed for SP-tungsten/steel composite specimens and pure steel specimens. Characterization analyses indicated that the plasma-sprayed tungsten coating had a nonhomogeneous microstructure that consisted of splats with columnar solidification, partially-melted particles with grain boundaries, and void regions. Reduced permeation levels can be attributed to the complex microstructure and a substantial surface-connected porosity.

  17. Low pressure plasma spray deposition of W-Ni-Fe alloy

    International Nuclear Information System (INIS)

    Mutasim, Z.Z.; Smith, R.W.

    1991-01-01

    The production of net shape refractory metal structural preforms are increasing in importance in chemical processing, defense and aerospace applications. Conventional methods become limited for refractory metal processing due to the high melting temperatures and fabrication difficulties. Plasma spray forming, a high temperature process, has been shown to be capable of refractory metal powder consolidation in net shape products. The research reported here has evaluated this method for the deposition of heavy tungsten alloys. Plasma Melted Rapidly Solidified (PMRS) W 8%Ni-2%Fe refractory metal powders were spray formed using vacuum plasma spray (VPS) process and produced 99% dense, fine grain and homogeneous microstructures. In this paper plasma operating parameters (plasma arc gas type and flowrate plasma gun nozzle size and spray distance) were studied and their effects on deposit's density and microstructure are reported

  18. Plasma sprayed coatings on crankshaft used steels

    Science.gov (United States)

    Mahu, G.; Munteanu, C.; Istrate, B.; Benchea, M.

    2017-08-01

    Plasma spray coatings may be an alternative to conventional heat treatment of main journals and crankpins of the crankshaft. The applications of plasma coatings are various and present multiple advantages compared to electric arc wire spraying or flame spraying. The study examines the layers sprayed with the following powders: Cr3C2- 25(Ni 20Cr), Al2O3- 13TiO2, Cr2O3-SiO2- TiO2 on the surface of steels used in the construction of a crankshaft (C45). The plasma spray coatings were made with the Spray wizard 9MCE facility at atmospheric pressure. The samples were analyzed in terms of micro and morphological using optical microscopy, scanning electron microscopy and X-ray diffraction. Wear tests on samples that have undergone simulates extreme working conditions of the crankshafts. In order to emphasize adherence to the base material sprayed layer, were carried out tests of microscratches and micro-indentation. Results have showed a relatively compact morphological aspect given by the successive coatings with splat-like specific structures. Following the microscratch analysis it can be concluded that Al2O3-13TiO2 coating has a higher purpose in terms of hardness compared to Cr3C2-(Ni 20Cr) and Cr2O3-SiO2- TiO2 powders. Thermal coatings of the deposited powders have increased the mechanical properties of the material. The results stand to confirm that plasma sprayed Al2O3-13TiO2 powder is in fact a efficient solution for preventing mechanical wear, even with a faulty lubrication system.

  19. Electroform/Plasma-Spray Laminates for X-Ray Optics

    Science.gov (United States)

    Ulmer, Melville P.; Graham, Michael; Vaynman, Semyon

    2007-01-01

    Electroform/plasma-spray laminates have shown promise as lightweight, strong, low-thermal-expansion components for xray optics. The basic idea is to exploit both (1) the well-established art of fabrication of optical components by replication and (2) plasma spraying as a means of reinforcing a thin replica optic with one or more backing layer(s) having tailorable thermomechanical properties. In x-ray optics as in other applications, replication reduces the time and cost of fabrication because grinding and polishing can be limited to a few thick masters, from which many lightweight replicas can thereafter be made. The first step in the fabrication of a component of the type in question is to make a replica optic by electroforming a thin layer of nickel on a master. Through proper control of the electroforming process conditions, it is possible to minimize residual stress and, hence, to minimize distortion in the replica. Next, a powder comprising ceramic particles coated with a metal compatible with the electroformed nickel is plasma-sprayed onto the backside of the nickel replica. Then through several repetitions and variations of the preceding steps or perhaps a small compressive stress, alternating layers of electroformed nickel and plasma-sprayed metal-coated ceramic powder are deposited. The thicknesses of the layers and the composition of the metal-coated ceramic powder are chosen to optimize the strength, areal mass density, and toughness of the finished component. An important benefit of using both electroforming and plasma spraying is the possibility of balancing stresses to a minimum level, which could be zero or perhaps a small net compressive stress designed to enhance the function of the component in its intended application.

  20. The structure, properties and performance of plasma-sprayed beryllium for fusion applications

    International Nuclear Information System (INIS)

    Castro, R.G.; Stanek, P.W.; Elliott, K.E.

    1995-01-01

    Plasma-spray technology is under investigation as a method for producing high thermal conductivity beryllium coatings for use in magnetic fusion applications. Recent investigations have focused on optimizing the plasma-spray process for depositing beryllium coatings on damaged beryllium surfaces. Of particular interest has been optimizing the processing parameters to maximize the through-thickness thermal conductivity of the beryllium coatings. Experimental results will be reported on the use of secondary H 2 gas additions to improve the melting of the beryllium powder and transferred-arc cleaning to improve the bonding between the beryllium coatings and the underlying surface. Information will also be presented on thermal fatigue tests which were done on beryllium coated ISX-B beryllium limiter tiles using 10 sec cycle times with 60 sec cooldowns and an International Thermonuclear Experimental Reactor (ITER) relevant divertor heat flux slightly in excess of 5 MW/m 2

  1. Failure Analysis of Multilayered Suspension Plasma-Sprayed Thermal Barrier Coatings for Gas Turbine Applications

    Science.gov (United States)

    Gupta, M.; Markocsan, N.; Rocchio-Heller, R.; Liu, J.; Li, X.-H.; Östergren, L.

    2018-02-01

    Improvement in the performance of thermal barrier coatings (TBCs) is one of the key objectives for further development of gas turbine applications. The material most commonly used as TBC topcoat is yttria-stabilized zirconia (YSZ). However, the usage of YSZ is limited by the operating temperature range which in turn restricts the engine efficiency. Materials such as pyrochlores, perovskites, rare earth garnets are suitable candidates which could replace YSZ as they exhibit lower thermal conductivity and higher phase stability at elevated temperatures. The objective of this work was to investigate different multilayered TBCs consisting of advanced topcoat materials fabricated by suspension plasma spraying (SPS). The investigated topcoat materials were YSZ, dysprosia-stabilized zirconia, gadolinium zirconate, and ceria-yttria-stabilized zirconia. All topcoats were deposited by TriplexPro-210TM plasma spray gun and radial injection of suspension. Lifetime of these samples was examined by thermal cyclic fatigue and thermal shock testing. Microstructure analysis of as-sprayed and failed specimens was performed with scanning electron microscope. The failure mechanisms in each case have been discussed in this article. The results show that SPS could be a promising route to produce multilayered TBCs for high-temperature applications.

  2. Deposition of Lanthanum Strontium Cobalt Ferrite (LSCF) Using Suspension Plasma Spraying for Oxygen Transport Membrane Applications

    Science.gov (United States)

    Fan, E. S. C.; Kesler, O.

    2015-08-01

    Suspension plasma spray deposition was utilized to fabricate dense lanthanum strontium cobalt ferrite oxygen separation membranes (OSMs) on porous metal substrates for mechanical support. The as-sprayed membranes had negligible and/or reversible material decomposition. At the longer stand-off distance (80 mm), smooth and dense membranes could be manufactured using a plasma with power below approximately 81 kW. Moreover, a membrane of 55 μm was observed to have very low gas leakage rates desirable for OSM applications. This thickness could potentially be decreased further to improve oxygen diffusion by using metal substrates with finer surface pores.

  3. Development & characterization of alumina coating by atmospheric plasma spraying

    Science.gov (United States)

    Sebastian, Jobin; Scaria, Abyson; Kurian, Don George

    2018-03-01

    Ceramic coatings are applied on metals to prevent them from oxidation and corrosion at room as well as elevated temperatures. The service environment, mechanisms of protection, chemical and mechanical compatibility, application method, control of coating quality and ability of the coating to be repaired are the factors that need to be considered while selecting the required coating. The coatings based on oxide materials provides high degree of thermal insulation and protection against oxidation at high temperatures for the underlying substrate materials. These coatings are usually applied by the flame or plasma spraying methods. The surface cleanliness needs to be ensured before spraying. Abrasive blasting can be used to provide the required surface roughness for good adhesion between the substrate and the coating. A pre bond coat like Nickel Chromium can be applied on to the substrate material before spraying the oxide coating to avoid chances of poor adhesion between the oxide coating and the metallic substrate. Plasma spraying produces oxide coatings of greater density, higher hardness, and smooth surface finish than that of the flame spraying process Inert gas is often used for generation of plasma gas so as to avoid the oxidation of the substrate material. The work focuses to develop, characterize and optimize the parameters used in Al2O3 coating on transition stainless steel substrate material for minimizing the wear rate and maximizing the leak tightness using plasma spray process. The experiment is designed using Taguchi’s L9 orthogonal array. The parameters that are to be optimized are plasma voltage, spraying distance and the cooling jet pressure. The characterization techniques includes micro-hardness and porosity tests followed by Grey relational analysis of the results.

  4. Ceramic plasma-sprayed coating of melting crucibles for casting metal fuel slugs

    International Nuclear Information System (INIS)

    Kim, Ki Hwan; Lee, Chong Tak; Lee, Chan Bock; Fielding, R.S.; Kennedy, J.R.

    2013-01-01

    Thermal cycling and melt reaction studies of ceramic coatings plasma-sprayed on Nb substrates were carried out to evaluate the performance of barrier coatings for metallic fuel casting applications. Thermal cycling tests of the ceramic plasma-sprayed coatings to 1450 °C showed that HfN, TiC, ZrC, and Y 2 O 3 coating had good cycling characteristics with few interconnected cracks even after 20 cycles. Interaction studies by 1550 °C melt dipping tests of the plasma-sprayed coatings also indicated that HfN and Y 2 O 3 do not form significant reaction layer between U–20 wt.% Zr melt and the coating layer. Plasma-sprayed Y 2 O 3 coating exhibited the most promising characteristics among HfN, TiC, ZrC, and Y 2 O 3 coating

  5. Plasma spraying process of disperse carbides for spraying and facing

    International Nuclear Information System (INIS)

    Blinkov, I.V.; Vishnevetskaya, I.A.; Kostyukovich, T.G.; Ostapovich, A.O.

    1989-01-01

    A possibility to metallize carbides in plasma of impulsing capacitor discharge is considered. Powders granulation occurs during plasma spraying process, ceramic core being completely capped. X-ray phase and chemical analyses of coatings did not show considerable changes of carbon content in carbides before and after plasma processing. This distinguishes the process of carbides metallization in impulsing plasma from the similar processing in arc and high-frequency plasma generator. Use of powder composites produced in the impulsing capacitor discharge, for plasma spraying and laser facing permits 2-3 times increasing wear resistance of the surface layer as against the coatings produced from mechanical powders mixtures

  6. Dielectric and mechanical properties of plasma-sprayed olivine

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Neufuss, Karel; Pala, Zdeněk; Kotlan, Jiří; Soumar, J.

    2015-01-01

    Roč. 67, č. 2 (2015), s. 600-616 ISSN 1221-1451. [International Conference on Plasma Physics and Applications/16./. Magurele, Bucharest, 20.06.2013-25.06.2013] Institutional support: RVO:61389021 Keywords : olivine * plasma spraying * dielectric properties Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.367, year: 2015 www.infim.ro/rrp

  7. Plasma sprayed Nd-Fe-B permanent magnets

    International Nuclear Information System (INIS)

    Willson, M.; Bauser, S.; Liu, S.; Huang, M.

    2003-01-01

    This study demonstrated that the plasma spray deposition method is an alternative process for producing Nd-Fe-B magnets in addition to the two existing principal processes: the powder metallurgy process for producing sintered Nd-Fe-B magnets and the melt spinning process for bonded Nd-Fe-B magnets. Plasma spray is a potentially better process for producing magnetic parts with complicated shape, large area, thin thickness, small dimension, or unusual geometry. High intrinsic coercivity greater than 15 kOe was readily obtained for Nd 16 Dy 1 Fe 76 B 7 even in the as-deposited condition when the substrate was preheated. The plasma spray process contains only three steps: melting, crushing, and plasma spray, which is much simpler than the powder metallurgy and melt spinning processes. Without preheating the substrate, the coercivity was usually very low (∼0.1 kOe) in the as-deposited condition and it increased to 10 to >15 kOe after anneal. Evidence of magnetocrystalline anisotropy was observed in plasma sprayed Nd 15 Dy 1 Fe 77 B 7 magnets when the substrate was not preheated. It is believed that a crystal texture was developed during the plasma spray as a result of the existence of a temperature gradient in the solidifying melt

  8. Plasma sprayed alumina coatings for radiation detector development

    Indian Academy of Sciences (India)

    A mechanical as well as metallurgical bonding is necessary. 3. Applications ... Here the feasibility of using metallic components that were plasma spray- ... To study the electrical insulation, integrity of ceramic coating etc, tests were carried out.

  9. Characterization of plasma sprayed NiCrAlY-Yttria stabilized zirconia coatings

    International Nuclear Information System (INIS)

    Bhave, V.S.; Rakhasia, R.H.; Tripathy, P.K.; Hubli, R.C.; Sengupta, P.; Bhanumurthy; Satpute, R.U.; Sreekumar, K.P.; Thiyagarajan, T.K.; Padmanabhan, P.V.A.

    2004-01-01

    Plasma sprayed coatings of yttria stabilized zirconia are used in many advanced technologies for thermal and chemical barrier applications. Development and characterization of NiCrAlY-yttria stabilized zirconia duplex coatings on Inconel substrates is reported in this paper. Plasma spraying was carried out using the 40 kW atmospheric plasma spray facility at the Laser and Plasma Technology Division, BARC. A bond coat of NiCrAlY was deposited on Inconel substrates and yttria stabilized zirconia (YSZ) was deposited over the bond coat. The coatings have been characterized by x-ray diffraction and EPMA. It is observed that the coating characteristics are affected by the input power to the torch. (author)

  10. Thermal plasma spheroidization and spray deposition of barium titanate powder and characterization of the plasma sprayable powder

    Energy Technology Data Exchange (ETDEWEB)

    Pakseresht, A.H., E-mail: amirh_pak@yahoo.com [Department of Ceramics, Materials and Energy Research Center, P.O. Box 31787-316, Karaj (Iran, Islamic Republic of); Rahimipour, M.R. [Department of Ceramics, Materials and Energy Research Center, P.O. Box 31787-316, Karaj (Iran, Islamic Republic of); Vaezi, M.R. [Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, P.O. Box 31787-316, Karaj (Iran, Islamic Republic of); Salehi, M. [Department of Materials Engineering, Isfahan University of Technology, P.O. Box 84156-83111, Isfahan (Iran, Islamic Republic of)

    2016-04-15

    In this paper, atmospheric plasma spray method was used to produce dense plasma sprayable powder and thick barium titanate film. In this regard, the commercially feedstock powders were granulated and spheroidized by the organic binder and the thermal spray process, respectively. Scanning electron microscopy was used to investigate the microstructure of the produced powders and the final deposits. X-ray diffraction was also implemented to characterize phase of the sprayed powder. The results indicated that spheroidized powder had suitable flowability as well as high density. The micro-hardness of the film produced by the sprayed powders was higher than that of the film deposited by the irregular granules. Additionally, relative permittivity of the films was increased by decreasing the defects from 160 to 293 for film deposited using spheroidized powder. The reduction in the relative permittivity of deposits, in comparison with the bulk material, was due to the existence of common defects in the thermal spray process. - Highlights: • We prepare sprayable BaTiO{sub 3} powder with no or less inside voids for plasma spray application for first time. • The sprayable powder has good flow characteristics and high density. • Powder spheroidization via plasma spray improves the hardness and dielectric properties of the deposited film.

  11. Thermal plasma spheroidization and spray deposition of barium titanate powder and characterization of the plasma sprayable powder

    International Nuclear Information System (INIS)

    Pakseresht, A.H.; Rahimipour, M.R.; Vaezi, M.R.; Salehi, M.

    2016-01-01

    In this paper, atmospheric plasma spray method was used to produce dense plasma sprayable powder and thick barium titanate film. In this regard, the commercially feedstock powders were granulated and spheroidized by the organic binder and the thermal spray process, respectively. Scanning electron microscopy was used to investigate the microstructure of the produced powders and the final deposits. X-ray diffraction was also implemented to characterize phase of the sprayed powder. The results indicated that spheroidized powder had suitable flowability as well as high density. The micro-hardness of the film produced by the sprayed powders was higher than that of the film deposited by the irregular granules. Additionally, relative permittivity of the films was increased by decreasing the defects from 160 to 293 for film deposited using spheroidized powder. The reduction in the relative permittivity of deposits, in comparison with the bulk material, was due to the existence of common defects in the thermal spray process. - Highlights: • We prepare sprayable BaTiO_3 powder with no or less inside voids for plasma spray application for first time. • The sprayable powder has good flow characteristics and high density. • Powder spheroidization via plasma spray improves the hardness and dielectric properties of the deposited film.

  12. Corrosion performance of atmospheric plasma sprayed alumina coatings on AZ31B magnesium alloy under immersion environment

    OpenAIRE

    D. Thirumalaikumarasamy; K. Shanmugam; V. Balasubramanian

    2014-01-01

    Plasma sprayed ceramic coatings are successfully used in many industrial applications, where high wear and corrosion resistance with thermal insulation are required. The alumina powders were plasma sprayed on AZ31B magnesium alloy with three different plasma spraying parameters. In the present work, the influence of plasma spray parameters on the corrosion behavior of the coatings was investigated. The corrosion behavior of the coated samples was evaluated by immersion corrosion test in 3.5 w...

  13. Production of ceramic formed parts by means of plasma spraying

    International Nuclear Information System (INIS)

    Kirner, K.

    1989-01-01

    Open and closed pipes and tubes, nozzles and crucibles, conical parts and other molded articles of ceramic materials such as aluminium oxide, magnesium-aluminium spinel, zirconium oxide, zirconium silicate and special ceramics can be fabricated by spray application to a core which is afterwards removed. Because at the same time these are mainly high temperature materials and high temperature application areas, plasma spraying is preferred. The process and examples of application are described, the advantages and disadvantages are pointed out. (orig.) [de

  14. Plasma sprayed samarium--cobalt permanent magnets

    International Nuclear Information System (INIS)

    Willson, M.C.; Janowiecki, R.J.

    1975-01-01

    Samarium--cobalt permanent magnets were fabricated by arc plasma spraying. This process involves the injection of relatively coarse powder particles into a high-temperature gas for melting and spraying onto a substrate. The technique is being investigated as an economical method for fabricating cobalt--rare earth magnets for advanced traveling wave tubes and cross-field amplifiers. Plasma spraying permits deposition of material at high rates over large areas with optional direct bonding to the substrate, and offers the ability to fabricate magnets in a variety of shapes and sizes. Isotropic magnets were produced with high coercivity and good reproducibility in magnetic properties. Post-spray thermal treatments were used to enhance the magnetic properties of sprayed deposits. Samarium--cobalt magnets, sprayed from samarium-rich powder and subjected to post-spray heat treatment, displayed energy products in excess of 9 million gauss-oersteds and coercive forces of approximately 6000 oersteds. Bar magnet arrays were constructed by depositing magnets on ceramic substrates. (auth)

  15. Plasma sprayed samarium--cobalt permanent magnets

    International Nuclear Information System (INIS)

    Willson, M.C.; Janowiecki, R.J.

    1975-01-01

    Samarium--Co permanent magnets were fabricated by arc plasma spraying. This process involves the injection of relatively coarse powder particles into a high temperature gas for melting and spraying onto a substrate. The technique is being investigated as an economical method for fabricating Co--rare earth magnets for advanced traveling wave tubes and cross-field amplifiers. Plasma spraying permits deposition of material at high rates over large areas with optional direct bonding to the substrate, and offers the ability to fabricate magnets in a variety of shapes and sizes. Isotropic magnets were produced with high coercivity and good reproducibility in magnetic properties. Post-spray thermal treatments were used to enhance the magnetic properties of sprayed deposits. Samarium--Co magnets, sprayed from Sm-rich powder and subjected to post-spray heat treatment, displayed energy products in excess of 9 million G-Oe and coercive forces of approximately 6000 Oe. Bar magnet arrays were constructed by depositing magnets on ceramic substrates

  16. Molybdenum disilicide composites produced by plasma spraying

    International Nuclear Information System (INIS)

    Castro, R.G.; Hollis, K.J.; Kung, H.H.; Bartlett, A.H.

    1998-01-01

    The intermetallic compound, molybdenum disilicide (MoSi 2 ) is being considered for high temperature structural applications because of its high melting point and superior oxidation resistance at elevated temperatures. The lack of high temperature strength, creep resistance and low temperature ductility has hindered its progress for structural applications. Plasma spraying of coatings and structural components of MoSi 2 -based composites offers an exciting processing alternative to conventional powder processing methods due to superior flexibility and the ability to tailor properties. Laminate, discontinuous and in situ reinforced composites have been produced with secondary reinforcements of Ta, Al 2 O 3 , SiC, Si 3 N 4 and Mo 5 Si 3 . Laminate composites, in particular, have been shown to improve the damage tolerance of MoSi 2 during high temperature melting operations. A review of research which as been performed at Los Alamos National Laboratory on plasma spraying of MoSi 2 -based composites to improve low temperature fracture toughness, thermal shock resistance, high temperature strength and creep resistance will be discussed

  17. 3D-simulation of residual stresses in TBC plasma sprayed coating

    International Nuclear Information System (INIS)

    Kundas, S.; Kashko, T.; Hurevich, V.E.; Lugscheider, E.; Hayn, G. von; Ilyuschenko, A.

    2001-01-01

    Thermal barrier coatings (TBC) are used in gas turbine technology in order to protect against overheating of the nickel alloy turbine blades. This coatings allows to increase turbine inlet temperatures and improve their efficiency. Plasma spraying processes are widely used since several years in thermal barrier coating technology. Although the plasma spraying process of TBC's is largely successful, a fundamental understanding of the process parameters influencing the TBC microstructure and mechanical properties is necessary. But this investigation has received much less attention so they could lead to considerable advances in performance of plasma sprayed thermal barrier coatings. The main reason of this mate is difficulties in experimental investigation of high temperature and high velocity process. One of the most effective ways to accelerate the process optimization is the application of computer simulation for the modeling of plasma spraying. This enables the achievement of a maximum of information about the investigated process by carrying out a minimum number of experiments. The main problem of plasma spray TBC coatings is crack information during the deposition process and coating cooling. The reasons for this are quenched and residual stresses in the coating-substrate system, and peculiarities of TBC coating properties. The problem of deposition and solidification of plasma sprayed coatings have received little attention to date and remains one of the unintelligible parts of process. A fundamental understanding of heat transfer in the coating-substrate system and particles deformation processes are, however, critical for the prediction of the microstructural characteristics of the deposited coatings, the understanding of the mechanisms involved in formation of thermal stresses and defects (cracks, debonding etc.). (author)

  18. Automated Plasma Spray (APS) process feasibility study: Plasma spray process development and evaluation

    Science.gov (United States)

    Fetheroff, C. W.; Derkacs, T.; Matay, I. M.

    1979-01-01

    An automated plasma spray (APS) process was developed to apply two layer (NiCrAlY and ZrO2-12Y2O3) thermal-barrier coatings to aircraft gas turbine engine blade airfoils. The APS process hardware consists of four subsystems: a mechanical blade positioner incorporating two interlaced six-degree-of-freedom assemblies; a noncoherent optical metrology subsystem; a microprocessor-based adaptive system controller; and commercial plasma spray equipment. Over fifty JT9D first stage turbine blades specimens were coated with the APS process in preliminary checkout and evaluation studies. The best of the preliminary specimens achieved an overall coating thickness uniformity of + or - 53 micrometers, much better than is achievable manually. Factors limiting this performance were identified and process modifications were initiated accordingly. Comparative evaluations of coating thickness uniformity for manually sprayed and APS coated specimens were initiated. One of the preliminary evaluation specimens was subjected to a torch test and metallographic evaluation.

  19. The effect of processing parameters on plasma sprayed beryllium for fusion applications

    International Nuclear Information System (INIS)

    Castro, R.G.; Stanek, P.W.; Jacobson, L.A.; Cowgill, D.F.; Snead, L.L.

    1993-01-01

    Plasma spraying is being investigated as a potential coating technique for applying thin (0.1--5mm) layers of beryllium on plasma facing surfaces of blanket modules in ITER and also as an in-situ repair technique for repairing eroded beryllium surfaces in high heat flux divertor regions. High density spray deposits (>98% of theoretical density) of beryllium will be required in order to maximize the thermal conductivity of the beryllium coatings. A preliminary investigation was done to determine the effect of various processing parameters (particle size, particle morphology, secondary gas additions and reduced chamber pressure) on the as-deposited density of beryllium. The deposits were made using spherical beryllium feedstock powder which was produced by centrifugal atomization at Los Alamos National Laboratory (LANL). Improvements in the as-deposited densities and deposit efficiencies of the beryllium spray deposits will be discussed along with the corresponding thermal conductivity and outgassing behavior of these deposits

  20. The effect of processing parameters on plasma sprayed beryllium for fusion applications

    International Nuclear Information System (INIS)

    Castro, R.G.; Stanek, P.W.; Jacobson, L.W.; Cowgill, D.F.

    1993-01-01

    Plasma spraying is being investigated as a potential coating technique for applying thin (0.1-5mm) layers of beryllium on plasma facing surfaces of blanket modules in ITER and also as an in-situ repair technique for repairing eroded beryllium surfaces in high heat flux divertor regions. High density spray deposits (>98% of theoretical density) of beryllium will be required in order to maximize the thermal conductivity of the beryllium coatings. A preliminary investigation was done to determine the effect of various processing parameters (particle size, particle morphology, secondary gas additions and reduced chamber pressure) on the as-deposited density of beryllium. The deposits were made using spherical beryllium feedstock powder which was produced by centrifugal atomization at Los Alamos National Laboratory (LANL). Improvements in the as-deposited densities and deposit efficiencies of the beryllium spray deposits will be discussed along with the corresponding thermal conductivity and outgassing behavior of these deposits. (orig.)

  1. Transformation kinetics in plasma-sprayed barium- and strontium-doped aluminosilicate (BSAS)

    International Nuclear Information System (INIS)

    Harder, B.J.; Faber, K.T.

    2010-01-01

    The hexacelsian-to-celsian phase transformation in Ba 1-x Sr x Al 2 Si 2 O 8 is of interest for environmental barrier coating applications. Plasma-sprayed microstructures were heat treated above 1100 o C and the kinetics of the hexacelsian-to-celsian transformation were quantified. Activation energies for bulk and crushed materials were determined to be ∼340 and ∼500 kJ mol -1 , respectively. X-ray diffraction and electron backscattered diffraction were used to establish how plasma spraying barium- and strontium-doped aluminosilicate effectively reduces the energy required for its transformation.

  2. Current Progress in Solution Precursor Plasma Spraying of Cermets: A Review

    Directory of Open Access Journals (Sweden)

    Romnick Unabia

    2018-06-01

    Full Text Available Ceramic and metal composites, known also as cermets, may considerably improve many material properties with regards to that of initial components. Hence, cermets are frequently applied in many technological fields. Among many processes which can be employed for cermet manufacturing, thermal spraying is one of the most frequently used. Conventional plasma spraying of powders is a popular and cost-effective manufacturing process. One of its most recent innovations, called solution precursor plasma spraying (SPPS, is an emerging coating deposition method which uses homogeneously mixed solution precursors as a feedstock. The technique enables a single-step deposition avoiding the powder preparation procedures. The nanostructured coatings developed by SPPS increasingly find a place in the field of surface engineering. The present review shows the recent progress in the fabrication of cermets using SPPS. The influence of starting solution precursors, such as their chemistry, concentration, and solvents used, to the micro-structural characteristics of cermet coatings is discussed. The effect of the operational plasma spray process parameters such as solution injection mode to the deposition process and coatings’ microstructure is also presented. Moreover, the advantages of the SPPS process and its drawbacks compared to the conventional powder plasma spraying process are discussed. Finally, some applications of SPPS cermet coatings are presented to understand the potential of the process.

  3. The development of beryllium plasma spray technology for the International Thermonuclear Experimental Reactor (ITER)

    International Nuclear Information System (INIS)

    Castro, R.G.; Elliott, K.E.; Hollis, K.J.; Watson, R.D.

    1999-01-01

    Over the past five years, four international parties, which include the European Communities, Japan, the Russian Federation and the United States, have been collaborating on the design and development of the International Thermonuclear Experimental Reactor (ITER), the next generation magnetic fusion energy device. During the ITER Engineering Design Activity (EDA), beryllium plasma spray technology was investigated by Los Alamos National Laboratory as a method for fabricating and repairing and the beryllium first wall surface of the ITER tokamak. Significant progress has been made in developing beryllium plasma spraying technology for this application. Information will be presented on the research performed to improve the thermal properties of plasma sprayed beryllium coatings and a method that was developed for cleaning and preparing the surface of beryllium prior to depositing plasma sprayed beryllium coatings. Results of high heat flux testing of the beryllium coatings using electron beam simulated ITER conditions will also be presented

  4. Plasma sprayed coatings on mild steel split moulds for uranium casting

    International Nuclear Information System (INIS)

    Sreekumar, K.P.; Padmanaban, P.V.A.; Venkatramani, N.; Singh, S.P.; Saha, D.P.; Date, V.G.

    2002-01-01

    High velocity high temperature plasma jets are used to deposit metals and ceramics on metallic substrates for oxidation and corrosion protection applications. Plasma sprayed ceramic coatings on metallic substrates are also used to prevent its reaction with molten metals. Metal-alumina duplex coatings on mild steel split moulds have been developed and successfully used for casting of uranium. Techno-economics of the coated moulds against the conventional graphite moulds are a major advantage. Mild steel moulds of 600 mm long and 75 mm in diameter have been plasma spray coated with alumina over a bond coat of molybdenum. In-plant tests showed an increase in number of castings per mould compared to the commonly used graphite moulds. (author)

  5. Radio frequency induction plasma spraying of molybdenum

    International Nuclear Information System (INIS)

    Jiang Xianliang

    2003-01-01

    Radio frequency (RF) induction plasma was used to make free-standing deposition of molybdenum (Mo). The phenomena of particle melting, flattening, and stacking were investigated. The effect of process parameters such as plasma power, chamber pressure, and spray distance on the phenomena mentioned above was studied. Scanning electron microscopy (SEM) was used to analyze the plasma-processed powder, splats formed, and deposits obtained. Experimental results show that less Mo particles are spheroidized when compared to the number of spheroidized tungsten (W) particles at the same powder feed rate under the same plasma spray condition. Molten Mo particles can be sufficiently flattened on substrate. The influence of the process parameters on the flattening behavior is not significant. Mo deposit is not as dense as W deposit, due to the splash and low impact of molten Mo particles. Oxidation of the Mo powder with a large particle size is not evident under the low pressure plasma spray

  6. The Role of Spraying Parameters and Inert Gas Shrouding in Hybrid Water-Argon Plasma Spraying of Tungsten and Copper for Nuclear Fusion Applications

    Czech Academy of Sciences Publication Activity Database

    Matějíček, Jiří; Kavka, Tetyana; Bertolissi, Gabriele; Ctibor, Pavel; Vilémová, Monika; Mušálek, Radek; Nevrlá, Barbara

    2013-01-01

    Roč. 22, č. 5 (2013), s. 744-755 ISSN 1059-9630 R&D Projects: GA MPO FR-TI2/702; GA TA ČR TA01010300 Institutional support: RVO:61389021 Keywords : plasma spraying * tungsten * copper * inert gas shrouding * water-argon plasma torch * gas shroud * hybrid plasma torch * influence of spray parameters * nuclear fusion * oxidation Subject RIV: JG - Metallurgy Impact factor: 1.491, year: 2013 http://link.springer.com/content/pdf/10.1007%2Fs11666-013-9895-x.pdf

  7. Research of Plasma Spraying Process on Aluminum-Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    Patricija Kavaliauskaitė

    2016-04-01

    Full Text Available The article examines plasma sprayed 95Ni-5Al coatings on alu-minum-magnesium (Mg ≈ 2,6‒3,6 % alloy substrate. Alumi-num-magnesium samples prior spraying were prepared with mechanical treatment (blasting with Al2O3. 95Ni-5Al coatings on aluminum-magnesium alloys were sprayed with different parameters of process and coating‘s thickness, porosity, micro-hardness and microstructure were evaluated. Also numerical simulations in electric and magnetic phenomena of plasma spray-ing were carried out.

  8. Suspensions Plasma Spraying of Ceramics with Hybrid Water-Stabilized Plasma Technology

    Czech Academy of Sciences Publication Activity Database

    Mušálek, Radek; Medřický, Jan; Tesař, T.; Kotlan, Jiří; Pala, Zdeněk; Lukáč, František; Chráska, Tomáš; Curry, N.

    2017-01-01

    Roč. 26, 1-2 (2017), s. 37-46 ISSN 1059-9630. [ISTC 2016: International Thermal Spray Conference. Shanghai, 10.05.2016-12.05.2016] R&D Projects: GA ČR GA15-12145S Institutional support: RVO:61389021 Keywords : alumina * ceramics * dense * hybrid plasma torch * suspension plasma spraying * water-stabilized plasma * yttria-stabilized zirconia (YSZ) Subject RIV: JK - Corrosion ; Surface Treatment of Materials OBOR OECD: Coating and films Impact factor: 1.488, year: 2016 http://link.springer.com/article/10.1007/s11666-016-0493-6

  9. Alignment Fixtures For Vacuum-Plasma-Spray Gun

    Science.gov (United States)

    Woodford, William H.; Mckechnie, Timothy N.; Power, Christopher A.; Daniel, Ronald L., Jr.

    1993-01-01

    Fixtures for alignment of vacuum-plasma-spray guns built. Each fixture designed to fit specific gun and holds small, battery-powered laser on centerline of gun. Laser beam projects small red dot where centerline intersects surface of workpiece to be sprayed. After laser beam positioned on surface of workpiece, fixture removed from gun and spraying proceeds.

  10. Corrosion performance of atmospheric plasma sprayed alumina coatings on AZ31B magnesium alloy under immersion environment

    Directory of Open Access Journals (Sweden)

    D. Thirumalaikumarasamy

    2014-12-01

    Full Text Available Plasma sprayed ceramic coatings are successfully used in many industrial applications, where high wear and corrosion resistance with thermal insulation are required. The alumina powders were plasma sprayed on AZ31B magnesium alloy with three different plasma spraying parameters. In the present work, the influence of plasma spray parameters on the corrosion behavior of the coatings was investigated. The corrosion behavior of the coated samples was evaluated by immersion corrosion test in 3.5 wt% NaCl solution. Empirical relationship was established to predict the corrosion rate of plasma sprayed alumina coatings by incorporating process parameters. The experiments were conducted based on a three factor, five-level, central composite rotatable design matrix. The developed relationship can be effectively used to predict the corrosion rate of alumina coatings at 95% confidence level. The results indicate that the input power has the greatest influence on corrosion rate, followed by stand-off distance and powder feed rate.

  11. Effect of laser induced plasma ignition timing and location on Diesel spray combustion

    International Nuclear Information System (INIS)

    Pastor, José V.; García-Oliver, José M.; García, Antonio; Pinotti, Mattia

    2017-01-01

    Highlights: • Laser plasma ignition is applied to a direct injection Diesel spray, compared with auto-ignition. • Critical local fuel/air ratio for LIP provoked ignition is obtained. • The LIP system is able to stabilize Diesel combustion compared to auto-ignition cases. • Varying LIP position along spray axis directly affects Ignition-delay. • Premixed combustion is reduced both by varying position and delay of the LIP ignition system. - Abstract: An experimental study about the influence of the local conditions at the ignition location on combustion development of a direct injection spray is carried out in an optical engine. A laser induced plasma ignition system has been used to force the spray ignition, allowing comparison of combustion’s evolution and stability with the case of conventional autoignition on the Diesel fuel in terms of ignition delay, rate of heat release, spray penetration and soot location evolution. The local equivalence ratio variation along the spray axis during the injection process was determined with a 1D spray model, previously calibrated and validated. Upper equivalence ratios limits for the ignition event of a direct injected Diesel spray, both in terms of ignition success possibilities and stability of the phenomena, could been determined thanks to application of the laser plasma ignition system. In all laser plasma induced ignition cases, heat release was found to be higher than for the autoignition reference cases, and it was found to be linked to a decrease of ignition delay, with the premixed peak in the rate of heat release curve progressively disappearing as the ignition delay time gets shorter. Ignition delay has been analyzed as a function of the laser position, too. It was found that ignition delay increases for plasma positions closer to the nozzle, indicating that the amount of energy introduced by the laser induced plasma is not the only parameter affecting combustion initiation, but local equivalence ratio

  12. Model of the macrostructure formation of plasma sprayed coatings

    International Nuclear Information System (INIS)

    Gnedovets, A.G.; Kalita, V.I.

    2007-01-01

    A 3D discrete ballistic model of plasma sprayed coatings structure formation is presented. The effect of a spraying angle on porous macrostructure of coatings is investigated by numerical computations.Computer simulation results as well as experimental data show that at a sputtering angle less than 45 deg the mechanism of surface relief formation is changed and the relief consists of valleys and ridges under such conditions of plasma spraying [ru

  13. Understanding plasma spraying process and characteristics of DC-arc plasma gun (PJ-100

    Directory of Open Access Journals (Sweden)

    Jovana Ružić

    2012-12-01

    Full Text Available The thermal spray processes are a group of coating processes used to apply metallic or non-metallic coatings. In these processes energy sources are used to heat the coating material (in the form of powder, wire, or rod form to a molten or semi-molten state and accelerated towards a prepared surface by either carrier gases or atomization jets. In plasma spraying process, the spraying material is generally in the form of powder and requires a carrier gas to feed the powder into the plasma jet, which is passing between the hot cathode and the cylindrical nozzle-shaped anode. The design of DC plasma gun (PJ - 100 is designed and manufactured in Serbia. Plasma spaying process, the powder injection with the heat, momentum and mass transfers between particles and plasma jet, and the latest developments related to the production of DC plasma gun are described in this article.

  14. Influence of Bondcoat Spray Process on Lifetime of Suspension Plasma-Sprayed Thermal Barrier Coatings

    Science.gov (United States)

    Gupta, M.; Markocsan, N.; Li, X.-H.; Östergren, L.

    2018-01-01

    Development of thermal barrier coatings (TBCs) manufactured by suspension plasma spraying (SPS) is of high commercial interest as SPS has been shown capable of producing highly porous columnar microstructures similar to the conventionally used electron beam-physical vapor deposition. However, lifetime of SPS coatings needs to be improved further to be used in commercial applications. The bondcoat microstructure as well as topcoat-bondcoat interface topography affects the TBC lifetime significantly. The objective of this work was to investigate the influence of different bondcoat deposition processes for SPS topcoats. In this work, a NiCoCrAlY bondcoat deposited by high velocity air fuel (HVAF) was compared to commercial vacuum plasma-sprayed NiCoCrAlY and PtAl diffusion bondcoats. All bondcoat variations were prepared with and without grit blasting the bondcoat surface. SPS was used to deposit the topcoats on all samples using the same spray parameters. Lifetime of these samples was examined by thermal cyclic fatigue testing. Isothermal heat treatment was performed to study bondcoat oxidation over time. The effect of bondcoat deposition process and interface topography on lifetime in each case has been discussed. The results show that HVAF could be a suitable process for bondcoat deposition in SPS TBCs.

  15. Mueller matrix polarimetry on plasma sprayed thermal barrier coatings for porosity measurement.

    Science.gov (United States)

    Luo, David A; Barraza, Enrique T; Kudenov, Michael W

    2017-12-10

    Yttria-stabilized zirconia (YSZ) is the most widely used material for thermal plasma sprayed thermal barrier coatings (TBCs) used to protect gas turbine engine parts in demanding operation environments. The superior material properties of YSZ coatings are related to their internal porosity level. By quantifying the porosity level, tighter control on the spraying process can be achieved to produce reliable coatings. Currently, destructive measurement methods are widely used to measure the porosity level. In this paper, we describe a novel nondestructive approach that is applicable to classify the porosity level of plasma sprayed YSZ TBCs via Mueller matrix polarimetry. A rotating retarder Mueller matrix polarimeter was used to measure the polarization properties of the plasma sprayed YSZ coatings with different porosity levels. From these measurements, it was determined that a sample's measured depolarization ratio is dependent on the sample's surface roughness and porosity level. To this end, we correlate the depolarization ratio with the samples' surface roughness, as measured by a contact profilometer, as well as the total porosity level, in percentage measured using a micrograph and stereological analysis. With the use of this technique, a full-field and rapid measurement of porosity level can be achieved.

  16. Atmospheric plasma sprayed (APS) coatings of Al2O3-TiO2 system for photocatalytic application.

    Science.gov (United States)

    Stengl, V; Ageorges, H; Ctibor, P; Murafa, N

    2009-05-01

    The goal of this study is to examine the photocatalytic ability of coatings produced by atmospheric plasma spraying (APS). The plasma gun used is a common gas-stabilized plasma gun (GSP) working with a d.c. current and a mixture of argon and hydrogen as plasma-forming gas. The TiO(2) powders are particles of about 100 nm which were agglomerated to a mean size of about 55 mum, suitable for spraying. Composition of the commercial powder is 13 wt% of TiO(2) in Al(2)O(3), whereas also in-house prepared powder with the same nominal composition but with agglomerated TiO(2) and conventional fused and crushed Al(2)O(3) was sprayed. The feedstock materials used for this purpose are alpha-alumina and anatase titanium dioxide. The coatings are analyzed by scanning electron microscopy (SEM), energy dispersion probe (EDS) and X-ray diffraction. Photocatalytic degradation of acetone is quantified for various coatings. All plasma sprayed coatings show a lamellar structure on cross section, as typical for this process. Anatase titania from feedstock powder is converted into rutile titania and alpha-alumina partly to gamma-alumina. Coatings are proven to catalyse the acetone decomposition when irradiated by UV rays.

  17. Preparation and in vitro evaluation of plasma-sprayed bioactive akermanite coatings

    International Nuclear Information System (INIS)

    Yi, Deliang; Wu, Chengtie; Chang, Jiang; Ma, Xubing; Ji, Heng; Zheng, Xuebin

    2012-01-01

    Bioactive ceramic coatings on titanium (Ti) alloys play an important role in orthopedic applications. In this study, akermanite (Ca 2 MgSi 2 O 7 ) bioactive coatings are prepared through a plasma spraying technique. The bonding strength between the coatings and Ti-6Al-4V substrates is around 38.7–42.2 MPa, which is higher than that of plasma sprayed hydroxyapatite (HA) coatings reported previously. The prepared akermanite coatings reveal a distinct apatite-mineralization ability in simulated body fluid. Furthermore, akermanite coatings support the attachment and proliferation of rabbit bone marrow mesenchymal stem cells (BMSCs). The proliferation rate of BMSCs on akermanite coatings is obviously higher than that on HA coatings. (paper)

  18. Stainless steel coatings produced through atmospheric plasma spraying study of in flight powder behavior and coating structure

    International Nuclear Information System (INIS)

    Denoirjean, A.; Denoirjean, P.; Fauchais, P.; Labbe, J.C.; Khan, A.A.

    2005-01-01

    The Stainless Steel coatings deposited through Atmospheric Plasma Spraying over mild steel surface present an interest from commercial point of view, especially for the applications where corrosion resistance or inertness towards severe environment is required. Atmospheric Plasma Spraying is fast and relatively less expensive choice as compared to Vacuum Plasma Spraying, the only limitation being the extremely reactive nature of metallic powders used. A study of the behaviour of metallic powders within an Atmospheric Plasma Jet is presented in view of better understanding and eventual improvement in coating properties. Metallic powder particles show very interesting features when individual particles are collected after passing them through a DC Blown Arc Thermal Plasma Jet under Atmospheric Pressure. The spraying was carried out under air which makes the significance of these results even more interesting from the industrial point of view. Proper control of Spraying Parameters can help produce Stainless Steel coatings of reasonably low porosity and a typical lamellar microstructure. The results of SEM, AFM and XRD are discussed. A strange oxidation phenomenon under highly non equilibrium conditions is observed. (author)

  19. Post-treatment of Plasma-Sprayed Amorphous Ceramic Coatings by Spark Plasma Sintering

    Science.gov (United States)

    Chraska, T.; Pala, Z.; Mušálek, R.; Medřický, J.; Vilémová, M.

    2015-04-01

    Alumina-zirconia ceramic material has been plasma sprayed using a water-stabilized plasma torch to produce free standing coatings. The as-sprayed coatings have very low porosity and are mostly amorphous. The amorphous material crystallizes at temperatures above 900 °C. A spark plasma sintering apparatus has been used to heat the as-sprayed samples to temperatures above 900 °C to induce crystallization, while at the same time, a uniaxial pressure of 80 MPa has been applied to their surface. After such post-treatment, the ceramic samples are crystalline and have very low open porosity. The post-treated material exhibits high hardness and significantly increased flexural strength. The post-treated samples have a microstructure that is best described as nanocomposite with the very small crystallites embedded in an amorphous matrix.

  20. Experience of high-nitrogenous steel powder application in repairs and surface hardening of responsible parts for power equipment by plasma spraying

    Science.gov (United States)

    Kolpakov, A. S.; Kardonina, N. I.

    2016-02-01

    The questions of the application of novel diffusion-alloying high-nitrogenous steel powders for repair and surface hardening of responsible parts of power equipment by plasma spraying are considered. The appropriateness of the method for operative repair of equipment and increasing its service life is justified. General data on the structure, properties, and manufacture of nitrogen-, aluminum-, and chromium-containing steel powders that are economically alloyed using diffusion are described. It is noted that the nitrogen release during the decomposition of iron nitrides, when heating, protects the powder particles from oxidation in the plasma jet. It is shown that the coating retains 50% of nitrogen that is contained in the powder. Plasma spraying modes for diffusion-alloying high-nitrogenous steel powders are given. The service properties of plasma coatings based on these powders are analyzed. It is shown that the high-nitrogenous steel powders to a nitrogen content of 8.9 wt % provide the necessary wear resistance and hardness of the coating and the strength of its adhesion to the substrate and corrosion resistance to typical aggressive media. It is noted that increasing the coating porosity promotes stress relaxation and increases its thickness being limited with respect to delamination conditions in comparison with dense coatings on retention of the low defectiveness of the interface and high adhesion to the substrate. The examples of the application of high-nitrogenous steel powders in power engineering during equipment repairs by service companies and overhaul subdivisions of heat power plants are given. It is noted that the plasma spraying of diffusion-alloyed high-nitrogenous steel powders is a unique opportunity to restore nitrided steel products.

  1. Plasma-spraying synthesis of high-performance photocatalytic TiO2 coatings

    International Nuclear Information System (INIS)

    Takahashi, Yasuo; Maeda, Masakatsu; Ohmori, Akira; Shibata, Yoshitaka; Miyano, Yasuyuki; Murai, Kensuke

    2014-01-01

    Anatase (A-) TiO 2 is a photocatalytic material that can decompose air-pollutants, acetaldehyde, bacteria, and so on. In this study, three kinds of powder (A-TiO 2 without HAp, TiO 2 + 10mass%HAp, and TiO 2 +30mass%HAp, where HAp is hydroxyapatite and PBS is polybutylene succinate) were plasma sprayed on biodegradable PBS substrates. HAp powder was mixed with A-TiO 2 powder by spray granulation in order to facilitate adsorption of acetaldehyde and bacteria. The crystal structure was almost completely maintained during the plasma spray process. HAp enhanced the decomposition of acetaldehyde and bacteria by promoting adsorption. A 10mass% HAp content was the most effective for decomposing acetaldehyde when plasma preheating of the PBS was not carried out before the plasma spraying. The plasma preheating of PBS increased the yield rate of the spray process and facilitated the decomposition of acetaldehyde by A-TiO 2 coatings without HAp. HAp addition improved photocatalytic sterilization when plasma preheating of the PBS was performed

  2. Automatic targeting of plasma spray gun

    Science.gov (United States)

    Abbatiello, Leonard A.; Neal, Richard E.

    1978-01-01

    A means for monitoring the material portion in the flame of a plasma spray gun during spraying operations is provided. A collimated detector, sensitive to certain wavelengths of light emission, is used to locate the centroid of the material with each pass of the gun. The response from the detector is then relayed to the gun controller to be used to automatically realign the gun.

  3. Automatic targeting of plasma spray gun

    International Nuclear Information System (INIS)

    Abbatiello, L.A.; Neal, R.E.

    1978-01-01

    A means for monitoring the material portion in the flame of a plasma spray gun during spraying operations is described. A collimated detector, sensitive to certain wavelengths of light emission, is used to locate the centroid of the material with each pass of the gun. The response from the detector is then relayed to the gun controller to be used to automatically realign the gun

  4. Plasma sprayed alumina-titania coatings

    International Nuclear Information System (INIS)

    Steeper, T.J.; Rotolico, A.J.; Nerz, J.E.; Riggs, W.L. II; Varacalle, D.J. Jr.; Wilson, G.C.

    1992-01-01

    This paper presents an experimental study of the air plasma spraying (APS) of alumina-titania powder using argon-hydrogen working gases. This powder system is being used in the fabrication of heater tubes that emulate nuclear fuel tubes for use in thermal-hydraulic testing. Experiments were conducted using a Taguchi fractional-factorial design parametric study. Operating parameters were varied around the typical spray parameters in a systematic design of experiments in order to display the range of plasma processing conditions and their effect on the resultant coatings. The coatings were characterized by hardness and electrical tests, surface profilometry, image analysis, optical metallography, and x-ray diffraction. Coating qualities are discussed with respect to dielectric strength, hardness, porosity, surface roughness, deposition efficiency, and microstructure. attempts are made to correlate the features of the coatings with the changes in operating parameters

  5. Plasma Sprayed Hydroxyapatite Coatings: Influence of Spraying Power on Microstructure

    International Nuclear Information System (INIS)

    Mohd, S. M.; Abd, M. Z.; Abd, A. N.

    2010-01-01

    The plasma sprayed hydroxyapatite (HA) coatings are used on metallic implants to enhance the bonding between the implant and bone in human body. The coating process was implemented at different spraying power for each spraying condition. The coatings formed from a rapid solidification of molten and partly molten particles that impact on the surface of substrate at high velocity and high temperature. The study was concentrated on different spraying power that is between 23 to 31 kW. The effect of different power on the coatings microstructure was investigated using scanning electron microscope (SEM) and phase composition was evaluated using X-ray diffraction (XRD) analysis. The coatings surface morphology showed distribution of molten, partially melted particles and some micro-cracks. The produced coatings were found to be porous as observed from the cross-sectional morphology. The coatings XRD results indicated the presence of crystalline phase of HA and each of the patterns was similar to the initial powder. Regardless of different spraying power, all the coatings were having similar XRD patterns.

  6. Production of press moulds by plasma spray forming process

    International Nuclear Information System (INIS)

    Borisov, Y.; Myakota, I.; Polyakov, S.

    2001-01-01

    Plasma spray forming process for production of press moulds which are used for manufacture of articles from plastics was developed. The press moulds were produced by plasma spraying of Cu-Al-Fe-alloy powder on surface of a master model. The master models were made from non-metallic materials with heat resistance below 70 C (wood, gypsum etc). Double cooling system which provides for a control of surface model temperature and quenching conditions of sprayed material was designed. It made possible on the one hand to support model surface temperature below 70 C and on the other hand to provide for temperature conditions of martensite transformation in Cu-Al-system with a fixation of metastable ductile α + β 1 -phase. This allowed to decrease residual stresses in sprayed layer (up to 0,5-2,5 MPa), to increase microhardness of the coating material (up to 1200-1800 MPa) and its ductility (σ B = 70-105 MPa, δ = 6-12 %). This plasma spray forming process makes possible to spray thick layers (5-20 mm and more) without their cracking and deformation. The process is used for a production of press moulds which are applied in shoes industry, for fabrication of toys, souvenirs etc. (author)

  7. Plasma-sprayed CaTiSiO5 ceramic coating on Ti-6Al-4V with excellent bonding strength, stability and cellular bioactivity

    Science.gov (United States)

    Wu, Chengtie; Ramaswamy, Yogambha; Liu, Xuanyong; Wang, Guocheng; Zreiqat, Hala

    2008-01-01

    Novel Ca-Si-Ti-based sphene (CaTiSiO5) ceramics possess excellent chemical stability and cytocompatibility. The aim of this study was to prepare sphene coating on titanium alloy (Ti-6Al-4V) for orthopaedic applications using the plasma spray method. The phase composition, surface and interface microstructure, coating thickness, surface roughness and bonding strength of the plasma-sprayed sphene coating were analysed using X-ray diffraction, scanning electron microscopy, atomic force microscopy and the standard mechanical testing of the American Society for Testing and Materials, respectively. The results indicated that sphene coating was obtained with a uniform and dense microstructure at the interface of the Ti-6Al-4V surface and the thickness and surface roughness of the coating were approximately 150 and 10 μm, respectively. Plasma-sprayed sphene coating on Ti-6Al-4V possessed a significantly improved bonding strength and chemical stability compared with plasma-sprayed hydroxyapatite (HAp) coating. Plasma-sprayed sphene coating supported human osteoblast-like cell (HOB) attachment and significantly enhanced HOB proliferation and differentiation compared with plasma-sprayed HAp coating and uncoated Ti-6Al-4V. Taken together, plasma-sprayed sphene coating on Ti-6Al-4V possessed excellent bonding strength, chemical stability and cellular bioactivity, indicating its potential application for orthopaedic implants. PMID:18664431

  8. D. C. plasma-sprayed coatings of nano-structured alumina-titania-silica

    CERN Document Server

    Jiang Xian Liang

    2002-01-01

    nano-crystalline powders of omega(Al sub 2 O sub 3) = 95%, omega(TiO sub 2) = 3%, and omega(SiO sub 2) = 2%, were reprocessed into agglomerated particles for plasma spraying, by using consecutive steps of ball milling, slurry forming, spray drying, and heat treatment. D.C. plasma was used to spray the agglomerated nano-crystalline powders, and resultant coatings were deposited on the substrate of stainless steel. Scanning electron microscopy (SEM) was used to examine the morphology of the agglomerated powders and the cross section of the alumina-titania-silica coatings. Experimental results show that the agglomerated nano-crystalline particles are spherical, with a size from (10-90) mu m. The flow ability of the nano-crystalline powders is greatly improved after the reprocessing. The coatings deposited by the plasma spraying are mainly of nano-structure. Unlike conventional plasma-sprayed coatings, no laminar layer could be found in the nano-structured coatings. Although the nano-structured coatings have a lo...

  9. A comparative study of tribological behavior of plasma and D-gun sprayed coatings under different wear modes

    International Nuclear Information System (INIS)

    Sundararajan, G.; Rao, D.S.; Prasad, K.U.M.; Joshi, S.V.

    1998-01-01

    In recent years, thermal sprayed protective coatings have gained widespread acceptance for a variety of industrial applications. A vast majority of these applications involve the use of thermal sprayed coatings to combat wear. While plasma spraying is the most versatile variant of all the thermal spray processes, the detonation gun (D-gun) coatings have been a novelty until recently because of their proprietary nature. The present study is aimed at comparing the tribological behavior of coatings deposited using the two above techniques by focusing on some popular coating materials that are widely adopted for wear resistant applications, namely, WC-12% Co, Al 2 O 3 , and Cr 3 C 2 -NiCr. To enable a comprehensive comparison of the above indicated thermal spray techniques as well as coating materials, the deposited coatings were extensively characterized employing microstructural evaluation, microhardness measurements, and XRD analysis for phase constitution. The behavior of these coatings under different wear modes was also evaluated by determining their tribological performance when subjected to solid particle erosion tests, rubber wheel sand abrasion tests, and pin-on-disk sliding wear tests. Among all the coating materials studied, D-gun sprayed WC-12% Co, in general, yields the best performance under different modes of wear, whereas plasma sprayed Al 2 O 3 shows least wear resistance to every wear mode

  10. Plasma spraying of cerium-doped YAG

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Kubát, J.; Pala, Zdeněk; Nevrlá, Barbara

    2014-01-01

    Roč. 29, č. 19 (2014), s. 2344-2351 ISSN 0884-2914 R&D Projects: GA ČR(CZ) GAP108/12/1872 Institutional support: RVO:61389021 Keywords : plasma spraying * water-stabilized plasma Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 1.647, year: 2014 http://dx.doi.org/10.1557/jmr.2014.251

  11. Molybdenum plasma spray powder, process for producing said powder, and coating made therefrom

    International Nuclear Information System (INIS)

    Lafferty, W.D.; Cheney, R.F.; Pierce, R.H.

    1979-01-01

    Plasma spray powders of molybdenum particles containing 0.5 to 15 weight percent oxygen and obtained by reacting molybdenum particles with oxygen or oxides in a plasma, form plasma spray coatings exhibiting hardness comparable to flame sprayed coatings formed from molybdenum wire and plasma coatings of molybdenum powders. Such oxygen rich molybdenum powders may be used to form wear resistant coatings, such as for piston rings. (author)

  12. Research Into Ni-Cr-Si-B Coating Sprayed Onto Aluminium Substrate Using the Method of Plasma Spray

    Directory of Open Access Journals (Sweden)

    Raimonda Lukauskaitė

    2013-02-01

    Full Text Available The article deals with Ni base coatings deposited on aluminium substrate applying the method of plasma spray. The purpose of the conducted research is to improve the physical and mechanical properties of coatings on the surface of aluminium alloy work pieces. Spraying on aluminium alloys encounters serious problems, and therefore this work analyses the ways to make the situation more favourable. Before spraying, the surfaces of substrates were modified employing chemical and mechanical pre-treatment methods. The aim of pre-treating aluminium alloys was to remove oxide layers from the aluminium surface. Coating microstructures and porosity were characterised applying optical microscopy. Differences in the roughness of pre-treated surfaces have been determined referring to profilometry. The paper investigates the influence of the adhesion of plasma spray coatings on aluminium surface pretreatment. Microhardness technique was applied for measuring the hardness of coatings. The study also describes and compares the mechanical properties of Ni base coatings deposited on different pre-treated aluminium substrates using plasma spray.Article in Lithuanian

  13. Research Into Ni-Cr-Si-B Coating Sprayed Onto Aluminium Substrate Using the Method of Plasma Spray

    Directory of Open Access Journals (Sweden)

    Raimonda Lukauskaitė

    2012-12-01

    Full Text Available The article deals with Ni base coatings deposited on aluminium substrate applying the method of plasma spray. The purpose of the conducted research is to improve the physical and mechanical properties of coatings on the surface of aluminium alloy work pieces. Spraying on aluminium alloys encounters serious problems, and therefore this work analyses the ways to make the situation more favourable. Before spraying, the surfaces of substrates were modified employing chemical and mechanical pre-treatment methods. The aim of pre-treating aluminium alloys was to remove oxide layers from the aluminium surface. Coating microstructures and porosity were characterised applying optical microscopy. Differences in the roughness of pre-treated surfaces have been determined referring to profilometry. The paper investigates the influence of the adhesion of plasma spray coatings on aluminium surface pretreatment. Microhardness technique was applied for measuring the hardness of coatings. The study also describes and compares the mechanical properties of Ni base coatings deposited on different pre-treated aluminium substrates using plasma spray.Article in Lithuanian

  14. Plasma-sprayed tantalum/alumina cermets

    International Nuclear Information System (INIS)

    Kramer, C.M.

    1977-12-01

    Cermets of tantalum and alumina were fabricated by plasma spraying, with the amount of alumina varied from 0 to 65 percent (by volume). Each of four compositions was then measured for tensile strength, elastic modulus, and coefficient of thermal expansion. In general, strength and strain to failure decreased with increasing alumina content: 62 MPa for 100 percent Ta to 19 MPa for 35 v percent Ta. A maximum of 0.1 percent strain was observed for the sprayed 100 percent Ta specimens. The coefficient of thermal expansion measured for the pure Ta was 6.2 (10 -6 )/K

  15. Plasma spraying of bioactive glass-ceramics containing bovine bone

    Directory of Open Access Journals (Sweden)

    Annamária Dobrádi

    2017-06-01

    Full Text Available Natural bone derived glass-ceramics are promising biomaterials for implants. However, due to their price and weak mechanical properties they are preferably applied as coatings on load bearing implants. This paper describes result obtained by plasma spraying of bioactive glass-ceramics containing natural bone onto selected implant materials, such as stainless steel, alumina, and titanium alloy. Adhesion of plasma sprayed coating was tested by computed X-ray tomography and SEM of cross sections. The results showed defect free interface between the coating and substrate, without cracks or gaps. Dissolution rate of the coating in simulated body fluid (SBF was readily controlled by the bone additives (phase composition, as well as microstructure. The SBF treatment of the plasma sprayed coating did not influence the boundary between the coating and substrate.

  16. Process maps for plasma spray: Part 1: Plasma-particle interactions

    International Nuclear Information System (INIS)

    Gilmore, Delwyn L.; Neiser, Richard A. Jr.; Wan, Yuepeng; Sampath, Sanjay

    2000-01-01

    This is the first paper of a two part series based on an integrated study carried out at Sandia National Laboratories and the State University of New York at Stony Brook. The aim of the study is to develop a more fundamental understanding of plasma-particle interactions, droplet-substrate interactions, deposit formation dynamics and microstructural development as well as final deposit properties. The purpose is to create models that can be used to link processing to performance. Process maps have been developed for air plasma spray of molybdenum. Experimental work was done to investigate the importance of such spray parameters as gun current, auxiliary gas flow, and powder carrier gas flow. In-flight particle diameters, temperatures, and velocities were measured in various areas of the spray plume. Samples were produced for analysis of microstructures and properties. An empirical model was developed, relating the input parameters to the in-flight particle characteristics. Multi-dimensional numerical simulations of the plasma gas flow field and in-flight particles under different operating conditions were also performed. In addition to the parameters which were experimentally investigated, the effect of particle injection velocity was also considered. The simulation results were found to be in good general agreement with the experimental data

  17. X-ray structural analysis of plasma sprayed europium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Gorshkov, B.N.; Loskutov, V.S.; Gavrish, A.A.; Shakh, G.E.

    1981-12-01

    An X-ray structure microanalysis is made for europium oxide powder produced by sintering and plasmic spheroidization for plasma spraying. The technique of concern is shown not to alter chemical composition of the powder. It is stated that a rise in the plasma jet enthalpy while spraying does not result in dissociation of europium oxide and its interaction with the plasma flux. The coating (to 15.2 kWxs/g) is found to have only a high-temperature (monoclinic) europium oxide phase and there appears a low-temperature (cubic) phase with a subsequent increase in the enthalpy. The plasma jet enthalpy increasing the grain size and the crystal lattice c parameter of the sprayed europium oxide are shown to decrease; the a parameter reduces with an enthalpy growth to 16.2 kW s/g and then smoothly increases with the enthalpy further growth. It is noticed that the europium oxide coating does not interact with an aluminium D16 alloy substrate.

  18. D. C. plasma-sprayed coatings of nano-structured alumina-titania-silica

    International Nuclear Information System (INIS)

    Jiang Xianliang

    2002-01-01

    nano-crystalline powders of ω(Al 2 O 3 ) = 95%, ω(TiO 2 ) = 3%, and ω(SiO 2 ) = 2%, were reprocessed into agglomerated particles for plasma spraying, by using consecutive steps of ball milling, slurry forming, spray drying, and heat treatment. D.C. plasma was used to spray the agglomerated nano-crystalline powders, and resultant coatings were deposited on the substrate of stainless steel. Scanning electron microscopy (SEM) was used to examine the morphology of the agglomerated powders and the cross section of the alumina-titania-silica coatings. Experimental results show that the agglomerated nano-crystalline particles are spherical, with a size from (10-90) μm. The flow ability of the nano-crystalline powders is greatly improved after the reprocessing. The coatings deposited by the plasma spraying are mainly of nano-structure. Unlike conventional plasma-sprayed coatings, no laminar layer could be found in the nano-structured coatings. Although the nano-structured coatings have a lower microhardness than conventional microstructured coatings, the toughness of the nano-structured ceramic coatings is significantly improved

  19. Computational image analysis of Suspension Plasma Sprayed YSZ coatings

    Directory of Open Access Journals (Sweden)

    Michalak Monika

    2017-01-01

    Full Text Available The paper presents the computational studies of microstructure- and topography- related features of suspension plasma sprayed (SPS coatings of yttria-stabilized zirconia (YSZ. The study mainly covers the porosity assessment, provided by ImageJ software analysis. The influence of boundary conditions, defined by: (i circularity and (ii size limits, on the computed values of porosity is also investigated. Additionally, the digital topography evaluation is performed: confocal laser scanning microscope (CLSM and scanning electron microscope (SEM operating in Shape from Shading (SFS mode measure surface roughness of deposited coatings. Computed values of porosity and roughness are referred to the variables of the spraying process, which influence the morphology of coatings and determines the possible fields of their applications.

  20. Consolidation of tungsten disilicide by plasma spraying

    Czech Academy of Sciences Publication Activity Database

    Brožek, Vlastimil; Ctibor, Pavel; Matějíček, Jiří; Rohan, Pavel; Janča, J.

    2007-01-01

    Roč. 52, č. 3 (2007), s. 311-320 ISSN 0001-7043 R&D Projects: GA ČR(CZ) GA104/05/0540 Institutional research plan: CEZ:AV0Z20430508 Keywords : Water stabilized plasma * tungsten disilicide * plasma deposition * thermal spray coatings Subject RIV: JJ - Other Materials

  1. Preparation and Characterization of Plasma-Sprayed Ultrafine Chromium Oxide Coatings

    International Nuclear Information System (INIS)

    Lin Feng; Jiang Xianliang; Yu Yueguang; Zeng Keli; Ren Xianjing; Li Zhenduo

    2007-01-01

    Ultrafine chromium oxide coatings were prepared by plasma spraying with ultrafine feedstock. Processing parameters of plasma spraying were optimized. Optical microscope (OM) was used to observe the microstructure of the ultrafine chromium oxide coatings. Scanning electron microscopy (SEM) was used to observe the morphology and particle size of ultrafine powder feedstock as well as to examine the microstructure of the chromium oxide coating. In addition, hardness and bonding strength of the ultrafine chromium oxide coatings were measured. The results showed that the optimized plasma spraying parameters were suitable for ultrafine chromium oxide coating and the properties and microstructure of the optimized ultrafine chromium oxide coating were superior compared to conventional chromium oxide wear resistant coatings

  2. Plasma-Sprayed Titanium Patterns for Enhancing Early Cell Responses

    Science.gov (United States)

    Shi, Yunqi; Xie, Youtao; Pan, Houhua; Zheng, Xuebin; Huang, Liping; Ji, Fang; Li, Kai

    2016-06-01

    Titanium coating has been widely used as a biocompatible metal in biomedical applications. However, the early cell responses and long-term fixation of titanium implants are not satisfied. To obviate these defects, in this paper, micro-post arrays with various widths (150-1000 μm) and intervals (100-300 μm) were fabricated on the titanium substrate by template-assisted plasma spraying technology. In vitro cell culture experiments showed that MC3T3-E1 cells exhibited significantly higher osteogenic differentiation as well as slightly improved adhesion and proliferation on the micro-patterned coatings compared with the traditional one. The cell number on the pattern with 1000 µm width reached 130% after 6 days of incubation, and the expressions of osteopontin (OPN) as well as osteocalcin (OC) were doubled. No obvious difference was found in cell adhesion on various size patterns. The present micro-patterned coatings proposed a new modification method for the traditional plasma spraying technology to enhance the early cell responses and convenience for the bone in-growth.

  3. Atmospheric plasma sprayed (APS) coatings of Al2O3–TiO2 system for photocatalytic application

    Czech Academy of Sciences Publication Activity Database

    Štengl, Václav; Ageorges, H.; Ctibor, Pavel; Murafa, Nataliya

    2009-01-01

    Roč. 8, č. 5 (2009), s. 733-738 ISSN 1474-905X. [European Meeting on Solar Chemistry and Photocatalysis:Environmental Applications /5th./. Palermo, 04.10.2008-08.10.2008] R&D Projects: GA AV ČR IAAX00430803 Institutional research plan: CEZ:AV0Z40320502; CEZ:AV0Z20430508 Keywords : Alumina * titania * plasma spraying * reflectivity * bangap * phase composition Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 2.708, year: 2009

  4. High temperature tribological properties of plasma-sprayed metallic coatings containing ceramic particles

    International Nuclear Information System (INIS)

    Dallaire, S.; Legoux, J.G.

    1995-01-01

    For sealing a moving metal component with a dense silica-based ceramic pre-heated at 800 C, coatings with a low coefficient of friction and moderate wear loss are required. As reported previously, plasma-sprayed coatings containing solid lubricants could reduce sliding wear in high-temperature applications. Plasma-sprayed metal-based coatings containing ceramic particles have been considered for high temperature sealing. Selected metal powders (NiCoCrAlY, CuNi, CuNiIn, Ag, Cu) and ceramic particles (boron nitride, Zeta-B ceramic) were agglomerated to form suitable spray powders. Plasma-sprayed composite coatings and reference materials were tested in a modified pin-on-disc apparatus in which the stationary disc consisted of a dense silica-based ceramic piece initially heated at 800 C and allowed to cool down during tests. The influence of single exposure and repeated contacts with a dense silica-based ceramic material pre-heated to 800 C on the coefficient of friction, wear loss and damage to the ceramic piece was evaluated. Being submitted to a single exposure at high temperature, coatings containing malleable metals such as indium, silver and copper performed well. The outstanding tribological characteristics of the copper-Zeta-B ceramic coating was attributed to the formation of a glazed layer on the surface of this coating which lasted over exposures to high temperature. This glazed layer, composed of fine oxidation products, provided a smooth and polished surface and helped maintaining the coefficient of friction low

  5. Supersonic Plasma Spray Deposition of CoNiCrAlY Coatings on Ti-6Al-4V Alloy

    Science.gov (United States)

    Caliari, F. R.; Miranda, F. S.; Reis, D. A. P.; Essiptchouk, A. M.; Filho, G. P.

    2017-06-01

    Plasma spray is a versatile technology used for production of environmental and thermal barrier coatings, mainly in the aerospace, gas turbine, and automotive industries, with potential application in the renewable energy industry. New plasma spray technologies have been developed recently to produce high-quality coatings as an alternative to the costly low-pressure plasma-spray process. In this work, we studied the properties of as-sprayed CoNiCrAlY coatings deposited on Ti-6Al-4V substrate with smooth surface ( R a = 0.8 μm) by means of a plasma torch operating in supersonic regime at atmospheric pressure. The CoNiCrAlY coatings were evaluated in terms of their surface roughness, microstructure, instrumented indentation, and phase content. Static and dynamic depositions were investigated to examine their effect on coating characteristics. Results show that the substrate surface velocity has a major influence on the coating properties. The sprayed CoNiCrAlY coatings exhibit low roughness ( R a of 5.7 μm), low porosity (0.8%), excellent mechanical properties ( H it = 6.1 GPa, E it = 155 GPa), and elevated interface toughness (2.4 MPa m1/2).

  6. Superhydrophobic Ceramic Coatings by Solution Precursor Plasma Spray

    Science.gov (United States)

    Cai, Yuxuan

    Superhydrophobic surfaces exhibit superior water repellent properties, and they have remarkable potential to improve current energy infrastructure. Substantial research has been performed on the production of superhydrophobic coatings. However, superhydrophobic coatings have not yet been adopted in many industries where potential applications exist due to the limited durability of the coating materials and the complex and costly fabrication processes. Here presented a novel coating technique to manufacture ceramic superhydrophobic coatings rapidly and economically. A rare earth oxide (REO) was selected as the coating material due to its hydrophobic nature and strong mechanical properties, and deposited on stainless steel substrates by solution precursor plasma spray (SPPS). The as-sprayed coating demonstrated a hierarchically structured coating topography, which closely resembles superhydrophobic surfaces in nature. Compared to smooth REO surfaces, the SPPS superhydrophobic coating improved the water contact angle by as much as 65° after vacuum treatment at 1 Pa for 48 hours.

  7. Metallurgy and properties of plasma spray formed materials

    Science.gov (United States)

    Mckechnie, T. N.; Liaw, Y. K.; Zimmerman, F. R.; Poorman, R. M.

    1992-01-01

    Understanding the fundamental metallurgy of vacuum plasma spray formed materials is the key to enhancing and developing full material properties. Investigations have shown that the microstructure of plasma sprayed materials must evolve from a powder splat morphology to a recrystallized grain structure to assure high strength and ductility. A fully, or near fully, dense material that exhibits a powder splat morphology will perform as a brittle material compared to a recrystallized grain structure for the same amount of porosity. Metallurgy and material properties of nickel, iron, and copper base alloys will be presented and correlated to microstructure.

  8. New generation of plasma-sprayed mullite coatings on silicon carbide

    Science.gov (United States)

    Lee, Kang N.; Miller, Robert A.; Jacobson, Nathan S.

    1995-01-01

    Mullite is promising as a protective coating for silicon-based ceramics in aggressive high-temperature environments. Conventionally plasma-sprayed mullite on SiC tends to crack and debond on thermal cycling. It is shown that this behavior is due to the presence of amorphous mullite in the conventionally sprayed mullite. Heating the SiC substrate during the plasma spraying eliminated the amorphous phase and produced coatings with dramatically improved properties. The new coating exhibits excellent adherence and crack resistance under thermal cycling between room temperature and 1000 to 1400 C. Preliminary tests showed good resistance to Na2CO3-induced hot corrosion.

  9. Fabrication of copper-based anodes via atmosphoric plasma spraying techniques

    Science.gov (United States)

    Lu, Chun [Monroeville, PA

    2012-04-24

    A fuel electrode anode (18) for a solid oxide fuel cell is made by presenting a solid oxide fuel cell having an electrolyte surface (15), mixing copper powder with solid oxide electrolyte in a mixing step (24, 44) to provide a spray feedstock (30,50) which is fed into a plasma jet (32, 52) of a plasma torch to melt the spray feed stock and propel it onto an electrolyte surface (34, 54) where the spray feed stock flattens into lamellae layer upon solidification, where the layer (38, 59) is an anode coating with greater than 35 vol. % based on solids volume.

  10. Application of Atmospheric Plasma-Sprayed Ferrite Layers for Particle Accelerators

    CERN Document Server

    Caspers, F; Federmann, S; Taborelli, M; Schulz, C; Bobzin, K; Wu, J

    2013-01-01

    A common problem in all kinds of cavity-like structures in particle accelerators is the occurrence of RF-resonances. Typically, ferrite plates attached to the walls of such structures as diagnostic devices, kickers or collimators, are used to dampen those undesired modes. However, the heat transfer rate from these plates to the walls is rather limited. Brazing ferrite plates to the walls is not possible in most cases due to the different thermal expansion coefficients. To overcome those limitations, atmospheric plasma spraying techniques have been investigated. Ferrite layers with a thickness from 50 μm to about 300 μm can be deposited on metallic surfaces like stainless steel exhibiting good thermal contact and still reasonable absorption properties. In this paper the technological aspects of plasma deposition are discussed and results of specifically developed RF loss measurement procedures for such thin magnetically lossy layers on metal are presented.

  11. Mechanical Properties of Plasma Sprayed Alumina Coatings

    Czech Academy of Sciences Publication Activity Database

    Kovářík, O.; Nohava, Jiří; Siegel, J.

    2003-01-01

    Roč. 48, č. 2 (2003), s. 129-145 ISSN 0001-7043 R&D Projects: GA ČR GA106/01/0094 Institutional research plan: CEZ:AV0Z2043910 Keywords : plasma sprayed alumina coatings, fatigue test, metalography, fractography, residual stress, microhardness, Young's modulus , four-point bending Subject RIV: BL - Plasma and Gas Discharge Physics

  12. Vacuum-plasma-sprayed silicon coatings

    International Nuclear Information System (INIS)

    Varacalle, D.J. Jr.; Herman, H.; Bancke, G.A.; Burchell, T.D.; Romanoski, G.R.

    1991-01-01

    Vacuum plasma spraying produces well-bonded dense stress-free coatings for a variety of materials on a wide range of substrates. The process is used in many industries for the excellent wear, corrosion resistance and high temperature behavior of the fabricated coatings. In this study, silicon metal was deposited on graphite to study the feasibility of preventing corrosion and oxidation of graphite components for nuclear reactors. Operating parameters were varied in a Taguchi design of experiments to display the range of the plasma processing conditions and their effect on the measured coating characteristics. The coating attributes evaluated were thickness, porosity, microhardness and phase content. This paper discusses the influence of the processing parameters on as-sprayed coating qualities. The paper also discusses the effect of thermal cycling on silicon samples in an inert helium atmosphere. The diffraction spectrum for a sample that experienced a 1600degC temperature cycle indicated that more than 99% of the coating transformed to β-SiC. The silicon coatings protected the graphite substrates from oxidation in one experiment. (orig.)

  13. Ultrasonic technique for measuring porosity of plasma-sprayed alumina coatings

    Science.gov (United States)

    Parthasarathi, S.; Tittmann, B. R.; Onesto, E. J.

    1997-12-01

    Porosity is an important factor in plasma-sprayed coatings, especially ceramic coatings. Excessive poros-ity can adversely affect the performance of the coated component in various ways. An ultrasonic nonde-structive measurement technique has been developed to measure porosity in plasma-sprayed alumina coatings. The technique is generic and can be extended to other ceramic coating systems. To test the tech-nique, freestanding alumina coatings with varying levels of porosity were fabricated via plasma spray. Samples with varying porosity, obtained through innovative fabrication techniques, were used to gener-ate a calibration curve. The ultrasonic velocity in the low-frequency range was found to be dependent on the density of freestanding coatings (measured via Archimedian techniques). This dependence is the basis of the development of a technique to measure the density of coatings.

  14. Advanced Microstructural Study of Suspension Plasma Sprayed Hydroxyapatite Coatings

    Science.gov (United States)

    Podlesak, Harry; Pawlowski, Lech; D'Haese, Romain; Laureyns, Jacky; Lampke, Thomas; Bellayer, Severine

    2010-03-01

    Fine, home-synthesized, hydroxyapatite powder was formulated with water and alcohol to obtain a suspension used to plasma spray coatings onto a titanium substrate. The deposition process was optimized using statistical design of 2 n experiments with two variables: spray distance and electric power input to plasma. X-ray diffraction (XRD) was used to determine quantitatively the phase composition of obtained deposits. Raman microscopy and electron probe microanalysis (EPMA) enabled localization of the phases in different positions of the coating cross sections. Transmission electron microscopic (TEM) study associated with energy-dispersive x-ray spectroscopy (EDS) enabled visualization and analysis of a two-zone microstructure. One zone contained crystals of hydroxyapatite, tetracalcium phosphate, and a phase rich in calcium oxide. This zone included lamellas, usually observed in thermally sprayed coatings. The other zone contained fine hydroxyapatite grains that correspond to nanometric and submicrometric solids from the suspension that were agglomerated and sintered in the cold regions of plasma jet and on the substrate.

  15. The effect of YBa2Cu3O7-x powder characteristics on thick coatings prepared by atmospheric plasma spraying

    International Nuclear Information System (INIS)

    Georgiopoulos, E.; Tsetsekou, A.

    2000-01-01

    The development of superconducting YBa 2 Cu 3 O 7-x plasma sprayed coatings on metal substrates can be very useful for applications such as targets for thin-film deposition techniques (sputtering, laser ablation, ion assisted deposition) or magnetic shielding, due to the brittle nature of bulk superconductors. The plasma spraying technique is very flexible and can be used for manufacturing components with a large variety of geometries. This technique requires the use of powders with good rheological characteristics. In this study, YBa 2 Cu 3 O 7-x powders were produced by using the conventional solid-state reaction route and also by spray drying a solution of nitrate precursors. Both powders, as well as mixtures of them, were plasma sprayed to develop coatings on stainless-steel substrates, with the aim of studying the effect of the feedstock powder characteristics on the coating properties. It was found that by optimizing the plasma spraying conditions, good quality coatings could be obtained. However, the powder morphology and homogeneity significantly affect the coating quality. More homogeneous powders lead to better results, the spray-dried powder being the best because of its enhanced rheological properties and good morphology. (author)

  16. An evaluation of the electric arc spray and (HPPS) processes for the manufacturing of high power plasma spraying MCrAIY coatings

    Science.gov (United States)

    Sacriste, D.; Goubot, N.; Dhers, J.; Ducos, M.; Vardelle, A.

    2001-06-01

    The high power plasma torch (PlazJet) can be used to spray refractory ceramics with high spray rates and deposition efficiency. It can provide dense and hard coating with high bond strengths. When manufacturing thermal barrier coatings, the PlazJet gun is well adapted to spraying the ceramic top coat but not the MCrAIY materials that are used as bond coat. Arc spraying can compete with plasma spraying for metallic coatings since cored wires can be used to spray alloys and composites. In addition, the high production rate of arc spraying enables a significant decrease in coating cost. This paper discusses the performances of the PlazJet gun, and a twin-wire are spray system, and compares the properties and cost of MCrAIY coatings made with these two processes. For arc spraying, the use of air or nitrogen as atomizing gas is also investigated.

  17. PLASMA SPRAYING OF REFRACTORY CERMETS BY THE WATER-STABILIZED SPRAY (WSP®) SYSTEM

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Brožek, V.; Cheong, D.-I.; Chráska, Pavel

    2009-01-01

    Roč. 54, č. 3 (2009), s. 241-253 ISSN 0001-7043 Institutional research plan: CEZ:AV0Z20430508 Keywords : Plasma spraying * cermet coatings * microhardness * zirconium carbide * tungsten Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass

  18. Plasma-sprayed titanium coating to polyetheretherketone improves the bone-implant interface.

    Science.gov (United States)

    Walsh, William R; Bertollo, Nicky; Christou, Chrisopher; Schaffner, Dominik; Mobbs, Ralph J

    2015-05-01

    Rapid and stable fixation at the bone-implant interface would be regarded as one of the primary goals to achieve clinical efficacy, regardless of the surgical site. Although mechanical and physical properties of polyetheretherketone (PEEK) provide advantages for implant devices, the hydrophobic nature and the lack of direct bone contact remains a limitation. To examine the effects of a plasma-sprayed titanium coated PEEK on the mechanical and histologic properties at the bone-implant interface. A preclinical laboratory study. Polyetheretherketone and plasma-sprayed titanium coated PEEK implants (Ti-bond; Spinal Elements, Carlsbad, CA, USA) were placed in a line-to-line manner in cortical bone and in a press-fit manner in cancellous bone of adult sheep using an established ovine model. Shear strength was assessed in the cortical sites at 4 and 12 weeks, whereas histology was performed in cortical and cancellous sites at both time points. The titanium coating dramatically improved the shear strength at the bone-implant interface at 4 weeks and continued to improve with time compared with PEEK. Direct bone ongrowth in cancellous and cortical sites can be achieved using a plasma-sprayed titanium coating on PEEK. Direct bone to implant bonding can be achieved on PEEK in spite of its hydrophobic nature using a plasma-sprayed titanium coating. The plasma-sprayed titanium coating improved mechanical properties in the cortical sites and the histology in cortical and cancellous sites. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Plasma transferred arc surface modification of atmospheric plasma sprayed ceramic coatings

    Energy Technology Data Exchange (ETDEWEB)

    Ulutan, Mustafa; Kilicay, Koray; Kaya, Esad; Bayar, Ismail [Dept. of Mechanical Engineering, Eskisehir Osmangazi University, Eskisehir (Turkmenistan)

    2016-08-15

    In this study, a 90MnCrV8 steel surface was coated with aluminum oxide and chromium oxide powders through the Atmospheric plasma spray (APS) and Plasma transferred arc (PTA) methods. The effects of PTA surface melting on the microstructure, hardness, and wear behavior were investigated. The microstructures of plasma-sprayed and modified layers were characterized by Optical microscopy (OM), Scanning electron microscopy (SEM) and Energy dispersive X-ray spectroscopy (EDS). The dry-sliding wear properties of the samples were determined through the ball-on-disk wear test method. Voids, cracks, and nonhomogeneous regions were observed in the microstructure of the APS ceramic-coated surface. These microstructure defects were eliminated by the PTA welding process. The microhardness of the samples was increased. Significant reductions in wear rate were observed after the PTA surface modification. The wear resistance of ceramic coatings increased 7 to 12 times compared to that of the substrate material.

  20. Numerical Coupling of the Particulate Phase to the Plasma Phase in Modeling of Multi-Arc Plasma Spraying

    International Nuclear Information System (INIS)

    Bobzin, K.; Öte, M.

    2017-01-01

    Inherent to Euler-Lagrange formulation, which can be used in order to describe the particle behavior in plasma spraying, particle in-flight characteristics are determined by calculating the impulse, heat and mass transfer between the plasma jet and individual powder particles. Based on the assumption that the influence of the particulate phase on the fluid phase is insignificant, impulse, heat and mass transfer from particles to the plasma jet can be neglected using the so-called numerical approach of “one-way coupling”. On the other hand, so-called “two-way coupling” considers the two-sided transfer between both phases. The former is a common simplification used in the literature to describe the plasma-particle interaction in thermal spraying. This study focuses on the significance of this simplification on the calculated results and shows that the use of this simplification leads to significant errors in calculated plasma and particle in-flight characteristics in three-cathode plasma spraying process. (paper)

  1. Suspension plasma sprayed composite coating using amorphous powder feedstock

    International Nuclear Information System (INIS)

    Chen Dianying; Jordan, Eric H.; Gell, Maurice

    2009-01-01

    Al 2 O 3 -ZrO 2 composite coatings were deposited by the suspension plasma spray process using molecularly mixed amorphous powders. X-ray diffraction (XRD) analysis shows that the as-sprayed coating is composed of α-Al 2 O 3 and tetragonal ZrO 2 phases with grain sizes of 26 nm and 18 nm, respectively. The as-sprayed coating has 93% density with a hardness of 9.9 GPa. Heat treatment of the as-sprayed coating reveals that the Al 2 O 3 and ZrO 2 phases are homogeneously distributed in the composite coating

  2. Characterization of metal-supported axial injection plasma sprayed solid oxide fuel cells with aqueous suspension plasma sprayed electrolyte layers

    Science.gov (United States)

    Waldbillig, D.; Kesler, O.

    A method for manufacturing metal-supported SOFCs with atmospheric plasma spraying (APS) is presented, making use of aqueous suspension feedstock for the electrolyte layer and dry powder feedstock for the anode and cathode layers. The cathode layer was deposited first directly onto a metal support, in order to minimize contact resistance, and to allow the introduction of added porosity. The electrolyte layers produced by suspension plasma spraying (SPS) were characterized in terms of thickness, permeability, and microstructure, and the impact of substrate morphology on electrolyte properties was investigated. Fuel cells produced by APS were electrochemically tested at temperatures ranging from 650 to 750 °C. The substrate morphology had little effect on open circuit voltage, but substrates with finer porosity resulted in lower kinetic losses in the fuel cell polarization.

  3. Characterization of metal-supported axial injection plasma sprayed solid oxide fuel cells with aqueous suspension plasma sprayed electrolyte layers

    Energy Technology Data Exchange (ETDEWEB)

    Waldbillig, D. [University of British Columbia, Department of Materials Engineering, 309-6350 Stores Road, Vancouver, BC (Canada); Kesler, O. [University of Toronto, Department of Mechanical and Industrial Engineering, 5 King' s College Road, Toronto, Ontario (Canada)

    2009-06-15

    A method for manufacturing metal-supported SOFCs with atmospheric plasma spraying (APS) is presented, making use of aqueous suspension feedstock for the electrolyte layer and dry powder feedstock for the anode and cathode layers. The cathode layer was deposited first directly onto a metal support, in order to minimize contact resistance, and to allow the introduction of added porosity. The electrolyte layers produced by suspension plasma spraying (SPS) were characterized in terms of thickness, permeability, and microstructure, and the impact of substrate morphology on electrolyte properties was investigated. Fuel cells produced by APS were electrochemically tested at temperatures ranging from 650 to 750 C. The substrate morphology had little effect on open circuit voltage, but substrates with finer porosity resulted in lower kinetic losses in the fuel cell polarization. (author)

  4. Development of Process for Plasma Spray:Case Study for Molybdenum

    Czech Academy of Sciences Publication Activity Database

    Sampath, S.; Jiang, X.; Kulkarni, A.; Matějíček, Jiří; Gilmore, D. L.; Neiser, R. A.

    2003-01-01

    Roč. 348, 1-2 (2003), s. 54-66 ISSN 0921-5093 Grant - others:NSF(US) DMR9632570 Institutional research plan: CEZ:AV0Z2043910 Keywords : process maps, plasma spray, thermal spray Subject RIV: JG - Metallurgy Impact factor: 1.365, year: 2003

  5. Hydroxyapatite coatings deposited by liquid precursor plasma spraying: controlled dense and porous microstructures and osteoblastic cell responses

    International Nuclear Information System (INIS)

    Huang Yi; Song Lei; Liu Xiaoguang; Xiao Yanfeng; Wu Yao; Chen Jiyong; Wu Fang; Gu Zhongwei

    2010-01-01

    Hydroxyapatite coatings were deposited on Ti-6Al-4V substrates by a novel plasma spraying process, the liquid precursor plasma spraying (LPPS) process. X-ray diffraction results showed that the coatings obtained by the LPPS process were mainly composed of hydroxyapatite. The LPPS process also showed excellent control on the coating microstructure, and both nearly fully dense and highly porous hydroxyapatite coatings were obtained by simply adjusting the solid content of the hydroxyapatite liquid precursor. Scanning electron microscope observations indicated that the porous hydroxyapatite coatings had pore size in the range of 10-200 μm and an average porosity of 48.26 ± 0.10%. The osteoblastic cell responses to the dense and porous hydroxyapatite coatings were evaluated with human osteoblastic cell MG-63, in respect of the cell morphology, proliferation and differentiation, with the hydroxyapatite coatings deposited by the atmospheric plasma spraying (APS) process as control. The cell experiment results indicated that the heat-treated LPPS coatings with a porous structure showed the best cell proliferation and differentiation among all the hydroxyapatite coatings. Our results suggest that the LPPS process is a promising plasma spraying technique for fabricating hydroxyapatite coatings with a controllable microstructure, which has great potential in bone repair and replacement applications.

  6. Very low pressure plasma sprayed yttria-stabilized zirconia coating using a low-energy plasma gun

    International Nuclear Information System (INIS)

    Zhu, Lin; Zhang, Nannan; Bolot, Rodolphe; Planche, Marie-Pierre; Liao, Hanlin; Coddet, Christian

    2011-01-01

    In the present study, a more economical low-energy plasma source was used to perform a very low pressure plasma-spray (VLPPS) process. The plasma-jet properties were analyzed by means of optical emission spectroscopy (OES). Moreover, yttria-stabilized zirconia coating (YSZ) was elaborated by a F100 low-power plasma gun under working pressure of 1 mbar, and the substrate specimens were partially shadowed by a baffle-plate during plasma spraying for obtaining different coating microstructures. Based on the SEM observation, a column-like grain coating was deposited by pure vapor deposition at the shadowed region, whereas, in the unshadowed region, the coating exhibited a binary microstructure which was formed by a mixed deposition of melted particles and evaporated particles. The mechanical properties of the coating were also well under investigation. (orig.)

  7. Properties of tungsten coating deposited onto copper by high-speed atmospheric plasma spraying

    Energy Technology Data Exchange (ETDEWEB)

    Huang Jianjun, E-mail: huangjj@szu.edu.cn [Applied Low Temperature Plasma Laboratory, College of Physics Science and Technology, Shenzhen University, Shenzhen 518060 (China); Wang Fan; Liu Ying; Jiang Shishou; Wang Xisheng; Qi Bing; Gao Liang [Applied Low Temperature Plasma Laboratory, College of Physics Science and Technology, Shenzhen University, Shenzhen 518060 (China)

    2011-07-01

    Tungsten (W) coatings were fabricated on copper (Cu) by high-speed atmospheric plasma spray (HAPS) technique. The properties of the porosity, oxygen content, bonding strength and microhardness were measured. The results obtained indicated that the HAPS-W coating showed good properties particularly in terms of porosity and oxygen content. The porosity of the HAPS-W coating was 2.3% and the distribution of pore size diameter was mainly concentrated in the range of 0.01-1 {mu}m. The oxygen content of the coating measured by means of Nitrogen/Oxygen Determinator was about 0.10 wt.%. These initial results suggest that the HAPS-W coating has achieved the reported properties of the vacuum plasma spray (VPS) W coating. Compared with VPS, HAPS-W technique could provide a convenient and low cost way to obtain adequate W coatings for fusion applications.

  8. Aligned, plasma sprayed SmCo5 deposits

    International Nuclear Information System (INIS)

    Kumar, K.; Das, D.

    1986-01-01

    Highly aligned SmCo 5 deposits were produced using plasma spraying. c-axis alignment, normal to the plane of the deposit, was achieved by depositing the Sm-Co alloys on steel substrates maintained at high temperatures. The substrates were heated by the plasma flame to obtain the high temperatures. The attainment of a range of substrate temperatures was made possible through control over the geometry of the substrate

  9. Dielectric properties of plasma sprayed silicates

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Sedláček, J.; Neufuss, Karel; Dubský, Jiří; Chráska, Pavel

    -, č. 31 (2005), s. 315-321 ISSN 0272-8842 R&D Projects: GA ČR(CZ) GA202/03/0708 Institutional research plan: CEZ:AV0Z20430508 Keywords : Optical microscopy * electrical properties * silicates * insulators * plasma spraying Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 0.702, year: 2005

  10. The spray-drying process is sufficient to inactivate infectious porcine epidemic diarrhea virus in plasma.

    Science.gov (United States)

    Gerber, Priscilla F; Xiao, Chao-Ting; Chen, Qi; Zhang, Jianqiang; Halbur, Patrick G; Opriessnig, Tanja

    2014-11-07

    Porcine epidemic diarrhea virus (PEDV) is considered an emergent pathogen associated with high economic losses in many pig rearing areas. Recently it has been suggested that PEDV could be transmitted to naïve pig populations through inclusion of spray-dried porcine plasma (SDPP) into the nursery diet which led to a ban of SDPP in several areas in North America and Europe. To determine the effect of spray-drying on PEDV infectivity, 3-week-old pigs were intragastrically inoculated with (1) raw porcine plasma spiked with PEDV (RAW-PEDV-CONTROL), (2) porcine plasma spiked with PEDV and then spray dried (SD-PEDV-CONTROL), (3) raw plasma from PEDV infected pigs (RAW-SICK), (4) spray-dried plasma from PEDV infected pigs (SD-SICK), or (5) spray-dried plasma from PEDV negative pigs (SD-NEG-CONTROL). For the spray-drying process, a tabletop spray-dryer with industry-like settings for inlet and outlet temperatures was used. In the RAW-PEDV-CONTROL group, PEDV RNA was present in feces at day post infection (dpi) 3 and the pigs seroconverted by dpi 14. In contrast, PEDV RNA in feces was not detected in any of the pigs in the other groups including the SD-PEDV-CONTROL group and none of the pigs had seroconverted by termination of the project at dpi 28. This work provides direct evidence that the experimental spray-drying process used in this study was effective in inactivating infectious PEDV in the plasma. Additionally, plasma collected from PEDV infected pigs at peak disease did not contain infectious PEDV. These findings suggest that the risk for PEDV transmission through commercially produced SDPP is minimal. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Characterization of plasma sprayed beryllium ITER first wall mockups

    Energy Technology Data Exchange (ETDEWEB)

    Castro, R.G.; Vaidya, R.U.; Hollis, K.J. [Los Alamos National Lab., NM (United States). Material Science and Technology Div.

    1998-01-01

    ITER first wall beryllium mockups, which were fabricated by vacuum plasma spraying the beryllium armor, have survived 3000 thermal fatigue cycles at 1 MW/m{sup 2} without damage during high heat flux testing at the Plasma Materials Test Facility at Sandia National Laboratory in New Mexico. The thermal and mechanical properties of the plasma sprayed beryllium armor have been characterized. Results are reported on the chemical composition of the beryllium armor in the as-deposited condition, the through thickness and normal to the through thickness thermal conductivity and thermal expansion, the four-point bend flexure strength and edge-notch fracture toughness of the beryllium armor, the bond strength between the beryllium armor and the underlying heat sink material, and ultrasonic C-scans of the Be/heat sink interface. (author)

  12. Characterization of Plasma Sprayed Beryllium ITER First Wall Mockups

    International Nuclear Information System (INIS)

    Castro, Richard G.; Vaidya, Rajendra U.; Hollis, Kendall J.

    1997-10-01

    ITER first wall beryllium mockups, which were fabricated by vacuum plasma spraying the beryllium armor, have survived 3000 thermal fatigue cycles at 1 MW/sq m without damage during high heat flux testing at the Plasma Materials Test Facility at Sandia National Laboratory in New Mexico. The thermal and mechanical properties of the plasma sprayed beryllium armor have been characterized. Results are reported on the chemical composition of the beryllium armor in the as-deposited condition, the through thickness and normal to the through thickness thermal conductivity and thermal expansion, the four-point bend flexure strength and edge-notch fracture toughness of the beryllium armor, the bond strength between the beryllium armor and the underlying heat sink material, and ultrasonic C-scans of the Be/heat sink interface

  13. Effects of spray parameters on the microstructure and property of Al2O3 coatings sprayed by a low power plasma torch with a novel hollow cathode

    International Nuclear Information System (INIS)

    Li Changjiu; Sun Bo

    2004-01-01

    Al 2 O 3 coating is deposited using a low power plasma torch with a novel hollow cathode through axial powder injection under a plasma power up to several kilowatts. The effects of the main processing parameters including plasma arc power, operating gas flow and spray distance on particle velocity during spraying, and the microstructure and property of the coating are investigated. The microstructure of the Al 2 O 3 coating is examined using optical microscopy and X-ray diffraction analysis. The property of the coating is characterized by dry rubber wheel abrasive wear test. The velocity of in-flight particle is measured using a velocity/temperature measurement system for spray particle based on thermal radiation from the particle. The dependency of the microstructure and property of the coating on spray particle conditions are examined by comparing the particle velocity, and microstructure and abrasive wear weight loss of subsequent coating deposited by low power plasma spray with those of the coating by conventional plasma spray at a power one order higher. X-ray diffraction analysis of the coating revealed that Al 2 O 3 particles during low power plasma spraying reach to sufficiently melting state prior to impact on the substrate with a velocity comparable to that in conventional plasma spraying. The experiment results have shown that processing parameters have significant influence on the particle conditions and performance of deposited Al 2 O 3 coating. The coating of comparable microstructure and properties to that deposited by conventional plasma spray can be produced under a power one order lower. From the present study, it can be suggested that a comparable coating can be produced despite plasma power level if the comparable particle velocity and molten state are achieved

  14. Comparison of W–TiC composite coatings fabricated by atmospheric plasma spraying and supersonic atmospheric plasma spraying

    International Nuclear Information System (INIS)

    Hou, Qing Yu; Luo, Lai Ma; Huang, Zhen Yi; Wang, Ping; Ding, Ting Ting; Wu, Yu Cheng

    2016-01-01

    Highlights: • W–TiC composite coatings were fabricated by APS and SAPS technologies. • TiC had filling effect on pores and coating/fixing effect on un-melted particles. • Porosity and oxygen content in SAPS coating were lower than that in APS coating. • Thermal conductivity of SAPS coating was higher than that of APS coating. • SAPS coating has better ability to resist to elastic fracture than APS coating does. - Abstract: Tungsten coatings with 1.5 wt.% TiC (W/TiC) were fabricated by atmospheric plasma spraying (APS) and supersonic atmospheric plasma spraying (SAPS) techniques, respectively. The results showed that the typical lamellar structure of plasma spraying and columnar crystalline grains formed in the coatings. Pores located mainly at lamellar gaps in association with oxidation were also observed. TiC phase, distributed at lamellar gaps filled the gaps; and that distributed around un-melted tungsten particles and splashed debris coated the particles or debris that were linked with the TiC at lamellar gaps. The coating and linking of the retained TiC phase prevented the tungsten particles to come off from the coatings. The porosity and the oxygen content of the SAPS-W/TiC were lower than those of the APS-W/TiC coating. The mechanical response of the coatings was strongly dependent on the H/E* ratio (H and E* are the hardness and effective Young’s modulus, respectively). The SAPS-W/TiC coating with a higher H/E* ratio had a better ability to resist to elastic fracture and better fracture toughness as compared with the APS-W/TiC coating with a smaller H/E* ratio. The thermal conductivity of the SAPS-W/TiC coating was greater than that of the APS-W/TiC coating.

  15. Plasma sprayed and electrospark deposited zirconium metal diffusion barrier coatings

    International Nuclear Information System (INIS)

    Hollis, Kendall J.; Pena, Maria I.

    2010-01-01

    Zirconium metal coatings applied by plasma spraying and electrospark deposition (ESD) have been investigated for use as diffusion barrier coatings on low enrichment uranium fuel for research nuclear reactors. The coatings have been applied to both stainless steel as a surrogate and to simulated nuclear fuel uranium-molybdenum alloy substrates. Deposition parameter development accompanied by coating characterization has been performed. The structure of the plasma sprayed coating was shown to vary with transferred arc current during deposition. The structure of ESD coatings was shown to vary with the capacitance of the deposition equipment.

  16. Gaseous material capacity of open plasma jet in plasma spray-physical vapor deposition process

    Science.gov (United States)

    Liu, Mei-Jun; Zhang, Meng; Zhang, Qiang; Yang, Guan-Jun; Li, Cheng-Xin; Li, Chang-Jiu

    2018-01-01

    Plasma spray-physical vapor deposition (PS-PVD) process, emerging as a highly efficient hybrid approach, is based on two powerful technologies of both plasma spray and physical vapor deposition. The maximum production rate is affected by the material feed rate apparently, but it is determined by the material vapor capacity of transporting plasma actually and essentially. In order to realize high production rate, the gaseous material capacity of plasma jet must be fundamentally understood. In this study, the thermal characteristics of plasma were measured by optical emission spectrometry. The results show that the open plasma jet is in the local thermal equilibrium due to a typical electron number density from 2.1 × 1015 to 3.1 × 1015 cm-3. In this condition, the temperature of gaseous zirconia can be equal to the plasma temperature. A model was developed to obtain the vapor pressure of gaseous ZrO2 molecules as a two dimensional map of jet axis and radial position corresponding to different average plasma temperatures. The overall gaseous material capacity of open plasma jet, take zirconia for example, was further established. This approach on evaluating material capacity in plasma jet would shed light on the process optimization towards both depositing columnar coating and a high production rate of PS-PVD.

  17. Erosion protection of carbon-epoxy composites by plasma-sprayed coatings

    International Nuclear Information System (INIS)

    Alonso, F.; Fagoaga, I.; Oregui, P.

    1991-01-01

    This paper deals with the production of plasma-sprayed erosion-resistant coatings on carbon-fibre - epoxy composites, and the study of their erosion behaviour. The heat sensitivity of the composite substrate requires a specific spraying procedure in order to avoid its degradation. In addition, several bonding layers were studied to allow spraying of the protective coatings. Two different functional coatings were sprayed onto an aluminium-glass bonding layer, a WC-12Co cermet and an Al 2 O 3 ceramic oxide. The microstructure and properties of these coatings were studied and their erosion behaviour determined experimentally in an erosion-testing device. (orig.)

  18. Plasma Sprayed Tungsten-based Coatings and their Usage in Edge Plasma Region of Tokamaks

    Czech Academy of Sciences Publication Activity Database

    Matějíček, Jiří; Weinzettl, Vladimír; Dufková, Edita; Piffl, Vojtěch; Peřina, Vratislav

    2006-01-01

    Roč. 51, č. 2 (2006), s. 179-191 ISSN 0001-7043 Grant - others:Evropská unie EFDA Task TW-5-TVM-PSW (EU – Euratom) Institutional research plan: CEZ:AV0Z20430508; CEZ:AV0Z10480505 Keywords : plasma sprayed coatings * fusion * plasma facing components * tungsten * tokamak Subject RIV: BL - Plasma and Gas Discharge Physics

  19. Tungsten/copper composite deposits produced by a cold spray

    International Nuclear Information System (INIS)

    Kang, Hyun-Ki; Kang, Suk Bong

    2003-01-01

    An agglomerated tungsten/copper composite powder was both cold sprayed and plasma sprayed onto a mild steel substrate for electronic package applications. Most pores resulting from the spraying were found in the vicinity of the tungsten-rich regions of the final product. The levels of porosity varied with the amount of tungsten present. No copper oxidation was found at the cold-sprayed deposit, but relatively high copper oxidation was observed at the plasma-sprayed deposit

  20. Argon Shrouded Plasma Spraying of Tantalum over Titanium for Corrosion Protection in Fluorinated Nitric Acid Media

    Science.gov (United States)

    Vetrivendan, E.; Jayaraj, J.; Ningshen, S.; Mallika, C.; Kamachi Mudali, U.

    2018-02-01

    Argon shrouded plasma spraying (ASPS) was used to deposit a Ta coating on commercially pure Ti (CP-Ti) under inert argon, for dissolver vessel application in the aqueous spent fuels reprocessing plant with high plutonium content. Oxidation during plasma spraying was minimized by shrouding argon system. Porosity and oxide content were controlled by optimizing the spraying parameters, to obtain a uniform and dense Ta coating. The Ta particle temperature and velocity were optimized by judiciously controlling the spray parameters, using a spray diagnostic charge-coupled device camera. The corrosion resistance of the Ta coatings developed by ASPS was investigated by electrochemical studies in 11.5 M HNO3 and 11.5 M HNO3 + 0.05 M NaF. Similarly, the durability of the ASPS Ta coating/substrate was evaluated as per ASTM A262 Practice-C test in boiling nitric acid and fluorinated nitric acid for 240 h. The ASPS Ta coating exhibited higher corrosion resistance than the CP-Ti substrate, as evident from electrochemical studies, and low corrosion rate with excellent coating stability in boiling nitric, and fluorinated nitric acid. The results of the present study revealed that tantalum coating by ASPS is a promising strategy for improving the corrosion resistance in the highly corrosive reprocessing environment.

  1. The Influence of Anode Inner Contour on Atmospheric DC Plasma Spraying Process

    Directory of Open Access Journals (Sweden)

    Kui Wen

    2017-01-01

    Full Text Available In thermal plasma spraying process, anode nozzle is one of the most important components of plasma torch. Its inner contour controls the characteristics of plasma arc/jet, determining the motion and heating behaviors of the in-flight particles and hence influencing the coating quality. In this study, the effects of anode inner contour, standard cylindrical nozzle, and cone-shaped Laval nozzle with conical shape diverging exit (CSL nozzle on the arc voltage, net power, thermal efficiency, plasma jet characteristics, in-flight particle behaviors, and coating properties have been systematically investigated under atmospheric plasma spraying conditions. The results show that the cylindrical nozzle has a higher arc voltage, net power, and thermal efficiency, as well as the higher plasma temperature and velocity at the torch exit, while the CSL nozzle has a higher measured temperature of plasma jet. The variation trends of the plasma jet characteristics for the two nozzles are comparable under various spraying parameters. The in-flight particle with smaller velocity of CSL nozzle has a higher measured temperature and melting fraction. As a result, the coating density and adhesive strength of CSL nozzle are lower than those of cylindrical nozzle, but the deposition efficiency is greatly improved.

  2. Plasma spraying of refractory metals and refractory hard materials. State of the art

    International Nuclear Information System (INIS)

    Eschnauer, H.; Lugscheider, E.; Jaeger, D.

    1989-01-01

    Suitable spraying processes for manufacturing refractory metals, refractory hard materials as well as spray materials with refractory components are the VPS- and IPS-spraying techniques. The advantages of these special spraying process variations are described. The reactive spraying materials are systematically organized. The characteristical properties used in purpose of improving the substrate surfaces are explained. Finally some examples of the latest results of research concerning plasma spraying of reactive materials are shown. 16 refs., 10 figs. (Author)

  3. Calcium titanate (CaTiO{sub 3}) dielectrics prepared by plasma spray and post-deposition thermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Ctibor, Pavel [Materials Engineering Department, Institute of Plasma Physics ASCR, v.v.i., Za Slovankou 3, Prague 8 (Czech Republic); Kotlan, Jiri, E-mail: kotlan@ipp.cas.cz [Materials Engineering Department, Institute of Plasma Physics ASCR, v.v.i., Za Slovankou 3, Prague 8 (Czech Republic); Department of Electrotechnology, Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, Prague 6 (Czech Republic); Pala, Zdenek [Materials Engineering Department, Institute of Plasma Physics ASCR, v.v.i., Za Slovankou 3, Prague 8 (Czech Republic); Sedlacek, Josef [Department of Electrotechnology, Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, Prague 6 (Czech Republic); Hajkova, Zuzana; Grygar, Tomas Matys [Institute of Inorganic Chemistry ASCR, v.v.i., Husinec-Rez 1001, Rez (Czech Republic)

    2015-12-15

    Highlights: • Calcium titanate was sprayed by two different plasma spray systems. • Significant improvement of dielectric properties after annealing was observed. • Calcium titanate self-supporting parts can be fabricated by plasma spraying. - Abstract: This paper studies calcium titanate (CaTiO{sub 3}) dielectrics prepared by plasma spray technology. A water stabilized plasma gun (WSP) as well as a widely used gas stabilized plasma gun (GSP) were employed in this study to deposit three sample sets at different spray conditions. Prepared specimens were annealed in air at atmospheric pressure for 2 h at various temperatures from 530 to 1170 °C. X-ray diffraction (XRD), Raman spectroscopy and porosity measurements were used for sample characterization. Dielectric spectroscopy was applied to obtain relative permittivity, conductivity and loss factor frequency dependence. Band gap energy was estimated from reflectance measurements. The work is focused on the explanation of changes in microstructure and properties of a plasma sprayed deposit after thermal annealing. Obtained results show significant improvement of dielectric properties after thermal annealing.

  4. Sintering of Fine Particles in Suspension Plasma Sprayed Coatings

    Directory of Open Access Journals (Sweden)

    Leszek Latka

    2010-07-01

    Full Text Available Suspension plasma spraying is a process that enables the production of finely grained nanometric or submicrometric coatings. The suspensions are formulated with the use of fine powder particles in water or alcohol with some additives. Subsequently, the suspension is injected into plasma jet and the liquid additives evaporate. The remaining fine solids are molten and subsequently agglomerate or remain solid, depending on their trajectory in the plasma jet. The coating’s microstructure results from these two groups of particles arriving on a substrate or previously deposited coating. Previous experimental studies carried out for plasma sprayed titanium oxide and hydroxyapatite coatings enabled us to observe either a finely grained microstructure or, when a different suspension injection mode was used, to distinguish two zones in the microstructure. These two zones correspond to the dense zone formed from well molten particles, and the agglomerated zone formed from fine solid particles that arrive on the substrate in a solid state. The present paper focuses on the experimental and theoretical analysis of the formation process of the agglomerated zone. The experimental section establishes the heat flux supplied to the coating during deposition. In order to achieve this, calorimetric measurements were made by applying experimental conditions simulating the real coatings’ growth. The heat flux was measured to be in the range from 0.08 to 0.5 MW/m2,depending on the experimental conditions. The theoretical section analyzes the sintering during the coating’s growth, which concerns the fine particles arriving on the substrate in the solid state. The models of volume, grain boundary and surface diffusion were analyzed and adapted to the size and chemistry of the grains, temperature and time scales corresponding to the suspension plasma spraying conditions. The model of surface diffusion was found to best describe the sintering during suspension

  5. Behaviour of plasma spray coatings under disruption simulation

    International Nuclear Information System (INIS)

    Brossa, F.; Rigon, G.; Looman, B.

    1988-01-01

    The behaviour of metallic and ceramic protective coatings under disruption simulations was studied correlating the damage with their physical and structural parameters. Plasma Spray (PS) and Vacuum Plasma Spray (VPS) were the techniques used for the production of the coatings. W-5% Re was selected for divertor plates, and TiC, TiO 2 , Al 2 O 3 , low-Z ceramic materials for the first wall protection on 316 SS, Cu and Al as substrates. An electron beam gun was used to simulate the plasma disruptions. The tests were carried out from 0.6 to 6 MJ/m 2 . The thermal effects were studied by metallographic and EDXA analysis. The damage was observed comparing the degree of protection provided by each coating to discover the minimum thickness necessary to prevent the underlying material from melting. Good protective coatings must have a high melting point, great porosity and low thermal conductivity. Such coatings act as thermal barriers, increasing the surface temperature and radiating back large parts of the energy. (orig.)

  6. Novel Approach in the Use of Plasma Spray: Preparation of Bulk Titanium for Bone Augmentations

    Directory of Open Access Journals (Sweden)

    Michaela Fousova

    2017-08-01

    Full Text Available Thermal plasma spray is a common, well-established technology used in various application fields. Nevertheless, in our work, this technology was employed in a completely new way; for the preparation of bulk titanium. The aim was to produce titanium with properties similar to human bone to be used for bone augmentations. Titanium rods sprayed on a thin substrate wire exerted a porosity of about 15%, which yielded a significant decrease of Young′s modulus to the bone range and provided rugged topography for enhanced biological fixation. For the first verification of the suitability of the selected approach, tests of the mechanical properties in terms of compression, bending, and impact were carried out, the surface was characterized, and its compatibility with bone cells was studied. While preserving a high enough compressive strength of 628 MPa, the elastic modulus reached 11.6 GPa, thus preventing a stress-shielding effect, a generally known problem of implantable metals. U-2 OS and Saos-2 cells derived from bone osteosarcoma grown on the plasma-sprayed surface showed good viability.

  7. The Influence of Nanodispersed Modifiers on the Structure and Properties of Plasma-Sprayed Coatings

    Directory of Open Access Journals (Sweden)

    Igor V. Smirnov

    2017-10-01

    Full Text Available Background. Currently, plasma-sprayed coatings are widely used to protect machine parts operating under conditions of high loads and temperatures, abrasive wear and exposure to corrosive media. Objective. The aim of the paper is to improve the physico-mechanical characteristics of plasma-sprayed coatings by modification of nano-sized particles of TiO2 oxides compounds. Methods. Experimental studies of corrosion resistance, microhardness, adhesion strength and residual stresses of plasma-sprayed coatings based on the oxide aluminum ceramic powder with the addition of nanodisperse TiO2 powder were conducted. Results. It is found that addition of TiO2 nanodisperse modifier to the oxide aluminum ceramic powder composition leads to corrosion resistance increase 2.8 times in a 10 % hydrochloric acid solution. The adhesive strength of ceramic nanomodified coatings is increased by 15–20 %. Conclusions. The positive influence of nanodispersed powders on the physico-mechanical and tribological characteristics of plasma-sprayed coatings is established.

  8. Laser treatment of plasma sprayed HA coatings

    NARCIS (Netherlands)

    Khor, KA; Vreeling, A; Dong, ZL; Cheang, P

    1999-01-01

    Laser treatment was conducted on plasma sprayed hydroxyapatite (HA) coatings using a Nd-YAG pulse laser. Various laser parameters were investigated. The results showed that the HA surface melted when an energy level of greater than or equal to 2 J and a spot size of 2 mm was employed during

  9. The influence of pore formers on the microstructure of plasma-sprayed NiO-YSZ anodes

    Science.gov (United States)

    Poon, Michael; Kesler, Olivera

    2012-07-01

    Four types of pore formers: high-density polyethylene (HDPE), polyether-ether-ketone (PEEK), mesocarbon-microbead (MCMB) carbon powder, and baking flour, are processed and characterized, then incorporated with NiO-YSZ nano-agglomerate powder to produce plasma sprayed SOFC anode coatings. Scanning electron microscopy (SEM) of the coating microstructure, gas permeability measurements, and porosity determinations by image analysis are used to evaluate the effectiveness of each potential pore former powder. Under the spray conditions studied, the flour and MCMB pore former powders are effective as plasma sprayed pore formers, increasing the permeability of the coatings by factors of four and two, respectively, compared to a similarly sprayed NiO-YSZ coating without pore formers. The HDPE powder is unable to survive the plasma spray process and does not contribute to the final coating porosity. The PEEK pore former, though ineffective with the current powder characteristics and spray parameters, exhibits the highest relative deposition efficiency and the most favorable thermal characteristics.

  10. A study on the effect of heat treatment on electrical properties of plasma sprayed YSZ

    International Nuclear Information System (INIS)

    Elshikh, S.S.M.

    2012-01-01

    Free standing samples of plasma sprayed (PS) zirconia partially stabilized with yettria (YSZ) were prepared with two machines of plasma spray deposition (Triplex gun- 100 kw, F-4 gun 64 kw) have different electrical power and spraying parameters, which produced different microstructures; contain different amounts and varieties of pores and micro-cracks.The study included heat treatment of samples at 1200 degree C for 1 h, 5 h, 10 h, 100 h and 500 h, to study the changes in macrostructure (pores and micro-cracks) which affect the electrical conductivity.The electrical properties (resistively, electrical conductivity) of plasma sprayed ZrO 2 stabilized by 8 wt. % Y 2 O 3 samples were determined by using electrical impedance spectroscopy (IS). Specimen's microstructure was examined by optical microscopy. By measuring electrical properties and connected porosity percent of the coatings obtained under various spraying conditions, it would be possible to select the optimum spraying condition to spray coatings which have high efficiency at high temperature.The results showed that the electrical conductivity of (YSZ) samples after heat treatment increased by a rate of (20%-30%) as compared to that of as sprayed.

  11. Measurement of the non-thermal properties of a low pressure spraying plasma by electric and spectroscopic methods

    International Nuclear Information System (INIS)

    Jung, Yong Ho

    2003-02-01

    For the case of an atmospheric plasma, the local thermodynamic equilibrium (LTE) model can be applied to plasmas at a nozzle entrance and to those on the axis of the plasma flame, but it is not easy to justify applying the LTE model to off-center plasma and to a low-pressure spraying plasma. Although the energy distribution of the electrons is assumed to be Maxwellian for the most of spraying plasmas, the non-Maxwellian distribution is possible for the case of low-pressure spaying plasma and edge plasma of atmospheric spraying plasma. In this work, the non-Maxwellian distribution of electrons was measured by using an electric probe installed on the fast scanning probe system, and non-LTE effects were measured by using the optical emission spectroscopy system. Distribution of the electrons of a low-pressure spraying plasma is observed not as Maxwellian but as bi-Maxwellian by the measurement of the single probe. Bi-Maxwellian distribution appears in the edge of a low pressure spraying plasma and seems to be due to the reduction of the collisonality by the drastic variation of the plasma density. Non-LTE characteristics of a low-pressure spraying plasma can be deuced from the measured results of the optical emission spectroscopy and is analyzed by the collisional radiative equilibrium (CRE) model, where the Maxwellian and the non-Maxwellian distributions are assumed for comparison. For the electron temperature, the results from optical emission spectroscopy were similar to the results from the single probe (3∼5 % in error)

  12. A study on the particle melting by plasma spraying

    International Nuclear Information System (INIS)

    Jung, In Ha; Ji, C. G.; Bae, S. O.; Yoon, J. H.; Kwon, H. I.

    2001-12-01

    As a preliminary study for fabricating a thick and dense free standing type deposit, powder melting studies were carried out. Various morphologies and sizes of powder having the same chemical compositions were applied in particle melting experiments with varying systematic parameters. Through the study of powder melting by inductively coupled plasma, we can conclude as followings: Argon-hydrogen plasma gas with a higher plasma power gave good quality of splats and shown a higher density with a higher build-up rate. Reproducibility of the experiments appeared in the range of 99%. Degree of particle melting and its density just before impinging played a predominant role in the density of a deposit. Chamber pressure has an effect on degree of deformation of the splats, i.e. on the particle momentum. Completely melted particle showed a high deformation appearance. Build-up rate had a relation with a fraction of the fully melted particle, and this also closely associates with productivity and economical efficiency. For increasing the fraction of the fully melted particle, either increasing the power or limiting the particle size was recommended. Mean pore size and its distribution of a deposit seemed to have a relation with a viscosity of the melted powder, i.e. particle temperature, and also with a chamber pressure and spraying distances. Particle temperature may be governed by a plasma power, plasma gas property, probe position, and spraying distance in the present experimental range. Some results might be appeared with mutual interactions of the effects, for example, particle residence time and momentum with chamber pressure, particle temperature with chamber pressure, spraying distance and its size

  13. A study on the particle melting by plasma spraying

    Energy Technology Data Exchange (ETDEWEB)

    Jung, In Ha; Ji, C. G.; Bae, S. O.; Yoon, J. H.; Kwon, H. I

    2001-12-01

    As a preliminary study for fabricating a thick and dense free standing type deposit, powder melting studies were carried out. Various morphologies and sizes of powder having the same chemical compositions were applied in particle melting experiments with varying systematic parameters. Through the study of powder melting by inductively coupled plasma, we can conclude as followings: Argon-hydrogen plasma gas with a higher plasma power gave good quality of splats and shown a higher density with a higher build-up rate. Reproducibility of the experiments appeared in the range of 99%. Degree of particle melting and its density just before impinging played a predominant role in the density of a deposit. Chamber pressure has an effect on degree of deformation of the splats, i.e. on the particle momentum. Completely melted particle showed a high deformation appearance. Build-up rate had a relation with a fraction of the fully melted particle, and this also closely associates with productivity and economical efficiency. For increasing the fraction of the fully melted particle, either increasing the power or limiting the particle size was recommended. Mean pore size and its distribution of a deposit seemed to have a relation with a viscosity of the melted powder, i.e. particle temperature, and also with a chamber pressure and spraying distances. Particle temperature may be governed by a plasma power, plasma gas property, probe position, and spraying distance in the present experimental range. Some results might be appeared with mutual interactions of the effects, for example, particle residence time and momentum with chamber pressure, particle temperature with chamber pressure, spraying distance and its size.

  14. Evaluation of Plasma Spray hydroxy Apatite Coatings on Metallic Materials

    International Nuclear Information System (INIS)

    Take, S.; Mitsul, K.; Kasahara, M.; Sawal, R.; Izawa, S.; Nakayama, M.; Itoi, Y.

    2007-01-01

    Biocompatible Hydroxy apatite (HAp) coatings on metallic substrate by plasma spray techniques have been developed. Long-term credibility of plasma spray HAp coatings has been evaluated in physiological saline by electrochemical measurements. It was found that the corrosion resistance of SUS316L based HAp/Ti combined coatings was excellent even after more than 10 weeks long-term immersion. It was shown that postal heat treatment improved both the crystallinity and corrosion resistance of HAp. By lowering cooling rate during heat treatment process, less cracks produced in HAp coating layer, which lead to higher credibility of HAp during immersion in physiological saline. The ICP results showed that the dissolution level of substrate metallic ions was low and HAp coatings produced in this research can be acceptable as biocompatible materials. Also, the concentration of dissolved ions from HAp coatings with postal heat treatment was lower compared to those from samples without postal heat treatment. The adherence of HAp coatings with Ti substrate and other mechanical properties were also assessed by three-point bending test. The poor adhesion of HAp coating to titanium substrate can be improved by introducing a plasma spray titanium intermediate layer

  15. Plasma sprayed rutile titania-nanosilver antibacterial coatings

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Jinjin [Key Lab of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Zhao, Chengjian [National Key Laboratory of Human Factors Engineering, Department of ECLSS, China Astronaut Researching and Training Center, Beijing, 100094 (China); Zhou, Jingfang [Ian Wark Research Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, SA, 5095 (Australia); Li, Chunxia [National Key Laboratory of Human Factors Engineering, Department of ECLSS, China Astronaut Researching and Training Center, Beijing, 100094 (China); Shao, Yiran; Shi, Chao [Key Lab of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Zhu, Yingchun, E-mail: yzhu@mail.sic.ac.cn [Key Lab of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China)

    2015-11-15

    Graphical abstract: - Highlights: • TiO{sub 2}/Ag feedstock powders containing 1–10,000 ppm silver nanoparticles were double sintered and deposited by plasma spray. • TiO{sub 2}/Ag coatings were composed of pure rutile phase and homogeneously-distributed metallic silver. • TiO{sub 2}/Ag coatings with more than 10 ppm silver nanoparticles exhibited strong antibacterial activity against E. coli and S. aureus. - Abstract: Rutile titania (TiO{sub 2}) coatings have superior mechanical properties and excellent stability that make them preferential candidates for various applications. In order to prevent infection arising from bacteria, significant efforts have been focused on antibacterial TiO{sub 2} coatings. In the study, titania-nanosilver (TiO{sub 2}/Ag) coatings with five different kinds of weight percentages of silver nanoparticles (AgNPs) were prepared by plasma spray. The feedstock powders, which had a composition of rutile TiO{sub 2} powders containing 1–10,000 ppm AgNPs, were double sintered and deposited on stainless steel substrates with optimized spraying parameters. X-Ray diffraction and scanning electron microscopy were used to analysize the phase composition and surface morphology of TiO{sub 2}/Ag powders and coatings. Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were employed to examine the antibacterial activity of the as-prepared coatings by bacterial counting method. The results showed that silver existed homogeneously in the TiO{sub 2}/Ag coatings and no crystalline changed happened in the TiO{sub 2} structure. The reduction ratios on the TiO{sub 2}/Ag coatings with 10 ppm AgNPs were as high as 94.8% and 95.6% for E. coli and S. aureus, respectively, and the TiO{sub 2}/Ag coatings with 100–1000 ppm AgNPs exhibited 100% bactericidal activity against E. coli and S. aureus, which indicated the TiO{sub 2}/Ag coatings with more than 10 ppm AgNPs had strong antibacterial activity. Moreover, the main factors influencing the

  16. Plasma sprayed rutile titania-nanosilver antibacterial coatings

    International Nuclear Information System (INIS)

    Gao, Jinjin; Zhao, Chengjian; Zhou, Jingfang; Li, Chunxia; Shao, Yiran; Shi, Chao; Zhu, Yingchun

    2015-01-01

    Graphical abstract: - Highlights: • TiO_2/Ag feedstock powders containing 1–10,000 ppm silver nanoparticles were double sintered and deposited by plasma spray. • TiO_2/Ag coatings were composed of pure rutile phase and homogeneously-distributed metallic silver. • TiO_2/Ag coatings with more than 10 ppm silver nanoparticles exhibited strong antibacterial activity against E. coli and S. aureus. - Abstract: Rutile titania (TiO_2) coatings have superior mechanical properties and excellent stability that make them preferential candidates for various applications. In order to prevent infection arising from bacteria, significant efforts have been focused on antibacterial TiO_2 coatings. In the study, titania-nanosilver (TiO_2/Ag) coatings with five different kinds of weight percentages of silver nanoparticles (AgNPs) were prepared by plasma spray. The feedstock powders, which had a composition of rutile TiO_2 powders containing 1–10,000 ppm AgNPs, were double sintered and deposited on stainless steel substrates with optimized spraying parameters. X-Ray diffraction and scanning electron microscopy were used to analysize the phase composition and surface morphology of TiO_2/Ag powders and coatings. Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were employed to examine the antibacterial activity of the as-prepared coatings by bacterial counting method. The results showed that silver existed homogeneously in the TiO_2/Ag coatings and no crystalline changed happened in the TiO_2 structure. The reduction ratios on the TiO_2/Ag coatings with 10 ppm AgNPs were as high as 94.8% and 95.6% for E. coli and S. aureus, respectively, and the TiO_2/Ag coatings with 100–1000 ppm AgNPs exhibited 100% bactericidal activity against E. coli and S. aureus, which indicated the TiO_2/Ag coatings with more than 10 ppm AgNPs had strong antibacterial activity. Moreover, the main factors influencing the antibacterial properties of TiO_2/Ag coatings were discussed with

  17. Investigation on the suitability of plasma sprayed Fe-Cr-Al coatings as tritium permeation barrier

    International Nuclear Information System (INIS)

    Fazio, C.; Serra, E.; Benamati, G.

    1999-01-01

    Results on the fabrication of a tritium permeation barrier by spraying Fe-Cr-Al powders are described. The sprayed coatings were deposited at temperatures below the A c1 temperature of the ferritic-martensitic steel substrate and no post-deposition heat treatment was applied. The aim of the investigation was the determination of the efficiency of the coatings to act as tritium permeation barrier. Metallurgical investigations as well as hydrogen isotope permeation measurements were carried out onto the produced coatings. The depositions were performed on ferritic-martensitic steels by means of three types of spray techniques: high velocity oxy fuel, air plasma spray and vacuum plasma spray. (orig.)

  18. Role of process conditions on the microstructure, stoichiometry and functional performance of atmospheric plasma sprayed La(Sr)MnO3 coatings

    Science.gov (United States)

    Han, Su Jung; Chen, Yikai; Sampath, Sanjay

    2014-08-01

    Strontium doped lanthanum manganite (LSM) perovskite coatings were produced via atmospheric plasma spray technique to examine their applicability as electrically conductive coatings to protect chromium-poisoning of cathode side metallic interconnects in solid oxide fuel cells. Various plasma spray process conditions were manipulated including plasma power, total gas flow and content of H2 in the plasma gas in order to understand their effects on coating properties as well as efficacy as a protectant against Cr-poisoning. In-flight temperatures and velocities of spray particles were monitored for the various plasma spray conditions enabling assessment of thermal and kinetic energies of LSM particles. As anticipated, coating density improves with increasing thermal and/or kinetic energies of the LSM particles. However, the LSM particles also experienced significant phase decomposition at higher thermal exposure and longer residence time conditions. Due to preferential loss of oxygen and manganese, La2O3 phase is also formed under certain processing regimes. The resultant mixed-phase coating is ineffective both from electrical transport and as a protective coating for the metallic interconnect. Concomitantly, coatings with limited decomposition show excellent conductivity and protection characteristics demonstrating the need for mechanism driven process optimization for these functional oxide coatings.

  19. Microstructure and mechanical properties of plasma sprayed HA/YSZ/Ti-6Al-4V composite coatings.

    Science.gov (United States)

    Khor, K A; Gu, Y W; Pan, D; Cheang, P

    2004-08-01

    Plasma sprayed hydroxyapatite (HA) coatings on titanium alloy substrate have been used extensively due to their excellent biocompatibility and osteoconductivity. However, the erratic bond strength between HA and Ti alloy has raised concern over the long-term reliability of the implant. In this paper, HA/yttria stabilized zirconia (YSZ)/Ti-6Al-4V composite coatings that possess superior mechanical properties to conventional plasma sprayed HA coatings were developed. Ti-6Al-4V powders coated with fine YSZ and HA particles were prepared through a unique ceramic slurry mixing method. The so-formed composite powder was employed as feedstock for plasma spraying of the HA/YSZ/Ti-6Al-4V coatings. The influence of net plasma energy, plasma spray standoff distance, and post-spray heat treatment on microstructure, phase composition and mechanical properties were investigated. Results showed that coatings prepared with the optimum plasma sprayed condition showed a well-defined splat structure. HA/YSZ/Ti-6Al-4V solid solution was formed during plasma spraying which was beneficial for the improvement of mechanical properties. There was no evidence of Ti oxidation from the successful processing of YSZ and HA coated Ti-6Al-4V composite powders. Small amount of CaO apart from HA, ZrO(2) and Ti was present in the composite coatings. The microhardness, Young's modulus, fracture toughness, and bond strength increased significantly with the addition of YSZ. Post-spray heat treatment at 600 degrees C and 700 degrees C for up to 12h was found to further improve the mechanical properties of coatings. After the post-spray heat treatment, 17.6% increment in Young's modulus (E) and 16.3% increment in Vicker's hardness were achieved. The strengthening mechanisms of HA/YSZ/Ti-6Al-4V composite coatings were related to the dispersion strengthening by homogeneous distribution of YSZ particles in the matrix, the good mechanical properties of Ti-6Al-4V and the formation of solid solution among HA

  20. Antibacterial characteristics of thermal plasma spray system.

    Science.gov (United States)

    Goudarzi, M; Saviz, Sh; Ghoranneviss, M; Salar Elahi, A

    2018-03-15

    The objective of this study is to investigate antibacterial characteristics of a thermal plasma spray system. For this purpose, copper powder was coated on a handmade atmospheric plasma spraying system made by the stainless steel 316 substrate, which is preheated at different temperatures before spraying. A number of deposition characteristics such as antibacterial characteristics, adhesion strength and hardness of coating, was investigated. All of the spray parameters are fixed except the substrate temperature. The chemical composition was analyzed by X-ray diffraction (XRD). A scanning electron microscopy (SEM) and back scattering electron microscopy (BSE) were used to show the coating microstructure, its thickness and also the powder micrograph. The energy dispersive X-ray spectroscopy (EDX) was used to analyze the coating particles. Hardness of the deposition was examined by Vickers tester (HV0.1). Its adhesion strength was declared by cross cut tester (TQC). In addition, the percentage of bactericidal coating was evidenced with Staphylococcus aurous and Escherichia coli bacteria. Study results show that as the substrates temperature increases, the number of splats in the shape of pancake increases, the greatness and percentage of the deposition porosity both decrease. The increment of the substrate temperature leads to more oxidation and makes thicker dendrites on the splat. The enhancement of the substrate temperature also enlarges thickness and efficiency of coating. The interesting results are that antibacterial properties of coatings against the Escherichia coli are more than Staphylococcus aurous bacteria. However the bactericidal percentage of the coatings against Staphylococcus aurous and Escherichia coli bacteria roughly does not change with increasing the substrate temperature. Furthermore, by increment of the substrate temperature, coatings with both high adhesion and hardness are obtained. Accordingly, the temperature of substrate can be an

  1. Investigating Tribological Characteristics of HVOF Sprayed AISI 316 Stainless Steel Coating by Pulsed Plasma Nitriding

    Science.gov (United States)

    Mindivan, H.

    2018-01-01

    In this study, surface modification of aluminum alloy using High-Velocity Oxygen Fuel (HVOF) thermal spray and pulsed plasma nitriding processes was investigated. AISI 316 stainless steel coating on 1050 aluminum alloy substrate by HVOF process was pulsed plasma nitrided at 793 K under 0.00025 MPa pressure for 43200 s in a gas mixture of 75 % N2 and 25 % H2. The results showed that the pulse plasma nitriding process produced a surface layer with CrN, iron nitrides (Fe3N, Fe4N) and expanded austenite (γN). The pulsed plasma nitrided HVOF-sprayed coating showed higher surface hardness, lower wear rate and coefficient of friction than the untreated HVOF-sprayed one.

  2. High Temperature Multilayer Environmental Barrier Coatings Deposited Via Plasma Spray-Physical Vapor Deposition

    Science.gov (United States)

    Harder, Bryan James; Zhu, Dongming; Schmitt, Michael P.; Wolfe, Douglas E.

    2014-01-01

    Si-based ceramic matrix composites (CMCs) require environmental barrier coatings (EBCs) in combustion environments to avoid rapid material loss. Candidate EBC materials have use temperatures only marginally above current technology, but the addition of a columnar oxide topcoat can substantially increase the durability. Plasma Spray-Physical Vapor Deposition (PS-PVD) allows application of these multilayer EBCs in a single process. The PS-PVD technique is a unique method that combines conventional thermal spray and vapor phase methods, allowing for tailoring of thin, dense layers or columnar microstructures by varying deposition conditions. Multilayer coatings were deposited on CMC specimens and assessed for durability under high heat flux and load. Coated samples with surface temperatures ranging from 2400-2700F and 10 ksi loads using the high heat flux laser rigs at NASA Glenn. Coating morphology was characterized in the as-sprayed condition and after thermomechanical loading using electron microscopy and the phase structure was tracked using X-ray diffraction.

  3. Ceramic Materials Selection of Fuel Crucibles based on Plasma Spray Coating for SFR

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hoon; Kim, Jonghwan; Kim, Hyungtae; Ko, Youngmo; Woo, Yoonmyung; Oh, Seokjin; Kim, Kihwan; Lee, Chanbock [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-07-01

    The plasma-sprayed coating can provide the crucible with a denser, more friable coating layer, compared with the more friable coating layer formed by slurry-coating, which was used to prevent the interaction between melt and crucibles. Plasma-sprayed coatings are consolidated by mechanical interlocking of the molten particles impacting on the substrate and are dense by the heat applied by the plasma. The increased coating density is advantageous because it should not require frequent re coating and U-Zr melt penetration through the protective layer is more difficult in a dense coating than in a porous coating. In this study, we used Vacuum Plasma Spray method to investigate permanent coatings for re-usable crucibles for melting and casting of metallic fuel onto niobium substrates. Niobium was selected as a substrate because of its refractory nature and the coefficient of thermal expansion is similar to that of many of the candidate materials. After the HfC, ZrC, TiC, TaC, Y{sub 2}O{sub 3}, and 8% YSZ coatings were applied the resulting microstructure and chemical compositions was characterized to find the optimum process conditions for coating. Thermal plasma-sprayed coatings of refractory materials can be applied to develop a re-usable crucible coating for metallic fuel, such as the U-Zr alloy proposed for sodium cooled fast reactors.

  4. C_1_8-attached membrane funnel-based spray ionization mass spectrometry for quantification of anti-diabetic drug from human plasma

    International Nuclear Information System (INIS)

    Li, Wan; Chen, Xiangfeng; Wong, Y.-L. Elaine; Hung, Y.-L. Winnie; Wang, Ze; Deng, Liulin; Dominic Chan, T.-W.

    2016-01-01

    In this work, sorbent-attached membrane funnel-based spray ionization mass spectrometry was explored for quantitative analysis of anti-diabetic drugs spiked in human plasma. C_1_8-attached membrane funnel was fabricated for in situ extraction and clean-up to alleviate matrix suppression effect in the ionization process. Repaglinide was used as a target analyte of anti-diabetic drugs. Under optimal working conditions, good linearity (R"2 > 0.99) was obtained in the concentration range of 1–100 ng mL"−"1. The method detection limit of target drugs spiked in the human plasma was around 0.30 ng mL"−"1. Through the application of an isotope-labeled internal standard, the signal fluctuation caused by residual background matrices was largely alleviated and the precision of measurement (RSD) was below 15%. The recovery of repaglinide for 5, 25, and 100 ng mL"−"1 of spiked human plasma matrixes ranged from 87% to 112%. The developed method was successfully applied to determine repaglinide in plasma volunteers who orally received a dose of drug association. Our results demonstrated that membrane funnel-based spray is a simple and sensitive method for rapid screening analysis of complex biological samples. - Highlights: • Sorbent attached membrane funnel based spray platform was used for drug determination in human plasma. • The matrix suppression effect of human plasma was largely eliminated. • The method was applied to determine repaglinide in plasma volunteers. • Membrane funnel-based spray is promising for analysis of biological samples.

  5. Dielectric Strontium Zirconate Sprayed by a Plasma Torch.

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Sedláček, J.; Janata, Marek

    2017-01-01

    Roč. 10, č. 4 (2017), s. 225-230 ISSN 2008-2134 Institutional support: RVO:61389021 Keywords : Plasma spraying * Electrical properties * Strontium Zirconate * Insulators Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass OBOR OECD: Ceramics www.pccc.icrc.ac.ir/Articles/18/1/18/1010/

  6. Atmospheric Plasma Spraying Low-Temperature Cathode Materials for Solid Oxide Fuel Cells

    Science.gov (United States)

    Harris, J.; Kesler, O.

    2010-01-01

    Atmospheric plasma spraying (APS) is attractive for manufacturing solid oxide fuel cells (SOFCs) because it allows functional layers to be built rapidly with controlled microstructures. The technique allows SOFCs that operate at low temperatures (500-700 °C) to be fabricated by spraying directly onto robust and inexpensive metallic supports. However, standard cathode materials used in commercial SOFCs exhibit high polarization resistances at low operating temperatures. Therefore, alternative cathode materials with high performance at low temperatures are essential to facilitate the use of metallic supports. Coatings of lanthanum strontium cobalt ferrite (LSCF) were fabricated on steel substrates using axial-injection APS. The thickness and microstructure of the coating layers were evaluated, and x-ray diffraction analysis was performed on the coatings to detect material decomposition and the formation of undesired phases in the plasma. These results determined the envelope of plasma spray parameters in which coatings of LSCF can be manufactured, and the range of conditions in which composite cathode coatings could potentially be manufactured.

  7. Characterizing Suspension Plasma Spray Coating Formation Dynamics through Curvature Measurements

    Science.gov (United States)

    Chidambaram Seshadri, Ramachandran; Dwivedi, Gopal; Viswanathan, Vaishak; Sampath, Sanjay

    2016-12-01

    Suspension plasma spraying (SPS) enables the production of variety of microstructures with unique mechanical and thermal properties. In SPS, a liquid carrier (ethanol/water) is used to transport the sub-micrometric feedstock into the plasma jet. Considering complex deposition dynamics of SPS technique, there is a need to better understand the relationships among spray conditions, ensuing particle behavior, deposition stress evolution and resultant properties. In this study, submicron yttria-stabilized zirconia particles suspended in ethanol were sprayed using a cascaded arc plasma torch. The stresses generated during the deposition of the layers (termed evolving stress) were monitored via the change in curvature of the substrate measured using an in situ measurement apparatus. Depending on the deposition conditions, coating microstructures ranged from feathery porous to dense/cracked deposits. The evolving stresses and modulus were correlated with the observed microstructures and visualized via process maps. Post-deposition bi-layer curvature measurement via low temperature thermal cycling was carried out to quantify the thermo-elastic response of different coatings. Lastly, preliminary data on furnace cycle durability of different coating microstructures were evaluated. This integrated study involving in situ diagnostics and ex situ characterization along with process maps provides a framework to describe coating formation mechanisms, process parametrics and microstructure description.

  8. Continuous spray forming of functionally gradient materials

    International Nuclear Information System (INIS)

    McKechnie, T.N.; Richardson, E.H.

    1995-01-01

    Researchers at Plasma Processes Inc. have produced a Functional Gradient Material (FGM) through advanced vacuum plasma spray processing for high heat flux applications. Outlined in this paper are the manufacturing methods used to develop a four component functional gradient material of copper, tungsten, boron, and boron nitride. The FGM was formed with continuous gradients and integral cooling channels eliminating bondlines and providing direct heat transfer from the high temperature exposed surface to a cooling medium. Metallurgical and x-ray diffraction analyses of the materials formed through innovative VPS (vacuum plasma spray) processing are also presented. Applications for this functional gradient structural material range from fusion reactor plasma facing components to missile nose cones to boilers

  9. Plasma spraying of zirconium carbide – hafnium carbide – tungsten cermets

    Czech Academy of Sciences Publication Activity Database

    Brožek, Vlastimil; Ctibor, Pavel; Cheong, D.-I.; Yang, S.-H.

    2009-01-01

    Roč. 9, č. 1 (2009), s. 49-64 ISSN 1335-8987 Institutional research plan: CEZ:AV0Z20430508 Keywords : Plasma spraying * cermet coatings * microhardness * zirconium carbide * hafnium carbide * tungsten * water stabilized plasma Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass

  10. Induction plasma-sprayed photocatalytically active titania coatings and their characterisation by micro-Raman spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Burlacov, I.; Jirkovský, Jaromír; Muller, M.; Heimann, R. B.

    2006-01-01

    Roč. 201, 1-2 (2006), s. 255-264 ISSN 0257-8972 Grant - others:European Communities(XE) EVKI-2002-30025 Institutional research plan: CEZ:AV0Z40400503 Source of funding: R - rámcový projekt EK Keywords : titania (anatase) coatings * induction plasma spraying * suspension plasma spraying * Raman spectroscopy Subject RIV: CG - Electrochemistry Impact factor: 1.559, year: 2006

  11. On reactive suspension plasma spraying of calcium titanate

    OpenAIRE

    Kotlan, J. (Jiří); Pala, Z. (Zdeněk); Mušálek, R. (Radek); Ctibor, P. (Pavel)

    2016-01-01

    This study shows possibility of preparation of calcium titanate powder and coatings by reactive suspension plasma spraying. Suspension of mixture of calcium carbonate (CaCO3) and titanium dioxide (TiO2) powders in ethanol was fed into hybrid plasma torch with a DC-arc stabilized by a water–argon mixture (WSP-H 500). Various feeding distances and angles were used in order to optimize suspension feeding conditions. In the next step, the coatings were deposited on stainless steel substrates and ...

  12. Heat-Treated TiO2 Plasma Spray Deposition for Bioactivity Improvement in Ti-6Al-4V Alloy

    Science.gov (United States)

    Kumari, Renu; Majumdar, Jyotsna Dutta

    2017-12-01

    In the present study, titanium di-oxide (TiO2) coating has been developed on Ti-6Al-4V substrate by plasma spray deposition. Followed by plasma spraying, heat treatment of the sprayed sample has been carried out by isothermally holding it at 823 K (550 °C) for 2 h. Microstructural analysis shows the presence of porosity and unmelted particles on the as-sprayed surface, the area fraction of which reduces after heat treatment. X-ray diffraction analysis shows the phase transformation from anatase (in precursor powder) to rutile (in as-sprayed coating and the same after heat treatment). There is an improvement in nano-hardness, "Young's modulus" and wear resistance in plasma-sprayed TiO2 coating (as-sprayed as well as post-heat-treated condition) as compared to as-received Ti-6Al-4V, though post-heat treatment offers a superior hardness, "young's modulus" and wear resistance as compared to as-sprayed coating. The corrosion behavior in "hank's solution" shows decrease in corrosion resistance after plasma spraying and post-heat treatment as compared to as-received substrate. A significant decrease in contact angle and improvement in bioactivity (in terms of apatite deposition) were observed in TiO2-coated surface as compared to as-received Ti-6Al-4V.

  13. dc-plasma-sprayed electronic-tube device

    Science.gov (United States)

    Meek, T.T.

    1982-01-29

    An electronic tube and associated circuitry which is produced by dc plasma arc spraying techniques is described. The process is carried out in a single step automated process whereby both active and passive devices are produced at very low cost. The circuitry is extremely reliable and is capable of functioning in both high radiation and high temperature environments. The size of the electronic tubes produced are more than an order of magnitude smaller than conventional electronic tubes.

  14. Deposition of porous cathodes using plasma spray technique for reduced-temperature SOFCs

    Energy Technology Data Exchange (ETDEWEB)

    Jankovic, J.; Hui, S.; Roller, J.; Kesler, O.; Xie, Y.; Maric, R.; Ghosh, D. [National Research Council of Canada, Vancouver, BC (Canada). Inst. for Fuel Cell Innovation

    2005-07-01

    Current techniques for Solid Oxide Fuel Cell (SOFC) materials deposition are often expensive and time-consuming. Plasma-spraying techniques provide higher deposition rates, short processing times and control over porosity and composition during deposition. Optimum plasma spraying for lanthanum based cathode materials were discussed. Plasma-spraying was used to deposit cathode materials onto ceramic and stainless steel substrates to obtain highly porous structures. Lanthanum cathode materials with composition of La{sub 0.6}Sr{sub 0.4}C{sub 0.2}Fe{sub 0.8}O{sub 3} were employed in the powder form. The powder was prepared from powder precursors with different power formers and binder levels, or from produced single-phase lanthanum powders. The (La{sub 0.8}Sr{sub 0.2}){sub 0.98}MnO{sub 3} cathode material was also processed for comparison purposes. The deposition process was developed to obtain coatings with good bond strength, porosity, film thickness and residual stresses. The phase and microstructure of deposited materials were characterized using X-Ray Diffraction and Scanning Electron Microscopy (SEM). It was concluded that good flow of the powder precursors is achieved by spraying 50-100 um particle size powders and using vibrating feeders. Further processing of the spraying powders was recommended. It was noted that oxide precursors showed greater reactivity among the precursors. The best precursor reactivity and coating morphology was obtained using 40 volume per cent of graphite pore former, incorporated into the precursor mixture during wet ball milling. It was concluded that higher power levels and larger distances between the plasma gun and the substrate result in coatings with the highest porosities and best phase compositions. 5 refs., 1 tab., 6 figs.

  15. C{sub 18}-attached membrane funnel-based spray ionization mass spectrometry for quantification of anti-diabetic drug from human plasma

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wan [Department of Chemistry, The Chinese University of Hong Kong, Hong Kong Special Administrative Region (Hong Kong); Chen, Xiangfeng, E-mail: xiangfchensdas@163.com [Department of Chemistry, The Chinese University of Hong Kong, Hong Kong Special Administrative Region (Hong Kong); Shandong Analysis and Test Centre, Shandong Academy of Sciences, Jinan, Shandong (China); Wong, Y.-L. Elaine; Hung, Y.-L. Winnie; Wang, Ze; Deng, Liulin [Department of Chemistry, The Chinese University of Hong Kong, Hong Kong Special Administrative Region (Hong Kong); Dominic Chan, T.-W., E-mail: twdchan@cuhk.edu.hk [Department of Chemistry, The Chinese University of Hong Kong, Hong Kong Special Administrative Region (Hong Kong)

    2016-08-24

    In this work, sorbent-attached membrane funnel-based spray ionization mass spectrometry was explored for quantitative analysis of anti-diabetic drugs spiked in human plasma. C{sub 18}-attached membrane funnel was fabricated for in situ extraction and clean-up to alleviate matrix suppression effect in the ionization process. Repaglinide was used as a target analyte of anti-diabetic drugs. Under optimal working conditions, good linearity (R{sup 2} > 0.99) was obtained in the concentration range of 1–100 ng mL{sup −1}. The method detection limit of target drugs spiked in the human plasma was around 0.30 ng mL{sup −1}. Through the application of an isotope-labeled internal standard, the signal fluctuation caused by residual background matrices was largely alleviated and the precision of measurement (RSD) was below 15%. The recovery of repaglinide for 5, 25, and 100 ng mL{sup −1} of spiked human plasma matrixes ranged from 87% to 112%. The developed method was successfully applied to determine repaglinide in plasma volunteers who orally received a dose of drug association. Our results demonstrated that membrane funnel-based spray is a simple and sensitive method for rapid screening analysis of complex biological samples. - Highlights: • Sorbent attached membrane funnel based spray platform was used for drug determination in human plasma. • The matrix suppression effect of human plasma was largely eliminated. • The method was applied to determine repaglinide in plasma volunteers. • Membrane funnel-based spray is promising for analysis of biological samples.

  16. Spray-dried plasma and fresh frozen plasma modulate permeability and inflammation in vitro in vascular endothelial cells

    NARCIS (Netherlands)

    Wataha, K.; Menge, T.; Deng, X.; Shah, A.; Bode, A.; Holcomb, J.B.; Potter, D.; Kozar, R.; Spinella, P.C.; Pati, S.

    2013-01-01

    BACKGROUND: After major traumatic injury, patients often require multiple transfusions of fresh frozen plasma (FFP) to correct coagulopathy and to reduce bleeding. A spray-dried plasma (SDP) product has several logistical benefits over FFP use in trauma patients with coagulopathy. These benefits

  17. Oxidation Behavior of Titanium Carbonitride Coating Deposited by Atmospheric Plasma Spray Synthesis

    Science.gov (United States)

    Zhu, Lin; He, Jining; Yan, Dianran; Liao, Hanlin; Zhang, Nannan

    2017-10-01

    As a high-hardness and anti-frictional material, titanium carbonitride (TiCN) thick coatings or thin films are increasingly being used in many industrial fields. In the present study, TiCN coatings were obtained by atmospheric plasma spray synthesis or reactive plasma spray. In order to promote the reaction between the Ti particles and reactive gases, a home-made gas tunnel was mounted on a conventional plasma gun to perform the spray process. The oxidation behavior of the TiCN coatings under different temperatures in static air was carefully investigated. As a result, when the temperature was over 700 °C, the coatings suffered from serious oxidation, and finally they were entirely oxidized to the TiO2 phase at 1100 °C. The principal oxidation mechanism was clarified, indicating that the oxygen can permeate into the defects and react with TiCN at high temperatures. In addition, concerning the use of a TiCN coating in high-temperature conditions, the microhardness of the oxidized coatings at different treatment temperatures was also evaluated.

  18. Deposition of Composite LSCF-SDC and SSC-SDC Cathodes by Axial-Injection Plasma Spraying

    Science.gov (United States)

    Harris, Jeffrey; Qureshi, Musab; Kesler, Olivera

    2012-06-01

    The performance of solid oxide fuel cell cathodes can be improved by increasing the number of electrochemical reaction sites, by controlling microstructures, or by using composite materials that consist of an ionic conductor and a mixed ionic and electronic conductor. LSCF (La0.6Sr0.4Co0.2Fe0.8O3-δ) and SSC (Sm0.5Sr0.5CoO3) cathodes were manufactured by axial-injection atmospheric plasma spraying, and composite cathodes were fabricated by mixing SDC (Ce0.8Sm0.2O1.9) into the feedstock powders. The plasma power was varied by changing the proportion of nitrogen in the plasma gas. The microstructures of cathodes produced with different plasma powers were characterized by scanning electron microscopy and gas permeation measurements. The deposition efficiencies of these cathodes were calculated based on the mass of the sprayed cathode. Particle surface temperatures were measured in-flight to enhance understanding of the relationship between spray parameters, microstructure, and deposition efficiency.

  19. Plasma spraying of hard magnetic coatings based on Sm-Co alloys

    International Nuclear Information System (INIS)

    KrasnoyarskiyRabochiy prospect, Krasnoyarsk, 660014 (Russian Federation))" data-affiliation=" (Siberian State Aerospace University named after Academician M.F. Reshetnev 31 KrasnoyarskiyRabochiy prospect, Krasnoyarsk, 660014 (Russian Federation))" >Saunin, V N; KrasnoyarskiyRabochiy prospect, Krasnoyarsk, 660014 (Russian Federation))" data-affiliation=" (Siberian State Aerospace University named after Academician M.F. Reshetnev 31 KrasnoyarskiyRabochiy prospect, Krasnoyarsk, 660014 (Russian Federation))" >Telegin, S V

    2015-01-01

    Our research is focused on the formation of hard magnetic coatings by plasma spraying an arc-melted Sm-Co powder. We have studied basic magnetic characteristics depending on the components ratio in the alloy. A sample with a 40 wt.% Sm coating exhibits the highest coercive force (63 kOe) as compared to near-to-zero coercive force in the starting powder. X-ray structure analysis of the starting alloy and the coating reveals that the amount of SmCo 5 phase in the sprayed coating increases occupying up to 2/3 of the sample. We have also studied temperature dependence of the coating and have been able to obtain plasma sprayed permanent magnets operating within the temperature range from -100 to +500 °C. The technique used does not involve any additional thermal treatment and allows a coating to be formed right on the magnetic conductor surface irrespective of the conductor geometry

  20. Effects of RF plasma treatment on spray-pyrolyzed copper oxide films on silicon substrates

    Science.gov (United States)

    Madera, Rozen Grace B.; Martinez, Melanie M.; Vasquez, Magdaleno R., Jr.

    2018-01-01

    The effects of radio-frequency (RF) argon (Ar) plasma treatment on the structural, morphological, electrical and compositional properties of the spray-pyrolyzed p-type copper oxide films on n-type (100) silicon (Si) substrates were investigated. The films were successfully synthesized using 0.3 M copper acetate monohydrate sprayed on precut Si substrates maintained at 350 °C. X-ray diffraction revealed cupric oxide (CuO) with a monoclinic structure. An apparent improvement in crystallinity was realized after Ar plasma treatment, attributed to the removal of residues contaminating the surface. Scanning electron microscope images showed agglomerated monoclinic grains and revealed a reduction in size upon plasma exposure induced by the sputtering effect. The current-voltage characteristics of CuO/Si showed a rectifying behavior after Ar plasma exposure with an increase in turn-on voltage. Four-point probe measurements revealed a decrease in sheet resistance after plasma irradiation. Fourier transform infrared spectral analyses also showed O-H and C-O bands on the films. This work was able to produce CuO thin films via spray pyrolysis on Si substrates and enhancement in their properties by applying postdeposition Ar plasma treatment.

  1. Feasibility of suspension spraying of yttria-stabilized zirconia with water-stabilized plasma torch

    Czech Academy of Sciences Publication Activity Database

    Mušálek, Radek; Bertolissi, Gabriele; Medřický, J.; Kotlan, Jiří; Pala, Zdeněk; Curry, N.

    2015-01-01

    Roč. 268, April (2015), s. 58-62 ISSN 0257-8972. [Rencontres Internationales de la Projection Thermique/6./. Limoges, 11.12.2013-13.12.2013] R&D Projects: GA ČR(CZ) GPP108/12/P552 Institutional support: RVO:61389021 Keywords : Thermal spray coating * Suspension spray ing * Thermal barrier coating * Water-stabilized plasma * High enthalpy plasma Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 2.139, year: 2015 http://www.sciencedirect.com/science/article/pii/S025789721400680X

  2. Creep behavior of the titanium alloy with zirconia plasma sprayed coating

    International Nuclear Information System (INIS)

    Reis, D.A.P.; Moura Neto, C.; Couto, A.A.

    2009-01-01

    The proposal of this research has been the study of the plasma spayed coating on creep of the Ti-6Al-4V, focusing on the determination of the experimental parameters related to the first and second creep stages. Yttria (8 wt %) stabilized zirconia (YSZ) (Metco 204B-NS) with CoNiCrAlY ( AMDRY 995C) has been plasma sprayed coated on Ti-6Al-4V substrate. Creep tests with constant load had been done on Ti-6Al-4V coated samples, the stress level was from 250 to 319 MPa at 600 deg C. Highest values of t p and the decrease of the second stage rate had shown a better creep resistance on coated sample. Results indicate that the coated sample was greater than uncoated sample, thus the plasma sprayed coating prevent the sample oxidation efficiently. (author)

  3. Laser induced plasma methodology for ignition control in direct injection sprays

    International Nuclear Information System (INIS)

    Pastor, José V.; García-Oliver, José M.; García, Antonio; Pinotti, Mattia

    2016-01-01

    Highlights: • Laser Induced Plasma Ignition system is designed and applied to a Diesel Spray. • A method for quantification of the system effectiveness and reliability is proposed. • The ignition system is optimized in atmospheric and engine-like conditions. • Higher system effectiveness is reached with higher ambient density. • The system is able to stabilize Diesel combustion compared to auto-ignition cases. - Abstract: New combustion modes for internal combustion engines represent one of the main fields of investigation for emissions control in transportation Industry. However, the implementation of lean fuel mixture condition and low temperature combustion in real engines is limited by different unsolved practical issues. To achieve an appropriate combustion phasing and cycle-to-cycle control of the process, the laser plasma ignition system arises as a valid alternative to the traditional electrical spark ignition system. This paper proposes a methodology to set-up and optimize a laser induced plasma ignition system that allows ensuring reliability through the quantification of the system effectiveness in the plasma generation and positional stability, in order to reach optimal ignition performance. For this purpose, experimental tests have been carried out in an optical test rig. At first the system has been optimized in an atmospheric environment, based on the statistical analysis of the plasma records taken with a high speed camera to evaluate the induction effectiveness and consequently regulate and control the system settings. The same optimization method has then been applied under engine-like conditions, analyzing the effect of thermodynamic ambient conditions on the plasma induction success and repeatability, which have shown to depend mainly on ambient density. Once optimized for selected engine conditions, the laser plasma induction system has been used to ignite a direct injection Diesel spray, and to compare the evolution of combustion

  4. 1994 Thermal spray industrial applications: Proceedings

    International Nuclear Information System (INIS)

    Berndt, C.C.; Sampath, S.

    1994-01-01

    The 7th National Thermal Spray Conference met on June 20--24, 1994, in Boston, Massachusetts. The conference was sponsored by the Thermal Spray Division of ASM International and co-sponsored by the American Welding Society, Deutscher Verband fur Schweisstechnik e.V., High Temperature Society of Japan, International Thermal Spray Association, and Japanese Thermal Spraying Society. The conference covered applications for automobiles, aerospace, petrochemicals, power generation, and biomedical needs. Materials included metals, ceramics, and composites with a broad range of process developments and diagnostics. Other sections included modeling and systems control; spray forming and reactive spraying; post treatment; process, structure and property relationships; mechanical properties; and testing, characterization and wear. One hundred and seventeen papers have been processed separately for inclusion on the data base

  5. Thin films by metal-organic precursor plasma spray

    International Nuclear Information System (INIS)

    Schulz, Douglas L.; Sailer, Robert A.; Payne, Scott; Leach, James; Molz, Ronald J.

    2009-01-01

    While most plasma spray routes to coatings utilize solids as the precursor feedstock, metal-organic precursor plasma spray (MOPPS) is an area that the authors have investigated recently as a novel route to thin film materials. Very thin films are possible via MOPPS and the technology offers the possibility of forming graded structures by metering the liquid feed. The current work employs metal-organic compounds that are liquids at standard temperature-pressure conditions. In addition, these complexes contain chemical functionality that allows straightforward thermolytic transformation to targeted phases of interest. Toward that end, aluminum 3,5-heptanedionate (Al(hd) 3 ), triethylsilane (HSi(C 2 H 5 ) 3 or HSiEt 3 ), and titanium tetrakisdiethylamide (Ti(N(C 2 H 5 ) 2 ) 4 or Ti(NEt 2 ) 4 ) were employed as precursors to aluminum oxide, silicon carbide, and titanium nitride, respectively. In all instances, the liquids contain metal-heteroatom bonds envisioned to provide atomic concentrations of the appropriate reagents at the film growth surface, thus promoting phase formation (e.g., Si-C bond in triethylsilane, Ti-N bond in titanium amide, etc.). Films were deposited using a Sulzer Metco TriplexPro-200 plasma spray system under various experimental conditions using design of experiment principles. Film compositions were analyzed by glazing incidence x-ray diffraction and elemental determination by x-ray spectroscopy. MOPPS films from HSiEt 3 showed the formation of SiC phase but Al(hd) 3 -derived films were amorphous. The Ti(NEt 2 ) 4 precursor gave MOPPS films that appear to consist of nanosized splats of TiOCN with spheres of TiO 2 anatase. While all films in this study suffered from poor adhesion, it is anticipated that the use of heated substrates will aid in the formation of dense, adherent films.

  6. Resonant mode for a dc plasma spray torch by means of pressure–voltage coupling: application to synchronized liquid injection

    International Nuclear Information System (INIS)

    Krowka, J; Rat, V; Coudert, J F

    2013-01-01

    Electric arc instabilities in dc plasma torches result in non-homogeneous treatment of nanosized solid particles injected into the plasma jets. In the particular case of suspension plasma spraying, large discrepancies in the particles trajectories and thermal histories make the control of coating properties more difficult to achieve. In this paper, a new approach of arc dynamics highlights the existence of different resonant modes and the possibility of their coupling. This study leads us to design a special plasma torch working in a very regular pulsed regime. Then, an innovative injection system based on the drop-on-demand method synchronized with the plasma oscillations is presented as an efficient method to control the dynamics of plasma/particles interactions. (paper)

  7. Method and Process Development of Advanced Atmospheric Plasma Spraying for Thermal Barrier Coatings

    Science.gov (United States)

    Mihm, Sebastian; Duda, Thomas; Gruner, Heiko; Thomas, Georg; Dzur, Birger

    2012-06-01

    Over the last few years, global economic growth has triggered a dramatic increase in the demand for resources, resulting in steady rise in prices for energy and raw materials. In the gas turbine manufacturing sector, process optimizations of cost-intensive production steps involve a heightened potential of savings and form the basis for securing future competitive advantages in the market. In this context, the atmospheric plasma spraying (APS) process for thermal barrier coatings (TBC) has been optimized. A constraint for the optimization of the APS coating process is the use of the existing coating equipment. Furthermore, the current coating quality and characteristics must not change so as to avoid new qualification and testing. Using experience in APS and empirically gained data, the process optimization plan included the variation of e.g. the plasma gas composition and flow-rate, the electrical power, the arrangement and angle of the powder injectors in relation to the plasma jet, the grain size distribution of the spray powder and the plasma torch movement procedures such as spray distance, offset and iteration. In particular, plasma properties (enthalpy, velocity and temperature), powder injection conditions (injection point, injection speed, grain size and distribution) and the coating lamination (coating pattern and spraying distance) are examined. The optimized process and resulting coating were compared to the current situation using several diagnostic methods. The improved process significantly reduces costs and achieves the requirement of comparable coating quality. Furthermore, a contribution was made towards better comprehension of the APS of ceramics and the definition of a better method for future process developments.

  8. Nanostructure of plasma-sprayed hydroxyapatite coating

    International Nuclear Information System (INIS)

    Suvorova, E.I.; Klechkovskaya, V.V.; Bobrovsky, V.V.; Khamchukov, Yu.D.; Klubovich, V.V.

    2003-01-01

    Calcium phosphate coatings were studied by high-resolution transmission microscopy, microdiffraction, and X-ray energy-dispersive spectroscopy. Coatings were prepared by spraying hydroxyapatite targets onto copper, nickel, and chromium substrates and onto NaCl and BaF 2 single crystals in an argon plasma at a gas pressure of ∼1 Pa; the sputter power was about 200 W; and the RF-generator frequency was 13.56 MHz. Under the conditions used, thin layers of nanocrystalline hydroxyapatite were formed regardless of the nature of the substrate

  9. On reactive suspension plasma spraying of calcium titanate

    Czech Academy of Sciences Publication Activity Database

    Kotlan, Jiří; Pala, Zdeněk; Mušálek, Radek; Ctibor, Pavel

    2016-01-01

    Roč. 42, č. 3 (2016), s. 4607-4615 ISSN 0272-8842 R&D Projects: GA ČR GA15-12145S Institutional support: RVO:61389021 Keywords : Suspensions * X-raymethods * Perovskites * Substrates * Suspension plasma spraying Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 2.986, year: 2016 http://www.sciencedirect.com/science/article/pii/S0272884215022646

  10. Inhalational and dermal exposures during spray application of biocides.

    Science.gov (United States)

    Berger-Preiss, Edith; Boehncke, Andrea; Könnecker, Gustav; Mangelsdorf, Inge; Holthenrich, Dagmar; Koch, Wolfgang

    2005-01-01

    Data on inhalational and potential dermal exposures during spray application of liquid biocidal products were generated. On the one hand, model experiments with different spraying devices using fluorescent tracers were carried out to investigate the influence of parameters relevant to the exposure (e.g. spraying equipment, nozzle size, direction of application). On the other hand, measurements were performed at selected workplaces (during disinfection operations in food and feed areas; pest control operations for private, public and veterinary hygiene; wood protection and antifouling applications) after application of biocidal products such as Empire 20, Responsar SC, Omexan-forte, Actellic, Perma-forte; Fendona SC, Pyrethrum mist; CBM 8, Aldekol Des 03, TAD CID, Basileum, Basilit. The measurements taken in the model rooms demonstrated dependence of the inhalation exposure on the type of spraying device used, in the following order: "spraying with low pressure" < "airless spraying" < "fogging" indicating that the particle diameter of the released spray droplets is the most important parameter. In addition inhalation exposure was lowest when the spraying direction was downward. Also for the potential dermal exposure, the spraying direction was of particular importance: overhead spraying caused the highest contamination of body surfaces. The data of inhalational and potential dermal exposures gained through workplace measurements showed considerable variation. During spraying procedures with low-pressure equipments, dose rates of active substances inhaled by the operators ranged from 7 to 230 microg active substance (a.s.)/h. An increase in inhaled dose rates (6-33 mg a.s./h) was observed after use of high application volumes/time unit during wood protection applications indoors. Spraying in the veterinary sector using medium-pressure sprayers led to inhaled dose rates between 2 and 24mga.s./h. The highest inhaled dose rates were measured during fogging (114 mg a

  11. Heavy duty plasma spray gun

    International Nuclear Information System (INIS)

    Irons, G.C.; Klein, J.F.; Lander, R.D.; Thompson, H.C.; Trapani, R.D.

    1984-01-01

    A heavy duty plasma spray gun for extended industrial service is disclosed. The gun includes a gas distribution member made of a material having a coefficient of expansion different from that of the parts surrounding it. The gas distribution member is forcibly urged by a resilient member such as a coiled spring against a seal so as to assure the plasma gas is introduced into the gun arc in a manner only defined by the gas distribution member. The gun has liquid cooling for the nozzle (anode) and the cathode. Double seals are provided between the coolant and the arc region and a vent is provided between the seals which provides an indication when a seal has failed. Some parts of the gun are electrically isolated from others by an intermediate member which is formed as a sandwich of two rigid metal face pieces and an insulator disposed between them. The metal face pieces provide a rigid body to attach the remaining parts in proper alignment therewith

  12. Phase stabilization in plasma sprayed BaTiO3

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Seiner, Hanuš; Sedláček, J.; Pala, Zdeněk; Vaněk, Přemysl

    2013-01-01

    Roč. 39, č. 5 (2013), s. 5039-5048 ISSN 0272-8842 R&D Projects: GA ČR(CZ) GA101/09/0702 Institutional support: RVO:61389021 ; RVO:61388998 ; RVO:68378271 Keywords : Spectroscopy * BaTiO3 * Plasma spraying * Spark plasma sintering Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass; BJ - Thermodynamics (UT-L); JH - Ceramics, Fire-Resistant Materials and Glass (FZU-D) Impact factor: 2.086, year: 2013 http://www.sciencedirect.com/science/article/pii/S0272884212013582

  13. Deposition of nanostructured photocatalytic zinc ferrite films using solution precursor plasma spraying

    International Nuclear Information System (INIS)

    Dom, Rekha; Sivakumar, G.; Hebalkar, Neha Y.; Joshi, Shrikant V.; Borse, Pramod H.

    2012-01-01

    Highlights: ► Highly economic solution precursor route capable of producing films/coating even for mass scale production. ► Pure spinel phase ZnFe 2 O 4 porous, immobilized films deposited in single step. ► Parameter optimization yields access to nanostructuring in SPPS method. ► The ecofriendly immobilized ferrite films were active under solar radiation. ► Such magnetic system display advantage w.r.t. recyclability after photocatalyst extraction. -- Abstract: Deposition of pure spinel phase, photocatalytic zinc ferrite films on SS-304 substrates by solution precursor plasma spraying (SPPS) has been demonstrated for the first time. Deposition parameters such as precursor solution pH, concentration, film thickness, plasma power and gun-substrate distance were found to control physico-chemical properties of the film, with respect to their crystallinity, phase purity, and morphology. Alkaline precursor conditions (7 2 O 4 film. Very high/low precursor concentrations yielded mixed phase, less adherent, and highly inhomogeneous thin films. Desired spinel phase was achieved in as-deposited condition under appropriately controlled spray conditions and exhibited a band gap of ∼1.9 eV. The highly porous nature of the films favored its photocatalytic performance as indicated by methylene blue de-coloration under solar radiation. These immobilized films display good potential for visible light photocatalytic applications.

  14. Systematic Investigation on the Influence of Spray Parameters on the Mechanical Properties of Atmospheric Plasma-Sprayed YSZ Coatings

    Science.gov (United States)

    Mutter, Markus; Mauer, Georg; Mücke, Robert; Guillon, Olivier; Vaßen, Robert

    2018-04-01

    In the atmospheric plasma spray (APS) process, micro-sized ceramic powder is injected into a thermal plasma where it is rapidly heated and propelled toward the substrate. The coating formation is characterized by the subsequent impingement of a large number of more or less molten particles forming the so-called splats and eventually the coating. In this study, a systematic investigation on the influence of selected spray parameters on the coating microstructure and the coating properties was conducted. The investigation thereby comprised the coating porosity, the elastic modulus, and the residual stress evolution within the coating. The melting status of the particles at the impingement on the substrate in combination with the substrate surface condition is crucial for the coating formation. Single splats were collected on mirror-polished substrates for selected spray conditions and evaluated by identifying different types of splats (ideal, distorted, weakly bonded, and partially molten) and their relative fractions. In a previous study, these splat types were evaluated in terms of their effect on the above-mentioned coating properties. The particle melting status, which serves as a measure for the particle spreading behavior, was determined by in-flight particle temperature measurements and correlated to the coating properties. It was found that the gun power and the spray distance have a strong effect on the investigated coating properties, whereas the feed rate and the cooling show minor influence.

  15. Nonlinear Stress-Strain Behavior of Plasma Sprayed Ceramic Coatings

    Czech Academy of Sciences Publication Activity Database

    Nohava, Jiří; Kroupa, František

    2005-01-01

    Roč. 50, č. 3 (2005), s. 251-262 ISSN 0001-7043 R&D Projects: GA AV ČR KSK1010104 Institutional research plan: CEZ:AV0Z20430508 Keywords : plasma spraying * ceramic coatings * Young’s modulus * nonlinear behavior * microcracks Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass

  16. Plasma spraying of Fe-Cr-Al alloy powder

    Czech Academy of Sciences Publication Activity Database

    Voleník, Karel; Leitner, J.; Kolman, Blahoslav Jan; Písačka, Jan; Schneeweiss, Oldřich

    2008-01-01

    Roč. 46, č. 1 (2008), s. 17-25 ISSN 0023-432X R&D Projects: GA AV ČR IAA1041404 Institutional research plan: CEZ:AV0Z20430508; CEZ:AV0Z20410507 Keywords : Fe-Cr-Al alloy powder * plasma spraying * oxidation * vaporization * composition changes Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 1.345, year: 2007

  17. Preventing Clogging In A Vacuum Plasma Spray Gun

    Science.gov (United States)

    Krotz, Phillip D.; Daniel, Ronald L., Jr.; Davis, William M.

    1994-01-01

    Modification of powder-injection ports enables lengthy, high-temperature deposition operations. Graphite inserts prevent clogging of ports through which copper powder injected into vacuum plasma spray (VPS) gun. Graphite liners eliminate need to spend production time refurbishing VPS gun, reducing cost of production and increasing productivity. Concept also applied to other material systems used for net-shape fabrication via VPS.

  18. Effect of substrate and cathode parameters on the properties of suspension plasma sprayed solid oxide fuel cell electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Waldbillig, D.; Tang, Z.; Burgess, A. [British Columbia Univ., Vancouver, BC (Canada); Kesler, O. [Toronto Univ., ON (Canada)

    2008-07-01

    An axial injection suspension plasma spray system has been used to produce layers of fully stabilized yttriastabilized zirconia (YSZ) that could be used as solid oxide fuel cell (SOFC) electrolytes. Suspension plasma spraying is a promising technique for the rapid production of coatings with fine microstructures and controlled porosity without requiring a post-deposition heat treatment. This new manufacturing technique to produce SOFC active layers requires the build up of a number of different plasma sprayed SOFC functional layers (cathode, electrolyte and anode) sequentially on top of each other. To understand the influence of the substrate and previouslydeposited coating layers on subsequent coating layer properties, YSZ layers were deposited on top of plasma sprayed composite lanthanum strontium manganite (LSM)/YSZ cathode layers that were first deposited on porous ferritic stainless steel substrates. Three layer half cells consisting of the porous steel substrate, composite cathode, and suspension plasma sprayed electrolyte layer were then characterized. A systematic study was performed in order to investigate the effect of parameters such as substrate and cathode layer roughness, substrate surface pore size, and cathode microstructure and thickness on electrolyte deposition efficiency, cathode and electrolyte permeability, and layer microstructure. (orig.)

  19. Functionally Graded Materials using Plasma Spray with Nano Structured Ceramic

    International Nuclear Information System (INIS)

    Sioh, E L; Tok, A I Y

    2013-01-01

    In this paper, nano structured FGM was fabricated using DC plasma spray technique. Nano structured and micro structured powder were used as the feeding powder with steel substrate. The spray parameters was optimized and characterisation of nano-ceramic FGM and micro-ceramic FGM were done using bending test and micro-hardness test. Experimental results have shown that the nano-structured FGM exhibit 20% improvement flexure strength and 10% in hardness. A comparison was made between sintered micro ceramic tile and nano ceramic FGM using simple drop test method.

  20. A comparison of biological effect and spray liquid distribution and deposition for different spray application techniques in different crops

    OpenAIRE

    Larsolle, Anders; Wretblad, Per; Westberg, Carl

    2002-01-01

    The objective of this study was to compare a selection of spray application techniques with different application volumes, with respect to the spray liquid distribution on flat surfaces, the deposition in fully developed crops and the biological effect. The spray application techniques in this study were conventional spray technique with three different nozzles: Teelet XR, Lechler ID and Lurmark DriftBeta, and also AirTec, Danfoil, Hardi Twin, Kyndestoit and Släpduk. The dynamic spray liquid ...

  1. The structure and thermal properties of plasma-sprayed beryllium for the International Thermonuclear Experimental Reactor (ITER)

    International Nuclear Information System (INIS)

    Castro, R.G.; Bartlett, A.; Elliott, K.E.; Hollis, K.J.

    1996-01-01

    Plasma spraying is being studied for in situ repair of damaged Be and W plasma facing surfaces for ITER, the next generation magnetic fusion energy device, and is also being considered for fabricating Be and W plasma-facing components for the first wall of ITER. Investigators at LANL's Beryllium Atomization and Thermal Spray Facility have concentrated on investigating the structure-property relation between as-deposited microstructures of plasma sprayed Be coatings and resulting thermal properties. In this study, the effect of initial substrate temperature on resulting thermal diffusivity of Be coatings and the thermal diffusivity at the coating/Be substrate interface (interface thermal resistance) was investigated. Results show that initial Be substrate temperatures above 600 C can improve the thermal diffusivity of the Be coatings and minimize any thermal resistance at the interface between the Be coating and Be substrate

  2. High-Performance Molybdenum Coating by Wire–HVOF Thermal Spray Process

    Science.gov (United States)

    Tailor, Satish; Modi, Ankur; Modi, S. C.

    2018-04-01

    Coating deposition on many industrial components with good microstructural, mechanical properties, and better wear resistance is always a challenge for the thermal spray community. A number of thermal spray methods are used to develop such promising coatings for many industrial applications, viz. arc spray, flame spray, plasma, and HVOF. All these processes have their own limitations to achieve porous free, very dense, high-performance wear-resistant coatings. In this work, an attempt has been made to overcome this limitation. Molybdenum coatings were deposited on low-carbon steel substrates using wire-high-velocity oxy-fuel (W-HVOF; WH) thermal spray system (trade name HIJET 9610®). For a comparison, Mo coatings were also fabricated by arc spray, flame spray, plasma spray, and powder-HVOF processes. As-sprayed coatings were analyzed using x-ray diffraction, scanning electron microscopy for phase, and microstructural analysis, respectively. Coating microhardness, surface roughness, and porosity were also measured. Adhesion strength and wear tests were conducted to determine the mechanical and wear properties of the as-sprayed coatings. Results show that the coatings deposited by W-HVOF have better performance in terms of microstructural, mechanical, and wear resistance properties, in comparison with available thermal spray process (flame spray and plasma spray).

  3. Development of suspension plasma sprayed alumina coatings with high enthalpy plasma torch

    Czech Academy of Sciences Publication Activity Database

    Tesař, Tomáš; Mušálek, Radek; Medřický, Jan; Kotlan, Jiří; Lukáč, František; Pala, Zdeněk; Ctibor, Pavel; Chráska, Tomáš; Houdková, Š.; Rimal, V.; Curry, N.

    2017-01-01

    Roč. 325, September (2017), s. 277-288 ISSN 0257-8972 R&D Projects: GA ČR GA15-12145S Institutional support: RVO:61389021 Keywords : Suspension plasma spraying * Aluminium oxide * Mechanical properties * Hardness * Adhesion * Wear resistance Subject RIV: JK - Corrosion ; Surface Treatment of Materials OBOR OECD: Coating and films Impact factor: 2.589, year: 2016 http://www.sciencedirect.com/science/article/pii/S0257897217306424

  4. Correlation of microstructure and wear resistance of molybdenum blend coatings fabricated by atmospheric plasma spraying

    International Nuclear Information System (INIS)

    Hwang, Byoungchul; Lee, Sunghak; Ahn, Jeehoon

    2004-01-01

    The correlation of microstructure and wear resistance of various molybdenum blend coatings applicable to automotive parts was investigated in this study. Five types of spray powders, one of which was pure molybdenum powder and the others were blends of brass, bronze, and aluminum alloy powders with molybdenum powder, were deposited on a low-carbon steel substrate by atmospheric plasma spraying (APS). Microstructural analysis of the coatings showed that they consisted of a curved lamellar structure formed by elongated splats, with hard phases that formed during spraying being homogeneously distributed in the molybdenum matrix. The wear test results revealed that the blend coatings showed better wear resistance than the pure molybdenum coating because they contained a number of hard phases. In particular, the molybdenum coating blended with bronze and aluminum alloy powders and the counterpart material showed an excellent wear resistance due to the presence of hard phases, such as CuAl 2 and Cu 9 Al 4 . In order to improve overall wear properties for the coating and the counterpart material, appropriate spray powders should be blended with molybdenum powders to form hard phases in the coatings

  5. Studies on Nanocrystalline TiN Coatings Prepared by Reactive Plasma Spraying

    Directory of Open Access Journals (Sweden)

    Dong Yanchun

    2008-01-01

    Full Text Available Titanium nitride (TiN coatings with nanostructure were prepared on the surface of 45 steel (Fe-0.45%C via reactive plasma spraying (denoted as RPS Ti powders using spraying gun with self-made reactive chamber. The microstructural characterization, phases constitute, grain size, microhardness, and wear resistance of TiN coatings were systematically investigated. The grain size was obtained through calculation using the Scherrer formula and observed by TEM. The results of X-ray diffraction and electron diffraction indicated that the TiN is main phase of the TiN coating. The forming mechanism of the nano-TiN was characterized by analyzing the SEM morphologies of surface of TiN coating and TiN drops sprayed on the surface of glass, and observing the temperature and velocity of plasma jet using Spray Watch. The tribological properties of the coating under nonlubricated condition were tested and compared with those of the AISI M2 high-speed steel and Al2O3 coating. The results have shown that the RPS TiN coating presents better wear resistance than the M2 high-speed steel and Al2O3 coating under nonlubricated condition. The microhardness of the cross-section and longitudinal section of the TiN coating was tested. The highest hardness of the cross-section of TiN coating is 1735.43HV100 g.

  6. Development of process maps for plasma spray: case study for molybdenum

    International Nuclear Information System (INIS)

    Sampath, S.; Jiang, X.; Kulkarni, A.; Matejicek, J.; Gilmore, D.L.; Neiser, R.A.

    2003-01-01

    A schematic representation referred to as 'process maps' examines the role of process variables on the properties of plasma-sprayed coatings. Process maps have been developed for air plasma spraying of molybdenum. Experimental work was done to investigate the importance of such spray parameters as gun current, primary gas flow, auxiliary gas flow, and powder carrier gas flow. In-flight particle temperatures and velocities were measured and diameters estimated in various areas of the spray plume. Empirical models were developed relating the input parameters to the in-flight particle characteristics. Molybdenum splats and coatings were produced at three distinct process conditions identified from the first-order process map experiments. In addition, substrate surface temperature during deposition was treated as a variable. Within the tested range, modulus, hardness and thermal conductivity increases with particle velocity, while oxygen content and porosity decreases. Increasing substrate deposition temperature resulted in dramatic improvement in coating thermal conductivity and modulus, while simultaneously increasing coating oxide content. Indentation reveals improved fracture resistance for the coatings prepared at higher substrate temperature. Residual stress was significantly affected by substrate temperature, although not to a great extent by particle conditions within the investigated parameter range. Coatings prepared at high substrate temperature with high-energy particles suffered considerably less damage in a wear test. The mechanisms behind these changes are discussed within the context relational maps, which have been proposed

  7. Tungsten oxide coatings deposited by plasma spray using powder and solution precursor for detection of nitrogen dioxide gas

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chao, E-mail: zhangc@yzu.edu.cn [College of Mechanical Engineering, Yangzhou University, Yangzhou 225127 (China); Wang, Jie [College of Mechanical Engineering, Yangzhou University, Yangzhou 225127 (China); Geng, Xin [College of Mechanical Engineering, Yangzhou University, Yangzhou 225127 (China); College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 (China)

    2016-05-25

    Increasing attention has been paid on preparation methods for resistive-type gas sensors based on semiconductor metal oxides. In this work, tungsten oxide (WO{sub 3}) coatings were prepared on alumina substrates and used as gas sensitive layers. The coatings were deposited by atmospheric plasma spray using powder, solution precursor, or a combination of both. Tungsten oxide powder through a powder port and ammonium tungstate aqueous solution through a liquid port were injected into plasma stream respectively or together to deposit WO{sub 3} coatings. Phase structures in the coatings were characterized by X-ray diffraction analyzer. The field-emission scanning electron microscopy images confirmed that the coatings were in microstructure, nanostructure or micro-nanostructure. The sensing properties of the sensors based on the coatings exposed to 1 ppm nitrogen dioxide gas were characterized in a home-made instrument. Sensing properties of the coatings were compared and discussed. The influences of gas humidity and working temperature on the sensor responses were further studied. - Highlights: • Porous gas sensitive coatings were deposited by plasma spray using powder and solution precursor. • Crystallized WO{sub 3} were obtained through hybrid plasma spray plus a pre-conditioned step. • Plasma power had an important influence on coating microstructure. • The particle size of atmospheric plasma-sprayed microstructured coating was stable. • Solution precursor plasma-sprayed WO{sub 3} coatings had nanostructure and showed good responses to 1 ppm NO{sub 2}.

  8. Metastable phases in yttrium oxide plasma spray deposits and their effect on coating properties

    International Nuclear Information System (INIS)

    Gourlaouen, V.; Schnedecker, G.; Boncoeur, M.; Lejus, A.M.; Collongues, R.

    1993-01-01

    Yttrium oxide coatings were obtained by plasma spray. Structural investigations on these deposits show that, due to the drastic conditions of this technique, a minor monoclinic B phase is formed in the neighborhood of the major cubic C form. The authors discuss here the influence of different plasma spray parameters on the amount of the B phase formed. They describe also the main properties of Y 2 O 3 B and C phases in these deposits such as structural characteristics, thermal stability and mechanical behavior

  9. Cavitation Erosion of Plasma -sprayed Coatings

    International Nuclear Information System (INIS)

    Kim, J. J.; Park, J. S.; Jeon, S. B.

    1991-01-01

    Tungsten Carbide, chromium carbide and chromium oxide coatings were obtained on a 304 stainless steel substrate by plasma spraying technique. The coated samples were exposed to cavitation generated in distilled water by a 20KHz ultrasonic horn. The results of investigation reveal that all the samples tested are significantly eroded even within ten minutes of exposure, indicative of a short incubation period. The eroded surfaces can be characterized as having large pits and flat smooth areas. The latter may be associated with the poor cohesive strength of the coatings, which leads to the failures between individual lamellae

  10. Effect of Fluctuations of DC Current on Properties of Plasma Jet Generated in Plasma Spraying Torch with Gerdien Arc

    Czech Academy of Sciences Publication Activity Database

    Hrabovský, Milan; Kopecký, Vladimír; Chumak, Oleksiy; Kavka, Tetyana; Mašláni, Alan; Sember, Viktor; Ctibor, Pavel

    2009-01-01

    Roč. 13, č. 2 (2009), s. 229-240 ISSN 1093-3611 Institutional research plan: CEZ:AV0Z20430508 Keywords : Plasma torch * dc arc * plasma jet * fluctuations * plasma spraying Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.333, year: 2009 http://www.begellhouse.com/journals/57d172397126f956,4e2a92412d8c6bb5.html

  11. Characterization of Fe-based alloy coating deposited by supersonic plasma spraying

    International Nuclear Information System (INIS)

    Piao, Zhong-yu; Xu, Bin-shi; Wang, Hai-dou; Wen, Dong-hui

    2013-01-01

    Highlights: • Fe-based coating exhibited few oxides, high density and bond strength. • Amorphous/nanocrystalline phases were found in the coating. • Formation mechanism of excellent coating was investigated. -- Abstract: The objective of the present study is to characterize the Fe-based alloy coating deposited by the supersonic plasma spraying process. The condition of the melting particles was in situ monitored. The microstructure of the coating was examined by scanning electron microscope and high resolution transmission electron microscope. The phase composition was examined by X-ray diffraction. The microhardness and porosity were also measured, respectively. Results show the prepared coatings have excellent properties, such as few oxides, high microhardness and a low porosity amount. At the same time, a mass of amorphous/nanocrystalline phases was found in the coating. The mechanism of the formation of amorphous/nanocrystalline phases was investigated. The appropriate material composition of spraying material and flash set process of plasma spraying are the key factors. Moreover, the mechanism for oxidation resistance is also investigated, where the separation between melting metal and oxygen by the formation of SiO 2 films is the key factor

  12. Wet Slurry Abrasion Tests of Ceramic Coatings Deposited by Water-Stabilized Plasma Spraying

    Czech Academy of Sciences Publication Activity Database

    Nohava, Jiří

    2003-01-01

    Roč. 48, č. 2 (2003), s. 203-214 ISSN 0001-7043 R&D Projects: GA ČR GA106/01/0094 Institutional research plan: CEZ:AV0Z2043910 Keywords : plasma spraying, wear resistence, ceramic coating Subject RIV: BL - Plasma and Gas Discharge Physics

  13. Bond strength of plasma sprayed ceramic coatings on phosphate steels

    Czech Academy of Sciences Publication Activity Database

    Pokorný, P.; Mastný, L.; Sýkora, V.; Pala, Zdeněk; Brožek, Vlastimil

    2015-01-01

    Roč. 54, č. 2 (2015), s. 411-414 ISSN 0543-5846 R&D Projects: GA ČR(CZ) GAP108/12/1872 Institutional support: RVO:61389021 Keywords : phosphating * plasma spraying * ceramic coatings * corrosion * bond strength Subject RIV: CA - Inorganic Chemistry Impact factor: 0.959, year: 2014

  14. Dielectric properties of plasma sprayed silicates subjected to additional annealing

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Sedláček, J.; Nevrlá, Barbara; Neufuss, Karel

    2017-01-01

    Roč. 10, č. 2 (2017), s. 105-114 ISSN 2008-2134 Institutional support: RVO:61389021 Keywords : Annealing * Dielectric properties * Plasma spraying * Silicates * Electrical properties * Insulators Subject RIV: JK - Corrosion ; Surface Treatment of Materials OBOR OECD: Coating and films http://pccc.icrc.ac.ir/Articles/1/18/990/

  15. Determination of elastic modulus and residual stress of plasma-sprayed tungsten coating on steel substrate

    Science.gov (United States)

    You, J. H.; Höschen, T.; Lindig, S.

    2006-01-01

    Plasma-sprayed tungsten, which is a candidate material for the first wall armour, shows a porous, heterogeneous microstructure. Due to its characteristic morphology, the properties are significantly different from those of its dense bulk material. Measurements of the elastic modulus of this coating have not been reported in the literature. In this work Young's modulus of highly porous plasma-sprayed tungsten coatings deposited on steel (F82H) substrates was measured. For the fabrication of the coating system the vacuum plasma-spray process was applied. Measurements were performed by means of three-point and four-point bending tests. The obtained modulus values ranged from 53 to 57 GPa. These values could be confirmed by the test result of a detached coating strip, which was 54 GPa. The applied methods produced consistent results regardless of testing configurations and specimen sizes. The errors were less than 1%. Residual stress of the coating was also estimated.

  16. Determination of elastic modulus and residual stress of plasma-sprayed tungsten coating on steel substrate

    International Nuclear Information System (INIS)

    You, J.H.; Hoeschen, T.; Lindig, S.

    2006-01-01

    Plasma-sprayed tungsten, which is a candidate material for the first wall armour, shows a porous, heterogeneous microstructure. Due to its characteristic morphology, the properties are significantly different from those of its dense bulk material. Measurements of the elastic modulus of this coating have not been reported in the literature. In this work Young's modulus of highly porous plasma-sprayed tungsten coatings deposited on steel (F82H) substrates was measured. For the fabrication of the coating system the vacuum plasma-spray process was applied. Measurements were performed by means of three-point and four-point bending tests. The obtained modulus values ranged from 53 to 57 GPa. These values could be confirmed by the test result of a detached coating strip, which was 54 GPa. The applied methods produced consistent results regardless of testing configurations and specimen sizes. The errors were less than 1%. Residual stress of the coating was also estimated

  17. Performance Testing of Suspension Plasma Sprayed Thermal Barrier Coatings Produced with Varied Suspension Parameters

    Directory of Open Access Journals (Sweden)

    Nicholas Curry

    2015-07-01

    Full Text Available Suspension plasma spraying has become an emerging technology for the production of thermal barrier coatings for the gas turbine industry. Presently, though commercial systems for coating production are available, coatings remain in the development stage. Suitable suspension parameters for coating production remain an outstanding question and the influence of suspension properties on the final coatings is not well known. For this study, a number of suspensions were produced with varied solid loadings, powder size distributions and solvents. Suspensions were sprayed onto superalloy substrates coated with high velocity air fuel (HVAF -sprayed bond coats. Plasma spray parameters were selected to generate columnar structures based on previous experiments and were maintained at constant to discover the influence of the suspension behavior on coating microstructures. Testing of the produced thermal barrier coating (TBC systems has included thermal cyclic fatigue testing and thermal conductivity analysis. Pore size distribution has been characterized by mercury infiltration porosimetry. Results show a strong influence of suspension viscosity and surface tension on the microstructure of the produced coatings.

  18. Phase Formation Control in Plasma Sprayed Alumina–Chromia Coatings

    Czech Academy of Sciences Publication Activity Database

    Dubský, Jiří; Chráska, Pavel; Kolman, Blahoslav Jan; Stahr, C.Ch.; Berger, L.-M.

    2011-01-01

    Roč. 55, č. 3 (2011), s. 294-300 ISSN 0862-5468 R&D Projects: GA ČR GA106/08/1240 Institutional research plan: CEZ:AV0Z20430508 Keywords : Alumina * Chromia * Plasma spraying * Phase stabilization Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 0.382, year: 2011 http://www.ceramics-silikaty.cz/2011/2011_03_294.htm

  19. Structure and property evaluation of a vacuum plasma sprayed nanostructured tungsten-hafnium carbide bulk composite

    NARCIS (Netherlands)

    Rea, K. E.; Viswanathan, V.; Kruize, A.; De Hosson, J. Th. M.; O'Dell, S.; McKechnie, T.; Rajagopalan, S.; Vaidyanathan, R.; Seal, S.; O’Dell, S.

    2008-01-01

    Vacuum plasma spray (VPS) forming of tungsten-based metal matrix nanocomposites (MMCs) has shown to be a cost effective and time saving method for the formation of bulk monolithic nanostructured then no-mechanical components. Spray drying of powder feedstock appears to have a significant effect on

  20. Effect of plasma spraying modes on material properties of internal combustion engine cylinder liners

    Science.gov (United States)

    Timokhova, O. M.; Burmistrova, O. N.; Sirina, E. A.; Timokhov, R. S.

    2018-03-01

    The paper analyses different methods of remanufacturing worn-out machine parts in order to get the best performance characteristics. One of the most promising of them is a plasma spraying method. The mathematical models presented in the paper are intended to anticipate the results of plasma spraying, its effect on the properties of the material of internal combustion engine cylinder liners under repair. The experimental data and research results have been computer processed with Statistica 10.0 software package. The pare correlation coefficient values (R) and F-statistic criterion are given to confirm the statistical properties and adequacy of obtained regression equations.

  1. Prediction and optimization of process variables to maximize the Young's modulus of plasma sprayed alumina coatings on AZ31B magnesium alloy

    Directory of Open Access Journals (Sweden)

    D. Thirumalaikumarasamy

    2017-03-01

    Full Text Available Like other manufacturing techniques, plasma spraying has also a non-linear behavior because of the contribution of many coating variables. This characteristic results in finding optimal factor combination difficult. Subsequently, the issue can be solved through effective and strategic statistical procedures integrated with systematic experimental data. Plasma spray parameters such as power, stand-off distance and powder feed rate have significant influence on coating characteristics like Young's modulus. This paper presents the use of statistical techniques in specifically response surface methodology (RSM, analysis of variance, and regression analysis to develop empirical relationship to predict Young's modulus of plasma-sprayed alumina coatings. The developed empirical relationships can be effectively used to predict Young's modulus of plasma-sprayed alumina coatings at 95% confidence level. Response graphs and contour plots were constructed to identify the optimum plasma spray parameters to attain maximum Young's modulus in alumina coatings. A linear regression relationship was established between porosity and Young's modulus of the alumina coatings.

  2. Dielectric properties and vacancy-like defects in plasma-sprayed barium titanate.

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Čížek, J.; Sedláček, J.; Lukáč, František

    2017-01-01

    Roč. 100, č. 7 (2017), s. 2972-2983 ISSN 0002-7820 Institutional support: RVO:61389021 Keywords : barium titanate * plasma spraying * vacancies Subject RIV: JH - Ceramic s, Fire-Resistant Materials and Glass OBOR OECD: Ceramic s Impact factor: 2.841, year: 2016

  3. The influence of substrate temperature and spraying distance on the properties of plasma sprayed tungsten and steel coatings deposited in a shrouding chamber

    Czech Academy of Sciences Publication Activity Database

    Matějíček, Jiří; Vilémová, Monika; Nevrlá, Barbara; Kocmanová, Lenka; Veverka, Jakub; Halasová, Martina; Hadraba, Hynek

    2017-01-01

    Roč. 318, May (2017), s. 217-223 ISSN 0257-8972. [International Meeting on Thermal Spraying (RIPT)/7./. Limoges, 09.12.2015-11.12.2015] R&D Projects: GA ČR GB14-36566G EU Projects: European Commission(XE) 633053 - EUROfusion Institutional support: RVO:61389021 ; RVO:68081723 Keywords : Tungsten * Steel * Atmospheric plasma spraying * Shrouding * Substrate temperature * Fusion reactor materials * Plasma facing components Subject RIV: JK - Corrosion ; Surface Treatment of Materials; JK - Corrosion ; Surface Treatment of Materials (UFM-A) OBOR OECD: Coating and films; Coating and films (UFM-A) Impact factor: 2.589, year: 2016 http://www.sciencedirect.com/science/ article /pii/S0257897216310520

  4. Deposition of titanium nitride layers by electric arc – Reactive plasma spraying method

    International Nuclear Information System (INIS)

    Şerban, Viorel-Aurel; Roşu, Radu Alexandru; Bucur, Alexandra Ioana; Pascu, Doru Romulus

    2013-01-01

    Highlights: ► Titanium nitride layers deposited by electric arc – reactive plasma spraying method. ► Deposition of titanium nitride layers on C45 steel at different spraying distances. ► Characterization of the coatings hardness as function of the spraying distances. ► Determination of the corrosion behavior of titanium nitride layers obtained. - Abstract: Titanium nitride (TiN) is a ceramic material which possesses high mechanical properties, being often used in order to cover cutting tools, thus increasing their lifetime, and also for covering components which are working in corrosive environments. The paper presents the experimental results on deposition of titanium nitride coatings by a new combined method (reactive plasma spraying and electric arc thermal spraying). In this way the advantages of each method in part are combined, obtaining improved quality coatings in the same time achieving high productivity. Commercially pure titanium wire and C45 steel as substrate were used for experiments. X-ray diffraction analysis shows that the deposited coatings are composed of titanium nitride (TiN, Ti 2 N) and small amounts of Ti 3 O. The microstructure of the deposited layers, investigated both by optical and scanning electron microscopy, shows that the coatings are dense, compact, without cracks and with low porosity. Vickers microhardness of the coatings presents maximum values of 912 HV0.1. The corrosion tests in 3%NaCl solution show that the deposited layers have a high corrosion resistance compared to unalloyed steel substrate.

  5. Practical Aspects of Suspension Plasma Spray for Thermal Barrier Coatings on Potential Gas Turbine Components

    Science.gov (United States)

    Ma, X.; Ruggiero, P.

    2018-04-01

    Suspension plasma spray (SPS) process has attracted extensive efforts and interests to produce fine-structured and functional coatings. In particular, thermal barrier coatings (TBCs) applied by SPS process gain increasing interest due to its potential for superior thermal protection of gas turbine hot sections as compared to conventional TBCs. Unique columnar architectures and nano- and submicrometric grains in the SPS-TBC demonstrated some advantages of thermal shock durability, low thermal conductivity, erosion resistance and strain-tolerant microstructure. This work aimed to look into some practical aspects of SPS processing for TBC applications before it becomes a reliable industry method. The spray capability and applicability of SPS process to achieve uniformity thickness and microstructure on curved substrates were emphasized in designed spray trials to simulate the coating fabrication onto industrial turbine parts with complex configurations. The performances of the SPS-TBCs were tested in erosion, falling ballistic impact and indentational loading tests as to evaluate SPS-TBC performances in simulated turbine service conditions. Finally, a turbine blade was coated and sectioned to verify SPS sprayability in multiple critical sections. The SPS trials and test results demonstrated that SPS process is promising for innovative TBCs, but some challenges need to be addressed and resolved before it becomes an economic and capable industrial process, especially for complex turbine components.

  6. Synthesis of mullite-based coatings from alumina and zircon powder mixtures by plasma spraying and laser remelting

    International Nuclear Information System (INIS)

    Hazra, S.; Das, J.; Bandyopadhyay, P.P.

    2015-01-01

    A mechanical mixture of alumina and pulverized zircon sand in 3:2 M ratio has been plasma sprayed to obtain mullite coating. Thereafter, the top layer of the coating has been remelted using laser. The presence of a mullite phase in the as-sprayed and laser remelted coatings has been confirmed qualitatively using X-ray diffraction. Both as-sprayed and laser remelted coatings have been characterized for their microstructure, hardness and porosity. The ultrafine grain structure of the coating produced by rapid quenching has been analyzed using transmission electron microscope. Presence of a mullite phase in the coatings has also been confirmed using small angle electron diffraction. Laser remelting has resulted in an appreciable reduction in porosity and increase in hardness in the coatings. - Highlights: • Mullite has been produced by plasma spraying of alumina–zircon powder mixture. • As sprayed coating shows good integrity. • Laser remelting reduced porosity and increased coating hardness

  7. Synthesis of mullite-based coatings from alumina and zircon powder mixtures by plasma spraying and laser remelting

    Energy Technology Data Exchange (ETDEWEB)

    Hazra, S. [Integrated Test Range, Chandipur, Balasore, Odisha 756025 (India); Das, J. [Department of Metallurgical and Materials Engineering, IIT Kharagpur, 721302 (India); Bandyopadhyay, P.P., E-mail: ppb@mech.iitkgp.ernet.in [Department of Mechanical Engineering, IIT Kharagpur, 721302 (India)

    2015-03-15

    A mechanical mixture of alumina and pulverized zircon sand in 3:2 M ratio has been plasma sprayed to obtain mullite coating. Thereafter, the top layer of the coating has been remelted using laser. The presence of a mullite phase in the as-sprayed and laser remelted coatings has been confirmed qualitatively using X-ray diffraction. Both as-sprayed and laser remelted coatings have been characterized for their microstructure, hardness and porosity. The ultrafine grain structure of the coating produced by rapid quenching has been analyzed using transmission electron microscope. Presence of a mullite phase in the coatings has also been confirmed using small angle electron diffraction. Laser remelting has resulted in an appreciable reduction in porosity and increase in hardness in the coatings. - Highlights: • Mullite has been produced by plasma spraying of alumina–zircon powder mixture. • As sprayed coating shows good integrity. • Laser remelting reduced porosity and increased coating hardness.

  8. Plasma-Sprayed Fine-grained Zirconium Silicate and Its Dielectric Properties.

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Pala, Zdeněk; Nevrlá, Barbara; Neufuss, Karel

    2017-01-01

    Roč. 26, č. 5 (2017), s. 2388-2393 ISSN 1059-9495 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:61389021 Keywords : electrical properties * insulators * plasma spraying * silica-substituted zirconia * zircon Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass OBOR OECD: Ceramics Impact factor: 1.331, year: 2016

  9. Evaluating microhardness of plasma sprayed Al2O3 coatings using Vickers indentation technique

    International Nuclear Information System (INIS)

    Yin Zhijian; Tao Shunyan; Zhou Xiaming; Ding Chuanxian

    2007-01-01

    In this work, the microhardness of plasma sprayed Al 2 O 3 coatings was evaluated using the Vickers indentation technique, and the effects of measurement direction, location and applied loads were investigated. The measured data sets were then statistically analysed employing the Weibull distribution to evaluate their variability within the coatings. It was found that the Vickers hardness (VHN) increases with decreasing applied indenter load, which can be explained in terms of Kick's law and the Meyer index k of 1.93, as well as relating to the microstructural characteristics of plasma sprayed coatings and the elastic recovery taking place during indentation. In addition, VHN, measured on the cross section of coatings, was obviously higher than that on its top surface. The obtained Weibull modulus and variation coefficient indicate that the VHN was less variable when measured at a higher applied load and on the cross section of coating. The obvious dependence of the VHN on the specific indentation location within through-thickness direction was also realized. These phenomena described above in this work were related to the special microstructure and high anisotropic behaviour of plasma sprayed coatings

  10. The Influence of Spray Parameters on the Characteristics of Hydroxyapatite In-Flight Particles, Splats and Coatings by Micro-plasma Spraying

    Science.gov (United States)

    Liu, Xiao-mei; He, Ding-yong; Wang, Yi-ming; Zhou, Zheng; Wang, Guo-hong; Tan, Zhen; Wang, Zeng-jie

    2018-04-01

    Hydroxyapatite (HA) is one of the most important bioceramic materials used in medical implants. The structure of HA coatings is closely related to their manufacturing process. In the present study, HA coatings were deposited on Ti-6Al-4V substrate by micro-plasma spraying. Results show that three distinct HA coatings could be obtained by changing the spraying power from 0.5 to 1.0 kW and spraying stand-off distance from 60 to 110 mm: (1) high crystallinity (93.3%) coatings with porous structure, (2) high crystallinity coatings (86%) with columnar structure, (3) higher amorphous calcium phosphate (ACP, 50%) coatings with dense structure. The in-flight particles melting state and splat topography was analyzed to better understand the formation mechanism of three distinct HA coatings. Results show that HA coatings sprayed at low spraying power and short stand-off distance exhibit high crystallinity and porosity is attributed to the presence of partially melted particles. High crystallinity HA coatings with (002) crystallographic texture could be deposited due to the complete melting of the in-flight particles and low cooling rate of the disk shape splats under higher spraying power and shorter SOD. However, splashed shape splats with relative high cooling can be provided by increasing SOD, which leads to the formation of ACP.

  11. An analytical methodology to predict the coating characteristics of plasma-sprayed ceramic powders

    International Nuclear Information System (INIS)

    Varacalle, D.J. Jr.

    1990-01-01

    Experimental and analytical studies have been conducted at the Idaho National Engineering Laboratory (INEL) to investigate gas, particle, and coating dynamics in the plasma spray process. Nine experiments were conducted using a Taguchi statistical parametric approach. The thermal plasma produced by the commercial plasma spray torch and the related plasma/particle interaction were then numerically modeled from the cathode tip to varied standoff distances in the free plume for the nine experiments, which ranged in power from 28 to 43 kW. The flow and temperature fields in the plasma were solved using the governing conservation equations with suitable boundary conditions. This information was then used as boundary conditions to solve the plasma/particle interaction problem for the nine experiments. The particle dynamics (10- to 75-μm particles) for a yttria-stabilized zirconia powder were then simulated by computer. Particle morphology is discussed with respect to the changes in the process parameters. The predicted temperature and velocity of the zirconia particles were then used as initial conditions to a coating dynamics code. The code predicts the thickness and porosity of the zirconia coatings for the specific process parameters. The predicted coating characteristics exhibit reasonable correlation with the actual characteristics obtained from the Taguchi experimental studies. 12 refs., 7 figs., 6 tabs

  12. Plasma Spraying and Characterization of Chromium Carbide-Nickel Chromium Coatings

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Prantnerová, M.

    2016-01-01

    Roč. 9, č. 4 (2016), s. 281-290, č. článku PCCC-2016-09-16-339. ISSN 2008-2134 Institutional support: RVO:61389021 Keywords : Plasma spraying * Chromium carbide * Slurry abrasion * Dry rubber wheel test * Friction * Microhardness Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass http://www.pccc.icrc.ac.ir/?xid=0113010121000001804&id=976

  13. Optical study of plasma sprayed hydroxyapatite coatings deposited at different spray distance

    Science.gov (United States)

    Belka, R.; Kowalski, S.; Żórawski, W.

    2017-08-01

    Series of hydroxyapatite (HA) coatings deposited on titanium substrate at different spray (plasma gun to workpiece) distance were investigated. The optical methods as dark field confocal microscopy, Raman/PL and UV-VIS spectroscopy were used for study the influence of deposition process on structural degradation of HA precursor. The hydroxyl group concentration was investigated by study the OH mode intensity in the Raman spectra. Optical absorption coefficients at near UV region were analyzed by Diffuse Reflectance Spectroscopy. PL intensity observed during Raman measurement was also considered as relation to defects concentration and degradation level. It was confirmed the different gunsubstrate distance has a great impact on structure of deposited HA ceramics.

  14. The change of NiCrBSi alloys’ phase composition after plasma spraying

    Directory of Open Access Journals (Sweden)

    A. Dudek

    2008-08-01

    Full Text Available Material for investigations was NiCrBSi powder for components’ coatings which improve their corrosion resistance as well as resistance to friction wear and erosion. Plasma spraying method was used to produce a coating with thickness of 300 μm on low-alloy steel which was then remelted with the base material. Using X-ray quality analysis, phase composition was determined for: NiCrBSi powder, obtained coating and the alloyed surface layer. Crystallinity degree was also calculated for NiCrBSi layer sprayed on the base material.

  15. Release mitigation spray safety systems for chemical demilitarization applications.

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, Jonathan; Tezak, Matthew Stephen; Brockmann, John E.; Servantes, Brandon; Sanchez, Andres L.; Tucker, Mark David; Allen, Ashley N.; Wilson, Mollye C.; Lucero, Daniel A.; Betty, Rita G.

    2010-06-01

    Sandia National Laboratories has conducted proof-of-concept experiments demonstrating effective knockdown and neutralization of aerosolized CBW simulants using charged DF-200 decontaminant sprays. DF-200 is an aqueous decontaminant, developed by Sandia National Laboratories, and procured and fielded by the US Military. Of significance is the potential application of this fundamental technology to numerous applications including mitigation and neutralization of releases arising during chemical demilitarization operations. A release mitigation spray safety system will remove airborne contaminants from an accidental release during operations, to protect personnel and limit contamination. Sandia National Laboratories recently (November, 2008) secured funding from the US Army's Program Manager for Non-Stockpile Chemical Materials Agency (PMNSCMA) to investigate use of mitigation spray systems for chemical demilitarization applications. For non-stockpile processes, mitigation spray systems co-located with the current Explosive Destruction System (EDS) will provide security both as an operational protective measure and in the event of an accidental release. Additionally, 'tented' mitigation spray systems for native or foreign remediation and recovery operations will contain accidental releases arising from removal of underground, unstable CBW munitions. A mitigation spray system for highly controlled stockpile operations will provide defense from accidental spills or leaks during routine procedures.

  16. Recent Developments in Suspension Plasma Sprayed Titanium Oxide and Hydroxyapatite Coatings

    Science.gov (United States)

    Jaworski, R.; Pawlowski, L.; Pierlot, C.; Roudet, F.; Kozerski, S.; Petit, F.

    2010-01-01

    The paper aims at reviewing of the recent studies related to the development of suspension plasma sprayed TiO2 and Ca5(PO4)3OH (hydroxyapatite, HA) coatings as well as their multilayer composites obtained onto stainless steel, titanium and aluminum substrates. The total thickness of the coatings was in the range 10 to 150 μm. The suspensions on the base of distilled water, ethanol and their mixtures were formulated with the use of fine commercial TiO2 pigment crystallized as rutile and HA milled from commercial spray-dried powder or synthesized from calcium nitrate and ammonium phosphate in an optimized reaction. The powder was crystallized as hydroxyapatite. Pneumatic and peristaltic pump liquid feeders were applied. The injection of suspension to the plasma jet was studied carefully with the use of an atomizer injector or a continuous stream one. The injectors were placed outside or inside of the anode-nozzle of the SG-100 plasma torch. The stream of liquid was tested under angle right or slightly backwards with regard to the torch axis. The sprayed deposits were submitted to the phase analysis by the use of x-ray diffraction. The content of anatase and rutile was calculated in the titanium oxide deposits as well as the content of the decomposition phases in the hydroxyapatite ones. The micro-Raman spectroscopy was used to visualize the area of appearance of some phases. Scratch test enabled to characterize the adhesion of the deposits, their microhardness and friction coefficient. The electric properties including electron emission, impedance spectroscopy, and dielectric properties of some coatings were equally tested.

  17. Fuel Retention Improvement at High Temperatures in Tungsten-Uranium Dioxide Dispersion Fuel Elements by Plasma-Spray Cladding

    Science.gov (United States)

    Grisaffe, Salvatore J.; Caves, Robert M.

    1964-01-01

    An investigation was undertaken to determine the feasibility of depositing integrally bonded plasma-sprayed tungsten coatings onto 80-volume-percent tungsten - 20-volume-percent uranium dioxide composites. These composites were face clad with thin tungsten foil to inhibit uranium dioxide loss at elevated temperatures, but loss at the unclad edges was still significant. By preheating the composite substrates to approximately 3700 degrees F in a nitrogen environment, metallurgically bonded tungsten coatings could be obtained directly by plasma spraying. Furthermore, even though these coatings were thin and somewhat porous, they greatly inhibited the loss of uranium dioxide. For example, a specimen that was face clad but had no edge cladding lost 5.8 percent uranium dioxide after 2 hours at 4750 dgrees F in flowing hydrogen. A similar specimen with plasma-spray-coated edges, however, lost only 0.75 percent uranium dioxide under the same testing conditions.

  18. Plasma Spray-Physical Vapor Deposition (PS-PVD) of Ceramics for Protective Coatings

    Science.gov (United States)

    Harder, Bryan J.; Zhu, Dongming

    2011-01-01

    In order to generate advanced multilayer thermal and environmental protection systems, a new deposition process is needed to bridge the gap between conventional plasma spray, which produces relatively thick coatings on the order of 125-250 microns, and conventional vapor phase processes such as electron beam physical vapor deposition (EB-PVD) which are limited by relatively slow deposition rates, high investment costs, and coating material vapor pressure requirements. The use of Plasma Spray - Physical Vapor Deposition (PS-PVD) processing fills this gap and allows thin (deposited and multilayer coatings of less than 100 microns to be generated with the flexibility to tailor microstructures by changing processing conditions. Coatings of yttria-stabilized zirconia (YSZ) were applied to NiCrAlY bond coated superalloy substrates using the PS-PVD coater at NASA Glenn Research Center. A design-of-experiments was used to examine the effects of process variables (Ar/He plasma gas ratio, the total plasma gas flow, and the torch current) on chamber pressure and torch power. Coating thickness, phase and microstructure were evaluated for each set of deposition conditions. Low chamber pressures and high power were shown to increase coating thickness and create columnar-like structures. Likewise, high chamber pressures and low power had lower growth rates, but resulted in flatter, more homogeneous layers

  19. Computer simulation of ZrO2 + 8 % Y2O3 and Al2O3 powder particles heating under plasma spraying

    International Nuclear Information System (INIS)

    Smurov, I.; Gusarov, A.; Hurevich, V.; Kundas, S.; Kashko, T.

    2001-01-01

    The optimization of plasma spraying processes and investigation of the influence of different parameters and variables on particle trajectories, final temperature distributions and velocities were the aim of this study. A mathematical model for simulation of powder particle heating and acceleration in a plasma jet with particle evaporation and diameter reduction is developed. The choice of the evaporation model strongly depends on the pressure of surrounded gas, for low and atmospheric pressures models were developed. A software with a database for material properties was developed, the first allows to conduct simulation of plasma spraying and contains several models for simulating the different stages of plasma spraying, providing a common interface and access to the database for all the models. The input or output data can be represented as ordinary graphic, distributed diagram or by special way, i.e. animation of particle moving and heating in plasma jet, diagram of phase changing etc. By using this program the process of stabilized zirconium oxide and aluminium oxide coating plasma spraying was simulated. (nevyjel)

  20. Dietary specific antibodies in spray-dried immune plasma prevent enterotoxigenic Escherichia coli F4 (ETEC) post weaning in diarrhoea in piglets

    NARCIS (Netherlands)

    Niewold, T.A.; Dijk, van A.D.J.; Geenen, P.L.; Roodink, H.; Margry, R.; Meulen, van der J.

    2007-01-01

    In order to establish the mechanism of spray dried plasma powder (SDPP) in improving pig health and performance, a diet containing either 8% SDPP, spray dried immune plasma powder (SDIPP), or control protein (soybean and whey) ration was fed to piglets in an experimental model of enterotoxigenic

  1. Tribological Behavior of Plasma-Sprayed Al2O3-20 wt.%TiO2 Coating

    Science.gov (United States)

    Cui, Shiyu; Miao, Qiang; Liang, Wenping; Zhang, Zhigang; Xu, Yi; Ren, Beilei

    2017-05-01

    Al2O3-20 wt.% TiO2 ceramic coatings were deposited on the surface of Grade D steel by plasma spraying of commercially available powders. The phases and the microstructures of the coatings were investigated by x-ray diffraction and scanning electron microscopy, respectively. The Al2O3-20 wt.% TiO2 composite coating exhibited a typical inter-lamellar structure consisting of the γ-Al2O3 and the Al2TiO5 phases. The dry sliding wear behavior of the coating was examined at 20 °C using a ball-on-disk wear tester. The plasma-sprayed coating showed a low wear rate ( 4.5 × 10-6 mm3 N-1 m-1), which was matrix ( 283.3 × 10-6 mm3 N-1 m-1), under a load of 15 N. In addition, the tribological behavior of the plasma-sprayed coating was analyzed by examining the microstructure after the wear tests. It was found that delamination of the Al2TiO5 phase was the main cause of the wear during the sliding wear tests. A suitable model was used to simulate the wear mechanism of the coating.

  2. Ventilation Guidance for Spray Polyurethane Foam Application

    Science.gov (United States)

    Properly designed ventilation can reduce airborne levels of aerosols, mists, and vapors generated during spray application and can help protect SPF applicators, helpers, and others who may be working in adjacent areas.

  3. The detailed analysis of the spray time effects of the aluminium coating using self-generated atmospheric plasma spray system on the microstructure and corrosion behaviour

    Directory of Open Access Journals (Sweden)

    Sh. Khandanjou

    Full Text Available In the present paper our aim is to investigate the effect of the spray time of the aluminium coated layers on the microstructure and corrosion behaviour. For this purpose we use the self-generated atmospheric plasma spray system for coating of aluminium on the carbon steel substrate. The different thicknesses of coating are created. To evaluate this effect we use the several analyses such as X-ray diffraction, scanning electron microscope, Micro hardness analysis by Vickers method, Adhesion strength analysis and electrochemical polarization test. The results are very interesting and show that due to low porosity, thicker layers are more homogeneous. The nanoparticles are observed in the thicker layers. The micro hardness tests show that the thicker layers have the better micro hardness value. Next, the adhesion strength tests illustrate that the highest adhesion strength are for longer spray times. On the other hand, the corrosion resistance behaviour of the coating is investigated by electrochemical polarization test. It is shown that the corrosion resistance increases by increasing the thickness due to low percentage of porosity. Keywords: Plasma spray, Thickness, Aluminium, Micro hardness, Corrosion resistance

  4. Fabrication of MgAl2O4 spinel/niobium laminar composites by plasma spraying

    International Nuclear Information System (INIS)

    Boncoeur, M.; Lochet, N.; Miomandre, F.; Schnedecker, G.

    1994-01-01

    The feasibility of plasma spray manufacturing of laminar ceramic matrix composites made of alternate thin layers of a ceramic oxide and a metal is demonstrated with a composite made of 7 layers, each 0.2 mm thick, of MgAl 2 O 4 spinel and niobium. Microstructure and mechanical characteristics have been studied with both as-sprayed and heat-treated under vacuum at 1400 C conditions. It is shown that the as-sprayed composite is brittle but becomes pseudo-plastic after heat treatment. These laminar composites are very attractive for the manufacturing of large surface, few millimeter thick components. (from authors). 4 figs., 4 refs

  5. Thermal Conductivity Analysis and Lifetime Testing of Suspension Plasma-Sprayed Thermal Barrier Coatings

    Directory of Open Access Journals (Sweden)

    Nicholas Curry

    2014-08-01

    Full Text Available Suspension plasma spraying (SPS has become an interesting method for the production of thermal barrier coatings for gas turbine components. The development of the SPS process has led to structures with segmented vertical cracks or column-like structures that can imitate strain-tolerant air plasma spraying (APS or electron beam physical vapor deposition (EB-PVD coatings. Additionally, SPS coatings can have lower thermal conductivity than EB-PVD coatings, while also being easier to produce. The combination of similar or improved properties with a potential for lower production costs makes SPS of great interest to the gas turbine industry. This study compares a number of SPS thermal barrier coatings (TBCs with vertical cracks or column-like structures with the reference of segmented APS coatings. The primary focus has been on lifetime testing of these new coating systems. Samples were tested in thermo-cyclic fatigue at temperatures of 1100 °C for 1 h cycles. Additional testing was performed to assess thermal shock performance and erosion resistance. Thermal conductivity was also assessed for samples in their as-sprayed state, and the microstructures were investigated using SEM.

  6. Microstructure and Properties of Plasma Sprayed Lead Zirconate Titanate (PZT) Ceramics

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Pala, Zdeněk; Boldyryeva, Hanna; Sedláček, J.; Kmetík, Viliam

    2012-01-01

    Roč. 2, č. 2 (2012), s. 64-75 ISSN 2079-6412 R&D Projects: GA TA ČR TA01010878 Institutional research plan: CEZ:AV0Z20430508 Keywords : plasma spraying * electroceramics * PZT * phase composition * permittivity Subject RIV: JK - Corrosion ; Surface Treatment of Materials http://www.mdpi.com/2079-6412/2/2/64

  7. Thermal response of plasma sprayed tungsten coating to high heat flux

    International Nuclear Information System (INIS)

    Liu, X.; Yang, L.; Tamura, S.; Tokunaga, K.; Yoshida, N.; Noda, N.; Xu, Z.

    2004-01-01

    In order to investigate the thermal response of tungsten coating on carbon and copper substrates by vacuum plasma spray (VPS) or inert gas plasma spray (IPS), annealing and cyclic heat load experiments of these coatings were conducted. It is indicated that the multi-layered tungsten and rhenium interface of VPS-W/CFC failed to act as a diffusion barrier at elevated temperature and tungsten carbides were developed after 1 h incubation time when annealing temperature was higher than 1600 deg. C. IPS-W/Cu and W/C without an intermediate bonding layer were failed by the detachment of the tungsten coating at 900 and 1200 deg. C annealing for several hours, respectively. Cyclic heat load of electron beam with 35 MW/m 2 and 3-s pulse duration indicated that IPS-W/Cu samples failed with local detachment of the tungsten coating within 200 cycles and IPS-W/C showed local cracks by 300 cycles, but VPS-W/CFC withstood 1000 cycles without visible damages. However, crack creation and propagation in VPS-W/CFC were also observed under higher heat load

  8. Development of process data capturing, analysis and controlling for thermal spray techniques - SprayTracker

    Science.gov (United States)

    Kelber, C.; Marke, S.; Trommler, U.; Rupprecht, C.; Weis, S.

    2017-03-01

    Thermal spraying processes are becoming increasingly important in high-technology areas, such as automotive engineering and medical technology. The method offers the advantage of a local layer application with different materials and high deposition rates. Challenges in the application of thermal spraying result from the complex interaction of different influencing variables, which can be attributed to the properties of different materials, operating equipment supply, electrical parameters, flow mechanics, plasma physics and automation. In addition, spraying systems are subject to constant wear. Due to the process specification and the high demands on the produced coatings, innovative quality assurance tools are necessary. A central aspect, which has not yet been considered, is the data management in relation to the present measured variables, in particular the spraying system, the handling system, working safety devices and additional measuring sensors. Both the recording of all process-characterizing variables, their linking and evaluation as well as the use of the data for the active process control presuppose a novel, innovative control system (hardware and software) that was to be developed within the scope of the research project. In addition, new measurement methods and sensors are to be developed and qualified in order to improve the process reliability of thermal spraying.

  9. The dissociation of NZP (Ca{sub 0.5}Sr{sub 0.5}Zr{sub 4}P{sub 6}O{sub 24}) during plasma spraying[Sodium Zirconium Phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Trice, R.W.; Brewer, L.N.; Faber, K.T.

    2000-04-01

    Sodium zirconium phosphate (NaZr{sub 2}P{sub 3}O{sub 12} or NZP) was first systematically evaluated in the early 1980s by Roy and co-workers, who demonstrated its extremely low coefficient of thermal expansion (CTE). It was later shown that other group IA and IIA atoms can be ionically substituted into the NZP crystal structure to adjust the CTE. As a result of their low and tailorable CTEs, NZP's have potential use as a protective coating for silicon-based ceramics and carbon-carbon composites. One technique for the application of ceramic coatings employs plasma-spraying. In this process, powders are injected into a plasma flame, melted, and propelled onto a substrate. The resulting coating microstructure is typically composed of thin lamellae (from each melted particle) stacked on top of one another during each pass of the torch. In the current research, NZP has been plasma-sprayed using the recently patented small particle plasma-spray process. The microstructure was then analyzed using transmission electron microscopy and x-ray diffraction to identify the phases in the complex coating that resulted.

  10. Modification of microstructure and electrical conductivity of plasma-sprayed YSZ deposit through post-densification process

    International Nuclear Information System (INIS)

    Ning Xianjin; Li Chengxin; Li Changjiu; Yang Guanjun

    2006-01-01

    4.5 mol% yttria-stabilized zirconia (YSZ) coating was deposited by atmospheric plasma spraying (APS) as an electrolyte for solid oxide fuel cells (SOFCs) applications. The post treatment was employed using zirconium and yttrium nitrate solution infiltration to densify the coating microstructure for improvement of gas permeability. The deposition of YSZ through nitrate in voids of the coating was examined. Microstructure of the as-sprayed and densified coatings was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The effect of infiltrating treatment on coating microstructure and electrical conductivity was examined. The electrical conductivity of APS-sprayed YSZ coating at the direction perpendicular to coating surface was much lower than that of bulk materials. Post-densification treatment improved the electrical conductivity of YSZ coating by about 25% compared with as-sprayed coating. It was found that the deposition of YSZ resulting from decomposition of nitrate in the lamellar interface gaps was different from that in vertical cracks in lamella owing to the orthogonal feature of those two types of gaps. The nanopores were formed in the deposited YSZ in nonbonded interface gaps while large pores were residued in vertical cracks in splats. The microstructural examination suggests that nanopores in the deposited YSZ in nonbonded interfaces in the coating were isolated from each other, which led to the significant reduction of gas permeability after densification. Moreover, the nanocontacts between lamellae resulted in high contact resistance and limit improvement of electrical conductivity of the coating after densification

  11. Fabrication of gas turbine water-cooled composite nozzle and bucket hardware employing plasma spray process

    Science.gov (United States)

    Schilke, Peter W.; Muth, Myron C.; Schilling, William F.; Rairden, III, John R.

    1983-01-01

    In the method for fabrication of water-cooled composite nozzle and bucket hardware for high temperature gas turbines, a high thermal conductivity copper alloy is applied, employing a high velocity/low pressure (HV/LP) plasma arc spraying process, to an assembly comprising a structural framework of copper alloy or a nickel-based super alloy, or combination of the two, and overlying cooling tubes. The copper alloy is plamsa sprayed to a coating thickness sufficient to completely cover the cooling tubes, and to allow for machining back of the copper alloy to create a smooth surface having a thickness of from 0.010 inch (0.254 mm) to 0.150 inch (3.18 mm) or more. The layer of copper applied by the plasma spraying has no continuous porosity, and advantageously may readily be employed to sustain a pressure differential during hot isostatic pressing (HIP) bonding of the overall structure to enhance bonding by solid state diffusion between the component parts of the structure.

  12. Modification of vacuum plasma sprayed tungsten coating on reduced activation ferritic/martensitic steels by friction stir processing

    International Nuclear Information System (INIS)

    Tanigawa, Hiroyasu; Ozawa, Kazumi; Morisada, Yoshiaki; Noh, Sanghoon; Fujii, Hidetoshi

    2015-01-01

    Highlights: • Friction stir processing (FSP) was applied on vacuum plasma spray (VPS) W to improve its low thermal conductivity and weakness due to high porosity. • FSP can achieve significant improvement both in mechanical and thermal properties of VPS-W coating. • It was indicated that the double pass FSP at 600 rpm/50 mm/min/2 ton on VPS-W show the most dense microstructure and hardest mechanical property. • Hardness test over FSPed VPS-W layer revealed that the hardness of W becomes higher than that of bulk W. • The thermal conductivity of double pass FSPed VPS-W was about 80% of bulk W at 200 °C, and it becomes equivalent to that of bulk W over 800 °C. - Abstract: Tungsten (W) is the primary candidate material as a plasma facing material in fusion devices, as for its high melting temperature, good thermal conductivity and low sputtering rate, and vacuum plasma spray (VPS) technique is preferred as it is applicable for large area without brittle interlayer, but the thermal conductivity of W layer is very poor, and easy to detach, mainly caused by its porous structure. W Friction stir processing (FSP) was applied on VPS-W to improve these poor properties, and it was suggested that FSP can contribute to significant improvement in both mechanical and thermal properties of the VPS-W coating.

  13. Controlling Microstructure of Yttria-Stabilized Zirconia Prepared from Suspensions and Solutions by Plasma Spraying with High Feed Rates.

    Czech Academy of Sciences Publication Activity Database

    Mušálek, Radek; Medřický, Jan; Tesař, Tomáš; Kotlan, Jiří; Pala, Zdeněk; Lukáč, František; Illková, Ksenia; Hlína, Michal; Chráska, Tomáš; Sokołowski, P.; Curry, N.

    2017-01-01

    Roč. 26, č. 8 (2017), s. 1787-1803 ISSN 1059-9630 R&D Projects: GA ČR GA15-12145S Institutional support: RVO:61389021 Keywords : hybrid plasma torch * microstructure * solution * precursor spraying * suspension spraying * thermal barrier * coatings (TBCs) * water-stabilized plasma * yttria-stabilized zirconia (YSZ) Subject RIV: JK - Corrosion ; Surface Treatment of Materials OBOR OECD: Coating and films Impact factor: 1.488, year: 2016 https://link.springer.com/ article /10.1007/s11666-017-0622-x

  14. Structure and properties of plasma sprayed BaTiO3 coatings

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Ageorges, H.; Sedláček, J.; Čtvrtlík, Radim

    2010-01-01

    Roč. 36, č. 7 (2010), s. 2155-2162 ISSN 0272-8842 R&D Projects: GA AV ČR KAN301370701 Institutional research plan: CEZ:AV0Z20430508; CEZ:AV0Z10100522 Keywords : Cermet * plasma spraying * microstructure * elastic modulus * wear resistance Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.471, year: 2010

  15. Microstructure and mechanical properties of plasma sprayed Al2O3 – 13%TiO2 Ceramic Coating

    Directory of Open Access Journals (Sweden)

    Wahab Juyana A

    2017-01-01

    Full Text Available This paper focused on the effect of deposition conditions on the microstructural and mechanical properties of the ceramic coating. In this study, Al2O3 – 13%TiO2 coated mild steel were prepared by using atmospheric plasma spray technology with different plasma power ranging from 25 kW to 40 kW. The as-sprayed coatings consist of γ-Al2O3 phase as the major phase and small amount of the titania phase existed in the coating structure. High degree of fully melted region was observed in the surface morphology for the coating sprayed with high plasma power, which lead to the high hardness and low percentage of porosity. In this study, nanoindentation test was carried out to investigate mechanical properties of the coating and the results showed that the coatings possess high elastic behaviour, which beneficial in engineering practice.

  16. In vitro fatigue behaviour of vacuum plasma and detonation gun sprayed hydroxyapatite coatings.

    Science.gov (United States)

    Gledhill, H C; Turner, I G; Doyle, C

    2001-06-01

    The fatigue behaviour of vacuum plasma sprayed (VPS) and detonation gun sprayed (DGUN) hydroxyapatite coatings on titanium substrates has been compared in air and in buffered Ringer's solution. There was an increase in the surface microcracking and bulk porosity of both types of coating tested in air. After 1 million cycles in Ringer's solution the VPS coatings had completely delaminated from their substrates. In contrast the DGUN coatings retained their integrity when tested up to 10 million cycles but were beginning to show signs of delamination at the interface.

  17. The microstructural studies of suspension plasma sprayed zirconia coatings with the use of high-energy plasma torches

    Czech Academy of Sciences Publication Activity Database

    Sokołowski, P.; Nylen, P.; Mušálek, Radek; Łatka, L.; Kozerski, S.; Dietrich, D.; Lampke, T.; Pawłowski, L.

    2017-01-01

    Roč. 318, May (2017), s. 250-261 ISSN 0257-8972. [International Meeting on Thermal Spraying (RIPT)/7./. Limoges, 09.12.2015-11.12.2015] R&D Projects: GA ČR GA15-12145S Institutional support: RVO:61389021 Keywords : Water-stabilized plasma (WSP) * Gas-stabilized plasma (GSP) * Suspension injection * Columnar microstructure * Two-zones microstructure * Electron backscatter diffraction Subject RIV: JK - Corrosion ; Surface Treatment of Materials OBOR OECD: Coating and films Impact factor: 2.589, year: 2016 http://www.sciencedirect.com/science/article/pii/S0257897217302645

  18. XPS and bioactivity study of the bisphosphonate pamidronate adsorbed onto plasma sprayed hydroxyapatite coatings

    International Nuclear Information System (INIS)

    McLeod, Kate; Kumar, Sunil; Smart, Roger St.C.; Dutta, Naba; Voelcker, Nicolas H.; Anderson, Gail I.; Sekel, Ron

    2006-01-01

    This paper reports the use of X-ray photoelectron spectroscopy (XPS) to investigate bisphosphonate (BP) adsorption onto plasma sprayed hydroxyapatite (HA) coatings commonly used for orthopaedic implants. BPs exhibit high binding affinity for the calcium present in HA and hence can be adsorbed onto HA-coated implants to exploit their beneficial properties for improved bone growth at the implant interface. A rigorous XPS analysis of pamidronate, a commonly used nitrogenous BP, adsorbed onto plasma sprayed HA-coated cobalt-chromium substrates has been carried out, aimed at: (a) confirming the adsorption of this BP onto HA; (b) studying the BP diffusion profile in the HA coating by employing the technique of XPS depth profiling; (c) confirming the bioactivity of the adsorbed BP. XPS spectra of plasma sprayed HA-coated discs exposed to a 10 mM aqueous BP solution (pamidronate) for periods of 1, 2 and 24 h showed nitrogen and phosphorous photoelectron signals corresponding to the BP, confirming its adsorption onto the HA substrate. XPS depth profiling of the 2 h BP-exposed HA discs showed penetration of the BP into the HA matrix to depths of at least 260 nm. The bioactivity of the adsorbed BP was confirmed by the observed inhibition of osteoclast (bone resorbing) cell activity. In comparison to the HA sample, the HA sample with adsorbed BP exhibited a 25-fold decrease in primary osteoclast cells

  19. Development and evaluation of suspension plasma sprayed yttria stabilized zirconia coatings as thermal barriers

    Science.gov (United States)

    van Every, Kent J.

    The insulating effects from thermal barrier coatings (TBCs) in gas turbine engines allow for increased operational efficiencies and longer service lifetimes. Consequently, improving TBCs can lead to enhanced gas turbine engine performance. This study was conducted to investigate if yttria-stabilized zirconia (YSZ) coatings, the standard industrial choice for TBCs, produced from nano-sized powder could provide better thermal insulation than current commericial YSZ coatings generated using micron-sized powders. The coatings for this research were made via the recently developed suspension plasma spraying (SPS) process. With SPS, powders are suspended in a solvent containing dispersing agents; the suspension is then injected directly into a plasma flow that evaporates the solvent and melts the powder while transporting it to the substrate. Although related to the industrial TBC production method of air plasma spraying (APS), SPS has two important differences---the ability to spray sub-micron diameter ceramic particles, and the ability to alloy the particles with chemicals dissolved in the solvent. These aspects of SPS were employed to generate a series of coatings from suspensions containing ˜100 nm diameter YSZ powder particles, some of which were alloyed with neodymium and ytterbium ions from the solvent. The SPS coatings contained columnar structures not observed in APS TBCs; thus, a theory was developed to explain the formation of these features. The thermal conductivity of the coatings was tested to evaluate the effects of these unique microstructures and the effects of the alloying process. The results for samples in the as-sprayed and heat-treated conditions were compared to conventional YSZ TBCs. This comparison showed that, relative to APS YSZ coatings, the unalloyed SPS samples typically exhibited higher as-sprayed and lower heat-treated thermal conductivities. All thermal conductivity values for the alloyed samples were lower than conventional YSZ TBCs

  20. Plasma sprayed TiC coatings for first wall protection in fusion devices

    International Nuclear Information System (INIS)

    Groot, P.; Laan, J.G. van der; Laas, L.; Mack, M.; Dvorak, M.

    1989-01-01

    For protection of plasma facing components in nuclear fusion devices thick titanium carbide coatings are being developed. Coatings have been produced by plasma spraying at atmospheric pressure (APS) and low pressure (LPPS) and analyzed with respect to microstructure and chemical composition. Thermo-mechanical evaluation has been performed by applying short pulse laser heat flux tests. The influence of coating thickness and porosity on the resistance to spalling by thermal shocks appears to be more important than aspects of chemical composition. (author)

  1. Application of sol gel spin coated yttria-stabilized zirconia layers for the improvement of solid oxide fuel cell electrolytes produced by atmospheric plasma spraying

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Lars [University of British Columbia, Department of Materials Engineering, 309-6350 Stores Road, Vancouver, British Columbia, V6T 1Z4 (Canada); National Research Council, Institute for Fuel Cell Innovation, 4250 Wesbrook Mall, Vancouver, British Columbia, V6T 1W5 (Canada); Kesler, Olivera [National Research Council, Institute for Fuel Cell Innovation, 4250 Wesbrook Mall, Vancouver, British Columbia, V6T 1W5 (Canada); University of British Columbia, Department of Mechanical Engineering, 2054-6250 Applied Science Lane, Vancouver, British Columbia, V6T 1Z4 (Canada); Tang, Zhaolin; Burgess, Alan [Northwest Mettech Corp., 467 Mountain Hwy, North Vancouver, British Columbia, V7J 2L3 (Canada)

    2007-05-15

    Due to its high thermal stability and purely oxide ionic conductivity, yttria-stabilized zirconia (YSZ) is the most commonly used electrolyte material for solid oxide fuel cells (SOFCs). Standard electrolyte fabrication techniques for planar SOFCs involve wet ceramic techniques such as tape-casting or screen printing, requiring sintering steps at temperatures above 1300 C. Plasma spraying (PS) may provide a more rapid and cost efficient method to produce SOFCs without sintering. High-temperature sintering requires long processing times and can lead to oxidation of metal alloys used as mechanical supports, or to detrimental interreactions between the electrolyte and adjacent electrode layers. This study investigates the use of spin coated sol gel derived YSZ precursor solutions to fill the pores present in plasma sprayed YSZ layers, and to enhance the surface area for reaction at the electrolyte-cathode interface, without the use of high-temperature firing steps. The effects of different plasma conditions and sol concentrations and solid loadings on the gas permeability and fuel cell performance have been investigated. (author)

  2. Plasma-Sprayed Hydroxylapatite-Based Coatings: Chemical, Mechanical, Microstructural, and Biomedical Properties

    Science.gov (United States)

    Heimann, Robert B.

    2016-06-01

    This contribution discusses salient properties and functions of hydroxylapatite (HA)-based plasma-sprayed coatings, including the effect on biomedical efficacy of coating thickness, phase composition and distribution, amorphicity and crystallinity, porosity and surface roughness, cohesion and adhesion, micro- and nano-structured surface morphology, and residual coating stresses. In addition, it will provide details of the thermal alteration that HA particles undergo in the extremely hot plasma jet that leads to dehydroxylated phases such as oxyhydroxylapatite (OHA) and oxyapatite (OA) as well as thermal decomposition products such as tri-(TCP) and tetracalcium phosphates (TTCP), and quenched phases such as amorphous calcium phosphate (ACP). The contribution will further explain the role of ACP during the in vitro interaction of the as-deposited coatings with simulated body fluid resembling the composition of extracellular fluid (ECF) as well as the in vivo responses of coatings to the ECF and the host tissue, respectively. Finally, it will briefly describe performance profiles required to fulfill biological functions of osteoconductive bioceramic coatings designed to improve osseointegration of hip endoprostheses and dental root implants. In large parts, the content of this contribution is a targeted review of work done by the author and his students and coworkers over the last two decades. In addition, it is considered a stepping stone toward a standard operation procedure aimed at depositing plasma-sprayed bioceramic implant coatings with optimum properties.

  3. Overview on Recent Developments of Bondcoats for Plasma-Sprayed Thermal Barrier Coatings

    Science.gov (United States)

    Naumenko, D.; Pillai, R.; Chyrkin, A.; Quadakkers, W. J.

    2017-12-01

    The performance of MCrAlY (M = Ni, Co) bondcoats for atmospheric plasma-sprayed thermal barrier coatings (APS-TBCs) is substantially affected by the contents of Co, Ni, Cr, and Al as well as minor additions of Y, Hf, Zr, etc., but also by manufacturing-related properties such as coating thickness, porosity, surface roughness, and oxygen content. The latter properties depend in turn on the exact technology and set of parameters used for bondcoat deposition. The well-established LPPS process competes nowadays with alternative technologies such as HVOF and APS. In addition, new technologies have been developed for bondcoats manufacturing such as high-velocity APS or a combination of HVOF and APS for application of a flashcoat. Future developments of the bondcoat systems will likely include optimization of thermal spraying methods for obtaining complex bondcoat roughness profiles required for extended APS-TBC lifetimes. Introduction of the newest generation single-crystal superalloys possessing low Cr and high Al and refractory metals (Re, Ru) contents will require definition of new bondcoat compositions and/or multilayered bondcoats to minimize interdiffusion issues. The developments of new bondcoat compositions may be substantially facilitated using thermodynamic-kinetic modeling, the vast potential of which has been demonstrated in recent years.

  4. Temperature dependence of bending strength for plasma sprayed zirconia coating; Plasuma yosha zirconia himaku no magetsuyosa no ondo izonsei

    Energy Technology Data Exchange (ETDEWEB)

    Arai, M.; Sakuma, T. [Central Research Inst. of Electric Power Industry, Tokyo (Japan)] Mizutani, T. [Tokyo Inst. of Tech. (Japan)] Kishimoto, K. [Tokyo Inst. of Tech. (Japan). Faculty of Engineering] Saito, M. [Toshiba Corp. (Japan). Heavy Apparatus Engineering Lab.

    1998-02-01

    Plasma sprayed zirconia applying to the thermal barrier coating in gas turbine has been developing for protecting the hot parts such as blades and nozzles from high-temperature enviroments. In this paper, four point bending tests under various temperature conditions are conducted on plasma sprayed zirconia and its mechanical properties are examined. Results show that the bending strength at room temperature for plasma sprayed zirconia is much lower than that of sintered zirconia and is decreased with the increase in temperature. However, Weibull modulus at each temperature is relatively large and the dispersion of bending strength is very small in comparison with that of sintered zirconia. It is also clarified by the SEM observations of fracture surface that many defects such as debonding and microcrack are responsible for the lower bending strength. 9 refs., 8 figs., 1 tab.

  5. A comparative physico-chemical study of chlorapatite and hydroxyapatite: from powders to plasma sprayed thin coatings.

    Science.gov (United States)

    Demnati, I; Grossin, D; Combes, C; Parco, M; Braceras, I; Rey, C

    2012-10-01

    Due to their bioactivity and osteoconductivity, hydroxyapatite (HA) plasma sprayed coatings have been widely developed for orthopedic uses. However, the thermodynamic instability of HA leads frequently to a mixture of phases which limit the functional durability of the coating. This study investigates the plasma spraying of chlorapatite (ClA) powder, known to melt without decomposition, onto pure titanium substrates using a low energy plasma spray system (LEPS). Pure ClA powder was prepared by a solid gas reaction at 950 °C and thermogravimetric analysis showed the good thermal stability of ClA powder in the range 30-1400 °C compared to that of the HA powder. Characterization of ClA coating showed that ClA had a very high crystalline ratio and no other crystalline phase was detected in the coating. HA and ClA coatings composition, microstructure and in vitro bioactivity potential were studied, compared and discussed. In vitro SBF test on HA and ClA coatings revealed the formation of a poorly crystalline apatite on the coating surface suggesting that we could expect a good osteoconductivity especially for the ClA coating prepared by the LEPS system.

  6. Investigation of Plasma Spray Coatings as an Alternative to Hard Chrome Plating on Internal Surfaces

    National Research Council Canada - National Science Library

    Legg, Keith O; Sartwell, Bruce D; Legoux, Jean-Gabriel; Nestler, Montia; Dambra, Christopher; Wang, Daming; Quets, John; Natishan, Paul; Bretz, Philip; Devereaux, Jon

    2006-01-01

    .... This document constitutes the final report on an investigation of deposition of coatings using miniature plasma spray guns that could replace hard chromium on internal surfaces where conventional...

  7. Controlling of Nitriding Process on Reactive Plasma Spraying of Al Particles

    International Nuclear Information System (INIS)

    Shahien, Mohammed; Yamada, Motohiro; Yasui, Toshiaki; Fukumoto, Masahiro

    2011-01-01

    Reactive plasma spraying (RPS) has been considered as a promising technology for in-situ formation of aluminum nitride (AlN) thermally sprayed coatings. To fabricate thick A lN coatings in RPS process, controlling and improving the in-flight nitriding reaction of Al particles is required. In this study, it was possible to control the nitriding reaction by using ammonium chloride (NH 4 Cl) powders. Thick and dense AlN coating (more than 300 μm thickness) was successfully fabricated with small addition of NH 4 Cl powders. Thus, addition of NH 4 Cl prevented the Al aggregation by changing the reaction pathway to a mild way with no explosive mode (relatively low heating rates) and it acts as a catalyst, nitrogen source and diluent agent.

  8. The possibilities of atmospheric plasma-spraying application to obtain hydroxyapatite coatings on the stainless steel samples

    Directory of Open Access Journals (Sweden)

    Mihailović Marija D.

    2013-01-01

    Full Text Available For decades, the standard metallic materials for hip implants, besides the 316LVM stainless steel, were titanium- and cobalt/chromium-based alloys. Although bioinert, due to their corrosion resistance, they are not biocompatible. Contemporary surgical implants are not made just of bioinert metal anymore, but with deposited bioactive hydroxyapatite (HAp coating. Hydroxyapatite is chemically identical with the mineral constituent of bones and teeth, what besides its biocompatibility provides bioactivity as well. The HAp limitations are, however, weak tensile strength and low fatigue resistance for long term loadings, if used alone. This is the reason for HAp to be deposited onto the surgical implant, and to enable its bioactivity, what means intergrowth with bones, and therefore the long-lasting and mechanical stable non-cemented prosthesis. This is important predominantly because the need for such prostheses for younger population, and a better life quality. There are several contemporary techniques that have been used for deposition of these coatings onto the metal implant. The possibilities of atmospheric plasma-spraying for obtaining the stable HAp coatings on the 316LVM stainless steel, ordinary used as a standard material for hip implants production are presented in this paper. The coatings of a commercially available hydroxyapatite powder were plasma-sprayed onto the specimens of medical grade 316LVM stainless steel under various operating conditions. The optical microscopy was used for microstructure and porosity characterization, while coating morphology and Ca/P ratio were analyzed using SEM equipped with EDX. Coating microstructure varied from a porous to a glassy structure, depending on operating conditions applied and coating thickness. Coating porosity was determined to be at the lower required limit requested for the bone-coating intergrowth possibility, but nevertheless adhesion measurements showed good results. The Ca/P ratio was

  9. Influence of Microstructure on Thermal Properties of Axial Suspension Plasma-Sprayed YSZ Thermal Barrier Coatings

    Czech Academy of Sciences Publication Activity Database

    Ganvir, A.; Curry, N.; Markocsan, N.; Nylen, P.; Joshi, S.; Vilémová, Monika; Pala, Zdeněk

    2016-01-01

    Roč. 25, 1-2 (2016), s. 202-212 ISSN 1059-9630. [ITSC 2015: International Thermal Spray Conference and Exposition. Long Beach, California, 11.05.2015-14.05.2015] Institutional support: RVO:61389021 Keywords : axial injection * column ar microstructure * porosity * suspension plasma spraying * thermal conductivity * thermal diffusivity Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 1.488, year: 2016 http://link.springer.com/article/10.1007%2Fs11666-015-0355-7

  10. Finite element analysis of residual stress in plasma-sprayed ceramic

    International Nuclear Information System (INIS)

    Mullen, R.L.; Hendricks, R.C.; McDonald, G.

    1985-01-01

    Residual stress in a ZrO 2 -Y 2 O 3 ceramic coating resulting from the plasma spraying operation is calculated. The calculations were done using the finite element method. Both thermal and mechanical analysis were performed. The resulting residual stress field was compared to the measurements obtained by Hendricks and McDonald. Reasonable agreement between the predicted and measured moment occurred. However, the resulting stress field is not in pure bending

  11. Application of plasma deposition technology for nuclear fuel fabrication

    International Nuclear Information System (INIS)

    Jung, I. H.; Moon, J. S.; Park, H. S.; Song, K. C.; Lee, C. Y.; Kang, K. H.; Ryu, H. J.; Kim, H. S.; Yang, M. S.

    2001-01-01

    Yttria-stabilized-zirconia (m.p. 2670.deg. C), was deposited by induction plasma spraying system with a view to develop a new nuclear fuel fabrication technology. To fabricate the dense pellets, the spraying condition was optimized through the process parameters such as, chamber pressure, plasma plate power, powder spraying distance, sheath gas composition, probe position particle size and its morphology. The results with a 5mm thick deposit on rectangular planar graphite substrates showed 97.11% theoretical density, when the sheath gas flow rate was Ar/H 2 120/20 L/min, probe position 8cm, particle size-75 μm and spraying distance 22cm. The microstructure of YSZ deposit by ICP was lamellae and columnar perpendicular to the spraying direction. In the bottom part near the substrate, small equiaxed grains bounded in a layer. In the middle part, relatively regular size of columnar grains with excellent bonding each other were distinctive

  12. Interaction of plasma-sprayed YBa/sub y/Cu/sub 3/0/sub x/ coatings with alumina substrates

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, C; Parent, L; Dallaire, S; Champagne, B

    1989-01-01

    Superconducting YBa/sub 2/Cu/sub 3/O/sub x/ coatings can be obtained by plasma spraying. Since the as-sprayed coatings do not have an appropriate crystalline structure and are not superconducting, a thermal treatment must be done for crystallizing them in the appropriate YBa/sub 2/Cu/sub 3/O/sub x/ phase. During heat treatment, reactions between the substrate and coating occur and in some cases, may prevent superconducting properties to be obtained. In the present study, YBa/sub 2/Cu/sub 3/O sub/x/ coatings have been deposited on alumina substrates by plasma spraying and heat treated under flowing oxygen at 950/sup 0/C for different periods of time. The modification in coating microstructure has been investigated after different heat treatments. A degradation mechanism of superconducting coatings is proposed. 14 refs., 7 figs., 2 tabs.

  13. Structure and properties of plasma sprayed BaTiO(3) coatings: Spray parameters versus structure and photocatalytic activity

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Ageorges, H.; Štengl, Václav; Murafa, Nataliya; Píš, I.; Zahoranová, T.; Nehasil, V.; Pala, Zdeněk

    2011-01-01

    Roč. 37, č. 7 (2011), s. 2561-2567 ISSN 0272-8842 R&D Projects: GA AV ČR IAAX00430803 Institutional research plan: CEZ:AV0Z20430508; CEZ:AV0Z40320502 Keywords : Spectroscopy * Optical properties * BaTiO3 * Plasma spraying * Photocatalysis Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.751, year: 2011 http://www.sciencedirect.com/science/article/pii/S0272884211002173

  14. Thermophysical properties of YSZ and YCeSZ suspension plasma sprayed coatings having different microstructures

    Czech Academy of Sciences Publication Activity Database

    Sokołowski, P.; Björklund, S.; Mušálek, Radek; Candidato, Jr., R.T.; Pawłowski, L.; Nait-Ali, B.; Smith, D.

    2017-01-01

    Roč. 318, May (2017), s. 28-38 ISSN 0257-8972. [International Meeting on Thermal Spraying (RIPT)/7./. Limoges, 09.12.2015-11.12.2015] R&D Projects: GA ČR GA15-12145S Institutional support: RVO:61389021 Keywords : Thermal Barrier Coatings (TBC) * Suspension Plasma Spraying * Thermal conductivity * Specific heat * Thermal dilatation * Response function method Subject RIV: JK - Corrosion ; Surface Treatment of Materials OBOR OECD: Coating and films Impact factor: 2.589, year: 2016 http://www.sciencedirect.com/science/article/pii/S0257897217302086

  15. Mechanical Properties of Air Plasma Sprayed Environmental Barrier Coating (EBC) Materials

    Science.gov (United States)

    Richards, Bradley; Zhu, Dongming; Ghosn, Louis; Wadley, Haydn

    2015-01-01

    Development work in Environmental Barrier Coatings (EBCs) for Ceramic Matrix Composites (CMCs) has focused considerably on the identification of materials systems and coating architectures to meet application needs. The evolution of these systems has occurred so quickly that modeling efforts and requisite data for modeling lag considerably behind development. Materials property data exists for many systems in the bulk form, but the effects of deposition on the critical properties of strength and fracture behavior are not well studied. We have plasma sprayed bulk samples of baseline EBC materials (silicon, ytterbium disilicate) and tested the mechanical properties of these materials to elicit differences in strength and toughness. We have also endeavored to assess the mixed-mode fracture resistance, Gc, of silicon in a baseline EBC applied to SiCSiC CMC via four point bend test. These results are compared to previously determined properties of the comparable bulk material.

  16. Relationship Between Particle and Plasma Properties and Coating Characteristics of Samaria-Doped Ceria Prepared by Atmospheric Plasma Spraying for Use in Solid Oxide Fuel Cells

    Science.gov (United States)

    Cuglietta, Mark; Kesler, Olivera

    2012-06-01

    Samaria-doped ceria (SDC) has become a promising material for the fabrication of high-performance, intermediate-temperature solid oxide fuel cells (SOFCs). In this study, the in-flight characteristics, such as particle velocity and surface temperature, of spray-dried SDC agglomerates were measured and correlated to the resulting microstructures of SDC coatings fabricated using atmospheric plasma spraying, a manufacturing technique with the capability of producing full cells in minutes. Plasmas containing argon, nitrogen and hydrogen led to particle surface temperatures higher than those in plasmas containing only argon and nitrogen. A threshold temperature for the successful deposition of SDC on porous stainless steel substrates was calculated to be 2570 °C. Coating porosity was found to be linked to average particle temperature, suggesting that plasma conditions leading to lower particle temperatures may be most suitable for fabricating porous SOFC electrode layers.

  17. Strontium Zirconate TBC Sprayed by a High Feed-Rate Water-Stabilized Plasma Torch

    Science.gov (United States)

    Ctibor, P.; Nevrla, B.; Cizek, J.; Lukac, F.

    2017-12-01

    A novel thermal barrier coating (TBC) material, strontium zirconate SrZrO3, was sprayed by a high feed-rate water-stabilized plasma torch WSP 500. Stainless steel coupons were used as substrates. Coatings with a thickness of about 1.2 mm were produced, whereas the substrates were preheated over 450 °C. The torch worked at 150 kW power and was able to spray SrZrO3 with a high spray rate over 10 kg per hour. Microstructure and microhardness, phase composition, adhesion, thermal conductivity and thermal expansion were evaluated. The coating has low thermal conductivity under 1 W/m K in the interval from room temperature up to 1200 °C. Its crystallite size is slightly over 400 nm and thermal expansion 12.3 µm K-1 in the similar temperature range.

  18. Structure and mechanical properties of plasma sprayed coatings of titania and alumina

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Boháč, Petr; Stranyánek, Martin; Čtvrtlík, Radim

    2006-01-01

    Roč. 26, č. 16 (2006), s. 3509-3514 ISSN 0955-2219 Institutional research plan: CEZ:AV0Z20430508; CEZ:AV0Z10100523 Keywords : Plasma spraying * Optical microscopy * Mechanical properties * TiO2 * Al2O3 Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.576, year: 2006

  19. In Situ Fabrication of AlN Coating by Reactive Plasma Spraying of Al/AlN Powder

    Directory of Open Access Journals (Sweden)

    Mohammed Shahien

    2011-10-01

    Full Text Available Reactive plasma spraying is a promising technology for the in situ formation of aluminum nitride (AlN coatings. Recently, it became possible to fabricate cubic-AlN-(c-AlN based coatings through reactive plasma spraying of Al powder in an ambient atmosphere. However, it was difficult to fabricate a coating with high AlN content and suitable thickness due to the coalescence of the Al particles. In this study, the influence of using AlN additive (h-AlN to increase the AlN content of the coating and improve the reaction process was investigated. The simple mixing of Al and AlN powders was not suitable for fabricating AlN coatings through reactive plasma spraying. However, it was possible to prepare a homogenously mixed, agglomerated and dispersed Al/AlN mixture (which enabled in-flight interaction between the powder and the surrounding plasma by wet-mixing in a planetary mill. Increasing the AlN content in the mixture prevented coalescence and increased the nitride content gradually. Using 30 to 40 wt% AlN was sufficient to fabricate a thick (more than 200 µm AlN coating with high hardness (approximately 1000 Hv. The AlN additive prevented the coalescence of Al metal and enhanced post-deposition nitriding through N2 plasma irradiation by allowing the nitriding species in the plasma to impinge on a larger Al surface area. Using AlN as a feedstock additive was found to be a suitable method for fabricating AlN coatings by reactive plasma spraying. Moreover, the fabricated coatings consist of hexagonal (h-AlN, c-AlN (rock-salt and zinc-blend phases and certain oxides: aluminum oxynitride (Al5O6N, cubic sphalerite Al23O27N5 (ALON and Al2O3. The zinc-blend c-AlN and ALON phases were attributed to the transformation of the h-AlN feedstock during the reactive plasma spraying. Thus, the zinc-blend c

  20. The measurement of single particle temperature in plasma sprays

    International Nuclear Information System (INIS)

    Fincke, J.R.; Swank, W.D.; Bolsaitis, P.P.; Elliott, J.F.

    1990-01-01

    A measurement technique for simultaneously obtaining the size, velocity, temperature, and relative number density of particles entrained in high temperature flow fields is described. In determining the particle temperature from a two-color pyrometery technique, assumptions about the relative spectral emissivity of the particle are required. For situations in which the particle surface undergoes chemical reactions the assumption of grey body behavior is shown to introduce large Temperature measurement uncertainties. Results from isolated, laser heated, single particle measurements and in-flight data from the plasma spraying of WC-Co are presented. 10 refs., 5 figs

  1. Vision-aided Monitoring and Control of Thermal Spray, Spray Forming, and Welding Processes

    Science.gov (United States)

    Agapakis, John E.; Bolstad, Jon

    1993-01-01

    Vision is one of the most powerful forms of non-contact sensing for monitoring and control of manufacturing processes. However, processes involving an arc plasma or flame such as welding or thermal spraying pose particularly challenging problems to conventional vision sensing and processing techniques. The arc or plasma is not typically limited to a single spectral region and thus cannot be easily filtered out optically. This paper presents an innovative vision sensing system that uses intense stroboscopic illumination to overpower the arc light and produce a video image that is free of arc light or glare and dedicated image processing and analysis schemes that can enhance the video images or extract features of interest and produce quantitative process measures which can be used for process monitoring and control. Results of two SBIR programs sponsored by NASA and DOE and focusing on the application of this innovative vision sensing and processing technology to thermal spraying and welding process monitoring and control are discussed.

  2. In situ carbon nanotube reinforcements in a plasma-sprayed aluminum oxide nanocomposite coating

    International Nuclear Information System (INIS)

    Balani, K.; Zhang, T.; Karakoti, A.; Li, W.Z.; Seal, S.; Agarwal, A.

    2008-01-01

    Carbon nanotubes (CNT) are potential reinforcements for toughening the ceramic matrix. The critical issue of avoiding CNT agglomeration and introducing CNT-matrix anchoring has challenged many researchers to improve the mechanical properties of the CNT reinforced nanocomposite. In the current work, dispersed CNTs are grown on Al 2 O 3 powder particles in situ by the catalytic chemical vapor deposition (CCVD) technique. Consequently, 0.5 wt.% CNT-reinforced Al 2 O 3 particles were successfully plasma sprayed to obtain a 400 μm thick coating on the steel substrate. In situ CNTs grown on Al 2 O 3 shows a promising enhancement in hardness and fracture toughness of the plasma-sprayed coating attributed to the existence of strong metallurgical bonding between Al 2 O 3 particles and CNTs. In addition, CNT tentacles have imparted multi-directional reinforcement in securing the Al 2 O 3 splats. High-resolution transmission electron microscopy shows interfacial fusion between Al 2 O 3 and CNT and the formation of Y-junction nanotubes

  3. Controlling of Nitriding Process on Reactive Plasma Spraying of Al Particles

    Energy Technology Data Exchange (ETDEWEB)

    Shahien, Mohammed [Graduate Student, Toyohashi University of Technology (Japan); Yamada, Motohiro; Yasui, Toshiaki; Fukumoto, Masahiro, E-mail: mo.shahien@yahoo.com [Toyohashi University of Technology (Japan)

    2011-10-29

    Reactive plasma spraying (RPS) has been considered as a promising technology for in-situ formation of aluminum nitride (AlN) thermally sprayed coatings. To fabricate thick A lN coatings in RPS process, controlling and improving the in-flight nitriding reaction of Al particles is required. In this study, it was possible to control the nitriding reaction by using ammonium chloride (NH{sub 4}Cl) powders. Thick and dense AlN coating (more than 300 {mu}m thickness) was successfully fabricated with small addition of NH{sub 4}Cl powders. Thus, addition of NH{sub 4}Cl prevented the Al aggregation by changing the reaction pathway to a mild way with no explosive mode (relatively low heating rates) and it acts as a catalyst, nitrogen source and diluent agent.

  4. Comparison study on resistance to wear and abrasion of high-temperature sliding strike of laser and plasma spray layer on the stainless steel surface

    International Nuclear Information System (INIS)

    Shi Shihong; Zheng Qiguang; Fu Geyan; Wang Xinlin

    2004-01-01

    In this paper, the effect of coatings, which are formed with laser cladding and plasma spray welding on 1Cr18Ni9Ti base metal of nuclear valve seats, on wear resistance is studied. A 5-kW transverse-flowing CO 2 laser is used for cladding Co base alloy powder pre-placed on the substrate. Comparing with the plasma spray coatings, the laser-cladding layer have lower rate of spoiled products and higher rate of finished products. Their microstructure is extremely fine. They have close texture and small-size grain. Their dilution diluted by the compositions of their base metal and hot-effect on base metal are less. The hardness, toughness, and strength of the laser-cladding layers are higher. The grain size is 11-12th grade in the laser-cladding layer and 9-10th in the plasma spray layer. The width of combination zone between laser-cladding layer and substrate is 10-45 μm but that between plasma spray layer and substrate is 120-160 μm. The wear test shows that the laser layers have higher property of anti-friction, anti-scour, and high-temperature sliding strike. The wear resistance of laser-cladding layer is about one time higher than that of plasma spray welding layer

  5. Plasma-Sprayed ZnO/TiO2 Coatings with Enhanced Biological Performance

    Science.gov (United States)

    Zhao, Xiaobing; Peng, Chao; You, Jing

    2017-08-01

    Surface chemical composition and topography are two key factors in the biological performance of implants. The aim of this work is to deposit ZnO/TiO2 composite coatings on the surface of titanium substrates by plasma spraying technique. The effects of the amount of ZnO doping on the microstructure, surface roughness, corrosion resistance, and biological performance of the TiO2 coatings were investigated. The results indicated that the phase composition of the as-sprayed TiO2 coating was mainly rutile. Addition of 10% ZnO into TiO2 coating led to a slight shift of the diffraction peaks to lower angle. Anatase phase and Zn2TiO4 were formed in 20%ZnO/TiO2 and 30%ZnO/TiO2 coatings, respectively. Doping with ZnO changed the topography of the TiO2 coatings, which may be beneficial to enhance their biological performance. All coatings exhibited microsized surface roughness, and the corrosion resistance of ZnO/TiO2 coatings was improved compared with pure TiO2 coating. The ZnO/TiO2 coatings could induce apatite formation on their surface and inhibit growth of Staphylococcus aureus, but these effects were dose dependent. The 20%ZnO/TiO2 coating showed better biological performance than the other coatings, suggesting potential application for bone implants.

  6. Plasma sprayed metal supported YSZ/Ni-LSGM-LSCF ITSOFC with nanostructured anode

    Science.gov (United States)

    Hwang, Changsing; Tsai, Chun-Huang; Lo, Chih-Hung; Sun, Cha-Hong

    Intermediate temperature solid oxide fuel cells (ITSOFCs) supported by a porous Ni-substrate and based on Sr and Mg doped lanthanum gallate (LSGM) electrolyte, lanthanum strontium cobalt ferrite (LSCF) cathode and nanostructured yttria stabilized zirconia-nickel (YSZ/Ni) cermet anode have been fabricated successfully by atmospheric plasma spraying (APS). From ac impedance analysis, the sprayed YSZ/Ni cermet anode with a novel nanostructure and advantageous triple phase boundaries after hydrogen reduction has a low resistance. It shows a good electrocatalytic activity for hydrogen oxidation reactions. The sprayed LSGM electrolyte with ∼60 μm in thickness and ∼0.054 S cm -1 conductivity at 800 °C shows a good gas tightness and gives an open circuit voltage (OCV) larger than 1 V. The sprayed LSCF cathode with ∼30 μm in thickness and ∼30% porosity has a minimum resistance after being heated at 1000 °C for 2 h. This cathode keeps right phase structure and good porous network microstructure for conducting electrons and negative oxygen ions. The APS sprayed cell after being heated at 1000 °C for 2 h has a minimum inherent resistance and achieves output power densities of ∼440 mW cm -2 at 800 °C, ∼275 mW cm -2 at 750 °C and ∼170 mW cm -2 at 700 °C. Results from SEM, XRD, ac impedance analysis and I- V- P measurements are presented here.

  7. Effect of helium plasma gas flow rate on the properties of WC-12 wt.%Co coatings sprayed by atmospheric plasma

    Directory of Open Access Journals (Sweden)

    Mihailo R. Mrdak

    2014-06-01

    Full Text Available The cermet coatings of WC-12wt.%Co are extensively used to improve the wear resistance of a wide range of technical components. This paper analyses the influence of the plasma gas flow of helium on the microstructure and mechanical properties of WC-12wt.%Co coatings deposited by plasma spraying at atmospheric pressure (APS. In order to obtain homogeneous and denser coatings, three different flows of He ( 8 l/min., 16 l/min. and 32 l/min were used in the research. With the application of He, coatings achieved higher values of hardness due to less degradation of the primary WC carbides. The main goal was to deposit dense and homogeneous layers of WC-12wt.%Co coatings with improved wear resistance for different applications. The test results of the microstructure of the layers were evaluated under a light microscope. The analysis of the microstructure and the mechanical properties of the deposited layers was made in accordance with the standard of Pratt-Whitney. The morphology of the powder particles and the microstructure of the best coating was examined on the SEM (scanning electron microscope. The evaluation of the mechanical properties of the layers was done by applying the HV0.3 method for microhardness testing and by applying tensile testing to test the bond strength. The research has shown that the flow of He plasma gas significantly affects the microstructure, the mechanical properties and the structure of WC-12 wt.%Co coatings.

  8. Metallurgical bond between magnesium AZ91 alloy and aluminium plasma sprayed coatings

    Czech Academy of Sciences Publication Activity Database

    Kubatík, Tomáš František; Pala, Zdeněk; Neufuss, Karel; Vilémová, Monika; Mušálek, Radek; Stoulil, J.; Slepička, P.; Chráska, Tomáš

    2015-01-01

    Roč. 282, November (2015), s. 163-170 ISSN 0257-8972 R&D Projects: GA ČR(CZ) GP14-31538P Institutional support: RVO:61389021 Keywords : Plasma spraying * AZ91 magnesium alloy * Aluminium * Metallurgical bond * X-ray diffraction Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 2.139, year: 2015 http://www.sciencedirect.com/science/article/pii/S0257897215303297

  9. Powder consolidation using cold spray process modeling and emerging applications

    CERN Document Server

    Moridi, Atieh

    2017-01-01

    This book first presents different approaches to modeling of the cold spray process with the aim of extending current understanding of its fundamental principles and then describes emerging applications of cold spray. In the coverage of modeling, careful attention is devoted to the assessment of critical and erosion velocities. In order to reveal the phenomenological characteristics of interface bonding, severe, localized plastic deformation and material jet formation are studied. Detailed consideration is also given to the effect of macroscopic defects such as interparticle boundaries and subsequent splat boundary cracking on the mechanical behavior of cold spray coatings. The discussion of applications focuses in particular on the repair of damaged parts and additive manufacturing in various disciplines from aerospace to biomedical engineering. Key aspects include a systematic study of defect shape and the ability of cold spray to fill the defect, examination of the fatigue behavior of coatings for structur...

  10. Effect of suspension characteristics on in-flight particle properties and coating microstructures achieved by suspension plasma spray

    Science.gov (United States)

    Aubignat, E.; Planche, M. P.; Allimant, A.; Billières, D.; Girardot, L.; Bailly, Y.; Montavon, G.

    2014-11-01

    This paper focuses on the influence of suspension properties on the manufacturing of coatings by suspension plasma spraying (SPS). For this purpose, alumina suspensions were formulated with two different liquid phases: water and ethanol. Suspensions were atomized with a twin-fluid nozzle and injected in an atmospheric plasma jet. Suspension injection was optimized thanks to shadowgraphy observations and drop size distribution measurements performed by laser diffraction. In-flight particle velocities were evaluated by particle image velocimetry. In addition, splats were collected on glass substrates, with the same conditions as the ones used during the spray process. Scanning electron microscopy (SEM) and profilometry analyses were then performed to observe the splat morphology and thus to get information on plasma / suspension interactions, such as particle agglomeration. Finally, coatings were manufactured, characterized by SEM and compared to each other.

  11. Influences of spray parameters on the structure and corrosion resistance of stainless steel layers coated on carbon steel by plasma spray treatment

    International Nuclear Information System (INIS)

    Yeom, Kyong An; Lee, Sang Dong; Kwon, Hyuk Sang; Shur, Dong Soo; Kim, Joung Soo

    1996-01-01

    Stainless steel powders were sprayed on the grit-blasted SM45C carbon steel substrates using a plasma spray method. The influences of the spray parameters on the structure and corrosion resistance of the layers coated on the carbon steel were investigated. Corrosion behavior of the layers were analyzed by the anodic polarization tests in deaerated 0.1 M NaCl + 0.01 M NaOH solution at 80 deg C. The surface roughness and porosity were observed to decrease with decreasing the particle size. The surface hardness of the coating was always higher than that of the matrix, SM45C, implying that the higher resistance of the coating to erosion-corrosion than that of matrix, and increased as the spray power and the spray distance increase. Stainless steel coats showed more corrosion resistance than the carbon steel did, due to their passivity. The corrosion resistance of the coats, however, were inferior to that of the bulk stainless steels due to the inherent defects formed in the coats. The defects such as rough surface and pores provided the occluded sites favorable for the initiation of localized corrosion, resulting in the conclusion that finer the powder is, higher the corrosion resistance is. And the Cr oxides formation resulting in Cr depletion around the oxides reduced the corrosion resistance of the coats. (author)

  12. Simulation on change of generic satellite radar cross section via artificially created plasma sprays

    International Nuclear Information System (INIS)

    Chung, Shen Shou Max; Chuang, Yu-Chou

    2016-01-01

    Recent advancements in antisatellite missile technologies have proven the effectiveness of such attacks, and the vulnerability of satellites in such exercises inspires a new paradigm in RF Stealth techniques suitable for satellites. In this paper we examine the possibility of using artificially created plasma sprays on the surface of the satellite’s main body to alter its radar cross section (RCS). First, we briefly review past research related to RF Stealth using plasma. Next, we discuss the physics between electromagnetic waves and plasma, and the RCS number game in RF Stealth design. A comparison of RCS in a generic satellite and a more complicated model is made to illustrate the effect of the RCS number game, and its meaning for a simulation model. We also run a comparison between finite-difference-time-domain (FDTD) and multilevel fast multipole method (MLFMM) codes, and find the RCS results are very close. We then compare the RCS of the generic satellite and the plasma-covered satellite. The incident radar wave is a differentiated Gaussian monopulse, with 3 dB bandwidth between 1.2 GHz and 4 GHz, and we simulate three kinds of plasma density, with a characteristic plasma frequency ω P   =  0.1, 1, and 10 GHz. The electron-neutral collision frequency ν en is set at 0.01 GHz. We found the RCS of plasma-covered satellite is not necessarily smaller than the originally satellite. When ω P is 0.1 GHz, the plasma spray behaves like a dielectric, and there is minor reduction in the RCS. When ω P is 1 GHz, the X–Y cut RCS increases. When ω P is 10 GHz, the plasma behaves more like a metal to the radar wave, and stronger RCS dependency to frequency appears. Therefore, to use plasma as an RCS adjustment tool requires careful fine-tuning of plasma density and shape, in order to achieve the so-called plasma stealth effect. (paper)

  13. Residual stress in sprayed Ni+5%Al coatings determined by neutron diffraction

    CERN Document Server

    Matejicek, J; Gnaeupel-Herold, T; Prask, H J

    2002-01-01

    Coatings of nickel-based alloys are used in numerous high-performance applications. Their properties and lifetimes are influenced by factors such as residual stress. Neutron diffraction is a powerful tool for nondestructive residual stress determination. In this study, through-thickness residual stress profiles in Ni+5%Al coatings on steel substrates were determined. Two examples of significantly different spraying techniques - plasma spraying and cold spraying - are highlighted. Different stress-generation mechanisms are discussed with respect to process parameters and material properties. (orig.)

  14. Plasma sprayed metal supported YSZ/Ni-LSGM-LSCF ITSOFC with nanostructured anode

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Changsing; Tsai, Chun-Huang; Lo, Chih-Hung; Sun, Cha-Hong [Physics Division, Institute of Nuclear Energy Research, Lungtan, Taoyuan 32546 (China)

    2008-05-15

    Intermediate temperature solid oxide fuel cells (ITSOFCs) supported by a porous Ni-substrate and based on Sr and Mg doped lanthanum gallate (LSGM) electrolyte, lanthanum strontium cobalt ferrite (LSCF) cathode and nanostructured yttria stabilized zirconia-nickel (YSZ/Ni) cermet anode have been fabricated successfully by atmospheric plasma spraying (APS). From ac impedance analysis, the sprayed YSZ/Ni cermet anode with a novel nanostructure and advantageous triple phase boundaries after hydrogen reduction has a low resistance. It shows a good electrocatalytic activity for hydrogen oxidation reactions. The sprayed LSGM electrolyte with {proportional_to}60 {mu}m in thickness and {proportional_to}0.054 S cm{sup -1} conductivity at 800 C shows a good gas tightness and gives an open circuit voltage (OCV) larger than 1 V. The sprayed LSCF cathode with {proportional_to}30 {mu}m in thickness and {proportional_to}30% porosity has a minimum resistance after being heated at 1000 C for 2 h. This cathode keeps right phase structure and good porous network microstructure for conducting electrons and negative oxygen ions. The APS sprayed cell after being heated at 1000 C for 2 h has a minimum inherent resistance and achieves output power densities of {proportional_to}440 mW cm{sup -2} at 800 C, {proportional_to}275 mW cm{sup -2} at 750 C and {proportional_to}170 mW cm{sup -2} at 700 C. Results from SEM, XRD, ac impedance analysis and I-V-P measurements are presented here. (author)

  15. Improving Erosion Resistance of Plasma-Sprayed Ceramic Coatings by Elevating the Deposition Temperature Based on the Critical Bonding Temperature

    Science.gov (United States)

    Yao, Shu-Wei; Yang, Guan-Jun; Li, Cheng-Xin; Li, Chang-Jiu

    2018-01-01

    Interlamellar bonding within plasma-sprayed coatings is one of the most important factors dominating the properties and performance of coatings. The interface bonding between lamellae significantly influences the erosion behavior of plasma-sprayed ceramic coatings. In this study, TiO2 and Al2O3 coatings with different microstructures were deposited at different deposition temperatures based on the critical bonding temperature concept. The erosion behavior of ceramic coatings was investigated. It was revealed that the coatings prepared at room temperature exhibit a typical lamellar structure with numerous unbonded interfaces, whereas the coatings deposited at the temperature above the critical bonding temperature present a dense structure with well-bonded interfaces. The erosion rate decreases sharply with the improvement of interlamellar bonding when the deposition temperature increases to the critical bonding temperature. In addition, the erosion mechanisms of ceramic coatings were examined. The unbonded interfaces in the conventional coatings act as pre-cracks accelerating the erosion of coatings. Thus, controlling interlamellar bonding formation based on the critical bonding temperature is an effective approach to improve the erosion resistance of plasma-sprayed ceramic coatings.

  16. Fabrication of High-Temperature Heat Exchangers by Plasma Spraying Exterior Skins on Nickel Foams

    Science.gov (United States)

    Hafeez, P.; Yugeswaran, S.; Chandra, S.; Mostaghimi, J.; Coyle, T. W.

    2016-06-01

    Thermal-sprayed heat exchangers were tested at high temperatures (750 °C), and their performances were compared to the foam heat exchangers made by brazing Inconel sheets to their surface. Nickel foil was brazed to the exterior surface of 10-mm-thick layers of 10 and 40 PPI nickel foam. A plasma torch was used to spray an Inconel coating on the surface of the foil. A burner test rig was built to produce hot combustion gases that flowed over exposed face of the heat exchanger. Cooling air flowed through the foam heat exchanger at rates of up to 200 SLPM. Surface temperature and air inlet/exit temperature were measured. Heat transfer to air flowing through the foam was significantly higher for the thermally sprayed heat exchangers than for the brazed heat exchangers. On an average, thermally sprayed heat exchangers show 36% higher heat transfer than conventionally brazed foam heat exchangers. At low flow rates, the convective resistance is large (~4 × 10-2 m2 K/W), and the effect of thermal contact resistance is negligible. At higher flow rates, the convective resistance decreases (~2 × 10-3 m2 K/W), and the lower contact resistance of the thermally sprayed heat exchanger provides better performance than the brazed heat exchangers.

  17. Solid oxide fuel cell electrolytes produced via very low pressure suspension plasma spray and electrophoretic deposition

    Science.gov (United States)

    Fleetwood, James D.

    Solid oxide fuel cells (SOFCs) are a promising element of comprehensive energy policies due to their direct mechanism for converting the oxidization of fuel, such as hydrogen, into electrical energy. Both very low pressure plasma spray and electrophoretic deposition allow working with high melting temperature SOFC suspension based feedstock on complex surfaces, such as in non-planar SOFC designs. Dense, thin electrolytes of ideal composition for SOFCs can be fabricated with each of these processes, while compositional control is achieved with dissolved dopant compounds that are incorporated into the coating during deposition. In the work reported, sub-micron 8 mole % Y2O3-ZrO2 (YSZ) and gadolinia-doped ceria (GDC), powders, including those in suspension with scandium-nitrate dopants, were deposited on NiO-YSZ anodes, via very low pressure suspension plasma spray (VLPSPS) at Sandia National Laboratories' Thermal Spray Research Laboratory and electrophoretic deposition (EPD) at Purdue University. Plasma spray was carried out in a chamber held at 320 - 1300 Pa, with the plasma composed of argon, hydrogen, and helium. EPD was characterized utilizing constant current deposition at 10 mm electrode separation, with deposits sintered from 1300 -- 1500 °C for 2 hours. The role of suspension constituents in EPD was analyzed based on a parametric study of powder loading, powder specific surface area, polyvinyl butyral (PVB) content, polyethyleneimine (PEI) content, and acetic acid content. Increasing PVB content and reduction of particle specific surface area were found to eliminate the formation of cracks when drying. PEI and acetic acid content were used to control suspension stability and the adhesion of deposits. Additionally, EPD was used to fabricate YSZ/GDC bilayer electrolyte systems. The resultant YSZ electrolytes were 2-27 microns thick and up to 97% dense. Electrolyte performance as part of a SOFC system with screen printed LSCF cathodes was evaluated with peak

  18. Stresses in plasma-sprayed Cr2O3 coatings measured by neutron diffraction

    Czech Academy of Sciences Publication Activity Database

    Dubský, Jiří; Prask, H. J.; Matějíček, Jiří; Gnäupel-Herold, T.

    2002-01-01

    Roč. 75, - (2002), s. 1-3 ISSN 0947-8396. [International Conference on Neutron Scattreing. Munich, 09.08.2001-13.08.2002] R&D Projects: GA ČR GA106/01/0094 Institutional research plan: CEZ:AV0Z2043910 Keywords : plasma sprayed, diffraction Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 2.231, year: 2002

  19. Study on the plasma sprayed amorphous diopside and annealed fine-grained crystalline diopside

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Nevrlá, Barbara; Pala, Zdeněk; Sedláček, J.; Soumar, J.; Kubatík, Tomáš František; Neufuss, Karel; Vilémová, Monika; Medřický, Jan

    2015-01-01

    Roč. 41, č. 9 (2015), s. 10578-10586 ISSN 0272-8842 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:61389021 Keywords : Dielectric properties * Plasma spraying * Diopside * Annealing Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 2.758, year: 2015 http://www.sciencedirect.com/science/article/pii/S027288421500913X#

  20. Preparation and characterization of rare earth modified nanocrystalline Al2O3/13 wt%TiO2 feedstock for plasma spraying.

    Science.gov (United States)

    Wang, Y; Tian, W; Yang, Y

    2009-02-01

    The preparation and characterization of RE modified nanocrystalline Al2O3/13 wt%TiO2 feedstock for plasma spraying are described in this paper. Taking individual nano particles as starting materials, by wet ball milling, spray drying, sintering and plasma treating, nanocrystalline plasma sprayable feedstock is prepared. The as-prepared feedstocks were analyzed by XRD, SEM, EDS, TEM and HRTEM methods. As shown from analyses results, the reconstituted agglomerate feedstock possesses spherical geometry, proper particle size, homogeneous composition distribution and nano scaled grains. There are three dimensional net structures in the prepared feedstock, which could be retained in coatings if the feedstock does not melt or partially melts during the plasma spray process. The three dimensional net structures could play an important role in improving crack propagation resistance and wear resistance of coatings. The reconstitution process and characterization methods discussed in this paper can also be applied to prepare intraclass nanocrystalline feedstock such as ZrO2/Y2O3 and Cr2O3 et al.

  1. Crop adapted spray application (CASA) - precise and safe plant protection in fruit growing

    NARCIS (Netherlands)

    Doruchowski, G.; Balsari, P.; Marucco, P.; Zande, van de J.C.; Wenneker, M.

    2012-01-01

    The Crop Adapted Spray Application (CASA) system for orchards integrates disease detection based on reflectance imaging, crop identification with ultrasonic sensors, wind measurement and DGPS navigation. Through the automatic adjustment of spray application parameters according to the crop

  2. Experimental and Numerical Study of the Effect of Gas-Shrouded Plasma Spraying on Cathode Coating of Alkaline Electrolysis Cells

    Science.gov (United States)

    Liu, T.; Reißner, R.; Schiller, G.; Ansar, A.

    2018-01-01

    The aim of this work is to improve the performance of electrodes prepared via atmospheric plasma spray by means of gas shrouding which is expected to apparently reduce the oxygen content of the plasma plume and subsequently improve the coating quality. Electrodes with dual-layer coating for alkaline water electrolysis were deposited on Ni-coated perforated substrates. Microstructure and morphology were studied by SEM. Element content was measured by EDS. Enthalpy probe was employed for measuring plasma temperature and velocity as well as the gas composition. For verifying and better understanding the shrouding effect numerical calculation was carried out according to the experimental settings. Electrochemical test was carried out to validate the shrouding effect. The results showed slight protecting effect of gas shrouding on plasma plume and the final coating. Over the dual-layer section, the measured oxygen fraction was 3.46 and 3.15% for the case without gas shrouding and with gas shrouding, respectively. With gas shrouding the coating exhibited similar element contents as the coating sprayed by VPS, while no obvious improvement was observed in the microstructure or the morphology. Evident electrochemical improvement was nevertheless achieved that with gas shrouding the electrode exhibited similar performance as that of the VPS-sprayed electrode.

  3. Establishing empirical relationships to predict porosity level and corrosion rate of atmospheric plasma-sprayed alumina coatings on AZ31B magnesium alloy

    Directory of Open Access Journals (Sweden)

    D. Thirumalaikumarasamy

    2014-06-01

    Full Text Available Plasma sprayed ceramic coatings are successfully used in many industrial applications, where high wear and corrosion resistance with thermal insulation are required. In this work, empirical relationships were developed to predict the porosity and corrosion rate of alumina coatings by incorporating independently controllable atmospheric plasma spray operational parameters (input power, stand-off distance and powder feed rate using response surface methodology (RSM. A central composite rotatable design with three factors and five levels was chosen to minimize the number of experimental conditions. Within the scope of the design space, the input power and the stand-off distance appeared to be the most significant two parameters affecting the responses among the three investigated process parameters. A linear regression relationship was also established between porosity and corrosion rate of the alumina coatings. Further, sensitivity analysis was carried out and compared with the relative impact of three process parameters on porosity level and corrosion rate to verify the measurement errors on the values of the uncertainty in estimated parameters.

  4. Corrosion behavior of plasma sprayed hydroxyapatite and hydroxyapatite-silicon oxide coatings on AISI 304 for biomedical application

    International Nuclear Information System (INIS)

    Singh, Gurpreet; Singh, Hazoor; Sidhu, Buta Singh

    2013-01-01

    The objective of this study is to evaluate corrosion resistance of plasma sprayed hydroxyapatite (HA) and HA-silicon oxide (SiO 2 ) coated AISI 304 substrates. In HA-SiO 2 coatings, 10 wt% SiO 2 and 20 wt% SiO 2 was mixed with HA. The feedstock and coatings were characterized by X-ray diffraction and scanning electron microscopy/energy dispersive X-ray spectroscopy. The corrosion resistance was determined for the uncoated and coated samples. The corrosion resistance of the AISI 304 was found more after the deposition of the HA-SiO 2 coatings rather than HA coating and uncoated. All the coatings were crack free after 24 h dipping in Ringer's solution for electrochemical corrosion testing.

  5. An electron microscopy study of the effect of Ce on plasma sprayed bronze coatings

    Science.gov (United States)

    Wensheng, Li; Wang, S. C.; Ma, Chao; Zhiping, Wang

    2012-07-01

    The Cu-Al eutectoid alloy is an excellent material for mould due to its superior low friction. The conventional sand casting technique, however, is not feasible to fabricate high Al bronze because of high hardness and brittleness. Plasma arc spray has been used to produce high Al/Fe bronze coatings for mould. The inherent impurities such as H, O, N, S during the spray, however, may affect the coating's mechanical strength. One approach is to utilise the active rare earth Ce to clean up these impurities. The study is to investigate the effect of Ce on the microstructure, which has few reported in the literature.

  6. Atmospheric-pressure plasma technology

    International Nuclear Information System (INIS)

    Kogelschatz, U

    2004-01-01

    Major industrial plasma processes operating close to atmospheric pressure are discussed. Applications of thermal plasmas include electric arc furnaces and plasma torches for generation of powders, for spraying refractory materials, for cutting and welding and for destruction of hazardous waste. Other applications include miniature circuit breakers and electrical discharge machining. Non-equilibrium cold plasmas at atmospheric pressure are obtained in corona discharges used in electrostatic precipitators and in dielectric-barrier discharges used for generation of ozone, for pollution control and for surface treatment. More recent applications include UV excimer lamps, mercury-free fluorescent lamps and flat plasma displays

  7. High-temperature brazing of X5CrNi18 10 and NiCr20TiAl using the atmospherically plasma-sprayed L-Ni2 filler metal

    International Nuclear Information System (INIS)

    Wielage, B.; Drozak, J.

    1992-01-01

    The hybrid-technological combination of the atmospheric plasma spraying for the application of a high-temperature filler metal followed by a brazing process was analyzed in terms of structure and mechanical properties of X5CrNi18 10 and NiCr20TiAl brazing joints. The thickness of the filler metal layer was minimized at [de

  8. Unlubricated Gross Slip Fretting Wear of Metallic Plasma Sprayed Coatings for Ti6A14V Surfaces

    National Research Council Canada - National Science Library

    Hager, Jr., Carl H; Sanders, Jeffrey H; Sharma, Shashi K

    2006-01-01

    ... to simulate cold engine startup. Alternative coatings such as plasma sprayed molybdenum and nickel were also evaluated because of their potential for reducing fretting wear under certain simulated engine conditions...

  9. Effects of Atomization Injection on Nanoparticle Processing in Suspension Plasma Spray

    Directory of Open Access Journals (Sweden)

    Hong-bing Xiong

    2016-05-01

    Full Text Available Liquid atomization is applied in nanostructure dense coating technology to inject suspended nano-size powder materials into a suspension plasma spray (SPS torch. This paper presents the effects of the atomization parameters on the nanoparticle processing. A numerical model was developed to simulate the dynamic behaviors of the suspension droplets, the solid nanoparticles or agglomerates, as well as the interactions between them and the plasma gas. The plasma gas was calculated as compressible, multi-component, turbulent jet flow in Eulerian scheme. The droplets and the solid particles were calculated as discrete Lagrangian entities, being tracked through the spray process. The motion and thermal histories of the particles were given in this paper and their release and melting status were observed. The key parameters of atomization, including droplet size, injection angle and velocity were also analyzed. The study revealed that the nanoparticle processing in SPS preferred small droplets with better atomization and less aggregation from suspension preparation. The injection angle and velocity influenced the nanoparticle release percentage. Small angle and low initial velocity might have more nanoparticles released. Besides, the melting percentage of nanoparticles and agglomerates were studied, and the critical droplet diameter to ensure solid melting was drawn. Results showed that most released nanoparticles were well melted, but the agglomerates might be totally melted, partially melted, or even not melted at all, mainly depending on the agglomerate size. For better coating quality, the suspension droplet size should be limited to a critical droplet diameter, which was inversely proportional to the cubic root of weight content, for given critical agglomerate diameter of being totally melted.

  10. Spray pesticide applications in Mediterranean citrus orchards: Canopy deposition and off-target losses.

    Science.gov (United States)

    Garcerá, Cruz; Moltó, Enrique; Chueca, Patricia

    2017-12-01

    Only a portion of the water volume sprayed is deposited on the target when applying plant protection products with air-assisted axial-fan airblast sprayers in high growing crops. A fraction of the off-target losses deposits on the ground, but droplets also drift away from the site. This work aimed at assessing the spray distribution to different compartments (tree canopy, ground and air) during pesticide applications in a Mediterranean citrus orchard. Standard cone nozzles (Teejet D3 DC35) and venturi drift reducing nozzles (Albuz TVI 80 03) were compared. Applications were performed with a conventional air-assisted sprayer, with a spray volume of around 3000lha -1 in a Navel orange orchard. Brilliant Sulfoflavine (BSF) was used as a tracer. Results showed that only around 46% of the applied spray was deposited on the target trees and around 4% of the spray was deposited on adjacent trees from adjoining rows independently of the nozzle type. Applications with standard nozzles produced more potential airborne spray drift (23%) than those with the drift reducing nozzles (17%) but fewer direct losses to the ground (22% vs. 27%). Indirect losses (sedimenting spray drift) to the ground of adjacent paths were around 7-9% in both cases. The important data set of spray distribution in the different compartments around sprayed orchard (air, ground, vegetation) generated in this work is highly useful as input source of exposure to take into account for the risk assessment in Mediterranean citrus scenario. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Photocatalytic Activity of Titanium Oxide – Iron Oxide Coatings Prepared by Plasma Spraying

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Štengl, Václav; Pala, Zdeněk

    2013-01-01

    Roč. 3, č. 4 (2013), s. 387-400 ISSN 2249-0205 R&D Projects: GA AV ČR IAAX00430803 Institutional support: RVO:61389021 ; RVO:61388980 Keywords : TiO2-Fe2O3 * plasma spraying * spectroscopy * band gap * photocatalysis Subject RIV: JG - Metallurgy; CA - Inorganic Chemistry (UACH-T) http://www.sciencedomain.org/issue.php?iid=242&id=16

  12. Plasma sprayed manganeseecobalt spinel coatings: Process sensitivity on phase, electrical and protective performance

    Czech Academy of Sciences Publication Activity Database

    Han Jung, S.; Pala, Zdeněk; Sampath, S.

    2016-01-01

    Roč. 304, February (2016), s. 234-243 ISSN 0378-7753 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:61389021 Keywords : Interconnect protection * Cr-poisoning * Manganese cobalt spinel * Electrical conductivity * Plasma spray Subject RIV: JE - Non-nuclear Energetics, Energy Consumption ; Use Impact factor: 6.395, year: 2016 http://www.sciencedirect.com/science/article/pii/S0378775315305383

  13. A Review on Atomization and Sprays of Biofuels for IC Engine Applications

    Directory of Open Access Journals (Sweden)

    Prasad Boggavarapu

    2013-06-01

    Full Text Available Ever increasing energy requirements, environmental concerns and energy security needs are strongly influencing engine researchers to consider renewable biofuels as alternatives to fossil fuels. Spray process being important in IC engine combustion, existing literature on various biofuel sprays is reviewed and summarized. Both experimental and computational research findings are reviewed in a detailed manner for compression ignition (CI engine sprays and briefly for spark ignition (SI engine sprays. The physics of basic atomization process of sprays from various injectors is included to highlight the most recent research findings followed by discussion highlighting the effect of physico-chemical properties on spray atomization for both biofuels and fossil fuels. Biodiesel sprays are found to penetrate faster and have narrow spray plume angle and larger droplet sizes compared to diesel. Results of analytical and computational models are shown to be useful in shedding light on the actual process of atomization. However, further studies on understanding primary atomization and the effect of fuel properties on primary atomization are required. As far as secondary atomization is concerned, changes in regimes are observed to occur at higher air-jet velocities for biodiesel compared to those of diesel. Evaporating sprays revealed that the liquid length is longer for biodiesel. Pure plant oil sprays with potential use in CI engines may require alternative injector technology due to slower breakup as compared to diesel. Application of ethanol to gasoline engines may be feasible without any modifications to port fuel injection (PFI engines. More studies are required on the application of alternative fuels to high pressure sprays used in Gasoline Direct Injection (GDI engines.

  14. Structure and properties of plasma sprayed BaTiO3 coatings after thermal posttreatment

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Sedláček, J.; Pala, Zdeněk

    2015-01-01

    Roč. 41, č. 6 (2015), s. 7453-7460 ISSN 0272-8842 Institutional support: RVO:61389021 Keywords : Electrical properties * BaTiO3 * Plasma spraying * Annealing * Microstructure Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 2.758, year: 2015 http://dx.doi.org/10.1016/j.ceramint.2015.02.065

  15. Structure and property evaluation of a vacuum plasma sprayed nanostructured tungsten-hafnium carbide bulk composite

    International Nuclear Information System (INIS)

    Rea, K.E.; Viswanathan, V.; Kruize, A.; Hosson, J.Th.M. de; O'Dell, S.; McKechnie, T.; Rajagopalan, S.; Vaidyanathan, R.; Seal, S.

    2008-01-01

    Vacuum plasma spray (VPS) forming of tungsten-based metal matrix nanocomposites (MMCs) has shown to be a cost effective and time saving method for the formation of bulk monolithic nanostructured thermo-mechanical components. Spray drying of powder feedstock appears to have a significant effect on the improved mechanical properties of the bulk nanocomposite. The reported elastic modulus of the nanocomposite nearly doubles due to the presence of HfC nano particulates in the W matrix. High resolution transmission electron microscopy (HRTEM) revealed the retention of nanostructures at the select process conditions and is correlated with the enhanced mechanical properties of the nanocomposite

  16. INTERACTION STUDIES OF CERAMIC VACUUM PLASMA SPRAYING FOR THE MELTING CRUCIBLE MATERIALS

    Directory of Open Access Journals (Sweden)

    JONG HWAN KIM

    2013-10-01

    Full Text Available Candidate coating materials for re-usable metallic nuclear fuel crucibles, TaC, TiC, ZrC, ZrO2, and Y2O3, were plasma-sprayed onto a niobium substrate. The microstructure of the plasma-sprayed coatings and thermal cycling behavior were characterized, and U-Zr melt interaction studies were carried out. The TaC and Y2O3 coating layers had a uniform thickness, and high density with only a few small closed pores showing good consolidation, while the ZrC, TiC, and ZrO2 coatings were not well consolidated with a considerable amount of porosity. Thermal cycling tests showed that the adhesion of the TiC, ZrC, and ZrO2 coating layers with niobium was relatively weak compared to the TaC and Y2O3 coatings. The TaC and Y2O3 coatings had better cycling characteristics with no interconnected cracks. In the interaction studies, ZrC and ZrO2 coated rods showed significant degradations after exposure to U-10 wt.% Zr melt at 1600°C for 15 min., but TaC, TiC, and Y2O3 coatings showed good compatibility with U-Zr melt.

  17. Mechanical properties of plasma-sprayed layers of aluminium and aluminium alloy on AZ 91

    Czech Academy of Sciences Publication Activity Database

    Kubatík, Tomáš František; Ctibor, Pavel; Mušálek, Radek; Janata, Marek

    2017-01-01

    Roč. 51, č. 2 (2017), s. 323-327 ISSN 1580-2949 R&D Projects: GA ČR(CZ) GP14-31538P Institutional support: RVO:61389021 Keywords : plasma spraying of aluminium * adhesion of coating * wear * magnesium alloy AZ91 Subject RIV: JG - Metallurgy OBOR OECD: Materials engineering Impact factor: 0.436, year: 2016

  18. On-line control of the plasma spraying process by monitoring the temperature, velocity, and trajectory of in-flight particles

    International Nuclear Information System (INIS)

    Moreau, C.; Gougeon, P.; Lamontagne, M.; Lacasse, V.; Vaudreuil, G.; Cielo, P.

    1994-01-01

    This paper describes a new optical sensing device for on-line monitoring of the temperature, velocity and trajectory of in-flight particles during industrial coating production. Thermal radiation emitted by the in-flight particles is collected by a small and robust sensing head that can be attached to the plasma gun providing continuous monitoring of the spray process. The collected radiation is transmitted through optical fibers to a detection cabinet located away from the dusty environment around the operating plasma gun. On-line measurement of the particle velocity, temperature and trajectory can provide an efficient diagnostic tool to maintain optimum spraying conditions leading to a better reproducibility of the coating properties

  19. Method of forming a plasma sprayed interconnection layer on an electrode of an electrochemical cell

    Science.gov (United States)

    Spengler, Charles J.; Folser, George R.; Vora, Shailesh D.; Kuo, Lewis; Richards, Von L.

    1995-01-01

    A dense, substantially gas-tight, electrically conductive interconnection layer is formed on an air electrode structure of an electrochemical cell by (A) providing an electrode surface; (B) forming on a selected portion of the electrode surface, a layer of doped LaCrO.sub.3 particles doped with an element selected from Ca, Sr, Ba, Mg, Co, Ni, Al and mixtures thereof by plasma spraying doped LaCrO.sub.3 powder, preferably compensated with chromium as Cr.sub.2 O.sub.3 and/or dopant element, preferably by plasma arc spraying; and, (C) heating the doped and compensated LaCrO.sub.3 layer to about 1100.degree. C. to 1300.degree. C. to provide a dense, substantially gas-tight, substantially hydration-free, electrically conductive interconnection material bonded to the electrode surface. A solid electrolyte layer can be applied to the unselected portion of the air electrode, and a fuel electrode can be applied to the solid electrolyte, to provide an electrochemical cell.

  20. Air plasma spray processing and electrochemical characterization of Cu-SDC coatings for use in solid oxide fuel cell anodes

    Energy Technology Data Exchange (ETDEWEB)

    Benoved, Nir [Department of Mechanical Engineering, The University of British Columbia, 2054-6250 Applied Sciences Lane, Vancouver, British Columbia (Canada); Kesler, O. [Department of Mechanical and Industrial Engineering, University of Toronto, 5 King' s College Road, Toronto, Ontario (Canada)

    2009-09-05

    Air plasma spraying has been used to produce porous composite anodes based on Ce{sub 0.8}Sm{sub 0.2}O{sub 1.9} (SDC) and Cu for use in solid oxide fuel cells (SOFCs). Preliminarily, a range of plasma conditions has been examined for the production of composite coatings from pre-mixed SDC and CuO powders. Plasma gas compositions were varied to obtain a range of plasma temperatures. After reduction in H{sub 2}, coatings were characterized for composition and microstructure using EDX and SEM. As a result of these tests, symmetrical sintered electrolyte-supported anode-anode cells were fabricated by air plasma spraying of the anodes, followed by in situ reduction of the CuO to Cu. Full cells deposited on SS430 porous substrates were then produced in one integrated process. Fine CuO and SDC powders have been used to produce homogeneously mixed anode coatings with higher surface area microstructures, resulting in area-specific polarization resistances of 4.8 {omega} cm{sup 2} in impedance tests in hydrogen at 712 C. (author)

  1. Air plasma spray processing and electrochemical characterization of Cu-SDC coatings for use in solid oxide fuel cell anodes

    Science.gov (United States)

    Benoved, Nir; Kesler, O.

    Air plasma spraying has been used to produce porous composite anodes based on Ce 0.8Sm 0.2O 1.9 (SDC) and Cu for use in solid oxide fuel cells (SOFCs). Preliminarily, a range of plasma conditions has been examined for the production of composite coatings from pre-mixed SDC and CuO powders. Plasma gas compositions were varied to obtain a range of plasma temperatures. After reduction in H 2, coatings were characterized for composition and microstructure using EDX and SEM. As a result of these tests, symmetrical sintered electrolyte-supported anode-anode cells were fabricated by air plasma spraying of the anodes, followed by in situ reduction of the CuO to Cu. Full cells deposited on SS430 porous substrates were then produced in one integrated process. Fine CuO and SDC powders have been used to produce homogeneously mixed anode coatings with higher surface area microstructures, resulting in area-specific polarization resistances of 4.8 Ω cm 2 in impedance tests in hydrogen at 712 °C.

  2. Strontium Zirconate TBC Sprayed by a High Feed-Rate Water-Stabilized Plasma Torch.

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Nevrlá, Barbara; Čížek, Jan; Lukáč, František

    2017-01-01

    Roč. 26, č. 8 (2017), s. 1804-1809 ISSN 1059-9630 R&D Projects: GA TA ČR(CZ) TE02000011 Institutional support: RVO:61389021 Keywords : adhesion * plasma spraying * strontium zirconate * thermal insulator Subject RIV: JK - Corrosion ; Surface Treatment of Materials OBOR OECD: Coating and films Impact factor: 1.488, year: 2016 https://link.springer.com/article/10.1007/s11666-017-0641-7

  3. Optimization of the spray application technology in bay laurel (Laurus nobilis).

    Science.gov (United States)

    Nuyttens, D; Braekman, P; Foque, D

    2009-01-01

    Bay laurel is an evergreen, commercially grown and expensive ornamental pot plant, which is susceptible to different pests like aphids, scale and lerp insects, thrips, caterpillars of codling moth and sooty moulds. Recently, caterpillars of the Mediterranean carnation leafroller (Cacoecimorpha pronubana) cause more and more problems. These pests can lead to important financial losses for the growers. During summer the individual pot plants are placed on a field-container in a fairly dense configuration. Crop protection is traditionally done by moving with a spray lance between the rows of pot plants and treating each individual plant from bottom to top. Good penetration is clearly an important advantages of this spray technique but it is very time-consuming, unhealthy and laborious. Some other growers use a 'spray platform' on a high-clearance tractor. Plants sprayed from this platform are exclusively approached from above resulting in an inferior spray deposition on the lower parts of the plants. To overcome the disadvantages of both available techniques, the potential of an automated tunnel sprayer was investigated. Five different nozzle types were evaluated under laboratory conditions i.e. hollow cone, standard flat fan, air inclusion flat fan, deflector flat fan and twin air inclusion flat fan at spray pressures varying from 3.0 to 7.0 bar depending on the type of nozzle. For each nozzle type, three nozzle sizes were included in the experiments which resulted in 15 different spray application techniques. All experiments were done at a speed of 2.5 km x h(-1). This resulted in three different application volumes: 2450, 4900 and 7300 l x ha(-1). After optimizing the nozzle configuration (distance and orientation) using water-sensitive paper, deposition tests with five different mineral chelates as tracer elements were performed. Filter papers were used as collectors at 20 different positions to measure spray deposition, distribution and penetration in the canopy

  4. Self-healing atmospheric plasma sprayed Mn1.0Co1.9Fe0.1O4 protective interconnector coatings for solid oxide fuel cells

    Science.gov (United States)

    Grünwald, Nikolas; Sebold, Doris; Sohn, Yoo Jung; Menzler, Norbert Heribert; Vaßen, Robert

    2017-09-01

    Dense coatings on metallic interconnectors are necessary to suppress chromium poisoning of SOFC cathodes. Atmospherically plasma sprayed (APS) Mn1.0Co1.9Fe0.1O4 (MCF) protective layers demonstrated reduced chromium related degradation in laboratory and stack tests. Previous analyses revealed strong microstructural changes comparing the coating's as-sprayed and operated condition. This work concentrates on the layer-densification and crack-healing observed by annealing APS-MCF in air, which simulates the cathode operation conditions. The effect is described by a volume expansion induced by a phase transformation. Reducing conditions during the spray process lead to a deposition of the MCF in a metastable rock salt configuration. Annealing in air activates diffusion processes for a phase transformation to the low temperature stable spinel phase (T coating. The process decelerates when the cracks are closed, as the gas route is blocked and further oxidation continues over solid state diffusion. The self-healing abilities of metastable APS coatings could be interesting for other applications.

  5. Ground experimental investigations into an ejected spray cooling system for space closed-loop application

    Directory of Open Access Journals (Sweden)

    Zhang Hongsheng

    2016-06-01

    Full Text Available Spray cooling has proved its superior heat transfer performance in removing high heat flux for ground applications. However, the dissipation of vapor–liquid mixture from the heat surface and the closed-loop circulation of the coolant are two challenges in reduced or zero gravity space environments. In this paper, an ejected spray cooling system for space closed-loop application was proposed and the negative pressure in the ejected condenser chamber was applied to sucking the two-phase mixture from the spray chamber. Its ground experimental setup was built and experimental investigations on the smooth circle heat surface with a diameter of 5 mm were conducted with distilled water as the coolant spraying from a nozzle of 0.51 mm orifice diameter at the inlet temperatures of 69.2 °C and 78.2 °C under the conditions of heat flux ranging from 69.76 W/cm2 to 311.45 W/cm2, volume flow through the spray nozzle varying from 11.22 L/h to 15.76 L/h. Work performance of the spray nozzle and heat transfer performance of the spray cooling system were analyzed; results show that this ejected spray cooling system has a good heat transfer performance and provides valid foundation for space closed-loop application in the near future.

  6. Electrochemical performance of solid oxide fuel cells having electrolytes made by suspension and solution precursor plasma spraying

    Science.gov (United States)

    Marr, M.; Kuhn, J.; Metcalfe, C.; Harris, J.; Kesler, O.

    2014-01-01

    Yttria-stabilized zirconia (YSZ) electrolytes were deposited by suspension plasma spraying (SPS) and solution precursor plasma spraying (SPPS). The electrolytes were evaluated for permeability, microstructure, and electrochemical performance. With SPS, three different suspensions were tested to explore the influence of powder size distribution and liquid properties. Electrolytes made from suspensions of a powder with d50 = 2.6 μm were more gas-tight than those made from suspensions of a powder with d50 = 0.6 μm. A peak open circuit voltage of 1.00 V was measured at 750 °C with a cell with an electrolyte made from a suspension of d50 = 2.6 μm powder. The use of a flammable suspension liquid was beneficial for improving electrolyte conductivity when using lower energy plasmas, but the choice of liquid was less important when using higher energy plasmas. With SPPS, peak electrolyte conductivities were comparable to the peak conductivities of the SPS electrolytes. However, leak rates through the SPPS electrolytes were higher than those through the electrolytes made from suspensions of d50 = 2.6 μm powder. The electrochemical test data on SPPS electrolytes are the first reported in the literature.

  7. Field experiment on spray drift: Deposition and airborne drift during application to a winter wheat crop

    NARCIS (Netherlands)

    Wolters, A.; Linnemann, V.; Zande, van de J.C.; Vereecken, H.

    2008-01-01

    A field experiment was performed to evaluate various techniques for measuring spray deposition and airborne drift during spray application to a winter wheat crop. The application of a spraying agent containing the fluorescent dye Brilliant Sulfo Flavine by a conventional boom sprayer was done

  8. Effect of spray application technique on spray deposition in greenhouse strawberries and tomatoes.

    Science.gov (United States)

    Braekman, Pascal; Foque, Dieter; Messens, Winy; Van Labeke, Marie-Christine; Pieters, Jan G; Nuyttens, David

    2010-02-01

    Increasingly, Flemish greenhouse growers are using spray booms instead of spray guns to apply plant protection products. Although the advantages of spray booms are well known, growers still have many questions concerning nozzle choice and settings. Spray deposition using a vertical spray boom in tomatoes and strawberries was compared with reference spray equipment. Five different settings of nozzle type, size and pressure were tested with the spray boom. In general, the standard vertical spray boom performed better than the reference spray equipment in strawberries (spray gun) and in tomatoes (air-assisted sprayer). Nozzle type and settings significantly affected spray deposition and crop penetration. Highest overall deposits in strawberries were achieved using air-inclusion or extended-range nozzles. In tomatoes, the extended-range nozzles and the twin air-inclusion nozzles performed best. Using smaller-size extended-range nozzles above the recommended pressure range resulted in lower deposits, especially inside the crop canopy. The use of a vertical spray boom is a promising technique for applying plant protection products in a safe and efficient way in tomatoes and strawberries, and nozzle choice and setting should be carefully considered.

  9. A novel method to predict the highest hardness of plasma sprayed coating without micro-defects

    Science.gov (United States)

    Zhuo, Yukun; Ye, Fuxing; Wang, Feng

    2018-04-01

    The plasma sprayed coatings are stacked by splats, which are regarded generally as the elementary units of coating. Many researchers have focused on the morphology and formation mechanism of splat. However, a novel method to predict the highest hardness of plasma sprayed coating without micro-defects is proposed according to the nanohardness of splat in this paper. The effectiveness of this novel method was examined by experiments. Firstly, the microstructure of splats and coating, meanwhile the 3D topography of the splats were observed by SEM (SU1510) and video microscope (VHX-2000). Secondly, the nanohardness of splats was evaluated by nanoindentation (NHT) in order to be compared with microhardness of coating measured by microhardness tester (HV-1000A). The results show that the nanohardness of splats with diameter of 70 μm, 100 μm and 140 μm were in the scope of 11∼12 GPa while the microhardness of coating were in the range of 8∼9 GPa. Because the splats had not micro-defects such as pores and cracks in the nanohardness evaluated nano-zone, the nanohardness of the splats can be utilized to predict the highest hardness of coating without micro-defects. This method indicates the maximum of sprayed coating hardness and will reduce the test number to get high hardness coating for better wear resistance.

  10. Sea water Corrosion of Nickel based Plasma Spray Coating

    Science.gov (United States)

    Parida, M.; Nanda, S. P.; Bhuyan, S. K.; Mishra, S. C.

    2018-03-01

    Different types of erosion resistant coatings are applied/deposited on aero components, depending on the operating/working temperatures. Nickel based coating are applied on the air craft (compressor) components, which can sustain up to working temperature of 650°C. In the present investigation, to improve the compatibility between substrate (i.e. the machine component) and the top coat, application of bond coat is there. The application of Nickel based coating by thermal plasma spray technique has proven to be a satisfactory means of producing acceptable sealing surface with excellent abradability. Before the corrosion study, coated sample is subjected to hardness, thickness and porosity testing. Hence the result is being evaluated. The corrosion behavior of coating was studied by sea water immersion with a time period of 16 weeks. It is observed that, up to 9 weeks increase in weight of coating occurs in a sharp trend and then takes a decreasing trend. The weight gain of the samples has varied from 37.23% (with one week immersion in sea water) to a maximum of about 64.36% for six weeks immersion. Coating morphology and composition analysis of the coatings are studied using SEM and EDS. This behavior shows adsorption/deposition of the foreign particles with polygonal shape on the coating surface by sea water interaction. Foreign particles with polygonal shape deposited on the coating and with increase in immersion/treatment time, washing out of the deposited materials starts, which reflects the decreasing trend of weight gain of the specimen.

  11. High Temperature Oxidation of Spark Plasma Sintered and Thermally Sprayed FeAl-Based Iron Aluminides

    Czech Academy of Sciences Publication Activity Database

    Haušild, P.; Karlík, M.; Skiba, T.; Sajdl, P.; Dubský, Jiří; Palm, M.

    2012-01-01

    Roč. 122, č. 3 (2012), s. 465-468 ISSN 0587-4246. [International Symposium on Physics of Materials (ISPMA)/12./. Prague, 04.09.2011-08.09.2011] Institutional support: RVO:61389021 Keywords : thermal spraying * plasma sintering Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 0.531, year: 2012

  12. Dielectric and electrochemical properties through-thickness mapping on extremely thick plasma sprayed TiO2

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Sedláček, J.; Pala, Zdeněk

    2016-01-01

    Roč. 42, č. 6 (2016), s. 7183-7191 ISSN 0272-8842 Institutional support: RVO:61389021 Keywords : Electrical properties * TiO2 * Plasma spraying * Annealing * Microstructure Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 2.986, year: 2016 http://www.sciencedirect.com/science/article/pii/S0272884216001395

  13. Superconducting and structural properties of plasma sprayed YBaCuO layers deposited on metallic substrates

    NARCIS (Netherlands)

    Hemmes, Herman K.; Jäger, D; Smithers, M.A.; Smithers, M.; van der Veer, J.; van der Veer, J.M.; Stover, D.; Rogalla, Horst

    1993-01-01

    The properties of plasma sprayed Y-Ba-Cu-O coatings deposited on metallic substrates are studied. Stainless steel, nickel steels and pure nickel are used as substrate. Y-Ba-Cu-O deposited on stainless steel and nickel steel reacts with the substrate. This interaction can be suppressed by using an

  14. Thermal Expansion of Vacuum Plasma Sprayed Coatings

    Science.gov (United States)

    Raj, S V.; Palczer, A. R.

    2010-01-01

    Metallic Cu-8%Cr, Cu-26%Cr, Cu-8%Cr-1%Al, NiAl and NiCrAlY monolithic coatings were fabricated by vacuum plasma spray deposition processes for thermal expansion property measurements between 293 and 1223 K. The corrected thermal expansion, (DL/L(sub 0) varies with the absolute temperature, T, as (DL/L(sub 0) = A(T - 293)(sup 3) + BIT - 293)(sup 2) + C(T - 293) + D, where, A, B, C and D are thermal, regression constants. Excellent reproducibility was observed for all of the coatings except for data obtained on the Cu-8%Cr and Cu-26%Cr coatings in the first heat-up cycle, which deviated from those determined in the subsequent cycles. This deviation is attributed to the presence of residual stresses developed during the spraying of the coatings, which are relieved after the first heat-up cycle. In the cases of Cu-8%Cr and NiAl, the thermal expansion data were observed to be reproducible for three specimens. The linear expansion data for Cu-8% Cr and Cu-26%Cr agree extremely well with rule of mixture (ROM) predictions. Comparison of the data for the Cu-8%Cr coating with literature data for Cr and Cu revealed that the thermal expansion behavior of this alloy is determined by the Cu-rich matrix. The data for NiAl and NiCrAlY are in excellent agreement with published results irrespective of composition and the methods used for processing the materials. The implications of these results on coating GRCop-84 copper alloy combustor liners for reusable launch vehicles are discussed.

  15. 40 CFR 417.150 - Applicability; description of the manufacture of spray dried detergents subcategory.

    Science.gov (United States)

    2010-07-01

    ... detergents, including but not limited to assembly and storage of raw materials, crutching, spray drying... manufacture of spray dried detergents subcategory. 417.150 Section 417.150 Protection of Environment... POINT SOURCE CATEGORY Manufacture of Spray Dried Detergents Subcategory § 417.150 Applicability...

  16. Yttria-stabilized zirkonia / gadolinium zirconate double-layer plasma-sprayed thermal barrier coating systems (TBCs)

    International Nuclear Information System (INIS)

    Bakan, Emine

    2015-01-01

    Thermal barrier coating (TBC) research and development is driven by the desirability of further increasing the maximum inlet temperature in a gas turbine engine. A number of new top coat ceramic materials have been proposed during the last decades due to limited temperature capability (1200 C) of the state-of-the-art yttria-stabilized zirconia (7 wt. % Y 2 O 3 -ZrO 2 , YSZ) at long term operation. Zirconate pyrochlores of the large lanthanides((Gd → La) 2 Zr 2 O 7 ) have been particularly attractive due to their higher temperature phase stability than that of the YSZ. Nonetheless, the issues related with the implementation of pyrochlores such as low fracture toughness and formation of deleterious interphases with thermally grown oxide (TGO, Al 2 O 3 ) were reported. The implication was the requirement of an interlayer between the pyrochlores and TGO, which introduced double-layer systems to the TBC literature. Furthermore, processability issues of pyrochlores associated with the different evaporation rates of lanthanide oxides and zirconia resulting in unfavorable composition variations in the coatings were addressed in different studies. After all, although the material properties are available, there is a paucity of data in the literature concerning the properties of the coatings made of pyrochlores. From the processability point of view the most reported pyrochlore is La 2 Zr 2 O 7 . Hence, the goal of this research was to investigate plasma-sprayed Gd 2 Zr 2 O 7 (GZO) coatings and YSZ/GZO double-layer TBC systems. Three main topics were examined based on processing, performance and properties: (i) the plasma spray processing of the GZO and its impact on the microstructural and compositional properties of the GZO coatings; (ii) the cycling lifetime of the YSZ/GZO double-layer systems under thermal gradient at a surface temperature of 1400 C; (iii) the properties of the GZO and YSZ coatings such as thermal conductivity, coefficient of thermal expansion as well

  17. Composite Coatings of Alumina-based Ceramics and Stainless Steel Manufactured by Plasma Spraying

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Ageorges, H.; Neufuss, Karel; Zahálka, F.

    2009-01-01

    Roč. 15, č. 2 (2009), s. 108-114 ISSN 1392-1320 R&D Projects: GA AV ČR 1QS200430560 Institutional research plan: CEZ:AV0Z20430508 Keywords : Cermet * plasma spraying * microstructure * elastic modulus * wear resistance Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 0.299, year: 2009 http://internet.ktu.lt/en/science/journals/medz/medz0-97.html#Composite_Coatings_

  18. Thermal Spray Coating of Tungsten for Tokamak Device

    International Nuclear Information System (INIS)

    Jiang Xianliang; Gitzhofer, F; Boulos, M I

    2006-01-01

    Thermal spray, such as direct current (d.c.) plasma spray or radio frequency induced plasma spray, was used to deposit tungsten coatings on the copper electrodes of a tokamak device. The tungsten coating on the outer surface of one copper electrode was formed directly through d.c. plasma spraying of fine tungsten powder. The tungsten coating/lining on the inner surface of another copper electrode could be formed indirectly through induced plasma spraying of coarse tungsten powder. Scanning electron microscopy (SEM) was used to examine the cross section and the interface of the tungsten coating. Energy Dispersive Analysis of X-ray (EDAX) was used to analyze the metallic elements attached to a separated interface. The influence of the particle size of the tungsten powder on the density, cracking behavior and adhesion of the coating is discussed. It is found that the coarse tungsten powder with the particle size of 45 ∼ 75 μm can be melted and the coating can be formed only by using induced plasma. The coating deposited from the coarse powder has much higher cohesive strength, adhesive strength and crack resistance than the coating made from the fine powder with a particle size of 5 μm

  19. Applications of thermal spraying for automotive parts. Jidosha ni okeru yosha no tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Mori, K [Toyota Motor Co. Ltd., Aichi (Japan)

    1992-10-31

    Application of thermal spraying for automotive parts is described. Outlines of the spraying types that are materialized recently, like 'gel-double spraying of turbo-compressor housing part' and 'iron alloy spraying to outer portion of valve lifter made with Al alloy', are introduced. Gel-double spraying technology is widely used in the jet engine of aeroplane, however its use in automotive turbo was difficult from the reason like quality assurance relating to continuous production of automotives. As a result of the research and development based on the above reasons, a low speed torque is confirmed by the formation of gel-double spray layer. Spraying to the outer part of the valve lifter made from Al alloy is cited as the best example of thermal spraying. Relation between flying speed of spraying particles and degree of flattening, etc., relating to the conformity of adhesion power of coated layer, is explained. Further research topics are given as; improvement of spraying efficiency, improvement of resistance of spraying equipments, unification of equipments standards, quantification of spray coatings, design of spray materials, etc. 9 refs., 8 figs., 1 tab.

  20. Plasma Spraying and Characterization of Tungsten Carbide-Cobalt Coatings by the Water-Stabilized System WSP

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Kašparová, M.; Bellin, J.; Le Guen, E.; Zahálka, F.

    2009-01-01

    Roč. 2009, - (2009), s. 1-11 ISSN 1687-8434 R&D Projects: GA AV ČR 1QS200430560 Institutional research plan: CEZ:AV0Z20430508 Keywords : Tungsten karbide – cobalt, cermet * wear resistance * abrasion * plasma spraying Subject RIV: JG - Metallurgy http://www.hindawi.com/journals/amse/2009/254848.html

  1. The Influence of Interface Characteristics on the Adhesion/Cohesion of Plasma Sprayed Tungsten Coatings

    Czech Academy of Sciences Publication Activity Database

    Matějíček, Jiří; Vilémová, Monika; Mušálek, Radek; Sachr, P.; Horník, J.

    2013-01-01

    Roč. 3, č. 2 (2013), s. 108-125 ISSN 2079-6412 R&D Projects: GA ČR(CZ) GAP108/12/1872; GA MPO FR-TI2/702 Grant - others:EFDA(XE) WP12-MAT-01-HHFM Institutional support: RVO:61389021 Keywords : Tungsten * plasma spraying * adhesion * cohesion * PVD * interlayers Subject RIV: JG - Metallurgy http://www.mdpi.com/2079-6412/3/2/108

  2. Characterisations Of Al2O3-13% Wt TiO2 Deposition On Mild Steel Via Plasma Spray Method

    International Nuclear Information System (INIS)

    Yusoff, N. H.; Isa, M. C.; Ghazali, M. J.; Muchtar, A.; Forghani, S.; Daud, A. R.

    2011-01-01

    To date, plasma sprayed alumina titania have been widely used as wear resistance coatings in textile, machinery and printing industries. Previous studies showed that the coating microstructures and properties were strongly depended on various parameters such as ceramic composition, grain size powders and spray parameters, thus, influencing the melting degree of the alumina titania during the deposition process. The aim of this study focuses on the evolution of the micron sizes of alumina-13%wt titania at different plasma spray power, ranging from 20kW to 40kW. It was noted that the coating porosity of alumina-13%wt titania were decreased from 6.2% to 4% by increasing the plasma power from 20 to 40 kW. At lower power value, partially melted powders were deposited, generating over 6% porosity within the microstructures. Percentage of porosity about 5.6% gave the best ratio of bi-modal structures, providing the highest microhardness value. Furthermore, the effect of microstructure and porosity formation on wear resistance was also discussed. Coatings with less porosity exhibited better resistance to wear, in which the wear resistance of coated mild steel possessed only ∼5 x 10 -4 cm 3 /Nm with 4% of porosity.

  3. Mechanical properties of nanodiamond-reinforced hydroxyapatite composite coatings deposited by suspension plasma spraying

    Science.gov (United States)

    Chen, Xiuyong; Zhang, Botao; Gong, Yongfeng; Zhou, Ping; Li, Hua

    2018-05-01

    Hydroxyapatite (HA) coatings suffer from poor mechanical properties, which can be enhanced via incorporation of secondary bioinert reinforcement material. Nanodiamond (ND) possesses excellent mechanical properties to play the role as reinforcement for improving the mechanical properties of brittle HA bioceramic coatings. The major persistent challenge yet is the development of proper deposition techniques for fabricating the ND reinforced HA coatings. In this study, we present a novel deposition approach by plasma spraying the mixtures of ND suspension and micron-sized HA powder feedstock. The effect of ND reinforcement on the microstructure and the mechanical properties of the coatings such as hardness, adhesive strength and friction coefficient were examined. The results showed that the ND-reinforced HA coatings display lower porosity, fewer unmelted particles and uniform microstructure, in turn leading to significantly enhanced mechanical properties. The study presented a promising approach to fabricate ND-reinforced HA composite coatings on metal-based medical implants for potential clinical application.

  4. A comparison of the effects of dietary spray-dried bovine colostrum and animal plasma on growth and intestinal histology in weaner pigs

    NARCIS (Netherlands)

    King, M.R.; Morel, P.C.H.; Pluske, J.R.; Hendriks, W.H.

    2008-01-01

    An experiment was conducted to evaluate the effects of dietary spray-dried bovine and porcine plasma and spray-dried bovine colostrum on growth performance and intestinal histology in weaner pigs. Thirty-two 21-day-old piglets (6.65 ± 0.14 kg) were allocated to receive one of four dietary

  5. An electrothermal chemical technology for thermal spray coatings

    International Nuclear Information System (INIS)

    Wald, S.; Appelbaum, G.; Alimi, R.; Rabani, L.; Zoler, D.; Zhitomirsky, V.; Factor, M.; Roman, I.

    1998-01-01

    A new spray technology for producing hard-coatings, has been developed at the SOREQ Nuclear Research Center. The concept is based on the extensive experience accumulated at SOREQ in the course of the development of Electrothermal (ET), Electrothermal-Chemical (ETC) and Solid-Propellant Electrothermal-Chemical (SPETC) guns(r). High quality coatings may be obtained by thermal spraying powder particles onto a variety of substrates. Mature state-of-the-art technologies such as plasma spray, high velocity oxy fuel (HVOF) and detonation gun (D-Gun) are widely used for many applications. As each method has its own drawbacks there is a need for a combination of several parameters which cannot be achieved by any existing individual commercial technology. The method presented is oriented toward a high-quality, multi-step, high-throughput, easily programmable continuous coating process and relatively inexpensive technology. The combustion products of a solid or liquid propellant accelerate the powder particles of the coating material. A pulsed-plasma jet, provided by a confined capillary discharge, ignites the propellant and controls the combustion process. The powder particles are accelerated to velocities over 1000 m/s. Due to the very high carrier gas density, high velocity, high throughput and high powder consumption efficiency are obtained. The plasma jet enables control of the gas temperature and consequently influences the powder temperature

  6. Skin Sterility After Application of a Vapocoolant Spray Part 2.

    Science.gov (United States)

    Mlynek, Karolina; Lyahn, Hwang; Richards, Bryson; Schleicher, William; Bassiri Gharb, Bahar; Procop, Gary; Tuohy, Marion; Zins, James

    2015-08-01

    Refrigerant sprays have been used for pain relief at the time of minor office procedures. However, their sterility remains in question. This study investigates the microbiologic effect of this vapocoolant when sprayed after 70 % isopropyl alcohol skin preparation. In 50 healthy volunteers, three skin culture samples were collected: Group 1 prior to alcohol application; Group 2 after preparation with alcohol, and Group 3 after preparation with alcohol followed with vapocoolant spray. Samples were cultured in a blinded fashion and analyzed after 5 days of incubation. Gram staining was performed when cultures were positive. Bacterial growth was found in 98 % of samples prior to any skin preparation. This was reduced to 54 % after alcohol use (Group 2). Spraying with the skin refrigerant further reduced bacterial growth to 46 % (Group 3). The results showed a significant reduction in the number of positive bacterial cultures following skin preparation with alcohol and when alcohol prep was followed by vapocoolant spray (p < 0.001) compared to initial cultures. No statistical difference was observed between Groups 2 and 3 (p = 0.74). The use of the vapocoolant spray does not compromise the sterility of the skin following alcohol prep. Both 70 % isopropyl alcohol antiseptic preparation and skin preparation followed by vapocoolant spray significantly reduce skin colonization when compared to unprepared skin (p < 0.001).

  7. Influence of a powder feed rate on the properties of the plasma sprayed chromium carbide- 25% nickel chromium coating

    Directory of Open Access Journals (Sweden)

    Mihailo R. Mrdak

    2014-04-01

    Full Text Available Normal 0 false false false MicrosoftInternetExplorer4 The plasma spray process is a leading technology of powder depositing in the production of coatings widely used in the aerospace industry for the protection of new parts and for the repair of worn ones. Cermet 75Cr3C2 - 25Ni(Cr coatings based on Cr3C2 carbides are widely used to protect parts as they retain high values of hardness, strength and resistance to wear up to a temperature of 850°C. This paper discusses the influence of the parameters of the plasma spray deposition of 75Cr3C2 - 25Ni(Cr powder on the structure and mechanical properties of the coating. The powder is deposited using plasma spraying at atmospheric pressure (APS. The plasma gas is He, which is an inert gas and does not react with the powder; it produces dense plasma with lower heat content and less incorporated ambient air in the plasma jet thus reducing temperature decomposition and decarburization of Cr3C2 carbide.. In this study, three groups of coatings were deposited with three different powder feed rates of: 30, 45 and 60 g/min. The  coating with the best properties was deposited on the inlet flange parts of the turbo - jet engine TV2-117A to reduce the influence of vibrations and wear. The structures and the mechanical properties of 75Cr3C2 - 25Ni(Cr coatings are analyzed in accordance with the Pratt & Whitney standard. Studies have shown that powder feed rates have an important influence on the mechanical properties and structures of 75Cr3C2 - 25Ni(Cr coatings. 

  8. Novel Prospects for Plasma Spray-Physical Vapor Deposition of Columnar Thermal Barrier Coatings

    Science.gov (United States)

    Anwaar, Aleem; Wei, Lianglinag; Guo, Qian; Zhang, Baopeng; Guo, Hongbo

    2017-12-01

    Plasma spray-physical vapor deposition (PS-PVD) is an emerging coating technique that can produce columnar thermal barrier coatings from vapor phase. Feedstock treatment at the start of its trajectory in the plasma torch nozzle is important for such vapor-phase deposition. This study describes the effects of the plasma composition (Ar/He) on the plasma characteristics, plasma-particle interaction, and particle dynamics at different points spatially distributed inside the plasma torch nozzle. The results of calculations show that increasing the fraction of argon in the plasma gas mixture enhances the momentum and heat flow between the plasma and injected feedstock. For the plasma gas combination of 45Ar/45He, the total enthalpy transferred to a representative powder particle inside the plasma torch nozzle is highest ( 9828 kJ/kg). Moreover, due to the properties of the plasma, the contribution of the cylindrical throat, i.e., from the feed injection point (FIP) to the start of divergence (SOD), to the total transferred energy is 69%. The carrier gas flow for different plasma gas mixtures was also investigated by optical emission spectroscopy (OES) measurements of zirconium emissions. Yttria-stabilized zirconia (YSZ) coating microstructures were produced when using selected plasma gas compositions and corresponding carrier gas flows; structural morphologies were found to be in good agreement with OES and theoretical predictions. Quasicolumnar microstructure was obtained with porosity of 15% when applying the plasma composition of 45Ar/45He.

  9. Method of forming a leak proof plasma sprayed interconnection layer on an electrode of an electrochemical cell

    Science.gov (United States)

    Kuo, Lewis J. H.; Vora, Shailesh D.

    1995-01-01

    A dense, substantially gas-tight, electrically conductive interconnection layer is formed on an electrode structure of an electrochemical cell by: (A) providing an electrode structure; (B) forming on a selected portion of the electrode surface, an interconnection layer having the general formula La.sub.1-x M.sub.x Cr.sub.1-y N.sub.y O.sub.3, where M is a dopant selected from the group of Ca, Sr, Ba, and mixtures thereof, and where N is a dopant selected from the group of Mg, Co, Ni, Al, and mixtures thereof, and where x and y are each independently about 0.075-0.25, by thermally spraying, preferably plasma arc spraying, a flux added interconnection spray powder, preferably agglomerated, the flux added powder comprising flux particles, preferably including dopant, preferably (CaO).sub.12. (Al.sub.2 O.sub.3).sub.7 flux particles including Ca and Al dopant, and LaCrO.sub.3 interconnection particles, preferably undoped LaCrO.sub.3, to form a dense and substantially gas-tight interconnection material bonded to the electrode structure by a single plasma spraying step; and, (C) heat treating the interconnection layer at from about 1200.degree. to 1350.degree. C. to further densify and heal the micro-cracks and macro-cracks of the thermally sprayed interconnection layer. The result is a substantially gas-tight, highly doped, electrically conductive interconnection material bonded to the electrode structure. The electrode structure can be an air electrode, and a solid electrolyte layer can be applied to the unselected portion of the air electrode, and further a fuel electrode can be applied to the solid electrolyte, to form an electrochemical cell for generation of electrical power.

  10. Improving dielectric properties of plasma sprayed calcium titanate (CaTiO3) coatings by thermal annealing

    Czech Academy of Sciences Publication Activity Database

    Kotlan, Jiří; Ctibor, Pavel; Pala, Zdeněk; Homola, P.; Nehasil, V.

    2014-01-01

    Roč. 40, č. 8 (2014), s. 13049-13055 ISSN 0272-8842 Institutional support: RVO:61389021 Keywords : X-raymethods * Dielectricproperties * Perovskites * Plasma spraying Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 2.605, year: 2014 http://www.sciencedirect.com/science/article/pii/S027288421400724X

  11. A systematic review on the long-term success of calcium phosphate plasma-spray-coated dental implants.

    Science.gov (United States)

    van Oirschot, B A J A; Bronkhorst, E M; van den Beucken, J J J P; Meijer, G J; Jansen, J A; Junker, R

    2016-09-01

    The objectives of the current review were (1) to systematically appraise, and (2) to evaluate long-term success data of calcium phosphate (CaP) plasma-spray-coated dental implants in clinical trials with at least 5 years of follow-up. To describe the long-term efficacy of functional implants, the outcome variables were (a) percentage annual complication rate (ACR) and (b) cumulative success rate (CSR), as presented in the selected articles. The electronic search yielded 645 titles. On the basis of the inclusion criteria, 8 studies were finally included. The percentage of implants in function after the first year was estimated to be 98.4 % in the maxilla and 99.2 % in the mandible. The estimates of the weighted mean ACR-percentage increased over the years up to 2.6 (SE 0.7) during the fifth year of function for the maxilla and to 9.4 (SE 8.4) for the mandible in the tenth year of function. After 10 years, the mean percentage of successful implants was estimated to be 71.1 % in the maxilla and 72.2 % in the mandible. The estimates seem to confirm the proposed, long-term progressive bone loss pattern of CaP-ceramic-coated dental implants. Within the limits of this meta-analytic approach to the literature, we conclude that: (1) published long-term success data for calcium phosphate plasma-spray-coated dental implants are limited, (2) comparison of the data is difficult due to differences in success criteria among the studies, and (3) long-term CSRs demonstrate very weak evidence for progressive complications around calcium phosphate plasma-spray-coated dental implants.

  12. Development of a fluid model for DC arc plasma torches and its integration with downstream models of atmospheric plasma spray particle plumes

    Science.gov (United States)

    Cannamela, Michael J., III

    The plasma spray process uses plasma flames to melt micron sized particles of e.g. ceramic and propel the droplets to impinge upon and freeze to the target workpiece, forming a functional coating. Variations in the process arise from many sources, and because sensing of the process is imperfect one is motivated to pursue a modeling approach. This dissertation models the major elements of the process; the torch that produces the plasma flame, the jet of hot plasma issuing from the torch, and the plume of particles conveyed and heated by the jet. The plasma in the torch is modeled by a one-fluid magnetohydrodynamic (MHD) approach and it is found that the MHD equations can accurately predict the power dissipated in the bulk of the plasma, while special treatment is required in regions near the electrodes. Treatment of the cathode region is eased since it can be de-coupled from the bulk flow. Treatment of the anode region aims to extract the correct amount of power from the plasma. With MHD in the bulk and these special conditions at the electrode boundaries, the net power into the plasma can be matched with experiment. For one simulation of an SG-100 torch operating at 500A, the measured net power was 7.0kW while the computed net power was 7.1kW. Using outlet information from the torch, the impact of plasma arc oscillations on the free jet and on the in-flight particle states is predicted. The model of the plasma jet is validated against the existing LAVA code, and is able to predict the fraction of entrained air in the jet to within 20% of the experimental value. The variations in particle states due to the arc fluctuations are found to be similar in size to variations due to changes in particle injection velocity, and so cannot be neglected when considering particle state distributions. The end result of this work is to make available a complete chain of models for the plasma spray process, from torch input conditions to in-flight particle state.

  13. An assessment of thermal spray coating technologies for high temperature corrosion protection

    International Nuclear Information System (INIS)

    Heath, G.R.; Heimgartner, P.; Gustafsson, S.; Irons, G.; Miller, R.

    1997-01-01

    The use of thermally sprayed coatings in combating high temperature corrosion continues to grow in the major industries of chemical, waste incineration, power generation and pulp and paper. This has been driven partially by the development of corrosion resistant alloys, improved knowledge and quality in the thermal spray industry and continued innovation in thermal spray equipment. There exists today an extensive range of thermal spray process options, often with the same alloy solution. In demanding corrosion applications it is not sufficient to just specify alloy and coating method. For the production of reliable coatings the whole coating production envelope needs to be considered, including alloy selection, spray parameters, surface preparation, base metal properties, heat input etc. Combustion, arc-wire, plasma, HVOF and spray+fuse techniques are reviewed and compared in terms of their strengths and limitations to provide cost-effective solutions for high temperature corrosion protection. Arc wire spraying, HP/HVOF and spray+fuse are emerging as the most promising techniques to optimise both coating properties and economic/practical aspects. (orig.)

  14. Yttria-stabilized zirkonia / gadolinium zirconate double-layer plasma-sprayed thermal barrier coating systems (TBCs)

    Energy Technology Data Exchange (ETDEWEB)

    Bakan, Emine

    2015-07-01

    Thermal barrier coating (TBC) research and development is driven by the desirability of further increasing the maximum inlet temperature in a gas turbine engine. A number of new top coat ceramic materials have been proposed during the last decades due to limited temperature capability (1200 C) of the state-of-the-art yttria-stabilized zirconia (7 wt. % Y{sub 2}O{sub 3}-ZrO{sub 2}, YSZ) at long term operation. Zirconate pyrochlores of the large lanthanides((Gd → La){sub 2}Zr{sub 2}O{sub 7}) have been particularly attractive due to their higher temperature phase stability than that of the YSZ. Nonetheless, the issues related with the implementation of pyrochlores such as low fracture toughness and formation of deleterious interphases with thermally grown oxide (TGO, Al{sub 2}O{sub 3}) were reported. The implication was the requirement of an interlayer between the pyrochlores and TGO, which introduced double-layer systems to the TBC literature. Furthermore, processability issues of pyrochlores associated with the different evaporation rates of lanthanide oxides and zirconia resulting in unfavorable composition variations in the coatings were addressed in different studies. After all, although the material properties are available, there is a paucity of data in the literature concerning the properties of the coatings made of pyrochlores. From the processability point of view the most reported pyrochlore is La{sub 2}Zr{sub 2}O{sub 7}. Hence, the goal of this research was to investigate plasma-sprayed Gd{sub 2}Zr{sub 2}O{sub 7} (GZO) coatings and YSZ/GZO double-layer TBC systems. Three main topics were examined based on processing, performance and properties: (i) the plasma spray processing of the GZO and its impact on the microstructural and compositional properties of the GZO coatings; (ii) the cycling lifetime of the YSZ/GZO double-layer systems under thermal gradient at a surface temperature of 1400 C; (iii) the properties of the GZO and YSZ coatings such as

  15. Thermal Spray Applications in Electronics and Sensors: Past, Present, and Future

    Science.gov (United States)

    Sampath, Sanjay

    2010-09-01

    Thermal spray has enjoyed unprecedented growth and has emerged as an innovative and multifaceted deposition technology. Thermal spray coatings are crucial to the enhanced utilization of various engineering systems. Industries, in recognition of thermal spray's versatility and economics, have introduced it into manufacturing environments. The majority of modern thermal spray applications are "passive" protective coatings, and they rarely perform an electronic function. The ability to consolidate dissimilar material multilayers without substrate thermal loading has long been considered a virtue for thick-film electronics. However, the complexity of understanding/controlling materials functions especially those resulting from rapid solidification and layered assemblage has stymied expansion into electronics. That situation is changing: enhancements in process/material science are allowing reconsideration for novel electronic/sensor devices. This review critically examines past efforts in terms of materials functionality from a device perspective, along with ongoing/future concepts addressing the aforementioned deficiencies. The analysis points to intriguing future possibilities for thermal spray technology in the world of thick-film sensors.

  16. Photocatalytic activity of visible-light-active iron-doped coatings prepared by plasma spraying

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Pala, Zdeněk; Štengl, Václav; Mušálek, Radek

    2014-01-01

    Roč. 40, č. 1 (2014), s. 2365-2372 ISSN 0272-8842 R&D Projects: GA AV ČR IAAX00430803 Institutional support: RVO:61389021 ; RVO:61388980 Keywords : Spectroscopy * Bandgap * Plasma spraying * Photocatalysis * TiO2–Fe2O3 Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass; JH - Ceramics, Fire-Resistant Materials and Glass (UACH-T) Impact factor: 2.605, year: 2014 http://www. sci encedirect.com/ sci ence/article/pii/S0272884213009541#

  17. Behavior of porous beryllium under thermomechanical loading. Part 6. Effect of pressure on the microstructure of plasma-sprayed beryllium

    International Nuclear Information System (INIS)

    Hanafee, J.E.; Snell, E.O.

    1975-01-01

    The effects of pressure and specimen preparation on the microstructure of two grades of porous plasma-sprayed beryllium were determined. One grade, P-1, was sintered after spraying while the other grade, P-10, was tested in the as-sprayed condition. the principal microstructural characteristics studied were grain size: grain morphology, and void distribution and size. It was found that machining can readily cause a significant dense surface layer on the porous beryllium specimens, and that the dense surface layer can be removed by etching. There was substantial difference in microstructure between the P-1 sintered and P-10 unsintered specimens both before and after being subjected to shock waves and static compression. (U.S.)

  18. Optimizing Thermoelectric Properties of In Situ Plasma-Spray-Synthesized Sub-stoichiometric TiO2-x Deposits

    Science.gov (United States)

    Lee, Hwasoo; Seshadri, Ramachandran Chidambaram; Pala, Zdenek; Sampath, Sanjay

    2018-06-01

    In this article, an attempt has been made to relate the thermoelectric properties of thermal spray deposits of sub-stoichiometric titania to process-induced phase and microstructural variances. The TiO2-x deposits were formed through the in situ reaction of the TiO1.9 or TiO1.7 feedstock within the high-temperature plasma flame and manipulated via varying the amounts of hydrogen fed into in the thermal plasma. Changes in the flow rates of H2 in the plasma plume greatly affected the in-flight particle behavior and composition of the deposits. For reference, a high-velocity oxy-fuel spray torch was also used to deposit the two varieties of feedstocks. Refinements to the representation of the in-flight particle characteristics derived via single particle and ensemble diagnostic methods are proposed using the group parameters (melting index and kinetic energy). The results show that depending on the value of the melting index, there is an inverse proportional relationship between electrical conductivity and Seebeck coefficient, whereas thermal conductivity has a directly proportional relationship with the electrical conductivity. Retention of the original phase and reduced decomposition is beneficial to retain the high Seebeck coefficient or the high electrical conductivity in the TiO2 system.

  19. IMPROVEMENT OF MECHANICAL PROPERTIES OF ALUMINA AND ZIRCONIA PLASMA SPRAYED COATINGS INDUCED BY LASER POST-TREATMENT

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Kraus, L.; Tuominen, J.; Vuoristo, P.; Chráska, Pavel

    2007-01-01

    Roč. 51, č. 4 (2007), s. 181-189 ISSN 0862-5468 R&D Projects: GA AV ČR 1QS200430560 Institutional research plan: CEZ:AV0Z20430508 Keywords : Alumina * plasma spraying * wear resistance * slurry abrasion Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 0.488, year: 2007

  20. Through-thickness Residual Stress Measurement by Neutron Diffraction in Cu+W Plasma Spray Coatings

    Czech Academy of Sciences Publication Activity Database

    Luzin, V.; Matějíček, Jiří; Gnäupel-Herold, T.

    2010-01-01

    Roč. 652, č. 652 (2010), s. 50-56 ISSN 1662-9752. [International Conference on Mechanical Stress Evaluation by Neutrons and Synchrotron Radiation/5th./. Mito, 10.11.2009-12.11.2009] R&D Projects: GA MŠk ME 901 Institutional research plan: CEZ:AV0Z20430508 Keywords : fusion materials * plasma sprayed coatings * residual stress * neutron diffraction Subject RIV: JG - Metallurgy http://www.scientific.net/MSF.652.50

  1. Corrosion of lanthanum magnesium hexaaluminate as plasma-sprayed coating and as bulk material when exposed to molten V2O5-containing salt

    International Nuclear Information System (INIS)

    Chen, Xiaolong; Cao, Xueqiang; Zou, Binglin; Gong, Jun; Sun, Chao

    2015-01-01

    Highlights: • Corrosion behavior of LaMgAl 11 O 19 bulk and plasma sprayed coating has been compared. • Degradation mechanism is investigated based on LaMgAl 11 O 19 ’s crystal chemistry. • LaMgAl 11 O 19 coating displays inferior corrosion resistance to well crystallized bulk. - Abstract: Corrosion of LaMgAl 11 O 19 (LaMA) bulk and plasma sprayed coating was studied in molten V 2 O 5 -containing salt at 710–1050 °C in air. Results indicate that the well crystallized LaMA bulk exhibited prior corrosion resistance to the plasma sprayed LaMA coating with amorphous phase and reduced chemical bond strength in its crystal structure. La–O chemical bonds with the lowest bond energies were the easiest bonds in the LaMA crystal to be broken by molten V 2 O 5 -containing salt attack to form LaVO 4 at each temperature level for both LaMA bulk and coating. Corrosion products of the LaMA coating were much different at temperature below 900 °C

  2. Study of thermal and electrical parameters of workpieces during spray coating by electrolytic plasma jet

    International Nuclear Information System (INIS)

    Khafizov, A A; Shakirov, Yu I; Valiev, R A; Valiev, R I; Khafizova, G M

    2016-01-01

    In this paper the results are presented of thermal and electrical parameters of products in the system bottom layer - intermediate layer when applying protective coatings of ferromagnetic powder by plasma spray produced in an electric discharge with a liquid cathode, on steel samples. Temperature distribution and gradients in coating and intermediate coating were examined. Detailed descriptions of spray coating with ferromagnetic powder by plasma jet obtained in electrical discharge with liquid cathode and the apparatus for obtaining thereof is provided. Problem has been solved by using of Fourier analysis. Initial data for calculations is provided. Results of numerical analysis are provided as temporal functions of temperature in contiguity between coating and intermediate coating as well as temporal function of the value Q=q-φ; where q is density of heat current directed to the free surface of intermediate coating, φ is density of heat current in contiguity between coating and intermediate coating. The analysis of data given shows that in the systems of contact heat exchange bottom layer-intermediate layer with close values of the thermophysical characteristics of constituting materials is observed a slow increase of the temperature of the contact as a function of time. (paper)

  3. Effect of thermal spray processing techniques on the microstructure and properties of Ni-based amorphous coatings

    International Nuclear Information System (INIS)

    Lee, S.M.; Moon, B.M.; Fleury, E.; Ahn, H.S.; Kim, D.H.; Kim, W.T.; Sordelet, D.J.

    2005-01-01

    Metallic amorphous materials have been widely developed thanks to the outstanding properties including high chemical stability, mechanical strength, and magnetic properties. However, with the exception of a few compositions, the limiting factor is the critical cooling rate for the formation of the amorphous phase. For many applications, it is only the contact surface properties that are important, thus the use, of coating techniques such as thermal sprayings has several attractive features. In this paper, we present the microstructure of Ni-based amorphous coatings prepared by laser cladding and vacuum plasma spraying. The utilization of plasma spraying to deposit atomized powder enabled the formation of fully amorphous coating, laser cladding resulted in mostly crystallized structures. Glass forming ability and wear properties of the coatings were discussed as a function of the coating microstructure. (orig.)

  4. Development and Preliminary Evaluation of a Spray Deposition Sensing System for Improving Pesticide Application.

    Science.gov (United States)

    Kesterson, Melissa A; Luck, Joe D; Sama, Michael P

    2015-12-17

    An electronic, resistance-based sensor array and data acquisition system was developed to measure spray deposition from hydraulic nozzles. The sensor surface consisted of several parallel tin plated copper traces of varying widths with varying gap widths. The system contained an embedded microprocessor to monitor output voltage corresponding to spray deposition every second. In addition, a wireless module was used to transmit the voltage values to a remote laptop. Tests were conducted in two stages to evaluate the performance of the sensor array in an attempt to quantify the spray deposition. Initial tests utilized manual droplet placement on the sensor surface to determine the effects of temperature and droplet size on voltage output. Secondary testing utilized a spray chamber to pass nozzles at different speeds above the sensor surface to determine if output varied based on different application rates or spray droplet classification. Results from this preliminary analysis indicated that manual droplets of 5 and 10 μL resulted in significantly different values from the sensors while temperature did not consistently affect output. Spray chamber test results indicated that different application rates and droplet sizes could be determined using the sensor array.

  5. Effect of spray angle and spray volume on deposition of a medium droplet spray with air support in ivy pot plants.

    Science.gov (United States)

    Foqué, Dieter; Pieters, Jan G; Nuyttens, David

    2014-03-01

    Spray boom systems, an alternative to the predominantly-used spray guns, have the potential to considerably improve crop protection management in glasshouses. Based on earlier experiments, the further optimization of the deposits of a medium spray quality extended range flat fan nozzle type using easy adjustable spray boom settings was examined. Using mineral chelate tracers and water sensitive papers, the spray results were monitored at three plant levels, on the upper side and the underside of the leaves, and on some off-target collectors. In addition, the deposition datasets of all tree experiments were compared. The data showed that the most efficient spray distribution with the medium spray quality flat fan nozzles was found with a 30° forward angled spray combined with air support and an application rate of 1000 L ha(-1) . This technique resulted in a more uniform deposition in the dense canopy and increased spray deposition on the lower side of the leaves compared with the a standard spray boom application. Applying 1000 L ha(-1) in two subsequent runs instead of one did not seem to show any added value. Spray deposition can be improved hugely simply by changing some spray boom settings like nozzle type, angling the spray, using air support and adjusting the spray volume to the crop. © 2013 Society of Chemical Industry.

  6. Effect of Bauxite addition on Adhesion Strength and Surface Roughness of Fly ash based Plasma Sprayed Coatings

    Science.gov (United States)

    Bhuyan, S. K.; Samal, S.; Pattnaik, D.; Sahu, A.; Swain, B.; Thiyagarajan, T. K.; Mishra, S. C.

    2018-03-01

    The environment is being contaminated with advancement of new technology, day by day. One of the primary sources for this contamination is the industrial waste. Industrialization is the prime reason behind the prosperity of any country to meet the materialistic demand. To run the industries, a huge amount of (electric) power is needed and hence need for thermal power plants to serve the purpose. In present scenario, coal fired thermal power plants are set up which generates a huge quantity of Fly ash. Consumption of industrial waste (Fly ash), continually a major concern for human race. In recent years, fly ash is being utilized for various purposes i.e. making bricks, mine reclamation, production of cements etc. The presence of Silica and Alumina in fly ash makes it useful for thermal barrier applications also. The plasma spray technology has the advantage of being able to process any types of metal/ceramic mineral, low-grade-ore minerals etc. to make value-added products and also to deposit ceramics, metals and a combination of these to deposit composite coatings with desired microstructure and required properties on a range of substrate materials. The present work focuses on utilization of fly ash mixing with bauxite (ore mineral) for a high valued application. Fly ash with 10 and 20% bauxite addition is used to deposit plasma spray overlay coatings at different power levels (10-20kW) on aluminum and mild steel substrates. Adhesion strength and surface roughness of the coatings are evaluated. Phase composition analysis of the coatings were done using X-ray diffraction analysis. Surface morphology of the coatings was studied using a scanning electron microscope (SEM). Maximum adhesion strength of 4.924 MPa is obtained for the composition fly ash and bauxite (10%), coated on mild steel at 16kW torch power level. The surface roughness (Ra) of the coatings is found to vary between 10.0102 to 17.2341 micron.

  7. Microstructural Effects and Properties of Non-line-of-Sight Coating Processing via Plasma Spray-Physical Vapor Deposition

    Science.gov (United States)

    Harder, Bryan J.; Zhu, Dongming; Schmitt, Michael P.; Wolfe, Douglas E.

    2017-08-01

    Plasma spray-physical vapor deposition (PS-PVD) is a unique processing method that bridges the gap between conventional thermal spray and vapor phase methods, and enables highly tailorable coatings composed of a variety of materials in thin, dense layers or columnar microstructures with modification of the processing conditions. The strengths of this processing technique are material and microstructural flexibility, deposition speed, and potential for non-line-of-sight (NLOS) capability by vaporization of the feedstock material. The NLOS capability of PS-PVD is investigated here using yttria-stabilized zirconia and gadolinium zirconate, which are materials of interest for turbine engine applications. PS-PVD coatings were applied to static cylindrical substrates approximately 6-19 mm in diameter to study the coating morphology as a function of angle. In addition, coatings were deposited on flat substrates under various impingement configurations. Impingement angle had significant effects on the deposition mode, and microscopy of coatings indicated that there was a shift in the deposition mode at approximately 90° from incidence on the cylindrical samples, which may indicate the onset of more turbulent flow and PVD-like growth. Coatings deposited at non-perpendicular angles exhibited a higher density and nearly a 2× improvement in erosion performance when compared to coatings deposited with the torch normal to the surface.

  8. Evaporation of Droplets in Plasma Spray-Physical Vapor Deposition Based on Energy Compensation Between Self-Cooling and Plasma Heat Transfer

    Science.gov (United States)

    Liu, Mei-Jun; Zhang, Meng; Zhang, Qiang; Yang, Guan-Jun; Li, Cheng-Xin; Li, Chang-Jiu

    2017-10-01

    In the plasma spray-physical vapor deposition process (PS-PVD), there is no obvious heating to the feedstock powders due to the free molecular flow condition of the open plasma jet. However, this is in contrast to recent experiments in which the molten droplets are transformed into vapor atoms in the open plasma jet. In this work, to better understand the heating process of feedstock powders in the open plasma jet of PS-PVD, an evaporation model of molten ZrO2 is established by examining the heat and mass transfer process of molten ZrO2. The results reveal that the heat flux in PS-PVD open plasma jet (about 106 W/m2) is smaller than that in the plasma torch nozzle (about 108 W/m2). However, the flying distance of molten ZrO2 in the open plasma jet is much longer than that in the plasma torch nozzle, so the heating in the open plasma jet cannot be ignored. The results of the evaporation model show that the molten ZrO2 can be partly evaporated by self-cooling, whereas the molten ZrO2 with a diameter <0.28 μm and an initial temperature of 3247 K can be completely evaporated within the axial distance of 450 mm by heat transfer.

  9. Application of tungsten for plasma limiters in TEXTOR

    International Nuclear Information System (INIS)

    Tanabe, T.; Wada, M.; Ohgo, T.; Philipps, V.; Rubel, M.; Huber, A.; Seggern, J. von; Ohya, K.; Pospieszczyk, A.; Schweer, B.

    2000-01-01

    Three different types of W limiters were exposed in the TEXTOR plasma and the response of the plasma and materials performance of the limiters were investigated. - A W bulk limiter operated with preheating above 800 K withstood a plasma heat load of about ∼20 MW/m 2 for a few seconds with some slight surface melting during the highest heat load shot. However, it was severely damaged when operated at around 500 K. - A C/W twin test limiter, half made of bulk W and the other half of graphite (EK-98) gave very useful information on how low- and high-Z materials behave under conditions of simultaneous utilization as PFM such as cross-contamination and the influence of a large mass difference on hydrogen reflection and deposition. - Two sets of main poloidal W limiters made of vacuum vapor sprayed (VPS)-W deposited on graphite (IG-430U) with a Re interlayer could absorb about 60% of the total convection heat and the ohmic plasma with a density as high as 5 x 10 13 cm -3 was sustained. Most of the VPS-W coated limiters tolerated a heat load of ∼20 MW/m 2 . This series of W limiters experiments in TEXTOR has shown that W is applicable as a PFM, if its central accumulation is avoided by NBI and/or ICRH heating. Nevertheless, some concerns still remain, including difficulty of plasma start-up, W behavior in higher temperature plasmas, and materials' selection

  10. Effect of the spray application technique on the deposition of entomopathogenic nematodes in vegetables.

    Science.gov (United States)

    Brusselman, Eva; Beck, Bert; Pollet, Sabien; Temmerman, Femke; Spanoghe, Pieter; Moens, Maurice; Nuyttens, David

    2012-03-01

    The present study compared entomopathogenic nematode delivery at the base of savoy cabbage and cauliflower, at the lower side of savoy cabbage and cauliflower leaves and in leek stems and the ground deposition using a five-nozzle spray boom equipped with an ISO 08 flat fan, an air induction flat fan and Twinjet spray nozzles. Additionally, an air support system and a row application system were evaluated. Approximately 40% of the applied nematodes did not reach the foot of the cabbage plants. The use of an air support system or a row application system improved nematode deposition at the savoy cabbage base. Relative nematode deposition on the lower side of savoy cabbage leaves was 27.20%, while only 2.64% of the applied nematodes reached the lower side of cauliflower leaves. After spraying leek with a standard boom, a low relative nematode deposition (26.64%) was measured in the leek stem. Nozzle type affected the distribution of nematodes in droplet spots. Nozzle type has a minor effect on the number of entomopathogenic nematodes delivered on difficult-to-reach targets. The use of modified spray application techniques directing the spray to the target site are necessary to increase the chances of contact of entomopathogenic nematodes with their target. Copyright © 2011 Society of Chemical Industry.

  11. Assessment of thermal spray coatings for wear and abrasion resistance applications

    Science.gov (United States)

    Karode, Ishaan Nitin

    Thermal spray cermet and metallic coatings are extensively used for wear, abrasion and corrosion control in a variety of industries. The first part of the thesis focuses mainly on testing of sand erosion resistance of thermal spray coatings on carbon composites used in the manufacture of helicopter rotor blades. The test set-up employed is a sand blasting machine and is an effort to duplicate the in-flight conditions especially those encountered in hot arid conditions. The technique adopted follows the Department of Defence test method standard. Carbon Composites have excellent stiffness, strength and low weight/density. The strength to weight ratio is high. Hence, these are used in aerospace applications to a large extent. However, the biggest problem encountered with carbon composites is its low abrasion resistance as its surface is very weak. Hence, thermal spray coatings are used to improve the surface properties of CFRP. Zinc bond coats and WC-Co coatings were tested. However, high amount of thermal stresses were developed between the substrate and the coating due to large differences in the CTE's of the both, leading to high mass losses within two minutes and just 130 grams of sand sprayed on to the coatings with the sand blasting machine built; and hence the coatings with CC as a substrate could not qualify for the application. The second part of the thesis focuses on the assessment of different thermal spray coatings used for manufacture of mechanical seals in pumps and analyze the best coating material for the wear resistance application through detail quantification of material loss by block-on-ring test set-up. A machine based on Block-on-ring test set-up following ASTM G77 (Measurement of Adhesive wear resistance of thermal spray coatings) standards was built to duplicate the pump conditions. Thermally sprayed coated materials were tested in different conditions (Load, time, abrasive). WC-Co had the highest wear resistance (lower volume losses) and

  12. Y2O3-MgO Nano-Composite Synthesized by Plasma Spraying and Thermal Decomposition of Solution Precursors

    Science.gov (United States)

    Muoto, Chigozie Kenechukwu

    This research aims to identify the key feedstock characteristics and processing conditions to produce Y2O3-MgO composite coatings with high density and hardness using solution precursor plasma spray (SPPS) and suspension plasma spray (SPS) processes, and also, to explore the phenomena involved in the production of homogenized nano-composite powders of this material system by thermal decomposition of solution precursor mixtures. The material system would find potential application in the fabrication of components for optical applications such as transparent windows. It was shown that a lack of major endothermic events during precursor decomposition and the resultant formation of highly dense particles upon pyrolysis are critical precursor characteristics for the deposition of dense and hard Y2O3-MgO coatings by SPPS. Using these principles, a new Y2O3-MgO precursor solution was developed, which yielded a coating with Vickers hardness of 560 Hv. This was a considerable improvement over the hardness of the coatings obtained using conventional solution precursors, which was as low as 110 Hv. In the thermal decomposition synthesis process, binary solution precursor mixtures of: yttrium nitrate (Y[n]) or yttrium acetate (Y[a]), with magnesium nitrate (Mg[n]) or magnesium acetate (Mg[a]) were used in order to study the effects of precursor chemistry on the structural characteristics of the resultant Y2O3-MgO powders. The phase domains were coarse and distributed rather inhomogeneously in the materials obtained from the Y[n]Mg[n] and Y[a]Mg[a] mixtures; finer and more homogeneously-distributed phase domains were obtained for ceramics produced from the Y[a]Mg[n] and Y[n]Mg[a] mixtures. It was established that these phenomena were related to the thermal characteristics for the decomposition of the precursors and their effect on phase separation during oxide crystallization. Addition of ammonium acetate to the Y[n[Mg[n] mixture changed the endothermic process to exothermic

  13. Characterization of Ni-YSZ anodes for solid oxide fuel cells fabricated by suspension plasma spraying with axial feedstock injection

    Science.gov (United States)

    Metcalfe, Craig; Kuhn, Joel; Kesler, Olivera

    2013-12-01

    Composite Ni-Y0.15Zr0.85O1.925 anodes were fabricated by axial-injection suspension plasma spraying in open atmosphere conditions. The composition of the anode is controllable by adjustment of the plasma gas composition, stand-off distance, and suspension feed rate. The total porosity is controllable through the addition of carbon black to the suspension as a sacrificial pore-forming material as well as by adjustment of the suspension feed rate. The size of the NiO particles in suspension affects both the composition and total porosity, with larger NiO particles leading to increased Ni content and porosity in the deposited coatings. The surface roughness increases with a decrease of the in-flight droplet momentum, which results from both smaller NiO particles in suspension and the addition of low density pore-forming materials. A solid oxide fuel cell was fabricated with both electrodes and electrolyte fabricated by axial-injection plasma spraying. Peak power densities of 0.718 W cm-2 and 1.13 W cm-2 at 750 °C and 850 °C, respectively, were achieved.

  14. On the Validity of Continuum Computational Fluid Dynamics Approach Under Very Low-Pressure Plasma Spray Conditions

    Science.gov (United States)

    Ivchenko, Dmitrii; Zhang, Tao; Mariaux, Gilles; Vardelle, Armelle; Goutier, Simon; Itina, Tatiana E.

    2018-01-01

    Plasma spray physical vapor deposition aims to substantially evaporate powders in order to produce coatings with various microstructures. This is achieved by powder vapor condensation onto the substrate and/or by deposition of fine melted powder particles and nanoclusters. The deposition process typically operates at pressures ranging between 10 and 200 Pa. In addition to the experimental works, numerical simulations are performed to better understand the process and optimize the experimental conditions. However, the combination of high temperatures and low pressure with shock waves initiated by supersonic expansion of the hot gas in the low-pressure medium makes doubtful the applicability of the continuum approach for the simulation of such a process. This work investigates (1) effects of the pressure dependence of thermodynamic and transport properties on computational fluid dynamics (CFD) predictions and (2) the validity of the continuum approach for thermal plasma flow simulation under very low-pressure conditions. The study compares the flow fields predicted with a continuum approach using CFD software with those obtained by a kinetic-based approach using a direct simulation Monte Carlo method (DSMC). It also shows how the presence of high gradients can contribute to prediction errors for typical PS-PVD conditions.

  15. Plasma technology

    International Nuclear Information System (INIS)

    Drouet, M.G.

    1984-03-01

    IREQ was contracted by the Canadian Electrical Association to review plasma technology and assess the potential for application of this technology in Canada. A team of experts in the various aspects of this technology was assembled and each team member was asked to contribute to this report on the applications of plasma pertinent to his or her particular field of expertise. The following areas were examined in detail: iron, steel and strategic-metals production; surface treatment by spraying; welding and cutting; chemical processing; drying; and low-temperature treatment. A large market for the penetration of electricity has been identified. To build up confidence in the technology, support should be provided for selected R and D projects, plasma torch demonstrations at full power, and large-scale plasma process testing

  16. Preparation and characterization of molybdenum disilicide coating on molybdenum substrate by air plasma spraying

    International Nuclear Information System (INIS)

    Wang, Yi; Wang, Dezhi; Yan, Jianhui; Sun, Aokui

    2013-01-01

    MoSi 2 oxidation protective coatings on molybdenum substrate were prepared by air plasma spraying technique (APS). Microstructure, phase composition, porosity, microhardness and bonding strength of the coatings were investigated and determined. Oxidation behavior of the coating at high temperature was also examined. Results show that composition of the coatings is constituted with MoSi 2 and Mo 5 Si 3 , the surface morphology is described as flattened lamellar features, insufficiently flattened protuberance with some degree of surface roughness, a certain quantity of spherical particles, microcracks and pores. Testing results reveal that microhardness and bonding strength of the coatings increase, and porosity decreases with increasing power or decreasing Ar gas flow rate. Moreover, with decreasing the porosity, the microhardness of the coatings increases. The bonding strength of the coatings also increases with increasing spray distance. The MoSi 2 coated Mo substrate exhibited a good oxidation resistance at 1200 °C.

  17. Field experiment on spray drift: deposition and airborne drift during application to a winter wheat crop.

    Science.gov (United States)

    Wolters, André; Linnemann, Volker; van de Zande, Jan C; Vereecken, Harry

    2008-11-01

    A field experiment was performed to evaluate various techniques for measuring spray deposition and airborne drift during spray application to a winter wheat crop. The application of a spraying agent containing the fluorescent dye Brilliant Sulfo Flavine by a conventional boom sprayer was done according to good agricultural practice. Deposition was measured by horizontal collectors in various arrangements in and outside the treated area. Airborne spray drift was measured both with a passive and an active air collecting system. Spray deposits on top of the treated canopy ranged between 68 and 71% of the applied dose and showed only small differences for various arrangements of the collectors. Furthermore, only small variations were measured within the various groups of collectors used for these arrangements. Generally, the highest spray deposition outside the treated area was measured close to the sprayed plot and was accompanied by a high variability of values, while a rapid decline of deposits was detected in more remote areas. Estimations of spray deposits with the IMAG Drift Calculator were in accordance with experimental findings only for areas located at a distance of 0.5-4.5 m from the last nozzle, while there was an overestimation of a factor of 4 at a distance of 2.0-3.0 m, thus revealing a high level of uncertainty of the estimation of deposition for short distances. Airborne spray drift measured by passive and active air collecting systems was approximately at the same level, when taking into consideration the collector efficiency of the woven nylon wire used as sampling material for the passive collecting system. The maximum value of total airborne spray drift for both spray applications (0.79% of the applied dose) was determined by the active collecting system. However, the comparatively high variability of measurements at various heights above the soil by active and passive collecting systems revealed need for further studies to elucidate the spatial

  18. Failure analysis of thermally cycled columnar thermal barrier coatings produced by high-velocity-air fuel and axial-suspension-plasma spraying: A design perspective

    Czech Academy of Sciences Publication Activity Database

    Ganvir, A.; Vaidhyanathan, V.; Markocsan, N.; Gupta, M.; Pala, Zdeněk; Lukáč, František

    2018-01-01

    Roč. 44, č. 3 (2018), s. 3161-3172 ISSN 0272-8842 Institutional support: RVO:61389021 Keywords : Columnar Thermal Barrier Coatings * Axial Suspension Plasma spraying * Thermal Cyclic Fatigue * High Velocity Air Fuel Spraying Subject RIV: JK - Corrosion ; Surface Treatment of Materials OBOR OECD: Coating and films Impact factor: 2.986, year: 2016 https://www.sciencedirect.com/science/article/pii/S0272884217325403

  19. Effect of precursor solutions on ZnO film via solution precursor plasma spray and corresponding gas sensing performances

    Science.gov (United States)

    Yu, Z. X.; Ma, Y. Z.; Zhao, Y. L.; Huang, J. B.; Wang, W. Z.; Moliere, M.; Liao, H. L.

    2017-08-01

    Solution precursor plasma spraying (SPPS) as a novel thermal spray method was employed to deposit nano-structured ZnO thin film using different formulations of the precursor solution. This article focuses on the influence of the solution composition on the preferential orientation of crystal growth, on crystal size and surface morphology of the resulting ZnO films. The trend of preferential growth along (002) lattice plane of ZnO film was studied by slow scanning X-ray diffraction using a specific coefficient P(002). It appears that the thermal spray process promotes the buildup of ZnO films preferentially oriented along the c-axis. The shape of single particle tends to change from round shaped beads to hexagonal plates by increasing the volume ratio of ethanol in the solvent. Both cauliflower and honeycomb-like surface morphologies featuring high specific surface area and roughness were obtained through the SPPS process by varying solution composition. These ZnO films are hydrophobic with contact angle as high as 136°, which is seemingly associated with micro reliefs developing high surface specific area. Then the gas sensing performances of ZnO films preferentially oriented along (002) face were tentatively predicted using the "first principle calculation method" and were compared with those of conventional films that are mainly oriented along the (101) face. The (002) face displays better hydrogen adsorption capability than the (101) face with much larger resulting changes in electrical resistance. In conclusion, the c-axis oriented ZnO films obtained through SSPS have favorable performances to be used as sensitive layer in gas sensing applications.

  20. Pesticide residues in individual versus composite samples of apples after fine or coarse spray quality application

    NARCIS (Netherlands)

    Poulsen, M.; Wenneker, M.; Withagen, J.C.M.; Christensen, H.B.

    2012-01-01

    In this study, field trials on fine and coarse spray quality application of pesticides on apples were performed. The main objectives were to study the variation of pesticide residue levels in individual fruits versus composite samples, and the effect of standard fine spray quality application versus

  1. Mathematical modelling of powder material motion and transportation in high-temperature flow core during plasma coatings application

    Science.gov (United States)

    Bogdanovich, V. I.; Giorbelidze, M. G.

    2018-03-01

    A problem of mathematical modelling of powder material motion and transportation in gas thermal flow core has been addressed. Undertaken studies indicate significant impact on dynamics of motion of sprayed particles of phenomenological law for drag coefficient and accounting momentum loss of a plasma jet upon acceleration of these particles and their diameter. It is determined that at great dispersion of spraying particles, they reach detail surface at different velocity and significant particles separation takes place at spraying spot. According to the results of mathematical modelling, requirements for admissible dispersion of diameters of particles used for spraying have been formulated. Research has also allowed reducing separation of particles at the spraying spot due to the selection of the method of powder feed to the anode channel of the plasma torch.

  2. Thermal spray for commercial shipbuilding

    Science.gov (United States)

    Rogers, F. S.

    1997-09-01

    Thermal spraying of steel with aluminum to protect it from corrosion is a technology that has been proven to work in the marine environment. The thermal spray coating system includes a paint sealer that is applied over the thermally sprayed aluminum. This extends the service life of the coating and provides color to the end product. The thermal spray system protects steel both through the principle of isolation (as in painting) and galvanizing. With this dual protection mechanism, steel is protected from corrosion even when the coating is damaged. The thermal- sprayed aluminum coating system has proved the most cost- effective corrosion protection system for the marine environment. Until recently, however, the initial cost of application has limited its use for general application. Arc spray technology has reduced the application cost of thermal spraying of aluminum to below that of painting. Commercial shipbuilders could use this technology to enhance their market position in the marine industry.

  3. A Novel Hybrid Axial-Radial Atmospheric Plasma Spraying Technique for the Fabrication of Solid Oxide Fuel Cell Anodes Containing Cu, Co, Ni, and Samaria-Doped Ceria

    Science.gov (United States)

    Cuglietta, Mark; Kuhn, Joel; Kesler, Olivera

    2013-06-01

    Composite coatings containing Cu, Co, Ni, and samaria-doped ceria (SDC) have been fabricated using a novel hybrid atmospheric plasma spraying technique, in which a multi-component aqueous suspension of CuO, Co3O4, and NiO was injected axially simultaneously with SDC injected radially in a dry powder form. Coatings were characterized for their microstructure, permeability, porosity, and composition over a range of plasma spray conditions. Deposition efficiency of the metal oxides and SDC was also estimated. Depending on the conditions, coatings displayed either layering or high levels of mixing between the SDC and metal phases. The deposition efficiencies of both feedstock types were strongly dependent on the nozzle diameter. Plasma-sprayed metal-supported solid oxide fuel cells utilizing anodes fabricated with this technique demonstrated power densities at 0.7 V as high as 366 and 113 mW/cm2 in humidified hydrogen and methane, respectively, at 800 °C.

  4. Solution precursor plasma deposition of nanostructured ZnO coatings

    International Nuclear Information System (INIS)

    Tummala, Raghavender; Guduru, Ramesh K.; Mohanty, Pravansu S.

    2011-01-01

    Highlights: → The solution precursor route employed is an inexpensive process with capability to produce large scale coatings at fast rates on mass scale production. → It is highly capable of developing tailorable nanostructures. → This technique can be employed to spray the coatings on any kind of substrates including polymers. → The ZnO coatings developed via solution precursor plasma spray process have good electrical conductivity and reflectivity properties in spite of possessing large amount of particulate boundaries, porosity and nanostructured grains. -- Abstract: Zinc oxide (ZnO) is a wide band gap semiconducting material that has various applications including optical, electronic, biomedical and corrosion protection. It is usually synthesized via processing routes, such as vapor deposition techniques, sol-gel, spray pyrolysis and thermal spray of pre-synthesized ZnO powders. Cheaper and faster synthesis techniques are of technological importance due to increased demand in alternative energy applications. Here, we report synthesis of nanostructured ZnO coatings directly from a solution precursor in a single step using plasma spray technique. Nanostructured ZnO coatings were deposited from the solution precursor prepared using zinc acetate and water/isopropanol. An axial liquid atomizer was employed in a DC plasma spray torch to create fine droplets of precursor for faster thermal treatment in the plasma plume to form ZnO. Microstructures of coatings revealed ultrafine particulate agglomerates. X-ray diffraction confirmed polycrystalline nature and hexagonal Wurtzite crystal structure of the coatings. Transmission electron microscopy studies showed fine grains in the range of 10-40 nm. Observed optical transmittance (∼65-80%) and reflectivity (∼65-70%) in the visible spectrum, and electrical resistivity (48.5-50.1 mΩ cm) of ZnO coatings are attributed to ultrafine particulate morphology of the coatings.

  5. Solution precursor plasma deposition of nanostructured ZnO coatings

    Energy Technology Data Exchange (ETDEWEB)

    Tummala, Raghavender [Department of Mechanical Engineering, University of Michigan - Dearborn, MI 48128 (United States); Guduru, Ramesh K., E-mail: rkguduru@umich.edu [Department of Mechanical Engineering, University of Michigan - Dearborn, MI 48128 (United States); Mohanty, Pravansu S. [Department of Mechanical Engineering, University of Michigan - Dearborn, MI 48128 (United States)

    2011-08-15

    Highlights: {yields} The solution precursor route employed is an inexpensive process with capability to produce large scale coatings at fast rates on mass scale production. {yields} It is highly capable of developing tailorable nanostructures. {yields} This technique can be employed to spray the coatings on any kind of substrates including polymers. {yields} The ZnO coatings developed via solution precursor plasma spray process have good electrical conductivity and reflectivity properties in spite of possessing large amount of particulate boundaries, porosity and nanostructured grains. -- Abstract: Zinc oxide (ZnO) is a wide band gap semiconducting material that has various applications including optical, electronic, biomedical and corrosion protection. It is usually synthesized via processing routes, such as vapor deposition techniques, sol-gel, spray pyrolysis and thermal spray of pre-synthesized ZnO powders. Cheaper and faster synthesis techniques are of technological importance due to increased demand in alternative energy applications. Here, we report synthesis of nanostructured ZnO coatings directly from a solution precursor in a single step using plasma spray technique. Nanostructured ZnO coatings were deposited from the solution precursor prepared using zinc acetate and water/isopropanol. An axial liquid atomizer was employed in a DC plasma spray torch to create fine droplets of precursor for faster thermal treatment in the plasma plume to form ZnO. Microstructures of coatings revealed ultrafine particulate agglomerates. X-ray diffraction confirmed polycrystalline nature and hexagonal Wurtzite crystal structure of the coatings. Transmission electron microscopy studies showed fine grains in the range of 10-40 nm. Observed optical transmittance ({approx}65-80%) and reflectivity ({approx}65-70%) in the visible spectrum, and electrical resistivity (48.5-50.1 m{Omega} cm) of ZnO coatings are attributed to ultrafine particulate morphology of the coatings.

  6. Fatigue properties of Fe-Al intermetallic coatings prepared by plasma spraying

    Czech Academy of Sciences Publication Activity Database

    Mušálek, Radek; Kovářík, O.; Skiba, Tomáš; Haušild, P.; Karlík, M.; Colmenares-Angulo, J.

    2010-01-01

    Roč. 18, č. 7 (2010), s. 1415-1418 ISSN 0966-9795. [FEAL 2009 - 5th Discussion Meeting on the Development of Innovative Iron Aluminium Alloys. Prague, 21.09.2009-24.09.2009] R&D Projects: GA MŠk ME 901 Institutional research plan: CEZ:AV0Z20430508 Keywords : Iron aluminides * Fatigue resistance and crack growth * plasma spraying * scanning electron microscopy Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 2.327, year: 2010 http://www.sciencedirect.com/science?_ob=GatewayURL&_method=citationSearch&_uoikey=B6TX8-4YGHK94-2&_origin=SDEMFRHTML&_version=1&md5=557fd571c715e5f2cff573d5255bb184

  7. High-volume use of self-cementing spray dry absorber material for structural applications

    Science.gov (United States)

    Riley, Charles E.

    Spray dry absorber (SDA) material, or spray dryer ash, is a byproduct of energy generation by coal combustion and sulfur emissions controls. Like any resource, it ought to be used to its fullest potential offsetting as many of the negative environmental impacts of coal combustion as possible throughout its lifecycle. Its cementitious and pozzolanic properties suggest it be used to augment or replace another energy and emissions intensive product: Portland cement. There is excellent potential for spray dryer ash to be used beneficially in structural applications, which will offset CO2 emissions due to Portland cement production, divert landfill waste by further utilizing a plentiful coal combustion by-product, and create more durable and sustainable structures. The research into beneficial use applications for SDA material is relatively undeveloped and the material is highly underutilized. This dissertation explored a specific self-cementing spray dryer ash for use as a binder in structural materials. Strength and stiffness properties of hydrated spray dryer ash mortars were improved by chemical activation with Portland cement and reinforcement with polymer fibers from automobile tire recycling. Portland cement at additions of five percent of the cementitious material was found to function effectively as an activating agent for spray dryer ash and had a significant impact on the hardened properties. The recycled polymer fibers improved the ductility and toughness of the material in all cases and increased the compressive strength of weak matrix materials like the pure hydrated ash. The resulting hardened materials exhibited useful properties that were sufficient to suggest that they be used in structural applications such as concrete, masonry block, or as a hydraulic cement binder. While the long-term performance characteristics remain to be investigated, from an embodied-energy and carbon emissions standpoint the material investigated here is far superior to

  8. Plasma-Sprayed Titania and Alumina Coatings Obtained from Feedstocks Prepared by Heterocoagulation with 1 wt.% Carbon Nanotube

    Science.gov (United States)

    Jambagi, Sudhakar C.; Agarwal, Anish; Sarkar, Nilmoni; Bandyopadhyay, P. P.

    2018-05-01

    Properties of plasma-sprayed ceramic coatings can be improved significantly by reinforcing such coatings with carbon nanotube (CNT). However, it is difficult to disperse CNT in the plasma spray feedstock owing to its tendency to form agglomerate. A colloidal processing technique, namely heterocoagulation, is effective in bringing about unbundling of CNT, followed by its homogeneous dispersion in the ceramic powder. This report deals with the mixing of micro-sized crushed titania and agglomerated alumina powders with CNT using the heterocoagulation technique. Heterocoagulation of titania was attempted with both cationic and anionic surfactants, and the latter was found to be more effective. Mixing of the oxides and carbon nanotube was also accomplished in a ball mill either in a dry condition or in alcohol, and powders thus obtained were compared with the heterocoagulated powder. The heterocoagulated powder has shown a more homogeneous dispersion of CNT in the oxide. The coatings produced from the heterocoagulated powder demonstrated improvement in hardness, porosity, indentation fracture toughness and elastic modulus. This is attributed to CNT reinforcement.

  9. Comparison of solidity and fractal dimension of plasma sprayed splat with different spreading morphologies

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shu-ying; Ma, Guo-zheng, E-mail: magz0209@163.com; Wang, Hai-dou, E-mail: wanghaidou@aliyun.com.cn; He, Peng-fei; Liu, Ming; Wang, Hai-jun; Xu, Bin-shi

    2017-07-01

    Highlights: • The solidification mechanism of the plasma sprayed droplets deposited on substrate preheated with different temperature was discussed. • The solidified morphology of individual splat was detected by image analysis method. • The fractal dimension, solidity, area and perimeter, were employed to characterize the morphology of the splat. • The typical solidification modes of Fe-based alloy droplet could be divided into three types, namely, flower-like splat, splashed splat and disk-like splat, which may be attributed the differences of solidification rate of the droplets and adsorption on the substrates. - Abstract: The paper deals with the quantitative characterization of spreading morphologies of plasma sprayed Fe-based alloy droplets deposited on mirror polished steels with different preheated temperature. The plasma torch was utilized as heat producer. The influence of substrate temperature on the solidification mechanism of molten droplets was investigated. The image analysis method (IMA) was employed to identify single splat from the field emission scanning electron microscope (FE-SEM) morphology. The result shows that the substrate preheated temperature has a significant effect on the flattening behavior of molten droplets. With the increment of substrate temperature, the solidification mode of splat changes from flower-like and splashed splat to disk-like splat due to the modification of wettability and cooling velocity between molten droplet and substrate. Compared with area and perimeter, both fractal dimension (FD) and solidity could separately detect the solidification mode of splat to a certain extent, while the FD seems to be more excellent in characterizing irregular morphology of splat in contrast with solidity. However, the combination of FD and solidity is more efficient in classifying solidification mode of splat.

  10. Performance of vacuum plasma spray and HVOF bond coatings at 900° and 1100 °C

    Energy Technology Data Exchange (ETDEWEB)

    Lance, Michael J. [ORNL; Haynes, James A. [ORNL; Pint, Bruce A. [ORNL

    2017-12-01

    The effects of Ti and B additions to a vacuum plasma sprayed (VPS) NiCoCrAlYHfSi bond coating on thermal barrier coating (TBC) performance were studied at 1100 °C and 900 °C and compared to high-velocity oxy-fuel (HVOF) bond coatings. Using alloy 247 substrates and air plasma sprayed Y2O3-stabilized ZrO2 top coatings, additions of B or Ti + B did not improve the average TBC lifetime in 1-h cycles at 1100 °C in air with 10% H2O. The addition of Ti resulted in a decrease in lifetime. Photo-stimulated luminescence spectroscopy was used to map residual stresses in the thermally-grown Al2O3 scale. At 900 °C, closer to a typical land based turbine operating bond coating temperature, specimens were examined after ten 500-h cycles in laboratory air and air with 10%H2O to study the effect of H2O. The addition of water vapor had little effect on the measured parabolic rate constants at 900 °C and a comparison of the oxide microstructures in both environments is reported.

  11. Optimization and Characterization of High Velocity Oxy-fuel Sprayed Coatings: Techniques, Materials, and Applications

    Directory of Open Access Journals (Sweden)

    Maria Oksa

    2011-09-01

    Full Text Available In this work High Velocity Oxy-fuel (HVOF thermal spray techniques, spraying process optimization, and characterization of coatings are reviewed. Different variants of the technology are described and the main differences in spray conditions in terms of particle kinetics and thermal energy are rationalized. Methods and tools for controlling the spray process are presented as well as their use in optimizing the coating process. It will be shown how the differences from the starting powder to the final coating formation affect the coating microstructure and performance. Typical properties of HVOF sprayed coatings and coating performance is described. Also development of testing methods used for the evaluation of coating properties and current status of standardization is presented. Short discussion of typical applications is done.

  12. Synthesis and characterization of in situ TiC–TiB2 composite coatings by reactive plasma spraying on a magnesium alloy

    International Nuclear Information System (INIS)

    Zou Binglin; Tao Shunyan; Huang Wenzhi; Khan, Zuhair S.; Fan Xizhi; Gu Lijian; Wang Ying; Xu Jiaying; Cai Xiaolong; Ma Hongmei; Cao Xueqiang

    2013-01-01

    Highlights: ► TiC–TiB 2 composites coatings were produced on Mg alloy by reactive plasma spraying. ► Phase composition, microstructure and wear resistance of the coatings were studied. ► The resultant product in the coatings was composed of TiC and TiB 2 . ► The produced coatings displayed porous and dense microstructures. ► The synthesized coatings exhibited good wear resistance for Mg alloy substrate. - Abstract: TiC–TiB 2 composite coatings were successfully synthesized using the technique of reactive plasma spraying (RPS) on a magnesium alloy. Phase composition, microstructure and wear resistance of the coatings were characterized by using X-ray diffraction, scanning electron microscopy and pin-on-disk wear test, respectively. The results showed that the resultant product in the RPS coatings was composed of TiC and TiB 2 . Depending on the ignition of self-propagating high-temperature synthesis reaction in the agglomerate particles, the RPS coatings displayed porous and dense microstructures. The porosity of the RPS coatings, to some extent, decreased when the feed powders were plasma sprayed with Ni powders. The RPS coatings provided good wear resistance for the substrate under various loads. For high loads (e.g., ≥15 N), the wear resistance could be significantly improved by the proper addition of Ni into the RPS coatings.

  13. Electrochemical testing of suspension plasma sprayed solid oxide fuel cell electrolytes

    Science.gov (United States)

    Waldbillig, D.; Kesler, O.

    Electrochemical performance of metal-supported plasma sprayed (PS) solid oxide fuel cells (SOFCs) was tested for three nominal electrolyte thicknesses and three electrolyte fabrication conditions to determine the effects of electrolyte thickness and microstructure on open circuit voltage (OCV) and series resistance (R s). The measured OCV values were approximately 90% of the Nernst voltages, and electrolyte area specific resistances below 0.1 Ω cm 2 were obtained at 750 °C for electrolyte thicknesses below 20 μm. Least-squares fitting was used to estimate the contributions to R s of the YSZ bulk material, its microstructure, and the contact resistance between the current collectors and the cells. It was found that the 96% dense electrolyte layers produced from high plasma gas flow rate conditions had the lowest permeation rates, the highest OCV values, and the smallest electrolyte-related voltage losses. Optimal electrolyte thicknesses were determined for each electrolyte microstructure that would result in the lowest combination of OCV loss and voltage loss due to series resistance for operating voltages of 0.8 V and 0.7 V.

  14. Re-emission and thermal desorption of deuterium from plasma sprayed tungsten coatings for application in ASDEX-upgrade

    International Nuclear Information System (INIS)

    Garcia-Rosales, C.; Franzen, P.; Plank, H.; Roth, J.; Gauthier, E.

    1996-01-01

    The trapping and release of deuterium implanted with an energy of 100 eV in wrought and in plasma sprayed tungsten of different manufacture and structure has been investigated by means of re-emission as well as thermal and isothermal desorption spectroscopy. The experimental data for wrought tungsten are compared with model calculations with the PIDAT code in order to estimate the parameters governing diffusion, surface recombination and trapping in tungsten. The amount of retained deuterium in tungsten is of the same order of magnitude as in graphite for the implantation parameters used in this work. The mobile hydrogen concentration in tungsten during the implantation is of the same order of magnitude than the trapped one, being released after the termination of the implantation. The fraction of deuterium trapped to defects increases strongly with the porosity of the samples. The temperature needed for the release of the trapped deuterium (∝600 K) are considerably lower than for graphite, due to the smaller trapping energy (≤1.5 eV). (orig.)

  15. Preparation and characterization of molybdenum disilicide coating on molybdenum substrate by air plasma spraying

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi [Key Laboratory of Ministry of Education for Non-ferrous Materials Science and Engineering, Central South University, Changsha 410083 (China); Key Laboratory of Hunan Province for Metallurgy and Material Processing of Rare Metals, Central South University, Changsha 410083 (China); School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Wang, Dezhi, E-mail: dzwang68@163.com [Key Laboratory of Ministry of Education for Non-ferrous Materials Science and Engineering, Central South University, Changsha 410083 (China); Key Laboratory of Hunan Province for Metallurgy and Material Processing of Rare Metals, Central South University, Changsha 410083 (China); School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Yan, Jianhui [Advanced Materials Synthesis and Application Technology Laboratory, Hunan University of Science and Technology, Xiangtan 411201 (China); Sun, Aokui [Key Laboratory of Ministry of Education for Non-ferrous Materials Science and Engineering, Central South University, Changsha 410083 (China); Key Laboratory of Hunan Province for Metallurgy and Material Processing of Rare Metals, Central South University, Changsha 410083 (China); School of Materials Science and Engineering, Central South University, Changsha 410083 (China)

    2013-11-01

    MoSi{sub 2} oxidation protective coatings on molybdenum substrate were prepared by air plasma spraying technique (APS). Microstructure, phase composition, porosity, microhardness and bonding strength of the coatings were investigated and determined. Oxidation behavior of the coating at high temperature was also examined. Results show that composition of the coatings is constituted with MoSi{sub 2} and Mo{sub 5}Si{sub 3}, the surface morphology is described as flattened lamellar features, insufficiently flattened protuberance with some degree of surface roughness, a certain quantity of spherical particles, microcracks and pores. Testing results reveal that microhardness and bonding strength of the coatings increase, and porosity decreases with increasing power or decreasing Ar gas flow rate. Moreover, with decreasing the porosity, the microhardness of the coatings increases. The bonding strength of the coatings also increases with increasing spray distance. The MoSi{sub 2} coated Mo substrate exhibited a good oxidation resistance at 1200 °C.

  16. Permeability and Microstructure of Suspension Plasma-Sprayed YSZ Electrolytes for SOFCs on Various Substrates

    Science.gov (United States)

    Marr, Michael; Kesler, Olivera

    2012-12-01

    Yttria-stabilized zirconia electrolyte coatings for solid oxide fuel cells were deposited by suspension plasma spraying using a range of spray conditions and a variety of substrates, including finely structured porous stainless steel disks and cathode layers on stainless steel supports. Electrolyte permeability values and trends were found to be highly dependent on which substrate was used. The most gas-tight electrolyte coatings were those deposited directly on the porous metal disks. With this substrate, permeability was reduced by increasing the torch power and reducing the stand-off distance to produce dense coating microstructures. On the substrates with cathodes, electrolyte permeability was reduced by increasing the stand-off distance, which reduced the formation of segmentation cracks and regions of aligned and concentrated porosity. The formation mechanisms of the various permeability-related coating features are discussed and strategies for reducing permeability are presented. The dependences of electrolyte deposition efficiency and surface roughness on process conditions and substrate properties are also presented.

  17. Implications of electronic short circuiting in plasma sprayed solid oxide fuel cells on electrode performance evaluation by electrochemical impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    White, B.D. [Department of Mechanical Engineering, The University of British Columbia, 2054-6250 Applied Sciences Lane, Vancouver, British Columbia (Canada); Kesler, O. [Department of Mechanical and Industrial Engineering, University of Toronto, 5 King' s College Road, Toronto, Ontario (Canada)

    2008-02-15

    Electronic short circuiting of the electrolyte in a solid oxide fuel cell (SOFC) arising from flaws in the plasma spray fabrication process has been found to have a significant effect on the perceived performance of the electrodes, as evaluated by electrochemical impedance spectroscopy (EIS). The presence of a short circuit has been found to lead to the underestimation of the electrode polarization resistance (R{sub p}) and hence an overestimation of electrode performance. The effect is particularly noticeable when electrolyte resistance is relatively high, for example during low to intermediate temperature operation, leading to an obvious deviation from the expected Arrhenius-type temperature dependence of R{sub p}. A method is developed for determining the real electrode performance from measurements of various cell properties, and strategies for eliminating the occurrence of short circuiting in plasma sprayed cells are identified. (author)

  18. Implications of electronic short circuiting in plasma sprayed solid oxide fuel cells on electrode performance evaluation by electrochemical impedance spectroscopy

    Science.gov (United States)

    White, B. D.; Kesler, O.

    Electronic short circuiting of the electrolyte in a solid oxide fuel cell (SOFC) arising from flaws in the plasma spray fabrication process has been found to have a significant effect on the perceived performance of the electrodes, as evaluated by electrochemical impedance spectroscopy (EIS). The presence of a short circuit has been found to lead to the underestimation of the electrode polarization resistance (R p) and hence an overestimation of electrode performance. The effect is particularly noticeable when electrolyte resistance is relatively high, for example during low to intermediate temperature operation, leading to an obvious deviation from the expected Arrhenius-type temperature dependence of R p. A method is developed for determining the real electrode performance from measurements of various cell properties, and strategies for eliminating the occurrence of short circuiting in plasma sprayed cells are identified.

  19. Review of US Nanocorp - SNL Joint Development of Thermal-Sprayed Thin-Film Cathodes for Thermal Batteries

    Energy Technology Data Exchange (ETDEWEB)

    GUIDOTTI,RONALD A.; REINHARDT,FREDERICK W.; DAI,JINXIANG; XIAO,T. DANNY; REISNER,DAVID E.

    2000-11-14

    The use of plasma spray to deposit thin metal-sulfide cathode films is described in this paper. Conventional electroactive stack components in thermal batteries are constructed from pressed-powder parts that are difficult to fabricate in large diameters in thicknesses <0.010. Plasma-sprayed electrodes do not steer from this difficulty, allowing greater energy densities and specific energies to be realized. Various co-spraying agents have been found suitable for improving the mechanical as well as electrochemical properties of plasma-sprayed cathodes for thermal batteries. These electrodes generally show equal or improved performance over conventional pressed-powder electrodes. A number of areas for future growth and development of plasma-spray technology is discussed.

  20. Effects of nozzle type and spray angle on spray deposition in ivy pot plants.

    Science.gov (United States)

    Foqué, Dieter; Nuyttens, David

    2011-02-01

    Fewer plant protection products are now authorised for use in ornamental growings. Frequent spraying with the same product or a suboptimal technique can lead to resistance in pests and diseases. Better application techniques could improve the sustainable use of the plant protection products still available. Spray boom systems--instead of the still predominantly used spray guns--might improve crop protection management in greenhouses considerably. The effect of nozzle type, spray pressure and spray angle on spray deposition and coverage in ivy pot plants was studied, with a focus on crop penetration and spraying the bottom side of the leaves in this dense crop. The experiments showed a significant and important effect of collector position on deposition and coverage in the plant. Although spray deposition and coverage on the bottom side of the leaves are generally low, they could be improved 3.0-4.9-fold using the appropriate application technique. When using a spray boom in a dense crop, the nozzle choice, spray pressure and spray angle should be well considered. The hollow-cone, the air-inclusion flat-fan and the standard flat-fan nozzle with an inclined spray angle performed best because of the effect of swirling droplets, droplets with a high momentum and droplet direction respectively. Copyright © 2010 Society of Chemical Industry.

  1. Plasma-spray synthesis and characterization of ti-based nitride and oxide nanogranules

    Energy Technology Data Exchange (ETDEWEB)

    Antipas, Georgios S.E., E-mail: gantipas@metal.ntua.gr [School of Mining Engineering and Metallurgy, National Technical University of Athens, Athens (Greece)

    2014-09-15

    The synthesis of nanosized Ti-based nanogranules via plasma spraying is reported. The synthesis route involved use of both nitrogen and oxygen gases with varying results. In the case of nitrogen, a mixture of titanium nitrides were produced, yielding both the Ti2N and the sub-stoichiometric TiN0.61 compounds. In the case of oxygen, both the stoichiometric rutile and TiO ceramic phases were indexed. Based on EDS analysis, even fractional oxygen concentrations caused tungsten impurities which originated from the cathode electrode. The method yielded particle mass median sizes of the order of 15nm and the smallest particles detected were 5nm. (author)

  2. Residual stress determination in thermally sprayed metallic deposits by neutron diffraction

    International Nuclear Information System (INIS)

    Keller, Thomas; Margadant, Nikolaus; Pirling, Thilo; Riegert-Escribano, Maria J.; Wagner, Werner

    2004-01-01

    Neutron diffraction was used to obtain spatially resolved strain and stress profiles in thermally sprayed metallic 'NiCrAlY' deposits (chemical composition 67 wt.% Ni, 22 wt.% Cr, 10 wt.% Al, 1 wt.% Y) and the underlying steel substrates. Samples of four different spray techniques were analyzed: atmospheric and water stabilized plasma spraying (APS and WSP), flame spraying (FS) and wire arc spraying (WAS). The results are quantitatively compared with the average in-plane residual stress determined by complementary bending tests and the hole drilling technique. While the stress profiles from the surface to the interface in the deposits are similar for all investigated spray techniques, their absolute values and gradients vary strongly. This is attributed to different quenching stresses from the impinging particles, different thermal histories the deposit/substrate systems undergo during the spraying and subsequent cooling, and also to different coating properties. In the water stabilized plasma sprayed and the wire arc sprayed deposits, a gradient in the stress-free lattice parameter was observed. Crack formation is found to be a dominant mechanism for stress relaxation in the surface plane

  3. Microstructure and Wear Behavior of Atmospheric Plasma-Sprayed AlCoCrFeNiTi High-Entropy Alloy Coating

    Science.gov (United States)

    Tian, Li-Hui; Xiong, Wei; Liu, Chuan; Lu, Sheng; Fu, Ming

    2016-12-01

    Due to the advantages such as high strength, high hardness and good wear resistance, high-entropy alloys (HEAs) attracted more and more attentions in recent decades. However, most reports on HEAs were limited to bulk materials. Although a few of studies on atmospheric plasma-sprayed (APS) HEA coatings were carried out, the wear behavior, especially the high-temperature wear behavior of those coatings has not been investigated till now. Therefore, in this study, APS was employed to deposit AlCoCrFeNiTi high-entropy alloy coating using mechanically alloyed AlCoCrFeNiTi powder as the feedstock. The phase structure of the initial powder, the feedstock powder and the as-sprayed coating was examined by an x-ray diffractometer. The surface morphology of the feedstock powder and the microstructure of the as-sprayed coating were analyzed by field emission scanning electron microscopy and energy-dispersive spectroscopy. The bonding strength and the microhardness of the as-sprayed coating were tested. The wear behavior of the coating at 25, 500, 700 and 900 °C was investigated by analysis of the wear surface morphology and measurements of the volume wear rate and the coefficient of friction.

  4. Plasma technology for powder particles

    Energy Technology Data Exchange (ETDEWEB)

    Kranz, E. (Technische Hochschule, Ilmenau (German Democratic Republic))

    1983-03-01

    A survey is given of principles and applications of plasma spraying and of powder transformation and generation in plasma considering spheroidization, grain size transformation, powder particle formation, powder reduction, and melting within the power range of 10/sup 3/ to 10/sup 7/ W. The products are applied in many industrial fields such as nuclear engineering, hard metal production, metallurgy, catalysis, and semiconductor techniques.

  5. Microstructure and corrosive wear resistance of plasma sprayed Ni-based coatings after TIG remelting

    Science.gov (United States)

    Tianshun, Dong; Xiukai, Zhou; Guolu, Li; Li, Liu; Ran, Wang

    2018-02-01

    Ni based coatings were prepared on steel substrate by means of plasma spraying, and were remelted by TIG (tungsten inert gas arc) method subsequently. The microstructure, microhardness, electrochemical corrosion and corrosive wear resistance under PH = 4, PH = 7 and PH = 10 conditions of the coatings before and after remelting were investigated. The results showed that the TIG remelting obviously reduced the defects and dramatically decreased the coating’s porosity from 7.2% to 0.4%. Metallurgical bonding between the remelted coating and substrate was achieved. Meanwhile, the phase compositions of as-sprayed coating were γ-Ni, Mn5Si2 and Cr2B, while the phase compositions of the remelting coating were Fe3Ni, Cr23C6, Cr2B and Mn5Si2. The microhardness of the coating decreased from 724 HV to 608 HV, but the fracture toughness enhanced from 2.80 MPa m1/2 to 197.3 MPa m1/2 after remelting. After corrosive wear test, the average wear weight loss and 3D morphology of wear scar of two coatings indicated that the wear resistance of the remelted coating was remarkably higher than that of as-sprayed coating. Therefore, TIG remelting treatment was a feasible method to improve the coating’s microstructure and enhance its corrosive wear resistance.

  6. Effects of isothermal treatment on microstructure and scratch test behavior of plasma sprayed zirconia coatings

    Directory of Open Access Journals (Sweden)

    Veloso Guilherme

    2004-01-01

    Full Text Available The increase of the petroleum cost in the last decades revitalized the interest for lighter and more economic vehicles. Simultaneously, the demand for safe and unpolluted transports grows. The application of thermal barriers coatings (TBC on combustion chamber and on flat surface of pistons reduces the thermal losses of the engines, resulting in higher temperatures in the combustion chamber. This fact contributes to the improvement of the thermal efficiency (performance and for the reduction of incomplete combustion. Supported on these initial ideas, thermal barriers coatings constituted by CaO partially stabilized zirconia were produced and their microstructure examined. This coating still presents some drawbacks associated with thermal stresses and permeability to oxidizing gases, which will, eventually, lead to failure of the TBC by spallation. The failure may, in general, be associated to one of three factors: oxide growth at the ceramic-metal interface, formed during thermal cycling; stress build-up due to thermal cycling; and metal-oxide interface segregation, mainly of S. However, it is also relevant to understand the behavior of TBC's under isothermal oxidation. Therefore, this paper investigates the effect of oxidation on the adherence of thermal sprayed coatings. The adherence was measured by linear scratching tests, widely used for thin coatings. Plasma sprayed calcia partially stabilized zirconia was used as TBC and Ni-5%Al as bond coat, with Al substrates. Coated samples were submitted to heat treatments at 500 °C, for 50 h. The microstructures were examined by optical light microscopy, X-ray diffraction, profilometry and SEM.

  7. Characteristics and Thermal Efficiency of a Non-transferred DC Plasma Spraying Torch Under Low Pressure

    International Nuclear Information System (INIS)

    Bao Shicong; Ye Minyou; Zhang Xiaodong; Guo Wenkang; Xu Ping

    2008-01-01

    Current-voltage (I-V) characteristics of a non-transferred DC arc plasma spray torch operated in argon at vacuum are reported. The arc voltage is of negative characteristics for a current below 200 A, flat for a current between 200 A to 250 A and positive for a current beyond 250 A. The voltage increases slowly with the increase in carrier gas of arc. The rate of change in voltage with currents is about 3∼4 V/100 A at a gas flow rate of about 1∼1.5 V/10 standard liter per minute (slpm). The I-V characteristics of the DC plasma torch are of a shape of hyperbola. Arc power increases with the argon flow rate, and the thermal efficiency of the torch acts in a similar way. The thermal efficiency of the non-transferred DC plasmatron is about 65∼78%. (low temperature plasma)

  8. Alumina-fluorapatite composite coating deposited by atmospheric plasma spraying: An agent of cohesion between bone and prostheses

    International Nuclear Information System (INIS)

    Ghorbel, Halima Feki; Guidara, Awatef; Danlos, Yoan; Bouaziz, Jamel; Coddet, Christian

    2017-01-01

    In order to remedy the poor biological and tribological properties of 316 L stainless steel (SS), plasma sprayed bio-ceramic coatings have been widely investigated. In the present study, a small amount of fluorapatite (Fap) was introduced into alumina in order to enhance its bioactivity. The powder feedstock was sprayed on 316 L substrate by Atmospheric Plasma Spraying (APS) technology. The roughness profiles and average roughness values were determined using 3D profilometry. The cross sectional morphologies of the coatings were examined by scanning electron microscopy (SEM). Adhesive strength, micro-hardness and tribological properties were also examined. Experimental results revealed that Al 2 O 3 /Fap coating showed a good microhardness property revealing that the calcium aluminates were quite effective in improving the Fap mechanical behavior. The tribological characteristics of both alumina and alumina-Fap coating were also compared to those of classical hydroxyapatite (Hap) coatings as reported in the literature. The main finding of this work was that Fap coating can contribute to the cohesion between bone and prostheses and thus ensure a more durable and reliable prostheses. - Highlights: • This research addresses tissue engineering and novel biomaterials consisting of combination of Al 2 O 3 and Fap. • The addition of Fap to alumina results in higher coating porosity, which may be beneficial for the mechanical fixture by bone ingrowth. • Adhesion strength of the alumina ceramic coating is improved by the Fap addition • The presence of CaO in the synthesized Fap may help in improving the mechanical resistance through to formation of the calcium aluminates

  9. Fiscal 1998 achievement report on regional consortium research and development project. Venture business fostering regional consortium in its 2nd year--Creation of key industries (Development of multi-purpose high-precision plasma process); 1998 nendo tamokuteki koseido netsu plasma process no kaihatsu seika hokokusho. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Research and development is conducted of a new material process using thermal plasma for manufacturing new ceramics efficiently and for forming a high-quality spray-deposited ceramic coating high in melting point. In the development of devices, addition of an insulation convergence section enables the construction of a plasma jet generator which operates with stability across a range from atmospheric pressure through 10{sup -1} Torr and exhibits high thermal efficiency of approximately 70%. In the study of basic matters, the thermal plasma process is experimented for its optimization and the interaction between thermal plasma and injected materials is elucidated. In the development of a technology for manufacturing high-quality sprayed coatings, optimum plasma spraying conditions are established for each grain size of alumina/titania composite materials, with the rate of one component to the other taken into consideration. The optimum plasma spraying conditions are determined after examining the state of fused powder recovered after plasma spraying, porosity, the rate of coating adhesion, etc. It is found that coatings formed by high-power thermal plasma application are attributable to the vapor-solid process and, thanks to the finding, a crystal orientation control technology is developed for such coatings. (NEDO)

  10. Effect of plasma spraying parameter on wear resistance of NiCrBSiCFe plasma coatings on austenitic stainless steel at elevated temperatures at various loads

    International Nuclear Information System (INIS)

    Parthasarathi, N.L.; Duraiselvam, Muthukannan; Borah, Utpal

    2012-01-01

    Highlights: ► Effect of plasma spraying parameters, especially the stand-off distance. ► Effect of microstructure and applied load on coating in sliding wear. ► The reason for maximum wear rate at 250 °C and the minimum wear at 350 °C were explained. ► The worn debris were characterised by SEM analysis and correlated with wear rate. -- Abstract: The dry sliding wear tests were carried out on AISI 316 austenitic stainless steel (ASS) plasma coated with NiCrBSiCFe alloy powder under two set of plasma spraying parameters (PSP-1 and PSP-2). EN 8 medium carbon steel was used as a counterface material. The tests were carried out at loads of 20 N and 40 N with a constant sliding velocity of 1 m/s at room temperature (35°), 150 °C, 250 °C and 350 °C. Metallographic characterisation was carried out by optical microscope (OM), scanning electron microscope (SEM) and X-ray diffraction (XRD). Between the two plasma parameters tested, stand-off distance of 125 mm was found to be more suitable for producing uniform lamellar microstructure with fewer amounts of pores which shows better wear resistance. The wear rate at 250 °C was comparatively more due to the material softening and adhesion by intermolecular bonding. The worn debris collected during sliding at 350 °C turn into oxides which further behaves like a protective and lubricative film eliminating the chances of severe material loss. SEM was used to characterise the worn track and debris to identity the wear mechanism.

  11. In-Swath Spray Deposition Characteristics of a Low Drift Nozzle for Low Volume Aerial Application - Preliminary Results.

    Science.gov (United States)

    CP flat-fan nozzles with selectable tips were evaluated for droplet spectra and coverage using water sensitive papers placed in the spray swath. This study used low application volumes (1, 2, and 3 GPA) at a certain spray application height as measured precisely by laser mounted in the aircraft. No...

  12. The Influence of Process Equipment on the Properties of Suspension Plasma Sprayed Yttria-Stabilized Zirconia Coatings

    Science.gov (United States)

    Marr, Michael; Waldbillig, David; Kesler, Olivera

    2013-03-01

    Suspension plasma-sprayed YSZ coatings were deposited at lab-scale and production-type facilities to investigate the effect of process equipment on coating properties. The target application for these coatings is solid oxide fuel cell (SOFC) electrolytes; hence, dense microstructures with low permeability values were preferred. Both facilities had the same torch but different suspension feeding systems, torch robots, and substrate holders. The lab-scale facility had higher torch-substrate relative speeds compared with the production-type facility. On porous stainless steel substrates, permeabilities and microstructures were comparable for coatings from both facilities, and no segmentation cracks were observed. Coating permeability was further reduced by increasing substrate temperatures during deposition or reducing suspension feed rates. On SOFC cathode substrates, coatings made in the production-type facility had higher permeabilities and more segmentation cracks compared with coatings made in the lab-scale facility. Increased cracking in coatings from the production-type facility was likely caused mainly by its lower torch-substrate relative speed.

  13. Applicability of fan spray nozzles to stripping insoluble gases from viscous liquids

    International Nuclear Information System (INIS)

    Tseng, H.H.; Johnson, E.F.

    1983-08-01

    Fan spray nozzle stripping appears to be a practical technique for separating dilute volatile solutes from nonvolatile solvents. In particular this technique can be used to strip molecular tritium and tritium fluoride at extremely small concentration (in the parts per million range) from molten salts used as blanket materials in a fusion reactor. Under adjusted operating conditions of the fan spray as it leaves the nozzle, a high percentage of the theoretically maximum achievable stripping would take place from the expanding sheet of the fan spray as it leaves the nozzle and before it breaks up. Although the only available experimental data are for aqueous solutions, a new theoretical analysis of the fan spray sheet demonstrates the applicability of this technique to nonaqueous liquids. The equation derived from this analysis relates the theoretically achievable mass transfer efficiency to the properties of the liquid flowing through the fan spray nozzle and to the operating conditions of the nozzle. Any fluid with viscosity higher than or equal to that of water would be expected to follow this equation as long as a fan-shaped sheet is formed under the operating conditions of the nozzle

  14. Spray-coatable negative photoresist for high topography MEMS applications

    International Nuclear Information System (INIS)

    Arnold, Markus; Haas, Sven; Schwenzer, Falk; Schwenzer, Gunther; Reuter, Danny; Geßner, Thomas; Voigt, Anja; Gruetzner, Gabi

    2017-01-01

    In microsystem technology, the lithographical processing of substrates with a topography is very important. Interconnecting lines, which are routed over sloped topography sidewalls from the top of the protecting wafer to the contact pads of the device wafer, are one example of patterning over a topography. For structuring such circuit paths, a photolithography process, and therefore a process for homogeneous photoresist coating, is required. The most flexible and advantageous way of depositing a homogeneous photoresist film over structures with high topography steps is spray-coating. As a pattern transfer process for circuit paths in cavities, the lift-off process is widely used. A negative resist, like ma-N (MRT) or AZnLOF (AZ) is favoured for lift-off processes due to the existing negative angle of the sidewalls. Only a few sprayable negative photoresists are commercially available. In this paper, the development of a novel negative resist spray-coating based on a commercially available single-layer lift-off resist for spin-coating, especially for the patterning of structures inside the cavity and on the cavity wall, is presented. A variety of parameters influences the spray-coating process, and therefore the patterning results. Besides the spray-coating tool and the parameters, the composition of the resist solution itself also influences the coating results. For homogeneous resist coverage over the topography of the substrate, different solvent combinations for diluting the resist solution, different chuck temperatures during the coating process, and also the softbake conditions, are all investigated. The solvent formulations and the process conditions are optimized with respect to the homogeneity of the resist coverage on the top edge of the cavities. Finally, the developed spray-coating process, the resist material and the process stability are demonstrated by the following applications: (i) lift-off, (ii) electroplating, (iii) the wet and (iv) the dry

  15. A laser-treatment condition of plasma-sprayed zirconia thermal barrier coatings on nickel-base superalloy substrate

    International Nuclear Information System (INIS)

    Kondo, Yasuo; Fukaya, Kiyoshi; Miyamoto, Yoshiaki

    1987-06-01

    In order to seal the surface pores, two plasma-sprayed zirconia coatings (containing 8 wt.% CaC 2 and 8 wt.% Y 2 O 3 ) of about 200 microns thickness were partially melted with a CO 2 laser. Preliminary experiment had shown that the laser beam with a power density of 35 W/mm 2 could melt plasma-sprayed zirconia to depth of 50 to 80 microns at a scanning speed of about 300 mm/min. There was little porosity in the laser-treated region. However, straiations and mud-flat cracking of about 50 microns in depth were produced by the laser-treatment. Numerous fine particles of a few microns diameter were formed on the laser-treated surface, and microcracks were propagated between these fine particles. In the CaC 2 /ZrO 2 ceramic coating system, calcium content of the laser-treated region became less compared with that of the nontreated region. While, in the Y 2 O 3 /ZrO 2 system, yttrium distribution in the laser-treated area was more uniform than that in the nontreated area. This indicates that Y 2 O 3 /ZrO 2 system is more stable than CaC 2 /ZrO 2 system to laser treatment. (author)

  16. Al-Si/B{sub 4}C composite coatings on Al-Si substrate by plasma spray technique

    Energy Technology Data Exchange (ETDEWEB)

    Sarikaya, Ozkan [Sakarya University, Faculty of Engineering, Department of Mechanical Engineering, Esentepe Campus, Sakarya 54187 (Turkey); Anik, Selahaddin [Sakarya University, Faculty of Engineering, Department of Mechanical Engineering, Esentepe Campus, Sakarya 54187 (Turkey); Aslanlar, Salim [Sakarya University, Faculty of Technical Education, Department of Mechanical Engineering, Esentepe Campus, Sakarya 54187 (Turkey); Cem Okumus, S. [Sakarya University, Faculty of Engineering, Department of Metallurgical and Materials Engineering, Esentepe Campus, Sakarya 54187 (Turkey); Celik, Erdal [Dokuz Eylul University, Engineering Faculty, Department of Metallurgical and Materials Engineering, Buca, Izmir 35160 (Turkey)]. E-mail: erdal.celik@deu.edu.tr

    2007-07-01

    Plasma-sprayed coatings of Al-Si/B{sub 4}C have been prepared on Al-Si piston alloys for diesel engine motors. The Al-Si/B{sub 4}C composite powders including 5-25 wt% B{sub 4}C were prepared by mixing and ball-milling processes. These powders were deposited on Al-Si substrate using an atmospheric plasma spray technique. The coatings have been characterised with respect to phase composition, microstructure, microhardness, bond strength and thermal expansion. It was found that Al, Si, B{sub 4}C and Al{sub 2}O{sub 3} phases were determined in the coatings with approximately 600 {mu}m thick by using X-ray diffraction analysis. Scanning electron microscope observation revealed that boron carbide particles were uniformly distributed in composite coatings and B{sub 4}C particles were fully wetted by Al-Si alloy. Also, no reaction products were observed in Al-Si/B{sub 4}C composite coatings. It was found that surface roughness, porosity, bond strength and thermal expansion coefficient of composite coatings decreased with increasing fraction of the boron carbide particle. It was demonstrated that the higher the B{sub 4}C content, the higher the hardness of coatings because the hardness of B{sub 4}C is higher than that of Al-Si.

  17. Characterization of gas tunnel type plasma sprayed hydroxyapatite-nanostructure titania composite coatings

    Science.gov (United States)

    Yugeswaran, S.; Kobayashi, A.; Ucisik, A. Hikmet; Subramanian, B.

    2015-08-01

    Hydroxyapatite (HA) can be coated onto metal implants as a ceramic biocompatible coating to bridge the growth between implants and human tissue. Meanwhile many efforts have been made to improve the mechanical properties of the HA coatings without affecting its bioactivity. In the present study, nanostructure titania (TiO2) was mixed with HA powder and HA-nanostructure TiO2 composite coatings were produced by gas tunnel type plasma spraying torch under optimized spraying conditions. For this purpose, composition of 10 wt% TiO2 + 90 wt% HA, 20 wt% TiO2 + 80 wt% HA and 30 wt% TiO2 + 70 wt% HA were selected as the feedstock materials. The phase, microstructure and mechanical properties of the coatings were characterized. The obtained results validated that the increase in weight percentage of nanostructure TiO2 in HA coating significantly increased the microhardness, adhesive strength and wear resistance of the coatings. Analysis of the in vitro bioactivity and cytocompatibility of the coatings were done using conventional simulated body fluid (c-SBF) solution and cultured green fluorescent protein (GFP) labeled marrow stromal cells (MSCs) respectively. The bioactivity results revealed that the composite coating has bio-active surface with good cytocompatibility.

  18. Residual stress determination in thermally sprayed metallic deposits by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Thomas; Margadant, Nikolaus; Pirling, Thilo; Riegert-Escribano, Maria J.; Wagner, Werner

    2004-05-25

    Neutron diffraction was used to obtain spatially resolved strain and stress profiles in thermally sprayed metallic 'NiCrAlY' deposits (chemical composition 67 wt.% Ni, 22 wt.% Cr, 10 wt.% Al, 1 wt.% Y) and the underlying steel substrates. Samples of four different spray techniques were analyzed: atmospheric and water stabilized plasma spraying (APS and WSP), flame spraying (FS) and wire arc spraying (WAS). The results are quantitatively compared with the average in-plane residual stress determined by complementary bending tests and the hole drilling technique. While the stress profiles from the surface to the interface in the deposits are similar for all investigated spray techniques, their absolute values and gradients vary strongly. This is attributed to different quenching stresses from the impinging particles, different thermal histories the deposit/substrate systems undergo during the spraying and subsequent cooling, and also to different coating properties. In the water stabilized plasma sprayed and the wire arc sprayed deposits, a gradient in the stress-free lattice parameter was observed. Crack formation is found to be a dominant mechanism for stress relaxation in the surface plane.

  19. Drift curves from spray applications on commom bean crop

    Directory of Open Access Journals (Sweden)

    Mariana Rodrigues Bueno

    Full Text Available ABSTRACT In order to avoid the occurrence of drift in pesticide applications, it is fundamental to know the behavior of sprayed droplets. This study aimed to determine drift curves in pesticide applications on common bean crop under brazilian weather conditions, using different nozzle types and compared them with the "German" and "Dutch" drift prediction models. The experiment was conducted in Uberlândia, Minas Gerais/Brazil, in completely randomized design with ten replications and 4 x 20 split-plot arrangement in space. Drift deposited on collectors located over ground level was resulted by 150 L ha-1 carrier volume applications through four nozzle types (XR 11002 (fine droplets; AIXR 11002 (coarse droplets; TT 11002 (medium droplets; TTI 11002 (extremely coarse droplets, collected in 20 downwind distances, parallel to the crop line outside the target area, spaced by 2.5 m. The tracer rhodamine B was added to the spray to be quantified by fluorimetry. Drift prediction models adjusted by exponential functions were obtained considering the 90th percentile for XR, TT, AIXR and TTI nozzles. It is suggested to use the estimated drift models from this study for each nozzle type in drift prediction evaluations on bean crops under brazilian weather conditions.

  20. Thermal Arc Spray Overview

    Science.gov (United States)

    Hafiz Abd Malek, Muhamad; Hayati Saad, Nor; Kiyai Abas, Sunhaji; Mohd Shah, Noriyati

    2013-06-01

    Usage of protective coating for corrosion protection was on highly demand during the past decade; and thermal spray coating played a major part during that time. In recent years, the thermal arc spray coating becomes a popular coating. Many big players in oil and gas such as PETRONAS, EXXON MOBIL and SHELL in Malaysia tend to use the coating on steel structure as a corrosion protection. Further developments in coating processes, the devices, and raw materials have led to expansion of functional coatings and applications scope from conventional coating to specialized industries. It is widely used because of its ability to withstand high process temperature, offer advantages in efficiency, lower cost and acts as a corrosion protection. Previous research also indicated that the thermal arc spray offers better coating properties compared to other methods of spray. This paper reviews some critical area of thermal spray coating by discussing the process/parameter of thermal arc spray technology and quality control of coating. Coating performance against corrosion, wear and special characteristic of coating are also described. The field application of arc spray technology are demonstrated and reviewed.

  1. Thermal Arc Spray Overview

    International Nuclear Information System (INIS)

    Malek, Muhamad Hafiz Abd; Saad, Nor Hayati; Abas, Sunhaji Kiyai; Shah, Noriyati Mohd

    2013-01-01

    Usage of protective coating for corrosion protection was on highly demand during the past decade; and thermal spray coating played a major part during that time. In recent years, the thermal arc spray coating becomes a popular coating. Many big players in oil and gas such as PETRONAS, EXXON MOBIL and SHELL in Malaysia tend to use the coating on steel structure as a corrosion protection. Further developments in coating processes, the devices, and raw materials have led to expansion of functional coatings and applications scope from conventional coating to specialized industries. It is widely used because of its ability to withstand high process temperature, offer advantages in efficiency, lower cost and acts as a corrosion protection. Previous research also indicated that the thermal arc spray offers better coating properties compared to other methods of spray. This paper reviews some critical area of thermal spray coating by discussing the process/parameter of thermal arc spray technology and quality control of coating. Coating performance against corrosion, wear and special characteristic of coating are also described. The field application of arc spray technology are demonstrated and reviewed.

  2. Plasma processing: Technologies and applications

    International Nuclear Information System (INIS)

    Naddaf, M.; Saloum, S.

    2005-01-01

    This study aims to present the fundamentals of physics of plasmas, methods of generation, diagnostics, and applications for processing of materials. The first chapter defines plasma in general as well as its main parameters, the most important differential equations in plasma physics, and classifies the types of plasmas. the various methods and techniques to create and sustain plasma are presented in the second chapter. Chapter 3 focuses on plasma diagnostic methods and tools. While chapter 4 deals with applications of plasma processing such as; surface modification of materials, plasma ashing and etching, plasma cutting, and the environmental applications of plasma. Plasma polymerization and its various applications have been presented in more details in the last chapter. (Author)

  3. Process for forming exoergic structures with the use of a plasma

    Science.gov (United States)

    Kelly, M.D.

    1987-05-29

    A method of forming exoergic structures, as well as exoergic structures produced by the method, is provided. The method comprises the steps of passing a plasma-forming gas through a plasma spray gun, forming a plasma spray, introducing exoergic material into the plasma spray and directing the plasma spray toward a substrate, and allowing the exoergic material to become molten in the plasma spray and to thereafter impinge on the substrate to form a solid mass of exoergic material, the shape of which corresponds to the shape of the substrate.

  4. Constrained sintering of an air-plasma-sprayed thermal barrier coating

    International Nuclear Information System (INIS)

    Cocks, A.C.F.; Fleck, N.A.

    2010-01-01

    A micromechanical model is presented for the constrained sintering of an air-plasma-sprayed, thermal barrier coating upon a thick superalloy substrate. The coating comprises random splats with intervening penny-shaped cracks. The crack faces make contact at asperities, which progressively sinter in-service by interfacial diffusion, accommodated by bulk creep. Diffusion is driven by the reduction in interfacial energy at the developing contacts and by the local asperity contact stress. At elevated operating temperature, both sintering and creep strains accumulate within the plane of the coating. The sensitivities of sintering rate and microstructure evolution rate to the kinetic parameters and thermodynamic driving forces are explored. It is demonstrated that the sintering response is governed by three independent timescales, as dictated by the material and geometric properties of the coating. Finally, the role of substrate constraint is assessed by comparing the rate of constrained sintering with that for free sintering.

  5. Electrostatic application of antimicrobial sprays to sanitize food handling and processing surfaces for enhanced food safety

    International Nuclear Information System (INIS)

    Lyons, Shawn M; Harrison, Mark A; Law, S Edward

    2011-01-01

    Human illnesses and deaths caused by foodborne pathogens (e.g., Salmonella enterica, Listeria monocytogenes, Escherichia coli O157:H7, etc.) are of increasing concern globally in maintaining safe food supplies. At various stages of the food production, processing and supply chain antimicrobial agents are required to sanitize contact surfaces. Additionally, during outbreaks of contagious pathogenic microorganisms (e.g., H1N1 influenza), public health requires timely decontamination of extensive surfaces within public schools, mass transit systems, etc. Prior publications verify effectiveness of air-assisted, induction-charged (AAIC) electrostatic spraying of various chemical and biological agents to protect on-farm production of food crops...typically doubling droplet deposition efficiency with concomitant increases in biological control efficacy. Within a biosafety facility this present work evaluated the AAIC electrostatic-spraying process for application of antimicrobial liquids onto various pathogen-inoculated food processing and handling surfaces as a food safety intervention strategy. Fluoroanalysis of AAIC electrostatic sprays (-7.2 mC/kg charge-to-mass ratio) showed significantly greater (p<0.05) mass of tracer active ingredient (A.I.) deposited onto target surfaces at various orientations as compared both to a similar uncharged spray nozzle (0 mC/kg) and to a conventional hydraulic-atomizing nozzle. Per unit mass of A.I. dispensed toward targets, for example, A.I. mass deposited by AAIC electrostatic sprays onto difficult to coat backsides was 6.1-times greater than for similar uncharged sprays and 29.0-times greater than for conventional hydraulic-nozzle sprays. Even at the 56% reduction in peracetic acid sanitizer A.I. dispensed by AAIC electrostatic spray applications, they achieved equal or greater CFU population reductions of Salmonella on most target orientations and materials as compared to uncharged sprays and conventional full-rate hydraulic

  6. Electrostatic application of antimicrobial sprays to sanitize food handling and processing surfaces for enhanced food safety

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, Shawn M; Harrison, Mark A [Food Science and Technology Department, University of Georgia, Athens, GA, 30602-2610 (United States); Law, S Edward, E-mail: edlaw@engr.uga.edu [Biological and Agricultural Engineering Department, Applied Electrostatics Laboratory www.ael.engr.uga.edu, University of Georgia, Athens, GA, 30602-4435 (United States)

    2011-06-23

    Human illnesses and deaths caused by foodborne pathogens (e.g., Salmonella enterica, Listeria monocytogenes, Escherichia coli O157:H7, etc.) are of increasing concern globally in maintaining safe food supplies. At various stages of the food production, processing and supply chain antimicrobial agents are required to sanitize contact surfaces. Additionally, during outbreaks of contagious pathogenic microorganisms (e.g., H1N1 influenza), public health requires timely decontamination of extensive surfaces within public schools, mass transit systems, etc. Prior publications verify effectiveness of air-assisted, induction-charged (AAIC) electrostatic spraying of various chemical and biological agents to protect on-farm production of food crops...typically doubling droplet deposition efficiency with concomitant increases in biological control efficacy. Within a biosafety facility this present work evaluated the AAIC electrostatic-spraying process for application of antimicrobial liquids onto various pathogen-inoculated food processing and handling surfaces as a food safety intervention strategy. Fluoroanalysis of AAIC electrostatic sprays (-7.2 mC/kg charge-to-mass ratio) showed significantly greater (p<0.05) mass of tracer active ingredient (A.I.) deposited onto target surfaces at various orientations as compared both to a similar uncharged spray nozzle (0 mC/kg) and to a conventional hydraulic-atomizing nozzle. Per unit mass of A.I. dispensed toward targets, for example, A.I. mass deposited by AAIC electrostatic sprays onto difficult to coat backsides was 6.1-times greater than for similar uncharged sprays and 29.0-times greater than for conventional hydraulic-nozzle sprays. Even at the 56% reduction in peracetic acid sanitizer A.I. dispensed by AAIC electrostatic spray applications, they achieved equal or greater CFU population reductions of Salmonella on most target orientations and materials as compared to uncharged sprays and conventional full-rate hydraulic

  7. Effects of Bond Coating on NiCrBSi-Mo Composite Functional Coating Properties in Plasma Spraying NiCrBSi-Mo/Ni Coating

    OpenAIRE

    DU Ji-yu; LI Fang-yi; LU Hai-yang; SHANG Jian-tong; LI Zhen

    2017-01-01

    Nickel-based bond coating and composite functional coating were sprayed on leaf blade steel material FV520B successively by using air plasma spraying system. NiCrBSi-Mo powder deposition rate, coating porosity, bonding strength and surface hardness were tested. The results indicate that, for the NiCrBSi-Mo/Ni coating, bond coating with 180-220μm thickness can improve NiCrBSi-Mo powder deposition rate while the surface coating with lower porosity, higher bonding strength and high hardness is p...

  8. Morphologic and Chemical Properties of PMMA/ATH Layers with Enhanced Abrasion Resistance Realised by Cold Plasma Spraying at Atmospheric Pressure

    Directory of Open Access Journals (Sweden)

    L. Wallenhorst

    2018-01-01

    Full Text Available This study investigated the morphologic and chemical properties of coatings based on PMMA/ATH powder and deposited by cold plasma spraying on wood and glass. Since the deposition of pure PMMA/ATH powder with air as process gas yielded coatings with insufficient abrasion resistance, two modifications of the basic process were investigated. Previous studies showed that replacing air as process gas with forming gas did not enhance the abrasion resistance, but the addition of a phenol-formaldehyde resin (PF succeeded in stabilising the particle coatings. In this work, results from morphologic and chemical analysis suggested an encasement of the PMMA/ATH particles by plasma-modified PF and thus a fusion of individual particles, explaining the enhanced bonding. Moreover, adhesion tests confirmed an outstanding bonding between the coating and wood as well as glass, which is assumed to result from interactions between the PF’s hydroxyl groups and functional groups on the substrates’ surfaces. Studies on the wettability revealed a hydrophobic character of such coatings, therefore generally indicating a possible application, for example, to reduce water uptake by wooden materials.

  9. Preparation and properties of plasma sprayed NiAl10 and NiAl40 coatings on AZ91 substrate.

    Czech Academy of Sciences Publication Activity Database

    Kubatík, Tomáš František; Lukáč, František; Stoulil, J.; Ctibor, Pavel; Průša, F.; Stehlíková, K.

    2017-01-01

    Roč. 319, June (2017), s. 145-154 ISSN 0257-8972 R&D Projects: GA ČR(CZ) GP14-31538P Institutional support: RVO:61389021 Keywords : Nickel aluminide * AZ91 magnesium alloy * Plasma spraying * Potentiodynamic measurement * Adhesion strength Subject RIV: JJ - Other Materials OBOR OECD: Materials engineering Impact factor: 2.589, year: 2016 http://www.sciencedirect.com/science/article/pii/S0257897217303250

  10. Alumina-fluorapatite composite coating deposited by atmospheric plasma spraying: An agent of cohesion between bone and prostheses

    Energy Technology Data Exchange (ETDEWEB)

    Ghorbel, Halima Feki, E-mail: ghorbel.halima@yahoo.fr [LCI, Ecole Nationale d' Ingénieurs de Sfax “ENIS”, Soukra 1173-3038, Sfax (Tunisia); LERMPS, Université de Technologie de Belfort-Montbeliard “UTBM”, Belfort 90010 (France); Guidara, Awatef [LCI, Ecole Nationale d' Ingénieurs de Sfax “ENIS”, Soukra 1173-3038, Sfax (Tunisia); Danlos, Yoan [LERMPS, Université de Technologie de Belfort-Montbeliard “UTBM”, Belfort 90010 (France); Bouaziz, Jamel [LCI, Ecole Nationale d' Ingénieurs de Sfax “ENIS”, Soukra 1173-3038, Sfax (Tunisia); Coddet, Christian [LERMPS, Université de Technologie de Belfort-Montbeliard “UTBM”, Belfort 90010 (France)

    2017-02-01

    In order to remedy the poor biological and tribological properties of 316 L stainless steel (SS), plasma sprayed bio-ceramic coatings have been widely investigated. In the present study, a small amount of fluorapatite (Fap) was introduced into alumina in order to enhance its bioactivity. The powder feedstock was sprayed on 316 L substrate by Atmospheric Plasma Spraying (APS) technology. The roughness profiles and average roughness values were determined using 3D profilometry. The cross sectional morphologies of the coatings were examined by scanning electron microscopy (SEM). Adhesive strength, micro-hardness and tribological properties were also examined. Experimental results revealed that Al{sub 2}O{sub 3}/Fap coating showed a good microhardness property revealing that the calcium aluminates were quite effective in improving the Fap mechanical behavior. The tribological characteristics of both alumina and alumina-Fap coating were also compared to those of classical hydroxyapatite (Hap) coatings as reported in the literature. The main finding of this work was that Fap coating can contribute to the cohesion between bone and prostheses and thus ensure a more durable and reliable prostheses. - Highlights: • This research addresses tissue engineering and novel biomaterials consisting of combination of Al{sub 2}O{sub 3} and Fap. • The addition of Fap to alumina results in higher coating porosity, which may be beneficial for the mechanical fixture by bone ingrowth. • Adhesion strength of the alumina ceramic coating is improved by the Fap addition • The presence of CaO in the synthesized Fap may help in improving the mechanical resistance through to formation of the calcium aluminates.

  11. Effects of insecticide spray application on insect pest infestation and ...

    African Journals Online (AJOL)

    Field studies were conducted during the 2008 - 2009 cropping season to determine the minimal insecticide application which can reduce cowpea yield losses on the field due to insect pest infestations in the Transkei region of South Africa. Treatments consisted of five cowpea varieties and four regimes of insecticide spray ...

  12. Effect of plasma treatment (He/CH4) on glass surface for the reduction of powder flux adhesion in the spray drying process

    Science.gov (United States)

    Ramlan, Nadiah; Zamri, Nazirah Wahidah Mohd; Maskat, Mohd Yusof; Hoong, Chin Oi; Theng, Lau Yen; Zubairi, Saiful Irwan

    2018-04-01

    A 50Hz glow discharge He/CH4 plasma was generated and applied for the modification of glass surface to reduce powder adhesion on the wall of spray dryer. The hydrophobicity of the glass samples determined by the water droplet contact angle and adhesion weight on glass, dependent on the CH4 flow rate and plasma exposure time. There was a peak that appeared at 1470 cm-1 on the surface of treated glass indicating the presence of CH3 groups from ATR-FTIR data. Surface morphology analysis using scanning electron microscopy (SEM) showed changes of roughness in the surface-treated glass. The presence of alkyl group (CH3) that deposited on the glass surface is one of the factors that contribute to the increase in the surface roughness. The surface roughness will reflect the value of contact angle where hydrophobic surface are rougher compared to hydrophilic surface. The plasma treatment could enhance the value of the contact angle and thus reduced the adhesion on the spray dryer glass surface.

  13. Layered growth with bottom-spray granulation for spray deposition of drug.

    Science.gov (United States)

    Er, Dawn Z L; Liew, Celine V; Heng, Paul W S

    2009-07-30

    The gap in scientific knowledge on bottom-spray fluidized bed granulation has emphasized the need for more studies in this area. This paper comparatively studied the applicability of a modified bottom-spray process and the conventional top-spray process for the spray deposition of a micronized drug during granulation. The differences in circulation pattern, mode of growth and resultant granule properties between the two processes were highlighted. The more ordered and consistent circulation pattern of particles in a bottom-spray fluidized bed was observed to give rise to layered granule growth. This resulted in better drug content uniformity among the granule batches and within a granule batch. The processes' sensitivities to wetting and feed material characteristics were also compared and found to differ markedly. Less robustness to differing process conditions was observed for the top-spray process. The resultant bottom-spray granules formed were observed to be less porous, more spherical and had good flow properties. The bottom-spray technique can thus be potentially applied for the spray deposition of drug during granulation and was observed to be a good alternative to the conventional technique for preparing granules.

  14. Application of persulfate-oxidation foam spraying as a bioremediation pretreatment for diesel oil-contaminated soil.

    Science.gov (United States)

    Bajagain, Rishikesh; Lee, Sojin; Jeong, Seung-Woo

    2018-05-15

    This study investigated a persulfate-bioaugmentation serial foam spraying technique to remove total petroleum hydrocarbons (TPHs) present in diesel-contaminated unsaturated soil. Feeding of remedial agents by foam spraying increased the infiltration/unsaturated hydraulic conductivity of reagents into the unsaturated soil. Persulfate mixed with a surfactant solution infiltrated the soil faster than peroxide, resulting in relatively even soil moisture content. Persulfate had a higher soil infiltration tendency, which would facilitate its distribution over a wide soil area, thereby enhancing subsequent biodegradation efficiency. Nearly 80% of soil-TPHs were degraded by combined persulfate-bioaugmentation foam spraying, while bioaugmentation foam spraying alone removed 52%. TPH fraction analysis revealed that the removal rate for the biodegradation recalcitrant fraction (C 18 to C 22 ) in deeper soil regions was higher for persulfate-bioaugmentation serial foam application than for peroxide-bioaugmentation foam application. Persulfate-foam spraying may be superior to peroxide for TPH removal even at a low concentration (50 mN) because persulfate-foam is more permeable, persistent, and does not change soil pH in the subsurface. Although the number of soil microbes declines by oxidation pretreatment, bioaugmentation-foam alters the microbial population exponentially. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Measurement of the non-thermal properties in a low-pressure spraying plasma

    International Nuclear Information System (INIS)

    Jung, Yong Ho; Chung, Kyu Sun

    2002-01-01

    The non-thermal properties of a low-pressure spraying plasma have been characterized by using optical emission spectroscopy and single probes installed in a fast scanning probe system. A two-temperature model of the electrons is introduced to explain their non-isothermal properties, which are measured using single probes. The excitation temperatures of the atomic and the ionic lines are calculated from measurements of the emission intensities of Ar (I) and Ar (II), and those temperatures can be explained by using a local thermodynamic equilibrium (LTE) or a non-local thermodynamic equilibrium (non-LTE) model. In order to deduce more reasonable values (excitation temperatures), we introduce a multi-thermodynamic equilibrium (MTE) model, which gives different temperatures, depending upon the atomic excitation states

  16. Nanostructured Photocatalytic TiO2 Coating Deposited by Suspension Plasma Spraying with Different Injection Positions

    Science.gov (United States)

    Liu, Xuezhang; Wen, Kui; Deng, Chunming; Yang, Kun; Deng, Changguang; Liu, Min; Zhou, Kesong

    2018-02-01

    High plasma power is beneficial for the deposition efficiency and adhesive strength of suspension-sprayed photocatalytic TiO2 coatings, but it confronts two challenges: one is the reduced activity due to the critical phase transformation of anatase into rutile, and the other is fragmented droplets which cannot be easily injected into the plasma core. Here, TiO2 coatings were deposited at high plasma power and the position of suspension injection was varied with the guidance of numerical simulation. The simulation was based on a realistic three-dimensional time-dependent numerical model that included the inside and outside of torch regions. Scanning electron microscopy was performed to study the microstructure of the TiO2 coatings, whereas x-ray diffraction was adopted to analyze phase composition. Meanwhile, photocatalytic activities of the manufactured TiO2 coatings were evaluated by the degradation of an aqueous solution of methylene blue dye. Fragmented droplets were uniformly injected into the plasma jet, and the solidification pathway of melting particles was modified by varying the position of suspension injection. A nanostructured TiO2 coating with 93.9% anatase content was obtained at high plasma power (48.1 kW), and the adhesive coating bonding to stainless steel exhibited the desired photocatalytic activity.

  17. Influence of Cold-Sprayed, Warm-Sprayed, and Plasma-Sprayed Layers Deposition on Fatigue Properties of Steel Specimens

    Czech Academy of Sciences Publication Activity Database

    Čížek, J.; Matejková, M.; Dlouhý, I.; Šiška, Filip; Kay, C.M.; Karthikeyan, J.; Kuroda, S.; Kovařík, O.; Siegl, J.; Loke, K.; Khor, K.A.

    2015-01-01

    Roč. 24, č. 5 (2015), s. 758-768 ISSN 1059-9630 Institutional support: RVO:68081723 Keywords : Cold spray * Fatigue * Grit-blast Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.568, year: 2015

  18. Droplets and sprays

    CERN Document Server

    Sazhin, Sergei

    2014-01-01

    Providing a clear and systematic description of droplets and spray dynamic models, this book maximises reader insight into the underlying physics of the processes involved, outlines the development of new physical and mathematical models, and broadens understanding of interactions between the complex physical processes which take place in sprays. Complementing approaches based on the direct application of computational fluid dynamics (CFD), Droplets and Sprays treats both theoretical and practical aspects of internal combustion engine process such as the direct injection of liquid fuel, subcritical heating and evaporation. Includes case studies that illustrate the approaches relevance to automotive applications,  it is also anticipated that the described models can find use in other areas such as in medicine and environmental science.

  19. Fabrication and evaluation of atmospheric plasma spraying WC-Co-Cu-MoS2 composite coatings

    International Nuclear Information System (INIS)

    Yuan Jianhui; Zhu Yingchun; Zheng Xuebing; Ji Heng; Yang Tao

    2011-01-01

    Research highlights: → Protective WC-Co-based coatings containing solid lubricant Cu and MoS 2 used in wear applications were investigated in this study. → It was found that the MoS 2 composition in the feed powder was kept in WC-Co-Cu-MoS 2 coatings, and the decomposition and decarburization of WC in APS process were improved. → Combining the wear resistance of WC with the lubricating properties of Cu and MoS 2 has an extremely beneficial effect on improving the tribological performance of the resulting coating. - Abstract: Protective WC-Co-based coatings containing solid lubricant Cu and MoS 2 used in wear applications were investigated in this study. These coatings were deposited on mild steel substrates by atmospheric plasma spraying (APS). The feedstock powders were prepared by mechanically mixing the solid lubricant powders and WC-Co powder, followed by sintering and crushing the mixtures to avoid different particle flighting trajectories at plasma. The tribological properties of the coatings against stainless steel balls were examined by ball-on-disk (BOD) tribometer under normal atmospheric condition. The microstructure of the coatings was studied by optical microscope, scanning electron microscope and X-ray diffraction. It was found that the MoS 2 composition in the feed powder was kept in WC-Co-Cu-MoS 2 coatings, and the decomposition and decarburization of WC in APS process were improved, which were attributed to the protection of Cu around them. The friction and wear behaviors of all the WC-Co-Cu-MoS 2 coatings were superior to that of WC-Co coating. Such behavior was associated to different wear mechanisms operating for WC-Co coating and the WC-Co-Cu-MoS 2 coatings.

  20. Air plasma spray processing and electrochemical characterization of SOFC composite cathodes

    Science.gov (United States)

    White, B. D.; Kesler, O.; Rose, Lars

    Air plasma spraying has been used to produce porous composite cathodes containing (La 0.8Sr 0.2) 0.98MnO 3- y (LSM) and yttria-stabilized zirconia (YSZ) for use in solid oxide fuel cells (SOFCs). Preliminary investigations focused on determining the range of plasma conditions under which each of the individual materials could be successfully deposited. A range of conditions was thereby determined that was suitable for the deposition of a composite cathode from pre-mixed LSM and YSZ powders. A number of composite cathodes were produced using different combinations of parameter values within the identified range according to a Uniform Design experimental grid. Coatings were then characterized for composition and microstructure using EDX and SEM. As a result of these tests, combinations of input parameter values were identified that are best suited to the production of coatings with microstructures appropriate for use in SOFC composite cathodes. A selection of coatings representative of the types of observed microstructures were then subjected to electrochemical testing to evaluate the performance of these cathodes. From these tests, it was found that, in general, the coatings that appeared to have the most suitable microstructures also had the highest electrochemical performances, provided that the deposition efficiency of both phases was sufficiently high.

  1. Air plasma spray processing and electrochemical characterization of SOFC composite cathodes

    Energy Technology Data Exchange (ETDEWEB)

    White, B.D. [Department of Mechanical Engineering, The University of British Columbia, 2054-6250 Applied Sciences Lane, Vancouver, British Columbia (Canada); Kesler, O. [Department of Mechanical and Industrial Engineering, University of Toronto, 5 King' s College Road, Toronto, Ontario (Canada); Rose, Lars [Department of Materials Engineering, The University of British Columbia, 309-6350 Stores Road, Vancouver, British Columbia (Canada); National Research Council (Canada)

    2008-03-15

    Air plasma spraying has been used to produce porous composite cathodes containing (La{sub 0.8}Sr{sub 0.2}){sub 0.98}MnO{sub 3-y} (LSM) and yttria-stabilized zirconia (YSZ) for use in solid oxide fuel cells (SOFCs). Preliminary investigations focused on determining the range of plasma conditions under which each of the individual materials could be successfully deposited. A range of conditions was thereby determined that was suitable for the deposition of a composite cathode from pre-mixed LSM and YSZ powders. A number of composite cathodes were produced using different combinations of parameter values within the identified range according to a Uniform Design experimental grid. Coatings were then characterized for composition and microstructure using EDX and SEM. As a result of these tests, combinations of input parameter values were identified that are best suited to the production of coatings with microstructures appropriate for use in SOFC composite cathodes. A selection of coatings representative of the types of observed microstructures were then subjected to electrochemical testing to evaluate the performance of these cathodes. From these tests, it was found that, in general, the coatings that appeared to have the most suitable microstructures also had the highest electrochemical performances, provided that the deposition efficiency of both phases was sufficiently high. (author)

  2. Application of pulse combustion technology in spray drying process

    Directory of Open Access Journals (Sweden)

    I. Zbicinski

    2000-12-01

    Full Text Available The paper presents development of valved pulse combustor designed for application in drying process and drying tests performed in a specially built installation. Laser technique was applied to investigate the flow field and structure of dispersed phase during pulse combustion spray drying process. PDA technique was used to determine initial atomization parameters as well as particle size distribution, velocity of the particles, mass concentration of liquid phase in the cross section of spray stream, etc., in the drying chamber during drying tests. Water was used to estimate the level of evaporation and 5 and 10% solutions of sodium chloride to carry out drying tests. The Computational Fluid Dynamics technique was used to perform theoretical predictions of time-dependent velocity, temperature distribution and particle trajectories in the drying chamber. Satisfactory agreement between calculations and experimental results was found in certain regions of the drying chamber.

  3. Evaluation of spray application methods for navel orangeworm control in almonds.

    Science.gov (United States)

    Markle, James C; Niederholzer, Franz Ja; Zalom, Frank G

    2016-12-01

    Gear Up/Throttle Down (GUTD) and Inward Only strategies represent potential alternatives to conventional airblast applications to reduce spray drift. This study evaluates Inward Only and a modified version of GUTD in almonds, the largest US tree crop, at the recommended hull split treatment timing for control of navel orangeworm (NOW), the key almond insect pest. Conventional treatment produced the most drift (15.6% of total bifenthrin load), while the GUTD and Inward Only treatments produced only 7.6 and 9.7% respectively. For all methods, 92-94% of the drift was found in the first 15.2 m downwind of the orchard. NOW control was lower for the Inward Only treatment compared with the GUTD and conventional treatments. NOW control was consistently lower at 4.88 m height relative to 2.44 m in all treatments, reflecting the reduced deposition higher in the tree canopy recorded in deposition samples. While Inward Only treatments reduced spray drift relative to the conventional application method, poorer control of NOW, the key insect pest of almonds, in the Inward Only treatment would likely limit its voluntary use by growers. However, GUTD holds promise for use at the hull split treatment timing to address spray drift. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  4. Frictional properties of CeO$_{2}$-Al$_{2}$O$_{3}$-ZrO$_{2}$ plasma-sprayed film under mixed and boundary lubricating conditions

    CERN Document Server

    Kita, H; Osumi, K; 10.2109/jcersj.112.615

    2004-01-01

    In order to find a counterpart for reducing the frictional coefficient of Al/sub 2/O/sub 3/-ZrO/sub 2/-CeO/sub 2/ plasma-sprayed film, the sliding properties in mixed and boundary lubricating conditions was investigated. It was found that combination of a CrN- coated cast iron pin and an Al/sub 2/O/sub 3/-ZrO/sub 2/-CeO/sub 2/ plasma sprayed plate provided the lowest frictional coefficient among several combinations chosen from practical materials. The coefficient of friction was much lower than that of the materials combination widely used for piston ring and cylinder liner. It was inferred that the combination of a pin made of hard materials with high density, a smooth surface such as CrN-coated cast iron and a porous plate can reduce the frictional coefficient because less sliding resistance is implemented and porosity retains oil.

  5. Coherent Forward Stimulated-Brillouin Scattering of a Spatially Incoherent Laser Beam in a Plasma and Its Effect on Beam Spray

    International Nuclear Information System (INIS)

    Grech, M.; Riazuelo, G.; Pesme, D.; Weber, S.; Tikhonchuk, V. T.

    2009-01-01

    A statistical model for forward stimulated-Brillouin scattering is developed for a spatially incoherent, monochromatic, laser beam propagating in a plasma. The threshold above which the laser beam spatial incoherence cannot prevent the coherent growth of forward stimulated-Brillouin scattering is computed. It is found to be well below the threshold for self-focusing. Three-dimensional simulations confirm its existence and reveal the onset of beam spray above it. From these results, we propose a new figure of merit for the control of propagation through a plasma of a spatially incoherent laser beam

  6. Chemical stability and osteogenic activity of plasma-sprayed boron-modified calcium silicate-based coatings.

    Science.gov (United States)

    Lu, Xiang; Li, Kai; Xie, Youtao; Huang, Liping; Zheng, Xuebin

    2016-11-01

    In recent years, CaSiO 3 bio-ceramic coatings have attracted great attention because of their good bioactivity. However, their high degradation rates in physiological environment restrict their practical applications. In this work, boron-modified CaSiO 3 ceramic (Ca 11 Si 4 B 2 O 22 , B-CS) coating was developed on Ti substrates by plasma-spraying technique attempting to obtain enhanced chemical stability and osteogenic activity. The B-CS coating possessed significantly increased chemical stability due to the introduction of boron and consequently the modified crystal structure, while maintaining good bioactivity. Scanning electron microscope and immunofluorescence studies showed that better cellular adhesion and extinctive filopodia-like processes were observed on the B-CS coating. Compared with the pure CaSiO 3 (CS) coating, the B-CS coating promoted MC3T3-E1 cells attachment and proliferation. In addition, enhanced collagen I (COL-I) secretion, alkaline phosphatase activity, and extracellular matrix mineralization levels were detected from the B-CS coating. According to RT-PCR results, notable up-regulation expressions of mineralized tissue-related genes, such as runt-related transcription factor 2 (Runx2), bone sialoprotein and osteocalcin, and bone morphogenetic protein 7 (BMP-7) were observed on the B-CS coating compared with the CS coating. The above results suggested that Ca 11 Si 4 B 2 O 22 coatings possess excellent osteogenic activity and might be a promising candidate for orthopedic applications.

  7. Optimizing Compliance and Thermal Conductivity of Plasma Sprayed Thermal Barrier Coatings via Controlled Powders and Processing Strategies

    Science.gov (United States)

    Tan, Yang; Srinivasan, Vasudevan; Nakamura, Toshio; Sampath, Sanjay; Bertrand, Pierre; Bertrand, Ghislaine

    2012-09-01

    The properties and performance of plasma-sprayed thermal barrier coatings (TBCs) are strongly dependent on the microstructural defects, which are affected by starting powder morphology and processing conditions. Of particular interest is the use of hollow powders which not only allow for efficient melting of zirconia ceramics but also produce lower conductivity and more compliant coatings. Typical industrial hollow spray powders have an assortment of densities resulting in masking potential advantages of the hollow morphology. In this study, we have conducted process mapping strategies using a novel uniform shell thickness hollow powder to control the defect microstructure and properties. Correlations among coating properties, microstructure, and processing reveal feasibility to produce highly compliant and low conductivity TBC through a combination of optimized feedstock and processing conditions. The results are presented through the framework of process maps establishing correlations among process, microstructure, and properties and providing opportunities for optimization of TBCs.

  8. Effect of spray volume on the deposition, viability and infectivity of entomopathogenic nematodes in a foliar spray on vegetables.

    Science.gov (United States)

    Brusselman, Eva; Beck, Bert; Pollet, Sabien; Temmerman, Femke; Spanoghe, Pieter; Moens, Maurice; Nuyttens, David

    2012-10-01

    Spray volume can influence the amount of free water on the leaf surface and subsequently the ability of entomopathogenic nematodes (EPNs) to move. In this study, an investigation was made of the effect of spray volume (548, 730 and 1095 L ha(-1) ) on the deposition, viability and infectivity of EPNs against Galleria mellonella on savoy cabbage, cauliflower and leek. Increasing spray volume decreased nematode deposition on 7.1 cm2 leek leaf discs at a 15° angle with the spray nozzle. Although the number of living nematodes observed on leek after 240 min of exposure was not significantly different between the low-volume application (548 L ha(-1) ) and the high-volume application (1095 L ha(-1) ), a greater infectivity was obtained in the latter application. The higher number of droplets deposited on the leek discs in the high-volume application may have stimulated nematode movement. No significant effect of spray volume was observed on the relative deposition of Steinernema carpocapsae on the bottom side of cauliflower and savoy cabbage leaf discs. In spite of the low S. carpocapsae deposition on the bottom side of the savoy cabbage discs, high infectivity was obtained against G. mellonella. Using the lowest spray volume on savoy cabbage, infectivity decreased with increasing exposure time, while infectivity was not affected by exposure time when a spray volume of 730 L ha(-1) or more was used. Spray volume is an important application parameter, as it affects nematode infectivity. Future research should investigate the effect of spray volume in the field and its influence on the effect of adjuvants. Copyright © 2012 Society of Chemical Industry.

  9. Pesticide residues in individual versus composite samples of apples after fine or coarse spray quality application

    DEFF Research Database (Denmark)

    Poulsen, Mette E.; Wenneker, Marcel; Withagen, Jacques

    2012-01-01

    . None of the results for the pesticides residues measured in individual apples exceeded the EU Maximum Residue Levels (MRLs). However, there was a large variation in the residues levels in the apples, with levels from 0.01 to 1.4 mg kg−1 for captan, the pesticide with the highest variation, and from 0.......01 to 0.2 mg kg−1 for pyraclostrobin, the pesticide with the lowest variation. Residues of fenoxycarb and indoxacarb were only found in a few apples, probably due to the early application time of these two compounds. The evaluation of the effect of spray quality did not show any major difference between......In this study, field trials on fine and coarse spray quality application of pesticides on apples were performed. The main objectives were to study the variation of pesticide residue levels in individual fruits versus composite samples, and the effect of standard fine spray quality application...

  10. Properties of spray-deposited liquid-phase exfoliated graphene films

    Science.gov (United States)

    Sales, Maria Gabriela C.; Dela Vega, Ma. Shanlene D. C.; Vasquez, Magdaleno R., Jr.

    2018-01-01

    In this study, we demonstrate the feasibility of spray-depositing exfoliated graphene on flexible polyimide (PI) and rigid (soda lime glass) substrates for optoelectronic applications. The water contact angles of the substrates increased by 13% (for PI) and 49% (for glass) when the surfaces are pretreated with hexamethyldisiloxane, which significantly improved the adhesion of the films. Raman spectral analyses confirmed a minimum of 15 and a maximum of 23 layers of exfoliated graphene deposited on the substrates. After deposition, the films were exposed to 13.56 MHz radio-frequency plasma containing an admixture of argon and nitrogen gases. Plasma treatment modified the electrical properties with a response analogous to that of a rectifier. A 39% increase in transmittance in the visible region was also observed especially for glass substrates after plasma treatment without a significant change in film electrical conductivity.

  11. Survivability of porcine epidemic diarrhea virus (PEDV) in bovine plasma submitted to spray drying processing and held at different time by temperature storage conditions.

    Science.gov (United States)

    Pujols, Joan; Segalés, Joaquim

    2014-12-05

    Bovine plasma was inoculated with porcine epidemic diarrhea virus (PEDV) at an average final titer of 4.2 log10 TCID50/mL to determine the effect of spray drying on viral inactivation. Using a laboratory scale drier, inoculated plasma was spray dried at 200 °C inlet temperature and either 70 or 80 °C throughout substance. Both liquid and dried samples were subjected to three passages on VERO cell monolayers to determine PEDV infectivity. Results indicated liquid samples contained infective virus, but none of the spray dried samples were infectious. Also, survivability of PEDV inoculated on spray dried bovine plasma (SDBP) and stored at 4, 12 or 22 °C was determined for 7, 14 and 21 days. Commercial SDBP powder was inoculated with PEDV to an average final titer of 2.8 log10 TCID50/g. Five samples per time and temperature conditions were subjected to three passages on VERO cell monolayers to determine PEDV infectivity. The virus was non-infectious for all samples stored at 22 °C at 7, 14 and 21 days. PEDV was infective in 1 out of 5 samples stored at 12 °C at 7 days, but none of the samples stored for 14 and 21 days were infectious in cell culture. For samples stored at 4 °C, 4 out of 5 samples were infectious at 7 days, 1 out of 5 samples were infectious at 14 days, but none were infectious at 21 days. In summary, PEDV was not infectious on cell culture within 7 days when stored at room temperature and within 21 days when stored at refrigerated temperature. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Some observations on the high temperature oxidation behaviour of plasma sprayed Ni3Al coatings

    International Nuclear Information System (INIS)

    Singh, H.; Prakash, S.; Puri, D.

    2007-01-01

    High temperature oxidation resistance of the superalloys can be greatly enhanced by plasma sprayed coatings and this is a growing industry of considerable economic importance. The purpose of these coatings is to form long-lasting oxidation protective scales. In the current investigation, Ni 3 Al powder was prepared by mechanical mixing of pure nickel and aluminium powders in a ball mill. Subsequently Ni 3 Al powder was deposited on three Ni-base superalloys: Superni 600, Superni 601 and Superni 718 and, one Fe-base superalloy, Superfer 800H by shrouded plasma spray process. Oxidation studies were conducted on the coated superalloys in air at 900 deg. C under cyclic conditions for 50 cycles. Each cycle consisted of 1 h heating followed by 20 min of cooling in air. The thermogravimetric technique was used to approximate the kinetics of oxidation. All the coated superalloys nearly followed parabolic rate law of oxidation. X-ray diffraction, SEM/EDAX and EPMA techniques were used to analyse the oxidation products. The Ni 3 Al coating was found to be successful in maintaining its adherence to the superalloy substrates in all the cases. The oxide scales formed on the oxidised coated superalloys were found to be intact and spallation-free. XRD analysis revealed the presence of phases like NiO, Al 2 O 3 and NiAl 2 O 4 in the oxide scales, which are reported as protective oxides against high temperature oxidation. The XRD results were further supported by SEM/EDAX and EPMA

  13. Simulation of the coating film appearance for spray application

    OpenAIRE

    Seeler, Fabian; Hager, Christian; Schneider, Matthias; Tiedje, Oliver

    2015-01-01

    The coating film topography depends on the substrate structure, the application parameters and the coating material’s levelling properties. Substrates consisting of several materials with different surface structures and differently inclined areas make a homogenous coating film structure difficult. By means of simulations, the paint film structure is intended to be controlled so that the theoretical optimum is reached and the experimental effort can be reduced. The focus is on spray applicati...

  14. Scratch induced failure of plasma sprayed alumina based coatings

    International Nuclear Information System (INIS)

    Hazra, S; Bandyopadhyay, P.P.

    2012-01-01

    Highlights: ► Scratch induced failure of alumina based coatings including nanostructured is reported. ► Ceramic is deposited on bond coat instead of steel, emulating a realistic situation. ► Lateral force data is supplemented with microscopy to observe coating failure. ► The failure mechanism during scratching has been identified. ► Critical load of failure has been calculated for each bond-top coat combination. -- Abstract: A set of plasma sprayed coatings were obtained from three alumina based top coat and two bond coat powders. Scratch test was undertaken on these coatings, under constant and linearly varying load. Test results include the lateral force data and scanning electron microscope (SEM) images. Failure occurred by large area spallation of the top coat and in most cases tensile cracks appeared on the exposed bond coat. The lateral force showed an increasing trend with an increase in normal load up to a certain point and beyond this, it assumed a steady average value. The locations of coating spallation and occurrence of maximum lateral force did not coincide. A bond coat did not show a significant role in determining the scratch adhesion strength.

  15. Thermal Fatigue Behavior of Air-Plasma Sprayed Thermal Barrier Coating with Bond Coat Species in Cyclic Thermal Exposure

    Directory of Open Access Journals (Sweden)

    Ungyu Paik

    2013-08-01

    Full Text Available The effects of the bond coat species on the delamination or fracture behavior in thermal barrier coatings (TBCs was investigated using the yclic thermal fatigue and thermal-shock tests. The interface microstructures of each TBC showed a good condition without cracking or delamination after flame thermal fatigue (FTF for 1429 cycles. The TBC with the bond coat prepared by the air-plasma spray (APS method showed a good condition at the interface between the top and bond coats after cyclic furnace thermal fatigue (CFTF for 1429 cycles, whereas the TBCs with the bond coats prepared by the high-velocity oxygen fuel (HVOF and low-pressure plasma spray (LPPS methods showed a partial cracking (and/or delamination and a delamination after 780 cycles, respectively. The TBCs with the bond coats prepared by the APS, HVOF and LPPS methods were fully delaminated (>50% after 159, 36, and 46 cycles, respectively, during the thermal-shock tests. The TGO thickness in the TBCs was strongly dependent on the both exposure time and temperature difference tested. The hardness values were found to be increased only after the CFTF, and the TBC with the bond coat prepared by the APS showed the highest adhesive strength before and after the FTF.

  16. Field evaluation of a self-propelled sprayer and effects of the application rate on spray deposition and losses to the ground in greenhouse tomato crops.

    Science.gov (United States)

    Sánchez-Hermosilla, Julián; Rincón, Víctor J; Páez, Francisco; Agüera, Francisco; Carvajal, Fernando

    2011-08-01

    In the greenhouses of south-eastern Spain, plant protection products are applied using mainly sprayers at high pressures and high volumes. This results in major losses on the ground and less than uniform spray deposition on the canopy. Recently, self-propelled vehicles equipped with vertical spray booms have appeared on the market. In this study, deposition on the canopy and the losses to the ground at different spray volumes have been compared, using a self-propelled vehicle with vertical spray booms versus a gun sprayer. Three different spray volumes have been tested with a boom sprayer, and two with a spray gun. The vehicle with the vertical spray boom gave similar depositions to those made with the gun, but at lower application volumes. Also, the distribution of the vertical spray boom was more uniform, with lower losses to the ground. The vertical spray booms used in tomato crops improve the application of plant protection products with respect to the spray gun, reducing the application volumes and the environmental risks of soil pollution. Copyright © 2011 Society of Chemical Industry.

  17. Plasma spray formed near-net-shape MoSi2-Si3N4 bulk nanocomposites-structure property evaluation

    International Nuclear Information System (INIS)

    Hong, S.J.; Viswanathan, V.; Rea, K.; Patil, S.; Deshpande, S.; Georgieva, P.; McKechnie, T.; Seal, S.

    2005-01-01

    This article, for the first time, presents the challenges toward the successful consolidation of near-net-shape bulk MoSi 2 -Si 3 N 4 -SiC nanocomposite using plasma spray forming. A detailed characterization of the spray formed bulk nanocomponent has been performed using optical microscopy (OM), scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), and Vickers hardness testing. Vickers hardness (900 Hv) and fracture toughness (∼>5 MPa m 1/2 ) of the nanocomposite showed a little deviation from the expected, which might be due to the difference in the particle (Si 3 N 4 ) size and their distribution in the MoSi 2 matrix as a function of component thickness. Relatively higher hardness is attributed to the retention of the nanostructure in the composite. In addition, the as fabricated bulk nanocomposite showed enhanced oxidation resistance

  18. Industrial application of model predictive control to a milk powder spray drying plant

    DEFF Research Database (Denmark)

    Petersen, Lars Norbert; Poulsen, Niels Kjølstad; Niemann, Hans Henrik

    2016-01-01

    In this paper, we present our first results from an industrial application of model predictive control (MPC) with real-time steady-state target optimization (RTO) for control of an industrial spray dryer that produces enriched milk powder. The MPC algorithm is based on a continuous-time transfer...... provides significantly better control of the residual moisture content, increases the throughput and decreases the energy consumption compared to conventional PI-control. The MPC operates the spray dryer closer to the residual moisture constraint of the powder product. Thus, the same amount of feed...

  19. Cold sprayed WO3 and TiO2 electrodes for photoelectrochemical water and methanol oxidation in renewable energy applications.

    Science.gov (United States)

    Haisch, Christoph; Schneider, Jenny; Fleisch, Manuel; Gutzmann, Henning; Klassen, Thomas; Bahnemann, Detlef W

    2017-10-03

    Films prepared by cold spray have potential applications as photoanodes in electrochemical water splitting and waste water purification. In the present study cold sprayed photoelectrodes produced with WO 3 (active under visible light illumination) and TiO 2 (active under UV illumination) on titanium metal substrates were investigated as photoanodes for the oxidation of water and methanol, respectively. Methanol was chosen as organic model pollutant in acidic electrolytes. Main advantages of the cold sprayed photoelectrodes are the improved metal-semiconductor junctions and the superior mechanical stability. Additionally, the cold spray method can be utilized as a large-scale electrode fabrication technique for photoelectrochemical applications. Incident photon to current efficiencies reveal that cold sprayed TiO 2 /WO 3 photoanodes exhibit the best photoelectrochemical properties with regard to the water and methanol oxidation reactions in comparison with the benchmark photocatalyst Aeroxide TiO 2 P25 due to more efficient harvesting of the total solar light irradiation related to their smaller band gap energies.

  20. Optical monitoring systems for thermal spray processes: droplets behavior and substrate pre-treatments

    Science.gov (United States)

    Kawaguchi, Y.; Kobayashi, N.; Yamagata, Y.; Miyazaki, F.; Yamasaki, M.; Tanaka, J.; Muraoka, K.

    2017-11-01

    Thermal spray is a technique to form molten droplets using either plasma- or combustion-heating, which impinge upon substrates to form coating layers for various purposes, such as anti-corrosion and anti-wear layers. Although it is an established technique having a history of more than a century, operations of spray guns together with preparing suitable substrate surfaces for obtaining good coating layers still rely on experienced technicians. Because of the necessity of meeting more and more stringent requirements for coating quality and cost from customers, there has been a strong need to try to monitor spray processes, so as to obtain the best possible spray coating layers. The basic requirements for such monitoring systems are *reasonably cheap, *easy operation for laypersons, *easy access to targets to be investigated, and *an in-situ capability. The purpose of the present work is to provide suitable optical monitoring systems for (1) droplets behavior and (2) substrate pre-treatments. For the former (1), the first result was already presented at the 17th laser-aided plasma diagnostics meeting (LAPD17) in 2015 in Sapporo, and the results of its subsequent applications into real spray environments are shown in this article in order to validate the previous proposal. Topic (2) is new in the research program, and the proof-of-principle experiment for the proposed method yielded a favorable result. Based on this positive result, an overall strategy is being planned to fulfill the final objective of the optical monitoring of substrate pre-treatments. Details of these two programs (1) and (2) together with the present status are described.

  1. Spray Deposition and Drift Characteristics of a Low Drift Nozzle for Aerial Application at Different Application Altitudes

    Science.gov (United States)

    A complex interaction of controllable and uncontrollable factors is involved in aerial application of crop production and protection materials. Although it is difficult to completely characterize spray deposition and drift, these important factors can be estimated with appropriate sampling protocol ...

  2. Improving the biocontrol potential of entomopathogenic nematodes against Mamestra brassicae: effect of spray application technique, adjuvants and an attractant.

    Science.gov (United States)

    Beck, Bert; Brusselman, Eva; Nuyttens, David; Moens, Maurice; Temmerman, Femke; Pollet, Sabien; Van Weyenberg, Stephanie; Spanoghe, Pieter

    2014-01-01

    Steinernema carpocapsae Weiser, an entomopathogenic nematode (EPN), is a potential biological control agent for the cabbage moth (Mamestra brassicae L.). This research aimed to identify a suitable spray application technique, and to determine whether yeast extract added to an EPN spray has an attracting and/or a feeding stimulant effect on M. brassicae. The biological control capabilities of EPN against this pest were examined in the field. Good coverage of the underside of cauliflower leaves, the habitat of young instar larvae (L1-L4) of M. brassicae was obtained using different spray boom configurations with vertical extensions that carried underleaf spraying nozzles. One of the configurations was selected for field testing with an EPN spray. Brewer's yeast extract stimulated larval feeding on leaves, and increased the mortality of these larvae when exposed to EPN. The field trial showed that a spray application with S. carpocapsae, Addit and xanthan gum can effectively lower the numbers of cabbage heads damaged by M. brassicae. Brewer's yeast extract did not significantly increase this field performance of EPN. Steinernema carpocapsae, applied with an appropriate spray technique, can be used within biological control schemes as part of a resistance management programme for Bt. © 2013 Society of Chemical Industry.

  3. Structural and photocatalytic characteristics of TiO2 coatings produced by various thermal spray techniques

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Štengl, Václav; Pala, Zdeněk

    2013-01-01

    Roč. 2, č. 3 (2013), s. 218-226 ISSN 2226-4108 R&D Projects: GA ČR(CZ) GAP108/12/1872 Institutional support: RVO:61389021 ; RVO:61388980 Keywords : plasma spraying * high velocity oxy–fuel (HVOF) spraying * flame spraying * titanium dioxide (TiO2) * photocatalysis * band gap Subject RIV: BL - Plasma and Gas Discharge Physics; CA - Inorganic Chemistry (UACH-T) http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s40145-013-0063-z

  4. Hot Corrosion of Yttrium Stabilized Zirconia Coatings Deposited by Air Plasma Spray on a Nickel-Based Superalloy

    Science.gov (United States)

    Vallejo, N. Diaz; Sanchez, O.; Caicedo, J. C.; Aperador, W.; Zambrano, G.

    In this research, the electrochemical impedance spectroscopy (EIS) and Tafel analysis were utilized to study the hot corrosion performance at 700∘C of air plasma-sprayed (APS) yttria-stabilized zirconia (YSZ) coatings with a NiCrAlY bond coat grown by high velocity oxygen fuel spraying (HVOF), deposited on an INCONEL 625 substrate, in contact with corrosive solids salts as vanadium pentoxide V2O5 and sodium sulfate Na2SO4. The EIS data were interpreted based on proposed equivalent electrical circuits using a suitable fitting procedure performed with Echem AnalystTM Software. Phase transformations and microstructural development were examined using X-ray diffraction (XRD), with Rietveld refinement for quantitative phase analysis, scanning electron microscopy (SEM) was used to determinate the coating morphology and corrosion products. The XRD analysis indicated that the reaction between sodium vanadate (NaVO3) and yttrium oxide (Y2O3) produces yttrium vanadate (YVO4) and leads to the transformation from tetragonal to monoclinic zirconia phase.

  5. The role of amorphous phase content on the electrical properties of atmospheric plasma sprayed (Ba,Sr)TiO3 coatings

    Czech Academy of Sciences Publication Activity Database

    Kotlan, Jiří; Seshadri, R.C.; Sampath, S.; Ctibor, Pavel

    2016-01-01

    Roč. 42, č. 9 (2016), s. 11010-11014 ISSN 0272-8842 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:61389021 Keywords : X-ray methods * Electrical properties * Perovskites * Atmospheric Plasma Spray Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 2.986, year: 2016 http://www.sciencedirect.com/science/article/pii/S0272884216303856

  6. Effect of precursor solutions on ZnO film via solution precursor plasma spray and corresponding gas sensing performances

    International Nuclear Information System (INIS)

    Yu, Z.X.; Ma, Y.Z.; Zhao, Y.L.; Huang, J.B.; Wang, W.Z.; Moliere, M.; Liao, H.L.

    2017-01-01

    Highlights: • C-axis preferential oriented grown ZnO films were firstly deposited via SPPS with different solutions. • ZnO films were hydrophobic due to cauliflower and honeycomb-like surface morphologies with high surface specific area. • Gas detecting performance of (002) plane oriented ZnO was predicted and compared by “first principle calculation method”. - Abstract: Solution precursor plasma spraying (SPPS) as a novel thermal spray method was employed to deposit nano-structured ZnO thin film using different formulations of the precursor solution. This article focuses on the influence of the solution composition on the preferential orientation of crystal growth, on crystal size and surface morphology of the resulting ZnO films. The trend of preferential growth along (002) lattice plane of ZnO film was studied by slow scanning X-ray diffraction using a specific coefficient P_(_0_0_2_)_. It appears that the thermal spray process promotes the buildup of ZnO films preferentially oriented along the c-axis. The shape of single particle tends to change from round shaped beads to hexagonal plates by increasing the volume ratio of ethanol in the solvent. Both cauliflower and honeycomb-like surface morphologies featuring high specific surface area and roughness were obtained through the SPPS process by varying solution composition. These ZnO films are hydrophobic with contact angle as high as 136°, which is seemingly associated with micro reliefs developing high surface specific area. Then the gas sensing performances of ZnO films preferentially oriented along (002) face were tentatively predicted using the “first principle calculation method” and were compared with those of conventional films that are mainly oriented along the (101) face. The (002) face displays better hydrogen adsorption capability than the (101) face with much larger resulting changes in electrical resistance. In conclusion, the c-axis oriented ZnO films obtained through SSPS have

  7. Effect of precursor solutions on ZnO film via solution precursor plasma spray and corresponding gas sensing performances

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Z.X., E-mail: zexin.yu@utbm.fr [Univ Bourgogne Franche Comte, CNRS, Lab ICB, UMR 6303, Site UTBM, F-90010 Belfort (France); Ma, Y.Z., E-mail: yangzhou.ma@outlook.com [School of Materials Science and Engineering, Anhui University of Technology, Ma’anshan 243002 (China); Zhao, Y.L. [Univ Bourgogne Franche Comte, CNRS, Lab ICB, UMR 6303, Site UTBM, F-90010 Belfort (France); Huang, J.B.; Wang, W.Z. [Key Lab of Safety Science of Pressurized System, Ministry of Education, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237 (China); Moliere, M.; Liao, H.L. [Univ Bourgogne Franche Comte, CNRS, Lab ICB, UMR 6303, Site UTBM, F-90010 Belfort (France)

    2017-08-01

    Highlights: • C-axis preferential oriented grown ZnO films were firstly deposited via SPPS with different solutions. • ZnO films were hydrophobic due to cauliflower and honeycomb-like surface morphologies with high surface specific area. • Gas detecting performance of (002) plane oriented ZnO was predicted and compared by “first principle calculation method”. - Abstract: Solution precursor plasma spraying (SPPS) as a novel thermal spray method was employed to deposit nano-structured ZnO thin film using different formulations of the precursor solution. This article focuses on the influence of the solution composition on the preferential orientation of crystal growth, on crystal size and surface morphology of the resulting ZnO films. The trend of preferential growth along (002) lattice plane of ZnO film was studied by slow scanning X-ray diffraction using a specific coefficient P{sub (002).} It appears that the thermal spray process promotes the buildup of ZnO films preferentially oriented along the c-axis. The shape of single particle tends to change from round shaped beads to hexagonal plates by increasing the volume ratio of ethanol in the solvent. Both cauliflower and honeycomb-like surface morphologies featuring high specific surface area and roughness were obtained through the SPPS process by varying solution composition. These ZnO films are hydrophobic with contact angle as high as 136°, which is seemingly associated with micro reliefs developing high surface specific area. Then the gas sensing performances of ZnO films preferentially oriented along (002) face were tentatively predicted using the “first principle calculation method” and were compared with those of conventional films that are mainly oriented along the (101) face. The (002) face displays better hydrogen adsorption capability than the (101) face with much larger resulting changes in electrical resistance. In conclusion, the c-axis oriented ZnO films obtained through SSPS have

  8. Damping capacity and dynamic mechanical characteristics of the plasma-sprayed coatings

    International Nuclear Information System (INIS)

    Yu Liming; Ma Yue; Zhou Chungen; Xu Huibin

    2005-01-01

    The damping properties and dynamic mechanical performance of NiCrAlY coating, FeCrMo ferromagnetic coating, AlCuFeCr quasicrystalline coating and nanostructured ZrO 2 ceramic coating, which were prepared by plasma-spray method, were investigated. The measuring results of the dynamic mechanical thermal analyzer (DMTA) and the flexural resonance testing method show that the damping capacity (Q -1 ) of the coated sample has a notable improvement compared to the substrate, while the dynamic modulus has a dramatic decrease. The resonance frequency of the coated cantilever beam structure shifted to high-frequency, and the resonance amplitude, especially high mode resonance, was dramatically attenuated. The internal friction peaks were observed in the Q -1 -temperature spectrogram and a normal amplitude effects were shown in the coated samples damping characteristics. The damping mechanism based on the interaction between substrate and coating layer, and the microstructure of the coated sample were also discussed in this paper

  9. CHARACTERIZATION OF YTTRIA AND MAGNESIA PARTIALLY STABILIZED ZIRCONIA BIOCOMPATIBLE COATINGS DEPOSITED BY PLASMA SPRAYING

    Directory of Open Access Journals (Sweden)

    Roşu R. A.

    2013-09-01

    Full Text Available Zirconia (ZrO2 is a biocompatible ceramic material which is successfully used in medicine to cover the metallic implants by various methods. In order to avoid the inconvenients related to structural changes which may appear because of the temperature treatment while depositing the zirconia layer over the metallic implant, certain oxides are added, the most used being Y2O3, MgO and CaO. This paper presents the experimental results regarding the deposition of yttria (Y2O3 and magnesia (MgO partially stabilized zirconia layers onto titanium alloy substrate by plasma spraying method. X ray diffraction investigations carried out both on the initial powders and the coatings evidenced the fact that during the thermal spraying process the structure has not been significantly modified, consisting primarily of zirconium oxide with tetragonal structure. Electronic microscopy analyses show that the coatings are dense, uniform and cracks-free. Adherence tests performed on samples whose thickness ranges between 160 and 220 μm showed that the highest value (23.5 MPa was obtained for the coating of ZrO2 - 8 wt. % Y2O3 with 160 μm thickness. The roughness values present an increasing tendency with increasing the coatings thickness.

  10. Impacts of friction stir processing on irradiation effects in vacuum-plasma-spray coated tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Ozawa, Kazumi, E-mail: ozawa.kazumi@jaea.go.jp [Fusion Research and Development Directorate, Japan Atomic Energy Agency, 2-166 Obuchi-Omotedate, Rokkasho, Aomori 039-3212 (Japan); Tanigawa, Hiroyasu [Fusion Research and Development Directorate, Japan Atomic Energy Agency, 2-166 Obuchi-Omotedate, Rokkasho, Aomori 039-3212 (Japan); Morisada, Yoshiaki; Fujii, Hidetoshi [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)

    2015-10-15

    In order to examine the impacts of friction stir processing (FSP) on irradiation effects in vacuum-plasma-spray (VPS) coated tungsten (W), nano indentation hardness was evaluated of three kinds of W materials after self-ion-irradiation to 5.0–5.4 dpa at 500 and 800 °C. The VPS-FSP clearly got grains refined and isotropic compared to bulk-W and the as-VPS-W. Nano indentation hardness remains unchanged for the as-VPS-W and VPS-FSP × 2-W irradiated to 5.4 dpa at 500 °C and it decreased from 1 dpa at 800 °C, while typical irradiation induced hardening was observed for the bulk-W irradiated at 500 °C.

  11. Analytical interpretation of arc instabilities in a DC plasma spray torch: the role of pressure

    Science.gov (United States)

    Rat, V.; Coudert, J. F.

    2016-06-01

    Arc instabilities in a plasma spray torch are investigated experimentally and theoretically thanks to a linear simplified analytical model. The different parameters that determine the useful properties of the plasma jet at the torch exit, such as specific enthalpy and speed, but also pressure inside the torch and time variations of the flow rate are studied. The work is particularly focused on the link between the recorded arc voltage and the pressure in the cathode cavity. A frequency analysis of the recorded voltage and pressure allows the separation of different contributions following their spectral characteristics and highlights a resonance effect due to Helmholtz oscillations; these oscillations are responsible for the large amplitude fluctuations of all the parameters investigated. The influence of heat transfer, friction forces and residence time of the plasma in the nozzle are taken into account, thanks to different characteristics’ times. The volume of the cathode cavity in which the cold gas is stored before entering the arc region appears to be of prime importance for the dynamics of instabilities, particularly for the non-intuitive effect that induces flow-rate fluctuations in spite of the fact that the torch is fed at a constant flow rate.

  12. Plasma Sprayed Coatings for RF Wave Absorption

    Czech Academy of Sciences Publication Activity Database

    Nanobashvili, S.; Matějíček, Jiří; Žáček, František; Stöckel, Jan; Chráska, Pavel; Brožek, Vlastimil

    307-311, - (2002), s. 1334-1338 ISSN 0022-3115 Grant - others: COST (XE) Euratom DV4/04(TWO) Institutional research plan: CEZ:AV0Z2043910 Keywords : boron carbide, thermal spray coatings, fusion materials, RF wave absorption Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 1.730, year: 2002

  13. Higher Temperature Thermal Barrier Coatings with the Combined Use of Yttrium Aluminum Garnet and the Solution Precursor Plasma Spray Process

    Science.gov (United States)

    Gell, Maurice; Wang, Jiwen; Kumar, Rishi; Roth, Jeffery; Jiang, Chen; Jordan, Eric H.

    2018-04-01

    Gas-turbine engines are widely used in transportation, energy and defense industries. The increasing demand for more efficient gas turbines requires higher turbine operating temperatures. For more than 40 years, yttria-stabilized zirconia (YSZ) has been the dominant thermal barrier coating (TBC) due to its outstanding material properties. However, the practical use of YSZ-based TBCs is limited to approximately 1200 °C. Developing new, higher temperature TBCs has proven challenging to satisfy the multiple property requirements of a durable TBC. In this study, an advanced TBC has been developed by using the solution precursor plasma spray (SPPS) process that generates unique engineered microstructures with the higher temperature yttrium aluminum garnet (YAG) to produce a TBC that can meet and exceed the major performance standards of state-of-the-art air plasma sprayed YSZ, including: phase stability, sintering resistance, CMAS resistance, thermal cycle durability, thermal conductivity and erosion resistance. The temperature improvement for hot section gas turbine materials (superalloys & TBCs) has been at the rate of about 50 °C per decade over the last 50 years. In contrast, SPPS YAG TBCs offer the near-term potential of a > 200 °C improvement in temperature capability.

  14. Higher Temperature Thermal Barrier Coatings with the Combined Use of Yttrium Aluminum Garnet and the Solution Precursor Plasma Spray Process

    Science.gov (United States)

    Gell, Maurice; Wang, Jiwen; Kumar, Rishi; Roth, Jeffery; Jiang, Chen; Jordan, Eric H.

    2018-02-01

    Gas-turbine engines are widely used in transportation, energy and defense industries. The increasing demand for more efficient gas turbines requires higher turbine operating temperatures. For more than 40 years, yttria-stabilized zirconia (YSZ) has been the dominant thermal barrier coating (TBC) due to its outstanding material properties. However, the practical use of YSZ-based TBCs is limited to approximately 1200 °C. Developing new, higher temperature TBCs has proven challenging to satisfy the multiple property requirements of a durable TBC. In this study, an advanced TBC has been developed by using the solution precursor plasma spray (SPPS) process that generates unique engineered microstructures with the higher temperature yttrium aluminum garnet (YAG) to produce a TBC that can meet and exceed the major performance standards of state-of-the-art air plasma sprayed YSZ, including: phase stability, sintering resistance, CMAS resistance, thermal cycle durability, thermal conductivity and erosion resistance. The temperature improvement for hot section gas turbine materials (superalloys & TBCs) has been at the rate of about 50 °C per decade over the last 50 years. In contrast, SPPS YAG TBCs offer the near-term potential of a > 200 °C improvement in temperature capability.

  15. Application of plasma sprayed ceramic coatings to the base materials of the rotating disk in the centrifugal atomization process. Enshinryoku funmuho ni okeru kaiten enban eno ceramic yosha himaku no tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Sato, T; Okimoto, K [Government Industrial Research Inst., Kyushu, Tosu, Saga (Japan); Yasutake, R [Koeiseiko Co. Ltd., Fukuoka (Japan)

    1992-07-08

    Applicability of the ceramic coating on the rotating disk was studied. In regard to the synthesis of Cu-based rapidly solidified powders, centrifugal atomization with molten Cu-24.6Sn was carried out using rotating disks sprayed with four kinds of sprayed ceramic coatings. It was found that atomization of Al203-40%TiO2 sprayed coating has been the best, and the yield ratio has been about 60 %. The melt temperature in case of Fe-based rapidly solidified metal powders, has risen above 1600[degree]C, and the required conditions for rotating disk have been very difficult to meet. The reason for it is thought that there has also been limitations regarding the functions of the characteristics like heat transfer, heat capacity, etc. Fe-24Cr-5Ni-1Mo 2 phase stainless steel powder has shown the most suitable trend among the seven kinds of disk materials examined for ZrO2 ceramic sprayed coatings. 6 refs., 5 figs., 2 tabs.

  16. Advanced Vacuum Plasma Spray (VPS) for a Robust, Longlife and Safe Space Shuttle Main Engine (SSME)

    Science.gov (United States)

    Holmes, Richard R.; Elam, Sandra K.; McKechnie, Timothy N.; Power, Christopher A.

    2010-01-01

    In 1984, the Vacuum Plasma Spray Lab was built at NASA/Marshall Space Flight Center for applying durable, protective coatings to turbine blades for the space shuttle main engine (SSME) high pressure fuel turbopump. Existing turbine blades were cracking and breaking off after five hot fire tests while VPS coated turbine blades showed no wear or cracking after 40 hot fire tests. Following that, a major manufacturing problem of copper coatings peeling off the SSME Titanium Main Fuel Valve Housing was corrected with a tenacious VPS copper coating. A patented VPS process utilizing Functional Gradient Material (FGM) application was developed to build ceramic lined metallic cartridges for space furnace experiments, safely containing gallium arsenide at 1260 degrees centigrade. The VPS/FGM process was then translated to build robust, long life, liquid rocket combustion chambers for the space shuttle main engine. A 5K (5,000 Lb. thrust) thruster with the VPS/FGM protective coating experienced 220 hot firing tests in pristine condition with no wear compared to the SSME which showed blanching (surface pulverization) and cooling channel cracks in less than 30 of the same hot firing tests. After 35 of the hot firing tests, the injector face plates disintegrated. The VPS/FGM process was then applied to spraying protective thermal barrier coatings on the face plates which showed 50% cooler operating temperature, with no wear after 50 hot fire tests. Cooling channels were closed out in two weeks, compared to one year for the SSME. Working up the TRL (Technology Readiness Level) to establish the VPS/FGM process as viable technology, a 40K thruster was built and is currently being tested. Proposed is to build a J-2X size liquid rocket engine as the final step in establishing the VPS/FGM process TRL for space flight.

  17. Measuring Spray Droplet Size from Agricultural Nozzles Using Laser Diffraction

    Science.gov (United States)

    Fritz, Bradley K.; Hoffmann, W. Clint

    2016-01-01

    When making an application of any crop protection material such as an herbicide or pesticide, the applicator uses a variety of skills and information to make an application so that the material reaches the target site (i.e., plant). Information critical in this process is the droplet size that a particular spray nozzle, spray pressure, and spray solution combination generates, as droplet size greatly influences product efficacy and how the spray moves through the environment. Researchers and product manufacturers commonly use laser diffraction equipment to measure the spray droplet size in laboratory wind tunnels. The work presented here describes methods used in making spray droplet size measurements with laser diffraction equipment for both ground and aerial application scenarios that can be used to ensure inter- and intra-laboratory precision while minimizing sampling bias associated with laser diffraction systems. Maintaining critical measurement distances and concurrent airflow throughout the testing process is key to this precision. Real time data quality analysis is also critical to preventing excess variation in the data or extraneous inclusion of erroneous data. Some limitations of this method include atypical spray nozzles, spray solutions or application conditions that result in spray streams that do not fully atomize within the measurement distances discussed. Successful adaption of this method can provide a highly efficient method for evaluation of the performance of agrochemical spray application nozzles under a variety of operational settings. Also discussed are potential experimental design considerations that can be included to enhance functionality of the data collected. PMID:27684589

  18. Wear Behavior of Plasma Spray Deposited and Post Heat-Treated Hydroxyapatite (HA)-Based Composite Coating on Titanium Alloy (Ti-6Al-4V) Substrate

    Science.gov (United States)

    Kumari, Renu; Majumdar, Jyotsna Dutta

    2018-04-01

    The present study concerns a detailed evaluation of wear resistance property of plasma spray deposited composite hydroxyapatite (HA)-based (HA-50 wt pct TiO2 and HA-10 wt pct ZrO2) bioactive coatings developed on Ti-6Al-4V substrate and studying the effect of heat treatment on it. Heat treatment of plasma spray deposited samples has been carried out at 650 °C for 2 hours (for HA-50 wt pct TiO2 coating) and at 750 °C for 2 hours (for HA-10 wt pct ZrO2 coating). There is significant deterioration in wear resistance for HA-50 wt pctTiO2 coating and a marginal deterioration in wear resistance for HA-10 wt pct ZrO2 coating in as-sprayed state (as compared to as-received Ti-6Al-4V) which is, however, improved after heat treatment. The coefficient of friction is marginally increased for both HA-50 wt pct TiO2 and HA-10 wt pct ZrO2 coatings in as-sprayed condition as compared to Ti-6Al-4V substrate. However, coefficient of friction is decreased for both HA-50 wt pct TiO2 and HA-10 wt pct ZrO2 coatings after heat-treated condition as compared to Ti-6Al-4V substrate. The maximum improvement in wear resistance property is, however, observed for HA-10 wt pct ZrO2 sample after heat treatment. The mechanism of wear has been investigated.

  19. Characterization of spray deposition and drift from a low drift nozzle for aerial application at different application altitudes

    Science.gov (United States)

    A complex interaction of controllable and uncontrollable factors is involved in aerial application of crop production and protection materials. Although it is difficult to completely characterize spray deposition and drift, these important factors can be estimated with appropriate sampling protocol ...

  20. Behaviour of plasma-sprayed TiC coatings under H and He irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, D; Saint-Jacques, R G; Ross, G G; Terreault, B

    1987-02-01

    The effects of H and He irradiation on plasma-sprayed TiC coatings have been studied. The effects were studied by SEM and TEM microscopy, and by H depth-profiling with the ERD technique. Samples prepared by CVD were also implanted for comparison. In the case of H, bubbles have been observed during an in-situ implantation inside the TEM. In order to understand the absence of hydride, H depth-profiling was performed. The H saturation concentration is about 20 at.% or slightly more (the uncertainty is due to the effect of the porosity of the coatings on the ERD technique). Helium bubbles are observed above 10/sup 15/Hecm/sup 2/. Blisters are formed on polished samples above 10/sup 17/Hecm/sup 2/. In contrast, the high roughness of non-polished samples prevents blister formation. CVD samples behave essentially like the polished samples.

  1. Thermophysical Properties of Cold and Vacuum Plasma Sprayed Cu-Cr-X Alloys, NiAl and NiCrAlY Coatings. Part 1; Electrical and Thermal Conductivity, Thermal Diffusivity, and Total Hemispherical Emissivity

    Science.gov (United States)

    Raj, S. V.

    2017-01-01

    This two-part paper reports the thermophysical properties of several cold and vacuum plasma sprayed monolithic Cu and Ni-based alloy coatings. Part I presents the electrical and thermal conductivity, thermal diffusivity, and total hemispherical emissivity data while Part II reports the specific heat capacity data for these coatings. Metallic copper alloys, stoichiometric NiAl and NiCrAlY coatings were fabricated by either the cold sprayed or the vacuum plasma spray deposition processes for thermal property measurements between 77 and 1223 K. The temperature dependencies of the thermal conductivities, thermal diffusivities, electrical conductivities and total hemispherical emissivities of these cold and vacuum sprayed monolithic coatings are reported in this paper. The electrical and thermal conductivity data correlate reasonably well for Cu-8%Cr-1%Al, Cu-23%Cr-5%Al and NiAl in accordance with the Wiedemann-Franz (WF) law although a better fit is obtained using the Smith-Palmer relationship. The Lorentz numbers determined from the WF law are close to the theoretical value.

  2. CONCHAS-SPRAY, Reactive Flows with Fuel Sprays

    International Nuclear Information System (INIS)

    Cloutman, L.D.; Dukowicz, J.K.; Ramshaw, J.D.; Amsden, A.A.

    2001-01-01

    Description of program or function: CONCHAS-SPRAY solves the equations of transient, multicomponent, chemically reactive fluid dynamics, together with those for the dynamics of an evaporating liquid spray. The program was developed with applications to internal combustion engines in mind. The formulation is spatially two-dimensional, and encompasses both planar and axisymmetric geometries. In the latter case, the flow is permitted to swirl about the axis of symmetry. CONCHAS-SPRAY is a time-marching, finite- difference program that uses a partially implicit numerical scheme. Spatial differences are formed with respect to a generalized two- dimensional mesh of arbitrary quadrilaterals whose corner locations are specified functions of time. This feature allows a Lagrangian, Eulerian, or mixed description, and is particularly useful for representing curved or moving boundary surfaces. Arbitrary numbers of species and chemical reactions are allowed. The latter are subdivided into kinetic and equilibrium reactions, which are treated by different algorithms. A turbulent law-of-the-wall boundary layer option is provided. CONCHAS-SPRAY calls a number of LANL system subroutines to display graphic or numerical information on microfiche. These routines are not included, but are described in the reference report. Several routines called from LINPACK and SLATEC1.0 are included

  3. Influence of the metallic matrix ratio on the wear resistance (dry and slurry abrasion) of plasma sprayed cermet (chromia / stainless steel) coatings

    Czech Academy of Sciences Publication Activity Database

    Ageorges, H.; Ctibor, Pavel; Medarhri, Z.; Touimi, S.; Fauchais, P.

    2006-01-01

    Roč. 201, č. 5 (2006), s. 2006-2011 ISSN 0257-8972 R&D Projects: GA AV ČR(CZ) 1QS200430560 Institutional research plan: CEZ:AV0Z20430508 Keywords : plasma spraying * composite coating * tribology * hardness * wear * abrasion * chromia/stainless steel Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.559, year: 2006

  4. CMAS Interactions with Advanced Environmental Barrier Coatings Deposited via Plasma Spray- Physical Vapor Deposition

    Science.gov (United States)

    Harder, B. J.; Wiesner, V. L.; Zhu, D.; Johnson, N. S.

    2017-01-01

    Materials for advanced turbine engines are expected to have temperature capabilities in the range of 1370-1500C. At these temperatures the ingestion of sand and dust particulate can result in the formation of corrosive glass deposits referred to as CMAS. The presence of this glass can both thermomechanically and thermochemically significantly degrade protective coatings on metallic and ceramic components. Plasma Spray- Physical Vapor Deposition (PS-PVD) was used to deposit advanced environmental barrier coating (EBC) systems for investigation on their interaction with CMAS compositions. Coatings were exposed to CMAS and furnace tested in air from 1 to 50 hours at temperatures ranging from 1200-1500C. Coating composition and crystal structure were tracked with X-ray diffraction and microstructure with electron microscopy.

  5. Kinematic Optimization of Robot Trajectories for Thermal Spray Coating Application

    Science.gov (United States)

    Deng, Sihao; Liang, Hong; Cai, Zhenhua; Liao, Hanlin; Montavon, Ghislain

    2014-12-01

    Industrial robots are widely used in the field of thermal spray nowadays. Due to their characteristics of high-accuracy and programmable flexibility, spraying on complex geometrical workpieces can be realized in the equipped spray room. However, in some cases, the robots cannot guarantee the process parameters defined by the robot movement, such as the scanning trajectory, spray angle, relative speed between the torch and the substrate, etc., which have distinct influences on heat and mass transfer during the generation of any thermally sprayed coatings. In this study, an investigation on the robot kinematics was proposed to find the rules of motion in a common case. The results showed that the motion behavior of each axis of robot permits to identify the motion problems in the trajectory. This approach allows to optimize the robot trajectory generation in a limited working envelop. It also minimizes the influence of robot performance to achieve a more constant relative scanning speed which is represented as a key parameter in thermal spraying.

  6. Spray structure of a pressure-swirl atomizer for combustion applications

    Directory of Open Access Journals (Sweden)

    Jicha Miroslav

    2012-04-01

    Full Text Available In the present work, global as well as spatially resolved parameters of a spray produced by a pressure-swirl atomizer are obtained. Small pressure-swirl atomizer for aircraft combustion chambers was run on a newly designed test bench with Jet A-1 kerosene type aviation fuel. The atomizer was tested in four regimes based on typical operation conditions of the engine. Spray characteristics were studied using two optical measurement systems, Particle Image velocimetry (PIV and Phase-Doppler Particle Analyzer (P/DPA. The results obtained with P/DPA include information about Sauter Mean Diameter of droplets and spray velocity profiles in one plane perpendicular to the spray axis. Velocity magnitudes of droplets in an axial section of the spray were obtained using PIV. The experimental outputs also show a good confirmation of velocity profiles obtained with both instruments in the test plane. These data together will elucidate impact of the spray quality on the whole combustion process, its efficiency and exhaust gas emissions.

  7. Spray structure of a pressure-swirl atomizer for combustion applications

    Science.gov (United States)

    Durdina, Lukas; Jedelsky, Jan; Jicha, Miroslav

    2012-04-01

    In the present work, global as well as spatially resolved parameters of a spray produced by a pressure-swirl atomizer are obtained. Small pressure-swirl atomizer for aircraft combustion chambers was run on a newly designed test bench with Jet A-1 kerosene type aviation fuel. The atomizer was tested in four regimes based on typical operation conditions of the engine. Spray characteristics were studied using two optical measurement systems, Particle Image velocimetry (PIV) and Phase-Doppler Particle Analyzer (P/DPA). The results obtained with P/DPA include information about Sauter Mean Diameter of droplets and spray velocity profiles in one plane perpendicular to the spray axis. Velocity magnitudes of droplets in an axial section of the spray were obtained using PIV. The experimental outputs also show a good confirmation of velocity profiles obtained with both instruments in the test plane. These data together will elucidate impact of the spray quality on the whole combustion process, its efficiency and exhaust gas emissions.

  8. Generator of the low-temperature heterogeneous plasma flow

    Science.gov (United States)

    Yusupov, D. I.; Gadzhiev, M. Kh; Tyuftyaev, A. S.; Chinnov, V. F.; Sargsyan, M. A.

    2018-01-01

    A generator of low-temperature dc plasma with an expanding channel of an output electrode for gas-thermal spraying was designed and constructed. The delivery of the sprayed powder into the cathode and anode arc-binding zones or into the plasma jet below the anode binding was realized. The electrophysical characteristics of both the plasma torch and the heterogeneous plasma flow with Al2O3 powder are studied. It is shown that the current-voltage characteristic (CVC) of a plasma torch depends on the gas flow rate. If the flow rate varies from 1 to 3 g/s, the falling CVC becomes gradually increasing. The speed and temperature of the sprayed powder are determined.

  9. Plasma-Sprayed LSM Protective Coating on Metallic Interconnect of SOFC

    Directory of Open Access Journals (Sweden)

    Jia-Wei Chen

    2017-12-01

    Full Text Available In this study, a (La0.8Sr0.20.98MnO3 protective layer was prepared on the C276, Crofer22 APU, SUS304, and SUS430 alloys by the atmospheric plasma spraying technique (APS. The oxidation behavior and electrical property of these metal alloys have been investigated isothermally at 800 °C in air for up to 300 h. Results showed that the ferritic steels transform into MnCr2O4 spinels and a Cr2O3 layer during isothermal oxidation. The C276 alloy formed NiCr2O4 and FeCr2O4 layers; these are protective and act as an effective barrier against chromium migration into the outer oxide layer, and the alloy demonstrated good oxidation resistance and a reasonable match to the coefficient of thermal expansion of the substrate and a low-oxide scale area-specific resistance. The ASR effects on the formation of oxide scale have been investigated, and the ASR of coated samples was below 0.024 Ω·cm2. It has good electrical conductivity for SOFC in long-term use.

  10. Fine Sprays for Disinfection within Healthcare

    Directory of Open Access Journals (Sweden)

    G Nasr

    2016-09-01

    Full Text Available Problems exist worldwide with Hospital Acquired Infections (HAI's. The Spray Research Group (SRG have been working with relevant industries in developing a product which can provide a delivery system for treatment chemicals for surfaces, including the design and testing of a novel Spill-Return Atomiser (SRA for this purpose. A comprehensive description of this atomiser has already been given. This paper reports on a new application of this atomiser and discusses the problem of spray coating for disinfection that has been considered very little in previous work. The related spray coating performance tests in developing the product are thus provided. The experimental work includes determining the required spray duration and the coverage area produced by different sprays, including the analysis of the effects of atomiser positions, configurations, and the required number of atomisers. Comparison is made with the efficacy of an ultrasonic gas atomiser that is currently used for this purpose. The investigation has found that the utilisation of fine sprays (10μm>D32>25μm at high liquid pressure (<12MPa and low flow rates (<0.3 l/min is suitable for surface disinfection in healthcare applications (i.e. MRSA, VRSA etc.

  11. Effects caused by thermal shocks in plasma sprayed protective coatings from materials based on Al2O3

    International Nuclear Information System (INIS)

    Gorski, L.; Wolski, T.; Gostynski, D.

    1996-01-01

    Plasma sprayed coatings from the materials based on Al 2 O 3 with addition of NiO and TiO 2 have been studied. Thermal shock resistance of these coatings has been tested on special experimental arrangement in the stream of hot and cold gases. Changes in coating microstructure has been determined by light microscopy methods. Phase transition caused by the experiments are revealed by X-ray diffraction methods. The resistance for thermal fatigue processes depends on used coatings materials. (author). 21 refs, 21 figs, 1 tab

  12. Microstructure and properties of thermally sprayed Al-Sn-based alloys for plain bearing applications

    Science.gov (United States)

    Marrocco, T.; Driver, L. C.; Harris, S. J.; McCartney, D. G.

    2006-12-01

    Al-Sn plain bearings for automotive applications traditionally comprise a multilayer structure. Conventionally, bearing manufacturing involves casting the Al-Sn alloy and roll-bonding to a steel backing strip. Recently, high-velocity oxyfuel (HVOF) thermal spraying has been used as a novel alternative manufacturing route. The present project extends previous work on ternary Al-Sn-Cu alloys to quaternary systems, which contain specific additions for potentially enhanced properties. Two alloys were studied in detail, namely, Al-20wt.%Sn-1wt.%Cu-2wt.%Ni and Al-20wt.%Sn-1wt.%Cu-7wt.%Si. This article will describe the microstructural evolution of these alloys following HVOF spraying onto steel substrates and subsequent heat treatment. The microstructures of powders and coatings were investigated by scanning electron microscopy, and the phases were identified by x-ray diffraction. Coating microhardnesses were determined under both as-sprayed and heat-treated conditions, and by the differences related to the microstructures that developed. Finally, the wear behavior of the sprayed and heat-treated coatings in hot engine oil was measured using an industry standard test and was compared with that of previous work on a ternary alloy.

  13. Erosion resistance and adhesion of composite metal/ceramic coatings produced by plasma spraying

    OpenAIRE

    Ramm , D.; Hutchings , I.; Clyne , T.

    1993-01-01

    Ceramic coatings can exhibit greater erosion resistance than most metallic coatings. Such coatings are conveniently produced by thermal spraying. Unfortunately, thermally sprayed ceramic coatings often exhibit poor adhesion, partly as a consequence of the development of residual stresses during spraying and subsequent cooling. Composite coatings have been studied using aluminium/alumina deposits on steel substrates. The incorporation of ceramics within a ductile matrix has potential for sharp...

  14. Wear behaviour of plasma-sprayed AlSi/B4C composite coatings

    International Nuclear Information System (INIS)

    Sarikaya, Ozkan; Anik, Selahaddin; Celik, Erdal; Okumus, S. Cem; Aslanlar, Salim

    2007-01-01

    This paper describes the wear behaviour of AlSi/B 4 C composite coatings with 0-25 wt% B 4 C particles for diesel engine motors. These coatings were successfully fabricated on AlSi substrates using an atmospheric plasma spray technique. The produced samples were characterized by means of an optical microscope, scanning electron microscope and microhardness tester. The obtained results pointed out that an increase of B 4 C particles in AlSi coatings was caused on the rising of the microhardness values and the decrease of the thermal expansion coefficient of the coatings. The friction and wear experiments were performed under dry conditions using a ball-on-dics configuration against WC/Co counter material for different loads. It was concluded that wear resistance of the coatings produced using B 4 C powders is greatly improved compared with the substrate material. The highest wear resistance of the coatings were also determined in the 20% B 4 C coating

  15. Advanced oxide powders processing based on cascade plasma

    International Nuclear Information System (INIS)

    Solonenko, O P; Smirnov, A V

    2014-01-01

    Analysis of the potential advantages offered to thermal spraying and powder processing by the implementation of plasma torches with inter-electrode insert (IEI) or, in other words, cascade plasma torches (CPTs) is presented. The paper provides evidence that the modular designed single cathode CPT helps eliminate the following major disadvantages of conventional plasma torches: plasma parameters drifting, 1-5 kHz pulsing of plasma flow, as well as excessive erosion of electrodes. More stable plasma results in higher quality, homogeneity and reproducibility of plasma sprayed coatings and powders treated. In addition, CPT offers an extremely wide operating window, which allows better control of plasma parameters, particle dwell time and, consequently, particle temperature and velocity within a wide range by generating high enthalpy quasi-laminar plasmas, medium enthalpy transient plasmas, as well as relatively low enthalpy turbulent plasmas. Stable operation, flexibility with plasma gases as well as wide operating window of CPT should help significantly improve the existing plasma spraying processes and coatings, and also help develop new advanced technologies

  16. Synthesis and characterization of Yb and Er based monosilicate powders and durability of plasma sprayed Yb2SiO5 coatings on C/C–SiC composites

    International Nuclear Information System (INIS)

    Khan, Zuhair S.; Zou Binglin; Huang Wenzhi; Fan Xizhi; Gu Lijian; Chen Xiaolong; Zeng Shuibing; Wang Chunjie; Cao Xueqiang

    2012-01-01

    Highlights: ► Ultra-pure rare-earth monosilicate powders based on Er and Yb have been fabricated by solid-state reaction. ► Spray-drying treatment results in powders with free flowing characteristics and rounded surface morphologies. ► CTEs are found to be 7.1 ppm/°C for Yb 2 SiO 5 and 7.5 ppm/°C for Er 2 SiO 5 . ► Plasma spraying has been used to deposit Yb 2 SiO 5 coatings on C/C–SiC substrate. ► Coatings remain strongly intact with the substrate on thermal cycling between ∼400 °C and 1500 °C in gas burner rig experiment. - Abstract: Rare-earth silicates such as Yb 2 SiO 5 and Er 2 SiO 5 are promising environmental barrier coating materials for ceramic matrix composites. In this work, Yb 2 SiO 5 and Er 2 SiO 5 ceramic powders have been synthesized by solid-state reaction using Yb 2 O 3 , Er 2 O 3 and SiO 2 as starting materials. The fabricated powders were subjected to spray drying treatment for subsequent synthesis of coatings by plasma spraying. The spray drying resulted in well-dispersed and spherical powder particles with good flowability. Analytical techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetry and differential scanning calorimetry (TGA/DSC) and dilatometry were applied to study the microstructural and thermal characteristics of the powders. Ultra-high purity monosilicate powders formed as a result of heating treatments at 1400 °C in a box furnace for 20 h. TG/DSC revealed the genesis temperatures of the silicate formation (low temperature polymorphs) and also showed that the solid-state reactions to form Yb and Er based monosilicates proceeded without any weight-loss in the tested temperature range. The values of coefficients of thermal expansion (CTE) of the fabricated compounds are found to be 7.1 ppm/°C for Yb 2 SiO 5 and 7.5 ppm/°C for Er 2 SiO 5 by dilatometric measurements. Besides these studies, coating formation by plasma spraying of spray-dried Yb 2 SiO 5 powders on the ceramic

  17. Characterization of alumina scales formed during isothermal and cyclic oxidation of plasma-sprayed TBC systems at 1150 C

    International Nuclear Information System (INIS)

    Haynes, J.A.; Ferber, M.K.; Porter, W.D.; Rigney, E.D.

    1999-01-01

    The isothermal- and cyclic-oxidation behavior of thermal barrier coating (TBC) systems consisting of vacuum plasma-sprayed (VPS) Ni-22Cr-10Al/Y (wt%) bond coatings and air plasma-sprayed (APS) Y 2 O 3 -stabilized ZrO 2 (YSZ) top coatings (on single-crystal superalloys) was investigated. The microstructures, flaw contents, and fracture behavior of the Al 2 O 3 scales formed during oxidation testing at 1150 C were characterized (by analysis of coating and scale fracture surfaces and metallographic cross sections). Significant localized fracture and buckling of the Al 2 O 3 scales that formed along the bond-coat--top-coat interfaces were observed after cyclic oxidation of TBCs. However, substantial amounts of localized scale damage did not induce rapid TBC failure. Decohesion of the columnar alumina scales on the rough bond-coat surfaces occurred by both internal Al 2 O 3 fracture (parallel to the metal surface) and oxide-metal delamination. There were microstructural indications of Al 2 O 3 scale crack healing by sintering into planar arrays of voids. Alumina scales that formed on convex NiCrAlY surfaces (with radii of 50 microm or less) after cyclic oxidation, whereas scales formed by isothermal oxidation contained few visible voids. Accelerated void growth in Al 2 O 3 scales on the irregular NiCrAlY surfaces appeared to be creep-related and was attributed to the synergistic effects of geometric and thermal stresses

  18. SiC fiber and yttria-stabilized zirconia composite thick thermal barrier coatings fabricated by plasma spray

    Science.gov (United States)

    Ma, Rongbin; Cheng, Xudong; Ye, Weiping

    2015-12-01

    Approximately 4 mm-thick SiC fiber/yttria-stabilized zirconia (YSZ) composite thermal barrier coatings (TBCs) were prepared by atmospheric plasma spray (APS). The composite coatings have a 'reinforced concrete frame structure', which can protect the coating from failure caused by increasing thickness of coating. The SiC fiber plays an important role in reducing the residual stress level of the composite coatings. The thermal conductivity (TC) value of the composite coatings is 0.632 W/m K, which is about 50% reduction compared to that of typical APS YSZ TBCs. And the composite coatings have higher fracture toughness and better thermal shock resistance than the YSZ TBCs.

  19. Thin Spray-on Liner - a potential application. Demonstrated at a longwall installation on Dendrobium mine

    Energy Technology Data Exchange (ETDEWEB)

    Byrnes, Roger [BHP Billiton, NSW (Australia). Dendrobium Mine; Martin, Philip [BASF AG Australia (Australia). BASF-CC Australia Ltd' s

    2008-08-21

    The paper describes a potential application of a Thin Spray-on Liner, on a longwall installation in Australia. The BHPBilliton mine, Dendrobium, is a relatively new mine in the Southern New South Wales coalfields, near to Wollongong. Normal installation and start-up operations for a new longwall face is to completely rock bolt and mesh the face. The operations use plastic/glassfibre cutable rock bolts, with steel/plastic mesh to prevent spalling. The biggest problem on face start up is the sheets of steel or plastic mesh getting wrapped around the shearer disc, which requires time consuming additional work removing the mesh. BASF Construction Chemicals Australia Pty Ltd's Underground Construction group, (UGC), proposed the use of Masterseal 845A, a fast sprayable cementitious/polymer membrane material that could be trialed and used to replace the steel mesh, as a surface support in unison with the conventional cutable rock bolts. The application took 12 h spraying to cover the 240 m long face line which averaged about 3.3 m high. The product was sprayed between 3.5 m to 4 mm thick, and according to the mine operators was at least three times quicker than mesh installation, not withstanding the savings in transport of the awkward bundles of mesh. In conclusion the Thin Spray-on Liner (TSL) performed adequately and achieved it's objective in this installation at Dendrobium mine. (orig.)

  20. Characterization of thermally sprayed coatings for high-temperature wear-protection applications

    International Nuclear Information System (INIS)

    Li, C.C.

    1980-03-01

    Under normal high-temperature gas-cooled reactor (HTGR) operating conditions, faying surfaces of metallic components under high contact pressure are prone to friction, wear, and self-welding damage. Component design calls for coatings for the protection of the mating surfaces. Anticipated operating temperatures up to 850 to 950 0 C (1562 to 1742 0 F) and a 40-y design life require coatings with excellent thermal stability and adequate wear and spallation resistance, and they must be compatible with the HTGR coolant helium environment. Plasma and detonation-gun (D-gun) deposited chromium carbide-base and stabilized zirconia coatings are under consideration for wear protection of reactor components such as the thermal barrier, heat exchangers, control rods, and turbomachinery. Programs are under way to address the structural integrity, helium compatibility, and tribological behavior of relevant sprayed coatings. In this paper, the need for protection of critical metallic components and the criteria for selection of coatings are discussed. The technical background to coating development and the experience with the steam cycle HTGR (HTGR-SC) are commented upon. Coating characterization techniques employed at General Atomic Company (GA) are presented, and the progress of the experimental programs is briefly reviewed. In characterizing the coatings for HTGR applications, it is concluded that a systems approach to establish correlation between coating process parameters and coating microstructural and tribological properties for design consideration is required

  1. Thermomechanical processing of plasma sprayed intermetallic sheets

    Science.gov (United States)

    Hajaligol, Mohammad R.; Scorey, Clive; Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier; Lilly, Jr., A. Clifton; German, Randall M.

    2001-01-01

    A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3% Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.

  2. PLASMA SPRAYED Al₂O₃-13 WT.%TiO₂ COATING SEALED WITH ORGANIC-INORGANIC HYBRID AGENT AND ITS CORROSION RESISTANCE IN ACID ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Zehua Zhou

    2016-07-01

    Full Text Available A novel organic-inorganic hybrid material of γ-methacryloxypropyltrime-thoxysilane (KH570 -SiO₂ was fabricated by Sol-Gel method. The hybrid material was used as the sealing agent for the plasma sprayed Al₂O₃-13 wt.% TiO₂ coating. Infrared spectrum and grafted mechanism of the hybrid agent (HA were studied. Moreover, morphology and porosity, as well as characteristics of immersion plus electrochemical corrosion in acid environment of the coating with and without sealing treatment were evaluated, compared with those of the coating sealed with the conventional silicone resin agent (SRA. The results reveal that KH570 was successfully grafted onto the surface of SiO₂. The HA film sealed on the surface of the coating presents a little better quality than the SRA film. The porosities of the coatings after the sealing treatment decreased. Furthermore, the sealing treatment can improve efficiently the corrosion resistance of the coating in 5 vol.% HCl solution. The hybrid sealing agent can become a candidate for the plasma sprayed Al₂O₃-13 wt.% TiO₂ coating used in acid environment to overcome some disadvantages of organic agents such as severely environmental pollution.

  3. Application of thermal spray coatings for jet engines. Kokuki sangyo eno yosha no oyo

    Energy Technology Data Exchange (ETDEWEB)

    Muto, Y [All Nippon Airways Co. Ltd., Tokyo (Japan)

    1992-10-31

    Application condition of spray coating on jet engine parts and characteristics of spray reparing process are explained. Spray coating used for jet engine is classified as recovery of dimension, crevice adjustment, improvement of resistance to friction, improvement of fretting resistance and heat resistance. Titanium alloy having better adhesion and acid resistance, is used as coating for dimensional recovery, where as nickel-crome-aluminium coating is used for the improvement of heat resistance of stainless steel, etc. Crevice adjustment coatings are used in rotating parts of jet engines, and they are of two types are; gel-double coating of aluminium, nickel-aluminium, etc., abrasive coating of aluminium oxide. Tungsten carbide and cobalt are used as coatings for the friction improvement. Nickel and indium, etc., are used as fretting resistance coating. Various types of ceramics together with heat resistance steels like HS-188 are used as coating for heat resistance improvement. 4 figs., 3 tabs.

  4. High-temperature resistant, thermally sprayed diffusion barrier coatings on CFC lightweight materials; Hochtemperaturbestaendige, thermisch gespritzte Diffusionsbarriereschichten auf CFC-Leichtbauchargiergestellen

    Energy Technology Data Exchange (ETDEWEB)

    Drehmann, Rico; Rupprecht, Christian; Wielage, Bernhard; Lampke, Thomas [Technische Univ. Chemnitz (Germany). Inst. fuer Werkstoffwissenschaft und Werkstofftechnik (IWW); Gilbert, Maria; Uhlig, Volker; Trimis, Dimosthenis [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Waermetechnik und Thermodynamik (IWTT); Heuer, Volker [ALD Vacuum Technologies GmbH, Hanau (Germany)

    2013-03-15

    In heat treating processes as well as in high temperature brazing processes, charge carriers enable the positioning and transport of work pieces. Recently, charge carriers consisting of graphite or carbon fibre reinforced carbon (CFC) are used. The main disadvantage of charge carriers based on CFC is the undesirable carburization of the overlying components due to diffusion processes. Under this aspect, thermally sprayed coatings are applied on CFC and tested with respect to their suitability as a high-temperature diffusion barrier. The ceramic powders aluminium oxide, aluminium oxide/chromium oxide, aluminium oxide/titanium oxide and zirconium oxide/yttrium oxide are used as a coating material which is processed by means of the powder flame spraying as well as atmospheric plasma spraying. Molybdenum and silicon carbide are used as an adhesive layer. The coating materials aluminium oxide and aluminium oxide/chromium oxide on siliconized CFC presented excellent results. This supplies a large potential of application for thermally sprayed ceramic coatings on carbon-based lightweight materials.

  5. The Influence of Heat Treatments on the Porosity of Suspension Plasma-Sprayed Yttria-Stabilized Zirconia Coatings

    Science.gov (United States)

    Ekberg, Johanna; Ganvir, Ashish; Klement, Uta; Creci, Simone; Nordstierna, Lars

    2018-02-01

    Suspension plasma-sprayed coatings are produced using fine-grained feedstock. This allows to control the porosity and to achieve low thermal conductivity which makes the coatings attractive as topcoats in thermal barrier coatings (TBCs). Used in gas turbine applications, TBCs are exposed to high temperature exhaust gases which lead to microstructure alterations. In order to obtain coatings with optimized thermomechanical properties, microstructure alterations like closing of pores and opening of cracks have to be taken into account. Hence, in this study, TBC topcoats consisting of 4 mol.% yttria-stabilized zirconia were heat-treated in air at 1150 °C and thereafter the coating porosity was investigated using image analysis (IA) and nuclear magnetic resonance (NMR) cryoporometry. Both IA and NMR cryoporometry showed that the porosity changed as a result of the heat treatment for all investigated coatings. In fact, both techniques showed that the fine porosity decreased as a result of the heat treatment, while IA also showed an increase in the coarse porosity. When studying the coatings using scanning electron microscopy, it was noticed that finer pores and cracks disappeared and larger pores grew slightly and achieved a more distinct shape as the material seemed to become more compact.

  6. Application of Constrained Linear MPC to a Spray Dryer

    DEFF Research Database (Denmark)

    Petersen, Lars Norbert; Poulsen, Niels Kjølstad; Niemann, Hans Henrik

    2014-01-01

    In this paper we develop a linear model predictive control (MPC) algorithm for control of a two stage spray dryer. The states are estimated by a stationary Kalman filter. A non-linear first-principle engineering model is developed to simulate the spray drying process. The model is validated against...... experimental data and able to precisely predict the temperatures, the air humidity and the residual moisture in the dryer. The MPC controls these variables to the target and reject disturbances. Spray drying is a cost-effective method to evaporate water from liquid foods and produces a free flowing powder...

  7. Proceedings of the 16th symposium on plasma physics and technology

    International Nuclear Information System (INIS)

    1993-01-01

    Among 53 papers collected in the proceedings, 28 papers deal with the theory and modelling (8 papers), experimental research (11 papers) and diagnostics of high-temperature plasmas. These include lower hybrid current drive in tokamaks, plasma heating by electron beams, laser plasma interaction and z-pinch experiments. In the diagnostic papers, attention is mostly paid to X-ray and optical plasma spectroscopy and to advanced Langmuir probe diagnostics. The remaining papers discuss low-temperature plasmas and their applications. In this group, 8 papers deal with low-pressure electric discharges, 5 papers with high-pressure arcs, glidarcs and plasma torches, and 12 papers with various plasma technology topics, such as thin film deposition, plasma spraying and plasma chemistry. (J.U.)

  8. Application of a topical vapocoolant spray decreases pain at the site of initial intradermal anaesthetic injection during ultrasound-guided breast needle biopsy

    International Nuclear Information System (INIS)

    Collado-Mesa, F.; Net, J.M.; Arheart, K.; Klevos, G.A.; Yepes, M.M.

    2015-01-01

    Aim: To assess whether the application of a topical vapocoolant spray immediately prior to initial intradermal anaesthetic injection during ultrasound-guided breast biopsy decreases pain at the site of the initial injection. Materials and methods: In this institutional review board-approved, Health Insurance Portability and Accountability Act (HIPAA)-compliant study, 50 women aged 49.1 ± 1.6 years (mean ± standard error) were recruited and provided written informed consent. Participants served as their own controls and were blinded as to whether a topical vapocoolant spray or a placebo was used immediately prior to the initial local anaesthetic injection at two separate biopsy sites. With the exception of the application of vapocoolant or placebo, the entire ultrasound-guided procedure was performed according to a routine protocol. Participants recorded pain at initial injection site on a visual analogue scale. General linear mixed models for repeated measures analysis of variance and a 0.05 significance level were used. Results: Application of topical vapocoolant spray was shown to significantly decrease pain at the site of initial intradermal anaesthetic injection as compared to placebo (p<0.001). Treatment effect was independent of age of the subject, race/ethnicity, operator, type of biopsy device, and histopathology result. No complications from vapocoolant spray use were reported. Conclusion: Application of a topical vapocoolant spray immediately prior to initial intradermal anaesthetic injection during ultrasound-guided breast biopsy significantly decreases pain at the site of the initial injection and could contribute to improve the patient's overall procedural experience. -- Highlights: •Topical vapocoolant spray decreased pain at site of initial anesthetic injection (

    spray use were reported

  9. Powder processing and spheroidizing with thermal inductively coupled plasma

    International Nuclear Information System (INIS)

    Nutsch, G.; Linke, P.; Zakharian, S.; Dzur, B.; Weiss, K.-H.

    2001-01-01

    Processing of advanced powder materials for the spraying industry is one of the most promising applications of the thermal RF inductively coupled plasma. By selecting the feedstock carefully and adjusting the RF plasma parameters, unique materials with high quality can be achieved. Powders injected in the hot plasma core emerge with modified shapes, morphology, crystal structure and chemical composition. Ceramic oxide powders such as Al 2 O 3 , ZrO 2 , SiO 2 are spheroidized with a high spheroidization rate. By using the RF induction plasma spheroidizing process tungsten melt carbide powders are obtained with a high spheroidization rate at high feeding rates by densification of agglomerated powders consisting of di-tungsten carbide and monocarbide with a definite composition. This kind of ball-like powders is particularly suited for wear resistant applications. (author)

  10. Direct introduction of volatile carbon compounds into the spray chamber of an inductively coupled plasma mass spectrometer: Sensitivity enhancement for selenium

    International Nuclear Information System (INIS)

    Kovacevic, Miroslav; Goessler, Walter

    2005-01-01

    The effect of signal enhancement of elements with ionization potentials in the range from 9 to 11 eV by carbon-containing compounds is a well-known phenomenon in inductively coupled plasma mass spectrometry (ICPMS). It has traditionally been exploited through the addition of organic solvents to the sample matrix or to the mobile phase to improve sensitivity. In the present work, aqueous solutions of volatile carbon compounds (acetone, methanol and acetic acid) were directly introduced into the thermostatted spray chamber rather than being added to the sample matrix. It is presumed that no aerosol is produced from these solutions and only vapors of organic compounds are swept into the plasma together with the sample aerosol. When a 0.40 mol l -1 aqueous solution of acetone was introduced directly into the spray chamber, the signals for arsenic and selenium were enhanced by a factor of 4.2. The usefulness of this approach was demonstrated through the achievement of lower instrumental detection limits for selenium at m/z 82 (0.1 ng ml -1 ) compared to the system without direct introduction of volatile carbon compounds (0.5 ng ml -1 ). The method was successfully applied in the determination of traces of selenium in natural water, urine and bovine liver reference material

  11. Hot corrosion behavior of plasma-sprayed partially stabilized zirconia coatings in a lithium molten salt

    International Nuclear Information System (INIS)

    Cho, Soo Haeng; Hong, Sun Seok; Kang, Dae Seong; Park, Byung Heong; Hur, Jin Mok; Lee, Han Soo

    2008-01-01

    The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is too corrosive for typical structural materials. It is essential to choose the optimum material for the process equipment handling molten salt. IN713LC is one of the candidate materials proposed for application in electrolytic reduction process. In this study, Yttria-Stabilized Zirconia (YSZ) top coat was applied to a surface of IN713LC with an aluminized metallic bond coat by an optimized plasma spray process, and were investigated the corrosion behavior at 675 .deg. C for 216 hours in the molten salt LiCl-Li 2 O under an oxidizing atmosphere. The as-coated and tested specimens were examined by OM, SEM/EDS and XRD, respectively. The bare superalloy reveals obvious weight loss, and the corrosion layer formed on the surface of the bare superalloy was spalled due to the rapid scale growth and thermal stress. The top coatings showed a much better hot-corrosion resistance in the presence of LiCl-Li 2 O molten salt when compared to those of the uncoated superalloy and the aluminized bond coatings. These coatings have been found to be beneficial for increasing to the hot-corrosion resistance of the structural materials for handling high temperature lithium molten salts

  12. Filter media properties of mineral fibres produced by plasma spray.

    Science.gov (United States)

    Prasauskas, Tadas; Matulevicius, Jonas; Kliucininkas, Linas; Krugly, Edvinas; Valincius, Vitas; Martuzevicius, Dainius

    2016-01-01

    The purpose of this study was to determine the properties of fibrous gas filtration media produced from mineral zeolite. Fibres were generated by direct current plasma spray. The paper characterizes morphology, chemical composition, geometrical structure of elementary fibres, and thermal resistance, as well as the filtration properties of fibre media. The diameter of the produced elementary fibres ranged from 0.17 to 0.90 μm and the length ranged from 0.025 to 5.1 mm. The release of fibres from the media in the air stream was noticed, but it was minimized by hot-pressing the formed fibre mats. The fibres kept their properties up to the temperature of 956°C, while further increase in temperature resulted in the filter media becoming shrunk and brittle. The filtration efficiency of the prepared filter mats ranged from 95.34% to 99.99% for aerosol particles ranging in a size between 0.03 and 10.0 μm. Unprocessed fibre media showed the highest filtration efficiency when filtering aerosol particles smaller than 0.1 µm. Hot-pressed filters were characterized by the highest quality factor values, ranging from 0.021 to 0.064 Pa(-1) (average value 0.034 Pa(-1)).

  13. Performances and reliability of WC based thermal spray coatings

    International Nuclear Information System (INIS)

    Scrivani, A.; Rosso, M.; Salvarani, L.

    2001-01-01

    Thermal spray processes are used for a lot of traditional and innovative applications and their importance is becoming higher and higher. WC/CoCr based thermal spray coatings represent one of the most important class of coatings that find application in a wide range of industrial sectors. This paper will address a review of current applications and characteristics of this kind of coating. The most important spraying processes, namely HVOF (high velocity oxygen fuel) are examined, the characterization of the coatings from the point of view of corrosion and wear resistance is considered. (author)

  14. Spatially-resolved velocities of thermally-produced spray droplets using a velocity-divided Abel inversion of photographed streaks

    Science.gov (United States)

    Kawaguchi, Y.; Kobayashi, N.; Yamagata, Y.; Miyazaki, F.; Yamasaki, M.; Muraoka, K.

    2017-10-01

    Droplet velocities of thermal spray are known to have profound effects on important coating qualities, such as adhesive strength, porosity, and hardness, for various applications. For obtaining the droplet velocities, therefore, the TOF (time-of-flight) technique has been widely used, which relies on observations of emitted radiation from the droplets, where all droplets along the line-of-sight contribute to signals. Because droplets at and near the flow axis mostly contribute coating layers, it has been hoped to get spatially resolved velocities. For this purpose, a velocity-divided Abel inversion was devised from CMOS photographic data. From this result, it has turned out that the central velocity is about 25% higher than that obtained from the TOF technique for the case studied (at the position 150 mm downstream of the plasma spray gun, where substrates for spray coatings are usually placed). Further implications of the obtained results are discussed.

  15. Role of thermo-physical properties on design and development of thermal plasma devices

    International Nuclear Information System (INIS)

    Ghorui, S.

    2014-01-01

    Thermal plasma devices find wide application in variety of technological areas like cutting, welding, spray coating, waste management, material processing, chemical reduction, nano-synthesis, novel material synthesis etc. Highly non-linear behavior of the plasma properties coupled with inherent instabilities, extremely high temperature, high gradients in thermal, and flow field, presence of thermal and chemical non-equilibrium make design and development of the plasma generating devices a challenging task as power levels of the devices increase

  16. Comparative Evaluation of Osseointegration of Dental Endodontic Implants with and without Plasma- Sprayed Hydroxy apatite Coating

    Directory of Open Access Journals (Sweden)

    Moosavi SB

    2001-05-01

    Full Text Available Bone osseointegration around dental implant can cause earlier stabilization and fixation of implant and reduce healing time. Hydroxyapatite coating can affect bone osseointegration and enhance its rates. The aim of this study was comparison of osseointegration between plasma sprayed hydroxyapatite coated and uncoated dental implants in cats. Four endodontic implants including, vitallium and two stainless steel with and without hydroxyapatite coating were prepared and placed in mandibular canines of 20 cats after completion of root canal treatment and osseous preparation. After a healing period of 4 months, investigation by scanning electron microscopy showed significant difference in ossointegration between coated and uncoated dental implants and average bone osseointegration of coated implants was more than uncoated implants.

  17. Comparison of high temperature wear behaviour of plasma sprayed WC–Co coated and hard chromium plated AISI 304 austenitic stainless steel

    International Nuclear Information System (INIS)

    Balamurugan, G.M.; Duraiselvam, Muthukannan; Anandakrishnan, V.

    2012-01-01

    Highlights: ► WC–12wt.%Co powders were deposited to a thickness of 300 μm on to steel substrates. ► The micro hardness of the above coatings was lower than that of chromium plating. ► Wear resistance of chromium coating was increased up to five times of AISI 304 austenitic stainless steel. ► Wear resistance of chromium coat higher than plasma coat at different temperatures. -- Abstract: The wear behaviour of plasma sprayed coating and hard chrome plating on AISI 304 austenitic stainless steel substrate is experimentally investigated in unlubricated conditions. Experiments were conducted at different temperatures (room temp, 100 °C, 200 °C and 300 °C) with 50 N load and 1 m/s sliding velocity. Wear tests were carried out by dry sliding contact of EN-24 medium carbon steel pin as counterpart on a pin-on-disc wear testing machine. In both coatings, specimens were characterised by hardness, microstructure, coating density and sliding wear resistance. Wear studies showed that the hard chromium coating exhibited improved tribological performance than that of the plasma sprayed WC–Co coating. X-ray diffraction analysis (XRD) of the coatings showed that the better wear resistance at high temperature has been attributed to the formation of a protective oxide layer at the surface during sliding. The wear mechanisms were investigated through scanning electron microscopy (SEM) and XRD. It was observed that the chromium coating provided higher hardness, good adhesion with the substrate and nearly five times the wear resistance than that obtained by uncoated AISI 304 austenitic stainless steel.

  18. Near-net-shape 95W-3.5Ni-1.5Fe thin-walled products produced by plasma spray forming

    International Nuclear Information System (INIS)

    Wang, Y.M.; Xiong, X.; Min, X.B.; Xie, L.; Zheng, F.

    2010-01-01

    Tungsten heavy alloy 95W-3.5Ni-1.5Fe (in wt.%) refractory metallic thin-walled products (diameter ≤100 mm, length ≤150 mm and wall thickness ≤5 mm) were produced using plasma spray forming (PSF) covered in argon atmosphere at a pressure of 1.01 x 10 5 Pa followed by vacuum liquid phase sintering at 1465, 1485 and 1500 deg. C for 90 min, respectively. A lamellar structure consisting of vertical columnar grains and some fine particles was found in PSF deposits. Relative density of the deposits was about 87.70% with poor mechanical property. Upon vacuum liquid phase sintering, their density and property have been improved significantly. The microstructures of PSF deposits before and after vacuum sintering were found to consist with tungsten and (Ni, Fe)-rich phase. Volume fraction of (Ni, Fe)-rich phase was decreased due to vaporization that occurred in plasma spraying and vacuum liquid phase sintering. Their fracture surfaces were dominated by intergranular rupture. The lamellar structure remained in the deposits during early stages of sintering (solid state sintering and initial of liquid phase sintering). Particle rearrangement and rapid densification of the deposits did not occur until the surface of tungsten particles being modified and changed into spheroids by solution and precipitation. In the end, the PSF deposits have been transformed from lamellar structure into two phase composites with dispersed spheroidal tungsten grains embedded in a continuous network of (Ni, Fe)-rich phase.

  19. Yb2Si2O7 Environmental Barrier Coatings Deposited by Various Thermal Spray Techniques: A Preliminary Comparative Study

    Science.gov (United States)

    Bakan, Emine; Marcano, Diana; Zhou, Dapeng; Sohn, Yoo Jung; Mauer, Georg; Vaßen, Robert

    2017-08-01

    Dense, crack-free, uniform, and well-adhered environmental barrier coatings (EBCs) are required to enhance the environmental durability of silicon (Si)-based ceramic matrix composites in high pressure, high gas velocity combustion atmospheres. This paper represents an assessment of different thermal spray techniques for the deposition of Yb2Si2O7 EBCs. The Yb2Si2O7 coatings were deposited by means of atmospheric plasma spraying (APS), high-velocity oxygen fuel spraying (HVOF), suspension plasma spraying (SPS), and very low-pressure plasma spraying (VLPPS) techniques. The initial feedstock, as well as the deposited coatings, were characterized and compared in terms of their phase composition. The as-sprayed amorphous content, microstructure, and porosity of the coatings were further analyzed. Based on this preliminary investigation, the HVOF process stood out from the other techniques as it enabled the production of vertical crack-free coatings with higher crystallinity in comparison with the APS and SPS techniques in atmospheric conditions. Nevertheless, VLPPS was found to be the preferred process for the deposition of Yb2Si2O7 coatings with desired characteristics in a controlled-atmosphere chamber.

  20. Spray casting project final report

    International Nuclear Information System (INIS)

    Churnetski, S.R.; Thompson, J.E.

    1996-08-01

    Lockheed Martin Energy Systems, Inc. (Energy Systems), along with other participating organizations, has been exploring the feasibility of spray casting depleted uranium (DU) to near-net shape as a waste minimization effort. Although this technology would be useful in a variety of applications where DU was the material of choice, this effort was aimed primarily at gamma-shielding components for use in storage and transportation canisters for high-level radioactive waste, particularly in the Multipurpose Canister (MPC) application. In addition to the waste-minimization benefits, spray casting would simplify the manufacturing process by allowing the shielding components for MPC to be produced as a single component, as opposed to multiple components with many fabrication and assembly steps. In earlier experiments, surrogate materials were used to simulate the properties (specifically reactivity and density) of DU. Based on the positive results from those studies, the project participants decided that further evaluation of the issues and concerns that would accompany spraying DU was warranted. That evaluation occupied substantially all of Fiscal Year 1995, yielding conceptual designs for both an intermediate facility and a production facility and their associated engineering estimates. An intermediate facility was included in this study to allow further technology development in spraying DU. Although spraying DU to near-net shape seems to be feasible, a number of technical, engineering, and safety issues would need to be evaluated before proceeding with a production facility. This report is intended to document the results from the spray-casting project and to provide information needed by anyone interested in proceeding to the next step