Simulating magnetised plasma with the versatile advection code
Keppens, R.; Toth, G.; Palma, J. M. L.; Dongarra, J.; Hernandez, V.
1999-01-01
Matter in the universe mainly consists of plasma. The dynamics of plasmas is controlled by magnetic fields. To simulate the evolution of magnetised plasma, we solve the equations of magnetohydrodynamics using the Versatile Advection Code (VAC). To demonstrate the versatility of VAC, we present calcu
Simulating magnetised plasma with the versatile advection code
Keppens, R.; Toth, G.; Palma, J. M. L.; Dongarra, J.; Hernandez, V.
1999-01-01
Matter in the universe mainly consists of plasma. The dynamics of plasmas is controlled by magnetic fields. To simulate the evolution of magnetised plasma, we solve the equations of magnetohydrodynamics using the Versatile Advection Code (VAC). To demonstrate the versatility of VAC, we present
A methodology for the rigorous verification of plasma simulation codes
Riva, Fabio
2016-10-01
The methodology used to assess the reliability of numerical simulation codes constitutes the Verification and Validation (V&V) procedure. V&V is composed by two separate tasks: the verification, which is a mathematical issue targeted to assess that the physical model is correctly solved, and the validation, which determines the consistency of the code results, and therefore of the physical model, with experimental data. In the present talk we focus our attention on the verification, which in turn is composed by the code verification, targeted to assess that a physical model is correctly implemented in a simulation code, and the solution verification, that quantifies the numerical error affecting a simulation. Bridging the gap between plasma physics and other scientific domains, we introduced for the first time in our domain a rigorous methodology for the code verification, based on the method of manufactured solutions, as well as a solution verification based on the Richardson extrapolation. This methodology was applied to GBS, a three-dimensional fluid code based on a finite difference scheme, used to investigate the plasma turbulence in basic plasma physics experiments and in the tokamak scrape-off layer. Overcoming the difficulty of dealing with a numerical method intrinsically affected by statistical noise, we have now generalized the rigorous verification methodology to simulation codes based on the particle-in-cell algorithm, which are employed to solve Vlasov equation in the investigation of a number of plasma physics phenomena.
Energy Technology Data Exchange (ETDEWEB)
Takase, Haruhiko [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Senda, Ikuo
1999-04-01
A Toroidally Symmetric Plasma Simulation (TSPS) code has been developed for investigating the position and shape control on tokamak plasmas. The analyses of three-dimensional eddy currents on the conducting components around the plasma and the two-dimensional magneto-hydrodynamic (MHD) equilibrium are taken into account in this code. The code can analyze the plasma position and shape control during the minor disruption in which the deformation of plasma is not negligible. Using the ITER (International Thermonuclear Experimental Reactor) parameters, some examples of calculations are shown in this paper. (author)
Low-temperature plasma simulations with the LSP PIC code
Carlsson, Johan; Khrabrov, Alex; Kaganovich, Igor; Keating, David; Selezneva, Svetlana; Sommerer, Timothy
2014-10-01
The LSP (Large-Scale Plasma) PIC-MCC code has been used to simulate several low-temperature plasma configurations, including a gas switch for high-power AC/DC conversion, a glow discharge and a Hall thruster. Simulation results will be presented with an emphasis on code comparison and validation against experiment. High-voltage, direct-current (HVDC) power transmission is becoming more common as it can reduce construction costs and power losses. Solid-state power-electronics devices are presently used, but it has been proposed that gas switches could become a compact, less costly, alternative. A gas-switch conversion device would be based on a glow discharge, with a magnetically insulated cold cathode. Its operation is similar to that of a sputtering magnetron, but with much higher pressure (0.1 to 0.3 Torr) in order to achieve high current density. We have performed 1D (axial) and 2D (axial/radial) simulations of such a gas switch using LSP. The 1D results were compared with results from the EDIPIC code. To test and compare the collision models used by the LSP and EDIPIC codes in more detail, a validation exercise was performed for the cathode fall of a glow discharge. We will also present some 2D (radial/azimuthal) LSP simulations of a Hall thruster. The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000298.
Neoclassical Simulation of Tokamak Plasmas using Continuum Gyrokinetc Code TEMPEST
Energy Technology Data Exchange (ETDEWEB)
Xu, X Q
2007-11-09
We present gyrokinetic neoclassical simulations of tokamak plasmas with self-consistent electric field for the first time using a fully nonlinear (full-f) continuum code TEMPEST in a circular geometry. A set of gyrokinetic equations are discretized on a five dimensional computational grid in phase space. The present implementation is a Method of Lines approach where the phase-space derivatives are discretized with finite differences and implicit backwards differencing formulas are used to advance the system in time. The fully nonlinear Boltzmann model is used for electrons. The neoclassical electric field is obtained by solving gyrokinetic Poisson equation with self-consistent poloidal variation. With our 4D ({psi}, {theta}, {epsilon}, {mu}) version of the TEMPEST code we compute radial particle and heat flux, the Geodesic-Acoustic Mode (GAM), and the development of neoclassical electric field, which we compare with neoclassical theory with a Lorentz collision model. The present work provides a numerical scheme and a new capability for self-consistently studying important aspects of neoclassical transport and rotations in toroidal magnetic fusion devices.
Vencels, Juris; Delzanno, Gian Luca; Manzini, Gianmarco; Markidis, Stefano; Peng, Ivy Bo; Roytershteyn, Vadim
2016-05-01
We present the design and implementation of a spectral code, called SpectralPlasmaSolver (SPS), for the solution of the multi-dimensional Vlasov-Maxwell equations. The method is based on a Hermite-Fourier decomposition of the particle distribution function. The code is written in Fortran and uses the PETSc library for solving the non-linear equations and preconditioning and the FFTW library for the convolutions. SPS is parallelized for shared- memory machines using OpenMP. As a verification example, we discuss simulations of the two-dimensional Orszag-Tang vortex problem and successfully compare them against a fully kinetic Particle-In-Cell simulation. An assessment of the performance of the code is presented, showing a significant improvement in the code running-time achieved by preconditioning, while strong scaling tests show a factor of 10 speed-up using 16 threads.
2005-01-01
Tech-X Corporation releases simulation code for solving complex problems in plasma physics : VORPAL code provides a robust environment for simulating plasma processes in high-energy physics, IC fabrications and material processing applications
Neutral Particle Transport in Cylindrical Plasma Simulated by a Monte Carlo Code
Institute of Scientific and Technical Information of China (English)
YU Deliang; YAN Longwen; ZHONG Guangwu; LU Jie; YI Ping
2007-01-01
A Monte Carlo code (MCHGAS) has been developed to investigate the neutral particle transport.The code can calculate the radial profile and energy spectrum of neutral particles in cylindrical plasmas.The calculation time of the code is dramatically reduced when the Splitting and Roulette schemes are applied. The plasma model of an infinite cylinder is assumed in the code,which is very convenient in simulating neutral particle transports in small and middle-sized tokamaks.The design of the multi-channel neutral particle analyser (NPA) on HL-2A can be optimized by using this code.
Institute of Scientific and Technical Information of China (English)
JIANGuangde; DONGJiaqi
2003-01-01
A numerical simulation code has been established with particle simulation method in order to study the gyro-kinetic equations for the electrostatic electron temperature gradient modes in toroidal plasmas. The flowchart is given as well for the code. The fourth-order adaptive step-size scheme is adopted, that saves computer time and is simple. The calculation code is useful for the research of the electron temperature gradient instability.
Relativistic modeling capabilities in PERSEUS extended MHD simulation code for HED plasmas
Energy Technology Data Exchange (ETDEWEB)
Hamlin, Nathaniel D., E-mail: nh322@cornell.edu [438 Rhodes Hall, Cornell University, Ithaca, NY, 14853 (United States); Seyler, Charles E., E-mail: ces7@cornell.edu [Cornell University, Ithaca, NY, 14853 (United States)
2014-12-15
We discuss the incorporation of relativistic modeling capabilities into the PERSEUS extended MHD simulation code for high-energy-density (HED) plasmas, and present the latest hybrid X-pinch simulation results. The use of fully relativistic equations enables the model to remain self-consistent in simulations of such relativistic phenomena as X-pinches and laser-plasma interactions. By suitable formulation of the relativistic generalized Ohm’s law as an evolution equation, we have reduced the recovery of primitive variables, a major technical challenge in relativistic codes, to a straightforward algebraic computation. Our code recovers expected results in the non-relativistic limit, and reveals new physics in the modeling of electron beam acceleration following an X-pinch. Through the use of a relaxation scheme, relativistic PERSEUS is able to handle nine orders of magnitude in density variation, making it the first fluid code, to our knowledge, that can simulate relativistic HED plasmas.
Laser-Plasma Modeling Using PERSEUS Extended-MHD Simulation Code for HED Plasmas
Hamlin, Nathaniel; Seyler, Charles
2016-10-01
We discuss the use of the PERSEUS extended-MHD simulation code for high-energy-density (HED) plasmas in modeling laser-plasma interactions in relativistic and nonrelativistic regimes. By formulating the fluid equations as a relaxation system in which the current is semi-implicitly time-advanced using the Generalized Ohm's Law, PERSEUS enables modeling of two-fluid phenomena in dense plasmas without the need to resolve the smallest electron length and time scales. For relativistic and nonrelativistic laser-target interactions, we have validated a cycle-averaged absorption (CAA) laser driver model against the direct approach of driving the electromagnetic fields. The CAA model refers to driving the radiation energy and flux rather than the fields, and using hyperbolic radiative transport, coupled to the plasma equations via energy source terms, to model absorption and propagation of the radiation. CAA has the advantage of not requiring adequate grid resolution of each laser wavelength, so that the system can span many wavelengths without requiring prohibitive CPU time. For several laser-target problems, we compare existing MHD results to extended-MHD results generated using PERSEUS with the CAA model, and examine effects arising from Hall physics. This work is supported by the National Nuclear Security Administration stewardship sciences academic program under Department of Energy cooperative agreements DE-FOA-0001153 and DE-NA0001836.
The Plasma Simulation Code: A modern particle-in-cell code with patch-based load-balancing
Germaschewski, Kai; Fox, William; Abbott, Stephen; Ahmadi, Narges; Maynard, Kristofor; Wang, Liang; Ruhl, Hartmut; Bhattacharjee, Amitava
2016-08-01
This work describes the Plasma Simulation Code (PSC), an explicit, electromagnetic particle-in-cell code with support for different order particle shape functions. We review the basic components of the particle-in-cell method as well as the computational architecture of the PSC code that allows support for modular algorithms and data structure in the code. We then describe and analyze in detail a distinguishing feature of PSC: patch-based load balancing using space-filling curves which is shown to lead to major efficiency gains over unbalanced methods and a previously used simpler balancing method.
The Plasma Simulation Code: A modern particle-in-cell code with load-balancing and GPU support
Germaschewski, Kai; Ahmadi, Narges; Wang, Liang; Abbott, Stephen; Ruhl, Hartmut; Bhattacharjee, Amitava
2013-01-01
Recent increases in supercomputing power, driven by the multi-core revolution and accelerators such as the IBM Cell processor, graphics processing units (GPUs) and Intel's Many Integrated Core (MIC) technology have enabled kinetic simulations of plasmas at unprecedented resolutions, but changing HPC architectures also come with challenges for writing efficient numerical codes. This paper describes the Plasma Simulation Code (PSC), an explicit, electromagnetic particle-in-cell code with support for different order particle shape functions. We focus on two distinguishing feature of the code: patch-based load balancing using space-filling curves, and support for Nvidia GPUs, which achieves substantial speed-up of up to more than 6x on the Cray XK7 architecture compared to a CPU-only implementation.
Development Of Sputtering Models For Fluids-Based Plasma Simulation Codes
Veitzer, Seth; Beckwith, Kristian; Stoltz, Peter
2015-09-01
Rf-driven plasma devices such as ion sources and plasma processing devices for many industrial and research applications benefit from detailed numerical modeling. Simulation of these devices using explicit PIC codes is difficult due to inherent separations of time and spatial scales. One alternative type of model is fluid-based codes coupled with electromagnetics, that are applicable to modeling higher-density plasmas in the time domain, but can relax time step requirements. To accurately model plasma-surface processes, such as physical sputtering and secondary electron emission, kinetic particle models have been developed, where particles are emitted from a material surface due to plasma ion bombardment. In fluid models plasma properties are defined on a cell-by-cell basis, and distributions for individual particle properties are assumed. This adds a complexity to surface process modeling, which we describe here. We describe the implementation of sputtering models into the hydrodynamic plasma simulation code USim, as well as methods to improve the accuracy of fluids-based simulation of plasmas-surface interactions by better modeling of heat fluxes. This work was performed under the auspices of the Department of Energy, Office of Basic Energy Sciences Award #DE-SC0009585.
Plasma burn-through simulations using the DYON code and predictions for ITER
Kim, Hyun-Tae; de Vries, P C; Contributors, JET-EFDA
2014-01-01
This paper will discuss simulations of the full ionization process (i.e. plasma burn-through), fundamental to creating high temperature plasma. By means of an applied electric field, the gas is partially ionized by the electron avalanche process. In order for the electron temperature to increase, the remaining neutrals need to be fully ionized in the plasma burn-through phase, as radiation is the main contribution to the electron power loss. The radiated power loss can be significantly affected by impurities resulting from interaction with the plasma facing components. The DYON code is a plasma burn-through simulator developed at Joint European Torus (JET) [1] [2]. The dynamic evolution of the plasma temperature and plasma densities including impurity content is calculated in a self-consistent way, using plasma wall interaction models. The recent installation of a beryllium wall at JET enabled validation of the plasma burn-through model in the presence of new, metallic plasma facing components. The simulation...
Simulation of 2D Kinetic Effects in Plasmas using the Grid Based Continuum Code LOKI
Banks, Jeffrey; Berger, Richard; Chapman, Tom; Brunner, Stephan
2016-10-01
Kinetic simulation of multi-dimensional plasma waves through direct discretization of the Vlasov equation is a useful tool to study many physical interactions and is particularly attractive for situations where minimal fluctuation levels are desired, for instance, when measuring growth rates of plasma wave instabilities. However, direct discretization of phase space can be computationally expensive, and as a result there are few examples of published results using Vlasov codes in more than a single configuration space dimension. In an effort to fill this gap we have developed the Eulerian-based kinetic code LOKI that evolves the Vlasov-Poisson system in 2+2-dimensional phase space. The code is designed to reduce the cost of phase-space computation by using fully 4th order accurate conservative finite differencing, while retaining excellent parallel scalability that efficiently uses large scale computing resources. In this poster I will discuss the algorithms used in the code as well as some aspects of their parallel implementation using MPI. I will also overview simulation results of basic plasma wave instabilities relevant to laser plasma interaction, which have been obtained using the code.
Ricci, P.; Halpern, F. D.; Jolliet, S.; Loizu, J.; Mosetto, A.; Fasoli, A.; Furno, I.; Theiler, C.
2012-12-01
Based on the drift-reduced Braginskii equations, the Global Braginskii Solver, GBS, is able to model the scrape-off layer (SOL) plasma turbulence in terms of the interplay between the plasma outflow from the tokamak core, the turbulent transport, and the losses at the vessel. Model equations, the GBS numerical algorithm, and GBS simulation results are described. GBS has been first developed to model turbulence in basic plasma physics devices, such as linear and simple magnetized toroidal devices, which contain some of the main elements of SOL turbulence in a simplified setting. In this paper we summarize the findings obtained from the simulation carried out in these configurations and we report the first simulations of SOL turbulence. We also discuss the validation project that has been carried out together with the GBS development.
Rabie, M.; Franck, C. M.
2016-06-01
We present a freely available MATLAB code for the simulation of electron transport in arbitrary gas mixtures in the presence of uniform electric fields. For steady-state electron transport, the program provides the transport coefficients, reaction rates and the electron energy distribution function. The program uses established Monte Carlo techniques and is compatible with the electron scattering cross section files from the open-access Plasma Data Exchange Project LXCat. The code is written in object-oriented design, allowing the tracing and visualization of the spatiotemporal evolution of electron swarms and the temporal development of the mean energy and the electron number due to attachment and/or ionization processes. We benchmark our code with well-known model gases as well as the real gases argon, N2, O2, CF4, SF6 and mixtures of N2 and O2.
Finite Element Simulation Code for Computing Thermal Radiation from a Plasma
Nguyen, C. N.; Rappaport, H. L.
2004-11-01
A finite element code, ``THERMRAD,'' for computing thermal radiation from a plasma is under development. Radiation from plasma test particles is found in cylindrical geometry. Although the plasma equilibrium is assumed axisymmetric individual test particle excitation produces a non-axisymmetric electromagnetic response. Specially designed Whitney class basis functions are to be used to allow the solution to be solved on a two-dimensional grid. The basis functions enforce both a vanishing of the divergence of the electric field within grid elements where the complex index of refraction is assumed constant and continuity of tangential electric field across grid elements while allowing the normal component of the electric field to be discontinuous. An appropriate variational principle which incorporates the Sommerfeld radiation condition on the simulation boundary, as well as its discretization by the Rayleigh-Ritz technique is given. 1. ``Finte Element Method for Electromagnetics Problems,'' Volakis et al., Wiley, 1998.
A Particle In Cell code development for high current ion beam transport and plasma simulations
Joshi, N
2016-01-01
A simulation package employing a Particle in Cell (PIC) method is developed to study the high current beam transport and the dynamics of plasmas. This package includes subroutines those are suited for various planned projects at University of Frankfurt. In the framework of the storage ring project (F8SR) the code was written to describe the beam optics in toroidal magnetic fields. It is used to design an injection system for a ring with closed magnetic field lines. The generalized numerical model, in Cartesian coordinates is used to describe the intense ion beam transport through the chopper system in the low energy beam section of the FRANZ project. Especially for the chopper system, the Poisson equation is implemented with irregular geometries. The Particle In Cell model is further upgraded with a Monte Carlo Collision subroutine for simulation of plasma in the volume type ion source.
Sen, WANG; Qiping, YUAN; Bingjia, XIAO
2017-03-01
Plasma control system (PCS), mainly developed for real-time feedback control calculation, plays a significant part during normal discharges in a magnetic fusion device, while the tokamak simulation code (TSC) is a nonlinear numerical model that studies the time evolution of an axisymmetric magnetized tokamak plasma. The motivation to combine these two codes for an integrated simulation is specified by the facts that the control system module in TSC is relatively simple compared to PCS, and meanwhile, newly-implemented control algorithms in PCS, before applied to experimental validations, require numerical validations against a tokamak plasma simulator that TSC can act as. In this paper, details of establishment of the integrated simulation framework between the EAST PCS and TSC are generically presented, and the poloidal power supply model and data acquisition model that have been implemented in this framework are described as well. In addition, the correctness of data interactions among the EAST PCS, Simulink and TSC is clearly confirmed during an interface test, and in a simulation test, the RZIP control scheme in the EAST PCS is numerically validated using this simulation platform. Supported by the National Magnetic Confinement Fusion Science Program of China (No. 2014GB103000) and the National Natural Science Foundation of China (No. 11205200).
Development of Momentum Conserving Monte Carlo Simulation Code for ECCD Study in Helical Plasmas
Directory of Open Access Journals (Sweden)
Murakami S.
2015-01-01
Full Text Available Parallel momentum conserving collision model is developed for GNET code, in which a linearized drift kinetic equation is solved in the five dimensional phase-space to study the electron cyclotron current drive (ECCD in helical plasmas. In order to conserve the parallel momentum, we introduce a field particle collision term in addition to the test particle collision term. Two types of the field particle collision term are considered. One is the high speed limit model, where the momentum conserving term does not depend on the velocity of the background plasma and can be expressed in a simple form. The other is the velocity dependent model, which is derived from the Fokker–Planck collision term directly. In the velocity dependent model the field particle operator can be expressed using Legendre polynominals and, introducing the Rosenbluth potential, we derive the field particle term for each Legendre polynominals. In the GNET code, we introduce an iterative process to implement the momentum conserving collision operator. The high speed limit model is applied to the ECCD simulation of the heliotron-J plasma. The simulation results show a good conservation of the momentum with the iterative scheme.
Development of Momentum Conserving Monte Carlo Simulation Code for ECCD Study in Helical Plasmas
Murakami, S.; Hasegawa, S.; Moriya, Y.
2015-03-01
Parallel momentum conserving collision model is developed for GNET code, in which a linearized drift kinetic equation is solved in the five dimensional phase-space to study the electron cyclotron current drive (ECCD) in helical plasmas. In order to conserve the parallel momentum, we introduce a field particle collision term in addition to the test particle collision term. Two types of the field particle collision term are considered. One is the high speed limit model, where the momentum conserving term does not depend on the velocity of the background plasma and can be expressed in a simple form. The other is the velocity dependent model, which is derived from the Fokker-Planck collision term directly. In the velocity dependent model the field particle operator can be expressed using Legendre polynominals and, introducing the Rosenbluth potential, we derive the field particle term for each Legendre polynominals. In the GNET code, we introduce an iterative process to implement the momentum conserving collision operator. The high speed limit model is applied to the ECCD simulation of the heliotron-J plasma. The simulation results show a good conservation of the momentum with the iterative scheme.
Simulation study of scalings in scrape-off layer plasma by two-dimensional transport code
Energy Technology Data Exchange (ETDEWEB)
Itoh, S.-I.; Ueda, Noriaki; Itoh, Kimitaka (National Inst. for Fusion Science, Nagoya (Japan))
1990-07-01
Scrape-off Layer (SOL) plasma and divertor plasma in Tokamaks were numerically analyzed using a two-dimensional time-dependent transport code (UEDA code). Plasma transport in the SOL and the divertor region was studied for given particle and heat sources from the main plasma. A scaling study of the density, the temperature and their fall-off lengths was carried out for the JFT-2M Tokamak. The results show the inter-relations between the divertor plasma parameters and core plasma confinement. The operational conditions of the core necessary to guarantee the divertor performance are discussed. (author).
Acceleration of a Particle-in-Cell Code for Space Plasma Simulations with OpenACC
Peng, Ivy Bo; Markidis, Stefano; Vaivads, Andris; Vencels, Juris; Deca, Jan; Lapenta, Giovanni; Hart, Alistair; Laure, Erwin
2015-04-01
We simulate space plasmas with the Particle-in-cell (PIC) method that uses computational particles to mimic electrons and protons in solar wind and in Earth magnetosphere. The magnetic and electric fields are computed by solving the Maxwell's equations on a computational grid. In each PIC simulation step, there are four major phases: interpolation of fields to particles, updating the location and velocity of each particle, interpolation of particles to grids and solving the Maxwell's equations on the grid. We use the iPIC3D code, which was implemented in C++, using both MPI and OpenMP, for our case study. By November 2014, heterogeneous systems using hardware accelerators such as Graphics Processing Unit (GPUs) and the Many Integrated Core (MIC) coprocessors for high performance computing continue growth in the top 500 most powerful supercomputers world wide. Scientific applications for numerical simulations need to adapt to using accelerators to achieve portability and scalability in the coming exascale systems. In our work, we conduct a case study of using OpenACC to offload the computation intensive parts: particle mover and interpolation of particles to grids, in a massively parallel Particle-in-Cell simulation code, iPIC3D, to multi-GPU systems. We use MPI for inter-node communication for halo exchange and communicating particles. We identify the most promising parts suitable for GPUs accelerator by profiling using CrayPAT. We implemented manual deep copy to address the challenges of porting C++ classes to GPU. We document the necessary changes in the exiting algorithms to adapt for GPU computation. We present the challenges and findings as well as our methodology for porting a Particle-in-Cell code to multi-GPU systems using OpenACC. In this work, we will present the challenges, findings and our methodology of porting a Particle-in-Cell code for space applications as follows: We profile the iPIC3D code by Cray Performance Analysis Tool (CrayPAT) and identify
ASCOT: redesigned Monte Carlo code for simulations of minority species in tokamak plasmas
Hirvijoki, Eero; Koskela, Tuomas; Kurki-Suonio, Taina; Miettunen, Juho; Sipilä, Seppo; Snicker, Antti; Äkäslompolo, Simppa
2013-01-01
A comprehensive description of methods for Monte Carlo studies of fast ions and impurity species in tokamak plasmas is presented. The described methods include Hamiltonian orbit-following in particle and guiding center phase space, test particle or guiding center solution of the kinetic equation applying stochastic differential equations in the presence of Coulomb collisions, Neoclassical tearing modes and Alfv\\'en eigenmodes as electromagnetic perturbations relevant for fast ions, together with plasma flow and atomic reactions relevant for impurity studies. Applying the methods, a complete reimplementation of a well-established minority species code is carried out as a response both to the increase in computing power during the last twenty years and to the weakly structured growth of the previous code which has made implementation of additional models impractical. Also, a thorough benchmark between the previous code and the reimplementation is accomplished, showing good agreement between the codes.
Plasma burn-through simulations using the DYON code and predictions for ITER
Kim, H. T.; Sips, A.C.C.; de Vries, P. C.; JET-EFDA Contributors,
2013-01-01
This paper will discuss simulations of the full ionization process (i.e. plasma burn-through), fundamental to creating high temperature plasma. By means of an applied electric field, the gas is partially ionized by the electron avalanche process. In order for the electron temperature to increase, th
Energy Technology Data Exchange (ETDEWEB)
Bonnaud, G.; Dussy, S.; Lefebvre, E. [CEA Bruyeres-le-Chatel, 91 (France). Dept. de Physique Theorique et Appliquee; Bouchut, F. [Orleans Univ., 45 (France). Dept. de Mathematiques, UMR CNRS
1998-12-31
This report presents a numerical model to simulate the electromagnetic processes involved by electrically-charged relativistic fluids. The physical model is first given. Second, the numerical methods are explained with the various packages of the code RHEA, with indication methods are explained with the various packages of the code RHEA, with indication of its performances, within a 1.5.- dimensional framework. Results from test-simulations are shown to validate the use of the code, for both academic situations and realistic context of laser-plasma interaction, for which the code has been designed: the non-linear phenomena in the context of inertial confinement fusion and the ultra-intense laser pulses. (author) 25 refs.
Energy Technology Data Exchange (ETDEWEB)
Bonnaud, G.; Dussy, S.; Lefebvre, E. [CEA Bruyeres-le-Chatel, 91 (France). Dept. de Physique Theorique et Appliquee; Bouchut, F. [Orleans Univ., 45 (France). Dept. de Mathematiques, UMR CNRS
1998-12-31
This report presents a numerical model to simulate the electromagnetic processes involved by electrically-charged relativistic fluids. The physical model is first given. Second, the numerical methods are explained with the various packages of the code RHEA, with indication methods are explained with the various packages of the code RHEA, with indication of its performances, within a 1.5.- dimensional framework. Results from test-simulations are shown to validate the use of the code, for both academic situations and realistic context of laser-plasma interaction, for which the code has been designed: the non-linear phenomena in the context of inertial confinement fusion and the ultra-intense laser pulses. (author) 25 refs.
Tamain, P.; Bufferand, H.; Ciraolo, G.; Colin, C.; Galassi, D.; Ghendrih, Ph.; Schwander, F.; Serre, E.
2016-09-01
The new code TOKAM3X simulates plasma turbulence in full torus geometry including the open field lines of the Scrape-off Layer (SOL) and the edge closed field lines region in the vicinity of the separatrix. Based on drift-reduced Braginskii equations, TOKAM3X is able to simulate both limited and diverted plasmas. Turbulence is flux driven by incoming particles from the core plasma and no scale separation between the equilibrium and the fluctuations is assumed so that interactions between large scale flows and turbulence are consistently treated. Based on a domain decomposition, specific numerical schemes are proposed using conservative finite-differences associated to a semi-implicit time advancement. The process computation is multi-threaded and based on MPI and OpenMP libraries. In this paper, fluid model equations are presented together with the proposed numerical methods. The code is verified using the manufactured solution technique and validated through documented simple experiments. Finally, first simulations of edge plasma turbulence in X-point geometry are also introduced in a JET geometry.
Energy Technology Data Exchange (ETDEWEB)
Ghoos, K., E-mail: kristel.ghoos@kuleuven.be [KU Leuven, Department of Mechanical Engineering, Celestijnenlaan 300A, 3001 Leuven (Belgium); Dekeyser, W. [KU Leuven, Department of Mechanical Engineering, Celestijnenlaan 300A, 3001 Leuven (Belgium); Samaey, G. [KU Leuven, Department of Computer Science, Celestijnenlaan 200A, 3001 Leuven (Belgium); Börner, P. [Institute of Energy and Climate Research (IEK-4), FZ Jülich GmbH, D-52425 Jülich (Germany); Baelmans, M. [KU Leuven, Department of Mechanical Engineering, Celestijnenlaan 300A, 3001 Leuven (Belgium)
2016-10-01
The plasma and neutral transport in the plasma edge of a nuclear fusion reactor is usually simulated using coupled finite volume (FV)/Monte Carlo (MC) codes. However, under conditions of future reactors like ITER and DEMO, convergence issues become apparent. This paper examines the convergence behaviour and the numerical error contributions with a simplified FV/MC model for three coupling techniques: Correlated Sampling, Random Noise and Robbins Monro. Also, practical procedures to estimate the errors in complex codes are proposed. Moreover, first results with more complex models show that an order of magnitude speedup can be achieved without any loss in accuracy by making use of averaging in the Random Noise coupling technique.
Transport simulations of linear plasma generators with the B2.5-Eirene and EMC3-Eirene codes
Energy Technology Data Exchange (ETDEWEB)
Rapp, J., E-mail: rappj@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN 37830 (United States); Owen, L.W. [Oak Ridge National Laboratory, Oak Ridge, TN 37830 (United States); Bonnin, X. [LSPM-CNRS, Université Paris 13, Sorbonne Paris Cité, F-93430 Villetaneuse (France); Caneses, J.F. [PRL, Research School of Physics and Engineering, ANU, Canberra (Australia); Canik, J.M. [Oak Ridge National Laboratory, Oak Ridge, TN 37830 (United States); Corr, C. [PRL, Research School of Physics and Engineering, ANU, Canberra (Australia); Lore, J.D. [Oak Ridge National Laboratory, Oak Ridge, TN 37830 (United States)
2015-08-15
Linear plasma generators are cost effective facilities to simulate divertor plasma conditions of present and future fusion reactors. The codes B2.5-Eirene and EMC3-Eirene were extensively used for design studies of the planned Material Plasma Exposure eXperiment (MPEX). Effects on the target plasma of the gas fueling and pumping locations, heating power, device length, magnetic configuration and transport model were studied with B2.5-Eirene. Effects of tilted or vertical targets were calculated with EMC3-Eirene and showed that spreading the incident flux over a larger area leads to lower density, higher temperature and off-axis profile peaking in front of the target. The simulations indicate that with sufficient heating power MPEX can reach target plasma conditions that are similar to those expected in the ITER divertor. B2.5-Eirene simulations of the MAGPIE experiment have been carried out in order to establish an additional benchmark with experimental data from a linear device with helicon wave heating.
Necas, A.; Tajima, T.; Nicks, S.; Magee, R.; Clary, R.; Roche, T.; Tri Alpha Energy Team
2016-10-01
In Tri Alpha Energy's C-2U experiment, advanced beam-driven field-reversed configuration (FRC) plasmas were sustained via tangential neutral beam injection. The dominant fast ion population made a dramatic impact on the overall plasma performance. To explain an experimentally observed anomalous neutron signal (100x thermonuclear), we use EPOCH PIC code to simulate possible beam driven non-destructive instabilities that transfer energy from fast ions to the plasma, causing phase space bunching. We propose that the hydrogen beam ion population drives collective modes in the deuterium target plasma, giving rise to the instability and increased fusion rate. The instability changes character from electrostatic in the low beta edge to fully electromagnetic in the core, with an associated reduction in growth rates. The DD reactivity enhancement is calculated using a two-body correlation function and compared to the experimentally observed neutron yield. The high-energy tails in the distributions of the plasma deuterons and beam protons are observed via a mass-resolving Neutral Particle Analyzer (NPA) diagnostic. This observation is qualitatively consistent with EPOCH simulation of the beam-plasma instability.
Cartier-Michaud, T.; Ghendrih, P.; Sarazin, Y.; Abiteboul, J.; Bufferand, H.; Dif-Pradalier, G.; Garbet, X.; Grandgirard, V.; Latu, G.; Norscini, C.; Passeron, C.; Tamain, P.
2016-02-01
The Projection on Proper elements (PoPe) is a novel method of code control dedicated to (1) checking the correct implementation of models, (2) determining the convergence of numerical methods, and (3) characterizing the residual errors of any given solution at very low cost. The basic idea is to establish a bijection between a simulation and a set of equations that generate it. Recovering equations is direct and relies on a statistical measure of the weight of the various operators. This method can be used in any number of dimensions and any regime, including chaotic ones. This method also provides a procedure to design reduced models and quantify its ratio of cost to benefit. PoPe is applied to a kinetic and a fluid code of plasma turbulence.
Energy Technology Data Exchange (ETDEWEB)
Ruhl, Hartmut [Munich Univ. (Germany). Chair for Computational and Plasma Physics
2016-11-01
Since the installation of SuperMUC phase 2 the 9216 nodes of phase 1 are more easily available for large scale runs allowing for the thin foil and AWAKE simulations. Besides phase 2 could be used in parallel for high throughput of the ion acceleration simulations. Challenging to our project were the full-volume checkpoints required by PIC that strained the I/O-subsystem of SuperMUC to its limits. New approaches considered for the next generation system, like burst buffers could overcome this bottleneck. Additionally, as the FDTD solver in PIC is strongly bandwidth bound, PSC will benefit profoundly from high-bandwidth memory (HBM) that most likely will be available in future HPC machines. This will be of great advantage as in 2018 phase II of AWAKE should begin, with a longer plasma channel further increasing the need for additional computing resources. Last but not least, it is expected that our methods used in plasma physics (many body interaction with radiation) will be more and more adapted for medical diagnostics and treatments. For this research field we expect centimeter sized volumes with necessary resolutions of tens of micro meters resulting in boxes of >10{sup 12} voxels (100-200 TB) on a regular basis. In consequence the demand for computing time and especially for data storage and data handling capacities will also increase significantly.
DOD-SBIR Structured Multi-Resolution PIC Code for Electromagnetic Plasma Simulations, Final Report
Energy Technology Data Exchange (ETDEWEB)
Vay, J L; Grote, D P; Friedman, A
2010-04-22
A novel electromagnetic solver with mesh refinement capability was implemented in Warp. The solver allows for calculations in 2-1/2 and 3 dimensions, includes the standard Yee stencil, and the Cole-Karkkainen stencil for lower numerical dispersion along the principal axes. Warp implementation of the Cole-Karkkainen stencil includes an extension to perfectly matched layers (PML) for absorption of waves, and is preserving the conservation property of charge conserving current deposition schemes, like the Buneman-Villanesor and Esirkepov methods. Warp's mesh refinement framework (originally developed for electrostatic calculations) was augmented to allow for electromagnetic capability, following the methodology presented in [1] extended to an arbitrary number of refinement levels. Other developments include a generalized particle injection method, internal conductors using stair-cased approximation, and subcycling of particle pushing. The solver runs in parallel using MPI message passing, with a choice at runtime of 1D, 2D and 3D domain decomposition, and is shown to scale linearly on a test problem up-to 32,768 CPUs. The novel solver was tested on the modeling of filamentation instability, fast ignition, ion beam induced plasma wake, and laser plasma acceleration.
Energy Technology Data Exchange (ETDEWEB)
Kuwabara, T. [Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya (Japan); Tanaka, H.; Kobayashi, M. [National Institute for Fusion Science, Toki (Japan); SOKENDAI (The Graduate University For Advanced Studies), Toki (Japan); Kawamura, G. [National Institute for Fusion Science, Toki (Japan); Ohno, N.; Nishikata, H. [Graduate School of Engineering, Nagoya University, Nagoya (Japan); Feng, Y. [Max-Planck-Institut fuer Plasmaphysik, Euratom Association, Garching/Greifswald (Germany)
2016-08-15
We have adapted the EMC3-EIRENE code for modeling of a linear divertor plasma simulator in order to demonstrate plasma-wall interactions with three-dimensional (3D) effects. 3D distributions of hydrogen plasma and neutrals can be successfully calculated for four different types of target plates: a V-shaped target, inclined targets with open and closed structures, and a planer target. Hydrogen atoms and molecules are accumulated more effectively in the V-shaped target plate, leading to a higher electron density with lower electron temperature than the planar target plate. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Simulation of EAST vertical displacement events by tokamak simulation code
Qiu, Qinglai; Xiao, Bingjia; Guo, Yong; Liu, Lei; Xing, Zhe; Humphreys, D. A.
2016-10-01
Vertical instability is a potentially serious hazard for elongated plasma. In this paper, the tokamak simulation code (TSC) is used to simulate vertical displacement events (VDE) on the experimental advanced superconducting tokamak (EAST). Key parameters from simulations, including plasma current, plasma shape and position, flux contours and magnetic measurements match experimental data well. The growth rates simulated by TSC are in good agreement with TokSys results. In addition to modeling the free drift, an EAST fast vertical control model enables TSC to simulate the course of VDE recovery. The trajectories of the plasma current center and control currents on internal coils (IC) fit experimental data well.
Surmin, Igor; Matveev, Zakhar; Efimenko, Evgeny; Gonoskov, Arkady; Meyerov, Iosif
2016-01-01
Three dimensional particle-in-cell laser-plasma simulation is an important area of computational physics. Solving state-of-the-art problems requires large-scale simulation on a supercomputer using specialized codes. A growing demand in computational resources inspires research in improving efficiency and co-design for supercomputers based on many-core architectures. This paper presents first performance results of the particle-in-cell plasma simulation code PICADOR on the recently introduced Knights Landing generation of Intel Xeon Phi. A straightforward rebuilding of the code yields a 2.43 x speedup compared to the previous Knights Corner generation. Further code optimization results in an additional 1.89 x speedup. The optimization performed is beneficial not only for Knights Landing, but also for high-end CPUs and Knights Corner. The optimized version achieves 100 GFLOPS double precision performance on a Knights Landing device with the speedups of 2.35 x compared to a 14-core Haswell CPU and 3.47 x compare...
Parail, V; Ambrosino, R; Artaud, J-F; Besseghir, K; Cavinato, M; Corrigan, G; Garcia, J; Garzotti, L; Gribov, Y; Imbeaux, F; Koechl, F; Labate, C V; Lister, J; Litaudon, X; Loarte, A; Maget, P; Mattei, M; McDonald, D; Nardon, E; Saibene, G; Sartori, R; Urban, J
2013-01-01
Self-consistent transport simulation of ITER scenarios is a very important tool for the exploration of the operational space and for scenario optimisation. It also provides an assessment of the compatibility of developed scenarios (which include fast transient events) with machine constraints, in particular with the poloidal field (PF) coil system, heating and current drive (H&CD), fuelling and particle and energy exhaust systems. This paper discusses results of predictive modelling of all reference ITER scenarios and variants using two suite of linked transport and equilibrium codes. The first suite consisting of the 1.5D core/2D SOL code JINTRAC [1] and the free boundary equilibrium evolution code CREATE-NL [2,3], was mainly used to simulate the inductive D-T reference Scenario-2 with fusion gain Q=10 and its variants in H, D and He (including ITER scenarios with reduced current and toroidal field). The second suite of codes was used mainly for the modelling of hybrid and steady state ITER scenarios. It...
Energy Technology Data Exchange (ETDEWEB)
Berberich, Benjamin
2012-03-15
Processes in the plasma edge layer of magnetic fusion devices occur on widely disparate length- and time-scales. Also recently developed features in this particular region, such as stochastic magnetic fields, underline the necessity for three dimensional, full-kinetic simulation tools. Contemporary programs often deploy ad hoc assumptions and approximations for microscopic phenomena for which self-consistent ab initio models in principle exist, but are still computationally too expensive or complex to implement. Recently, mesh-free methods have matured into a new class of tools for such first-principles computations which thanks to their geometric flexibility are highly promising for tackling complicated TOKAMAK regions. In this work we have develop the massively parallel Tree-Code PEPC-B (Pretty Efficient Parallel Coulomb solver) into a new tool for plasma material interaction studies. After a brief overview of the working principles of Tree-Codes two main topic groups are addressed: First the leap-frog Boris integration scheme is discussed and its numerical limitations are pointed out. To overcome these limitations the method is enhanced to a guiding-center integrator. As a proof of principal, numerical experiments are conducted reproducing the anticipated drift kinetic aspects of particle orbits. It turns out that this new technique is much less sensitive to large time steps than the original concept was. One major drawback of mesh-free methods which hinders their direct use for plasma-edge simulations is the difficulty in representing solid structures and associated boundary conditions. Therefore, an alternative concept is proposed using charge carrying Wall-Particles, which fits naturally in the mesh-free doctrine. These developments incorporate the second main topic group of this report. To prove the physical correctness of this new idea, a quasi one dimensional plasma-wall interface scenario is chosen. By studying the system with great detail, good agreement
Cartier-Michaud, T; Sarazin, Y; Abiteboul, J; Bufferand, H; Dif-Pradalier, G; Garbet, X; Grandgirard, V; Latu, G; Norscini, C; Passeron, C; Tamain, P
2015-01-01
The Projection on Proper elements (PoPe) is a novel method of code control dedicated to 1) checking the correct implementation of models, 2) determining the convergence of numerical methods and 3) characterizing the residual errors of any given solution at very low cost. The basic idea is to establish a bijection between a simulation and a set of equations that generate it. Recovering equations is direct and relies on a statistical measure of the weight of the various operators. This method can be used in any dimensions and any regime, including chaotic ones. This method also provides a procedure to design reduced models and quantify the ratio costs to benefits. PoPe is applied to a kinetic and a fluid code of plasma turbulence.
LFSC - Linac Feedback Simulation Code
Energy Technology Data Exchange (ETDEWEB)
Ivanov, Valentin; /Fermilab
2008-05-01
The computer program LFSC (
HADES, A Radiographic Simulation Code
Energy Technology Data Exchange (ETDEWEB)
Aufderheide, M.B.; Slone, D.M.; Schach von Wittenau, A.E.
2000-08-18
We describe features of the HADES radiographic simulation code. We begin with a discussion of why it is useful to simulate transmission radiography. The capabilities of HADES are described, followed by an application of HADES to a dynamic experiment recently performed at the Los Alamos Neutron Science Center. We describe quantitative comparisons between experimental data and HADES simulations using a copper step wedge. We conclude with a short discussion of future work planned for HADES.
Theory and simulation of laser plasma coupling
Energy Technology Data Exchange (ETDEWEB)
Kruer, W.L.
1979-08-09
The theory and simulation of these coupling processes are considered. Particular emphasis is given to their nonlinear evolution. First a brief introduction to computer simulation of plasmas using particle codes is given. Then the absorption of light via the generation of plasma waves is considered, followed by a discussion of stimulated scattering of intense light. Finally these calculations are compared with experimental results.
Energy Technology Data Exchange (ETDEWEB)
Lore, J. D., E-mail: lorejd@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Reinke, M. L.; Lipschultz, B. [York Plasma Institute, Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom); Brunner, D.; LaBombard, B.; Terry, J. [Plasma Science and Fusion Center, MIT, Cambridge, Massachusetts 02139 (United States); Pitts, R. A. [ITER Organization, Route de Vinon-sur-Verdon, CS 90046 - 13067 Saint Paul Lez Durance Cedex (France); Feng, Y. [Max Planck Institute for Plasma Physics, Greifswald (Germany)
2015-05-15
Experiments in Alcator C-Mod to assess the level of toroidal asymmetry in divertor conditions resulting from poloidally and toroidally localized extrinsic impurity gas seeding show a weak toroidal peaking (∼1.1) in divertor electron temperatures for high-power enhanced D-alpha H-mode plasmas. This is in contrast to similar experiments in Ohmically heated L-mode plasmas, which showed a clear toroidal modulation in the divertor electron temperature. Modeling of these experiments using the 3D edge transport code EMC3-EIRENE [Y. Feng et al., J. Nucl. Mater. 241, 930 (1997)] qualitatively reproduces these trends, and indicates that the different response in the simulations is due to the ionization location of the injected nitrogen. Low electron temperatures in the private flux region (PFR) in L-mode result in a PFR plasma that is nearly transparent to neutral nitrogen, while in H-mode the impurities are ionized in close proximity to the injection location, with this latter case yielding a largely axisymmetric radiation pattern in the scrape-off-layer. The consequences for the ITER gas injection system are discussed. Quantitative agreement with the experiment is lacking in some areas, suggesting potential areas for improving the physics model in EMC3-EIRENE.
Plasma transport in an Eulerian AMR code
Vold, E. L.; Rauenzahn, R. M.; Aldrich, C. H.; Molvig, K.; Simakov, A. N.; Haines, B. M.
2017-04-01
A plasma transport model has been implemented in an Eulerian AMR radiation-hydrodynamics code, xRage, which includes plasma viscosity in the momentum tensor, viscous dissipation in the energy equations, and binary species mixing with consistent species mass and energy fluxes driven by concentration gradients, ion and electron baro-diffusion terms and temperature gradient forces. The physics basis, computational issues, numeric options, and results from several test problems are discussed. The transport coefficients are found to be relatively insensitive to the kinetic correction factors when the concentrations are expressed with the molar fractions and the ion mass differences are large. The contributions to flow dynamics from plasma viscosity and mass diffusion were found to increase significantly as scale lengths decrease in an inertial confinement fusion relevant Kelvin-Helmholtz instability mix layer. The mixing scale lengths in the test case are on the order of 100 μm and smaller for viscous effects to appear and 10 μm or less for significant ion species diffusion, evident over durations on the order of nanoseconds. The temperature gradient driven mass flux is seen to deplete a high Z tracer ion at the ion shock front. The plasma transport model provides the generation of the atomic mix per unit of interfacial area between two species with no free parameters. The evolution of the total atomic mix then depends also on an accurate resolution or estimate of the interfacial area between the species mixing by plasma transport. High resolution simulations or a more Lagrangian-like treatment of species interfaces may be required to distinguish plasma transport and numerical diffusion in an Eulerian computation of complex and dynamically evolving mix regions.
Dense magnetized plasma numerical simulations
Energy Technology Data Exchange (ETDEWEB)
Bilbao, L [INFIP-CONICET, and Physics Department (FCEN-UBA), Ciudad Universitaria, Pab. I, 1428 Buenos Aires (Argentina); Bernal, L, E-mail: bilbao@df.uba.a [Physics Department (FCEYN-UNMDP), Complejo Universitario, Funes y Pena, 7600 Mar del Plata (Argentina)
2010-06-15
The scope for developing the present numerical method was to perform parametric studies for optimization of several configurations in magnetized plasmas. Nowadays there exist several efficient numerical codes in the subject. However, the construction of one's own computational codes brings the following important advantages: (a) to get a deeper knowledge of the physical processes involved and the numerical methods used to simulate them and (b) more flexibility to adapt the code to particular situations in a more efficient way than would be possible for a closed general code. The code includes ion viscosity, thermal conduction (electrons and ions), magnetic diffusion, thermonuclear or chemical reaction, Bremsstrahlung radiation, and equation of state (from the ideal gas to the degenerate electron gas). After each calculation cycle, mesh vertices are moved arbitrarily over the fluid. The adaptive method consists of shifting mesh vertices over the fluid in order to keep a reasonable mesh structure and increase the spatial resolution where the physical solution demands. The code was a valuable tool for parametric study of different physical problems, mainly optimization of plasma focus machine, detonation and propagation of thermonuclear reactions and Kelvin-Helmholtz instabilities in the boundary layer of the terrestrial magnetopause.
1980-09-30
William Nevins L439 LLL (422-7032) Lecturers , UCB; Physicists -LLL Dr. William Fawley Guest, UCB; Physicist LLL L321 LLL (422-9272) Yu-Jiuan Chen, Douglas... MHD - Particle Codes." Three abstracts of papers prepared for the APS Division of Plasma Physics Meeting, November 10-14, 1980, at San Diego, follow
Boundary Plasma Turbulence Simulations for Tokamaks
Energy Technology Data Exchange (ETDEWEB)
Xu, X; Umansky, M; Dudson, B; Snyder, P
2008-05-15
The boundary plasma turbulence code BOUT models tokamak boundary-plasma turbulence in a realistic divertor geometry using modified Braginskii equations for plasma vorticity, density (ni), electron and ion temperature (T{sub e}; T{sub i}) and parallel momenta. The BOUT code solves for the plasma fluid equations in a three dimensional (3D) toroidal segment (or a toroidal wedge), including the region somewhat inside the separatrix and extending into the scrape-off layer; the private flux region is also included. In this paper, a description is given of the sophisticated physical models, innovative numerical algorithms, and modern software design used to simulate edge-plasmas in magnetic fusion energy devices. The BOUT code's unique capabilities and functionality are exemplified via simulations of the impact of plasma density on tokamak edge turbulence and blob dynamics.
Computer Code for Nanostructure Simulation
Filikhin, Igor; Vlahovic, Branislav
2009-01-01
Due to their small size, nanostructures can have stress and thermal gradients that are larger than any macroscopic analogue. These gradients can lead to specific regions that are susceptible to failure via processes such as plastic deformation by dislocation emission, chemical debonding, and interfacial alloying. A program has been developed that rigorously simulates and predicts optoelectronic properties of nanostructures of virtually any geometrical complexity and material composition. It can be used in simulations of energy level structure, wave functions, density of states of spatially configured phonon-coupled electrons, excitons in quantum dots, quantum rings, quantum ring complexes, and more. The code can be used to calculate stress distributions and thermal transport properties for a variety of nanostructures and interfaces, transport and scattering at nanoscale interfaces and surfaces under various stress states, and alloy compositional gradients. The code allows users to perform modeling of charge transport processes through quantum-dot (QD) arrays as functions of inter-dot distance, array order versus disorder, QD orientation, shape, size, and chemical composition for applications in photovoltaics and physical properties of QD-based biochemical sensors. The code can be used to study the hot exciton formation/relation dynamics in arrays of QDs of different shapes and sizes at different temperatures. It also can be used to understand the relation among the deposition parameters and inherent stresses, strain deformation, heat flow, and failure of nanostructures.
Users manual for the UEDGE edge-plasma transport code
Energy Technology Data Exchange (ETDEWEB)
Rognlien, T D; Rensink, M E; Smith, G R
2000-01-10
Operational details are given for the two-dimensional UEDGE edge-plasma transport code. The model applies to nearly fully-ionized plasmas in a strong magnetic field. Equations are solved for the plasma density, velocity along the magnetic field, electron temperature, ion temperature, and electrostatic potential. In addition, fluid models of neutrals species are included or the option to couple to a Monte Carlo code description of the neutrals. Multi-species ion mixtures can be simulated. The physical equations are discretized by a finite-difference procedure, and the resulting system of algebraic equations are solved by fully-implicit techniques. The code can be used to follow time-dependent solutions or to find steady-state solutions by direct iteration.
Monte Carlo simulation code modernization
CERN. Geneva
2015-01-01
The continual development of sophisticated transport simulation algorithms allows increasingly accurate description of the effect of the passage of particles through matter. This modelling capability finds applications in a large spectrum of fields from medicine to astrophysics, and of course HEP. These new capabilities however come at the cost of a greater computational intensity of the new models, which has the effect of increasing the demands of computing resources. This is particularly true for HEP, where the demand for more simulation are driven by the need of both more accuracy and more precision, i.e. better models and more events. Usually HEP has relied on the "Moore's law" evolution, but since almost ten years the increase in clock speed has withered and computing capacity comes in the form of hardware architectures of many-core or accelerated processors. To harness these opportunities we need to adapt our code to concurrent programming models taking advantages of both SIMD and SIMT architectures. Th...
Energy Technology Data Exchange (ETDEWEB)
Greenwald, Martin
2011-10-04
Many others in the fusion energy and advanced scientific computing communities participated in the development of this plan. The core planning team is grateful for their important contributions. This summary is meant as a quick overview the Fusion Simulation Program's (FSP's) purpose and intentions. There are several additional documents referenced within this one and all are supplemental or flow down from this Program Plan. The overall science goal of the DOE Office of Fusion Energy Sciences (FES) Fusion Simulation Program (FSP) is to develop predictive simulation capability for magnetically confined fusion plasmas at an unprecedented level of integration and fidelity. This will directly support and enable effective U.S. participation in International Thermonuclear Experimental Reactor (ITER) research and the overall mission of delivering practical fusion energy. The FSP will address a rich set of scientific issues together with experimental programs, producing validated integrated physics results. This is very well aligned with the mission of the ITER Organization to coordinate with its members the integrated modeling and control of fusion plasmas, including benchmarking and validation activities. [1]. Initial FSP research will focus on two critical Integrated Science Application (ISA) areas: ISA1, the plasma edge; and ISA2, whole device modeling (WDM) including disruption avoidance. The first of these problems involves the narrow plasma boundary layer and its complex interactions with the plasma core and the surrounding material wall. The second requires development of a computationally tractable, but comprehensive model that describes all equilibrium and dynamic processes at a sufficient level of detail to provide useful prediction of the temporal evolution of fusion plasma experiments. The initial driver for the whole device model will be prediction and avoidance of discharge-terminating disruptions, especially at high performance, which are a
Numerical simulation of dusty plasmas
Energy Technology Data Exchange (ETDEWEB)
Winske, D.
1995-09-01
The numerical simulation of physical processes in dusty plasmas is reviewed, with emphasis on recent results and unresolved issues. Three areas of research are discussed: grain charging, weak dust-plasma interactions, and strong dust-plasma interactions. For each area, we review the basic concepts that are tested by simulations, present some appropriate examples, and examine numerical issues associated with extending present work.
Reactive transport codes for subsurface environmental simulation
Steefel, C.I.; Appelo, C.A.J.; Arora, B.; Kalbacher, D.; Kolditz, O.; Lagneau, V.; Lichtner, P.C.; Mayer, K.U.; Meeussen, J.C.L.; Molins, S.; Moulton, D.; Shao, D.; Simunek, J.; Spycher, N.; Yabusaki, S.B.; Yeh, G.T.
2015-01-01
A general description of the mathematical and numerical formulations used in modern numerical reactive transport codes relevant for subsurface environmental simulations is presented. The formulations are followed by short descriptions of commonly used and available subsurface simulators that conside
Parallel TREE code for two-component ultracold plasma analysis
Jeon, Byoungseon; Kress, Joel D.; Collins, Lee A.; Grønbech-Jensen, Niels
2008-02-01
The TREE method has been widely used for long-range interaction N-body problems. We have developed a parallel TREE code for two-component classical plasmas with open boundary conditions and highly non-uniform charge distributions. The program efficiently handles millions of particles evolved over long relaxation times requiring millions of time steps. Appropriate domain decomposition and dynamic data management were employed, and large-scale parallel processing was achieved using an intermediate level of granularity of domain decomposition and ghost TREE communication. Even though the computational load is not fully distributed in fine grains, high parallel efficiency was achieved for ultracold plasma systems of charged particles. As an application, we performed simulations of an ultracold neutral plasma with a half million particles and a half million time steps. For the long temporal trajectories of relaxation between heavy ions and light electrons, large configurations of ultracold plasmas can now be investigated, which was not possible in past studies.
Simulating the dynamics of complex plasmas
Schwabe, Mierk
2014-01-01
Complex plasmas are low-temperature plasmas that contain micrometer-size particles in addition to the neutral gas particles and the ions and electrons that make up the plasma. The microparticles interact strongly and display a wealth of collective effects. Here we report on linked numerical simulations that reproduce many of the experimental results of complex plasmas. We model a capacitively coupled plasma with a fluid code written for the commercial package comsol. The output of this model is used to calculate forces on microparticles. The microparticles are modeled using the molecular dynamics package lammps, which we extended to include the forces from the plasma. Using this method, we are able to reproduce void formation, the separation of particles of different sizes into layers, lane formation, vortex formation, and other effects.
Development of dynamic simulation code for fuel cycle fusion reactor
Energy Technology Data Exchange (ETDEWEB)
Aoki, Isao; Seki, Yasushi [Department of Fusion Engineering Research, Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Naka, Ibaraki (Japan); Sasaki, Makoto; Shintani, Kiyonori; Kim, Yeong-Chan
1999-02-01
A dynamic simulation code for fuel cycle of a fusion experimental reactor has been developed. The code follows the fuel inventory change with time in the plasma chamber and the fuel cycle system during 2 days pulse operation cycles. The time dependence of the fuel inventory distribution is evaluated considering the fuel burn and exhaust in the plasma chamber, purification and supply functions. For each subsystem of the plasma chamber and the fuel cycle system, the fuel inventory equation is written based on the equation of state considering the fuel burn and the function of exhaust, purification, and supply. The processing constants of subsystem for steady states were taken from the values in the ITER Conceptual Design Activity (CDA) report. Using this code, the time dependence of the fuel supply and inventory depending on the burn state and subsystem processing functions are shown. (author)
Energy Technology Data Exchange (ETDEWEB)
Kim, S.J.; Chang, J.-S. [McMaster University, Hamilton, ON (Canada). Dept. of Engineering Physics
1998-07-01
Computer code (SUENTP) to predict scale up and economic evaluation of several eligible non-thermal plasma processes for air pollution control - electron beam process, pulsed corona process, and corona radical shower process - was developed for a commercialized power plant. This code was written by spread sheet type MS Excel with visual basic for application and comprise data input procedure, scale-up (design) procedure, economic calculation procedure, and output procedure. Data obtained from pilot plant tests are input with general data so that they might be led to the conceptual design data of commercial plants by scale-up procedure. In the next economic evaluation procedure, the total capital investment and the total annual cost. The total capital investment comes into the indirect annual cost as the item of capital recovery. The levelized cost and the levelized busbar cost could be shown in the output table. An example calculation was presented to evaluate the cost of three non-thermal systems and the results were compared with a conventional wet-scrubber/selective catalytic reduction combined system. 13 refs., 3 figs., 3 tabs.
The stellar atmosphere simulation code Bifrost. Code description and validation
Gudiksen, B. V.; Carlsson, M.; Hansteen, V. H.; Hayek, W.; Leenaarts, J.; Martínez-Sykora, J.
2011-07-01
Context. Numerical simulations of stellar convection and photospheres have been developed to the point where detailed shapes of observed spectral lines can be explained. Stellar atmospheres are very complex, and very different physical regimes are present in the convection zone, photosphere, chromosphere, transition region and corona. To understand the details of the atmosphere it is necessary to simulate the whole atmosphere since the different layers interact strongly. These physical regimes are very diverse and it takes a highly efficient massively parallel numerical code to solve the associated equations. Aims: The design, implementation and validation of the massively parallel numerical code Bifrost for simulating stellar atmospheres from the convection zone to the corona. Methods: The code is subjected to a number of validation tests, among them the Sod shock tube test, the Orzag-Tang colliding shock test, boundary condition tests and tests of how the code treats magnetic field advection, chromospheric radiation, radiative transfer in an isothermal scattering atmosphere, hydrogen ionization and thermal conduction. Results.Bifrost completes the tests with good results and shows near linear efficiency scaling to thousands of computing cores.
The stellar atmosphere simulation code Bifrost
Gudiksen, Boris V; Hansteen, Viggo H; Hayek, Wolfgang; Leenaarts, Jorrit; Martínez-Sykora, Juan
2011-01-01
Context: Numerical simulations of stellar convection and photospheres have been developed to the point where detailed shapes of observed spectral lines can be explained. Stellar atmospheres are very complex, and very different physical regimes are present in the convection zone, photosphere, chromosphere, transition region and corona. To understand the details of the atmosphere it is necessary to simulate the whole atmosphere since the different layers interact strongly. These physical regimes are very diverse and it takes a highly efficient massively parallel numerical code to solve the associated equations. Aims: The design, implementation and validation of the massively parallel numerical code Bifrost for simulating stellar atmospheres from the convection zone to the corona. Methods: The code is subjected to a number of validation tests, among them the Sod shock tube test, the Orzag-Tang colliding shock test, boundary condition tests and tests of how the code treats magnetic field advection, chromospheric ...
Plasma Shape and Current Control Simulation of HT-7U Tokamak
Institute of Scientific and Technical Information of China (English)
吴斌; 张澄
2003-01-01
This paper describes the discharge simulation of HT-7U tokamak plasma equilibriumand plasma current by solving MHD equations and surface average transport equations using anequilibrium evolution code. The simulated result shows the evolution of plasma parameter versustime .The simulated result can play an important role in the design of the plasma equilibrium andcontrol system of a tokamak.
The 3D MHD code GOEMHD3 for large-Reynolds-number astrophysical plasmas
Skála, J; Büchner, J; Rampp, M
2014-01-01
The numerical simulation of turbulence and flows in almost ideal, large-Reynolds-number astrophysical plasmas motivates the implementation of almost conservative MHD computer codes. They should efficiently calculate, use highly parallelized schemes scaling well with large numbers of CPU cores, allows to obtain a high grid resolution over large simulation domains and which can easily be adapted to new computer architectures as well as to new initial and boundary conditions, allow modular extensions. The new massively parallel simulation code GOEMHD3 enables efficient and fast simulations of almost ideal, large-Reynolds-number astrophysical plasma flows, well resolved and on huge grids covering large domains. Its abilities are validated by major tests of ideal and weakly dissipative plasma phenomena. The high resolution ($2048^3$ grid points) simulation of a large part of the solar corona above an observed active region proved the excellent parallel scalability of the code using more than 30.000 processor cores...
Simulating strongly coupled plasmas at low temperatures
Bussmann, M.; Schramm, U.; Habs, D.
2006-10-01
Realistic molecular dynamics (MD) simulations of the particle dynamics in strongly coupled plasmas require the computation of the mutual Coulomb-force for each pair of charged particles if a correct treatment of long range correlations is required. For plasmas with N > 104 particles this requires a tremendous number of computational steps which can only be addressed using efficient parallel algorithms adopted to modern super-computers. We present a new versatile MD simulation code which can simulate the non-relativistic mutual Coulomb-interaction of a large number of charged particles in arbitrary external field configurations. A demanding application is the simulation of the complete dynamics of in-trap stopping of highly charged ions in a laser cooled plasma of N = 105 24Mg+ ions. We demonstrate that the simulation is capable of delivering results on stopping times and plasma dynamics under realistic conditions. The results suggest that this stopping scheme can compete with in-trap electron cooling and might be an alternative approach for delivering ultra cold highly charged ions for future trap-based experiments aiming for precision mass measurements of stable and radioactive nuclei.
Energy Technology Data Exchange (ETDEWEB)
Gilles, D
2005-07-01
This report is devoted to illustrate the power of a Monte Carlo (MC) simulation code to study the thermodynamical properties of a plasma, composed of classical point particles at thermodynamical equilibrium. Such simulations can help us to manage successfully the challenge of taking into account 'exactly' all classical correlations between particles due to density effects, unlike analytical or semi-analytical approaches, often restricted to low dense plasmas. MC simulations results allow to cover, for laser or astrophysical applications, a wide range of thermodynamical conditions from more dense (and correlated) to less dense ones (where potentials are long ranged type). Therefore Yukawa potentials, with a Thomas-Fermi temperature- and density-dependent screening length, are used to describe the effective ion-ion potentials. In this report we present two MC codes ('PDE' and 'PUCE') and applications performed with these codes in different fields (spectroscopy, opacity, equation of state). Some examples of them are discussed and illustrated at the end of the report. (author)
Massimo, F.; Atzeni, S.; Marocchino, A.
2016-12-01
Architect, a time explicit hybrid code designed to perform quick simulations for electron driven plasma wakefield acceleration, is described. In order to obtain beam quality acceptable for applications, control of the beam-plasma-dynamics is necessary. Particle in Cell (PIC) codes represent the state-of-the-art technique to investigate the underlying physics and possible experimental scenarios; however PIC codes demand the necessity of heavy computational resources. Architect code substantially reduces the need for computational resources by using a hybrid approach: relativistic electron bunches are treated kinetically as in a PIC code and the background plasma as a fluid. Cylindrical symmetry is assumed for the solution of the electromagnetic fields and fluid equations. In this paper both the underlying algorithms as well as a comparison with a fully three dimensional particle in cell code are reported. The comparison highlights the good agreement between the two models up to the weakly non-linear regimes. In highly non-linear regimes the two models only disagree in a localized region, where the plasma electrons expelled by the bunch close up at the end of the first plasma oscillation.
1982-12-31
expan- sion of a warm plasma; launching and propagation and decay of very large amplitude waves (8GK, solitons, etc.); thermal barriers (really...25.373.1981. ION-10N TWO-STREAM IN THERMAL BARRIERS : Vincent-lhonal,U.C.Berkeley. We present stu- dies or the eleclroTatic ion-ion two-stream instability as
A treecode to simulate dust-plasma interactions
Thomas, D. M.; Holgate, J. T.
2017-02-01
The interaction of a small object with surrounding plasma is an area of plasma-physics research with a multitude of applications. This paper introduces the plasma octree code pot, a microscopic simulator of a spheroidal dust grain in a plasma. pot uses the Barnes-Hut treecode algorithm to perform N-body simulations of electrons and ions in the vicinity of a chargeable spheroid, employing also the Boris particle-motion integrator and Hutchinson’s reinjection algorithm from SCEPTIC; a description of the implementation of all three algorithms is provided. We present results from pot simulations of the charging of spheres in magnetised plasmas, and of spheroids in unmagnetized plasmas. The results call into question the validity of using the Boltzmann relation in hybrid PIC codes. Substantial portions of this paper are adapted from chapters 4 and 5 of the first author’s recent PhD dissertation.
MONTE CARLO SIMULATION OF CHARGED PARTICLE IN AN ELECTRONEGATIVE PLASMA
Directory of Open Access Journals (Sweden)
L SETTAOUTI
2003-12-01
Full Text Available Interest in radio frequency (rf discharges has grown tremendously in recent years due to their importance in microelectronic technologies. Especially interesting are the properties of discharges in electronegative gases which are most frequently used for technological applications. Monte Carlo simulation have become increasingly important as a simulation tool particularly in the area of plasma physics. In this work, we present some detailed properties of rf plasmas obtained by Monte Carlo simulation code, in SF6
Labotratory Simulation Experiments of Cometary Plasma
Minami, S; Baum, P. J.; Kamin, G.; R. S. White; 南, 繁行
1986-01-01
Laboratory simulation experiment to study the interaction between a cometary plasma and the solar wind has been performed using the UCR-T 1 space simulation facility at the Institute of Geophysics and Planetary Physics, the University of California, Riverside. Light emitting plasma composed of Sr, Ba and/or C simulating cometary coma plasma is produced by a plasma emitter which interacts with intense plasma flow produced by a co-axial plasma gun simulating the solar wind. The purpose of this ...
High-fidelity plasma codes for burn physics
Energy Technology Data Exchange (ETDEWEB)
Cooley, James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Graziani, Frank [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Marinak, Marty [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Murillo, Michael [Michigan State Univ., East Lansing, MI (United States)
2016-10-19
Accurate predictions of equation of state (EOS), ionic and electronic transport properties are of critical importance for high-energy-density plasma science. Transport coefficients inform radiation-hydrodynamic codes and impact diagnostic interpretation, which in turn impacts our understanding of the development of instabilities, the overall energy balance of burning plasmas, and the efficacy of self-heating from charged-particle stopping. Important processes include thermal and electrical conduction, electron-ion coupling, inter-diffusion, ion viscosity, and charged particle stopping. However, uncertainties in these coefficients are not well established. Fundamental plasma science codes, also called high-fidelity plasma codes, are a relatively recent computational tool that augments both experimental data and theoretical foundations of transport coefficients. This paper addresses the current status of HFPC codes and their future development, and the potential impact they play in improving the predictive capability of the multi-physics hydrodynamic codes used in HED design.
High-fidelity plasma codes for burn physics
Energy Technology Data Exchange (ETDEWEB)
Cooley, James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Graziani, Frank [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Marinak, Marty [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Murillo, Michael [Michigan State Univ., East Lansing, MI (United States)
2016-10-19
Accurate predictions of equation of state (EOS), ionic and electronic transport properties are of critical importance for high-energy-density plasma science. Transport coefficients inform radiationhydrodynamic codes and impact diagnostic interpretation, which in turn impacts our understanding of the development of instabilities, the overall energy balance of burning plasmas, and the efficacy of selfheating from charged-particle stopping. Important processes include thermal and electrical conduction, electron-ion coupling, inter-diffusion, ion viscosity, and charged particle stopping. However, uncertainties in these coefficients are not well established. Fundamental plasma science codes, also called high-fidelity plasma codes are a relatively recent computational tool that augments both experimental data and theoretical foundations of transport coefficients. This paper addresses the current status of HFPC codes and their future development, and the potential impact they play in improving the predictive capability of the multi-physics hydrodynamic codes used in HED design.
Particle simulation of neoclassical transport in the plasma Edge
Energy Technology Data Exchange (ETDEWEB)
Chang, C.S. [Department of Physics, Korea Advanced Institute of Science and Technology (Korea); Ku, S. [Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY (United States); Department of Physics, Korea Advanced Institute of Science and Technology (Korea)
2006-09-15
Particle-in-cell is a popular technique for a global five dimensional numerical simulation of the neoclassical plasma phenomena in a toroidal plasma. In this paper, we briefly review the physical and mathematical aspects of the modern neoclassical particle simulation methodology for a plasma edge simulation and present representative results recently obtained from XGC (X-point included Guiding Center) code. The strength and weakness in the modern neoclassical particle simulation techniques will also be discussed. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Simulation study of the plasma brake effect
Janhunen, Pekka
2014-01-01
The plasma brake is a thin negatively biased tether which has been proposed as an efficient concept for deorbiting satellites and debris objects from low Earth orbit. We simulate the interaction with the ionospheric plasma ram flow with the plasma brake tether by a high performance electrostatic particle in cell code to evaluate the thrust. The tether is assumed to be perpendicular to the flow. We perform runs for different tether voltage, magnetic field orientation and plasma ion mass. We show that a simple analytical thrust formula reproduces most of the simulation results well. The interaction with the tether and the plasma flow is laminar when the magnetic field is perpendicular to the tether and the flow. If the magnetic field is parallel to the tether, the behaviour is unstable and thrust is reduced by a modest factor. The case when the magnetic field is aligned with the flow can also be unstable, but does not result in notable thrust reduction. We also fix an error in an earlier reference. According to...
Particle-in-Cell Codes for plasma-based particle acceleration
Pukhov, Alexander
2016-01-01
Basic principles of particle-in-cell (PIC ) codes with the main application for plasma-based acceleration are discussed. The ab initio full electromagnetic relativistic PIC codes provide the most reliable description of plasmas. Their properties are considered in detail. Representing the most fundamental model, the full PIC codes are computationally expensive. The plasma-based acceler- ation is a multi-scale problem with very disparate scales. The smallest scale is the laser or plasma wavelength (from one to hundred microns) and the largest scale is the acceleration distance (from a few centimeters to meters or even kilometers). The Lorentz-boost technique allows to reduce the scale disparity at the costs of complicating the simulations and causing unphysical numerical instabilities in the code. Another possibility is to use the quasi-static approxi- mation where the disparate scales are separated analytically.
Energy Technology Data Exchange (ETDEWEB)
Aoki, Isao; Seki, Yasushi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Sasaki, Makoto; Shintani, Kiyonori; Kim, Yeong-Chan
1997-11-01
A dynamic simulation code for the fuel cycle of a fusion experimental reactor has been developed. The code follows the fuel inventory change with time in the plasma chamber and the fuel cycle system during a single pulse operation. The time dependence of the fuel inventory distribution is evaluated considering the fuel burn and exhaust in the plasma chamber, purification and supply functions. For each subsystem of the plasma chamber and the fuel cycle system, the fuel inventory equation is written based on the equation of state considering the function of fuel burn, exhaust, purification, and supply. The processing constants of subsystem for the steady states were taken from the values in the ITER Conceptual Design Activity (CDA) report. Using the code, the time dependence of the fuel supply and inventory depending on the burn state and subsystem processing functions are shown. (author)
Modeling of transient dust events in fusion edge plasmas with DUSTT-UEDGE code
Smirnov, R. D.; Krasheninnikov, S. I.; Pigarov, A. Yu.; Rognlien, T. D.
2016-10-01
It is well known that dust can be produced in fusion devices due to various processes involving structural damage of plasma exposed materials. Recent computational and experimental studies have demonstrated that dust production and associated with it plasma contamination can present serious challenges in achieving sustained fusion reaction in future fusion devices, such as ITER. To analyze the impact, which dust can have on performance of fusion plasmas, modeling of coupled dust and plasma transport with DUSTT-UEDGE code is used by the authors. In past, only steady-state computational studies, presuming continuous source of dust influx, were performed due to iterative nature of DUSTT-UEDGE code coupling. However, experimental observations demonstrate that intermittent injection of large quantities of dust, often associated with transient plasma events, may severely impact fusion plasma conditions and even lead to discharge termination. In this work we report on progress in coupling of DUSTT-UEDGE codes in time-dependent regime, which allows modeling of transient dust-plasma transport processes. The methodology and details of the time-dependent code coupling, as well as examples of simulations of transient dust-plasma transport phenomena will be presented. These include time-dependent modeling of impact of short out-bursts of different quantities of tungsten dust in ITER divertor on the edge plasma parameters. The plasma response to the out-bursts with various duration, location, and ejected dust sizes will be analyzed.
Simulations of Laboratory Astrophysics Experiments using the CRASH code
Trantham, Matthew; Kuranz, Carolyn; Fein, Jeff; Wan, Willow; Young, Rachel; Keiter, Paul; Drake, R. Paul
2015-11-01
Computer simulations can assist in the design and analysis of laboratory astrophysics experiments. The Center for Radiative Shock Hydrodynamics (CRASH) at the University of Michigan developed a code that has been used to design and analyze high-energy-density experiments on OMEGA, NIF, and other large laser facilities. This Eulerian code uses block-adaptive mesh refinement (AMR) with implicit multigroup radiation transport, electron heat conduction and laser ray tracing. This poster will demonstrate some of the experiments the CRASH code has helped design or analyze including: Kelvin-Helmholtz, Rayleigh-Taylor, magnetized flows, jets, and laser-produced plasmas. This work is funded by the following grants: DEFC52-08NA28616, DE-NA0001840, and DE-NA0002032.
Magnetohydrodynamic Simulation Code CANS+: Assessments and Applications
Matsumoto, Yosuke; Kudoh, Yuki; Kawashima, Tomohisa; Matsumoto, Jin; Takahashi, Hiroyuki R; Minoshima, Takashi; Zenitani, Seiji; Miyoshi, Takahiro; Matsumoto, Ryoji
2016-01-01
We present a new magnetohydrodynamic (MHD) simulation code with the aim of providing accurate numerical solutions to astrophysical phenomena where discontinuities, shock waves, and turbulence are inherently important. The code implements the HLLD approximate Riemann solver, the fifth-order-monotonicity-preserving interpolation scheme, and the hyperbolic divergence cleaning method for a magnetic field. This choice of schemes significantly improved numerical accuracy and stability, and saved computational costs in multidimensional problems. Numerical tests of one- and two-dimensional problems showed the advantages of using the high-order scheme by comparing with results from a standard second-order TVD scheme. The present code enabled us to explore long-term evolution of a three-dimensional global accretion disk, in which compressible MHD turbulence saturated at much higher levels via the magneto-rotational instability than that given by the second-order scheme owing to the adoption of the high-resolution, nume...
Nonlinear PIC Simulations for Nonneutral Plasmas
Lapenta, Giovanni; Luca Delzanno, Gian; Finn, John M.
2002-11-01
We present nonlinear simulations of the low frequency dynamics of electrons in a Malmberg-Penning trap, including compressional and thermal effects [1,2]. First, we consider a 2D model where we assume the effective plasma length constant in time. In this framework, we further neglect the thermal effect on the velocity field, and show with the PIC code KANDINSKY that Penning traps could be used to perform geophysical fluid dynamics experiments [3]. We also observe that, due to the presence of the nonlinear m=1 instability, the initially hollow density profile becomes peaked, as in the experiments. Then, we show 2D results including thermal effects. In this case, the development of the m=1 instability is slowed since the equilibrium plasma length profile is closer to the integrable profile, namely the length profile for which there are no discrete unstable modes [4]. Finally, we present simulations of the 3D fluiddynamics model of Ref. [2]. In particular, we investigate the evolution of a m=1 perturbation for different electron temperatures, when compressional and thermal effects are included. [1] J.M. Finn, D. del-Castillo-Negrete, D.C. Barnes,Phys. Plasmas, 6, 3744, 1999. [2] G.G.M. Coppa, A. D'Angola, G.L. Delzanno, G. Lapenta, Phys. Plasmas, 8, 1133, 2001. [3] G.L. Delzanno, J.M. Finn, G. Lapenta, "Nonlinear Phase of the Compressional m=1 Diocotron Instability: Saturation and Analogy with Geophysical Fluid Dynamics", submitted to Phys. Plasmas. [4] G.L. Delzanno, V.I. Pariev, J.M. Finn, G. Lapenta, "Stability Analysis of Hollow Electron Columns Including Compression and Thermal Effects: Integrability Condition and Numerical Simulations", submitted to Phys. Plasmas.
1979-09-30
mode In all of Davidson’s equations, there is a factor of /2- difference in vti due 2 to his definition of T.i =m v ti12. -3- -1 10-2- 1 0- 10-51 0.3...v E.6 max N~ -10- 0.6 v x 0.4 -0.2 a -0.4 0 1.0 2.0 3.0 4.0 5.0 6.0 16 12 8 4 (b) -0.4 -0.2 Vph -0. -. 2 0.0 0.2 0.4 A vx FIG. 5 Simulation (many mode...Drift Instability", Phys. Fluids 21, 1017 (1978). l mj 12 0.6 . . . . . . vx A 0.4. -0.2 (a) -0.4x 0 10 2.0 3.0 4.0 5.0 6.0 16 12 8 4 (b) Vph -0.4 -0.2
A treecode to simulate dust-plasma interactions
Thomas, D M
2016-01-01
The complex interaction of a small object with its surrounding plasma is an area of significant research with applications in a multitude of astrophysical, atmospheric, industrial and fusion plasmas. The computational study of these interactions has been dominated by macroscopic particle-in-cell (PIC) codes. This paper introduces a microscopic simulator of a spherical dust grain in a plasma, the plasma octree code pot, which uses the Barnes-Hut treecode algorithm to perform $N$-body simulations of electrons and ions in the vicinity of a spherical object. It also employs the Boris particle-motion integrator and Hutchinson's reinjection algorithm from SCEPTIC; a description of all three algorithms, and their implementation, is provided. Test results confirm the successful implementation of the treecode method and question the assumptions made by hybrid PIC codes.
Modeling non local thermodynamic equilibrium plasma using the Flexible Atomic Code data
Han, Bo; Salzmann, David; Zhao, Gang
2015-01-01
We present a new code, RCF("Radiative-Collisional code based on FAC"), which is used to simulate steady-state plasmas under non local thermodynamic equilibrium condition, especially photoinization dominated plasmas. RCF takes almost all of the radiative and collisional atomic processes into rate equation to interpret the plasmas systematically. The Flexible Atomic Code (FAC) supplies all the atomic data RCF needed, which insures calculating completeness and consistency of atomic data. With four input parameters relating to the radiation source and target plasma, RCF calculates the population of levels and charge states, as well as potentially emission spectrum. In preliminary application, RCF successfully reproduces the results of a photoionization experiment with reliable atomic data. The effects of the most important atomic processes on the charge state distribution are also discussed.
Plasma physics via computer simulation
Birdsall, CK
2004-01-01
PART 1: PRIMER Why attempting to do plasma physics via computer simulation using particles makes good sense Overall view of a one dimensional electrostatic program A one dimensional electrostatic program ES1 Introduction to the numerical methods used Projects for ES1 A 1d electromagnetic program EM1 Projects for EM1 PART 2: THEORY Effects of the spatial grid Effects of the finitw time ste Energy-conserving simulation models Multipole models Kinetic theory for fluctuations and noise; collisions Kinetic properties: theory, experience and heuristic estimates PART 3: PRACTIC
Energy Conservation Tests of a Coupled Kinetic-kinetic Plasma-neutral Transport Code
Energy Technology Data Exchange (ETDEWEB)
Stotler, D. P.; Chang, C. S.; Ku, S. H.; Lang, J.; Park, G.
2012-08-29
A Monte Carlo neutral transport routine, based on DEGAS2, has been coupled to the guiding center ion-electron-neutral neoclassical PIC code XGC0 to provide a realistic treatment of neutral atoms and molecules in the tokamak edge plasma. The DEGAS2 routine allows detailed atomic physics and plasma-material interaction processes to be incorporated into these simulations. The spatial pro le of the neutral particle source used in the DEGAS2 routine is determined from the uxes of XGC0 ions to the material surfaces. The kinetic-kinetic plasma-neutral transport capability is demonstrated with example pedestal fueling simulations.
Alya: Towards Exascale for Engineering Simulation Codes
Vazquez, Mariano; Koric, Seid; Artigues, Antoni; Aguado-Sierra, Jazmin; Aris, Ruth; Mira, Daniel; Calmet, Hadrien; Cucchietti, Fernando; Owen, Herbert; Taha, Ahmed; Cela, Jose Maria
2014-01-01
Alya is the BSC in-house HPC-based multi-physics simulation code. It is designed from scratch to run efficiently in parallel supercomputers, solving coupled problems. The target domain is engineering, with all its particular features: complex geome- tries and unstructured meshes, coupled multi-physics with exotic coupling schemes and Physical models, ill-posed problems, flexibility needs for rapidly including new models, etc. Since its conception in 2004, Alya has shown scaling behaviour in an increasing number of cores. In this paper, we present its performance up to 100.000 cores in Blue Waters, the NCSA supercomputer. The selected tests are representative of the engineering world, all the problematic features included: incompressible flow in a hu- man respiratory system, low Mach combustion problem in a kiln furnace and coupled electro-mechanical problem in a heart. We show scalability plots for all cases, discussing all the aspects of such kind of simulations, including solvers convergence.
Energy Technology Data Exchange (ETDEWEB)
Sosedkin, A.P.; Lotov, K.V. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 630090 Novosibirsk (Russian Federation)
2016-09-01
LCODE is a freely distributed quasistatic 2D3V code for simulating plasma wakefield acceleration, mainly specialized at resource-efficient studies of long-term propagation of ultrarelativistic particle beams in plasmas. The beam is modeled with fully relativistic macro-particles in a simulation window copropagating with the light velocity; the plasma can be simulated with either kinetic or fluid model. Several techniques are used to obtain exceptional numerical stability and precision while maintaining high resource efficiency, enabling LCODE to simulate the evolution of long particle beams over long propagation distances even on a laptop. A recent upgrade enabled LCODE to perform the calculations in parallel. A pipeline of several LCODE processes communicating via MPI (Message‐Passing Interface) is capable of executing multiple consecutive time steps of the simulation in a single pass. This approach can speed up the calculations by hundreds of times.
Sosedkin, A. P.; Lotov, K. V.
2016-09-01
LCODE is a freely distributed quasistatic 2D3V code for simulating plasma wakefield acceleration, mainly specialized at resource-efficient studies of long-term propagation of ultrarelativistic particle beams in plasmas. The beam is modeled with fully relativistic macro-particles in a simulation window copropagating with the light velocity; the plasma can be simulated with either kinetic or fluid model. Several techniques are used to obtain exceptional numerical stability and precision while maintaining high resource efficiency, enabling LCODE to simulate the evolution of long particle beams over long propagation distances even on a laptop. A recent upgrade enabled LCODE to perform the calculations in parallel. A pipeline of several LCODE processes communicating via MPI (Message-Passing Interface) is capable of executing multiple consecutive time steps of the simulation in a single pass. This approach can speed up the calculations by hundreds of times.
Sosedkin, Alexander
2015-01-01
LCODE is a freely-distributed quasistatic 2D3V code for simulating plasma wakefield acceleration, mainly specialized at resource-efficient studies of long-term propagation of ultrarelativistic particle beams in plasmas. The beam is modeled with fully relativistic macro-particles in a simulation window copropagating with the light velocity; the plasma can be simulated with either kinetic or fluid model. Several techniques are used to obtain exceptional numerical stability and precision while maintaining high resource efficiency, enabling LCODE to simulate the evolution of long particle beams over long propagation distances even on a laptop. A recent upgrade enabled LCODE to perform the calculations in parallel. A pipeline of several LCODE processes communicating via MPI (Message-Passing Interface) is capable of executing multiple consecutive time steps of the simulation in a single pass. This approach can speed up the calculations by hundreds of times.
Integrated code development for studying laser driven plasmas
Energy Technology Data Exchange (ETDEWEB)
Takabe, Hideaki; Nagatomo, Hideo; Sunahara, Atsusi; Ohnishi, Naofumi; Naruo, Syuji; Mima, Kunioki [Osaka Univ., Suita (Japan). Inst. of Laser Engineering
1998-03-01
Present status and plan for developing an integrated implosion code are briefly explained by focusing on motivation, numerical scheme and issues to be developed more. Highly nonlinear stage of Rayleigh-Taylor instability of ablation front by laser irradiation has been simulated so as to be compared with model experiments. Improvement in transport and rezoning/remapping algorithms in ILESTA code is described. (author)
Spiking network simulation code for petascale computers
Kunkel, Susanne; Schmidt, Maximilian; Eppler, Jochen M.; Plesser, Hans E.; Masumoto, Gen; Igarashi, Jun; Ishii, Shin; Fukai, Tomoki; Morrison, Abigail; Diesmann, Markus; Helias, Moritz
2014-01-01
Brain-scale networks exhibit a breathtaking heterogeneity in the dynamical properties and parameters of their constituents. At cellular resolution, the entities of theory are neurons and synapses and over the past decade researchers have learned to manage the heterogeneity of neurons and synapses with efficient data structures. Already early parallel simulation codes stored synapses in a distributed fashion such that a synapse solely consumes memory on the compute node harboring the target neuron. As petaflop computers with some 100,000 nodes become increasingly available for neuroscience, new challenges arise for neuronal network simulation software: Each neuron contacts on the order of 10,000 other neurons and thus has targets only on a fraction of all compute nodes; furthermore, for any given source neuron, at most a single synapse is typically created on any compute node. From the viewpoint of an individual compute node, the heterogeneity in the synaptic target lists thus collapses along two dimensions: the dimension of the types of synapses and the dimension of the number of synapses of a given type. Here we present a data structure taking advantage of this double collapse using metaprogramming techniques. After introducing the relevant scaling scenario for brain-scale simulations, we quantitatively discuss the performance on two supercomputers. We show that the novel architecture scales to the largest petascale supercomputers available today. PMID:25346682
Spiking network simulation code for petascale computers
Directory of Open Access Journals (Sweden)
Susanne eKunkel
2014-10-01
Full Text Available Brain-scale networks exhibit a breathtaking heterogeneity in the dynamical properties and parameters of their constituents. At cellular resolution, the entities of theory are neurons and synapses and over the past decade researchers have learned to manage the heterogeneity of neurons and synapses with efficient data structures. Already early parallel simulation codes stored synapses in a distributed fashion such that a synapse solely consumes memory on the compute node harboring the target neuron. As petaflop computers with some 100,000 nodes become increasingly available for neuroscience, new challenges arise for neuronal network simulation software: Each neuron contacts on the order of 10,000 other neurons and thus has targets only on a fraction of all compute nodes; furthermore, for any given source neuron, at most a single synapse is typically created on any compute node. From the viewpoint of an individual compute node, the heterogeneity in the synaptic target lists thus collapses along two dimensions: the dimension of the types of synapses and the dimension of the number of synapses of a given type. Here we present a data structure taking advantage of this double collapse using metaprogramming techniques. After introducing the relevant scaling scenario for brain-scale simulations, we quantitatively discuss the performance on two supercomputers. We show that the novel architecture scales to the largest petascale supercomputers available today.
PIC Simulation of plasma detachment
Ishiguro, Seiji; Pianpanit, Theerasarn; Hasegawa, Hiroki; Kanno, Ryutaro
2014-10-01
The detached plasma, which is caused by gas puffing, has been proposed and it is the most promising way to reduce the heat load to the divertor plate of fusion oriented devices. Dynamical and kinetic behavior of the detached plasma is unresolved. So we are developing particle-in-cell simulation model with atomic processes such as line radiation, ionization, charge-exchange collision and recombination. As a first step, we have performed PIC simulation with Monte Carlo collisions, where spatial and velocity space distributions of charged particles, self-consistent electric field, and atomic processes such as ionization and charge exchange are included. Temperature decrease and density increase in front of the target is observed and electric potential structure along the axis is created. This work is performed with the support and under the auspices of NIFS Collaboration Research programs (NIFS14KNXN279 and 8 NIFS13KNSS038) and the Research Cooperation Program on Hierarchy and Holism in Natural Sciences at the NINS.
The cosmological simulation code GADGET-2
Springel, V
2005-01-01
We discuss the cosmological simulation code GADGET-2, a new massively parallel TreeSPH code, capable of following a collisionless fluid with the N-body method, and an ideal gas by means of smoothed particle hydrodynamics (SPH). Our implementation of SPH manifestly conserves energy and entropy in regions free of dissipation, while allowing for fully adaptive smoothing lengths. Gravitational forces are computed with a hierarchical multipole expansion, which can optionally be applied in the form of a TreePM algorithm, where only short-range forces are computed with the `tree'-method while long-range forces are determined with Fourier techniques. Time integration is based on a quasi-symplectic scheme where long-range and short-range forces can be integrated with different timesteps. Individual and adaptive short-range timesteps may also be employed. The domain decomposition used in the parallelisation algorithm is based on a space-filling curve, resulting in high flexibility and tree force errors that do not depe...
Two-fluid biasing simulations of the large plasma device
Fisher, Dustin M.; Rogers, Barrett N.
2017-02-01
External biasing of the Large Plasma Device (LAPD) and its impact on plasma flows and turbulence are explored for the first time in 3D simulations using the Global Braginskii Solver code. Without external biasing, the LAPD plasma spontaneously rotates in the ion diamagnetic direction. The application of a positive bias increases the plasma rotation in the simulations, which show the emergence of a coherent Kelvin Helmholtz (KH) mode outside of the cathode edge with poloidal mode number m ≃6 . Negative biasing reduces the rotation in the simulations, which exhibit KH turbulence modestly weaker than but otherwise similar to unbiased simulations. Biasing either way, but especially positively, forces the plasma potential inside the cathode edge to a spatially constant, KH-stable profile, leading to a more quiescent core plasma than the unbiased case. A moderate increase in plasma confinement and an associated steepening of the profiles are seen in the biasing runs. The simulations thus show that the application of external biasing can improve confinement while also driving a Kelvin-Helmholtz instability. Ion-neutral collisions have only a weak effect in the biased or unbiased simulations.
Kinetic Simulations of Dense Plasma Focus Breakdown
Schmidt, A.; Higginson, D. P.; Jiang, S.; Link, A.; Povilus, A.; Sears, J.; Bennett, N.; Rose, D. V.; Welch, D. R.
2015-11-01
A dense plasma focus (DPF) device is a type of plasma gun that drives current through a set of coaxial electrodes to assemble gas inside the device and then implode that gas on axis to form a Z-pinch. This implosion drives hydrodynamic and kinetic instabilities that generate strong electric fields, which produces a short intense pulse of x-rays, high-energy (>100 keV) electrons and ions, and (in deuterium gas) neutrons. A strong factor in pinch performance is the initial breakdown and ionization of the gas along the insulator surface separating the two electrodes. The smoothness and isotropy of this ionized sheath are imprinted on the current sheath that travels along the electrodes, thus making it an important portion of the DPF to both understand and optimize. Here we use kinetic simulations in the Particle-in-cell code LSP to model the breakdown. Simulations are initiated with neutral gas and the breakdown modeled self-consistently as driven by a charged capacitor system. We also investigate novel geometries for the insulator and electrodes to attempt to control the electric field profile. The initial ionization fraction of gas is explored computationally to gauge possible advantages of pre-ionization which could be created experimentally via lasers or a glow-discharge. Prepared by LLNL under Contract DE-AC52-07NA27344.
Arc plasma devices: Evolving mechanical design from numerical simulation
Indian Academy of Sciences (India)
S Ghorui; A K Das
2013-04-01
Wide ranges of technological applications involve arc plasma devices as the primary plasma source for processing work. Recent findings exhibit the existence of appreciable thermal non-equilibrium in these so-called thermal plasma devices. Commercially available magnetohydrodynamic codes are not capable of handling such systems due to unavailability of non-equilibrium thermodynamic and transport property data and self-consistent models. A recipe for obtaining mechanical design of arc plasma devices from numerical simulation incorporating two-temperature thermal non-equilibrium model is presented in this article with reference to the plasma of the mixture of molecular gases like nitrogen and oxygen. Such systems are technologically important as they correspond to the plasma devices operating with air, oxygen plasma torches in cutting industries and plasma devices using nitrogen as shielding gas. Temperature field, associated fluid dynamics and electrical characteristics of a plasma torch are computed in a systematic manner to evaluate the performance of a conceived design using a two-fluid CFD model coupled with a two-temperature thermodynamic and transport property code. Important effects of different nozzle designs and plasma gases obtained from the formalism are discussed. Non-equilibrium thermo-dynamic properties are computed using modified two-temperature Saha equations and transport properties are computed using standard Chapman–Enskog approach.
Skála, J.; Baruffa, F.; Büchner, J.; Rampp, M.
2015-08-01
Context. The numerical simulation of turbulence and flows in almost ideal astrophysical plasmas with large Reynolds numbers motivates the implementation of magnetohydrodynamical (MHD) computer codes with low resistivity. They need to be computationally efficient and scale well with large numbers of CPU cores, allow obtaining a high grid resolution over large simulation domains, and be easily and modularly extensible, for instance, to new initial and boundary conditions. Aims: Our aims are the implementation, optimization, and verification of a computationally efficient, highly scalable, and easily extensible low-dissipative MHD simulation code for the numerical investigation of the dynamics of astrophysical plasmas with large Reynolds numbers in three dimensions (3D). Methods: The new GOEMHD3 code discretizes the ideal part of the MHD equations using a fast and efficient leap-frog scheme that is second-order accurate in space and time and whose initial and boundary conditions can easily be modified. For the investigation of diffusive and dissipative processes the corresponding terms are discretized by a DuFort-Frankel scheme. To always fulfill the Courant-Friedrichs-Lewy stability criterion, the time step of the code is adapted dynamically. Numerically induced local oscillations are suppressed by explicit, externally controlled diffusion terms. Non-equidistant grids are implemented, which enhance the spatial resolution, where needed. GOEMHD3 is parallelized based on the hybrid MPI-OpenMP programing paradigm, adopting a standard two-dimensional domain-decomposition approach. Results: The ideal part of the equation solver is verified by performing numerical tests of the evolution of the well-understood Kelvin-Helmholtz instability and of Orszag-Tang vortices. The accuracy of solving the (resistive) induction equation is tested by simulating the decay of a cylindrical current column. Furthermore, we show that the computational performance of the code scales very
Magnetic null points in kinetic simulations of space plasmas
Olshevsky, Vyacheslav; Deca, Jan; Divin, Andrey; Peng, Ivy Bo; Markidis, Stefano; Innocenti, Maria Elena; Cazzola, Emanuele; Lapenta, Giovanni
2015-01-01
We present a systematic attempt to study magnetic null points and the associated magnetic energy conversion in kinetic Particle-in-Cell simulations of various plasma configurations. We address three-dimensional simulations performed with the semi-implicit kinetic electromagnetic code iPic3D in different setups: variations of a Harris current sheet, dipolar and quadrupolar magnetospheres interacting with the solar wind; and a relaxing turbulent configuration with multiple null points. Spiral n...
The GBS code for tokamak scrape-off layer simulations
Halpern, F. D.; Ricci, P.; Jolliet, S.; Loizu, J.; Morales, J.; Mosetto, A.; Musil, F.; Riva, F.; Tran, T. M.; Wersal, C.
2016-06-01
We describe a new version of GBS, a 3D global, flux-driven plasma turbulence code to simulate the turbulent dynamics in the tokamak scrape-off layer (SOL), superseding the code presented by Ricci et al. (2012) [14]. The present work is driven by the objective of studying SOL turbulent dynamics in medium size tokamaks and beyond with a high-fidelity physics model. We emphasize an intertwining framework of improved physics models and the computational improvements that allow them. The model extensions include neutral atom physics, finite ion temperature, the addition of a closed field line region, and a non-Boussinesq treatment of the polarization drift. GBS has been completely refactored with the introduction of a 3-D Cartesian communicator and a scalable parallel multigrid solver. We report dramatically enhanced parallel scalability, with the possibility of treating electromagnetic fluctuations very efficiently. The method of manufactured solutions as a verification process has been carried out for this new code version, demonstrating the correct implementation of the physical model.
The GBS code for tokamak scrape-off layer simulations
Energy Technology Data Exchange (ETDEWEB)
Halpern, F.D., E-mail: federico.halpern@epfl.ch [Ecole Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015 Lausanne (Switzerland); Ricci, P.; Jolliet, S. [Ecole Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015 Lausanne (Switzerland); Loizu, J. [Max-Planck-Institut für Plasmaphysik, D-17491, Greifswald (Germany); Morales, J.; Mosetto, A.; Musil, F.; Riva, F.; Tran, T.M.; Wersal, C. [Ecole Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015 Lausanne (Switzerland)
2016-06-15
We describe a new version of GBS, a 3D global, flux-driven plasma turbulence code to simulate the turbulent dynamics in the tokamak scrape-off layer (SOL), superseding the code presented by Ricci et al. (2012) [14]. The present work is driven by the objective of studying SOL turbulent dynamics in medium size tokamaks and beyond with a high-fidelity physics model. We emphasize an intertwining framework of improved physics models and the computational improvements that allow them. The model extensions include neutral atom physics, finite ion temperature, the addition of a closed field line region, and a non-Boussinesq treatment of the polarization drift. GBS has been completely refactored with the introduction of a 3-D Cartesian communicator and a scalable parallel multigrid solver. We report dramatically enhanced parallel scalability, with the possibility of treating electromagnetic fluctuations very efficiently. The method of manufactured solutions as a verification process has been carried out for this new code version, demonstrating the correct implementation of the physical model.
SciDAC-Center for Plasma Edge Simulation
Energy Technology Data Exchange (ETDEWEB)
Chang, Choong Seock
2012-06-04
The SciDAC ProtoFSP Center for Plasma Edge Simulation (CPES) [http://www.cims.nyu.edu/cpes/] was awarded to New York University, Courant Institute of Mathematical Sciences in FY 2006. C.S. Chang was the institutional and national project PI. It's mission was 1) to build kinetic simulation code applicable to tokamak edge region including magnetic divertor geometry, 2) to build a computer science framework which can integrate the kinetic code with MHD/fluid codes in multiscale, 3) to conduct scientific research using the developed tools. CPES has built two such edge kinetic codes XGC0 and XGC1, which are still the only working kinetic edge plasma codes capable of including the diverted magnetic field geometry. CPES has also built the code coupling framework EFFIS (End-to-end Framework for Fusion Integrated Simulation), which incubated and used the Adios (www.olcf.ornl.gov/center-projects/adios/) and eSiMon (http://www.olcf.ornl.gov/center-projects/esimmon/) technologies, together with the Kepler technology.
Development and Benchmarking of a Hybrid PIC Code For Dense Plasmas and Fast Ignition
Energy Technology Data Exchange (ETDEWEB)
Witherspoon, F. Douglas [HyperV Technologies Corp.; Welch, Dale R. [Voss Scientific, LLC; Thompson, John R. [FAR-TECH, Inc.; MacFarlane, Joeseph J. [Prism Computational Sciences Inc.; Phillips, Michael W. [Advanced Energy Systems, Inc.; Bruner, Nicki [Voss Scientific, LLC; Mostrom, Chris [Voss Scientific, LLC; Thoma, Carsten [Voss Scientific, LLC; Clark, R. E. [Voss Scientific, LLC; Bogatu, Nick [FAR-TECH, Inc.; Kim, Jin-Soo [FAR-TECH, Inc.; Galkin, Sergei [FAR-TECH, Inc.; Golovkin, Igor E. [Prism Computational Sciences, Inc.; Woodruff, P. R. [Prism Computational Sciences, Inc.; Wu, Linchun [HyperV Technologies Corp.; Messer, Sarah J. [HyperV Technologies Corp.
2014-05-20
Radiation processes play an important role in the study of both fast ignition and other inertial confinement schemes, such as plasma jet driven magneto-inertial fusion, both in their effect on energy balance, and in generating diagnostic signals. In the latter case, warm and hot dense matter may be produced by the convergence of a plasma shell formed by the merging of an assembly of high Mach number plasma jets. This innovative approach has the potential advantage of creating matter of high energy densities in voluminous amount compared with high power lasers or particle beams. An important application of this technology is as a plasma liner for the flux compression of magnetized plasma to create ultra-high magnetic fields and burning plasmas. HyperV Technologies Corp. has been developing plasma jet accelerator technology in both coaxial and linear railgun geometries to produce plasma jets of sufficient mass, density, and velocity to create such imploding plasma liners. An enabling tool for the development of this technology is the ability to model the plasma dynamics, not only in the accelerators themselves, but also in the resulting magnetized target plasma and within the merging/interacting plasma jets during transport to the target. Welch pioneered numerical modeling of such plasmas (including for fast ignition) using the LSP simulation code. Lsp is an electromagnetic, parallelized, plasma simulation code under development since 1995. It has a number of innovative features making it uniquely suitable for modeling high energy density plasmas including a hybrid fluid model for electrons that allows electrons in dense plasmas to be modeled with a kinetic or fluid treatment as appropriate. In addition to in-house use at Voss Scientific, several groups carrying out research in Fast Ignition (LLNL, SNL, UCSD, AWE (UK), and Imperial College (UK)) also use LSP. A collaborative team consisting of HyperV Technologies Corp., Voss Scientific LLC, FAR-TECH, Inc., Prism
Development and Benchmarking of a Hybrid PIC Code For Dense Plasmas and Fast Ignition
Energy Technology Data Exchange (ETDEWEB)
Witherspoon, F. Douglas [HyperV Technologies Corp.; Welch, Dale R. [Voss Scientific, LLC; Thompson, John R. [FAR-TECH, Inc.; MacFarlane, Joeseph J. [Prism Computational Sciences Inc.; Phillips, Michael W. [Advanced Energy Systems, Inc.; Bruner, Nicki [Voss Scientific, LLC; Mostrom, Chris [Voss Scientific, LLC; Thoma, Carsten [Voss Scientific, LLC; Clark, R. E. [Voss Scientific, LLC; Bogatu, Nick [FAR-TECH, Inc.; Kim, Jin-Soo [FAR-TECH, Inc.; Galkin, Sergei [FAR-TECH, Inc.; Golovkin, Igor E. [Prism Computational Sciences, Inc.; Woodruff, P. R. [Prism Computational Sciences, Inc.; Wu, Linchun [HyperV Technologies Corp.; Messer, Sarah J. [HyperV Technologies Corp.
2014-05-20
Radiation processes play an important role in the study of both fast ignition and other inertial confinement schemes, such as plasma jet driven magneto-inertial fusion, both in their effect on energy balance, and in generating diagnostic signals. In the latter case, warm and hot dense matter may be produced by the convergence of a plasma shell formed by the merging of an assembly of high Mach number plasma jets. This innovative approach has the potential advantage of creating matter of high energy densities in voluminous amount compared with high power lasers or particle beams. An important application of this technology is as a plasma liner for the flux compression of magnetized plasma to create ultra-high magnetic fields and burning plasmas. HyperV Technologies Corp. has been developing plasma jet accelerator technology in both coaxial and linear railgun geometries to produce plasma jets of sufficient mass, density, and velocity to create such imploding plasma liners. An enabling tool for the development of this technology is the ability to model the plasma dynamics, not only in the accelerators themselves, but also in the resulting magnetized target plasma and within the merging/interacting plasma jets during transport to the target. Welch pioneered numerical modeling of such plasmas (including for fast ignition) using the LSP simulation code. Lsp is an electromagnetic, parallelized, plasma simulation code under development since 1995. It has a number of innovative features making it uniquely suitable for modeling high energy density plasmas including a hybrid fluid model for electrons that allows electrons in dense plasmas to be modeled with a kinetic or fluid treatment as appropriate. In addition to in-house use at Voss Scientific, several groups carrying out research in Fast Ignition (LLNL, SNL, UCSD, AWE (UK), and Imperial College (UK)) also use LSP. A collaborative team consisting of HyperV Technologies Corp., Voss Scientific LLC, FAR-TECH, Inc., Prism
A multi-model plasma simulation of collisionless magnetic reconnection
Datta, I. A. M.; Shumlak, U.; Ho, A.; Miller, S. T.
2016-10-01
Collisionless magnetic reconnection is a process relevant to many areas of plasma physics in which energy stored in magnetic fields within highly conductive plasmas is rapidly converted to plasma energy. A full understanding of this phenomenon, however, is currently incomplete as models developed to date have difficulty explaining the fast reconnection rates often seen in nature, such as in the case of solar flares. Therefore, this behavior represents an area of much research in which various plasma models have been tested in order to understand the proper physics explaining the reconnection process. In this research, the WARPXM code developed at the University of Washington is used to study the problem using a hybrid multi-model simulation employing Hall-MHD and two-fluid plasma models. The simulation is performed on a decomposed domain where different plasma models are solved in different regions, depending on a trade-off between each model's physical accuracy and associated computational expense in each region. The code employs a discontinuous Galerkin (DG) finite element spatial discretization coupled with a Runge-Kutta scheme for time advancement and uses boundary conditions to couple the different plasma models. This work is supported by a Grant from the United States Air Force Office of Scientific Research.
Bierwage, Andreas; Spong, Donald A.
2009-05-01
Hybrid-MHD-Gyrokinetic Code (HMGC) [1] and the gyrofluid code TAEFL [2,3] are used for nonlinear simulation of Alfven Eigenmodes in Tokamak plasma. We compare results obtained in two cases: (I) a case designed for cross-code benchmark of TAE excitation; (II) a case based on a dedicated DIII-D shot #132707 where RSAE and TAE activity is observed. Differences between the numerical simulation results are discussed and future directions are outlined. [1] S. Briguglio, G. Vlad, F. Zonca and C. Kar, Phys. Plasmas 2 (1995) 3711. [2] D.A. Spong, B.A. Carreras and C.L. Hedrick, Phys. Fluids B4 (1992) 3316. [3] D.A. Spong, B.A. Carreras and C.L. Hedrick, Phys. Plasmas 1 (1994) 1503.
Magnetized plasma jets in experiment and simulation
Schrafel, Peter; Greenly, John; Gourdain, Pierre; Seyler, Charles; Blesener, Kate; Kusse, Bruce
2013-10-01
This research focuses on the initial ablation phase of a thing (20 micron) Al foil driven on the 1 MA-in-100 ns COBRA through a 5 mm diameter cathode in a radial configuration. In these experiments, ablated surface plasma (ASP) on the top of the foil and a strongly collimated axial plasma jet can be observed developing midway through current-rise. Our goal is to establish the relationship between the ASP and the jet. These jets are of interest for their potential relevance to astrophysical phenomena. An independently pulsed 200 μF capacitor bank with a Helmholtz coil pair allows for the imposition of a slow (150 μs) and strong (~1 T) axial magnetic field on the experiment. Application of this field eliminates significant azimuthal asymmetry in extreme ultraviolet emission of the ASP. This asymmetry is likely a current filamentation instability. Laser-backlit shadowgraphy and interferometry confirm that the jet-hollowing is correlated with the application of the axial magnetic field. Visible spectroscopic measurements show a doppler shift consistent with an azimuthal velocity in the ASP caused by the applied B-field. Computational simulations with the XMHD code PERSEUS qualitatively agree with the experimental results.
PIC simulation of electron acceleration in an underdense plasma
Directory of Open Access Journals (Sweden)
S Darvish Molla
2011-06-01
Full Text Available One of the interesting Laser-Plasma phenomena, when the laser power is high and ultra intense, is the generation of large amplitude plasma waves (Wakefield and electron acceleration. An intense electromagnetic laser pulse can create plasma oscillations through the action of the nonlinear pondermotive force. electrons trapped in the wake can be accelerated to high energies, more than 1 TW. Of the wide variety of methods for generating a regular electric field in plasmas with strong laser radiation, the most attractive one at the present time is the scheme of the Laser Wake Field Accelerator (LWFA. In this method, a strong Langmuir wave is excited in the plasma. In such a wave, electrons are trapped and can acquire relativistic energies, accelerated to high energies. In this paper the PIC simulation of wakefield generation and electron acceleration in an underdense plasma with a short ultra intense laser pulse is discussed. 2D electromagnetic PIC code is written by FORTRAN 90, are developed, and the propagation of different electromagnetic waves in vacuum and plasma is shown. Next, the accuracy of implementation of 2D electromagnetic code is verified, making it relativistic and simulating the generating of wakefield and electron acceleration in an underdense plasma. It is shown that when a symmetric electromagnetic pulse passes through the plasma, the longitudinal field generated in plasma, at the back of the pulse, is weaker than the one due to an asymmetric electromagnetic pulse, and thus the electrons acquire less energy. About the asymmetric pulse, when front part of the pulse has smaller time rise than the back part of the pulse, a stronger wakefield generates, in plasma, at the back of the pulse, and consequently the electrons acquire more energy. In an inverse case, when the rise time of the back part of the pulse is bigger in comparison with that of the back part, a weaker wakefield generates and this leads to the fact that the electrons
Modification of PRETOR Code to Be Applied to Transport Simulation in Stellarators
Energy Technology Data Exchange (ETDEWEB)
Fontanet, J.; Castejon, F.; Dies, J.; Fontdecaba, J.; Alejaldre, C.
2001-07-01
The 1.5 D transport code PRETOR, that has been previously used to simulate tokamak plasmas, has been modified to perform transport analysis in stellarator geometry. The main modifications that have been introduced in the code are related with the magnetic equilibrium and with the modelling of energy and particle transport. Therefore, PRETOR- Stellarator version has been achieved and the code is suitable to perform simulations on stellarator plasmas. As an example, PRETOR- Stellarator has been used in the transport analysis of several Heliac Flexible TJ-II shots, and the results are compared with those obtained using PROCTR code. These results are also compared with the obtained using the tokamak version of PRETOR to show the importance of the introduced changes. (Author) 18 refs.
Communication Systems Simulator with Error Correcting Codes Using MATLAB
Gomez, C.; Gonzalez, J. E.; Pardo, J. M.
2003-01-01
In this work, the characteristics of a simulator for channel coding techniques used in communication systems, are described. This software has been designed for engineering students in order to facilitate the understanding of how the error correcting codes work. To help students understand easily the concepts related to these kinds of codes, a…
A User-Friendly Code to Diagnose Chromospheric Plasmas
2007-01-01
The physical interpretation of spectropolarimetric observations of lines of neutral helium, such as those of the 10830 A multiplet, represents an excellent opportunity for investigating the magnetism of plasma structures in the solar chromosphere. Here we present a powerful forward modeling and inversion code that permits either to calculate the emergent intensity and polarization for any given magnetic field vector or to infer the dynamical and magnetic properties from the observed Stokes pr...
The stellar atmosphere simulation code Bifrost. Code description and validation
Gudiksen, B.V.; Carlsson, M.; Hansteen, V.H.; Hayek, W.; Leenaarts, J.|info:eu-repo/dai/nl/304837946; Martínez-Sykora, J.
2011-01-01
Context. Numerical simulations of stellar convection and photospheres have been developed to the point where detailed shapes of observed spectral lines can be explained. Stellar atmospheres are very complex, and very different physical regimes are present in the convection zone, photosphere,
Integrated Plasma Simulation of Lower Hybrid Current Drive in Tokamaks
Bonoli, P. T.; Wright, J. C.; Harvey, R. W.; Batchelor, D. B.; Berry, L. A.; Kessel, C. E.; Jardin, S. C.
2012-03-01
It has been shown in Alcator C-Mod that the onset time for sawteeth can be delayed significantly (up to 0.5 s) relative to ohmically heated plasmas, through the injection of off-axis LH current drive power [1]. We are simulating these experiments using the Integrated Plasma Simulator (IPS) [2], where the driven LH current density profiles are computed using a ray tracing component (GENRAY) and Fokker Planck code (CQL3D) [3] that are run in a tightly coupled time advance. The background plasma is evolved using the TSC transport code with the Porcelli sawtooth model [4]. Predictions of the driven LH current profiles will be compared with simpler ``reduced'' models for LHCD such as the LSC code which is implemented in TSC and which is also invoked within the IPS. [4pt] [1] C. E. Kessel et al, Bull. of the Am. Phys. Soc. 53, Poster PP6.00074 (2008). [0pt] [2] D. Batchelor et al, Journal of Physics: Conf. Series 125, 012039 (2008). [0pt] [3] R. W. Harvey and M. G. McCoy, Proc. of the IAEA Tech. Comm. Meeting on Simulation and Modeling of Therm. Plasmas, Montreal, Canada (1992). [0pt] [4] S. C. Jardin et al, J. Comp. Phys. 66, 481 (1986).
AETHER: A simulation platform for inductively coupled plasma
Energy Technology Data Exchange (ETDEWEB)
Turkoz, Emre, E-mail: emre.turkoz@boun.edu.tr; Celik, Murat
2015-04-01
An in-house code is developed to simulate the inductively coupled plasma (ICP). The model comprises the fluid, electromagnetic and transformer submodels. Fluid equations are solved to evaluate the plasma flow parameters, including the plasma and neutral densities, ion and neutral velocities, electron flux, electron temperature, and electric potential. The model relies on the ambipolar approximation and offers the evaluation of plasma parameters without solving the sheath region. The electromagnetic model handles the calculation of the electric and magnetic fields using the magnetic vector potential. The transformer model captures the effect of the matching circuit utilized in laboratory experiments for RF power deposition. The continuity and momentum equations are solved using finite volume method. The energy, electric potential, and magnetic vector potential equations are solved using finite difference method. The resulting linear systems of equations are solved with iterative solvers including Jacobi and GMRES. The code is written using the C++ programming language, it works in parallel and has graphical user interface. The model is applied to study ICP characteristics of a plasma confined within a cylindrical chamber with dielectric walls for two different power deposition cases. The results obtained from the developed model are verified using the plasma module of COMSOL Multiphysics. The model is also applied to a plasma source configuration, and it is demonstrated that there is an overall increase in the plasma potential when current is extracted from ICP with a biased wall electrode.
B2.5-Eunomia simulations of Pilot-PSI plasmas
Energy Technology Data Exchange (ETDEWEB)
Wieggers, R.C., E-mail: R.C.Wieggers@differ.nl [FOM Institute DIFFER – Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM, Partner in the Trilateral Euregio Cluster (Netherlands); Coster, D.P. [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Garching (Germany); Groen, P.W.C.; Blank, H.J. de; Goedheer, W.J. [FOM Institute DIFFER – Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM, Partner in the Trilateral Euregio Cluster (Netherlands)
2013-07-15
The B2.5-Eunomia code is used to simulate the plasma and neutral species in and around a Pilot-PSI plasma beam. B2.5, part of the SOLPS5.0 code package, is a multi-fluid plasma code for the scrape-off layer. Eunomia is a newly developed non-linear Monte Carlo transport code that solves the neutral equilibrium, given a background plasma. Eunomia is developed to simulate the relevant neutral species in Pilot-PSI and Magnum-PSI, linear devices that study plasma surface interactions in conditions expected in the ITER divertor. Results show the influence of the neutral species on the Pilot-PSI plasma beam. We show that a fluid description for the neutrals is not sufficient and Eunomia is needed to describe Pilot-PSI. The treatment of individual vibrational states of molecular hydrogen as separate species is crucial to match the experiment.
Energy Technology Data Exchange (ETDEWEB)
Kirschner, A.; Borodin, D.; Brezinsek, S.; Linsmeier, C.; Romazanov, J. [Forschungszentrum Juelich GmbH, Institut fuer Energie- und Klimaforschung - Plasmaphysik, Juelich (Germany); Tskhakaya, D. [Fusion rate at OeAW, Institute of Applied Physics, TU Wien (Austria); Institute of Theoretical Physics, University of Innsbruck (Austria); Kawamura, G. [National Institute for Fusion Science, Gifu (Japan); Ding, R. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China)
2016-08-15
The 3D ERO code, which simulates plasma-wall interaction and impurity transport in magnetically confined fusion-relevant devices is described. As application, prompt deposition of eroded tungsten has been simulated at surfaces with shallow magnetic field of 3 T. Dedicated PIC simulations have been performed to calculate the characteristics of the sheath in front of plasma-exposed surfaces to use as input for these ERO simulations. Prompt deposition of tungsten reaches 100% at the highest electron temperature and density. In comparison to more simplified assumptions for the sheath the amount of prompt deposition is in general smaller if the PIC-calculated sheath is used. Due to friction with the background plasma the impact energy of deposited tungsten can be significantly larger than the energy gained in the sheath potential. (copyright 2016 The Authors. Contributions to Plasma Physics published by Wiley-VCH Verlag GmbH and Co. KGaA Weinheim. This)
Software quality and process improvement in scientific simulation codes
Energy Technology Data Exchange (ETDEWEB)
Ambrosiano, J.; Webster, R. [Los Alamos National Lab., NM (United States)
1997-11-01
This report contains viewgraphs on the quest to develope better simulation code quality through process modeling and improvement. This study is based on the experience of the authors and interviews with ten subjects chosen from simulation code development teams at LANL. This study is descriptive rather than scientific.
Equilibrium and stability code for a diffuse plasma.
Betancourt, O; Garabedian, P
1976-04-01
A computer code to investigate the equilibrium and stability of a diffuse plasma in three dimensions is described that generalizes earlier work on a sharp free boundary model. Toroidal equilibria of a plasma are determined by considering paths of steepest descent associated with a new version of the variational principle of magnetohydrodynamics that involves mapping a fixed coordinate domain onto the plasma. A discrete approximation of the potential energy is written down following the finite element method, and the resulting expression is minimized with respect to the values of the mapping at points of a rectangular grid. If a relative minimum of the discrete analogue of the energy is attained, the corresponding equilibrium is considered to be stable.
A New Three-Dimensional Code for Simulation of Ion Beam Extraction: Ion Optics Simulator
Institute of Scientific and Technical Information of China (English)
JIN Dazhi; HUANG Tao; HU Quan; YANG Zhonghai
2008-01-01
A new thee-dimensional code, ion optics simulator (IOS), to simulate ion beam extraction is developed in visual C++ language. The theoretical model, the flowchart of code, and the results of calculation as an example are presented.
The Particle Accelerator Simulation Code PyORBIT
Energy Technology Data Exchange (ETDEWEB)
Gorlov, Timofey V [ORNL; Holmes, Jeffrey A [ORNL; Cousineau, Sarah M [ORNL; Shishlo, Andrei P [ORNL
2015-01-01
The particle accelerator simulation code PyORBIT is presented. The structure, implementation, history, parallel and simulation capabilities, and future development of the code are discussed. The PyORBIT code is a new implementation and extension of algorithms of the original ORBIT code that was developed for the Spallation Neutron Source accelerator at the Oak Ridge National Laboratory. The PyORBIT code has a two level structure. The upper level uses the Python programming language to control the flow of intensive calculations performed by the lower level code implemented in the C++ language. The parallel capabilities are based on MPI communications. The PyORBIT is an open source code accessible to the public through the Google Open Source Projects Hosting service.
Code generation: a strategy for neural network simulators.
Goodman, Dan F M
2010-10-01
We demonstrate a technique for the design of neural network simulation software, runtime code generation. This technique can be used to give the user complete flexibility in specifying the mathematical model for their simulation in a high level way, along with the speed of code written in a low level language such as C+ +. It can also be used to write code only once but target different hardware platforms, including inexpensive high performance graphics processing units (GPUs). Code generation can be naturally combined with computer algebra systems to provide further simplification and optimisation of the generated code. The technique is quite general and could be applied to any simulation package. We demonstrate it with the 'Brian' simulator ( http://www.briansimulator.org ).
Programmable physical parameter optimization for particle plasma simulations
Ragan-Kelley, Benjamin; Verboncoeur, John; Lin, Ming-Chieh
2012-10-01
We have developed a scheme for interactive and programmable optimization of physical parameters for plasma simulations. The simulation code Object-Oriented Plasma Device 1-D (OOPD1) has been adapted to a Python interface, allowing sophisticated user or program interaction with simulations, and detailed numerical analysis via numpy. Because the analysis/diagnostic interface is the same as the input mechanism (the Python programming language), it is straightforward to optimize simulation parameters based on analysis of previous runs and automate the optimization process using a user-determined scheme and criteria. An example use case of the Child-Langmuir space charge limit in bipolar flow is demonstrated, where the beam current is iterated upon by measuring the relationship of the measured current and the injected current.
M3D project for simulation studies of plasmas
Energy Technology Data Exchange (ETDEWEB)
Park, W.; Belova, E.V.; Fu, G.Y. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Strauss, H.R. [New York Univ., NY (United States); Sugiyama, L.E. [Massachusetts Inst. of Tech., Cambridge, MA (United States)
1998-12-31
The M3D (Multi-level 3D) project carries out simulation studies of plasmas of various regimes using multi-levels of physics, geometry, and mesh schemes in one code package. This paper and papers by Strauss, Sugiyama, and Belova in this workshop describe the project, and present examples of current applications. The currently available physics models of the M3D project are MHD, two-fluids, gyrokinetic hot particle/MHD hybrid, and gyrokinetic particle ion/two-fluid hybrid models. The code can be run with both structured and unstructured meshes.
Computer Simulation of Convective Plasma Cells
Carboni, Rodrigo; Frutos-Alfaro, Francisco
2015-01-01
Computer simulations of plasmas are relevant nowadays, because it helps us understand physical processes taking place in the sun and other stellar objects. We developed a program called PCell which is intended for displaying the evolution of the magnetic field in a 2D convective plasma cell with perfect conducting walls for different stationary plasma velocity fields. Applications of this program are presented. This software works interactively with the mouse and the users can create their ow...
A User-Friendly Code to Diagnose Chromospheric Plasmas
Ramos, A Asensio
2007-01-01
The physical interpretation of spectropolarimetric observations of lines of neutral helium, such as those of the 10830 A multiplet, represents an excellent opportunity for investigating the magnetism of plasma structures in the solar chromosphere. Here we present a powerful forward modeling and inversion code that permits either to calculate the emergent intensity and polarization for any given magnetic field vector or to infer the dynamical and magnetic properties from the observed Stokes profiles. This diagnostic tool is based on the quantum theory of spectral line polarization, which self-consistently accounts for the Hanle and Zeeman effects in the most general case of the incomplete Paschen-Back effect regime. We also take into account radiative transfer effects. An efficient numerical scheme based on global optimization methods has been applied. Our Stokes inversion code permits a fast and reliable determination of the global minimum.
A User-Friendly Code to Diagnose Chromospheric Plasmas
Asensio Ramos, A.; Trujillo Bueno, J.
2007-05-01
The physical interpretation of spectropolarimetric observations of lines of neutral helium, such as those of the 10830 Å multiplet, represents an excellent opportunity for investigating the magnetism of plasma structures in the solar chromosphere. Here we present a powerful forward modeling and inversion code that permits either to calculate the emergent intensity and polarization for any given magnetic field vector or to infer the dynamical and magnetic properties from the observed Stokes profiles. This diagnostic tool is based on the quantum theory of spectral line polarization, which self-consistently accounts for the Hanle and Zeeman effects in the most general case of the incomplete Paschen-Back effect regime. We also take into account radiative transfer effects. An efficient numerical scheme based on global optimization methods has been applied. Our Stokes inversion code permits a fast and reliable determination of the global minimum.
Simulating plasma production from hypervelocity impacts
Fletcher, Alex; Close, Sigrid; Mathias, Donovan
2015-09-01
Hypervelocity particles, such as meteoroids and space debris, routinely impact spacecraft and are energetic enough to vaporize and ionize themselves and as well as a portion of the target material. The resulting plasma rapidly expands into the surrounding vacuum. While plasma measurements from hypervelocity impacts have been made using ground-based technologies such as light gas guns and Van de Graaff dust accelerators, some of the basic plasma properties vary significantly between experiments. There have been both ground-based and in-situ measurements of radio frequency (RF) emission from hypervelocity impacts, but the physical mechanism responsible and the possible connection to the impact-produced plasma are not well understood. Under certain conditions, the impact-produced plasma can have deleterious effects on spacecraft electronics by providing a new current path, triggering an electrostatic discharge, causing electromagnetic interference, or generating an electromagnetic pulse. Multi-physics simulations of plasma production from hypervelocity impacts are presented. These simulations incorporate elasticity and plasticity of the solid target, phase change and plasma formation, and non-ideal plasma physics due to the high density and low temperature of the plasma. A smoothed particle hydrodynamics method is used to perform a continuum dynamics simulation with these additional physics. By examining a series of hypervelocity impacts, basic properties of the impact produced plasma plume (density, temperature, expansion speed, charge state) are determined for impactor speeds between 10 and 72 km/s. For a large range of higher impact speeds (30-72 km/s), we find the temperature is unvarying at 2.5 eV. We also find that the plasma plume is weakly ionized for impact speeds less than 14 km/s and fully ionized for impact speeds greater than 20 km/s, independent of impactor mass. This is the same velocity threshold for the detection of RF emission in recent Van de Graaff
SciDAC - Center for Plasma Edge Simulation - Project Summary
Energy Technology Data Exchange (ETDEWEB)
Parker, Scott [Univ. of Colorado, Boulder, CO (United States)
2014-11-03
Final Technical Report: Center for Plasma Edge Simulation (CPES) Principal Investigator: Scott Parker, University of Colorado, Boulder Description/Abstract First-principle simulations of edge pedestal micro-turbulence are performed with the global gyrokinetic turbulence code GEM for both low and high confinement tokamak plasmas. The high confinement plasmas show a larger growth rate, but nonlinearly a lower particle and heat flux. Numerical profiles are obtained from the XGC0 neoclassical code. XGC0/GEM code coupling is implemented under the EFFIS (“End-to-end Framework for Fusion Integrated Simulation”) framework. Investigations are underway to clearly identify the micro-instabilities in the edge pedestal using global and flux-tube gyrokinetic simulation with realistic experimental high confinement profiles. We use both experimental profiles and those obtained using the EFFIS XGC0/GEM coupled code framework. We find there are three types of instabilities at the edge: a low-n, high frequency electron mode, a high-n, low frequency ion mode, and possibly an ion mode like kinetic ballooning mode (KBM). Investigations are under way for the effects of the radial electric field. Finally, we have been investigating how plasmas dominated by ion-temperature gradient (ITG) driven turbulence, how cold Deuterium and Tritium ions near the edge will naturally pinch radially inward towards the core. We call this mechanism “natural fueling.” It is due to the quasi-neutral heat flux dominated nature of the turbulence and still applies when trapped and passing kinetic electron effects are included. To understand this mechanism, examine the situation where the electrons are adiabatic, and there is an ion heat flux. In such a case, lower energy particles move inward and higher energy particles move outward. If a trace amount of cold particles are added, they will move inward.
Computer Simulation of Convective Plasma Cells
Carboni, Rodrigo
2015-01-01
Computer simulations of plasmas are relevant nowadays, because it helps us understand physical processes taking place in the sun and other stellar objects. We developed a program called PCell which is intended for displaying the evolution of the magnetic field in a 2D convective plasma cell with perfect conducting walls for different stationary plasma velocity fields. Applications of this program are presented. This software works interactively with the mouse and the users can create their own movies in MPEG format. The programs were written in Fortran and C. There are two versions of the program (GNUPLOT and OpenGL). GNUPLOT and OpenGL are used to display the simulation.
High-Density Plasma Reactors: Simulations for Design
Hash, David B.; Meyyappan, Meyya; Arnold, James O. (Technical Monitor)
1998-01-01
The development of improved and more efficient plasma reactors is a costly process for the semiconductor industry. Until five years ago, the Industry made most of its advancements through a trial and error approach. More recently, the role of computational modeling in the design process has increased. Both conventional computational fluid dynamics (CFD) techniques like Navier-Stokes solvers as well as particle simulation methods are used to model plasma reactor flowfields. However, since high-density plasma reactors generally operate at low gas pressures on the order of 1 to 10 mTorr, a particle simulation may be necessary because of the failure of CFD techniques to model rarefaction effects. The direct simulation Monte Carlo method is the most widely accepted and employed particle simulation tool and has previously been used to investigate plasma reactor flowfields. A plasma DSMC code is currently under development at NASA Ames Research Center with its foundation as the object-oriented parallel Cornell DSMC code, MONACO. The present investigation is a follow up of a neutral flow investigation of the effects of process parameters as well as reactor design on etch rate and etch rate uniformity. The previous work concentrated on silicon etch of a chlorine flow in a configuration typical of electron cyclotron resonance (ECR) or helical resonator type reactors. The effects of the plasma on the dissociation chemistry were modeled by making assumptions about the electron temperature and number density. The electrons or ions themselves were not simulated.The present work extends these results by simulating the charged species.The electromagnetic fields are calculated such that power deposition is modeled self-consistently. Electron impact reactions are modeled along with mechanisms for charge exchange. An bipolar diffusion assumption is made whereby electrons remain tied to the ions. However, the velocities of tile electrons are allowed to be modified during collisions
Simulation of Water Chemistry using and Geochemistry Code, PHREEQE
Energy Technology Data Exchange (ETDEWEB)
Chi, J.H. [Korea Electric Power Research Institute, Taejeon (Korea)
2001-07-01
This report introduces principles and procedures of simulation for water chemistry using a geochemistry code, PHREEQE. As and example of the application of this code, we described the simulation procedure for titration of an aquatic sample with strong acid to investigate the state of Carbonates in aquatic solution. Major contents of this report are as follows; Concepts and principles of PHREEQE, Kinds of chemical reactions which may be properly simulated by PHREEQE, The definition and meaning of each input data, An example of simulation using PHREEQE. (author). 2 figs., 1 tab.
Integrated fast ignition simulation of cone-guided target with three codes
Energy Technology Data Exchange (ETDEWEB)
Sakagami, H. [Hyogo Univ., Computer Engineering, Himeji, Hyogo (Japan); Johzaki, T.; Nagatomo, H.; Mima, K. [Osaka Univ., Institute of Laser Engineering, Suita, Osaka (Japan)
2004-07-01
It was reported that the fuel core was heated up to {approx} 0.8 keV in the fast ignition experiments with cone-guided targets, but they could not theoretically explain heating mechanisms and achievement of such high temperature. Thus simulations should play an important role in estimating the scheme performance, and we must simulate each phenomenon with individual codes and integrate them under the Fast Ignition Integrated Interconnecting code project. In the previous integrated simulations, fast electrons generated by the laser-plasma interaction were too hot to efficiently heat the core and we got only a 0.096 keV temperature rise. Including the density gap at the contact surface between the cone tip and the imploded plasma, the period of core heating became longer and the core was heated by 0.162 keV, about 69% higher increment compared with ignoring the density gap effect. (authors)
Advanced thermohydraulic simulation code for transients in LMFBRs (SSC-L code)
Energy Technology Data Exchange (ETDEWEB)
Agrawal, A.K.
1978-02-01
Physical models for various processes that are encountered in preaccident and transient simulation of thermohydraulic transients in the entire liquid metal fast breeder reactor (LMFBR) plant are described in this report. A computer code, SSC-L, was written as a part of the Super System Code (SSC) development project for the ''loop''-type designs of LMFBRs. This code has the self-starting capability, i.e., preaccident or steady-state calculations are performed internally. These results then serve as the starting point for the transient simulation.
On Plasma Theory and Simulation.
2014-09-26
SHEATH REGION INCLUDING ION REFLECTION Lou Ann Schwager (Prof. C. K. Birdsall, Dr. I. Roth ) A low temperature plasma interacts with a collector plate...Hitchcock. Katz. Lankford. Nelson. Barnes. Borovsky. Forslund. Kwan. Sadowski Lindemuth. Mason . Mostrom. Nielson, Oliphant. Sgro. Thode Department of
Marocchino, A.; Massimo, F.; Rossi, A. R.; Chiadroni, E.; Ferrario, M.
2016-09-01
In this paper we present a hybrid approach aiming to assess feasible plasma wakefield acceleration working points with reduced computation resources. The growing interest for plasma wakefield acceleration and especially the need to control with increasing precision the quality of the accelerated bunch demands for more accurate and faster simulations. Particle in cell codes are the state of the art technique to simulate the underlying physics, however the run-time represents the major drawback. Architect is a hybrid code that treats the bunch kinetically and the background electron plasma as a fluid, initialising bunches in vacuum so to take into account for the transition from vacuum to plasma. Architect solves directly the Maxwell's equations on a Yee lattice. Such an approach allows us to drastically reduce run time without loss of generality or accuracy up to the weakly non linear regime.
Energy Technology Data Exchange (ETDEWEB)
Marocchino, A., E-mail: albz.uk@gmail.com [Dipartimento SBAI, “Sapienza” University of Rome and INFN-Roma 1, Rome (Italy); Massimo, F. [Dipartimento SBAI, “Sapienza” University of Rome and INFN-Roma 1, Rome (Italy); Rossi, A.R. [Dipartimento di Fisica, University of Milan and INFN-Milano, Milano (Italy); Chiadroni, E.; Ferrario, M. [INFN-LNF, Frascati (Italy)
2016-09-01
In this paper we present a hybrid approach aiming to assess feasible plasma wakefield acceleration working points with reduced computation resources. The growing interest for plasma wakefield acceleration and especially the need to control with increasing precision the quality of the accelerated bunch demands for more accurate and faster simulations. Particle in cell codes are the state of the art technique to simulate the underlying physics, however the run-time represents the major drawback. Architect is a hybrid code that treats the bunch kinetically and the background electron plasma as a fluid, initialising bunches in vacuum so to take into account for the transition from vacuum to plasma. Architect solves directly the Maxwell's equations on a Yee lattice. Such an approach allows us to drastically reduce run time without loss of generality or accuracy up to the weakly non linear regime.
Plasma crystals: experiments and simulation
Piel, A.
2017-01-01
Dusty plasmas are a well accessible system to study crystallization of charged-particle systems at room temperature. The large mass compared to atomic particles dramatically slows down the particle velocities. The high transparency of the system allows to trace simultaneously the motion of all particles with quasi-atomic resolution. After a brief overview, the progress in this field is exemplified by studies of spherical three-dimensional plasma crystals, the so-called Yukawa balls. The static structure and eigenmodes are explained in simple terms. It is shown that shielding modifies the expansion of a Yukawa ball from a self-similar explosion to a continuous ablation process that starts at the surface. The experimental progress with three-dimensional diagnostics and laser heating and sophisticated methods for visualising the order inside the shell structure are described. Together with quantifying the diffusion coefficient these investigations reveal the details of the solid-liquid phase transition. Besides thermodynamic aspects, the liquid phase of dusty plasmas also gives access to hydrodynamic phenomena at the individual particle scale.
Development and Test of 2.5-Dimensional Electromagnetic PIC Simulation Code
Lee, Sang-Yun; Lee, Ensang; Kim, Khan-Hyuk; Seon, Jongho; Lee, Dong-Hun; Ryu, Kwang-Sun
2015-03-01
We have developed a 2.5-dimensional electromagnetic particle simulation code using the particle-in-cell (PIC) method to investigate electromagnetic phenomena that occur in space plasmas. Our code is based on the leap-frog method and the centered difference method for integration and differentiation of the governing equations. We adopted the relativistic Buneman-Boris method to solve the Lorentz force equation and the Esirkepov method to calculate the current density while maintaining charge conservation. Using the developed code, we performed test simulations for electron two-stream instability and electron temperature anisotropy induced instability with the same initial parameters as used in previously reported studies. The test simulation results are almost identical with those of the previous papers.
A multi-scale code for flexible hybrid simulations
Leukkunen, L; Lopez-Acevedo, O
2012-01-01
Multi-scale computer simulations combine the computationally efficient classical algorithms with more expensive but also more accurate ab-initio quantum mechanical algorithms. This work describes one implementation of multi-scale computations using the Atomistic Simulation Environment (ASE). This implementation can mix classical codes like LAMMPS and the Density Functional Theory-based GPAW. Any combination of codes linked via the ASE interface however can be mixed. We also introduce a framework to easily add classical force fields calculators for ASE using LAMMPS, which also allows harnessing the full performance of classical-only molecular dynamics. Our work makes it possible to combine different simulation codes, quantum mechanical or classical, with great ease and minimal coding effort.
Coded source imaging simulation with visible light
Wang, Sheng; Zou, Yubin; Zhang, Xueshuang; Lu, Yuanrong; Guo, Zhiyu
2011-09-01
A coded source could increase the neutron flux with high L/ D ratio. It may benefit a neutron imaging system with low yield neutron source. Visible light CSI experiments were carried out to test the physical design and reconstruction algorithm. We used a non-mosaic Modified Uniformly Redundant Array (MURA) mask to project the shadow of black/white samples on a screen. A cooled-CCD camera was used to record the image on the screen. Different mask sizes and amplification factors were tested. The correlation, Wiener filter deconvolution and Richardson-Lucy maximum likelihood iteration algorithm were employed to reconstruct the object imaging from the original projection. The results show that CSI can benefit the low flux neutron imaging with high background noise.
Computer simulation of complexity in plasmas
Energy Technology Data Exchange (ETDEWEB)
Hayashi, Takaya; Sato, Tetsuya [National Inst. for Fusion Science, Toki, Gifu (Japan)
1998-08-01
By making a comprehensive comparative study of many self-organizing phenomena occurring in magnetohydrodynamics and kinetic plasmas, we came up with a hypothetical grand view of self-organization. This assertion is confirmed by a recent computer simulation for a broader science field, specifically, the structure formation of short polymer chains, where the nature of the interaction is completely different from that of plasmas. It is found that the formation of the global orientation order proceeds stepwise. (author)
Muon simulation codes MUSIC and MUSUN for underground physics
Kudryavtsev, V A
2008-01-01
The paper describes two Monte Carlo codes dedicated to muon simulations: MUSIC (MUon SImulation Code) and MUSUN (MUon Simulations UNderground). MUSIC is a package for muon transport through matter. It is particularly useful for propagating muons through large thickness of rock or water, for instance from the surface down to underground/underwater laboratory. MUSUN is designed to use the results of muon transport through rock/water to generate muons in or around underground laboratory taking into account their energy spectrum and angular distribution.
Muon simulation codes MUSIC and MUSUN for underground physics
Kudryavtsev, V. A.
2009-03-01
The paper describes two Monte Carlo codes dedicated to muon simulations: MUSIC (MUon SImulation Code) and MUSUN (MUon Simulations UNderground). MUSIC is a package for muon transport through matter. It is particularly useful for propagating muons through large thickness of rock or water, for instance from the surface down to underground/underwater laboratory. MUSUN is designed to use the results of muon transport through rock/water to generate muons in or around underground laboratory taking into account their energy spectrum and angular distribution.
A Hybrid Model for Multiscale Laser Plasma Simulations with Detailed Collisional Physics
2017-06-23
account for all processes of the collisional cascade during the relaxation of a hot plasma. To this end, the focus was in the development of (a) a...Collisional Radiative operator was necessary to accurately account for all processes of the collisional cascade during the relaxation of a hot plasma. To this...important to note that this is a code-to- code comparison and the validation of these simulations is an area of active research in the non-local
Theory and Simulations of Solar System Plasmas
Goldstein, Melvyn L.
2011-01-01
"Theory and simulations of solar system plasmas" aims to highlight results from microscopic to global scales, achieved by theoretical investigations and numerical simulations of the plasma dynamics in the solar system. The theoretical approach must allow evidencing the universality of the phenomena being considered, whatever the region is where their role is studied; at the Sun, in the solar corona, in the interplanetary space or in planetary magnetospheres. All possible theoretical issues concerning plasma dynamics are welcome, especially those using numerical models and simulations, since these tools are mandatory whenever analytical treatments fail, in particular when complex nonlinear phenomena are at work. Comparative studies for ongoing missions like Cassini, Cluster, Demeter, Stereo, Wind, SDO, Hinode, as well as those preparing future missions and proposals, like, e.g., MMS and Solar Orbiter, are especially encouraged.
HADES, A Code for Simulating a Variety of Radiographic Techniques
Energy Technology Data Exchange (ETDEWEB)
Aufderheide, M B; Henderson, G; von Wittenau, A; Slone, D M; Barty, A; Martz, Jr., H E
2004-10-28
It is often useful to simulate radiographic images in order to optimize imaging trade-offs and to test tomographic techniques. HADES is a code that simulates radiography using ray tracing techniques. Although originally developed to simulate X-Ray transmission radiography, HADES has grown to simulate neutron radiography over a wide range of energy, proton radiography in the 1 MeV to 100 GeV range, and recently phase contrast radiography using X-Rays in the keV energy range. HADES can simulate parallel-ray or cone-beam radiography through a variety of mesh types, as well as through collections of geometric objects. HADES was originally developed for nondestructive evaluation (NDE) applications, but could be a useful tool for simulation of portal imaging, proton therapy imaging, and synchrotron studies of tissue. In this paper we describe HADES' current capabilities and discuss plans for a major revision of the code.
PLASMA ENERGETIC PARTICLES SIMULATION CENTER (PEPSC)
Energy Technology Data Exchange (ETDEWEB)
Berk, Herbert L.
2014-05-23
The main effort of the Texas group was to develop theoretical and simplified numerical models to understand chirping phenomena often seen for Alfven and geodesic acoustic waves in experimental plasmas such as D-III-D, NSTX and JET. Its main numerical effort was to modify the AEGIS code, which was originally developed as an eigenvalue solver. To apply to the chirping problem this code has to be able to treat the linear response to the continuum and the response of the plasma to external drive or to an internal drive that comes from the formation of phase space chirping structures. The theoretical underpinning of this investigation still needed to be more fully developed to understand how to best formulate the theoretical problem. Considerable progress was made on this front by B.N. Breizman and his collaborators and a new reduced model was developed by H. L. Berk and his PhD student, G. Wang which can be uses as simplified model to describe chirping in a large aspect ratio tokamak. This final report will concentrate on these two directions that were developed as well as results that were found in the work with the AEGIS code and in the progress in developing a novel quasi-linear formulation for a description of Alfvenic modes destabilized by energetic particles, such as alpha particles in a burning plasma.
L-PICOLA: Fast dark matter simulation code
Howlett, Cullan; Manera, Marc; Percival, Will J.
2015-07-01
L-PICOLA generates and evolves a set of initial conditions into a dark matter field and can include primordial non-Gaussianity in the simulation and simulate the past lightcone at run-time, with optional replication of the simulation volume. It is a fast, distributed-memory, planar-parallel code. L-PICOLA is extremely useful for both current and next generation large-scale structure surveys.
Modane: A Design Support Tool for Numerical Simulation Codes
Directory of Open Access Journals (Sweden)
Lelandais Benoît
2016-07-01
Full Text Available The continual increasing power of supercomputers allows numerical simulation codes to take into account more complex physical phenomena. Therefore, physicists and mathematicians have to implement complex algorithms using cutting edge technologies and integrate them in large simulators. The CEA-DAM has been studying for several years the contribution of UML/MDE technologies in its simulators development cycle. The Modane application is one of the results of this work.
Advanced thermohydraulic simulation code for pool-type LMFBRs (SSC-P code)
Energy Technology Data Exchange (ETDEWEB)
Madni, I.K.; Cazzoli, E.G.
1980-09-01
Models for components and processes that are needed for simulation of thermohydraulic transient in a pool-type liquid metal fast breeder reactor (LMFBR) plant are described in this report. A computer code, SSC-P, has been developed as a part of the Super System Code (SSC) development project. A user's manual is being prepared as a separate document. 27 refs., 26 figs., 1 tab.
Studies of the ECR plasma using the TrapCAD code
Energy Technology Data Exchange (ETDEWEB)
Maunoury, L; Pierret, C [CIMAP, av Henri Becquerel, BP 5133, F-14070 Caen cedex 05 (France); Biri, S [ATOMKI, Bem ter 18/c, H-4026 Debrecen (Hungary); Pacquet, J Y [GANIL, bd H. Becquerel BP 55027, F-14076 Caen cedex 05 (France)
2009-02-01
TrapCAD is a PC-code available for simulating both the lost and non-lost electrons moving inside an ECRIS (electron-cyclotron-resonance ion source) plasma. At GANIL and elsewhere, many types of ECRIS exist, and with this code it is possible to simulate the behaviour of the electrons within different plasma conditions and to make comparisons for a better understanding of the range of performance of these ion sources. Furthermore, studies of the spatial and energy evolution of the trapped electrons in a magnetic mirror configuration should provide more readily available information on the performance of ECR ion sources. This work has shown that reliable results can be obtained from such a simulation, especially for comparison purposes. Furthermore, each ion source can be characterized by qualitative values such as energy content or energy distribution of both the lost and non-lost electrons. In addition the results provide a method of finding the optimal frequency for a particular type of ECRIS and can also be useful for designing new ion sources.
Simulating plasma production from hypervelocity impacts
Energy Technology Data Exchange (ETDEWEB)
Fletcher, Alex, E-mail: alexcf@stanford.edu; Close, Sigrid [Stanford University, Aeronautics and Astronautics, 496 Lomita Mall, Stanford, California 94305 (United States); Mathias, Donovan [NASA Ames Research Center, Bldg. 258, Moffett Field, California 94035 (United States)
2015-09-15
Hypervelocity particles, such as meteoroids and space debris, routinely impact spacecraft and are energetic enough to vaporize and ionize themselves and as well as a portion of the target material. The resulting plasma rapidly expands into the surrounding vacuum. While plasma measurements from hypervelocity impacts have been made using ground-based technologies such as light gas guns and Van de Graaff dust accelerators, some of the basic plasma properties vary significantly between experiments. There have been both ground-based and in-situ measurements of radio frequency (RF) emission from hypervelocity impacts, but the physical mechanism responsible and the possible connection to the impact-produced plasma are not well understood. Under certain conditions, the impact-produced plasma can have deleterious effects on spacecraft electronics by providing a new current path, triggering an electrostatic discharge, causing electromagnetic interference, or generating an electromagnetic pulse. Multi-physics simulations of plasma production from hypervelocity impacts are presented. These simulations incorporate elasticity and plasticity of the solid target, phase change and plasma formation, and non-ideal plasma physics due to the high density and low temperature of the plasma. A smoothed particle hydrodynamics method is used to perform a continuum dynamics simulation with these additional physics. By examining a series of hypervelocity impacts, basic properties of the impact produced plasma plume (density, temperature, expansion speed, charge state) are determined for impactor speeds between 10 and 72 km/s. For a large range of higher impact speeds (30–72 km/s), we find the temperature is unvarying at 2.5 eV. We also find that the plasma plume is weakly ionized for impact speeds less than 14 km/s and fully ionized for impact speeds greater than 20 km/s, independent of impactor mass. This is the same velocity threshold for the detection of RF emission in recent
RAMSES-CH: A New Chemodynamical Code for Cosmological Simulations
Few, C. Gareth; Courty, Stephanie; Gibson, Brad K.; Kawata, Daisuke; Calura, Francesco; Teyssier, Romain
2012-01-01
We present a new chemodynamical code - Ramses-CH - for use in simulating the self-consistent evolution of chemical and hydrodynamical properties of galaxies within a fully cosmological framework. We build upon the adaptive mesh refinement code Ramses, which includes a treatment of self-gravity, hydrodynamics, star formation, radiative cooling, and supernovae feedback, to trace the dominant isotopes of C, N, O, Ne, Mg, Si, and Fe. We include the contribution of Type Ia and II supernovae, in ad...
RAMSES-CH: a new chemodynamical code for cosmological simulations
Few, C. G.; Courty, S.; Gibson, B. K.; Kawata, D; Calura, F.; Teyssier, R.
2012-01-01
We present a new chemodynamical code -RAMSES-CH- for use in simulating the self-consistent evolution of chemical and hydrodynamical properties of galaxies within a fully cosmological framework. We build upon the adaptive mesh refinement code RAMSES, which includes a treatment of self-gravity, hydrodynamics, star formation, radiative cooling and supernova feedback, to trace the dominant isotopes of C, N, O, Ne, Mg, Si and Fe. We include the contribution of Type Ia and Type II supernovae, in ad...
Plasma arc cutting technology: simulation and experiments
Energy Technology Data Exchange (ETDEWEB)
Cantoro, G; Colombo, V; Concetti, A; Ghedini, E; Sanibondi, P; Zinzani, F; Rotundo, F [Department of Mechanical Engineering (D.I.E.M.) and Research Center for Applied Mathematics (C.I.R.A.M.), Alma Mater Studiorum-Universita di Bologna, Via Saragozza 8, 40123 Bologna (Italy); Dallavalle, S; Vancini, M, E-mail: emanuele.ghedini@unibo.it [Cebora S.p.A., Via Andrea Costa 24, 40057 Cadriano di Granarolo (Italy)
2011-01-01
Transferred arc plasma torches are widely used in industrial processes for cutting of metallic materials because of their ability to cut a wide range of metals with very high productivity. The process is characterized by a transferred electric arc established between an electrode inside the torch (the cathode) and another electrode, the metallic workpiece to be cut (the anode). In order to obtain a high quality cut and a high productivity, the plasma jet must be as collimated as possible and must have the higher achievable power density. Plasma modelling and numerical simulation can be very useful tools for the designing and optimizing these devices, but research is still in the making for finding a link between simulation of the plasma arc and a consistent prevision of cut quality. Numerical modelling of the behaviour of different types of transferred arc dual gas plasma torches can give an insight on the physical reasons for the industrial success of various design and process solutions that have appeared over the last years. Diagnostics based on high speed imaging and Schlieren photography can play an important role for investigating piercing, dross generation, pilot arcing and anode attachment location. Also, the behaviour of hafnium cathodes at high current levels at the beginning of their service life can been experimentally investigated, with the final aim of understanding the phenomena that take place during those initial piercing and cutting phases and optimizing the initial shape of the surface of the emissive insert exposed to plasma atmosphere.
Nexus: A modular workflow management system for quantum simulation codes
Krogel, Jaron T.
2016-01-01
The management of simulation workflows represents a significant task for the individual computational researcher. Automation of the required tasks involved in simulation work can decrease the overall time to solution and reduce sources of human error. A new simulation workflow management system, Nexus, is presented to address these issues. Nexus is capable of automated job management on workstations and resources at several major supercomputing centers. Its modular design allows many quantum simulation codes to be supported within the same framework. Current support includes quantum Monte Carlo calculations with QMCPACK, density functional theory calculations with Quantum Espresso or VASP, and quantum chemical calculations with GAMESS. Users can compose workflows through a transparent, text-based interface, resembling the input file of a typical simulation code. A usage example is provided to illustrate the process.
Plasma Simulation in the Multiphysics Object Oriented Simulation Environment MOOSE
Shannon, Steven; Lindsay, Alex; Graves, David; Icenhour, Casey; Peterson, David; White, Scott
2016-09-01
MOOSE is an open source multiphysics solver developed by Idaho National Laboratory that is primarily used for the simulation of fission reactor systems; the framework is also well suited for the simulation of plasma systems given the development of appropriate modules not currently developed in the framework such as electromagnetic solvers, Boltzmann solvers, etc. It is structured for user development of application specific modules and is intended for both workstation level and high performance massively parallel environments. We have begun the development of plasma modules in the MOOSE environment and carried out preliminary simulation of the plasma/liquid interface to elucidate coupling mechanisms between these states using a fully coupled multiphysics model; these results agree well with PIC simulation of the same system and show strong response of plasma parameters with respect to electron reflection at the liquid surface. These results will be presented along with an overview of MOOSE and ongoing module development to extend capabilities to a broader set of research challenges in low temperature plasmas, with particular focus on RF and pulsed RF driven systems.
Energy Technology Data Exchange (ETDEWEB)
Medley, S. S. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Liu, D. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Univ. of California, Irvine, CA (United States). Dept. of Physics and Astronomy; Gorelenkova, M. V. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Heidbrink, W. W. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Univ. of California, Irvine, CA (United States). Dept. of Physics and Astronomy; Stagner, L. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Univ. of California, Irvine, CA (United States). Dept. of Physics and Astronomy
2016-01-12
A 3D halo neutral code developed at the Princeton Plasma Physics Laboratory and implemented for analysis using the TRANSP code is applied to projected National Spherical Torus eXperiment-Upgrade (NSTX-U plasmas). The legacy TRANSP code did not handle halo neutrals properly since they were distributed over the plasma volume rather than remaining in the vicinity of the neutral beam footprint as is actually the case. The 3D halo neutral code uses a 'beam-in-a-box' model that encompasses both injected beam neutrals and resulting halo neutrals. Upon deposition by charge exchange, a subset of the full, one-half and one-third beam energy components produce first generation halo neutrals that are tracked through successive generations until an ionization event occurs or the descendant halos exit the box. The 3D halo neutral model and neutral particle analyzer (NPA) simulator in the TRANSP code have been benchmarked with the Fast-Ion D-Alpha simulation (FIDAsim) code, which provides Monte Carlo simulations of beam neutral injection, attenuation, halo generation, halo spatial diffusion, and photoemission processes. When using the same atomic physics database, TRANSP and FIDAsim simulations achieve excellent agreement on the spatial profile and magnitude of beam and halo neutral densities and the NPA energy spectrum. The simulations show that the halo neutral density can be comparable to the beam neutral density. These halo neutrals can double the NPA flux, but they have minor effects on the NPA energy spectrum shape. The TRANSP and FIDAsim simulations also suggest that the magnitudes of beam and halo neutral densities are relatively sensitive to the choice of the atomic physics databases.
Medley, S. S.; Liu, D.; Gorelenkova, M. V.; Heidbrink, W. W.; Stagner, L.
2016-02-01
A 3D halo neutral code developed at the Princeton Plasma Physics Laboratory and implemented for analysis using the TRANSP code is applied to projected National Spherical Torus eXperiment-Upgrade (NSTX-U plasmas). The legacy TRANSP code did not handle halo neutrals properly since they were distributed over the plasma volume rather than remaining in the vicinity of the neutral beam footprint as is actually the case. The 3D halo neutral code uses a ‘beam-in-a-box’ model that encompasses both injected beam neutrals and resulting halo neutrals. Upon deposition by charge exchange, a subset of the full, one-half and one-third beam energy components produce first generation halo neutrals that are tracked through successive generations until an ionization event occurs or the descendant halos exit the box. The 3D halo neutral model and neutral particle analyzer (NPA) simulator in the TRANSP code have been benchmarked with the Fast-Ion D-Alpha simulation (FIDAsim) code, which provides Monte Carlo simulations of beam neutral injection, attenuation, halo generation, halo spatial diffusion, and photoemission processes. When using the same atomic physics database, TRANSP and FIDAsim simulations achieve excellent agreement on the spatial profile and magnitude of beam and halo neutral densities and the NPA energy spectrum. The simulations show that the halo neutral density can be comparable to the beam neutral density. These halo neutrals can double the NPA flux, but they have minor effects on the NPA energy spectrum shape. The TRANSP and FIDAsim simulations also suggest that the magnitudes of beam and halo neutral densities are relatively sensitive to the choice of the atomic physics databases.
Monte Carlo simulations of ionization potential depression in dense plasmas
Energy Technology Data Exchange (ETDEWEB)
Stransky, M., E-mail: stransky@fzu.cz [Department of Radiation and Chemical Physics, Institute of Physics ASCR, Na Slovance 2, 182 21 Prague 8 (Czech Republic)
2016-01-15
A particle-particle grand canonical Monte Carlo model with Coulomb pair potential interaction was used to simulate modification of ionization potentials by electrostatic microfields. The Barnes-Hut tree algorithm [J. Barnes and P. Hut, Nature 324, 446 (1986)] was used to speed up calculations of electric potential. Atomic levels were approximated to be independent of the microfields as was assumed in the original paper by Ecker and Kröll [Phys. Fluids 6, 62 (1963)]; however, the available levels were limited by the corresponding mean inter-particle distance. The code was tested on hydrogen and dense aluminum plasmas. The amount of depression was up to 50% higher in the Debye-Hückel regime for hydrogen plasmas, in the high density limit, reasonable agreement was found with the Ecker-Kröll model for hydrogen plasmas and with the Stewart-Pyatt model [J. Stewart and K. Pyatt, Jr., Astrophys. J. 144, 1203 (1966)] for aluminum plasmas. Our 3D code is an improvement over the spherically symmetric simplifications of the Ecker-Kröll and Stewart-Pyatt models and is also not limited to high atomic numbers as is the underlying Thomas-Fermi model used in the Stewart-Pyatt model.
Coupled neoclassical-magnetohydrodynamic simulations of axisymmetric plasmas
Lyons, Brendan C.
2014-10-01
Neoclassical effects (e.g., the bootstrap current and neoclassical toroidal viscosity [NTV]) have a profound impact on many magnetohydrodynamic (MHD) instabilities, including tearing modes, edge-localized modes (ELMs), and resistive wall modes. High-fidelity simulations of such phenomena require a multiphysics code that self-consistently couples the kinetic and fluid models. We present the first results of the DK4D code, a dynamic drift-kinetic equation (DKE) solver being developed for this application. In this study, DK4D solves a set of time-dependent, axisymmetric DKEs for the non-Maxwellian part of the electron and ion distribution functions (fNM) with linearized Fokker-Planck-Landau collision operators. The plasma is formally assumed to be in the low- to finite-collisionality regimes. The form of the DKEs used were derived in a Chapman-Enskog-like fashion, ensuring that fNM carries no density, momentum, or temperature. Rather, these quantities are contained within the background Maxwellian and are evolved by an appropriate set of extended MHD equations. We will discuss computational methods used and benchmarks to other neoclassical models and codes. Furthermore, DK4D has been coupled to a reduced, transport-timescale MHD code, allowing for self-consistent simulations of the dynamic formation of the ohmic and bootstrap currents. Several applications of this hybrid code will be presented, including an ELM-like pressure collapse. We will also discuss plans for coupling to the spatially three-dimensional, extended MHD code M3D-C1 and generalizing to nonaxisymmetric geometries, with the goal of performing self-consistent hybrid simulations of tokamak instabilities and calculations of NTV torque. This work supported by the U.S. Department of Energy (DOE) under Grant Numbers DE-FC02-08ER54969 and DE-AC02-09CH11466.
Stereoscopic Visualization of Plasma Simulation Data
Jones, Samuel; Cardenas, Rosa; Kim, Charlson; Parker, Scott
2000-10-01
Large-scale three-dimensional simulation of realistic fusion and space plasmas generates massive amounts of raw numerical data. Scientific visualization is an important tool in the analysis of this data. Stereoscopic projection is a visualization technique allowing data to be presented spacialy with visual separation clues to indicate the relative depth of the data. This allows researchers to be able to see three-dimensional structures that are not easily shown in purely two-dimensional representations. We have implemented a low cost stereo projection system running from a linux based intel cluster. This system is used to display images created with the visualization package IBM Open Data Explorer (Open-DX). We will present results of our use of this technology in the study of various plasma phenomenon including the complex spacial nature of magnetic fields embedded in simulated spheromak plasma.
Spectral Methods in Numerical Plasma Simulation
DEFF Research Database (Denmark)
Coutsias, E.A.; Hansen, F.R.; Huld, T.;
1989-01-01
An introduction is given to the use of spectral methods in numerical plasma simulation. As examples of the use of spectral methods, solutions to the two-dimensional Euler equations in both a simple, doubly periodic region, and on an annulus will be shown. In the first case, the solution is expanded...
Hermes: Global plasma edge fluid turbulence simulations
Dudson, Ben
2016-01-01
The transport of heat and particles in the relatively collisional edge regions of magnetically confined plasmas is a scientifically challenging and technologically important problem. Understanding and predicting this transport requires the self-consistent evolution of plasma fluctuations, global profiles and flows, but the numerical tools capable of doing this in realistic (diverted) geometry are only now being developed. Here a 5-field reduced 2-fluid plasma model for the study of instabilities and turbulence in magnetised plasmas is presented, built on the BOUT++ framework. This cold ion model allows the evolution of global profiles, electric fields and flows on transport timescales, with flux-driven cross-field transport determined self-consistently by electromagnetic turbulence. Developments in the model formulation and numerical implementation are described, and simulations are performed in poloidally limited and diverted tokamak configurations.
Overview of HiFi -- implicit spectral element code framework for multi-fluid plasma applications
Lukin, Vyacheslav S; Lowrie, Weston; Meier, Eric T
2016-01-01
An overview of the algorithm and a sampling of plasma applications of the implicit, adaptive high order finite (spectral) element modeling framework, HiFi, is presented. The distinguishing capabilities of the HiFi code include adaptive spectral element spatial representation with flexible geometry, highly parallelizable implicit time advance, and general flux-source form of the partial differential equations and boundary conditions that can be implemented in its framework. Early algorithm development and extensive verification studies of the two-dimensional version of the code, known as SEL, have been previously described [A.H. Glasser & X.Z. Tang, Comp. Phys. Comm., 164 (2004); V.S. Lukin, Ph.D. thesis, Princeton University (2008)]. Here, substantial algorithmic improvements and extensions are presented together with examples of two- and three- dimensional applications of the HiFi framework. These include a Cartesian two-dimensional incompressible magnetohydrodynamic simulation of low dissipation magneti...
Simulating Magnetic Reconnection Experiment (MRX) with a Guide Field using Fluid Code, HiFi
Budner, Tamas; Chen, Yangao; Meier, Eric; Ji, Hantao; MRX Team
2015-11-01
Magnetic reconnection is a phenomenon that occurs in plasmas when magnetic field lines effectively ``break'' and reconnect resulting in a different topological configuration. In this process, energy that was once stored in the magnetic field is transfered into the thermal velocity of the particles, effectively heating the plasma. MRX at the Princeton Plasma Physics Laboratory creates the conditions under which reconnection can occur by initially ramping the current in two adjacent coils and then rapidly decreasing with and without a guide magnetic field along the reconnecting current. We simulate this experiment using a fluid code called HiFi, an implicit and adaptive high order spectral element modeling framework, and compare our results to experimental data from MRX. The purpose is to identify physics behind the observed reconnection process for the field line break and the resultant plasma heating.
Plasma environment of Titan: a 3-D hybrid simulation study
Directory of Open Access Journals (Sweden)
S. Simon
2006-05-01
Full Text Available Titan possesses a dense atmosphere, consisting mainly of molecular nitrogen. Titan's orbit is located within the Saturnian magnetosphere most of the time, where the corotating plasma flow is super-Alfvénic, yet subsonic and submagnetosonic. Since Titan does not possess a significant intrinsic magnetic field, the incident plasma interacts directly with the atmosphere and ionosphere. Due to the characteristic length scales of the interaction region being comparable to the ion gyroradii in the vicinity of Titan, magnetohydrodynamic models can only offer a rough description of Titan's interaction with the corotating magnetospheric plasma flow. For this reason, Titan's plasma environment has been studied by using a 3-D hybrid simulation code, treating the electrons as a massless, charge-neutralizing fluid, whereas a completely kinetic approach is used to cover ion dynamics. The calculations are performed on a curvilinear simulation grid which is adapted to the spherical geometry of the obstacle. In the model, Titan's dayside ionosphere is mainly generated by solar UV radiation; hence, the local ion production rate depends on the solar zenith angle. Because the Titan interaction features the possibility of having the densest ionosphere located on a face not aligned with the ram flow of the magnetospheric plasma, a variety of different scenarios can be studied. The simulations show the formation of a strong magnetic draping pattern and an extended pick-up region, being highly asymmetric with respect to the direction of the convective electric field. In general, the mechanism giving rise to these structures exhibits similarities to the interaction of the ionospheres of Mars and Venus with the supersonic solar wind. The simulation results are in agreement with data from recent Cassini flybys.
Hybrid Simulations of Pluto's Plasma Interaction
Feyerabend, M.; Simon, S.; Motschmann, U.; Liuzzo, L.
2016-12-01
We study the interaction between Pluto and the solar wind at the time of the New Horizons (NH) flyby by applying a hybrid (kinetic ions, fluid electrons) simulation model. The use of a hybrid model is necessary since the gyroradii of the involved ion species are more than an order of magnitude larger than the obstacle to the solar wind and thus, Pluto's interaction region displays considerable asymmetries. We investigate the three-dimensional structure and extension of the various plasma signatures seen along the NH trajectory. Especially, we will constrain possible asymmetries in the shape of Pluto's bow shock, plasma tail and Plutopause (i.e., the boundary between the solar wind and the population of plutogenic ions) which may arise from the large ion gyroradii. Starting from the upstream solar wind parameters measured by NH, we investigate the dependency of these plasma signatures on the density of Pluto's ionosphere and on the solar wind ram pressure. We also include Pluto's largest moon Charon into the simulation model and study the simultaneous interaction between both bodies and the solar wind. Data from NH suggest that Charon mainly acts as a plasma absorber without an appreciable atmosphere. For various relative positions of Pluto and Charon, we investigate the deformation of Charon's wake when exposed to the inhomogeneous plasma flow in the Pluto interaction region, as well as a possible feedback of Charon on the structure of Pluto's induced magnetosphere.
Magnetized laboratory plasma jets: Experiment and simulation
Schrafel, Peter; Bell, Kate; Greenly, John; Seyler, Charles; Kusse, Bruce
2015-01-01
Experiments involving radial foils on a 1 M A , 100 n s current driver can be used to study the ablation of thin foils and liners, produce extreme conditions relevant to laboratory astrophysics, and aid in computational code validation. This research focuses on the initial ablation phase of a 20 μ m Al foil (8111 alloy), in a radial configuration, driven by Cornell University's COBRA pulsed power generator. In these experiments ablated surface plasma (ASP) on the top side of the foil and a strongly collimated axial plasma jet are observed developing midway through the current rise. With experimental and computational results this work gives a detailed description of the role of the ASP in the formation of the plasma jet with and without an applied axial magnetic field. This ˜1 T field is applied by a Helmholtz-coil pair driven by a slow, 150 μ s current pulse and penetrates the load hardware before arrival of the COBRA pulse. Several effects of the applied magnetic field are observed: (1) without the field extreme-ultraviolet emission from the ASP shows considerable azimuthal asymmetry while with the field the ASP develops azimuthal motion that reduces this asymmetry, (2) this azimuthal motion slows the development of the jet when the field is applied, and (3) with the magnetic field the jet becomes less collimated and has a density minimum (hollowing) on the axis. PERSEUS, an XMHD code, has qualitatively and quantitatively reproduced all these experimental observations. The differences between this XMHD and an MHD code without a Hall current and inertial effects are discussed. In addition the PERSEUS results describe effects we were not able to resolve experimentally and suggest a line of future experiments with better diagnostics.
Maestro and Castro: Simulation Codes for Astrophysical Flows
Zingale, Michael; Almgren, Ann; Beckner, Vince; Bell, John; Friesen, Brian; Jacobs, Adam; Katz, Maximilian P.; Malone, Christopher; Nonaka, Andrew; Zhang, Weiqun
2017-01-01
Stellar explosions are multiphysics problems—modeling them requires the coordinated input of gravity solvers, reaction networks, radiation transport, and hydrodynamics together with microphysics recipes to describe the physics of matter under extreme conditions. Furthermore, these models involve following a wide range of spatial and temporal scales, which puts tough demands on simulation codes. We developed the codes Maestro and Castro to meet the computational challenges of these problems. Maestro uses a low Mach number formulation of the hydrodynamics to efficiently model convection. Castro solves the fully compressible radiation hydrodynamics equations to capture the explosive phases of stellar phenomena. Both codes are built upon the BoxLib adaptive mesh refinement library, which prepares them for next-generation exascale computers. Common microphysics shared between the codes allows us to transfer a problem from the low Mach number regime in Maestro to the explosive regime in Castro. Importantly, both codes are freely available (https://github.com/BoxLib-Codes). We will describe the design of the codes and some of their science applications, as well as future development directions.Support for development was provided by NSF award AST-1211563 and DOE/Office of Nuclear Physics grant DE-FG02-87ER40317 to Stony Brook and by the Applied Mathematics Program of the DOE Office of Advance Scientific Computing Research under US DOE contract DE-AC02-05CH11231 to LBNL.
Simulations for Plasma and Laser Acceleration
Vay, Jean-Luc; Lehe, Rémi
Computer simulations have had a profound impact on the design and understanding of past and present plasma acceleration experiments, and will be a key component for turning plasma accelerators from a promising technology into a mainstream scientific tool. In this article, we present an overview of the numerical techniques used with the most popular approaches to model plasma-based accelerators: electromagnetic particle-in-cell, quasistatic and ponderomotive guiding center. The material that is presented is intended to serve as an introduction to the basics of those approaches, and to advances (some of them very recent) that have pushed the state of the art, such as the optimal Lorentz-boosted frame, advanced laser envelope solvers and the elimination of numerical Cherenkov instability. The particle-in-cell method, which has broader interest and is more standardized, is presented in more depth. Additional topics that are cross-cutting, such as azimuthal Fourier decomposition or filtering, are also discussed, as well as potential challenges and remedies in the initialization of simulations and output of data. Examples of simulations using the techniques that are presented have been left out of this article for conciseness, and because simulation results are best understood when presented together, and contrasted with theoretical and/or experimental results, as in other articles of this volume.
A 5D gyrokinetic full- f global semi-Lagrangian code for flux-driven ion turbulence simulations
Grandgirard, V.; Abiteboul, J.; Bigot, J.; Cartier-Michaud, T.; Crouseilles, N.; Dif-Pradalier, G.; Ehrlacher, Ch.; Esteve, D.; Garbet, X.; Ghendrih, Ph.; Latu, G.; Mehrenberger, M.; Norscini, C.; Passeron, Ch.; Rozar, F.; Sarazin, Y.; Sonnendrücker, E.; Strugarek, A.; Zarzoso, D.
2016-10-01
This paper addresses non-linear gyrokinetic simulations of ion temperature gradient (ITG) turbulence in tokamak plasmas. The electrostatic GYSELA code is one of the few international 5D gyrokinetic codes able to perform global, full- f and flux-driven simulations. Its has also the numerical originality of being based on a semi-Lagrangian (SL) method. This reference paper for the GYSELA code presents a complete description of its multi-ion species version including: (i) numerical scheme, (ii) high level of parallelism up to 500k cores and (iii) conservation law properties.
Energy Technology Data Exchange (ETDEWEB)
Birdsall, C.K.
1989-12-31
This is a brief progress report, covering our research in general plasma theory and simulation, plasma-wall physics theory and simulation, and code development. Reports written in this period are included with this mailing. A publications list plus abstracts for two major meetings are included.
The Integrated Plasma Simulator: A Flexible Python Framework for Coupled Multiphysics Simulation
Energy Technology Data Exchange (ETDEWEB)
Foley, Samantha S [ORNL; Elwasif, Wael R [ORNL; Bernholdt, David E [ORNL
2011-11-01
High-fidelity coupled multiphysics simulations are an increasingly important aspect of computational science. In many domains, however, there has been very limited experience with simulations of this sort, therefore research in coupled multiphysics often requires computational frameworks with significant flexibility to respond to the changing directions of the physics and mathematics. This paper presents the Integrated Plasma Simulator (IPS), a framework designed for loosely coupled simulations of fusion plasmas. The IPS provides users with a simple component architecture into which a wide range of existing plasma physics codes can be inserted as components. Simulations can take advantage of multiple levels of parallelism supported in the IPS, and can be controlled by a high-level ``driver'' component, or by other coordination mechanisms, such as an asynchronous event service. We describe the requirements and design of the framework, and how they were implemented in the Python language. We also illustrate the flexibility of the framework by providing examples of different types of simulations that utilize various features of the IPS.
Simulation of beam-induced plasma for the mitigation of beam-beam effects
Energy Technology Data Exchange (ETDEWEB)
Ma, J.; Wang, G.; Samulyak, R.; Yu, K.; Litvinenko, V.
2015-05-03
One of the main challenges in the increase of luminosity of circular colliders is the control of the beam-beam effect. In the process of exploring beam-beam mitigation methods using plasma, we evaluated the possibility of plasma generation via ionization of neutral gas by proton beams, and performed highly resolved simulations of the beam-plasma interaction using SPACE, a 3D electromagnetic particle-in-cell code. The process of plasma generation is modelled using experimentally measured cross-section coefficients and a plasma recombination model that takes into account the presence of neutral gas and beam-induced electromagnetic fields. Numerically simulated plasma oscillations are consistent with theoretical analysis. In the beam-plasma interaction process, high-density neutral gas reduces the mean free path of plasma electrons and their acceleration. A numerical model for the drift speed as a limit of plasma electron velocity was developed. Simulations demonstrate a significant reduction of the beam electric field in the presence of plasma. Preliminary simulations using fully-ionized plasma have also been performed and compared with the case of beam-induced plasma.
3D MHD disruptions simulations of tokamaks plasmas
Paccagnella, Roberto; Strauss, Hank; Breslau, Joshua
2008-11-01
Tokamaks Vertical Displacement Events (VDEs) and disruptions simulations in toroidal geometry by means of a single fluid visco-resistive magneto-hydro-dynamic (MHD) model are presented in this paper. The plasma model, implemented in the M3D code [1], is completed with the presence of a 2D homogeneous wall with finite resistivity. This allows the study of the relatively slowly growing magneto-hydro-dynamical perturbation, the resistive wall mode (RWM), which is, in this work, the main drive of the disruptions. Amplitudes and asymmetries of the halo currents pattern at the wall are also calculated and comparisons with tokamak experimental databases and predictions for ITER are given. [1] W. Park, E.V. Belova, G.Y. Fu, X.Z. Tang, H.R. Strauss, L.E. Sugiyama, Phys. Plasmas 6 (1999) 1796.
2D Implosion Simulations with a Kinetic Particle Code
Sagert, Irina; Strother, Terrance T
2016-01-01
We perform two-dimensional (2D) implosion simulations using a Monte Carlo kinetic particle code. The paper is motivated by the importance of non-equilibrium effects in inertial confinement fusion (ICF) capsule implosions. These cannot be fully captured by hydrodynamic simulations while kinetic methods, as the one presented in this study, are able to describe continuum and rarefied regimes within one approach. In the past, our code has been verified via traditional shock wave and fluid instability simulations. In the present work, we focus on setups that are closer to applications in ICF. We perform simple 2D disk implosion simulations using one particle species. The obtained results are compared to simulations using the hydrodynamics code RAGE. In a first study, the implosions are powered by energy deposition in the outer layers of the disk. We test the impact of the particle mean-free-path and find that while the width of the implosion shock broadens, its location as a function of time remains very similar. ...
MHD simulations of Plasma Jets and Plasma-surface interactions in Coaxial Plasma Accelerators
Subramaniam, Vivek; Raja, Laxminarayan
2016-10-01
Coaxial plasma accelerators belong to a class of electromagnetic acceleration devices which utilize a self-induced Lorentz force to accelerate magnetized thermal plasma to large velocities ( 40 Km/s). The plasma jet generated as a result, due to its high energy density, can be used to mimic the plasma-surface interactions at the walls of thermonuclear fusion reactors during an Edge Localized Mode (ELM) disruption event. We present the development of a Magnetohydrodynamics (MHD) simulation tool to describe the plasma acceleration and jet formation processes in coaxial plasma accelerators. The MHD model is used to study the plasma-surface impact interaction generated by the impingement of the jet on a target material plate. The study will characterize the extreme conditions generated on the target material surface by resolving the magnetized shock boundary layer interaction and the viscous/thermal diffusion effects. Additionally, since the plasma accelerator is operated in vacuum conditions, a novel plasma-vacuum interface tracking algorithm is developed to simulate the expansion of the high density plasma into a vacuum background in a physically consistent manner.
Computed radiography simulation using the Monte Carlo code MCNPX
Energy Technology Data Exchange (ETDEWEB)
Correa, S.C.A. [Programa de Engenharia Nuclear/COPPE, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970, Rio de Janeiro, RJ (Brazil); Centro Universitario Estadual da Zona Oeste (CCMAT)/UEZO, Av. Manuel Caldeira de Alvarenga, 1203, Campo Grande, 23070-200, Rio de Janeiro, RJ (Brazil); Souza, E.M. [Programa de Engenharia Nuclear/COPPE, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970, Rio de Janeiro, RJ (Brazil); Silva, A.X., E-mail: ademir@con.ufrj.b [PEN/COPPE-DNC/Poli CT, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970, Rio de Janeiro, RJ (Brazil); Cassiano, D.H. [Instituto de Radioprotecao e Dosimetria/CNEN Av. Salvador Allende, s/n, Recreio, 22780-160, Rio de Janeiro, RJ (Brazil); Lopes, R.T. [Programa de Engenharia Nuclear/COPPE, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970, Rio de Janeiro, RJ (Brazil)
2010-09-15
Simulating X-ray images has been of great interest in recent years as it makes possible an analysis of how X-ray images are affected owing to relevant operating parameters. In this paper, a procedure for simulating computed radiographic images using the Monte Carlo code MCNPX is proposed. The sensitivity curve of the BaFBr image plate detector as well as the characteristic noise of a 16-bit computed radiography system were considered during the methodology's development. The results obtained confirm that the proposed procedure for simulating computed radiographic images is satisfactory, as it allows obtaining results comparable with experimental data.
Enhanced Verification Test Suite for Physics Simulation Codes
Energy Technology Data Exchange (ETDEWEB)
Kamm, J R; Brock, J S; Brandon, S T; Cotrell, D L; Johnson, B; Knupp, P; Rider, W; Trucano, T; Weirs, V G
2008-10-10
This document discusses problems with which to augment, in quantity and in quality, the existing tri-laboratory suite of verification problems used by Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), and Sandia National Laboratories (SNL). The purpose of verification analysis is demonstrate whether the numerical results of the discretization algorithms in physics and engineering simulation codes provide correct solutions of the corresponding continuum equations. The key points of this document are: (1) Verification deals with mathematical correctness of the numerical algorithms in a code, while validation deals with physical correctness of a simulation in a regime of interest. This document is about verification. (2) The current seven-problem Tri-Laboratory Verification Test Suite, which has been used for approximately five years at the DOE WP laboratories, is limited. (3) Both the methodology for and technology used in verification analysis have evolved and been improved since the original test suite was proposed. (4) The proposed test problems are in three basic areas: (a) Hydrodynamics; (b) Transport processes; and (c) Dynamic strength-of-materials. (5) For several of the proposed problems we provide a 'strong sense verification benchmark', consisting of (i) a clear mathematical statement of the problem with sufficient information to run a computer simulation, (ii) an explanation of how the code result and benchmark solution are to be evaluated, and (iii) a description of the acceptance criterion for simulation code results. (6) It is proposed that the set of verification test problems with which any particular code be evaluated include some of the problems described in this document. Analysis of the proposed verification test problems constitutes part of a necessary--but not sufficient--step that builds confidence in physics and engineering simulation codes. More complicated test cases, including physics models of
Simulations of Plasma-Liner Formation and Implosion for the PLX- α Project
Samulyak, Roman; Cassibry, Jason; Schillo, Kevin; Shih, Wen; Yates, Kevin; Hsu, Scott; PLX-Alpha Collaboration
2016-10-01
Detailed numerical studies of the propagation and merger of high-Mach-number plasma jets and the formation and implosion of plasma liners have been performed using the FronTier and SPH codes enhanced with radiation, physical diffusion, and plasma-EOS models. These simulations support the Plasma Liner Experiment-ALPHA (PLX- α) project (see S. Hsu's talk in this session). Simulations predict properties of plasma liners, in particular 4 π-averaged liner density, ram pressure, and Mach number, the degree of non-uniformity, strength of primary and secondary shock waves, and scalings with the number of plasma jets, initial jet parameters, and other input data. In addition to direct analysis of liner states, simulations also provide synthetic data for direct comparison to experimental data from a multi-chord interferometer and survey and high-resolution spectrometers. Code verification and comparisons as well as predictions for the first series of PLX- α experiments with 6 and 7 jets will be presented. Verified against experimental data, both codes will be used for predictive simulations of plasma liners for PLX- α experiments and potential scaled-up future experiments. Supported by the ARPA-E ALPHA program.
A Systematic Look at Code Performance and System Simulation
Directory of Open Access Journals (Sweden)
G.Srikanth
2014-06-01
Full Text Available The most standard method in improvise a system’s efficiency in Digital communication is channel coding but this methods is not been able to extend its features for high speed links. Growing demands in network speeds are placing a large burden on the energy efficiency of high-speed links and render the benefit of channel coding for these systems a timely subject. The low error rates of interest and the presence of residual inter-symbol interference (ISI caused by hardware constraints impede the analysis and simulation of coded high-speed links. Focusing on the residual ISI and collective noise as the dominant error mechanisms, this paper analyzes error correlation through concepts of error region, channel signature, and correlation distance. This framework provides a deeper insight into joint error behaviors in high-speed links, extends the range of statistical simulation for coded high-speed links, and provides a case against the use of biased Monte Carlo methods in this setting. Finally, based on a hardware test bed, the performance of standard binary forward error correction and error detection schemes is evaluated, from which recommendations on coding for high-speed links are derived. Keywords:
Molecular dynamics simulations of magnetized dusty plasmas
Piel, Alexander; Reichstein, Torben; Wilms, Jochen
2012-10-01
The combination of the electric field that confines a dust cloud with a static magnetic field generally leads to a rotation of the dust cloud. In weak magnetic fields, the Hall component of the ion flow exerts a drag force that sets the dust in rotation. We have performed detailed molecular-dynamics simulations of the dynamics of torus-shaped dust clouds in anodic plasmas. The stationary flow [1] is characterized by a shell structure in the laminar dust flow and by the spontaneous formation of a shear-flow around a stationary vortex. Here we present new results on dynamic phenomena, among them fluctuations due to a Kelvin-Helmholtz instability in the shear-flow. The simulations are compared with experimental results. [4pt] [1] T. Reichstein, A. Piel, Phys. Plasmas 18, 083705 (2011)
Accelerated simulation methods for plasma kinetics
Caflisch, Russel
2016-11-01
Collisional kinetics is a multiscale phenomenon due to the disparity between the continuum (fluid) and the collisional (particle) length scales. This paper describes a class of simulation methods for gases and plasmas, and acceleration techniques for improving their speed and accuracy. Starting from the Landau-Fokker-Planck equation for plasmas, the focus will be on a binary collision model that is solved using a Direct Simulation Monte Carlo (DSMC) method. Acceleration of this method is achieved by coupling the particle method to a continuum fluid description. The velocity distribution function f is represented as a combination of a Maxwellian M (the thermal component) and a set of discrete particles fp (the kinetic component). For systems that are close to (local) equilibrium, this reduces the number N of simulated particles that are required to represent f for a given level of accuracy. We present two methods for exploiting this representation. In the first method, equilibration of particles in fp, as well as disequilibration of particles from M, due to the collision process, is represented by a thermalization/dethermalization step that employs an entropy criterion. Efficiency of the representation is greatly increased by inclusion of particles with negative weights. This significantly complicates the simulation, but the second method is a tractable approach for negatively weighted particles. The accelerated simulation method is compared with standard PIC-DSMC method for both spatially homogeneous problems such as a bump-on-tail and inhomogeneous problems such as nonlinear Landau damping.
Discrete photon implementation for plasma simulations
Energy Technology Data Exchange (ETDEWEB)
Fierro, Andrew, E-mail: andrew.s.fierro@ieee.org; Stephens, Jacob; Beeson, Sterling; Dickens, James; Neuber, Andreas [Center for Pulsed Power and Power Electronics, Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409 (United States)
2016-01-15
The self-produced light emission from pulsed plasma discharges and its impact on plasma development are challenging to characterize through simulation and modeling, chiefly due to the large number of radiating species and limited computer memory. Often, photo-processes, such as photo-ionization or photo-emission of electrons, are implemented through over-simplifying approximations or neglected altogether. Here, a method applicable to plasma simulations is implemented in a Particle-in-Cell /Monte Carlo Collision model, which is capable of discretely tracking photons and their corresponding wavelengths. Combined with the appropriate cross sections or quantum yields, a wavelength dependent model for photo-ionization or photo-emission may be implemented. Additionally, by resolving the wavelengths of each photon, an emission spectrum for a region of interest may be generated. Simulations for a pure nitrogen environment reveal that the calculated emission profile of the second positive system agrees well with the experimental spectrum of a pulsed, nanosecond discharge in the same spectral region.
Relativistic Klystron Two-Beam Accelerator Simulation Code Development
Lidia, Steven; Ryne, Robert
1997-05-01
We present recent work on the development and testing of a 3-D simu- lation code for relativistic klystron two-beam accelerators (RK-TBAs). This new code utilizes symplectic integration techniques to push macro- particles, coupled to a circuit equation framework that advances the fields in the cavities. Space charge effects are calculated using a Green's function approach, and pipe wall effects are included in the electrostatic approximation. We present simulations of the LBNL/LLNL RK-TBA device, emphasizing cavity power development and beam dynamics, including the high- and low-frequency beam break-up instabilities.
Evaluation of the Aleph PIC Code on Benchmark Simulations
Boerner, Jeremiah; Pacheco, Jose; Grillet, Anne
2016-09-01
Aleph is a massively parallel, 3D unstructured mesh, Particle-in-Cell (PIC) code, developed to model low temperature plasma applications. In order to verify and validate performance, Aleph is benchmarked against a series of canonical problems to demonstrate statistical indistinguishability in the results. Here, a series of four problems is studied: Couette flows over a range of Knudsen number, sheath formation in an undriven plasma, the two-stream instability, and a capacitive discharge. These problems respectively exercise collisional processes, particle motion in electrostatic fields, electrostatic field solves coupled to particle motion, and a fully coupled reacting plasma. Favorable comparison with accepted results establishes confidence in Aleph's capability and accuracy as a general purpose PIC code. Finally, Aleph is used to investigate the sensitivity of a triggered vacuum gap switch to the particle injection conditions associated with arc breakdown at the trigger. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Simulation of current generation in a 3-D plasma model
Energy Technology Data Exchange (ETDEWEB)
Tsung, F.S.; Dawson, J.M. [Univ. of California, Los Angeles, CA (United States)
1996-12-31
Two wires carrying current in the same direction will attract each other, and two wires carrying current in the opposite direction will repel each other. Now, consider a test charge in a plasma. If the test charge carries current parallel to the plasma, then it will be pulled toward the plasma core, and if the test charge carries current anti-parallel to the plasma, then it will be pushed to the edge. The electromagnetic coupling between the plasma and a test charge (i.e., the A{sub {parallel}} {circ} v{sub {parallel}} term in the test charge`s Hamiltonian) breaks the symmetry in the parallel direction, and gives rise to a diffusion coefficient which is dependent on the particle`s parallel velocity. This is the basis for the {open_quotes}preferential loss{close_quotes} mechanism described in the work by Nunan et al. In our previous 2+{1/2}D work, in both cylindrical and toroidal geometries, showed that if the plasma column is centrally fueled, then an initial current increases steadily. The results in straight, cylindrical plasmas showed that self generated parallel current arises without trapped particle or neoclassical diffusion, as assumed by the bootstrap theory. It suggests that the fundamental mechanism seems to be the conservation of particles canonical momenta in the direction of the ignorable coordinate. We have extended the simulation to 3D to verify the model put forth. A scalable 3D EM-PIC code, with a localized field-solver, has been implemented to run on a large class of parallel computers. On the 512-node SP2 at Cornell Theory Center, we have benchmarked the 2+{1/2}D calculations using 32 grids in the previously ignored direction, and a 100-fold increase in the number of particles. Our preliminary results show good agreements between the 2+{1/2}D and the 3D calculations. We will present our 3D results at the meeting.
Magnetic Null Points in Kinetic Simulations of Space Plasmas
Olshevsky, Vyacheslav; Deca, Jan; Divin, Andrey; Peng, Ivy Bo; Markidis, Stefano; Innocenti, Maria Elena; Cazzola, Emanuele; Lapenta, Giovanni
2016-03-01
We present a systematic attempt to study magnetic null points and the associated magnetic energy conversion in kinetic particle-in-cell simulations of various plasma configurations. We address three-dimensional simulations performed with the semi-implicit kinetic electromagnetic code iPic3D in different setups: variations of a Harris current sheet, dipolar and quadrupolar magnetospheres interacting with the solar wind, and a relaxing turbulent configuration with multiple null points. Spiral nulls are more likely created in space plasmas: in all our simulations except lunar magnetic anomaly (LMA) and quadrupolar mini-magnetosphere the number of spiral nulls prevails over the number of radial nulls by a factor of 3-9. We show that often magnetic nulls do not indicate the regions of intensive energy dissipation. Energy dissipation events caused by topological bifurcations at radial nulls are rather rare and short-lived. The so-called X-lines formed by the radial nulls in the Harris current sheet and LMA simulations are rather stable and do not exhibit any energy dissipation. Energy dissipation is more powerful in the vicinity of spiral nulls enclosed by magnetic flux ropes with strong currents at their axes (their cross sections resemble 2D magnetic islands). These null lines reminiscent of Z-pinches efficiently dissipate magnetic energy due to secondary instabilities such as the two-stream or kinking instability, accompanied by changes in magnetic topology. Current enhancements accompanied by spiral nulls may signal magnetic energy conversion sites in the observational data.
Scientific codes developed and used at GRS. Nuclear simulation chain
Energy Technology Data Exchange (ETDEWEB)
Schaffrath, Andreas; Sonnenkalb, Martin; Sievers, Juergen; Luther, Wolfgang; Velkov, Kiril [Gesellschaft fuer Anlagen und Reaktorsicherheit (GRS) gGmbH, Garching/Muenchen (Germany). Forschungszentrum
2016-05-15
Over 60 technical experts of the reactor safety research division of the Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH are developing and validating reliable methods and computer codes - summarized under the term nuclear simulation chain - for the safety-related assessment for all types of nuclear power plants (NPP) and other nuclear facilities considering the current state of science and technology. This nuclear simulation chain has to be able to simulate and assess all relevant physical processes and phenomena for all operating states and (severe) accidents. In the present contribution, the nuclear simulation chain developed and applied by GRS as well as selected examples of its application are presented. The latter demonstrate impressively the width of its scope and its performance. The GRS codes can be passed on request to other (national as well as international) organizations. This contributes to a worldwide increase of the nuclear safety standards. The code transfer is especially important for developing and emerging countries lacking the financial means and/or the necessary know-how for this purpose. At the end of this contribution, the respective course of action is described.
Simulations of flashing experiments in TOPFLOW facility with TRACE code
Energy Technology Data Exchange (ETDEWEB)
Mikuž, Blaž, E-mail: blaz.mikuz@ijs.si [Jozef Stefan Institute, Reactor Engineering Division, Jamova cesta 39, 1000 Ljubljana (Slovenia); Tiselj, Iztok [Jozef Stefan Institute, Reactor Engineering Division, Jamova cesta 39, 1000 Ljubljana (Slovenia); Beyer, Matthias; Lucas, Dirk [Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden (Germany)
2015-03-15
Highlights: • Two decompression experiments performed at TOPFLOW are simulated with a TRACE code. • The depressurization triggers flashing of the slightly undersaturated liquid water. • Pressure, temperature and void fractions are compared with measurements. • Prediction of the choked flow is the most critical parameter of simulations. • Good agreement with measurements at high initial pressure (i.e. 65 and 40 bars). - Abstract: The decompression experiments performed at TOPFLOW facility in 2010 have been reproduced using the latest best-estimate thermohydraulic system code TRACE (V 5.0 Patch 3). The main component of TOPFLOW facility was about 8 m long vertical tube with an inner diameter of 195.3 mm. The evaporation of liquid water to steam caused by depressurization was simulated using two different procedures: from stagnant water and during circulating of water in tubes. The liquid water was almost saturated at initial pressure values of 1.0, 2.0, 4.0 and 6.5 MPa. Our approach applies one-dimensional code to simulate all the important parts of the facility not just the vertical test section, where the measurements were taken. The obtained simulated pressure, temperature and void fractions are compared with measured values. The simulations of the first procedure (stagnant water at beginning) are in a good agreement with measurements, especially for the cases with longer transients and higher initial pressure, however, choked flow model through the blow-off valve had to be adjusted. There is a short transient (about 2 s) after the fast opening valve opens, which was not reproduced correctly with TRACE. The simulations of the second procedure (circulating water in a loop) correctly predict pressure and temperature decrease, but underpredict void fraction. No modification of the default TRACE choked flow model was needed for procedure B.
Simulation of EAST quasi-snowflake discharge by tokamak simulation code
Energy Technology Data Exchange (ETDEWEB)
Guo, Y., E-mail: yguo@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Science, Hefei 230031 (China); Pironti, A. [CREATE, Università di Napoli Federico II, Università di Cassino and Università di Napoli Parthenope, Via Claudio 19, Napoli 80125 (Italy); Liu, L. [Institute of Plasma Physics, Chinese Academy of Science, Hefei 230031 (China); Xiao, B.J. [Institute of Plasma Physics, Chinese Academy of Science, Hefei 230031 (China); School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 (China); Albanese, R.; Ambrosino, R. [CREATE, Università di Napoli Federico II, Università di Cassino and Università di Napoli Parthenope, Via Claudio 19, Napoli 80125 (Italy); Luo, Z.P.; Yuan, Q.P. [Institute of Plasma Physics, Chinese Academy of Science, Hefei 230031 (China); Calabrò, G.; Crisanti, F. [ENEA UnitàTecnicaFusione, C.R. Frascati, Via E. Fermi 45, Frascati 00044, Roma (Italy); Xing, Z. [Institute of Plasma Physics, Chinese Academy of Science, Hefei 230031 (China)
2015-12-15
Highlights: • By tokamak simulation code (TSC), we reproduce the quasi-snowflake (QSF) discharge controlled by RZIp method. • Singular Value Decomposition (SVD) method, a way to decouple the PF current and control parameter, is implemented in TSC code. • TSC code is used to simulate the QSF shape control by SVD method. • The calculation results show SVD method is a good way for EAST QSF shape control. - Abstract: Both theory and experiment have proved Snowflake configuration could reduce the heat loads on divertor plate. Due to limitation of PF coils, EAST could only operate with quasi-snowflake (QSF). In 2014 EAST campaign, QSF has been achieved by RZIp control. The next important task is the QSF shape control. As tokamak discharge simulation code, Tokamak Simulation Code (TSC), which has been benchmarked by experimental data, is used to simulate EAST QSF discharge. Singular Value Decomposition (SVD) method, a way to decouple the PF current and control parameter, is implemented in TSC code to simulate the course of QSF shape control. The simulation results show SVD method is a good way for EAST QSF shape control.
Parallelization of a Monte Carlo particle transport simulation code
Hadjidoukas, P.; Bousis, C.; Emfietzoglou, D.
2010-05-01
We have developed a high performance version of the Monte Carlo particle transport simulation code MC4. The original application code, developed in Visual Basic for Applications (VBA) for Microsoft Excel, was first rewritten in the C programming language for improving code portability. Several pseudo-random number generators have been also integrated and studied. The new MC4 version was then parallelized for shared and distributed-memory multiprocessor systems using the Message Passing Interface. Two parallel pseudo-random number generator libraries (SPRNG and DCMT) have been seamlessly integrated. The performance speedup of parallel MC4 has been studied on a variety of parallel computing architectures including an Intel Xeon server with 4 dual-core processors, a Sun cluster consisting of 16 nodes of 2 dual-core AMD Opteron processors and a 200 dual-processor HP cluster. For large problem size, which is limited only by the physical memory of the multiprocessor server, the speedup results are almost linear on all systems. We have validated the parallel implementation against the serial VBA and C implementations using the same random number generator. Our experimental results on the transport and energy loss of electrons in a water medium show that the serial and parallel codes are equivalent in accuracy. The present improvements allow for studying of higher particle energies with the use of more accurate physical models, and improve statistics as more particles tracks can be simulated in low response time.
RAMSES-CH: a new chemodynamical code for cosmological simulations
Few, C. G.; Courty, S.; Gibson, B. K.; Kawata, D.; Calura, F.; Teyssier, R.
2012-07-01
We present a new chemodynamical code -RAMSES-CH- for use in simulating the self-consistent evolution of chemical and hydrodynamical properties of galaxies within a fully cosmological framework. We build upon the adaptive mesh refinement code RAMSES, which includes a treatment of self-gravity, hydrodynamics, star formation, radiative cooling and supernova feedback, to trace the dominant isotopes of C, N, O, Ne, Mg, Si and Fe. We include the contribution of Type Ia and Type II supernovae, in addition to low- and intermediate-mass asymptotic giant branch stars, relaxing the instantaneous recycling approximation. The new chemical evolution modules are highly flexible and portable, lending themselves to ready exploration of variations in the underpinning stellar and nuclear physics. We apply RAMSES-CH to the cosmological simulation of a typical L★ galaxy, demonstrating the successful recovery of the basic empirical constraints regarding [α/Fe]-[Fe/H] and Type Ia/II supernova rates.
RAMSES-CH: A New Chemodynamical Code for Cosmological Simulations
Few, C Gareth; Gibson, Brad K; Kawata, Daisuke; Calura, Francesco; Teyssier, Romain
2012-01-01
We present a new chemodynamical code - Ramses-CH - for use in simulating the self-consistent evolution of chemical and hydrodynamical properties of galaxies within a fully cosmological framework. We build upon the adaptive mesh refinement code Ramses, which includes a treatment of self-gravity, hydrodynamics, star formation, radiative cooling, and supernovae feedback, to trace the dominant isotopes of C, N, O, Ne, Mg, Si, and Fe. We include the contribution of Type Ia and II supernovae, in addition to low- and intermediate-mass asymptotic giant branch stars, relaxing the instantaneous recycling approximation. The new chemical evolution modules are highly flexible and portable, lending themselves to ready exploration of variations in the underpining stellar and nuclear physics. We apply Ramses-CH to the cosmological simulation of a typical L\\star galaxy, demonstrating the successful recovery of the basic empirical constraints regarding, [{\\alpha}/Fe]-[Fe/H] and Type Ia/II supernovae rates.
PIC codes for plasma accelerators on emerging computer architectures (GPUS, Multicore/Manycore CPUS)
Vincenti, Henri
2016-03-01
The advent of exascale computers will enable 3D simulations of a new laser-plasma interaction regimes that were previously out of reach of current Petasale computers. However, the paradigm used to write current PIC codes will have to change in order to fully exploit the potentialities of these new computing architectures. Indeed, achieving Exascale computing facilities in the next decade will be a great challenge in terms of energy consumption and will imply hardware developments directly impacting our way of implementing PIC codes. As data movement (from die to network) is by far the most energy consuming part of an algorithm future computers will tend to increase memory locality at the hardware level and reduce energy consumption related to data movement by using more and more cores on each compute nodes (''fat nodes'') that will have a reduced clock speed to allow for efficient cooling. To compensate for frequency decrease, CPU machine vendors are making use of long SIMD instruction registers that are able to process multiple data with one arithmetic operator in one clock cycle. SIMD register length is expected to double every four years. GPU's also have a reduced clock speed per core and can process Multiple Instructions on Multiple Datas (MIMD). At the software level Particle-In-Cell (PIC) codes will thus have to achieve both good memory locality and vectorization (for Multicore/Manycore CPU) to fully take advantage of these upcoming architectures. In this talk, we present the portable solutions we implemented in our high performance skeleton PIC code PICSAR to both achieve good memory locality and cache reuse as well as good vectorization on SIMD architectures. We also present the portable solutions used to parallelize the Pseudo-sepctral quasi-cylindrical code FBPIC on GPUs using the Numba python compiler.
Enhanced verification test suite for physics simulation codes
Energy Technology Data Exchange (ETDEWEB)
Kamm, James R.; Brock, Jerry S.; Brandon, Scott T.; Cotrell, David L.; Johnson, Bryan; Knupp, Patrick; Rider, William J.; Trucano, Timothy G.; Weirs, V. Gregory
2008-09-01
This document discusses problems with which to augment, in quantity and in quality, the existing tri-laboratory suite of verification problems used by Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), and Sandia National Laboratories (SNL). The purpose of verification analysis is demonstrate whether the numerical results of the discretization algorithms in physics and engineering simulation codes provide correct solutions of the corresponding continuum equations.
Simulation with the COREDIV code of JET discharges with the ITER-like wall
Energy Technology Data Exchange (ETDEWEB)
Telesca, G., E-mail: g.telesca@fz-juelich.de [Department of Applied Physics, Ghent University, Gent (Belgium); Zagorski, R. [Institute of Plasma Physics and Laser Microfusion, EURATOM/IPPLM Association, Warsaw (Poland); Brezinsek, S. [IEK-4, FZ Jülich GmbH, Association EURATOM-FZJ, TEC, Jülich (Germany); Brix, M.; Flanagan, J. [EURATOM/CCFE Fusion Association, Culham, Abingdon, Oxon OX14 3DB (United Kingdom); Ivanova-Stanik, I. [Institute of Plasma Physics and Laser Microfusion, EURATOM/IPPLM Association, Warsaw (Poland); Lehnen, M. [IEK-4, FZ Jülich GmbH, Association EURATOM-FZJ, TEC, Jülich (Germany); Stamp, M. [EURATOM/CCFE Fusion Association, Culham, Abingdon, Oxon OX14 3DB (United Kingdom); Van Oost, G. [Department of Applied Physics, Ghent University, Gent (Belgium)
2013-07-15
ICRF heated L-mode pulses of JET with the new ITER like wall are simulated for the first time with the transport code COREDIV. The model, which couples self-consistently the core with the SOL as well as the main plasma with impurities, outputs, from a limited number of inputs as the heating power, the average density and the confinement time, the core temperatures and densities profiles, the effective ion charge Z{sub eff}, the power radiated, the W fluxes and concentration and the plasma parameters on the divertor. Due to the slab geometry of the SOL, the Be flux cannot be calculated self-consistently, but it is given as an input, according to spectroscopic measurements in the divertor. Comparison of simulations with experimental data both of the core and of the SOL is generally satisfactorily, with the exception of Z{sub eff}, possibly due to radiofrequency-specific effects, which are not accounted for in the model.
Electron cloud effects: codes and simulations at KEK
Ohmi, K
2013-01-01
Electron cloud effects had been studied at KEK-Photon Factory since 1995. e-p instability had been studied in proton rings since 1965 in BINP, ISR and PSR. Study of electron cloud effects with the present style, which was based on numerical simulations, started at 1995 in positron storage rings. The instability observed in KEKPF gave a strong impact to B factories, KEKB and PEPII, which were final stage of their design in those days. History of cure for electron cloud instability overlapped the progress of luminosity performance in KEKB. The studies on electron cloud codes and simulations in KEK are presented.
CHOLLA: A New Massively Parallel Hydrodynamics Code for Astrophysical Simulation
Schneider, Evan E.; Robertson, Brant E.
2015-04-01
We present Computational Hydrodynamics On ParaLLel Architectures (Cholla ), a new three-dimensional hydrodynamics code that harnesses the power of graphics processing units (GPUs) to accelerate astrophysical simulations. Cholla models the Euler equations on a static mesh using state-of-the-art techniques, including the unsplit Corner Transport Upwind algorithm, a variety of exact and approximate Riemann solvers, and multiple spatial reconstruction techniques including the piecewise parabolic method (PPM). Using GPUs, Cholla evolves the fluid properties of thousands of cells simultaneously and can update over 10 million cells per GPU-second while using an exact Riemann solver and PPM reconstruction. Owing to the massively parallel architecture of GPUs and the design of the Cholla code, astrophysical simulations with physically interesting grid resolutions (≳2563) can easily be computed on a single device. We use the Message Passing Interface library to extend calculations onto multiple devices and demonstrate nearly ideal scaling beyond 64 GPUs. A suite of test problems highlights the physical accuracy of our modeling and provides a useful comparison to other codes. We then use Cholla to simulate the interaction of a shock wave with a gas cloud in the interstellar medium, showing that the evolution of the cloud is highly dependent on its density structure. We reconcile the computed mixing time of a turbulent cloud with a realistic density distribution destroyed by a strong shock with the existing analytic theory for spherical cloud destruction by describing the system in terms of its median gas density.
Scrape-Off Layer Turbulence in Tokamaks Simulated with a Continuum Gyrokinetic Code
Hakim, A; Abel, I G; Hammett, G W; Stoltzfus-Dueck, T
2016-01-01
We are developing a new continuum gyrokinetic code, Gkeyll, for use in edge plasma simulations, and here present initial simulations of turbulence on open field lines with model sheath boundary conditions. The code implements an energy conserving discontinuous Galerkin scheme, applicable to a general class of Hamiltonian equations. Several applications to test problems have been done, including a calculation of the parallel heat-flux on divertor plates resulting from an ELM crash in JET, for a 1x/1v SOL scenario explored previously, where the ELM is modeled as a time-dependent intense upstream source. Here we present initial simulations of turbulence on open field lines in the LAPD linear plasma device. We have also done simulations in a helical open-field-line geometry. While various simplifications have been made at present, this still includes some of the key physics of SOL turbulence, such as bad-curvature drive for instabilities and rapid parallel losses with sheath boundary conditions. This is useful fo...
Parallel pic plasma simulation through particle decomposition techniques
Energy Technology Data Exchange (ETDEWEB)
Briguglio, S.; Vlad, G. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Energia; Di Martino, B. [Wien Univ. (Austria). Inst. for Software Tecnology and Parallel Systems]|[Naples, Univ. `Federico II` (Italy). Dipt. di Informatica e Sistemistica
1998-02-01
Particle-in-cell (PIC) codes are among the major candidates to yield a satisfactory description of the detail of kinetic effects, such as the resonant wave-particle interaction, relevant in determining the transport mechanism in magnetically confined plasmas. A significant improvement of the simulation performance of such codes con be expected from parallelization, e.g., by distributing the particle population among several parallel processors. Parallelization of a hybrid magnetohydrodynamic-gyrokinetic code has been accomplished within the High Performance Fortran (HPF) framework, and tested on the IBM SP2 parallel system, using a `particle decomposition` technique. The adopted technique requires a moderate effort in porting the code in parallel form and results in intrinsic load balancing and modest inter processor communication. The performance tests obtained confirm the hypothesis of high effectiveness of the strategy, if targeted towards moderately parallel architectures. Optimal use of resources is also discussed with reference to a specific physics problem. [Italiano] I codici Particle-in-cell (PIC) sono considerati tra i piu` promettenti candidati per ottenere una descrizione soddisfacente e dettagliata degli effetti cinetici, quali per esempio l`interazione risonante particella-onda, rilevanti nel determinare i meccanismi di trasporto che interessano il confinamento del plasma. Un significativo miglioramento delle prestazioni della simulazione puo` essere ottenuto distribuendo la popolazione di particelle tra diversi processori in parallelo. La parallelizzazione di un codice ibrido MHD-girocinetico e` stata effettuata, in ambiente HPF, utilizzando la tecnica di `decomposizione per particelle`, ed e` stata provata sul sistema parallelo IBM SP2. La tecnica adottata richiede uno sforzo moderato per la trasformazione del codice in versione parallela, permette un intrinseco bilanciamento tra i processori del carico di lavoro e necessita di una modesta
MHD Simulations of the Plasma Flow in the Magnetic Nozzle
Smith, T. E. R.; Keidar, M.; Sankaran, K.; olzin, K. A.
2013-01-01
The magnetohydrodynamic (MHD) flow of plasma through a magnetic nozzle is simulated by solving the governing equations for the plasma flow in the presence of an static magnetic field representing the applied nozzle. This work will numerically investigate the flow and behavior of the plasma as the inlet plasma conditions and magnetic nozzle field strength are varied. The MHD simulations are useful for addressing issues such as plasma detachment and to can be used to gain insight into the physical processes present in plasma flows found in thrusters that use magnetic nozzles. In the model, the MHD equations for a plasma, with separate temperatures calculated for the electrons and ions, are integrated over a finite cell volume with flux through each face computed for each of the conserved variables (mass, momentum, magnetic flux, energy) [1]. Stokes theorem is used to convert the area integrals over the faces of each cell into line integrals around the boundaries of each face. The state of the plasma is described using models of the ionization level, ratio of specific heats, thermal conductivity, and plasma resistivity. Anisotropies in current conduction due to Hall effect are included, and the system is closed using a real-gas equation of state to describe the relationship between the plasma density, temperature, and pressure.A separate magnetostatic solver is used to calculate the applied magnetic field, which is assumed constant for these calculations. The total magnetic field is obtained through superposition of the solution for the applied magnetic field and the self-consistently computed induced magnetic fields that arise as the flowing plasma reacts to the presence of the applied field. A solution for the applied magnetic field is represented in Fig. 1 (from Ref. [2]), exhibiting the classic converging-diverging field pattern. Previous research was able to demonstrate effects such as back-emf at a super-Alfvenic flow, which significantly alters the shape of the
Mehdipour, M.; Kaastra, J. S.; Kallman, T.
2016-12-01
Atomic data and plasma models play a crucial role in the diagnosis and interpretation of astrophysical spectra, thus influencing our understanding of the Universe. In this investigation we present a systematic comparison of the leading photoionisation codes to determine how much their intrinsic differences impact X-ray spectroscopic studies of hot plasmas in photoionisation equilibrium. We carry out our computations using the Cloudy, SPEX, and XSTAR photoionisation codes, and compare their derived thermal and ionisation states for various ionising spectral energy distributions. We examine the resulting absorption-line spectra from these codes for the case of ionised outflows in active galactic nuclei. By comparing the ionic abundances as a function of ionisation parameter ξ, we find that on average there is about 30% deviation between the codes in ξ where ionic abundances peak. For H-like to B-like sequence ions alone, this deviation in ξ is smaller at about 10% on average. The comparison of the absorption-line spectra in the X-ray band shows that there is on average about 30% deviation between the codes in the optical depth of the lines produced at log ξ 1 to 2, reducing to about 20% deviation at log ξ 3. We also simulate spectra of the ionised outflows with the current and upcoming high-resolution X-ray spectrometers, on board XMM-Newton, Chandra, Hitomi, and Athena. From these simulations we obtain the deviation on the best-fit model parameters, arising from the use of different photoionisation codes, which is about 10 to 40%. We compare the modelling uncertainties with the observational uncertainties from the simulations. The results highlight the importance of continuous development and enhancement of photoionisation codes for the upcoming era of X-ray astronomy with Athena.
Mehdipour, M.; Kaastra, J. S.; Kallman, T.
2016-01-01
Atomic data and plasma models play a crucial role in the diagnosis and interpretation of astrophysical spectra, thus influencing our understanding of the Universe. In this investigation we present a systematic comparison of the leading photoionization codes to determine how much their intrinsic differences impact X-ray spectroscopic studies of hot plasmas in photoionization equilibrium. We carry out our computations using the Cloudy, SPEX, and XSTAR photoionization codes, and compare their derived thermal and ionization states for various ionizing spectral energy distributions. We examine the resulting absorption-line spectra from these codes for the case of ionized outflows in active galactic nuclei. By comparing the ionic abundances as a function of ionization parameter, we find that on average there is about 30 deviation between the codes in where ionic abundances peak. For H-like to B-like sequence ions alone, this deviation in is smaller at about 10 on average. The comparison of the absorption-line spectra in the X-ray band shows that there is on average about 30 deviation between the codes in the optical depth of the lines produced at log 1 to 2, reducing to about 20 deviation at log 3. We also simulate spectra of the ionized outflows with the current and upcoming high-resolution X-ray spectrometers, on board XMM-Newton, Chandra, Hitomi, and Athena. From these simulations we obtain the deviation on the best-fit model parameters, arising from the use of different photoionization codes, which is about 10 to40. We compare the modeling uncertainties with the observational uncertainties from the simulations. The results highlight the importance of continuous development and enhancement of photoionization codes for the upcoming era of X-ray astronomy with Athena.
Generating performance portable geoscientific simulation code with Firedrake (Invited)
Ham, D. A.; Bercea, G.; Cotter, C. J.; Kelly, P. H.; Loriant, N.; Luporini, F.; McRae, A. T.; Mitchell, L.; Rathgeber, F.
2013-12-01
This presentation will demonstrate how a change in simulation programming paradigm can be exploited to deliver sophisticated simulation capability which is far easier to programme than are conventional models, is capable of exploiting different emerging parallel hardware, and is tailored to the specific needs of geoscientific simulation. Geoscientific simulation represents a grand challenge computational task: many of the largest computers in the world are tasked with this field, and the requirements of resolution and complexity of scientists in this field are far from being sated. However, single thread performance has stalled, even sometimes decreased, over the last decade, and has been replaced by ever more parallel systems: both as conventional multicore CPUs and in the emerging world of accelerators. At the same time, the needs of scientists to couple ever-more complex dynamics and parametrisations into their models makes the model development task vastly more complex. The conventional approach of writing code in low level languages such as Fortran or C/C++ and then hand-coding parallelism for different platforms by adding library calls and directives forces the intermingling of the numerical code with its implementation. This results in an almost impossible set of skill requirements for developers, who must simultaneously be domain science experts, numericists, software engineers and parallelisation specialists. Even more critically, it requires code to be essentially rewritten for each emerging hardware platform. Since new platforms are emerging constantly, and since code owners do not usually control the procurement of the supercomputers on which they must run, this represents an unsustainable development load. The Firedrake system, conversely, offers the developer the opportunity to write PDE discretisations in the high-level mathematical language UFL from the FEniCS project (http://fenicsproject.org). Non-PDE model components, such as parametrisations
Magnetic null points in kinetic simulations of space plasmas
Olshevsky, Vyacheslav; Divin, Andrey; Peng, Ivy Bo; Markidis, Stefano; Innocenti, Maria Elena; Cazzola, Emanuele; Lapenta, Giovanni
2015-01-01
We present a systematic attempt to study magnetic null points and the associated magnetic energy conversion in kinetic Particle-in-Cell simulations of various plasma configurations. We address three-dimensional simulations performed with the semi-implicit kinetic electromagnetic code iPic3D in different setups: variations of a Harris current sheet, dipolar and quadrupolar magnetospheres interacting with the solar wind; and a relaxing turbulent configuration with multiple null points. Spiral nulls are more likely created in space plasmas: in all our simulations except lunar magnetic anomaly and quadrupolar mini-magnetosphere the number of spiral nulls prevails over the number of radial nulls by a factor of 3-9. We show that often magnetic nulls do not indicate the regions of intensive energy dissipation. Energy dissipation events caused by topological bifurcations at radial nulls are rather rare and short-lived. The so-called X-lines formed by the radial nulls in the Harris current sheet and lunar magnetic ano...
Simulation of the Partially Ionized Negative Hydrogen Plasma
Averkin, Sergey; Gatsonis, Nikolaos; Olson, Lynn
2012-10-01
A High Pressure Discharge Negative Ion Source (HPDNIS) operating on hydrogen is been under investigation. The Negative Ion Production (NIP) section of the HPDNIS attaches to the 10-100 Torr RF-discharge chamber with a micronozzle and ends with a grid that extracts the negative ion beam. The partially ionized and reacting plasma flow in the NIP section is simulated using an unstructured three-dimensional Direct Simulation Monte Carlo (U3DSMC) code. The NIP section contains a low-pressure plasma that includes H2, vibrationally-rotationally excited H2^*, negative hydrogen atoms H^-, and electrons. Primary reactions in the NIP section are dissociate attachment, H2^*+e->H^0+H^-and electron collisional detachment, e+H^-->H+2e. The U3DSMC computational domain includes the entrance to the NIP nozzle and the extraction grid at the exit. The flow parameters at the entrance are based on conditions in the RF-discharge chamber and are implemented in U3DSMC using a Kinetic-Moment subsonic boundary conditions method. Neutral--neutral, ion-neutral, Coulomb collisions and charge-neutralizing collisions are implemented in U3DSMC using the no time counter method, electron-molecule collisions are treated by the constant timestep method. Simulations cover the regime of operation of the HPDNIS and examine the flow characteristics inside the NIP section.
Energy Technology Data Exchange (ETDEWEB)
Sayer, R.O.; Peng, Y.K.M.; Strickler, D.J.; Jardin, S.C.
1990-01-01
The Tokamak Simulation Code and the TWIR postprocessor code have been used to develop credible plasma disruption scenarios for the Compact Ignition Tokamak (CIT) in order to predict the evolution of forces on CIT conducting structures and to provide results required for detailed structural design analysis. The extreme values of net radial and vertical vacuum vessel (VV) forces were found to be F{sub R}={minus}12.0 MN/rad and F{sub Z}={minus}3.0 MN/rad, respectively, for the CIT 2.1-m, 11-MA design. Net VV force evolution was found to be altered significantly by two mechanisms not noted previously. The first, due to poloidal VV currents arising from increased plasma paramagnetism during thermal quench, reduces the magnitude of the extreme F{sub R} by 15-50{percent} and modifies the distribution of forces substantially. The second effect is that slower plasma current decay rates give more severe net vertical VV loads because the current decay occurs when the plasma has moved farther from midplane than is the case for faster decay rates. 7 refs., 9 figs., 1 tab.
Energy Technology Data Exchange (ETDEWEB)
Nagels-Silvert, V
2004-09-15
The main purpose of this thesis is to get experimental data for the testing and validation of atomic physics codes dealing with non-local-thermodynamical-equilibrium plasmas. The first part is dedicated to the spectroscopic study of xenon and krypton plasmas that have been produced by a nanosecond laser pulse interacting with a gas jet. A Thomson scattering diagnostic has allowed us to measure independently plasma parameters such as electron temperature, electron density and the average ionisation state. We have obtained time integrated spectra in the range between 5 and 10 angstroms. We have identified about one hundred xenon rays between 8.6 and 9.6 angstroms via the use of the Relac code. We have discovered unknown rays for the krypton between 5.2 and 7.5 angstroms. In a second experiment we have extended the wavelength range to the X UV domain. The Averroes/Transpec code has been tested in the ranges from 9 to 15 angstroms and from 10 to 130 angstroms, the first range has been well reproduced while the second range requires a more complex data analysis. The second part is dedicated to the spectroscopic study of aluminium, selenium and samarium plasmas in femtosecond operating rate. We have designed an interferometry diagnostic in the frequency domain that has allowed us to measure the expanding speed of the target's backside. Via the use of an adequate isothermal model this parameter has led us to know the plasma electron temperature. Spectra and emission times of various rays from the aluminium and selenium plasmas have been computed satisfactorily with the Averroes/Transpec code coupled with Film and Multif hydrodynamical codes. (A.C.)
Simulations with Conventional and Gas Puff Plasma Focus Devices
Shan, Bing; Liu, Mahe; Lee, Paul; Lee, Sing
2000-10-01
An energy consistent plasma focus model is improved by considering the plasma ionization states based on the corona equilibrium. This provides the model with the capability of calculating the plasma dynamics and states for different gases in plasma focus. The model is employed to simulate the behavior of the NX2 plasma focus, with both neon and argon gases. The results show that much lower pressure is required to work with argon for x-ray. The model has also been modified to describe a gas-puff plasma focus based on a measured pressure distribution profile. The simulation result reveals that the gas-puff scheme is more efficient in plasma heating and can improve the stability of the plasma column. By comparing with the published results, agreements have been obtained between the computations and experiments of both machines in the major points regarding plasma dynamics, plasma column stability and appearances, plasma temperatures, and x-ray radiation properties.
Bogatu, I. N.; Galkin, S. A.
2016-10-01
The C60 nanoparticle plasma jet (NPPJ) rapid injection into a tokamak major disruption is followed by C60 gradual fragmentation along plasma-traversing path. The result is abundant C ion concentration in the core plasma enhancing the potential to probe and diagnose the runaway electrons (REs) during different phases of their dynamics. A C60/C NPPJ of 75 mg, high-density (>1023 m-3) , hyper-velocity (>4 km/s), and uniquely fast response-to-delivery time ( 1 ms) has been demonstrated on a test bed. It can rapidly and deeply deliver enough mass to increase electron density to 2.4x1021 m-3, 60 times larger than typical DIII-D pre-disruption value. We will present the results of our on-going work on: 1) self-consistent model for RE current density evolution (by Dreicer mechanism and ``avalanche'') focused on the effect of fast and deep deposition of C ions, 2) improvement of single C60q+ fragmenting ion penetration model through tokamak B(R)-field and post-TQ plasma, and 3) simulation of C60q+ PJ penetration through the DIII-D characteristic 2 T B-field to the RE beam central location by using the Hybrid Electro-Magnetic 2D code (HEM-2D. Work supported by US DOE DE-SC0015776 Grant.
Simulation of Electron Trajectories in the Multicusp Ion Source Using Geantn4 Monte Carlo Code
Khodadadi Azadboni, Fatemeh; Sedaghatizade, Mahmood
2010-04-01
To optimize the multicusp ion source, understanding of transport properties of electrons is indispensable. Since the transport of electrons in the multicusp ion source is a three-dimensional problem, we use the 3D computer code Geant4, to model the particle trajectories. The goal is to study the effect of electron injection into a cylindrical gas chamber and the electron trajectories. The role of the magnetic filter in contemporary negative ion sources is analyzed. The conditions in the magnetic filter adjacent to the plasma electrode optimum for the generation, formation, and extraction of an H- ion beam are found. The simulation results are in good agreement with the experimental data.
Multisymplectic Integration for Beam and Plasma Simulations
Webb, Stephen; RadiaSoft, LLC Team
2015-11-01
Particle-in-cell methods are a standard tool for simulating charged particle systems such as fusion plasmas, intense beams, and laser- and beam-driven wakefield accelerators. Conventional methods have been successful in studying short-term dynamics, however numerical instabilities and artifacts such as grid heating make long-time simulations unreliable. A similar issue existed in single particle tracking for storage rings in the 1980s, which led to the development of symplectic algorithms. The essential insight that if the physical equations of motion derive from a least-action principle, then so too should the numerical equations of motion. The resulting update sequence preserves a symplectic 2-form, which is a strong constraint on the numerical solutions. The resulting algorithms are stable and accurate over very long simulation times. This same structure exists for field theories as well as single-particle dynamics. Such multisymplectic integrators have good stability properties and naturally encode conservation laws, making them ideal for simulations over many oscillations of the system. We present here a number of examples where multisymplectic algorithms have been used over very long time scales. This work was sponsored by the Air Force Office of Scientific Research, Young Investigator Program, under contract no. FA9550-15-C-0031. Distribution Statement A. Approved for public release; distribution is unlimited.
A computer code to simulate X-ray imaging techniques
Energy Technology Data Exchange (ETDEWEB)
Duvauchelle, Philippe E-mail: philippe.duvauchelle@insa-lyon.fr; Freud, Nicolas; Kaftandjian, Valerie; Babot, Daniel
2000-09-01
A computer code was developed to simulate the operation of radiographic, radioscopic or tomographic devices. The simulation is based on ray-tracing techniques and on the X-ray attenuation law. The use of computer-aided drawing (CAD) models enables simulations to be carried out with complex three-dimensional (3D) objects and the geometry of every component of the imaging chain, from the source to the detector, can be defined. Geometric unsharpness, for example, can be easily taken into account, even in complex configurations. Automatic translations or rotations of the object can be performed to simulate radioscopic or tomographic image acquisition. Simulations can be carried out with monochromatic or polychromatic beam spectra. This feature enables, for example, the beam hardening phenomenon to be dealt with or dual energy imaging techniques to be studied. The simulation principle is completely deterministic and consequently the computed images present no photon noise. Nevertheless, the variance of the signal associated with each pixel of the detector can be determined, which enables contrast-to-noise ratio (CNR) maps to be computed, in order to predict quantitatively the detectability of defects in the inspected object. The CNR is a relevant indicator for optimizing the experimental parameters. This paper provides several examples of simulated images that illustrate some of the rich possibilities offered by our software. Depending on the simulation type, the computation time order of magnitude can vary from 0.1 s (simple radiographic projection) up to several hours (3D tomography) on a PC, with a 400 MHz microprocessor. Our simulation tool proves to be useful in developing new specific applications, in choosing the most suitable components when designing a new testing chain, and in saving time by reducing the number of experimental tests.
Nishioka, S.; Mochalskyy, S.; Taccogna, F.; Hatayama, A.; Fantz, U.; Minelli, P.
2017-08-01
The development of the kinetic particle model for the extraction region in negative hydrogen ion sources is indispensable and helpful to clarify the H- beam extraction physics. Recently, various 3D kinetic particle codes have been developed to study the extraction mechanism. Direct comparison between each other has not yet been done. Therefore, we have carried out a code-to-code benchmark activity to validate our codes. In the present study, the progress in this benchmark activity is summarized. At present, the reasonable agreement with the result by each code have been obtained using realistic plasma parameters at least for the following items; (1) Potential profile in the case of the vacuum condition (2) Temporal evolution of extracted current densities and profiles of electric potential in the case of the plasma consisting of only electrons and positive ions.
Gamma ray transport simulations using SGaRD code
Directory of Open Access Journals (Sweden)
Humbert Philippe
2017-01-01
Full Text Available SGaRD (Spectroscopy, Gamma rays, Rapid, Deterministic code is used for the fast calculation of the gamma-ray spectrum, produced by a spherical shielded source and measured by a detector. The photon source lines originate from the radioactive decay of the unstable isotopes. The leakage spectrum is separated in two parts: the uncollided component is transported by ray tracing, and the scattered component is calculated using a multigroup discrete ordinates method. The pulse height spectrum is then simulated by folding the leakage spectrum with the detector response function, which is precalculated for each considered detector type. An application to the simulation of the gamma spectrum produced by a natural uranium ball coated with plexiglass and measured using a NaI detector is presented. The SGaRD code is also used to infer the dimensions of a one-dimensional model of a shielded gamma ray source. The method is based on the simulation of the uncollided leakage current of discrete gamma lines that are produced by nuclear decay. The material thicknesses are computed with SGaRD using a fast ray-tracing algorithm embedded in a nonlinear multidimensional iterative optimization procedure that minimizes the error metric between calculated and measured signatures.
Axisymmetric Plume Simulations with NASA's DSMC Analysis Code
Stewart, B. D.; Lumpkin, F. E., III
2012-01-01
A comparison of axisymmetric Direct Simulation Monte Carlo (DSMC) Analysis Code (DAC) results to analytic and Computational Fluid Dynamics (CFD) solutions in the near continuum regime and to 3D DAC solutions in the rarefied regime for expansion plumes into a vacuum is performed to investigate the validity of the newest DAC axisymmetric implementation. This new implementation, based on the standard DSMC axisymmetric approach where the representative molecules are allowed to move in all three dimensions but are rotated back to the plane of symmetry by the end of the move step, has been fully integrated into the 3D-based DAC code and therefore retains all of DAC s features, such as being able to compute flow over complex geometries and to model chemistry. Axisymmetric DAC results for a spherically symmetric isentropic expansion are in very good agreement with a source flow analytic solution in the continuum regime and show departure from equilibrium downstream of the estimated breakdown location. Axisymmetric density contours also compare favorably against CFD results for the R1E thruster while temperature contours depart from equilibrium very rapidly away from the estimated breakdown surface. Finally, axisymmetric and 3D DAC results are in very good agreement over the entire plume region and, as expected, this new axisymmetric implementation shows a significant reduction in computer resources required to achieve accurate simulations for this problem over the 3D simulations.
Simulation of beam-induced plasma in gas-filled rf cavities
Yu, Kwangmin; Samulyak, Roman; Yonehara, Katsuya; Freemire, Ben
2017-03-01
Processes occurring in a radio-frequency (rf) cavity, filled with high pressure gas and interacting with proton beams, have been studied via advanced numerical simulations. Simulations support the experimental program on the hydrogen gas-filled rf cavity in the Mucool Test Area (MTA) at Fermilab, and broader research on the design of muon cooling devices. space, a 3D electromagnetic particle-in-cell (EM-PIC) code with atomic physics support, was used in simulation studies. Plasma dynamics in the rf cavity, including the process of neutral gas ionization by proton beams, plasma loading of the rf cavity, and atomic processes in plasma such as electron-ion and ion-ion recombination and electron attachment to dopant molecules, have been studied. Through comparison with experiments in the MTA, simulations quantified several uncertain values of plasma properties such as effective recombination rates and the attachment time of electrons to dopant molecules. Simulations have achieved very good agreement with experiments on plasma loading and related processes. The experimentally validated code space is capable of predictive simulations of muon cooling devices.
Large-Eddy Simulation Code Developed for Propulsion Applications
DeBonis, James R.
2003-01-01
A large-eddy simulation (LES) code was developed at the NASA Glenn Research Center to provide more accurate and detailed computational analyses of propulsion flow fields. The accuracy of current computational fluid dynamics (CFD) methods is limited primarily by their inability to properly account for the turbulent motion present in virtually all propulsion flows. Because the efficiency and performance of a propulsion system are highly dependent on the details of this turbulent motion, it is critical for CFD to accurately model it. The LES code promises to give new CFD simulations an advantage over older methods by directly computing the large turbulent eddies, to correctly predict their effect on a propulsion system. Turbulent motion is a random, unsteady process whose behavior is difficult to predict through computer simulations. Current methods are based on Reynolds-Averaged Navier- Stokes (RANS) analyses that rely on models to represent the effect of turbulence within a flow field. The quality of the results depends on the quality of the model and its applicability to the type of flow field being studied. LES promises to be more accurate because it drastically reduces the amount of modeling necessary. It is the logical step toward improving turbulent flow predictions. In LES, the large-scale dominant turbulent motion is computed directly, leaving only the less significant small turbulent scales to be modeled. As part of the prediction, the LES method generates detailed information on the turbulence itself, providing important information for other applications, such as aeroacoustics. The LES code developed at Glenn for propulsion flow fields is being used to both analyze propulsion system components and test improved LES algorithms (subgrid-scale models, filters, and numerical schemes). The code solves the compressible Favre-filtered Navier- Stokes equations using an explicit fourth-order accurate numerical scheme, it incorporates a compressible form of
PIC Simulation of Relativistic Electromagnetic Plasma Expansion with Radiation Damping
Noguchi, Koichi; Liang, Edison; Wilks, Scott
2004-11-01
One of the unsolved problems in astrophysics is the acceleration of nonthermal high-energy particles. Nonthermal radiation is observed from pulsars, blazers, gamma-ray bursts and black holes. Recently, a new mechanism of relativistic nonthermal particle acceleration, called the Diamagnetic Relativistic Pulse Accelerator(DRPA), discovered using multi-dimensional Particle-in-Cell(PIC) simulations. When a plasma-loaded electromagnetic pulse expands relativistically, the self-induced drift current creates ponderomotive trap, which drags only the fast particles in the trap and leave slow ones behind. Here we study the effect of radiation on an electron-positron plasma accelerated by the DRPA, by introducing the radiation force in our 2D PIC code. In the radiation case, particles are accelerated by the EM pulse but decelerated by the radiation reaction simultaneously, whereas particles are accelerated indefinitely in the non-radiation case. We find that even with the radiation dumping the DRPA mechanism remains robust and particles are accelerated to over γ>100. After the simulation reaches the quasi-equilibrium state, kinetic energy becomes constant, and field energy is converted to radiation using particles as the transfer agent. We will also produce sample light waves of the radiation output.
Plasma Drifts in the Intermediate Magnetosphere: Simulation Results
Lyon, J.; Zhang, B.
2016-12-01
One of the outstanding questions about the inner magnetosphere dynamics is how the ring current is populated. It is not clear how much is due to a general injection over longer time and spatial scales and how much due to more bursty events. One of the major uncertainties is the behavior of the plasma in the intermediate magnetosphere: the region where the magnetosphere changes from being tail-like to one where the dipole field dominates. This is also the region where physically the plasma behavior changes from MHD-like in the tail to one dominated by particle drifts in the inner magnetosphere. No of the current simulation models self-consistently handle the region where drifts are important but not dominant. We have recently developed a version of the multi-fluid LFM code that can self-consistently handle this situation. The drifts are modeled in a fashion similar to the Rice Convection Model in that a number of energy "channels" are explicitly simulated. However, the method is not limited to the "slow flow" region and both diamagnetic and inertial drifts are included. We present results from a number of idealized cases of the global magnetosphere interacting with a southward turning of the IMF. We discuss the relative importance of general convection and bursty flows to the transport of particles and energy across this region.
Computer code for the atomistic simulation of lattice defects and dynamics. [COMENT code
Energy Technology Data Exchange (ETDEWEB)
Schiffgens, J.O.; Graves, N.J.; Oster, C.A.
1980-04-01
This document has been prepared to satisfy the need for a detailed, up-to-date description of a computer code that can be used to simulate phenomena on an atomistic level. COMENT was written in FORTRAN IV and COMPASS (CDC assembly language) to solve the classical equations of motion for a large number of atoms interacting according to a given force law, and to perform the desired ancillary analysis of the resulting data. COMENT is a dual-purpose intended to describe static defect configurations as well as the detailed motion of atoms in a crystal lattice. It can be used to simulate the effect of temperature, impurities, and pre-existing defects on radiation-induced defect production mechanisms, defect migration, and defect stability.
Simulation of Code Spectrum and Code Flow of Cultured Neuronal Networks.
Tamura, Shinichi; Nishitani, Yoshi; Hosokawa, Chie; Miyoshi, Tomomitsu; Sawai, Hajime
2016-01-01
It has been shown that, in cultured neuronal networks on a multielectrode, pseudorandom-like sequences (codes) are detected, and they flow with some spatial decay constant. Each cultured neuronal network is characterized by a specific spectrum curve. That is, we may consider the spectrum curve as a "signature" of its associated neuronal network that is dependent on the characteristics of neurons and network configuration, including the weight distribution. In the present study, we used an integrate-and-fire model of neurons with intrinsic and instantaneous fluctuations of characteristics for performing a simulation of a code spectrum from multielectrodes on a 2D mesh neural network. We showed that it is possible to estimate the characteristics of neurons such as the distribution of number of neurons around each electrode and their refractory periods. Although this process is a reverse problem and theoretically the solutions are not sufficiently guaranteed, the parameters seem to be consistent with those of neurons. That is, the proposed neural network model may adequately reflect the behavior of a cultured neuronal network. Furthermore, such prospect is discussed that code analysis will provide a base of communication within a neural network that will also create a base of natural intelligence.
Particle-in-cell simulations of plasma accelerators and electron-neutral collisions
Energy Technology Data Exchange (ETDEWEB)
Bruhwiler, David L.; Giacone, Rodolfo E.; Cary, John R.; Verboncoeur, John P.; Mardahl, Peter; Esarey, Eric; Leemans, W.P.; Shadwick, B.A.
2001-10-01
We present 2-D simulations of both beam-driven and laser-driven plasma wakefield accelerators, using the object-oriented particle-in-cell code XOOPIC, which is time explicit, fully electromagnetic, and capable of running on massively parallel supercomputers. Simulations of laser-driven wakefields with low ({approx}10{sup 16} W/cm{sup 2}) and high ({approx}10{sup 18} W/cm{sup 2}) peak intensity laser pulses are conducted in slab geometry, showing agreement with theory and fluid simulations. Simulations of the E-157 beam wakefield experiment at the Stanford Linear Accelerator Center, in which a 30 GeV electron beam passes through 1 m of preionized lithium plasma, are conducted in cylindrical geometry, obtaining good agreement with previous work. We briefly describe some of the more significant modifications of XOOPIC required by this work, and summarize the issues relevant to modeling relativistic electron-neutral collisions in a particle-in-cell code.
GOTHIC code simulation of thermal stratification in POOLEX facility
Energy Technology Data Exchange (ETDEWEB)
Li, H.; Kudinov, P. (Royal Institute of Technology (KTH) (Sweden))
2009-07-15
Pressure suppression pool is an important element of BWR containment. It serves as a heat sink and steam condenser to prevent containment pressure buildup during loss of coolant accident or safety relief valve opening during normal operations of a BWR. Insufficient mixing in the pool, in case of low mass flow rate of steam, can cause development of thermal stratification and reduction of pressure suppression pool capacity. For reliable prediction of mixing and stratification phenomena validation of simulation tools has to be performed. Data produced in POOLEX/PPOOLEX facility at Lappeenranta University of Technology about development of thermal stratification in a large scale model of a pressure suppression pool is used for GOTHIC lumped and distributed parameter validation. Sensitivity of GOTHIC solution to different boundary conditions and grid convergence study for 2D simulations of POOLEX STB-20 experiment are performed in the present study. CFD simulation was carried out with FLUENT code in order to get additional insights into physics of stratification phenomena. In order to support development of experimental procedures for new tests in the PPOOLEX facility lumped parameter pre-test GOTHIC simulations were performed. Simulations show that drywell and wetwell pressures can be kept within safety margins during a long transient necessary for development of thermal stratification. (au)
Subramaniam, Vivek; Raja, Laxminarayan L.
2017-06-01
Recent experiments by Loebner et al. [IEEE Trans. Plasma Sci. 44, 1534 (2016)] studied the effect of a hypervelocity jet emanating from a coaxial plasma accelerator incident on target surfaces in an effort to mimic the transient loading created during edge localized mode disruption events in fusion plasmas. In this paper, we present a magnetohydrodynamic (MHD) numerical model to simulate plasma jet formation and plasma-surface contact in this coaxial plasma accelerator experiment. The MHD system of equations is spatially discretized using a cell-centered finite volume formulation. The temporal discretization is performed using a fully implicit backward Euler scheme and the resultant stiff system of nonlinear equations is solved using the Newton method. The numerical model is employed to obtain some key insights into the physical processes responsible for the generation of extreme stagnation conditions on the target surfaces. Simulations of the plume (without the target plate) are performed to isolate and study phenomena such as the magnetic pinch effect that is responsible for launching pressure pulses into the jet free stream. The simulations also yield insights into the incipient conditions responsible for producing the pinch, such as the formation of conductive channels. The jet-target impact studies indicate the existence of two distinct stages involved in the plasma-surface interaction. A fast transient stage characterized by a thin normal shock transitions into a pseudo-steady stage that exhibits an extended oblique shock structure. A quadratic scaling of the pinch and stagnation conditions with the total current discharged between the electrodes is in qualitative agreement with the results obtained in the experiments. This also illustrates the dominant contribution of the magnetic pressure term in determining the magnitude of the quantities of interest.
Plasma Viscosity with Mass Transport in Spherical ICF Implosion Simulations
Vold, Erik L; Ortega, Mario I; Moll, Ryan; Fenn, Daniel; Molvig, Kim
2015-01-01
The effects of viscosity and small-scale atomic-level mixing on plasmas in inertial confinement fusion (ICF) currently represent challenges in ICF research. Many current ICF hydrodynamic codes ignore the effects of viscosity though recent research indicates viscosity and mixing by classical transport processes may have a substantial impact on implosion dynamics. We have implemented a Lagrange hydrodynamic code in one-dimensional spherical geometry with plasma viscosity and mass transport and including a three temperature model for ions, electrons, and radiation treated in a gray radiation diffusion approximation. The code is used to study ICF implosion differences with and without plasma viscosity and to determine the impacts of viscosity on temperature histories and neutron yield. It was found that plasma viscosity has substantial impacts on ICF shock dynamics characterized by shock burn timing, maximum burn temperatures, convergence ratio, and time history of neutron production rates. Plasma viscosity reduc...
Particle-in-cell simulations of tunneling ionization effects in plasma-based accelerators
Bruhwiler, D L; Cary, J R; Esarey, E; Leemans, W; Giacone, R E
2003-01-01
Plasma-based accelerators can sustain accelerating gradients on the order of 100 GV/m. If the plasma is not fully ionized, fields of this magnitude will ionize neutral atoms via electron tunneling, which can completely change the dynamics of the plasma wake. Particle-in-cell simulations of a high-field plasma wakefield accelerator, using the OOPIC code, which includes field-induced tunneling ionization of neutral Li gas, show that the presence of even moderate neutral gas density significantly degrades the quality of the wakefield. The tunneling ionization model in OOPIC has been validated via a detailed comparison with experimental data from the l'OASIS laboratory. The properties of a wake generated directly from a neutral gas are studied, showing that one can recover the peak fields of the fully ionized plasma simulations, if the density of the electron drive bunch is increased such that the bunch rapidly ionized the gas.
Merlin, Emiliano; Buonomo, Umberto; Grassi, Tommaso; Piovan, Lorenzo; Chiosi, Cesare
2009-01-01
We present EvoL, the new release of the Padova N-body code for cosmological simulations of galaxy formation and evolution. In this paper, the basic Tree + SPH code is presented and analysed, together with an overview on the software architectures. EvoL is a flexible parallel Fortran95 code, specifically designed for simulations of cosmological structure formation on cluster, galactic and sub-galactic scales. EvoL is a fully Lagrangian self-adaptive code, based on the classical Oct-tree and on...
Three-dimensional simulation of laser–plasma-based electron acceleration
Indian Academy of Sciences (India)
A Upadhyay; K Patel; B S Rao; P A Naik; P D Gupta
2012-04-01
A sequential three-dimensional (3D) particle-in-cell simulation code PICPSI-3D with a user friendly graphical user interface (GUI) has been developed and used to study the interaction of plasma with ultrahigh intensity laser radiation. A case study of laser–plasma-based electron acceleration has been carried out to assess the performance of this code. Simulations have been performed for a Gaussian laser beam of peak intensity 5 × 1019 W/cm2 propagating through an underdense plasma of uniform density 1 × 1019 cm-3, and for a Gaussian laser beam of peak intensity 1.5 × 1019 W/cm2 propagating through an underdense plasma of uniform density 3.5 × 1019 cm-3. The electron energy spectrum has been evaluated at different time-steps during the propagation of the laser beam. When the plasma density is 1 × 1019 cm-3, simulations show that the electron energy spectrum forms a monoenergetic peak at ∼ 14 MeV, with an energy spread of ± 7 MeV. On the other hand, when the plasma density is 3.5 × 1019 cm-3, simulations show that the electron energy spectrum forms a monoenergetic peak at ∼ 23 MeV, with an energy spread of ± 7.5 MeV.
Toward a first-principles integrated simulation of tokamak edge plasmas
Energy Technology Data Exchange (ETDEWEB)
Chang, C S [New York University; Klasky, Scott A [ORNL; Cummings, Julian [California Institute of Technology, Pasadena; Samtaney, Ravi [Princeton Plasma Physics Laboratory (PPPL); Shoshani, A. [Lawrence Berkeley National Laboratory (LBNL); Sugiyama, L. [Massachusetts Institute of Technology (MIT); Keyes, David E [Columbia University; Ku, Seung-Hoe [New York University; Park, G. [New York University; Parker, Scott [University of Colorado, Boulder; Podhorszki, Norbert [ORNL; Strauss, H. [New York University; Abbasi, H. [Georgia Institute of Technology; Adams, Mark [Columbia University; Tchoua, Roselyne B [ORNL; Bateman, Glenn [Lehigh University, Bethlehem, PA; Bennett, K. [Rutgers University; Chen, Yang [University of Colorado, Boulder; D' Azevedo, Eduardo [ORNL; Docan, Ciprian [Rutgers University; Ethier, Stephane [Princeton Plasma Physics Laboratory (PPPL); Feibush, E. [Princeton Plasma Physics Laboratory (PPPL); Greengard, Leslie [New York University; Hahm, Taik Soo [Princeton Plasma Physics Laboratory (PPPL); Hinton, Fred [University of California, San Diego; Jin, Chen [ORNL; Khan, A. [University of Utah; Kritz, Arnold [Lehigh University, Bethlehem, PA; Krstic, Predrag S [ORNL; Lao, T. [Columbia University; Lee, Wei-Li [Princeton Plasma Physics Laboratory (PPPL); Lin, Zhihong [University of California, Irvine; Lofstead, J. [Georgia Institute of Technology; Mouallem, P. A. [North Carolina State University; Nagappan, M. [North Carolina State University; Pankin, A. [Lehigh University, Bethlehem, PA; Parashar, Manish [Rutgers University; Pindzola, Michael S. [Auburn University, Auburn, Alabama; Reinhold, Carlos O [ORNL; Schultz, David Robert [ORNL; Schwan, Karsten [Georgia Institute of Technology; Silver, D. [Rutgers University; Sim, A. [Lawrence Berkeley National Laboratory (LBNL); Stotler, D. [Princeton Plasma Physics Laboratory (PPPL); Vouk, M. A. [North Carolina State University; Wolf, M. [Georgia Institute of Technology; Weitzner, Harold [New York University; Worley, Patrick H [ORNL; Xiao, Y. [University of California, Irvine; Yoon, E. [Princeton Plasma Physics Laboratory (PPPL); Zorin, Denis [New York University
2008-01-01
Performance of the ITER is anticipated to be highly sensitive to the edge plasma condition. The edge pedestal in ITER needs to be predicted from an integrated simulation of the necessary firstprinciples, multi-scale physics codes. The mission of the SciDAC Fusion Simulation Project (FSP) Prototype Center for Plasma Edge Simulation (CPES) is to deliver such a code integration framework by (1) building new kinetic codes XGC0 and XGC1, which can simulate the edge pedestal buildup; (2) using and improving the existing MHD codes ELITE, M3D-OMP, M3D-MPP and NIMROD, for study of large-scale edge instabilities called Edge Localized Modes (ELMs); and (3) integrating the codes into a framework using cutting-edge computer science technology. Collaborative effort among physics, computer science, and applied mathematics within CPES has created the first working version of the End-to-end Framework for Fusion Integrated Simulation (EFFIS), which can be used to study the pedestal-ELM cycles.
Toward a first-principles integrated simulation of tokamak edge plasmas
Energy Technology Data Exchange (ETDEWEB)
Chang, C S; Ku, S; Park, G; Strauss, H [New York University, New York, NY 10012 (United States); Klasky, S; Podhorszki, N; Barreto, R; Azevedo, E D' [Oak Ridge National Laboratory, Oak Ridge, TN 37381 (United States); Cummings, J [California Institute of Technology, Pasadena, CA 91125 (United States); Samtaney, R [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Shoshani, A [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Sugiyama, L [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Keyes, D; Adams, M [Columbia University, New York NY 10027 (United States); Parker, S; Chen, Y [University of Colorado at Boulder, Boulder, CO 80309 (United States); Abbasi, H [Georgia Institute of Technology, Atlanta, GA 30332 (United States); Bateman, G [Lehigh University, Bethlehem, PA 18015 (United States); Bennett, K; Docan, C [Rutgers University, New Brunswick, NJ 08901 (United States)], E-mail: cschang@cims.nyu.edu, E-mail: klasky@ornl.gov (and others)
2008-07-15
Performance of the ITER is anticipated to be highly sensitive to the edge plasma condition. The edge pedestal in ITER needs to be predicted from an integrated simulation of the necessary first-principles, multi-scale physics codes. The mission of the SciDAC Fusion Simulation Project (FSP) Prototype Center for Plasma Edge Simulation (CPES) is to deliver such a code integration framework by (1) building new kinetic codes XGC0 and XGC1, which can simulate the edge pedestal buildup; (2) using and improving the existing MHD codes ELITE, M3D-OMP, M3D-MPP and NIMROD, for study of large-scale edge instabilities called Edge Localized Modes (ELMs); and (3) integrating the codes into a framework using cutting-edge computer science technology. Collaborative effort among physics, computer science, and applied mathematics within CPES has created the first working version of the End-to-end Framework for Fusion Integrated Simulation (EFFIS), which can be used to study the pedestal-ELM cycles.
Vashi, Bharat I.
1992-01-01
The first Tethered-Satellite-System (TSS-1), scheduled for a flight in late 1992, is expected to provide relevant information related to the concept of generating an emf in a 20-km-long (or longer) conducting wire. This paper presents numerical simulations of the electrodynamic interactions between the TSS system and space plasma, using a 2D and 3D models of the system. The 2D case code simulates the motion of a long cylinder past a plasma, which is composed of electrons and H(+) ions. The system is solved by allowing the plasma to flow past the cylinder with an imposed magnetic field. The more complex 3D case is considered to study the dynamics in great detail. Results of 2D simulation show that the interaction of a satellite with plasma flowing perpendicularly to the magnetic field results in an enhancement in the current collection.
Plasma wakefield acceleration studies using the quasi-static code WAKE
Energy Technology Data Exchange (ETDEWEB)
Jain, Neeraj [Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, 37077 Göttingen (Germany); Palastro, John [Icarus Research Inc., P.O. Box 30780, Bethesda, Maryland 20824-0780 (United States); Antonsen, T. M. [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 (United States); Mori, Warren B.; An, Weiming [University of California, Los Angeles, California 90095 (United States)
2015-02-15
The quasi-static code WAKE [P. Mora and T. Antonsen, Phys. Plasmas 4, 217 (1997)] is upgraded to model the propagation of an ultra-relativistic charged particle beam through a warm background plasma in plasma wakefield acceleration. The upgraded code is benchmarked against the full particle-in-cell code OSIRIS [Hemker et al., Phys. Rev. Spec. Top. Accel. Beams 3, 061301 (2000)] and the quasi-static code QuickPIC [Huang et al., J. Comput. Phys. 217, 658 (2006)]. The effect of non-zero plasma temperature on the peak accelerating electric field is studied for a two bunch electron beam driver with parameters corresponding to the plasma wakefield acceleration experiments at Facilities for Accelerator Science and Experimental Test Beams. It is shown that plasma temperature does not affect the energy gain and spread of the accelerated particles despite suppressing the peak accelerating electric field. The role of plasma temperature in improving the numerical convergence of the electric field with the grid resolution is discussed.
Plasma wakefield acceleration studies using the quasi-static code WAKE
Jain, Neeraj; Antonsen, T M; Mori, Warren B; An, Weiming
2014-01-01
The quasi-static code WAKE [P. Mora and T. Antonsen, Phys. Plasmas {\\bf 4}, 217(1997)] is upgraded to model the propagation of an ultra-relativistic charged particle beam through a warm background plasma in plasma wakefield acceleration. The upgraded code is benchmarked against the full particle-in-cell code OSIRIS [Hemker et al., Phys. Rev. ST Accel. Beams {\\bf 3}, 061301(2000)] and the quasi-static code QuickPIC [Huang et al., J. Comp. Phys. {\\bf 217}, 658 (2006)]. The effect of non-zero plasma temperature on the peak accelerating electric field is studied for a two bunch electron beam driver with parameters corresponding to the plasma wakefield acceleration experiments at FACET. It is shown that plasma temperature does not affect the energy gain and spread of the accelerated particles despite suppressing the peak accelerating electric field. The role of plasma temperature in improving the numerical convergence of the electric field with the grid resolution is discussed.
Flow Simulation and Optimization of Plasma Reactors for Coal Gasification
Ji, Chunjun; Zhang, Yingzi; Ma, Tengcai
2003-10-01
This paper reports a 3-d numerical simulation system to analyze the complicated flow in plasma reactors for coal gasification, which involve complex chemical reaction, two-phase flow and plasma effect. On the basis of analytic results, the distribution of the density, temperature and components' concentration are obtained and a different plasma reactor configuration is proposed to optimize the flow parameters. The numerical simulation results show an improved conversion ratio of the coal gasification. Different kinds of chemical reaction models are used to simulate the complex flow inside the reactor. It can be concluded that the numerical simulation system can be very useful for the design and optimization of the plasma reactor.
MAGNETIC NULL POINTS IN KINETIC SIMULATIONS OF SPACE PLASMAS
Energy Technology Data Exchange (ETDEWEB)
Olshevsky, Vyacheslav; Innocenti, Maria Elena; Cazzola, Emanuele; Lapenta, Giovanni [Centre for Mathematical Plasma Astrophysics (CmPA), KU Leuven (Belgium); Deca, Jan [Laboratory for Atmospheric and Space Physics (LASP), University of Colorado Boulder, Boulder, CO (United States); Divin, Andrey [St. Petersburg State University, St. Petersburg (Russian Federation); Peng, Ivy Bo; Markidis, Stefano, E-mail: sya@mao.kiev.ua [High Performance Computing and Visualization (HPCViz), KTH Royal Institute of Technology, Stockholm (Sweden)
2016-03-01
We present a systematic attempt to study magnetic null points and the associated magnetic energy conversion in kinetic particle-in-cell simulations of various plasma configurations. We address three-dimensional simulations performed with the semi-implicit kinetic electromagnetic code iPic3D in different setups: variations of a Harris current sheet, dipolar and quadrupolar magnetospheres interacting with the solar wind, and a relaxing turbulent configuration with multiple null points. Spiral nulls are more likely created in space plasmas: in all our simulations except lunar magnetic anomaly (LMA) and quadrupolar mini-magnetosphere the number of spiral nulls prevails over the number of radial nulls by a factor of 3–9. We show that often magnetic nulls do not indicate the regions of intensive energy dissipation. Energy dissipation events caused by topological bifurcations at radial nulls are rather rare and short-lived. The so-called X-lines formed by the radial nulls in the Harris current sheet and LMA simulations are rather stable and do not exhibit any energy dissipation. Energy dissipation is more powerful in the vicinity of spiral nulls enclosed by magnetic flux ropes with strong currents at their axes (their cross sections resemble 2D magnetic islands). These null lines reminiscent of Z-pinches efficiently dissipate magnetic energy due to secondary instabilities such as the two-stream or kinking instability, accompanied by changes in magnetic topology. Current enhancements accompanied by spiral nulls may signal magnetic energy conversion sites in the observational data.
Plasma physics code contribution to the Mont-Blanc project
Sáez, Xavier; Soba, Alejandro; Mantsinen, Mervi
2015-01-01
This work develops strategies for adapting a particle-in-cell code to heterogeneous computer architectures and, in particular, to an ARM-based prototype of the Mont-Blanc project using OmpSs programming model and the OpenMP and OpenCL languages.
Validation of numerical codes for the analysis of plasma discharges
Energy Technology Data Exchange (ETDEWEB)
Albanese, R. (Univ. di Salerno, Dipt. di Ingegneria Elettronica, Fisciano (Italy)); Bottura, L. (NET Team, Garching (Germany)); Chiocchio, S. (NET Team, Garching (Germany)); Coccorese, E. (Univ. di Reggio Calabria, Ist. di Ingegneria Elettronica (Italy)); Gernhardt, J. (Max Planck IPP, Garching (Germany)); Gruber, O. (Max Planck IPP, Garching (Germany)); Fresa, R. (Univ. di Salerno, Dipt. di Ingegneria Elettronica, Fisciano (Italy)); Martone, R. (Univ. di Salerno, Dipt. di Ingegneria Elettronica, Fisciano (Italy)); Portone, A. (NET Team, Garching (Germany)); Seidel, U. (Max Planck IPP, Garching (Germany))
1994-01-01
Electromagnetic aspects in the design of ITER-like reactors call for an extensive use of complex and advanced numerical codes. For this reason a strong attention has been paid within the NET-Team to the code development. In particular, through a cooperation with some Italian universities, during the last years a number of numerical procedures were developed and integrated. In order to assess the code reliability and to gain confidence on their predictions for next generation ITER-like reactors, the validation of the codes against experiments has to be considered as a strict requirement. Aim of this paper is to give a comprehensive presentation of this problem in the light of the results of a campaign of validation runs. The main outcome of this work is that the computational procedures, which have been developed for the NET project and then extensively used also for ITER studies, can be considered as experimentally validated in a sufficiently wide range of cases of interest. In particular, computed values are compared with experimental measurements made during some typical ASDEX-Upgrade discharges. From the electromagnetic point of view, many features of this machine are common to the ITER concept, so that the results of the validation can reasonably be extended to the ITER case. (orig.)
B2-EIRENE simulation of plasma and neutrals in MAGNUM-PSI
Baeva, M.; Goedheer, W. J.; Lopes Cardozo, N. J.; Reiter, D.
2007-06-01
A self-consistent description (performed by means of the B2-EIRENE code package) of a hydrogen plasma including electrons, ions and neutral background gas is used to investigate the processes and plasma behavior under conditions expected in MAGNUM-PSI. Several cases varying in gas-puffing, pumping rate, and plasma parameters are simulated. In all cases a detached plasma regime is achieved. The plasma density increases considerably for higher neutral pressures up to (1-5) × 1014 cm-3. The particle flux to the target is ∼1024 m-2 s-1 and the plasma heat flux is ∼10 MW m-2. The latter is significantly reduced in front of the target due to electron and ion cooling resulting from ionization and dissociation of H2 molecules, and charge exchange/elastic collisions. Under the conditions of investigation, the losses due to molecule activated recombination are dominant compared with 3-body recombination of atomic ions.
Simulation of spreading with solidification: assessment synthesis of Thema code
Energy Technology Data Exchange (ETDEWEB)
Spindler, B.; Veteau, J.M. [CEA Grenoble, Direction de l' Energie Nucleaire, Dept. de Technologie Nucleaire, Service d' Etudes Thermohydrauliques et Technologiques, 38 (France)
2004-07-01
After a presentation of the models included in THEMA code, which simulates the spreading of a fluid with solidification, the whole assessment calculations are presented. The first series concerns the comparison with analytical or numerical solutions: dam break, conduction for the heat transfer in the substrate, crust growth. The second series concerns the comparison with the CORINE isothermal tests (simulating fluid at low temperature). The third series concerns the CORINE tests with heat transfer. The fourth series concerns the tests with simulating materials at medium or high temperature (RIT, KATS). The fifth series concerns the tests with prototypical materials (COMAS, FARO, VULCANO). Finally the blind simulations of the ECOKATS tests are presented. All the calculations are performed with the same physical models (THEMA version 2.5), without any variable tuning parameter according to the test under consideration. Sensitivity studies concern the influence of the viscosity model in the solidification interval, and for the tests with prototypical materials the inlet temperature and the solid fraction. The relative difference between the calculated and measured spreading areas is generally less than 20 % except for the test with prototypical materials, for which the assessment is not easy due to the large experimental uncertainties. The level of validation of THEMA is considered as satisfactory, taking into account the required accuracy. (authors)
Overview of the Tusas Code for Simulation of Dendritic Solidification
Energy Technology Data Exchange (ETDEWEB)
Trainer, Amelia J. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Newman, Christopher Kyle [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Francois, Marianne M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-01-07
The aim of this project is to conduct a parametric investigation into the modeling of two dimensional dendrite solidification, using the phase field model. Specifically, we use the Tusas code, which is for coupled heat and phase-field simulation of dendritic solidification. Dendritic solidification, which may occur in the presence of an unstable solidification interface, results in treelike microstructures that often grow perpendicular to the rest of the growth front. The interface may become unstable if the enthalpy of the solid material is less than that of the liquid material, or if the solute is less soluble in solid than it is in liquid, potentially causing a partition [1]. A key motivation behind this research is that a broadened understanding of phase-field formulation and microstructural developments can be utilized for macroscopic simulations of phase change. This may be directly implemented as a part of the Telluride project at Los Alamos National Laboratory (LANL), through which a computational additive manufacturing simulation tool is being developed, ultimately to become part of the Advanced Simulation and Computing Program within the U.S. Department of Energy [2].
Full Wave Parallel Code for Modeling RF Fields in Hot Plasmas
Spencer, Joseph; Svidzinski, Vladimir; Evstatiev, Evstati; Galkin, Sergei; Kim, Jin-Soo
2015-11-01
FAR-TECH, Inc. is developing a suite of full wave RF codes in hot plasmas. It is based on a formulation in configuration space with grid adaptation capability. The conductivity kernel (which includes a nonlocal dielectric response) is calculated by integrating the linearized Vlasov equation along unperturbed test particle orbits. For Tokamak applications a 2-D version of the code is being developed. Progress of this work will be reported. This suite of codes has the following advantages over existing spectral codes: 1) It utilizes the localized nature of plasma dielectric response to the RF field and calculates this response numerically without approximations. 2) It uses an adaptive grid to better resolve resonances in plasma and antenna structures. 3) It uses an efficient sparse matrix solver to solve the formulated linear equations. The linear wave equation is formulated using two approaches: for cold plasmas the local cold plasma dielectric tensor is used (resolving resonances by particle collisions), while for hot plasmas the conductivity kernel is calculated. Work is supported by the U.S. DOE SBIR program.
Hallo, L.; Olazabal-Loumé, M.; Maire, P. H.; Breil, J.; Morse, R.-L.; Schurtz, G.
2006-06-01
This paper deals with ablation front instabilities simulations in the context of direct drive ICF. A simplified DT target, representative of realistic target on LIL is considered. We describe here two numerical approaches: the linear perturbation method using the perturbation codes Perle (planar) and Pansy (spherical) and the direct simulation method using our Bi-dimensional hydrodynamic code Chic. Numerical solutions are shown to converge, in good agreement with analytical models.
Electromagnetic thin-wall model for simulations of plasma wall-touching kink and vertical modes
Zakharov, Leonid E.; Atanasiu, Calin V.; Lackner, Karl; Hoelzl, Matthias; Strumberger, Erika
2015-12-01
> The understanding of plasma disruptions in tokamaks and predictions of their effects require realistic simulations of electric current excitation in three-dimensional vessel structures by the plasma touching the walls. As discovered at JET in 1996 (Litunovski JET Internal Report contract no. JQ5/11961, 1995; Noll et al., Proceedings of the 19th Symposium on Fusion Technology, Lisbon (ed. C. Varandas & F. Serra), vol. 1, 1996, p. 751. Elsevier) the wall-touching kink modes are frequently excited during vertical displacement events and cause large sideways forces on the vacuum vessel which are difficult to withstand in large tokamaks. In disruptions, the sharing of electric current between the plasma and the wall plays an important role in plasma dynamics and determines the amplitude and localization of the sideways force (Riccardo et al., Nucl. Fusion, vol. 40, 2000, p. 1805; Riccardo & Walker, Plasma Phys. Control. Fusion, vol. 42, 2000, p. 29; Zakharov, Phys. Plasmas, vol. 15, 2008, 062507; Riccardo et al., Nucl. Fusion, vol. 49, 2009, 055012; Bachmann et al., Fusion Engng Des., vol. 86, 2011, pp. 1915-1919). This paper describes a flat triangle representation of the electric circuits of a thin conducting wall of arbitrary three-dimensional geometry. Implemented into the shell simulation code (SHL) and the source sink current code (SSC), this model is suitable for modelling the electric currents excited in the wall inductively and through current sharing with the plasma.
Three-dimensional global fluid simulations of cylindrical magnetized plasmas
DEFF Research Database (Denmark)
Naulin, Volker; Windisch, T.; Grulke, O.
2008-01-01
. Thus, it is possible to assess the reproductive and predictive capabilities of plasma simulations in unprecedented detail. Here, three-dimensional global fluid simulations of a cylindrical magnetized plasma are presented. This plasma is characterized by the existence of spatially localized sources...... and sinks. The traditional scale separation paradigm is not applied in the simulation model to account for the important evolution of the background profiles due to the dynamics of turbulent fluctuations. Furthermore, the fluid modeling of sheath boundary conditions, which determine the plasma conditions...
Energy Technology Data Exchange (ETDEWEB)
Tong Huifeng; Yuan Hong [Institute of Fluid Physics, Chinese Academy of Engineering Physics, P.O. Box 919-101, Mianyang, Sichuan 621900 (China); Tang Zhiping [CAS Key Laboratory for Mechanical Behavior and Design of Materials, Department of Mechanics and Mechanical Engineering, University of Science and Technology of China, Hefei 230026 (China)
2013-01-28
When an intense laser beam irradiates on a solid target, ambient air ionizes and becomes plasma, while part of the target rises in temperature, melts, vaporizes, ionizes, and yet becomes plasma. A general Godunov finite difference scheme WENO (Weighted Essentially Non-Oscillatory Scheme) with fifth-order accuracy is used to simulate 2-dimensional axis symmetrical laser-supported plasma flow field in the process of laser ablation. The model of the calculation of ionization degree of plasma and the interaction between laser beam and plasma are considered in the simulation. The numerical simulations obtain the profiles of temperature, density, and velocity at different times which show the evolvement of the ablative plasma. The simulated results show that the laser energy is strongly absorbed by plasma on target surface and that the velocity of laser supported detonation (LSD) wave is half of the ideal LSD value derived from Chapman-Jouguet detonation theory.
EMMA: an AMR cosmological simulation code with radiative transfer
Aubert, Dominique; Ocvirk, Pierre
2015-01-01
EMMA is a cosmological simulation code aimed at investigating the reionization epoch. It handles simultaneously collisionless and gas dynamics, as well as radiative transfer physics using a moment-based description with the M1 approximation. Field quantities are stored and computed on an adaptive 3D mesh and the spatial resolution can be dynamically modified based on physically-motivated criteria. Physical processes can be coupled at all spatial and temporal scales. We also introduce a new and optional approximation to handle radiation : the light is transported at the resolution of the non-refined grid and only once the dynamics have been fully updated, whereas thermo-chemical processes are still tracked on the refined elements. Such an approximation reduces the overheads induced by the treatment of radiation physics. A suite of standard tests are presented and passed by EMMA, providing a validation for its future use in studies of the reionization epoch. The code is parallel and is able to use graphics proc...
SIMULATE-4 multigroup nodal code with microscopic depletion model
Energy Technology Data Exchange (ETDEWEB)
Bahadir, T. [Studsvik Scandpower, Inc., Newton, MA (United States); Lindahl, St.O. [Studsvik Scandpower AB, Vasteras (Sweden); Palmtag, S.P. [Studsvik Scandpower, Inc., Idaho Falls, ID (United States)
2005-07-01
SIMULATE-4 is a three-dimensional multigroup analytical nodal code with microscopic depletion capability. It has been developed employing 'first principal models' thus avoiding ad hoc approximations. The multigroup diffusion equations or, optionally, the simplified P{sub 3} equations are solved. Cross sections are described by a hybrid microscopic-macroscopic model that includes approximately 50 heavy nuclides and fission products. Heterogeneities in the axial direction of an assembly are treated systematically. Radially, the assembly is divided into heterogeneous sub-meshes, thereby overcoming the shortcomings of spatially-averaged assembly cross sections and discontinuity factors generated with zero net-current boundary conditions. Numerical tests against higher order transport methods and critical experiments show substantial improvements compared to results of existing nodal models. (authors)
Simulating Turbulence Using the Astrophysical Discontinuous Galerkin Code TENET
Bauer, Andreas; Springel, Volker; Chandrashekar, Praveen; Pakmor, Rüdiger; Klingenberg, Christian
2016-01-01
In astrophysics, the two main methods traditionally in use for solving the Euler equations of ideal fluid dynamics are smoothed particle hydrodynamics and finite volume discretization on a stationary mesh. However, the goal to efficiently make use of future exascale machines with their ever higher degree of parallel concurrency motivates the search for more efficient and more accurate techniques for computing hydrodynamics. Discontinuous Galerkin (DG) methods represent a promising class of methods in this regard, as they can be straightforwardly extended to arbitrarily high order while requiring only small stencils. Especially for applications involving comparatively smooth problems, higher-order approaches promise significant gains in computational speed for reaching a desired target accuracy. Here, we introduce our new astrophysical DG code TENET designed for applications in cosmology, and discuss our first results for 3D simulations of subsonic turbulence. We show that our new DG implementation provides ac...
VISRAD, 3-D Target Design and Radiation Simulation Code
Golovkin, Igor; Macfarlane, Joseph; Golovkina, Viktoriya
2016-10-01
The 3-D view factor code VISRAD is widely used in designing HEDP experiments at major laser and pulsed-power facilities, including NIF, OMEGA, OMEGA-EP, ORION, LMJ, Z, and PLX. It simulates target designs by generating a 3-D grid of surface elements, utilizing a variety of 3-D primitives and surface removal algorithms, and can be used to compute the radiation flux throughout the surface element grid by computing element-to-element view factors and solving power balance equations. Target set-up and beam pointing are facilitated by allowing users to specify positions and angular orientations using a variety of coordinates systems (e.g., that of any laser beam, target component, or diagnostic port). Analytic modeling for laser beam spatial profiles for OMEGA DPPs and NIF CPPs is used to compute laser intensity profiles throughout the grid of surface elements. We will discuss recent improvements to the software package and plans for future developments.
Numerical Simulation of Plasma Antenna with FDTD Method
Institute of Scientific and Technical Information of China (English)
LIANG Chao; XU Yue-Min; WANG Zhi-Jiang
2008-01-01
We adopt cylindrical-coordinate FDTD algorithm to simulate and analyse a 0.4-m-long column configuration plasma antenna. FDTD method is useful for solving electromagnetic problems, especially when wave characteristics and plasma properties are self-consistently related to each other. Focus on the frequency from 75 MHz to 400 MHz, the input impedance and radiation efficiency of plasma antennas are computed. Numerical results show that, different from copper antenna, the characteristics of plasma antenna vary simultaneously with plasma frequency and collision frequency. The property can be used to construct dynamically reconfigurable antenna.The investigation is meaningful and instructional for the optimization of plasma antenna design.
Gyrokinetic Particle Simulation of Compressible Electromagnetic Turbulence in High-β Plasmas
Energy Technology Data Exchange (ETDEWEB)
Lin, Zhihong
2014-03-13
Supported by this award, the PI and his research group at the University of California, Irvine (UCI) have carried out computational and theoretical studies of instability, turbulence, and transport in laboratory and space plasmas. Several massively parallel, gyrokinetic particle simulation codes have been developed to study electromagnetic turbulence in space and laboratory plasmas. In space plasma projects, the simulation codes have been successfully applied to study the spectral cascade and plasma heating in kinetic Alfven wave turbulence, the linear and nonlinear properties of compressible modes including mirror instability and drift compressional mode, and the stability of the current sheet instabilities with finite guide field in the context of collisionless magnetic reconnection. The research results have been published in 25 journal papers and presented at many national and international conferences. Reprints of publications, source codes, and other research-related information are also available to general public on the PI’s webpage (http://phoenix.ps.uci.edu/zlin/). Two PhD theses in space plasma physics are highlighted in this report.
3D Kinetic Simulation of Plasma Jet Penetration in Magnetic Field
Galkin, Sergei A.; Bogatu, I. N.; Kim, J. S.
2009-11-01
A high velocity plasmoid penetration through a magnetic barrier is a problem of a great experimental and theoretical interest. Our LSP PIC code 3D fully kinetic numerical simulations of high density (10^16 cm-3) high velocity (30-140 km/sec) plasma jet/bullet, penetrating through the transversal magnetic field, demonstrate three different regimes: reflection by field, penetration by magnetic field expulsion and penetration by magnetic self-polarization. The behavior depends on plasma jet parameters and its composition: hydrogen, carbon (A=12) and C60-fullerene (A=720) plasmas were investigated. The 3D simulation of two plasmoid head-on injections along uniform magnetic field lines is analyzed. Mini rail plasma gun (accelerator) modeling is also presented and discussed.
Divergence-free MHD Simulations with the HERACLES Code
Directory of Open Access Journals (Sweden)
Vides J.
2013-12-01
Full Text Available Numerical simulations of the magnetohydrodynamics (MHD equations have played a significant role in plasma research over the years. The need of obtaining physical and stable solutions to these equations has led to the development of several schemes, all requiring to satisfy and preserve the divergence constraint of the magnetic field numerically. In this paper, we aim to show the importance of maintaining this constraint numerically. We investigate in particular the hyperbolic divergence cleaning technique applied to the ideal MHD equations on a collocated grid and compare it to the constrained transport technique that uses a staggered grid to maintain the property. The methods are implemented in the software HERACLES and several numerical tests are presented, where the robustness and accuracy of the different schemes can be directly compared.
Bonoli, P. T.; Shiraiwa, S.; Wright, J. C.; Harvey, R. W.; Batchelor, D. B.; Berry, L. A.; Chen, Jin; Poli, F.; Kessel, C. E.; Jardin, S. C.
2012-10-01
Recent upgrades to the ion cyclotron RF (ICRF) and lower hybrid RF (LHRF) components of the Integrated Plasma Simulator [1] have made it possible to simulate LH current drive in the presence of ICRF minority heating and mode conversion electron heating. The background plasma is evolved in these simulations using the TSC transport code [2]. The driven LH current density profiles are computed using advanced ray tracing (GENRAY) and Fokker Planck (CQL3D) [3] components and predictions from GENRAY/CQL3D are compared with a ``reduced'' model for LHCD (the LSC [4] code). The ICRF TORIC solver is used for minority heating with a simplified (bi-Maxwellian) model for the non-thermal ion tail. Simulation results will be presented for LHCD in the presence of ICRF heating in Alcator C-Mod. [4pt] [1] D. Batchelor et al, Journal of Physics: Conf. Series 125, 012039 (2008).[0pt] [2] S. C. Jardin et al, J. Comp. Phys. 66, 481 (1986).[0pt] [3] R. W. Harvey and M. G. McCoy, Proc. of the IAEA Tech. Comm. Meeting on Simulation and Modeling of Therm. Plasmas, Montreal, Canada (1992).[0pt] [4] D. Ignat et al, Nucl. Fus. 34, 837 (1994).[0pt] [5] M. Brambilla, Plasma Phys. and Cont. Fusion 41,1 (1999).
Merlin, Emiliano; Grassi, Tommaso; Piovan, Lorenzo; Chiosi, Cesare
2009-01-01
We present EvoL, the new release of the Padova N-body code for cosmological simulations of galaxy formation and evolution. In this paper, the basic Tree + SPH code is presented and analysed, together with an overview on the software architectures. EvoL is a flexible parallel Fortran95 code, specifically designed for simulations of cosmological structure formation on cluster, galactic and sub-galactic scales. EvoL is a fully Lagrangian self-adaptive code, based on the classical Oct-tree and on the Smoothed Particle Hydrodynamics algorithm. It includes special features such as adaptive softening lengths with correcting extra-terms, and modern formulations of SPH and artificial viscosity. It is designed to be run in parallel on multiple CPUs to optimize the performance and save computational time. We describe the code in detail, and present the results of a number of standard hydrodynamical tests.
Integrated Plasma Simulation of Lower Hybrid Current Drive Modification of Sawtooth in Alcator C-Mod
Bonoli, P. T.; Hubbard, A. E.; Schmidt, A. E.; Wright, J. C.; Kessel, C. E.; Batchelor, D. B.; Berry, L. A.; Harvey, R. W.
2010-11-01
Experiments were performed in Alcator C-Mod, where the onset time for sawteeth was delayed significantly (up to 0.5 s) relative to ohmically heated plasmas, through injection of off-axis LH current drive power [1]. In this poster we discuss simulations of these experiments using the Integrated Plasma Simulator (IPS) [2], through which driven current density profiles and hard x-ray spectra are computed using a ray tracing code (GENRAY) and Fokker Planck code (CQL3D) [3], that are executed repeatedly in time. The background plasma is evolved in these simulations using the TSC transport code with the Porcelli sawtooth model [4]. [4pt] [1] C. E. Kessel et al, Bull. of the Am. Phys. Soc. 53, Poster PP6.00074 (2008). [0pt] [2] D. Batchelor et al, Journal of Physics: Conf. Series 125, 012039 (2008). [0pt] [3] R. W. Harvey and M. G. McCoy, Proc. of the IAEA Tech. Comm. Mtg. on Sim. and Mod. of Therm. Plasmas, Montreal, Canada (1992). [0pt] [4] S. C. Jardin et al, Journal Comp. Phys. 66, 481 (1986).
Application of adaptive mesh refinement to particle-in-cell simulations of plasmas and beams
Energy Technology Data Exchange (ETDEWEB)
Vay, J.-L.; Colella, P.; Kwan, J.W.; McCorquodale, P.; Serafini, D.B.; Friedman, A.; Grote, D.P.; Westenskow, G.; Adam, J.-C.; Heron, A.; Haber, I.
2003-11-04
Plasma simulations are often rendered challenging by the disparity of scales in time and in space which must be resolved. When these disparities are in distinctive zones of the simulation domain, a method which has proven to be effective in other areas (e.g. fluid dynamics simulations) is the mesh refinement technique. We briefly discuss the challenges posed by coupling this technique with plasma Particle-In-Cell simulations, and present examples of application in Heavy Ion Fusion and related fields which illustrate the effectiveness of the approach. We also report on the status of a collaboration under way at Lawrence Berkeley National Laboratory between the Applied Numerical Algorithms Group (ANAG) and the Heavy Ion Fusion group to upgrade ANAG's mesh refinement library Chombo to include the tools needed by Particle-In-Cell simulation codes.
Beam-beam simulation code BBSIM for particle accelerators
Energy Technology Data Exchange (ETDEWEB)
Kim, Hyung J.; Sen, Tanaji; /Fermilab
2011-01-01
A highly efficient, fully parallelized, six-dimensional tracking model for simulating interactions of colliding hadron beams in high energy ring colliders and simulating schemes for mitigating their effects is described. The model uses the weak-strong approximation for calculating the head-on interactions when the test beam has lower intensity than the other beam, a look-up table for the efficient calculation of long-range beam-beam forces, and a self-consistent Poisson solver when both beams have comparable intensities. A performance test of the model in a parallel environment is presented. The code is used to calculate beam emittance and beam loss in the Tevatron at Fermilab and compared with measurements. They also present results from the studies of stwo schemes proposed to compensate the beam-beam interactions: (a) the compensation of long-range interactions in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven and the Large Hadron Collider (LHC) at CERN with a current carrying wire, (b) the use of a low energy electron beam to compensate the head-on interactions in RHIC.
Beam-beam simulation code BBSIM for particle accelerators
Energy Technology Data Exchange (ETDEWEB)
Kim, Hyung J.; Sen, Tanaji; /Fermilab
2011-01-01
A highly efficient, fully parallelized, six-dimensional tracking model for simulating interactions of colliding hadron beams in high energy ring colliders and simulating schemes for mitigating their effects is described. The model uses the weak-strong approximation for calculating the head-on interactions when the test beam has lower intensity than the other beam, a look-up table for the efficient calculation of long-range beam-beam forces, and a self-consistent Poisson solver when both beams have comparable intensities. A performance test of the model in a parallel environment is presented. The code is used to calculate beam emittance and beam loss in the Tevatron at Fermilab and compared with measurements. They also present results from the studies of stwo schemes proposed to compensate the beam-beam interactions: (a) the compensation of long-range interactions in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven and the Large Hadron Collider (LHC) at CERN with a current carrying wire, (b) the use of a low energy electron beam to compensate the head-on interactions in RHIC.
Preface to advances in numerical simulation of plasmas
Parker, Scott E.; Chacon, Luis
2016-10-01
This Journal of Computational Physics Special Issue, titled "Advances in Numerical Simulation of Plasmas," presents a snapshot of the international state of the art in the field of computational plasma physics. The articles herein are a subset of the topics presented as invited talks at the 24th International Conference on the Numerical Simulation of Plasmas (ICNSP), August 12-14, 2015 in Golden, Colorado. The choice of papers was highly selective. The ICNSP is held every other year and is the premier scientific meeting in the field of computational plasma physics.
Flow Simulation and Optimization of Plasma Reactors for Coal Gasification
Institute of Scientific and Technical Information of China (English)
冀春俊; 张英姿; 马腾才
2003-01-01
This paper reports a 3-d numerical simulation system to analyze the complicatedflow in plasma reactors for coal gasification, which involve complex chemical reaction, two-phaseflow and plasma effect. On the basis of analytic results, the distribution of the density, tempera-ture and components' concentration are obtained and a different plasma reactor configuration isproposed to optimize the flow parameters. The numerical simulation results show an improvedconversion ratio of the coal gasification. Different kinds of chemical reaction models are used tosimulate the complex flow inside the reactor. It can be concluded that the numerical simulationsystem can be very useful for the design and optimization of the plasma reactor.
Study of Plasma Liner Driven Magnetized Target Fusion Via Advanced Simulations
Energy Technology Data Exchange (ETDEWEB)
Samulyak, Roman V. [State Univ. of New York (SUNY), Stony Brook, NY (United States); Brookhaven National Lab. (BNL), Upton, NY (United States); Parks, Paul [General Atomics, San Diego, CA (United States)
2013-08-31
The feasibility of the plasma liner driven Magnetized Target Fusion (MTF) via terascale numerical simulations will be assessed. In the MTF concept, a plasma liner, formed by merging of a number (60 or more) of radial, highly supersonic plasma jets, implodes on the target in the form of two compact plasma toroids, and compresses it to conditions of the fusion ignition. By avoiding major difficulties associated with both the traditional laser driven inertial confinement fusion and solid liner driven MTF, the plasma liner driven MTF potentially provides a low-cost and fast R&D path towards the demonstration of practical fusion energy. High fidelity numerical simulations of full nonlinear models associated with the plasma liner MTF using state-of-art numerical algorithms and terascale computing are necessary in order to resolve uncertainties and provide guidance for future experiments. At Stony Brook University, we have developed unique computational capabilities that ideally suite the MTF problem. The FronTier code, developed in collaboration with BNL and LANL under DOE funding including SciDAC for the simulation of 3D multi-material hydro and MHD flows, has beenbenchmarked and used for fundamental and engineering problems in energy science applications. We have performed 3D simulations of converging supersonic plasma jets, their merger and the formation of the plasma liner, and a study of the corresponding oblique shock problem. We have studied the implosion of the plasma liner on the magnetized plasma target by resolving Rayleigh-Taylor instabilities in 2D and 3D and other relevant physics and estimate thermodynamic conditions of the target at the moment of maximum compression and the hydrodynamic efficiency of the method.
HIS-TORIC: extending core ICRF wave simulation to include realistic SOL plasmas
Shiraiwa, S.; Wright, J. C.; Lee, J. P.; Bonoli, P. T.
2017-08-01
This paper presents a novel approach to incorporating an arbitrarily shaped edge scrape-off-layer (SOL) plasma and an ion cyclotron range of frequency (ICRF) antenna structure into existing core ICRF wave simulation models. We partition the entire computation domain into two sub-domains: a core and an edge region. Simulations in each domain are performed separately with appropriate numerical solvers. For the core, the TORIC ICRF solver (Brambilla 1999 Plasma Phys. Control. Fusion 41 1) was modified to impose an essential (Dirichlet) boundary condition at its interface with the edge domain. In the edge, a finite element method is used to solve a cold collisional plasma model. The domains are then joined together using the continuity boundary condition for the tangential electric and magnetic fields at their interfaces (Hybrid Integration of SOL to TORIC: HIS-TORIC). The model developed here was tested using an ICRH H minority heating scenario on the Alcator C-Mod tokamak (Hutchinson et al 1994 Phys. Plasmas 1 1511). The simulated pattern of core wave propagation agrees well with a standard TORIC simulation. This approach opens the possibility of using a realistic diverted SOL plasma and a complicated 3D RF antenna together with a rigorous hot core plasma model, while requiring only minimal modification to existing RF codes.
Development of full wave code for modeling RF fields in hot non-uniform plasmas
Zhao, Liangji; Svidzinski, Vladimir; Spencer, Andrew; Kim, Jin-Soo
2016-10-01
FAR-TECH, Inc. is developing a full wave RF modeling code to model RF fields in fusion devices and in general plasma applications. As an important component of the code, an adaptive meshless technique is introduced to solve the wave equations, which allows resolving plasma resonances efficiently and adapting to the complexity of antenna geometry and device boundary. The computational points are generated using either a point elimination method or a force balancing method based on the monitor function, which is calculated by solving the cold plasma dispersion equation locally. Another part of the code is the conductivity kernel calculation, used for modeling the nonlocal hot plasma dielectric response. The conductivity kernel is calculated on a coarse grid of test points and then interpolated linearly onto the computational points. All the components of the code are parallelized using MPI and OpenMP libraries to optimize the execution speed and memory. The algorithm and the results of our numerical approach to solving 2-D wave equations in a tokamak geometry will be presented. Work is supported by the U.S. DOE SBIR program.
Numerical simulations of a nonequilibrium argon plasma in a shock-tube experiment
Cambier, Jean-Luc
1991-01-01
A code developed for the numerical modeling of nonequilibrium radiative plasmas is applied to the simulation of the propagation of strong ionizing shock waves in argon gas. The simulations attempt to reproduce a series of shock-tube experiments which will be used to validate the numerical models and procedures. The ability to perform unsteady simulations makes it possible to observe some fluctuations in the shock propagation, coupled to the kinetic processes. A coupling mechanism by pressure waves, reminiscent of oscillation mechanisms observed in detonation waves, is described. The effect of upper atomic levels is also briefly discussed.
Self-consistent hybrid neoclassical-magnetohydrodynamic simulations of axisymmetric plasmas
Lyons, Brendan Carrick
Neoclassical effects (e.g., conductivity reduction and bootstrap currents) have a profound impact on many magnetohydrodynamic (MHD) instabilities in toroidally-confined plasmas, including tearing modes, edge-localized modes, and resistive wall modes. High-fidelity simulations of such phenomena require a multiphysics code that self-consistently couples the kinetic and fluid models. We review a hybrid formulation from the recent literatureAB that is appropriate for such studies. In particular, the formulation uses a set of time-dependent drift-kinetic equations (DKEs) to advance the non-Maxwellian part of the electron and ion distribution functions (fNM) with linearized Fokker-Planck-Landau collision operators. The form of the DKEs used were derived in a Chapman-Enskog-like fashion, ensuring that fNM carries no density, momentum, or temperature. Rather, these quantities are contained within the background Maxwellian and are evolved by a set of MHD equations which are closed by moments of fNM . We then present two DKE solvers based upon this formulation in axisymmetric toroidal geometries. The Neoclassical Ion-Electron Solver (NIES) solves the steady-state DKEs in the low-collisionality limit. Convergence and benchmark studies are discussed, providing a proof-of-principle that this new formulation can accurately reproduce results from the literature in the limit considered. We then present the DK4D code which evolves the finite-collisionality DKEs time-dependently. Computational methods used and successful benchmarks to other neoclassical models and codes are discussed. Furthermore, we couple DK4D to a reduced, transport-timescale MHD code. The resulting hybrid code is used to simulate the evolution of the current density in a large-aspect-ratio plasma in the presence of several different time-dependent pressure profiles. These simulations demonstrate the self-consistent, dynamic formation of the ohmic and bootstrap currents. In the slowly-evolving plasmas considered
A comparative study of MONTEBURNS and MCNPX 2.6.0 codes in ADS simulations
Energy Technology Data Exchange (ETDEWEB)
Barros, Graiciany P.; Pereira, Claubia; Veloso, Maria A.F.; Velasquez, Carlos E.; Costa, Antonella L., E-mail: gbarros@ufmg.br, E-mail: claubia@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear
2013-07-01
The possible use of the MONTEBURNS and MCNPX 2.6.0 codes in Accelerator-driven systems (ADSs) simulations for fuel evolution description is discussed. ADSs are investigated for fuel breeding and long-lived fission product transmutation so simulations of fuel evolution have a great relevance. The burnup/depletion capability is present in both studied codes. MONTEBURNS code links Monte Carlo N-Particle Transport Code (MCNP) to the radioactive decay burnup code ORIGEN2, whereas MCNPX depletion/ burnup capability is a linked process involving steady-state flux calculations by MCNPX and nuclide depletion calculations by CINDER90. A lead-cooled accelerator-driven system fueled with thorium was simulated and the results obtained using MONTEBURNS code and the results from MCNPX 2.6.0 code were compared. The system criticality and the variation of the actinide inventory during the burnup were evaluated and the results indicate a similar behavior between the results of each code. (author)
Code OK2—A simulation code of ion-beam illumination on an arbitrary shape and structure target
Ogoyski, A. I.; Kawata, S.; Someya, T.
2004-08-01
irradiation and non-uniformity evaluations are sophisticated and difficult to calculate analytically. Based on our code one can numerically obtain a three-dimensional profile of energy deposition onto an arbitrary shape and structure target. Method of solution: OK2 code works on the base of OK1 [1-9]. The code simulates a multi-beam illumination on a target with arbitrary shape and structure, and obtains the 3D energy deposition profile. Restrictions on the complexity of the problem: None Typical running time: The execution time depends on the pellet mesh number and the number of beams in the simulated illumination as well as on the beam characteristics (beam radius on the pellet surface, beam subdivision, projectile particle energy and so on). In almost of the practical running tests performed, the typical running time for one beam deposition is about 40 s on a PC with a CPU of Pentium 4, 2.4 GHz. Unusual features of the program: None References: [1] A.I. Ogoyski, et al., Code OK1—Simulation of multi-beam irradiation on a spherical target in heavy ion fusion, Comput. Phys. Commun. 157 (2004) 160-172. [2] J.J. Barnard, et al., Lawrence Livermore National Laboratory Research Report, UCRL-LR-108095 (1991). [3] C. Deutsch, et al., J. Plasma and Fusion Res. 77 (2001) 33. [4] T. Someya, et al., Fusion Science Tech. 43 (2003) 282-289. [5] S.V. Bulanov, et al., Phys. Lett. A 299 (2002) 240-247. [6] M.H. Emery, et al., Phys. Rev. Lett. 48 (1982) 253. [7] S. Kawata, et al., J. Phys. Soc. Japan 53 (1984) 3416. [8] T. Mehlhorn, Sandia Report, SAND80-0038 (1980). [9] H.H. Andersen, J.F. Ziegler, The Stopping and Ranges of Ions in Matter, vol. 3, Pergamon Press, Elmsford, NY, 1977.
A Volume-Weighting Cloud-in-Cell Model for Particle Simulation of Axially Symmetric Plasmas
Institute of Scientific and Technical Information of China (English)
李永东; 何锋; 刘纯亮
2005-01-01
A volume-weighting cloud-in-cell (VW-CIC) model is developed to implement the particle-in-cell (PIC) simulation in axially symmetric systems. This model gives a first-order accuracy in the cylindrical system, and it is incorporated into a PIC code. A planar diode with a finite-radius circular emitter is simulated with the code. The simulation results show that the VW-CIC model has a better accuracy and a lower noise than the conventional area-weighting cloud-in-cell (AW-CIC) model, especially on those points near the axis. The two-dimensional (2-D) space-charge-limited current density obtained from VW-CIC model is in better agreement with Lau's analytical result. This model is more suitable for 2.5-D PIC simulation of axially symmetric plasmas.
Simulations of the C-2/C-2U Field Reversed Configurations with the Q2D code
Onofri, Marco; Dettrick, Sean; Barnes, Daniel; Tajima, Toshiki; TAE Team
2015-11-01
C-2U was built to sustain advanced beam-driven FRCs for 5 + ms. The Q2D transport code is used to simulate the evolution of C-2U discharges and to study sustainment via fast ion current and pressure, with the latter comparable to the thermal plasma pressure. The code solves the MHD equations together with source terms due to neutral beams, which are calculated by a Monte Carlo method. We compare simulations with experimental results obtained in the HPF14 regime of C-2 (6 neutral beams with energy of 20 keV and total power of 4.2 MW). All simulations start from an initial equilibrium and transport coefficients are chosen to match experimental data. The best agreement is obtained when utilizing an enhanced energy transfer between fast ions and the plasma, which may be an indication of anomalous heating due to beneficial beam-plasma instabilities. Similar simulations of C-2U (neutral beam power increased to 10 + MW and angled beam injection) are compared with experimental results, where a steady state has been obtained for 5 + ms, correlated with the neutral beam pulse and limited by engineering constraints.
Simulation of laser-driven plasma beat-wave propagation in collisional weakly relativistic plasmas
Kaur, Maninder; Nandan Gupta, Devki
2016-11-01
The process of interaction of lasers beating in a plasma has been explored by virtue of particle-in-cell (PIC) simulations in the presence of electron-ion collisions. A plasma beat wave is resonantly excited by ponderomotive force by two relatively long laser pulses of different frequencies. The amplitude of the plasma wave become maximum, when the difference in the frequencies is equal to the plasma frequency. We propose to demonstrate the energy transfer between the laser beat wave and the plasma wave in the presence of electron-ion collision in nearly relativistic regime with 2D-PIC simulations. The relativistic effect and electron-ion collision both affect the energy transfer between the interacting waves. The finding of simulation results shows that there is a considerable decay in the plasma wave and the field energy over time in the presence of electron-ion collisions.
Flow simulation and optimization of plasma reactors for coal gasification
Energy Technology Data Exchange (ETDEWEB)
Ji, C.J.; Zhang, Y.Z.; Ma, T.C. [Dalian University of Technology, Dalian (China). Power Engineering Dept.
2003-10-01
This paper reports a 3-D numerical simulation system to analyze the complicated flow in plasma reactors for coal gasification, which involve complex chemical reaction, two-phase flow and plasma effect. On the basis of analytic results, the distribution of the density, temperature and components' concentration are obtained and a different plasma reactor configuration is proposed to optimize the flow parameters. The numerical simulation results show an improved conversion ratio of the coal gasification. Different kinds of chemical reaction models are used to simulate the complex flow inside the reactor. It can be concluded that the numerical simulation system can be very useful for the design and optimization of the plasma reactor.
Modelling of dusty plasma properties by computer simulation methods
Energy Technology Data Exchange (ETDEWEB)
Baimbetov, F B [IETP, Al Farabi Kazakh National University, 96a, Tole bi St, Almaty 050012 (Kazakhstan); Ramazanov, T S [IETP, Al Farabi Kazakh National University, 96a, Tole bi St, Almaty 050012 (Kazakhstan); Dzhumagulova, K N [IETP, Al Farabi Kazakh National University, 96a, Tole bi St, Almaty 050012 (Kazakhstan); Kadyrsizov, E R [Institute for High Energy Densities of RAS, Izhorskaya 13/19, Moscow 125412 (Russian Federation); Petrov, O F [IETP, Al Farabi Kazakh National University, 96a, Tole bi St, Almaty 050012 (Kazakhstan); Gavrikov, A V [IETP, Al Farabi Kazakh National University, 96a, Tole bi St, Almaty 050012 (Kazakhstan)
2006-04-28
Computer simulation of dusty plasma properties is performed. The radial distribution functions, the diffusion coefficient are calculated on the basis of the Langevin dynamics. A comparison with the experimental data is made.
ANNarchy: a code generation approach to neural simulations on parallel hardware
Directory of Open Access Journals (Sweden)
Julien eVitay
2015-07-01
Full Text Available Many modern neural simulators focus on the simulation of networks of spiking neurons on parallel hardware. Another important framework in computational neuroscience, rate-coded neural networks, is mostly difficult or impossible to implement using these simulators. We present here the ANNarchy (Artificial Neural Networks architect neural simulator, which allows to easily define and simulate rate-coded and spiking networks, as well as combinations of both. The interface in Python has been designed to be close to the PyNN interface, while the definition of neuron and synapse models can be specified using an equation-oriented mathematical description similar to the Brian neural simulator. This information is used to generate C++ code that will efficiently perform the simulation on the chosen parallel hardware (multi-core system or graphical processing unit. Several numerical methods are available to transform ordinary differential equations into an efficient C++ code. We compare the parallel performance of the simulator to existing solutions.
ANNarchy: a code generation approach to neural simulations on parallel hardware.
Vitay, Julien; Dinkelbach, Helge Ü; Hamker, Fred H
2015-01-01
Many modern neural simulators focus on the simulation of networks of spiking neurons on parallel hardware. Another important framework in computational neuroscience, rate-coded neural networks, is mostly difficult or impossible to implement using these simulators. We present here the ANNarchy (Artificial Neural Networks architect) neural simulator, which allows to easily define and simulate rate-coded and spiking networks, as well as combinations of both. The interface in Python has been designed to be close to the PyNN interface, while the definition of neuron and synapse models can be specified using an equation-oriented mathematical description similar to the Brian neural simulator. This information is used to generate C++ code that will efficiently perform the simulation on the chosen parallel hardware (multi-core system or graphical processing unit). Several numerical methods are available to transform ordinary differential equations into an efficient C++code. We compare the parallel performance of the simulator to existing solutions.
Energy Technology Data Exchange (ETDEWEB)
Hallo, L.; Olazabal-Loume, M.; Maire, P.H.; Breil, J.; Schurtz, G. [CELIA, 33 - Talence (France); Morse, R.L. [Arizona Univ., Dept. of Nuclear Engineering, Tucson (United States)
2006-06-15
This paper deals with ablation front instabilities simulations in the context of direct drive inertial confinement fusion. A simplified deuterium-tritium target, representative of realistic target on LIL (laser integration line at Megajoule laser facility) is considered. We describe here two numerical approaches: the linear perturbation method using the perturbation codes Perle (planar) and Pansy (spherical) and the direct simulation method using our bi-dimensional hydrodynamic code Chic. Our work shows a good behaviour of all methods even for large wavenumbers during the acceleration phase of the ablation front. We also point out a good agreement between model and numerical predictions at ablation front during the shock wave transit.
Simulation of Flow Around Cylinder Actuated by DBD Plasma
Wang, Yuling; Gao, Chao; Wu, Bin; Hu, Xu
2016-07-01
The electric-static body force model is obtained by solving Maxwell's electromagnetic equations. Based on the electro-static model, numerical modeling of flow around a cylinder with a dielectric barrier discharge (DBD) plasma effect is also presented. The flow streamlines between the numerical simulation and the particle image velocimetry (PIV) experiment are consistent. According to the numerical simulation, DBD plasma can reduce the drag coefficient and change the vortex shedding frequencies of flow around the cylinder.
Computational Simulation of High Energy Density Plasmas
2009-10-30
the imploding liner. The PFS depends on a lithium barrier foil slowing the advance of deuterium up the coaxial gun to the corner. There the plasma ...the coaxial gun section, and Figure 4 shows the physical state of the plasma just prior to pinch. Figure 5 shows neutron yield reaching 1014 in this...details the channel geometry between the center cylinder and coaxial gas gun . The deuterium injection starts when the pressure of the deuterium gas in
Nonlinear Simulation of Plasma Response to the NSTX Error Field
Breslau, J. A.; Park, J. K.; Boozer, A. H.; Park, W.
2008-11-01
In order to better understand the effects of the time-varying error field in NSTX on rotation braking, which impedes RWM stabilization, we model the plasma response to an applied low-n external field perturbation using the resistive MHD model in the M3D code. As an initial benchmark, we apply an m=2, n=1 perturbation to the flux at the boundary of a non-rotating model equilibrium and compare the resulting steady-state island sizes with those predicted by the ideal linear code IPEC. For sufficiently small perturbations, the codes agree; for larger perturbations, the nonlinear correction yields an upper limit on the island width beyond which stochasticity sets in. We also present results of scaling studies showing the effects of finite resistivity on island size in NSTX, and of time-dependent studies of the interaction between these islands and plasma rotation. The M3D-C1 code is also being evaluated as a tool for this analysis; first results will be shown. J.E. Menard, et al., Nucl. Fus. 47, S645 (2007). W. Park, et al., Phys. Plasmas 6, 1796 (1999). J.K. Park, et al., Phys. Plasmas 14, 052110 (2007). S.C. Jardin, et al., J. Comp. Phys. 226, 2146 (2007).
Numerical Simulations of Low Pressure Inductively Coupled Plasmas in Geometrically Complex Reactors
Yu, Ben; Wu, Hanming; Krishnan, Anantha
1996-10-01
A two-dimensional fluid model has been developed for simulation of low pressure inductively coupled plasma (ICP) reactors. The model obtains solutions for the plasma density, electron temperature, and electric field for the given operating conditions. The physical phenomena and processes such as ambipolar diffusion, thermal diffusion, quasi-neutrality, ionization, inductive Joule heating, and excitations are considered in the model. A significant feature of the model is its capability of handling complex geometries that are often encountered in industrial reactors. Complex reactor geometries are modeled by a body-fitted-coordinate (BFC) formulation. A series of numerical experiments have been conducted using the model to study effects of various parameters such as chamber pressure, size of the wafer, position of the inductive coil, and the power input into the plasma. Different reactor geometries such as the GEC ICP reference cell and the belljar reactor have been simulated. The results of the parametric experiments are presented to show certain systematic trends in performance parameters such as uniformity and processing rates. The ICP model has been coupled to a computational fluid dynamics (CFD) code (capable of 3D simulations) that obtains the flow and pressure distribution inside the chamber. The ICP model will use pressure predictions (from the CFD model) to compute the local ionization rates. Chemical source/sink terms from the plasma dissociation model will be used by the CFD code to account for local reactant depletion effects.
Gyrokinetic simulations predict anomalous poloidal rotation in tokamak plasmas
Dif-Pradalier, Guilhem; Grandgirard, Virginie; Sarazin, Yanick; Garbet, Xavier; Ghendrih, Phillippe; Angelino, Paolo
2008-11-01
First-principle based collisionless gyrokinetic theory consensually provides today's deepest insight on turbulence-related problems in plasma physics. Conversely, neoclassical theory describes the effects of binary Coulomb collisions in a toroidal and inhomogeneous magnetic geometry and its consequences on particle trapping. The interplay between turbulence and collisions is a subject of great current focus for first-principle modeling since recent evidences have started to emphasise its relevance for the onset and the control of enhanced confinement regimes in the next-generation devices like Iter. A finite differences Fokker-Planck ion-ion collision operator is implemented in the full-f and global GYSELA code and has been thoroughly benchmarked in neoclassical regimes. Two types of simulations are compared, either purely neoclassical or turbulent including neoclassical effects. In each case, three different values of collisionality in the banana regime are investigated. Preliminary results show an enhancement of about 30% of the poloidal rotation of the main ions (Z=1) in the turbulent regime as compared to its neoclassical value. In all cases the radial force balance equation is satisfied within a few percent. Most of this increase comes from the radial electric field.
CENTORI: a global toroidal electromagnetic two-fluid plasma turbulence code
Knight, P J; Edwards, T D; Hein, J; Romanelli, M; McClements, K G
2011-01-01
A new global two-fluid electromagnetic turbulence code, CENTORI, has been developed for the purpose of studying magnetically-confined fusion plasmas. This code is used to evolve the combined system of electron and ion fluid equations and Maxwell equations in fully toroidal geometry, and is applicable to tokamaks of arbitrary aspect ratio and high plasma beta. A predictor corrector, semi-implicit finite difference scheme is used to compute the time evolution of fluid quantities and fields. Vector operations and the evaluation of flux surface averages are speeded up by choosing the Jacobian of the transformation from laboratory to plasma coordinates to be a function of the equilibrium poloidal magnetic flux. A subroutine, GRASS, is used to co-evolve the plasma equilibrium by computing the steady-state solutions of a diffusion equation with a pseudo-time derivative. The code is written in Fortran 95 and is efficiently parallelized using Message Passing Interface (MPI). Illustrative examples of output from a simu...
Feasibility Analysis on Simulation of PLCS Malfunction Event using SPACE Code
Energy Technology Data Exchange (ETDEWEB)
Kim, Ung Soo; Lee, Cheol Shin; Sohn, Jong Joo [KEPCO-E and C, Daejeon (Korea, Republic of)
2011-10-15
A computer code named 'Safety and Performance Analysis Code (SPACE)' has been being developed in order to replace several existing computer codes used in designing nuclear power plant (NPP) in Korea. This SPACE code is a system code and should be able to simulate various plant events, needed for safety analysis of pressurized water reactors (PWRs), such as loss of coolant accident (LOCA), steam line break (SLB), feedwater line break (FLB), steam generator tube rupture (SGTR), and several anticipated operational occurrences (AOOs). Therefore, respective simulations of above events with the SPACE code should be verified and validated to utilize this code in the safety analysis. In this work, a feasibility analysis is performed for the simulation of pressurizer level control system (PLCS) malfunction event for the Shin-Kori units 3 and 4 (SKN 3 and 4)
SITA version 0. A simulation and code testing assistant for TOUGH2 and MARNIE
Energy Technology Data Exchange (ETDEWEB)
Seher, Holger; Navarro, Martin
2016-06-15
High quality standards have to be met by those numerical codes that are applied in long-term safety assessments for deep geological repositories for radioactive waste. The software environment SITA (''a simulation and code testing assistant for TOUGH2 and MARNIE'') has been developed by GRS in order to perform automated regression testing for the flow and transport simulators TOUGH2 and MARNIE. GRS uses the codes TOUGH2 and MARNIE in order to assess the performance of deep geological repositories for radioactive waste. With SITA, simulation results of TOUGH2 and MARNIE can be compared to analytical solutions and simulations results of other code versions. SITA uses data interfaces to operate with codes whose input and output depends on the code version. The present report is part of a wider GRS programme to assure and improve the quality of TOUGH2 and MARNIE. It addresses users as well as administrators of SITA.
DgSMC-B code: A robust and autonomous direct simulation Monte Carlo code for arbitrary geometries
Kargaran, H.; Minuchehr, A.; Zolfaghari, A.
2016-07-01
In this paper, we describe the structure of a new Direct Simulation Monte Carlo (DSMC) code that takes advantage of combinatorial geometry (CG) to simulate any rarefied gas flows Medias. The developed code, called DgSMC-B, has been written in FORTRAN90 language with capability of parallel processing using OpenMP framework. The DgSMC-B is capable of handling 3-dimensional (3D) geometries, which is created with first-and second-order surfaces. It performs independent particle tracking for the complex geometry without the intervention of mesh. In addition, it resolves the computational domain boundary and volume computing in border grids using hexahedral mesh. The developed code is robust and self-governing code, which does not use any separate code such as mesh generators. The results of six test cases have been presented to indicate its ability to deal with wide range of benchmark problems with sophisticated geometries such as airfoil NACA 0012. The DgSMC-B code demonstrates its performance and accuracy in a variety of problems. The results are found to be in good agreement with references and experimental data.
Numerical simulation and experimental progress on plasma window
Wang, S. Z.; Zhu, K.; Huang, S.; Lu, Y. R.; Shi, B. L.
2016-11-01
In this paper, a numerical 2D FLUENT-based magneto-hydrodynamic simulation on 3mm plasma window using argon, taken as a windowless vacuum device, was developed. The gas inlet, arc creation and developing and plasma expansion segments are all contained in this model. In the axis-symmetry cathode structure, a set of parameters including pressure, temperature, velocity and current distribution were obtained and discussed. The fluid dynamics of plasma in cavities with different shapes was researched. Corresponding experiments was carried out and the result agrees well to the numerical simulation. The validity of sealing ability of plasma window has been verified. Relevant further research upon deuteron gas as neutron production target is to be continued, considering larger diameter plasma window experimentally and numerically.
Monte Carlo simulations for plasma physics
Energy Technology Data Exchange (ETDEWEB)
Okamoto, M.; Murakami, S.; Nakajima, N.; Wang, W.X. [National Inst. for Fusion Science, Toki, Gifu (Japan)
2000-07-01
Plasma behaviours are very complicated and the analyses are generally difficult. However, when the collisional processes play an important role in the plasma behaviour, the Monte Carlo method is often employed as a useful tool. For examples, in neutral particle injection heating (NBI heating), electron or ion cyclotron heating, and alpha heating, Coulomb collisions slow down high energetic particles and pitch angle scatter them. These processes are often studied by the Monte Carlo technique and good agreements can be obtained with the experimental results. Recently, Monte Carlo Method has been developed to study fast particle transports associated with heating and generating the radial electric field. Further it is applied to investigating the neoclassical transport in the plasma with steep gradients of density and temperatures which is beyong the conventional neoclassical theory. In this report, we briefly summarize the researches done by the present authors utilizing the Monte Carlo method. (author)
Three-Dimensional Numerical Simulation of Surface-Wave Plasma Source
Institute of Scientific and Technical Information of China (English)
LAN Chaohui; CHEN Zhaoquan; LIU Minghai; JIANG Zhonghe; HU Xiwei
2009-01-01
A three-dimensional model of a surface-wave plasma(SWP)source is built numerically using the finite-difference time-domain(FDTD)method to investigate the structure of the surface wave propagation along the plasma-dielectric interface and the distributions of electromagnetic fields in the whole system.A good-performance excitation source technique for the waveguide which is pivotal to the simulation is presented.The technique can avoid the dc distortions of magnetic fields caused by the forcing electric wall.An example of simulation is given to confirm the existence of the surface waves.The simulation also shows that the code developed is a useful tool in the computer-aided design of the antenna of the SWP source.
Energy Technology Data Exchange (ETDEWEB)
Morales C, J
2001-07-01
One of the general objectives that are developed by the group of polymers semiconductors in the laboratory of polymers of the UAM-Iztapalapa is to study the surface treatment for plasma of different materials. Framed in this general objective, in this work three lines of investigation have been developed, independent one of other that converge in the general objective. The first one tries about the modeling one and evaluation of the microscopic parameters of operation of the polymerization reactor. The second are continuation of the study of conductive polymers synthesized by plasma and the third are an application of the treatment for plasma on natural fibers. In the first one it lines it is carried out the characterization and simulation of the parameters of operation of the polymerization reactor for plasma. They are determined the microscopic parameters of operation of the reactor experimentally like they are the electronic temperature, the potential of the plasma and the density average of electrons using for it an electrostatic Langmuir probe. In the simulation, starting from the Boltzmann transport equation it thinks about the flowing pattern and the electronic temperature, the ions density is obtained and of electrons. The data are compared obtained experimentally with the results of the simulation. In second line a study is presented about the influence of the temperature on the electric conductivity of thin films doped with iodine, of poly aniline (P An/I) and poly pyrrole (P Py/I). The films underwent heating-cooling cycles. The conductivity of P An/I and P Py/I in function of the temperature it is discussed based on the Arrhenius model, showing that it dominates the model of homogeneous conductivity. It is also synthesized a polymer bi-layer of these two elements and a copolymer random poly aniline-poly pyrrole, of the first one it the behavior of its conductivity discusses with the temperature and of the second, the conductivity is discussed in
Blaclard, G.; Vincenti, H.; Lehe, R.; Vay, J. L.
2017-09-01
With the advent of petawatt class lasers, the very large laser intensities attainable on target should enable the production of intense high-order Doppler harmonics from relativistic laser-plasma mirror interactions. At present, the modeling of these harmonics with particle-in-cell (PIC) codes is extremely challenging as it implies an accurate description of tens to hundreds of harmonic orders on a broad range of angles. In particular, we show here that due to the numerical dispersion of waves they induce in vacuum, standard finite difference time domain (FDTD) Maxwell solvers employed in most PIC codes can induce a spurious angular deviation of harmonic beams potentially degrading simulation results. This effect was extensively studied and a simple toy model based on the Snell-Descartes law was developed that allows us to finely predict the angular deviation of harmonics depending on the spatiotemporal resolution and the Maxwell solver used in the simulations. Our model demonstrates that the mitigation of this numerical artifact with FDTD solvers mandates very high spatiotemporal resolution preventing realistic three-dimensional (3D) simulations even on the largest computers available at the time of writing. We finally show that nondispersive pseudospectral analytical time domain solvers can considerably reduce the spatiotemporal resolution required to mitigate this spurious deviation and should enable in the near future 3D accurate modeling on supercomputers in a realistic time to solution.
Simulations for plasma spectroscopy based on UTA theory
Institute of Scientific and Technical Information of China (English)
无
1999-01-01
The unresolved transition array(UTA) simulation with configurationaverage approximation is used to calculate the spectral properties ofplasmas involving complex ions. This method is used to simulate thetransmission of X-rays through aluminum plasma and niobium plasmarespectively. The results are compared with experiments and other results ofadvanced models and good agreements are obtained.
Tesileanu, O; Massaglia, S
2008-01-01
Time-dependent cooling processes are of paramount importance in the evolution of astrophysical gaseous nebulae and, in particular, when radiative shocks are present. The present work introduces a necessary set of tools that can be used to model radiative astrophysical flows in the optically-thin plasma limit. We aim to provide reliable and accurate predictions of emission line ratios and radiative cooling losses in astrophysical simulations of shocked flows. Moreover, we discuss numerical implementation aspects to ease future improvements and implementation in other MHD numerical codes. The most important source of radiative cooling for our plasma conditions comes from the collisionally-excited line radiation. We evolve a chemical network, including 29 ion species, to compute the ionization balance in non-equilibrium conditions. After a series of validations and tests, typical astrophysical setups are simulated in 1D and 2D, employing both the present cooling model and a simplified one. The influence of the c...
Energy Technology Data Exchange (ETDEWEB)
Burkhardt, Joerg
2013-07-01
The courses and consequences of severe accidents in nuclear power plants are usually simulated with the help of so called Lumped Parameter-Codes which are especially designed for this purpose. These codes are able to simulate complex physical phenomena within short computing times since they are based on a simplified zone principle. Furthermore they are provided with a simplified flow model basis. This dissertation aims at the ability of the German Containment Code System (COCOSYS) to simulate local accumulations of hydrogen. During severe accidents with a melting reactor core (as in Harrisburg or Fukushima) hydrogen can be generated and then be released to the containment. In case of a local accumulation a detonation can occur that endangers the buildings integrity. The results show that the development and the erosion of these hydrogen accumulations based on bouant flows are qualitatively well simulated. From a systematic grid study general rules concerning the simulation of the stratification erosion have been derivated. Those have been applied and confirmed by several blind code-benchmarks. A detailed analysis has shown that the simulated erosion rate and the resistance of simulated hydrogen accumulations are directly related to the grid discretisation chosen by the user. Based upon this analysis a model concept has been developed, which is able to detect hydrogen accumulations and to determine their intensity of interaction with impinging flows by non-dimensional numbers. The erosion flow is controlled by adjusting local grid effects. The model is in the development phase.
Simulations of a beam-driven plasma antenna in the regime of plasma transparency
Timofeev, I. V.; Berendeev, E. A.; Dudnikova, G. I.
2017-09-01
In this paper, the theoretically predicted possibility to increase the efficiency of electromagnetic radiation generated by a thin beam-plasma system in the regime of oblique emission, when a plasma column becomes transparent to radiation near the plasma frequency, is investigated using particle-in-cell simulations. If a finite-size plasma column has a longitudinal density modulation, such a system is able to radiate electromagnetic waves as a dipole antenna. This radiation mechanism is based on the conversion of an electron beam-driven potential plasma wave on the periodic perturbation of plasma density. In this case, the frequency of radiated waves appears to be slightly lower than the plasma frequency. That is why their fields enable the penetration into the plasma only to the skin-depth. This case is realized when the period of density modulation coincides with the wavelength of the most unstable beam-driven mode, and the produced radiation escapes from the plasma in the purely transverse direction. In the recent theoretical paper [I. V. Timofeev et al. Phys. Plasmas 23, 083119 (2016)], however, it has been found that the magnetized plasma can be transparent to this radiation at certain emission angles. It means that the beam-to-radiation power conversion can be highly efficient even in a relatively thick plasma since not only boundary layers but also the whole plasma volume can be involved in the generation of electromagnetic waves. Simulations of steady-state beam injection into a pre-modulated plasma channel confirm the existence of this effect and show limits of validity for the simplified theoretical model.
Comparison of DAC and MONACO DSMC Codes with Flat Plate Simulation
Padilla, Jose F.
2010-01-01
Various implementations of the direct simulation Monte Carlo (DSMC) method exist in academia, government and industry. By comparing implementations, deficiencies and merits of each can be discovered. This document reports comparisons between DSMC Analysis Code (DAC) and MONACO. DAC is NASA's standard DSMC production code and MONACO is a research DSMC code developed in academia. These codes have various differences; in particular, they employ distinct computational grid definitions. In this study, DAC and MONACO are compared by having each simulate a blunted flat plate wind tunnel test, using an identical volume mesh. Simulation expense and DSMC metrics are compared. In addition, flow results are compared with available laboratory data. Overall, this study revealed that both codes, excluding grid adaptation, performed similarly. For parallel processing, DAC was generally more efficient. As expected, code accuracy was mainly dependent on physical models employed.
Eulerian simulations of collisional effects on electrostatic plasma waves
Pezzi, Oreste; Perrone, Denise; Veltri, Pierluigi
2013-01-01
The problem of collisions in a plasma is a wide subject with a huge historical literature. In fact, the description of realistic plasmas is a tough problem to attach, both from the theoretical and the numerical point of view, and which requires in general to approximate the original collisional Landau integral by simplified differential operators in reduced dimensionality. In this paper, a Eulerian time-splitting algorithm for the study of the propagation of electrostatic waves in collisional plasmas is presented. Collisions are modeled through one-dimensional operators of the Fokker-Planck type, both in linear and nonlinear form. The accuracy of the numerical code is discussed by comparing the numerical results to the analytical predictions obtained in some limit cases when trying to evaluate the effects of collisions in the phenomenon of wave plasma echo and collisional dissipation of Bernstein-Greene-Kruskal waves. Particular attention is devoted to the study of the nonlinear Dougherty collisional operator...
Simulating Magnetized Laboratory Plasmas with Smoothed Particle Hydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Johnson, Jeffrey N. [Univ. of California, Davis, CA (United States)
2009-01-01
The creation of plasmas in the laboratory continues to generate excitement in the physics community. Despite the best efforts of the intrepid plasma diagnostics community, the dynamics of these plasmas remains a difficult challenge to both the theorist and the experimentalist. This dissertation describes the simulation of strongly magnetized laboratory plasmas with Smoothed Particle Hydrodynamics (SPH), a method born of astrophysics but gaining broad support in the engineering community. We describe the mathematical formulation that best characterizes a strongly magnetized plasma under our circumstances of interest, and we review the SPH method and its application to astrophysical plasmas based on research by Phillips [1], Buerve [2], and Price and Monaghan [3]. Some modifications and extensions to this method are necessary to simulate terrestrial plasmas, such as a treatment of magnetic diffusion based on work by Brookshaw [4] and by Atluri [5]; we describe these changes as we turn our attention toward laboratory experiments. Test problems that verify the method are provided throughout the discussion. Finally, we apply our method to the compression of a magnetized plasma performed by the Compact Toroid Injection eXperiment (CTIX) [6] and show that the experimental results support our computed predictions.
Plasma simulator for rotating astrophysical objects
Directory of Open Access Journals (Sweden)
K. E. Nakamura
2000-01-01
Full Text Available Estamos desarrollando un simulador de plasmas astrof sicos con rotaci on, que consiste de m odulos manejados por un c odigo tridimensional magnetohidrodin amico. Los m odulos que hemos dise~nado incluyen difusi on magn etica, conducci on t ermica, enfriamiento radiativo y autogravedad. Estamos desarrollando m odulos para hacer la visualizaci on. El c odigo est a paralelizado y optimizado para computadoras vectorizadas y paralelas.
Parallelization of plasma 2-D hydrodynamics code using Message Passing Interface (MPI)
Energy Technology Data Exchange (ETDEWEB)
Sasaki, Akira [Japan Atomic Energy Research Inst., Neyagawa, Osaka (Japan). Kansai Research Establishment
1997-11-01
2 dimensional hydrodynamics code using CIP method is parallelized for Intel Paragon XP/S massive parallel computer at Kansai Research Establishment using MPI (Message Passing Interface). The communicator is found to be useful to divide and parallelize programs into functional modules. Using the process topology and the derived data type, large scale finite difference simulation codes can be significantly accelerated with simple coding of the area division method. MPI has functions which simplify the program to process boundary conditions and simplify the communication between adjacent nodes. 357 and 576 times acceleration is obtained for 400 and 782 nodes, respectively. MPI utilizes feature of scalar massive parallel computers with distributed memories. Fast and portable codes can be developed using MPI. (author)
High heat flux plasma generator for new divertor plasma simulator in Nagoya University
Energy Technology Data Exchange (ETDEWEB)
Narita, S.; Ezumi, N.; Ohno, N.; Uesugi, Y.; Takamura, S. [Nagoya Univ. (Japan)
1997-12-31
A new divertor simulator called NAGDIS-II has been constructed in order to investigate edge plasma physics in fusion devices. Improved TP-D type plasma source, which consists of LaB{sub 6} cathode with a Mo hollow shield and external heating system, water-cooled intermediate electrode and anode was employed to make a high density plasma in the NAGDIS-II. The performance and reliability of the discharge system was confirmed by quantitatively measuring neutral pressure, heating efficiency and plasma parameters. (author)
Simulation of runaway electron generation during plasma shutdown by impurity injection
Energy Technology Data Exchange (ETDEWEB)
Feher, Tamas
2011-03-15
Disruptions are dangerous instabilities in tokamaks that should be avoided or mitigated. One possible disruption mitigation method is to inject impurities into the plasma to shut it down in a controlled way. Runaway Electrons (REs) can be generated after the plasma is cooled down by the impurities and these electrons can damage the tokamak. In this work a simulation code is developed to investigate different disruption mitigation scenarios. The response of the bulk plasma, more precisely the temperature evolution of electrons, deuterium and impurity ions are described by energy balance equations in a 1D cylindrical plasma model. The induction and resistive diffusion of electric field is calculated. RE generation rates are used to calculate the runaway current. The Dreicer, hot-tail and avalanche effect is taken into account and a simple model for RE losses is also included. RE generation is studied in JET-like plasmas during pellet injection. Carbon pellets cause effective cooling but these scenarios are prone to runaway generation. A mixture of argon and deuterium gas could be used for safe shutdown without RE generation. In ITER the hot-tail RE generation process becomes important, and the simulation is therefore extended to take this into account. Shutdown scenarios with different concentration of neon and argon impurities were tested in ITER-like plasmas. To simplify the problem the impurity injection into the plasma is not modeled in these cases, only the response of the bulk plasma. The avalanche process cannot be suppressed in a simple way and would produce high runaway current. It can be avoided if some runaway loss phenomenon is included in the simulations, like diffusion due to magnetic perturbations
Hybrid Simulation of Laser-Plasma Interactions and Fast Electron Transport in Inhomogeneous Plasma
Energy Technology Data Exchange (ETDEWEB)
Cohen, B I; Kemp, A; Divol, L
2009-05-27
A new framework is introduced for kinetic simulation of laser-plasma interactions in an inhomogenous plasma motivated by the goal of performing integrated kinetic simulations of fast-ignition laser fusion. The algorithm addresses the propagation and absorption of an intense electromagnetic wave in an ionized plasma leading to the generation and transport of an energetic electron component. The energetic electrons propagate farther into the plasma to much higher densities where Coulomb collisions become important. The high-density plasma supports an energetic electron current, return currents, self-consistent electric fields associated with maintaining quasi-neutrality, and self-consistent magnetic fields due to the currents. Collisions of the electrons and ions are calculated accurately to track the energetic electrons and model their interactions with the background plasma. Up to a density well above critical density, where the laser electromagnetic field is evanescent, Maxwell's equations are solved with a conventional particle-based, finite-difference scheme. In the higher-density plasma, Maxwell's equations are solved using an Ohm's law neglecting the inertia of the background electrons with the option of omitting the displacement current in Ampere's law. Particle equations of motion with binary collisions are solved for all electrons and ions throughout the system using weighted particles to resolve the density gradient efficiently. The algorithm is analyzed and demonstrated in simulation examples. The simulation scheme introduced here achieves significantly improved efficiencies.
Guiding-center models for edge plasmas and numerical simulations of isolated plasma filaments
DEFF Research Database (Denmark)
Madsen, Jens
The work presented in this thesis falls into two categories: development of reduced dynamical models applicable to edge turbulence in magnetically confined fusion plasmas and numerical simulations of isolated plasma filaments in the scrape-off layer region investigating the influence of finite...... models are presented that overcome some of the difficulties associated with the development of reduced dynamical models applicable to the edge. Second order guiding-center coordinates are derived using the phasespace Lie transform method. Using a variational principle the corresponding Vlasov......-Maxwell equations in a more tractable form, which could be relevant for direct numerical simulations of edge plasma turbulence. Finally, an investigation of the influence of finite Larmor radius effects on the radial transport of isolated plasma filaments (blobs) in the scrape-off region of fusion plasmas...
Simulation Tool for Dielectric Barrier Discharge Plasma Actuators
Likhanskii, Alexander
2014-01-01
Traditional approaches for active flow separation control using dielectric barrier discharge (DBD) plasma actuators are limited to relatively low speed flows and atmospheric conditions. This results in low feasibility of the DBDs for aerospace applications. For active flow control at turbine blades, fixed wings, and rotary wings and on hypersonic vehicles, DBD plasma actuators must perform at a wide range of conditions, including rarified flows and combustion mixtures. An efficient, comprehensive, physically based DBD simulation tool can optimize DBD plasma actuators for different operation conditions. Researchers are developing a DBD plasma actuator simulation tool for a wide range of ambient gas pressures. The tool will treat DBD using either kinetic, fluid, or hybrid models, depending on the DBD operational condition.
Fast Ion Effects on Fishbones and n=1 Kinks in JET Simulated by a Non-perturbative NOVA-KN Code
Energy Technology Data Exchange (ETDEWEB)
N.N. Gorelenkov; C.Z. Cheng; V.G. Kiptily; M.J. Mantsinen; S.E. Sharapov; the JET-EFDA Contributors
2004-10-28
New global non-perturbative hybrid code, NOVA-KN, and simulations of resonant type modes in JET [Joint European Torus] plasmas driven by energetic H-minority ions are presented. The NOVA-KN code employs the ideal-MHD description for the background plasma and treats non-perturbatively the fast particle kinetic response, which includes the fast ion finite orbit width (FOW) effect. In particular, the n = 1 fishbone mode, which is in precession drift resonance with fast ions, is studied. The NOVA-KN code is applied to model an n = 1 (f = 50-80kHz) MHD activity observed recently in JET low density plasma discharges with high fast ion (H-minority) energy content generated during the ion cyclotron resonance heating (ICRH). This n = 1 MHD activity is interpreted as the instability of the n = 1 precession drift frequency fishbone modes.
Punzalan, Florencio Rusty; Kunieda, Yoshitoshi; Amano, Akira
2015-01-01
Clinical and experimental studies involving human hearts can have certain limitations. Methods such as computer simulations can be an important alternative or supplemental tool. Physiological simulation at the tissue or organ level typically involves the handling of partial differential equations (PDEs). Boundary conditions and distributed parameters, such as those used in pharmacokinetics simulation, add to the complexity of the PDE solution. These factors can tailor PDE solutions and their corresponding program code to specific problems. Boundary condition and parameter changes in the customized code are usually prone to errors and time-consuming. We propose a general approach for handling PDEs and boundary conditions in computational models using a replacement scheme for discretization. This study is an extension of a program generator that we introduced in a previous publication. The program generator can generate code for multi-cell simulations of cardiac electrophysiology. Improvements to the system allow it to handle simultaneous equations in the biological function model as well as implicit PDE numerical schemes. The replacement scheme involves substituting all partial differential terms with numerical solution equations. Once the model and boundary equations are discretized with the numerical solution scheme, instances of the equations are generated to undergo dependency analysis. The result of the dependency analysis is then used to generate the program code. The resulting program code are in Java or C programming language. To validate the automatic handling of boundary conditions in the program code generator, we generated simulation code using the FHN, Luo-Rudy 1, and Hund-Rudy cell models and run cell-to-cell coupling and action potential propagation simulations. One of the simulations is based on a published experiment and simulation results are compared with the experimental data. We conclude that the proposed program code generator can be used to
Directory of Open Access Journals (Sweden)
Florencio Rusty Punzalan
Full Text Available Clinical and experimental studies involving human hearts can have certain limitations. Methods such as computer simulations can be an important alternative or supplemental tool. Physiological simulation at the tissue or organ level typically involves the handling of partial differential equations (PDEs. Boundary conditions and distributed parameters, such as those used in pharmacokinetics simulation, add to the complexity of the PDE solution. These factors can tailor PDE solutions and their corresponding program code to specific problems. Boundary condition and parameter changes in the customized code are usually prone to errors and time-consuming. We propose a general approach for handling PDEs and boundary conditions in computational models using a replacement scheme for discretization. This study is an extension of a program generator that we introduced in a previous publication. The program generator can generate code for multi-cell simulations of cardiac electrophysiology. Improvements to the system allow it to handle simultaneous equations in the biological function model as well as implicit PDE numerical schemes. The replacement scheme involves substituting all partial differential terms with numerical solution equations. Once the model and boundary equations are discretized with the numerical solution scheme, instances of the equations are generated to undergo dependency analysis. The result of the dependency analysis is then used to generate the program code. The resulting program code are in Java or C programming language. To validate the automatic handling of boundary conditions in the program code generator, we generated simulation code using the FHN, Luo-Rudy 1, and Hund-Rudy cell models and run cell-to-cell coupling and action potential propagation simulations. One of the simulations is based on a published experiment and simulation results are compared with the experimental data. We conclude that the proposed program code
SciDAC Center for Plasma Edge Simulation
Energy Technology Data Exchange (ETDEWEB)
Lin, Zhihong
2013-12-17
This project with a total funding of $592,998 for six years has partially supported four postdoctoral researchers at the University of California, Irvine (UCI). The UCI team has formulated electrostatic and electromagnetic global gyrokinetic particle simulation models with kinetic electrons, implemented these models in the edge code XGC1, performed benchmark between GTC and XGC1, developed computational tools for gyrokinetic particle simulation in tokamak edge geometry, and initiated preparatory study of edge turbulence using GTC code. The research results has been published in 12 papers and presented at many international and national conferences.
SciDAC Center for Plasma Edge Simulation
Energy Technology Data Exchange (ETDEWEB)
Lin, Zhihong
2013-12-17
This project with a total funding of $592,998 for six years has partially supported four postdoctoral researchers at the University of California, Irvine (UCI). The UCI team has formulated electrostatic and electromagnetic global gyrokinetic particle simulation models with kinetic electrons, implemented these models in the edge code XGC1, performed benchmark between GTC and XGC1, developed computational tools for gyrokinetic particle simulation in tokamak edge geometry, and initiated preparatory study of edge turbulence using GTC code. The research results has been published in 12 papers and presented at many international and national conferences.
The FLUKA code: An accurate simulation tool for particle therapy
Battistoni, Giuseppe; Böhlen, Till T; Cerutti, Francesco; Chin, Mary Pik Wai; Dos Santos Augusto, Ricardo M; Ferrari, Alfredo; Garcia Ortega, Pablo; Kozlowska, Wioletta S; Magro, Giuseppe; Mairani, Andrea; Parodi, Katia; Sala, Paola R; Schoofs, Philippe; Tessonnier, Thomas; Vlachoudis, Vasilis
2016-01-01
Monte Carlo (MC) codes are increasingly spreading in the hadrontherapy community due to their detailed description of radiation transport and interaction with matter. The suitability of a MC code for application to hadrontherapy demands accurate and reliable physical models capable of handling all components of the expected radiation field. This becomes extremely important for correctly performing not only physical but also biologically-based dose calculations, especially in cases where ions heavier than protons are involved. In addition, accurate prediction of emerging secondary radiation is of utmost importance in innovative areas of research aiming at in-vivo treatment verification. This contribution will address the recent developments of the FLUKA MC code and its practical applications in this field. Refinements of the FLUKA nuclear models in the therapeutic energy interval lead to an improved description of the mixed radiation field as shown in the presented benchmarks against experimental data with bot...
Implementation and performance of FDPS: A Framework Developing Parallel Particle Simulation Codes
Iwasawa, Masaki; Hosono, Natsuki; Nitadori, Keigo; Muranushi, Takayuki; Makino, Junichiro
2016-01-01
We have developed FDPS (Framework for Developing Particle Simulator), which enables researchers and programmers to develop high-performance parallel particle simulation codes easily. The basic idea of FDPS is to separate the program code for complex parallelization including domain decomposition, redistribution of particles, and exchange of particle information for interaction calculation between nodes, from actual interaction calculation and orbital integration. FDPS provides the former part and the users write the latter. Thus, a user can implement a high-performance fully parallelized $N$-body code only in 120 lines. In this paper, we present the structure and implementation of FDPS, and describe its performance on three sample applications: disk galaxy simulation, cosmological simulation and Giant impact simulation. All codes show very good parallel efficiency and scalability on K computer and XC30. FDPS lets the researchers concentrate on the implementation of physics and mathematical schemes, without wa...
FARO and KROTOS code simulation and analysis at JRC Ispra
Energy Technology Data Exchange (ETDEWEB)
Annunziato, A.; Yerkess, A.; Addabbo, C. [European Commission-Joint Research Centre, Inst. for Systems, Informatics and Safety, 21020 Ispra (Italy)
1998-01-01
The paper summarizes relevant results from the pre and post test calculations of fuel coolant interaction and quenching tests performed in the FARO and KROTOS test facilities. The main analytical tools adopted at JRC Ispra are the COMETA and the TEXAS codes. COMETA pre and post test calculations of FARO Test L-20 as well as an application of the code to KROTOS test facility are presented. The analysis provides the need to account for H{sub 2} generation models into the pre-mixing calculations. In addition salient results from the application of TEXAS to FARO and KROTOS tests are shown. (author)
Inductively coupled radio frequency methane plasma simulation
Bera, K.; Farouk, B.; Vitello, P.
2001-05-01
A self-consistent two-dimensional radio frequency inductively coupled glow discharge model has been developed in cylindrical coordinates using a fluid model. The objective of the study is to provide insight into charged species dynamics and investigate their effects on plasma process for a methane discharge. The model includes continuity and energy equations for electrons and continuity, momentum and energy equations for positive and negative ions. An electromagnetic model that considers the electric field due to the space charge within the plasma and due to inductive power coupling is also incorporated. For an inductively coupled methane discharge we expect to find higher fluxes of ions and radicals to the cathode, and hence a higher deposition/etch rate for a high-density plasma. The independent control of ion energy to the cathode in an inductively coupled discharge will facilitate control on film deposition/etch rate and uniformity on the wafer. Swarm data as a function of the electron energy are provided as input to the model. The model predicts the electron density, ion density and their fluxes and energies to the cathode. The radical and neutral densities in the discharge are calculated using a gas phase chemistry model. The diamond-like-carbon thin-film deposition/etch rate is predicted using a surface chemistry model. The gas phase chemistry model considers the diffusion of radicals and neutrals along with creation and loss terms. The surface deposition/etching process involves adsorption-desorption, adsorption layer reaction, ion stitching, direct ion incorporation and carbon sputtering.
Coupling methods for parallel running RELAPSim codes in nuclear power plant simulation
Energy Technology Data Exchange (ETDEWEB)
Li, Yankai; Lin, Meng, E-mail: linmeng@sjtu.edu.cn; Yang, Yanhua
2016-02-15
When the plant is modeled detailedly for high precision, it is hard to achieve real-time calculation for one single RELAP5 in a large-scale simulation. To improve the speed and ensure the precision of simulation at the same time, coupling methods for parallel running RELAPSim codes were proposed in this study. Explicit coupling method via coupling boundaries was realized based on a data-exchange and procedure-control environment. Compromise of synchronization frequency was well considered to improve the precision of simulation and guarantee the real-time simulation at the same time. The coupling methods were assessed using both single-phase flow models and two-phase flow models and good agreements were obtained between the splitting–coupling models and the integrated model. The mitigation of SGTR was performed as an integral application of the coupling models. A large-scope NPP simulator was developed adopting six splitting–coupling models of RELAPSim and other simulation codes. The coupling models could improve the speed of simulation significantly and make it possible for real-time calculation. In this paper, the coupling of the models in the engineering simulator is taken as an example to expound the coupling methods, i.e., coupling between parallel running RELAPSim codes, and coupling between RELAPSim code and other types of simulation codes. However, the coupling methods are also referable in other simulator, for example, a simulator employing ATHLETE instead of RELAP5, other logic code instead of SIMULINK. It is believed the coupling method is commonly used for NPP simulator regardless of the specific codes chosen in this paper.
Plasma simulations of emission line regions in high energy environments
Richardson, Chris T.
This dissertation focuses on understanding two different, but in each case extreme, astrophysical environments: the Crab Nebula and emission line galaxies. These relatively local objects are well constrained by observations and are test cases of phenomena seen at high-z where detailed observations are rare. The tool used to study these objects is the plasma simulation code known as Cloudy. The introduction provides a brief summary of relevant physical concepts in nebular astrophysics and presents the basic features and assumptions of Cloudy. The first object investigated with Cloudy, the Crab Nebula, is a nearby supernova remnant that previously has been subject to photoionization modeling to reproduce the ionized emission seen in the nebula's filamentary structure. However, there are still several unanswered questions: (1) What excites the H2 emitting gas? (2) How much mass is in the molecular component? (3) How did the H2 form? (4) What is nature of the dust grains? A large suite of observations including long slit optical and NIR spectra over ionized, neutral and molecular gas in addition to HST and NIR ground based images constrain a particularly bright region of H2 emission, Knot 51, which exhibits a high excitation temperature of ˜3000 K. Simulations of K51 revealed that only a trace amount of H2 is needed to reproduce the observed emission and that H2 forms through an uncommon nebular process known as associative detachment. The final chapters of this dissertation focus on interpreting the narrow line region (NLR) in low-z emission line galaxies selected by a novel technique known as mean field independent component analysis (MFICA). A mixture of starlight and radiation from an AGN excites the gas present in galaxies. MFICA separates galaxies over a wide range of ionization into subsets of pure AGN and pure star forming galaxies allowing simulations to reveal the properties responsible for their observed variation in ionization. Emission line ratios can
Prediction of plasma simulation data with the Gaussian process method
Energy Technology Data Exchange (ETDEWEB)
Preuss, R.; Toussaint, U. von, E-mail: udo.v.toussaint@ipp.mpg.de [Max-Planck-Institute for Plasma Physics, EURATOM Association, 85748 Garching (Germany)
2014-12-05
The simulation of plasma-wall interactions of fusion plasmas is extremely costly in computer power and time - the running time for a single parameter setting is easily in the order of weeks or months. We propose to exploit the already gathered results in order to predict the outcome for parametric studies within the high dimensional parameter space. For this we utilize Gaussian processes within the Bayesian framework and perform validation with one and two dimensional test cases from which we learn how to assess the outcome. Finally, the newly implemented method is applied to simulated data from the scrape-off layer of a fusion plasma. Uncertainties of the predictions are provided which point the way to parameter settings of further (expensive) simulations.
Simulation of LT Code in MATLAB%LT码的MATLAB仿真
Institute of Scientific and Technical Information of China (English)
陈国泰; 郑海峰; 陈国钦; 潘美莺; 廖延初
2011-01-01
After introducing the coding and decoding procession of LT code,a class of fountain code,the simulation program in MATLAB is presented and explained.With the simulation results based on three types of degree distributions for LT code,LT code and Raptor code are compared.%介绍了喷泉码中LT码的编码译码过程,提供了详细的MATLAB仿真代码和说明.通过对三种不同度分布的LT码进行性能仿真,并对仿真结果进行了分析,同时也对LT码和Raptor码进行了适当的比较.
A code to simulate nuclear reactor inventories and associated gamma-ray spectra.
Cresswell, A J; Allyson, J D; Sanderson, D C
2001-01-01
A computer code has been developed to simulate the gamma-ray spectra that would be measured by airborne gamma spectrometry (AGS) systems from sources containing short-lived fission products. The code uses simple numerical methods to simulate the production and decay of fission products and generates spectra for sodium iodide (NaI) detectors using Monte Carlo codes. A new Monte Carlo code using a virtual array of detectors to reduce simulation times for airborne geometries is described. Spectra generated for a short irradiation and laboratory geometry have been compared with an experimental data set. The agreement is good. Spectra have also been generated for airborne geometries and longer irradiation periods. The application of this code to generate AGS spectra for accident scenarios and their uses in the development and evaluation of spectral analysis methods for such situations are discussed.
GYSELA, a full-f global gyrokinetic Semi-Lagrangian code for ITG turbulence simulations
Grandgirard, V.; Sarazin, Y.; Garbet, X.; Dif-Pradalier, G.; Ghendrih, Ph.; Crouseilles, N.; Latu, G.; Sonnendrücker, E.; Besse, N.; Bertrand, P.
2006-11-01
This work addresses non-linear global gyrokinetic simulations of ion temperature gradient (ITG) driven turbulence with the GYSELA code. The particularity of GYSELA code is to use a fixed grid with a Semi-Lagrangian (SL) scheme and this for the entire distribution function. The 4D non-linear drift-kinetic version of the code already showns the interest of such a SL method which exhibits good properties of energy conservation in non-linear regime as well as an accurate description of fine spatial scales. The code has been upgrated to run 5D simulations of toroidal ITG turbulence. Linear benchmarks and non-linear first results prove that semi-lagrangian codes can be a credible alternative for gyrokinetic simulations.
Simulations of Laser Pulse Coupling and Transmission Efficiency in Plasma Channels
Giacone, Rodolfo; Cary, John R; Dimitrov, Dimitre; Esarey, Eric; Geddes, Cameron G R; Leemans, Wim; Messmer, Peter
2005-01-01
Optical guiding of the laser pulse in a laser wakefield accelerator (LWFA) via plasma channels can greatly increase the interaction length and, hence, the maximun energy of trapped electrons.* Energy efficient coupling of laser pulses from vacuum into plasma channels is very important for optimal LWFA performance. We present 2D particle-in-cell simulations of this problem using the VORPAL code.** Some of the mechanisms considered are enhanced leakage of laser energy transversely through the channel walls, enhanced refraction due to tunneling ionization of neutral gas on the periphery of the gas jet, ionization of neutral gas by transverse wings of the laser pulse and effect of the pulse being off axis of the channel. Using power spectral diagnostics,*** we are able to differentiate between pump depletion and leakage from the channel. The results from our simulations show that for short (≈λp
Damage to preheated tungsten targets after multiple plasma impacts simulating ITER ELMs
Energy Technology Data Exchange (ETDEWEB)
Garkusha, I.E. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine)], E-mail: garkusha@ipp.kharkov.ua; Bandura, A.N.; Byrka, O.V.; Chebotarev, V.V. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine); Landman, I. [Forschungszentrum Karlsruhe, IHM, 76021 Karlsruhe (Germany); Makhlaj, V.A. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine); Pestchanyi, S. [Forschungszentrum Karlsruhe, IHM, 76021 Karlsruhe (Germany); Tereshin, V.I. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine)
2009-04-30
The behavior of a preheated at 650 deg. C tungsten targets under repetitive ELM-like plasma pulses is studied in simulation experiments with the quasi-stationary plasma accelerator QSPA Kh-50. The targets have been exposed up to 350 pulses of the duration 0.25 ms and the surface heat loads either 0.45 MJ/m{sup 2} or 0.75 MJ/m{sup 2}, which is below and above the melting threshold, respectively. The development of surface morphology of the exposed targets as well as cracking and swelling at the surface is discussed. First comparisons of obtained experimental results with corresponding numerical simulations of the code PEGASUS-3D are presented.
Simulation of low-temperature plasma interaction with pulverized coal for incineration improvement
Energy Technology Data Exchange (ETDEWEB)
A. Askarova; E. Karpenko; V. Messerle; A. Ustimenko [Al-Farabi Kazakh National University, Almaty (Kazakhstan). Department of Physics
2003-07-01
Plasma activation promotes more effective and environmental friendly low-grade coals incineration. The work presents numerical modeling results of plasma ignition, gasification and thermochemical preparation of a pulverized coal for incineration at power boilers. Thermodynamic code TERRA allows calculating products compound of plasma activated pulverized coal depended on temperature, pressure and plasma source power. Considering plasma source kinetic code PLASMA-COAL gives initial data for 3D-modeling of power boilers furnaces by FLOREAN code. 5 refs., 13 figs., 5 tabs.
Krause, M.; M. Camenzind
2001-01-01
In the present paper, we examine the convergence behavior and inter-code reliability of astrophysical jet simulations in axial symmetry. We consider both, pure hydrodynamic jets and jets with a dynamically significant magnetic field. The setups were chosen to match the setups of two other publications, and recomputed with the MHD code NIRVANA. We show that NIRVANA and the two other codes give comparable, but not identical results. We find that some global properties of a hydrodynamical jet si...
Numerical Modeling and Analysis of Space-Based Electric Antennas via Plasma Particle Simulation
Miyake, Y.; Usui, H.; Kojima, H.
2009-12-01
Better understanding of electric antenna properties (e.g., impedance) in space plasma environment is necessitated, because calibration of electric field data obtained by scientific spacecraft should be done with precise knowledge about the properties. Particularly, a strong demand arises regarding a sophisticated method for evaluating modern electric field instrument properties toward future magnetospheric missions. However, due to complex behavior of surrounding plasmas, it is often difficult to apply theoretical approaches to the antenna analysis including the plasma kinetic effects and the complex structure of such instruments. For the self-consistent antenna analysis, we have developed a new electromagnetic (EM) particle simulation code named EMSES. The code is based on the particle-in-cell technique and also supports a treatment of inner boundaries describing spacecraft conductive surfaces. This enables us to naturally include the effects of the inhomogeneous plasma environment such as a plasma and photoelectron sheaths created around the antenna. The support of the full EM treatment is also important to apply our tool to antenna properties for not only electrostatic (ES) but also EM plasma waves. In the current study, we particularly focus on an electric field instrument MEFISTO, which is designed for BepiColombo/MMO to the Mercury orbit. For the practical analysis of MEFISTO electric properties, it is important to consider an ES environment affected by the instrument body potential and the photoelectron distribution. We present numerical simulations on an ES structure around MEFISTO as well as current-voltage characteristic of the instrument. We have also started numerical modeling of a photoelectron guard electrode, which is one of key technologies for producing an optimal condition of plasma environment around the instrument. We have modeled a pre-amplifier housing called “puck”, the surface of which functions as the electrode. The photoelectron guard
Simulation of triton burn-up in JET plasmas
Energy Technology Data Exchange (ETDEWEB)
Loughlin, M.J.; Balet, B.; Jarvis, O.N.; Stubberfield, P.M. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking
1994-07-01
This paper presents the first triton burn-up calculations for JET plasmas using the transport code TRANSP. Four hot ion H-mode deuterium plasmas are studied. For these discharges, the 2.5 MeV emission rises rapidly and then collapses abruptly. This phenomenon is not fully understood but in each case the collapse phase is associated with a large impurity influx known as the ``carbon bloom``. The peak 14 MeV emission occurs at this time, somewhat later than that of the 2.5 MeV neutron peak. The present results give a clear indication that there are no significant departures from classical slowing down and spatial diffusion for tritons in JET plasmas. (authors). 7 refs., 3 figs., 1 tab.
Murakami, S.; Yamaguchi, H.; Homma, M.; Maeta, S.; Saito, Y.; Fukuyama, A.; Nagaoka, K.; Takahashi, H.; Nakano, H.; Osakabe, M.; Yokoyama, M.; Tanaka, K.; Ida, K.; Yoshinuma, M.; Isobe, M.; Tomita, H.; Ogawa, K.; LHD Exp Group Team
2016-10-01
The deuterium experiment project from 2017 is planned in LHD, where the deuterium NBI heating beams with the power more than 30MW are injected into the deuterium plasma. Principal objects of this project are to clarify the isotope effect on the heat and particle transport in the helical plasma and to study energetic particle confinement in a helical magnetic configuration measuring triton burn-up neutrons. We study the deuterium experiment plasma of LHD applying the integrated simulation code, TASK3D [Murakami, PPCF2015], and the 5-D drift kinetic equation solver, GNET [Murakami, NF2006]. (i) More than 20% of ion temperature increment is obtained in the deuterium plasma (nD /nH +nD = 0.8) due to the isotope effect assuming the turbulent transport model based on the H/He plasma experiment of LHD. (ii) The triton burn-up simulation shows the triton slowing down distribution and the strong magnetic configuration dependency of the triton burn-up ratio in LHD. This work was supported by JSPS KAKENHI Grant Number 26420851.
OPR1000 Control Rod Drop Accident Simulation using the SPACE Code
Energy Technology Data Exchange (ETDEWEB)
Yang, Chang Keun; Ha, Sang Jun; Moon, Chan Kook [Korea Hydro and Nuclear Power, Daejeon (Korea, Republic of)
2012-05-15
The Korea nuclear industry has developed a best estimated two-phase three-filed thermal-hydraulic analysis code, SPACE (Safety and Performance Analysis Code for Nuclear Power Plants), for safety analysis and design of a PWR (Pressurized Water Reactor). As the first phase, the demo version of the SPACE code was released in March 2010. The code has been verified and improved according to the Validation and Verification (V and V) matrix prepared for the SPACE code as the second phase of the development. In this study, a Control Rod Drop accident has been simulated using the SPACE code as one aspect of the V and V work. The results from this test were compared with tests of the RETRAN and CESEC codes
Metropol, a computer code for the simulation of transport of contaminants with groundwater
Sauter FJ; Hassanizadeh SM; Leijnse A; Glasbergen P; Slot AFM
1990-01-01
In this report a description is given of the computer code METROPOL. This code simulates the three dimensional flow of groundwater with varying density and the simultaneous transport of contaminants in low concentration and is based on the finite element method. The basic equations for groundwater
Duan, Zhe
2015-01-01
We report a study of spin dynamics based on simulations with the Polymorphic Tracking Code (PTC), exploring the dependence of the static polarization limit on various beam parameters and lattice settings for a practical RHIC lattice.
BOUT++: a framework for parallel plasma fluid simulations
Dudson, B D; Xu, X Q; Snyder, P B; Wilson, H R
2008-01-01
A new modular code called BOUT++ is presented, which simulates 3D fluid equations in curvilinear coordinates. Although aimed at simulating Edge Localised Modes (ELMs) in tokamak X-point geometry, the code is able to simulate a wide range of fluid models (magnetised and unmagnetised) involving an arbitrary number of scalar and vector fields, in a wide range of geometries. Time evolution is fully implicit, and 3rd-order WENO schemes are implemented. Benchmarks are presented for linear and non-linear problems (the Orszag-Tang vortex) showing good agreement. Performance of the code is tested by scaling with problem size and processor number, showing efficient scaling to thousands of processors. Linear initial-value simulations of ELMs using reduced ideal MHD are presented, and the results compared to the ELITE linear MHD eigenvalue code. The resulting mode-structures and growth-rate are found to be in good agreement (BOUT++ = 0.245, ELITE = 0.239). To our knowledge, this is the first time dissipationless, initial...
Medium-rate speech coding simulator for mobile satellite systems
Copperi, Maurizio; Perosino, F.; Rusina, F.; Albertengo, G.; Biglieri, E.
1986-01-01
Channel modeling and error protection schemes for speech coding are described. A residual excited linear predictive (RELP) coder for bit rates 4.8, 7.2, and 9.6 kbit/sec is outlined. The coder at 9.6 kbit/sec incorporates a number of channel error protection techniques, such as bit interleaving, error correction codes, and parameter repetition. Results of formal subjective experiments (DRT and DAM tests) under various channel conditions, reveal that the proposed coder outperforms conventional LPC-10 vocoders by 2 subjective categories, thus confirming the suitability of the RELP coder at 9.6 kbit/sec for good quality speech transmission in mobile satellite systems.
Simulation of Plasma Jet Merger and Liner Formation within the PLX- α Project
Samulyak, Roman; Chen, Hsin-Chiang; Shih, Wen; Hsu, Scott
2015-11-01
Detailed numerical studies of the propagation and merger of high Mach number argon plasma jets and the formation of plasma liners have been performed using the newly developed method of Lagrangian particles (LP). The LP method significantly improves accuracy and mathematical rigor of common particle-based numerical methods such as smooth particle hydrodynamics while preserving their main advantages compared to grid-based methods. A brief overview of the LP method will be presented. The Lagrangian particle code implements main relevant physics models such as an equation of state for argon undergoing atomic physics transformation, radiation losses in thin optical limit, and heat conduction. Simulations of the merger of two plasma jets are compared with experimental data from past PLX experiments. Simulations quantify the effect of oblique shock waves, ionization, and radiation processes on the jet merger process. Results of preliminary simulations of future PLX- alpha experiments involving the ~ π / 2 -solid-angle plasma-liner configuration with 9 guns will also be presented. Partially supported by ARPA-E's ALPHA program.
Dissipation in PIC simulations of moderate to low \\b{eta} plasma turbulence
Makwana, Kirit; Guo, Fan; Li, Xiaocan
2016-01-01
We simulate decaying turbulence in electron-positron pair plasmas using a fully- kinetic particle-in-cell (PIC) code. We run two simulations with moderate-to-low plasma beta. The energy decay rate is found to be similar in both the cases. The perpendicular wave-number spectrum of magnetic energy shows a slope of k^-1.3 in both the cases. The particle energy distribution function shows the formation of a non-thermal feature in the case of lower plasma beta, with a slope close to E^-1. The role of thin turbulent current sheets in this process is investigated. The heating by E_{\\parallel}.J_{\\parallel} term dominates the E_{\\perp}.J_{\\perp} term. Regions of strong E_{\\parallel}.J_{\\parallel} are spatially well-correlated with regions of intense current sheets, which also appear correlated with regions of strong E_{\\parallel} in the low beta simulation, suggesting an important role of magnetic reconnection in the dissipation of low beta plasma turbulence.
ICOOL: A SIMULATION CODE FOR IONIZATION COOLING OF MUON BEAMS.
Energy Technology Data Exchange (ETDEWEB)
FERNOW,R.C.
1999-03-25
Current ideas [1,2] for designing a high luminosity muon collider require significant cooling of the phase space of the muon beams. The only known method that can cool the beams in a time comparable to the muon lifetime is ionization cooling [3,4]. This method requires directing the particles in the beam at a large angle through a low Z absorber material in a strong focusing magnetic channel and then restoring the longitudinal momentum with an rf cavity. We have developed a new 3-D tracking code ICOOL for examining possible configurations for muon cooling. A cooling system is described in terms of a series of longitudinal regions with associated material and field properties. The tracking takes place in a coordinate system that follows a reference orbit through the system. The code takes into account decays and interactions of {approx}50-500 MeV/c muons in matter. Material geometry regions include cylinders and wedges. A number of analytic models are provided for describing the field configurations. Simple diagnostics are built into the code, including calculation of emittances and correlations, longitudinal traces, histograms and scatter plots. A number of auxiliary files can be generated for post-processing analysis by the user.
Large Scale Earth's Bow Shock with Northern IMF as simulated by PIC code in parallel with MHD model
Baraka, Suleiman M
2016-01-01
In this paper, we propose a 3D kinetic model (Particle-in-Cell PIC ) for the description of the large scale Earth's bow shock. The proposed version is stable and does not require huge or extensive computer resources. Because PIC simulations work with scaled plasma and field parameters, we also propose to validate our code by comparing its results with the available MHD simulations under same scaled Solar wind ( SW ) and ( IMF ) conditions. We report new results from the two models. In both codes the Earth's bow shock position is found to be ~14.8 RE along the Sun-Earth line, and ~ 29 RE on the dusk side. Those findings are consistent with past in situ observations. Both simulations reproduce the theoretical jump conditions at the shock. However, the PIC code density and temperature distributions are inflated and slightly shifted sunward when compared to the MHD results. Kinetic electron motions and reflected ions upstream may cause this sunward shift. Species distributions in the foreshock region are depicted...
Energy Technology Data Exchange (ETDEWEB)
Fahey, Mark R. [Oak Ridge National Laboratory; Candy, Jeff [General Atomics
2013-11-07
This project initiated the development of TGYRO ? a steady-state Gyrokinetic transport code (SSGKT) that integrates micro-scale GYRO turbulence simulations into a framework for practical multi-scale simulation of conventional tokamaks as well as future reactors. Using a lightweight master transport code, multiple independent (each massively parallel) gyrokinetic simulations are coordinated. The capability to evolve profiles using the TGLF model was also added to TGYRO and represents a more typical use-case for TGYRO. The goal of the project was to develop a steady-state Gyrokinetic transport code (SSGKT) that integrates micro-scale gyrokinetic turbulence simulations into a framework for practical multi-scale simulation of a burning plasma core ? the International Thermonuclear Experimental Reactor (ITER) in particular. This multi-scale simulation capability will be used to predict the performance (the fusion energy gain, Q) given the H-mode pedestal temperature and density. At present, projections of this type rely on transport models like GLF23, which are based on rather approximate fits to the results of linear and nonlinear simulations. Our goal is to make these performance projections with precise nonlinear gyrokinetic simulations. The method of approach is to use a lightweight master transport code to coordinate multiple independent (each massively parallel) gyrokinetic simulations using the GYRO code. This project targets the practical multi-scale simulation of a reactor core plasma in order to predict the core temperature and density profiles given the H-mode pedestal temperature and density. A master transport code will provide feedback to O(16) independent gyrokinetic simulations (each massively parallel). A successful feedback scheme offers a novel approach to predictive modeling of an important national and international problem. Success in this area of fusion simulations will allow US scientists to direct the research path of ITER over the next two
Energy Technology Data Exchange (ETDEWEB)
Cordero Garcia, S.; Peco Espinosa, J.
2010-07-01
The fire simulation and analytical validation procedures have been gaining importance in the context of safety analysis and probabilistic deterministic Fire at Nuclear Power Plants. Meanwhile, the fire simulation codes have been accepted as valuable tools for risk analysis in fire protection. To evaluate the quality and predictability of the codes used in fire protection, they are validated with different experiments. This work is performed to find the dependency of the FDS output parameters against a certain input.
Benchmarking and scaling studies of pseudospectral code Tarang for turbulence simulations
Indian Academy of Sciences (India)
Mahendra K Verma; Anando Chatterjee; K Sandeep Reddy; Rakesh K Yadav; Supriyo Paul; Mani Chandra; Ravi Samtaney
2013-10-01
Tarang is a general-purpose pseudospectral parallel code for simulating flows involving fluids, magnetohydrodynamics, and Rayleigh–Bénard convection in turbulence and instability regimes. In this paper we present code validation and benchmarking results of Tarang. We performed our simulations on 10243, 20483, and 40963 grids using the HPC system of IIT Kanpur and Shaheen of KAUST. We observe good `weak' and `strong' scaling for Tarang on these systems.
Rota, Christopher T; Wolf, Alexander J; Renken, Rochelle B; Gitzen, Robert A; Fantz, Debby K; Montgomery, Robert A; Olson, Matthew G; Vangilder, Larry D; Millspaugh, Joshua J
2016-12-01
We present predictor variables and R and Stan code for simulating and analyzing counts of Missouri Ozark herpetofauna in response to three forest management strategies. Our code performs four primary purposes: import predictor variables from spreadsheets; simulate synthetic response variables based on imported predictor variables and user-supplied values for data-generating parameters; format synthetic data for export to Stan; and analyze synthetic data.
Directory of Open Access Journals (Sweden)
Christopher T. Rota
2016-12-01
Full Text Available We present predictor variables and R and Stan code for simulating and analyzing counts of Missouri Ozark herpetofauna in response to three forest management strategies. Our code performs four primary purposes: import predictor variables from spreadsheets; simulate synthetic response variables based on imported predictor variables and user-supplied values for data-generating parameters; format synthetic data for export to Stan; and analyze synthetic data.
Benchmarking and scaling studies of pseudospectral code Tarang for turbulence simulations
VERMA, MAHENDRA K
2013-09-21
Tarang is a general-purpose pseudospectral parallel code for simulating flows involving fluids, magnetohydrodynamics, and Rayleigh–Bénard convection in turbulence and instability regimes. In this paper we present code validation and benchmarking results of Tarang. We performed our simulations on 10243, 20483, and 40963 grids using the HPC system of IIT Kanpur and Shaheen of KAUST. We observe good ‘weak’ and ‘strong’ scaling for Tarang on these systems.
Koga, J. K.; Lin, C. S.; Winglee, R. M.
1989-01-01
Injections of nonrelativistic electron beams from an isolated equipotential conductor into a uniform background of plasma and neutral gas were simulated using a 2-D electrostatic particle code. The ionization effects on spacecraft charging are examined by including interactions of electrons with neutral gas. The simulations show that the conductor charging potential decreases with increasing neutral background density due to the production of secondary electrons near the conductor surface. In the spacecraft wake, the background electrons accelerated towards the charged spacecraft produce an enhancement of secondary electrons and ions. Simulations run for longer times indicate that the spacecraft potential is further reduced and short wavelength beam-plasma oscillations appear. The results are applied to explain the spacecraft charging potential measured during the SEPAC experiments from Spacelab 1.
Development of high energy pulsed plasma simulator for plasma-lithium trench experiment
Jung, Soonwook
To simulate detrimental events in a tokamak and provide a test-stand for a liquid lithium infused trench (LiMIT) device, a pulsed plasma source utilizing a theta pinch in conjunction with a coaxial plasma accelerator has been developed. An overall objective of the project is to develop a compact device that can produce 100 MW/m2 to 1 GW/m2 of plasma heat flux (a typical heat flux level in a major fusion device) in ~ 100 mus (≤ 0.1 MJ/m2) for a liquid lithium plasma facing component research. The existing theta pinch device, DEVeX, was built and operated for study on lithium vapor shielding effect. However, a typical plasma energy of 3 - 4 kJ/m2 is too low to study an interaction of plasma and plasma facing components in fusion devices. No or little preionized plasma, ringing of magnetic field, collisions of high energy particles with background gas have been reported as the main issues. Therefore, DEVeX is reconfigured to mitigate these issues. The new device is mainly composed of a plasma gun for a preionization source, a theta pinch for heating, and guiding magnets for a better plasma transportation. Each component will be driven by capacitor banks and controlled by high voltage / current switches. Several diagnostics including triple Langmuir probe, calorimeter, optical emission measurement, Rogowski coil, flux loop, and fast ionization gauge are used to characterize the new device. A coaxial plasma gun is manufactured and installed in the previous theta pinch chamber. The plasma gun is equipped with 500 uF capacitor and a gas puff valve. The increase of the plasma velocity with the plasma gun capacitor voltage is consistent with the theoretical predictions and the velocity is located between the snowplow model and the weak - coupling limit. Plasma energies measured with the calorimeter ranges from 0.02 - 0.065 MJ/m2 and increases with the voltage at the capacitor bank. A cross-check between the plasma energy measured with the calorimeter and the triple probe
Progress in theory and simulation of ion cyclotron emission from magnetic confinement fusion plasmas
Dendy, Richard; Chapman, Ben; Chapman, Sandra; Cook, James; Reman, Bernard; McClements, Ken; Carbajal, Leopoldo
2016-10-01
Suprathermal ion cyclotron emission (ICE) is detected from all large tokamak and stellarator plasmas. Its frequency spectrum has narrow peaks at sequential cyclotron harmonics of the energetic ion population (fusion-born or neutral beam-injected) at the outer edge of the plasma. ICE was the first collective radiative instability driven by confined fusion-born ions observed in deuterium-tritium plasmas in JET and TFTR, and the magnetoacoustic cyclotron instability is the most likely emission mechanism. Contemporary ICE measurements are taken at very high sampling rates from the LHD stellarator and from the conventional aspect ratio KSTAR tokamak. A correspondingly advanced modelling capability for the ICE emission mechanism has been developed using 1D3V PIC and hybrid-PIC codes, supplemented by analytical theory. These kinetic codes simulate the self-consistent full orbit dynamics of energetic and thermal ions, together with the electric and magnetic fields and the electrons. We report recent progress in theory and simulation that addresses: the scaling of ICE intensity with energetic particle density; the transition between super-Alfvénic and sub-Alfvénic regimes for the collectively radiating particles; and the rapid time evolution that is seen for some ICE measurements. This work was supported in part by the RCUK Energy Programme [Grant Number EP/I501045] and by Euratom.
3D MHD Simulations of Laser Plasma Guiding in Curved Magnetic Field
Roupassov, S.; Rankin, R.; Tsui, Y.; Capjack, C.; Fedosejevs, R.
1999-11-01
The guiding and confinement of laser produced plasma in a curved magnetic field has been investigated numerically. These studies were motivated by experiments on pulsed laser deposition of diamond-like films [1] in which a 1kG magnetic field in a curved solenoid geometry was utilized to steer a carbon plasma around a curved trajectory and thus to separate it from unwanted macroparticles produced by the laser ablation. The purpose of the modeling was to characterize the plasma dynamics during the propagation through the magnetic guide field and to investigate the effect of different magnetic field configurations. A 3D curvilinear ADI code developed on the basis of an existing Cartesian code [2] was employed to simulate the underlying resistive one-fluid MHD model. Issues such as large regions of low background density and nonreflective boundary conditions were addressed. Results of the simulations in a curved guide field will be presented and compared to experimental results. [1] Y.Y. Tsui, D. Vick and R. Fedosejevs, Appl. Phys. Lett. 70 (15), pp. 1953-57, 1997. [2] R. Rankin, and I. Voronkov, in "High Performance Computing Systems and Applications", pp. 59-69, Kluwer AP, 1998.
PIC simulations of the MagnetoRotational instability in electron-positron plasmas
Inchingolo, Giannandrea; Grismayer, Thomas; Loureiro, Nuno F.; Fonseca, Ricardo A.; Silva, Luis O.
2016-10-01
The magnetorotational instability (MRI) is a crucial mechanism of angular momentum transport in a variety of astrophysical scenarios, as e-e+ plasmas accretion disks nearness neutron stars and black holes. The MRI has been widely studied using MHD models and simulations, in order to understand the behavior of astrophysical fluids in a state of differential rotation. When the timescale for electron and ion collisions is longer than the inflow time in the disk, the plasma is macroscopically collisionless and MHD breaks down. This is the case of the limit of weak magnetic field, i.e., as the ratio of the ion cyclotron frequency to orbital frequency becomes small. Leveraging on the recent addition of the shearing co-rotating frames equations of motion and Maxwell's equations modules in our PIC code OSIRIS 3.0, we intend to present our recent results of the analysis of MRI in electron-positron plasma in the limit of weak magnetic field. We will recall the theoretical 1D linear model of Krolik et Zweibel that describes the behavior of MRI in the limit of weak magnetic field and use it to support our results. Moving to 2D simulations, the analysis of MRI via PIC code permits to investigate also how MRI will act in comparison with other Kinetic instabilities, like mirror instability.
Axisymmetric Bernstein modes in a finite-length non-neutral plasma: simulation and kinetic theory
Hart, Grant; Peterson, Bryan G.; Spencer, Ross L.
2016-10-01
We are using a 2-D PIC code to model high-frequency (near the cyclotron frequency) axisymmetric oscillations in a finite-length pure-ion plasma. We previously modeled these modes for infinite-length plasmas, where they are not detectable in the surface charge on the walls because of axisymmetry and lack of z-dependence. This is not true in a finite-length plasma, however, because the eigenfunction of the oscillation has to have nodes a short distance beyond the ends of the plasma. This gives the modes a cos (kz z) or sin (kz z) dependence, with a kz such that an integral number (approximately) of half-wavelengths fit into the plasma. This z-dependence makes the mode detectable in the surface charge on the walls. The modes also have r-dependence. The radial-velocity eigenfunctions of the modes behave as J1 (kr r) . We have simulated the plasma with different kz and kr values and find that increasing kz introduces a small frequency shift, either upward or downward depending on which mode is measured. The damping of the modes also increases as kz or kr increases. We are developing an appropriate kinetic theory of these modes that will include both the finite-Larmour-radius effects and the axial bouncing motion of the particles.
Grishkov, A. A.; Kornilov, S. Yu.; Rempe, N. G.; Shidlovskiy, S. V.; Shklyaev, V. A.
2016-07-01
The results of computer simulations of the electron-optical system of an electron gun with a plasma emitter are presented. The simulations are performed using the KOBRA3-INP, XOOPIC, and ANSYS codes. The results describe the electron beam formation and transport. The electron trajectories are analyzed. The mechanisms of gas influence on the energy inhomogeneity of the beam and its current in the regions of beam primary formation, acceleration, and transport are described. Recommendations for optimizing the electron-optical system with a plasma emitter are presented.
Energy Technology Data Exchange (ETDEWEB)
Grishkov, A. A. [Russian Academy of Sciences, Institute of High Current Electronics, Siberian Branch (Russian Federation); Kornilov, S. Yu., E-mail: kornilovsy@gmail.com; Rempe, N. G. [Tomsk State University of Control Systems and Radioelectronics (Russian Federation); Shidlovskiy, S. V. [Tomsk State University (Russian Federation); Shklyaev, V. A. [Russian Academy of Sciences, Institute of High Current Electronics, Siberian Branch (Russian Federation)
2016-07-15
The results of computer simulations of the electron-optical system of an electron gun with a plasma emitter are presented. The simulations are performed using the KOBRA3-INP, XOOPIC, and ANSYS codes. The results describe the electron beam formation and transport. The electron trajectories are analyzed. The mechanisms of gas influence on the energy inhomogeneity of the beam and its current in the regions of beam primary formation, acceleration, and transport are described. Recommendations for optimizing the electron-optical system with a plasma emitter are presented.
ARC Code TI: Mission Simulation ToolKit (MST)
National Aeronautics and Space Administration — The MST is a simulation framework, supporting the development of autonomy technology for planetary exploration vehicles. The MST provides a software test bed which...
3-D Simulations of Plasma Wakefield Acceleration with Non-Idealized Plasmas and Beams
Energy Technology Data Exchange (ETDEWEB)
Deng, S.; Katsouleas, T.; Lee, S.; Muggli, P.; /Southern California U.; Mori, W.B.; Hemker, R.; Ren, C.; Huang, C.; Dodd, E.; Blue, B.E.; Clayton, C.E.; Joshi, C.; Wang,; /UCLA; Decker, F.J.; Hogan, M.J.; Iverson, R.H.; O' Connell, C.; Raimondi, P.; Walz, D.; /SLAC
2005-09-27
3-D Particle-in-cell OSIRIS simulations of the current E-162 Plasma Wakefield Accelerator Experiment are presented in which a number of non-ideal conditions are modeled simultaneously. These include tilts on the beam in both planes, asymmetric beam emittance, beam energy spread and plasma inhomogeneities both longitudinally and transverse to the beam axis. The relative importance of the non-ideal conditions is discussed and a worst case estimate of the effect of these on energy gain is obtained. The simulation output is then propagated through the downstream optics, drift spaces and apertures leading to the experimental diagnostics to provide insight into the differences between actual beam conditions and what is measured. The work represents a milestone in the level of detail of simulation comparisons to plasma experiments.
Simulating industrial plasma reactors - A fresh perspective
Mohr, Sebastian; Rahimi, Sara; Tennyson, Jonathan; Ansell, Oliver; Patel, Jash
2016-09-01
A key goal of the presented research project PowerBase is to produce new integration schemes which enable the manufacturability of 3D integrated power smart systems with high precision TSV etched features. The necessary high aspect ratio etch is performed via the BOSCH process. Investigations in industrial research are often use trial and improvement experimental methods. Simulations provide an alternative way to study the influence of external parameters on the final product, whilst also giving insights into the physical processes. This presentation investigates the process of simulating an industrial ICP reactor used over high power (up to 2x5 kW) and pressure (up to 200 mTorr) ranges, analysing the specific procedures to achieve a compromise between physical correctness and computational speed, while testing commonly made assumptions. This includes, for example, the effect of different physical models and the inclusion of different gas phase and surface reactions with the aim of accurately predicting the dependence of surface rates and profiles on external parameters in SF6 and C4F8 discharges. This project has received funding from the Electronic Component Systems for European Leadership Joint Undertaking under Grant Agreement No. 662133 PowerBase.
A Multi-Code Analysis Toolkit for Astrophysical Simulation Data
Turk, Matthew J.; Smith., Britton D.; Oishi, Jeffrey S.; Skory, Stephen; Skillman, Samuel W.; Abel, Tom; Norman, Michael L.
2010-01-01
The analysis of complex multiphysics astrophysical simulations presents a unique and rapidly growing set of challenges: reproducibility, parallelization, and vast increases in data size and complexity chief among them. In order to meet these challenges, and in order to open up new avenues for collaboration between users of multiple simulation platforms, we present yt (available at http://yt.enzotools.org/), an open source, community-developed astrophysical analysis and visualization toolkit. ...
Simulations of Galaxy Cluster Collisions with a Dark Plasma Component
Sepp, Tiit; Heikinheimo, Matti; Hektor, Andi; Raidal, Martti; Spethmann, Christian; Tempel, Elmo; Veermäe, Hardi
2016-01-01
We present the results of N-body/smoothed particle hydrodynamics simulations of galaxy cluster collisions with a two component model of dark matter, which is assumed to consist of a predominant non-interacting dark matter component and a 20 percent mass fraction of dark plasma. Dark plasma is an intriguing form of interacting dark matter with an effective fluid-like behavior, which is well motivated by various theoretical particle physics models. We find that by choosing suitable simulation parameters, the observed distributions of dark matter in both the Bullet Cluster (1E 0657-558) and Abell 520 (MS 0451.5+0250) can be qualitatively reproduced. In particular, it is found that dark plasma forms an isolated mass clump in the Abell 520 system which cannot be explained by traditional models of dark matter, but has been detected in weak lensing observations.
Simulations of Stimulated Raman Scattering in Low-Density Plasmas
Institute of Scientific and Technical Information of China (English)
CAO Lihua; CHANG Tieqiang; LIU Zhanjun; ZHENG Chunyang
2007-01-01
Stimulated Raman scattering(SRS)in a low-density plasma slab is investigated by particle-in-cell(PIC)simulations.The backward stimulated Raman scattering(B-SRS)dominates initially and erodes the head of the pump wave,while the forward stimulated Raman scattering (F-SRS)subsequently develops and is located at the rear part of the slab.Two-stage electron acceleration may be more efficient due to the coexistence of these two instabilities.The B-SRS plasma wave with low phase velocities can accelerate the background electrons which may be further boosted to higher energies by the F-SRS plasma wave with high phase velocities.The simulations show that the peaks of the main components in both the frequency and wave number spectra occur at the positions estimated from the phase-matching conditions.
Development of MCNPX-ESUT computer code for simulation of neutron/gamma pulse height distribution
Abolfazl Hosseini, Seyed; Vosoughi, Naser; Zangian, Mehdi
2015-05-01
In this paper, the development of the MCNPX-ESUT (MCNPX-Energy Engineering of Sharif University of Technology) computer code for simulation of neutron/gamma pulse height distribution is reported. Since liquid organic scintillators like NE-213 are well suited and routinely used for spectrometry in mixed neutron/gamma fields, this type of detectors is selected for simulation in the present study. The proposed algorithm for simulation includes four main steps. The first step is the modeling of the neutron/gamma particle transport and their interactions with the materials in the environment and detector volume. In the second step, the number of scintillation photons due to charged particles such as electrons, alphas, protons and carbon nuclei in the scintillator material is calculated. In the third step, the transport of scintillation photons in the scintillator and lightguide is simulated. Finally, the resolution corresponding to the experiment is considered in the last step of the simulation. Unlike the similar computer codes like SCINFUL, NRESP7 and PHRESP, the developed computer code is applicable to both neutron and gamma sources. Hence, the discrimination of neutron and gamma in the mixed fields may be performed using the MCNPX-ESUT computer code. The main feature of MCNPX-ESUT computer code is that the neutron/gamma pulse height simulation may be performed without needing any sort of post processing. In the present study, the pulse height distributions due to a monoenergetic neutron/gamma source in NE-213 detector using MCNPX-ESUT computer code is simulated. The simulated neutron pulse height distributions are validated through comparing with experimental data (Gohil et al. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 664 (2012) 304-309.) and the results obtained from similar computer codes like SCINFUL, NRESP7 and Geant4. The simulated gamma pulse height distribution for a 137Cs
A simulation study of a controlled tokamak plasma
Fujii, N.; Niwa, Y.
1980-03-01
A tokamak circuit theory, including results of numerical simulation studies, is applied to a control system synthesized for a Joule heated tokamak plasma. The treatment is similar to that of Ogata and Ninomiya (1979) except that in this case a quadrupole field coil current is considered coexisting with image induced on a vacuum chamber.
Simulation of density measurements in plasma wakefields using photo acceleration
Kasim, Muhammad Firmansyah; Ceurvorst, Luke; Sadler, James; Burrows, Philip N; Trines, Raoul; Holloway, James; Wing, Matthew; Bingham, Robert; Norreys, Peter
2015-01-01
One obstacle in plasma accelerator development is the limitation of techniques to diagnose and measure plasma wakefield parameters. In this paper, we present a novel concept for the density measurement of a plasma wakefield using photon acceleration, supported by extensive particle in cell simulations of a laser pulse that copropagates with a wakefield. The technique can provide the perturbed electron density profile in the laser’s reference frame, averaged over the propagation length, to be accurate within 10%. We discuss the limitations that affect the measurement: small frequency changes, photon trapping, laser displacement, stimulated Raman scattering, and laser beam divergence. By considering these processes, one can determine the optimal parameters of the laser pulse and its propagation length. This new technique allows a characterization of the density perturbation within a plasma wakefield accelerator.
The FLUKA Code: An Accurate Simulation Tool for Particle Therapy.
Battistoni, Giuseppe; Bauer, Julia; Boehlen, Till T; Cerutti, Francesco; Chin, Mary P W; Dos Santos Augusto, Ricardo; Ferrari, Alfredo; Ortega, Pablo G; Kozłowska, Wioletta; Magro, Giuseppe; Mairani, Andrea; Parodi, Katia; Sala, Paola R; Schoofs, Philippe; Tessonnier, Thomas; Vlachoudis, Vasilis
2016-01-01
Monte Carlo (MC) codes are increasingly spreading in the hadrontherapy community due to their detailed description of radiation transport and interaction with matter. The suitability of a MC code for application to hadrontherapy demands accurate and reliable physical models capable of handling all components of the expected radiation field. This becomes extremely important for correctly performing not only physical but also biologically based dose calculations, especially in cases where ions heavier than protons are involved. In addition, accurate prediction of emerging secondary radiation is of utmost importance in innovative areas of research aiming at in vivo treatment verification. This contribution will address the recent developments of the FLUKA MC code and its practical applications in this field. Refinements of the FLUKA nuclear models in the therapeutic energy interval lead to an improved description of the mixed radiation field as shown in the presented benchmarks against experimental data with both (4)He and (12)C ion beams. Accurate description of ionization energy losses and of particle scattering and interactions lead to the excellent agreement of calculated depth-dose profiles with those measured at leading European hadron therapy centers, both with proton and ion beams. In order to support the application of FLUKA in hospital-based environments, Flair, the FLUKA graphical interface, has been enhanced with the capability of translating CT DICOM images into voxel-based computational phantoms in a fast and well-structured way. The interface is capable of importing also radiotherapy treatment data described in DICOM RT standard. In addition, the interface is equipped with an intuitive PET scanner geometry generator and automatic recording of coincidence events. Clinically, similar cases will be presented both in terms of absorbed dose and biological dose calculations describing the various available features.
Large Eddy Simulation of Flow in Turbine Cascades Using LESTool and UNCLE Codes
Huang, P. G.
2004-01-01
During the period December 23,1997 and December August 31,2004, we accomplished the development of 2 CFD codes for DNS/LES/RANS simulation of turbine cascade flows, namely LESTool and UNCLE. LESTool is a structured code making use of 5th order upwind differencing scheme and UNCLE is a second-order-accuracy unstructured code. LESTool has both Dynamic SGS and Spalart's DES models and UNCLE makes use of URANS and DES models. The current report provides a description of methodologies used in the codes.
Large Eddy Simulation of Flow in Turbine Cascades Using LEST and UNCLE Codes
Ashpis, David (Technical Monitor); Huang, P. G.
2004-01-01
During the period December 23, 1997 and December August 31, 2004, we accomplished the development of 2 CFD codes for DNS/LES/RANS simulation of turbine cascade flows, namely LESTool and UNCLE. LESTool is a structured code making use of 5th order upwind differencing scheme and UNCLE is a second-order-accuracy unstructured code. LESTool has both Dynamic SGS and Sparlart's DES models and UNCLE makes use of URANS and DES models. The current report provides a description of methodologies used in the codes.
Energy Technology Data Exchange (ETDEWEB)
Pruess, Karsten
2003-08-08
Numerical simulation has become a widely practiced andaccepted technique for studying flow and transport processes in thevadose zone and other subsurface flow systems. This article discusses asuite of codes, developed primarily at Lawrence Berkeley NationalLaboratory (LBNL), with the capability to model multiphase flows withphase change. We summarize history and goals in the development of theTOUGH codes, and present the governing equations for multiphase,multicomponent flow. Special emphasis is given to space discretization bymeans of integral finite differences (IFD). Issues of code implementationand architecture are addressed, as well as code applications,maintenance, and future developments.
TreePM: A Code for Cosmological N-Body Simulations
Indian Academy of Sciences (India)
J. S. Bagla
2002-09-01
We describe the TreePM method for carrying out large N-Body simulations to study formation and evolution of the large scale structure in the Universe. This method is a combination of Barnes and Hut tree code and Particle-Mesh code. It combines the automatic inclusion of periodic boundary conditions of PM simulations with the high resolution of tree codes. This is done by splitting the gravitational force into a short range and a long range component. We describe the splitting of force between these two parts.We outline the key differences between TreePM and some other N-Body methods.
Simulation of loss of feedwater transient of MASLWR test facility by MARS-KS code
Energy Technology Data Exchange (ETDEWEB)
Park, Juyeop [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)
2013-05-15
MASLWR test facility is a mock-up of a passive integral type reactor equipped with helical coil steam generator. Since SMART reactor which is being current developed domestically also adopts helical coil steam generator, KINS has joined this ICSP to evaluate performance of domestic regulatory audit thermal-hydraulic code (MARS-KS code) in various respects including wall-to-fluid heat transfer model modification implemented in the code by independent international experiment database. In the ICSP, two types of transient experiments have been focused and they are loss of feedwater transient with subsequent ADS operation and long term cooling (SP-2) and normal operating conditions at different power levels (SP-3). In the present study, KINS simulation results by the MARS-KS code (KS-002 version) for the SP-2 experiment are presented in detail and conclusions on MARS-KS code performance drawn through this simulation is described. Performance of the MARS-KS code is evaluated through the simulation of the loss of feedwater transient of the MASLWR test facility. Steady state run shows helical coil specific heat transfer models implemented in the code is reasonable. However, through the transient run, it is also found that three-dimensional effect within the HPC and axial conduction effect through the HTP are not well reproduced by the code.
Applications of the lahet simulation code to relativistic heavy ion detectors
Energy Technology Data Exchange (ETDEWEB)
Waters, L.; Gavron, A. [Los Alamos National Lab., NM (United States)
1991-12-31
The Los Alamos High Energy Transport (LAHET) simulation code has been applied to test beam data from the lead/scintillator Participant Calorimeter of BNL AGS experiment E814. The LAHET code treats hadronic interactions with the LANL version of the Oak Ridge code HETC. LAHET has now been expanded to handle hadrons with kinetic energies greater than 5 GeV with the FLUKA code, while HETC is used exclusively below 2.0 GeV. FLUKA is phased in linearly between 2.0 and 5.0 GeV. Transport of electrons and photons is done with EGS4, and an interface to the Los Alamos HMCNP3B library based code is provided to analyze neutrons with kinetic energies less than 20 MeV. Excellent agreement is found between the test data and simulation, and results for 2.46 GeV/c protons and pions are illustrated in this article.
Applications of the lahet simulation code to relativistic heavy ion detectors
Energy Technology Data Exchange (ETDEWEB)
Waters, L.; Gavron, A. [Los Alamos National Lab., NM (United States)
1991-12-31
The Los Alamos High Energy Transport (LAHET) simulation code has been applied to test beam data from the lead/scintillator Participant Calorimeter of BNL AGS experiment E814. The LAHET code treats hadronic interactions with the LANL version of the Oak Ridge code HETC. LAHET has now been expanded to handle hadrons with kinetic energies greater than 5 GeV with the FLUKA code, while HETC is used exclusively below 2.0 GeV. FLUKA is phased in linearly between 2.0 and 5.0 GeV. Transport of electrons and photons is done with EGS4, and an interface to the Los Alamos HMCNP3B library based code is provided to analyze neutrons with kinetic energies less than 20 MeV. Excellent agreement is found between the test data and simulation, and results for 2.46 GeV/c protons and pions are illustrated in this article.
Simulation and Optimization of VHDL code for FPGA-Based Design using Simulink
Directory of Open Access Journals (Sweden)
Naresh Grover
2014-06-01
Full Text Available Simulations and prototyping have been a very important part of the electronics industry since a very long time. In recent years, FPGA's have become increasingly important and have found their way into all kind of digital system design This paper presents a novel, easy and efficient approach of implementation and verification of VHDL code using Simulink and then to regenerate the optimized VHDL code again using Simulink. The VHDL code written for the complicated digital design of 32-bit floating point arithmetic unit has been synthesized on Xilinx, verified and simulated on Simulink. The same VHDL code in Modelsim was optimized using this approach and the optimized code so generated by Simulinkhas also been synthesized to compare the results. Power dissipations for both synthesized designs using Xilinx Power Estimator were also extracted for comparison.
Simulation on change of generic satellite radar cross section via artificially created plasma sprays
Chung, Shen Shou Max; Chuang, Yu-Chou
2016-06-01
Recent advancements in antisatellite missile technologies have proven the effectiveness of such attacks, and the vulnerability of satellites in such exercises inspires a new paradigm in RF Stealth techniques suitable for satellites. In this paper we examine the possibility of using artificially created plasma sprays on the surface of the satellite’s main body to alter its radar cross section (RCS). First, we briefly review past research related to RF Stealth using plasma. Next, we discuss the physics between electromagnetic waves and plasma, and the RCS number game in RF Stealth design. A comparison of RCS in a generic satellite and a more complicated model is made to illustrate the effect of the RCS number game, and its meaning for a simulation model. We also run a comparison between finite-difference-time-domain (FDTD) and multilevel fast multipole method (MLFMM) codes, and find the RCS results are very close. We then compare the RCS of the generic satellite and the plasma-covered satellite. The incident radar wave is a differentiated Gaussian monopulse, with 3 dB bandwidth between 1.2 GHz and 4 GHz, and we simulate three kinds of plasma density, with a characteristic plasma frequency ω P = 0.1, 1, and 10 GHz. The electron-neutral collision frequency ν en is set at 0.01 GHz. We found the RCS of plasma-covered satellite is not necessarily smaller than the originally satellite. When ω P is 0.1 GHz, the plasma spray behaves like a dielectric, and there is minor reduction in the RCS. When ω P is 1 GHz, the X-Y cut RCS increases. When ω P is 10 GHz, the plasma behaves more like a metal to the radar wave, and stronger RCS dependency to frequency appears. Therefore, to use plasma as an RCS adjustment tool requires careful fine-tuning of plasma density and shape, in order to achieve the so-called plasma stealth effect.
Grudiev, A.; Lettry, J.; Mattei, S.; Paoluzzi, M.; Scrivens, R.
2014-02-01
Numerical simulation of the CERN LINAC4 H- source 2 MHz RF system has been performed taking into account a realistic geometry from 3D Computer Aided Design model using commercial FEM high frequency simulation code. The effect of the plasma has been added to the model by the approximation of a homogenous electrically conducting medium. Electric and magnetic fields, RF power losses, and impedance of the circuit have been calculated for different values of the plasma conductivity. Three different regimes have been found depending on the plasma conductivity: (1) Zero or low plasma conductivity results in RF electric field induced by the RF antenna being mainly capacitive and has axial direction; (2) Intermediate conductivity results in the expulsion of capacitive electric field from plasma and the RF power coupling, which is increasing linearly with the plasma conductivity, is mainly dominated by the inductive azimuthal electric field; (3) High conductivity results in the shielding of both the electric and magnetic fields from plasma due to the skin effect, which reduces RF power coupling to plasma. From these simulations and measurements of the RF power coupling on the CERN source, a value of the plasma conductivity has been derived. It agrees well with an analytical estimate calculated from the measured plasma parameters. In addition, the simulated and measured impedances with and without plasma show very good agreement as well demonstrating validity of the plasma model used in the RF simulations.
Grudiev, A; Lettry, J; Mattei, S; Paoluzzi, M; Scrivens, R
2014-02-01
Numerical simulation of the CERN LINAC4 H(-) source 2 MHz RF system has been performed taking into account a realistic geometry from 3D Computer Aided Design model using commercial FEM high frequency simulation code. The effect of the plasma has been added to the model by the approximation of a homogenous electrically conducting medium. Electric and magnetic fields, RF power losses, and impedance of the circuit have been calculated for different values of the plasma conductivity. Three different regimes have been found depending on the plasma conductivity: (1) Zero or low plasma conductivity results in RF electric field induced by the RF antenna being mainly capacitive and has axial direction; (2) Intermediate conductivity results in the expulsion of capacitive electric field from plasma and the RF power coupling, which is increasing linearly with the plasma conductivity, is mainly dominated by the inductive azimuthal electric field; (3) High conductivity results in the shielding of both the electric and magnetic fields from plasma due to the skin effect, which reduces RF power coupling to plasma. From these simulations and measurements of the RF power coupling on the CERN source, a value of the plasma conductivity has been derived. It agrees well with an analytical estimate calculated from the measured plasma parameters. In addition, the simulated and measured impedances with and without plasma show very good agreement as well demonstrating validity of the plasma model used in the RF simulations.
Final Technical Report for Center for Plasma Edge Simulation Research
Energy Technology Data Exchange (ETDEWEB)
Pankin, Alexei Y.; Bateman, Glenn; Kritz, Arnold H.
2012-02-29
The CPES research carried out by the Lehigh fusion group has sought to satisfy the evolving requirements of the CPES project. Overall, the Lehigh group has focused on verification and validation of the codes developed and/or integrated in the CPES project. Consequently, contacts and interaction with experimentalists have been maintained during the course of the project. Prof. Arnold Kritz, the leader of the Lehigh Fusion Group, has participated in the executive management of the CPES project. The code development and simulation studies carried out by the Lehigh fusion group are described in more detail in the sections below.
Parallelization of a beam dynamics code and first large scale radio frequency quadrupole simulations
Directory of Open Access Journals (Sweden)
J. Xu
2007-01-01
Full Text Available The design and operation support of hadron (proton and heavy-ion linear accelerators require substantial use of beam dynamics simulation tools. The beam dynamics code TRACK has been originally developed at Argonne National Laboratory (ANL to fulfill the special requirements of the rare isotope accelerator (RIA accelerator systems. From the beginning, the code has been developed to make it useful in the three stages of a linear accelerator project, namely, the design, commissioning, and operation of the machine. To realize this concept, the code has unique features such as end-to-end simulations from the ion source to the final beam destination and automatic procedures for tuning of a multiple charge state heavy-ion beam. The TRACK code has become a general beam dynamics code for hadron linacs and has found wide applications worldwide. Until recently, the code has remained serial except for a simple parallelization used for the simulation of multiple seeds to study the machine errors. To speed up computation, the TRACK Poisson solver has been parallelized. This paper discusses different parallel models for solving the Poisson equation with the primary goal to extend the scalability of the code onto 1024 and more processors of the new generation of supercomputers known as BlueGene (BG/L. Domain decomposition techniques have been adapted and incorporated into the parallel version of the TRACK code. To demonstrate the new capabilities of the parallelized TRACK code, the dynamics of a 45 mA proton beam represented by 10^{8} particles has been simulated through the 325 MHz radio frequency quadrupole and initial accelerator section of the proposed FNAL proton driver. The results show the benefits and advantages of large-scale parallel computing in beam dynamics simulations.
Numerical simulation of primary cluster formation in silane plasmas
Gupta, N; Kroesen, G
2003-01-01
The usage of low-cost silicon-based solar cells is limited by their tendency to degrade on prolonged exposure to sunlight. Current research has indicated that the inclusion of nano-particles in the plasma-deposited film enhances its efficiency considerably. It is therefore essential to identify the plasma operating conditions such that nano-particles are formed and deposited in the film. The early stages of cluster formation, nucleation and coagulation are still open to experimental and theoretical investigation. In this paper, a simulation of the first stage of particle formation in capacitively coupled radio-frequency discharges in SiH sub 4 is attempted. A molecular dynamics based model has been set up to simulate one of the principal reaction pathways in cluster formation. This simulation model appears to produce valid and meaningful trends. Further studies are planned to explore the effect of other parameters and alternate pathways.
Numerical simulation of primary cluster formation in silane plasmas
Gupta, Nandini; Stoffels, W. W.; Kroesen, G. M. W.
2003-04-01
The usage of low-cost silicon-based solar cells is limited by their tendency to degrade on prolonged exposure to sunlight. Current research has indicated that the inclusion of nano-particles in the plasma-deposited film enhances its efficiency considerably. It is therefore essential to identify the plasma operating conditions such that nano-particles are formed and deposited in the film. The early stages of cluster formation, nucleation and coagulation are still open to experimental and theoretical investigation. In this paper, a simulation of the first stage of particle formation in capacitively coupled radio-frequency discharges in SiH4 is attempted. A molecular dynamics based model has been set up to simulate one of the principal reaction pathways in cluster formation. This simulation model appears to produce valid and meaningful trends. Further studies are planned to explore the effect of other parameters and alternate pathways.
Plasma transport simulation modeling for helical confinement systems
Energy Technology Data Exchange (ETDEWEB)
Yamazaki, K.; Amano, T.
1991-08-01
New empirical and theoretical transport models for helical confinement systems are developed based on the neoclassical transport theory including the effect of radial electric field and multi-helicity magnetic components, and the drift wave turbulence transport for electrostatic and electromagnetic modes, or the anomalous semi-empirical transport. These electron thermal diffusivities are compared with CHS (Compact Helical System) experimental data, which indicates that the central transport coefficient of the ECH plasma agrees with the neoclassical axi-symmetric value and the transport outside the half radius is anomalous. On the other hand, the transport of NBI-heated plasmas is anomalous in the whole plasma region. This anomaly is not explained by the electrostatic drift wave turbulence models in these flat-density-profile discharges. For the detailed prediction of plasma parameters in LHD (Large Helical Device), 3-D(dimensional) equilibrium/1-D transport simulations including empirical or drift wave turbulence models are carried out, which suggests that the global confinement time of LHD is determined mainly by the electron anomalous transport near the plasma edge region rather than the helical ripple transport in the core region. Even if the ripple loss can be eliminated, the increase of the global confinement is 10%. However, the rise in the central ion temperature is more than 20%. If the anomalous loss can be reduced to the half level of the present scaling, like so-called `H-mode` of the tokamak discharge, the neoclassical ripple loss through the ion channel becomes important even in the plasma core. The 5% radial inward shift of the plasma column with respect to the major radius is effective for improving plasma confinement and raising more than 50% of the fusion product by reducing this neoclassical asymmetric ion transport loss and increasing 10% in the plasma radius. (author).
Energy Technology Data Exchange (ETDEWEB)
Basko, M.M. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany). ExtreMe Matter Institute EMMI; Maruhn, J.; Tauschwitz, Anna [Frankfurt Univ. (Germany); Novikov, V.G.; Grushin, A.S. [Keldysh Institute of Applied Mathematics, Moscow (Russian Federation)
2011-12-15
An attractive way to create uniform plasma states at high temperatures and densities is by using hohlraums - cavities with heavy-metal walls that are either directly or indirectly heated by intense laser pulses to x-ray temperatures of tens and hundreds electron volts. A sample material, whose plasma state is to be studied, can be placed inside such a hohlraum (usually in the form of a low-density foam) and uniformly heated to a high temperature. In this case a high-Z hohlraum enclosure serves a double purpose: it prevents the hot plasma from rapid disassembly due to hydrodynamic expansion and, at the same time, suppresses its rapid radiative cooling by providing high diffusive resistivity for X-rays. Of course, both the inertial and the thermal confinement of high-temperature plasmas can be achieved only for a limited period of time - on the order of nanoseconds for millimeter-scale hohlraums. Some time ago such hohlraum targets were proposed for measurements of the stopping power of hot dense plasmas for fast ions at GSI (Darmstadt). Theoretical modeling of hohlraum targets has always been a challenging task for computational physics because it should combine multidimensional hydrodynamic simulations with the solution of the spectral transfer equation for thermal radiation. In this work we report on our latest progress in this direction, namely, we present the results of 2D (two-dimensional) simulations with a newly developed radiation-hydrodynamics code RALEF-2D of two types of the hohlraum targets proposed for experiments on the PHELIX laser at GSI. The first configuration is a simple spherical hohlraum with gold walls and empty interior, which has two holes - one for laser beam entrance, and the other for diagnostics. The hohlraums of this type have already been used in several experimental sessions with the NHELIX and PHELIX lasers at GSI. The second type is a two-chamber cylindrical hohlraum with a characteristic {omega}-shaped cross-section of the enclosure
The Karlsruhe extensive air shower simulation code CORSIKA.
Capdevielle, J. N.; Grieder, P.; Knapp, J.; Gabriel, P.; Gils, H. J.; Heck, D.; Mayer, H. J.; Oehlschläger, J.; Rebel, H.; Schatz, G.; Thouw, T.
1992-11-01
CORSIKA is a detailed simulation program for extensive air showers initiated by high energy cosmic particles. Primary protons and nuclei up to iron can be treated as well as photons. The reaction model for the hadronic interactions is based on the Dual Parton Model and relies on experimental data wherever possible. For electromagnetic interactions the shower program EGS4 may be used.
Phase space structures in gyrokinetic simulations of fusion plasma turbulence
Ghendrih, Philippe; Norscini, Claudia; Cartier-Michaud, Thomas; Dif-Pradalier, Guilhem; Abiteboul, Jérémie; Dong, Yue; Garbet, Xavier; Gürcan, Ozgür; Hennequin, Pascale; Grandgirard, Virginie; Latu, Guillaume; Morel, Pierre; Sarazin, Yanick; Storelli, Alexandre; Vermare, Laure
2014-10-01
Gyrokinetic simulations of fusion plasmas give extensive information in 5D on turbulence and transport. This paper highlights a few of these challenging physics in global, flux driven simulations using experimental inputs from Tore Supra shot TS45511. The electrostatic gyrokinetic code GYSELA is used for these simulations. The 3D structure of avalanches indicates that these structures propagate radially at localised toroidal angles and then expand along the field line at sound speed to form the filaments. Analysing the poloidal mode structure of the potential fluctuations (at a given toroidal location), one finds that the low modes m = 0 and m = 1 exhibit a global structure; the magnitude of the m = 0 mode is much larger than that of the m = 1 mode. The shear layers of the corrugation structures are thus found to be dominated by the m = 0 contribution, that are comparable to that of the zonal flows. This global mode seems to localise the m = 2 mode but has little effect on the localisation of the higher mode numbers. However when analysing the pulsation of the latter modes one finds that all modes exhibit a similar phase velocity, comparable to the local zonal flow velocity. The consequent dispersion like relation between the modes pulsation and the mode numbers provides a means to measure the zonal flow. Temperature fluctuations and the turbulent heat flux are localised between the corrugation structures. Temperature fluctuations are found to exhibit two scales, small fluctuations that are localised by the corrugation shear layers, and appear to bounce back and forth radially, and large fluctuations, also readily observed on the flux, which are associated to the disruption of the corrugations. The radial ballistic velocity of both avalanche events if of the order of 0.5ρ∗c0 where ρ∗ = ρ0/a, a being the tokamak minor radius and ρ0 being the characteristic Larmor radius, ρ0 = c0/Ω0. c0 is the reference ion thermal velocity and Ω0 = qiB0/mi the reference
Plasma boundaries at Mars: a 3-D simulation study
Directory of Open Access Journals (Sweden)
A. Bößwetter
2004-12-01
Full Text Available The interaction of the solar wind with the ionosphere of planet Mars is studied using a three-dimensional hybrid model. Mars has only a weak intrinsic magnetic field, and consequently its ionosphere is directly affected by the solar wind. The gyroradii of the solar wind protons are in the range of several hundred kilometers and therefore comparable with the characteristic scales of the interaction region. Different boundaries emerge from the interaction of the solar wind with the continuously produced ionospheric heavy-ion plasma, which could be identified as a bow shock (BS, ion composition boundary (ICB and magnetic pile up boundary (MPB, where the latter both turn out to coincide. The simulation results regarding the shape and position of these boundaries are in good agreement with the measurements made by Phobos-2 and MGS spacecraft. It is shown that the positions of these boundaries depend essentially on the ionospheric production rate, the solar wind ram pressure, and the often unconsidered electron temperature of the ionospheric heavy ion plasma. Other consequences are rays of planetary plasma in the tail and heavy ion plasma clouds, which are stripped off from the dayside ICB region by some instability.
Key words. Magnetospheric physics (solar wind interactions with unmagnetized bodies – Space plasma physics (discontinuities; numerical simulation studies
An Advanced simulation Code for Modeling Inductive Output Tubes
Energy Technology Data Exchange (ETDEWEB)
Thuc Bui; R. Lawrence Ives
2012-04-27
During the Phase I program, CCR completed several major building blocks for a 3D large signal, inductive output tube (IOT) code using modern computer language and programming techniques. These included a 3D, Helmholtz, time-harmonic, field solver with a fully functional graphical user interface (GUI), automeshing and adaptivity. Other building blocks included the improved electrostatic Poisson solver with temporal boundary conditions to provide temporal fields for the time-stepping particle pusher as well as the self electric field caused by time-varying space charge. The magnetostatic field solver was also updated to solve for the self magnetic field caused by time changing current density in the output cavity gap. The goal function to optimize an IOT cavity was also formulated, and the optimization methodologies were investigated.
The Fluid-Kinetic Particle-in-Cell Solver for Plasma Simulations
Markidis, Stefano; Lapenta, Giovanni; Ronnmark, Kjell; Hamrin, Maria; Meliani, Zakaria; Laure, Erwin
2013-01-01
A new method that solves concurrently the multi-fluid and Maxwell's equations has been developed for plasma simulations. By calculating the stress tensor in the multi-fluid momentum equation by means of computational particles moving in a self-consistent electromagnetic field, the kinetic effects are retained while solving the multi-fluid equations. The Maxwell's and multi-fluid equations are discretized implicitly in time enabling kinetic simulations over time scales typical of the fluid simulations. The fluid-kinetic Particle-in-Cell solver has been implemented in a three-dimensional electromagnetic code, and tested against the ion cyclotron resonance and magnetic reconnection problems. The new method is a promising approach for coupling fluid and kinetic methods in a unified framework.
Code modernization and modularization of APEX and SWAT watershed simulation models
SWAT (Soil and Water Assessment Tool) and APEX (Agricultural Policy / Environmental eXtender) are respectively large and small watershed simulation models derived from EPIC Environmental Policy Integrated Climate), a field-scale agroecology simulation model. All three models are coded in FORTRAN an...
Multi-dimensional simulations of Magnetic Field Seeding of Plasma via Laser Beatwave Interaction
Welch, Dale; Thoma, Carsten; Bruner, Nichelle; Hwang, David; Hsu, Scott
2011-10-01
Assembling magnetized plasma for inertial fusion permits longer duration and smaller density-radius product fuel implosions by reducing the energy transport significantly. For fusion energy, however, the field must be created with a significant standoff distance. A promising technique for magnetic field production is the beat-wave interaction. Some theoretical results have been confirmed by microwave experiments. Recently, fully-kinetic 2D and 3D simulations of the interaction have been simulated using the LSP particle-in-cell code. We inject 2 CO2 100-micron transverse-extent lasers both with 1013 W/cm2 intensity into a peak 3 × 1016 cm-3 density plasma at various angles. The calculated interaction produces beatwaves at the predicted wavelength and frequency and drives magnetic fields up to 2.5 kG. We will examine the sensitivity of the efficiency of magnetic field production to laser parameters and plasma density scale length and discuss the application to the Plasma Liner eXperiment at LANL. Work supported by US DOE, OFES.
Simulation of bundle test Quench-12 with integral code MELCOR
Energy Technology Data Exchange (ETDEWEB)
Duspiva, J. [Nuclear Research Inst., Rez plc (Czech Republic)
2011-07-01
The past NRI analyses cover the Quench-01, Quench-03 and Quench-06 with version MELCOR 1.8.5 (including reflood model), and Quench-01 and Quench-11 tests with the latest version MELCOR 1.8.6. The Quench-12 test is specific, because it has different bundle configuration related to the VVER bundle configuration with hexagonal grid of pins and also used E110 cladding material. Specificity of Quench-12 test is also in the used material of fuel rod cladding - E110. The test specificities are a reason for the highest concern, because the VVER reactors are operated in the Czech Republic. The new input model was developed with the taking into account all experience from previous simulations of the Quench bundle tests. The recent version MELCOR 1.8.6 YU{sub 2}911 was used for the simulation with slightly modified ELHEAT package. Sensitivity studies on input parameters and oxidation kinetics were performed. (author)
Kinetic simulations of ladder climbing by electron plasma waves
Hara, Kentaro; Barth, Ido; Kaminski, Erez; Dodin, I. Y.; Fisch, N. J.
2017-05-01
The energy of plasma waves can be moved up and down the spectrum using chirped modulations of plasma parameters, which can be driven by external fields. Depending on whether the wave spectrum is discrete (bounded plasma) or continuous (boundless plasma), this phenomenon is called ladder climbing (LC) or autoresonant acceleration of plasmons. It was first proposed by Barth et al. [Phys. Rev. Lett. 115, 075001 (2015), 10.1103/PhysRevLett.115.075001] based on a linear fluid model. In this paper, LC of electron plasma waves is investigated using fully nonlinear Vlasov-Poisson simulations of collisionless bounded plasma. It is shown that, in agreement with the basic theory, plasmons survive substantial transformations of the spectrum and are destroyed only when their wave numbers become large enough to trigger Landau damping. Since nonlinear effects decrease the damping rate, LC is even more efficient when practiced on structures like quasiperiodic Bernstein-Greene-Kruskal (BGK) waves rather than on Langmuir waves per se.
Simulation of plasma filled hemispherical cavity as dielectric resonator antenna
Trenchev, G.; Kissóvski, Zh
2016-10-01
Plasma antennas are becoming an increasingly interesting research topic because of their uncommon characteristics. They are highly configurable, can be turned on and off rapidly, and exhibit lower thermal noise compared to metal antennas. In recent years, research has been conducted on cylindrical plasma columns sustained by DC, RF or microwave field, and their application as leaky wave antennas or as regular monopole antennas. Dielectric resonator antennas (DRA) with high dielectric permittivity are known for their small size and excellent operating characteristics for modern mobile communications (WiMAX, LTE). Hemispherical dielectric resonator antennas are characterized by simple shape, high radiation efficiency and wide bandwidth. Hemispherical DRA with a low density weakly ionized plasma as dielectric material will combine the positive features of plasma and dielectric antennas, and is particularly interesting, as antennas of this type have not been studied yet. The hemispherical plasma antenna is simulated with Ansoft HFSS in the microwave S-band. Obtained radiation pattern and bandwidth show the advantages of hemispherical plasma antennas for future communication technology.
Guiding-center models for edge plasmas and numerical simulations of isolated plasma filaments
Energy Technology Data Exchange (ETDEWEB)
Madsen, Jens
2010-09-15
The work presented in this thesis falls into two categories: development of reduced dynamical models applicable to edge turbulence in magnetically confined fusion plasmas and numerical simulations of isolated plasma filaments in the scrape-off layer region investigating the influence of finite Larmor radius effects on the radial plasma transport. The coexistence of low-frequency fluctuations, having length scales comparable to the ion gyroradius, steep pressure gradients and strong E x B flows in the edge region of fusion plasmas violates the standard gyrokinetic ordering. In this thesis two models are presented that overcome some of the difficulties associated with the development of reduced dynamical models applicable to the edge. Second order guiding-center coordinates are derived using the phasespace Lie transform method. Using a variational principle the corresponding Vlasov-Maxwell equations expressed in guiding-center coordinates are derived including a local energy theorem. The second order terms describe lowest order finite Larmor radius effects. This set of equations might be relevant for edge plasmas due to the capability of capturing strong E x B flows and lowest order finite Larmor radius effects self-consistently. Next, an extension of the existing gyrokinetic formalism with strong flows is presented. In this work the background electric fields is dynamical, whereas earlier contributions did only incorporate a stationary electric field. In an ordering relevant for edge plasma turbulence, fully electromagnetic second order gyrokinetic coordinates and the corresponding gyrokinetic Vlasov-Maxwell equations are derived, including a local energy theorem. By taking the polarization and magnetization densities in the drift kinetic limit, we present the gyrokinetic Vlasov-Maxwell equations in a more tractable form, which could be relevant for direct numerical simulations of edge plasma turbulence. Finally, an investigation of the influence of finite Larmor
3D Convection-pulsation Simulations with the HERACLES Code
Felix, S.; Audit, E.; Dintrans, B.
2015-10-01
We present 3D simulations of the coupling between surface convection and pulsations due to the κ-mechanism in classical Cepheids of the red edge of Hertzsprung-Russell diagram's instability strip. We show that 3D convection is less powerful than 2D convection and does not quench the radiative pulsations, leading to an efficient 3D κ-mechanism. Thus, the 3D instability strip is closer to the observed one than the 1D or 2D were.
Process monitoring and simulation code verification using interactive computer animation
Energy Technology Data Exchange (ETDEWEB)
Curtis, J.N.; Beelman, R.J.; Schwieder, D.H.; Stewart, H.D.
1984-05-23
At the Idaho National Engineering Laboratory (INEL), EG and G Idaho, Inc., has developed techniques by which schematics, created for and displayed at color graphics terminals, can be driven by actual or calculated data. These input data cause changes to occur within the displayed schematic. This research is presently being done to develop a prototype to be used in nuclear power plant control rooms. Work stations have already been developed to analyze data that are produced during actual and simulated nuclear reactor experiments.
Vrnak, Daniel R.; Stueber, Thomas J.; Le, Dzu K.
2012-01-01
This report presents a method for running a dynamic legacy inlet simulation in concert with another dynamic simulation that uses a graphical interface. The legacy code, NASA's LArge Perturbation INlet (LAPIN) model, was coded using the FORTRAN 77 (The Portland Group, Lake Oswego, OR) programming language to run in a command shell similar to other applications that used the Microsoft Disk Operating System (MS-DOS) (Microsoft Corporation, Redmond, WA). Simulink (MathWorks, Natick, MA) is a dynamic simulation that runs on a modern graphical operating system. The product of this work has both simulations, LAPIN and Simulink, running synchronously on the same computer with periodic data exchanges. Implementing the method described in this paper avoided extensive changes to the legacy code and preserved its basic operating procedure. This paper presents a novel method that promotes inter-task data communication between the synchronously running processes.
2D and 3D Core-Collapse Supernovae Simulation Results Obtained with the CHIMERA Code
Bruenn, S W; Hix, W R; Blondin, J M; Marronetti, P; Messer, O E B; Dirk, C J; Yoshida, S
2010-01-01
Much progress in realistic modeling of core-collapse supernovae has occurred recently through the availability of multi-teraflop machines and the increasing sophistication of supernova codes. These improvements are enabling simulations with enough realism that the explosion mechanism, long a mystery, may soon be delineated. We briefly describe the CHIMERA code, a supernova code we have developed to simulate core-collapse supernovae in 1, 2, and 3 spatial dimensions. We then describe the results of an ongoing suite of 2D simulations initiated from a 12, 15, 20, and 25 solar mass progenitor. These have all exhibited explosions and are currently in the expanding phase with the shock at between 5,000 and 20,000 km. We also briefly describe an ongoing simulation in 3 spatial dimensions initiated from the 15 solar mass progenitor.
2D and 3D core-collapse supernovae simulation results obtained with the CHIMERA code
Energy Technology Data Exchange (ETDEWEB)
Bruenn, S W; Marronetti, P; Dirk, C J [Physics Department, Florida Atlantic University, 777 W. Glades Road, Boca Raton, FL 33431-0991 (United States); Mezzacappa, A; Hix, W R [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6354 (United States); Blondin, J M [Department of Physics, North Carolina State University, Raleigh, NC 27695-8202 (United States); Messer, O E B [Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6354 (United States); Yoshida, S, E-mail: bruenn@fau.ed [Max-Planck-Institut fur Gravitationsphysik, Albert Einstein Institut, Golm (Germany)
2009-07-01
Much progress in realistic modeling of core-collapse supernovae has occurred recently through the availability of multi-teraflop machines and the increasing sophistication of supernova codes. These improvements are enabling simulations with enough realism that the explosion mechanism, long a mystery, may soon be delineated. We briefly describe the CHIMERA code, a supernova code we have developed to simulate core-collapse supernovae in 1, 2, and 3 spatial dimensions. We then describe the results of an ongoing suite of 2D simulations initiated from a 12, 15, 20, and 25 M{sub o-dot} progenitor. These have all exhibited explosions and are currently in the expanding phase with the shock at between 5,000 and 20,000 km. We also briefly describe an ongoing simulation in 3 spatial dimensions initiated from the 15 M{sub o-dot} progenitor.
MOCCA code for star cluster simulation: comparison with optical observations using COCOA
Askar, Abbas; Giersz, Mirek; Pych, Wojciech; Olech, Arkadiusz; Hypki, Arkadiusz
2016-02-01
We introduce and present preliminary results from COCOA (Cluster simulatiOn Comparison with ObservAtions) code for a star cluster after 12 Gyr of evolution simulated using the MOCCA code. The COCOA code is being developed to quickly compare results of numerical simulations of star clusters with observational data. We use COCOA to obtain parameters of the projected cluster model. For comparison, a FITS file of the projected cluster was provided to observers so that they could use their observational methods and techniques to obtain cluster parameters. The results show that the similarity of cluster parameters obtained through numerical simulations and observations depends significantly on the quality of observational data and photometric accuracy.
MOCCA Code for Star Cluster Simulation: Comparison with Optical Observations using COCOA
Askar, Abbas; Pych, Wojciech; Olech, Arkadiusz; Hypki, Arkadiusz
2015-01-01
We introduce and present preliminary results from COCOA (Cluster simulatiOn Comparison with ObservAtions) code for a star cluster after 12 Gyrs of evolution simulated using the MOCCA code. The COCOA code is being developed to quickly compare results of numerical simulations of star clusters with observational data. We use COCOA to obtain parameters of the projected cluster model. For comparison, a FITS file of the projected cluster was provided to observers so that they could use their observational methods and techniques to obtain cluster parameters. The results show that the similarity of cluster parameters obtained through numerical simulations and observations depends significantly on the quality of observational data and photometric accuracy.
Directory of Open Access Journals (Sweden)
Monteagudo Ángel
2011-02-01
Full Text Available Abstract Background As the canonical code is not universal, different theories about its origin and organization have appeared. The optimization or level of adaptation of the canonical genetic code was measured taking into account the harmful consequences resulting from point mutations leading to the replacement of one amino acid for another. There are two basic theories to measure the level of optimization: the statistical approach, which compares the canonical genetic code with many randomly generated alternative ones, and the engineering approach, which compares the canonical code with the best possible alternative. Results Here we used a genetic algorithm to search for better adapted hypothetical codes and as a method to guess the difficulty in finding such alternative codes, allowing to clearly situate the canonical code in the fitness landscape. This novel proposal of the use of evolutionary computing provides a new perspective in the open debate between the use of the statistical approach, which postulates that the genetic code conserves amino acid properties far better than expected from a random code, and the engineering approach, which tends to indicate that the canonical genetic code is still far from optimal. We used two models of hypothetical codes: one that reflects the known examples of codon reassignment and the model most used in the two approaches which reflects the current genetic code translation table. Although the standard code is far from a possible optimum considering both models, when the more realistic model of the codon reassignments was used, the evolutionary algorithm had more difficulty to overcome the efficiency of the canonical genetic code. Conclusions Simulated evolution clearly reveals that the canonical genetic code is far from optimal regarding its optimization. Nevertheless, the efficiency of the canonical code increases when mistranslations are taken into account with the two models, as indicated by the
Liu, Wei
2010-01-01
We present results from three-dimensional ideal magnetohydrodynamic simulations of unmagnetized dense plasma jet injection into a hot strongly magnetized plasma, with the aim of providing insight into core fueling of a tokamak with parameters relevant for ITER (International Thermonuclear Experimental Reactor) and NSTX (National Spherical Torus Experiment). Unmagnetized jet injection is similar to compact toroid injection but with higher possible injection density and total mass, as well as a potentially smaller footprint for the injector hardware. Our simulation results show that the unmagnetized dense jet is quickly magnetized upon injection. The penetration depth of the jet into the tokamak plasma is mostly dependent on the jet's initial kinetic energy while the jet's magnetic field determines its interior evolution. A key requirement for spatially precise fueling is for the jet's slowing-down time to be less than the time for the perturbed tokamak magnetic flux to relax due to magnetic reconnection. Thus ...
Ion transport barriers triggered by plasma polarization in gyrokinetic simulations
Strugarek, A.; Sarazin, Y.; Zarzoso, D.; Abiteboul, J.; Brun, A. S.; Cartier-Michaud, T.; Dif-Pradalier, G.; Garbet, X.; Ghendrih, Ph; Grandgirard, V.; Latu, G.; Passeron, C.; Thomine, O.
2013-07-01
The creation of ion transport barriers by externally induced sheared E × B flows is investigated with the global, full-f and flux-driven gyrokinetic code GYSELA. A gyrokinetic source of vorticity is designed and proves to be efficient in polarizing the plasma. Induced sheared electric fields develop in the turbulent core and are accompanied by the creation of a transport barrier. The barrier and the sheared flow relax quasi-periodically because of zonal flow activity and a destabilizing temperature anisotropy induced by the vorticity source. A new cyclic mechanism leading to the relaxation of transport barriers in tokamaks is discovered.
Gyrokinetic simulation of isotope scaling in tokamak plasmas
Energy Technology Data Exchange (ETDEWEB)
Lee, W.W. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Santoro, R.A. [California Univ., Irvine, CA (United States). Dept. of Physics
1995-07-01
A three-dimensional global gyrokinetic particle code in toroidal geometry has been used for investigating the transport properties of ion temperature gradient (ITG) drift instabilities in tokamak plasmas. Using the isotopes of hydrogen (H{sup +}), deuterium (D{sup +}) and tritium (T{sup +}), we have found that, under otherwise identical conditions, there exists a favorable isotope scaling for the ion thermal diffusivity, i.e., Xi decreases with mass. Such a scaling, which exists both at the saturation of the instability and also at the nonlinear steady state, can be understood from the resulting wavenumber and frequency spectra.
Fully three-dimensional simulation and modeling of a dense plasma focus
Energy Technology Data Exchange (ETDEWEB)
Meehan, B. T.; Niederhaus, J. H. J.
2014-10-01
A dense plasma focus (DPF) is a pulsed-power machine that electromagnetically accelerates and cylindrically compresses a shocked plasma in a Z-pinch. The pinch results in a brief (~ 100 ns) pulse of X-rays, and, for some working gases, also a pulse of neutrons. A great deal of experimental research has been done into the physics of DPF reactions, and there exist mathematical models describing its behavior during the different time phases of the reaction. Two of the phases, known as the inverse pinch and the rundown, are approximately governed by magnetohydrodynamics, and there are a number of well-established codes for simulating these phases in two dimensions or in three dimensions under the assumption of axial symmetry. There has been little success, however, in developing fully three-dimensional simulations. In this work we present three-dimensional simulations of DPF reactions and demonstrate that three-dimensional simulations predict qualitatively and quantitatively different behavior than their two-dimensional counterparts. One of the most important quantities to predict is the time duration between the formation of the gas shock and Z-pinch, and the three-dimensional simulations more faithfully represent experimental results for this time duration and are essential for accurate prediction of future experiments.
Two-dimensional simulations of nonlinear beam-plasma interaction in isotropic and magnetized plasmas
Timofeev, I V
2012-01-01
Nonlinear interaction of a low density electron beam with a uniform plasma is studied using two-dimensional particle-in-cell (PIC) simulations. We focus on formation of coherent phase space structures in the case, when a wide two-dimensional wave spectrum is driven unstable, and we also study how nonlinear evolution of these structures is affected by the external magnetic field. In the case of isotropic plasma, nonlinear buildup of filamentation modes due to the combined effects of two-stream and oblique instabilities is found to exist and growth mechanisms of secondary instabilities destroying the BGK--type nonlinear wave are identified. In the weak magnetic field, the energy of beam-excited plasma waves at the nonlinear stage of beam-plasma interaction goes predominantly to the short-wavelength upper-hybrid waves propagating parallel to the magnetic field, whereas in the strong magnetic field the spectral energy is transferred to the electrostatic whistlers with oblique propagation.
Srna - Monte Carlo codes for proton transport simulation in combined and voxelized geometries
Directory of Open Access Journals (Sweden)
Ilić Radovan D.
2002-01-01
Full Text Available This paper describes new Monte Carlo codes for proton transport simulations in complex geometrical forms and in materials of different composition. The SRNA codes were developed for three dimensional (3D dose distribution calculation in proton therapy and dosimetry. The model of these codes is based on the theory of proton multiple scattering and a simple model of compound nucleus decay. The developed package consists of two codes: SRNA-2KG and SRNA-VOX. The first code simulates proton transport in combined geometry that can be described by planes and second order surfaces. The second one uses the voxelized geometry of material zones and is specifically adopted for the application of patient computer tomography data. Transition probabilities for both codes are given by the SRNADAT program. In this paper, we will present the models and algorithms of our programs, as well as the results of the numerical experiments we have carried out applying them, along with the results of proton transport simulation obtained through the PETRA and GEANT programs. The simulation of the proton beam characterization by means of the Multi-Layer Faraday Cup and spatial distribution of positron emitters obtained by our program indicate the imminent application of Monte Carlo techniques in clinical practice.
Comparisons of the simulation results using different codes for ADS spallation target
Yu Hong Wei; Shen Qing Biao; Wan Jun Sheng; Zhao Zhi Xiang
2002-01-01
The calculations to the standard thick target were made by using different codes. The simulation of the thick Pb target with length of 60 cm, diameter of 20 cm bombarded with 800, 1000, 1500 and 2000 MeV energetic proton beam was carried out. The yields and the spectra of emitted neutron were studied. The spallation target was simulated by SNSP, SHIELD, DCM/CEM (Dubna Cascade Model /Cascade Evaporation Mode) and LAHET codes. The Simulation Results were compared with experiments. The comparisons show good agreement between the experiments and the SNSP simulated leakage neutron yield. The SHIELD simulated leakage neutron spectra are in good agreement with the LAHET and the DCM/CEM simulated leakage neutron spectra
Kiselyov, Alexander; Dolgonosov, Maxim; Krasovsky, Victor
It is very important to determine the form of trapped particle distribution function in the problem of plasma disturbance by a spherical absorbing body. There are two ways of solving this problem: stability analysis of the physical system or examination of initial value problem. In this work the second method has been chosen. The physical system under consideration can be described by Poisson-Vlasov equations. In the initial moment of time the absorbing sphere appears in collisionless plasma. Distribution functions for electrons and ions are assumed to be monoenergetic at the start. The aim of the study is to observe plasma dynamics at long times and to determine the steady state of the plasma. Numerical simulation is based on PIC ("particles-in-cell") method. Spherical symmetry of the problem is widely employed to simplify model and reduce calculation count. It allows to treat charged particle dynamics as a motion with one degree of freedom, while the problem as a whole remains three-dimensional. This gives an opportunity to use moderate computational resources. A massively parallel code using GPGPU and OpenCL technologies has been developed, as well as auxiliary utilities for testing, result processing and representation. As a result, spatial and temporal plasma characteristics near absorbing sphere have been obtained. Formation of trapped ion bunch in the vicinity of the sphere has been observed on the phase plane while approaching equilibrium state.
Large Scale Earth’s Bow Shock with Northern IMF as Simulated by PIC Code in Parallel with MHD Model
Indian Academy of Sciences (India)
Suleiman Baraka
2016-06-01
In this paper, we propose a 3D kinetic model (particle-in-cell, PIC) for the description of the large scale Earth’s bow shock. The proposed version is stable and does not require huge or extensive computer resources. Because PIC simulations work with scaled plasma and field parameters, we also propose to validate our code by comparing its results with the available MHD simulations under same scaled solar wind (SW) and (IMF) conditions. We report new results from the two models. In both codes the Earth’s bow shock position is found to be $\\approx 14.8 R_{{\\rm E}}$ along the Sun–Earth line, and $\\approx 29 R_{{\\rm E}}$ on the dusk side. Those findings are consistent with past in situ observations. Both simulations reproduce the theoretical jump conditions at the shock. However, the PIC code density and temperature distributions are inflated and slightly shifted sunward when compared to the MHD results. Kinetic electron motions and reflected ions upstream may cause this sunward shift. Species distributions in the foreshock region are depicted within the transition of the shock (measured $\\approx$2$c/\\omega_{pi}$ for $ \\Theta_{Bn}=90^{\\circ}$ and $M_{{\\rm MS}} = 4.7 $) and in the downstream. The size of the foot jump in the magnetic field at the shock is measured to be ($1.7 c/ \\omega_{pi} $). In the foreshocked region, the thermal velocity is found equal to 213 km $s^{−1}$ at $15R_{{\\rm E}}$ and is equal to $63 km s^{-1}$ at $12 R_{{\\rm E}}$ (magnetosheath region). Despite the large cell size of the current version of the PIC code, it is powerful to retain macrostructure of planets magnetospheres in very short time, thus it can be used for pedagogical test purposes. It is also likely complementary with MHD to deepen our understanding of the large scale magnetosphere.
Verification strategies for fluid-based plasma simulation models
Mahadevan, Shankar
2012-10-01
Verification is an essential aspect of computational code development for models based on partial differential equations. However, verification of plasma models is often conducted internally by authors of these programs and not openly discussed. Several professional research bodies including the IEEE, AIAA, ASME and others have formulated standards for verification and validation (V&V) of computational software. This work focuses on verification, defined succinctly as determining whether the mathematical model is solved correctly. As plasma fluid models share several aspects with the Navier-Stokes equations used in Computational Fluid Dynamics (CFD), the CFD verification process is used as a guide. Steps in the verification process: consistency checks, examination of iterative, spatial and temporal convergence, and comparison with exact solutions, are described with examples from plasma modeling. The Method of Manufactured Solutions (MMS), which has been used to verify complex systems of PDEs in solid and fluid mechanics, is introduced. An example of the application of MMS to a self-consistent plasma fluid model using the local mean energy approximation is presented. The strengths and weaknesses of the techniques presented in this work are discussed.
Numerical Modeling of Imploding Plasma liners Using the 1D Radiation-Hydrodynamics Code HELIOS
Davis, J. S.; Hanna, D. S.; Awe, T. J.; Hsu, S. C.; Stanic, M.; Cassibry, J. T.; Macfarlane, J. J.
2010-11-01
The Plasma Liner Experiment (PLX) is attempting to form imploding plasma liners to reach 0.1 Mbar upon stagnation, via 30--60 spherically convergent plasma jets. PLX is partly motivated by the desire to develop a standoff driver for magneto-inertial fusion. The liner density, atomic makeup, and implosion velocity will help determine the maximum pressure that can be achieved. This work focuses on exploring the effects of atomic physics and radiation on the 1D liner implosion and stagnation dynamics. For this reason, we are using Prism Computational Science's 1D Lagrangian rad-hydro code HELIOS, which has both equation of state (EOS) table-lookup and detailed configuration accounting (DCA) atomic physics modeling. By comparing a series of PLX-relevant cases proceeding from ideal gas, to EOS tables, to DCA treatments, we aim to identify how and when atomic physics effects are important for determining the peak achievable stagnation pressures. In addition, we present verification test results as well as brief comparisons to results obtained with RAVEN (1D radiation-MHD) and SPHC (smoothed particle hydrodynamics).
SPEX (Plasma Code Spectral Fitting Tool). Collisional ionization for atoms and ions of H to Zn.
Urdampilleta, I.; Kaastra, J. S.
2017-03-01
Every observation of astrophysical objects involving a spectrum requires atomic data for the interpretation of line fluxes, ratios and ionization state of the emitting plasma. One of processes which determines it is collisional ionization. In this study an update of the direct ionization (DI) and excitation-autoionization (EA) processes is discussed for the H to Zn-like isoelectronic sequences. The previous assessments were performed by Dere (2007, A&A 466, 771) for H to Zn isoelectronc sequences, Arnaud & Raymond (1992, ApJ. 398, 394) for Fe and Arnaud & Rothenflug (1985, A&AS, 60, 425). However, in the last years new laboratory measurements and theoretical calculations of ionization cross sections have become accessible. We provide a review, extension and update of this previous work and fit the cross sections of all individuals shells of all ions from H to Zn. These data are described using an extension of Younger's formula, suitable for integration over a Maxwellian velocity distribution to derive the subshell ionization rate coefficients. These ionization rate coefficients are included together with the radiative recombination rates data (Mao et al. 2016, A&AS, 27568) and a change-exchange model (Gu et al. 2016, A&A 588, A52, 11) into the high-resolution plasma code and spectral fit tool SPEX V3.0 (Kaastra et al. 1996, UV and X-ray Spectroscopy of Astrophysical and Laboratory Plasmas).
Tang, William
2013-04-01
Advanced computing is generally recognized to be an increasingly vital tool for accelerating progress in scientific research in the 21st Century. The imperative is to translate the combination of the rapid advances in super-computing power together with the emergence of effective new algorithms and computational methodologies to help enable corresponding increases in the physics fidelity and the performance of the scientific codes used to model complex physical systems. If properly validated against experimental measurements and verified with mathematical tests and computational benchmarks, these codes can provide more reliable predictive capability for the behavior of complex systems, including fusion energy relevant high temperature plasmas. The magnetic fusion energy research community has made excellent progress in developing advanced codes for which computer run-time and problem size scale very well with the number of processors on massively parallel supercomputers. A good example is the effective usage of the full power of modern leadership class computational platforms from the terascale to the petascale and beyond to produce nonlinear particle-in-cell simulations which have accelerated progress in understanding the nature of plasma turbulence in magnetically-confined high temperature plasmas. Illustrative results provide great encouragement for being able to include increasingly realistic dynamics in extreme-scale computing campaigns to enable predictive simulations with unprecedented physics fidelity. Some illustrative examples will be presented of the algorithmic progress from the magnetic fusion energy sciences area in dealing with low memory per core extreme scale computing challenges for the current top 3 supercomputers worldwide. These include advanced CPU systems (such as the IBM-Blue-Gene-Q system and the Fujitsu K Machine) as well as the GPU-CPU hybrid system (Titan).
The application of Geant4 simulation code for brachytherapy treatment
Agostinelli, S; Garelli, S; Paoli, G; Nieminen, P; Pia, M G
2000-01-01
Brachytherapy is a radiotherapeutic modality that makes use of radionuclides to deliver a high radiation dose to a well-defined volume while sparing surrounding healthy structures. At the National Institute for Cancer Research of Genova a High Dose Rate remote afterloading system provides Ir(192) endocavitary brachytherapy treatments. We studied the possibility to use the Geant4 Monte Carlo simulation toolkit in brachytherapy for calculation of complex physical parameters, not directly available by experiment al measurements, used in treatment planning dose deposition models.
General Relativistic Simulations of Magnetized Plasmas around Merging Supermassive Black Holes
Giacomazzo, Bruno; Miller, M Coleman; Reynolds, Christopher S; van Meter, James R
2012-01-01
Coalescing supermassive black hole binaries are produced by the mergers of galaxies and are the most powerful sources of gravitational waves accessible to space-based gravitational observatories. Some such mergers may occur in the presence of matter and magnetic fields and hence generate an electromagnetic counterpart. In this paper we present the first general relativistic simulations of magnetized plasma around merging supermassive black holes using the general relativistic magnetohydrodynamic code Whisky. By considering different magnetic field strengths, going from non-magnetically dominated to magnetically dominated regimes, we explore how magnetic fields affect the dynamics of the plasma and the possible emission of electromagnetic signals. In particular we observe a total amplification of the magnetic field of ~2 orders of magnitude which is driven by the accretion onto the binary and that leads to much stronger electromagnetic signals, more than a factor of 10^4 larger than comparable calculations don...
General Relativistic Simulations of Magnetized Plasmas around Merging Supermassive Black Holes
Giacomazzo, Bruno; Baker, John G.; Miller, M. Coleman; Reynolds, Christopher S.; van Meter, James R.
2012-06-01
Coalescing supermassive black hole binaries are produced by the mergers of galaxies and are the most powerful sources of gravitational waves accessible to space-based gravitational observatories. Some such mergers may occur in the presence of matter and magnetic fields and hence generate an electromagnetic counterpart. In this Letter, we present the first general relativistic simulations of magnetized plasma around merging supermassive black holes using the general relativistic magnetohydrodynamic code Whisky. By considering different magnetic field strengths, going from non-magnetically dominated to magnetically dominated regimes, we explore how magnetic fields affect the dynamics of the plasma and the possible emission of electromagnetic signals. In particular, we observe a total amplification of the magnetic field of ~2 orders of magnitude, which is driven by the accretion onto the binary and that leads to much stronger electromagnetic signals, more than a factor of 104 larger than comparable calculations done in the force-free regime where such amplifications are not possible.
Simulation study of electron injection into plasma wake fields by colliding laser pulses using OOPIC
Institute of Scientific and Technical Information of China (English)
HE An; GAO Jie; ZHU Xiong-Wei; LI Da-Zhang; XU Hong-Liang
2009-01-01
An electron injector concept for a laser-plasma accelerator has been developed which relies on the use of counter propagating ultrashort laser pulses.In this paper,we use OOPIC the fully self-consistent,twodimensional.particle-in-cell code to make a parameter study to determine the bunches that can be obtained through collisions of two collinear laser pulses in uniform plasma.A series of simulations show that one can obtain a short(＜10fs)bunch with its charge of about 15pC,and energy spread of about 15%.We also discussed the variation of the transverse spot size of the electron bunch and found the bunch would undergo the betatron oscillations.
One dimensional simulation on stability of detached plasma in a tokamak divertor
Energy Technology Data Exchange (ETDEWEB)
Nakazawa, Shinji; Nakajima, Noriyoshi; Okamoto, Masao; Ohyabu, Nobuyoshi [National Inst. for Fusion Science, Toki, Gifu (Japan)
1999-06-01
The stability of radiation front in the Scrape-Off-Layer (SOL) of a tokamak is studied with a one dimensional fluid code; the time-dependent transport equations are solved in the direction parallel to a magnetic field line. The simulation results show that stable detached solutions exist, where the plasma temperature near the divertor target is {approx}2 eV. It is found that whenever such stable detached states are attained, the strong radiation front is contact with or at a small distance from the divertor target. When the energy externally injected into the SOL is decreased below a critical value, the radiation front starts to move towards the X-point, cooling the SOL plasma. In such cases, no stationary solutions such that the radiation front rests in the divertor channel are observed in our parameter space. This qualitatively corresponds to the results of tokamak divertor experiments which show the movement of radiation front. (author)
Plasma transport in a simulated magnetic-divertor configuration
Energy Technology Data Exchange (ETDEWEB)
Strawitch, C. M.
1981-03-01
The transport properties of plasma on magnetic field lines that intersect a conducting plate are studied experimentally in the Wisconsin internal ring D.C. machine. The magnetic geometry is intended to simulate certain aspects of plasma phenomena that may take place in a tokamak divertor. It is found by a variety of measurements that the cross field transport is non-ambipolar; this may have important implications in heat loading considerations in tokamak divertors. The undesirable effects of nonambipolar flow make it preferable to be able to eliminate it. However, we find that though the non-ambipolarity may be reduced, it is difficult to eliminate entirely. The plasma flow velocity parallel to the magnetic field is found to be near the ion acoustic velocity in all cases. The experimental density and electron temperature profiles are compared to the solutions to a one dimensional transport model that is commonly used in divertor theory.
Upgrades and application of FIT3D NBI-plasma interaction code in view of LHD deuterium campaigns
Vincenzi, P.; Bolzonella, T.; Murakami, S.; Osakabe, M.; Seki, R.; Yokoyama, M.
2016-12-01
This work presents an upgrade of the FIT3D neutral beam-plasma interaction code, part of TASK3D, a transport suite of codes, and its application to LHD experiments in the framework of the preparation for the first deuterium experiments in the LHD. The neutral beam injector (NBI) system will be upgraded to D injection, and efforts have been recently made to extend LHD modelling capabilities to D operations. The implemented upgrades for FIT3D to enable D NBI modelling in D plasmas are presented, with a discussion and benchmark of the models used. In particular, the beam ionization module has been modified and a routine for neutron production estimation has been implemented. The upgraded code is then used to evaluate the NBI power deposition in experiments with different plasma compositions. In the recent LHD campaign, in fact, He experiments have been run to help the prediction of main effects which may be relevant in future LHD D plasmas. Identical H/He experiments showed similar electron density and temperature profiles, while a higher ion temperature with an He majority has been observed. From first applications of the upgraded FIT3D code it turns out that, although more NB power appears to be coupled with the He plasma, the NBI power deposition is unaffected, suggesting that heat deposition does not play a key role in the increased ion temperature with He plasma.
Comparative Design Studies for the BESSY FEL Program using the MEDUSA and GENESIS Simulation Codes
Freund, H
2005-01-01
The BESSY FEL is based on a seeded cascade of High Gain Harmonic Generation (HGHG) sections followed by an amplifier to produce coherent and stable short wavelength output. Here, we report on comparative design studies carried out using the MEDUSA [1], and GENESIS [2] simulation codes. These two codes have each been used to successfully predict a variety of FEL designs and have agreed well with a number of important experiments. In addition, they were included in a comparative study of FEL simulation [3] that reported substantial agreement between the codes for the specific configurations studied. However, these codes are based on different assumptions. GENESIS treats the particle dynamics using a wiggler-averaged orbit approximation, the transverse electromagnetic field is treated using a field solver, and harmonics are not included. MEDUSA does not use the wiggler-averaged orbit approximation to treat particle dynamics, the transverse fields are treated using a Gaussian modal superposition, and harmonics ar...
MULTI-fs - A computer code for laser-plasma interaction in the femtosecond regime
Ramis, R.; Eidmann, K.; Meyer-ter-Vehn, J.; Hüller, S.
2012-03-01
The code MULTI-fs is a numerical tool devoted to the study of the interaction of ultrashort sub-picosecond laser pulses with matter in the intensity range from 10 11 to 10 17 W cm -2. Hydrodynamics is solved in one-dimensional geometry together with laser energy deposition and transport by thermal conduction and radiation. In contrast to long nanosecond pulses, short pulses generate steep gradient plasmas with typical scale lengths in the order of the laser wavelength and smaller. Under these conditions, Maxwell's equations are solved explicitly to obtain the light field. Concerning laser absorption, two different models for the electron-ion collision frequency are implemented to cover the regime of warm dense matter between high-temperature plasma and solid matter and also interaction with short-wave-length (VUV) light. MULTI-fs code is based on the MULTI radiation-hydrodynamic code [R. Ramis, R. Schmalz, J. Meyer-ter-Vehn, Comp. Phys. Comm. 49 (1988) 475] and most of the original features for the treatment of radiation are maintained. Program summaryProgram title: MULTI-fs Catalogue identifier: AEKT_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKT_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 49 598 No. of bytes in distributed program, including test data, etc.: 443 771 Distribution format: tar.gz Programming language: FORTRAN Computer: PC (32 bits and 64 bits architecture) Operating system: Linux/Unix RAM: 1.6 MiB Classification: 19.13, 21.2 Subprograms used: Cat Id: AECV_v1_0; Title: MULTI2D; Reference: CPC 180 (2009) 977 Nature of problem: One-dimensional interaction of intense ultrashort (sub-picosecond) and ultraintense (up to 10 17 W cm -2) laser beams with matter. Solution method: The hydrodynamic motion coupled to laser propagation and
Barbosa, Marcos; Alves, Maria Virginia; Simões Junior, Fernando
2016-04-01
In plasmas out of thermodynamic equilibrium the particle velocity distribution can be described by the so called Kappa distribution. These velocity distribution functions are a generalization of the Maxwellian distribution. Since 1960, Kappa velocity distributions were observed in several regions of interplanetary space and astrophysical plasmas. Using KEMPO1 particle simulation code, modified to introduce Kappa distribution functions as initial conditions for particle velocities, the normal modes of propagation were analyzed in a plasma containing two species of electrons with different temperatures and densities and ions as a third specie.This type of plasma is usually found in magnetospheres such as in Saturn. Numerical solutions for the dispersion relation for such a plasma predict the presence of an electron-acoustic mode, besides the Langmuir and ion-acoustic modes. In the presence of an ambient magnetic field, the perpendicular propagation (Bernstein mode) also changes, as compared to a Maxwellian plasma, due to the Kappa distribution function. Here results for simulations with and without external magnetic field are presented. The parameters for the initial conditions in the simulations were obtained from the Cassini spacecraft data. Simulation results are compared with numerical solutions of the dispersion relation obtained in the literature and they are in good agreement.
On the Quantification of Incertitude in Astrophysical Simulation Codes
Hoffman, Melissa; Katz, Maximilian P.; Willcox, Donald E.; Ferson, Scott; Swesty, F. Douglas; Calder, Alan
2017-01-01
We present a pedagogical study of uncertainty quantification (UQ) due to epistemic uncertainties (incertitude) in astrophysical modeling using the stellar evolution software instrument MESA (Modules and Experiments for Stellar Astrophysics). We present a general methodology for UQ and examine the specific case of stars evolving from the main sequence to carbon/oxygen white dwarfs. Our study considers two epistemic variables: the wind parameters during the Red Giant and Asymptotic Giant branch phases of evolution. We choose uncertainty intervals for each variable, and use these as input to MESA simulations. Treating MESA as a "black box," we apply two UQ techniques, Cauchy deviates and Quadratic Response Surface Models, to obtain bounds for the final white dwarf masses. Our study is a proof of concept applicable to other computational problems to enable a more robust understanding of incertitude. This work was supported in part by the US Department of Energy under grant DE-FG02-87ER40317.
Nonlinear instability in simulations of Large Plasma Device turbulence
Friedman, B; Umansky, M V; Schaffner, D; Joseph, I
2013-01-01
Several simulations of turbulence in the Large Plasma Device (LAPD) [W. Gekelman et al., Rev. Sci. Inst. 62, 2875 (1991)] are energetically analyzed and compared with each other and with the experiment. The simulations use the same model, but different axial boundary conditions. They employ either periodic, zero-value, zero-derivative, or sheath axial boundaries. The linear stability physics is different between the scenarios because the various boundary conditions allow the drift wave instability to access different axial structures, and the sheath boundary simulation contains a conducting wall mode instability which is just as unstable as the drift waves. Nevertheless, the turbulence in all the simulations is relatively similar because it is primarily driven by a robust nonlinear instability that is the same for all cases. The nonlinear instability preferentially drives $k_\\parallel = 0$ potential energy fluctuations, which then three-wave couple to $k_\\parallel \
ANL/HTP: a computer code for the simulation of heat pipe operation
Energy Technology Data Exchange (ETDEWEB)
McLennan, G.A.
1983-11-01
ANL/HTP is a computer code for the simulation of heat pipe operation, to predict heat pipe performance and temperature distributions during steady state operation. Source and sink temperatures and heat transfer coefficients can be set as input boundary conditions, and varied for parametric studies. Five code options are included to calculate performance for fixed operating conditions, or to vary any one of the four boundary conditions to determine the heat pipe limited performance. The performance limits included are viscous, sonic, entrainment capillary, and boiling, using the best available theories to model these effects. The code has built-in models for a number of wick configurations - open grooves, screen-covered grooves, screen-wrap, and arteries, with provision for expansion. The current version of the code includes the thermophysical properties of sodium as the working fluid in an expandable subroutine. The code-calculated performance agrees quite well with measured experiment data.
LEADS-DC: A computer code for intense dc beam nonlinear transport simulation
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
An intense dc beam nonlinear transport code has been developed. The code is written in Visual FORTRAN 6.6 and has ~13000 lines. The particle distribution in the transverse cross section is uniform or Gaussian. The space charge forces are calculated by the PIC (particle in cell) scheme, and the effects of the applied fields on the particle motion are calculated with the Lie algebraic method through the third order approximation. Obviously,the solutions to the equations of particle motion are self-consistent. The results obtained from the theoretical analysis have been put in the computer code. Many optical beam elements are contained in the code. So, the code can simulate the intense dc particle motions in the beam transport lines, high voltage dc accelerators and ion implanters.
Bode, P; Bode, Paul; Ostriker, Jeremiah P.
2003-01-01
An improved implementation of an N-body code for simulating collisionless cosmological dynamics is presented. TPM (Tree-Particle-Mesh) combines the PM method on large scales with a tree code to handle particle-particle interactions at small separations. After the global PM forces are calculated, spatially distinct regions above a given density contrast are located; the tree code calculates the gravitational interactions inside these denser objects at higher spatial and temporal resolution. The new implementation includes individual particle time steps within trees, an improved treatment of tidal forces on trees, new criteria for higher force resolution and choice of time step, and parallel treatment of large trees. TPM is compared to P^3M and a tree code (GADGET) and is found to give equivalent results in significantly less time. The implementation is highly portable (requiring a Fortran compiler and MPI) and efficient on parallel machines. The source code can be found at http://astro.princeton.edu/~bode/TPM/
Energy Technology Data Exchange (ETDEWEB)
NONE
2001-01-01
In the report, research results discussed in 1999 fiscal year at Nuclear Code Evaluation Committee of Nuclear Code Research Committee were summarized. Present status of Monte Carlo simulation on nuclear energy study was described. Especially, besides of criticality, shielding and core analyses, present status of applications to risk and radiation damage analyses, high energy transport and nuclear theory calculations of Monte Carlo Method was described. The 18 papers are indexed individually. (J.P.N.)
Multigrid Particle-in-cell Simulations of Plasma Microturbulence
Energy Technology Data Exchange (ETDEWEB)
J.L.V. Lewandowski
2003-06-17
A new scheme to accurately retain kinetic electron effects in particle-in-cell (PIC) simulations for the case of electrostatic drift waves is presented. The splitting scheme, which is based on exact separation between adiabatic and on adiabatic electron responses, is shown to yield more accurate linear growth rates than the standard df scheme. The linear and nonlinear elliptic problems that arise in the splitting scheme are solved using a multi-grid solver. The multi-grid particle-in-cell approach offers an attractive path, both from the physics and numerical points of view, to simulate kinetic electron dynamics in global toroidal plasmas.
Magnetic stochasticity in gyrokinetic simulations of plasma microturbulence
Energy Technology Data Exchange (ETDEWEB)
Nevins, W M; Wang, E; Candy, J
2010-02-12
Analysis of the magnetic field structure from electromagnetic simulations of tokamak ion temperature gradient turbulence demonstrates that the magnetic field can be stochastic even at very low plasma pressure. The degree of magnetic stochasticity is quantified by evaluating the magnetic diffusion coefficient. We find that the magnetic stochasticity fails to produce a dramatic increase in the electron heat conductivity because the magnetic diffusion coefficient remains small.
Kinetic simulation study of one dimensional collisional bounded plasma
Institute of Scientific and Technical Information of China (English)
无
1999-01-01
A self-consistent kinetic simulation study ofone dimensional collisional bounded plasma is presented.The formation of stable sheath potential is investigated.It is found that mass ratio of electron and ion not onlyaffects the level of sheath potential, but also affectsthe ion temperature of system. It is clarified that the effects of secondaryemission electron on both the total potential dropand the temperature are not important.
Energy Technology Data Exchange (ETDEWEB)
Shlapakovski, Anatoli; Beilin, Leonid; Bliokh, Yuri; Donskoy, Moshe; Krasik, Yakov E. [Physics Department, Technion, Haifa 32000 (Israel); Hadas, Yoav [Department of Applied Physics, Rafael, PO Box 2250, Haifa 31021 (Israel); Schamiloglu, Edl [Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico 87131 (United States)
2014-05-07
Numerical simulations of the process of electromagnetic energy release from a high-power microwave pulse compressor comprising a gas-filled cavity and interference switch were carried out. A microwave plasma discharge in a rectangular waveguide H-plane tee was modeled with the use of the fully electromagnetic particle-in-cell code MAGIC. The gas ionization, plasma evolution, and interaction with RF fields accumulated within the compressor were simulated using different approaches provided by the MAGIC code: particle-in-cell approach accounting for electron-neutral collisions, gas conductivity model based on the concept of mobility, and hybrid modeling. The dependences of the microwave output pulse peak power and waveform on parameters that can be controlled in experiments, such as an external ionization rate, RF field amplitude, and background gas pressure, were investigated.
Energy Technology Data Exchange (ETDEWEB)
Picard, Richard Roy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bhat, Kabekode Ghanasham [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-07-18
We examine sensitivity analysis and uncertainty quantification for molecular dynamics simulation. Extreme (large or small) output values for the LAMMPS code often occur at the boundaries of input regions, and uncertainties in those boundary values are overlooked by common SA methods. Similarly, input values for which code outputs are consistent with calibration data can also occur near boundaries. Upon applying approaches in the literature for imprecise probabilities (IPs), much more realistic results are obtained than for the complacent application of standard SA and code calibration.
Understanding Performance of Parallel Scientific Simulation Codes using Open|SpeedShop
Energy Technology Data Exchange (ETDEWEB)
Ghosh, K K
2011-11-07
Conclusions of this presentation are: (1) Open SpeedShop's (OSS) is convenient to use for large, parallel, scientific simulation codes; (2) Large codes benefit from uninstrumented execution; (3) Many experiments can be run in a short time - might need multiple shots e.g. usertime for caller-callee, hwcsamp for HW counters; (4) Decent idea of code's performance is easily obtained; (5) Statistical sampling calls for decent number of samples; and (6) HWC data is very useful for micro-analysis but can be tricky to analyze.
Srna-Monte Carlo codes for proton transport simulation in combined and voxelized geometries
Ilic, R D; Stankovic, S J
2002-01-01
This paper describes new Monte Carlo codes for proton transport simulations in complex geometrical forms and in materials of different composition. The SRNA codes were developed for three dimensional (3D) dose distribution calculation in proton therapy and dosimetry. The model of these codes is based on the theory of proton multiple scattering and a simple model of compound nucleus decay. The developed package consists of two codes: SRNA-2KG and SRNA-VOX. The first code simulates proton transport in combined geometry that can be described by planes and second order surfaces. The second one uses the voxelized geometry of material zones and is specifically adopted for the application of patient computer tomography data. Transition probabilities for both codes are given by the SRNADAT program. In this paper, we will present the models and algorithms of our programs, as well as the results of the numerical experiments we have carried out applying them, along with the results of proton transport simulation obtaine...
Toda, S.; Nakata, M.; Nunami, M.; Ishizawa, A.; Watanabe, T.-H.; Sugama, H.
2016-10-01
A reduced model of the turbulent ion heat diffusivity is proposed by the gyrokinetic simulation code (GKV-X) with the adiabatic electrons for the high-Ti Large Helical Device discharge. The plasma parameter region of the short poloidal wavelength is studied, where the ion temperature gradient mode becomes unstable. The ion heat diffusivity by the nonlinear simulation with the kinetic electrons is found to be several times larger than the simulation results using the adiabatic electrons in the radial region 0.46 ion energy flux. The model of the turbulent diffusivity is derived as the function of the squared electrostatic potential fluctuation and the squared zonal flow potential. Next, the squared electrostatic potential fluctuation is approximated with the mixing length estimate. The squared zonal flow potential fluctuation is shown as the linear zonal flow response function. The reduced model of the turbulent diffusivity is derived as the function of the physical parameters by the linear GKV-X simulation with the kinetic electrons. This reduced model is applied to the transport code with the same procedure as.
RAY-RAMSES: a code for ray tracing on the fly in N-body simulations
Barreira, Alexandre; Bose, Sownak; Li, Baojiu
2016-01-01
We present a ray tracing code to compute integrated cosmological observables on the fly in AMR N-body simulations. Unlike conventional ray tracing techniques, our code takes full advantage of the time and spatial resolution attained by the N-body simulation by computing the integrals along the line of sight on a cell-by-cell basis through the AMR simulation grid. Moroever, since it runs on the fly in the N-body run, our code can produce maps of the desired observables without storing large (or any) amounts of data for post-processing. We implemented our routines in the RAMSES N-body code and tested the implementation using an example of weak lensing simulation. We analyse basic statistics of lensing convergence maps and find good agreement with semi-analytical methods. The ray tracing methodology presented here can be used in several cosmological analysis such as Sunyaev-Zel'dovich and integrated Sachs-Wolfe effect studies as well as modified gravity. Our code can also be used in cross-checks of the more conv...
Fully Three-dimensional Simulation and Modeling of a Dense Plasma Focus
Meehan, B T
2014-01-01
A Dense Plasma Focus (DPF) is a pulsed-power machine that electromagnetically accelerates and cylindrically compresses a shocked plasma in a Z-pinch. The pinch results in a brief (about 100 nanosecond) pulse of X-rays, and, for some working gases, also a pulse of neutrons. A great deal of experimental research has been done into the physics of DPF reactions, and there exist mathematical models describing its behavior during the different time phases of the reaction. Two of the phases, known as the inverse pinch and the rundown, are approximately governed by magnetohydrodynamics, and there are a number of well-established codes for simulating these phases in two dimensions or in three dimensions under the assumption of axial symmetry. There has been little success, however, in developing fully three-dimensional simulations. In this work we present three-dimensional simulations of DPF reactions and demonstrate that 3D simulations predict qualitatively and quantitatively different behavior than their 2D counterp...
Mehdipour, M; Kallman, T
2016-01-01
Atomic data and plasma models play a crucial role in diagnosis and interpretation of astrophysical spectra, thus influencing our understanding of the universe. In this investigation we present a systematic comparison of the leading photoionisation codes to determine how much their intrinsic differences impact X-ray spectroscopic studies of hot plasmas in photoionisation equilibrium. We carry out our computations using the Cloudy, SPEX and XSTAR photoionisation codes, and compare their derived thermal and ionisation states for various ionising spectral energy distributions. We examine the resulting absorption-line spectra from these codes for the case of ionised outflows in active galactic nuclei. By comparing the ionic abundances as a function of ionisation parameter $\\xi$, we find that on average there is about 30% deviation between the codes in $\\xi$ where ionic abundances peak. For H-like to B-like sequence ions alone, this deviation in $\\xi$ is smaller at about 10% on average. The comparison of the absorp...
Plasma code for astrophysical charge exchange emission at X-ray wavelengths
Gu, Liyi; Raassen, A J J
2016-01-01
Charge exchange X-ray emission provides unique insights into the interactions between cold and hot astrophysical plasmas. Besides its own profound science, this emission is also technically crucial to all observations in the X-ray band, since charge exchange with the solar wind often contributes a significant foreground component that contaminates the signal of interest. By approximating the cross sections resolved to $n$ and $l$ atomic subshells, and carrying out complete radiative cascade calculation, we create a new spectral code to evaluate the charge exchange emission in the X-ray band. Comparing to collisional thermal emission, charge exchange radiation exhibits enhanced lines from large-$n$ shells to the ground, as well as large forbidden-to-resonance ratios of triplet transitions. Our new model successfully reproduces an observed high-quality spectrum of comet C/2000 WM1 (LINEAR), which emits purely by charge exchange between solar wind ions and cometary neutrals. It demonstrates that a proper charge ...
A new GPU-accelerated hydrodynamical code for numerical simulation of interacting galaxies
Igor, Kulikov
2013-01-01
In this paper a new scalable hydrodynamic code GPUPEGAS (GPU-accelerated PErformance Gas Astrophysic Simulation) for simulation of interacting galaxies is proposed. The code is based on combination of Godunov method as well as on the original implementation of FlIC method, specially adapted for GPU-implementation. Fast Fourier Transform is used for Poisson equation solution in GPUPEGAS. Software implementation of the above methods was tested on classical gas dynamics problems, new Aksenov's test and classical gravitational gas dynamics problems. Collisionless hydrodynamic approach was used for modelling of stars and dark matter. The scalability of GPUPEGAS computational accelerators is shown.
Numerical study of the ITER divertor plasma with the B2-EIRENE code package
Energy Technology Data Exchange (ETDEWEB)
Kotov, V.; Reiter, D. [Forschungszentrum Juelich (DE). Inst. fuer Energieforschung (IEF), Plasmaphysik (IEF-4); Kukushkin, A.S. [ITER International Team, Cadarache (France)
2007-11-15
The problem of plasma-wall interaction and impurity control is one of the remaining critical issues for development of an industrial energy source based on nuclear fusion of light isotopes. In this field sophisticated integrated numerical tools are widely used both for the analysis of current experiments and for predictions guiding future device design. The present work is dedicated to the numerical modelling of the edge plasma region in divertor configurations of large-scale tokamak fusion devices. A well established software tool for this kind of modelling is the B2-EIRENE code. It was originally developed for a relatively hot (>> 10 eV) ''high recycling divertor''. It did not take into account a number of physical effects which can be potentially important for ''detached conditions'' (cold, - several eV, - high density, - {approx} 10{sup 21} m{sup -3}, - plasma) typical for large tokamak devices. This is especially critical for the modelling of the divertor plasma of ITER: an international project of an experimental tokamak fusion reactor to be built in Cadarache, France by 2016. This present work is devoted to a major upgrade of the B2-EIRENE package, which is routinely used for ITER modelling, essentially with a significantly revised version of EIRENE: the Monte-Carlo neutral transport code. The main part of the thesis address three major groups of the new physical effects which have been added to the model in frame of this work: the neutral-neutral collisions, the up-to date hydrogen molecular reaction kinetics and the line radiation transport. The impact of the each stage of the upgrade on the self-consistent (between plasma, the neutral gas and the radiation field) solution for the reference ITER case is analysed. The strongest effect is found to be due to the revised molecular collision kinetics, in particular due to hitherto neglected elastic collisions of hydrogen molecules with ions. The newly added non
Energy Technology Data Exchange (ETDEWEB)
Serfontein, Dawid E., E-mail: Dawid.Serfontein@nwu.ac.za [School of Mechanical and Nuclear Engineering, North West University (PUK-Campus), PRIVATE BAG X6001 (Internal Post Box 360), Potchefstroom 2520 (South Africa); Mulder, Eben J. [School of Mechanical and Nuclear Engineering, North West University (South Africa); Reitsma, Frederik [Calvera Consultants (South Africa)
2014-05-01
A computer code was developed for the semi-automatic translation of input models for the VSOP-A diffusion neutronics simulation code to the format of the newer VSOP 99/05 code. In this paper, this algorithm is presented as a generic method for producing codes for the automatic translation of input models from the format of one code version to another, or even to that of a completely different code. Normally, such translations are done manually. However, input model files, such as for the VSOP codes, often are very large and may consist of many thousands of numeric entries that make no particular sense to the human eye. Therefore the task, of for instance nuclear regulators, to verify the accuracy of such translated files can be very difficult and cumbersome. This may cause translation errors not to be picked up, which may have disastrous consequences later on when a reactor with such a faulty design is built. Therefore a generic algorithm for producing such automatic translation codes may ease the translation and verification process to a great extent. It will also remove human error from the process, which may significantly enhance the accuracy and reliability of the process. The developed algorithm also automatically creates a verification log file which permanently record the names and values of each variable used, as well as the list of meanings of all the possible values. This should greatly facilitate reactor licensing applications.
Full-Particle Simulations on Electrostatic Plasma Environment near Lunar Vertical Holes
Miyake, Y.; Nishino, M. N.
2015-12-01
The Kaguya satellite and the Lunar Reconnaissance Orbiter have observed a number of vertical holes on the terrestrial Moon [Haruyama et al., GRL, 2009; Robinson et al., PSS, 2012], which have spatial scales of tens of meters and are possible lava tube skylights. The hole structure has recently received particular attention, because the structure gives an important clue to the complex volcanic history of the Moon. The holes also have high potential as locations for constructing future lunar bases, because of fewer extra-lunar rays/particles and micrometeorites reaching the hole bottoms. In this sense, these holes are not only interesting in selenology, but are also significant from the viewpoint of electrostatic environments. The subject can also be an interesting resource of research in comparative planetary science, because hole structures have been found in other solar system bodies such as the Mars. The lunar dayside electrostatic environment is governed by electrodynamic interactions among the solar wind plasma, photoelectrons, and the charged lunar surface, providing topologically complex boundaries to the plasma. We use the three-dimensional, massively-parallelized, particle-in-cell simulation code EMSES [Miyake and Usui, POP, 2009] to simulate the near-hole plasma environment on the Moon [Miyake and Nishino, Icarus, 2015]. We took into account the solar wind plasma downflow, photoelectron emission from the sunlit part of the lunar surface, and plasma charge deposition on the surface. The simulation domain consists of 400×400×2000 grid points and contains about 25 billion plasma macro-particles. Thus, we need to use supercomputers for the simulations. The vertical wall of the hole introduces a new boundary for both photo and solar wind electrons. The current balance condition established at a hole bottom is altered by the limited solar wind electron penetration into the hole and complex photoelectron current paths inside the hole. The self
Inclusion of models to describe severe accident conditions in the fuel simulation code DIONISIO
Energy Technology Data Exchange (ETDEWEB)
Lemes, Martín; Soba, Alejandro [Sección Códigos y Modelos, Gerencia Ciclo del Combustible Nuclear, Comisión Nacional de Energía Atómica, Avenida General Paz 1499, 1650 San Martín, Provincia de Buenos Aires (Argentina); Daverio, Hernando [Gerencia Reactores y Centrales Nucleares, Comisión Nacional de Energía Atómica, Avenida General Paz 1499, 1650 San Martín, Provincia de Buenos Aires (Argentina); Denis, Alicia [Sección Códigos y Modelos, Gerencia Ciclo del Combustible Nuclear, Comisión Nacional de Energía Atómica, Avenida General Paz 1499, 1650 San Martín, Provincia de Buenos Aires (Argentina)
2017-04-15
The simulation of fuel rod behavior is a complex task that demands not only accurate models to describe the numerous phenomena occurring in the pellet, cladding and internal rod atmosphere but also an adequate interconnection between them. In the last years several models have been incorporated to the DIONISIO code with the purpose of increasing its precision and reliability. After the regrettable events at Fukushima, the need for codes capable of simulating nuclear fuels under accident conditions has come forth. Heat removal occurs in a quite different way than during normal operation and this fact determines a completely new set of conditions for the fuel materials. A detailed description of the different regimes the coolant may exhibit in such a wide variety of scenarios requires a thermal-hydraulic formulation not suitable to be included in a fuel performance code. Moreover, there exist a number of reliable and famous codes that perform this task. Nevertheless, and keeping in mind the purpose of building a code focused on the fuel behavior, a subroutine was developed for the DIONISIO code that performs a simplified analysis of the coolant in a PWR, restricted to the more representative situations and provides to the fuel simulation the boundary conditions necessary to reproduce accidental situations. In the present work this subroutine is described and the results of different comparisons with experimental data and with thermal-hydraulic codes are offered. It is verified that, in spite of its comparative simplicity, the predictions of this module of DIONISIO do not differ significantly from those of the specific, complex codes.
Magnetohydrodynamic simulation of reconnection in turbulent astrophysical plasmas
Energy Technology Data Exchange (ETDEWEB)
Widmer, Fabien
2016-07-19
Turbulence is ubiquitous at large-Reynolds-number astrophysical plasmas like in the Solar corona. In such environments, the turbulence is thought to enhance the energy conversion rate by magnetic reconnection above the classical model predictions. Since turbulence cannot be simulated together with the large scale behaviour of the plasma, magnetic reconnection is studied through the average properties of turbulence. A Reynolds-averaged turbulence model is explored in which turbulence is self-sustained and -generated by the large scales (mean-) field inhomogeneities. Employing that model, the influence of turbulence is investigated by large-scale MHD numerical simulations solving evolution equations of the energy and cross-helicity of the turbulence together with the MHD equations. Magnetic reconnection is found to be either rapidly enhanced or suppressed by turbulence depending on the turbulence timescale. If the turbulence timescale is self-consistently calculated, reconnection is always strongly enhanced. Since the solar corona bears strong guide magnetic fields perpendicular to the reconnecting magnetic fields, the influences of a strong guide field on turbulent reconnection is separately investigated. A slow down of reconnection, obtained in the presence of a finite guide field, can be understood by a finite residual helicity working against the enhancement of reconnection by the turbulence. The influence of turbulence on magnetic reconnection is further studied by means of high resolution simulations of plasmoid-unstable current sheets. These simulations revealed the importance of turbulence for reaching fast reconnection.
Plasma Separation Process: Betacell (BCELL) code: User's manual. [Bipolar barrier junction
Energy Technology Data Exchange (ETDEWEB)
Taherzadeh, M.
1987-11-13
The emergence of clearly defined applications for (small or large) amounts of long-life and reliable power sources has given the design and production of betavoltaic systems a new life. Moreover, because of the availability of the plasma separation program, (PSP) at TRW, it is now possible to separate the most desirable radioisotopes for betacell power generating devices. A computer code, named BCELL, has been developed to model the betavoltaic concept by utilizing the available up-to-date source/cell parameters. In this program, attempts have been made to determine the betacell energy device maximum efficiency, degradation due to the emitting source radiation and source/cell lifetime power reduction processes. Additionally, comparison is made between the Schottky and PN junction devices for betacell battery design purposes. Certain computer code runs have been made to determine the JV distribution function and the upper limit of the betacell generated power for specified energy sources. A Ni beta emitting radioisotope was used for the energy source and certain semiconductors were used for the converter subsystem of the betacell system. Some results for a Promethium source are also given here for comparison. 16 refs.
FAST: a three-dimensional time-dependent FEL simulation code
Saldin, E L; Yurkov, M V
1999-01-01
In this report we briefly describe the three-dimensional, time-dependent FEL simulation code FAST. The equations of motion of the particles and Maxwell's equations are solved simultaneously taking into account the slippage effect. Radiation fields are calculated using an integral solution of Maxwell's equations. A special technique has been developed for fast calculations of the radiation field, drastically reducing the required CPU time. As a result, the developed code allows one to use a personal computer for time-dependent simulations. The code allows one to simulate the radiation from the electron bunch of any transverse and longitudinal bunch shape; to simulate simultaneously an external seed with superimposed noise in the electron beam; to take into account energy spread in the electron beam and the space charge fields; and to simulate a high-gain, high-efficiency FEL amplifier with a tapered undulator. It is important to note that there are no significant memory limitations in the developed code and an...
Akcay, Cihan
A comparative study of 3-D pressureless resistive (single-fluid) magnetohydrodynamic (rMHD) and 3-D pressureless two-fluid magnetohydrodynamic (2fl-MHD) models of the Helicity Injected Torus experiment (HIT-SI) is presented. HIT-SI is a spheromak current-drive experiment that uses two geometrically asymmetric helicity injectors to generate and sustain toroidal plasmas. The goal of the experiment is to demonstrate that steady inductive helicity injection (SIHI) is a viable method for driving and sustaining a magnetized plasma for the eventual purpose of electricity production with magnetic fusion power. The experiment has achieved sustainment of nearly 100 kA of plasma current for ˜1~ms. Fusion power plants are expected to sustain a burning plasma for many minutes to hours with more than 10~MA of plasma current. The purpose of project is to determine the validity of the single-fluid and two-fluid MHD models of HIT-SI. The comparable size of the collisionless ion skin depth to the diameter of the injectors and resistive skin depth predicates the importance of two-fluid effects. The simulations are run with NIMROD (non-ideal magnetohydrodynamics code with rotation-open discussion), an initial-value, 3-D extended MHD code. A constant and uniform plasma density and temperature are assumed. The helicity injectors are modeled as oscillating normal magnetic and parallel electric field boundary conditions. The simulations use parameters that closely match those of the experiment. The simulation output is compared to the formation time, plasma current, and internal and surface magnetic fields. Results of the study indicate 2fl-MHD shows quantitative agreement with the experiment while rMHD only captures the qualitative features. The validity of each model is assessed based on how accurately it reproduces the global quantities as well as the temporal and spatial dependence of the measured magnetic fields. 2fl-MHD produces the current amplification and formation time
Energy Technology Data Exchange (ETDEWEB)
Patra, Anirban [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tome, Carlos [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-03-23
This Milestone report shows good progress in interfacing VPSC with the FE codes ABAQUS and MOOSE, to perform component-level simulations of irradiation-induced deformation in Zirconium alloys. In this preliminary application, we have performed an irradiation growth simulation in the quarter geometry of a cladding tube. We have benchmarked VPSC-ABAQUS and VPSC-MOOSE predictions with VPSC-SA predictions to verify the accuracy of the VPSCFE interface. Predictions from the FE simulations are in general agreement with VPSC-SA simulations and also with experimental trends.
Plasma code for astrophysical charge exchange emission at X-ray wavelengths
Gu, Liyi; Kaastra, Jelle; Raassen, A. J. J.
2016-04-01
Charge exchange X-ray emission provides unique insight into the interactions between cold and hot astrophysical plasmas. Besides its own profound science, this emission is also technically crucial to all observations in the X-ray band, since charge exchange with the solar wind often contributes a significant foreground component that contaminates the signal of interest. By approximating the cross sections resolved to n and l atomic subshells and carrying out complete radiative cascade calculation, we have created a new spectral code to evaluate the charge exchange emission in the X-ray band. Compared to collisional thermal emission, charge exchange radiation exhibits enhanced lines from large-n shells to the ground, as well as large forbidden-to-resonance ratios of triplet transitions. Our new model successfully reproduces an observed high-quality spectrum of comet C/2000 WM1 (LINEAR), which emits purely by charge exchange between solar wind ions and cometary neutrals. It demonstrates that a proper charge exchange model will allow us to probe the ion properties remotely, including charge state, dynamics, and composition, at the interface between the cold and hot plasmas.
Reddell, Noah
Advances are reported in the three pillars of computational science achieving a new capability for understanding dynamic plasma phenomena outside of local thermodynamic equilibrium. A continuum kinetic model for plasma based on the Vlasov-Maxwell system for multiple particle species is developed. Consideration is added for boundary conditions in a truncated velocity domain and supporting wall interactions. A scheme to scale the velocity domain for multiple particle species with different temperatures and particle mass while sharing one computational mesh is described. A method for assessing the degree to which the kinetic solution differs from a Maxwell-Boltzmann distribution is introduced and tested on a thoroughly studied test case. The discontinuous Galerkin numerical method is extended for efficient solution of hyperbolic conservation laws in five or more particle phase-space dimensions using tensor-product hypercube elements with arbitrary polynomial order. A scheme for velocity moment integration is integrated as required for coupling between the plasma species and electromagnetic waves. A new high performance simulation code WARPM is developed to efficiently implement the model and numerical method on emerging many-core supercomputing architectures. WARPM uses the OpenCL programming model for computational kernels and task parallelism to overlap computation with communication. WARPM single-node performance and parallel scaling efficiency are analyzed with bottlenecks identified guiding future directions for the implementation. The plasma modeling capability is validated against physical problems with analytic solutions and well established benchmark problems.
Particle Simulation of the Blob Propagation in Non-Uniform Plasmas
Hasegawa, Hiroki; Ishiguro, Seiji
2014-10-01
The kinetic dynamics on blob propagation in non-uniform plasmas have been studied with a three dimensional electrostatic plasma particle simulation code. In our previous studies, we assumed that grad-B is uniform in the toroidal and poloidal directions. In scrape-off layer (SOL) plasmas of real magnetic confinement devices, however, the direction of grad-B is different between the inside and the outside of torus. In this study, we have investigated the blob kinetic dynamics in the system where grad-B is spatially non-uniform. We observe different potential and particle flow structures from those shown in our previous studies. Thus, it is found that propagation properties of blobs in non-uniform grad-B plasmas are also distinct. These properties depend on the initial blob location in the toroidal directions. We will also discuss the application of this study to pellet dynamics. Supported by NIFS Collaboration Research programs (NIFS13KNSS038 and NIFS14KNXN279) and a Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science (KAKENHI 23740411).
Grosskopf, Michael; Drake, R.; Kuranz, C.; Park, H.; Kugland, N.; Pollaine, S.; Ross, J.; Remington, B.; Spitkovsky, A.; Gargate, L.; Gregori, G.; Bell, A.; Murphy, C.; Meinecke, J.; Reville, B.; Sakawa, Y.; Kuramitsu, Y.; Takabe, H.; Froula, D.; Fiksel, G.; Miniati, F.; Koenig, M.; Ravasio, A.; Liang, E.; Woolsey, N.
2012-05-01
Collisionless shocks, shocks generated by plasma wave interactions in regions where the collisional mean-free-path for ions is long compared to the length scale for instabilities that generate magnetic fields, are found in many astrophysical systems such as supernova remnants and planetary bow shocks. Generating conditions to investigate collisionless shock physics is difficult to achieve in a laboratory setting; however, high-energy-density physics facilities have made this a possibility. Experiments whose goal is to investigate the production and growth of magnetic fields in collisionless shocks in laboratory-scale systems are being carried out on intense lasers, several of which are measuring the plasma properties and magnetic field strength in counter-streaming, collisionless flows generated by laser ablation. This poster reports radiation-hydrodynamic simulations using the CRASH code to model the ablative flow of plasma generated in order to assess potential designs, as well as infer properties of collected data from previous experiments. This work is funded by the Predictive Sciences Academic Alliances Program in NNSA-ASC via grant DEFC52- 08NA28616, by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, grant number DE-FG52-09NA29548, and by the National Laser User Facility Program, grant number DE-NA0000850.
Fully kinetic simulations of megajoule-scale dense plasma focus
Energy Technology Data Exchange (ETDEWEB)
Schmidt, A.; Link, A.; Tang, V.; Halvorson, C.; May, M. [Lawrence Livermore National Laboratory, Livermore California 94550 (United States); Welch, D. [Voss Scientific, LLC, Albuquerque, New Mexico 87108 (United States); Meehan, B. T.; Hagen, E. C. [National Security Technologies, LLC, Las Vegas, Nevada 89030 (United States)
2014-10-15
Dense plasma focus (DPF) Z-pinch devices are sources of copious high energy electrons and ions, x-rays, and neutrons. Megajoule-scale DPFs can generate 10{sup 12} neutrons per pulse in deuterium gas through a combination of thermonuclear and beam-target fusion. However, the details of the neutron production are not fully understood and past optimization efforts of these devices have been largely empirical. Previously, we reported on the first fully kinetic simulations of a kilojoule-scale DPF and demonstrated that both kinetic ions and kinetic electrons are needed to reproduce experimentally observed features, such as charged-particle beam formation and anomalous resistivity. Here, we present the first fully kinetic simulation of a MegaJoule DPF, with predicted ion and neutron spectra, neutron anisotropy, neutron spot size, and time history of neutron production. The total yield predicted by the simulation is in agreement with measured values, validating the kinetic model in a second energy regime.
Three-Dimensional Simulation of Plasma Jet and Particle Groups in Plasma Spraying
Institute of Scientific and Technical Information of China (English)
FAN Qun-bo; WANG Lu; WANG Fu-chi
2008-01-01
The temperature field, velocity field, as well as species distribution in three-dimensional space are successfully calculated by establishing three-dimensional geometry model and solving plasma jet-substrate interaction equations, optimized particle trajecory models, as well as particle-particle heat transfer equations in three-dimensionalal space. Under typical working conditions, the flying trajectories and distribution of ZrO2 ceramic particles and Ni metal particles are also simulated. Results show that, the plasma jet becomes wider near the substrate, and the stochastic trajectory model is preferable to simulate the turbulent diffusion effect of particles. In addition, Ni metal particles penetrate relatively more deeply than ZrO2 ceramic particles due to larger density.
Zhang, Shuai; Morita, Koji; Shirakawa, Noriyuki; Yamamoto, Yuichi
The COMPASS code is designed based on the moving particle semi-implicit method to simulate various complex mesoscale phenomena relevant to core disruptive accidents of sodium-cooled fast reactors. In this study, a computational framework for fluid-solid mixture flow simulations was developed for the COMPASS code. The passively moving solid model was used to simulate hydrodynamic interactions between fluid and solids. Mechanical interactions between solids were modeled by the distinct element method. A multi-time-step algorithm was introduced to couple these two calculations. The proposed computational framework for fluid-solid mixture flow simulations was verified by the comparison between experimental and numerical studies on the water-dam break with multiple solid rods.
Simulation of positron backscattering and implantation profiles using Geant4 code
Institute of Scientific and Technical Information of China (English)
黄世娟; 潘子文; 刘建党; 韩荣典; 叶邦角
2015-01-01
For the proper interpretation of the experimental data produced in slow positron beam technique, the positron im-plantation properties are studied carefully using the latest Geant4 code. The simulated backscattering coefficients, the implantation profiles, and the median implantation depths for mono-energetic positrons with energy range from 1 keV to 50 keV normally incident on different crystals are reported. Compared with the previous experimental results, our simula-tion backscattering coefficients are in reasonable agreement, and we think that the accuracy may be related to the structures of the host materials in the Geant4 code. Based on the reasonable simulated backscattering coefficients, the adjustable parameters of the implantation profiles which are dependent on materials and implantation energies are obtained. The most important point is that we calculate the positron backscattering coefficients and median implantation depths in amorphous polymers for the first time and our simulations are in fairly good agreement with the previous experimental results.
A FEW ASPECTS REGARDING THE SIMULATION OF CONTRACT IN THE ROMANIAN CIVIL CODE
Directory of Open Access Journals (Sweden)
Tudor Vlad RĂDULESCU
2017-05-01
Full Text Available The article aims to analyze some key aspects of simulation in contracts, as regulated by the Romanian Civil Code . The process of simulation will be explained, based on the provisions of the previous Civil Code, but also with reference to the relevant provisions of the legislation of some European countries. The analyse will focus on the apparent act, and also on the secret one and a special emphasis on intention to simulate, animo simulandi, the key aspect of the matter. Also the effects of the simulation will be reviewed, both from the point of view of the parties and that of third parties, the concept of third parties having another meaning in this procedure.
GLAMER Part I: A Code for Gravitational Lensing Simulations with Adaptive Mesh Refinement
Metcalf, R Benton
2013-01-01
A computer code is described for the simulation of gravitational lensing data. The code incorporates adaptive mesh refinement in choosing which rays to shoot based on the requirements of the source size, location and surface brightness distribution or to find critical curves/caustics. A variety of source surface brightness models are implemented to represent galaxies and quasar emission regions. The lensing mass can be represented by point masses (stars), smoothed simulation particles, analytic halo models, pixelized mass maps or any combination of these. The deflection and beam distortions (convergence and shear) are calculated by modified tree algorithm when halos, point masses or particles are used and by FFT when mass maps are used. The combination of these methods allow for a very large dynamical range to be represented in a single simulation. Individual images of galaxies can be represented in a simulation that covers many square degrees. For an individual strongly lensed quasar, source sizes from the s...
A program code generator for multiphysics biological simulation using markup languages.
Amano, Akira; Kawabata, Masanari; Yamashita, Yoshiharu; Rusty Punzalan, Florencio; Shimayoshi, Takao; Kuwabara, Hiroaki; Kunieda, Yoshitoshi
2012-01-01
To cope with the complexity of the biological function simulation models, model representation with description language is becoming popular. However, simulation software itself becomes complex in these environment, thus, it is difficult to modify the simulation conditions, target computation resources or calculation methods. In the complex biological function simulation software, there are 1) model equations, 2) boundary conditions and 3) calculation schemes. Use of description model file is useful for first point and partly second point, however, third point is difficult to handle for various calculation schemes which is required for simulation models constructed from two or more elementary models. We introduce a simulation software generation system which use description language based description of coupling calculation scheme together with cell model description file. By using this software, we can easily generate biological simulation code with variety of coupling calculation schemes. To show the efficiency of our system, example of coupling calculation scheme with three elementary models are shown.
Interplay between plasma turbulence and particle injection in 3D global simulations
Energy Technology Data Exchange (ETDEWEB)
Tamain, P.; Baudoin, C.; Ciraolo, G.; Futtersack, R.; Ghendrih, P.; Nace, N. [Association Euratom-CEA, Institut de Recherche sur la Fusion Magnetique, CEA Cadarache, St. Paul-lez-Durance (France); Bufferand, H.; Carbajal, L.; Marandet, Y. [Aix-Marseille Universite, CNRS, PIIM, UMR 7345, Marseille (France); Colin, C.; Galassi, D.; Schwander, F.; Serre, E. [Aix-Marseille Universite, CNRS, Ecole Centrale Marseille, M2P2, Marseille (France)
2016-08-15
The impact of a 3D localized particle source on the edge plasma in 3D global turbulence simulations is investigated using the TOKAM3X fluid code. Results apply to advanced fueling methods such as Supersonic Molecular Beam Injection (SMBI) or pellets injection. The fueling source is imposed as a volumetric particle source in the simulations so that the physics leading to the ionization of particles and its localization are not taken into account. As already observed in experiments, the localized particle source strongly perturbs both turbulence and the large scale organization of the edge plasma. The localized increase of the pressure generated by the source drives sonic parallel flows in the plasma, leading to a poloidal redistribution of the particles on the time scale of the source duration. However, the particle deposition also drives localized transverse pressure gradients which impacts the stability of the plasma with respect to interchange processes. The resulting radial transport occurs on a sufficiently fast time scale to compete with the parallel redistribution of particles, leading to immediate radial losses of a significant proportion of the injected particles. Low Field Side (LFS) and High Field Side (HFS) injections exhibit different dynamics due to their interaction with curvature. In particular, HFS particle deposition drives an inward flux leading to differences in the particle deposition efficiency (higher for HFS than LFS). These results demonstrate the importance of taking into account plasma transport in a self-consistent manner when investigating fueling methods. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
An introduction to LIME 1.0 and its use in coupling codes for multiphysics simulations.
Energy Technology Data Exchange (ETDEWEB)
Belcourt, Noel; Pawlowski, Roger Patrick; Schmidt, Rodney Cannon; Hooper, Russell Warren
2011-11-01
LIME is a small software package for creating multiphysics simulation codes. The name was formed as an acronym denoting 'Lightweight Integrating Multiphysics Environment for coupling codes.' LIME is intended to be especially useful when separate computer codes (which may be written in any standard computer language) already exist to solve different parts of a multiphysics problem. LIME provides the key high-level software (written in C++), a well defined approach (with example templates), and interface requirements to enable the assembly of multiple physics codes into a single coupled-multiphysics simulation code. In this report we introduce important software design characteristics of LIME, describe key components of a typical multiphysics application that might be created using LIME, and provide basic examples of its use - including the customized software that must be written by a user. We also describe the types of modifications that may be needed to individual physics codes in order for them to be incorporated into a LIME-based multiphysics application.
MULTI-IFE-A one-dimensional computer code for Inertial Fusion Energy (IFE) target simulations
Ramis, R.; Meyer-ter-Vehn, J.
2016-06-01
The code MULTI-IFE is a numerical tool devoted to the study of Inertial Fusion Energy (IFE) microcapsules. It includes the relevant physics for the implosion and thermonuclear ignition and burning: hydrodynamics of two component plasmas (ions and electrons), three-dimensional laser light ray-tracing, thermal diffusion, multigroup radiation transport, deuterium-tritium burning, and alpha particle diffusion. The corresponding differential equations are discretized in spherical one-dimensional Lagrangian coordinates. Two typical application examples, a high gain laser driven capsule and a low gain radiation driven marginally igniting capsule are discussed. In addition to phenomena relevant for IFE, the code includes also components (planar and cylindrical geometries, transport coefficients at low temperature, explicit treatment of Maxwell's equations) that extend its range of applicability to laser-matter interaction at moderate intensities (<1016 W cm-2). The source code design has been kept simple and structured with the aim to encourage user's modifications for specialized purposes.
Magnetohydrodynamic simulation of the inverse-pinch plasma discharge
Esaulov, A.; Bauer, B. S.; Lindemuth, I. R.; Makhin, V.; Presura, R.; Ryutov, D. D.; Sheehey, P. T.; Siemon, R. E.; Sotnikov, V. I.
2004-04-01
A wall confined plasma in an inverse-pinch configuration holds potential as a plasma target for Magnetized Target Fusion (MTF) as well as a simple geometry to study wall-confined plasma. An experiment is planned to study the inverse-pinch configuration using the Zebra Z pinch [B. S. Bauer et al., AIP Conference Proceedings Vol. 409 (American Institute of Physics, Melville, 1997), p. 153] of the Nevada Terawatt Facility at the University of Nevada, Reno (UNR). The dynamics of the discharge formation have been analyzed using analytic models and numerical methods. Strong heating occurs by thermalization of directed energy when an outward moving current sheet (the inverse pinch effect) collides with the outer wall of the experimental chamber. Two-dimensional magnetohydrodynamic simulations show Rayleigh-Taylor and Richtmyer-Meshkov like modes of instability, as expected because of the shock acceleration during plasma formation phase. The instabilities are not disruptive, but give rise to a mild level of turbulence. The conclusion from this work is that an interesting experiment relevant to wall confinement for MTF could be done using existing equipment at UNR.
Shearing Box Simulations of the MRI in a Collisionless Plasma
Energy Technology Data Exchange (ETDEWEB)
Sharma, Prateek; Hammett, Gregory, W.; Quataert, Eliot; Stone, James, M.
2005-08-31
We describe local shearing box simulations of turbulence driven by the magnetorotational instability (MRI) in a collisionless plasma. Collisionless effects may be important in radiatively inefficient accretion flows, such as near the black hole in the Galactic Center. The MHD version of ZEUS is modified to evolve an anisotropic pressure tensor. A fluid closure approximation is used to calculate heat conduction along magnetic field lines. The anisotropic pressure tensor provides a qualitatively new mechanism for transporting angular momentum in accretion flows (in addition to the Maxwell and Reynolds stresses). We estimate limits on the pressure anisotropy due to pitch angle scattering by kinetic instabilities. Such instabilities provide an effective ''collision'' rate in a collisionless plasma and lead to more MHD-like dynamics. We find that the MRI leads to efficient growth of the magnetic field in a collisionless plasma, with saturation amplitudes comparable to those in MHD. In the saturated state, the anisotropic stress is comparable to the Maxwell stress, implying that the rate of angular momentum transport may be moderately enhanced in a collisionless plasma.
Simulation of hydrogen deflagration experiment – Benchmark exercise with lumped-parameter codes
Energy Technology Data Exchange (ETDEWEB)
Kljenak, Ivo, E-mail: ivo.kljenak@ijs.si [Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Kuznetsov, Mikhail, E-mail: mike.kuznetsov@kit.edu [Karlsruhe Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe (Germany); Kostka, Pal, E-mail: kostka@nubiki.hu [NUBIKI Nuclear Safety Research Institute, Konkoly-Thege Miklós út 29-33, 1121 Budapest (Hungary); Kubišova, Lubica, E-mail: lubica.kubisova@ujd.gov.sk [Nuclear Regulatory Authority of the Slovak Republic, Bajkalská 27, 82007 Bratislava (Slovakia); Maltsev, Mikhail, E-mail: maltsev_MB@aep.ru [JSC Atomenergoproekt, 1, st. Podolskykh Kursantov, Moscow (Russian Federation); Manzini, Giovanni, E-mail: giovanni.manzini@rse-web.it [Ricerca sul Sistema Energetico, Via Rubattino 54, 20134 Milano (Italy); Povilaitis, Mantas, E-mail: mantas.p@mail.lei.lt [Lithuania Energy Institute, Breslaujos g.3, 44403 Kaunas (Lithuania)
2015-03-15
Highlights: • Blind and open simulations of hydrogen combustion experiment in large-scale containment-like facility with different lumped-parameter codes. • Simulation of axial as well as radial flame propagation. • Confirmation of adequacy of lumped-parameter codes for safety analyses of actual nuclear power plants. - Abstract: An experiment on hydrogen deflagration (Upward Flame Propagation Experiment – UFPE) was proposed by the Jozef Stefan Institute (Slovenia) and performed in the HYKA A2 facility at the Karlsruhe Institute of Technology (Germany). The experimental results were used to organize a benchmark exercise for lumped-parameter codes. Six organizations (JSI, AEP, LEI, NUBIKI, RSE and UJD SR) participated in the benchmark exercise, using altogether four different computer codes: ANGAR, ASTEC, COCOSYS and ECART. Both blind and open simulations were performed. In general, all the codes provided satisfactory results of the pressure increase, whereas the results of the temperature show a wider dispersal. Concerning the flame axial and radial velocities, the results may be considered satisfactory, given the inherent simplification of the lumped-parameter description compared to the local instantaneous description.
Bogatu, Ioan-Niculae; Galkin, Sergei A.; Kim, Jin-Soo
2009-11-01
We present the models and simulation results of C60-fullerene plasma jets proposed to be used for the disruption mitigation on ITER and for magneto-inertial fusion (MIF). The model describing the fast production of a large mass of C60 molecular gas in the pulsed power source by explosive sublimation of C60 micro-grains is detailed. Several aspects of the magnetic ``piston'' model and the 2D interchange (magnetic Rayleigh-Taylor) instability in the rail gun arc dynamics are described. A plasma jet adiabatic expansion model is used to investigate the in-flight three-body recombination during jet transport to the plasma boundary. Our LSP PIC code 3D simulations show that heavy C60 plasmoid penetrates deeply through a transverse magnetic barrier demonstrating self-polarization and magnetic field expulsion effects. The LSP code 3D simulation of two plasma jets head-on injection along a magnetic field lines for MIF are also discussed.
Particle-in-cell simulations of the relaxation of electron beams in inhomogeneous solar wind plasmas
Thurgood, Jonathan O.; Tsiklauri, David
2016-12-01
Previous theoretical considerations of electron beam relaxation in inhomogeneous plasmas have indicated that the effects of the irregular solar wind may account for the poor agreement of homogeneous modelling with the observations. Quasi-linear theory and Hamiltonian models based on Zakharov's equations have indicated that when the level of density fluctuations is above a given threshold, density irregularities act to de-resonate the beam-plasma interaction, restricting Langmuir wave growth on the expense of beam energy. This work presents the first fully kinetic particle-in-cell (PIC) simulations of beam relaxation under the influence of density irregularities. We aim to independently determine the influence of background inhomogeneity on the beam-plasma system, and to test theoretical predictions and alternative models using a fully kinetic treatment. We carry out one-dimensional (1-D) PIC simulations of a bump-on-tail unstable electron beam in the presence of increasing levels of background inhomogeneity using the fully electromagnetic, relativistic EPOCH PIC code. We find that in the case of homogeneous background plasma density, Langmuir wave packets are generated at the resonant condition and then quasi-linear relaxation leads to a dynamic increase of wavenumbers generated. No electron acceleration is seen - unlike in the inhomogeneous experiments, all of which produce high-energy electrons. For the inhomogeneous experiments we also observe the generation of backwards-propagating Langmuir waves, which is shown directly to be due to the refraction of the packets off the density gradients. In the case of higher-amplitude density fluctuations, similar features to the weaker cases are found, but also packets can also deviate from the expected dispersion curve in -space due to nonlinearity. Our fully kinetic PIC simulations broadly confirm the findings of quasi-linear theory and the Hamiltonian model based on Zakharov's equations. Strong density fluctuations
Directory of Open Access Journals (Sweden)
Annamaria Buonomano
2016-04-01
Full Text Available In this paper details about the results of a code-to-code validation procedure of an in-house developed building simulation model, called DETECt, are reported. The tool was developed for research purposes in order to carry out dynamic building energy performance and parametric analyses by taking into account new building envelope integrated technologies, novel construction materials and innovative energy saving strategies. The reliability and accuracy of DETECt was appropriately tested by means of the standard BESTEST validation procedure. In the paper, details of this validation process are accurately described. A good agreement between the obtained results and all the reference data of the BESTEST qualification cases is achieved. In particular, the obtained results vs. standard BESTEST output are always within the provided ranges of confidence. In addition, several test cases output obtained by DETECt (e.g., dynamic profiles of indoor air and building surfaces temperature and heat fluxes and spatial trends of temperature across walls are provided.
A New Code SORD for Simulation of Polarized Light Scattering in the Earth Atmosphere
Korkin, Sergey; Lyapustin, Alexei; Sinyuk, Aliaksandr; Holben, Brent
2016-01-01
We report a new publicly available radiative transfer (RT) code for numerical simulation of polarized light scattering in plane-parallel atmosphere of the Earth. Using 44 benchmark tests, we prove high accuracy of the new RT code, SORD (Successive ORDers of scattering). We describe capabilities of SORD and show run time for each test on two different machines. At present, SORD is supposed to work as part of the Aerosol Robotic NETwork (AERONET) inversion algorithm. For natural integration with the AERONET software, SORD is coded in Fortran 90/95. The code is available by email request from the corresponding (first) author or from ftp://climate1.gsfc.nasa.gov/skorkin/SORD/.
A PIC-MCC code for simulation of streamer propagation in air
DEFF Research Database (Denmark)
Chanrion, Olivier Arnaud; Neubert, Torsten
2008-01-01
A particle code has been developed to study the distribution and acceleration of electrons in electric discharges in air. The code can follow the evolution of a discharge from the initial stage of a single free electron in a background electric field to the formation of an electron avalanche...... particles are followed in a Cartesian mesh and the electric field is updated with Poisson's equation from the charged particle densities. Collisional processes between electrons and air molecules are simulated with a Monte Carlo technique, according to cross section probabilities. The code also includes...... photoionisation processes of air molecules by photons emitted by excited constituents. The paper describes the code and presents some results of streamer development at 70km altitude in the mesosphere where electrical discharges (sprites) are generated above severe thunderstorms and at ∼10km relevant...
Simulation of multibunch motion with the Headtail code and application to the CERN SPS and LHC
Mounet, N; Rumolo, G
2011-01-01
Multibunch instabilities due to beam-coupling impedance can be a critical limitation for synchrotrons operating with many bunches. It is particularly true for the LHC under nominal conditions, where according to theoretical predictions the 2808 bunches rely entirely on the performance of the transverse feedback system to remain stable. To study these instabilities, the HEADTAIL code has been extended to simulate the motion of many bunches under the action of wake fields. All the features already present in the single-bunch version of the code, such as synchrotron motion, chromaticity, amplitude detuning due to octupoles and the ability to load any kind of wake fields through tables, have remained available. This new code has been then parallelized in order to track thousands of bunches in a reasonable amount of time. The code was benchmarked against theory and exhibited a good agreement. We also show results for bunch trains in the LHC and compare them with beam-based measurements.
X-ray simulation with the Monte Carlo code PENELOPE. Application to Quality Control.
Pozuelo, F; Gallardo, S; Querol, A; Verdú, G; Ródenas, J
2012-01-01
A realistic knowledge of the energy spectrum is very important in Quality Control (QC) of X-ray tubes in order to reduce dose to patients. However, due to the implicit difficulties to measure the X-ray spectrum accurately, it is not normally obtained in routine QC. Instead, some parameters are measured and/or calculated. PENELOPE and MCNP5 codes, based on the Monte Carlo method, can be used as complementary tools to verify parameters measured in QC. These codes allow estimating Bremsstrahlung and characteristic lines from the anode taking into account specific characteristics of equipment. They have been applied to simulate an X-ray spectrum. Results are compared with theoretical IPEM 78 spectrum. A sensitivity analysis has been developed to estimate the influence on simulated spectra of important parameters used in simulation codes. With this analysis it has been obtained that the FORCE factor is the most important parameter in PENELOPE simulations. FORCE factor, which is a variance reduction method, improves the simulation but produces hard increases of computer time. The value of FORCE should be optimized so that a good agreement of simulated and theoretical spectra is reached, but with a reduction of computer time. Quality parameters such as Half Value Layer (HVL) can be obtained with the PENELOPE model developed, but FORCE takes such a high value that computer time is hardly increased. On the other hand, depth dose assessment can be achieved with acceptable results for small values of FORCE.
The NEST Dry-Run Mode: Efficient Dynamic Analysis of Neuronal Network Simulation Code
Directory of Open Access Journals (Sweden)
Susanne Kunkel
2017-06-01
Full Text Available NEST is a simulator for spiking neuronal networks that commits to a general purpose approach: It allows for high flexibility in the design of network models, and its applications range from small-scale simulations on laptops to brain-scale simulations on supercomputers. Hence, developers need to test their code for various use cases and ensure that changes to code do not impair scalability. However, running a full set of benchmarks on a supercomputer takes up precious compute-time resources and can entail long queuing times. Here, we present the NEST dry-run mode, which enables comprehensive dynamic code analysis without requiring access to high-performance computing facilities. A dry-run simulation is carried out by a single process, which performs all simulation steps except communication as if it was part of a parallel environment with many processes. We show that measurements of memory usage and runtime of neuronal network simulations closely match the corresponding dry-run data. Furthermore, we demonstrate the successful application of the dry-run mode in the areas of profiling and performance modeling.
Parallelization issues of a code for physically-based simulation of fabrics
Romero, Sergio; Gutiérrez, Eladio; Romero, Luis F.; Plata, Oscar; Zapata, Emilio L.
2004-10-01
The simulation of fabrics, clothes, and flexible materials is an essential topic in computer animation of realistic virtual humans and dynamic sceneries. New emerging technologies, as interactive digital TV and multimedia products, make necessary the development of powerful tools to perform real-time simulations. Parallelism is one of such tools. When analyzing computationally fabric simulations we found these codes belonging to the complex class of irregular applications. Frequently this kind of codes includes reduction operations in their core, so that an important fraction of the computational time is spent on such operations. In fabric simulators these operations appear when evaluating forces, giving rise to the equation system to be solved. For this reason, this paper discusses only this phase of the simulation. This paper analyzes and evaluates different irregular reduction parallelization techniques on ccNUMA shared memory machines, applied to a real, physically-based, fabric simulator we have developed. Several issues are taken into account in order to achieve high code performance, as exploitation of data access locality and parallelism, as well as careful use of memory resources (memory overhead). In this paper we use the concept of data affinity to develop various efficient algorithms for reduction parallelization exploiting data locality.
Krause, M.; Camenzind, M.
2001-12-01
In the present paper, we examine the convergence behavior and inter-code reliability of astrophysical jet simulations in axial symmetry. We consider both pure hydrodynamic jets and jets with a dynamically significant magnetic field. The setups were chosen to match the setups of two other publications, and recomputed with the MHD code NIRVANA. We show that NIRVANA and the two other codes give comparable, but not identical results. We explain the differences by the different application of artificial viscosity in the three codes and numerical details, which can be summarized in a resolution effect, in the case without magnetic field: NIRVANA turns out to be a fair code of medium efficiency. It needs approximately twice the resolution as the code by Lind (Lind et al. 1989) and half the resolution as the code by Kössl (Kössl & Müller 1988). We find that some global properties of a hydrodynamical jet simulation, like e.g. the bow shock velocity, converge at 100 points per beam radius (ppb) with NIRVANA. The situation is quite different after switching on the toroidal magnetic field: in this case, global properties converge even at 10 ppb. In both cases, details of the inner jet structure and especially the terminal shock region are still insufficiently resolved, even at our highest resolution of 70 ppb in the magnetized case and 400 ppb for the pure hydrodynamic jet. The magnetized jet even suffers from a fatal retreat of the Mach disk towards the inflow boundary, which indicates that this simulation does not converge, in the end. This is also in definite disagreement with earlier simulations, and challenges further studies of the problem with other codes. In the case of our highest resolution simulation, we can report two new features: first, small scale Kelvin-Helmholtz instabilities are excited at the contact discontinuity next to the jet head. This slows down the development of the long wavelength Kelvin-Helmholtz instability and its turbulent cascade to smaller
DEFF Research Database (Denmark)
Hernandez, Nestor; Pihl, Jeppe; Heide, Janus
One of the proven benets of Network Coding (NC) is to achieve the data capacity for multicast networks. However, even though there has been a signicant amount of research in this area, potentials demonstrators of these capabilities have not been widely shown or deployed. Thus, in this work we...... present a set of pre-computed ns-3 simulations to model the behaviour of Wurf.it, a Random Linear Network Coding (RLNC)-based reliable multicast solution for content distribution with cross-platform support. Wurf.it is based on Kodo, a C++11 network coding library that provides the primitive encoding...... demonstrator consists of stored simulations with ns-3 in a laptop and a Wurf.it implementation within a WiFi network. For the implementation, a video content from a mobile camera is distributed with low delay using SCORE to a set of heterogenous receivers (e.g. dierent platforms). Use cases of Wurf.it are mild...
An efficient simulation method of a cyclotron sector-focusing magnet using 2D Poisson code
Energy Technology Data Exchange (ETDEWEB)
Gad Elmowla, Khaled Mohamed M; Chai, Jong Seo, E-mail: jschai@skku.edu; Yeon, Yeong H; Kim, Sangbum; Ghergherehchi, Mitra
2016-10-01
In this paper we discuss design simulations of a spiral magnet using 2D Poisson code. The Independent Layers Method (ILM) is a new technique that was developed to enable the use of two-dimensional simulation code to calculate a non-symmetric 3-dimensional magnetic field. In ILM, the magnet pole is divided into successive independent layers, and the hill and valley shape around the azimuthal direction is implemented using a reference magnet. The normalization of the magnetic field in the reference magnet produces a profile that can be multiplied by the maximum magnetic field in the hill magnet, which is a dipole magnet made of the hills at the same radius. Both magnets are then calculated using the 2D Poisson SUPERFISH code. Then a fully three-dimensional magnetic field is produced using TOSCA for the original spiral magnet, and the comparison of the 2D and 3D results shows a good agreement between both.
Parallel 3-D numerical simulation of dielectric barrier discharge plasma actuators
Houba, Tomas
Dielectric barrier discharge plasma actuators have shown promise in a range of applications including flow control, sterilization and ozone generation. Developing numerical models of plasma actuators is of great importance, because a high-fidelity parallel numerical model allows new design configurations to be tested rapidly. Additionally, it provides a better understanding of the plasma actuator physics which is useful for further innovation. The physics of plasma actuators is studied numerically. A loosely coupled approach is utilized for the coupling of the plasma to the neutral fluid. The state of the art in numerical plasma modeling is advanced by the development of a parallel, three-dimensional, first-principles model with detailed air chemistry. The model incorporates 7 charged species and 18 reactions, along with a solution of the electron energy equation. To the author's knowledge, a parallel three-dimensional model of a gas discharge with a detailed air chemistry model and the solution of electron energy is unique. Three representative geometries are studied using the gas discharge model. The discharge of gas between two parallel electrodes is used to validate the air chemistry model developed for the gas discharge code. The gas discharge model is then applied to the discharge produced by placing a dc powered wire and grounded plate electrodes in a channel. Finally, a three-dimensional simulation of gas discharge produced by electrodes placed inside a riblet is carried out. The body force calculated with the gas discharge model is loosely coupled with a fluid model to predict the induced flow inside the riblet.
Use of numerical simulation computer codes to fire problems in nuclear power plants in Finland
Energy Technology Data Exchange (ETDEWEB)
Keski-Rahkonen, O.; Eloranta, E. (Valtion Teknillinen Tutkimuskeskus, Espoo (Finland). Fire Technology Lab.); Huhtanen, R. (Valtion Teknillinen Tutkimuskeskus, Helsinki (Finland). Nuclear Engineering Lab.)
1991-03-01
Zone and field model codes are used for fire simulations, including nuclear facilities, in Finland. Here two examples are described: (a) calculation of evaporation rate of a pool fire (8 MW) in a compartment using FIRST, and calculation of an oil spill fire (180 MW) in a turbine hall using PHOENICS. (orig.).
Multi-dimensional free-electron laser simulation codes: a comparison study
Biedron, S G; Dejus, Roger J; Faatz, B; Freund, H P; Milton, S V; Nuhn, H D; Reiche, S
2000-01-01
A self-amplified spontaneous emission (SASE) free-electron laser (FEL) is under construction at the Advanced Photon Source (APS). Five FEL simulation codes were used in the design phase: GENESIS, GINGER, MEDUSA, RON, and TDA3D. Initial comparisons between each of these independent formulations show good agreement for the parameters of the APS SASE FEL.
Spectrum Simulation of Li-Like Aluminium Plasma
Institute of Scientific and Technical Information of China (English)
PENG Feng; JIANG Gang; ZHU Zheng-He
2006-01-01
X-ray emission spectra for L-shell of Li-like aluminium ions are simulated by using the flexible atomic code based on the collisional radiative model. Atomic processes including radiative recombination, dielectronic recombination, collisional ionization and resonance excitation from the neighbouring ion (Al9+ and Al11+) charge states of the target ion (Al10+) are considered in the model. In addition, the contributions of different atomic processes to the x-ray spectrum are analysed. The results show that dielectronic recombination, radiative recombination, collisional ionization and resonance excitation, other than direct collisional excitation, are very important processes.
Laboratory Simulations of CME-Solar Wind Interactions Using a Coaxial Gun and Background Plasma
Wallace, B. H.; Zhang, Y.; Fisher, D.; Gilmore, M.
2016-12-01
Understanding and predicting solar coronal mass ejections (CMEs) is of critical importance for mitigating their disruptive behavior on ground- and space-based technologies. While predictive models of CME propagation and evolution have relied primarily on sparse in-situ data along with ground and satellite images for validation purposes, emerging laboratory efforts have shown that CME-like events can be created with parameters applicable to the solar regime that may likewise aid in predictive modeling. A modified version of the coaxial plasma gun from the Plasma Bubble Expansion Experiment (PBEX) [A. G. Lynn, Y. Zhang, S. C. Hsu, H. Li, W. Liu, M. Gilmore, and C. Watts, Bull. Amer. Phys. Soc. 52, 53 (2007)] will be used in conjunction with the Helicon-Cathode (HelCat) basic plasma science device in order to observe the magnetic characteristics of CMEs as they propagate through the solar wind. The evolution of these interactions will be analyzed using a multi-tip Langmuir probe array, a 33-position B-dot probe array, and a high speed camera. The results of this investigation will be used alongside the University of Michigan's BATS-R-US 3-D MHD numerical code, which will be used to perform simulations of the coaxial plasma gun experiment. The results of these two approaches will be compared in order to validate the capabilities of the BATS-R-US code as well as to further our understanding of magnetic reconnection and other processes that take place as CMEs propagate through the solar wind. The details of the experimental setup as well as the analytical approach are discussed.
Smoothed Particle Hydrodynamics for the Simulation of Laser Produced Plasmas
Griffith, Alec; Holladay, Tyler; Murillo, Michael S.
2016-10-01
To address the design and interpretation of experiments at next generation light sources such as at the SLAC LCLS and the LANL proposed MaRIE a simulation of the laser produced plasma targets has been developed. Smoothed particle hydrodynamics is used to capture the full experimental time and length scales, large degrees of deformation, and the experimental environment's open boundary conditions. Additionally the model incorporates plasma transport with thermal conduction, the electric potential, and a two species model of the electrons and ions. The electron and ion particle representations in SPH allow for time dependent ionization and recombination while addressing the disparate masses of the two species. To gain computational speedup our simulation takes advantage of parallelism, and to reduce computational cost we have explored using data structures such as the linked cell list and octree as well as algorithmic techniques such as the fast mutipole method. We will discuss the results of simulating several possible experimental configurations using our model. This work was supported by the Los Alamos National Laboratory computational physics workshop.
Hybrid molecular dynamics simulation for plasma induced damage analysis
Matsukuma, Masaaki
2016-09-01
In order to enable further device size reduction (also known as Moore's law) and improved power performance, the semiconductor industry is introducing new materials and device structures into the semiconductor fabrication process. Materials now include III-V compounds, germanium, cobalt, ruthenium, hafnium, and others. The device structure in both memory and logic has been evolving from planar to three dimensional (3D). One such device is the FinFET, where the transistor gate is a vertical fin made either of silicon, silicon-germanium or germanium. These changes have brought renewed interests in the structural damages caused by energetic ion bombardment of the fin sidewalls which are exposed to the ion flux from the plasma during the fin-strip off step. Better control of the physical damage of the 3D devices requires a better understanding of the damage formation mechanisms on such new materials and structures. In this study, the damage formation processes by ion bombardment have been simulated for Si and Ge substrate by Quantum Mechanics/Molecular Mechanics (QM/MM) hybrid simulations and compared to the results from the classical molecular dynamics (MD) simulations. In our QM/MM simulations, the highly reactive region in which the structural damage is created is simulated with the Density Functional based Tight Binding (DFTB) method and the region remote from the primary region is simulated using classical MD with the Stillinger-Weber and Moliere potentials. The learn on the fly method is also used to reduce the computational load. Hence our QM/MM simulation is much faster than the full QC-MD simulations and the original QM/MM simulations. The amorphous layers profile simulated with QM/MM have obvious differences in their thickness for silicon and germanium substrate. The profile of damaged structure in the germanium substrate is characterized by a deeper tail then in silicon. These traits are also observed in the results from the mass selected ion beam
Simulation of the Partially Ionized Reacting Plasma Flow in a Negative Hydrogen Ion Source
Gatsonis, Nikolaos; Averkin, Sergey; Olson, Lynn
2012-10-01
A High Pressure Discharge Negative Ion Source (HPDNIS) operating on hydrogen is been under investigation. The Negative Ion Production (NIP) section of the HPDNIS attaches to the 10-100 Torr RF-discharge chamber with a micronozzle and ends with a grid that extracts the negative ion beam. The partially ionized and reacting plasma flow in the NIP section is simulated using an unstructured three-dimensional Direct Simulation Monte Carlo (U3DSMC) code. The NIP section contains a low-pressure plasma that includes H2, vibrationally-rotationally excited H2^*, negative hydrogen atoms H^-, and electrons. Primary reactions in the NIP section are dissociate attachment, H2^*+e->H^0+H^-and electron collisional detachment, e+H^-->H+2e. The U3DSMC computational domain includes the entrance to the NIP nozzle and the extraction grid at the exit. The flow parameters at the entrance are based on conditions in the RF-discharge chamber and are implemented in U3DSMC using a Kinetic-Moment subsonic boundary conditions method. The rotational and vibrational degrees of freedom in U3DSMC are implemented using the Larsen-Borgnakke model. Chemical reactions are implemented in U3DSMC using the Quantum-Kinetic model. Simulations cover the regime of operation of the HPDNIS and examine the flow characteristics inside the NIP section.
Benchmark of the bootstrap current simulation in helical plasmas
Huang, Botsz; Kanno, Ryutaro; Sugama, Hideo; Goto, Takuya
2016-01-01
The importance of the parallel momentum conservation on the bootstrap current evaluation in nonaxisymmetric systems is demonstrated by the benchmarks among the local drift-kinetic equation solvers, i.e., the Zero-Orbit-width(ZOW), DKES, and PENTA codes. The ZOW model is extended to include the ion parallel mean flow effect on the electron-ion parallel friction. Compared to the DKES model in which only the pitch-angle-scattering term is included in the collision operator, the PENTA model employs the Sugama-Nishimura method to correct the momentum balance. The ZOW and PENTA models agree each other well on the calculations of the bootstrap current. The DKES results without the parallel momentum conservation deviates significantly from those from the ZOW and PENTA models. This work verifies the reliability of the bootstrap current calculation with the ZOW and PENTA models for the helical plasmas.
Plasma simulation with the Differential Algebraic Cubic Interpolated Propagation scheme
Energy Technology Data Exchange (ETDEWEB)
Utsumi, Takayuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1998-03-01
A computer code based on the Differential Algebraic Cubic Interpolated Propagation scheme has been developed for the numerical solution of the Boltzmann equation for a one-dimensional plasma with immobile ions. The scheme advects the distribution function and its first derivatives in the phase space for one time step by using a numerical integration method for ordinary differential equations, and reconstructs the profile in phase space by using a cubic polynomial within a grid cell. The method gives stable and accurate results, and is efficient. It is successfully applied to a number of equations; the Vlasov equation, the Boltzmann equation with the Fokker-Planck or the Bhatnagar-Gross-Krook (BGK) collision term and the relativistic Vlasov equation. The method can be generalized in a straightforward way to treat cases such as problems with nonperiodic boundary conditions and higher dimensional problems. (author)
Advances in petascale kinetic plasma simulation with VPIC and Roadrunner
Energy Technology Data Exchange (ETDEWEB)
Bowers, Kevin J [Los Alamos National Laboratory; Albright, Brian J [Los Alamos National Laboratory; Yin, Lin [Los Alamos National Laboratory; Daughton, William S [Los Alamos National Laboratory; Roytershteyn, Vadim [Los Alamos National Laboratory; Kwan, Thomas J T [Los Alamos National Laboratory
2009-01-01
VPIC, a first-principles 3d electromagnetic charge-conserving relativistic kinetic particle-in-cell (PIC) code, was recently adapted to run on Los Alamos's Roadrunner, the first supercomputer to break a petaflop (10{sup 15} floating point operations per second) in the TOP500 supercomputer performance rankings. They give a brief overview of the modeling capabilities and optimization techniques used in VPIC and the computational characteristics of petascale supercomputers like Roadrunner. They then discuss three applications enabled by VPIC's unprecedented performance on Roadrunner: modeling laser plasma interaction in upcoming inertial confinement fusion experiments at the National Ignition Facility (NIF), modeling short pulse laser GeV ion acceleration and modeling reconnection in magnetic confinement fusion experiments.
Real-time 3-D hybrid simulation of Titan's plasma interaction during a solar wind excursion
Directory of Open Access Journals (Sweden)
S. Simon
2009-09-01
Full Text Available The plasma environment of Saturn's largest satellite Titan is known to be highly variable. Since Titan's orbit is located within the outer magnetosphere of Saturn, the moon can leave the region dominated by the magnetic field of its parent body in times of high solar wind dynamic pressure and interact with the thermalized magnetosheath plasma or even with the unshocked solar wind. By applying a three-dimensional hybrid simulation code (kinetic description of ions, fluid electrons, we study in real-time the transition that Titan's plasma environment undergoes when the moon leaves Saturn's magnetosphere and enters the supermagnetosonic solar wind. In the simulation, the transition between both plasma regimes is mimicked by a reversal of the magnetic field direction as well as a change in the composition and temperature of the impinging plasma flow. When the satellite enters the solar wind, the magnetic draping pattern in its vicinity is reconfigured due to reconnection, with the characteristic time scale of this process being determined by the convection of the field lines in the undisturbed plasma flow at the flanks of the interaction region. The build-up of a bow shock ahead of Titan takes place on a typical time scale of a few minutes as well. We also analyze the erosion of the newly formed shock front upstream of Titan that commences when the moon re-enters the submagnetosonic plasma regime of Saturn's magnetosphere. Although the model presented here is far from governing the full complexity of Titan's plasma interaction during a solar wind excursion, the simulation provides important insights into general plasma-physical processes associated with such a disruptive change of the upstream flow conditions.
Energy Technology Data Exchange (ETDEWEB)
TP Clement
1999-06-24
RT3DV1 (Reactive Transport in 3-Dimensions) is computer code that solves the coupled partial differential equations that describe reactive-flow and transport of multiple mobile and/or immobile species in three-dimensional saturated groundwater systems. RT3D is a generalized multi-species version of the US Environmental Protection Agency (EPA) transport code, MT3D (Zheng, 1990). The current version of RT3D uses the advection and dispersion solvers from the DOD-1.5 (1997) version of MT3D. As with MT3D, RT3D also requires the groundwater flow code MODFLOW for computing spatial and temporal variations in groundwater head distribution. The RT3D code was originally developed to support the contaminant transport modeling efforts at natural attenuation demonstration sites. As a research tool, RT3D has also been used to model several laboratory and pilot-scale active bioremediation experiments. The performance of RT3D has been validated by comparing the code results against various numerical and analytical solutions. The code is currently being used to model field-scale natural attenuation at multiple sites. The RT3D code is unique in that it includes an implicit reaction solver that makes the code sufficiently flexible for simulating various types of chemical and microbial reaction kinetics. RT3D V1.0 supports seven pre-programmed reaction modules that can be used to simulate different types of reactive contaminants including benzene-toluene-xylene mixtures (BTEX), and chlorinated solvents such as tetrachloroethene (PCE) and trichloroethene (TCE). In addition, RT3D has a user-defined reaction option that can be used to simulate any other types of user-specified reactive transport systems. This report describes the mathematical details of the RT3D computer code and its input/output data structure. It is assumed that the user is familiar with the basics of groundwater flow and contaminant transport mechanics. In addition, RT3D users are expected to have some experience in
Simulations of the spectrum from a photoionized Si plasma
Lihua, Bao; Zeqing, Wu; Bin, Duan; Yongkun, Ding; Jun, Yan
2011-02-01
In order to interpret the spectrum of a photoionized Si plasma, we calculate the level populations and emissions using a collisional-radiative equilibrium model with detailed atomic data. In our calculations, levels with principal quantum number up to 9 are included and the electron impact processes are also taken into account. The peak around 1855 eV, which is not reproduced in the previous simulation, is obvious in the present results. Spectra analyzing shows that this peak mainly comes from the intercombination line of He-like Si. Our calculations indicate that the electron impact processes enhance this intercombination line about once, although the electron temperature is pretty low.
Phase 1 Validation Testing and Simulation for the WEC-Sim Open Source Code
Ruehl, K.; Michelen, C.; Gunawan, B.; Bosma, B.; Simmons, A.; Lomonaco, P.
2015-12-01
WEC-Sim is an open source code to model wave energy converters performance in operational waves, developed by Sandia and NREL and funded by the US DOE. The code is a time-domain modeling tool developed in MATLAB/SIMULINK using the multibody dynamics solver SimMechanics, and solves the WEC's governing equations of motion using the Cummins time-domain impulse response formulation in 6 degrees of freedom. The WEC-Sim code has undergone verification through code-to-code comparisons; however validation of the code has been limited to publicly available experimental data sets. While these data sets provide preliminary code validation, the experimental tests were not explicitly designed for code validation, and as a result are limited in their ability to validate the full functionality of the WEC-Sim code. Therefore, dedicated physical model tests for WEC-Sim validation have been performed. This presentation provides an overview of the WEC-Sim validation experimental wave tank tests performed at the Oregon State University's Directional Wave Basin at Hinsdale Wave Research Laboratory. Phase 1 of experimental testing was focused on device characterization and completed in Fall 2015. Phase 2 is focused on WEC performance and scheduled for Winter 2015/2016. These experimental tests were designed explicitly to validate the performance of WEC-Sim code, and its new feature additions. Upon completion, the WEC-Sim validation data set will be made publicly available to the wave energy community. For the physical model test, a controllable model of a floating wave energy converter has been designed and constructed. The instrumentation includes state-of-the-art devices to measure pressure fields, motions in 6 DOF, multi-axial load cells, torque transducers, position transducers, and encoders. The model also incorporates a fully programmable Power-Take-Off system which can be used to generate or absorb wave energy. Numerical simulations of the experiments using WEC-Sim will be
L-PICOLA: A parallel code for fast dark matter simulation
Howlett, C.; Manera, M.; Percival, W. J.
2015-09-01
Robust measurements based on current large-scale structure surveys require precise knowledge of statistical and systematic errors. This can be obtained from large numbers of realistic mock galaxy catalogues that mimic the observed distribution of galaxies within the survey volume. To this end we present a fast, distributed-memory, planar-parallel code, L-PICOLA, which can be used to generate and evolve a set of initial conditions into a dark matter field much faster than a full non-linear N-Body simulation. Additionally, L-PICOLA has the ability to include primordial non-Gaussianity in the simulation and simulate the past lightcone at run-time, with optional replication of the simulation volume. Through comparisons to fully non-linear N-Body simulations we find that our code can reproduce the z = 0 power spectrum and reduced bispectrum of dark matter to within 2% and 5% respectively on all scales of interest to measurements of Baryon Acoustic Oscillations and Redshift Space Distortions, but 3 orders of magnitude faster. The accuracy, speed and scalability of this code, alongside the additional features we have implemented, make it extremely useful for both current and next generation large-scale structure surveys. L-PICOLA is publicly available at https://cullanhowlett.github.io/l-picola.
Energy Technology Data Exchange (ETDEWEB)
Brucker, R.; Munoz, A.; Rodriguez, J.
2011-07-01
The scope of radiological analysis is to calculate the dose received by the public and by an operator in the control room in case of an accident. Simulation software are needed for that kind of analysis in order to solve differential equations (radionuclides transport equations), to simulate the accident scenario, and to calculate the dose. This article presents the main radionuclide transport codes (several cases simulated with RADTRAD v3.03 are detailed), dose calculation programs, and atmospheric dispersion coefficients calculation software. (Author) 10 refs.
Simplex-in-Cell Technique for Collisionless Plasma Simulations
Kates-Harbeck, Julian; Zrake, Jonathan; Abel, Tom
2015-01-01
We extend the simplex-in-cell (SIC) technique recently introduced in the context of collisionless dark matter fluids (Abel et al. 2012; Hahn et al. 2012) to the case of collisionless plasmas. The six-dimensional phase space distribution function $f(\\mathbf x,\\mathbf v)$ is represented by an ensemble of three-dimensional manifolds, which we refer to as sheets. The electric potential field is obtained by solving the Poisson equation on a uniform mesh, where the charge density is evaluated by a spatial projection of the phase space sheets. The SIC representation of phase space density facilitates robust, high accuracy numerical evolution of the Vlasov-Poisson system using significantly fewer tracer particles than comparable particle-in-cell (PIC) approaches by reducing the numerical shot-noise associated with the latter. We introduce the SIC formulation and describe its implementation in a new code, which we validate using standard test problems including plasma oscillations, Landau damping, and two stream insta...
Simplex-in-cell technique for collisionless plasma simulations
Kates-Harbeck, Julian; Totorica, Samuel; Zrake, Jonathan; Abel, Tom
2016-01-01
We extend the simplex-in-cell (SIC) technique recently introduced in the context of collisionless dark matter fluids [1,2] to the case of collisionless plasmas. The six-dimensional phase space distribution function f (x , v) is represented by an ensemble of three-dimensional manifolds, which we refer to as sheets. The electric potential field is obtained by solving the Poisson equation on a uniform mesh, where the charge density is evaluated by a spatial projection of the phase space sheets. The SIC representation of phase space density facilitates robust, high accuracy numerical evolution of the Vlasov-Poisson system using significantly fewer tracer particles than comparable particle-in-cell (PIC) approaches by reducing the numerical shot-noise associated with the latter. We introduce the SIC formulation and describe its implementation in a new code, which we validate using standard test problems including plasma oscillations, Landau damping, and two stream instabilities in one dimension. Merits of the new scheme are shown to include higher accuracy and faster convergence rates in the number of particles. We finally motivate and outline the efficient application of SIC to higher dimensional problems.
Intercomparison of numerical simulation codes for geologic disposal of CO2
Energy Technology Data Exchange (ETDEWEB)
Pruess, Karsten; Garcia, Julio; Kovscek, Tony; Oldenburg, Curt; Rutqvist, Jonny; Steefel, Carl; Xu, Tianfu
2002-11-27
Numerical simulation codes were exercised on a suite of eight test problems that address CO2 disposal into geologic storage reservoirs, including depleted oil and gas reservoirs, and brine aquifers. Processes investigated include single- and multi-phase flow, gas diffusion, partitioning of CO2 into aqueous and oil phases, chemical interactions of CO2 with aqueous fluids and rock minerals, and mechanical changes due to changes in fluid pressures. Representation of fluid properties was also examined. In most cases results obtained from different simulation codes were in satisfactory agreement, providing confidence in the ability of current numerical simulation approaches to handle the physical and chemical processes that would be induced by CO2 disposal in geologic reservoirs. Some discrepancies were also identified and can be traced to differences in fluid property correlations, and space and time discretization.