WorldWideScience

Sample records for plasma sheet ring

  1. Impact of the storm-time plasma sheet ion composition on the ring current energy density

    Science.gov (United States)

    Mouikis, C.; Kistler, L. M.; Petrinec, S. M.; Fuselier, S. A.; Cohen, I.

    2017-12-01

    The adiabatic inward transport of the night-side near-earth ( 6 Re) hot plasma sheet is the dominant contributor to the ring current pressure during storm times. During storm times, the plasma sheet composition in the 6 - 12 Re tail region changes due to O+ entry from the lobes (from the cusp) and the direct feeding from the night side auroral region. In addition, at substorm onset the plasma sheet O+ ions can be preferentially accelerated. We use MMS and observations during two magnetic storms, 5/8/2016 and 7/16/2017, to monitor the composition changes and energization in the 6 - 12 Re plasma sheet region. For both storms the MMS apogee was in the tail. In addition, we use subsequent Van Allen Probe observations (with apogee in the dawn and dusk respectively) to test if the 6-12 Re plasma sheet, observed by MMS, is a sufficient source of the O+ in the ring current. For this we will compare the phase space density (PSD) of the plasma sheet source population and the PSD of the inner magnetosphere at constant magnetic moment values as used in Kistler et al., [2016].

  2. Energization of the Ring Current through Convection of Substorm Enhancements of the Plasma Sheet Source.

    Science.gov (United States)

    Menz, A.; Kistler, L. M.; Mouikis, C.; Spence, H. E.; Henderson, M. G.; Matsui, H.

    2017-12-01

    It has been shown that electric field strength and night-side plasma sheet density are the two best predictors of the adiabatic energy gain of the ring current during geomagnetic storms (Liemohn and Khazanov, 2005). While H+ dominates the ring current during quiet times, O+ can contribute substantially during geomagnetic storms. Substorm activity provides a mechanism to enhance the energy density of O+ in the plasma sheet during geomagnetic storms, which is then convected adiabatically into the inner-magnetosphere. Using the Van Allen Probes data in the the plasma sheet source region (defined as L>5.5 during storms) and the inner magnetosphere, along with LANL-GEO data to identify substorm injection times, we show that adiabatic convection of O+ enhancements in the source region can explain the observed enhancements in the inner magnetosphere. We use the UNH-IMEF electric field model to calculate drift times from the source region to the inner magnetosphere to test whether enhancements in the inner-magnetosphere can be explained by dipolarization driven enhancements in the plasma sheet source hours before.

  3. Geomagnetic activity effects on plasma sheet energy conversion

    Directory of Open Access Journals (Sweden)

    M. Hamrin

    2010-10-01

    Full Text Available In this article we use three years (2001, 2002, and 2004 of Cluster plasma sheet data to investigate what happens to localized energy conversion regions (ECRs in the plasma sheet during times of high magnetospheric activity. By examining variations in the power density, E·J, where E is the electric field and J is the current density obtained by Cluster, we have studied the influence on Concentrated Load Regions (CLRs and Concentrated Generator Regions (CGRs from variations in the geomagnetic disturbance level as expressed by the Kp, the AE, and the Dst indices. We find that the ECR occurrence frequency increases during higher magnetospheric activities, and that the ECRs become stronger. This is true both for CLRs and for CGRs, and the localized energy conversion therefore concerns energy conversion in both directions between the particles and the fields in the plasma sheet. A higher geomagnetic activity hence increases the general level of energy conversion in the plasma sheet. Moreover, we have shown that CLRs live longer during magnetically disturbed times, hence converting more electromagnetic energy. The CGR lifetime, on the other hand, seems to be unaffected by the geomagnetic activity level. The evidence for increased energy conversion during geomagnetically disturbed times is most clear for Kp and for AE, but there are also some indications that energy conversion increases during large negative Dst. This is consistent with the plasma sheet magnetically mapping to the auroral zone, and therefore being more tightly coupled to auroral activities and variations in the AE and Kp indices, than to variations in the ring current region as described by the Dst index.

  4. Comparing Sources of Storm-Time Ring Current O+

    Science.gov (United States)

    Kistler, L. M.

    2015-12-01

    The first observations of the storm-time ring current composition using AMPTE/CCE data showed that the O+ contribution to the ring current increases significantly during storms. The ring current is predominantly formed from inward transport of the near-earth plasma sheet. Thus the increase of O+ in the ring current implies that the ionospheric contribution to the plasma sheet has increased. The ionospheric plasma that reaches the plasma sheet can come from both the cusp and the nightside aurora. The cusp outflow moves through the lobe and enters the plasma sheet through reconnection at the near-earth neutral line. The nightside auroral outflow has direct access to nightside plasma sheet. Using data from Cluster and the Van Allen Probes spacecraft, we compare the development of storms in cases where there is a clear input of nightside auroral outflow, and in cases where there is a significant cusp input. We find that the cusp input, which enters the tail at ~15-20 Re becomes isotropized when it crosses the neutral sheet, and becomes part of the hot (>1 keV) plasma sheet population as it convects inward. The auroral outflow, which enters the plasma sheet closer to the earth, where the radius of curvature of the field line is larger, does not isotropize or become significantly energized, but remains a predominantly field aligned low energy population in the inner magnetosphere. It is the hot plasma sheet population that gets accelerated to high enough energies in the inner magnetosphere to contribute strongly to the ring current pressure. Thus it appears that O+ that enters the plasma sheet further down the tail has a greater impact on the storm-time ring current than ions that enter closer to the earth.

  5. Numerical modeling of the plasma ring acceleration experiment

    International Nuclear Information System (INIS)

    Eddleman, J.L.; Hammer, J.H.; Hartman, C.W.

    1987-01-01

    Modeling of the LLNL RACE experiment and its many applications has necessitated the development and use of a wide array of computational tools. The two-dimensional MHD code, HAM, has been used to model the formation of a compact torus plasma ring in a magnetized coaxial gun and its subsequent acceleration by an additional applied toroidal field. Features included in the 2-D calculations are self-consistent models for (1) the time-dependent poloidal field produced by a capacitor bank discharge through a solenoid field coil (located either inside the gun inner electrode or outside the outer gun electrode) and the associated diffusion of magnetic flux through neighboring conductors, (2) gas flow into the gun annular region from a simulated puffed gas valve plenum, (3) formation and motion of a current sheet produced by J x B forces resulting from discharge of the gun capacitor bank through the plasma load between the coaxial gun electrodes, (4) the subsequent stretching and reconnection of the poloidal field lines to form a compact torus plasma ring, and (5) finally the discharge of the accelerator capacitor bank producing an additional toroidal field for acceleration of the plasma ring. The code has been extended to include various models for gas breakdown, plasma anomalous resistivity, and mass entrainment from ablation of electrode material

  6. Complete plasma dropouts at Vela satellites during thinning of the plasma sheet

    International Nuclear Information System (INIS)

    Lui, A.T.Y.; Hones, E.W. Jr.; Venkatesan, D.; Akasofu, S.; Bame, S.J.

    1975-01-01

    Five satellite years of Vela data are examined for plasma sheet thinnings. Complete proton disappearances (plasma dropouts) are the main subject here. During such times, the Vela satellite is temporarily in the high-latitude tail lobe. The distribution of such plasma dropouts within the magnetotail suggests that the semithickness of the plasma sheet near midnight seldom reaches less than 1 R/sub E/ during substorms and that the dawn and dusk portions of the plasma sheet remain thicker than the midnight portion. But it is also shown that the plasma sheet occasionally becomes very thin near the dusk magnetopause. No such severe thinnings of the plasma sheet are found near the dawn magnetopause. Plasma dropouts can occur regardless of the sign of the Z component of the IMF, but their frequency of occurrence seems to be greater when the Z component is negative.Three plasma dropouts which occurred in the midnight sector at unusually large distances from the estimated position of the neutral sheet were observed during geomagnetic storms. It is likely that the midnight sector of the plasma sheet can become very thick (approx.18 R/sub E/) at certain times during the main phase of storms. Detailed measurements in the plasma sheet were obtained near the beginning of a geomagnetic storm whose sc triggered a substorm. A compression of the plasma sheet at X/sub SM/approx. =-15 R/sub E/ occurred about 10 min after the sc onset at the earth and about 5 min after the start of plasma sheet thinning associated with the sc-related substorm. If compression-thinning of the plasma sheet initiated this substorm, the triggering action must have occurred earthward of X/sub SM/approx. =-15 R/sub E/

  7. Pressure balance between lobe and plasma sheet

    International Nuclear Information System (INIS)

    Baumjohann, W.; Paschmann, G.; Luehr, H.

    1990-01-01

    Using eight months of AMPTE/IRM plasma and magnetic field data, the authors have done a statistical survey on the balance of total (thermal and magnetic) pressure in the Earth's plasma sheet and tail lobe. About 300,000 measurements obtained in the plasma sheet and the lobe were compared for different levels of magnetic activity as well as different distances from the Earth. The data show that lobe and plasma sheet pressure balance very well. Even in the worst case they do not deviate by more than half of the variance in the data itself. Approximately constant total pressure was also seen during a quiet time pass when IRM traversed nearly the whole magnetotail in the vertical direction, from the southern hemisphere lobe through the neutral sheet and into the northern plasma sheet boundary layer

  8. Plasma dynamics in current sheets

    International Nuclear Information System (INIS)

    Bogdanov, S.Yu.; Drejden, G.V.; Kirij, N.P.; AN SSSR, Leningrad

    1992-01-01

    Plasma dynamics in successive stages of current sheet evolution is investigated on the base of analysis of time-spatial variations of electron density and electrodynamic force fields. Current sheet formation is realized in a two-dimensional magnetic field with zero line under the action of relatively small initial disturbances (linear regimes). It is established that in the limits of the formed sheet is concentrated dense (N e ∼= 10 16 cm -3 ) (T i ≥ 100 eV, bar-Z i ≥ 2) hot pressure of which is balanced by the magnetic action of electrodynamic forces is carried out both plasma compression in the sheet limits and the acceleration along the sheet surface from a middle to narrow side edges

  9. On Jovian plasma sheet structure

    International Nuclear Information System (INIS)

    Khurana, K.K.; Kivelson, M.G.

    1989-01-01

    The authors evaluate several models of Jovian plasma sheet structure by determining how well they organize several aspects of the observed Voyager 2 magnetic field characteristics as a function of Jovicentric radial distance. It is shown that in the local time sector of the Voyager 2 outbound pass (near 0300 LT) the published hinged-magnetodisc models with wave (i.e., models corrected for finite wave velocity effects) are more successful than the published magnetic anomaly model in predicting locations of current sheet crossings. They also consider the boundary between the plasma sheet and the magnetotail lobe which is expected to vary slowly with radial distance. They use this boundary location as a further test of the models of the magnetotail. They show that the compressional MHD waves have much smaller amplitude in the lobes than in the plasma sheet and use this criterion to refine the identification of the plasma-sheet-lobe boundary. When the locations of crossings into and out of the lobes are examined, it becomes evident that the magnetic-anomaly model yields a flaring plasma sheet with a halfwidth of ∼ 3 R J at a radial distance of 20 R J and ∼ 12 R J at a radial distance of 100 R J . The hinged-magnetodisc models with wave, on the other hand, predict a halfwidth of ∼ 3.5 R J independent of distance beyond 20 R J . New optimized versions of the two models locate both the current sheet crossings and lobe encounters equally successfully. The optimized hinged-magnetodisc model suggests that the wave velocity decreases with increasing radial distance. The optimized magnetic anomaly model yields lower velocity contrast than the model of Vasyliunas and Dessler (1981)

  10. The plasma sheet boundary and Ksub(p)

    International Nuclear Information System (INIS)

    Freeman, J.W.

    1975-01-01

    Freeman and Maguire (1967) first drew attention to the intrusion of energetic plasma from the tail to the geostationary orbit during geomagnetically disturbed times. Vasyliunas (1968) reported a correlation between the inward extension of the inner boundary of the plasma sheet and the Ksub(p) index and pointed out that the plasma sheet could occasionally reach the geostationary orbit distance. More recently McIlwain (1972) using the more refined detectors aboard the ATS-5 geostationary space-craft, has emphasized the correlation between the location of the plasma sheet boundary along the ATS orbit and geomagnetic activity. Using some older but unpublished data from the Suprathermal Ion Detector aboard the ATS-1 geostationary satellite, the relation between the local time occurrence of the plasma sheet at the geostationary orbit (6.6Rsub(E)) and Ksub(p) index is reported and then a relationship for the shift in the plasma sheet radial position is derived. (Auth.)

  11. The storm time central plasma sheet

    Directory of Open Access Journals (Sweden)

    R. Schödel

    2002-11-01

    Full Text Available The plasma sheet plays a key role during magnetic storms because it is the bottleneck through which large amounts of magnetic flux that have been eroded from the dayside magnetopause have to be returned to the dayside magnetosphere. Using about five years of Geotail data we studied the average properties of the near- and midtail central plasma sheet (CPS in the 10–30 RE range during magnetic storms. The earthward flux transport rate is greatly enhanced during the storm main phase, but shows a significant earthward decrease. Hence, since the magnetic flux cannot be circulated at a sufficient rate, this leads to an average dipolarization of the central plasma sheet. An increase of the specific entropy of the CPS ion population by a factor of about two during the storm main phase provides evidence for nonadiabatic heating processes. The direction of flux transport during the main phase is consistent with the possible formation of a near-Earth neutral line beyond ~20 RE.Key words. Magnetospheric physics (plasma convection; plasma sheet; storms and substorms

  12. Plasma-ring, fast-opening switch

    International Nuclear Information System (INIS)

    Hartman, C.W.; Eddleman, J.; Hammer, J.H.

    1986-01-01

    The authors discuss a fast-opening switch concept based on magnetically confined plasma rings, PROS (for Plasma Ring Opening Switch). In PROS, the plasma ring, confined by Bθ /sub and B/poloidal /sub fields of a compact torus, provide a low mass, localized conduction path between coaxial electrodes. To operate the switch, driver current is passed across the electrodes through the ring, storing inductive energy in external inductance and between the electrodes on the driver side of the ring. The ring is accelerated away from the driver by the field of the driver current and passes over a load gap transferring the current to the load. The authors distinguish two configurations in PROS, straight PROS where the electrodes are coaxial cylinders, and cone PROS with conical electrodes. In straight PROS ring acceleration takes place during the inductive store period as in foil switches, but with the localized ring providing the current path. Increased performance is predicted for the cone PROS (see figure) which employs compression of the ring in the cone during the inductive store period. Here, the B/θ /sub field of the driver forces the ring towards the apex of the cone but the force is in near balance with the opposing component of the radial equilibrium force of the ring along the cone. As a result, the ring undergoes a slow, quasistatic compression limited only by resistive decay of the ring field. Slow compression allows inductive storage with low-power drivers (homopoloar, magneto cumulative generators, high C-low V capacitor banks, etc.). Near the apex of the cone, near peak compression, the ring is allowed to enter a straight coaxial section where, because of low-mass, it rapidly accelerates to high velocity and crosses the load gap

  13. On the balance of stresses in the plasma sheet.

    Science.gov (United States)

    Rich, F. J.; Wolf, R. A.; Vasyliunas, V. M.

    1972-01-01

    The stress resulting from magnetic tension on the neutral sheet must, in a steady state, be balanced by any one or a combination of (1) a pressure gradient in the direction along the axis of the tail, (2) a similar gradient of plasma flow kinetic energy, and (3) the tension resulting from a pressure anisotropy within the plasma sheet. Stress balance in the first two cases requires that the ratios h/LX and BZ/BX be of the same order of magnitude, where h is the half-thickness of the neutral sheet, LX is the length scale for variations along the axis of the tail, and BZ and BX are the magnetic field components in the plasma sheet just outside the neutral sheet. The second case requires, in addition, that the plasma flow speed within the neutral sheet be of the order of or larger than the Alfven speed outside the neutral sheet. Stress balance in the third case requires that just outside the neutral sheet the plasma pressure obey the marginal firehose stability condition.

  14. Relativistic current sheets in electron-positron plasmas

    International Nuclear Information System (INIS)

    Zenitani, S.

    2008-01-01

    The current sheet structure with magnetic field reversal is one of the fundamental structure in space and astrophysical plasmas. It draws recent attention in high-energy astrophysical settings, where relativistic electron-positron plasmas are considered. In this talk we will review the recent progress of the physical processes in the relativistic current sheet. The kinetic stability of a single current sheet, the nonlinear behavior of these instabilities, and recent challenges on the multi current sheet systems are introduced. We will also introduce some problems of magnetic reconnection in these relativistic environments. (author)

  15. Research support for plasma diagnostics on Elmo Bumpy Torus: investigation of diamagnetic diagnostics for the electron rings

    International Nuclear Information System (INIS)

    Carpenter, K.H.

    1981-02-01

    Diamagnetic diagnostics for the EBT electron rings are fundamental to the experiment. The diamagnetic flux pickup loops on each cavity output signals proportional to ring perpendicular energy. A data analysis technique is described, which in its simplest form is subtracting 1/4 the signal from each neighboring cavity pickup loop from the central one's, which provides a signal proportional to the energy in a single ring. The calibration factor relating absolute perpendicular energy to diamagnetic signal depends weakly on the geometrical model for the ring. Calculations with a bumpy cylinder MHD equilibrium code give calibration factors in reasonable agreement (20%) to the values obtained using a simple, concentric cylindrical current sheet model. The cylindrical current sheet model is used to show that diamagnetic field components measured external to the plasma require high precision or correlation with other diagnostics in order to fix model parameters. A computer simulation shows an assumption of constant ring thickness and energy density with increasing length (and energy) is compatible to diamagnetic field observations on NBT

  16. Preparation for electron ring - plasma ring merging experiments in RECE-MERGE

    International Nuclear Information System (INIS)

    Taggart, D.; Sekiguchi, A.; Fleischmann, H.H.

    1986-01-01

    The formation of a mixed-CT using relativistic electron rings and gun-produced plasma rings by MERGE-ing them axially is simulated. This process is similar to the axial stacking of relativistic electron rings in RECE-Christa. The results of their first plasm production experiment are reported here. After study of the gun-produced plasma's properties is completed, the gun will be mounted at the downstream end of the vacuum tank and the source of relativistic electron rings will be at the upstream end. The two rings, formed at opposite ends of the tank, will be translated axially and merged

  17. Bi-directional electrons in the near-Earth plasma sheet

    Directory of Open Access Journals (Sweden)

    K. Shiokawa

    2003-07-01

    Full Text Available We have studied the occurrence characteristics of bi-directional electron pitch angle anisotropy (enhanced flux in field-aligned directions, F^ /F|| > 1.5 at energies of 0.1–30 keV using plasma and magnetic field data from the AMPTE/IRM satellite in the near-Earth plasma sheet. The occurrence rate increases in the tailward direction from XGSM = - 9 RE to - 19 RE . The occurrence rate is also enhanced in the midnight sector, and furthermore, whenever the elevation angle of the magnetic field is large while the magnetic field intensity is small, B ~ 15 nT. From these facts, we conclude that the bi-directional electrons in the central plasma sheet are produced mainly in the vicinity of the neutral sheet and that the contribution from ionospheric electrons is minor. A high occurrence is also found after earthward high-speed ion flows, suggesting Fermi-type field-aligned electron acceleration in the neutral sheet. Occurrence characteristics of bi-directional electrons in the plasma sheet boundary layer are also discussed.Key words. Magnetospheric physics (magnetospheric configuration and dynamics; magnetotail; plasma sheet

  18. The statistical studies of the inner boundary of plasma sheet

    Directory of Open Access Journals (Sweden)

    J. B. Cao

    2011-02-01

    Full Text Available The penetration of plasma sheet ions into the inner magnetosphere is very important to the inner magnetospheric dynamics since plasma sheet ions are one of the major particle sources of ring current during storm times. However, the direct observations of the inner boundary of the plasma sheet are fairly rare due to the limited number of satellites in near equatorial orbits outside 6.6 RE. In this paper, we used the ion data recorded by TC-1 from 2004 to 2006 to study the distribution of inner boundary of ion plasma sheet (IBIPS and for the first time show the observational distribution of IBIPS in the equatorial plane. The IBIPS has a dawn-dusk asymmetry, being farthest to the Earth in the 06:00 08:00 LT bin and closest to the Earth in the 18:00–20:00 LT bin. Besides, the IBIPS has also a day-night asymmetry, which may be due to the fact that the ions on the dayside are exposed more time to loss mechanisms on their drift paths. The radial distance of IBIPS decrease generally with the increase of Kp index. The mean radial distance of IBIPS is basically larger than 6.6 RE during quiet times and smaller than 6.6 RE during active times. When the strength of convection electric field increases, the inward shift of IBIPS is most significant on the night side (22:00–02:00 LT. For Kp ≤ 0+, only 16% of IBIPSs penetrate inside the geosynchronous orbit. For 2 ≤ Kp +, however, 70% of IBIPSs penetrate inside the geosynchronous orbit. The IBIPS has weak correlations with the AE and Dst indexes. The average correlation coefficient between Ri and Kp is −0.58 while the correlation coefficient between Ri and AE/Dst is only −0.29/0.17. The correlation coefficients are local time dependent. Particularly, Ri and Kp are highly correlated (r=−0.72 in the night sector, meaning that the radial distance of IBIPS Ri in the night sector has the good response to the Kp index These observations indicate that Kp plays a key role in determining the position of

  19. Slow convection of a magnetized plasma and the earth plasma sheet

    International Nuclear Information System (INIS)

    Hruska, A.

    1980-01-01

    Stationary convection of an isotropic, infinitely conducting plasma in a magnetic field with non-trivial geometry is discussed under the assumption that the inertial term in the equation of motion may be ignored. The energy gained or lost by a volume element of plasma per unit time does not vary along the field-lines. Simple relations between the components of the current density, depending on the field-line geometry, exist. Similar relations hold for the components of the plasma velocity. The theoretical analysis is applied to the geomagnetically-quiet plasma sheet and a qualitative physical picture of the sheet is suggested. The observed structure of the sheet is compatible with Axford-Hines type of convection perhaps combined with a low-speed flow from a distant neutral point. The magnetic-field-aligned currents are driven by the deformations of the closed field-lines which are enforced by the solar wind. (orig.)

  20. Two-and-one-half-dimensional magnetohydrodynamic simulations of the plasma sheet in the presence of oxygen ions: The plasma sheet oscillation and compressional Pc 5 waves

    International Nuclear Information System (INIS)

    Lu Li; Liu Zhenxing; Cao Jinbin

    2002-01-01

    Two-and-one-half-dimensional magnetohydrodynamic simulations of the multicomponent plasma sheet with the velocity curl term in the magnetic equation are represented. The simulation results can be summarized as follows: (1) There is an oscillation of the plasma sheet with the period on the order of 400 s (Pc 5 range); (2) the magnetic equator is a node of the magnetic field disturbance; (3) the magnetic energy integral varies antiphase with the internal energy integral; (4) disturbed waves have a propagating speed on the order of 10 km/s earthward; (5) the abundance of oxygen ions influences amplitude, period, and dissipation of the plasma sheet oscillation. It is suggested that the compressional Pc 5 waves, which are observed in the plasma sheet close to the magnetic equator, may be caused by the plasma sheet oscillation, or may be generated from the resonance of the plasma sheet oscillation with some Pc 5 perturbation waves coming from the outer magnetosphere

  1. MHD Ballooning Instability in the Plasma Sheet

    International Nuclear Information System (INIS)

    Cheng, C.Z.; Zaharia, S.

    2003-01-01

    Based on the ideal-MHD model the stability of ballooning modes is investigated by employing realistic 3D magnetospheric equilibria, in particular for the substorm growth phase. Previous MHD ballooning stability calculations making use of approximations on the plasma compressibility can give rise to erroneous conclusions. Our results show that without making approximations on the plasma compressibility the MHD ballooning modes are unstable for the entire plasma sheet where beta (sub)eq is greater than or equal to 1, and the most unstable modes are located in the strong cross-tail current sheet region in the near-Earth plasma sheet, which maps to the initial brightening location of the breakup arc in the ionosphere. However, the MHD beq threshold is too low in comparison with observations by AMPTE/CCE at X = -(8 - 9)R(sub)E, which show that a low-frequency instability is excited only when beq increases over 50. The difficulty is mitigated by considering the kinetic effects of ion gyrorad ii and trapped electron dynamics, which can greatly increase the stabilizing effects of field line tension and thus enhance the beta(sub)eq threshold [Cheng and Lui, 1998]. The consequence is to reduce the equatorial region of the unstable ballooning modes to the strong cross-tail current sheet region where the free energy associated with the plasma pressure gradient and magnetic field curvature is maximum

  2. Plasma properties of quasi-one-dimensional ring

    CERN Document Server

    Shmelev, G M

    2001-01-01

    The plasma properties of the quasi-one-dimensional ring in the threshold cases of low and high frequencies, corresponding to the plasma oscillations and dielectric relaxation are studied within the frames of the classical approach. The plasma oscillations spectrum and the electron dielectric relaxation frequency in the quasi-one-dimensional ring are calculated. The plasmons spectrum equidistance is identified. It is shown , that in contrast to the three-dimensional case there takes place the dielectric relaxation dispersion, wherefrom there follows the possibility of studying the carriers distribution in the quasi-one-dimensional rings through the method of the dielectric relaxation spectroscopy

  3. XUV laser-produced plasma sheet beam and microwave agile mirror

    International Nuclear Information System (INIS)

    Shen, W.; Scharer, J.E.; Porter, B.; Lam, N.T.

    1994-01-01

    An excimer-laser (λ = 193 nm) produced plasma in an organic gas (TMAE) has been generated and studied. These studies have determined the ion-electron recombination coefficient and the photon absorption cross-section, of the neutral gas. The dependences of wave transmission, reflection and absorption on plasma density are obtained. A new optical system with an array of cylindrical XUV coated lenses has been implemented to form a plasma sheet to study its usage as agile mirror microwave reflector. The lens system expands the incident laser beam in X direction and compresses it in Y direction to form a sheet beam. The expanded beam then passes through a vacuum chamber filled with TMAE at 50--500 nTorr to produce the plasma sheet. Space-time measurements of the plasma density and temperature as measured by a Langmuir probe are presented. XUV optical measurements of the laser beam as measured by a photodiode are presented. Initial experiments have generated a plasma sheet of 5--10 mm x 11 cm with peak plasma density of 5 x 10 13 cm -3 . A microwave source will be utilized to study the agile mirror character of the plasma sheet. Modeling of the microwave reflection from the plasma profile will also be discussed

  4. Beam-plasma interaction in a synchrotron-cooler ring

    International Nuclear Information System (INIS)

    Itahashi, T.

    1989-01-01

    We propose a plasma target installed in the synchrotron-cooler ring in order to study the beam-plasma interaction. Various types of beam diagnostic devices and precise techniques developed for stochastic cooling and rf-stacking in the storage ring would be a powerful tool to approach the problems concerning the plasma behavior induced by the beam, such as plasma lens effect, anomalous stopping power and plasma instability. (author)

  5. New Way of Characterizing the State of the Ring Current

    Science.gov (United States)

    Wolf, R.; Bao, S.; Gkioulidou, M.; Yang, J.; Toffoletto, F.

    2017-12-01

    The flux tube entropy S is invariant in ideal MHD and is a good way to characterize the degree to which a closed flux tube is loaded with particle energy. Flux tube entropy generally increases with increasing geocentric distance. A flux tube that is injected from the plasma sheet into the ring current tends to be a bubble that has a lower S value than typical plasma sheet flux tubes, and it tends to penetrate to a position where the surroundings matches its S. From this point of view, a good way to characterize the state of the ring current is through the function dF/dS, which specifies how much magnetic flux is occupied by tubes with different degrees of loading. By displaying dF/dS curves before and during storm main phases simulated with the RCM-E code, we determine that, in the model, the injection of the stormtime ring current consists of replacing pre-storm low-S flux tubes with tubes from the plasma sheet that have a certain limited range of S, which is well below typical plasma-sheet values. We also display dF/dS curves for passes by the Van Allen Probes before and during storm main phases, and compare with the RCM-E-derived curves, to gain insight into the nature of the flux tubes that are injected to form the real storm-time ring current.

  6. Multi-scale magnetic field intermittence in the plasma sheet

    Directory of Open Access Journals (Sweden)

    Z. Vörös

    2003-09-01

    Full Text Available This paper demonstrates that intermittent magnetic field fluctuations in the plasma sheet exhibit transitory, localized, and multi-scale features. We propose a multifractal-based algorithm, which quantifies intermittence on the basis of the statistical distribution of the "strength of burstiness", estimated within a sliding window. Interesting multi-scale phenomena observed by the Cluster spacecraft include large-scale motion of the current sheet and bursty bulk flow associated turbulence, interpreted as a cross-scale coupling (CSC process.Key words. Magnetospheric physics (magnetotail; plasma sheet – Space plasma physics (turbulence

  7. The Role of Ionospheric O+ in Forming the Storm-time Ring Current

    Science.gov (United States)

    Kistler, L. M.; Mouikis, C.; Menz, A.; Bingham, S.

    2017-12-01

    During storm times, the particle pressure that creates the storm-time ring current in the inner magnetosphere can be dominated by O+. This is surprising, as the immediate source for the ring current is the nightside plasma sheet, and O+ is usually not the dominant species in the plasma sheet. In this talk we examine the many factors that lead to this result. The O+ outflow is enhanced during geomagnetically active times. The transport paths of O+ and H+ are different, such that the O+ that reaches the near-earth plasma sheet is more energetic than H+. The source spectrum in the near-earth plasma sheet can be harder for O+ than for H+, perhaps due to substorm injections, so that the more energetic plasma has a higher O+/H+ ratio. And finally the plasma sheet O+ can be more abundant towards the beginning of the storm, when the convection is largest, so the enhanced O+ is brought the deepest into the inner magnetosphere. We will discuss the interrelationships between these different effects as well as the ways in which O+ itself may influence the system.

  8. The Interaction of C-Band Microwaves with Large Plasma Sheets

    International Nuclear Information System (INIS)

    Ding Liang; Huo Wenqing; Yang Xinjie; Xu Yuemin

    2012-01-01

    A large plasma sheet 60 cm×60 cm×2 cm in size was generated using a hollow cathode, and measurements were conducted for interactions including transmission, reflection and absorption. With different discharge parameters, plasma sheets can vary and influence microwave strength. Microwave reflection decreases when the discharge current rises, and the opposite occurs in transmission. The C-band microwave is absorbed when it is propagated through large plasma sheets at higher pressure. When plasma density and collision frequency are fitted with incident microwave frequency, a large amount of microwave energy is consumed. Reflection, transmission and absorption all exist simultaneously. Plasma sheets are an attractive alternative to microwave steering at low pressure, and the microwave reflection used in receiving radar can be altered by changing the discharge parameters.

  9. Interaction of a charge with a thin plasma sheet

    International Nuclear Information System (INIS)

    Bordag, M.

    2007-01-01

    The interaction of the electromagnetic field with a two-dimensional plasma sheet intended to describe the pi-electrons of a carbon nanotube or a C 60 molecule is investigated. By first integrating out the displacement field of the plasma or the electromagnetic field, different representations for quantities like the Casimir energy are derived which are shown to be consistent with one another. Starting from the covariant gauge for the electromagnetic field, it is shown that the matching conditions to which the presence of the plasma sheet can be reduced are different from the commonly used ones. The difference in the treatments does not show up in the Casimir force between two parallel sheets, but it is present in the Casimir-Polder force between a charge or a neutral atom and a sheet. At once, since the plasma sheet is a regularization of the conductor boundary conditions, this sheds light on the difference in physics found earlier in the realization of conductor boundary conditions as 'thin' or 'thick' boundary conditions in Phys. Rev. D 70, 085010 (2004)

  10. Manufacture of rings of 08Kh18N10T sheet for internal structures of WWER type reactors

    International Nuclear Information System (INIS)

    Fojta, A.; Nitka, B.

    1984-01-01

    Technology is presented of the manufacture of rings for the jacket, shaft, core catcher and shaft bottom of WWER-440 reactors produced by Vitkovice Steel Works. The rings are manufactured from sheets of austenitic steel 08Kh18N10T. The materials and technology problems are discussed of sheet production, ring welding technology and annealing following welding. The plastic properties are assessed of the welded joints and problems are outlined of ring production for WWER-1000 reactors. (B.S.)

  11. Thermal catastrophe in the plasma sheet boundary layer

    International Nuclear Information System (INIS)

    Smith, R.A.; Goertz, C.K.; Grossmann, W.

    1986-01-01

    This letter presents a first step towards a substorm model including particle heating and transport in the plasma sheet boundary layer (PSBL). The heating mechanism discussed is resonant absorption of Alfven waves. For some assumed MHD perturbation incident from the tail lobes onto the plasma sheet, the local heating rate in the PSBL has the form of a resonance function of the one-fluid plasma temperature. Balancing the local heating by convective transport of the heated plasma toward the central plasma sheet, and ''equation of state'' is found for the steady-state PSBL whose solution has the form of a mathematical catastrophe: at a critical value of a parameter containing the incident power flux, the local density, and the convection velocity, the equilibrium temperature jumps discontinuously. Associating this temperature increase with the abrupt onset of the substorm expansion phase, the catastrophe model indicates at least three ways in which the onset may be triggered. Several other consequences related to substorm dynamics are suggested by the simple catastrophe model

  12. Modeling of plasma-sheet convection: implications for substorms

    International Nuclear Information System (INIS)

    Erickson, G.M.

    1985-01-01

    An answer is suggested to the question of why plasma and magnetic energy accumulate in the Earth's magnetotail to be released in sporadic events, namely substorms. It is shown that the idea of steady convection is inconsistent with the idea of slow, approximately lossless, plasma convection in a long, closed-field-line region that extends into a long magnetotail, such as occurs during Earthward convection in the Earth's plasma sheet. This inconsistency is argued generally and demonstrated specifically using several quantitative models of the Earth's magnetospheric magnetic field. These results suggest that plasma-sheet convection is necessarily time dependent. If flux tubes are to convect adiabatically earthward, the confining magnetic pressure in the tail lobes must increase with time, and the magnetotail must evolve into a more stretched configuration. Eventually, the magnetosphere must find some way to release plasma from inner-plasma-sheet flux tubes. This suggests an obvious role for the magnetospheric substorm in the convection process. To probe this process further, a two-dimensional, self-consistent, quasi-static convection model was developed. This model self consistently includes a dipole field and can reasonably account for the effects of inner-magnetospheric shielding

  13. Laser plasma focus produced in a ring target

    International Nuclear Information System (INIS)

    Saint-Hilaire, G.; Szili, Z.

    1976-01-01

    A new geometry for generating a laser-produced plasma is presented. A toroidal mirror is used to focus a CO 2 laser beam on the inside wall of a copper ring target. The plasma produced converges at the center of the ring where an axial plasma focus is formed. High-speed photography shows details of a plasma generated at a distance from the target surface. This new geometry could have important applications in the field of x-ray lasers

  14. Composition and plasma properties of the plasma sheet in the Earth's magnetotail

    International Nuclear Information System (INIS)

    Orsini, S.; Altwegg, K.; Balsiger, H.

    1986-01-01

    A statistical study of the plasma sheet properties, based on 300 h of data from the ISEE-1 Ion Composition Experiment, yiels a description of H + and He ++ densities and temperatures as functions of magnetospheric substorm activity and geocentric distance. The H + and He ++ temperatures are found to be well correlated, such that a ratio T(He ++ )/T(H + ) = 2.7±0.1 is typical. However, linear-regression analysis typically yields a nonvanishing T(He ++ ) in the limit T(H + ) #-> # 0, a limit that is approached through the addition of cold ionospheric H + to the plasma sheet during active periods. The plasma sheet proton temperature T(H + ) varies inversely with geocentric distance, and the radial gradient of T(H + ) increases with increasing activity index AE. The density ratio N (He ++ )/N(H + ) increases with geocentric distance, irrespective of AE

  15. Effects of the IMF on the plasma sheet

    International Nuclear Information System (INIS)

    Akasofu, S.-I.; Meng, C.-I.

    1986-01-01

    It is suggested that the IMF Bsub(z) component controls partially the geometry of the cross-section (y-z plane) of the plasma sheet. Our vacuum superposition model suggests that the cross-section has a dumbbell shape for te IMF Bsub(z) O. It is also suggested that the thinning and subsequent expansion of the plasma sheet during magnetospheric substorms are partially due to a direct effect of the IMF Bsub(z). (author)

  16. Electrodynamic forces and plasma conductivity inside the current sheet

    International Nuclear Information System (INIS)

    Bogdanov, S.Yu.; Frank, A.G.; Markov, V.S.

    1985-01-01

    The process of accumulation and explosive release of magnetic energy was studied in a current sheet of plasma of a high-current linear discharge. The distribution of current density and of electrodynamic forces were measured and the time evolution of these quantities was determined. The evolution of the plasma conductivity was also obtained. The measured and calculated electrodynamic forces may explain the plasma acceleration up to the velocities about 3x10 4 m/s only near the sheet edges. (D.Gy.)

  17. Statistical study of plasma sheet dynamics using ISEE 1 and 2 energetic particle flux data

    International Nuclear Information System (INIS)

    Dandouras, J.; Reme, H.; Saint-Marc, A.; Sauvaud, J.A.; Parks, G.K.; Anderson, K.A.; Lin, R.P.

    1986-01-01

    During magnetospheric substorms, satellites embedded in the plasma sheet often detect transient dropouts of plasma and energetic particle fluxes, a phenomemon generally interpreted as indicating the exit of the satellite into the magnetospheric lobe due to a plasma sheet thinning. In order to determine the large-scale dynamics of the near-earth plasma sheet during substorms, three satellite years of ISEE 1 and 2 energetic particle flux data (1.5 and 6 keV), corresponding to 461 particle flux dropouts, have been analyzed. The principal results show that flux dropouts can be observed anywhere in the nightside plasma sheet, independent of the satellite's geocentric distance (for R>12R/sub E/), magnetic local time (except near the magnetospheric flanks) and estimated distance to the neutral sheet. Furthermore, flux dropouts can be observed for any combination of the AE index value and the satellite's distance to the neutral sheet, which shows that the plasma sheet is dynamic even during weak magnetospheric disturbances. Substorms during which the satellites, though situated in the plasma sheet, did not detect any flux dropout, have also been examined, and it is found that the plasma sheet thickness can locally remain unaffected by substorm development for AE index values up to at least 1000 nT. The predictions of the two major plasma sheet thinning models, i.e., the near-tail X-type magnetic neutral line formation model and the MHD rarefaction wave propagation model, are compared to the experimental results, and it is concluded that neither model can account for all of the observations; plasma sheet dynamics are more complex. Phenomenologically, this study suggests that multiple pinching of the plasma sheet and/or large-amplitude three-dimensional plasma sheet oscillations are important in plasma sheet dynamics

  18. Generation of stable mixed-compact-toroid rings by inducing plasma currents in strong E rings

    International Nuclear Information System (INIS)

    Jayakumar, R.; Taggart, D.P.; Parker, M.R.; Fleischmann, H.H.

    1989-01-01

    In the RECE-Christa device, hybrid-type compact toroid rings are generated by inducing large toroidal plasma currents I rho in strong electron rings using a thin induction coil positioned along the ring axis. Starting from field-reversal values δ ο = 50 - 120 percent of the original pure fast-electron ring, the induced plasma current I rho raises δ to a maximum value of up to 240 percent with I rho contributing more than 50 percent of the total ring current. Quite interestingly, the generated hybrid compact toroid configurations appear gross-stable during the full I rho pulse length (half-amplitude width about 100 μs)

  19. Singular Sheet Etching of Graphene with Oxygen Plasma

    Institute of Scientific and Technical Information of China (English)

    Haider Al-Mumen; Fubo Rao; Wen Li; Lixin Dong

    2014-01-01

    This paper reports a simple and controllable post-synthesis method for engineering the number of graphene layers based on oxygen plasma etching. Singular sheet etching(SSE) of graphene was achieved with the optimum process duration of 38 seconds. As a demonstration of this SSE process, monolayer graphene films were produced from bilayer graphenes. Experimental investigations verified that the oxygen plasma etching removes a single layer graphene sheet in an anisotropic fashion rather than anisotropic mode. In addition,etching via the oxygen plasma at the ground electrodes introduced fewer defects to the bottom graphene layer compared with the conventional oxygen reactive ion etching using the powered electrodes. Such defects can further be reduced with an effective annealing treatment in an argon environment at 900-1000?C. These results demonstrate that our developed SSE method has enabled a microelectronics manufacturing compatible way for single sheet precision subtraction of graphene layers and a potential technique for producing large size graphenes with high yield from multilayer graphite materials.

  20. Singular Sheet Etching of Graphene with Oxygen Plasma

    Institute of Scientific and Technical Information of China (English)

    Haider Al-Mumen; Fubo Rao; Wen Li; Lixin Dong

    2014-01-01

    This paper reports a simple and controllable post-synthesis method for engineering the number of graphene layers based on oxygen plasma etching. Singular sheet etching (SSE) of graphene was achieved with the optimum process duration of 38 seconds. As a demonstration of this SSE process, monolayer graphene films were produced from bilayer graphenes. Experimental investigations verified that the oxygen plasma etching removes a single layer graphene sheet in an anisotropic fashion rather than anisotropic mode. In addition, etching via the oxygen plasma at the ground electrodes introduced fewer defects to the bottom graphene layer compared with the conventional oxygen reactive ion etching using the powered electrodes. Such defects can further be reduced with an effective annealing treatment in an argon environment at 900-1000◦C. These results demonstrate that our developed SSE method has enabled a microelectronics manufacturing compatible way for single sheet precision subtraction of graphene layers and a potential technique for producing large size graphenes with high yield from multilayer graphite materials.

  1. Velocity space ring-plasma instability, magnetized, Part I: Theory

    International Nuclear Information System (INIS)

    Lee, J.K.; Birdsall, C.K.

    1979-01-01

    The interaction of magnetized monoenergetic ions (a ring in velocity space) with a homogeneous Maxwellian target plasma is studied numerically using linear Vlasov theory. The ring may be produced when an energetic beam is injected perpendicular to a uniform magnetic field. In addition to yielding the previously known results, the present study classifies this flute-like instability into three distinct regimes based on the beam density relative to the plasma density, where many features such as physical mechanisms, dispersion diagrams, and maximum growth rates are quite different. The effects of electron dynamics, plasma or ring thermal spread, the ratio of ω/sub p//ω/sub c/ for plasma ions, and electromagnetic modifications are also considered

  2. On the nature of the plasma sheet boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Hones, E.W. Jr. (Mission Research Corp., Los Alamos, NM (USA) Los Alamos National Lab., NM (USA))

    1990-01-01

    The regions of the plasma sheet adjacent to the north and south lobes of the magnetotail have been described by many experimenters as locations of beams of energetic ions and fast-moving plasma directed primarily earthward and tailward along magnetic field lines. Measurements taken as satellites passed through one or the other of these boundary layers have frequently revealed near-earth mirroring of ions and a vertical segregation of velocities of both earthward-moving and mirroring ions with the fastest ions being found nearest the lobe-plasma sheet interface. These are features expected for particles from a distant tail source {bar E} {times} {bar B} drifting in a dawn-to-dusk electric field and are consistent with the source being a magnetic reconnection region. The plasma sheet boundary layers are thus understood as separatrix layers, bounded at their lobeward surfaces by the separatrices from the distant neutral line. This paper will review the observations that support this interpretation. 10 refs., 7 figs.

  3. Plasma confinement in a magnetic field of the internal ring current

    International Nuclear Information System (INIS)

    Shafranov, Vitaly; Popovich, Paul; Samitov, Marat

    2000-01-01

    Plasma confinement in compact region surrounding an internal ring current is considered. As the limiting case of large aspect ratio system the cylindrical plasma is considered initially. Analysis of the cylindrical tubular plasma equilibrium and stability against the most dangerous flute (m=0) and kink (m=1) modes revealed the possibility of the MHD stable plasma confined by magnetic field of the internal rod current, with rather peaked plasma pressure and maximal local beta β(γ)=0.4. In case of the toroidal internal ring system an additional external magnetic field creates the boundary separatrix witch limits the plasma volume. The dependence of the plasma pressure profiles, marginally stable with respect to the flute modes, from the shape of the external plasma boundary (separatrix) in such kind closed toroidal systems is investigated. The internal ring system with circular poloidal magnetic mirror, where the ring supports could be placed, is proposed. (author)

  4. Nonadiabatic heating of the central plasma sheet at substorm onset

    International Nuclear Information System (INIS)

    Huang, C.Y.; Frank, L.A.; Rostoker, G.; Fennell, J.; Mitchell, D.G.

    1992-01-01

    Heating events in the plasma sheet boundary layer and central plasma sheet are found to occur at the onset of expansive phase activity. The main effect is a dramatic increase in plasma temperature, coincident with a partial dipolarization of the magnetic field. Fluxes of energetic particles increase without dispersion during these events which occur at all radial distances up to 23 R E , the apogee of the ISEIE spacecraft. A major difference between these heating events and those observed at geosynchronous distances lies in the heating mechanism which is nonadiabatic beyond 10 R E but may be adiabatic closer to Earth. The energy required to account for the increase in plasma thermal energy is comparable with that required for Joule heating of the ionosphere. The plasma sheet must be considered as a major sink in the energy balance of substorm. The authors estimate lobe magnetic pressures during these events. Changes in lobe pressure are generally not correlated with onsets or intensifications of expansive phase activity

  5. The lobe to plasma sheet boundary layer transition: Theory and observations

    International Nuclear Information System (INIS)

    Schriver, D.; Ashour-Abdalla, M.; Treumann, R.; Nakamura, M.; Kistler, L.M.

    1990-01-01

    The lobe and the plasma sheet boundary layer in the Earth's magnetotail are regions of different plasma conditions and share a common interface. The transition from the lobe to the plasma sheet boundary layer is examined here using AMPTE/IRM data. When the satellite crossed from the lobe to the plasma sheet boundary layer, intense narrow banded wave bursts at 1 kHz were observed an d then broadband electrostatic noise (BEN) immediately followed. Simultaneous with the onset of BEN, high energy earthward streaming proton beams at > 40 keV (> 2,700 km/s) were detected. These results are used as input into a numerical simulation to study ion beam instabilities in the PSBL

  6. Upper Hybrid Resonance of Microwaves with a Large Magnetized Plasma Sheet

    International Nuclear Information System (INIS)

    Huo Wenqing; Guo Shijie; Ding Liang; Xu Yuemin

    2013-01-01

    A large magnetized plasma sheet with size of 60 cm × 60 cm × 2 cm was generated by a linear hollow cathode discharge under the confinement of a uniform magnetic field generated by a Helmholtz Coil. The microwave transmission characteristic of the plasma sheet was measured for different incident frequencies, in cases with the electric field polarization of the incident microwave either perpendicular or parallel to the magnetic field. In this measurement, parameters of the plasma sheet were changed by varying the discharge current and magnetic field intensity. In the experiment, upper hybrid resonance phenomena were observed when the electric field polarization of the incident wave was perpendicular to the magnetic field. These resonance phenomena cannot be found in the case of parallel polarization incidence. This result is consistent with theoretical consideration. According to the resonance condition, the electron density values at the resonance points are calculated under various experimental conditions. This kind of resonance phenomena can be used to develop a specific method to diagnose the electron density of this magnetized plasma sheet apparatus. Moreover, it is pointed out that the operating parameters of the large plasma sheet in practical applications should be selected to keep away from the upper hybrid resonance point to prevent signals from polarization distortion

  7. Relationship between energetic particles and plasmas in the distant plasma sheet

    International Nuclear Information System (INIS)

    Sarris, E.T.; Krimigis, S.M.; Lui, A.T.Y.; Ackerson, K.L.; Frank, L.A.; Williams, D.J.

    1981-01-01

    Measurements of ions from three different instruments on the IMP-7 and 8 spacecraft are combined to yield with differential energy spectra of ions over the entire energy range of approx.100 eV to 4 MeV in the earth's distant (approx.30 to approx.40 R/sub e/) plasma sheet. These spectra, obtained during times of relatively small bulk flow velocities, span the intensity range from approx.10 -5 to 10 5 (cm 2 sec sr keV) -1 , varying smoothly over the entire energy range both when the plasma is cold (approx.1 keV) and hot (approx.9 keV). Overall, the shape of the spectrum resembles a Maxwellian but with a high energy (> or approx. =50 keV) tail described well by a power law (proportionalE -7 ). The high energy tail is displaced in a parallel fashion to higher or lower intensities when the plasma is hot or cold, respectively. The transition between the Maxwellian and the power law occurs at Eapprox. =(g+1)kT. It is found that the energetic particle populations in the plasma sheet appear to be directly related to the mean thermal energies of the corresponding plasmas

  8. Fast Fermi acceleration in the plasma sheet boundary layer

    International Nuclear Information System (INIS)

    Wu, C.S.; Lui, A.T.Y.

    1989-01-01

    A longstanding question in the field of magnetospheric physics is the source of the energetic particles which are commonly observed along the plasma sheet boundary layer (PSBL). Several models have been suggested for the acceleration of these particles. We suggest a means by which the fast Fermi acceleration mechanism [Wu, 1984] can accelerate electrons at the plasma sheet and perhaps account for some of the observations. We propose the following: A localized hydromagnetic disturbance propagating through the tail lobe region impinges upon the PSBL deforming it and displacing it in towards the central plasma sheet. The boundary layer can then act like a moving magnetic mirror. If the disturbance is propagating nearly perpendicular to the layer then its velocity projected parallel to the layer (and the magnetic field) can be very large resulting in significant acceleration of reflected particles. copyright American Geophysical Union 1989

  9. Particle pitch angle diffusion due to nonadiabatic effects in the plasma sheet

    International Nuclear Information System (INIS)

    Gray, P.C.; Lee, L.C.

    1982-01-01

    In order to understand certain aspects of the plasma sheet dynamics, a numerical study of the nonadiabatic behavior of particles in a model field geometry is performed. The particle's magnetic moment as a function of time is calculated for various initial parameters, corresponding to various particle energies and degrees of field curvature. It is shown that the magnetic moment changes as the particle passes through the plasma sheet and that the magnitude of the change is related to the curvature of the field at the middle of the plasma sheet. The relation of the magnitude of the change in magnetic moment to the particle's pitch and phase angles as it passes through the sheet is numerically resolved. The nature of the change may be considered as a mechanism for pitch angle diffusion, and the diffusion coefficient is calculated. This scattering mechanism is significant for plasma sheet ions (1--10 keV) as well as energetic electrons (>100 keV)

  10. Associations of geomagnetic activity with plasma sheet thinning and expansion: A statistical study

    International Nuclear Information System (INIS)

    Hones, E.W. Jr.; Pytte, T.; West, H.I. Jr.

    1984-01-01

    Associations of geomagnetic activity in the auroral zone with thinnings and expansions of the magnetotail plasma sheet are examined statistically in this paper. We first identified many plasma sheet thinnings and expansions in plasma and particle data from VELA satellites and from OGO 5 without reference to the ground magnetic data. These events were grouped according to the location of the detecting satellite in the magnetotail. For each such group the times of thinning or expansion were then used as fiducial times in a superposed-epoch analysis of the geomagnetic AL index values that were recorded in 8-hour intervals centered on the event times. The results show that many plasma sheet thinnings and expansions are related to discrete negative bay structures that are the classical signature of substorms. Furthermore, they support earlier findings that plasma sheet thinning and expansion at the VELA orbit (rroughly-equal18 R/sub E/) tend to be associated with the onset of the auroral zone negative bay and the beginning of its subsidence, respectively. Earthward of rroughly-equal13-15 R/sub E/, plasma sheet expansion occurs near the time of the onset of the negative bay, again in agreement with earlier findings. A large fraction of plasma sheet expansions to half thicknesses of > or approx. =6 R/sub E/ at the VELA orbit are associated not with a baylike geomagnetic disturbance but with subsidence of a prolonged interval of disturbance. The study also shows that many plasma sheet expansions are related simply to generally enhanced geomagnetic activity showing no baylike or other distinctive features

  11. Production of free radical by magnetized sheet plasma with vertical gas-flow

    International Nuclear Information System (INIS)

    Tonegawa, Akira; Takatori, Masahiko; Kawamura, Kazutaka

    1995-01-01

    Free radicals play an important role in plasma processing, environment problem, and space plasma and so on because of their outstanding physical properties. Although much work has been done on the free radicals in the reactive plasma, very little is known about the production mechanism of the free radicals against various plasma parameters. To overcome this problem, we have proposed to do a new system of a magnetized sheet plasma with vertical gas-flow. The sheet plasma is a special type of strongly magnetized highly ionized slab plasma. This system is controlled to the parameters of radicals and plasma independently. Therefore, it is possible to make a quantitative analysis of free radicals as the simple one. In this paper, we describe the magnetized sheet plasma with vertical gas-flow system and report the preliminary results of production of the free radical. In particular, we show to produce and control the OH free radical which has been the most commonly studied combustion species

  12. Acceleration of compact torus plasma rings in a coaxial rail-gun

    International Nuclear Information System (INIS)

    Hartman, C.W.; Hammer, J.H.; Eddleman, J.

    1986-01-01

    They discuss here theoretical studies of magnetic acceleration of Compact Torus plasma rings in a coaxial, rail-gun accelerator. The rings are formed using a magnetized coaxial plasma gun and are accelerated by injection of B/sub Theta/ flux from an accelerator bank. After acceleration, the rings enter a focusing cone where the ring is decelerated and reduced in radius. As the ring radius decreases, the ring magnetic energy increases until it equals the entering kinetic energy and the ring stagnates. Scaling laws and numerical calculations of acceleration using a O-D numerical code are presented. 2-D, MHD simulations are shown which demonstrate ring formation, acceleration, and focusing. Finally, 3-D calculations are discussed which determine the ideal MHD stability of the accelerated ring

  13. Acceleration of compact torus plasma rings in a coaxial rail-gun

    International Nuclear Information System (INIS)

    Hartman, C.W.; Hammer, J.H.; Eddleman, J.

    1985-01-01

    We discuss here theoretical studies of magnetic acceleration of Compact Torus plasma rings in a coaxial, rail-gun accelerator. The rings are formed using a magnetized coaxial plasma gun and are accelerated by injection of B/sub theta/ flux from an accelerator bank. After acceleration, the rings enter a focusing cone where the ring is decelerated and reduced in radius. As the ring radius decreases, the ring magnetic energy increases until it equals the entering kinetic energy and the ring stagnates. Scaling laws and numerical calculations of acceleration using a O-D numerical code are presented. 2-D, MHD simulations are shown which demonstrate ring formation, acceleration, and focusing. Finally, 3-D calculations are discussed which determine the ideal MHD stability of the accelerated ring

  14. Ring Current Response to Different Storm Drivers. Van Allen Probes and Cluster Observations.

    Science.gov (United States)

    Bingham, S.; Mouikis, C.; Kistler, L. M.; Spence, H. E.; Gkioulidou, M.; Claudepierre, S. G.; Farrugia, C. J.

    2015-12-01

    The ring current responds differently to the different solar and interplanetary storm drivers such as coronal mass injections, (CME's), co-rotating interaction regions (CIR's), high-speed streamers and other structures. The resulting changes in the ring current particle pressure change the global magnetic field, which affects the transport of the radiation belts. In order to determine the field changes during a storm it is necessary to understand the transport, sources and losses of the particles that contribute to the ring current. The source population of the storm time ring current is the night side plasma sheet. However, it is not clear how these convecting particles affect the storm time ring current pressure development. We use Van Allen Probes and Cluster observations together with the Volland-Stern and dipole magnetic field models to determine the contribution in the ring current pressure of the plasma sheet particles convecting from the night side that are on open drift paths, during the storm evolution. We compare storms that are related to different interplanetary drivers, CME and CIR, as observed at different local times.

  15. A statistical study on the correlations between plasma sheet and solar wind based on DSP explorations

    Directory of Open Access Journals (Sweden)

    G. Q. Yan

    2005-11-01

    Full Text Available By using the data of two spacecraft, TC-1 and ACE (Advanced Composition Explorer, a statistical study on the correlations between plasma sheet and solar wind has been carried out. The results obtained show that the plasma sheet at geocentric distances of about 9~13.4 Re has an apparent driving relationship with the solar wind. It is found that (1 there is a positive correlation between the duskward component of the interplanetary magnetic field (IMF and the duskward component of the geomagnetic field in the plasma sheet, with a proportionality constant of about 1.09. It indicates that the duskward component of the IMF can effectively penetrate into the near-Earth plasma sheet, and can be amplified by sunward convection in the corresponding region at geocentric distances of about 9~13.4 Re; (2 the increase in the density or the dynamic pressure of the solar wind will generally lead to the increase in the density of the plasma sheet; (3 the ion thermal pressure in the near-Earth plasma sheet is significantly controlled by the dynamic pressure of solar wind; (4 under the northward IMF condition, the ion temperature and ion thermal pressure in the plasma sheet decrease as the solar wind speed increases. This feature indicates that plasmas in the near-Earth plasma sheet can come from the magnetosheath through the LLBL. Northward IMF is one important condition for the transport of the cold plasmas of the magnetosheath into the plasma sheet through the LLBL, and fast solar wind will enhance such a transport process.

  16. Current sheet particle acceleration - theory and observations for the geomagnetic tail

    International Nuclear Information System (INIS)

    Speiser, T.W.

    1984-01-01

    It has been found that the current sheet in the geomagnetic tail is a source of plasma and energetic particles for the magnetospheric ring current and radiation belts. It is also a seat for instabilities and magnetospheric substorms. Theoretical studies related to the geomagnetic tail are discussed, taking into account Dungey's (1953) original ideas concerning neutral point acceleration, and studies of particle motion in current sheets conducted by many authors. A description of observations concerning the geomagnetic tail is also provided, taking into account plasma sheet populations, and the plasma sheet boundary layer. Some remaining problems are partly related to the location and the behavior of the distant source, the nature of the relative (time-dependent) ionospheric versus solar wind contributions, and the role of the solar wind in the initiation of distant or near-earth neutral lines. 56 references

  17. Plasma position from ring current measurements in Extrap T1

    International Nuclear Information System (INIS)

    Brunsell, P.; Jin Li.

    1989-11-01

    The inductive coupling between the plasma and the four octupole field coils in the Extrap T1 device is utilized as a means of estimating the plasma position. The current in each octupole ring as well as the plasma current is measured by a Rogowski coil and the ring - plasma mutual inductance is then computed assuming axisymmetric plasma displacements. The obtained position is in agreement with internal magnetic probe measurements. The time - evolution of the plasma position for different external vertical and toroidal field strengths is studied. For the present discharge parameter a vertical field of about .008 T is found to give an almost radially stationary plasma. The results are compared with a simple equilibrium model

  18. Current sheets with inhomogeneous plasma temperature: Effects of polarization electric field and 2D solutions

    International Nuclear Information System (INIS)

    Catapano, F.; Zimbardo, G.; Artemyev, A. V.; Vasko, I. Y.

    2015-01-01

    We develop current sheet models which allow to regulate the level of plasma temperature and density inhomogeneities across the sheet. These models generalize the classical Harris model via including two current-carrying plasma populations with different temperature and the background plasma not contributing to the current density. The parameters of these plasma populations allow regulating contributions of plasma density and temperature to the pressure balance. A brief comparison with spacecraft observations demonstrates the model applicability for describing the Earth magnetotail current sheet. We also develop a two dimensional (2D) generalization of the proposed model. The interesting effect found for 2D models is the nonmonotonous profile (along the current sheet) of the magnetic field component perpendicular to the current sheet. Possible applications of the model are discussed

  19. Current sheets with inhomogeneous plasma temperature: Effects of polarization electric field and 2D solutions

    Energy Technology Data Exchange (ETDEWEB)

    Catapano, F., E-mail: menacata3@gmail.com; Zimbardo, G. [Dipartimento di Fisica, Università della Calabria, Rende, Cosenza (Italy); Artemyev, A. V., E-mail: ante0226@gmail.com; Vasko, I. Y. [Space Research Institute, RAS, Moscow (Russian Federation)

    2015-09-15

    We develop current sheet models which allow to regulate the level of plasma temperature and density inhomogeneities across the sheet. These models generalize the classical Harris model via including two current-carrying plasma populations with different temperature and the background plasma not contributing to the current density. The parameters of these plasma populations allow regulating contributions of plasma density and temperature to the pressure balance. A brief comparison with spacecraft observations demonstrates the model applicability for describing the Earth magnetotail current sheet. We also develop a two dimensional (2D) generalization of the proposed model. The interesting effect found for 2D models is the nonmonotonous profile (along the current sheet) of the magnetic field component perpendicular to the current sheet. Possible applications of the model are discussed.

  20. Cross-tail velocity component in the plasma sheet fast flows

    Directory of Open Access Journals (Sweden)

    N. P. Dmitrieva

    2008-06-01

    Full Text Available The flux transfer in the magnetotail plasma sheet is mainly provided by the tail-aligned fast plasma flows (Bursty Bulk Flows – BBFs. In this paper we study the events with a large cross-tail velocity component, including their occurrence and relationship to the standard BBFs. We found out that a significant part of large Vy events are a subgroup connected with the BBFs propagation. The maximal deviation of the velocity vector from the X direction (about 40–50 degrees, on average is observed near the BBFs' leading front in the sheath, where the fast flow interacts with surrounding plasma. The average variation of the velocity direction in the vicinity of the BBF resembles a plasma vortex. Our results support the model, in which the BBF represents a polarized, bubble-like flux tube, propagating through the plasma sheet.

  1. Thinning and functionalization of few-layer graphene sheets by CF4 plasma treatment

    KAUST Repository

    Shen, Chao

    2012-05-24

    Structural changes of few-layer graphene sheets induced by CF4 plasma treatment are studied by optical microscopy and Raman spectroscopy, together with theoretical simulation. Experimental results suggest a thickness reduction of few-layer graphene sheets subjected to prolonged CF4 plasma treatment while plasma treatment with short time only leads to fluorine functionalization on the surface layer by formation of covalent bonds. Raman spectra reveal an increase in disorder by physical disruption of the graphene lattice as well as functionalization during the plasma treatment. The F/CF3 adsorption and the lattice distortion produced are proved by theoretical simulation using density functional theory, which also predicts p-type doping and Dirac cone splitting in CF4 plasma-treated graphene sheets that may have potential in future graphene-based micro/nanodevices.

  2. Plasma sheet behavior during substorms

    International Nuclear Information System (INIS)

    Hones, E.W. Jr.

    1983-01-01

    Auroral or magnetic substorms are periods of enhanced auroral and geomagnetic activity lasting one to a few hours that signify increased dissipation of energy from the magnetosphere to the earth. Data acquired during the past decade from satellites in the near-earth sector of the magnetotail have suggested that during a substorm part of the plasma sheet is severed from earth by magnetic reconnection, forming a plasmoid, i.e., a body of plasma and closed magnetic loops, that flows out of the tail into the solar wind, thus returning plasma and energy that have earlier been accumulated from the solar wind. Very recently this picture has been dramatically confirmed by observations, with the ISEE 3 spacecraft in the magnetotail 220 R/sub E/ from earth, of plasmoids passing that location in clear delayed response to substorms. It now appears that plasmoid release is a fundamental process whereby the magnetosphere gives up excess stored energy and plasma, much like comets are seen to do, and that the phenomena of the substorm seen at earth are a by-product of that fundamental process

  3. Superposed epoch analysis of pressure and magnetic field configuration changes in the plasma sheet

    International Nuclear Information System (INIS)

    Kistler, L.M.; Moebius, E.; Baumjohann, W.; Nagai, T.

    1993-01-01

    The authors report on an analysis of pressure and magnetic configuration within the plasma sheet following the initiation of substorm events. They have constructed this time dependent picture by using an epoch analysis of data from the AMPTE/IRM spacecraft. This analysis procedure can be used to construct a unified picture of events, provided they are reproducible, from a statistical analysis of a series of point measurements. The authors first determine the time dependent pressure changes in the plasma sheet. With some simplifying assumptions they then determine the z dependence of the pressure profiles, and from this distribution determine how field lines in the plasma sheet map to the neutral sheet

  4. Ring power balance observing plasma stability constraints

    International Nuclear Information System (INIS)

    Campbell, R.B.; Logan, B.G.

    1982-01-01

    Ring power balance is performed for an E-ring stabilized tandem mirror reactor, taking into account constraints imposed by plasma stability. The two most important criteria are the stability of the core interchange and hot electron interchange modes. The former determines the ring thickness, the latter determines the minimum hot electron temperature; both quantities are important for power balance. The combination of the hot electron interchange constraint and the fact that the barrier density is low places the operating point on the synchrotron dominated branch of power balance. The reference case considered here requires a reasonable 34 MW of heating power deposited in the rings. We also have examined the sensitivity of the required ring power on uncertainties in the numerical coefficients of the stability constraints. We have found that the heating power is strongly affected

  5. The plasmasheet H+ and O+ contribution on the storm time ring current

    Science.gov (United States)

    Mouikis, C.; Bingham, S.; Kistler, L. M.; Spence, H. E.; Gkioulidou, M.; Claudepierre, S. G.; Farrugia, C. J.

    2015-12-01

    The source population of the storm time ring current is the night side plasma sheet. We use Van Allen Probes and Cluster observations to determine the contribution of the convecting plasma sheet H+ and O+ particles in the storm time development of the ring current. Using the Volland-Stern model with a dipole magnetic field together with the identification of the observed energy cutoffs in the particle spectra, we specify the pressure contributed by H+ and O+ populations that are on open drift paths vs. the pressure contributed by the trapped populations, for different local times. We find that during the storm main phase most of the ring current pressure in the pre-midnight inner magnetosphere is contributed by particles on open drift paths that cause the development of a strong partial ring current that causes most of the main phase Dst drop. These particles can reach as deep as L~2 and their pressure compares to the local magnetic field pressure as deep as L~3. During the recovery phase, if these particles are not lost at the magnetopause, will become trapped and will contribute to the symmetric ring current.

  6. Geotail observations of plasma sheet ion composition over 16 years: On variations of average plasma ion mass and O+ triggering substorm model

    Science.gov (United States)

    Nosé, M.; Ieda, A.; Christon, S. P.

    2009-07-01

    We examined long-term variations of ion composition in the plasma sheet, using energetic (9.4-212.1 keV/e) ion flux data obtained by the suprathermal ion composition spectrometer (STICS) sensor of the energetic particle and ion composition (EPIC) instrument on board the Geotail spacecraft. EPIC/STICS observations are available from 17 October 1992 for more than 16 years, covering the declining phase of solar cycle 22, all of solar cycle 23, and the early phase of solar cycle 24. This unprecedented long-term data set revealed that (1) the He+/H+ and O+/H+ flux ratios in the plasma sheet were dependent on the F10.7 index; (2) the F10.7 index dependence is stronger for O+/H+ than He+/H+; (3) the O+/H+ flux ratio is also weakly correlated with the ΣKp index; and (4) the He2+/H+ flux ratio in the plasma sheet appeared to show no long-term trend. From these results, we derived empirical equations related to plasma sheet ion composition and the F10.7 index and estimated that the average plasma ion mass changes from ˜1.1 amu during solar minimum to ˜2.8 amu during solar maximum. In such a case, the Alfvén velocity during solar maximum decreases to ˜60% of the solar minimum value. Thus, physical processes in the plasma sheet are considered to be much different between solar minimum and solar maximum. We also compared long-term variation of the plasma sheet ion composition with that of the substorm occurrence rate, which is evaluated by the number of Pi2 pulsations. No correlation or negative correlation was found between them. This result contradicts the O+ triggering substorm model, in which heavy ions in the plasma sheet increase the growth rate of the linear ion tearing mode and play an important role in localization and initiation of substorms. In contrast, O+ ions in the plasma sheet may prevent occurrence of substorms.

  7. Acceleration of O+ from the cusp to the plasma sheet

    Science.gov (United States)

    Liao, J.; Kistler, L. M.; Mouikis, C. G.; Klecker, B.; Dandouras, I.

    2015-02-01

    Heavy ions from the ionosphere that are accelerated in the cusp/cleft have been identified as a direct source for the hot plasma in the plasma sheet. However, the details of the acceleration and transport that transforms the originally cold ions into the hot plasma sheet population are not fully understood. The polar orbit of the Cluster satellites covers the main transport path of the O+ from the cusp to the plasma sheet, so Cluster is ideal for tracking its velocity changes. However, because the cusp outflow is dispersed according to its velocity as it is transported to the tail, due to the velocity filter effect, the observed changes in beam velocity over the Cluster orbit may simply be the result of the spacecraft accessing different spatial regions and not necessarily evidence of acceleration. Using the Cluster Ion Spectrometry/Composition Distribution Function instrument onboard Cluster, we compare the distribution function of streaming O+ in the tail lobes with the initial distribution function observed over the cusp and reveal that the observations of energetic streaming O+ in the lobes around -20 RE are predominantly due to the velocity filter effect during nonstorm times. During storm times, the cusp distribution is further accelerated. In the plasma sheet boundary layer, however, the average O+ distribution function is above the upper range of the outflow distributions at the same velocity during both storm and nonstorm times, indicating that acceleration has taken place. Some of the velocity increase is in the direction perpendicular to the magnetic field, indicating that the E × B velocity is enhanced. However, there is also an increase in the parallel direction, which could be due to nonadiabatic acceleration at the boundary or wave heating.

  8. High-beta plasma blobs in the morningside plasma sheet

    Directory of Open Access Journals (Sweden)

    G. Haerendel

    1999-12-01

    Full Text Available Equator-S frequently encountered, i.e. on 30% of the orbits between 1 March and 17 April 1998, strong variations of the magnetic field strength of typically 5–15-min duration outside about 9RE during the late-night/early-morning hours. Very high-plasma beta values were found, varying between 1 and 10 or more. Close conjunctions between Equator-S and Geotail revealed the spatial structure of these "plasma blobs" and their lifetime. They are typically 5–10° wide in longitude and have an antisymmetric plasma or magnetic pressure distribution with respect to the equator, while being altogether low-latitude phenomena  (≤ 15°. They drift slowly sunward, exchange plasma across the equator and have a lifetime of at least 15–30 min. While their spatial structure may be due to some sort of mirror instability, little is known about the origin of the high-beta plasma. It is speculated that the morningside boundary layer somewhat further tailward may be the source of this plasma. This would be consistent with the preference of the plasma blobs to occur during quiet conditions, although they are also found during substorm periods. The relation to auroral phenomena in the morningside oval is uncertain. The energy deposition may be mostly too weak to generate a visible signature. However, patchy aurora remains a candidate for more disturbed periods.Key words. Magnetospheric physics (plasma convection; plasma sheet; plasma waves and instabilities

  9. Plasma density measurement with ring-type cutoff probe

    International Nuclear Information System (INIS)

    Kim, D.W.; You, S.J.; Na, B.K.; Kim, J.H.; Shin, Y.H.; Chang, H.Y.; Oh, W.Y.

    2013-01-01

    We proposed a cutoff probe with a ring-type detection tip enclosing a bar-type radiation tip. A comparative study between a proposed ring-type cutoff (RTC) probe and a conventional bar-type cutoff (BTC) probe showed that the RTC probe solved the problem of the BTC probe, the large measurement uncertainty of the electron density in a capacitively coupled plasma source. This improved characteristics of the RTC probe might have originated from the geometrical structure of the RTC probe concerning the monopole antennae radiation. This proposed cutoff probe can be expected to expand the applicable diagnostic range and to enhance the sensitivity of the cutoff probe. - Highlights: ► A cutoff probe with a ring type detection tip is proposed. ► Comparative experiment and simulation were conducted. ► The proposed probe showed a small uncertainty of measured plasma density. ► Improved characteristics might be originated from the geometrical structure

  10. Thermomechanical processing of plasma sprayed intermetallic sheets

    Science.gov (United States)

    Hajaligol, Mohammad R.; Scorey, Clive; Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier; Lilly, Jr., A. Clifton; German, Randall M.

    2001-01-01

    A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3% Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.

  11. Experimental investigation of a 1 kA/cm² sheet beam plasma cathode electron gun.

    Science.gov (United States)

    Kumar, Niraj; Pal, Udit Narayan; Pal, Dharmendra Kumar; Prajesh, Rahul; Prakash, Ram

    2015-01-01

    In this paper, a cold cathode based sheet-beam plasma cathode electron gun is reported with achieved sheet-beam current density ∼1 kA/cm(2) from pseudospark based argon plasma for pulse length of ∼200 ns in a single shot experiment. For the qualitative assessment of the sheet-beam, an arrangement of three isolated metallic-sheets is proposed. The actual shape and size of the sheet-electron-beam are obtained through a non-conventional method by proposing a dielectric charging technique and scanning electron microscope based imaging. As distinct from the earlier developed sheet beam sources, the generated sheet-beam has been propagated more than 190 mm distance in a drift space region maintaining sheet structure without assistance of any external magnetic field.

  12. Plasma sheet fast flows and auroral dynamics during substorm: a case study

    Directory of Open Access Journals (Sweden)

    N. L. Borodkova

    2002-03-01

    Full Text Available Interball-1 observations of a substorm development in the mid-tail on 16 December 1998 are compared with the auroral dynamics obtained from the Polar UV imager. Using these data, the relationship between plasma flow directions in the tail and the location of the auroral activation is examined. Main attention is given to tailward and earth-ward plasma flows, interpreted as signatures of a Near Earth Neutral Line (NENL. It is unambiguously shown that in the mid-plasma sheet the flows were directed tailward when the auroral bulge developed equatorward of the spacecraft ionospheric footprint. On the contrary, when active auroras moved poleward of the Interball-1 projection, earthward fast flow bursts were observed. This confirms the concept that the NENL (or flow reversal region is the source of auroras forming the poleward edge of the auroral bulge. The observed earthward flow bursts have all typical signatures of Bursty Bulk Flows (BBFs, described by Angelopolous et al. (1992. These BBFs are related to substorm activations starting at the poleward edge of the expanded auroral bulge. We interpret the BBFs as a result of reconnection pulses occurring tail-ward of Interball-1. In addition, some non-typically observed phenomena were detected in the plasma sheet during this substorm: (i tailward/earthward flows were superimposed on a very strong duskward flow, and (ii wavy structures of both magnetic field and plasma density were registered. The latter observation is probably linked to the filamentary structure of the current sheet.Key words. Magnetospheric physics (auroral phenomena; plasma sheet; storms and substorms

  13. Substorms in the Inner Plasma Sheet

    Science.gov (United States)

    Le Contel, O.; Perraut, S.; Roux, A.; Pellat, R.; Korth, A.

    Thin Current Sheets (TCS) are regularly formed prior to substorm breakup, even in the near-Earth plasma sheet, as close as the geostationary orbit. A self-consistent kinetic theory describing the response of the plasma sheet to an electromagnetic perturbation is given. This perturbation corresponds to an external forcing, for instance caused by the solar wind (not an internal instability). The equilibrium of the configuration of this TCS in the presence of a time varying perturbation is shown to produce a strong parallel thermal anisotropy (T∥ > T⊺) of energetic electrons and ions (E>50keV) as well as an enhanced diamagnetic current carried by low energy ions (Ecurrents tend to enhance the confinement of this current sheet near the magnetic equator. These results are compared with data gathered by GEOS-2 at the geostationary orbit, where the magnetic signatures of TCS, and parallel anisotropies are regularly observed prior to breakup. By ensuring quasi-neutrality everywhere we find, when low frequency electromagnetic perturbations are applied, that although the magnetic field line remains an equipotential to the lowest order in Te/Ti, a field-aligned potential drop exists to the next order in (Te/Ti). Thus the development of a TCS implies the formation of a field-aligned potential drop (~= few hundred volts) to ensure the quasi-neutrality everywhere. For an earthward directed pressure gradient, a field-aligned electric field, directed towards the ionosphere, is obtained, on the western edge of the perturbation (i.e. western edge of the current sheet). Thus field aligned beams of electrons are expected to flow towards the equatorial region on the western edge of the current sheet. We study the stability of these electron beams and show that they are unstable to ``High Frequency'' (HF) waves. These ``HF'' waves are regularly observed at frequencies of the order of the proton gyrofrequency (fH+) just before, or at breakup. The amplitude of these HF waves is so

  14. High-beta plasma blobs in the morningside plasma sheet

    Directory of Open Access Journals (Sweden)

    G. Haerendel

    Full Text Available Equator-S frequently encountered, i.e. on 30% of the orbits between 1 March and 17 April 1998, strong variations of the magnetic field strength of typically 5–15-min duration outside about 9RE during the late-night/early-morning hours. Very high-plasma beta values were found, varying between 1 and 10 or more. Close conjunctions between Equator-S and Geotail revealed the spatial structure of these "plasma blobs" and their lifetime. They are typically 5–10° wide in longitude and have an antisymmetric plasma or magnetic pressure distribution with respect to the equator, while being altogether low-latitude phenomena 
    (≤ 15°. They drift slowly sunward, exchange plasma across the equator and have a lifetime of at least 15–30 min. While their spatial structure may be due to some sort of mirror instability, little is known about the origin of the high-beta plasma. It is speculated that the morningside boundary layer somewhat further tailward may be the source of this plasma. This would be consistent with the preference of the plasma blobs to occur during quiet conditions, although they are also found during substorm periods. The relation to auroral phenomena in the morningside oval is uncertain. The energy deposition may be mostly too weak to generate a visible signature. However, patchy aurora remains a candidate for more disturbed periods.

    Key words. Magnetospheric physics (plasma convection; plasma sheet; plasma waves and instabilities

  15. Gas isotope separation method using plasma sheet

    International Nuclear Information System (INIS)

    Takayama, K.; Takagi, K.; Fukvi, R.

    1988-03-01

    A high frequency electric field is applied to a plasma sheet with a frequency equal to the cyclotronic frequency of the ions to be separated. Because of resonance the cyclotronic radius of the isotope has increased and the electric charge is eliminated by collision with a separator and the isotope is separated in neutral particles [fr

  16. Propagation and collision of soliton rings in quantum semiconductor plasmas

    International Nuclear Information System (INIS)

    El-Shamy, E.F.; Gohman, F.S.

    2014-01-01

    The intrinsic localization of electrostatic wave energies in quantum semiconductor plasmas can be described by solitary pulses. The collision properties of these pulses are investigated. In the present study, the fundamental model includes the quantum term, degenerate pressure of the plasma species, and the electron/hole exchange–correlation effects. In cylindrical geometry, using the extended Poincaré–Lighthill–Kuo (PLK) method, the Korteweg–de Vries (KdV) equations and the analytical phase shifts after the collision of two soliton rings are derived. Typical values for GaSb and GaN semiconductors are used to estimate the basic features of soliton rings. It is found that the pulses of GaSb semiconductor carry more energies than the pulses of GaN semiconductor. In addition, the degenerate pressure terms of electrons and holes have strong impact on the phase shift. The present theory may be useful to analyze the collision of localized coherent electrostatic waves in quantum semiconductor plasmas. - Highlights: • The propagation and the collision of pulses in quantum semiconductor plasmas are studied. • Numerical calculations reveal that pulses may exist only in dark soliton rings for electron–hole quantum plasmas. • Typical values for GaSb and GaN semiconductors are used to estimate the basic features of soliton rings. • It is found that the pulses of GaSb semiconductor carry more energies than the pulses of GaN semiconductor. • The degenerate pressure terms of electrons and holes have strong impact on the phase shift

  17. Theoretical modeling of the plasma-assisted catalytic growth and field emission properties of graphene sheet

    International Nuclear Information System (INIS)

    Sharma, Suresh C.; Gupta, Neha

    2015-01-01

    A theoretical modeling for the catalyst-assisted growth of graphene sheet in the presence of plasma has been investigated. It is observed that the plasma parameters can strongly affect the growth and field emission properties of graphene sheet. The model developed accounts for the charging rate of the graphene sheet; number density of electrons, ions, and neutral atoms; various elementary processes on the surface of the catalyst nanoparticle; surface diffusion and accretion of ions; and formation of carbon-clusters and large graphene islands. In our investigation, it is found that the thickness of the graphene sheet decreases with the plasma parameters, number density of hydrogen ions and RF power, and consequently, the field emission of electrons from the graphene sheet surface increases. The time evolution of the height of graphene sheet with ion density and sticking coefficient of carbon species has also been examined. Some of our theoretical results are in compliance with the experimental observations

  18. Heating of field-reversed plasma rings estimated with two scaling models

    Energy Technology Data Exchange (ETDEWEB)

    Shearer, J.W.

    1978-05-18

    Scaling calculations are presented of the one temperature heating of a field-reversed plasma ring. Two sharp-boundary models of the ring are considered: the long thin approximation and a pinch model. Isobaric, adiabatic, and isovolumetric cases are considered, corresponding to various ways of heating the plasma in a real experiment by using neutral beams, or by raising the magnetic field. It is found that the shape of the plasma changes markedly with heating. The least sensitive shape change (as a function of temperature) is found for the isovolumetric heating case, which can be achieved by combining neutral beam heating with compression. The complications introduced by this heating problem suggest that it is desirable, if possible, to create a field reversed ring which is already quite hot, rather than cold.

  19. A Modified Porous Titanium Sheet Prepared by Plasma-Activated Sintering for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Yukimichi Tamaki

    2010-01-01

    Full Text Available This study aimed to develop a contamination-free porous titanium scaffold by a plasma-activated sintering within an originally developed TiN-coated graphite mold. The surface of porous titanium sheet with or without a coated graphite mold was characterized. The cell adhesion property of porous titanium sheet was also evaluated in this study. The peak of TiC was detected on the titanium sheet processed with the graphite mold without a TiN coating. Since the titanium fiber elements were directly in contact with the carbon graphite mold during processing, surface contamination was unavoidable event in this condition. The TiC peak was not detectable on the titanium sheet processed within the TiN-coated carbon graphite mold. This modified plasma-activated sintering with the TiN-coated graphite mold would be useful to fabricate a contamination-free titanium sheet. The number of adherent cells on the modified titanium sheet was greater than that of the bare titanium plate. Stress fiber formation and the extension of the cells were observed on the titanium sheets. This modified titanium sheet is expected to be a new tissue engineering material in orthopedic bone repair.

  20. Three-Step Buildup of the 17 March 2015 Storm Ring Current: Implication for the Cause of the Unexpected Storm Intensification

    Science.gov (United States)

    Keika, Kunihiro; Seki, Kanako; Nosé, Masahito; Miyoshi, Yoshizumi; Lanzerotti, Louis J.; Mitchell, Donald G.; Gkioulidou, Matina; Manweiler, Jerry W.

    2018-01-01

    We examine the spatiotemporal variations of the energy density and the energy spectral evolution of energetic ions in the inner magnetosphere during the main phase of the 17 March 2015 storm, using data from the RBSPICE and EMFISIS instruments onboard Van Allen Probes. The storm developed in response to two southward IMF intervals separated by about 3 h. In contrast to two steps seen in the Dst/SYM-H index, the ring current ion population evolved in three steps: the first subphase was apparently caused by the earlier southward IMF, and the subsequent subphases occurred during the later southward IMF period. Ion energy ranges that contribute to the ring current differed between the three subphases. We suggest that the spectral evolution resulted from the penetration of different plasma sheet populations. The ring current buildup during the first subphase was caused by the penetration of a relatively low-energy population that had existed in the plasma sheet during a prolonged prestorm northward IMF interval. The deeper penetration of the lower-energy population was responsible for the second subphase. The third subphase, where the storm was unexpectedly intensified to a Dst/SYM-H level of population. We attribute the hot, dense population to the entry of hot, dense solar wind into the plasma sheet and/or ion heating/acceleration in the near-Earth plasma sheet associated with magnetotail activity such as reconnection and dipolarization.

  1. Plasma Structure and Behavior of Miniature Ring-Cusp Discharges

    Science.gov (United States)

    Mao, Hann-Shin

    Miniature ring-cusp ion thrusters provide a unique blend of high efficiencies and millinewton level thrust for future spacecraft. These thrusters are attractive as a primary propulsion for small satellites that require a high delta V, and as a secondary propulsion for larger spacecraft that require precision formation flying, disturbance rejection, or attitude control. To ensure desirable performance throughout the life of such missions, an advancement in the understanding of the plasma structure and behavior of miniature ring-cusp discharges is required. A research model was fabricated to provide a simplified experimental test bed for the analysis of the plasma discharge chamber of a miniature ion thruster. The plasma source allowed for spatially resolved measurements with a Langmuir probe along a meridian plane. Probe measurements yielded plasma density, electron temperature, and plasma potential data. The magnetic field strength was varied along with the discharge current to determine the plasma behavior under various conditions. The structure of the plasma properties were found to be independent of the discharge power under the proper scaling. It was concluded that weaker magnetic fields can improve the overall performance for ion thruster operation. To further analyze the experimental measurements, a framework was developed based on the magnetic field. A flux aligned coordinate system was developed to decouple the perpendicular and parallel plasma motion with respect to the magnetic field. This was done using the stream function and magnetic scalar potential. Magnetic formulae provided intuition on the field profiles dependence on magnet dimensions. The flux aligned coordinate system showed that the plasma was isopycnic along constant stream function values. This was used to develop an empirical relation suitable for estimating the spatial behavior and to determine the plasma volume and loss areas. The plasma geometry estimates were applied to a control volume

  2. Ion and electron Kappa distribution functions in the plasma sheet.

    Science.gov (United States)

    Moya, P. S.; Stepanova, M. V.; Espinoza, C.; Antonova, E. E.; Valdivia, J. A.

    2017-12-01

    We present a study of ion and electron flux spectra in the Earth's plasma sheet using kappa distribution functions. Satellite data from the THEMIS mission were collected for thousands of crossings through the plasma sheet, between 7 and 35 Re and during the years 2008-2009. The events were separated according to the geomagnetic activity at the time. Our results show the distribution of the kappa index and characteristic energies across the plasma sheet and its evolution with distance to Earth for quiet times and for the substorm expansion and recovery phases. For the ions, it is observed that the kappa values tend to decrease outwards and that this effect is more significant in the dusk sector, where the smallest values are found for distances beyond 15 Re. The main effect of the substorms appears as an enhancement of this behavior. The electrons show a much more homogeneous distribution in quiet times, with a mild tendency for larger kappa values at larger distances. During substorms, the kappa values tend to equalize and appear very homogenous during expansion. However, they exhibit a significant increase in the dusk sector during the recovery substorm phase. Finally, we observe that the characteristic energy of the particles during substorms increases and concentrate at distances less than 15 Re.

  3. Electrostatic storage ring with focusing provided by the space charge of an electron plasma

    International Nuclear Information System (INIS)

    Pacheco, J. L.; Ordonez, C. A.; Weathers, D. L.

    2013-01-01

    Electrostatic storage rings are used for a variety of atomic physics studies. An advantage of electrostatic storage rings is that heavy ions can be confined. An electrostatic storage ring that employs the space charge of an electron plasma for focusing is described. An additional advantage of the present concept is that slow ions, or even a stationary ion plasma, can be confined. The concept employs an artificially structured boundary, which is defined at present as one that produces a spatially periodic static field such that the spatial period and range of the field are much smaller than the dimensions of a plasma or charged-particle beam that is confined by the field. An artificially structured boundary is used to confine a non-neutral electron plasma along the storage ring. The electron plasma would be effectively unmagnetized, except near an outer boundary where the confining electromagnetic field would reside. The electron plasma produces a radially inward electric field, which focuses the ion beam. Self-consistently computed radial beam profiles are reported.

  4. Higher-order paraxial theory of the propagation of ring rippled laser beam in plasma: Relativistic ponderomotive regime

    International Nuclear Information System (INIS)

    Purohit, Gunjan; Rawat, Priyanka; Chauhan, Prashant; Mahmoud, Saleh T.

    2015-01-01

    This article presents higher-order paraxial theory (non-paraxial theory) for the ring ripple formation on an intense Gaussian laser beam and its propagation in plasma, taking into account the relativistic-ponderomotive nonlinearity. The intensity dependent dielectric constant of the plasma has been determined for the main laser beam and ring ripple superimposed on the main laser beam. The dielectric constant of the plasma is modified due to the contribution of the electric field vector of ring ripple. Nonlinear differential equations have been formulated to examine the growth of ring ripple in plasma, self focusing of main laser beam, and ring rippled laser beam in plasma using higher-order paraxial theory. These equations have been solved numerically for different laser intensities and plasma frequencies. The well established experimental laser and plasma parameters are used in numerical calculation. It is observed that the focusing of the laser beams (main and ring rippled) becomes fast in the nonparaxial region by expanding the eikonal and other relevant quantities up to the fourth power of r. The splitted profile of laser beam in the plasma is observed due to uneven focusing/defocusing of the axial and off-axial rays. The growths of ring ripple increase when the laser beam intensity increases. Furthermore, the intensity profile of ring rippled laser beam gets modified due to the contribution of growth rate

  5. Split ring containment attachment device

    International Nuclear Information System (INIS)

    Sammel, A.G.

    1996-01-01

    A containment attachment device is described for operatively connecting a glovebag to plastic sheeting covering hazardous material. The device includes an inner split ring member connected on one end to a middle ring member wherein the free end of the split ring member is inserted through a slit in the plastic sheeting to captively engage a generally circular portion of the plastic sheeting. A collar potion having an outer ring portion is provided with fastening means for securing the device together wherein the glovebag is operatively connected to the collar portion. 5 figs

  6. Survey of 0.1- to 16-keV/e plasma sheet ion composition

    International Nuclear Information System (INIS)

    Lennartsson, W.; Shelley, E.G.

    1986-01-01

    A large statistical survey of the 0.1- to 16-keV/e plasma sheet ion composition has been carried out using data obtained by the Plasma Composition Experiment on ISEE 1 between 10 and 23 R/sub E/ during 1978 and 1979. This survey includes more than 10 times the quantity of data used in earlier studies of the same topic and makes it possible to investigate in finer detail the relationship between the ion composition and the substorm activity. The larger data base also makes it possible for the first time to study the spatial distribution of the principal ion species. As found in previous studies, the ion composition has a large variance at any given value of the AE index, but a number of distinct trends emerge when the data are averaged at each activity level. During quiet conditions the plasma sheet is dominated by ions of solar origin (H + and He ++ ), as found in earlier studies, and these ions are most numerous during extended periods of very low activity (AE< or approx. =30 γ). The quiet time density of these ions is particularly large in the flanks of the plasma sheet (GSM Yapprox. +- 10 R/sub E/), where it is about twice as large as it is near the central axis of the plasma sheet (Y = Z = 0). In contrast, the energy of these ions peaks near the central axis

  7. The plasma sheet and boundary layers under northward IMF: A multi-point and multi-instrument perspective

    Czech Academy of Sciences Publication Activity Database

    Taylor, M. G. G. T.; Lavraud, B.; Escoubet, C. P.; Milan, S.E.; Nykyri, K.; Dunlop, M. W.; Davies, J.A.; Friedel, R.H.W.; Frey, H.; Bogdanova, Y.V.; Asnes, A.; Laakso, H.; Trávníček, Pavel M.; Masson, A.; Opgenoorth, H.; Vallat, C.; Fazakerley, A. N.; Lahiff, A.; Owen, C. J.; Pitout, F.; Pu, Y.; Shen, C.; Zong, Q.-G.; Rème, H.; Scudder, J. D.; Zhang, T. L.

    2008-01-01

    Roč. 41, č. 10 (2008), s. 1619-1629 ISSN 0273-1177 Institutional research plan: CEZ:AV0Z10030501 Keywords : plasma sheet * magnetopshere * cold dense plasma sheet Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.860, year: 2008

  8. Atmospheric pressure microwave plasma system with ring waveguide

    International Nuclear Information System (INIS)

    Liu Liang; Zhang Guixin; Zhu Zhijie; Luo Chengmu

    2007-01-01

    Some scientists used waveguide as the cavity to produce a plasma jet, while large volume microwave plasma was relatively hard to get in atmospheric pressure. However, a few research institutes have already developed devices to generate large volume of atmospheric pressure microwave plasma, such as CYRANNUS and SLAN series, which can be widely applied. In this paper, present a microwave plasma system with ring waveguide to excite large volume of atmospheric pressure microwave plasma, plot curves on theoretical disruption electric field of some working gases, emulate the cavity through software, measure the power density to validate and show the appearance of microwave plasma. At present, large volume of argon and helium plasma have already been generated steadily by atmospheric pressure microwave plasma system. This research can build a theoretical basis of microwave plasma excitation under atmospheric pressure and will be useful in study of the device. (authors)

  9. Importance of field-reversing ion ring formation in hot electron plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ikuta, K.

    1975-11-01

    Formation of the field reversing ion ring in the mirror confined hot electron plasma may offer a device to confine the fusion plasma even under the restriction of the present technology. (Author) (GRA)

  10. Sheet Fluorescence and Annular Analysis of Ultracold Neutral Plasmas

    International Nuclear Information System (INIS)

    Castro, J.; Gao, H.; Killian, T. C.

    2009-01-01

    Annular analysis of fluorescence imaging measurements on Ultracold Neutral Plasmas (UNPs) is demonstrated. Spatially-resolved fluorescence imaging of the strontium ions produces a spectrum that is Doppler-broadened due to the thermal ion velocity and shifted due to the ion expansion velocity. The fluorescence excitation beam is spatially narrowed into a sheet, allowing for localized analysis of ion temperatures within a volume of the plasma with small density variation. Annular analysis of fluorescence images permits an enhanced signal-to-noise ratio compared to previous fluorescence measurements done in strontium UNPs. Using this technique and analysis, plasma ion temperatures are measured and shown to display characteristics of plasmas with strong coupling such as disorder induced heating and kinetic energy oscillations.

  11. The quiet evening auroral arc and the structure of the growth phase near-Earth plasma sheet

    Science.gov (United States)

    Coroniti, F. V.; Pritchett, P. L.

    2014-03-01

    The plasma pressure and current configuration of the near-Earth plasma sheet that creates and sustains the quiet evening auroral arc during the growth phase of magnetospheric substorms is investigated. We propose that the quiet evening arc (QEA) connects to the thin near-Earth current sheet, which forms during the development of the growth phase enhancement of convection. The current sheet's large polarization electric fields are shielded from the ionosphere by an Inverted-V parallel potential drop, thereby producing the electron precipitation responsible for the arc's luminosity. The QEA is located in the plasma sheet region of maximal radial pressure gradient and, in the east-west direction, follows the vanishing of the approximately dawn-dusk-directed gradient or fold in the plasma pressure. In the evening sector, the boundary between the Region1 and Region 2 current systems occurs where the pressure maximizes (approximately radial gradient of the pressure vanishes) and where the approximately radial gradient of the magnetic flux tube volume also vanishes in an inflection region. The proposed intricate balance of plasma sheet pressure and currents may well be very sensitive to disruption by the arrival of equatorward traveling auroral streamers and their associated earthward traveling dipolarization fronts.

  12. Occurrence and location of concentrated load and generator regions observed by Cluster in the plasma sheet

    Directory of Open Access Journals (Sweden)

    M. Hamrin

    2009-11-01

    Full Text Available Here, and in a companion paper by Hamrin et al. (2009 [Scale size and life time of energy conversion regions observed by Cluster in the plasma sheet], we investigate localized energy conversion regions (ECRs in the Earth's plasma sheet. In total we have studied 151 ECRs within 660 h of plasma sheet data from the summer and fall of 2001 when Cluster was close to apogee at an altitude of about 15–20 RE. Cluster offers appropriate conditions for the investigation of energy conversion by the evaluation of the power density, E·J, where E is the electric field and J the current density. From the sign of the power density, we have identified more than three times as many Concentrated Load Regions (CLRs as Concentrated Generator Regions (CGRs. We also note that the CLRs appear to be stronger. To our knowledge, these are the first in situ observations confirming the general notion of the plasma sheet, on the average, behaving as a load. At the same time the plasma sheet appears to be highly structured, with energy conversion occurring in both directions between the fields and the particles. From our data we also find that the CLRs appear to be located closer to the neutral sheet, while CGRs prefer locations towards the plasma sheet boundary layer (PSBL. For both CLRs and CGRs, E and J in the GSM y (cross-tail direction dominate the total power density, even though the z contribution occasionally can be significant. The prevalence of the y-direction seems to be weaker for the CGRs, possibly related to a higher fluctuation level near the PSBL.

  13. Distribution of energetic oxygen and hydrogen in the near-Earth plasma sheet

    Science.gov (United States)

    Kronberg, E. A.; Grigorenko, E. E.; Haaland, S. E.; Daly, P. W.; Delcourt, D. C.; Luo, H.; Kistler, L. M.; Dandouras, I.

    2015-05-01

    The spatial distributions of different ion species are useful indicators for plasma sheet dynamics. In this statistical study based on 7 years of Cluster observations, we establish the spatial distributions of oxygen ions and protons at energies from 274 to 955 keV, depending on geomagnetic and solar wind (SW) conditions. Compared with protons, the distribution of energetic oxygen has stronger dawn-dusk asymmetry in response to changes in the geomagnetic activity. When the interplanetary magnetic field (IMF) is directed southward, the oxygen ions show significant acceleration in the tail plasma sheet. Changes in the SW dynamic pressure (Pdyn) affect the oxygen and proton intensities in the same way. The energetic protons show significant intensity increases at the near-Earth duskside during disturbed geomagnetic conditions, enhanced SW Pdyn, and southward IMF, implying there location of effective inductive acceleration mechanisms and a strong duskward drift due to the increase of the magnetic field gradient in the near-Earth tail. Higher losses of energetic ions are observed in the dayside plasma sheet under disturbed geomagnetic conditions and enhanced SW Pdyn. These observations are in agreement with theoretical models.

  14. Scale size and life time of energy conversion regions observed by Cluster in the plasma sheet

    Directory of Open Access Journals (Sweden)

    M. Hamrin

    2009-11-01

    Full Text Available In this article, and in a companion paper by Hamrin et al. (2009 [Occurrence and location of concentrated load and generator regions observed by Cluster in the plasma sheet], we investigate localized energy conversion regions (ECRs in Earth's plasma sheet. From more than 80 Cluster plasma sheet crossings (660 h data at the altitude of about 15–20 RE in the summer and fall of 2001, we have identified 116 Concentrated Load Regions (CLRs and 35 Concentrated Generator Regions (CGRs. By examining variations in the power density, E·J, where E is the electric field and J is the current density obtained by Cluster, we have estimated typical values of the scale size and life time of the CLRs and the CGRs. We find that a majority of the observed ECRs are rather stationary in space, but varying in time. Assuming that the ECRs are cylindrically shaped and equal in size, we conclude that the typical scale size of the ECRs is 2 RE≲ΔSECR≲5 RE. The ECRs hence occupy a significant portion of the mid altitude plasma sheet. Moreover, the CLRs appear to be somewhat larger than the CGRs. The life time of the ECRs are of the order of 1–10 min, consistent with the large scale magnetotail MHD simulations of Birn and Hesse (2005. The life time of the CGRs is somewhat shorter than for the CLRs. On time scales of 1–10 min, we believe that ECRs rise and vanish in significant regions of the plasma sheet, possibly oscillating between load and generator character. It is probable that at least some of the observed ECRs oscillate energy back and forth in the plasma sheet instead of channeling it to the ionosphere.

  15. Examination of the plasma located in PSI Ring Cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Pogue, N.J., E-mail: nathaniel.pogue@psi.ch; Adelmann, A.; Schneider, M.; Stingelin, L.

    2016-06-11

    A plasma has been observed inside the vacuum chamber of the PSI Ring Cyclotron. This ionized gas cloud may be a substantial contributor to several interior components having reduced lifetimes. The plasma's generation has been directly linked to the voltage that is applied to the Flat Top cavity through visual confirmation using CCD cameras. A spectrometer was used to correlate the plasma's intensity and ignition to the Flat Top cavity voltage as well as to determine the composition of the plasma. This paper reports on the analysis of the plasma using spectroscopy. The spectrometer data was analyzed to determine the composition of the plasma and that the plasma intensity (luminosity) directly corresponds to the Flat Top voltage. The results show that the plasma is comprised of elements consistent with the cyclotrons vacuum interior.

  16. Galaxies and Saturn's rings: Gravitational analogues of nonneutral plasmas

    International Nuclear Information System (INIS)

    Mark, J.W.K.

    1985-01-01

    Orbit and collective dynamics in disk galaxies and in Saturn's rings are gravitational analogues of those occurring in nonneutral plasmas. The interesting problems for such ''gravitational plasmas'' are analogous to single-disk studies of transverse dynamics in particle beams. Of particular interest are various orbit-resonances with spiral density and bending waves in these disks which are analogous to electrostatic waves in nonneutral beam plasmas. The background physics, terminology and results of astrophysical investigations in these fields are surveyed in this paper. 53 refs., 19 figs., 1 tab

  17. The role of substorms in the formation of the ring current

    International Nuclear Information System (INIS)

    Rostoker, G.

    1996-01-01

    It has long been recognized that the formation of the terrestrial ring current is accompanied by strong substorm expansive phase activity in the auroral oval. While large amplitude substorm activity seems to be a prerequisite for ring current formation to take place, it has long been puzzling as to why some large amplitude substorm activity in the auroral oval is not associated with significant ring current development. In this paper I shall outline the basis for the renovated boundary layer dynamics model of magnetospheric substorms showing how the onset of the substorm expansive phase can be associated with a sudden decrease in shielding space charge in the region of the near-Earth plasma sheet threaded by Region 2 field-aligned currents. I shall suggest that an episode of sufficiently large southward IMF lasting over a sufficiently lengthy period of time can lead to a sequence of substorm expansive phases, each one being initiated closer to the Earth than the previous one. Each expansive phase is attributed to a sudden decrease in radially localized cross-tail current (viz. a decrease in shielding space charge) and with each onset the inner edge of the plasma sheet moves inward. The inductive electric field associated with each crosstail current decrease is responsible for the acceleration of already energetic particles to energies of significance for ring current formation. Only when the inner edge of the crosstail current is sufficiently close to the Earth do the acceleration processes associated with substorm onset produce a long lived ring current. copyright 1996 American Institute of Physics

  18. Contribution of energetic and heavy ions to the plasma pressure: The 27 September to 3 October 2002 storm

    Science.gov (United States)

    Kronberg, E. A.; Welling, D.; Kistler, L. M.; Mouikis, C.; Daly, P. W.; Grigorenko, E. E.; Klecker, B.; Dandouras, I.

    2017-09-01

    Magnetospheric plasma sheet ions drift toward the Earth and populate the ring current. The ring current plasma pressure distorts the terrestrial internal magnetic field at the surface, and this disturbance strongly affects the strength of a magnetic storm. The contribution of energetic ions (>40 keV) and of heavy ions to the total plasma pressure in the near-Earth plasma sheet is not always considered. In this study, we evaluate the contribution of low-energy and energetic ions of different species to the total plasma pressure for the storm observed by the Cluster mission from 27 September until 3 October 2002. We show that the contribution of energetic ions (>40 keV) and of heavy ions to the total plasma pressure is ≃76-98.6% in the ring current and ≃14-59% in the magnetotail. The main source of oxygen ions, responsible for ≃56% of the plasma pressure of the ring current, is located at distances earthward of XGSE ≃ -13.5 RE during the main phase of the storm. The contribution of the ring current particles agrees with the observed Dst index. We model the magnetic storm using the Space Weather Modeling Framework (SWMF). We assess the plasma pressure output in the ring current for two different ion outflow models in the SWMF through comparison with observations. Both models yield reasonable results. The model which produces the most heavy ions agrees best with the observations. However, the data suggest that there is still potential for refinement in the simulations.

  19. Latitudinal distribution of the Jovian plasma sheet ions observed by Juno JADE-I

    Science.gov (United States)

    Kim, T. K. H.; Valek, P. W.; McComas, D. J.; Allegrini, F.; Bagenal, F.; Bolton, S. J.; Connerney, J. E. P.; Ebert, R. W.; Levin, S.; Louarn, P.; Pollock, C. J.; Ranquist, D. A.; Szalay, J.; Thomsen, M. F.; Wilson, R. J.

    2017-12-01

    The Jovian plasma sheet is a region where the centrifugal force dominates the heavy ion plasma. Properties of the plasma sheet ions near the equatorial plane have been studied with in-situ measurements from the Pioneer, Voyager, and Galileo spacecraft. However, the ion properties for the off-equator regions are not well known due to the limited measurements. Juno is the first polar orbiting spacecraft that can investigate the high latitude region of the Jovian magnetosphere. With Juno's unique trajectory, we will investigate the latitudinal distribution of the Jovian plasma sheet ions using measurements from the Jovian Auroral Distributions Experiment Ion sensor (JADE-I). JADE-I measures an ion's energy-per-charge (E/Q) from 0.01 keV/q to 46.2 keV/q with an electrostatic analyzer (ESA) and a mass-per-charge (M/Q) up to 64 amu/q with a carbon-foil-based time-of-flight (TOF) mass spectrometer. We have shown that the ambiguity between and (both have M/Q of 16) can be resolved in JADE-I using a semi-empirical simulation tool based on carbon foil effects (i.e., charge state modification, angular scattering, and energy loss) from incident ions passing through the TOF mass spectrometer. Based on the simulation results, we have developed an Ion Composition Analysis Tool (ICAT) that determines ion composition at each energy step of JADE-I (total of 64 steps). The velocity distribution for each ion species can be obtained from the ion composition as a function of each energy step. Since there is an ambipolar electric field due to mobile electrons and equatorially confined heavy ions, we expect to see acceleration along the field line. This study will show the species separated velocity distribution at various latitudes to investigate how the plasma sheet ions evolve along the field line.

  20. A triggering of solar flare by magnetosonic waves in a neutral sheet plasma

    International Nuclear Information System (INIS)

    Sakai, Jun-ichi; Washimi, Haruichi.

    1981-09-01

    A theoretical model of the triggering of a solar flare by magnetosonic waves in a neutral sheet plasma is discussed. It is shown that the ponderomotive force due to the magnetosonic waves strongly excites the plasma convection flow in the magnetic neutral sheet which in turn enhances the tearing instability. The system of basic equations for the tearing mode including the time-averaged nonlinear effects due to the magnetosonic waves is derived and the boundary value problem is solved. The results show that the growth time of the instability is shortened to about 100 sec for reasonable magnetosonic wave intensity. (author)

  1. Ion beam generation at the plasma sheet boundary layer by kinetic Alfven waves

    International Nuclear Information System (INIS)

    Moghaddam-Taaheri, E.; Goertz, C.K.; Smith, R.A.

    1989-01-01

    The kinetic Alfven wave, an Alfven wave with a perpendicular wavelength comparable to the ion gyroradius, can diffuse ions both in velocity and coordinate spaces with comparable transport rates. This may lead to the generation of ion beams in the plasma sheet boundary layer (PSBL). To investigate the ion beam generation process numerically, a two-dimensional quasi-linear code was constructed. Assuming that the plasma β (the ratio of plasma pressure to the magnetic pressure) varies from β = 1 to β << 1 across the magnetic field, the dynamics of the ion beam generation in the PSBL was studied. It was found that if your start with an ion distribution function which monotonically decreases with velocity along the magnetic field and a density gradient across the magnetic field, ions diffuse in velocity-coordinate space until nearly a plateau is established along the diffusion path. Depending on the topology of the magnetic field at the lobe side of the simulation system, i.e., open or closed field lines, the ion distribution function may or may not reach a steady state. If the field lines are open there, i.e., if the diffusion extends into the lobe, the double diffusion process may provide a mechanism for continuously transferring the ions from the central plasma sheet to the lobe. The authors comment on the effect of the particle loss on the establishment of the pressure balance in the plasma sheet

  2. Low energy plasma observations at synchronous orbit

    International Nuclear Information System (INIS)

    Reasoner, D.L.; Lennartsson, W.

    1977-08-01

    The University of California at San Diego Auroral Particles Experiment on the ATS-6 Satellite in synchronous orbit has detected a low-energy plasma population which is separate and distinct from both the ring current and plasma sheet populations. These observations suggest that this plasma is the outer zone of the plasmasphere. During magnetically active periods, this low energy plasma is often observed flowing sunward. In the dusk sector, enhanced plasma flow is often observed for 1-2 hours prior to the onset of a substorm-associated particle injection. (author)

  3. Scale size and life time of energy conversion regions observed by Cluster in the plasma sheet

    Directory of Open Access Journals (Sweden)

    M. Hamrin

    2009-11-01

    Full Text Available In this article, and in a companion paper by Hamrin et al. (2009 [Occurrence and location of concentrated load and generator regions observed by Cluster in the plasma sheet], we investigate localized energy conversion regions (ECRs in Earth's plasma sheet. From more than 80 Cluster plasma sheet crossings (660 h data at the altitude of about 15–20 RE in the summer and fall of 2001, we have identified 116 Concentrated Load Regions (CLRs and 35 Concentrated Generator Regions (CGRs. By examining variations in the power density, E·J, where E is the electric field and J is the current density obtained by Cluster, we have estimated typical values of the scale size and life time of the CLRs and the CGRs. We find that a majority of the observed ECRs are rather stationary in space, but varying in time. Assuming that the ECRs are cylindrically shaped and equal in size, we conclude that the typical scale size of the ECRs is 2 RE≲ΔSECR≲5 RE. The ECRs hence occupy a significant portion of the mid altitude plasma sheet. Moreover, the CLRs appear to be somewhat larger than the CGRs. The life time of the ECRs are of the order of 1–10 min, consistent with the large scale magnetotail MHD simulations of Birn and Hesse (2005. The life time of the CGRs is somewhat shorter than for the CLRs. On time scales of 1–10 min, we believe that ECRs rise and vanish in significant regions of the plasma sheet, possibly oscillating between load and generator character. It is probable that at least some of the observed ECRs oscillate energy back and forth in the plasma sheet instead of channeling it to the ionosphere.

  4. Frequency-dependent absorbance of broadband terahertz wave in dense plasma sheet

    Science.gov (United States)

    Peng, Yan; Qi, Binbin; Jiang, Xiankai; Zhu, Zhi; Zhao, Hongwei; Zhu, Yiming

    2018-05-01

    Due to the ability of accurate fingerprinting and low-ionization for different substances, terahertz (THz) technology has a lot of crucial applications in material analysis, information transfer, and safety inspection, etc. However, the spectral characteristic of atmospheric gas and ionized gas has not been widely investigated, which is important for the remote sensing application. Here, in this paper, we investigate the absorbance of broadband terahertz wave in dense plasma sheet generated by femtosecond laser pulses. It was found that as the terahertz wave transmits through the plasma sheet formed, respectively, in carbon dioxide, oxygen, argon and nitrogen, spectrum presents completely different and frequency-dependent absorbance. The reasons for these absorption peaks are related to the molecular polarity, electric charge, intermolecular and intramolecular interactions, and collisional absorption of gas molecules. These results have significant implications for the remote sensing of gas medium.

  5. Localized fast flow disturbance observed in the plasma sheet and in the ionosphere

    Directory of Open Access Journals (Sweden)

    R. Nakamura

    2005-02-01

    Full Text Available An isolated plasma sheet flow burst took place at 22:02 UT, 1 September 2002, when the Cluster footpoint was located within the area covered by the Magnetometers-Ionospheric Radars-All-sky Cameras Large Experiment (MIRACLE. The event was associated with a clear but weak ionospheric disturbance and took place during a steady southward IMF interval, about 1h preceding a major substorm onset. Multipoint observations, both in space and from the ground, allow us to discuss the temporal and spatial scale of the disturbance both in the magnetosphere and ionosphere. Based on measurements from four Cluster spacecraft it is inferred that Cluster observed the dusk side part of a localized flow channel in the plasma sheet with a flow shear at the front, suggesting a field-aligned current out from the ionosphere. In the ionosphere the equivalent current pattern and possible field-aligned current location show a pattern similar to the auroral streamers previously obtained during an active period, except for its spatial scale and amplitude. It is inferred that the footpoint of Cluster was located in the region of an upward field-aligned current, consistent with the magnetospheric observations. The entire disturbance in the ionosphere lasted about 10min, consistent with the time scale of the current sheet disturbance in the magnetosphere. The plasma sheet bulk flow, on the other hand, had a time scale of about 2min, corresponding to the time scale of an equatorward excursion of the enhanced electrojet. These observations confirm that localized enhanced convection in the magnetosphere and associated changes in the current sheet structure produce a signature with consistent temporal and spatial scale at the conjugate ionosphere.

  6. Polar Plasma at Ganymede: Ionospheric outflow and discovery of the plasma sheet

    Science.gov (United States)

    Collinson, G.; Paterson, W.; Dorelli, J.; Glocer, A.; Sarantos, M.; Wilson, R. J.; Bard, C.

    2017-12-01

    On the 27th of June 1996, the NASA Galileo spacecraft made humanities first flyby of Jupiter's largest moon, Ganymede, discovering that it is unique to science in being the only moon known to possess an internally generated magnetic dynamo field. Although Galileo carried a plasma spectrometer, the Plasma Subsystem (PLS), converting its highly complex raw data stream into meaningful plasma moments (density, temperature, velocity) is extremely challenging, and was only ever performed for the second (out of six) Ganymede flybys. Resurrecting the original Galileo PLS data analysis software, we processed the raw PLS data from G01, and for the first time present the properties of plasmas encountered. Dense, cold ions were observed outflowing from the moon's north pole (presumed to be dominated by H+ from the icy surface), with more diffuse, warmer field-aligned outflows in the lobes. Dropouts in plasma density combined with velocity perturbations either side of this suggest that Galileo briefly crossed the cusps onto closed magnetic field lines. PLS observations show that upon entry into the magnetosphere, Galileo crossed through the plasma sheet, observing plasma flows consistent with reconnection-driven convection, highly energized 105 eV ions, and a reversal in the magnetic field. The densities of plasmas flowing upwards from Ganymede's ionosphere were higher on open "lobe" field lines than on closed field lines, suggesting that the ionospheric source of these plasmas may be denser at the poles, there may be additional acceleration mechanisms at play, or the balance of ions were outside the energy range of PLS.

  7. Estimates of magnetic flux, and energy balance in the plasma sheet during substorm expansion

    Science.gov (United States)

    Hesse, Michael; Birn, Joachim; Pulkkinen, Tuija

    1996-01-01

    The energy and magnetic flux budgets of the magnetotail plasma sheet during substorm expansion are investigated. The possible mechanisms that change the energy content of the closed field line region which contains all the major dissipation mechanisms of relevance during substorms, are considered. The compression of the plasma sheet mechanism and the diffusion mechanism are considered and excluded. It is concluded that the magnetic reconnection mechanism can accomplish the required transport. Data-based empirical magnetic field models are used to investigate the magnetic flux transport required to account for the observed magnetic field dipolarizations in the inner magnetosphere. It is found that the magnetic flux permeating the current sheet is typically insufficient to supply the required magnetic flux. It is concluded that no major substorm-type magnetospheric reconfiguration is possible in the absence of magnetic reconnection.

  8. Radiochemical plasma salicylamide assay using ring-labeled tritiated salicylamide

    Energy Technology Data Exchange (ETDEWEB)

    Stella, V J; Varia, S A; Riedy, M

    1979-05-01

    A rat plasma salicylamide assay was developed using ring-labeled tritiated salicylamide, synthesized by reacting salicylamide with tritium oxide in the presence of heptafluorobutyric acid. The reaction yielded /sup 3/H-salicylamide of specific activity up to 8.41 mCi/mmole, 60% yield. Plasma containing /sup 3/H-salicylamide and its metabolites was extracted with a toluene-based scintillation fluid, which was subsequently counted. Specificity for free salicylamide was demonstrated by radiochemical and standard fluorescence plasma salicylamide level-time curves. Specificity resulted from nonextraction of the salicylamide sulfate and glucuronide metabolites. Sulfatase and beta-glucuronidase treatment allowed the analysis of plasma sulfate and glucuronide conjugates as free salicylamide. This procedure should be effective for the analysis of salicylamide and its metabolites in the presence of similar phenolic compounds.

  9. Radial evolution of the finite-width plasma sheet in a z-pinch: A parametric analysis based on conservation laws

    International Nuclear Information System (INIS)

    Sherar, A.G.

    1996-01-01

    A simple method that allows to estimate the macroscopic variables (width, temperature, density, radial velocity, etc.) of the plasma sheet in the first compression of a z-pinch, is presented. Following the snow-plow model, the radial compression is assumed as a process in which the mass is swept by a sheet of finite width. Very high pressures can be reached inside the sheet due to magnetic compression, higher than the filling gas pressure. A quasi-equilibrium hypothesis for the pressure of the layer is defined. From this assumption the thickness of the dense plasma sheet can be estimated. A set of MHD equations that include a term to compute total energy losses is used. The system of equations is written in the interface reference system in which the internal boundary of the sheet is at rest. In this early stage of the compression, the plasma temperature is mainly due to heavy particles. The results obtained using this model can explain ionic temperatures measured in cold plasmas which cannot be explained from electron-ion collisions. From an analytical study of the formation solution, a well-defined range of validity for each parameter of the model has been found. Based on physical conditions, these ranges of validity give a criterion to understanding the necessary conditions to build and maintain a moving plasma sheet. Using this model, other geometries besides the cylindrical one can be analyzed in the future

  10. Energetic ion injection and formation of the storm-time symmetric ring current

    Directory of Open Access Journals (Sweden)

    L. Xie

    2006-12-01

    Full Text Available An extensive study of ring current injection and intensification of the storm-time ring current is conducted with three-dimensional (3-D test particle trajectory calculations (TPTCs. The TPTCs reveal more accurately the process of ring current injection, with the main results being the following: (1 an intense convection electric field can effectively energize and inject plasma sheet particles into the ring current region within 1–3 h. (2 Injected ions often follow chaotic trajectories in non-adiabatic regions, which may have implications in storm and ring current physics. (3 The shielding electric field, which arises as a consequence of enhanced convection and co-exists with the injection and convection electric field, may cause the original open trajectories of injected ions with higher energy to change into closed ones, thus playing a role in the formation of the symmetric ring current.

  11. Convective growth of broadband turbulence in the plasma sheet boundary layer

    International Nuclear Information System (INIS)

    Dusenbery, P.B.

    1987-01-01

    Convective growth of slow and fast beam acoustic waves in the plasma sheet boundary layer (PSBL) is investigated. It has been shown previously that a could ion population must be present in order to excite beam acoustic waves in the PSBL. However, growth rates are significantly enhanced when warm plasma sheet boundary layer ions are present. Net wave growth along a ray path is determined by convective growth. This quantity is calculated for particle distribution models consistent with the PSBL where the intensity of broadband turbulence is observed to peak. Total number density dependence on beam acoustic convective growth is evaluated, and it is found that even for low density conditions of ∼0.01 cm -3 , a measurable level of broadband turbulence is expected. Relative drift effects between cold and warm ion populations are also considered. In particular, it is found that slow mode convective growth can be enhanced when slowly streaming cold ions are present, compared to fast ion streams

  12. Dense sheet Z-pinches

    International Nuclear Information System (INIS)

    Tetsu, Miyamoto

    1999-01-01

    The steady state and quasi-steady processes of infinite- and finite-width sheet z-pinches are studied. The relations corresponding to the Bennett relation and Pease-Braginskii current of cylindrical fiber z-pinches depend on a geometrical factor in the sheet z-pinches. The finite-width sheet z-pinch is approximated by a segment of infinite-width sheet z-pinch, if it is wide enough, and corresponds to a number of (width/thickness) times fiber z-pinch plasmas of the diameter that equals the sheet thickness. If the sheet current equals this number times the fiber current, the plasma created in the sheet z-pinches is as dense as in the fiber z-pinches. The total energy of plasma and magnetic field per unit mass is approximately equal in both pinches. Quasi-static transient processes are different in several aspects from the fiber z-pinch. No radiation collapse occurs in the sheet z-pinch. The stability is improved in the sheet z-pinches. The fusion criterions and the experimental arrangements to produce the sheet z-pinches are also discussed. (author)

  13. Modeling the effect of doping on the catalyst-assisted growth and field emission properties of plasma-grown graphene sheet

    International Nuclear Information System (INIS)

    Gupta, Neha; Sharma, Suresh C.; Sharma, Rinku

    2016-01-01

    A theoretical model describing the effect of doping on the plasma-assisted catalytic growth of graphene sheet has been developed. The model accounts the charging rate of the graphene sheet, kinetics of all the plasma species, including the doping species, and the growth rate of graphene nuclei and graphene sheet due to surface diffusion, and accretion of ions on the catalyst nanoparticle. Using the model, it is observed that nitrogen and boron doping can strongly influence the growth and field emission properties of the graphene sheet. The results of the present investigation indicate that nitrogen doping results in reduced thickness and shortened height of the graphene sheet; however, boron doping increases the thickness and height of the graphene sheet. The time evolutions of the charge on the graphene sheet and hydrocarbon number density for nitrogen and boron doped graphene sheet have also been examined. The field emission properties of the graphene sheet have been proposed on the basis of the results obtained. It is concluded that nitrogen doped graphene sheet exhibits better field emission characteristics as compared to undoped and boron doped graphene sheet. The results of the present investigation are consistent with the existing experimental observations.

  14. Modeling the effect of doping on the catalyst-assisted growth and field emission properties of plasma-grown graphene sheet

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Neha; Sharma, Suresh C.; Sharma, Rinku [Department of Applied Physics, Delhi Technological University (DTU), Shahbad Daulatpur, Bawana Road, Delhi-110042 (India)

    2016-08-15

    A theoretical model describing the effect of doping on the plasma-assisted catalytic growth of graphene sheet has been developed. The model accounts the charging rate of the graphene sheet, kinetics of all the plasma species, including the doping species, and the growth rate of graphene nuclei and graphene sheet due to surface diffusion, and accretion of ions on the catalyst nanoparticle. Using the model, it is observed that nitrogen and boron doping can strongly influence the growth and field emission properties of the graphene sheet. The results of the present investigation indicate that nitrogen doping results in reduced thickness and shortened height of the graphene sheet; however, boron doping increases the thickness and height of the graphene sheet. The time evolutions of the charge on the graphene sheet and hydrocarbon number density for nitrogen and boron doped graphene sheet have also been examined. The field emission properties of the graphene sheet have been proposed on the basis of the results obtained. It is concluded that nitrogen doped graphene sheet exhibits better field emission characteristics as compared to undoped and boron doped graphene sheet. The results of the present investigation are consistent with the existing experimental observations.

  15. The O+ contribution and role on the ring current pressure development for CMEs and CIRs using Van Allen Probes observations

    Science.gov (United States)

    Mouikis, C.; Bingham, S.; Kistler, L. M.; Farrugia, C. J.; Spence, H. E.; Gkioulidou, M.

    2016-12-01

    The ring current responds differently to the different solar and interplanetary storm drivers such as coronal mass injections, (CME's), co-rotating interaction regions (CIR's), high-speed streamers and other structures. The resulting changes in the ring current particle pressure change the global magnetic field, which affects the transport of the radiation belts. In order to determine the field changes during a storm, it is necessary to understand the transport, sources and losses of the particles that contribute to the ring current. The source population of the storm time ring current is the night side plasma sheet. We use Van Allen Probes observations to determine the ring current pressure contribution of the convecting plasma sheet H+ and O+ particles in the storm time development of the ring current. We compare storms that are related to different interplanetary drivers, CMEs and CIRs, as observed at different local times. We find that during the storm main phase most of the ring current pressure in the pre-midnight inner magnetosphere is contributed by particles on open drift paths that cause the development of a strong partial ring current that causes most of the main phase Dst drop. These particles can reach as deep as L 2 and their pressure compares to the local magnetic field pressure as deep as L 3. During the recovery phase, if these particles are not lost at the magnetopause, will become trapped and will contribute to the symmetric ring current. However, the largest difference between the CME and CIR ring current responses during the storm main and early recovery phases is caused by how the 15 - 60 keV O+ responds to these drivers.

  16. Plasma diagnostics using laser-excited coupled and transmission ring resonators

    International Nuclear Information System (INIS)

    Haas, R.A.

    1976-01-01

    In this paper a simple two-level laser model is used to investigate the frequency response of coupled-cavity laser interferometers. It is found that under certain circumstances, often satisfied by molecular gas lasers, the frequency response exhibits a resonant behavior. This behavior severely complicates the interpretation of coupled-cavity laser interferometer measurements of rapidly varying plasmas. To circumvent this limitation a new type of laser interferometer plasma diagnostic with significantly improved time response was developed. In this interferometer the plasma is located in one arm of a transmission ring resonator cavity that is excited by an externally positioned laser. Thus, the laser is decoupled from the interferometer cavity and the time response of the interferometer is then limited by the Q of the ring resonator cavity. This improved time response is acquired without loss of spatial resolution, but requires a more sensitive signal detector since the laser is no longer used as a detector as it is in conventional coupled-cavity laser interferometers. Thus, the new technique incorporates the speed of the Mach--Zender interferometer and the sensitivity of the coupled-cavity laser interferometer. The basic operating principles of this type of interferometer have been verified using a CO 2 laser

  17. Spatial structure of the plasma sheet boundary layer at distances greater than 180 RE as derived from energetic particle measurements on GEOTAIL

    Directory of Open Access Journals (Sweden)

    T. Yamamoto

    Full Text Available We have analyzed the onsets of energetic particle bursts detected by the ICS and STICS sensors of the EPIC instrument on board the GEOTAIL spacecraft in the deep magnetotail (i.e., at distances greater than 180 RE. Such bursts are commonly observed at the plasma-sheet boundary layer (PSBL and are highly collimated along the magnetic field. The bursts display a normal velocity dispersion (i.e., the higher-speed particles are seen first, while the progressively lower speed particles are seen later when observed upon entry of the spacecraft from the magnetotail lobes into the plasma sheet. Upon exit from the plasma sheet a reverse velocity dispersion is observed (i.e., lower-speed particles disappear first and higher-speed particles disappear last. Three major findings are as follows. First, the tailward-jetting energetic particle populations of the distant-tail plasma sheet display an energy layering: the energetic electrons stream along open PSBL field lines with peak fluxes at the lobes. Energetic protons occupy the next layer, and as the spacecraft moves towards the neutral sheet progressively decreasing energies are encountered systematically. These plasma-sheet layers display spatial symmetry, with the plane of symmetry the neutral sheet. Second, if we consider the same energy level of energetic particles, then the H+ layer is confined within that of the energetic electron, the He++ layer is confined within that of the proton, and the oxygen layer is confined within the alpha particle layer. Third, whenever the energetic electrons show higher fluxes inside the plasma sheet as compared to those at the boundary layer, their angular distribution is isotropic irrespective of the Earthward or tailward character of fluxes, suggesting a closed field line topology.

  18. Spatial structure of the plasma sheet boundary layer at distances greater than 180 RE as derived from energetic particle measurements on GEOTAIL

    Directory of Open Access Journals (Sweden)

    D. V. Sarafopoulos

    1997-10-01

    Full Text Available We have analyzed the onsets of energetic particle bursts detected by the ICS and STICS sensors of the EPIC instrument on board the GEOTAIL spacecraft in the deep magnetotail (i.e., at distances greater than 180 RE. Such bursts are commonly observed at the plasma-sheet boundary layer (PSBL and are highly collimated along the magnetic field. The bursts display a normal velocity dispersion (i.e., the higher-speed particles are seen first, while the progressively lower speed particles are seen later when observed upon entry of the spacecraft from the magnetotail lobes into the plasma sheet. Upon exit from the plasma sheet a reverse velocity dispersion is observed (i.e., lower-speed particles disappear first and higher-speed particles disappear last. Three major findings are as follows. First, the tailward-jetting energetic particle populations of the distant-tail plasma sheet display an energy layering: the energetic electrons stream along open PSBL field lines with peak fluxes at the lobes. Energetic protons occupy the next layer, and as the spacecraft moves towards the neutral sheet progressively decreasing energies are encountered systematically. These plasma-sheet layers display spatial symmetry, with the plane of symmetry the neutral sheet. Second, if we consider the same energy level of energetic particles, then the H+ layer is confined within that of the energetic electron, the He++ layer is confined within that of the proton, and the oxygen layer is confined within the alpha particle layer. Third, whenever the energetic electrons show higher fluxes inside the plasma sheet as compared to those at the boundary layer, their angular distribution is isotropic irrespective of the Earthward or tailward character of fluxes, suggesting a closed field line topology.

  19. Equilibrium structure of the plasma sheet boundary layer-lobe interface

    Science.gov (United States)

    Romero, H.; Ganguli, G.; Palmadesso, P.; Dusenbery, P. B.

    1990-01-01

    Observations are presented which show that plasma parameters vary on a scale length smaller than the ion gyroradius at the interface between the plasma sheet boundary layer and the lobe. The Vlasov equation is used to investigate the properties of such a boundary layer. The existence, at the interface, of a density gradient whose scale length is smaller than the ion gyroradius implies that an electrostatic potential is established in order to maintain quasi-neutrality. Strongly sheared (scale lengths smaller than the ion gyroradius) perpendicular and parallel (to the ambient magnetic field) electron flows develop whose peak velocities are on the order of the electron thermal speed and which carry a net current. The free energy of the sheared flows can give rise to a broadband spectrum of electrostatic instabilities starting near the electron plasma frequency and extending below the lower hybrid frequency.

  20. Interpretation of magnetosonic waves in the boundary regions of the plasma sheet as seen by the ISEE 3 spacecraft

    International Nuclear Information System (INIS)

    Smith, P.R.; Hopcraft, K.I.; Murphy, N.

    1987-01-01

    Recent calculations that derive the normal-mode spectrum of an idealized magnetic current sheet are discussed. The Harris neutral-sheet equilibrium is perturbed with an ideal MHD displacement. The longitudinal polarization of the fundamental modes is calculated as a function of the position in the sheet. Using data from the energetic-ion instrument aboard ISEE 3, the thickness of the plasma sheet in the deep geomagnetic tail is estimated. This parameter enables a quantitative comparison between the boundary oscillations reported by Tsurutani and Smith (1984) and the normal mode oscillations derived by Hopcraft and Smith (1985) to be performed. The normal-mode solutions are found to be consistent with observation. Further aspects of the MHD wave spectrum that may lead to an observable variation of the mode character across the boundary of the plasma sheet are pointed out. 12 references

  1. Collisionless current sheet equilibria

    Science.gov (United States)

    Neukirch, T.; Wilson, F.; Allanson, O.

    2018-01-01

    Current sheets are important for the structure and dynamics of many plasma systems. In space and astrophysical plasmas they play a crucial role in activity processes, for example by facilitating the release of magnetic energy via processes such as magnetic reconnection. In this contribution we will focus on collisionless plasma systems. A sensible first step in any investigation of physical processes involving current sheets is to find appropriate equilibrium solutions. The theory of collisionless plasma equilibria is well established, but over the past few years there has been a renewed interest in finding equilibrium distribution functions for collisionless current sheets with particular properties, for example for cases where the current density is parallel to the magnetic field (force-free current sheets). This interest is due to a combination of scientific curiosity and potential applications to space and astrophysical plasmas. In this paper we will give an overview of some of the recent developments, discuss their potential applications and address a number of open questions.

  2. Generation mechanism of the whistler-mode waves in the plasma sheet prior to magnetic reconnection

    Czech Academy of Sciences Publication Activity Database

    Wei, X. H.; Cao, J. B.; Zhou, G. C.; Fu, H. S.; Santolík, Ondřej; Reme, H.; Dandouras, I.; Cornilleau, N.; Fazakerley, A.

    2013-01-01

    Roč. 52, č. 1 (2013), s. 205-210 ISSN 0273-1177 Institutional support: RVO:68378289 Keywords : whistler-mode waves * electron temperature anisotropy * Reconnection * the plasma sheet Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.238, year: 2013 http://www.sciencedirect.com/science/article/pii/S0273117713001221

  3. Transient, Small-Scale Field-Aligned Currents in the Plasma Sheet Boundary Layer During Storm Time Substorms

    Science.gov (United States)

    Nakamura, R.; Sergeev, V. A.; Baumjohann, W.; Plaschke, F.; Magnes, W.; Fischer, D.; Varsani, A.; Schmid, D.; Nakamura, T. K. M.; Russell, C. T.; hide

    2016-01-01

    We report on field-aligned current observations by the four Magnetospheric Multiscale (MMS) spacecraft near the plasma sheet boundary layer (PSBL) during two major substorms on 23 June 2015. Small-scale field-aligned currents were found embedded in fluctuating PSBL flux tubes near the Separatrix region. We resolve, for the first time, short-lived earthward (downward) intense field-aligned current sheets with thicknesses of a few tens of kilometers, which are well below the ion scale, on flux tubes moving equatorward earth ward during outward plasma sheet expansion. They coincide with upward field-aligned electron beams with energies of a few hundred eV. These electrons are most likely due to acceleration associated with a reconnection jet or high-energy ion beam-produced disturbances. The observations highlight coupling of multiscale processes in PSBL as a consequence of magnetotail reconnection.

  4. Observation of enhanced electric field in an RF-plugged sheet plasma in the RFC-XX-M open-ended machine

    International Nuclear Information System (INIS)

    Oda, T.; Takiyama, K.; Kadota, K.

    1987-12-01

    We report nonperturbing observation of the electric field in the sheet plasma for RF end-plugging on the RFC XX-M open-ended machine by using the Stark effect with a combined technique of beam-probe and laser-induced fluorescence. Under the optimum condition for the RF plugging, enhanced electric field is found in the sheet plasma by about 2.5 times with respect to the electric field when no plasma is produced. The field spatial profile is also measured, which is discussed in connection with the electrostatic eigenmode. (author)

  5. Seminal plasma and sperm proteome of ring-tailed coatis (Nasua nasua, Linnaeus, 1766).

    Science.gov (United States)

    Silva, Herlon Victor Rodrigues; Rodriguez-Villamil, Paula; Magalhães, Francisco Felipe de; Nunes, Thalles Gothardo Pereira; Freitas, Luana Azevedo de; Ribeiro, Leandro Rodrigues; Silva, Alexandre Rodrigues; Moura, Arlindo A; Silva, Lúcia Daniel Machado da

    2018-04-15

    Ring-tailed coati is listed as a species of least concern in the International Union for Conservation of Nature (IUCN) Red List, however, there has been a sharp decline in their population. The present study was conducted to evaluate the major proteins of both seminal plasma and sperm in ring-tailed coatis. Semen sample was collected from three adult coatis and evaluated for their morphological characteristics. Further, the sample was centrifuged to separate spermatozoa from seminal plasma, and then stored in liquid nitrogen. The seminal plasma and sperm proteins were subjected to one-dimensional (1-D) sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and identified by mass spectrometry. Gene ontology and protein networks were analyzed using bioinformatics tools. Based on sperm concentration and average protein content of the semen, the concentration of protein/spermatozoon was found to be 104.69 ± 44.43 μg. The analysis of SDS-PAGE gels showed 20.3 ± 3.1 and 17 ± 2 protein bands/lane for seminal plasma and sperm, respectively. In-gel protein digestion and peptide analysis by mass spectrometry revealed 238 and 246 proteins in the seminal plasma and sperm, respectively. The gene ontology analysis revealed that the proteins of seminal plasma mainly participated in cellular (35%) and regulatory (21%) processes. According to their cellular localization, seminal plasma proteins were categorized as structural (18%), extracellular (17%), and nuclear (14%) proteins with molecular functions, such as catalytic activity (43%) and binding (43%). The sperm proteins were also involved in cellular (38%) and regulatory (23%) processes, and mainly categorized as extracellular (17%), nuclear (13%), and cytoplasmic (10%) proteins. The major molecular functions of the sperm proteins were catalytic activity (44%) and binding (42%). These results indicated that the seminal plasma of ring-tailed coati has an array of proteins that can potentially

  6. Distribution of O+ ions in the plasma sheet and locations of substorm onsets

    Science.gov (United States)

    Ono, Y.; Christon, S. P.; Frey, H. U.; Lui, A. T. Y.

    2010-09-01

    We discuss the effect of O+ ions on substorm onsets by examining the relation between the substorm onset location and the distribution of the O+/H+ number density ratio before the onset in the various regions within the plasma sheet (-8 RE > XGSM > -32 RE). We use 9-212 keV/e ion flux data observed by Geotail/Energetic Particles and Ion Composition (EPIC)/Suprathermal Ion Composition Spectrometer (STICS) instrument and the IMAGE/Far Ultra-Violet (FUV) substorm onset list presented by Frey et al. [Frey, H. U., S. B. Mende, V. Angelopoulos, and E. F. Donovan (2004), Substorm onset observations by IMAGE-FUV, J. Geophys. Res., 109, A10304, doi:10.1029/2004JA010607]. The results are summarized as follows. Substorm onsets, which we identify by auroral initial brightenings, are likely to occur in the more dusk-(dawn-)ward region when the O+/H+ number density ratio is high in the dusk (dawn) side. This property is observed only in the near-Earth plasma sheet (at -8 RE > XGSM > -14 RE). The above-mentioned property holds in each of two groups: substorm events due to internal instability of the magnetosphere (i.e., internally triggered substorms) and events due to external changes in the solar wind or the interplanetary magnetic field (i.e., externally triggered substorms). Thus, we conclude that the substorm onset location depends on the density of O+ ions in the near-Earth plasma sheet prior to onset, whether the substorm is triggered internally or externally.

  7. Latitude-energy structure of multiple ion beamlets in Polar/TIMAS data in plasma sheet boundary layer and boundary plasma sheet below 6 RE radial distance: basic properties and statistical analysis

    Directory of Open Access Journals (Sweden)

    P. Janhunen

    2005-03-01

    Full Text Available Velocity dispersed ion signatures (VDIS occurring at the plasma sheet boundary layer (PSBL are a well reported feature. Theory has, however, predicted the existence of multiple ion beamlets, similar to VDIS, in the boundary plasma sheet (BPS, i.e. at latitudes below the PSBL. In this study we show evidence for the multiple ion beamlets in Polar/TIMAS ion data and basic properties of the ion beamlets will be presented. Statistics of the occurrence frequency of ion multiple beamlets show that they are most common in the midnight MLT sector and for altitudes above 4 RE, while at low altitude (≤3 RE, single beamlets at PSBL (VDIS are more common. Distribution functions of ion beamlets in velocity space have recently been shown to correspond to 3-dimensional hollow spheres, containing a large amount of free energy. We also study correlation with ~100 Hz waves and electron anisotropies and consider the possibility that ion beamlets correspond to stable auroral arcs.

  8. Compressional Pc5 type pulsations in the morningside plasma sheet

    Directory of Open Access Journals (Sweden)

    A. Vaivads

    Full Text Available We study compressional pulsations in Pc5 frequency range observed in the dawn-side at distances of about 10 RE , close to the magnetic equator. We use data obtained during two events of conjunctions between Equator-S and Geotail: 1000–1700 UT on 9 March 1998, and 0200–0600 UT on 25 April 1998. In both events, pulsations are observed after substorm activity. The pulsations are antisymmetric with respect to the equatorial plane (even mode, and move eastward with phase velocity close to plasma velocity. The pulsations tend to be pressure balanced. We also discuss possible generation mechanisms of the pulsations.

    Key words. Magnetospheric physics (magnetospheric configuration and dynamics; MHD waves and instabilities; plasma sheet

  9. Compressional Pc5 type pulsations in the morningside plasma sheet

    Directory of Open Access Journals (Sweden)

    A. Vaivads

    2001-03-01

    Full Text Available We study compressional pulsations in Pc5 frequency range observed in the dawn-side at distances of about 10 RE , close to the magnetic equator. We use data obtained during two events of conjunctions between Equator-S and Geotail: 1000–1700 UT on 9 March 1998, and 0200–0600 UT on 25 April 1998. In both events, pulsations are observed after substorm activity. The pulsations are antisymmetric with respect to the equatorial plane (even mode, and move eastward with phase velocity close to plasma velocity. The pulsations tend to be pressure balanced. We also discuss possible generation mechanisms of the pulsations.Key words. Magnetospheric physics (magnetospheric configuration and dynamics; MHD waves and instabilities; plasma sheet

  10. Confinement of nonneutral spheroidal plasmas in multi-ring electrode traps

    International Nuclear Information System (INIS)

    Mohri, Akihiro; Yuyama, Tetsumori; Michishita, Toshinori; Higaki, Hiroyuki; Tanaka, Hitoshi; Yamazawa, Yohei; Aoyagi, Masayuki

    1998-01-01

    A nonneutral spheroidal plasma can be settled in a rigid rotor equilibrium inside a closed conducting cell independently of induced image charges on the cell wall if the electrostatic potential distribution on the wall surface is set equal to the sum of the external hyperbolic potential (r 2 -2z 2 ) and the self-potential produced by the plasma. A confinement system equipped with a train of properly biased ring electrodes can approximately generate any axisymmetric potential, including the above field. Experiments on confinement of electron spheroids in such a system showed that the confinement time became the longest when the condition to diminish the image charge effects was satisfied. The observed frequency of the centre-of-mass harmonic oscillation of the plasma in this configuration was in good agreement with the estimated one. (author)

  11. Spatial Distribution and Semiannual Variation of Cold-Dense Plasma Sheet

    Science.gov (United States)

    Bai, Shichen; Shi, Quanqi; Tian, Anmin; Nowada, Motoharu; Degeling, Alexander W.; Zhou, Xu-Zhi; Zong, Qiu-Gang; Rae, I. Jonathan; Fu, Suiyan; Zhang, Hui; Pu, Zuyin; Fazakerly, Andrew N.

    2018-01-01

    The cold-dense plasma sheet (CDPS) plays an important role in the entry process of the solar wind plasma into the magnetosphere. Investigating the seasonal variation of CDPS occurrences will help us better understand the long-term variation of plasma exchange between the solar wind and magnetosphere, but any seasonal variation of CDPS occurrences has not yet been reported in the literature. In this paper, we investigate the seasonal variation of the occurrence rate of CDPS using Geotail data from 1996 to 2015 and find a semiannual variation of the CDPS occurrences. Given the higher probability of solar wind entry under stronger northward interplanetary magnetic field (IMF) conditions, 20 years of IMF data (1996-2015) are used to investigate the seasonal variation of IMF Bz under northward IMF conditions. We find a semiannual variation of IMF Bz, which is consistent with the Russell-McPherron (R-M) effect. We therefore suggest that the semiannual variation of CDPS may be related to the R-M effect.

  12. Fueling moving ring field-reversed mirror reactor plasmas

    International Nuclear Information System (INIS)

    Felber, F.S.

    1980-01-01

    The concept of small fusion reactors is being studied jointly by Lawrence Livermore Laboratory General Atomic Company, and Pacific Gas and Electric Company. The objective is to investigate alternatives and then to develop a conceptual design for a small reactor that could produce useful, though not necessarily economical, energy by the late 1980s. Three methods of fueling a small moving ring field-reversed mirror are considered: injection of fuel pellets accelerated by laser ablation, injection of fuel pellets accelerated by deflagration-gun ablation, and direct injection of plasma by a deflagration gun. 13 refs

  13. Numerical simulations of plasma equilibrium in a one-dimensional current sheet with a nonzero normal magnetic field component

    International Nuclear Information System (INIS)

    Mingalev, O. V.; Mingalev, I. V.; Malova, Kh. V.; Zelenyi, L. M.

    2007-01-01

    The force balance in a thin collisionless current sheet in the Earth's magnetotail with a given constant magnetic field component B z across the sheet is numerically studied for the first time in a self-consistent formulation of the problem. The current sheet is produced by oppositely directed plasma flows propagating from the periphery of the sheet toward the neutral plane. A substantially improved version of a macroparticle numerical model is used that makes it possible to simulate on the order of 10 7 macroparticles even with a personal computer and to calculate equilibrium configurations with a sufficiently low discrete noise level in the first-and second-order moments of the distribution function, which determine the stress tensor elements. Quasisteady configurations were calculated numerically for several sets of plasma parameters in some parts of the magnetotail. The force balance in the sheet was checked by calculating the longitudinal and transverse pressures as well as the elements of the full stress tensor. The stress tensor in the current sheet is found to be nondiagonal and to differ appreciably from the gyrotropic stress tensor in the Chew-Goldberger-Low model, although the Chew-Goldberger-Low theory and numerical calculations yield close results for large distances from the region of reversed magnetic field

  14. Cluster view of the plasma sheet boundary layer and bursty bulk flow connection

    Directory of Open Access Journals (Sweden)

    O. W. Lennartsson

    2009-04-01

    Full Text Available The high-latitude boundaries of the plasma sheet (PSBL are dynamic latitude zones of recurring and transient (minutes to tens of minutes earthward and magnetic field-aligned bursts of plasma, each being more or less confined in longitude as well, whose ionic component is dominated by protons with flux, energies and density that are consistent with a central plasma sheet (CPS source at varying distance (varying rates of energy time dispersion, sometimes as close as the ~19 RE Cluster apogees, or closer still. The arguably most plausible source consists of so called "bursty bulk flows" (BBFs, i.e. proton bulk flow events with large, positive and bursty GSE vx. Known mainly from CPS observations made at GSE x>−30 RE, the BBF type events probably take place much further downtail as well. What makes the BBFs an especially plausible source are (1 their earthward bulk flow, which helps explain the lack of distinctive latitudinal PSBL energy dispersion, and (2 their association with a transient strong increase of the local tail Bz component ("local dipolarization". The enhanced Bz provides intermittent access to higher latitudes for the CPS plasma, resulting in local density reductions in the tail midplane, as illustrated here by proton data from the Cluster CIS CODIF instruments. Another sign of kinship between the PSBL bursts and the BBFs is their similar spatial fine structure. The PSBL bursts have prominent filaments aligned along the magnetic field with transverse flux gradients that are often characterized by local ~10 keV proton gyroradii scale size (or even smaller, as evidenced by Cluster measurements. The same kind of fine structure is also found during Cluster near-apogee traversals of the tail midplane, as illustrated here and implied by recently published statistics on BBFs obtained with Cluster multipoint observations at varying satellite separations. Altogether, the Cluster observations described here mesh rather well with theories

  15. Multielemental analyses of tree rings by inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Hall, G.S.

    1990-01-01

    Inductively coupled plasma mass spectrometry (ICP-MS) was evaluated for major, minor, trace, and ultra-trace elemental analyses of individual tree rings. The samples were obtained from an old-growth Douglas fir growing near Mount St. Helens volcano, and from trees at various other North American sites. Eightly percent of elements from Li to U had detection limits in the solid (wood) below 8.0 ng g -1 . Two anomalous peaks occur in Mount St. Helens samples at A.D. 1478 and 1490 that closely correlate with past eruptions of the volcano. These results show that ICP-MS is a rapid and sensitive analytical method for multielemental analyses of individual tree rings. (author) 16 refs.; 2 figs.; 2 tabs

  16. Predicting Pulsar Scintillation from Refractive Plasma Sheets

    Science.gov (United States)

    Simard, Dana; Pen, Ue-Li

    2018-05-01

    The dynamic and secondary spectra of many pulsars show evidence for long-lived, aligned images of the pulsar that are stationary on a thin scattering sheet. One explanation for this phenomenon considers the effects of wave crests along sheets in the ionized interstellar medium, such as those due to Alfvén waves propagating along current sheets. If these sheets are closely aligned to our line-of-sight to the pulsar, high bending angles arise at the wave crests and a selection effect causes alignment of images produced at different crests, similar to grazing reflection off of a lake. Using geometric optics, we develop a simple parameterized model of these corrugated sheets that can be constrained with a single observation and that makes observable predictions for variations in the scintillation of the pulsar over time and frequency. This model reveals qualitative differences between lensing from overdense and underdense corrugated sheets: Only if the sheet is overdense compared to the surrounding interstellar medium can the lensed images be brighter than the line-of-sight image to the pulsar, and the faint lensed images are closer to the pulsar at higher frequencies if the sheet is underdense, but at lower frequencies if the sheet is overdense.

  17. Moving ring reactor 'Karin-1'

    International Nuclear Information System (INIS)

    1983-12-01

    The conceptual design of a moving ring reactor ''Karin-1'' has been carried out to advance fusion system design, to clarify the research and development problems, and to decide their priority. In order to attain these objectives, a D-T reactor with tritium breeding blanket is designed, a commercial reactor with net power output of 500 MWe is designed, the compatibility of plasma physics with fusion engineering is demonstrated, and some other guideline is indicated. A moving ring reactor is composed mainly of three parts. In the first formation section, a plasma ring is formed and heated up to ignition temperature. The plasma ring of compact torus is transported from the formation section through the next burning section to generate fusion power. Then the plasma ring moves into the last recovery section, and the energy and particles of the plasma ring are recovered. The outline of a moving ring reactor ''Karin-1'' is described. As a candidate material for the first wall, SiC was adopted to reduce the MHD effect and to minimize the interaction with neutrons and charged particles. The thin metal lining was applied to the SiC surface to solve the problem of the compatibility with lithium blanket. Plasma physics, the engineering aspect and the items of research and development are described. (Kako, I.)

  18. Sheet pinch devices

    International Nuclear Information System (INIS)

    Anderson, O.A.; Baker, W.R.; Ise, J. Jr.; Kunkel, W.B.; Pyle, R.V.; Stone, J.M.

    1958-01-01

    Three types of sheet-like discharges are being studied at Berkeley. The first of these, which has been given the name 'Triax', consists of a cylindrical plasma sleeve contained between two coaxial conducting cylinders A theoretical analysis of the stability of the cylindrical sheet plasma predicts the existence of a 'sausage-mode' instability which is, however, expected to grow more slowly than in the case of the unstabilized linear pinch (by the ratio of the radial dimensions). The second pinch device employs a disk shaped discharge with radial current guided between flat metal plates, this configuration being identical to that of the flat hydromagnetic capacitor without external magnetic field. A significant feature of these configurations is the absence of a plasma edge, i.e., there are no regions of sharply curved magnetic field lines anywhere in these discharges. The importance of this fact for stability is not yet fully investigated theoretically. As a third configuration a rectangular, flat pinch tube has been constructed, and the behaviour of a flat plasma sheet with edges is being studied experimentally

  19. Spontaneous magnetic fluctuations and collisionless regulation of the Earth's plasma sheet

    Science.gov (United States)

    Moya, P. S.; Espinoza, C.; Stepanova, M. V.; Antonova, E. E.; Valdivia, J. A.

    2017-12-01

    Even in the absence of instabilities, plasmas often exhibit inherent electromagnetic fluctuations which are present due to the thermal motion of charged particles, sometimes called thermal (quasi-thermal) noise. One of the fundamental and challenging problems of laboratory, space, and astrophysical plasma physics is the understanding of the relaxation processes of nearly collisionless plasmas, and the resultant state of electromagnetic plasma turbulence. The study of thermal fluctuations can be elegantly addressed by using the Fluctuation-Dissipation Theorem that describes the average amplitude of the fluctuations through correlations of the linear response of the media with the perturbations of the equilibrium state (the dissipation). Recently, it has been shown that solar wind plasma beta and temperature anisotropy observations are bounded by kinetic instabilities such as the ion cyclotron, mirror, and firehose instabilities. The magnetic fluctuations observed within the bounded area are consistent with the predictions of the Fluctuation-Dissipation theorem even far below the kinetic instability thresholds, with an enhancement of the fluctuation level near the thresholds. Here, for the very first time, using in-situ magnetic field and plasma data from the THEMIS spacecraft, we show that such regulation also occurs in the Earth's plasma sheet at the ion scales and that, regardless of the clear differences between the solar wind and the magnetosphere environments, spontaneous fluctuation and their collisionless regulation seem to be fundamental features of space and astrophysical plasmas, suggesting the universality of the processes.

  20. Acceleration of magnetized plasma rings

    International Nuclear Information System (INIS)

    Hartman, D.; Eddleman, J.; Hammer, J.H.

    1982-01-01

    One scheme is considered, acceleration of a ring between coaxial electrodes by a B/sub theta/ field as in a coaxial rail-gun. If the electrodes are conical, a ring accelerated towards the apex of the cone undergoes self-similar compression (focussing) during acceleration. Because the allowable acceleration force F/sub a/ = kappa U/sub m//R (kappa - 2 , the accelerating distance for conical electrodes is considerably shortened over that required for coaxial electrodes. In either case however, since the accelerating flux can expand as the ring moves, most of the accelerating field energy can be converted into kinetic energy of the ring leading to high efficiency

  1. Growth of carbon fibres, sheets and tubes on diamond films under high power plasma etching conditions

    Energy Technology Data Exchange (ETDEWEB)

    Villalpando, I. [Centro de Investigacion de los Recursos Naturales, Antigua Normal Rural, Salaices, Lopez, Chihuahua (Mexico); John, P.; Wilson, J. I. B., E-mail: isaelav@hotmail.com [School of Engineering and Physical Sciences, Heriot-Watt University, Riccarton, Edinburgh, EH14-4AS (United Kingdom)

    2017-11-01

    The application of diamond as a plasma facing material for fusion reactors can be limited by unknown reactions between diamond and the chamber materials transported by the plasma. Transformation of diamond to other structures can cause problems such as contamination of the plasma with loose particles or retention of gases. We have seen that diamond thin films are eroded under hydrogen plasma etching, but if silicon is present the growth of various carbon structures on diamond films is observed. We have produced carbon with different morphologies on diamond films including fibres, sheets with flower-like shapes and tubes and proposed growth mechanisms based on the results of scanning electron microscopy, X-ray photoelectron spectroscopy and Raman spectroscopy. Sample surfaces contain silicon and are oxidised having COO and CO groups as seen by XP S analysis. Raman analyses revealed a spectrum typical for graphite combined with that from diamond that remains on the surface after hydrogen bombardment. The results of this sturdy show the experimental conditions in which carbon fibres, sheets and tubes are produced under high-power hydrogen etching of diamond films and open the possibility to other applications such as catalysts, sensors and the production of electrodes. (Author)

  2. Growth of carbon fibres, sheets and tubes on diamond films under high power plasma etching conditions

    International Nuclear Information System (INIS)

    Villalpando, I.; John, P.; Wilson, J. I. B.

    2017-01-01

    The application of diamond as a plasma facing material for fusion reactors can be limited by unknown reactions between diamond and the chamber materials transported by the plasma. Transformation of diamond to other structures can cause problems such as contamination of the plasma with loose particles or retention of gases. We have seen that diamond thin films are eroded under hydrogen plasma etching, but if silicon is present the growth of various carbon structures on diamond films is observed. We have produced carbon with different morphologies on diamond films including fibres, sheets with flower-like shapes and tubes and proposed growth mechanisms based on the results of scanning electron microscopy, X-ray photoelectron spectroscopy and Raman spectroscopy. Sample surfaces contain silicon and are oxidised having COO and CO groups as seen by XP S analysis. Raman analyses revealed a spectrum typical for graphite combined with that from diamond that remains on the surface after hydrogen bombardment. The results of this sturdy show the experimental conditions in which carbon fibres, sheets and tubes are produced under high-power hydrogen etching of diamond films and open the possibility to other applications such as catalysts, sensors and the production of electrodes. (Author)

  3. Prototype moving-ring reactor

    International Nuclear Information System (INIS)

    Smith, A.C. Jr.; Ashworth, C.P.; Abreu, K.E.

    1982-01-01

    We have completed a design of the Prototype Moving-Ring Reactor. The fusion fuel is confined in current-carrying rings of magnetically-field-reversed plasma (Compact Toroids). The plasma rings, formed by a coaxial plasma gun, undergo adiabatic magnetic compression to ignition temperature while they are being injected into the reactor's burner section. The cylindrical burner chamber is divided into three burn stations. Separator coils and a slight axial guide field gradient are used to shuttle the ignited toroids rapidly from one burn station to the next, pausing for 1/3 of the total burn time at each station. D-T- 3 He ice pellets refuel the rings at a rate which maintains constant radiated power

  4. Simultaneous Measurements of Substorm-Related Electron Energization in the Ionosphere and the Plasma Sheet

    Science.gov (United States)

    Sivadas, N.; Semeter, J.; Nishimura, Y.; Kero, A.

    2017-10-01

    On 26 March 2008, simultaneous measurements of a large substorm were made using the Poker Flat Incoherent Scatter Radar, Time History of Events and Macroscale Interactions during Substorm (THEMIS) spacecraft, and all sky cameras. After the onset, electron precipitation reached energies ≳100 keV leading to intense D region ionization. Identifying the source of energetic precipitation has been a challenge because of lack of quantitative and magnetically conjugate measurements of loss cone electrons. In this study, we use the maximum entropy inversion technique to invert altitude profiles of ionization measured by the radar to estimate the loss cone energy spectra of primary electrons. By comparing them with magnetically conjugate measurements from THEMIS-D spacecraft in the nightside plasma sheet, we constrain the source location and acceleration mechanism of precipitating electrons of different energy ranges. Our analysis suggests that the observed electrons ≳100 keV are a result of pitch angle scattering of electrons originating from or tailward of the inner plasma sheet at 9RE, possibly through interaction with electromagnetic ion cyclotron waves. The electrons of energy 10-100 keV are produced by pitch angle scattering due to a potential drop of ≲10 kV in the auroral acceleration region (AAR) as well as wave-particle interactions in and tailward of the AAR. This work demonstrates the utility of magnetically conjugate ground- and space-based measurements in constraining the source of energetic electron precipitation. Unlike in situ spacecraft measurements, ground-based incoherent scatter radars combined with an appropriate inversion technique can be used to provide remote and continuous-time estimates of loss cone electrons in the plasma sheet.

  5. Modeling magnetospheric plasma; Proceedings of the First Huntsville Workshop on Magnetosphere/Ionosphere Plasma Models, Guntersville, AL, Oct. 14-16, 1987

    International Nuclear Information System (INIS)

    Moore, T.E.; Waite, J.H. Jr.

    1988-01-01

    The conference presents papers on the global modeling of magnetospheric plasma processes, the modeling of the midlatitude ionosphere and plasmasphere, the modeling of the auroral zone and boundary layer, the modeling of the polar magnetosphere and ionosphere, and the modeling of the plasma sheet and ring current. Particular attention is given to the kinetic approach in magnetospheric plasma transport modeling, self-consistent neutral point current and fields from single particle dynamics, preliminary statistical survey of plasmaspheric ion properties from observations by DE 1/RIMS, and a model of auroral potential structures based on dynamics explorer plasma data. Other topics include internal shear layers in auroral dynamics, quantitative parameterization of energetic ionospheric ion outflow, and open flux merging in an expanding polarcap model

  6. Oscillation of the current sheet velocity in plasma focus discharges

    International Nuclear Information System (INIS)

    Melzacki, K.; Nardi, V.

    1994-01-01

    The oscillation of the propagation speed of the plasma focus current sheet has been recorded with schlieren photography. The sheet stuttering in the propagation during the implosion phase has a frequency of about 60 MHz. The effect could be recorded due to application of long exposure time (60 ns) technique. It is not detectable in the subnanosecond pictures. The pictures are taken in black schlieren. The probing range of the electron density gradient, with integration along the path of the 1 J, Q-switched ruby laser beam, has been selected by the size of the stop and aperture within 3 x 10 18 cm -3 and 3 x 10 20 cm -3 . Raising the sensitivity threshold to 2 x 10 19 cm -3 (refraction angle of 4 mrad) has helped to clear the pictures by limiting their image to high gradients of density only. With this technique (and other diagnostic methods) the dynamics of 6 kJ, 16 kV plasma focus discharges in deuterium at 5 torr, with a 10% decrease of the magnetic insulation at the breech has been investigated. The average implosion velocity of the current sheath obtained with this effect, 5 x 10 6 cm/s, is consistent with those measured by the smear effect, and the electric probe. The electron density gradient has been determined at several instants; at the pinch time it is (3 ± 1.5) x 10 20 cm -4 . The data are discussed on the basis of several pictures

  7. Single clay sheets inside electrospun polymer nanofibers

    Science.gov (United States)

    Sun, Zhaohui

    2005-03-01

    Nanofibers were prepared from polymer solution with clay sheets by electrospinning. Plasma etching, as a well controlled process, was used to supply electrically excited gas molecules from a glow discharge. To reveal the structure and arrangement of clay layers in the polymer matrix, plasma etching was used to remove the polymer by controlled gasification to expose the clay sheets due to the difference in reactivity. The shape, flexibility, and orientation of clay sheets were studied by transmission and scanning electron microscopy. Additional quantitative information on size distribution and degree of exfoliation of clay sheets were obtained by analyzing electron micrograph of sample after plasma etching. Samples in various forms including fiber, film and bulk, were thinned by plasma etching. Morphology and dispersion of inorganic fillers were studied by electron microscopy.

  8. Accuracy enhancement of laser induced breakdown spectra using permittivity and size optimized plasma confinement rings.

    Science.gov (United States)

    Li, An; Guo, Shuai; Wazir, Nasrullah; Chai, Ke; Liang, Liang; Zhang, Min; Hao, Yan; Nan, Pengfei; Liu, Ruibin

    2017-10-30

    The inevitable problems in laser induced breakdown spectroscopy are matrix effect and statistical fluctuation of the spectral signal, which can be partly avoided by utilizing a proper confined unit. The dependences of spectral signal enhancement on relative permittivity were studied by varying materials to confine the plasma, which include polytetrafluoroethylene(PTFE), nylon/dacron, silicagel, and nitrile-butadiene rubber (NBR) with the relative permittivity 2.2, ~3.3, 3.6, 8~13, 15~22. We found that higher relative permittivity rings induce stronger enhancement ability, which restricts the energy dissipation of plasma better and due to the reflected electromagnetic wave from the wall of different materials, the electromagnetic field of plasma can be well confined and makes the distribution of plasma more orderly. The spectral intensities of the characteristic lines Si I 243.5 nm and Si I 263.1 nm increased approximately 2 times with relative permittivity values from 2.2 to ~20. The size dependent enhancement of PTFE was further checked and the maximum gain was realized by using a confinement ring with a diameter size of 5 mm and a height of 3 mm (D5mmH3mm), and the rings with D2mmH1mm and D3mmH2mm also show higher enhancement factor. In view of peak shift, peak lost and accidental peaks in the obtained spectra were properly treated in data progressing; the spectral fluctuation decreased drastically for various materials with different relative permittivities as confined units, which means the core of plasma is stabilized, attributing to the confinement effect. Furthermore, the quantitative analysis in coal shows wonderful results-the prediction fitting coefficient R 2 reaches 0.98 for ash and 0.99 for both volatile and carbon.

  9. Early results of microwave transmission experiments through an overly dense rectangular plasma sheet with microparticle injection

    Energy Technology Data Exchange (ETDEWEB)

    Gillman, Eric D., E-mail: eric.gillman.ctr@nrl.navy.mil [National Research Council Postdoctoral Associate at the U.S. Naval Research Laboratory, Washington, DC 20375 (United States); Amatucci, W. E. [U.S. Naval Research Laboratory, Washington, DC 20375 (United States)

    2014-06-15

    These experiments utilize a linear hollow cathode to create a dense, rectangular plasma sheet to simulate the plasma layer surrounding vehicles traveling at hypersonic velocities within the Earth's atmosphere. Injection of fine dielectric microparticles significantly reduces the electron density and therefore lowers the electron plasma frequency by binding a significant portion of the bulk free electrons to the relatively massive microparticles. Measurements show that microwave transmission through this previously overly dense, impenetrable plasma layer increases with the injection of alumina microparticles approximately 60 μm in diameter. This method of electron depletion is a potential means of mitigating the radio communications blackout experienced by hypersonic vehicles.

  10. An Exploration of Heating Mechanisms in a Supra-arcade Plasma Sheet Formed after a Coronal Mass Ejection

    Energy Technology Data Exchange (ETDEWEB)

    Reeves, Katharine K. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St. MS 58, Cambridge, MA 02138 (United States); Freed, Michael S.; McKenzie, David E. [Montana State University, Bozeman, MT 59717 (United States); Savage, Sabrina L., E-mail: kreeves@cfa.harvard.edu [NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States)

    2017-02-10

    We perform a detailed analysis of the thermal structure of the region above the post-eruption arcade for a flare that occurred on 2011 October 22. During this event, a sheet of hot plasma is visible above the flare loops in the 131 Å bandpass of the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory . Supra-arcade downflows (SADs) are observed traveling sunward through the post-eruption plasma sheet. We calculate differential emission measures using the AIA data and derive an emission measure weighted average temperature in the supra-arcade region. In areas where many SADs occur, the temperature of the supra-arcade plasma tends to increase, while in areas where no SADs are observed, the temperature tends to decrease. We calculate the plane-of-sky velocities in the supra-arcade plasma and use them to determine the potential heating due to adiabatic compression and viscous heating. Of the 13 SADs studied, 10 have noticeable signatures in both the adiabatic and the viscous terms. The adiabatic heating due to compression of plasma in front of the SADs is on the order of 0.1–0.2 MK/s, which is similar in magnitude to the estimated conductive cooling rate. This result supports the notion that SADs contribute locally to the heating of plasma in the supra-arcade region. We also find that in the region without SADs, the plasma cools at a rate that is slower than the estimated conductive cooling, indicating that additional heating mechanisms may act globally to keep the plasma temperature high.

  11. An Exploration of Heating Mechanisms in a Supra-arcade Plasma Sheet Formed after a Coronal Mass Ejection

    International Nuclear Information System (INIS)

    Reeves, Katharine K.; Freed, Michael S.; McKenzie, David E.; Savage, Sabrina L.

    2017-01-01

    We perform a detailed analysis of the thermal structure of the region above the post-eruption arcade for a flare that occurred on 2011 October 22. During this event, a sheet of hot plasma is visible above the flare loops in the 131 Å bandpass of the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory . Supra-arcade downflows (SADs) are observed traveling sunward through the post-eruption plasma sheet. We calculate differential emission measures using the AIA data and derive an emission measure weighted average temperature in the supra-arcade region. In areas where many SADs occur, the temperature of the supra-arcade plasma tends to increase, while in areas where no SADs are observed, the temperature tends to decrease. We calculate the plane-of-sky velocities in the supra-arcade plasma and use them to determine the potential heating due to adiabatic compression and viscous heating. Of the 13 SADs studied, 10 have noticeable signatures in both the adiabatic and the viscous terms. The adiabatic heating due to compression of plasma in front of the SADs is on the order of 0.1–0.2 MK/s, which is similar in magnitude to the estimated conductive cooling rate. This result supports the notion that SADs contribute locally to the heating of plasma in the supra-arcade region. We also find that in the region without SADs, the plasma cools at a rate that is slower than the estimated conductive cooling, indicating that additional heating mechanisms may act globally to keep the plasma temperature high.

  12. Three-dimensional earthward fast flow in the near-Earth plasma sheet in a sheared field: comparisons between simulations and observations

    Directory of Open Access Journals (Sweden)

    K. Kondoh

    2009-06-01

    Full Text Available Three-dimensional configuration of earthward fast flow in the near-Earth plasma sheet is studied using three-dimensional magnetohydrodynamics (MHD simulations on the basis of the spontaneous fast reconnection model. In this study, the sheared magnetic field in the plasma sheet is newly considered in order to investigate the effects of it to the earthward fast flow, and the results are discussed in comparison with no-shear simulations. The virtual probes located at different positions in our simulation domain in shear/no-shear cases could explain different behavior of fast flows in the real observations.

  13. 3D Printing of Thermo-Responsive Methylcellulose Hydrogels for Cell-Sheet Engineering.

    Science.gov (United States)

    Cochis, Andrea; Bonetti, Lorenzo; Sorrentino, Rita; Contessi Negrini, Nicola; Grassi, Federico; Leigheb, Massimiliano; Rimondini, Lia; Farè, Silvia

    2018-04-10

    A possible strategy in regenerative medicine is cell-sheet engineering (CSE), i.e., developing smart cell culture surfaces from which to obtain intact cell sheets (CS). The main goal of this study was to develop 3D printing via extrusion-based bioprinting of methylcellulose (MC)-based hydrogels. Hydrogels were prepared by mixing MC powder in saline solutions (Na₂SO₄ and PBS). MC-based hydrogels were analyzed to investigate the rheological behavior and thus optimize the printing process parameters. Cells were tested in vitro on ring-shaped printed hydrogels; bulk MC hydrogels were used for comparison. In vitro tests used murine embryonic fibroblasts (NIH/3T3) and endothelial murine cells (MS1), and the resulting cell sheets were characterized analyzing cell viability and immunofluorescence. In terms of CS preparation, 3D printing proved to be an optimal approach to obtain ring-shaped CS. Cell orientation was observed for the ring-shaped CS and was confirmed by the degree of circularity of their nuclei: cell nuclei in ring-shaped CS were more elongated than those in sheets detached from bulk hydrogels. The 3D printing process appears adequate for the preparation of cell sheets of different shapes for the regeneration of complex tissues.

  14. 3D Printing of Thermo-Responsive Methylcellulose Hydrogels for Cell-Sheet Engineering

    Directory of Open Access Journals (Sweden)

    Andrea Cochis

    2018-04-01

    Full Text Available A possible strategy in regenerative medicine is cell-sheet engineering (CSE, i.e., developing smart cell culture surfaces from which to obtain intact cell sheets (CS. The main goal of this study was to develop 3D printing via extrusion-based bioprinting of methylcellulose (MC-based hydrogels. Hydrogels were prepared by mixing MC powder in saline solutions (Na2SO4 and PBS. MC-based hydrogels were analyzed to investigate the rheological behavior and thus optimize the printing process parameters. Cells were tested in vitro on ring-shaped printed hydrogels; bulk MC hydrogels were used for comparison. In vitro tests used murine embryonic fibroblasts (NIH/3T3 and endothelial murine cells (MS1, and the resulting cell sheets were characterized analyzing cell viability and immunofluorescence. In terms of CS preparation, 3D printing proved to be an optimal approach to obtain ring-shaped CS. Cell orientation was observed for the ring-shaped CS and was confirmed by the degree of circularity of their nuclei: cell nuclei in ring-shaped CS were more elongated than those in sheets detached from bulk hydrogels. The 3D printing process appears adequate for the preparation of cell sheets of different shapes for the regeneration of complex tissues.

  15. The Warm Plasma Composition in the Inner Magnetosphere during 2012-2015

    Science.gov (United States)

    Jahn, J. M.; Goldstein, J.; Reeves, G. D.; Fernandes, P. A.; Skoug, R. M.; Larsen, B.; Spence, H. E.

    2017-12-01

    Ionospheric heavy ions play an important role in the dynamics of Earth's magnetosphere. The greater mass and gyro radius of ionospheric oxygen differentiates its behavior from protons at the same energies. Oxygen may have an impact on tail reconnection processes, and it can at least temporarily dominate the energy content of the ring current during geomagnetic storms. At sub-keV energies, multi-species ion populations in the inner magnetosphere form the warm plasma cloak, occupying the energy range between the plasmasphere and the ring current. Lastly, cold lighter ions from the mid-latitude ionosphere create the co-rotating plasmasphere whose outer regions can interact with the plasma cloak, plasma sheet, ring current, and outer electron belt. In this paper we present a statistical view of warm, cloak-like ion populations in the inner magnetosphere, contrasting in particular the warm plasma composition during quiet and active times. We study the relative abundances and absolute densities of warm plasma measured by the Van Allen Probes, whose two spacecraft cover the inner magnetosphere from plasmaspheric altitudes close to Earth to just inside geostationary orbit. We observe that warm (> 30 eV) oxygen is most abundant closer to the plasmasphere boundary whereas warm hydrogen dominates closer to geostationary orbit. Warm helium is usually a minor constituent, but shows a noticeable enhancement in the near-Earth dusk sector.

  16. Experimental investigation of the trapping and energy loss mechanisms of intense relativistic electron rings in hydrogen gas and plasma

    International Nuclear Information System (INIS)

    Smith, A.C. Jr.

    1977-01-01

    The results of an experimental study on the trapping and energy loss mechanisms of intense, relativistic electron rings confined in Astron-like magnetic field geometries are presented. The work is subdivided into four sections: gas trapping; average ring electron energetics; plasma trapping, and hollow-beam cusp-injection into gas and plasma. The mechanisms by which the injected beam coalesces into a current ring in the existing Cornell RECE-Berta facility are considered. To investigate the nature of ring electron energy loss mechanisms following completion of the trapping process, a diagnostic was developed utilizing multi-foil X-ray absorption spectroscopy to analyze the Bremsstrahlung generated by the electrons as they impinge upon a thin tungsten wire target suspended in the circulating current. Finally, a set of preliminary experimental results is presented in which an annular electron beam was passed through a coaxial, non-adiabatic magnetic cusp located at one end of a magnetic mirror well

  17. On contribution of energetic and heavy ions to the plasma pressure: Storm Sept 27 - Oct 4, 2002

    Science.gov (United States)

    Kronberg, E. A.; Mouikis, C.; Kistler, L. M.; Dandouras, I. S.; Daly, P. W.; Welling, D. T.; Grigorenko, E. E.

    2015-12-01

    Contribution of the energetic ions (>> 40 keV) and of heavy ions into the total plasma pressure is often neglected. In this study we evaluate the contribution of these components for the storm observed from September 27 to October 4 in 2002. The thermal component of the pressure for the protons, helium and oxygen at 0--40 keV/q is measured by the Cluster/CIS/CODIF sensor. The contribution of the energetic ions at energies >> 40 keV is calculated from the Cluster/RAPID/IIMS observations. The results show that before the storm has initiated, the contribution of the energetic ions in to the total pressure is indeed negligible in the tail plasma sheet, less than ˜1%. However, with the storm development contribution of the energetic part becomes significant, up to ˜30%, towards the recovery phase and cannot be neglected. Heavy ions contribute to the 27% of the total pressure and half of them are energetic. The contribution of energetic ions to the pressure of the ring current (L≃5) is significant. The heavy ions play a dominant role in the plasma pressure, about 62% during the main phase of the magnetic storm. Half of them are energetic ions. The SWMF/BATS-R-US MHD model underestimates the contribution of the energetic and heavy ions in to the ion distribution in the magnetotail plasma sheet and the ring current. The ring current plasma pressure distorts the terrestrial internal magnetic field and defines magnetic storm. Therefore, it is essential to take in to account the contribution of the energetic and heavy ions.

  18. Casimir effects for a flat plasma sheet: II. Fields and stresses

    International Nuclear Information System (INIS)

    Barton, G

    2005-01-01

    We study the self-stresses experienced by the single plasma sheet modelled in the preceding paper, and determine the exact mean-squared Maxwell fields in vacuum around it. These are effects that probe the physics of such systems further than do the ground-state eigenvalues responsible for the cohesive energy β; in particular, unlike β they depend not only on the collective properties but also on the self-fields of the charge carriers. The classical part of the interaction between the sheet and a slowly moving charged particle follows as a byproduct. The main object is to illustrate, in simple closed or almost closed form, the consequences of imperfect (dispersive) reflectivity. The largely artificial limit of perfect reflection reduces all the results to those long familiar outside a half-space taken to reflect perfectly from the outset; but a careful examination of the approach to this limit is needed in order to resolve paradoxes associated with the surface energy, and with the mechanism which, in the limit, disjoins the two flanking half-spaces both electromagnetically and quantally

  19. Modelling of the ring current in Saturn's magnetosphere

    Directory of Open Access Journals (Sweden)

    G. Giampieri

    2004-01-01

    Full Text Available The existence of a ring current inside Saturn's magnetosphere was first suggested by Smith et al. (1980 and Ness et al. (1981, 1982, in order to explain various features in the magnetic field observations from the Pioneer 11 and Voyager 1 and 2 spacecraft. Connerney et al. (1983 formalized the equatorial current model, based on previous modelling work of Jupiter's current sheet and estimated its parameters from the two Voyager data sets. Here, we investigate the model further, by reconsidering the data from the two Voyager spacecraft, as well as including the Pioneer 11 flyby data set. First, we obtain, in closed form, an analytic expression for the magnetic field produced by the ring current. We then fit the model to the external field, that is the difference between the observed field and the internal magnetic field, considering all the available data. In general, through our global fit we obtain more accurate parameters, compared to previous models. We point out differences between the model's parameters for the three flybys, and also investigate possible deviations from the axial and planar symmetries assumed in the model. We conclude that an accurate modelling of the Saturnian disk current will require taking into account both of the temporal variations related to the condition of the magnetosphere, as well as non-axisymmetric contributions due to local time effects. Key words. Magnetospheric physics (current systems; planetary magnetospheres; plasma sheet

  20. Electron energization in the geomagnetic tail current sheet

    International Nuclear Information System (INIS)

    Lyons, L.R.

    1984-01-01

    Electron motion in the distant tail current sheet is evaluated and found to violate the guiding center approximation at energies > or approx. =100 eV. Most electrons within the energy range approx.10 -1 -10 2 keV that enter the current sheet become trapped within the magnetic field reversal region. These electrons then convect earthward and gain energy from the cross-tail electric field. If the energy spectrum of electrons entering the current sheet is similar to that of electrons from the boundary layer surrounding the magnetotail, the energy gain from the electric field produces electron energy spectra comparable to those observed in the earth's plasma sheet. Thus current sheet interactions can be a significant source of particles and energy for plasma sheet electrons as well as for plasma sheet ions. A small fraction of electrons within the current sheet has its pitch angles scattered so as to be ejected from the current sheet within the atmospheric loss cone. These electrons can account for the electron precipitation near the high-latitude boundary of energetic electrons, which is approximately isotropic in pitch angle up to at least several hundred keV. Current sheet interaction should cause approximately isotropic auroral precipitation up to several hundred keV energies, which extends to significantly lower latitudes for ions than for electrons in agreement with low-altitude satellite observations. Electron precipitation associated with diffuse aurora generally has a transition at 1-10 keV to anisotropic pitch angle distributions. Such electron precipitation cannot be explained by current sheet interactions, but it can be explained by pitch angle diffusion driven by plasma turbulence

  1. Stable confinement of toroidal electron plasma in an internal conductor device Prototype-Ring Trap

    International Nuclear Information System (INIS)

    Saitoh, H.; Yoshida, Z.; Watanabe, S.

    2005-01-01

    A pure electron plasma has been produced in an internal conductor device Prototype-Ring Trap (Proto-RT). The temporal evolution of the electron plasma was investigated by the measurement of electrostatic fluctuations. Stable confinement was realized when the potential profile adjusted to match the magnetic surfaces. The confinement time varies as a function of the magnetic field strength and the neutral gas pressure, and is comparable to the diffusion time of electrons determined by the classical collisions with neutral gas. Although the addition of a toroidal magnetic field stabilized the electrostatic fluctuation of the plasma, the effects of the magnetic shear shortened the stable confinement time, possibly because of the obstacles of coil support structures

  2. Relation between current sheets and vortex sheets in stationary incompressible MHD

    Directory of Open Access Journals (Sweden)

    D. H. Nickeler

    2012-03-01

    Full Text Available Magnetohydrodynamic configurations with strong localized current concentrations and vortices play an important role in the dissipation of energy in space and astrophysical plasma. Within this work we investigate the relation between current sheets and vortex sheets in incompressible, stationary equilibria. For this approach it is helpful that the similar mathematical structure of magnetohydrostatics and stationary incompressible hydrodynamics allows us to transform static equilibria into stationary ones. The main control function for such a transformation is the profile of the Alfvén-Mach number MA, which is always constant along magnetic field lines, but can change from one field line to another. In the case of a global constant MA, vortices and electric current concentrations are parallel. More interesting is the nonlinear case, where MA varies perpendicular to the field lines. This is a typical situation at boundary layers like the magnetopause, heliopause, the solar wind flowing around helmet streamers and at the boundary of solar coronal holes. The corresponding current and vortex sheets show in some cases also an alignment, but not in every case. For special density distributions in 2-D, it is possible to have current but no vortex sheets. In 2-D, vortex sheets of field aligned-flows can also exist without strong current sheets, taking the limit of small Alfvén Mach numbers into account. The current sheet can vanish if the Alfvén Mach number is (almost constant and the density gradient is large across some boundary layer. It should be emphasized that the used theory is not only valid for small Alfvén Mach numbers MA MA ≲ 1. Connection to other theoretical approaches and observations and physical effects in space plasmas are presented. Differences in the various aspects of theoretical investigations of current sheets and vortex sheets are given.

  3. Particle balance analysis on carbon sheet pump applied to the GAMMA10 tandem mirror plasmas

    International Nuclear Information System (INIS)

    Ishimoto, Yuki; Nakashima, Yousuke; Ishinuki, Eiichi; Kobayashi, Shinji; Yoshikawa, Masayuki; Tamano, Teruo; Yatsu, Kiyoshi; Sagara, Akio

    2000-01-01

    Carbon Sheet Pump (CSP) is expected as a tool for reduction of hydrogen recycling. In this paper, particle balance in the CSP is described. The pumping efficiencies estimated from the time evolution of hydrogen pressures during plasma discharges and those estimated from the thermal desorption experiments have no remarkable difference between the cases of 30degC and 200degC within experimental errors. In cases that CSP is used in actual plasma conditions, we established a method which reduces adsorbed gases on the CSP surface with sustaining a sufficient pumping efficiency by continuously heating CSP. (author)

  4. Field-reversing electron and ion rings for the confinement and heating of plasmas. Annual progress report, September 1, 1980-August 31, 1981

    International Nuclear Information System (INIS)

    Fleischmann, H.H.

    1981-09-01

    Our experimental work on the RECE-Christa device during the present period concentrated on obtaining conditions for first measurements of plasma confinement and on the generation of mixed-CT configurations. The most important results in these areas included the generation of rings with plasma currents significantly larger than originally hoped for, and - on the other hand - a failure to propagate rings efficiently in background gas densities below 1 mTorr. In addition, a digital data management system has been acquired and the respective software is being completed. Finally, theoretical work was performed on calculating banana drift orbits in Spheromak-type configurations and on developing a semi-analytic model for the equilibrium of ion rings which could be used for estimating the ring behavior during the slow-down of the ions

  5. The Plasma Sheet as Natural Symmetry Plane for Dipolarization Fronts in the Earth's Magnetotail

    Science.gov (United States)

    Frühauff, D.; Glassmeier, K.-H.

    2017-11-01

    In this work, observations of multispacecraft mission Time History of Events and Macroscale Interactions during Substorms are used for statistical investigation of dipolarization fronts in the near-Earth plasma sheet of the magnetotail. Using very stringent criteria, 460 events are detected in almost 10 years of mission data. Minimum variance analysis is used to determine the normal directions of the phase fronts, providing evidence for the existence of a natural symmetry of these phenomena, given by the neutral sheet of the magnetotail. This finding enables the definition of a local coordinate system based on the Tsyganenko model, reflecting the intrinsic orientation of the neutral sheet and, therefore, the dipolarization fronts. In this way, the comparison of events with very different background conditions is improved. Through this study, the statistical results of Liu, Angelopoulos, Runov, et al. (2013) are both confirmed and extended. In a case study, the knowledge of this plane of symmetry helps to explain the concave curvature of dipolarization fronts in the XZ plane through phase propagation speeds of magnetoacoustic waves. A second case study is presented to determine the central current system of a passing dipolarization front through a constellation of three spacecraft. With this information, a statistical analysis of spacecraft observations above and below the neutral sheet is used to provide further evidence for the neutral sheet as the symmetry plane and the central current system. Furthermore, it is shown that the signatures of dipolarization fronts are under certain conditions closely related to that of flux ropes, indicating a possible relationship between these two transient phenomena.

  6. Moving-ring field-reversed mirror reactor

    International Nuclear Information System (INIS)

    Smith, A.C. Jr.; Ashworth, C.P.; Abreu, K.E.

    1981-01-01

    We describe a first prototype fusion reactor design of the Moving-Ring Field-Reversed Mirror Reactor. The fusion fuel is confined in current-carrying rings of magnetically-field-reversed plasma. The plamsa rings, formed by a coaxial plasma gun, are magnetically compressed to ignition temperature while they are being injected into the reactor's burner section. DT ice pellets refuel the rings during the burn at a rate which maintains constant fusion power. A steady train of plasma rings moves at constant speed through the reactor under the influence of a slightly diverging magnetic field. The aluminum first wall and breeding zone structure minimize induced radioactivity; hands-on maintenance is possible on reactor components outside the breeding blanket. Helium removes the heat from the Li 2 O tritium breeding blanket and is used to generate steam. The reactor produces a constant, net power of 376 MW

  7. Sawtooth events and O+ in the plasma sheet and boundary layer: CME- and SIR-driven events

    Science.gov (United States)

    Lund, E. J.; Nowrouzi, N.; Kistler, L. M.; Cai, X.; Liao, J.

    2017-12-01

    The role of ionospheric ions in sawtooth events is an open question. Simulations[1,2,3] suggest that O+ from the ionosphere produces a feedback mechanism for driving sawtooth events. However, observational evidence[4,5] suggest that the presence of O+ in the plasma sheet is neither necessary nor sufficient. In this study we investigate whether the solar wind driver of the geomagnetic storm has an effect on the result. Building on an earlier study[4] that used events for which Cluster data is available in the plasma sheet and boundary layer, we perform a superposed epoch analysis for coronal mass ejection (CME) driven storms and streaming interaction region (SIR) driven storms separately, to investigate the hypothesis that ionospheric O+ is an important contributor for CME-driven storms but not SIR-driven storms[2]. [1]O. J. Brambles et al. (2011), Science 332, 1183.[2]O. J. Brambles et al. (2013), JGR 118, 6026.[3]R. H. Varney et al. (2016), JGR 121, 9688.[4]J. Liao et al. (2014), JGR 119, 1572.[5]E. J. Lund et al. (2017), JGR, submitted.

  8. Combination of platelet-rich plasma within periodontal ligament stem cell sheets enhances cell differentiation and matrix production.

    Science.gov (United States)

    Xu, Qiu; Li, Bei; Yuan, Lin; Dong, Zhiwei; Zhang, Hao; Wang, Han; Sun, Jin; Ge, Song; Jin, Yan

    2017-03-01

    The longstanding goal of periodontal therapy is to regenerate periodontal tissues. Although platelet-rich plasma (PRP) has been gaining increasing popularity for use in the orofacial region, whether PRP is useful for periodontal regeneration is still unknown. The purpose of this study was to determine whether a mixture of periodontal ligament stem cell (PDLSC) sheets and PRP promoted bone regeneration, one of the most important measurement indices of periodontal tissue regenerative capability in vitro and in vivo. In this study, we evaluated the effects of different doses of PRP on the differentiation of human PDLSCs. Then cell sheet formation, extracellular matrix deposition and osteogenic gene expression in response to different doses of PRP treatment during sheet grafting was investigated. Furthermore, we implanted PDLSC sheets treated with 1% PRP subcutaneously into immunocompromised mice to evaluate their bone-regenerative capability. The results revealed that 1% PRP significantly enhanced the osteogenic differentiation of PDLSCs. Based on the production of extracellular matrix proteins, the results of scanning electron microscopy and the expression of the osteogenic genes ALP, Runx2, Col-1 and OCN, the provision of 1% PRP for PDLSC sheets was the most effective PRP administration mode for cell sheet formation. The results of in vivo transplantation showed that 1% PRP-mediated PDLSC sheets exhibited better periodontal tissue regenerative capability than those obtained without PRP intervention. These data suggest that a suitable concentration of PRP stimulation may enhance extracellular matrix production and positively affect cell behaviour in PDLSC sheets. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  9. Current sheet characteristics of a parallel-plate electromagnetic plasma accelerator operated in gas-prefilled mode

    Science.gov (United States)

    Liu, Shuai; Huang, Yizhi; Guo, Haishan; Lin, Tianyu; Huang, Dong; Yang, Lanjun

    2018-05-01

    The axial characteristics of a current sheet in a parallel-plate electromagnetic plasma accelerator operated in gas-prefilled mode are reported. The accelerator is powered by a fourteen stage pulse forming network. The capacitor and inductor in each stage are 1.5 μF and 300 nH, respectively, and yield a damped oscillation square wave of current with a pulse width of 20.6 μs. Magnetic probes and photodiodes are placed at various axial positions to measure the behavior of the current sheet. Both magnetic probe and photodiode signals reveal a secondary breakdown when the current reverses the direction. An increase in the discharge current amplitude and a decrease in pressure lead to a decrease in the current shedding factor. The current sheet velocity and thickness are nearly constant during the run-down phase under the first half-period of the current. The current sheet thicknesses are typically in the range of 25 mm to 40 mm. The current sheet velocities are in the range of 10 km/s to 45 km/s when the discharge current is between 10 kA and 55 kA and the gas prefill pressure is between 30 Pa and 800 Pa. The experimental velocities are about 75% to 90% of the theoretical velocities calculated with the current shedding factor. One reason for this could be that the idealized snowplow analysis model ignores the surface drag force.

  10. Spatial variations in the suprathermal ion distributions during substorms in the plasma sheet

    International Nuclear Information System (INIS)

    Kistler, L.M.; Moebius, E.; Klecker, B.; Gloeckler, G.; Ipavich, F.M.; Hamilton, D.C.

    1990-01-01

    Using data from AMPTE IRM and AMPTE CCE, the authors have determined the pre- and post-injection suprathermal energy spectra for the ion species H + , O + , He + , and He ++ for six events in which substorm-associated particle injections are observed in both the near-Earth plasma sheet and farther down the tail. They find similar spectral changes in both locations, with the spectra becoming harder with the injection. Post-injection, the flux decreases exponentially with radial distance. Approximately the same gradient is observed in all species. In addition, they find that although the O + /H + and the He ++ /H + ratios increase with energy per charge, the ratios are approximately the same at the same energy per charge at the two spacecraft. The observations are difficult to explain either with a model in which the ions are accelerated at a neutral line and transported toward Earth or with a model in which the ions are accelerated in the near-Earth region by current disruption/diversion and transported down the tail. In either case, the ions would have to be transported throughout the tail without much energization or deenergization in order to explain the energy per charge correlations. Further, earthward transport without energization would not lead to the observed radial gradient. A combination of these acceleration mechanisms, a disturbance that propagates throughout the plasma sheet, or a more global mechanism may explain the observations

  11. The Inner Magnetosphere Plasma Response to Interplanetary Shocks: Van Allen Probes HOPE Observations

    Science.gov (United States)

    Winter, L. M.; Denton, M.; Ferradas, C.; Henderson, M. G.; Larsen, B.; Reeves, G.; Skoug, R. M.; Thomsen, M. F.

    2017-12-01

    The Van Allen Probes' Helium, Oxygen, Proton, and Electron (HOPE) sensors measure ion and electron populations in the plasmasphere, plasma sheet, and lower-energy ring current, providing unique observations at low energies (0.001-50 keV) and low L-shell (down to 1.5 RE). We use the capabilities of these two spacecraft to probe changes in the low energy particles in response to interplanetary (IP) shocks. We focus on changes in the plasma energies, composition, and pitch angle distributions following IP shocks and storm sudden commencements from 2012-2017 through a comparison of HOPE observations preceding and post shock.

  12. Compressional wave events in the dawn plasma sheet observed by Interball-1

    Directory of Open Access Journals (Sweden)

    O. Verkhoglyadova

    1999-09-01

    Full Text Available Compressional waves with periods greater than 2 min (about 10-30 min at low geomagnetic latitudes, namely compressional Pc5 waves, are studied. The data set obtained with magnetometer MIF-M and plasma analyzer instrument CORALL on board the Interball-1 are analyzed. Measurements performed in October 1995 and October 1996 in the dawn plasma sheet at -30 RE ≤ XGSM and |ZGSM| ≤ 10 RE are considered. Anti-phase variations of magnetic field and ion plasma pressures are analyzed by searching for morphological similarities in the two time series. It is found that longitudinal and transverse magnetic field variations with respect to the background magnetic field are of the same order of magnitude. Plasma velocities are processed for each time period of the local dissimilarity in the pressure time series. Velocity disturbances occur mainly transversely to the local field line. The data reveal the rotation of the velocity vector. Because of the field line curvature, there is no fixed position of the rotational plane in the space. These vortices are localized in the regions of anti-phase variations of the magnetic field and plasma pressures, and the vortical flows are associated with the compressional Pc5 wave process. A theoretical model is proposed to explain the main features of the nonlinear wave processes. Our main goal is to study coupling of drift Alfven wave and magnetosonic wave in a warm inhomogeneous plasma. A vortex is the partial solution of the set of the equations when the compression is neglected. A compression effect gives rise to a nonlinear soliton-like solution.Key words. Magnetosphere physics (magnetotail · Space plasma physics (kinetic and MHD theory; non-linear phenomena

  13. Fluorescence quenching and the "ring-mode" to "red-mode" transition in alkali inductively coupled plasmas

    Science.gov (United States)

    Huang, M.; Bazurto, R.; Camparo, J.

    2018-01-01

    The ring-mode to red-mode transition in alkali metal inductively coupled plasmas (ICPs) (i.e., rf-discharge lamps) is perhaps the most important physical phenomenon affecting these devices as optical pumping light sources for atomic clocks and magnetometers. It sets the limit on useful ICP operating temperature, thereby setting a limit on ICP light output for atomic-clock/magnetometer signal generation, and it is a temperature region of ICP operation associated with discharge instability. Previous work has suggested that the mechanism driving the ring-mode to red-mode transition is associated with radiation trapping, but definitive experimental evidence validating that hypothesis has been lacking. Based on that hypothesis, one would predict that the introduction of an alkali-fluorescence quenching gas (i.e., N2) into the ICP would increase the ring-mode to red-mode transition temperature. Here, we test that prediction, finding direct evidence supporting the radiation-trapping hypothesis.

  14. Assembly for testing weldability of sheet metal

    International Nuclear Information System (INIS)

    David, S.A.; Woodhouse, J.J.

    1985-01-01

    A test assembly for determining the weldability of sheet metal includes a base having a flat side surface with an annular groove in the side surface, a counterbore being formed in the outer wall of the groove and the surface portion of the base circumscribed by the inner wall of the groove being substantially coplanar with the bottom of the counterbore, a test disk of sheet metal the periphery of which is positioned in the counterbore and the outer surface of which is coplanar with one side of the base, and a clamp ring overlying the side surface of the base and the edge portion of the test disk and a plurality of clamp screws which extend through the clamp ring for holding the periphery of the test disk against the bottom of the counterbore

  15. Conceptual design of a moving-ring reactor

    International Nuclear Information System (INIS)

    Smith, A.C.; Carlson, G.A.; Ashworth, C.P.

    1986-01-01

    A design of a prototype moving-ring reactor was completed, and a development plan for a pilot reactor is outlined. The fusion fuel is confined in current-carrying rings of magnetically field-reversed plasma (''compact toroids''). The plasma rings, formed by a coaxial plasma gun, undergo adiabatic magnetic compression to ignition temperature while they are being injected into the reactor's burner section. The cylindrical burner chamber is divided into three ''burn stations.'' Separator coils and a slight axial guide field gradient are used to shuttle the ignited toroids rapidly from one burn station to the next, pausing for one-third of the total burn time at each station. Deuterium-tritium- 3 He ice pellets refuel the rings at a rate that maintains constant radiated power. The fusion power per ring is approx. =105.5 MW. The burn time to reach a fusion energy gain of Q = 30 is 5.9 s

  16. Experiments on sheet metal shearing

    OpenAIRE

    Gustafsson, Emil

    2013-01-01

    Within the sheet metal industry, different shear cutting technologies are commonly used in several processing steps, e.g. in cut to length lines, slitting lines, end cropping etc. Shearing has speed and cost advantages over competing cutting methods like laser and plasma cutting, but involves large forces on the equipment and large strains in the sheet material.Numerical models to predict forces and sheared edge geometry for different sheet metal grades and different shear parameter set-ups a...

  17. Observation of radio frequency ring-shaped hollow cathode discharge plasma with MgO and Al electrodes for plasma processing

    International Nuclear Information System (INIS)

    Ohtsu, Yasunori; Matsumoto, Naoki

    2014-01-01

    Various high-density plasma sources have been proposed for plasma processing. Especially, the hollow cathode discharge is one of the powerful ones. In this work, radio-frequency (RF) driven ring-shaped hollow cathode discharges with high secondary-electron emission have been investigated, using an aluminum (Al) cathode, coated or not with magnesium oxide (MgO). The thickness of MgO thin film is approximately 200 nm. The RF discharge voltage for the coated cathode is almost the same as that for the uncoated one, in a wide range of Ar gas pressure, from 5.3 to 53.2 Pa. The results reveal that the plasma density has a peak at an Ar gas pressure of 10.6 Pa for both cathodes. The plasma density for the coated cathode is about 1.5–3 times higher than that for the uncoated one, at various gas pressures. To the contrary, the electron temperature for the coated cathode is lower than temperature obtained with the uncoated cathode, at various gas pressures. Radial profiles of electron saturation current, which is proportional to plasma flux, are also examined for a wide range of gas pressure. Radial profiles of electron temperature at various axial positions are almost uniform for both cathodes so that the diffusion process due to density gradient is dominant for plasma transport. The secondary electrons emitted from the coated cathode contribute to the improvement of the plasma flux radial profile obtained using the uncoated cathode

  18. Field-reversing electron and ion rings for the confinement and heating of plasmas. Annual progress report, October 1, 1985-September 30, 1986

    International Nuclear Information System (INIS)

    Fleischmann, H.H.

    1986-10-01

    During the present, second period of our contract, the effort of our RECE-group was focussed mainly in four areas: (1) the design and construction of our new main experimental device, the megavolt ion coil experiment (MICE, aimed at generating 1-MeV ion rings) was continued. The device construction was completed and injection experiments recently have started using a half-cusp arrangement. (2) Using our smaller MERGE device (500 keV electrons, cusp injection), we investigated as expected the precessional stabilization of strong electron rings by a resistive wall. As expected, the experiments are completed. The results show excellent agreement with the basic theoretical expectations of our earlier analytic calculations and also with a more detailed computer code recently compiled. (3) Also, our MERGE device was completed as expected; experiments showed successful generation of electron and plasma rings; first experiments on the merging of these rings show a rapid attraction between the rings, which is to be properly slowed down by the introduction of a resistive wall. (4) Our pilot model calculations on mixed-CT configurations were nearly completed; including a survey of relevant plasma ring equilibria with a strong large-orbit particle components. Rough stability limits were obtained by studying the magnetic interaction between the two components

  19. Magnetospheric Multiscale Mission Observations of Magnetic Flux Ropes in the Earth's Plasma Sheet

    Science.gov (United States)

    Slavin, J. A.; Akhavan-Tafti, M.; Poh, G.; Le, G.; Russell, C. T.; Nakamura, R.; Baumjohann, W.; Torbert, R. B.; Gershman, D. J.; Pollock, C. J.; Giles, B. L.; Moore, T. E.; Burch, J. L.

    2017-12-01

    A major discovery by the Cluster mission and the previous generation of science missions is the presence of earthward and tailward moving magnetic flux ropes in the Earth's plasma sheet. However, the lack of high-time resolution plasma measurements severely limited progress concerning the formation and evolution of these reconnection generated structures. We use high-time resolution magnetic and electric field and plasma measurements from the Magnetospheric Multiscale mission's first tail season to investigate: 1) the distribution of flux rope diameters relative to the local ion and electron inertial lengths; 2) the internal force balance sustaining these structures; and 3) the magnetic connectivity of the flux ropes to the Earth and/or the interplanetary medium; 4) the specific entropy of earthward moving flux ropes and the possible effect of "buoyancy" on how deep they penetrate into the inner magnetosphere; and 5) evidence for coalescence of adjacent flux ropes and/or the division of existing flux ropes through the formation of secondary X-lines. The results of these initial analyses will be discussed in terms of their implications for reconnection-driven magnetospheric dynamics and substorms.

  20. On the possible eigenoscillations of neutral sheets

    International Nuclear Information System (INIS)

    Almeida, W.A.; Costa, J.M. da; Aruquipa, E.G.; Sudano, J.P.

    1974-12-01

    A neutral sheet model with hyperbolic tangent equilibrium magnetic field and hyperbolic square secant density profiles is considered. It is shown that the equation for small oscillations takes the form of an eigenvalue oscillation problem. Computed eigenfrequencies of the geomagnetic neutral sheet were found to be in the range of the resonant frequencies of the geomagnetic plasma sheet computed by other authors

  1. Modelling of the ring current in Saturn's magnetosphere

    Directory of Open Access Journals (Sweden)

    G. Giampieri

    2004-01-01

    Full Text Available The existence of a ring current inside Saturn's magnetosphere was first suggested by Smith et al. (1980 and Ness et al. (1981, 1982, in order to explain various features in the magnetic field observations from the Pioneer 11 and Voyager 1 and 2 spacecraft. Connerney et al. (1983 formalized the equatorial current model, based on previous modelling work of Jupiter's current sheet and estimated its parameters from the two Voyager data sets. Here, we investigate the model further, by reconsidering the data from the two Voyager spacecraft, as well as including the Pioneer 11 flyby data set.

    First, we obtain, in closed form, an analytic expression for the magnetic field produced by the ring current. We then fit the model to the external field, that is the difference between the observed field and the internal magnetic field, considering all the available data. In general, through our global fit we obtain more accurate parameters, compared to previous models. We point out differences between the model's parameters for the three flybys, and also investigate possible deviations from the axial and planar symmetries assumed in the model. We conclude that an accurate modelling of the Saturnian disk current will require taking into account both of the temporal variations related to the condition of the magnetosphere, as well as non-axisymmetric contributions due to local time effects.

    Key words. Magnetospheric physics (current systems; planetary magnetospheres; plasma sheet

  2. Production of field-reversed mirror plasma with a coaxial plasma gun

    Science.gov (United States)

    Hartman, C.W.; Shearer, J.W.

    The use of a coaxial plasma gun to produce a plasma ring which is directed into a magnetic field so as to form a field-reversed plasma confined in a magnetic mirror. Plasma thus produced may be used as a target for subsequent neutral beam injection or other similarly produced and projected plasma rings or for direct fusion energy release in a pulsed mode.

  3. Production of field-reversed mirror plasma with a coaxial plasma gun

    International Nuclear Information System (INIS)

    Hartman, C.W.; Shearer, J.W.

    1982-01-01

    The use of a coaxial plasma gun to produce a plasma ring which is directed into a magnetic field so as to form a field-reversed plasma confined in a magnetic mirror. Plasma thus produced may be used as a target for subsequent neutral beam injection or other similarly produced and projected plasma rings or for direct fusion energy release in a pulsed mode

  4. Sausage mode instability of thin current sheets as a cause of magnetospheric substorms

    Directory of Open Access Journals (Sweden)

    J. Büchner

    Full Text Available Observations have shown that, prior to substorm explosions, thin current sheets are formed in the plasma sheet of the Earth's magnetotail. This provokes the question, to what extent current-sheet thinning and substorm onsets are physically, maybe even causally, related. To answer this question, one has to understand the plasma stability of thin current sheets. Kinetic effects must be taken into account since particle scales are reached in the course of tail current-sheet thinning. We present the results of theoretical investigations of the stability of thin current sheets and about the most unstable mode of their decay. Our conclusions are based upon a non-local linear dispersion analysis of a cross-magnetic field instability of Harris-type current sheets. We found that a sausage-mode bulk current instability starts after a sheet has thinned down to the ion inertial length. We also present the results of three-dimensional electromagnetic PIC-code simulations carried out for mass ratios up to Mi / me=64. They verify the linearly predicted properties of the sausage mode decay of thin current sheets in the parameter range of interest.

    Key words. Magnetospheric physics (plasma waves and instabilities; storms and substorms · Space plasma physics (magnetic reconnection

  5. Adiabatic compression of ion rings

    International Nuclear Information System (INIS)

    Larrabee, D.A.; Lovelace, R.V.

    1982-01-01

    A study has been made of the compression of collisionless ion rings in an increasing external magnetic field, B/sub e/ = zB/sub e/(t), by numerically implementing a previously developed kinetic theory of ring compression. The theory is general in that there is no limitation on the ring geometry or the compression ratio, lambdaequivalentB/sub e/ (final)/B/sub e/ (initial)> or =1. However, the motion of a single particle in an equilibrium is assumed to be completely characterized by its energy H and canonical angular momentum P/sub theta/ with the absence of a third constant of the motion. The present computational work assumes that plasma currents are negligible, as is appropriate for a low-temperature collisional plasma. For a variety of initial ring geometries and initial distribution functions (having a single value of P/sub theta/), it is found that the parameters for ''fat'', small aspect ratio rings follow general scaling laws over a large range of compression ratios, 1 3 : The ring radius varies as lambda/sup -1/2/; the average single particle energy as lambda/sup 0.72/; the root mean square energy spread as lambda/sup 1.1/; and the total current as lambda/sup 0.79/. The field reversal parameter is found to saturate at values typically between 2 and 3. For large compression ratios the current density is found to ''hollow out''. This hollowing tends to improve the interchange stability of an embedded low β plasma. The implications of these scaling laws for fusion reactor systems are discussed

  6. Ring accelerators

    International Nuclear Information System (INIS)

    Gisler, G.; Faehl, R.

    1983-01-01

    We present two-dimensional simulations in (r-z) and r-theta) cylinderical geometries of imploding-liner-driven accelerators of rings of charged particles. We address issues of azimuthal and longitudinal stability of the rings. We discuss self-trapping designs in which beam injection and extraction is aided by means of external cusp fields. Our simulations are done with the 2-1/2-D particle-in-cell plasma simulation code CLINER, which combines collisionless, electromagnetic PIC capabilities with a quasi-MHD finite element package

  7. The double layers in the plasma sheet boundary layer during magnetic reconnection

    Science.gov (United States)

    Guo, J.; Yu, B.

    2014-11-01

    We studied the evolutions of double layers which appear after the magnetic reconnection through two-dimensional electromagnetic particle-in-cell simulation. The simulation results show that the double layers are formed in the plasma sheet boundary layer after magnetic reconnection. At first, the double layers which have unipolar structures are formed. And then the double layers turn into bipolar structures, which will couple with another new weak bipolar structure. Thus a new double layer or tripolar structure comes into being. The double layers found in our work are about several ten Debye lengths, which accords with the observation results. It is suggested that the electron beam formed during the magnetic reconnection is responsible for the production of the double layers.

  8. Dusty plasmas

    International Nuclear Information System (INIS)

    Jones, M.E.; Winske, D.; Keinigs, R.; Lemons, D.

    1996-01-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project has been to develop a fundamental understanding of dusty plasmas at the Laboratory. While dusty plasmas are found in space in galactic clouds, planetary rings, and cometary tails, and as contaminants in plasma enhanced fabrication of microelectronics, many of their properties are only partially understood. Our work has involved both theoretical analysis and self-consistent plasma simulations to understand basic properties of dusty plasmas related to equilibrium, stability, and transport. Such an understanding can improve the control and elimination of plasma dust in industrial applications and may be important in the study of planetary rings and comet dust tails. We have applied our techniques to the study of charging, dynamics, and coagulation of contaminants in plasma processing reactors for industrial etching and deposition processes and to instabilities in planetary rings and other space plasma environments. The work performed in this project has application to plasma kinetics, transport, and other classical elementary processes in plasmas as well as to plasma waves, oscillations, and instabilities

  9. Deposition Rate and Energy Enhancements of TiN Thin-Film in a Magnetized Sheet Plasma Source

    OpenAIRE

    Hamdi Muhyuddin D. Barra; Henry J. Ramos

    2011-01-01

    Titanium nitride (TiN) has been synthesized using the sheet plasma negative ion source (SPNIS). The parameters used for its effective synthesis has been determined from previous experiments and studies. In this study, further enhancement of the deposition rate of TiN synthesis and advancement of the SPNIS operation is presented. This is primarily achieved by the addition of Sm-Co permanent magnets and a modification of the configuration in the TiN deposition process. The ...

  10. Ion flow ripples in the Earth's plasma sheet

    Science.gov (United States)

    De Spiegeleer, Alexandre; Hamrin, Maria; Pitkänen, Timo; Norqvist, Patrik; Mann, Ingrid

    2016-04-01

    For a long time, magnetotail flows were considered rather smooth and laminar, and primarily dominated by a simple convection flow pattern. However, in the early 90's, high speed bursty bulk flows (BBFs) were discovered and found to commonly perturb the underlying convection flows. In addition, there are other disturbances complicating the magnetotail flow pattern. Instabilities such as the Kelvin-Helmholz instability and the kink instability can cause different types of magnetic field oscillations, such as field line resonances. It is expected that ions will follow these oscillations if the typical time and length scales are larger than the gyroperiod and gyroradius of the ions. Though low-velocity sloshing and ripple disturbances of the average magnetotail convection flows have been observed, their connection with magnetic field oscillations is not fully understood. Furthermore, when studying BFFs, these "Ion Flow Ripples" (IFRs) are often neglected, dismissed as noise or can even erroneously be identified as BBFs. It is therefore of utter importance to find out and understand the role of IFRs in magnetotail dynamics. In a statistical investigation, we use several years of Cluster plasma sheet data to study the low-speed flows in the magnetotail. We investigate different types of IFRs, study their occurrence, and discuss their possible causes.

  11. Electric Characteristic Enhancement of an AZO/Si Schottky Barrier Diode with Hydrogen Plasma Surface Treatment and AlxOx Guard Ring Structure

    Directory of Open Access Journals (Sweden)

    Chien-Yu Li

    2018-01-01

    Full Text Available In this study, the design and fabrication of AZO/n-Si Schottky barrier diodes (SBDs with hydrogen plasma treatment on silicon surface and AlxOx guard ring were presented. The Si surface exhibited less interface defects after the cleaning process following with 30 w of H2 plasma treatment that improved the switching properties of the following formed SBDs. The rapid thermal annealing experiment also held at 400 °C to enhance the breakdown voltage of SBDs. The edge effect of the SBDs was also suppressed with the AlxOx guard ring structure deposited by the atomic layer deposition (ALD at the side of the SBDs. Experimental results show that the reverse leakage current was reduced and the breakdown voltage increased with an addition of the AlxOx guard ring. The diode and fabrication technology developed in the study were applicable to the realization of SBDs with a high breakdown voltage (>200 V, a low reverse leakage current density (≤72 μA/mm2@100 V, and a Schottky barrier height of 1.074 eV.

  12. Electric Characteristic Enhancement of an AZO/Si Schottky Barrier Diode with Hydrogen Plasma Surface Treatment and AlxOx Guard Ring Structure

    Science.gov (United States)

    Li, Chien-Yu; Cheng, Min-Yu; Houng, Mau-Phon; Yang, Cheng-Fu; Liu, Jing

    2018-01-01

    In this study, the design and fabrication of AZO/n-Si Schottky barrier diodes (SBDs) with hydrogen plasma treatment on silicon surface and AlxOx guard ring were presented. The Si surface exhibited less interface defects after the cleaning process following with 30 w of H2 plasma treatment that improved the switching properties of the following formed SBDs. The rapid thermal annealing experiment also held at 400 °C to enhance the breakdown voltage of SBDs. The edge effect of the SBDs was also suppressed with the AlxOx guard ring structure deposited by the atomic layer deposition (ALD) at the side of the SBDs. Experimental results show that the reverse leakage current was reduced and the breakdown voltage increased with an addition of the AlxOx guard ring. The diode and fabrication technology developed in the study were applicable to the realization of SBDs with a high breakdown voltage (>200 V), a low reverse leakage current density (≤72 μA/mm2@100 V), and a Schottky barrier height of 1.074 eV. PMID:29316726

  13. Motion and shape of snowplough sheets in coaxial accelerators

    International Nuclear Information System (INIS)

    Tsagas, N.F.; Mair, G.L.R.; Prinn, A.E.

    1978-01-01

    A long coaxial accelerator is filled with helium at initial gas pressure between 0.2 and 4 Torr. When connected to a large capacitor at < - 10 kV a discharge is started at one end; the central electrode has negative polarity. The velocity of the plasma sheet, the snowplough, and its shape have been derived from streak photographs for terminal currents between about 100 and 300 kA. The motion of the sheet has been analysed by balancing the electromagnetic driving force against the inertia of the mass of the gas swept up by a plane sheet taken to be impenetrable to gas atoms. The calculated positions and average sheet velocities, which involve simplifying assumptions, have been found to be in good agreement with observations at different positions and pressures. Also the shape of the sheet has been derived by allowing for the sheet's curvature in the linear momentum equation while net radial motions causing variations in profile have, at first, been excluded. The calculated shape of the sheet is very nearly that photographically observed. The axial velocity of a sheet element is evaluated under the assumption that the plasma is azimuthally uniform, free of spikes and that the vessel's wall does not affect the shape. (author)

  14. Bernstein instability driven by thermal ring distribution

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Peter H., E-mail: yoonp@umd.edu [Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742 (United States); School of Space Research, Kyung Hee University, Yongin-Si, Gyeonggi-Do 446-701 (Korea, Republic of); Hadi, Fazal; Qamar, Anisa [Institute of Physics and Electronics, University of Peshawar, Peshawar 25000 (Pakistan)

    2014-07-15

    The classic Bernstein waves may be intimately related to banded emissions detected in laboratory plasmas, terrestrial, and other planetary magnetospheres. However, the customary discussion of the Bernstein wave is based upon isotropic thermal velocity distribution function. In order to understand how such waves can be excited, one needs an emission mechanism, i.e., an instability. In non-relativistic collision-less plasmas, the only known Bernstein wave instability is that associated with a cold perpendicular velocity ring distribution function. However, cold ring distribution is highly idealized. The present Brief Communication generalizes the cold ring distribution model to include thermal spread, so that the Bernstein-ring instability is described by a more realistic electron distribution function, with which the stabilization by thermal spread associated with the ring distribution is demonstrated. The present findings imply that the excitation of Bernstein waves requires a sufficiently high perpendicular velocity gradient associated with the electron distribution function.

  15. Bernstein instability driven by thermal ring distribution

    International Nuclear Information System (INIS)

    Yoon, Peter H.; Hadi, Fazal; Qamar, Anisa

    2014-01-01

    The classic Bernstein waves may be intimately related to banded emissions detected in laboratory plasmas, terrestrial, and other planetary magnetospheres. However, the customary discussion of the Bernstein wave is based upon isotropic thermal velocity distribution function. In order to understand how such waves can be excited, one needs an emission mechanism, i.e., an instability. In non-relativistic collision-less plasmas, the only known Bernstein wave instability is that associated with a cold perpendicular velocity ring distribution function. However, cold ring distribution is highly idealized. The present Brief Communication generalizes the cold ring distribution model to include thermal spread, so that the Bernstein-ring instability is described by a more realistic electron distribution function, with which the stabilization by thermal spread associated with the ring distribution is demonstrated. The present findings imply that the excitation of Bernstein waves requires a sufficiently high perpendicular velocity gradient associated with the electron distribution function

  16. Conceptual design of a moving-ring reactor

    International Nuclear Information System (INIS)

    Smith, A.C. Jr.; Ashworth, C.P.; Abreu, K.E.

    1983-01-01

    A design of a prototype Moving-Ring Reactor has been completed. The fusion fuel is confined in current-carrying rings of magnetically field-reversed plasma (''compact toroids''). The plasma rings, formed by a coaxial plasma gun, undergo adiabatic magnetic compression to ignition temperature while they are being injected into the reactor's burner section. The cylindrical burner chamber is divided into three ''burn stations''. Separator coils and a slight axial guide-field gradient are used to shuttle the ignited toroids rapidly from one burn station to the next, pausing for one third of the total burn time at each station. D-T- 3 He ice pellets refuel the rings at a rate which maintains constant radiated power. The first wall and tritium breeding blanket designs make credible use of helium cooling, SiC and Li 2 O to minimize structural radioactivity. ''Hands-on'' maintenance is possible on all reactor components outside the blanket. The first wall and blanket are designed to shut the reactor down passively in the event of a loss-of-coolant or loss-of-flow accident. Helium removes heat from the first wall, blanket and shield, and is used in a closed-cycle gas turbine to produce electricity. Energy residing in the plasma ring at the end of the burn is recovered via magnetic expansion. Electrostatic direct conversion is not used in this design. The reactor produces a constant net power of 99 MW(e). (author)

  17. Plasma cutting or laser cutting. Plasma setsudan ka laser setsudan ka

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, A. (Tanaka Engineering Works Ltd., Saitama (Japan))

    1991-05-01

    Comparisons and discussions were made on the plasma cutting and laser cutting in sheet steel cutting, referring partly to gas cutting. Historically, the cutting has been developed from gas, plasma, and laser in that order, and currently these three methods are used mixedly. Generally, the plasma cutting is superior in cutting speed, but inferior in cut face quality, and it requires measures of dust collection. Due to high accuracy and quality in cut face, the laser cutting has been practically used for quite some time in the thin sheet industry, but medium to thick sheet cutting had a problem of unavailability of high output laser suitable for these ranges. However, the recent technologies have overcome the problem as a result of development at the authors {prime} company of a 2 kW class laser cutter capable of cutting 19 mm thick sheet. The cutter has been proven being particularly excellent in controllability. Choice of whether plasma or laser would depend upon which priority is to be taken, cost or accuracy. 15 figs., 3 tabs.

  18. Electron precipitation morphology and plasma sheet dynamics: ground and magnetotail studies of the magnetospheric substorm

    International Nuclear Information System (INIS)

    Pytte, T.

    1976-12-01

    The main results of some recent studies of the magnetospheric substorm are summarised and discussed in view of the fundamental role of magnetospheric convection. The substorm growth phase is described in terms of a temporary imbalance between the rates of magnetic field-line merging on the dayside, and reconnection on the nightside, of the magnetosphere following a southward turning of the interplanetary magnetic field. Some new understanding of the possible causal relationship between growth-phase and expansion-phase phenomena is provided through studies of multiple-onset substorms, during which substorm expansions are observed to occur at intervals of 10-15 min. Detailed observations have revealed new features of the radial and azimuthal dynamics of these substorms that are not consistent with recent models proposed by Akasofu and by Rostoker and his co-workers. It is shown that the behaviour of the near-earth plasma sheet early in a substorm cannot be inferred from measurements at larger distances (e.g., in the Vela satellite orbits), and that the triggering of a substorm expansion may well be directly related to pre-substorm thinning of the near-earth plasma sheet, even though the most significant thinning in the tailward region may occur at the onset, and therefore appears to be an effect rather than a cause of triggering. Initial results from studies of a new type of magnetospheric activity, characterised by strong auroral-zone bay activity but no other indications of substorm expansions, are shown to be consistent with current models of the growth and expansion phases of substorms and of substorm triggering. (JIW)

  19. One-Dimensional Vlasov-Maxwell Equilibrium for the Force-Free Harris Sheet

    International Nuclear Information System (INIS)

    Harrison, Michael G.; Neukirch, Thomas

    2009-01-01

    In this Letter, the first nonlinear force-free Vlasov-Maxwell equilibrium is presented. One component of the equilibrium magnetic field has the same spatial structure as the Harris sheet, but whereas the Harris sheet is kept in force balance by pressure gradients, in the force-free solution presented here force balance is maintained by magnetic shear. Magnetic pressure, plasma pressure and plasma density are constant. The method used to find the equilibrium is based on the analogy of the one-dimensional Vlasov-Maxwell equilibrium problem to the motion of a pseudoparticle in a two-dimensional conservative potential. The force-free solution can be generalized to a complete family of equilibria that describe the transition between the purely pressure-balanced Harris sheet to the force-free Harris sheet

  20. The Saturnian rings

    International Nuclear Information System (INIS)

    Alfven, H.

    1975-09-01

    The structure of the Saturnian rings is traditionally believed to be due to resonances caused by Mimas (and possibly other satellites). It is shown that both theoretical and observational evidence rule out this interpretation. The increased observational accuracy on one hand and the increased understanding of the cosmogonic processes on the other makes it possible to explain the structure of the ring system as a product of condensation from a partially corotating plasma. In certain respects the agreement between theory and observations is about 1%. (Auth.)

  1. Experimental Study of Shock Generated Compressible Vortex Ring

    Science.gov (United States)

    Das, Debopam; Arakeri, Jaywant H.; Krothapalli, Anjaneyulu

    2000-11-01

    Formation of a compressible vortex ring and generation of sound associated with it is studied experimentally. Impulse of a shock wave is used to generate a vortex ring from the open end of a shock-tube. Vortex ring formation process has been studied in details using particle image Velocimetry (PIV). As the shock wave exits the tube it diffracts and expands. A circular vortex sheet forms at the edge and rolls up into a vortex ring. Far field microphone measurement shows that the acoustic pressure consists of a spike due to shock wave followed by a low frequency pressure wave of decaying nature, superimposed with high frequency pressure wave. Acoustic waves consist of waves due to expansion, waves formed in the tube during diaphragm breakage and waves associated with the vortex ring and shear-layer vortices. Unsteady evolution of the vortex ring and shear-layer vortices in the jet behind the ring is studied by measuring the velocity field using PIV. Corresponding vorticity field, circulation around the vortex core and growth rate of the vortex core is calculated from the measured velocity field. The velocity field in a compressible vortex ring differs from that of an incompressible ring due to the contribution from both shock and vortex ring.

  2. Survey of Galileo Plasma Observations in Jupiter's Plasma Sheet

    Science.gov (United States)

    Bagenal, Fran; Wilson, Robert J.; Siler, Scott; Paterson, William R.; Kurth, William S.

    2016-01-01

    The plasma science (PLS) Instrument on the Galileo spacecraft (orbiting Jupiter from December 1995 to September 2003) measured properties of the ions that were trapped in the magnetic field. The PLS data provide a survey of the plasma properties between approx. 5 and 30 Jupiter radii [R(sub J)] in the equatorial region. We present plasma properties derived via two analysis methods: numerical moments and forward modeling. We find that the density decreases with radial distance by nearly 5 orders of magnitude from approx. 2 to 3000 cm(exp.-3) at 6R(sub j) to approx. 0.05cm(sub -3) at 30 R(sub j). The density profile did not show major changes from orbit to orbit, suggesting that the plasma production and transport remained constant within about a factor of 2. The radial profile of ion temperature increased with distance which implied that contrary to the concept of adiabatic cooling on expansion, the plasma heats up as it expands out from Io's orbit (where TI is approx.60-80 eV) at approx. 6R(sub j) to a few keV at 30R(sub j).There does not seem to be a long-term, systematic variation in ion temperature with either local time or longitude. This latter finding differs from earlier analysis of Galileo PLS data from a selection of orbits. Further examination of all data from all Galileo orbits suggests that System Ill variations are transitory on timescales of weeks, consistent with the modeling of Cassini Ultraviolet Imaging Spectrograph observations. The plasma flow is dominated by azimuthal flow that is between 80% and 100% of corotation out to 25 R(sub j).

  3. Nuclear spin state-resolved cavity ring-down spectroscopy diagnostics of a low-temperature H3+ -dominated plasma

    International Nuclear Information System (INIS)

    Hejduk, Michal; Dohnal, Petr; Varju, Jozef; Rubovič, Peter; Plašil, Radek; Glosík, Juraj

    2012-01-01

    We have applied a continuous-wave near-infrared cavity ring-down spectroscopy method to study the parameters of a H 3 + -dominated plasma at temperatures in the range 77–200 K. We monitor populations of three rotational states of the ground vibrational state corresponding to para and ortho nuclear spin states in the discharge and the afterglow plasma in time and conclude that abundances of para and ortho states and rotational temperatures are well defined and stable. The non-trivial dependence of a relative population of para- H 3 + on a relative population of para-H 2 in a source H 2 gas is described. The results described in this paper are valuable for studies of state-selective dissociative recombination of H 3 + ions with electrons in the afterglow plasma and for the design of sources of H 3 + ions in a specific nuclear spin state. (paper)

  4. Nuclear spin state-resolved cavity ring-down spectroscopy diagnostics of a low-temperature H_3^+ -dominated plasma

    Science.gov (United States)

    Hejduk, Michal; Dohnal, Petr; Varju, Jozef; Rubovič, Peter; Plašil, Radek; Glosík, Juraj

    2012-04-01

    We have applied a continuous-wave near-infrared cavity ring-down spectroscopy method to study the parameters of a H_3^+ -dominated plasma at temperatures in the range 77-200 K. We monitor populations of three rotational states of the ground vibrational state corresponding to para and ortho nuclear spin states in the discharge and the afterglow plasma in time and conclude that abundances of para and ortho states and rotational temperatures are well defined and stable. The non-trivial dependence of a relative population of para- H_3^+ on a relative population of para-H2 in a source H2 gas is described. The results described in this paper are valuable for studies of state-selective dissociative recombination of H_3^+ ions with electrons in the afterglow plasma and for the design of sources of H_3^+ ions in a specific nuclear spin state.

  5. Lord of the Rings - Return of the King: Swift-XRT observations of dust scattering rings around V404 Cygni

    Science.gov (United States)

    Beardmore, A. P.; Willingale, R.; Kuulkers, E.; Altamirano, D.; Motta, S. E.; Osborne, J. P.; Page, K. L.; Sivakoff, G. R.

    2016-10-01

    On 2015 June 15, the black hole X-ray binary V404 Cygni went into outburst, exhibiting extreme X-ray variability which culminated in a final flare on June 26. Over the following days, the Swift-X-ray Telescope detected a series of bright rings, comprising five main components that expanded and faded with time, caused by X-rays scattered from the otherwise unobservable dust layers in the interstellar medium in the direction of the source. Simple geometrical modelling of the rings' angular evolution reveals that they have a common temporal origin, coincident with the final, brightest flare seen by INTEGRAL's JEM X-1, which reached a 3-10 keV flux of ˜25 Crab. The high quality of the data allows the dust properties and density distribution along the line of sight to the source to be estimated. Using the Rayleigh-Gans approximation for the dust scattering cross-section and a power-law distribution of grain sizes a, ∝ a-q, the average dust emission is well modelled by q = 3.90^{+0.09}_{-0.08} and maximum grain size of a_+ = 0.147^{+0.024}_{-0.004} { μ m}, though significant variations in q are seen between the rings. The recovered dust density distribution shows five peaks associated with the dense sheets responsible for the rings at distances ranging from 1.19 to 2.13 kpc, with thicknesses of ˜40-80 pc and a maximum density occurring at the location of the nearest sheet. We find a dust column density of Ndust ≈ (2.0-2.5) × 1011 cm-2, consistent with the optical extinction to the source. Comparison of the inner rings' azimuthal X-ray evolution with archival Wide-field Infrared Survey Explorer mid-IR data suggests that the second most distant ring follows the general IR emission trend, which increases in brightness towards the Galactic north side of the source.

  6. Characteristics of electrostatic solitary waves observed in the plasma sheet boundary: Statistical analyses

    Directory of Open Access Journals (Sweden)

    H. Kojima

    1999-01-01

    Full Text Available We present the characteristics of the Electrostatic Solitary Waves (ESW observed by the Geotail spacecraft in the plasma sheet boundary layer based on the statistical analyses. We also discuss the results referring to a model of ESW generation due to electron beams, which is proposed by computer simulations. In this generation model, the nonlinear evolution of Langmuir waves excited by electron bump-on-tail instabilities leads to formation of isolated electrostatic potential structures corresponding to "electron hole" in the phase space. The statistical analyses of the Geotail data, which we conducted under the assumption that polarity of ESW potentials is positive, show that most of ESW propagate in the same direction of electron beams, which are observed by the plasma instrument, simultaneously. Further, we also find that the ESW potential energy is much smaller than the background electron thermal energy and that the ESW potential widths are typically shorter than 60 times of local electron Debye length when we assume that the ESW potentials travel in the same velocity of electron beams. These results are very consistent with the ESW generation model that the nonlinear evolution of electron bump-on-tail instability leads to the formation of electron holes in the phase space.

  7. Controllable preparation of vertically standing graphene sheets and their wettability and supercapacitive properties

    International Nuclear Information System (INIS)

    Zhou Hai-Tao; Zou Fei; Gao Ge; Yu Ning; Yao Zhao-Hui; Shen Cheng-Min

    2016-01-01

    Vertically standing graphene (VSG) sheets have been fabricated by using plasma enhanced chemical vapor deposition (PECVD) method. The lateral size of VSG nanosheets could be well controlled by varying the substrate temperature. The higher temperature usually gives rise to a smaller sheet size. The wettability of VSG films was tuned between hydrophobicity and hydrophilicity by means of oxygen and hydrogen plasma treatment. The supercapacitor electrode made of VSG sheets exhibited an ideal double-layer-capacitor feature and the specific capacitance reached a value up to 9.62 F·m −2 . (rapid communication)

  8. Several features of the earthward and tailward streaming of energetic protons (0.29--0.5 MeV) in the earth's plasma sheet

    International Nuclear Information System (INIS)

    Lui, A.T.Y.; Krimigis, S.M.

    1981-01-01

    The characteristics of earthward and tailward streaming of energetic protons (0.29--0.50 MeV) in the magnetotial at downstream distances of 20 to 40 R/sub E/ are examined with approx.5.5-min averaged data from the APL/JHU Charged Particle Measurements Experiment on board the IMP 7 and IMP 8 spacecraft. On the basis of observations from September 1972 to May 1978 it is found that the occurrence frequency of energetic magnetospheric protons streaming either tailward or earthward with a front-to-back flux ratio of >2 is at least 23%. Tailward streaming is found to be prevalent in the postmidnight plasma sheet, while earthward streaming is more frequent in the premidnight sector. The particle spectrum is progressively harder from the dawn flank to the dusk flank of the plasma sheet and is generally harder for tailward streaming than for earthward streaming. It is suggested that the dawn-dusk reversal in the dominant streaming direction results from an underlying circulation pattern of energetic protons in the magnetotail, tailward in the postmidnight region and earthward in the premidnight region

  9. TURBULENT DYNAMICS IN SOLAR FLARE SHEET STRUCTURES MEASURED WITH LOCAL CORRELATION TRACKING

    Energy Technology Data Exchange (ETDEWEB)

    McKenzie, D. E., E-mail: mckenzie@physics.montana.edu [Department of Physics, Montana State University, P.O. Box 173840, Bozeman, MT 59717-3840 (United States)

    2013-03-20

    High-resolution observations of the Sun's corona in extreme ultraviolet and soft X-rays have revealed a new world of complexity in the sheet-like structures connecting coronal mass ejections (CMEs) to the post-eruption flare arcades. This article presents initial findings from an exploration of dynamic flows in two flares observed with Hinode/XRT and SDO/AIA. The flows are observed in the hot ({approx}> 10 MK) plasma above the post-eruption arcades and measured with local correlation tracking. The observations demonstrate significant shears in velocity, giving the appearance of vortices and stagnations. Plasma diagnostics indicate that the plasma {beta} exceeds unity in at least one of the studied events, suggesting that the coronal magnetic fields may be significantly affected by the turbulent flows. Although reconnection models of eruptive flares tend to predict a macroscopic current sheet in the region between the CME and the flare arcade, it is not yet clear whether the observed sheet-like structures are identifiable as the current sheets or 'thermal halos' surrounding the current sheets. Regardless, the relationship between the turbulent motions and the embedded magnetic field is likely to be complicated, involving dynamic fluid processes that produce small length scales in the current sheet. Such processes may be crucial for triggering, accelerating, and/or prolonging reconnection in the corona.

  10. Interaction of a vacuum arc plasma beam with an obstacle positioned normal to the plasma flow

    International Nuclear Information System (INIS)

    Zarchin, O; Zhitomirsky, V N; Goldsmith, S; Boxman, R L

    2003-01-01

    The effect of an obstacle positioned normal to a plasma jet produced by a vacuum arc plasma source on the radial distribution of ion flux in the vicinity of the obstacle was studied. This study was motivated by interest in the mutual influence of tightly packed substrates on coatings in industrial vacuum arc deposition systems. The experimental system consisted of a vacuum arc plasma source, a straight plasma duct, and a multi-probe consisting of a removable disc obstacle and a set of ring probes for measuring the radial ion flux. A dc arc discharge was ignited in vacuum between a truncated cone-shaped Cu cathode and an annular anode. The plasma jet produced by cathode spots passed through the anode aperture into the straight plasma duct. An axial magnetic field guided the plasma jet in the duct. The multi-probe consisted of a removable disc obstacle and a set of five ring probes for measuring the radial plasma flux as a function of distance from the disc obstacle. The rings and the disc probes were coaxially arranged on the multi-probe assembly and positioned so that plasma from the source passed through the ring probes and then encountered the disc. The influence of the obstacle was determined by measuring the ring ion currents, both in the presence of the obstacle, and when the disc obstacle was removed. The difference between the measured ion currents with and without the obstacle was interpreted to be the contribution of reflected or sputtered particles from the obstacle to the radial ion flux. The ring probes were biased by -60 V with respect to the grounded anode, to collect the saturated ion current. The multi-probe was connected to a movable stem, and positioned at different distances from the plasma source. A plasma density of ∼6 x 10 17 m -3 was estimated in this study based on the ion current to the obstacle. The radial ion flux collected by the ring probes increased by 20-25% due to the presence of the obstacle. As the calculated mean free path for

  11. Voyager Saturnian ring measurements and the early history of the solar system

    International Nuclear Information System (INIS)

    Alfven, H.; Axnaes, I.; Brenning, N.; Lindqvist, P.A.

    1986-01-01

    The mass distribution in the Saturnian ring system is investigated and compared with predictions from the plasma cosmogony. According to this theory, the matter in the rings has once been in the form of a magnetized plasma, in which the gravitation is balanced partly by the centrifugal force and partly by the electromagnetic forces. As the plasma is neutralized, the electromagnetic forces disappear and the matter can be shown to fall in to 2/3 of the original saturnocentric distance. This causes the so called ''cosmogonic shadow effect'', which has been demonstrated earlier for the asteroidal belt and in the large scale structure of the Saturnian ring system. The relevance of the cosmogonic shadow effect is investigated for parts of the Saturnian ring system. It is shown that many structures of the present ring system can be understood as shadows and antishadows of cosmogonic origin. These appear in the form of double rings centered around a position a factor 0.64(slightly less than 2/3) closer to Saturn than the causing feature. Voyager data agree with an accuracy better than 1%. (author)

  12. ULF hydromagnetic oscillations with the discrete spectrum as eigenmodes of MHD-resonator in the near-Earth part of the plasma sheet

    Directory of Open Access Journals (Sweden)

    V. A. Mazur

    2006-07-01

    Full Text Available A new concept is proposed for the emergence of ULF geomagnetic oscillations with a discrete spectrum of frequencies (0.8, 1.3, 1.9, 2.6 ...mHz registered in the magnetosphere's midnight-morning sector. The concept relies on the assumption that these oscillations are MHD-resonator eigenmodes in the near-Earth plasma sheet. This magnetospheric area is where conditions are met for fast magnetosonic waves to be confined. The confinement is a result of the velocity values of fast magnetosonic waves in the near-Earth plasma sheet which differ greatly from those in the magnetotail lobes, leading to turning points forming in the tailward direction for the waves under study. To compute the eigenfrequency spectrum of such a resonator, we used a model magnetosphere with parabolic geometry. The fundamental harmonics of this resonator's eigenfrequencies are shown to be capable of being clustered into groups with average frequencies matching, with good accuracy, the frequencies of the observed oscillations. A possible explanation for the stability of the observed oscillation frequencies is that such a resonator might only form when the magnetosphere is in a certain unperturbed state.

  13. ULF hydromagnetic oscillations with the discrete spectrum as eigenmodes of MHD-resonator in the near-Earth part of the plasma sheet

    Directory of Open Access Journals (Sweden)

    V. A. Mazur

    2006-07-01

    Full Text Available A new concept is proposed for the emergence of ULF geomagnetic oscillations with a discrete spectrum of frequencies (0.8, 1.3, 1.9, 2.6 ...mHz registered in the magnetosphere's midnight-morning sector. The concept relies on the assumption that these oscillations are MHD-resonator eigenmodes in the near-Earth plasma sheet. This magnetospheric area is where conditions are met for fast magnetosonic waves to be confined. The confinement is a result of the velocity values of fast magnetosonic waves in the near-Earth plasma sheet which differ greatly from those in the magnetotail lobes, leading to turning points forming in the tailward direction for the waves under study. To compute the eigenfrequency spectrum of such a resonator, we used a model magnetosphere with parabolic geometry. The fundamental harmonics of this resonator's eigenfrequencies are shown to be capable of being clustered into groups with average frequencies matching, with good accuracy, the frequencies of the observed oscillations. A possible explanation for the stability of the observed oscillation frequencies is that such a resonator might only form when the magnetosphere is in a certain unperturbed state.

  14. Pulsar current sheet C̆erenkov radiation

    Science.gov (United States)

    Zhang, Fan

    2018-04-01

    Plasma-filled pulsar magnetospheres contain thin current sheets wherein the charged particles are accelerated by magnetic reconnections to travel at ultra-relativistic speeds. On the other hand, the plasma frequency of the more regular force-free regions of the magnetosphere rests almost precisely on the upper limit of radio frequencies, with the cyclotron frequency being far higher due to the strong magnetic field. This combination produces a peculiar situation, whereby radio-frequency waves can travel at subluminal speeds without becoming evanescent. The conditions are thus conducive to C̆erenkov radiation originating from current sheets, which could plausibly serve as a coherent radio emission mechanism. In this paper we aim to provide a portrait of the relevant processes involved, and show that this mechanism can possibly account for some of the most salient features of the observed radio signals.

  15. Dispersive O+ conics observed in the plasma-sheet boundary layer with CRRES/LOMICS during a magnetic storm

    Directory of Open Access Journals (Sweden)

    M. Wüest

    1996-06-01

    Full Text Available We present initial results from the Low-energy magnetospheric ion composition sensor (LOMICS on the Combined release and radiation effects satellite (CRRES together with electron, magnetic field, and electric field wave data. LOMICS measures all important magnetospheric ion species (H+, He++, He+, O++, O+ simultaneously in the energy range 60 eV to 45 keV, as well as their pitch-angle distributions, within the time resolution afforded by the spacecraft spin period of 30 s. During the geomagnetic storm of 9 July 1991, over a period of 42 min (0734 UT to 0816 UT the LOMICS ion mass spectrometer observed an apparent O+ conic flowing away from the southern hemisphere with a bulk velocity that decreased exponentially with time from 300 km/s to 50 km/s, while its temperature also decreased exponentially from 700 to 5 eV. At the onset of the O+ conic, intense low-frequency electromagnetic wave activity and strong pitch-angle scattering were also observed. At the time of the observations the CRRES spacecraft was inbound at L~7.5 near dusk, magnetic local time (MLT, and at a magnetic latitude of –23°. Our analysis using several CRRES instruments suggests that the spacecraft was skimming along the plasma sheet boundary layer (PSBL when the upward-flowing ion conic arrived. The conic appears to have evolved in time, both slowing and cooling, due to wave-particle interactions. We are unable to conclude whether the conic was causally associated with spatial structures of the PSBL or the central plasma sheet.

  16. Ordered one-component plasmas: Phase transitions, normal modes, large systems, and experiments in a storage ring

    International Nuclear Information System (INIS)

    Schiffer, J.P.

    1994-01-01

    The property of cold one-component plasmas, confined by external forces, to form an ordered array has been known for some time both from simulations and from experiment. The purpose of this talk is to summarize some recent work on simulations and some new experimental results. The author discusses some experimental work on real storage rings, magnetic storage devices in which partials circulate with large kinetic energies and for which laser cooling is used on partially ionized ions to attain temperatures ten or more orders of magnitude lower than their kinetic energies

  17. Preliminary scaling laws for plasma current, ion kinetic temperature, and plasma number density in the NASA Lewis bumpy torus plasma

    Science.gov (United States)

    Roth, J. R.

    1976-01-01

    Parametric variation of independent variables which may affect the characteristics of bumpy torus plasma have identified those which have a significant effect on the plasma current, ion kinetic temperature, and plasma number density, and those which do not. Empirical power law correlations of the plasma current, and the ion kinetic temperature and number density were obtained as functions of potential applied to the midplane electrode rings, the background neutral gas pressure, and the magnetic field strength. Additional parameters studied included the type of gas, the polarity of the midplane electrode rings, the mode of plasma operation, and the method of measuring the plasma number density. No significant departures from the scaling laws appear to occur at the highest ion kinetic temperatures or number densities obtained to date.

  18. Conformational Effects through Hydrogen Bonding in a Constrained γ-Peptide Template: From Intraresidue Seven-Membered Rings to a Gel-Forming Sheet Structure.

    Science.gov (United States)

    Awada, Hawraà; Grison, Claire M; Charnay-Pouget, Florence; Baltaze, Jean-Pierre; Brisset, François; Guillot, Régis; Robin, Sylvie; Hachem, Ali; Jaber, Nada; Naoufal, Daoud; Yazbeck, Ogaritte; Aitken, David J

    2017-05-05

    A series of three short oligomers (di-, tri-, and tetramers) of cis-2-(aminomethyl)cyclobutane carboxylic acid, a γ-amino acid featuring a cyclobutane ring constraint, were prepared, and their conformational behavior was examined spectroscopically and by molecular modeling. In dilute solutions, these peptides showed a number of low-energy conformers, including ribbonlike structures pleated around a rarely observed series of intramolecular seven-membered hydrogen bonds. In more concentrated solutions, these interactions defer to an organized supramolecular assembly, leading to thermoreversible organogel formation notably for the tripeptide, which produced fibrillar xerogels. In the solid state, the dipeptide adopted a fully extended conformation featuring a one-dimensional network of intermolecularly H-bonded molecules stacked in an antiparallel sheet alignment. This work provides unique insight into the interplay between inter- and intramolecular H-bonded conformer topologies for the same peptide template.

  19. Extraction of volume produced H- or D- ions from a sheet plasma, 2

    International Nuclear Information System (INIS)

    Uramoto, Joshin.

    1984-02-01

    A development to large area H - or D - ion source is tried by using three extraction electrodes: The first electrode bias voltage is set near the wall potential (floating), the second electrode is set near 13 % of main extraction voltage and the third electrode is the main acceleration electrode. An ion current of 13 mA (3.3 mA/cm 2 ) for H - or 11 mA (2.8 mA/ cm 2 ) for D - at 3 KeV is extracted from 9 apertures of 6 mm phi in 4 cm 2 outside of the sheet plasma (14 cm wide and 1.0 cm thick) under a pressure of 7.7 x 10 -4 H2 or D2 gas and a weak magnetic field 50 gauss. Then, it is noted that the corresponding electron current is suppressed below 1/10 of the H - or D - ion current. (author)

  20. Punchless Drawing of Magnesium Alloy Sheet under Cold Condition and its Computation

    International Nuclear Information System (INIS)

    Yamashita, Minoru; Hattori, Toshio; Sato, Joji

    2011-01-01

    The punchless drawing with Maslennikov's technique was applied to the circular cup drawing of magnesium alloy AZ31B sheet under cold condition. The elastic rubber ring was used instead of the 'hard' punch, where the compressed ring dragged the sheet inward the die cavity. Attainable circumferential strain of the blank was increased by this technique with repetitive drawing operation. Thickness of the rubber pad affected little the attainable strain. The shape appearance became better when a harder rubber was used. The cup forming by single drawing operation was also tested using a small die shoulder radius. The LDR of 1.250 was obtained with the straight cup wall. Further, the computation of the punchless drawing was also conducted for the single drawing operation. The computed deformation pattern was well consistent with the corresponding experimental result.

  1. Spatially Localized Particle Energization by Landau Damping in Current Sheets

    Science.gov (United States)

    Howes, G. G.; Klein, K. G.; McCubbin, A. J.

    2017-12-01

    Understanding the mechanisms of particle energization through the removal of energy from turbulent fluctuations in heliospheric plasmas is a grand challenge problem in heliophysics. Under the weakly collisional conditions typical of heliospheric plasma, kinetic mechanisms must be responsible for this energization, but the nature of those mechanisms remains elusive. In recent years, the spatial localization of plasma heating near current sheets in the solar wind and numerical simulations has gained much attention. Here we show, using the innovative and new field-particle correlation technique, that the spatially localized particle energization occurring in a nonlinear gyrokinetic simulation has the velocity space signature of Landau damping, suggesting that this well-known collisionless damping mechanism indeed actively leads to spatially localized heating in the vicinity of current sheets.

  2. Application of plasma focus device to compression of toroidal plasma

    International Nuclear Information System (INIS)

    Ikuta, Kazunari

    1980-01-01

    A new concept of compressing a toroidal plasma using a plasma focus device is considered. Maximum compression ratio of toroidal plasma is determined merely by the initial density ratio of the toroidal plasma to a sheet plasma in a focus device because of the Rayleigh-Taylor instability. An initiation senario of plasma-linear is also proposed with a possible application of this concepts to the creation of a burning plasma in reversed field configurations, i.e., burning plasma vortex. (author)

  3. Multi-instrument observations of the ionospheric counterpart of a bursty bulk flow in the near-Earth plasma sheet

    Directory of Open Access Journals (Sweden)

    A. Grocott

    2004-04-01

    Full Text Available On 07 September 2001 the Cluster spacecraft observed a "bursty bulk flow" event in the near-Earth central plasma sheet. This paper presents a detailed study of the coincident ground-based observations and attempts to place them within a simple physical framework. The event in question occurs at ~22:30 UT, some 10min after a southward turning of the IMF. IMAGE and SAMNET magnetometer measurements of the ground magnetic field reveal perturbations of a few tens of nT and small amplitude Pi2 pulsations. CUTLASS radar observations of ionospheric plasma convection show enhanced flows out of the polar cap near midnight, accompanied by an elevated transpolar voltage. Optical data from the IMAGE satellite also show that there is a transient, localised ~1 kR brightening in the UV aurora. These observations are consistent with the earthward transport of plasma in the tail, but also indicate the absence of a typical "large-scale" substorm current wedge. An analysis of the field-aligned current system implied by the radar measurements does suggest the existence of a small-scale current "wedgelet", but one which lacks the global scale and high conductivities observed during substorm expansions.

    Key words. Ionosphere (auroral ionosphere; ionospheremagnetosphere interactions; plasma convection

  4. Magnetic reconnection and current sheet formation in 3D magnetic configurations

    International Nuclear Information System (INIS)

    Frank, A.G.

    1999-01-01

    The problem of magnetic reconnection in three-dimensional (3D) magnetic configurations has been studied experimentally. The research has concentrated on the possibilities of formation of current sheets, which represent crucial objects for a realization of magnetic reconnection phenomena. Different types of 3D magnetic configurations were examined, including configurations with singular lines of the X-type, non-uniform fields containing isolated magnetic null-points and without null-points. It was revealed that formation of quasi-one-dimensional current sheets is the universal process for plasma dynamics in 3D magnetic fields both with null-points and without. At the same time the peculiarities of current sheets, plasma dynamics and magnetic reconnection processes depend essentially on characteristics of 3D magnetic configurations. The result of principal significance obtained was that magnetic reconnection phenomena can take place in a wide range of 3D magnetic configurations as a consequence of their ability to form current sheets. (author)

  5. Energetic particle beams in the plasma sheet boundary layer following substorm expansion - Simultaneous near-earth and distant tail observations

    Science.gov (United States)

    Scholer, M.; Baker, D. N.; Gloeckler, G.; Ipavich, F. M.; Galvin, A. B.; Klecker, B.; Terasawa, T.; Tsurutani, B. T.

    1986-01-01

    Simultaneous observations of ions and electron beams in the near-earth and deep magnetotail following the onset of substorm are analyzed in terms of the substorm neutral line model. The observations were collected on March 20, 1983 with ISSE 1 and 3. Energy fluxes and intensity-time profiles of protons and electrons are studied. The data reveal that the reconnection at the near-earth neutral line produces ions and electrons for the plasma sheet boundary layer. The maximum electric potential along the neutral line is evaluated.

  6. Evolution of the MHD sheet pinch

    International Nuclear Information System (INIS)

    Matthaeus, W.H.; Montgomery, D.

    1979-01-01

    A magnetohydrodynamic (MHD) problem of recurrent interest for both astrophysical and laboratory plasmas is the evolution of the unstable sheet pinch, a current sheet across which a dc magnetic field reverses sign. The evolution of such a sheet pinch is followed with a spectral-method, incompressible, two-dimensional, MHD turbulence code. Spectral diagnostics are employed, as are contour plots of vector potential (magnetic field lines), electric current density, and velocity stream function (velocity streamlines). The nonlinear effect which seems most important is seen to be current filamentation: the concentration of the current density onto sets of small measure near a mgnetic X point. A great deal of turbulence is apparent in the current distribution, which, for high Reynolds numbers, requires large spatial grids (greater than or equal to (64) 2 ). 11 figures, 1 table

  7. The formation of solar prominences by thermal instability in a current sheet

    International Nuclear Information System (INIS)

    Smith, E.A.; Priest, E.R.

    1977-01-01

    The energy balance equation for the upper chromosphere or lower corona contains a radiative loss term which is destabilizing, because of slight decrease in temperature from the equilibrium value causes more radiation and hence a cooling of the plasma; also a slight increase in temperature has the effect of heating the plasma. In spite of this tendency towards thermal instability, most of the solar atmosphere is remarkably stable, since thermal conduction is very efficient at equalizing any temperature irregularity which may arise. However, the effectiveness of thermal conduction in transporting heat is decreased considerably in a current sheet or a magnetic flux tube, since heat can be conducted quickly only along the magnetic field lines. This paper presents a simple model for the thermal equilibrium and stability of a current sheet. It is found that, when its length exceeds a certain maximum value, no equilibrium is possible and the plasma in the sheet cools. The results may be relevant for the formation of a quiescent prominence. (Auth.)

  8. An auroral westward flow channel (AWFC and its relationship to field-aligned current, ring current, and plasmapause location determined using multiple spacecraft observations

    Directory of Open Access Journals (Sweden)

    M. L. Parkinson

    2007-02-01

    Full Text Available An auroral westward flow channel (AWFC is a latitudinally narrow channel of unstable F-region plasma with intense westward drift in the dusk-to-midnight sector ionosphere. AWFCs tend to overlap the equatorward edge of the auroral oval, and their life cycle is often synchronised to that of substorms: they commence close to substorm expansion phase onset, intensify during the expansion phase, and then decay during the recovery phase. Here we define for the first time the relationship between an AWFC, large-scale field-aligned current (FAC, the ring current, and plasmapause location. The Tasman International Geospace Environment Radar (TIGER, a Southern Hemisphere HF SuperDARN radar, observed a jet-like AWFC during ~08:35 to 13:28 UT on 7 April 2001. The initiation of the AWFC was preceded by a band of equatorward expanding ionospheric scatter (BEES which conveyed an intense poleward electric field through the inner plasma sheet. Unlike previous AWFCs, this event was not associated with a distinct substorm surge; rather it occurred during an interval of persistent, moderate magnetic activity characterised by AL~−200 nT. The four Cluster spacecraft had perigees within the dusk sector plasmasphere, and their trajectories were magnetically conjugate to the radar observations. The Waves of High frequency and Sounder for Probing Electron density by Relaxation (WHISPER instruments on board Cluster were used to identify the plasmapause location. The Imager for Magnetopause-to-Aurora Global Exploration (IMAGE EUV experiment also provided global-scale observations of the plasmapause. The Cluster fluxgate magnetometers (FGM provided successive measurements specifying the relative location of the ring current and filamentary plasma sheet current. An analysis of Iridium spacecraft magnetometer measurements provided estimates of large-scale ionospheric FAC in relation to the AWFC evolution. Peak flows in the AWFC were located close to the peak of a Region 2

  9. Experimental Investigation of the Neutral sheet Profile During Magnetic Reconnection

    International Nuclear Information System (INIS)

    Trintchouk, F.; Ji, H.; Yamada, M.; Kulsrud, R.; Hsu, S.; Carter, T.

    1999-01-01

    During magnetic reconnection, a ''neutral sheet'' current is induced, heating the plasma. The resultant plasma thermal pressure forms a stationary equilibrium with the opposing magnetic fields. The reconnection layer profile holds significant clues about the physical mechanisms which control reconnection. On the Magnetic Reconnection Experiment [M. Yamada et al., Phys. Plasmas 4, 1936 (1997)], a quasi steady-state and axisymmetric neutral sheet profile has been measured precisely using a magnetic probe array with spatial resolution equal to one quarter of the ion gyro-radius. It was found that the reconnecting field profile fits well with a Harris-type profile [E. G. Harris, Il Nuovo Cimento 23, 115 (1962)], B(x) approximately tanh(x/delta). This agreement is remarkable since the Harris theory does not take into account reconnection and associated electric fields and dissipation. An explanation for this agreement is presented. The sheet thickness delta is found to be approximately 0.4 times the ion skin depth, which agrees with a generalized Harris theory incorporating non-isothermal electron and ion temperatures and finite electric field. The detailed study of additional local features of the reconnection region is also presented

  10. Conceptual design of a permanent ring magnet based helicon plasma source module intended to be used in a large size fusion grade ion source

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Arun; Sudhir, Dass; Bandyopadhyay, M., E-mail: mainak@iter-india.org; Chakraborty, A.

    2016-02-15

    A conceptual design of a permanent magnet based single driver helicon plasma source module along with its design approach is described in this paper. The module unit is intended to be used in a large size ion source. The conceptual design of the helicon source module has been carried out using a computer code, HELIC. The magnetic field topology for the ring magnet is simulated with another code, BFieldM and the magnetic field values obtained from the calculation are further used as input in HELIC calculation for the conceptual design. The module is conceptualized based on a cylindrical glass vessel to produce plasma of diameter ∼50 mm, height ∼50 mm. The inner diameter of the permanent ring magnets is also of the same dimension with thickness ∼10 mm each, placed slightly above the backplate to maintain the required magnetic field. The simulated results show that for hydrogen gas, expected plasma density can be achieved as high as ∼10{sup 12}–10{sup 13} cm{sup −3} in the proposed helicon source configuration using 1 kW 13.56 MHz RF generator. An experimental setup to characterize a Helicon source module unit, consisting of a cylindrical glass (plasma) chamber along with the vacuum system, RF power supplies, probes and data acquisition system is being installed.

  11. NANOGRAIN DENSITY OUTSIDE SATURN’S A RING

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Robert E. [Engineering Physics, University of Virginia, Charlottesville, VA 22902 (United States); Tseng, Wei-Ling [National Taiwan Normal University, No. 88, Sec. 4, Tingzhou Road, Wenshan District, Taipei 11677, Taiwan (China); Elrod, M. K. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Persoon, A. M., E-mail: rej@virginia.edu, E-mail: wltseng@ntnu.edu.tw, E-mail: meredith.k.elrod@nasa.gov, E-mail: ann-persoon@uiowa.edu [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 (United States)

    2017-01-01

    The observed disparity between the radial dependence of the ion and electron densities measured by the Cassini plasma (CAPS) and radio (RPWS) science instruments are used to show that the region between the outer edge of Saturn’s main rings and its tenuous G ring is permeated with small charged grains (nanograins). These grains emanate from the edge of the A ring and from the tenuous F and G rings. This is a region of Saturn’s magnetosphere that is relatively unexplored, but will be a focus of Cassini ’s F ring orbits prior to the end of mission in 2017 September. Confirmation of the grain densities predicted here will enhance our ability to describe the formation and destruction of material in this important region of Saturn’s magnetosphere.

  12. Pressure changes in the plasma sheet during substorm injections

    International Nuclear Information System (INIS)

    Kistler, L.M.; Moebuis, E.; Baumjohann, W.; Paschmann, G.; Hamilton, D.C.

    1992-01-01

    The authors have determined the particle pressure and total pressure as a function of radial distance in the plasma sheet for periods before and after the onset of substorm-associated ion enhancements over the radial range 7-19 R E . They have chosen events occurring during times of increasing magnetospheric activity, as determined by an increasing AE index, in which a sudden increase, or injection, of energetic particle flux is observed. During these events the particle energy of maximum contribution to the pressure increases from about 12 to about 27 keV. In addition, the particle pressure increases, and the magnetic pressure decreases, with the total pressure only changing slightly. For radial distances of less than 10 R E the total pressure tends to increase with the injection, while outside 10 R E it tends to decrease or remain the same. Because the fraction of the pressure due to particles has increased and higher energies are contributing to the pressure, a radial gradient is evident in the postinjection, but not preinjection, flux measurements. These observations show that the simulations appearance of energetic particles and changes in the magnetic field results naturally from pressure balance and does not necessarily indicate that the local changing field is accelerating the particles. The changes in the total pressure outside 10 R E are consistent with previous measurements of pressure changes at substorm onset and can be understood in terms of the unloading of energy in the magnetotail and the resulting change in the magnetic field configuration

  13. PLASMA DEVICE

    Science.gov (United States)

    Gow, J.D.; Wilcox, J.M.

    1961-12-26

    A device is designed for producing and confining highenergy plasma from which neutrons are generated in copious quantities. A rotating sheath of electrons is established in a radial electric field and axial magnetic field produced within the device. The electron sheath serves as a strong ionizing medium to gas introdueed thereto and also functions as an extremely effective heating mechanism to the resulting plasma. In addition, improved confinement of the plasma is obtained by ring magnetic mirror fields produced at the ends of the device. Such ring mirror fields are defined by the magnetic field lines at the ends of the device diverging radially outward from the axis of the device and thereafter converging at spatial annular surfaces disposed concentrically thereabout. (AFC)

  14. First current density measurements in the ring current region using simultaneous multi-spacecraft CLUSTER-FGM data

    Directory of Open Access Journals (Sweden)

    C. Vallat

    2005-07-01

    Full Text Available The inner magnetosphere's current mapping is one of the key elements for current loop closure inside the entire magnetosphere. A method for directly computing the current is the multi-spacecraft curlometer technique, which is based on the application of Maxwell-Ampère's law. This requires the use of four-point magnetic field high resolution measurements. The FGM experiment on board the four Cluster spacecraft allows, for the first time, an instantaneous calculation of the magnetic field gradients and thus a measurement of the local current density. This technique requires, however, a careful study concerning all the factors that can affect the accuracy of the J estimate, such as the tetrahedral geometry of the four spacecraft, or the size and orientation of the current structure sampled. The first part of this paper is thus providing a detailed analysis of the method accuracy, and points out the limitations of this technique in the region of interest. The second part is an analysis of the ring current region, which reveals, for the first time, the large latitudinal extent of the ring current, for all magnetic activity levels, as well as the latitudinal evolution of the perpendicular (and parallel components of the current along the diffuse auroral zone. Our analysis also points out the sharp transition between two distinct plasma regions, with the existence of high diamagnetic currents at the interface, as well as the filamentation of the current inside the inner plasma sheet. A statistical study over multiple perigee passes of Cluster (at about 4 RE from the Earth reveals the azimuthal extent of the partial ring current. It also reveals that, at these distances and all along the evening sector, there isn't necessarily a strong dependence of the local current density value on the magnetic activity level. This is a direct consequence of the ring current morphology evolution, as well as the relative

  15. Pressure balance inconsistency exhibited in a statistical model of magnetospheric plasma

    Science.gov (United States)

    Garner, T. W.; Wolf, R. A.; Spiro, R. W.; Thomsen, M. F.; Korth, H.

    2003-08-01

    While quantitative theories of plasma flow from the magnetotail to the inner magnetosphere typically assume adiabatic convection, it has long been understood that these convection models tend to overestimate the plasma pressure in the inner magnetosphere. This phenomenon is called the pressure crisis or the pressure balance inconsistency. In order to analyze it in a new and more detailed manner we utilize an empirical model of the proton and electron distribution functions in the near-Earth plasma sheet (-50 RE attributed to gradient/curvature drift for large isotropic energy invariants but not for small invariants. The tailward gradient of the distribution function indicates a violation of the adiabatic drift condition in the plasma sheet. It also confirms the existence of a "number crisis" in addition to the pressure crisis. In addition, plasma sheet pressure gradients, when crossed with the gradient of flux tube volume computed from the [1989] magnetic field model, indicate Region 1 currents on the dawn and dusk sides of the outer plasma sheet.

  16. Further explorations of cosmogonic shadow effects in the Saturnian rings

    International Nuclear Information System (INIS)

    Alfven, H.; Axnaes, I.; Brenning, N.; Lindqvist, P.A.

    1985-01-01

    The mass distribution in the Saturnian ring system is investigated and compared with predictions from the cosmogonic theory by Alfven and Arrhenius. According to this theory, the matter in the rings has once been in the form of a magnetized plasma, in which the gravitation is balanced partly by the centrifugal force and partly by the magnetic field. As the plasma is neutralized, the magnetic force disappears and the matter can be shown to fall in to a distance 2/3 of the original. This gives cause to the so called 'cosmogonic shadow effect', which has been demonstrated earlier for the astroidal belt and in the large scale structure of the Saturnian ring system. The relevance of the cosmogonic shadow effect is investigated for parts of the finer structures of the Saturnian ring system. It is shown that many structures of the present ring system can be understood as shadows and antishadows of cosmogonic origin. These appear in the form of double rings centered around a position a factor 0.64 (slightly less than 2/3) closer to Saturn than the causing feature. (author)

  17. Particle beams and plasmas

    International Nuclear Information System (INIS)

    Hofmann, A.; Messerschmid, E.; Lawson, J.D.

    1976-01-01

    These lectures present a survey of some of the concepts of plasma physics and look at some situations familiar to particle-accelerator physicists from the point of view of a plasma physicist, with the intention of helping to link together the two fields. At the outset, basic plasma concepts are presented, including definitions of a plasma, characteristic parameters, magnetic pressure and confinement. This is followed by a brief discussion on plasma kinetic theory, non-equilibrium plasma, and the temperature of moving plasmas. Examples deal with beams in the CERN Intersecting Storage Rings as well as with non-steady beams in cyclic accelerators and microwave tubes. In the final chapters, time-varying systems are considered: waves in free space and the effect of cylinder bounds, wave motion in cold stationary plasmas, and waves in plasmas with well-defined streams. The treatment throughout is informal, with emphasis on the essential physical properties of continuous beams in accelerators and storage rings in relation to the corresponding problems in plasma physics and microwave tubes. (Author)

  18. Heating of energetic electrons and ELMO ring formation in symmetric mirror facility

    International Nuclear Information System (INIS)

    Quon, B.H.; Dandl, R.A.; Lazar, N.H.; Wuerker, R.F.

    1982-01-01

    The spatial structure of the high beta, hot-electron ECH plasma, (ELMO Ring), has been studied by using a Hall probe array diagnostic system which measures the diamagnetic field of the hot electron plasma in a large number of spatial locations. The steady state pressure profile obtained using a two-gaussian geometric model that best fits the measurements is found to peak at the mirror midplane near the vacuum field second harmonic resonant point. The radial width of the ring is typically 4 to 7 cm, and the axial length extends significantly beyond the second harmonic resonance zone of the total magnetic field. The radial thickness and the Ring beta are increased by multiple frequency ECH. The electron ring is observed to evolve from a sloshing-like turning point distribution which was observed in the early times following a microwave turnon, demonstrating stochastic processes involved in ELMO Ring formation

  19. PERISTALTIC PUMPING NEAR POST-CORONAL MASS EJECTION SUPRA-ARCADE CURRENT SHEETS

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Roger B.; Longcope, Dana W.; McKenzie, David E., E-mail: rscott@physics.montana.edu [Department of Physics, Montana State University, P.O. Box 173840, Bozeman, MT 59717 (United States)

    2013-10-10

    Temperature and density measurements near supra-arcade current sheets suggest that plasma on unreconnected field lines may experience some degree of 'pre-heating' and 'pre-densification' prior to reconnection. Models of patchy reconnection allow for heating and acceleration of plasma along reconnected field lines but do not offer a mechanism for transport of thermal energy across field lines. Here, we present a model in which a reconnected flux tube retracts, deforming the surrounding layer of unreconnected field. The deformation creates constrictions that act as peristaltic pumps, driving plasma flow along affected field lines. Under certain circumstances, these flows lead to shocks that can extend far out into the unreconnected field, altering the plasma properties in the affected region. These findings have direct implications for observations in the solar corona, particularly in regard to such phenomena as high temperatures near current sheets in eruptive solar flares and wakes seen in the form of descending regions of density depletion or supra-arcade downflows.

  20. MHD waveguides in space plasma

    International Nuclear Information System (INIS)

    Mazur, N. G.; Fedorov, E. N.; Pilipenko, V. A.

    2010-01-01

    The waveguide properties of two characteristic formations in the Earth's magnetotail-the plasma sheet and the current (neutral) sheet-are considered. The question of how the domains of existence of different types of MHD waveguide modes (fast and slow, body and surface) in the (k, ω) plane and their dispersion properties depend on the waveguide parameters is studied. Investigation of the dispersion relation in a number of particular (limiting) cases makes it possible to obtain a fairly complete qualitative pattern of all the branches of the dispersion curve. Accounting for the finite size of perturbations across the wave propagation direction reveals new additional effects such as a change in the critical waveguide frequencies, the excitation of longitudinal current at the boundaries of the sheets, and a change in the symmetry of the fundamental mode. Knowledge of the waveguide properties of the plasma and current sheets can explain the occurrence of preferred frequencies in the low-frequency fluctuation spectra in the magnetotail. In satellite observations, the type of waveguide mode can be determined from the spectral properties, as well as from the phase relationships between plasma oscillations and magnetic field oscillations that are presented in this paper.

  1. Evolution of the ring current during two geomagnetic storms

    International Nuclear Information System (INIS)

    Lui, A.T.Y.; McEntire, R.W.; Krimigis, S.M.

    1987-01-01

    The progressive developments in the radial profiles of the particle pressure, plasma beta, and electric currents of the storm time ring current are investigated with data from the medium energy particle analyzer on the AMPTE Charged Particle Explorer spacecraft. Measurements of ions from 25 keV to 1 MeV, which carry 70--85% of the energy density of the entire ring current population, are used in this work. Two geomagnetic storms in September of 1984 are selected and four traversals of the equatorial ring current region during the course of each storm are studied. It is shown that enhancements in the particle pressure occur initially in the outer region and reach the inner region in the late phase of the storm. Structures suggestive of multiple particle injections are seen in the pressure profile. The leading and trailing edges of the particle injection structures are associated, respectively, with the depressions and enhancements of the westward current densities of the ring current. Plasma beta occasionally increases to values of the order of 1 in some regions of the ring current from prestorm values of the order of 0.1 or less. It is also found that the location of the maximum ring current particle pressure can be several earth radii from where the most intense westward ring current flows. This is a consequence of the dominance of pressure gradient current over the current associated with the magnetic field line curvature and particle anisotropy. copyright American Geophysical Union 1987

  2. Analysis of 16 plasma vortex events in the geomagnetic tail

    International Nuclear Information System (INIS)

    Birn, J.; Hones, E.W. Jr.; Bame, S.J.; Russel, C.T.

    1985-01-01

    The analysis of 16 plasma vortex occurrences in the magnetotail plasma sheet of Hones et al. (1983) is extended. We used two- and three-dimensional plasma measurements and three-dimensional magnetic field measurements to study phase relations, energy propagation, and polarization properties. The results point toward an interpretation as a slow strongly damped MHD eigenmode which is generated by tailward traveling perturbations at the low-latitude interface between plasma sheet and magnetosheath

  3. A feature of negative hydrogen ion production in the Uramoto-type sheet plasma

    Energy Technology Data Exchange (ETDEWEB)

    Jimbo, Kouichi [Kyoto Univ., Uji (Japan). Inst. of Atomic Energy

    1997-02-01

    It seems that negative hydrogen ions H{sup -} are formed directly from atomic hydrogens H. When the chamber was biased more negative against the anode potential at constant are power, forming a much deeper electrostatic well in the Uramoto-type sheet plasma negative ion source, more negative hydrogen ion currents were extracted. The chamber potential V{sub B} was biased down to -100V in the 150V discharge. The negative ion current J{sup -} was evaluated by the JAERI-probe measurement. J{sup -} increases linearly with the chamber current I{sub B}. The largest J{sup -} value was obtained at absolute value of |V{sub prob,f}|=15V and absolute value of |V{sub B}|=100V; the discharge was not operated for absolute value of |V{sub B}|>100V. We speculate the following collisional (three-body) electron attachment to H as a possible production process for H{sup -}; e+e+H{yields}e+H{sup -}. This process may explain the linear increase of J{sup -} with absolute value of |V{sub prob,f}|. (S.Y.)

  4. Device of supporting a vacuum plasma vessel

    International Nuclear Information System (INIS)

    Kanoi, Minoru; Hori, Yasuro.

    1980-01-01

    Purpose: To improve the earthquake-resistance of a vacuum plasma vessel by equalizing the natural vibrations of a vibrating system formed by supporting mechanisms of the respective sectors of the vessel. Constitution: The vacuum plasma vessel is constructed of bellows interposed among a plurality of thick sector-like rings and the rings, which are respectively supported by supporting mechanisms. Thus, the vibrating systems are divided into the rings interposed with the bellows, arms as the supporting mechanisms, and posts. The natural vibrations of these vibrating systems are equalized to each other by suitably adjusting the configurations and the sized of the arms and the posts or the weight or the like of the rings. Therefore, the respective rings become vibrated at the natural vibrations equal to each other so as to largely reduce the stresses produced at both ends of the bellows. Accordingly, it can remarkably improve the earthquake-resistance of the entire plasma vessel. (Sekiya, K.)

  5. Inner Magnetospheric Physics

    Science.gov (United States)

    Gallagher, Dennis

    2018-01-01

    Outline - Inner Magnetosphere Effects: Historical Background; Main regions and transport processes: Ionosphere, Plasmasphere, Plasma sheet, Ring current, Radiation belt; Geomagnetic Activity: Storms, Substorm; Models.

  6. PREFACE: Special section on vortex rings Special section on vortex rings

    Science.gov (United States)

    Fukumoto, Yasuhide

    2009-10-01

    . Their formation is a problem of vortex sheet dynamics, the steady state is a problem of existence, their duration is a problem of stability, and if there are several we have the problem of vortex interactions. Helmholtz himself, in the same paper (1858), devoted a few pages to an analysis of the motion of a vortex ring, and made substantial contributions. Since then, theoretical, experimental and numerical treatments of vortex rings have been developing continuously, yet we encounter mysteries and novel phenomena, with which vortex rings find new applications in, say, bio-fluid mechanics. Recently vortex rings have enlarged their scope beyond classical fluids to encompass super-fluids and Bose-Einstein condensates. On the occasion of the 150th anniversary of Helmholtz's theory on a vortex ring, it is worthwhile to bring together, in one issue, the latest understandings of and open problems in vortex rings from various aspects. The topics in this issue include development of theories and experiments for motion of vortex rings and their interaction with other vortex rings, flows and boundaries, with application to vortex-ring manipulation for flow control, original experiments on collision of vortex rings with a porous boundary, a novel numerical technique to simulate three-dimensional motion of vortex rings and new theories of dynamics of quantum vortex rings governed by nonlinear Schrödinger equations. I hope that this special section gives a sketch, in some proportion, of the current frontier of the field and provides a means to tackle future problems. References Saffman P G 1981 Dynamics of vorticity J. Fluid Mech. 106 49-58 von Helmholtz H 1858 Über Integrale der hydrodynamischen Gleichungen welche den Wirbelbewegungen entsprechen J. Reine Angew. Math. 55 25-55 (Engl. transl.: Tait P G 1867 On the integrals of the hydrodynamical equations which express vortex-motion Phil. Mag. 33 (4) 485-512)

  7. Hot plasma and energetic particles in the earth's outer magnetosphere: new understandings during the IMS

    International Nuclear Information System (INIS)

    Baker, D.N.; Fritz, T.A.

    1984-01-01

    In this paper we review the major accomplishments made during the IMS period in clarifying magnetospheric particle variations in the region from roughly geostationary orbit altitudes into the deep magnetotail. We divide our review into three topic areas: (1) acceleration processes; (2) transport processes; and (3) loss processes. Many of the changes in hot plasmas and energetic particle populations are often found to be related intimately to geomagnetic storm and magnetospheric substorm effects and, therefore, substantial emphasis is given to these aspects of particle variations in this review. The IMS data, taken as a body, allow a reasonably unified view as one traces magnetospheric particles from their acceleration source through the plasma sheet and outer trapping regions and, finally, to their loss via ionospheric precipitation and ring current formation processes. It is this underlying, unifying theme which is pursued here. 52 references, 19 figures

  8. Quasi-adiabatic particle acceleration in a magnetic field reversals and the formation of the plasma sheet boundary layer in the earth's magnetotail

    International Nuclear Information System (INIS)

    Zelenyi, L.M.; Vogin, D.V.; Buechner, J.

    1989-01-01

    Two types of regularity exist for the particle motion in the two-dimensional magnetic field reversals (MFR) with the strongly curves magnetic field lines - the usual adiabatic and another one which we called 'quasiadiabatic'. Here we consider the acceleration of MFR particles in stationary and homogeneous electric field induced by the motion of MFR through the ambient plasma (i.e. solar wind). Assuming that the time scale of acceleration is slow in comparison with the period of orbital motion we introduce the new longitudinal invariant I κ . This enables to describe the process of acceleration in a closed form and to obtain for the first time the laws governing the quasiadiabatic ion acceleration in the Earth's mangetotail. The similarities and differences in adiabatic and quasiadiabatic acceleration mechanisms are discussed. The obtained results give and important insights to the problem of the particle heating in hte Earth's magnetotail and to the formation of accelerated plasma streams along the edges of the plasma sheet. (author). 17 refs.; 7 figs

  9. On hot tenuous plasmas, fireballs, and boundary layers in the earth's magnetotail

    International Nuclear Information System (INIS)

    Frank, L.A.; Ackerson, K.L.; Lepping, R.P.

    1976-01-01

    Intensive correlative studies of magnetic fields and plasmas within the earth's magnetotail at geocentric radial distances of approx. 23--46 R/sub E/ during March--October 1974 revealed striking new features. The hot tenuous plasmas within the plasma sheet were found to be in a state of almost continual flow and were threaded with northward, or closed, geomagnetic field lines. Proton bulk speeds were in the range 50--500 km s -1 . The magnetic fields are directed northward. These observations demand a strong persistent source of magnetic flux and hot plasmas for the plasma sheet. No characteristic proton bulk flows were evident during crossings of the neutral sheet. Occasionally, the satellite encountered the region of acceleration in the magnetotail, the 'fireball.' This spectacular phenomenon exhibits strong jetting of plasmas in exces of 1000 km s -1 , proton temperatures of approx. 10 7 degreeK (kT approx. 1 keV), disordered magnetic fields, southward magnetic fields during tailward jetting of the plasmas. Earthward plasma flows within the fireball are threaded with closed geomagnetic field lines, and open magnetic field lines are embedded in the tailward jetting plasmas. The magnetosheathlike plasmas within the boundary layers which are positioned contiguous to the plasma sheet display striking evidences of plasma heating, great changes in bulk flow velocities and acceleration of energetic electrons with E > 45 keV. Persistent zones of southward magnetic fields are detected, which are often positioned adjacent to the plasma sheet and within the boundary layer plasmas. Rotations of the magnetic fields from southward to northward, or vice versa, in these boundary layers are accompanied by large enhancements of energetic electron intensities, substantial heating of the low-energy electron distributions, and strong perturbations of the proton velocity distribution functions

  10. Current disruptions in the near-earth neutral sheet region

    International Nuclear Information System (INIS)

    Liu, A.T.Y.; Anderson, B.J.; Takahashi, K.; Zanetti, L.J.; McEntire, R.W.; Potemra, T.A.; Lopez, R.E.; Klumpar, D.M.; Greene, E.M.; Strangeway, R.

    1992-01-01

    Observations from the Charge Composition Explorer in 1985 and 1986 revealed fifteen current disruption events in which the magnetic field fluctuations were large and their onsets coincided well with ground onsets of substorm expansion or intensification. Over the disruption interval, the local magnetic field can change by as much as a factor of ∼7. In general, the stronger the current buildup and the closer the neutral sheet, the larger the resultant field change. There is also a tendency for a larger subsequent enhancement in the AE index with a stronger current buildup prior to current disruption. For events with good pitch angle coverage and extended observation in the neutral sheet region the authors find that the particle pressure increases toward the disruption onset and decreases afterward. Just prior to disruption, either the total particle pressure is isotropic, or the perpendicular component (P perpendicular ) dominates the parallel component (P parallel ), the plasma beta is seen to be as high as ∼70, and the observed plasma pressure gradient at the neutral sheet is large along the tail axis. The deduced local current density associated with pressure gradient is ∼27-80 n/Am 2 and is ∼85-105 mA/m when integrated over the sheet thickness. They infer from these results that just prior to the onset of current disruption, (1) an extremely thin current sheet requiring P parallel > P perpendicular for stress balance does not develop at these distances, (2) the thermal ion orbits are in the chaotic or Speiser regime while the thermal electrons are in the adiabatic regime and, in one case, exhibit peaked fluxes perpendicular to the magnetic field, thus implying no electron orbit chaotization to possibly initiate ion tearing instability, and (3) the neutral sheet is in the unstable regime specified by the cross-field current instability

  11. Ardnamurchan 3D cone-sheet architecture explained by a single elongate magma chamber.

    Science.gov (United States)

    Burchardt, Steffi; Troll, Valentin R; Mathieu, Lucie; Emeleus, Henry C; Donaldson, Colin H

    2013-10-08

    The Palaeogene Ardnamurchan central igneous complex, NW Scotland, was a defining place for the development of the classic concepts of cone-sheet and ring-dyke emplacement and has thus fundamentally influenced our thinking on subvolcanic structures. We have used the available structural information on Ardnamurchan to project the underlying three-dimensional (3D) cone-sheet structure. Here we show that a single elongate magma chamber likely acted as the source of the cone-sheet swarm(s) instead of the traditionally accepted model of three successive centres. This proposal is supported by the ridge-like morphology of the Ardnamurchan volcano and is consistent with the depth and elongation of the gravity anomaly underlying the peninsula. Our model challenges the traditional model of cone-sheet emplacement at Ardnamurchan that involves successive but independent centres in favour of a more dynamical one that involves a single, but elongate and progressively evolving magma chamber system.

  12. Phase 1 Safety, Pharmacokinetics, and Pharmacodynamics of Dapivirine and Maraviroc Vaginal Rings: A Double-Blind Randomized Trial.

    Science.gov (United States)

    Chen, Beatrice A; Panther, Lori; Marzinke, Mark A; Hendrix, Craig W; Hoesley, Craig J; van der Straten, Ariane; Husnik, Marla J; Soto-Torres, Lydia; Nel, Annalene; Johnson, Sherri; Richardson-Harman, Nicola; Rabe, Lorna K; Dezzutti, Charlene S

    2015-11-01

    Variable adherence limits effectiveness of daily oral and intravaginal tenofovir-containing pre-exposure prophylaxis. Monthly vaginal antiretroviral rings are one approach to improve adherence and drug delivery. MTN-013/IPM 026, a multisite, double-blind, randomized, placebo-controlled trial in 48 HIV-negative US women, evaluated vaginal rings containing dapivirine (DPV) (25 mg) and maraviroc (MVC) (100 mg), DPV only, MVC only, and placebo used continuously for 28 days. Safety was assessed by adverse events. Drug concentrations were quantified in plasma, cervicovaginal fluid (CVF), and cervical tissue. Cervical biopsy explants were challenged with HIV ex vivo to evaluate pharmacodynamics. There was no difference in related genitourinary adverse events between treatment arms compared with placebo. DPV and MVC concentrations rose higher initially before falling more rapidly with the combination ring compared with relatively stable concentrations with the single-drug rings. DPV concentrations in CVF were 1 and 5 log10 greater than cervical tissue and plasma for both rings. MVC was consistently detected only in CVF. DPV and MVC CVF and DPV tissue concentrations dropped rapidly after ring removal. Cervical tissue showed a significant inverse linear relationship between HIV replication and DPV levels. In this first study of a combination microbicide vaginal ring, all 4 rings were safe and well tolerated. Tissue DPV concentrations were 1000 times greater than plasma concentrations and single drug rings had more stable pharmacokinetics. DPV, but not MVC, demonstrated concentration-dependent inhibition of HIV-1 infection in cervical tissue. Because MVC concentrations were consistently detectable only in CVF and not in plasma, improved drug release of MVC rings is needed.

  13. Current sheets and pressure anisotropy in the reconnection exhaust

    International Nuclear Information System (INIS)

    Le, A.; Karimabadi, H.; Roytershteyn, V.; Egedal, J.; Ng, J.; Scudder, J.; Daughton, W.; Liu, Y.-H.

    2014-01-01

    A particle-in-cell simulation shows that the exhaust during anti-parallel reconnection in the collisionless regime contains a current sheet extending 100 inertial lengths from the X line. The current sheet is supported by electron pressure anisotropy near the X line and ion anisotropy farther downstream. Field-aligned electron currents flowing outside the magnetic separatrices feed the exhaust current sheet and generate the out-of-plane, or Hall, magnetic field. Existing models based on different mechanisms for each particle species provide good estimates for the levels of pressure anisotropy. The ion anisotropy, which is strong enough to reach the firehose instability threshold, is also important for overall force balance. It reduces the outflow speed of the plasma

  14. Current sheets and pressure anisotropy in the reconnection exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Le, A.; Karimabadi, H.; Roytershteyn, V. [SciberQuest, Inc., Del Mar, California 92014 (United States); Egedal, J. [University of Wisconsin–Madison, Madison, Wisconsin 53706 (United States); Ng, J. [PPPL, Princeton University, Princeton, New Jersey 08543 (United States); Scudder, J. [University of Iowa, Iowa City, Iowa 52242 (United States); Daughton, W.; Liu, Y.-H. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2014-01-15

    A particle-in-cell simulation shows that the exhaust during anti-parallel reconnection in the collisionless regime contains a current sheet extending 100 inertial lengths from the X line. The current sheet is supported by electron pressure anisotropy near the X line and ion anisotropy farther downstream. Field-aligned electron currents flowing outside the magnetic separatrices feed the exhaust current sheet and generate the out-of-plane, or Hall, magnetic field. Existing models based on different mechanisms for each particle species provide good estimates for the levels of pressure anisotropy. The ion anisotropy, which is strong enough to reach the firehose instability threshold, is also important for overall force balance. It reduces the outflow speed of the plasma.

  15. On the energy release rate in a turbulent current sheet on the Sun

    International Nuclear Information System (INIS)

    Bardakov, V.M.

    1986-01-01

    It is shown that turbulent current sheets on the Sun, realizing in the form of the Parker - Sweet flow, are in quasilinear regime of turbulence (or in the regime of instability threshold). The energy release rate in such sheets does not exceed 10 26 erg/s for typical plasma parameters in active regions

  16. Duality of the magnetic flux tube and electric current descriptions magnetospheric plasma and energy flow

    International Nuclear Information System (INIS)

    Atkinson, G.

    1981-01-01

    The duality between electric current and magnetic flux tubes is outlined for the magnetosphere. Magnetic flux tubes are regarded as fluid elements subjected to various stresses. Current closure then becomes the dual of stress balance, and Poynting vector energy flow a dual of J x E dissipation. The stresses acting on a flux tube are magnetic stresses, which correspond to currents at a distance, and plasma stresses, which correspond to local currents. The duality between current and stress is traced for ionospheric ion drag forces, solar wind stresses at the magnetopause, inertial effects, and the effects of energetic plasma on flux tubes. The stress balance and dual current systems are outlined for idealized magnetospheres of increasing complexity. For a simple magnetosphere with no convective flow, the balance stresses are solar wind pressure and neutral sheet plasma pressure. The corresponding current systems are the Chapman-Ferraro magnetopause currents and the magetotail current system. The introduction of convective flow introduces further stresses: ionospheric ion drag. Alfven layer shielding, and an imbalance in day-night magnetic stresses due to transport of flux tubes to the nightside by the solar wind. These stresses balance, and hence the corresponding additional currents (the ionospheric Pedersen current and the electrojets, the partial ring current, and two other current systems from the magnetopause and tail) must form a closed current system and do so by the region I and II field-aligned currents of Iijima and Potemra. The energy flow in the above models is described in terms of both Poynting vectors and the above current systems. Temporal variations examined are (1) an increase in dayside merging and/or nightside reconnection, (2) an increase in the energy density of plasma in the plasma sheet, (3) an increase in ionospheric conductivity, and (4) an increase in solar wind pressure

  17. Evolution of three-dimensional relativistic current sheets and development of self-generated turbulence

    Science.gov (United States)

    Takamoto, M.

    2018-05-01

    In this paper, the temporal evolution of three-dimensional relativistic current sheets in Poynting-dominated plasma is studied for the first time. Over the past few decades, a lot of efforts have been conducted on studying the evolution of current sheets in two-dimensional space, and concluded that sufficiently long current sheets always evolve into the so-called plasmoid chain, which provides a fast reconnection rate independent of its resistivity. However, it is suspected that plasmoid chain can exist only in the case of two-dimensional approximation, and would show transition to turbulence in three-dimensional space. We performed three-dimensional numerical simulation of relativistic current sheet using resistive relativistic magnetohydrodynamic approximation. The results showed that the three-dimensional current sheets evolve not into plasmoid chain but turbulence. The resulting reconnection rate is 0.004, which is much smaller than that of plasmoid chain. The energy conversion from magnetic field to kinetic energy of turbulence is just 0.01 per cent, which is much smaller than typical non-relativistic cases. Using the energy principle, we also showed that the plasmoid is always unstable for a displacement in the opposite direction to its acceleration, probably interchange-type instability, and this always results in seeds of turbulence behind the plasmoids. Finally, the temperature distribution along the sheet is discussed, and it is found that the sheet is less active than plasmoid chain. Our finding can be applied for many high-energy astrophysical phenomena, and can provide a basic model of the general current sheet in Poynting-dominated plasma.

  18. Artificial magnetism and left-handed media from dielectric rings and rods

    International Nuclear Information System (INIS)

    Jelinek, L; Marques, R

    2010-01-01

    It is shown that artificial magnetism with relatively large frequency bandwidth can be obtained from periodic arrangements of dielectric rings. Combined with dielectric rods, dielectric rings can provide 3D isotropic left-handed metamaterials which are an advantageous alternative to metallic split ring resonators (SRRs) and/or metallic wires when undetectability by low frequency external magnetic fields is desired. Furthermore it is shown that, unlike conventional SRRs, dielectric rings can also be combined with natural plasma-like media to obtain a left-handed metamaterial.

  19. Artificial magnetism and left-handed media from dielectric rings and rods

    Energy Technology Data Exchange (ETDEWEB)

    Jelinek, L [Department of Electromagnetic Field, Czech Technical University in Prague, 166 27-Prague (Czech Republic); Marques, R, E-mail: l_jelinek@us.e [Departamento de Electronica y Electromagnetismo, Universidad de Sevilla, 41012-Sevilla (Spain)

    2010-01-20

    It is shown that artificial magnetism with relatively large frequency bandwidth can be obtained from periodic arrangements of dielectric rings. Combined with dielectric rods, dielectric rings can provide 3D isotropic left-handed metamaterials which are an advantageous alternative to metallic split ring resonators (SRRs) and/or metallic wires when undetectability by low frequency external magnetic fields is desired. Furthermore it is shown that, unlike conventional SRRs, dielectric rings can also be combined with natural plasma-like media to obtain a left-handed metamaterial.

  20. Revisit the modeling of the Saturnian ring atmosphere and ionosphere from the "Cassini Grand Finale" results

    Science.gov (United States)

    Tseng, W. L.; Johnson, R. E.; Tucker, O. J.; Perry, M. E.; Ip, W. H.

    2017-12-01

    During the Cassini Grand Finale mission, this spacecraft, for the first time, has done the in-situ measurements of Saturn's upper atmosphere and its rings and provides critical information for understanding the coupling dynamics between the main rings and the Saturnian system. The ring atmosphere is the source of neutrals (i.e., O2, H2, H; Tseng et al., 2010; 2013a), which is primarily generated by photolytic decomposition of water ice (Johnson et al., 2006), and plasma (i.e., O2+ and H2+; Tseng et al., 2011) in the Saturnian magnetosphere. In addition, the main rings have strong interaction with Saturn's atmosphere and ionosphere (i.e., a source of oxygen into Saturn's upper atmosphere and/or the "ring rain" in O'Donoghue et al., 2013). Furthermore, the near-ring plasma environment is complicated by the neutrals from both the seasonally dependent ring atmosphere and Enceladus torus (Tseng et al., 2013b), and, possibly, from small grains from the main and tenuous F and G rings (Johnson et al.2017). The data now coming from Cassini Grand Finale mission already shed light on the dominant physics and chemistry in this region of Saturn's magnetosphere, for example, the presence of carbonaceous material from meteorite impacts in the main rings and each gas species have similar distribution in the ring atmosphere. We will revisit the details in our ring atmosphere/ionosphere model to study, such as the source mechanism for the organic material and the neutral-grain-plasma interaction processes.

  1. Measurement of OH free radical in magnetized sheet plasma crossed with vertical gas-flow by laser-induced fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Tonegawa, Akira; Takatori, Masahiko; Kobayashi, Yukihiro; Kawamura, Kazutaka; Takayama, Kazuo

    1997-01-01

    We demonstrated the production of OH free radicals in an argon magnetized sheet plasma crossed with vertical gas-flow mixed with an oxygen gas O 2 and a hydrogen gas H 2 . The density and the rotational-vibrational temperature of the OH free radicals were measured by a laser-induced fluorescence (LIF). The density of OH free radicals increases with increasing O 2 gas-flow, while the high energy part of the electron-energy-distribution-function f e (E) above 8 eV decreases. These results suggest the high energy part of f e (E) is contributed to the dissociation of O 2 and the production of OH free radicals. (author)

  2. Energized Oxygen : Speiser Current Sheet Bifurcation

    Science.gov (United States)

    George, D. E.; Jahn, J. M.

    2017-12-01

    A single population of energized Oxygen (O+) is shown to produce a cross-tail bifurcated current sheet in 2.5D PIC simulations of the magnetotail without the influence of magnetic reconnection. Treatment of oxygen in simulations of space plasmas, specifically a magnetotail current sheet, has been limited to thermal energies despite observations of and mechanisms which explain energized ions. We performed simulations of a homogeneous oxygen background, that has been energized in a physically appropriate manner, to study the behavior of current sheets and magnetic reconnection, specifically their bifurcation. This work uses a 2.5D explicit Particle-In-a-Cell (PIC) code to investigate the dynamics of energized heavy ions as they stream Dawn-to-Dusk in the magnetotail current sheet. We present a simulation study dealing with the response of a current sheet system to energized oxygen ions. We establish a, well known and studied, 2-species GEM Challenge Harris current sheet as a starting point. This system is known to eventually evolve and produce magnetic reconnection upon thinning of the current sheet. We added a uniform distribution of thermal O+ to the background. This 3-species system is also known to eventually evolve and produce magnetic reconnection. We add one additional variable to the system by providing an initial duskward velocity to energize the O+. We also traced individual particle motion within the PIC simulation. Three main results are shown. First, energized dawn- dusk streaming ions are clearly seen to exhibit sustained Speiser motion. Second, a single population of heavy ions clearly produces a stable bifurcated current sheet. Third, magnetic reconnection is not required to produce the bifurcated current sheet. Finally a bifurcated current sheet is compatible with the Harris current sheet model. This work is the first step in a series of investigations aimed at studying the effects of energized heavy ions on magnetic reconnection. This work differs

  3. Synthesis of N-graphene using microwave plasma-based methods

    Science.gov (United States)

    Dias, Ana; Tatarova, Elena; Henriques, Julio; Dias, Francisco; Felizardo, Edgar; Abrashev, Miroslav; Bundaleski, Nenad; Cvelbar, Uros

    2016-09-01

    In this work a microwave atmospheric plasma driven by surface waves is used to produce free-standing graphene sheets (FSG). Carbonaceous precursors are injected into a microwave plasma environment, where decomposition processes take place. The transport of plasma generated gas-phase carbon atoms and molecules into colder zones of plasma reactor results in carbon nuclei formation. The main part of the solid carbon is gradually carried from the ``hot'' plasma zone into the outlet plasma stream where carbon nanostructures assemble and grow. Subsequently, the graphene sheets have been N-doped using a N2-Ar large-scale remote plasma treatment, which consists on placing the FSG on a substrate in a remote zone of the N2-Ar plasma. The samples were treated with different compositions of N2-Ar gas mixtures, while maintaining 1 mbar pressure in the chamber and a power applied of 600 W. The N-doped graphene sheets were characterized by scanning and by high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy and Raman spectroscopy. Plasma characterization was also performed by optical emission spectroscopy. Work partially funded by Portuguese FCT - Fundacao para a Ciencia e a Tecnologia, under grant SFRH/BD/52413/2013 (PD-F APPLAuSE).

  4. 3-D studies of the formation and stability of strong ion rings

    International Nuclear Information System (INIS)

    Omelchenko, Yu.A.; Sudan, R.N.

    1996-01-01

    Complex 3-D simulations were conducted in support of the on-going experimental program, FIREX( (Field-Reversed Ion Ring Experiment) launched at the Cornell University to produce an ion ring magnetic field-reversed configuration by injecting an intense annular proton beam across a plasma-filled magnetic cusp region into a neutral gas immersed in a ramped solenoidal magnetic field. Previous axisymmetric PIC simulations performed with the FIRE code have demonstrated that strong ion rings (with a self-magnetic field large enough to reverse the applied field on axis) can be created using this technique on the equipment designed and assembled at Cornell. A new parallel object-oriented 3-D hybrid PIC code FLAME has been created to study questions of extreme importance to the success of the FIREX program, namely, the 3-D injection of a powerful ion beam into a strongly magnetized plasma, formation of a field-reversed ring, and the stability and equilibrium of such rings to toroidal perturbations. Using FLAME, the stability was studied of the ring formation during the injection phase and at later times when the ring is virtually stopped and the applied magnetic field is nearly reversed. The simulations revealed the effect of toroidal aberrations in the axially ramped magnetic field on the ion ring formation. (author). 4 figs., 4 refs

  5. 3-D studies of the formation and stability of strong ion rings

    Energy Technology Data Exchange (ETDEWEB)

    Omelchenko, Yu A; Sudan, R N [Cornell Univ., Ithaca, NY (United States). Laboratory of Plasma Studies

    1997-12-31

    Complex 3-D simulations were conducted in support of the on-going experimental program, FIREX( (Field-Reversed Ion Ring Experiment) launched at the Cornell University to produce an ion ring magnetic field-reversed configuration by injecting an intense annular proton beam across a plasma-filled magnetic cusp region into a neutral gas immersed in a ramped solenoidal magnetic field. Previous axisymmetric PIC simulations performed with the FIRE code have demonstrated that strong ion rings (with a self-magnetic field large enough to reverse the applied field on axis) can be created using this technique on the equipment designed and assembled at Cornell. A new parallel object-oriented 3-D hybrid PIC code FLAME has been created to study questions of extreme importance to the success of the FIREX program, namely, the 3-D injection of a powerful ion beam into a strongly magnetized plasma, formation of a field-reversed ring, and the stability and equilibrium of such rings to toroidal perturbations. Using FLAME, the stability was studied of the ring formation during the injection phase and at later times when the ring is virtually stopped and the applied magnetic field is nearly reversed. The simulations revealed the effect of toroidal aberrations in the axially ramped magnetic field on the ion ring formation. (author). 4 figs., 4 refs.

  6. Solar wind and substorm excitation of the wavy current sheet

    Directory of Open Access Journals (Sweden)

    C. Forsyth

    2009-06-01

    Full Text Available Following a solar wind pressure pulse on 3 August 2001, GOES 8, GOES 10, Cluster and Polar observed dipolarizations of the magnetic field, accompanied by an eastward expansion of the aurora observed by IMAGE, indicating the occurrence of two substorms. Prior to the first substorm, the motion of the plasma sheet with respect to Cluster was in the ZGSM direction. Observations following the substorms show the occurrence of current sheet waves moving predominantly in the −YGSM direction. Following the second substorm, the current sheet waves caused multiple current sheet crossings of the Cluster spacecraft, previously studied by Zhang et al. (2002. We further this study to show that the velocity of the current sheet waves was similar to the expansion velocity of the substorm aurora and the expansion of the dipolarization regions in the magnetotail. Furthermore, we compare these results with the current sheet wave models of Golovchanskaya and Maltsev (2005 and Erkaev et al. (2008. We find that the Erkaev et al. (2008 model gives the best fit to the observations.

  7. Generation of sheet currents by high frequency fast MHD waves

    Energy Technology Data Exchange (ETDEWEB)

    Núñez, Manuel, E-mail: mnjmhd@am.uva.es

    2016-07-01

    The evolution of fast magnetosonic waves of high frequency propagating into an axisymmetric equilibrium plasma is studied. By using the methods of weakly nonlinear geometrical optics, it is shown that the perturbation travels in the equatorial plane while satisfying a transport equation which enables us to predict the time and location of formation of shock waves. For plasmas of large magnetic Prandtl number, this would result into the creation of sheet currents which may give rise to magnetic reconnection and destruction of the original equilibrium. - Highlights: • Regular solutions of quasilinear hyperbolic systems may evolve into shocks. • The shock location is found for high frequency fast MHD waves. • The result is applied to static axisymmetric equilibria. • The previous process may lead to the formation of sheet currents and destruction of the equilibrium.

  8. Spatial structure of radio frequency ring-shaped magnetized discharge sputtering plasma using two facing ZnO/Al2O3 cylindrical targets for Al-doped ZnO thin film preparation

    Directory of Open Access Journals (Sweden)

    Takashi Sumiyama

    2017-05-01

    Full Text Available Spatial structure of high-density radio frequency ring-shaped magnetized discharge plasma sputtering with two facing ZnO/Al2O3 cylindrical targets mounted in ring-shaped hollow cathode has been measured and Al-doped ZnO (AZO thin film is deposited without substrate heating. The plasma density has a peak at ring-shaped hollow trench near the cathode. The radial profile becomes uniform with increasing the distance from the target cathode. A low ion current flowing to the substrate of 0.19 mA/cm2 is attained. Large area AZO films with a resistivity of 4.1 – 6.7×10-4 Ω cm can be prepared at a substrate room temperature. The transmittance is 84.5 % in a visible region. The surface roughnesses of AZO films are 0.86, 0.68, 0.64, 1.7 nm at radial positions of r = 0, 15, 30, 40 mm, respectively, while diffraction peak of AZO films is 34.26°. The grains exhibit a preferential orientation along (002 axis.

  9. Magnetic reconnection through the current sheets as the universal process for plasma dynamics in nonuniform magnetic fields

    International Nuclear Information System (INIS)

    Frank, A.G.; Bogdanov, S.Yu.; Burilina, V.B.; Kyrie, N.P.

    1997-01-01

    Laboratory experiments are reported, in which we studied the possibilities of the formation of current sheets (CS) in different magnetic configurations, as well as the magnetic reconnection phenomena. In 2D magnetic fields with null-lines the CS formation was shown to be a typical process in both linear and nonlinear regimes. The problem of CS formation is of a fundamental importance in the general case of 3D magnetic configurations. We have revealed experimentally, that the formation of CS occurs in the various 3D configurations, both containing magnetic null-points and without them. At the same time, the CS parameters essentially depend on the local characteristics of the configuration. We may conclude therefore, that the self-organization of CS represents the universal process for the plasma dynamics in the nonuniform magnetic fields. (author)

  10. Thin current sheets observation by MMS during a near-Earth's magnetotail reconnection event

    Science.gov (United States)

    Nakamura, R.; Varsani, A.; Nakamura, T.; Genestreti, K.; Plaschke, F.; Baumjohann, W.; Nagai, T.; Burch, J.; Cohen, I. J.; Ergun, R.; Fuselier, S. A.; Giles, B. L.; Le Contel, O.; Lindqvist, P. A.; Magnes, W.; Schwartz, S. J.; Strangeway, R. J.; Torbert, R. B.

    2017-12-01

    During summer 2017, the four spacecraft of the Magnetospheric Multiscale (MMS) mission traversed the nightside magnetotail current sheet at an apogee of 25 RE. They detected a number of flow reversal events suggestive of the passage of the reconnection current sheet. Due to the mission's unprecedented high-time resolution and spatial separation well below the ion scales, structure of thin current sheets is well resolved both with plasma and field measurements. In this study we examine the detailed structure of thin current sheets during a flow reversal event from tailward flow to Earthward flow, when MMS crossed the center of the current sheet . We investigate the changes in the structure of the thin current sheet relative to the X-point based on multi-point analysis. We determine the motion and strength of the current sheet from curlometer calculations comparing these with currents obtained from the particle data. The observed structures of these current sheets are also compared with simulations.

  11. Dielectronic recombination experiments with tungsten ions at the test storage ring and development of a single-particle detector at the cryogenic storage ring

    International Nuclear Information System (INIS)

    Spruck, Kaija

    2015-05-01

    This work is about electron-ion collision experiments at the ion storage rings of the Max Planck Institute for Nuclear Physics in Heidelberg. Absolute recombination rate coefficients of highly-charged tungsten ions featuring an open 4-f-shell structure have been measured at the heavy-ion storage ring TSR. The resulting plasma rate coefficients have been used to probe the significance of newly developed theoretical approaches. Plasma rate coefficients of highly-charged tungsten ions are in particular interesting for the development of plasma models for nuclear fusion reactors, since tungsten is a foreseeable impurity in the fusion plasma. In the relevant temperature range, the experimental results exceed the theoretical data used so far by up to a factor of 10, showing the need for more reliable theoretical calculations. Furthermore, based on the design of the detectors which have been used in the experiments at TSR, a movable single-particle detector for electron-ion recombination studies at the cryogenic storage ring CSR has been developed and installed within the scope of this work. The device has been designed specifically to meet the requirements of the CSR regarding low ion energies and cryogenic ambient temperature conditions. In a series of experiments, the detector was carefully characterised and successfully tested for its compatibility with these requirements. The detector was part of the infrastructure used for the room-temperature commissioning of CSR (2014) and is currently operated as a single-particle counter during the first cryogenic operation of CSR in 2015.

  12. Dielectronic recombination experiments with tungsten ions at the test storage ring and development of a single-particle detector at the cryogenic storage ring

    Energy Technology Data Exchange (ETDEWEB)

    Spruck, Kaija

    2015-05-15

    This work is about electron-ion collision experiments at the ion storage rings of the Max Planck Institute for Nuclear Physics in Heidelberg. Absolute recombination rate coefficients of highly-charged tungsten ions featuring an open 4-f-shell structure have been measured at the heavy-ion storage ring TSR. The resulting plasma rate coefficients have been used to probe the significance of newly developed theoretical approaches. Plasma rate coefficients of highly-charged tungsten ions are in particular interesting for the development of plasma models for nuclear fusion reactors, since tungsten is a foreseeable impurity in the fusion plasma. In the relevant temperature range, the experimental results exceed the theoretical data used so far by up to a factor of 10, showing the need for more reliable theoretical calculations. Furthermore, based on the design of the detectors which have been used in the experiments at TSR, a movable single-particle detector for electron-ion recombination studies at the cryogenic storage ring CSR has been developed and installed within the scope of this work. The device has been designed specifically to meet the requirements of the CSR regarding low ion energies and cryogenic ambient temperature conditions. In a series of experiments, the detector was carefully characterised and successfully tested for its compatibility with these requirements. The detector was part of the infrastructure used for the room-temperature commissioning of CSR (2014) and is currently operated as a single-particle counter during the first cryogenic operation of CSR in 2015.

  13. Estimates on the mean current in a sphere of plasma

    International Nuclear Information System (INIS)

    Nunez, Manuel

    2003-01-01

    Several turbulent dynamo models predict the concentration of the magnetic field in chaotic plasmas in sheets with the field vector pointing alternatively in opposite directions, which should produce strong current sheets. It is proved that if the plasma is contained in a rigid sphere with perfectly conducting boundary the geometry of these sheets must be balanced so that the mean current remains essentially bounded by the Coulomb gauged mean vector potential of the field. This magnitude remains regular even for the sharp field variations expected in a chaotic flow. For resistive plasmas the same arguments imply that the contribution to the total current of the regions near the boundary compensates the current of the central part of the sphere

  14. Stability of large orbit, high-current particle rings

    International Nuclear Information System (INIS)

    Lovelace, R.V.E.

    1994-01-01

    A review is made of theory of the low-frequency stability of large orbit, high-current particle rings which continue to be of interest for compact fusion systems. The precession mode was the first mode predicted by Furth and observed by Christofilos to be unstable under certain conditions. Subsequently, many detailed studies have been made of the stability of particle rings- different modes, different ring geometries, systems with/without a toroidal B field, and sytems with/without a current carrying plasma component. The possibly dangerous modes are still thought to include the precession mode, the tilting mode, and the low order kink modes. copyright American Institute of Physics

  15. Enhancement of the guide field during the current sheet formation in the three-dimensional magnetic configuration with an X line

    International Nuclear Information System (INIS)

    Frank, Anna; Bugrov, Sergey; Markov, Vladimir

    2009-01-01

    Results are presented from studies of the formation of current sheets during exciting a current aligned with the X line of the 3D magnetic configuration, in the CS-3D device. Enhancement of the guide field (parallel to the X line) was directly observed for the first time, on the basis of magnetic measurements. After the current sheet formation, the guide field inside the sheet exceeds its initial value, as well as the field outside. It is convincingly demonstrated that an enhancement of the guide field is due to its transportation by plasma flows on the early stage of the sheet formation. The in-plane plasma currents, which produce the excess guide field, are comparable to the total current along the X line that initiates the sheet itself.

  16. Further determination of the characteristics of magnetospheric plasma vortices with Isee 1 and 2

    International Nuclear Information System (INIS)

    Hones, E.W. Jr.; Birn, J.; Bame, S.J.; Asbridge, J.R.; Paschmann, G.; Sckopke, N.; Haerendel, G.

    1981-01-01

    Further studies of the vortices in magnetospheric plasma flow with the Los Alamos Scientific Laboratory/Max-Planck-Institut (LASL/MPI) fast plasma experiment on Isee 1 and 2 have revealed that the pattern of vortical flow has a wavelength of approx.20-40 R/sub E/ and moves tailward through the magnetosphere at speed of several hundred kilometers per second. The tendency toward vorticity pervades the total breadth of the plasma sheet tailward of the dawn-dusk meridian. The sense of rotation of the plasma flow (as viewed from above the ecliptic plane) is clockwise in the morningside of the plasma sheet and counterclockwise in the eveningside. The sense of rotation in the morning and evening boundary layers is reversed from that in the contiguous regions of the plasma sheet. The occurrence of vortical flow is independent of the level of geomagnetic activity but is associated with long-period geomagnetic pulsations. We believe that the source of the vortical motion is a Kelvin-Helmholtz instability of the plasma boundary layer's inner surface (i.e., the interface between the plasma sheet and the boundary layer) that has recently been proposed by Sonnerup [1980

  17. Spatial Evolution of Electrostatic Solitary Waves along Plasma Sheet Boundary Layer Adjacent to the Magnetic Reconnection X-Line

    International Nuclear Information System (INIS)

    Li Shi-You; Zhang Shi-Feng; Cai Hong; Deng Xiao-Hua

    2012-01-01

    Analysis on the spatial structure of electrostatic solitary waves (ESWs) along the plasma sheet boundary layer (PSBL) near an on-going magnetic reconnection X-line is performed. Most of the ESWs in the PSBL of R3 region near reconnection X-line are propagating earthwards away from the reconnecting site. An analysis of their spatial structure shows that, when ESWs propagate along the ambient field in the PSBL, outwards from the magnetic reconnection X-line, their amplitude will finally attenuate and thus the electron hole will fade away but their spatial scale remains unchanged. However, the spatial structure of propagating ESWs evolves from 1-D-like to 2-D-like though totally in a 1-D structure. (geophysics, astronomy, and astrophysics)

  18. Performance analyses of Elmo Bumpy Torus plasmas and plasma support systems

    International Nuclear Information System (INIS)

    Fenstermacher, M.E.

    1979-01-01

    The development and applcation of the OASIS Code (Operational Analysis of ELMO Bumpy Torus Support and Ignition Systems) for the study of EBT device and plasma performance are presented. The code performs a time-independent, zero-dimensional self-consistent calculation of plasma and plasmasupport systems parameters for the physics and engineering of EBT devices. The features of OASIS modeling for the EBT plasma include: (1) particle balance of the bulk toroidal and electron ring plasma components for experimental (H-H, D-D, He-He etc.) as well as reactor (D-T) devices; (2) energy balance in the bulk and ring plasmas for externally heated or ignition devices; (3) alpha particle effects for reactor devices; (4) auxiliary heating effects, including microwave (ECRH), RF heating (e.g., ICRH), and neutral beam methods; and (5) ignition conditions, including fusion power, alpha power and neutron wall loading. The performance studies using OASIS focussed on variation in plasma and device size and on microwave input power and frequency. An additional study was performed to determine the characteristics of an EBT reactor proof-of-principle device operated with a deuterium-tritium plasma. Sensitivity studies were performed for variation in the input microwave power sharing fractions and the dependence of the bulk n tau scaling law on bulk electron temperature

  19. Tunable optical analog to electromagnetically induced transparency in graphene-ring resonators system.

    Science.gov (United States)

    Wang, Yonghua; Xue, Chenyang; Zhang, Zengxing; Zheng, Hua; Zhang, Wendong; Yan, Shubin

    2016-12-12

    The analogue of electromagnetically induced transparency in optical ways has shown great potential in optical delay and quantum-information technology due to its flexible design and easy implementation. The chief drawback for these devices is the bad tunability. Here we demonstrate a tunable optical transparency system formed by graphene-silicon microrings which could control the transparent window by electro-optical means. The device consists of cascaded coupled ring resonators and a graphene/graphene capacitor which integrated on one of the rings. By tuning the Fermi level of the graphene sheets, we can modulate the round-trip ring loss so that the transparency window can be dynamically tuned. The results provide a new method for the manipulation and transmission of light in highly integrated optical circuits and quantum information storage devices.

  20. Lubrication of ceramics in ring/cylinder applications

    International Nuclear Information System (INIS)

    Gaydos, P.A.; Dufrane, K.F.

    1989-01-01

    In support of efforts to apply ceramics to advanced heat engines, a study was performed of the wear mechanisms of ceramics at the ring/cylinder interface. A laboratory apparatus was constructed to reproduce most of the conditions of an actual engine but used easily prepared ring and cylinder specimens to facilitate their fabrication. Plasma-sprayed coatings of Cr 2 O 3 and hypersonic flame-sprayed coatings of cobalt-bonded WC performed particularly well as ring coatings. Similar performance was obtained with these coatings operating against SiC, Si 3 N 4 , SiC whisker-reinforced Al 2 O 3 and Cr 2 O 2 coatings. The study demonstrated the critical need for lubrication and evaluated the performance of two available lubricants

  1. Anomalous resistivity due to kink modes in a thin current sheet

    International Nuclear Information System (INIS)

    Moritaka, Toseo; Horiuchi, Ritoku; Ohtani, Hiroaki

    2007-01-01

    The roles of microscopic plasma instabilities on the violation of the frozen-in constraint are investigated by examining the force balance equation based on explicit electromagnetic particle simulation for a thin current sheet. Wave-particle interactions associated with lower hybrid drift instability and drift kink instability (DKI) contribute to the wavy electric force term at the periphery of the current sheet and the wavy magnetic force term at the neutral sheet, respectively. In the linear growing phase of DKI, the wavy magnetic force term balances with the electric force term due to the dc electric field at the neutral sheet. It is concluded that the growth of DKI can create anomalous resistivity and result in the violation of the frozen-in constraint as well as the diffusion of current density

  2. Acceleration Modes and Transitions in Pulsed Plasma Accelerators

    Science.gov (United States)

    Polzin, Kurt A.; Greve, Christine M.

    2018-01-01

    Pulsed plasma accelerators typically operate by storing energy in a capacitor bank and then discharging this energy through a gas, ionizing and accelerating it through the Lorentz body force. Two plasma accelerator types employing this general scheme have typically been studied: the gas-fed pulsed plasma thruster and the quasi-steady magnetoplasmadynamic (MPD) accelerator. The gas-fed pulsed plasma accelerator is generally represented as a completely transient device discharging in approximately 1-10 microseconds. When the capacitor bank is discharged through the gas, a current sheet forms at the breech of the thruster and propagates forward under a j (current density) by B (magnetic field) body force, entraining propellant it encounters. This process is sometimes referred to as detonation-mode acceleration because the current sheet representation approximates that of a strong shock propagating through the gas. Acceleration of the initial current sheet ceases when either the current sheet reaches the end of the device and is ejected or when the current in the circuit reverses, striking a new current sheet at the breech and depriving the initial sheet of additional acceleration. In the quasi-steady MPD accelerator, the pulse is lengthened to approximately 1 millisecond or longer and maintained at an approximately constant level during discharge. The time over which the transient phenomena experienced during startup typically occur is short relative to the overall discharge time, which is now long enough for the plasma to assume a relatively steady-state configuration. The ionized gas flows through a stationary current channel in a manner that is sometimes referred to as the deflagration-mode of operation. The plasma experiences electromagnetic acceleration as it flows through the current channel towards the exit of the device. A device that had a short pulse length but appeared to operate in a plasma acceleration regime different from the gas-fed pulsed plasma

  3. Injection, compression and stability of intense ion-rings

    International Nuclear Information System (INIS)

    Sudan, R.N.

    1975-01-01

    Recent advances in pulsed high power ion beam technology make possible the creation of intense ion-rings with strong self-magnetic fields by single pulse injection. Such ion rings have several uses in controlled fusion e.g., to produce a min parallel B parallel magnetic geometry with a mirror ratio much higher than is possible with external conductors. For even stronger ion rings a min parallel B parallel with closed lines of force (ASTRON type) can be created. For this purpose, since the ion energies required are much higher than are available from high power sources, magnetic compression can be utilized to increase the ion energy. The success of this scheme depends critically on the stability of the ion ring. The low frequency perturbations of the ring-plasma system is examined by means of a generalization of the energy principle which established sufficient conditions for stability. The high-frequency micro-instabilities and their nonlinear consequences are discussed in terms of conventional techniques

  4. Structural, electronic structure and antibacterial properties of graphene-oxide nano-sheets

    Science.gov (United States)

    Sharma, Aditya; Varshney, Mayora; Nanda, Sitansu Sekhar; Shin, Hyun Joon; Kim, Namdong; Yi, Dong Kee; Chae, Keun-Hwa; Ok Won, Sung

    2018-04-01

    Correlation between the structural/electronic structure properties and bio-activity of graphene-based materials need to be thoroughly evaluated before their commercial implementation in the health and environment precincts. To better investigate the local hybridization of sp2/sp3 orbitals of the functional groups of graphene-oxide (GO) and their execution in the antimicrobial mechanism, we exemplify the antibacterial activity of GO sheets towards the Escherichia coli bacteria (E. coli) by applying the field-emission scanning electron microscopy (FESEM), near edge X-ray absorption fine structure (NEXAFS) and scanning transmission X-ray microscope (STXM) techniques. C K-edge and O K-edge NEXAFS spectra have revealed lesser sp2 carbon atoms in the aromatic ring and attachment of functional oxygen groups at GO sheets. Entrapment of E. coli bacteria by GO sheets is evidenced by FESEM investigations and has also been corroborated by nano-scale imaging of bacteria using the STXM. Spectroscopy evidence of functional oxygen moieties with GO sheets and physiochemical entrapment of E. coli bacteria have assisted us to elaborate the mechanism of cellular oxidative stress-induced disruption of bacterial membrane.

  5. Dual-function magnetic structure for toroidal plasma devices

    International Nuclear Information System (INIS)

    Brown, R.L.

    1978-01-01

    This invention relates to a support system wherein the iron core and yoke of the plasma current system of a tokamak plasma containment device is redesigned to support the forces of the magnet coils. The containment rings, which occupy very valuable space around the magnet coils, are utilized to serve as yokes for the core such that the conventional yoke is eliminated. The overall result is an improved aspect ratio, reduction in structure, smaller overall size, and improved access to the plasma ring

  6. Study of hydroxylation of benzene and toluene using a micro-DBD plasma reactor

    International Nuclear Information System (INIS)

    Sekiguchi, H; Ando, M; Kojima, H

    2005-01-01

    The hydroxylation behaviour of benzene and toluene were studied using a micro-plasma reactor, where an atmospheric non-thermal plasma was generated by a dielectric barrier discharge (DBD). The results indicated that oxidation products primarily consisted of phenol and C 4 -compounds for benzene hydroxylation, whereas cresol, benzaldehyde, benzylalcohol and C 4 -compounds were detected for toluene hydroxylation. By taking into consideration the reaction mechanism in the plasma reactor, these products were classified into (1) oxidation of the aromatic ring and functional group on the ring and (2) cleavage of the aromatic ring or dissociation of the functional group on the ring

  7. Tuning the mechanical properties of vertical graphene sheets through atomic layer deposition

    International Nuclear Information System (INIS)

    Davami, Keivan; Jiang, Yijie; Cortes, John; Lin, Chen; Turner, Kevin T; Bargatin, Igor; Shaygan, Mehrdad

    2016-01-01

    We report the fabrication and characterization of graphene nanostructures with mechanical properties that are tuned by conformal deposition of alumina. Vertical graphene (VG) sheets, also called carbon nanowalls (CNWs), were grown on copper foil substrates using a radio-frequency plasma-enhanced chemical vapor deposition (RF-PECVD) technique and conformally coated with different thicknesses of alumina (Al_2O_3) using atomic layer deposition (ALD). Nanoindentation was used to characterize the mechanical properties of pristine and alumina-coated VG sheets. Results show a significant increase in the effective Young’s modulus of the VG sheets with increasing thickness of deposited alumina. Deposition of only a 5 nm thick alumina layer on the VG sheets nearly triples the effective Young’s modulus of the VG structures. Both energy absorption and strain recovery were lower in VG sheets coated with alumina than in pure VG sheets (for the same peak force). This may be attributed to the increase in bending stiffness of the VG sheets and the creation of connections between the sheets after ALD deposition. These results demonstrate that the mechanical properties of VG sheets can be tuned over a wide range through conformal atomic layer deposition, facilitating the use of VG sheets in applications where specific mechanical properties are needed. (paper)

  8. Solar wind and substorm excitation of the wavy current sheet

    Directory of Open Access Journals (Sweden)

    C. Forsyth

    2009-06-01

    Full Text Available Following a solar wind pressure pulse on 3 August 2001, GOES 8, GOES 10, Cluster and Polar observed dipolarizations of the magnetic field, accompanied by an eastward expansion of the aurora observed by IMAGE, indicating the occurrence of two substorms. Prior to the first substorm, the motion of the plasma sheet with respect to Cluster was in the ZGSM direction. Observations following the substorms show the occurrence of current sheet waves moving predominantly in the −YGSM direction. Following the second substorm, the current sheet waves caused multiple current sheet crossings of the Cluster spacecraft, previously studied by Zhang et al. (2002. We further this study to show that the velocity of the current sheet waves was similar to the expansion velocity of the substorm aurora and the expansion of the dipolarization regions in the magnetotail. Furthermore, we compare these results with the current sheet wave models of Golovchanskaya and Maltsev (2005 and Erkaev et al. (2008. We find that the Erkaev et al. (2008 model gives the best fit to the observations.

  9. Structural and electronic properties of hydrogen adsorptions on BC3 sheet and graphene: a comparative study

    International Nuclear Information System (INIS)

    Chuang, Feng-Chuan; Huang, Zhi-Quan; Lin, Wen-Huan; Albao, Marvin A; Su, Wan-Sheng

    2011-01-01

    We have systematically investigated the effect of hydrogen adsorption on a single BC 3 sheet as well as graphene using first-principles calculations. Specifically, a comparative study of the energetically favorable atomic configurations for both H-adsorbed BC 3 sheets and graphene at different hydrogen concentrations ranging from 1/32 to 4/32 ML and 1/8 to 1 ML was undertaken. The preferred hydrogen arrangement on the single BC 3 sheet and graphene was found to have the same property as that of the adsorbed H atoms on the neighboring C atoms on the opposite sides of the sheet. Moreover, at low coverage of H, the pattern of hydrogen adsorption on the BC 3 shows a proclivity toward formation on the same ring, contrasting their behavior on graphene where they tend to form the elongated zigzag chains instead. Lastly, both the hydrogenated BC 3 sheet and graphene exhibit alternation of semiconducting and metallic properties as the H concentration is increased. These results suggest the possibility of manipulating the bandgaps in a single BC 3 sheet and graphene by controlling the H concentrations on the BC 3 sheet and graphene.

  10. Magnetosheath plasma precipitation in the polar cusp and its control by the interplanetary magnetic field

    International Nuclear Information System (INIS)

    Woch, J.; Lundin, R.

    1992-01-01

    Magnetosheath particle precipitation in the polar cusp region is studied based on Viking hot plasma data obtained on meridional cusp crossings. Two distinctively different regions are commonly encountered on a typical pass. One region is characterized by high-density particle precipitation, with an ion population characterized by a convecting Maxwellian distribution. Typical magnetosheath parameters are inferred for the spectrum of the source population. The spectral shape of the ion population encountered in the second region suggests that here the magnetosheath ions have been energized by about 1 keV, corresponding to an ion velocity gain of about twice the magnetosheath Alfven velocity. The location of the region containing the accelerated plasma is dependent on the IMF B z component. For southward IMF the acceleration region is bounded by the ring current population on the equatorward side and by the unaccelerated magnetosheath plasma precipitation on the poleward side. For northward IMF the region is located at the poleward edge of the region with unaccelerated precipitation. The accelerated ion population is obviously transported duskward (dawnward) for a dawnward (duskward) directed IMF. These observations are interpreted as evidence for plasma acceleration due to magnetopause current sheet disruptions/merging of magnetospheric and interplanetary magnetic flux tubes

  11. Spatial and Temporal Extent of Ion Spectral Structures at the Inner Edge of the Plasma Sheet

    Science.gov (United States)

    Ferradas, C.; Reeves, G. D.; Zhang, J.; Spence, H. E.; Kistler, L. M.; Larsen, B.; Skoug, R. M.; Funsten, H. O.

    2017-12-01

    Several ion spectral structures are observed near the inner edge of the plasma sheet and constitute the signatures of ion drift and loss in the highly dynamic environment of the inner magnetosphere. Their study helps us understand ion access and losses in this region. Several studies have found that these structures vary with geomagnetic activity, local time, and ion species, but their spatial and temporal extent remain undetermined. We use data from the Helium, Oxygen, Proton, and Electron (HOPE) mass spectrometers onboard the Van Allen Probes to analyze the spectral structures in the energy range of 1- 50 keV. HOPE measurements on both Van Allen Probes spacecraft enable us to resolve the extent of these ion structures in space and time. As the structures respond to changes in the convection electric field on a variety of time scales, the lapping of the two spacecraft on time scales of minutes to hours helps determine their spatial and temporal evolution.

  12. Wake patterns behind boulders in the rings of Saturn

    International Nuclear Information System (INIS)

    Brattli, A.; Havnes, O.; Melandsoe, F.

    2002-01-01

    The flow of charged dust around an electrically charged boulder moving through an environment thought to be typical of planatery rings is studied. As the boulder moves through the ring dust it will excite a V-shaped Mach cone pattern of a form and complexity which varies significantly with boulder size, relative velocity between the boulder and the dust, and with dust plasma conditions. Parameters relevant to the Saturnian ring system are used to compute examples which demonstrate the change in Mach cone patterns with the relevant parameters. Shortcomings of the model are discussed and ways to improve the calculations of Mach cone patterns are pointed out

  13. Streaming sausage, kink and tearing instabilities in a current sheet with applications to the earth's magnetotail

    Science.gov (United States)

    Lee, L. C.; Wang, S.; Wei, C. Q.; Tsurutani, B. T.

    1988-01-01

    This paper investigates the growth rates and eigenmode structures of the streaming sausage, kink, and tearing instabilities in a current sheet with a super-Alfvenic flow. The growth rates and eigenmode structures are first considered in the ideal incompressible limit by using a four-layer model, as well as a more realistic case in which all plasma parameters and the magnetic field vary continuously along the direction perpendicular to the magnetic field and plasma flow. An initial-value method is applied to obtain the growth rate and eigenmode profiles of the fastest growing mode, which is either the sausage mode or kink mode. It is shown that, in the earth's magnetotail, where super-Alfvenic plasma flows are observed in the plasma sheet and the ratio between the plasma and magnetic pressures far away from the current layer is about 0.1-0.3 in the lobes, the streaming sausage and streaming tearing instabilities, but not kink modes, are likely to occur.

  14. Nonlinear equilibrium structure of thin currents sheets: influence of electron pressure anisotropy

    Directory of Open Access Journals (Sweden)

    L. M. Zelenyi

    2004-01-01

    Full Text Available Thin current sheets represent important and puzzling sites of magnetic energy storage and subsequent fast release. Such structures are observed in planetary magnetospheres, solar atmosphere and are expected to be widespread in nature. The thin current sheet structure resembles a collapsing MHD solution with a plane singularity. Being potential sites of effective energy accumulation, these structures have received a good deal of attention during the last decade, especially after the launch of the multiprobe CLUSTER mission which is capable of resolving their 3D features. Many theoretical models of thin current sheet dynamics, including the well-known current sheet bifurcation, have been developed recently. A self-consistent 1D analytical model of thin current sheets in which the tension of the magnetic field lines is balanced by the ion inertia rather than by the plasma pressure gradients was developed earlier. The influence of the anisotropic electron population and of the corresponding electrostatic field that acts to restore quasi-neutrality of the plasma is taken into account. It is assumed that the electron motion is fluid-like in the direction perpendicular to the magnetic field and fast enough to support quasi-equilibrium Boltzmann distribution along the field lines. Electrostatic effects lead to an interesting feature of the current density profile inside the current sheet, i.e. a narrow sharp peak of electron current in the very center of the sheet due to fast curvature drift of the particles in this region. The corresponding magnetic field profile becomes much steeper near the neutral plane although the total cross-tail current is in all cases dominated by the ion contribution. The dependence of electrostatic effects on the ion to electron temperature ratio, the curvature of the magnetic field lines, and the average electron magnetic moment is also analyzed. The implications of these effects on the fine structure of thin current sheets

  15. Hysteresis-controlled instability waves in a scale-free driven current sheet model

    Directory of Open Access Journals (Sweden)

    V. M. Uritsky

    2005-01-01

    Full Text Available Magnetospheric dynamics is a complex multiscale process whose statistical features can be successfully reproduced using high-dimensional numerical transport models exhibiting the phenomenon of self-organized criticality (SOC. Along this line of research, a 2-dimensional driven current sheet (DCS model has recently been developed that incorporates an idealized current-driven instability with a resistive MHD plasma system (Klimas et al., 2004a, b. The dynamics of the DCS model is dominated by the scale-free diffusive energy transport characterized by a set of broadband power-law distribution functions similar to those governing the evolution of multiscale precipitation regions of energetic particles in the nighttime sector of aurora (Uritsky et al., 2002b. The scale-free DCS behavior is supported by localized current-driven instabilities that can communicate in an avalanche fashion over arbitrarily long distances thus producing current sheet waves (CSW. In this paper, we derive the analytical expression for CSW speed as a function of plasma parameters controlling local anomalous resistivity dynamics. The obtained relation indicates that the CSW propagation requires sufficiently high initial current densities, and predicts a deceleration of CSWs moving from inner plasma sheet regions toward its northern and southern boundaries. We also show that the shape of time-averaged current density profile in the DCS model is in agreement with steady-state spatial configuration of critical avalanching models as described by the singular diffusion theory of the SOC. Over shorter time scales, SOC dynamics is associated with rather complex spatial patterns and, in particular, can produce bifurcated current sheets often seen in multi-satellite observations.

  16. Paper-based plasma sanitizers.

    Science.gov (United States)

    Xie, Jingjin; Chen, Qiang; Suresh, Poornima; Roy, Subrata; White, James F; Mazzeo, Aaron D

    2017-05-16

    This work describes disposable plasma generators made from metallized paper. The fabricated plasma generators with layered and patterned sheets of paper provide a simple and flexible format for dielectric barrier discharge to create atmospheric plasma without an applied vacuum. The porosity of paper allows gas to permeate its bulk volume and fuel plasma, while plasma-induced forced convection cools the substrate. When electrically driven with oscillating peak-to-peak potentials of ±1 to ±10 kV, the paper-based devices produced both volume and surface plasmas capable of killing microbes. The plasma sanitizers deactivated greater than 99% of Saccharomyces cerevisiae and greater than 99.9% of Escherichia coli cells with 30 s of noncontact treatment. Characterization of plasma generated from the sanitizers revealed a detectable level of UV-C (1.9 nW⋅cm -2 ⋅nm -1 ), modest surface temperature (60 °C with 60 s of activation), and a high level of ozone (13 ppm with 60 s of activation). These results deliver insights into the mechanisms and suitability of paper-based substrates for active antimicrobial sanitization with scalable, flexible sheets. In addition, this work shows how paper-based generators are conformable to curved surfaces, appropriate for kirigami-like "stretchy" structures, compatible with user interfaces, and suitable for sanitization of microbes aerosolized onto a surface. In general, these disposable plasma generators represent progress toward biodegradable devices based on flexible renewable materials, which may impact the future design of protective garments, skin-like sensors for robots or prosthetics, and user interfaces in contaminated environments.

  17. An experimental determination of the hot electron ring geometry in a Bumpy Torus and its implications for Bumpy Torus stability

    International Nuclear Information System (INIS)

    Hillis, D.L.; Wilgen, J.B.; Bigelow, T.S.; Jaeger, E.F.; Swain, D.W.; Hankins, O.E.; Juhala, R.E.

    1986-10-01

    The hot electron rings of the ELMO Bumpy Torus (EBT) [Plasma Physics and Controlled Nuclear Fusion (IAEA, Vienna, 1975), Vol. II, p. 141] are formed by electron cyclotron resonance heating (ECRH) and have an electron temperature of 350 to 500 keV. The original intention of these hot electron rings was to provide a local minimum in the magnetic field and, thereby, stabilize the simple interchange and flute modes, which are inherent in a closed field line bumpy torus. To evaluate the electron energy density of the EBT rings and determine if enough stored energy is present to provide a local minimum in the magnetic field, a detailed understanding of the spatial distribution of the rings is imperative. The purpose of this report is to measure the ring thickness and investigate its implications for bumpy torus stability. The spatial location and radial profile of the hot electron ring are measured with a unique metal ball pellet injector, which injects small metallic balls into the EBT ring plasma. From these measurements the radial extent (or ring thickness) is about 5 to 7 cm full width at half maximum for typical EBT operation, which is much larger than previously expected. These measurements and recent modeling of the EBT plasma indicate that the hot electron ring's stored energy may not be sufficient to produce a local minimum in the magnetic field

  18. Ring current instabilities excited by the energetic oxygen ions

    International Nuclear Information System (INIS)

    Kakad, A. P.; Singh, S. V.; Lakhina, G. S.

    2007-01-01

    The ring current instabilities driven by the energetic oxygen ions are investigated during the magnetic storm. The electrons and protons are considered to have Maxwellian distributions, while energetic oxygen ions are having loss-cone distribution. Dispersion relation for the quasielectrostatic modes with frequencies ω>ω cp (proton cyclotron frequency) and propagating obliquely to the magnetic field is obtained. Dispersion relation is studied numerically for the storm time ring current parameters and it is found that these instabilities are most prominent during intense storms when the oxygen ions become the dominant constituents of the ring current plasma. For some typical storm-time ring current parameters, these modes can produce quasielectrostatic noise in the range of 17-220 Hz, thus providing a possible explanation of the electrostatic noise observed at the inner boundary of the ring current during magnetic storms. Further, these modes can attain saturation electric fields of the order of 100-500 μV/m, and therefore, are expected to scatter O + ions into the loss-cone giving rise to their precipitation into the atmosphere, thus contributing to the ring current decay

  19. Light-sheet generation in inhomogeneous media using self-reconstructing beams and the STED-principle.

    Science.gov (United States)

    Gohn-Kreuz, Cristian; Rohrbach, Alexander

    2016-03-21

    Self-reconstruction of Bessel beams in inhomogeneous media is beneficial in light-sheet based microscopy. Although the beam's ring system enables propagation stability, the resulting image contrast is reduced. Here, we show that by a combination of two self-reconstructing beams with different orbital angular momenta it is possible to inhibit fluorescence from the ring system by using stimulated emission depletion (STED) even in strongly scattering media. Our theoretical study shows that the remaining fluorescence γ depends non-linearly on the beams' relative radial and orbital angular momenta. For various scattering media we demonstrate that γ remains remarkably stable over long beam propagation distances.

  20. Three-fluid magnetohydrodynamical simulation of plasma focus discharges

    International Nuclear Information System (INIS)

    Behler, K.; Bruhns, H.

    1987-01-01

    A two-dimensional, three-fluid code based on the two-fluid Potter code [Methods in Computational Physics (Academic, New York, 1970), Vol. 9, p. 340] was developed for simulating the plasma focus discharge. With this code it is possible to treat the neutral gas in addition to the plasma components and to model the ionization and recombination phenomena. Thus the sheet dynamics in a plasma focus can be studied and effects investigated such as the occurrence of residual gas (or plasma) density behind the current sheet in the run-down phase. This is a prerequisite to the occurrence of leak currents, which are one of the causes limiting the performance of large plasma focus devices. It is shown that fast operating foci with small dimensions behave favorably compared with the ''classical'' Mather focus [Methods of Experimental Physics (Academic, New York, 1971), Vol. 9B, p. 187] with long coaxial electrodes

  1. Calculations of toroidal EXTRAP equilibria for different toroidal ring current configurations

    International Nuclear Information System (INIS)

    Drake, J.R.; Scheffel, J.

    1985-12-01

    EXTRAP is a concept in which a pure Z-pinch is generated along the axis of an octupole field. Experiments in a linear as well as in a sector geometry have demonstrated that the pinch becomes stable against instabilities for many Alfven times. The octupole field in EXTRAP is produced by four, external, current-carrying rings. In the toroidal geometry these rings must be supplemented by additional rings to compensate for the plasma loop force and transformer core leakage flux. Equilibrium studies are carried out for two basically ring designs. The studies are based on numerical equilibrium copmputations using the GOYA code. Sensitivity of the equilibrium to technical imperfections is also analyzed. (author)

  2. A Plasma Lens for Magnetron Sputtering

    International Nuclear Information System (INIS)

    Anders, Andre; Brown, Jeff

    2010-01-01

    A plasma lens, consisting of a solenoid and potential-defining ring electrodes, has been placed between a magnetron and substrates to be coated. Photography reveals qualitative information on excitation, ionization, and the transport of plasma to the substrate.

  3. Beam-generated plasmas for processing applications

    Science.gov (United States)

    Meger, R. A.; Blackwell, D. D.; Fernsler, R. F.; Lampe, M.; Leonhardt, D.; Manheimer, W. M.; Murphy, D. P.; Walton, S. G.

    2001-05-01

    The use of moderate energy electron beams (e-beams) to generate plasma can provide greater control and larger area than existing techniques for processing applications. Kilovolt energy electrons have the ability to efficiently ionize low pressure neutral gas nearly independent of composition. This results in a low-temperature, high-density plasma of nearly controllable composition generated in the beam channel. By confining the electron beam magnetically the plasma generation region can be designated independent of surrounding structures. Particle fluxes to surfaces can then be controlled by the beam and gas parameters, system geometry, and the externally applied rf bias. The Large Area Plasma Processing System (LAPPS) utilizes a 1-5 kV, 2-10 mA/cm2 sheet beam of electrons to generate a 1011-1012cm-3 density, 1 eV electron temperature plasma. Plasma sheets of up to 60×60 cm2 area have been generated in a variety of molecular and atomic gases using both pulsed and cw e-beam sources. The theoretical basis for the plasma production and decay is presented along with experiments measuring the plasma density, temperature, and potential. Particle fluxes to nearby surfaces are measured along with the effects of radio frequency biasing. The LAPPS source is found to generate large-area plasmas suitable for materials processing.

  4. The importance of pelvic ring stabilization as a life-saving measure in pre-hospital - A case report commented by autopsy.

    Science.gov (United States)

    Durão, Carlos; Alves, Magda; Barros, André; Pedrosa, Frederico

    2017-08-01

    Hip fractures with unstable pelvic ring have great morbidity and mortality rates. These fractures result from high energy trauma such as falls from heights, road accidents and collapsing structures or other similar mechanisms of action. We report the case of a 63 years old man, construction worker, who stood inside a ditch during a wall construction when he was surprised by this collapse, which resulted in direct trauma to the right thigh and pelvis. The autopsy revealed diaphysis fracture of the right femur with an open book pelvic fracture with severe hemorrhagic infiltration and hematoma of the pelvic muscles without arterial injury. Bone bleeding and the vascular damage associated with disruption of the sacroiliac ligaments promote a very significant bleeding. Simple maneuvers such as sheet circumferential compression to promote pelvic ring closure are effective on stabilizing and closure of the sacroiliac joint. Hip manipulation of the fracture was performed during the necropsy to demonstrate and prove how a simple sheet contention can promote stabilization of the pelvic ring by closing the sacroiliac joints in open book fractures.

  5. Radiation dominated relativistic current sheets

    International Nuclear Information System (INIS)

    Jaroschek, C.H.

    2008-01-01

    Relativistic Current Sheets (RCS) feature plasma instabilities considered as potential key to magnetic energy dissipation and non-thermal particle generation in Poynting flux dominated plasma flows. We show in a series of kinetic plasma simulations that the physical nature of non-linear RCS evolution changes in the presence of incoherent radiation losses: In the ultra-relativistic regime (i.e. magnetization parameter sigma = 104 defined as the ratio of magnetic to plasma rest frame energy density) the combination of non-linear RCS dynamics and synchrotron emission introduces a temperature anisotropy triggering the growth of the Relativistic Tearing Mode (RTM). As direct consequence the RTM prevails over the Relativistic Drift Kink (RDK) Mode as competitive RCS instability. This is in contrast to the previously studied situation of weakly relativistic RCS (sigma ∼ 1) where the RDK is dominant and most of the plasma is thermalized. The simulations witness the typical life cycle of ultra-relativistic RCS evolving from a violent radiation induced collapse towards a radiation quiescent state in rather classical Sweet-Parker topology. Such a transition towards Sweet-Parker configuration in the late non-linear evolution has immediate consequences for the efficiency of magnetic energy dissipation and non-thermal particle generation. Ceasing dissipation rates directly affect our present understanding of non-linear RCS evolution in conventional striped wind scenarios. (author)

  6. On tenuous plasmas, fireballs, and boundary layers in the earth's magnetotail

    Science.gov (United States)

    Frank, L. A.; Ackerson, K. L.; Lepping, R. P.

    1976-01-01

    The plasma instrumentation (the Lepedea) and the magnetometer aboard IMP 8 performed correlative measurements of magnetic fields and plasmas within the geomagnetic tail at geocentric radial distances of about 23-46 R-E during March-October 1974. The hot tenuous plasmas within the plasma sheet were found to be in a state of almost continuous flow and were threaded with northward, or closed geomagnetic lines. The satellite encountered a region of acceleration in the magnetotail, the 'fireball' which exhibits strong jetting of plasmas in excess of 1000 km/s, proton temperatures of about 10 to the 7th K, disordered magnetic fields, southward magnetic fields during tailward jetting of plasmas, and northward magnetic fields for fast plasma flows toward earth. In addition, the magnetosheath plasmas within the boundary layers which are contiguous to the plasma sheet display evidence of plasma heating, great changes in bulk flow velocities, and acceleration of energetic electrons with an energy of greater than 45 keV.

  7. Asymmetry of the Martian Current Sheet in a Multi-fluid MHD Model

    Science.gov (United States)

    Panoncillo, S. G.; Egan, H. L.; Dong, C.; Connerney, J. E. P.; Brain, D. A.; Jakosky, B. M.

    2017-12-01

    The solar wind carries interplanetary magnetic field (IMF) lines toward Mars, where they drape around the planet's conducting ionosphere, creating a current sheet behind the planet where the magnetic field has opposite polarity on either side. In its simplest form, the current sheet is often thought of as symmetric, extending behind the planet along the Mars-Sun line. Observations and model simulations, however, demonstrate that this idealized representation is only an approximation, and the actual scenario is much more complex. The current sheet can have 3D structure, move back and forth, and be situated dawnward or duskward of the Mars-Sun line. In this project, we utilized a library of global plasma model results for Mars consisting of a collection of multi-fluid MHD simulations where solar max/min, sub-solar longitude, and the orbital position of Mars are varied individually. The model includes Martian crustal fields, and was run for identical steady solar wind conditions. This library was created for the purpose of comparing model results to MAVEN data; we looked at the results of this model library to investigate current sheet asymmetries. By altering one variable at a time we were able to measure how these variables influence the location of the current sheet. We found that the current sheet is typically shifted toward the dusk side of the planet, and that modeled asymmetries are especially prevalent during solar min. Previous model studies that lack crustal fields have found that, for a Parker spiral IMF, the current sheet will shift dawnward, while our results typically show the opposite. This could expose certain limitations in the models used, or it could reveal an interaction between the solar wind and the plasma environment of Mars that has not yet been explored. MAVEN data may be compared to the model results to confirm the sense of the modeled asymmetry. These results help us to probe the physics controlling the Martian magnetotail and atmospheric

  8. Results from the RACE [Ring ACceleration Experiment] Compact Torus Acceleration Experiment

    International Nuclear Information System (INIS)

    Hammer, J.H.; Hartman, C.W.; Eddleman, J.L.; Kusse, B.

    1987-06-01

    RACE (Ring ACceleration Experiment) is a proof-of-principle experiment aimed at demonstrating acceleration of magnetically confined compact torus plasma rings to directed kinetic energies well in excess of their magnetic and thermal energies. In the course of the first year of operation the following have been observed: successful formation of rings in the RACE geometry; acceleration of rings with large forces, F/sub accelerate/ ∼F/sub equilibrium/ without apparent degradation of the ring structure; peak velocities of ≅2.5 x 10 8 cm/sec; acceleration efficiency of >30% at speeds of 1.5 x 10 8 cm/sec inferred from trajectory and capacitor bank data; kinetic to magnetic energy ratios ∼10 were observed. Experiments in the near future will be aimed at confirmation of the mass/energy measurements by calorimetry and direct density measurements

  9. Numerical investigation of space charge electric field for a sheet ...

    Indian Academy of Sciences (India)

    One of the problems in scaling high power vacuum and plasma microwave sources to higher frequencies is the need to transport beams with higher space charge density, since the radio frequency circuit transverse dimensions tend to decrease with wavelength. The use of sheet electron beams can alleviate this difficulty ...

  10. Class of analytic solutions for the thermally balanced magnetostatic prominence sheet

    International Nuclear Information System (INIS)

    Low, B.C.; Wu, S.T.

    1981-01-01

    This is a theoretical study of the nonlinear interplay between magnetostatic equilibrium and energy balance in a Kippenhahn-Schlueter type prominence sheet. The basic effects are illustrated explicitly with an analytic model in which a radiative loss proportional to rho 2 T balances against wave heating proportional to rho, with thermal conduction confined along magnetic field lines, where rho and T denote the plasma density and temperature, respectively. The particular choices of heat sink and source enable us to integrate the governing equations exactly while they are of the basic mathematical forms to simulate radiative loss in an optically thin plasma which is heated by wave dissipation. The steady solutions exhibit three different basic behaviors, characterized by the total wave heating in the prominence sheet being more than, equal to, or less than the total radiative loss. It is the compaction of the plasma along the field lines under its own weight combined with the effects of energy transport that determines which of the three basic behaviors obtains in a particular situation. The implications of the steady solutions for the formation of prominences are discussed. The exact solutions presented do not support the conclusion of Milne, Priest, and Roberts that there is an upper bound on the plasma beta for an equilibrium of the Kippenhahn-Schlueter prominence

  11. Spectral functions for the flat plasma sheet model

    International Nuclear Information System (INIS)

    Pirozhenko, I G

    2006-01-01

    The present work is based on Bordag M et al 2005 (J. Phys. A: Math. Gen. 38 11027) where the spectral analysis of the electromagnetic field on the background of an infinitely thin flat plasma layer is carried out. The solutions to Maxwell equations with the appropriate matching conditions at the plasma layer are derived and the spectrum of electromagnetic oscillations is determined. The spectral zeta function and the integrated heat kernel are constructed for different branches of the spectrum in an explicit form. The asymptotic expansion of the integrated heat kernel at small values of the evolution parameter is derived. The local heat kernels are considered also

  12. Design Issues of the Pre-Compression Rings of Iter

    Science.gov (United States)

    Knaster, J.; Baker, W.; Bettinali, L.; Jong, C.; Mallick, K.; Nardi, C.; Rajainmaki, H.; Rossi, P.; Semeraro, L.

    2010-04-01

    The pre-compression system is the keystone of ITER. A centripetal force of ˜30 MN will be applied at cryogenic conditions on top and bottom of each TF coil. It will prevent the `breathing effect' caused by the bursting forces occurring during plasma operation that would affect the machine design life of 30000 cycles. Different alternatives have been studied throughout the years. There are two major design requirements limiting the engineering possibilities: 1) the limited available space and 2) the need to hamper eddy currents flowing in the structures. Six unidirectionally wound glass-fibre composite rings (˜5 m diameter and ˜300 mm cross section) are the final design choice. The rings will withstand the maximum hoop stresses machine operation. The present paper summarizes the pre-compression ring R&D carried out during several years. In particular, we will address the composite choice and mechanical characterization, assessment of creep or stress relaxation phenomena, sub-sized rings testing and the optimal ring fabrication processes that have led to the present final design.

  13. Hard x-ray measurements of the hot-electron rings in EBT-S

    International Nuclear Information System (INIS)

    Hillis, D.L.

    1982-06-01

    A thorough understanding of the hot electron rings in ELMO Bumpy Torus-Scale (EBT-S) is essential to the bumpy torus concept of plasma production, since the rings provide bulk plasma stability. The hot electrons are produced via electron cyclotron resonant heating using a 28-GHz cw gyrotron, which has operated up to power levels of 200 kW. The parameters of the energetic electron rings are studied via hard x-ray measurement techniques and with diamagnetic pickup coils. The hard x-ray measurements have used collimated NaI(Tl) detectors to determine the electron temperature T/sub e/ and electron density n/sub e/ for the hot electron annulus. Typical values of T/sub e/ are 400 to 500 keV and of n/sub e/ 2 to 5 x 10 11 cm -3 . The total stored energy of a single energetic electron ring as measured by diamagnetic pickup loops approaches approx. 40 J and is in good agreement with that deduced from hard x-ray measurements. By combining the experimental measurements from hard x-rays and the diamagnetic loops, an estimate can be obtained for the volume of a single hot electron ring. The ring volume is determined to be approx. 2.2 litres, and this volume remains approximately constant over the T-mode operating regime. Finally, the power in the electrons scattered out of the ring is measured indirectly by measuring the x-ray radiation produced when those electrons strike the chamber walls. The variation of this radiation with increasing microwave power levels is found to be consistent with classical scattering estimates

  14. Measurement of tritium with plastic scintillator surface improvement with plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Yoshihara, Y.; Furuta, E. [Ochanomizu University, Bunkyo-ku, Tokyo (Japan); Ohyama, R.I.; Yokota, S. [Tokai University, Hiratsuka-shi, Kanagawa (Japan); Kato, Y.; Yoshimura, T.; Ogiwara, K. [Hitachi Aloka Medical, Mure, Mitaka-shi, Tokyo (Japan)

    2015-03-15

    Tritium is usually measured by using a liquid scintillation counter. However, liquid scintillator used for measurement will become radioactive waste fluid. To solve this issue, we have developed a method of measuring tritium samples with plasma-treated plastic scintillator (PS)sheets (Plasma method). The radioactive sample is held between 2 PS sheets and the whole is enclosed in a a low-potassium glass vial. With the Plasma method of 2-min plasma treatment, we have obtained measurement efficiency of 48 ± 2 % for 2 min measurement of tritium except for tritiated water. The plasma treatment makes the PS surface rough and hydrophilic which contributes to improve the contact between tritium and PS. On the other hand, it needed almost 6 hours to obtain constant measurement efficiency. The reason was that the dry-up handling in the vial needed longer time to vaporize H{sub 2}O molecules than in the air. We tried putting silica gel beads into vials to remove H{sub 2}O molecules from PS sheet surface quickly. The silica gel beads worked well and we got constant measurement efficiency within 1-3 hours. Also, we tried using other kinds of PS treated with plasma to obtain higher measurement efficiencies of tritium samples.

  15. Plasma-filled rippled wall rectangular backward wave oscillator

    Indian Academy of Sciences (India)

    Performance of the backward wave oscillator (BWO) is greatly enhanced with the introduction of plasma. Linear theory of the dispersion relation and the growth rate have been derived and analysed numerically for plasma-filled rippled wall rectangular waveguide driven by sheet electron beam. To see the effect of plasma ...

  16. Experimental observations of the tearing of an electron current sheet

    International Nuclear Information System (INIS)

    Gekelman, W.; Pfister, H.

    1988-01-01

    A neutral magnetic sheet, in which the current is carried mainly by the electrons, is set up in a laboratory plasma. By forcing the current through a thin slot, the ratio of the length to height t of the sheet may be varied; the current is observed to tear when tapprox. >30. The structure of the magnetic islands and their associated currents is fully three dimensional, although a linear two-dimensional theory gives a very good estimate of the tearing mode growth time. Tearing is accompanied by the generation of significant Hall currents, and magnetic disturbances are observed to propagate at the whistler wave speed

  17. FRC plasma studies on the FRX-L plasma injector for MTF

    International Nuclear Information System (INIS)

    Wurden, G.A.; Intrator, T.P.; Zhang, S.Y.; Furno, I.G.; Hsu, S.C.; Park, J.Y.; Kirkpatrick, R.; Renneke, R.M.; Schoenberg, K.F.; Taccetti, M.J.; Tuszewski, M.G.; Waganaar, W.J.; Zhehui Wang; Siemon, R.E.; Degnan, J.H.; Gale, D.G.; Grabowski, C.; Ruden, E.L.; Sommars, W.; Frese, M.H.; Coffey, S.; Craddock, G.; Frese, S.D.; Roderick, N.F.

    2005-01-01

    To demonstrate the physics basis for Magnetized Target Fusion (MTF), we have designed a field reversed configuration (FRC) target plasma to ultimately be compressed within an imploding metal flux conserver (liner). This new, high energy density FRC device, named FRX-L, is operating at Los Alamos as a compact 'theta-pinch' formation FRC. The system capability includes a 0.5 T bias field, 70 kV 250 kHz ringing pre-ionization, and a 1.5 MA, 200 kJ main-theta-coil bank. We show FRC data with plasma parameters approaching the desired MTF requirements, examples of substantial Ohmic heating from magnetic flux annihilation, and measurements of plasma anomalous resistivity. Improvements are underway to reduce the main bank crowbar ringing, which will increase the trapped flux in the FRC. A prototype deformable flux-conserving liner with large entrance holes to accept an FRC has also been designed with MACH2 (2-D MHD modelling code) and successfully imploded at Kirtland Air Force Base on the Shiva Star pulsed power facility. (author)

  18. The Role of Ionospheric Outflow Preconditioning in Determining Storm Geoeffectiveness

    Science.gov (United States)

    Welling, D. T.; Liemohn, M. W.; Ridley, A. J.

    2012-12-01

    It is now well accepted that ionospheric outflow plays an important role in the development of the plasma sheet and ring current during geomagnetic storms. Furthermore, even during quiet times, ionospheric plasma populates the magnetospheric lobes, producing a reservoir of hydrogen and oxygen ions. When the Interplanetary Magnetic Field (IMF) turns southward, this reservoir is connected to the plasma sheet and ring current through magnetospheric convection. Hence, the conditions of the ionosphere and magnetospheric lobes leading up to magnetospheric storm onset have important implications for storm development. Despite this, there has been little research on this preconditioning; most global simulations begin just before storm onset, neglecting preconditioning altogether. This work explores the role of preconditioning in determining the geoeffectiveness of storms using a coupled global model system. A model of ionospheric outflow (the Polar Wind Outflow Model, PWOM) is two-way coupled to a global magnetohydrodynamic model (the Block-Adaptive Tree Solar wind Roe-type Upwind Scheme, BATS-R-US), which in turn drives a ring current model (the Ring current Atmosphere interactions Model, RAM). This unique setup is used to simulate an idealized storm. The model is started at many different times, from 1 hour before storm onset to 12 hours before. The effects of storm preconditioning are examined by investigating the total ionospheric plasma content in the lobes just before onset, the total ionospheric contribution in the ring current just after onset, and the effects on Dst, magnetic elevation angle at geosynchronous, and total ring current energy density. This experiment is repeated for different solar activity levels as set by F10.7 flux. Finally, a synthetic double-dip storm is constructed to see how two closely spaced storms affect each other by changing the preconditioning environment. It is found that preconditioning of the magnetospheric lobes via ionospheric

  19. Safety, Acceptability and Adherence of Dapivirine Vaginal Ring in a Microbicide Clinical Trial Conducted in Multiple Countries in Sub-Saharan Africa.

    Directory of Open Access Journals (Sweden)

    Annalene Nel

    Full Text Available This was the first microbicide trial conducted in Africa to evaluate an antiretroviral-containing vaginal ring as an HIV prevention technology for women.The trial assessed and compared the safety, acceptability and adherence to product use of a 4-weekly administered vaginal ring containing the antiretroviral microbicide, dapivirine, with a matching placebo ring among women from four countries in sub-Saharan Africa.280 Healthy, sexually active, HIV-negative women, aged 18 to 40 years were enrolled with 140 women randomised to a dapivirine vaginal ring (25 mg and 140 women to a matching placebo ring, inserted 4-weekly and used over a 12-week period. Safety was evaluated by pelvic examination, colposcopy, clinical laboratory assessments, and adverse events. Blood samples for determination of plasma concentrations of dapivirine were collected at Weeks 0, 4 and 12. Residual dapivirine levels in returned rings from dapivirine ring users were determined post-trial. Participant acceptability and adherence to ring use were assessed by self-reports.No safety concerns or clinically relevant differences were observed between the dapivirine and placebo ring groups. Plasma dapivirine concentrations immediately prior to ring removal were similar after removal of the first and third ring, suggesting consistent ring use over the 12-week period. No clear relationship was observed between the residual amount of dapivirine in used rings and corresponding plasma concentrations. Self-reported adherence to daily use of the vaginal rings over the 12-week trial period was very high. At the end of the trial, 96% of participants reported that the ring was usually comfortable to wear, and 97% reported that they would be willing to use it in the future if proven effective.The dapivirine vaginal ring has a favourable safety and acceptability profile. If proven safe and effective in large-scale trials, it will be an important component of combination HIV prevention approaches

  20. Safety, Acceptability and Adherence of Dapivirine Vaginal Ring in a Microbicide Clinical Trial Conducted in Multiple Countries in Sub-Saharan Africa.

    Science.gov (United States)

    Nel, Annalene; Bekker, Linda-Gail; Bukusi, Elizabeth; Hellstrӧm, Elizabeth; Kotze, Philip; Louw, Cheryl; Martinson, Francis; Masenga, Gileard; Montgomery, Elizabeth; Ndaba, Nelisiwe; van der Straten, Ariane; van Niekerk, Neliëtte; Woodsong, Cynthia

    2016-01-01

    This was the first microbicide trial conducted in Africa to evaluate an antiretroviral-containing vaginal ring as an HIV prevention technology for women. The trial assessed and compared the safety, acceptability and adherence to product use of a 4-weekly administered vaginal ring containing the antiretroviral microbicide, dapivirine, with a matching placebo ring among women from four countries in sub-Saharan Africa. 280 Healthy, sexually active, HIV-negative women, aged 18 to 40 years were enrolled with 140 women randomised to a dapivirine vaginal ring (25 mg) and 140 women to a matching placebo ring, inserted 4-weekly and used over a 12-week period. Safety was evaluated by pelvic examination, colposcopy, clinical laboratory assessments, and adverse events. Blood samples for determination of plasma concentrations of dapivirine were collected at Weeks 0, 4 and 12. Residual dapivirine levels in returned rings from dapivirine ring users were determined post-trial. Participant acceptability and adherence to ring use were assessed by self-reports. No safety concerns or clinically relevant differences were observed between the dapivirine and placebo ring groups. Plasma dapivirine concentrations immediately prior to ring removal were similar after removal of the first and third ring, suggesting consistent ring use over the 12-week period. No clear relationship was observed between the residual amount of dapivirine in used rings and corresponding plasma concentrations. Self-reported adherence to daily use of the vaginal rings over the 12-week trial period was very high. At the end of the trial, 96% of participants reported that the ring was usually comfortable to wear, and 97% reported that they would be willing to use it in the future if proven effective. The dapivirine vaginal ring has a favourable safety and acceptability profile. If proven safe and effective in large-scale trials, it will be an important component of combination HIV prevention approaches for women

  1. Safety, Acceptability and Adherence of Dapivirine Vaginal Ring in a Microbicide Clinical Trial Conducted in Multiple Countries in Sub-Saharan Africa

    Science.gov (United States)

    Nel, Annalene; Bekker, Linda-Gail; Bukusi, Elizabeth; Hellstrӧm, Elizabeth; Kotze, Philip; Louw, Cheryl; Martinson, Francis; Masenga, Gileard; Montgomery, Elizabeth; Ndaba, Nelisiwe; van der Straten, Ariane; van Niekerk, Neliëtte; Woodsong, Cynthia

    2016-01-01

    Background This was the first microbicide trial conducted in Africa to evaluate an antiretroviral-containing vaginal ring as an HIV prevention technology for women. Objectives The trial assessed and compared the safety, acceptability and adherence to product use of a 4-weekly administered vaginal ring containing the antiretroviral microbicide, dapivirine, with a matching placebo ring among women from four countries in sub-Saharan Africa. Methods 280 Healthy, sexually active, HIV-negative women, aged 18 to 40 years were enrolled with 140 women randomised to a dapivirine vaginal ring (25 mg) and 140 women to a matching placebo ring, inserted 4-weekly and used over a 12-week period. Safety was evaluated by pelvic examination, colposcopy, clinical laboratory assessments, and adverse events. Blood samples for determination of plasma concentrations of dapivirine were collected at Weeks 0, 4 and 12. Residual dapivirine levels in returned rings from dapivirine ring users were determined post-trial. Participant acceptability and adherence to ring use were assessed by self-reports. Results No safety concerns or clinically relevant differences were observed between the dapivirine and placebo ring groups. Plasma dapivirine concentrations immediately prior to ring removal were similar after removal of the first and third ring, suggesting consistent ring use over the 12-week period. No clear relationship was observed between the residual amount of dapivirine in used rings and corresponding plasma concentrations. Self-reported adherence to daily use of the vaginal rings over the 12-week trial period was very high. At the end of the trial, 96% of participants reported that the ring was usually comfortable to wear, and 97% reported that they would be willing to use it in the future if proven effective. Conclusions The dapivirine vaginal ring has a favourable safety and acceptability profile. If proven safe and effective in large-scale trials, it will be an important component of

  2. Computer simulation of inner magnetospheric dynamics for the magnetic storm of July 29, 1977

    International Nuclear Information System (INIS)

    Wolf, R.A.; Harel, M.; Spiro, R.W.; Voigt, G.; Reiff, P.H.; Chen, C.

    1982-01-01

    We present preliminary results of applying the Rice convection model to the early main phase of the magnetic storm of July 29, 1977. The computer model self-consistently computes electric fields and currents, as well as plasma distributions and velocities, in the inner-magnetosphere/ionosphere system. In the equatorial plane, the region modeled includes geocentric distances less than about the magnetopause standoff distance. Particle loss, parallel electric fields, and neutral winds are neglected. On the basis of solar wind parameters and the AL index as input, the model predicts the injection of plasma-sheet plasma to form a substantial storm time ring current. The total strength of the model-predicted ring current agrees accurately with the observed Dst index. Comparison of the model results with electric fields and Birkeland currents measured by S3-3 shows qualitative agreement but interesting quantitative discrepancies. During this event, region 1 currents, which in standard convection theory would connect to the outer magnetosphere, are observed as low as 60 0 invariant latitude at dawn and dusk. We examine the possibility that the magnetic field might be so highly inflated that 60 0 field lines extend to the outer magnetosphere. In the model, distortion of the inner edge of the plasma sheet by the magnetospheric compression associated with the sudden commencement temporarily disturbs the normal Birkeland-current pattern. The normal tendency for the plasma sheet's inner edge to shield low L alues from the convection electric field is also temporarily disrupted. Normal Birkeland currents and shielding reassert themselves after about an hour. Time-integrated Joule heating in the model ionosphere over the first 5.5 hours of the storm main phase is about half the increase in model ring-current energy

  3. Enhanced thermal diffusivity of copperbased composites using copper-RGO sheets

    Science.gov (United States)

    Kim, Sangwoo; Kwon, Hyouk-Chon; Lee, Dohyung; Lee, Hyo-Soo

    2017-11-01

    The synthesis of copper-reduced graphene oxide (RGO) sheets was investigated in order to control the agglutination of interfaces and develop a manufacturing process for copper-based composite materials based on spark plasma sintering. To this end, copper-GO (graphene oxide) composites were synthesized using a hydrothermal method, while the copper-reduced graphene oxide composites were made by hydrogen reduction. Graphene oxide-copper oxide was hydrothermally synthesized at 80 °C for 5 h, and then annealed at 800 °C for 5 h in argon and hydrazine rate 9:1 to obtain copper-RGO flakes. The morphology and structure of these copper-RGO sheets were characterized using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Raman spectroscopy. After vibratory mixing of the synthesized copper-RGO composites (0-2 wt%) with copper powder, they were sintered at 600 °C for 5 min under100 MPa of pressure by spark plasma sintering process. The thermal diffusivity of the resulting sintered composite was characterized by the laser flash method at 150 °C.

  4. Decontamination sheet

    International Nuclear Information System (INIS)

    Hirose, Emiko; Kanesaki, Ken.

    1995-01-01

    The decontamination sheet of the present invention is formed by applying an adhesive on one surface of a polymer sheet and releasably appending a plurality of curing sheets. In addition, perforated lines are formed on the sheet, and a decontaminating agent is incorporated in the adhesive. This can reduce the number of curing operation steps when a plurality steps of operations for radiation decontamination equipments are performed, and further, the amount of wastes of the cured sheets, and operator's exposure are reduced, as well as an efficiency of the curing operation can be improved, and propagation of contamination can be prevented. (T.M.)

  5. Investigation of a staged plasma-focus apparatus

    International Nuclear Information System (INIS)

    Lee, J.H.; McFarland, D.R.; Harries, W.L.

    1978-01-01

    A new staged plasma-focus geometry combining two Mather-type plasma-focus guns has been constructed, and the current-sheet dynamics investigated. The production of simultaneous pairs of plasma foci has been achieved. The intensities of X-ray and fusion-neutron emission were measured and found to agree with the scaling law for a plasma focus. Advantages of this new geometry include the possibility of using plasma-focus type pinches in multiple arrays at power levels beyond the validity regime of the current scaling law for a single gun. (author)

  6. Solar system history as recorded in the Saturnian ring structure

    International Nuclear Information System (INIS)

    Alfven, H.

    1983-04-01

    The paper is based on Holbergs analysis of the Voyager photographs in both reflected and transparent light, combined with occulation data of stars seen through the rings. Besides rapidly varying phenomena (spokes, braided ring, etc.), which according to Mendis are due to gravito-electromagnetic effects, the ring consists of a bulk structure, a fine structure, and also a hyperfine structure, showing more than 10000 ringlets. The large number of ringlets can be explained by the Baxter-Thompson negative diffusion. This gives the ringlets a stability which makes it possible to interprete them as fossils, which originated at cosmogonic times. It is shown that the bulk structure can be explained by the combined cosmogonic shadows of the satellites Mimas, Janus (co-orbiting satellites) and the Shepherd satellites. This structure originated at the transition from the plasma phase to the planetesimal phase (which probably took place 4-5 times 10 9 years ago). Further, Holberg has discovered that the shadows are not simple void regions but exhibit a certain characteristic signature. This is not yet understood theoretically. Parts of the fine structure are explained by Holberg as resonances with the satellites. Parts are here interpreted as cosmogonic shadow effects. However, there are a number of ringlets which can neither be explained by cosmogonic nor by resonance effects. The most important conclusion is that an analysis of the ring data is liekly to lead to a reconstruction of the plasma-planetesimal transition with an accuracy of a few percent. (author)

  7. Neutral sheet crossings in the distant magnetotail

    International Nuclear Information System (INIS)

    Heikkila, W.J.; Slavin, J.A.; Smith, E.J.; Baker, D.N.; Zwickl, R.D.

    1985-01-01

    We have analyzed the magnetic field data from ISEE-3 in the distant magnetotail for 18 crossings of the cross-tail current sheet (or so-called natural sheet) to determine the direction of the normal component B/sub z/. The crossings occurred near the middle of the aberrated magnetotail (0 0.4 nT), consistent with closed field lines connected to the earth. In 3 cases B/sub z/ was very close to zero; in several instances there was structure in B/sub y/, suggesting localized currents with x or z directions. One may have been a magnetopause crossing. The strong preponderance of northward B/sub z/ favors a model of the magnetotail which is dominated by boundary layer plasma, flowing tailward on closed magnetic field lines, which requires the existence of an electric field in the sense from dusk to dawn. 37 refs., 15 figs., 1 tab

  8. Cavity ring-down technique for measurement of reflectivity of high ...

    Indian Academy of Sciences (India)

    Laser & Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai 400 085,. India. *Corresponding author. E-mail: gsridhar@barc.gov.in. Abstract. A simple, accurate and reliable method for measuring the reflectivity of laser- ... Keywords. Cavity ring-down method; reflectivity measurement; optical resonator.

  9. Onset of fast "ideal" tearing in thin current sheets: Dependence on the equilibrium current profile

    Science.gov (United States)

    Pucci, F.; Velli, M.; Tenerani, A.; Del Sarto, D.

    2018-03-01

    In this paper, we study the scaling relations for the triggering of the fast, or "ideal," tearing instability starting from equilibrium configurations relevant to astrophysical as well as laboratory plasmas that differ from the simple Harris current sheet configuration. We present the linear tearing instability analysis for equilibrium magnetic fields which (a) go to zero at the boundary of the domain and (b) contain a double current sheet system (the latter previously studied as a Cartesian proxy for the m = 1 kink mode in cylindrical plasmas). More generally, we discuss the critical aspect ratio scalings at which the growth rates become independent of the Lundquist number S, in terms of the dependence of the Δ' parameter on the wavenumber k of unstable modes. The scaling Δ'(k) with k at small k is found to categorize different equilibria broadly: the critical aspect ratios may be even smaller than L/a ˜ Sα with α = 1/3 originally found for the Harris current sheet, but there exists a general lower bound α ≥ 1/4.

  10. Time resolved measurements of plasma potential across an anode double layer

    International Nuclear Information System (INIS)

    Pohoata, V.; Popa, Gh.; Schrittwieser, R.; Ionita, Codrina

    2002-01-01

    Experimental results are presented on self-sustained oscillations produced by the dynamics of an anode double layer or fireball in a DP-machine. By additional ionisation processes the fireball is formed in front of an additional small plane anode inserted in the diffusive plasma. An annular (ring) electrode surrounds the anode. The thickness of the ion sheath in front of this ring affects the anode current by controlling its effective diameter during the fireball oscillations. The ring potential controls first the oscillation frequency of the anode current, but also other characteristics of the instability. The ring potential was chosen as a pulsed one so that only single anode double layer instability can be excited. The ring signal was used for triggering the data acquisition system. The spatial distribution of the plasma potential in front of the anode is presented as a time resolved measurement one. A negative drop potential was found that controls the charge flux particle across the double layer. Also the plasma density inside the fireball relaxes during the disrupting time controlled by ambipolar diffusion and also by the negative potential drop. (authors)

  11. Plasma Heating and Losses in Toroidal Multipole Fields

    International Nuclear Information System (INIS)

    Armentrout, C. J.; Barter, J. D.; Breun, R. A.; Cavallo, A. J.; Drake, J. R.; Etzweiler,; Greenwood, J. R.

    1974-01-01

    The heating and loss of plasmas have been studied in three pulsed, toroidal multipole devices: a large levitated octupole, a small supported octupole and a very small supported quadrupole. Plasmas are produced by gun injection and heated by electron and ion cyclotron resonance heating and ohmic heating. Electron cyclotron heating rates have been measured over a wide range of parameters, and the results are in quantitative agreement with stochastic heating theory. Electron cyclotron resonance heating produces ions with energies larger than predicted by theory. With the addition of a toroidal field, ohmic heating gives densities as high as 10 13 cm -3 in the toroidal quadrupole and 10 12 cm -3 in the small octupole. Plasma losses for n=5 x 10 9 cm -3 plasmas are inferred from Langmuir probe and Fabry-Perot interferometer measurements, and measured with special striped collectors on the wall and rings. The loss to a levitated ring is measured using a modulated light beam telemeter. The confinement is better than Bohm but considerably worse than classical. Low frequency convective cells which are fixed in space are observed. These cells around the ring are diminished when a weak toroidal field is added, and loss collectors show a vastly reduced flux to the rings. Analysis of the spatial density profile shows features of B-independent diffusion. The confinement is sensitive to some kinds of dc field errors, but surprisingly insensitive to perturbations of the ac confining field

  12. Plasma and neutral gas jet interactions in the exhaust of a magnetic confinement system

    International Nuclear Information System (INIS)

    Krueger, W.A.

    1990-06-01

    A general purpose 2-1/2 dimensional, multifluid, time dependent computer code has been developed. This flexible tool models the dynamic behavior of plasma/neutral gas interactions in the presence of a magnetic field. The simulation has been used to examine the formation of smoke ring structure in the plasma rocket exhaust by injection of an axial jet of neutral gas. Specifically, the code was applied to the special case of attempting to couple the neutral gas momentum to the plasma in such a manner that plasma smoke rings would form, disconnecting the plasma from the magnetic field. For this scenario several cases where run scanning a wide range of neutral gas input parameters. In all the cases it was found that after an initial transient phase, the plasma eroded the neutral gas and after that followed the original magnetic field. From these findings it is concluded that smoke rings do not form with axial injection of neutral gas. Several suggestions for alternative injection schemes are presented

  13. Texture and mechanical properties of Al-0.5Mg-1.0Si-0.5Cu alloy sheets manufactured via a cross rolling method

    Science.gov (United States)

    Jeon, Jae-Yeol; Son, Hyeon-Taek; Woo, Kee-Do; Lee, Kwang-Jin

    2012-04-01

    The relationship between the texture and mechanical properties of 6xxx aluminum alloy sheets processed via cross rolling was investigated. The microstructures of the conventional rolled and cross rolled sheets after annealing were analyzed using optical micrographs (OM). The texture distribution across the thickness in the Al-Mg-Si-Cu alloy, conventional rolled sheets, and cross rolled sheets both before and after annealing was investigated via X-ray texture measurements. The texture was analyzed in three layers from the surface to the center of the sheet. The β-fiber texture of the conventional rolled sheet was typical of the texture obtained using aluminumoll ring. After annealing, the typical β-fiber orientations were changed to recrystallization textures: cube{001} and normal direction (ND)-rotated cubes. However, the texture of the cross rolled sheet was composed of an asymmetrical, rolling direction (RD)-rotated cubes. After annealing, the asymmetrical orientations in the cross rolled sheet were changed to a randomized texture. The average R-value of the annealed cross rolled sheets was higher than that of the conventional rolled sheets. The limit dome height (LDH) test results demonstrated that cross rolling is effective in improving the formability of the Al-Mg-Si-Cu alloy sheets.

  14. Determination of As in tree-rings of poplar (Populus alba L.) by U-shaped DC arc.

    Science.gov (United States)

    Marković, D M; Novović, I; Vilotić, D; Ignjatović, Lj

    2009-04-01

    An argon-stabilized U-shaped DC arc with a system for aerosol introduction was used for determination of As in poplar (Populus alba L.) tree-rings. After optimization of the operating parameters and selection of the most appropriate signal integration time (30 s), the limit of detection for As was reduced to 15.0 ng/mL. This detection limit obtained with the optimal integration time was compared with those for other methods: inductively coupled plasma-atomic emission spectrometry (ICP-AES), direct coupled plasma-atomic emission spectrometry (DCP-AES), microwave induced plasma-atomic emission spectrometry (MIP-AES) and improved thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS). Arsenic is toxic trace element which can adversely affect plant, animal and human health. As an indicator of environment pollution we collected poplar tree-rings from two locations. The first area was close to the "Nikola Tesla" (TENT-A) power plant, Obrenovac, while the other was in the urban area of Novi Sad. In all cases elevated average concentrations of As were registered in poplar tree-rings from the Obrenovac location.

  15. Ring Theory

    CERN Document Server

    Jara, Pascual; Torrecillas, Blas

    1988-01-01

    The papers in this proceedings volume are selected research papers in different areas of ring theory, including graded rings, differential operator rings, K-theory of noetherian rings, torsion theory, regular rings, cohomology of algebras, local cohomology of noncommutative rings. The book will be important for mathematicians active in research in ring theory.

  16. Spatial Offsets in Flare-CME Current Sheets

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, John C. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Giordano, Silvio [INAF-Osservatorio Astrofisico di Torino, via Osservatorio 20, I-10025 Pino Torinese (Italy); Ciaravella, Angela, E-mail: jraymond@cfa.harvard.edu [INAF-Osservatorio Astronomico di Palermo, P.za Parlamento 1, I-90134 Palermo (Italy)

    2017-07-10

    Magnetic reconnection plays an integral part in nearly all models of solar flares and coronal mass ejections (CMEs). The reconnection heats and accelerates the plasma, produces energetic electrons and ions, and changes the magnetic topology to form magnetic flux ropes and to allow CMEs to escape. Structures that appear between flare loops and CME cores in optical, UV, EUV, and X-ray observations have been identified as current sheets and have been interpreted in terms of the nature of the reconnection process and the energetics of the events. Many of these studies have used UV spectral observations of high temperature emission features in the [Fe xviii] and Si xii lines. In this paper, we discuss several surprising cases in which the [Fe xviii] and Si xii emission peaks are spatially offset from each other. We discuss interpretations based on asymmetric reconnection, on a thin reconnection region within a broader streamer-like structure, and on projection effects. Some events seem to be easily interpreted as the projection of a sheet that is extended along the line of sight that is viewed an angle, but a physical interpretation in terms of asymmetric reconnection is also plausible. Other events favor an interpretation as a thin current sheet embedded in a streamer-like structure.

  17. Method of manufacturing aluminide sheet by thermomechanical processing of aluminide powders

    Science.gov (United States)

    Hajaligol, Mohammad R.; Scorey, Clive; Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier; Lilly, Jr., A. Clifton; German, Randall M.

    2000-01-01

    A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr.ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3% Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.

  18. Production of atmospheric pressure microwave plasma with dielectric half-mirror resonator and its application to polymer surface treatment

    Science.gov (United States)

    Sasai, Kensuke; Keyamura, Kazuki; Suzuki, Haruka; Toyoda, Hirotaka

    2018-06-01

    For the surface treatment of a polymer tube, a ring-shaped atmospheric pressure microwave plasma (APMP) using a coaxial waveguide is studied. In this APMP, a dielectric plate is used not only as a partial mirror for cavity resonation but also for the precise alignment of the discharge gap for ring-shaped plasma production. The optimum position of the dielectric plate is investigated by electromagnetic wave simulation. On the basis of simulation results, a ring-shaped plasma with good uniformity along the ring is produced. The coaxial APMP is applied to the surface treatment of ethylene tetrafluoroethylene. A very fast surface modification within 3 s is observed.

  19. Radial dynamics of an annular REB plasma

    International Nuclear Information System (INIS)

    Wilson, A.; Steen, P.G.; Waisman, E.M.

    1983-01-01

    The authors have examined the dynamics of annular plasma formed by a ring REB. A current is carried by an annular plasma shell and the current returns on two conducting concentric sleeves. The magnetic forces acting on the plasma tend to prevent it from pinching as the unperturbed magnetic field has a different sign on the two free surfaces (sides) of the plasma. Current flows through the plasma from cathode to anode and returns through the concentric inner and outer conductors

  20. Rotating dust ring in an RF discharge coupled with a dc-magnetron sputter source. Experiment and simulation

    International Nuclear Information System (INIS)

    Matyash, K; Froehlich, M; Kersten, H; Thieme, G; Schneider, R; Hannemann, M; Hippler, R

    2004-01-01

    During an experiment involving coating of dust grains trapped in an RF discharge using a sputtering dc-magnetron source, a rotating dust ring was observed and investigated. After the magnetron was switched on, the dust cloud levitating above the RF electrode formed a ring rotating as a rigid body. Langmuir probe diagnostics were used for the measurement of plasma density and potential. It was discovered that the coupling of the dc-magnetron source to the RF discharge causes steep radial gradients in electron density and plasma potential. The rotation of the dust ring is attributed to the azimuthal component of the ion drag force, which appears due to the azimuthal drift of the ions caused by crossed radial electric and axial magnetic fields. In order to get more insight into the mechanism of dust ring rotation, a Particle-in-Cell simulation of a rotating dust cloud was performed. The results of the experiment and simulation are presented and discussed

  1. Rotating dust ring in an RF discharge coupled with a dc-magnetron sputter source. Experiment and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Matyash, K [Institut fuer Niedertemperaturplasmaphysik Greifswald, Fr.-L.-Jahn-Strasse 19, 17489 Greifswald (Germany); Froehlich, M [Institut fuer Physik, Ernst-Moritz-Arndt-Universitaet Greifswald, Domstrasse 10a, 17487 Greifswald (Germany); Kersten, H [Institut fuer Niedertemperaturplasmaphysik Greifswald, Fr.-L.-Jahn-Strasse 19, 17489 Greifswald (Germany); Thieme, G [Institut fuer Physik, Ernst-Moritz-Arndt-Universitaet Greifswald, Domstrasse 10a, 17487 Greifswald (Germany); Schneider, R [Max-Planck-Institut fuer Plasmaphysik, Teilinstitut Greifswald, Wendelsteinstrasse 1, 17489 Greifswald (Germany); Hannemann, M [Institut fuer Niedertemperaturplasmaphysik Greifswald, Fr.-L.-Jahn-Strasse 19, 17489 Greifswald (Germany); Hippler, R [Institut fuer Physik, Ernst-Moritz-Arndt-Universitaet Greifswald, Domstrasse 10a, 17487 Greifswald (Germany)

    2004-10-07

    During an experiment involving coating of dust grains trapped in an RF discharge using a sputtering dc-magnetron source, a rotating dust ring was observed and investigated. After the magnetron was switched on, the dust cloud levitating above the RF electrode formed a ring rotating as a rigid body. Langmuir probe diagnostics were used for the measurement of plasma density and potential. It was discovered that the coupling of the dc-magnetron source to the RF discharge causes steep radial gradients in electron density and plasma potential. The rotation of the dust ring is attributed to the azimuthal component of the ion drag force, which appears due to the azimuthal drift of the ions caused by crossed radial electric and axial magnetic fields. In order to get more insight into the mechanism of dust ring rotation, a Particle-in-Cell simulation of a rotating dust cloud was performed. The results of the experiment and simulation are presented and discussed.

  2. Ion rings for magnetic fusion. Technical progress report, August 1, 1993--June 1, 1994

    International Nuclear Information System (INIS)

    Sudan, R.N.

    1994-01-01

    In Our Proposal ''Ion Rings for Magnetic Fusion'' of January 6, 1993, Stage I of our Proposed Program plan (the 12 months) consisted of the following tasks: Experiments on the existing ion ring experimental system IREX to test a new magnetically-controlled anode plasma source (MAP) for the ion beam diode injector; numerical simulations of ion ring formation to optimize design parameters for the field reversed ion ring experiment (FIREX) to be built and operated in Stage II; and designing the power supply for the FIREX injector and the magnetic field system using results for A and B. During the past 7 1/2 months our work has progressed according to the above plan. In addition to testing the MAP diode on IREX we have tested the EMFAPS (evaporating metal film anode plasma source) anode on the Sandia National Laboratories funded LION pulsed power generator. As a result of these experiments, described this paper, we have arrived at the conclusion that EMFAPS anode for the ion at present because the MAP diode beam diode injector is our preferred choice for is still in an early stage of development

  3. Communication through a plasma sheet around a fast moving vehicle

    Science.gov (United States)

    Sotnikov, V. I.; Mudaliar, S.; Genoni, T.; Rose, D.; Oliver, B. V.; Mehlhorn, T. A.

    2011-10-01

    Investigation of the complicated problem of scattering of electromagnetic waves on turbulent pulsations induced by a sheared flow inside a plasma sheath is important for many applications including communication with hypersonic and re-entry vehicles. Theoretical and computational work aimed at improving the understanding of electromagnetic wave scattering processes in such turbulent plasmas is presented. We analyze excitation of low frequency ion-acoustic type oscillations in a compressible plasma flow with flow velocity shear and influence of such turbulent pulsations on scattering of high frequency electromagnetic waves used for communication purposes. We have appropriately included in our analysis the presence of electron and ion collisions with neutrals as well as electron - ion collisions. Results of numerical solutions for plasma density and electric field perturbations for different velocity profiles have been used in the derived expressions for scattered wave energy and scattering cross section. Work supported by the Air Force Research Laboratory and Air Force Office Of Scientific Research Sandia is a multiprogram laboratory operated by Sandia Corporation, A Lockheed Martin Company, under contract DE-AC04-94AL85000.

  4. Radio Pumping of Ionospheric Plasma with Orbital Angular Momentum

    International Nuclear Information System (INIS)

    Leyser, T. B.; Norin, L.; McCarrick, M.; Pedersen, T. R.; Gustavsson, B.

    2009-01-01

    Experimental results are presented of pumping ionospheric plasma with a radio wave carrying orbital angular momentum (OAM), using the High Frequency Active Auroral Research Program (HAARP) facility in Alaska. Optical emissions from the pumped plasma turbulence exhibit the characteristic ring-shaped morphology when the pump beam carries OAM. Features of stimulated electromagnetic emissions (SEE) that are attributed to cascading Langmuir turbulence are well developed for a regular beam but are significantly weaker for a ring-shaped OAM beam in which case upper hybrid turbulence dominates the SEE

  5. Fusion component design for the moving-ring field-reversed mirror reactor

    International Nuclear Information System (INIS)

    Carlson, G.A.

    1981-01-01

    This partial report on the reactor design contains sections on the following: (1) burner section magnet system design, (2) plasma ring energy recovery, (3) vacuum system, (4) cryogenic system, (5) tritium flows and inventories, and (6) reactor design and layout

  6. A survey of dusty plasma physics

    International Nuclear Information System (INIS)

    Shukla, P.K.

    2001-01-01

    Two omnipresent ingredients of the Universe are plasmas and charged dust. The interplay between these two has opened up a new and fascinating research area, that of dusty plasmas, which are ubiquitous in different parts of our solar system, namely planetary rings, circumsolar dust rings, the interplanetary medium, cometary comae and tails, as well as in interstellar molecular clouds, etc. Dusty plasmas also occur in noctilucent clouds in the arctic troposphere and mesosphere, cloud-to-ground lightening in thunderstorms containing smoke-contaminated air over the United States, in the flame of a humble candle, as well as in microelectronic processing devices, in low-temperature laboratory discharges, and in tokamaks. Dusty plasma physics has appeared as one of the most rapidly growing fields of science, besides the field of the Bose-Einstein condensate, as demonstrated by the number of published papers in scientific journals and conference proceedings. In fact, it is a truly interdisciplinary science because it has many potential applications in astrophysics (viz. in understanding the formation of dust clusters and structures, instabilities of interstellar molecular clouds and star formation, decoupling of magnetic fields from plasmas, etc.) as well as in the planetary magnetospheres of our solar system [viz. Saturn (particularly, the physics of spokes and braids in the B and F rings), Jupiter, Uranus, Neptune, and Mars] and in strongly coupled laboratory dusty plasmas. Since a dusty plasma system involves the charging and dynamics of massive charged dust grains, it can be characterized as a complex plasma system providing new physics insights. In this paper, the basic physics of dusty plasmas as well as numerous collective processes are discussed. The focus will be on theoretical and experimental observations of charging processes, waves and instabilities, associated forces, the dynamics of rotating and elongated dust grains, and some nonlinear structures (such as

  7. A survey of dusty plasma physics

    Science.gov (United States)

    Shukla, P. K.

    2001-05-01

    Two omnipresent ingredients of the Universe are plasmas and charged dust. The interplay between these two has opened up a new and fascinating research area, that of dusty plasmas, which are ubiquitous in different parts of our solar system, namely planetary rings, circumsolar dust rings, the interplanetary medium, cometary comae and tails, as well as in interstellar molecular clouds, etc. Dusty plasmas also occur in noctilucent clouds in the arctic troposphere and mesosphere, cloud-to-ground lightening in thunderstorms containing smoke-contaminated air over the United States, in the flame of a humble candle, as well as in microelectronic processing devices, in low-temperature laboratory discharges, and in tokamaks. Dusty plasma physics has appeared as one of the most rapidly growing fields of science, besides the field of the Bose-Einstein condensate, as demonstrated by the number of published papers in scientific journals and conference proceedings. In fact, it is a truly interdisciplinary science because it has many potential applications in astrophysics (viz. in understanding the formation of dust clusters and structures, instabilities of interstellar molecular clouds and star formation, decoupling of magnetic fields from plasmas, etc.) as well as in the planetary magnetospheres of our solar system [viz. Saturn (particularly, the physics of spokes and braids in the B and F rings), Jupiter, Uranus, Neptune, and Mars] and in strongly coupled laboratory dusty plasmas. Since a dusty plasma system involves the charging and dynamics of massive charged dust grains, it can be characterized as a complex plasma system providing new physics insights. In this paper, the basic physics of dusty plasmas as well as numerous collective processes are discussed. The focus will be on theoretical and experimental observations of charging processes, waves and instabilities, associated forces, the dynamics of rotating and elongated dust grains, and some nonlinear structures (such as

  8. Report of the eRHIC Ring-Ring Working Group

    Energy Technology Data Exchange (ETDEWEB)

    Aschenauer, E. C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Berg, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Blaskiewicz, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Brennan, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Fedotov, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Fischer, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Litvinenko, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Montag, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Palmer, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Parker, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Peggs, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ptitsyn, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ranjbar, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tepikian, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Trbojevic, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Willeke, F. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-10-13

    This report evaluates the ring-ring option for eRHIC as a lower risk alternative to the linac-ring option. The reduced risk goes along with a reduced initial luminosity performance. However, a luminosity upgrade path is kept open. This upgrade path consists of two branches, with the ultimate upgrade being either a ring-ring or a linac-ring scheme. The linac-ring upgrade could be almost identical to the proposed linac-ring scheme, which is based on an ERL in the RHIC tunnel. This linac-ring version has been studied in great detail over the past ten years, and its significant risks are known. On the other hand, no detailed work on an ultimate performance ring-ring scenario has been performed yet, other than the development of a consistent parameter set. Pursuing the ring-ring upgrade path introduces high risks and requires significant design work that is beyond the scope of this report.

  9. Double-Slot Hybrid Plasmonic Ring Resonator Used for Optical Sensors and Modulators

    Directory of Open Access Journals (Sweden)

    Xu Sun

    2015-11-01

    Full Text Available An ultra-high sensitivity double-slot hybrid plasmonic (DSHP ring resonator, used for optical sensors and modulators, is developed. Due to high index contrast, as well as plasmonic enhancement, a considerable part of the optical energy is concentrated in the narrow slots between Si and plasmonic materials (silver is used in this paper, which leads to high sensitivity to the infiltrating materials. By partial opening of the outer plasmonic circular sheet of the DSHP ring, a conventional side-coupled silicon on insulator (SOI bus waveguide can be used. Experimental results demonstrate ultra-high sensitivity (687.5 nm/RIU of the developed DSHP ring resonator, which is about five-times higher than for the conventional Si ring with the same geometry. Further discussions show that a very low detection limit (5.37 × 10−6 RIU can be achieved after loaded Q factor modifications. In addition, the plasmonic metal structures offer also the way to process optical and electronic signals along the same hybrid plasmonic circuits with small capacitance (~0.275 fF and large electric field, which leads to possible applications in compact high-efficiency electro-optic modulators, where no extra electrodes for electronic signals are required.

  10. Split-Ring Springback Simulations with the Non-associated Flow Rule and Evolutionary Elastic-Plasticity Models

    Science.gov (United States)

    Lee, K. J.; Choi, Y.; Choi, H. J.; Lee, J. Y.; Lee, M. G.

    2018-06-01

    Finite element simulations and experiments for the split-ring test were conducted to investigate the effect of anisotropic constitutive models on the predictive capability of sheet springback. As an alternative to the commonly employed associated flow rule, a non-associated flow rule for Hill1948 yield function was implemented in the simulations. Moreover, the evolution of anisotropy with plastic deformation was efficiently modeled by identifying equivalent plastic strain-dependent anisotropic coefficients. Comparative study with different yield surfaces and elasticity models showed that the split-ring springback could be best predicted when the anisotropy in both the R value and yield stress, their evolution and variable apparent elastic modulus were taken into account in the simulations. Detailed analyses based on deformation paths superimposed on the anisotropic yield functions predicted by different constitutive models were provided to understand the complex springback response in the split-ring test.

  11. Solar system history as recorded in the Saturnian ring structure

    Science.gov (United States)

    Alfven, H.

    1983-01-01

    Holberg's analysis of the Voyager Saturn photographs in reflected and transparent light, and occultation data of stars seen through the rings are discussed. A hyperfine structure, with 10,000 ringlets can be explained by the Baxter-Thompson negative diffusion. This gives the ringlets a stability which makes it possible to interpret them as fossils, which originated at cosmogonic times. It is shown that the bulk structure can be explained by the combined cosmogonic shadows of the satellites Mimas, Janus and the Shepherd satellites. This structure originated at the transition from the plasma phase to the planetesimal phase. The shadows are not simple void regions but exhibit a characteristic signature. Parts of the fine structure, explained by Holberg as resonances with satellites, are interpreted as cosmogonic shadow effects. However, there are a number of ringlets which can neither be explained by cosmogonic nor by resonance effects. Analysis of ring data can reconstruct the plasma-planetesimal transition with an accuracy of a few percent.

  12. Ordinary mode instability associated with thermal ring distribution

    Science.gov (United States)

    Hadi, F.; Yoon, P. H.; Qamar, A.

    2015-02-01

    The purely growing ordinary (O) mode instability driven by excessive parallel temperature anisotropy has recently received renewed attention owing to its potential applicability to the solar wind plasma. Previous studies of O mode instability have assumed either bi-Maxwellian or counter-streaming velocity distributions. For solar wind plasma trapped in magnetic mirror-like geometry such as magnetic clouds or in the vicinity of the Earth's collisionless bow shock environment, however, the velocity distribution function may possess a loss-cone feature. The O-mode instability in such a case may be excited for cyclotron harmonics as well as the purely growing branch. The present paper investigates the O-mode instability for plasmas characterized by the parallel Maxwellian distribution and perpendicular thermal ring velocity distribution in order to understand the general stability characteristics.

  13. Ordinary mode instability associated with thermal ring distribution

    Energy Technology Data Exchange (ETDEWEB)

    Hadi, F.; Qamar, A. [Institute of Physics and Electronics, University of Peshawar, Peshawar 25000 (Pakistan); Yoon, P. H. [Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742 (United States); School of Space Research, Kyung Hee University, Yongin-Si, Gyeonggi-Do 446-701 (Korea, Republic of)

    2015-02-15

    The purely growing ordinary (O) mode instability driven by excessive parallel temperature anisotropy has recently received renewed attention owing to its potential applicability to the solar wind plasma. Previous studies of O mode instability have assumed either bi-Maxwellian or counter-streaming velocity distributions. For solar wind plasma trapped in magnetic mirror-like geometry such as magnetic clouds or in the vicinity of the Earth's collisionless bow shock environment, however, the velocity distribution function may possess a loss-cone feature. The O-mode instability in such a case may be excited for cyclotron harmonics as well as the purely growing branch. The present paper investigates the O-mode instability for plasmas characterized by the parallel Maxwellian distribution and perpendicular thermal ring velocity distribution in order to understand the general stability characteristics.

  14. Electrochemical performance and structure evolution of core-shell nano-ring α-Fe_2O_3@Carbon anodes for lithium-ion batteries

    International Nuclear Information System (INIS)

    Sun, Yan-Hui; Liu, Shan; Zhou, Feng-Chen; Nan, Jun-Min

    2016-01-01

    Core-shell nano-ring α-Fe_2O_3@Carbon (CSNR) composites with different carbon content (CSNR-5%C and CSNR-13%C) are synthesized using a hydrothermal method by controlling different amounts of glucose and α-Fe_2O_3 nano-rings with further annealing. The CSNR electrodes exhibit much improved specific capacity, cycling stability and rate capability compared with that of bare nano-ring α-Fe_2O_3 (BNR), which is attributed to the core-shell nano-ring structure of CSNR. The carbon shell in the inner and outer surface of CSNR composite can increase electron conductivity of the electrode and inhibit the volume change of α-Fe_2O_3 during discharge/charge processes, and the nano-ring structure of CSNR can buffer the volume change too. The CSNR-5%C electrode shows super high initial discharge/charge capacities of 1570/1220 mAh g"−"1 and retains 920/897 mAh g"−"1 after 200 cycles at 500 mA g"−"1 (0.5C). Even at 2000 mA g"−"1 (2C), the electrode delivers the initial capacities of 1400/900 mAh g"−"1, and still maintains 630/610 mAh g"−"1 after 200 cycles. The core-shell nano-rings opened during cycling and rebuilt a new flower-like structure consisting of α-Fe_2O_3@Carbon nano-sheets. The space among the nano-sheet networks can further buffer the volume expansion of α-Fe_2O_3 and facilitate the transportation of electrons and Li"+ ions during the charge/discharge processes, which increases the capacity and rate capability of the electrode. It is the first time that the evolution of core-shell α-Fe_2O_3@Carbon changing to flower-like networks during lithiation/de-lithiation has been reported.

  15. Electrochemical performance and structure evolution of core-shell nano-ring α-Fe2O3@Carbon anodes for lithium-ion batteries

    Science.gov (United States)

    Sun, Yan-Hui; Liu, Shan; Zhou, Feng-Chen; Nan, Jun-Min

    2016-12-01

    Core-shell nano-ring α-Fe2O3@Carbon (CSNR) composites with different carbon content (CSNR-5%C and CSNR-13%C) are synthesized using a hydrothermal method by controlling different amounts of glucose and α-Fe2O3 nano-rings with further annealing. The CSNR electrodes exhibit much improved specific capacity, cycling stability and rate capability compared with that of bare nano-ring α-Fe2O3 (BNR), which is attributed to the core-shell nano-ring structure of CSNR. The carbon shell in the inner and outer surface of CSNR composite can increase electron conductivity of the electrode and inhibit the volume change of α-Fe2O3 during discharge/charge processes, and the nano-ring structure of CSNR can buffer the volume change too. The CSNR-5%C electrode shows super high initial discharge/charge capacities of 1570/1220 mAh g-1 and retains 920/897 mAh g-1 after 200 cycles at 500 mA g-1 (0.5C). Even at 2000 mA g-1 (2C), the electrode delivers the initial capacities of 1400/900 mAh g-1, and still maintains 630/610 mAh g-1 after 200 cycles. The core-shell nano-rings opened during cycling and rebuilt a new flower-like structure consisting of α-Fe2O3@Carbon nano-sheets. The space among the nano-sheet networks can further buffer the volume expansion of α-Fe2O3 and facilitate the transportation of electrons and Li+ ions during the charge/discharge processes, which increases the capacity and rate capability of the electrode. It is the first time that the evolution of core-shell α-Fe2O3@Carbon changing to flower-like networks during lithiation/de-lithiation has been reported.

  16. Heliospheric current sheet and effects of its interaction with solar cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Malova, H. V., E-mail: hmalova@yandex.ru [Moscow State University, Skobeltsyn Institute of Nuclear Physics (Russian Federation); Popov, V. Yu.; Grigorenko, E. E.; Dunko, A. V.; Petrukovich, A. A. [Russian Academy of Sciences, Space Research Institute (Russian Federation)

    2016-08-15

    The effects of interaction of solar cosmic rays (SCRs) with the heliospheric current sheet (HCS) in the solar wind are analyzed. A self-consistent kinetic model of the HCS is developed in which ions with quasiadiabatic dynamics can present. The HCS is considered an equilibrium embedded current structure in which two main plasma species with different temperatures (the low-energy background plasma of the solar wind and the higher energy SCR component) contribute to the current. The obtained results are verified by comparing with the results of numerical simulations based on solving equations of motion by the particle tracing method in the given HCS magnetic field with allowance for SCR particles. It is shown that the HCS is a relatively thin multiscale current configuration embedded in a thicker plasma layer. In this case, as a rule, the shear (tangential to the sheet current) component of the magnetic field is present in the HCS. Taking into account high-energy SCR particles in the HCS can lead to a change of its configuration and the formation of a multiscale embedded structure. Parametric family of solutions is considered in which the current balance in the HCS is provided at different SCR temperatures and different densities of the high-energy plasma. The SCR densities are determined at which an appreciable (detectable by satellites) HCS thickening can occur. Possible applications of this modeling to explain experimental observations are discussed.

  17. Laser Induced Fluorescence Diagnostic for the Plasma Couette Experiment

    Science.gov (United States)

    Katz, Noam; Skiff, Fred; Collins, Cami; Weisberg, Dave; Wallace, John; Clark, Mike; Garot, Kristine; Forest, Cary

    2010-11-01

    The Plasma Couette Experiment (PCX) at U. Wisconsin-Madison consists of a rotating high-beta plasma and is well-suited to the study of flow-driven, astrophysically-relevant plasma phenomena. PCX confinement relies on alternating rings of 1kG permanent magnets and the rotation is driven by electrode rings, interspersed between the magnets, which provide an azimuthal ExB. I will discuss the development of a laser-induced fluorescence diagnostic (LIF) to characterize the ion distribution function of argon plasmas in PCX. The LIF system--which will be scanned radially--will be used to calibrate internal Mach probes, as well as to measure the time-resolved velocity profile, ion temperature and density non-perturbatively. These diagnostics will be applied to study the magneto-rotational instability in a plasma, as well as the buoyancy instability thought to be involved in producing the solar magnetic field. This work is supported by NSF and DOE.

  18. Existence of three-dimensional ideal-magnetohydrodynamic equilibria with current sheets

    Energy Technology Data Exchange (ETDEWEB)

    Loizu, J. [Max-Planck-Institut für Plasmaphysik, D-17491 Greifswald (Germany); Princeton Plasma Physics Laboratory, PO Box 451, Princeton, New Jersey 08543 (United States); Hudson, S. R.; Bhattacharjee, A.; Lazerson, S. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, New Jersey 08543 (United States); Helander, P. [Max-Planck-Institut für Plasmaphysik, D-17491 Greifswald (Germany)

    2015-09-15

    We consider the linear and nonlinear ideal plasma response to a boundary perturbation in a screw pinch. We demonstrate that three-dimensional, ideal-MHD equilibria with continuously nested flux-surfaces and with discontinuous rotational-transform across the resonant rational-surfaces are well defined and can be computed both perturbatively and using fully nonlinear equilibrium calculations. This rescues the possibility of constructing MHD equilibria with current sheets and continuous, smooth pressure profiles. The results predict that, even if the plasma acts as a perfectly conducting fluid, a resonant magnetic perturbation can penetrate all the way into the center of a tokamak without being shielded at the resonant surface.

  19. New self-limiting assembly model for Si quantum rings on Si(100).

    Science.gov (United States)

    Yu, L W; Chen, K J; Song, J; Xu, J; Li, W; Li, X F; Wang, J M; Huang, X F

    2007-04-20

    We propose a new self-limiting assembly model for Si quantum rings on Si(100) where the ring's formation and evolution are driven by a growth-etching competition mechanism. The as-grown ring structure in a plasma enhanced chemical vapor deposition system has excellent rotational symmetry and superior morphology with a typical diameter, edge width, and height of 150-300, 10, and 5 nm, respectively. Based on this model, the size and morphology can be controlled well by simply tuning the timing procedure. We suggest that this growth model is not limited to certain material system, but provides a general scheme to control and tailor the self-assembly nanostructures into the desired size, shape, and complexity.

  20. Tunable THz wave absorption by graphene-assisted plasmonic metasurfaces based on metallic split ring resonators

    International Nuclear Information System (INIS)

    Ahmadivand, Arash; Sinha, Raju; Karabiyik, Mustafa; Vabbina, Phani Kiran; Gerislioglu, Burak; Kaya, Serkan; Pala, Nezih

    2017-01-01

    Graphene plasmonics has been introduced as a novel platform to design various nano- and microstructures to function in a wide range of spectrum from optical to THz frequencies. Herein, we propose a tunable plasmonic metamaterial in the THz regime by using metallic (silver) concentric microscale split ring resonator arrays on a multilayer metasurface composed of silica and silicon layers. We obtained an absorption percentage of 47.9% including two strong Fano resonant dips in THz regime for the purely plasmonic metamaterial without graphene layer. Considering the data of an atomic graphene sheet (with the thickness of ~0.35 nm) in both analytical and experimental regimes obtained by prior works, we employed a graphene layer under concentric split ring resonator arrays and above the multilayer metasurface to enhance the absorption ratio in THz bandwidth. Our numerical and analytical results proved that the presence of a thin graphene layer enhances the absorption coefficient of MM to 64.35%, at the highest peak in absorption profile that corresponds to the Fano dip position. We also have shown that changing the intrinsic characteristics of graphene sheet leads to shifts in the position of Fano dips and variations in the absorption efficiency. The maximum percentage of absorption (~67%) was obtained for graphene-based MM with graphene layer with dissipative loss factor of 1477 Ω. Employing the antisymmetric feature of the split ring resonators, the proposed graphene-based metamaterial with strong polarization dependency is highly sensitive to the polarization angle of the incident THz beam.

  1. Magnetized jet creation using a ring laser and applications

    Science.gov (United States)

    Liang, Edison; Gao, Ian; Lu, Yingchao; Ji, Hantao; Follett, Russ; Froula, Dustin; Tzeferacos, Petros; Lamb, Donald; Bickel, Andrew; Sio, Hong; Li, Chi Kiang; Petrasso, Richard; Wei, Mingsheng; Fu, Wen; Han, Lily

    2017-10-01

    We have recently demonstrated a new robust platform of magnetized jet creation using 20 OMEGA beams to form a hollow ring. We will present the latest experimental results and their theoretical interpretation, and explore potential applications to laboratory astrophysics, fundamental plasma physics and other areas. We will also discuss the scaling of this platform to future NIF experiments.

  2. ASSOCIATIVE RINGS SOLVED AS LIE RINGS

    Directory of Open Access Journals (Sweden)

    M. B. Smirnov

    2011-01-01

    Full Text Available The paper has proved that an associative ring which is solvable of a n- class as a Lie ring has a nilpotent ideal of the nilpotent class not more than 3×10n–2  and a corresponding quotient ring satisfies an identity [[x1, x2, [x3, x4

  3. Static current-sheet models of quiescent prominences

    Science.gov (United States)

    Wu, F.; Low, B. C.

    1986-12-01

    A particular class of theoretical models idealize the prominence to be a discrete flat electric-current sheet suspended vertically in a potential magnetic field. The weight of the prominence is supported by the Lorentz force in the current sheet. These models can be extended to have curved electric-current sheets and to vary three-dimensionally. The equation for force balance is 1 over 4 pi (del times B) times Bdel p- p9 z=zero. Using Cartesian coordinates we take, for simplicity, a uniform gravity with constant acceleration g in the direction -z. If we are interested not in the detailed internal structure of the prominence, but in the global magnetic configuration around the prominence, we may take prominence plasma to be cold. Consideration is given to how such equilibrium states can be constructed. To simplify the mathematical problem, suppose there is no electric current in the atmosphere except for the discrete currents in the cold prominence sheet. Let us take the plane z =0 to be the base of the atmosphere and restrict our attention to the domain z greater than 0. The task we have is to solve for a magnetic field which is everywhere potential except on some free surface S, subject to suit able to boundary conditions. The surface S is determined by requiring that it possesses a discrete electric current density such that the Lorentz force on it is everywhere vertically upward to balance the weight of the material m(S). Since the magnetic field is potential in the external atmosphere, the latter is decoupled from the magnetic field and its plane parallel hydrostatic pressure and density can be prescribed.

  4. Synthesis by plasma of halogenated poly anilines; Sintesis por plasma de polianilinas halogenadas

    Energy Technology Data Exchange (ETDEWEB)

    Enriquez, M.A.; Olayo, M.G.; Cruz, G.J. [Facultad de Quimica, UAEM, 50000 Toluca, Estado de Mexico (Mexico)

    2002-07-01

    In this work polymerization by plasma of aniline with iodine and chlorine bonded chemically to the aniline ring were realized. The results of the synthesis and characterizations are compared with those ones obtained starting from the poly aniline synthesis (P An) doped with iodine, where the dopant was aggregated in the moment of the polymerization. The objective is to study the dopant behavior in the synthesis by plasma in function of the properties of these polymers. (Author)

  5. Plasma-electric field controlled growth of oriented graphene for energy storage applications

    Science.gov (United States)

    Ghosh, Subrata; Polaki, S. R.; Kamruddin, M.; Jeong, Sang Mun; (Ken Ostrikov, Kostya

    2018-04-01

    It is well known that graphene grows as flat sheets aligned with the growth substrate. Oriented graphene structures typically normal to the substrate have recently attracted major attention. Most often, the normal orientation is achieved in a plasma-assisted growth and is believed to be due to the plasma-induced in-built electric field, which is usually oriented normal to the substrate. This work focuses on the effect of an in-built electric field on the growth direction, morphology, interconnectedness, structural properties and also the supercapacitor performance of various configurations of graphene structures and reveals the unique dependence of these features on the electric field orientation. It is shown that tilting of growth substrates from parallel to the normal direction with respect to the direction of in-built plasma electric field leads to the morphological transitions from horizontal graphene layers, to oriented individual graphene sheets and then interconnected 3D networks of oriented graphene sheets. The revealed transition of the growth orientation leads to a change in structural properties, wetting nature, types of defect in graphitic structures and also affects their charge storage capacity when used as supercapacitor electrodes. This simple and versatile approach opens new opportunities for the production of potentially large batches of differently oriented and structured graphene sheets in one production run.

  6. Ion Composition and Energization in the Earth's Inner Magnetosphere and the Effects on Ring Current Buildup

    Science.gov (United States)

    Keika, K.; Kistler, L. M.; Brandt, P. C.

    2014-12-01

    In-situ observations and modeling work have confirmed that singly-charged oxygen ions, O+, which are of Earth's ionospheric origin, are heated/accelerated up to >100 keV in the magnetosphere. The energetic O+ population makes a significant contribution to the plasma pressure in the Earth's inner magnetosphere during magnetic storms, although under quiet conditions H+ dominates the plasma pressure. The pressure enhancements, which we term energization, are caused by adiabatic heating through earthward transport of source population in the plasma sheet, local acceleration in the inner magnetosphere and near-Earth plasma sheet, and enhanced ion supply from the topside ionosphere. The key issues regarding stronger O+ energization than H+ are non-adiabatic local acceleration, responsible for increase in O+ temperature, and more significant O+ supply than H+, responsible for increase in O+ density. Although several acceleration mechanisms and O+ supply processes have been proposed, it remains an open question what mechanism(s)/process(es) play the dominant role in stronger O+ energization. In this paper we summarize important spacecraft observations including those from Van Allen Probes, introduces the proposed mechanisms/processes that generate O+-rich energetic plasma population, and outlines possible scenarios of O+ pressure abundance in the Earth's inner magnetosphere.

  7. An energy principle for two-dimensional collisionless relativistic plasmas

    International Nuclear Information System (INIS)

    Otto, A.; Schindler, K.

    1984-01-01

    Using relativistic Vlasov theory an energy principle for two-dimensional plasmas is derived, which provides a sufficient and necessary criterion for the stability of relativistic plasma equilibria. This energy principle includes charge separating effects since the exact Poisson equation was taken into consideration. Applying the variational principle to the case of the relativistic plane plasma sheet, the same marginal wave length is found as in the non-relativistic case. (author)

  8. An investigation of transient pressures and plasma properties in a pinched plasma column. M.S. Thesis

    Science.gov (United States)

    Stover, E. K.; York, T. M.

    1971-01-01

    The transient pinched plasma column generated in a linear Z-pinch was studied experimentally and analytically. The plasma column was investigated experimentally with several plasma diagnostics; they were: a rapid response pressure transducer, a magnetic field probe, a voltage probe, and discharge luminosity. Axial pressure profiles on the discharge chamber axis were used to identify three characteristic regions of plasma column behavior: (1) strong axial pressure asymmetry noted early in plasma column lifetime, (2) followed by plasma heating in which there is a rapid rise in static pressure, and (3) a slight decrease static pressure before plasma column breakup. Plasma column lifetime was approximately 5 microseconds. The axial pressure asymmetry was attributed to nonsimultaneous pinching of the imploding current sheet along the discharge chamber axis. The rapid heating could be attributed in part to viscous effects introduced by radial gradients in the axial streaming velocity.

  9. Stability of AlGaN/GaN heterostructures after hydrogen plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Babchenko, O., E-mail: oleg.babchenko@savba.sk [Institute of Electrical Engineering SAV, Dúbravská cesta 9, 841 04 Bratislava (Slovakia); Dzuba, J.; Lalinský, T. [Institute of Electrical Engineering SAV, Dúbravská cesta 9, 841 04 Bratislava (Slovakia); Vojs, M. [Institute of Electronics and Photonics STU, Ilkovičova 3, 812 19 Bratislava (Slovakia); Vincze, A. [International Laser Centre, Ilkovičova 3, 841 04 Bratislava (Slovakia); Ižák, T. [Institute of Physics AS CR, v.v.i., Cukrovarnicka 10, 162 53 Prague (Czech Republic); Vanko, G. [Institute of Electrical Engineering SAV, Dúbravská cesta 9, 841 04 Bratislava (Slovakia)

    2017-02-15

    Highlights: • AlGaN/GaNheterostructures with electric contacts were treated by hydrogen plasma. • No surface degradation after treatment was detected by SEM. • Hydrogen plasma caused increasing of sheet resistance up to 3.5 times after 60 min. • Incorporation of hydrogen in AlGaN sub-surface region was observed by SIMS. • Electrical measurements indicate hydrogen induced Schottky barrier lowering. - Abstract: We report on the investigation of low temperature (300 °C) hydrogen plasma treatment influence on the AlGaN/GaN heterostructures. This issue was raised in the frame of study on processes related to hybrid integration of diamond with GaN-based devices. At the same time, the capabilities of thin SiN{sub x} covering were investigated. The samples were exposed to low pressure hydrogen plasma ignited in the linear plasma system at low temperature. We analyze the surface morphology of samples by scanning electron microscopy while microstructural changes down to AlGaN/GaN interface were studied using secondary ion mass spectrometry. The sheet resistance, monitored using circular transmission line measurements, increases more than 3.5 times after 60 min treatment. The basic transport properties of the fabricated circular high electron mobility transistors after H{sub 2} plasma treatment were analyzed. The sheet resistance increasing was attributed to the decrease of effective mobility. Whilst, the observed Schottky barrier lowering indicates necessity of gate contact protection.

  10. ICPP: Introduction to Dusty Plasma Physics

    Science.gov (United States)

    Kant Shukla, Padma

    2000-10-01

    Two omnipresent ingredients of the Universe are plasmas and charged dust. The interplay between these two has opened up a new and fascinating research area, that of dusty plasmas, which are ubiquitous in in different parts of our solar system, namely planetary rings, circumsolar dust rings, interplanetary medium, cometary comae and tails, interstellar molecular clouds, etc. Dusty plasmas also occur in noctilucent clouds in the arctic troposphere and mesosphere, cloud-to-ground lightening in thunderstorms containing smoke-contaminated air over the US, in the flame of humble candle, as well as in microelectronics and in low-temperature laboratory discharges. In the latter, charged dust grains are strongly correlated. Dusty plasma physics has appeared as one of the most rapidly growing field of science, besides the field of the Bose-Einstein condensate, as demonstrated by the number of published papers in scientific journals and conference proceedings. In fact, it is a truly interdisciplinary science because it has many potential applications in astrophysics (viz. in understanding the formation of dust clusters and structures, instabilities of interstellar molecular clouds and star formation, decoupling of magnetic fields from plasmas, etc.) as well as in the planetary magnetospheres of our solar system [viz. the Saturn (particularly, the physics of spokes and braids in B and F rings), Jupiter, Uranus, Neptune, and Mars] and in strongly coupled laboratory dusty plasmas. Since dusty plasma system involves the charging and the dynamics of extremely massive charged dust particulates, it can be characterized as a complex plasma system with new physics insights. In this talk, I shall describe the basic physics of dusty plasmas and present the status of numerous collective processes that are relevant to space research and laboratory experiments. The focus will be on theoretical and experimental observations of novel waves and instabilities, various forces, and some

  11. Mapping Ring Particle Cooling across Saturn's Rings with Cassini CIRS

    Science.gov (United States)

    Brooks, Shawn M.; Spilker, L. J.; Edgington, S. G.; Pilorz, S. H.; Deau, E.

    2010-10-01

    Previous studies have shown that the rings' thermal inertia, a measure of their response to changes in the thermal environment, varies from ring to ring. Thermal inertia can provide insight into the physical structure of Saturn's ring particles and their regoliths. Low thermal inertia and quick temperature responses are suggestive of ring particles that have more porous or fluffy regoliths or that are riddled with cracks. Solid, coherent particles can be expected to have higher thermal inertias (Ferrari et al. 2005). Cassini's Composite Infrared Spectrometer has recorded millions of spectra of Saturn's rings since its arrival at Saturn in 2004 (personal communication, M. Segura). CIRS records far infrared radiation between 10 and 600 cm-1 (16.7 and 1000 µm) at focal plane 1 (FP1), which has a field of view of 3.9 mrad. Thermal emission from Saturn's rings peaks in this wavelength range. FP1 spectra can be used to infer ring temperatures. By tracking how ring temperatures vary, we can determine the thermal inertia of the rings. In this work we focus on CIRS observations of the shadowed portion of Saturn's rings. The thermal budget of the rings is dominated by the solar radiation absorbed by its constituent particles. When ring particles enter Saturn's shadow this source of energy is abruptly cut off. As a result, ring particles cool as they traverse Saturn's shadow. From these shadow observations we can create cooling curves at specific locations across the rings. We will show that the rings' cooling curves and thus their thermal inertia vary not only from ring to ring, but by location within the individual rings. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. Copyright 2010 California Institute of Technology. Government sponsorship acknowledged.

  12. Magnetic Detachment and Plume Control in Escaping Magnetized Plasma

    International Nuclear Information System (INIS)

    Schmit, P.F.; Fisch, N.J.

    2008-01-01

    The model of two-fluid, axisymmetric, ambipolar magnetized plasma detachment from thruster guide fields is extended to include plasmas with non-zero injection angular velocity profiles. Certain plasma injection angular velocity profiles are shown to narrow the plasma plume, thereby increasing exhaust efficiency. As an example, we consider a magnetic guide field arising from a simple current ring and demonstrate plasma injection schemes that more than double the fraction of useful exhaust aperture area, more than halve the exhaust plume angle, and enhance magnetized plasma detachment

  13. Field reversing magnetotail current sheets: earth, Venus, and Comet Giacobini-Zinner

    International Nuclear Information System (INIS)

    McComas, D.J.

    1986-09-01

    This dissertation examines the field reversing magnetotail current sheets at the earth, Venus, and Comet Giacobini-Zinner. In the near earth study a new analysis technique is developed to calculate the detailed current density distributions within the cross tail current sheet for the first time. This technique removes the effects of a variable sheet velocity by inverting intersatellite timings between the co-orbiting satellites ISEE-1 and -2. Case studies of three relatively geomagnetically quiet crossings are made; sheet thicknesses and peak current densities are ∼1-5 x 10 4 km and ∼5-50 nA/m 2 . Current density distributions reveal a high density central region, lower density shoulders, and considerable fine structure throughout. In the Venus study another new analysis technique is developed to reconstruct the average tail configuration from a correlation between field magnitude and draping angle in a large statistical data set. In the comet study, high resolution magnetic field and plasma electron data from the ICE traversal of Giacobini-Zinner are combined for the first time to determine the tail/current sheet geometry and calculate certain important but unmeasured local ion and upstream properties. Pressure balance across the tail gives ion temperatures and betas of ∼1.2 x 10 5 K and ∼40 in the center of the current sheet to ∼1 x 10 6 K and ∼3 in the outer lobes. Axial stress balance shows that the velocity shear upstream near the nucleus is >6 (∼1 at ICE), and that a region of strongly enhanced mass loading (ion source rate ∼24 times that upstream from lobes) exists upstream from the current sheet. The integrated downtail mass flux is ∼2.6 x 10 26 H 2 O+/sec, which is only ∼1% of the independently determined total cometary efflux. 79 refs., 37 figs

  14. Near-earth Thin Current Sheets and Birkeland Currents during Substorm Growth Phase

    International Nuclear Information System (INIS)

    Sorin Zaharia; Cheng, C.Z.

    2003-01-01

    Two important phenomena observed during the magnetospheric substorm growth phase are modeled: the formation of a near-Earth (|X| ∼ 9 R E ) thin cross-tail current sheet, as well as the equatorward shift of the ionospheric Birkeland currents. Our study is performed by solving the 3-D force-balance equation with realistic boundary conditions and pressure distributions. The results show a cross-tail current sheet with large current (J φ ∼ 10 nA/m 2 ) and very high plasma β (β ∼ 40) between 7 and 10 R E . The obtained region-1 and region-2 Birkeland currents, formed on closed field lines due to pressure gradients, move equatorward and become more intense (J parallel max ∼ 3 (micro)A/m 2 ) compared to quiet times. Both results are in agreement with substorm growth phase observations. Our results also predict that the cross-tail current sheet maps into the ionosphere in the transition region between the region-1 and region-2 currents

  15. Nanosized graphene sheets enhanced photoelectric behavior of carbon film on p-silicon substrate

    Science.gov (United States)

    Yang, Lei; Hu, Gaijuan; Zhang, Dongqing; Diao, Dongfeng

    2016-07-01

    We found that nanosized graphene sheets enhanced the photoelectric behavior of graphene sheets embedded carbon (GSEC) film on p-silicon substrate, which was deposited under low energy electron irradiation in electron cyclotron resonance plasma. The GSEC/p-Si photodiode exhibited good photoelectric performance with photoresponsivity of 206 mA/W, rise and fall time of 2.2, and 4.3 μs for near-infrared (850 nm) light. The origin of the strong photoelectric behavior of GSEC film was ascribed to the appearance of graphene nanosheets, which led to higher barrier height and photoexcited electron-collection efficiency. This finding indicates that GSEC film has the potential for photoelectric applications.

  16. Quite time convection electric field properties derived from keV electron measurements at the inner edge of the plasma sheet by means of GEOS 2

    International Nuclear Information System (INIS)

    Reme, H.; Kremser, G.; Bahnsen, A.; Jespersen, M.; Hultqvist, B.; Borg, H.; Holmgren, L.Aa.

    1981-04-01

    From an analysis of the local time distribution of the electron upper energy limit reached by the geostationary satellite GEOS 2 in cutting through the innermost part of the electron plasma sheet during fairly quite condition the following results have been obtained, among others: An electric field model given by E = -grad(AR 4 sinphi), with the dusk singular point of the forbidden region boundary at 1500, instead of at 1800 MLT, is in quite good agreement with the observations. This means that effects due to the shielding by the hot plasma of the inner magnetosphere from the convection electric field are quite strong in situations of low disturbance level. The quiet time convection electric field strength at 2100 MLT in the geostationary orbit obtained from this analysis varies in the range 0.15 - 0.3 keV/Rsub(e). Six hours earlier or later in the satellite orbit the convection field is 4 times stronger. Also when the convection field varies, some information about its magnitude can be obtained from the keV electron measurements. (author)

  17. Electron cyclotron instabilities of finite pressure inhomogeneous plasma in crossed fields

    International Nuclear Information System (INIS)

    Kirochkin, Yu.A.; Pokroev, A.G.; Stepanov, K.N.

    1979-01-01

    The stability of inhomogeneous plasma sheet with β<=1 in crossed electric and magnetic fields is investigated. The differential equation describing potential oscillations is obtained. Using the local approximation the sheet is shown to be unstable against the excitation of short wavelength electron cyclotron oscillations. The validity criterion of this method for a given type of waves is derived

  18. Pulsed Electromagnetic Acceleration of Plasma: A Review

    Science.gov (United States)

    Thio, Y. C. Francis; Turchi, Peter J.; Markusic, Thomas E.; Cassibry, Jason T.; Sommer, James; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Much have been learned in the acceleration mechanisms involved in accelerating a plasma electromagnetically in the laboratory over the last 40 years since the early review by Winston Bostik of 1963, but the accumulated understanding is very much scattered throughout the literature. This literature extends back at least to the early sixties and includes Rosenbluth's snowplow model, discussions by Ralph Lovberg, Colgate's boundary-layer model of a current sheet, many papers from the activity at Columbia by Robert Gross and his colleagues, and the relevant, 1-D unsteady descriptions developed from the U. of Maryland theta-pinch studies. Recent progress on the understanding of the pulsed penetration of magnetic fields into collisionless or nearly collisionless plasmas are also be reviewed. Somewhat more recently, we have the two-dimensional, unsteady results in the collisional regime associated with so-called wall-instability in large radius pinch discharges and also in coaxial plasma guns (e.g., Plasma Flow Switch). Among other things, for example, we have the phenomenon of a high- density plasma discharge propagating in a cooaxial gun as an apparently straight sheet (vs paraboloid) because mass re-distribution (on a microsecond timescale) compensates for the 1/r- squared variation of magnetic pressure. We will attempt to collate some of this vast material and bring some coherence tc the development of the subject.

  19. NON-EQUILIBRIUM IONIZATION MODELING OF THE CURRENT SHEET IN A SIMULATED SOLAR ERUPTION

    International Nuclear Information System (INIS)

    Shen Chengcai; Reeves, Katharine K.; Raymond, John C.; Murphy, Nicholas A.; Ko, Yuan-Kuen; Lin Jun; Mikić, Zoran; Linker, Jon A.

    2013-01-01

    The current sheet that extends from the top of flare loops and connects to an associated flux rope is a common structure in models of coronal mass ejections (CMEs). To understand the observational properties of CME current sheets, we generated predictions from a flare/CME model to be compared with observations. We use a simulation of a large-scale CME current sheet previously reported by Reeves et al. This simulation includes ohmic and coronal heating, thermal conduction, and radiative cooling in the energy equation. Using the results of this simulation, we perform time-dependent ionization calculations of the flow in a CME current sheet and construct two-dimensional spatial distributions of ionic charge states for multiple chemical elements. We use the filter responses from the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory and the predicted intensities of emission lines to compute the count rates for each of the AIA bands. The results show differences in the emission line intensities between equilibrium and non-equilibrium ionization. The current sheet plasma is underionized at low heights and overionized at large heights. At low heights in the current sheet, the intensities of the AIA 94 Å and 131 Å channels are lower for non-equilibrium ionization than for equilibrium ionization. At large heights, these intensities are higher for non-equilibrium ionization than for equilibrium ionization inside the current sheet. The assumption of ionization equilibrium would lead to a significant underestimate of the temperature low in the current sheet and overestimate at larger heights. We also calculate the intensities of ultraviolet lines and predict emission features to be compared with events from the Ultraviolet Coronagraph Spectrometer on the Solar and Heliospheric Observatory, including a low-intensity region around the current sheet corresponding to this model

  20. An investigation of transient pressure and plasma properties in a pinched plasma column. M.S. Thesis

    Science.gov (United States)

    Stover, E. K.; York, T. M.

    1971-01-01

    The transient pinched plasma column generated in a linear Z-pinch was studied experimentally and analytically. The plasma column was investigated experimentally with the following plasma diagnostics: a special rapid response pressure transducer, a magnetic field probe, a voltage probe and discharge luminosity. Axial pressure profiles on the discharge chamber axis were used to identify three characteristic regions of plasma column behavior; they were in temporal sequence: strong axial pressure asymmetry noted early in plasma column lifetime followed by plasma heating in which there is a rapid rise in static pressure and a slight decrease static pressure before plasma column breakup. Plasma column lifetime was approximately 5 microseconds. The axial pressure asymmetry was attributed to nonsimultaneous pinching of the imploding current sheet along the discharge chamber axis. The rapid heating is attributed in part to viscous effects introduced by radial gradients in the axial streaming velocity. Turbulent heating arising from discharge current excitation of the ion acoustic wave instability is also considered a possible heating mechanism.

  1. HEATING MECHANISMS IN THE LOW SOLAR ATMOSPHERE THROUGH MAGNETIC RECONNECTION IN CURRENT SHEETS

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Lei; Lin, Jun [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Roussev, Ilia I. [Division of Geosciences, National Science Foundation Arlington, Virginia (United States); Schmieder, Brigitte, E-mail: leini@ynao.ac.cn [Observatoire de Paris, LESIA, Meudon (France)

    2016-12-01

    We simulate several magnetic reconnection processes in the low solar chromosphere/photosphere; the radiation cooling, heat conduction and ambipolar diffusion are all included. Our numerical results indicate that both the high temperature (≳8 × 10{sup 4} K) and low temperature (∼10{sup 4} K) magnetic reconnection events can happen in the low solar atmosphere (100–600 km above the solar surface). The plasma β controlled by plasma density and magnetic fields is one important factor to decide how much the plasma can be heated up. The low temperature event is formed in a high β magnetic reconnection process, Joule heating is the main mechanism to heat plasma and the maximum temperature increase is only several thousand Kelvin. The high temperature explosions can be generated in a low β magnetic reconnection process, slow and fast-mode shocks attached at the edges of the well developed plasmoids are the main physical mechanisms to heat the plasma from several thousand Kelvin to over 8 × 10{sup 4} K. Gravity in the low chromosphere can strongly hinder the plasmoid instability and the formation of slow-mode shocks in a vertical current sheet. Only small secondary islands are formed; these islands, however, are not as well developed as those in the horizontal current sheets. This work can be applied to understand the heating mechanism in the low solar atmosphere and could possibly be extended to explain the formation of common low temperature Ellerman bombs (∼10{sup 4} K) and the high temperature Interface Region Imaging Spectrograph (IRIS) bombs (≳8 × 10{sup 4}) in the future.

  2. SUPERFAST THERMALIZATION OF PLASMA

    Science.gov (United States)

    Chang, C.C.

    1962-06-12

    A method is given for the superfast thermalization of plasma by shock conversion of the kinetic energy stored in rotating plasma rings or plasmoids colliding at near supersonic speeds in a containment field to heat energy in the resultant confined plasma mass. The method includes means for generating rotating plasmoids at the opposite ends of a Pyrotron or Astron containment field. The plasmoids are magnetically accelerated towards each other into the opposite ends of time containment field. During acceleration of the plasmoids toward the center of the containment field, the intensity of the field is sequentially increased to adiabatically compress the plasmoids and increase the plasma energy. The plasmoids hence collide with a violent shock at the eenter of the containment field, causing the substantial kinetic energy stored in the plasmoids to be converted to heat in the resultant plasma mass. (AEC)

  3. Parametric study of the damage ring pattern in fused silica induced by multiple longitudinal modes laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Chambonneau, M., E-mail: maxime.chambonneau@hotmail.fr; Grua, P.; Rullier, J.-L.; Lamaignère, L. [CEA CESTA, 15 Avenue des Sablières, CS 60001, 33116 Le Barp Cedex (France); Natoli, J.-Y. [Aix Marseille Université, CNRS, Centrale Marseille, Institut Fresnel, UMR 7249, 13013 Marseille (France)

    2015-03-14

    With the use of multiple longitudinal modes nanosecond laser pulses at 1064 nm, laser damage sites at the exit surface of fused silica clearly and systematically exhibit ring patterns. It has been shown in our previous works that the apparent chronology of rings was closely related to the temporal shape of the laser pulses. This particular correspondence had suggested an explanation of the ring morphology formation based on the displacement of an ionization front in the surrounding air. To provide a former basis for this hypothesis and deeper understanding of ring pattern formation, additional experiments have been performed. First, the impact of fluence has been investigated, revealing that a wide variety of damage sites are produced within a very narrow fluence range; this fact involves the chronology of appearance of a surface plasma during the laser pulse. The sizes of the damage sites are proportional to the fluence of their expansion occurring between the beginning of the plasma and the end of the laser pulse. Second, specific experiments have been carried out at different angles of incidence, resulting in egg-shaped patterns rather than circular ones. This behavior can be explained by our previous hypothesis of creation of a plasma in air, its expansion being tightly conditioned by the illumination angle. This series of experiments, in which the angle of incidence is varied up to 80°, permits us to link quantitatively the working hypothesis of ionization front propagation with theoretical hydrodynamics modeling.

  4. Electrical Characteristics of Carbon Nanotubes by Plasma and Microwave Surface Treatments

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sangjin; Lee, Soonbo; Boo, Jinhyo [Sungkyunkwan Univ., Suwon (Korea, Republic of); Shrestha, Shankar Prasad [Tribhuvan Univ., Kathmandu (Nepal)

    2014-03-15

    The plasma and microwave surface treatments of carbon nanotubes that loaded on plastic substrates were carried out with expecting a change of carbon nanotube dispersion by increasing treatment time. The microwave treatment process was undergone by commercial microwave oven (800 W). The electrical property was measured by hall measurement and resistance was increased by increasing O{sub 2} flow rate of plasma, suggesting an improvement of carbon nanotube dispersion and a possibility of controlling the resistances of carbon nanotubes by plasma surface treatment. The resistance was increased in both polyethylene terephthalate and polyimide substrates by increasing O{sub 2} flow rate. Resistance changes only slightly with different O{sub 2} flow treatment in measure rho for all polyimide samples. Sheet resistance is lowest in polyimide substrate not due to high carbon nanotube loading but due to tendency to remain in elongated structure. O{sub 2} or N{sub 2} plasma treatments on both polyethylene terephthalate and polyimide substrates lead to increase in sheet resistance.

  5. Electrical Characteristics of Carbon Nanotubes by Plasma and Microwave Surface Treatments

    International Nuclear Information System (INIS)

    Cho, Sangjin; Lee, Soonbo; Boo, Jinhyo; Shrestha, Shankar Prasad

    2014-01-01

    The plasma and microwave surface treatments of carbon nanotubes that loaded on plastic substrates were carried out with expecting a change of carbon nanotube dispersion by increasing treatment time. The microwave treatment process was undergone by commercial microwave oven (800 W). The electrical property was measured by hall measurement and resistance was increased by increasing O 2 flow rate of plasma, suggesting an improvement of carbon nanotube dispersion and a possibility of controlling the resistances of carbon nanotubes by plasma surface treatment. The resistance was increased in both polyethylene terephthalate and polyimide substrates by increasing O 2 flow rate. Resistance changes only slightly with different O 2 flow treatment in measure rho for all polyimide samples. Sheet resistance is lowest in polyimide substrate not due to high carbon nanotube loading but due to tendency to remain in elongated structure. O 2 or N 2 plasma treatments on both polyethylene terephthalate and polyimide substrates lead to increase in sheet resistance

  6. Current and high-β sheets in CIR streams: statistics and interaction with the HCS and the magnetosphere

    Science.gov (United States)

    Potapov, A. S.

    2018-04-01

    Thirty events of CIR streams (corotating interaction regions between fast and slow solar wind) were analyzed in order to study statistically plasma structure within the CIR shear zones and to examine the interaction of the CIRs with the heliospheric current sheet (HCS) and the Earth's magnetosphere. The occurrence of current layers and high-beta plasma sheets in the CIR structure has been estimated. It was found that on average, each of the CIR streams had four current layers in its structure with a current density of more than 0.12 A/m2 and about one and a half high-beta plasma regions with a beta value of more than five. Then we traced how and how often the high-speed stream associated with the CIR can catch up with the heliospheric current sheet (HCS) and connect to it. The interface of each fourth CIR stream coincided in time within an hour with the HCS, but in two thirds of cases, the CIR connection with the HCS was completely absent. One event of the simultaneous observation of the CIR stream in front of the magnetosphere by the ACE satellite in the vicinity of the L1 libration point and the Wind satellite in the remote geomagnetic tail was considered in detail. Measurements of the components of the interplanetary magnetic field and plasma parameters showed that the overall structure of the stream is conserved. Moreover, some details of the fine structure are also transferred through the magnetosphere. In particular, the so-called "magnetic hole" almost does not change its shape when moving from L1 point to a neighborhood of L2 point.

  7. Cold atmospheric plasma jet in an axial DC electric field

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Li, E-mail: lilin@gwu.edu, E-mail: keidar@gwu.edu; Keidar, Michael, E-mail: lilin@gwu.edu, E-mail: keidar@gwu.edu [Department of Mechanical and Aerospace Engineering, School of Engineering and Applied Science, The George Washington University, Washington, DC 20052 (United States)

    2016-08-15

    Cold atmospheric plasma (CAP) jet is currently intensively investigated as a tool for new and potentially transformative cancer treatment modality. However, there are still many unknowns about the jet behavior that requires attention. In this paper, a helium CAP jet is tested in an electrostatic field generated by a copper ring. Using Rayleigh microwave scattering method, some delays of the electron density peaks for different ring potentials are observed. Meanwhile, a similar phenomenon associated with the bullet velocity is found. Chemical species distribution along the jet is analyzed based on the jet optical emission spectra. The spectra indicate that a lower ring potential, i.e., lower DC background electric field, can increase the amount of excited N{sub 2}, N{sub 2}{sup +}, He, and O in the region before the ring, but can decrease the amount of excited NO and HO almost along the entire jet. Combining all the results above, we discovered that an extra DC potential mainly affects the temporal plasma jet properties. Also, it is possible to manipulate the chemical compositions of the jet using a ring with certain electric potentials.

  8. Analytical theory of neutral current sheets with a sheared magnetic field in collisionless relativistic plasma

    Science.gov (United States)

    Kocharovsky, V. V.; Kocharovsky, Vl V.; Martyanov, V. Yu; Nechaev, A. A.

    2017-12-01

    We derive and describe analytically a new wide class of self-consistent magnetostatic structures with sheared field lines and arbitrary energy distributions of particles. To do so we analyze superpositions of two planar current sheets with orthogonal magnetic fields and cylindrically symmetric momentum distribution functions, such that the magnetic field of one of them is directed along the symmetry axis of the distribution function of the other. These superpositions satisfy the pressure balance equation and allow one to construct configurations with an almost arbitrarily sheared magnetic field. We show that most of previously known current sheet families with sheared magnetic field lines are included in this novel class.

  9. EDITORIAL: Plasma jets and plasma bullets Plasma jets and plasma bullets

    Science.gov (United States)

    Kong, M. G.; Ganguly, B. N.; Hicks, R. F.

    2012-06-01

    to 1990 with only 31 papers per year on average, and a total of some 1300 papers, precedes a considerable growth of some 35-50% in research activity every five years, over the last 20 years or so. As shown in the table, the annual dissemination of the field is more than 1600 papers and the total number of papers is in excess of 20000. This upwards trajectory is typical of a strong and growing subject area in physical science, with considerable capacity in both fundamental science and applications. PeriodNumber of papersPapers per annum 1948-1990130031 1991-19952279456 1996-20003447689 2001-20054571914 2006-201066401328 2011 1658 In many of the dense plasma jets discussed above, strong physical forces generated by the plasma are often desired and this favours plasma generation at elevated gas pressure, including atmospheric pressure, which favours a high level of gas ionization. Historically it has been challenging to reduce and control the strong physical forces in high-pressure plasmas for applications where these are unwanted, for example, surface modification of polymeric sheets [5]. Indeed, there is a real need for a vast range of material processing applications at temperatures below 100oC (or below 400 K) and this favours atmospheric-pressure plasma jets sustained far from thermal equilibrium with the dissipated electrical energy largely used not in heat generation but in unleashing non-equilibrium chemical reactions. The long-standing difficulty of effectively controlling the level of gas ionization at atmospheric pressure was overcome by the technological breakthrough of achieving atmospheric-pressure glow discharges in the late 1980s [6]. A related challenge stemming from high collisionality of atmospheric-pressure plasmas (v >> ω0) means that large-area plasmas sustained between parallel-plate electrodes are very susceptible to strong plasma instabilities when molecular gases are introduced for processing applications. This led to an effective

  10. The role of ring current O+ in the formation of stable auroral red arcs

    International Nuclear Information System (INIS)

    Kozyra, J.U.; Cravens, T.E.; Nagy, A.F.; Shelley, E.G.; Comfort, R.H.; Brace, L.H.

    1987-01-01

    Coulomb collisions between ring current protons and thermal electrons were first proposed by Cole (1965) as the energy source for stable auroral red (SAR) arcs. Recent observations have shown that the ring current and magnetospheric plasma contain significant amounts of heavy ions (Johnson et al., 1977; Young et al., 1977; Geiss et al., 1978; and others). In fact, the ring current is often dominated by heavy ions at those energies (E ≤ 17 keV) important for Coulomb collisions on SAR arc field lines (Kozyra et al., 1986a). Observations (during four SAR arcs in 1981) of thermal and energetic ion populations by the Dynamics Explorer 1 satellite in the magnetospheric energy source region and nearly simultaneous Langmuir probe measurements of enhanced electron temperatures by Dynamics Explorer 2 within the SAR arc at F region heights have allowed the authors to examine the role of heavy ions in the formation of SAR arcs. They find that (1) sufficient energy is transferred to the electron gas at high altitudes via Coulomb collisions between the observed ring current ions and thermal electrons to support the enhanced (SAR arc) F region electron temperatures measured on these field lines, (2) the latitudinal variation in the electron heating rates calculated using observed ion populations is consistent with the observed variation in electron temperature across the SAR arc, and (3) in all cases, ring current O + is the major source of energy for the SAR arcs. This implies a relationship between the heavy ion content of the magnetospheric plasma and the occurrence frequency and intensity of SAR arcs

  11. Correlations in the quantum theory of plasma line broadening

    International Nuclear Information System (INIS)

    Dufty, J.W.; Boercker, D.B.

    1976-01-01

    A unified theory of plasma line broadening is obtained from a quantum kinetic equation, paralleling existing results for a classical plasma. The atom-electron interactions are shielded by equilibrium electron correlation functions and a frequency dependent dielectric function. A 'ring' approximation is used to replace the classical plasma parameter expansion, for typical laboratory conditions. Atom-electron correlations are included as well as electron-electron correlations. (author)

  12. Plasma universe

    International Nuclear Information System (INIS)

    Alfven, H.

    1986-04-01

    Traditionally the views in our cosmic environment have been based on observations in the visual octave of the electromagnetic spectrum, during the last half-century supplemented by infrared and radio observations. Space research has opened the full spectrum. Of special importance are the X-ray-gamma-ray regions, in which a number of unexpected phenomena have been discovered. Radiations in these regions are likely to originate mainly from magnetised cosmic plasma. Such a medium may also emit synchrotron radiation which is observable in the radio region. If we try to base a model of the universe on the plasma phenomena mentioned we find that the plasma universe is drastically different from the traditional visual universe. Information about the plasma universe can also be obtained by extrapolation of laboratory experiments and magnetospheric in situ measurements of plasma. This approach is possible because it is likely that the basic properties of plasma are the same everywhere. In order to test the usefulness of the plasma universe model we apply it to cosmogony. Such an approach seems to be rather successful. For example, the complicated structure of the Saturnian C ring can be accounted for. It is possible to reconstruct certain phenomena 4-5 bilions years ago with an accuracy of better than 1 percent

  13. Plasma potential measurements in the edge region of the ISTTOK plasma, using electron emissive probes

    International Nuclear Information System (INIS)

    Ionita, C.; Balan, P.; Schrittwieser, R.; Cabral, J.A.; Fernandes, H.; Figueiredo, H. F.C.; Varandas, C.

    2001-01-01

    We have recently started to use electron-emissive probes for direct measurements of the plasma potential and its fluctuations in the edge region of the plasma ring in the tokamak ISTTOK in Lisbon, Portugal. This method is based on the fact that the electron emission current of such a probe is able to compensate electron temperature variations and electron drifts, which can occur in the edge plasma region of magnetized fusion devices, and which are making measurements with cold probes prone to errors. In this contribution we present some of the first results of our investigations in ISTTOK.(author)

  14. 3D Diagnostic Of Complex Plasma

    International Nuclear Information System (INIS)

    Hall, Edward; Samsonov, Dmitry

    2011-01-01

    This paper reports the development of a three-dimensional(3D) dust particle position diagnostic for complex plasmas. A beam produce by Light Emitting Diodes(LEDs) is formed into horizontal sheet, for the illumination of the particles. The light sheet has a vertical colour gradient across its width, from two opposing colours. The light scattered from the particles is imaged with the camera from above. The horizontal coordinates are measured from the positions on the image. The third coordinate is determined from the colour which represents a position on the gradient of the light sheet. The use of LEDs as a light source reduces a variation in Mie scattered intensity from the particles due to the particle size distribution. The variation would induce a large vertical positional error.

  15. Plasma-enhanced chemical vapor deposition of graphene on copper substrates

    Directory of Open Access Journals (Sweden)

    Nicolas Woehrl

    2014-04-01

    Full Text Available A plasma enhanced vapor deposition process is used to synthesize graphene from a hydrogen/methane gas mixture on copper samples. The graphene samples were transferred onto SiO2 substrates and characterized by Raman spectroscopic mapping and atomic force microscope topographical mapping. Analysis of the Raman bands shows that the deposited graphene is clearly SLG and that the sheets are deposited on large areas of several mm2. The defect density in the graphene sheets is calculated using Raman measurements and the influence of the process pressure on the defect density is measured. Furthermore the origin of these defects is discussed with respect to the process parameters and hence the plasma environment.

  16. Multispacecraft observations of the electron current sheet, neighboring magnetic islands, and electron acceleration during magnetotail reconnection

    Czech Academy of Sciences Publication Activity Database

    Chen, L. J.; Bessho, N.; Lefebvre, B.; Vaith, H.; Asnes, A.; Santolík, Ondřej; Fazakerley, A.; Puhl-Quinn, P.; Bhattacharjee, A.; Khotyaintsev, Y.; Daly, P.; Torbert, R.

    2009-01-01

    Roč. 16, - (2009), 056501/1-056501/12 ISSN 1070-664X Institutional research plan: CEZ:AV0Z30420517 Keywords : magnetotail reconnection * electron current sheet * multispacecraft observations Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.475, year: 2009

  17. Hollow core plasma channel generation

    International Nuclear Information System (INIS)

    Quast, Heinrich Martin

    2018-03-01

    The use of a hollow plasma channel in plasma-based acceleration has beneficial properties for the acceleration of electron and positron bunches. In the scope of the FLASHForward facility at DESY, the generation of such a plasma structure is examined. Therefore, the generation of a ring-shaped laser intensity profile with different techniques is analyzed. From the obtained intensity profiles the electron density of a hollow plasma channel is simulated in the focal region. Different parameters are scanned to understand their influence on the electron density distribution - an important parameter being, for example, the radius of the central region of the channel. In addition to the simulations, experiments are presented, during which a laser pulse is transformed into a hollow beam with a spiral phase plate. Subsequently, it forms a plasma during the interaction with hydrogen, where the plasma is imaged with interferometry. For energies above 0.9 mJ a hollow plasma structure can be observed at the location of first plasma formation.

  18. Exploration of a possible cause of magnetic reconfiguration/reconnection due to generation, rather than annihilation, of magnetic field in a nun-uniform thin current sheet

    Science.gov (United States)

    Huang, Y. C.; Lyu, L. H.

    2014-12-01

    Magnetic reconfiguration/reconnection plays an important role on energy and plasma transport in the space plasma. It is known that magnetic field lines on two sides of a tangential discontinuity can connect to each other only at a neutral point, where the strength of the magnetic field is equal to zero. Thus, the standard reconnection picture with magnetic field lines intersecting at the neutral point is not applicable to the component reconnection events observed at the magnetopause and in the solar corona. In our early study (Yu, Lyu, & Wu, 2011), we have shown that annihilation of magnetic field near a thin current sheet can lead to the formation of normal magnetic field component (normal to the current sheet) to break the frozen-in condition and to accelerate the reconnected plasma flux, even without the presence of a neutral point. In this study, we examine whether or not a generation, rather than annihilation, of magnetic field in a nun-uniform thin current sheet can also lead to reconnection of plasma flux. Our results indicate that a non-uniform enhancement of electric current can yield formation of field-aligned currents. The normal-component magnetic field generated by the field-aligned currents can yield reconnection of plasma flux just outside the current-enhancement region. The particle motion that can lead to non-uniform enhancement of electric currents will be discussed.

  19. Characterization of microwave plasma in a multicusp using 2D emission based tomography: Bessel modes and wave absorption

    Science.gov (United States)

    Rathore, Kavita; Bhattacharjee, Sudeep; Munshi, Prabhat

    2017-06-01

    A tomographic method based on the Fourier transform is used for characterizing a microwave plasma in a multicusp (MC), in order to obtain 2D distribution of plasma emissions, plasma (electron) density (Ne) and temperature (Te). The microwave plasma in the MC is characterized as a function of microwave power, gas pressure, and axial distance. The experimentally obtained 2D emission profiles show that the plasma emissions are generated in a circular ring shape. There are usually two bright rings, one at the plasma core and another near the boundary. The experimental results are validated using a numerical code that solves Maxwell's equations inside a waveguide filled with a plasma in a magnetic field, with collisions included. It is inferred that the dark and bright circular ring patterns are a result of superposition of Bessel modes (TE11 and TE21) of the wave electric field inside the plasma filled MC, which are in reasonable agreement with the plasma emission profiles. The tomographically obtained Ne and Te profiles indicate higher densities in the plasma core (˜1010 cm-3) and enhanced electron temperature in the ECR region (˜13 eV), which are in agreement with earlier results using a Langmuir probe and optical emission spectroscopy (OES) diagnostics.

  20. Gravitoelectrodynamics in Saturn's F ring: encounters with Prometheus and Pandora

    International Nuclear Information System (INIS)

    Matthews, Lorin Swint; Hyde, Truell W

    2003-01-01

    The dynamics of Saturn's F ring have been a matter of curiosity ever since Voyagers 1 and 2 sent back pictures of the ring's unusual features. Some of these images showed three distinct ringlets with the outer two displaying a kinked and braided appearance. Many models have been proposed to explain the braiding seen in these images; most of these invoke perturbations caused by the shepherding moons or kilometre-sized moonlets embedded in the ring and are purely gravitational in nature. These models also assume that the plasma densities and charges on the grains are small enough that electromagnetic forces can be ignored. However, Saturn's magnetic field exerts a significant perturbative force on even weakly charged micron- and submicron-sized grains causing the grains to travel in epicyclic orbits about a guiding centre. This study examines the effect of Saturn's magnetic field on the dynamics of micron-sized grains along with gravitational interactions between the F ring's shepherding moons, Prometheus and Pandora. Due to the differences in charge-to-mass ratios of the various sized grains, a phase difference between different size populations is observed in the wavy orbits imposed by passage of the shepherding moons

  1. Acceleration of on-axis and ring-shaped electron beams in wakefields driven by Laguerre-Gaussian pulses

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guo-Bo [College of Science, National University of Defense Technology, Changsha 410073 (China); Key Laboratory for Laser Plasmas (MOE) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Chen, Min, E-mail: minchen@sjtu.edu.cn, E-mail: yanyunma@126.com; Luo, Ji; Zeng, Ming; Yuan, Tao; Yu, Ji-Ye; Yu, Lu-Le; Weng, Su-Ming [Key Laboratory for Laser Plasmas (MOE) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240 (China); Ma, Yan-Yun, E-mail: minchen@sjtu.edu.cn, E-mail: yanyunma@126.com [College of Science, National University of Defense Technology, Changsha 410073 (China); Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240 (China); Yu, Tong-Pu [College of Science, National University of Defense Technology, Changsha 410073 (China); Sheng, Zheng-Ming [Key Laboratory for Laser Plasmas (MOE) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240 (China); SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

    2016-03-14

    The acceleration of electron beams with multiple transverse structures in wakefields driven by Laguerre-Gaussian pulses has been studied through three-dimensional (3D) particle-in-cell simulations. Under different laser-plasma conditions, the wakefield shows different transverse structures. In general cases, the wakefield shows a donut-like structure and it accelerates the ring-shaped hollow electron beam. When a lower plasma density or a smaller laser spot size is used, besides the donut-like wakefield, a central bell-like wakefield can also be excited. The wake sets in the center of the donut-like wake. In this case, both a central on-axis electron beam and a ring-shaped electron beam are simultaneously accelerated. Further, reducing the plasma density or laser spot size leads to an on-axis electron beam acceleration only. The research is beneficial for some potential applications requiring special pulse beam structures, such as positron acceleration and collimation.

  2. Black rings

    International Nuclear Information System (INIS)

    Emparan, Roberto; Reall, Harvey S

    2006-01-01

    A black ring is a five-dimensional black hole with an event horizon of topology S 1 x S 2 . We provide an introduction to the description of black rings in general relativity and string theory. Novel aspects of the presentation include a new approach to constructing black ring coordinates and a critical review of black ring microscopics. (topical review)

  3. A cylindrical current sheet over the South solar pole observed by Ulysses

    Science.gov (United States)

    Khabarova, Olga; Kislov, Roman; Malova, Helmi; Obridko, Vladimir

    2016-04-01

    We provide the first evidence for the existence of a quasi-stable cylindrical current sheet over the South solar pole as observed by Ulysses in 2006, near the solar minimum, when it reached maximal heliolatitude of 79.7 degrees at 2.4 AU. It took place inside a fast speed stream from the coronal hole, and the tube was presumably crossed rather far from the center within two degrees of heliolatitude and ~10 degrees of heliolongitude. During the spacecraft passage throughout the structure, the solar wind velocity was approximately twice as little, the solar wind density was 20 times lower than the surrounded plasma values, but the temperature was twice as large in the point closest to the pole. The interplanetary magnetic field (IMF) strongly decreased due to sharp variations in the IMF radial component (RTN) that changed its sign twice, but other components did not show changes out of usual stochastic behavior. Both the behavior of the IMF, rotation of the plasma flow direction and other features indicate the occurrence of cylindrical current sheet. We discuss its solar origin and present modeling that can explain the observations.

  4. Energy transfer between a passing vortex ring and a flexible plate in an ideal quiescent fluid

    Energy Technology Data Exchange (ETDEWEB)

    Hu, JiaCheng; Peterson, Sean D., E-mail: peterson@mme.uwaterloo.ca [Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada); Porfiri, Maurizio [Department of Mechanical and Aerospace Engineering, New York University Polytechnic School of Engineering, Brooklyn, New York 11201 (United States)

    2015-09-21

    Recent advancements in highly deformable smart materials have lead to increasing interest in small-scale energy harvesting research for powering low consumption electronic devices. One such recent experimental study by Goushcha et al. explored energy harvesting from a passing vortex ring by a cantilevered smart material plate oriented parallel to and offset from the path of the ring in an otherwise quiescent fluid. The present study focuses on modeling this experimental study using potential flow to facilitate optimization of the energy extraction from the passing ring to raise the energy harvesting potential of the device. The problem is modeled in two-dimensions with the vortex ring represented as a pair of counter-rotating free vortices. Vortex pair parameters are determined to match the convection speed of the ring in the experiments, as well as the imposed pressure loading on the plate. The plate is approximated as a Kirchhoff-Love plate and represented as a finite length vortex sheet in the fluid domain. The analytical model matches experimental measurements, including the tip displacement, the integrated force along the entire plate length as a function of vortex ring position, and the pressure along the plate. The potential flow solution is employed in a parametric study of the governing dimensionless parameters in an effort to guide the selection of plate properties for optimal energy harvesting performance. Results of the study indicate an optimal set of plate properties for a given vortex ring configuration, in which the time-scale of vortex advection matches that of the plate vibration.

  5. Is the Near-Earth Current Sheet Prior to Reconnection Unstable to Tearing Mode?

    International Nuclear Information System (INIS)

    Xin-Hua, Wei; Jin-Bin, Cao; Guo-Cheng, Zhou; Hui-Shan, Fu

    2010-01-01

    The tearing mode instability plays a key role in the triggering process of reconnection. The triggering collisionless tearing mode instability has been theoretically and numerically analyzed by many researchers. However, due to the difficulty in obtaining the observational wave number, it is still unknown whether the tearing mode instability can be excited in an actual plasma sheet prior to reconnection onset. Using the data from four Cluster satellites prior to a magnetospheric reconnection event on 13 September 2002, we utilized the wave telescope technique to obtain the wave number which corresponds to the peak of power spectral density. The wavelength is about 18R E and is consistent with previous theoretic and numerical results. After substituting the wave vector and other necessary parameters of the observed current sheet into the triggering condition of tearing mode instability, we find that the near-Earth current sheet prior to reconnection is unstable to tearing mode. (geophysics, astronomy, and astrophysics)

  6. Nanosized graphene sheets enhanced photoelectric behavior of carbon film on p-silicon substrate

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Lei; Hu, Gaijuan; Zhang, Dongqing [Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, School of Mechanical Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Diao, Dongfeng, E-mail: dfdiao@szu.edu.cn [Institute of Nanosurface Science and Engineering (INSE), Shenzhen University, Shenzhen 518060 (China)

    2016-07-18

    We found that nanosized graphene sheets enhanced the photoelectric behavior of graphene sheets embedded carbon (GSEC) film on p-silicon substrate, which was deposited under low energy electron irradiation in electron cyclotron resonance plasma. The GSEC/p-Si photodiode exhibited good photoelectric performance with photoresponsivity of 206 mA/W, rise and fall time of 2.2, and 4.3 μs for near-infrared (850 nm) light. The origin of the strong photoelectric behavior of GSEC film was ascribed to the appearance of graphene nanosheets, which led to higher barrier height and photoexcited electron-collection efficiency. This finding indicates that GSEC film has the potential for photoelectric applications.

  7. Nanosized graphene sheets enhanced photoelectric behavior of carbon film on p-silicon substrate

    International Nuclear Information System (INIS)

    Yang, Lei; Hu, Gaijuan; Zhang, Dongqing; Diao, Dongfeng

    2016-01-01

    We found that nanosized graphene sheets enhanced the photoelectric behavior of graphene sheets embedded carbon (GSEC) film on p-silicon substrate, which was deposited under low energy electron irradiation in electron cyclotron resonance plasma. The GSEC/p-Si photodiode exhibited good photoelectric performance with photoresponsivity of 206 mA/W, rise and fall time of 2.2, and 4.3 μs for near-infrared (850 nm) light. The origin of the strong photoelectric behavior of GSEC film was ascribed to the appearance of graphene nanosheets, which led to higher barrier height and photoexcited electron-collection efficiency. This finding indicates that GSEC film has the potential for photoelectric applications.

  8. Ring coil optimization with respect to stress, temperature, and system energy over a range of physics requirements

    International Nuclear Information System (INIS)

    Pillsbury, R.D. Jr; Thome, R.J.

    1987-01-01

    The poloidal field coil system for a tokamak can be divided into the central solenoid and the ring coils. A ring coil is defined as one that has a small cross-section compared to its diameter. The size of the central solenoid is usually fixed very early in the design process since its size is directly related to the tokamak size. The sizes of the other (ring) coils are not as critical to determining the basic machine size. It is necessary to know their locations and currents in order to verify the shaping and position control of the plasma. Attention is usually focused only on the baseline plasma of the design point. However, the PF set must also be able to shape and maintain other plasmas. This paper describes a program which evaluates PF coil current scenarios over a range of physics requirements and determines the sizes of the coils necessary to satisfy constraints on the temperature rise and stress levels for the worst case scenario. In addition, the system energy requirements can be assessed and trade-offs between system energy and coil sizes (cost) can be made. Examples are given based on studies performed of CIT (Compact Ignition Tokamak)

  9. Variations in Ring Particle Cooling across Saturn's Rings with Cassini CIRS

    Science.gov (United States)

    Brooks, S. M.; Spilker, L. J.; Pilorz, S.; Edgington, S. G.; Déau, E.; Altobelli, N.

    2010-12-01

    Cassini's Composite Infrared Spectrometer has recorded over two million of spectra of Saturn's rings in the far infrared since arriving at Saturn in 2004. CIRS records far infrared radiation between 10 and 600 cm-1 ( 16.7 and 1000 μ {m} ) at focal plane 1 (FP1), which has a field of view of 3.9 mrad. Thermal emission from Saturn’s rings peaks in this wavelength range. Ring temperatures can be inferred from FP1 data. By tracking how ring temperatures vary, we can determine the thermal inertia of the rings. Previous studies have shown that the rings' thermal inertia, a measure of their response to changes in the thermal environment, varies from ring to ring. Thermal inertia can provide insight into the physical structure of Saturn's ring particles and their regoliths. Low thermal inertia and rapidly changing temperatures are suggestive of ring particles that have more porous or fluffy regoliths or that are riddled with cracks. Solid particles can be expected to have higher thermal inertias. Ferrari et al. (2005) fit thermal inertia values of 5218 {Jm)-2 {K}-1 {s}-1/2 to their B ring data and 6412 {Jm)-2 {K}-1 {s}-1/2 to their C ring data. In this work we focus on CIRS observations of the shadowed portion of Saturn's rings. The rings’ thermal budget is dominated by its absorption of solar radiation. As a result, ring particles abruptly cool as they traverse Saturn's shadow. From these shadow observations we can create cooling curves at specific locations across the rings. We will show that the rings' cooling curves and thus their thermal inertia vary not only from ring to ring, but by location within the individual rings. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. Copyright 2010 California Institute of Technology. Government sponsorship acknowledged.

  10. An ice sheet model validation framework for the Greenland ice sheet

    Science.gov (United States)

    Price, Stephen F.; Hoffman, Matthew J.; Bonin, Jennifer A.; Howat, Ian M.; Neumann, Thomas; Saba, Jack; Tezaur, Irina; Guerber, Jeffrey; Chambers, Don P.; Evans, Katherine J.; Kennedy, Joseph H.; Lenaerts, Jan; Lipscomb, William H.; Perego, Mauro; Salinger, Andrew G.; Tuminaro, Raymond S.; van den Broeke, Michiel R.; Nowicki, Sophie M. J.

    2017-01-01

    We propose a new ice sheet model validation framework - the Cryospheric Model Comparison Tool (CmCt) - that takes advantage of ice sheet altimetry and gravimetry observations collected over the past several decades and is applied here to modeling of the Greenland ice sheet. We use realistic simulations performed with the Community Ice Sheet Model (CISM) along with two idealized, non-dynamic models to demonstrate the framework and its use. Dynamic simulations with CISM are forced from 1991 to 2013, using combinations of reanalysis-based surface mass balance and observations of outlet glacier flux change. We propose and demonstrate qualitative and quantitative metrics for use in evaluating the different model simulations against the observations. We find that the altimetry observations used here are largely ambiguous in terms of their ability to distinguish one simulation from another. Based on basin-scale and whole-ice-sheet-scale metrics, we find that simulations using both idealized conceptual models and dynamic, numerical models provide an equally reasonable representation of the ice sheet surface (mean elevation differences of framework demonstrates that our proposed metrics can distinguish relatively better from relatively worse simulations and that dynamic ice sheet models, when appropriately initialized and forced with the right boundary conditions, demonstrate a predictive skill with respect to observed dynamic changes that have occurred on Greenland over the past few decades. An extensible design will allow for continued use of the CmCt as future altimetry, gravimetry, and other remotely sensed data become available for use in ice sheet model validation.

  11. Theoretical investigations on plasma centrifuges

    International Nuclear Information System (INIS)

    Hong, S.H.

    1978-01-01

    The theoretical analysis of the steady-state dynamics of plasma centrifuges is dealt with to understand the physics of rotating plasmas and their feasibility for isotope separation. The centrifuge systems under consideration employ cylindrical gas discharge chambers with externally-applied axial magnetic fields. The cathode and anode are symmetric about the cylinder axis and arranged in such a way for each system, i.e., (1) two ring electrodes of different radii in the chamber end plates or (2) two ring electrodes embedded in the mantle of the cylinder. They produce converging and/or diverging current density field lines, which intersect the external magnetic field under a nonvanishing angle. The associated Lorentz forces set the plasma, which is produced through an electrical discharge, into rotation around the cylinder axis. Three boundary-value problems for the coupled partial differential equations of the centrifuge fields are formulated, respectively, on the basis of the magnetogasdynamic equations. The electric field, electrostatic potential, current density, induced magnetic field, and velocity distributions are discussed in terms of the Hartmann number, the Hall coefficient, and the magnetic Reynolds number. The plasma centrifuge analyses presented show that the speeds of plasma rotation up to the order of 10 4 m/sec are achievable at typical conditions. The associated centrifugal forces produce a significant spatial isotope separation, which is somewhat reduced in the viscous boundary layers at the centrifuge walls. The speeds of plasma rotation increase with increasing Hartmann number and Hall coefficient. For small Hall coefficient, the induced azimuthal magnetic field does not affect the plasma rotation. For large volumes of rotating isotope mixtures, a multidischarge centrifuge can be constructed by setting up a large number of centrifuge systems in series

  12. Interaction between laser-produced plasma and guiding magnetic field

    International Nuclear Information System (INIS)

    Hasegawa, Jun; Takahashi, Kazumasa; Ikeda, Shunsuke; Nakajima, Mitsuo; Horioka, Kazuhiko

    2013-01-01

    Transportation properties of laser-produced plasma through a guiding magnetic field were examined. A drifting dense plasma produced by a KrF laser was injected into an axisymmetric magnetic field induced by permanent ring magnets. The plasma ion flux in the guiding magnetic field was measured by a Faraday cup at various distances from the laser target. Numerical analyses based on a collective focusing model were performed to simulate plasma particle trajectories and then compared with the experimental results. (author)

  13. Extracellular cell wall β(1,3)glucan is required to couple septation to actomyosin ring contraction

    Science.gov (United States)

    Muñoz, Javier; Cortés, Juan Carlos G.; Sipiczki, Matthias; Ramos, Mariona; Clemente-Ramos, José Angel; Moreno, M. Belén; Martins, Ivone M.; Pérez, Pilar

    2013-01-01

    Cytokinesis has been extensively studied in different models, but the role of the extracellular cell wall is less understood. Here we studied this process in fission yeast. The essential protein Bgs4 synthesizes the main cell wall β(1,3)glucan. We show that Bgs4-derived β(1,3)glucan is required for correct and stable actomyosin ring positioning in the cell middle, before the start of septum formation and anchorage to the cell wall. Consequently, β(1,3)glucan loss generated ring sliding, oblique positioned rings and septa, misdirected septum synthesis indicative of relaxed rings, and uncoupling between a fast ring and membrane ingression and slow septum synthesis, suggesting that cytokinesis can progress with defective septum pushing and/or ring pulling forces. Moreover, Bgs4-derived β(1,3)glucan is essential for secondary septum formation and correct primary septum completion. Therefore, our results show that extracellular β(1,3)glucan is required for cytokinesis to connect the cell wall with the plasma membrane and for contractile ring function, as proposed for the equivalent extracellular matrix in animal cells. PMID:24165938

  14. The physics and chemistry of dusty plasmas: A laboratory and theoretical investigation

    Science.gov (United States)

    Whipple, E. C.

    1986-01-01

    Theoretical work on dusty plasmas was conducted in three areas: collective effects in a dusty plasma, the role of dusty plasmas in cometary atmospheres, and the role of dusty plasmas in planetary atmospheres (particularly in the ring systems of the giant planets). Laboratory investigations consisted of studies of dust/plasma interactions and stimulated molecular excitation and infrared emission by charged dust grains. Also included is a list of current publications.

  15. Alternative loop rings

    CERN Document Server

    Goodaire, EG; Polcino Milies, C

    1996-01-01

    For the past ten years, alternative loop rings have intrigued mathematicians from a wide cross-section of modern algebra. As a consequence, the theory of alternative loop rings has grown tremendously. One of the main developments is the complete characterization of loops which have an alternative but not associative, loop ring. Furthermore, there is a very close relationship between the algebraic structures of loop rings and of group rings over 2-groups. Another major topic of research is the study of the unit loop of the integral loop ring. Here the interaction between loop rings and group ri

  16. Primitivity and weak distributivity in near rings and matrix near rings

    International Nuclear Information System (INIS)

    Abbasi, S.J.

    1993-08-01

    This paper shows the structure of matrix near ring constructed over a weakly distributive and primative near ring. It is proved that a weakly distributive primitive near ring is a ring and the matrix near rings constructed over it is also a bag. (author). 14 refs

  17. Chlamydia - CDC Fact Sheet

    Science.gov (United States)

    ... Archive STDs Home Page Bacterial Vaginosis (BV) Chlamydia Gonorrhea Genital Herpes Hepatitis HIV/AIDS & STDs Human Papillomavirus ( ... sheet Pelvic Inflammatory Disease (PID) – CDC fact sheet Gonorrhea – CDC fact sheet STDs Home Page Bacterial Vaginosis ( ...

  18. Ring complexes and related rocks in Africa

    Science.gov (United States)

    Vail, J. R.

    Over 625 igneous complexes throughout Africa and Arabia have been selected and classified on the basis of petrographic association and chronology into six broad age groups forming 29 provinces. The groups range from Mid-Proterozoic to Tertiary and include gabbro, granite, syenite, foid syenite and carbonatite plutonic rocks, the majority in the form of ring-dykes, cone-sheets, plugs, circular intrusions, and their associated extrusive phases. Pan-African late or post-orogenic complexes (720-490 Ma) are common in the Arabian-Nubian and Tuareg shields of north Africa originating from subduction zone derived magmatism. Anorogenic complexes in Egypt, NE and central Sudan, Niger, Nigeria, Cameroon, Zaïre-Burundi, Malawi, Mozambique, Zimbabwe, Namibia and Angola span 550 to 50 Ma and are dominantly alkali granites and foid syenites. Many groups occur as en-echelon bands within linear arrays, and show migrating centres of intrusion in variable directions. In W. Africa there was a progressive shift of emplacement southwards during early Ordovician to Mid-Cretaceous times. Distribution patterns suggest thatdeep seated features, such as shear zones associated with lithospheric plate movements,controlled melting, and the resultant location of the complexes. Economic mineralization is not widespread in the rocks of the African ring complexes and is mainly restricted to small deposits of Sn, W, F, U and Nb.

  19. Preliminary results on a 4 kJ, 140 k A plasma focus; Resultados preliminares en un plasma foco de 4 KJ

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Patricio; Favre, Mario; Chuaqui, Hernan; Wyndham, Edmund [Pontificia Univ. Catolica de Chile, Santiago (Chile). Facultad de Fisica

    1997-12-31

    Preliminary results on the operation of a 4 kJ, 140 kA Plasma Focus device are presented. The machine operates Hydrogen and Hydrogen-Argon mixtures at pressures between 400 m Torr to 10 Torr. Main diagnostics include electric and current measurements, time and space resolved X-ray observations, with limited spectral resolution, and B-dot sensors to monitor the evolution of de current sheet during the run up phase of the discharge. The results indicate that good focus is obtained in the above pressure range. This is inferred from I-dot traces and Pin diode and pin-hole camera X-ray observations. The B-dot loops suggest that a symmetric current sheet is produced. These results show that the machine exhibits a reliable performance, which allows further studies on dense transient plasmas to be developed. (author). 5 refs., 5 figs.

  20. EVOLUTION OF RELATIVISTIC PLASMOID CHAINS IN A POYNTING-DOMINATED PLASMA

    International Nuclear Information System (INIS)

    Takamoto, Makoto

    2013-01-01

    In this paper, we investigate the evolution of plasmoid chains in a Poynting-dominated plasma. We model the relativistic current sheet with a cold background plasma using the relativistic resistive magnetohydrodynamic approximation and solve for its temporal evolution numerically. We perform various calculations using different magnetization parameters of the background plasma and different Lundquist numbers. Numerical results show that the initially induced plasmoid triggers a secondary tearing instability, which gradually fills the current sheet with plasmoids, as has also been observed in the non-relativistic case. We find that plasmoid chains greatly enhance the reconnection rate, which becomes independent of the Lundquist number when the Lundquist number exceeds a critical value. In addition, we show that the distribution of plasmoid size becomes a power law. Since magnetic reconnection is expected to play an important role in various high-energy astrophysical phenomena, our results can be used for explaining the physical mechanisms of those phenomena

  1. Methodologies for analysis of patterning in the mouse RPE sheet

    Science.gov (United States)

    Boatright, Jeffrey H.; Dalal, Nupur; Chrenek, Micah A.; Gardner, Christopher; Ziesel, Alison; Jiang, Yi; Grossniklaus, Hans E.

    2015-01-01

    -analyzed results were compared. Whether tallied manually or automatically with software, the resulting cell measurements were in close agreement. We compared normal with diseased RPE cells during aging with quantitative cell size and shape metrics. Subtle differences between the RPE sheet characteristics of young and old mice were identified. The IRBP−/− mouse RPE sheet did not differ from C57BL/6J (wild type, WT), suggesting that IRBP does not play a direct role in maintaining the health of the RPE cell, while the slow loss of photoreceptor (PhR) cells previously established in this knockout does support a role in the maintenance of PhR cells. Rd8 mice exhibited several measurable changes in patterns of RPE cells compared to WT, suggesting a slow degeneration of the RPE sheet that had not been previously noticed in rd8. Conclusions An optimized dissection method and a series of programs were used to establish a rapid and hands-off analysis. The software-aided, high-sampling-size approach performed as well as trained human scorers, but was considerably faster and easier. This method allows tens to hundreds of thousands of cells to be analyzed, each with 23 metrics. With this combination of dissection and image analysis of the RPE sheet, we can now analyze cell-to-cell interactions of immediate neighbors. In the future, we may be able to observe interactions of second, third, or higher ring neighbors and analyze tension in sheets, which might be expected to deviate from normal near large bumps in the RPE sheet caused by druse or when large frank holes in the RPE sheet are observed in geographic atrophy. This method and software can be readily applied to other aspects of vision science, neuroscience, and epithelial biology where patterns may exist in a sheet or surface of cells. PMID:25593512

  2. Synthesis, Structure Optimization and Antifungal Screening of Novel Tetrazole Ring Bearing Acyl-Hydrazones

    Directory of Open Access Journals (Sweden)

    Manzoor A. Malik

    2012-08-01

    Full Text Available Azoles are generally fungistatic, and resistance to fluconazole is emerging in several fungal pathogens. In an attempt to find novel azole antifungal agents with improved activity, a series of tetrazole ring bearing acylhydrazone derivatives were synthesized and screened for their in vitro antifungal activity. The mechanism of their antifungal activity was assessed by studying their effect on the plasma membrane using flow cytometry and determination of the levels of ergosterol, a fungal-specific sterol. Propidium iodide rapidly penetrated a majority of yeast cells when they were treated with the synthesized compounds at concentrations just above MIC, implying that fungicidal activity resulted from extensive lesions of the plasma membrane. Target compounds also caused a considerable reduction in the amount of ergosterol. The results also showed that the presence and position of different substituents on the phenyl ring of the acylhydrazone pendant seem to play a role on the antifungal activity as well as in deciding the fungistatic and fungicidal nature of the compounds.

  3. Ion motion in the wake driven by long particle bunches in plasmas

    International Nuclear Information System (INIS)

    Vieira, J.; Silva, L. O.; Fonseca, R. A.; Mori, W. B.

    2014-01-01

    We explore the role of the background plasma ion motion in self-modulated plasma wakefield accelerators. We employ Dawson's plasma sheet model to derive expressions for the transverse plasma electric field and ponderomotive force in the narrow bunch limit. We use these results to determine the on-set of the ion dynamics and demonstrate that the ion motion could occur in self-modulated plasma wakefield accelerators. Simulations show the motion of the plasma ions can lead to the early suppression of the self-modulation instability and of the accelerating fields. The background plasma ion motion can nevertheless be fully mitigated by using plasmas with heavier plasmas

  4. Neutral helium spectral lines in dense plasmas

    International Nuclear Information System (INIS)

    Omar, Banaz; Wierling, August; Roepke, Gerd; Guenter, Sibylle

    2006-01-01

    Shift and broadening of isolated neutral helium lines 7281 A ring (2 1 P-3 1 S), 7065 A ring (2 3 P-3 3 S), 6678 A ring (2 1 P-3 1 D), 5048 A ring (2 1 P-4 1 S), 4922 A ring (2 1 P-4 1 D), and 4713 A ring (2 3 P-4 3 S) in a dense plasma are investigated. Based on a quantum statistical theory, the electronic contributions to the shift and width are considered, using the method of thermodynamic Green functions. Dynamic screening of the electron-atom interaction is included. Compared to the width, the electronic shift is more affected by dynamical screening. This effect increases at high density. A cut-off procedure for strong collisions is used. The contribution of the ions is taken into account in a quasi-static approximation, with both the quadratic Stark effect and the quadrupole interaction included. The results for shift and width agree well with the available experimental and theoretical data

  5. Plasma spot welding of ferritic stainless steels

    International Nuclear Information System (INIS)

    Lesnjak, A.; Tusek, J.

    2002-01-01

    Plasma spot wedding of ferritic stainless steels studied. The study was focused on welding parameters, plasma and shieldings and the optimum welding equipment. Plasma-spot welded overlap joints on a 0.8 mm thick ferritic stainless steel sheet were subjected to a visual examination and mechanical testing in terms of tension-shear strength. Several macro specimens were prepared Plasma spot welding is suitable to use the same gas as shielding gas and as plasma gas , i. e. a 98% Ar/2% H 2 gas mixture. Tension-shear strength of plasma-spot welded joint was compared to that of resistance sport welded joints. It was found that the resistance welded joints withstand a somewhat stronger load than the plasma welded joints due to a large weld sport diameter of the former. Strength of both types of welded joints is approximately the same. (Author) 32 refs

  6. Interaction of ring dark solitons with ring impurities in Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Xue Jukui

    2005-01-01

    The interaction of ring dark solitons/vortexes with the ring-shaped repulsive and attractive impurities in two-dimensional Bose-Einstein condensates is investigated numerically. Very rich interaction phenomena are obtained, i.e., not only the interaction between the ring soliton and the impurity, but also the interaction between vortexes and the impurity. The interaction characters, i.e., snaking of ring soliton, quasitrapping or reflection of ring soliton and vortexes by the impurity, strongly depend on initial ring soliton velocity, impurity strength, initial position of ring soliton and impurity. The numerical results also reveal that ring dark solitons/vortexes can be trapped and dragged by an adiabatically moving attractive ring impurity

  7. A study of plasma focus

    International Nuclear Information System (INIS)

    Hirano, Katsumi; Majima, Kazuo

    1976-01-01

    The behavior of the plasma acceleration between electrodes, the phenomena due to the pinch effect at the top of the electrodes and the neutron emission mechanism were experimentally studied. The plasma focus device was a Mather type coaxial discharge device, and the instruments used for the present purpose were a Rogoski coil, an image converter camera, a scintillation detector and a silver foil activation counter. The results of the present experiment were as follows. Plasma focus was not definitely made under the same condition. When the focus was seen, a dip was observed in the discharge wave form, and the emissions of X-ray and neutrons were detected. The angular anisotropy of neutron emission was observed, and corresponds to a beam target model. The phenomena showing the occurrence of focus were seen, when the current sheet was produced at a delayed time after discharge, and arrived at the muzzle with large velocity. The relation between the number of emitted neutrons and the velocity of the current sheet was obtained, whereas no systematic relation exists between the number of emitted neutrons and the velocity of pinch. When the focus was not observed, no dip was seen in current wave form, and the emissions of X-ray and neutrons were not detected. The reason of no focus was considered. (Kato, T.)

  8. Laminin-521 Promotes Rat Bone Marrow Mesenchymal Stem Cell Sheet Formation on Light-Induced Cell Sheet Technology

    Directory of Open Access Journals (Sweden)

    Zhiwei Jiang

    2017-01-01

    Full Text Available Rat bone marrow mesenchymal stem cell sheets (rBMSC sheets are attractive for cell-based tissue engineering. However, methods of culturing rBMSC sheets are critically limited. In order to obtain intact rBMSC sheets, a light-induced cell sheet method was used in this study. TiO2 nanodot films were coated with (TL or without (TN laminin-521. We investigated the effects of laminin-521 on rBMSCs during cell sheet culturing. The fabricated rBMSC sheets were subsequently assessed to study cell sheet viability, reattachment ability, cell sheet thickness, collagen type I deposition, and multilineage potential. The results showed that laminin-521 could promote the formation of rBMSC sheets with good viability under hyperconfluent conditions. Cell sheet thickness increased from an initial 26.7 ± 1.5 μm (day 5 up to 47.7 ± 3.0 μm (day 10. Moreover, rBMSC sheets maintained their potential of osteogenic, adipogenic, and chondrogenic differentiation. This study provides a new strategy to obtain rBMSC sheets using light-induced cell sheet technology.

  9. Chaotic jumps in the generalized first adiabatic invariant in current sheets

    International Nuclear Information System (INIS)

    Brittnacher, M.J.; Whipple, E.C.

    1991-01-01

    In attempting to develop a fluidlike model of plasma dynamics in a current sheet, kinetic effects due to chaotic non-adiabatic particle motion must be included in any realistic description. Using drift variables, derived by the Kruskal averaging procedure, to construct distribution functions may provide an approach in which to develop the fluid description. However, the drift motion is influenced by abrupt changes in the value of the generalized first adiabatic invariant J. In this letter, the authors indicate how the changes in J derived from separatrix crossing theory can be incorporated into the drift variable approach to generating distribution functions. In particular, the authors propose a method to determine distribution functions for an ensemble of particles following interactions with the tail current sheet by treating the interaction as a scattering problem characterized by changes in the invariant

  10. Split ring resonator for the Argonne superconducting heavy ion booster

    International Nuclear Information System (INIS)

    Shepard, K.W.; Scheibelhut, C.H.; Benaroya, R.; Bollinger, L.M.

    1977-01-01

    A split-ring resonator for use in the ANL superconducting heavy-ion linac was constructed and is being tested. The electromagnetic characteristics of the 98-MHz device are the same as the unit described earlier, but the housing is formed of a new material consisting of niobium sheet explosively bonded to copper. The niobium provides the superconducting path and the copper conducts heat to a small area cooled by liquid helium. This arrangement greatly simplified the cryogenic system. Fabrication of the housing was relatively simple, with the result that costs have been reduced substantially. The mechanical stability of the resonator and the performance of the demountable superconducting joints are significantly better than for the earlier unit

  11. Split ring resonator for the Argonne superconducting heavy ion booster

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.; Scheibelhut, C.H.; Benaroya, R.; Bollinger, L.M.

    1977-01-01

    A split-ring resonator for use in the ANL superconducting heavy-ion linac was constructed and is being tested. The electromagnetic characteristics of the 98-MHz device are the same as the unit described earlier, but the housing is formed of a new material consisting of niobium sheet explosively bonded to copper. The niobium provides the superconducting path and the copper conducts heat to a small area cooled by liquid helium. This arrangement greatly simplified the cryogenic system. Fabrication of the housing was relatively simple, with the result that costs have been reduced substantially. The mechanical stability of the resonator and the performance of the demountable superconducting joints are significantly better than for the earlier unit.

  12. Storage Rings

    International Nuclear Information System (INIS)

    Fischer, W.

    2010-01-01

    Storage rings are circular machines that store particle beams at a constant energy. Beams are stored in rings without acceleration for a number of reasons (Tab. 1). Storage rings are used in high-energy, nuclear, atomic, and molecular physics, as well as for experiments in chemistry, material and life sciences. Parameters for storage rings such as particle species, energy, beam intensity, beam size, and store time vary widely depending on the application. The beam must be injected into a storage ring but may not be extracted (Fig. 1). Accelerator rings such as synchrotrons are used as storage rings before and after acceleration. Particles stored in rings include electrons and positrons; muons; protons and anti-protons; neutrons; light and heavy, positive and negative, atomic ions of various charge states; molecular and cluster ions, and neutral polar molecules. Spin polarized beams of electrons, positrons, and protons were stored. The kinetic energy of the stored particles ranges from 10 -6 eV to 3.5 x 10 12 eV (LHC, 7 x 10 12 eV planned), the number of stored particles from one (ESR) to 1015 (ISR). To store beam in rings requires bending (dipoles) and transverse focusing (quadrupoles). Higher order multipoles are used to correct chromatic aberrations, to suppress instabilities, and to compensate for nonlinear field errors of dipoles and quadrupoles. Magnetic multipole functions can be combined in magnets. Beams are stored bunched with radio frequency systems, and unbunched. The magnetic lattice and radio frequency system are designed to ensure the stability of transverse and longitudinal motion. New technologies allow for better storage rings. With strong focusing the beam pipe dimensions became much smaller than previously possible. For a given circumference superconducting magnets make higher energies possible, and superconducting radio frequency systems allow for efficient replenishment of synchrotron radiation losses of large current electron or positron beams

  13. Plasma jets in the near-Earth's magnetotail (Julius Bartels Medal Lecture)

    Science.gov (United States)

    Nakamura, Rumi

    2014-05-01

    The Earth's magnetosphere is formed as a consequence of the interaction between the magnetized solar wind and the terrestrial magnetic field. While the large-scale and average (>hours) properties of the Earth's magnetotail current sheet can be well described by overall solar wind-magnetosphere interaction, the most dramatic energy conversion process takes place in an explosive manner involving transient (up to several minutes) and localized (up to a few RE) phenomena in the plasma sheet/current sheet regions. One of the most clear observables of such processes are the localized and transient plasma jets called Bursty bulk flows (BBF), embedding velocity peaks of 1-min duration, which are called flow bursts. This talk is a review of the current understanding of these plasma jets by highlighting the results from multi-spacecraft observations by the Cluster and THEMIS spacecraft. The first four-spacecraft mission Cluster crossed the near-Earth plasma sheet with inter-spacecraft distance of about 250 km to 10000 km, ideal for studying local structures of the flow bursts. The five-spacecraft THEMIS mission , separated by larger distances , succeeded to monitor the large-scale evolution of the fast flows from the mid-tail to the inner magnetosphere. Multi-point observations of BBFS have established the importance of measuring local gradients of the fields and the plasma to understand the BBF structures such as the spatial scales and 3D structure of localized Earthward convecting flux tubes. Among others the magnetic field disturbance forming at the front of BBF, called dipolarization front (DF), has been intensively studied. From the propagation properties of DF relative to the flows and by comparing with ionospheric data, the evolution of the fast flows in terms of magnetosphere-ionospheric coupling through field-aligned currents are established. An important aspect of BBF is the interaction of the Earthward plasma jets and the Earth's dipole field. Multi

  14. The effect of plasma actuator on the depreciation of the aerodynamic drag on box model

    Science.gov (United States)

    Harinaldi, Budiarso, Julian, James; Rabbani M., N.

    2016-06-01

    Recent active control research advances have provided many benefits some of which in the field of transportation by land, sea as well as by air. Flow engineering by using active control has proven advantages in energy saving significantly. One of the active control equipment that is being developed, especially in the 21st century, is a plasma actuator, with the ability to modify the flow of fluid by the approach of ion particles makes these actuators a very powerful and promising tool. This actuator can be said to be better to the previously active control such as suction, blowing and synthetic jets because it is easier to control, more flexible because it has no moving parts, easy to be manufactured and installed, and consumes a small amount of energy with maximum capability. Plasma actuator itself is the composition of a material composed of copper and a dielectric sheet, where the copper sheets act as an electricity conductor and the dielectric sheet as electricity insulator. Products from the plasma actuators are ion wind which is the result of the suction of free air around the actuator to the plasma zone. This study investigates the ability of plasma actuators in lowering aerodynamic drag which is commonly formed in the models of vehicles by varying the shape of geometry models and the flow speed.

  15. Vlasov-Maxwell equilibrium solutions for Harris sheet magnetic field with Kappa velocity distribution

    International Nuclear Information System (INIS)

    Fu, W.-Z.; Hau, L.-N.

    2005-01-01

    An exact solution of the steady-state, one-dimensional Vlasov-Maxwell equations for a plasma current sheet with oppositely directed magnetic field was found by Harris in 1962. The so-called Harris magnetic field model assumes Maxwellian velocity distributions for oppositely drifting ions and electrons and has been widely used for plasma stability studies. This paper extends Harris solutions by using more general κ distribution functions that incorporate Maxwellian distribution in the limit of κ→∞. A new functional form for the plasma pressure as a function of the magnetic vector potential p(A) is found and the magnetic field is a modified tanh z function. In the extended solutions the effective temperature is no longer spatially uniform like in the Harris model and the thickness of the current layer decreases with decreasing κ

  16. Electrochemical performance and structure evolution of core-shell nano-ring α-Fe{sub 2}O{sub 3}@Carbon anodes for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yan-Hui, E-mail: sunyanhui0102@163.com; Liu, Shan; Zhou, Feng-Chen; Nan, Jun-Min

    2016-12-30

    Core-shell nano-ring α-Fe{sub 2}O{sub 3}@Carbon (CSNR) composites with different carbon content (CSNR-5%C and CSNR-13%C) are synthesized using a hydrothermal method by controlling different amounts of glucose and α-Fe{sub 2}O{sub 3} nano-rings with further annealing. The CSNR electrodes exhibit much improved specific capacity, cycling stability and rate capability compared with that of bare nano-ring α-Fe{sub 2}O{sub 3} (BNR), which is attributed to the core-shell nano-ring structure of CSNR. The carbon shell in the inner and outer surface of CSNR composite can increase electron conductivity of the electrode and inhibit the volume change of α-Fe{sub 2}O{sub 3} during discharge/charge processes, and the nano-ring structure of CSNR can buffer the volume change too. The CSNR-5%C electrode shows super high initial discharge/charge capacities of 1570/1220 mAh g{sup −1} and retains 920/897 mAh g{sup −1} after 200 cycles at 500 mA g{sup −1} (0.5C). Even at 2000 mA g{sup −1} (2C), the electrode delivers the initial capacities of 1400/900 mAh g{sup −1}, and still maintains 630/610 mAh g{sup −1} after 200 cycles. The core-shell nano-rings opened during cycling and rebuilt a new flower-like structure consisting of α-Fe{sub 2}O{sub 3}@Carbon nano-sheets. The space among the nano-sheet networks can further buffer the volume expansion of α-Fe{sub 2}O{sub 3} and facilitate the transportation of electrons and Li{sup +} ions during the charge/discharge processes, which increases the capacity and rate capability of the electrode. It is the first time that the evolution of core-shell α-Fe{sub 2}O{sub 3}@Carbon changing to flower-like networks during lithiation/de-lithiation has been reported.

  17. Plasma rotation by electric and magnetic fields in a discharge cylinder

    Science.gov (United States)

    Wilhelm, H. E.; Hong, S. H.

    1977-01-01

    A theoretical model for an electric discharge consisting of a spatially diverging plasma sustained electrically between a small ring cathode and a larger ring anode in a cylindrical chamber with an axial magnetic field is developed to study the rotation of the discharge plasma in the crossed electric and magnetic fields. The associated boundary-value problem for the coupled partial differential equations which describe the electric potential and the plasma velocity fields is solved in closed form. The electric field, current density, and velocity distributions are discussed in terms of the Hartmann number and the Hall coefficient. As a result of Lorentz forces, the plasma rotates with speeds as high as 1 million cm/sec around its axis of symmetry at typical conditions. As an application, it is noted that rotating discharges of this type could be used to develop a high-density plasma-ultracentrifuge driven by j x B forces, in which the lighter (heavier) ion and atom components would be enriched in (off) the center of the discharge cylinder.

  18. Energetic O+ and H+ Ions in the Plasma Sheet: Implications for the Transport of Ionospheric Ions

    Science.gov (United States)

    Ohtani, S.; Nose, M.; Christon, S. P.; Lui, A. T.

    2011-01-01

    The present study statistically examines the characteristics of energetic ions in the plasma sheet using the Geotail/Energetic Particle and Ion Composition data. An emphasis is placed on the O+ ions, and the characteristics of the H+ ions are used as references. The following is a summary of the results. (1) The average O+ energy is lower during solar maximum and higher during solar minimum. A similar tendency is also found for the average H+ energy, but only for geomagnetically active times; (2) The O+ -to -H+ ratios of number and energy densities are several times higher during solar maximum than during solar minimum; (3) The average H+ and O+ energies and the O+ -to -H+ ratios of number and energy densities all increase with geomagnetic activity. The differences among different solar phases not only persist but also increase with increasing geomagnetic activity; (4) Whereas the average H+ energy increases toward Earth, the average O+ energy decreases toward Earth. The average energy increases toward dusk for both the H+ and O+ ions; (5) The O+ -to -H+ ratios of number and energy densities increase toward Earth during all solar phases, but most clearly during solar maximum. These results suggest that the solar illumination enhances the ionospheric outflow more effectively with increasing geomagnetic activity and that a significant portion of the O+ ions is transported directly from the ionosphere to the near ]Earth region rather than through the distant tail.

  19. Diffuse-type Gastric Mucinous and Signet Ring Cell Adenocarcinoma in a Captive California King Snake (Lampropeltis getula californiae).

    Science.gov (United States)

    Hsueh, C-S; Li, W-T; Jeng, C-R; Pang, V F; Chang, H-W

    2018-04-01

    An adult female California king snake (Lampropeltis getula californiae) housed in Taipei Zoo was presented with a 2-week history of anorexia, fatigue and abdominal swelling. Exploratory laparotomy revealed a gastric mass with two circular perforations and multiple mottled white to beige protuberances along the mucosal surface. Histologically, the gastric mass showed an invasive, transmural growth of epithelial cells arranged in nests, lobules, acini and sheets in the mucosa and submucosa that progressively transformed into signet ring cells in the muscularis externa and subserosa. All of the neoplastic cells expressed pan-cytokeratin immunohistochemically. Based on the World Health Organization histological criteria, a diagnosis of diffuse-type gastric mucinous and signet ring cell adenocarcinoma was made. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. The role of Ar plasma treatment in generating oxygen vacancies in indium tin oxide thin films prepared by the sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Deuk-Kyu [Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722 (Korea, Republic of); Misra, Mirnmoy; Lee, Ye-Eun [Department of BioNano Technology, Gachon University, 1342 Seong-nam dae-ro, Seong-nam si, Gyeonggi-do, 13120 (Korea, Republic of); Baek, Sung-Doo [Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722 (Korea, Republic of); Myoung, Jae-Min, E-mail: jmmyoung@yonsei.ac.kr [Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722 (Korea, Republic of); Lee, Tae Il, E-mail: t2.lee77@gachon.ac.kr [Department of BioNano Technology, Gachon University, 1342 Seong-nam dae-ro, Seong-nam si, Gyeonggi-do, 13120 (Korea, Republic of)

    2017-05-31

    Highlights: • Indium tin oxide thin film with about 41 nm thickness was obtained by the sol-gel process. • Thin film exhibited low resistivity. • Sheet resistance of thin film decreases with Ar plasma treatment time. • Ar plasma treatment on thin film does not alter the crystal structure and optical properties of the ITO thin-film. • There is no significant change in oxygen vacancies after 20 min of plasma treatment. - Abstract: Argon (Ar) plasma treatment was carried out to reduce the sheet resistance of indium tin oxide (ITO) thin films. The Ar plasma treatment did not cause any significant changes to the crystal structure, surface morphology, or optical properties of the ITO thin films. However, an X-ray photoelectron spectroscopy study confirmed that the concentration of oxygen vacancies in the film dramatically increased with the plasma treatment time. Thus, we concluded that the decrease in the sheet resistance was caused by the increase in the oxygen vacancy concentration in the film. Furthermore, to verify how the concentration of oxygen vacancies in the film increased with the Ar plasma treatment time, cumulative and continuous plasma treatments were conducted. The oxygen vacancies were found to be created by surface heating via the outward thermal diffusion of oxygen atoms from inside the film.

  1. Rings in drugs.

    Science.gov (United States)

    Taylor, Richard D; MacCoss, Malcolm; Lawson, Alastair D G

    2014-07-24

    We have analyzed the rings, ring systems, and frameworks in drugs listed in the FDA Orange Book to understand the frequency, timelines, molecular property space, and the application of these rings in different therapeutic areas and target classes. This analysis shows that there are only 351 ring systems and 1197 frameworks in drugs that came onto the market before 2013. Furthermore, on average six new ring systems enter drug space each year and approximately 28% of new drugs contain a new ring system. Moreover, it is very unusual for a drug to contain more than one new ring system and the majority of the most frequently used ring systems (83%) were first used in drugs developed prior to 1983. These observations give insight into the chemical novelty of drugs and potentially efficient ways to assess compound libraries and develop compounds from hit identification to lead optimization and beyond.

  2. Sub-keV ring current ions as the tracer of substorm injection

    Directory of Open Access Journals (Sweden)

    M. Yamauchi

    2006-03-01

    Full Text Available The dynamics of the energy-latitude dispersed sub-keV trapped ions inside the ring current region, the so-called wedge-like dispersions structure, were statistically studied using Viking satellite data. Probabilities with/without these signatures at various local times in the dayside are obtained in terms of different time-lags from the substorm activity monitored by the AE index. The structure appears in the early morning sector within a few hours after the substorm, and it slowly propagates eastward while decaying with a time scale of several hours. The result qualitatively confirmed the previous model that the wedge-like dispersions are originated from past substorm-related plasma injections into the nightside ring current region, and that the dispersion is formed when these injected plasma slowly moves eastward to the dayside by the drift motion (E×B (eastward, grad-<|B| (westward, and curvature (westward drifts. However, the appearance of the structure is twice or three times faster than the model prediction, and some structure reaches even to the evening sector. The results indicate that the start location of the drift is not as far as midnight and that the drift speed is slightly faster than the model prediction. The former means that the substorm-related increase of hot plasma in the ring current region shifts or extends to the early morning sector for large substorms, and the latter means that the substantial electric field driving the sub-keV ion drift is slightly different from the model field. We also detected the evacuating effect starting right after the substorm (or storm onset. The electric field imposed in the dayside magnetosphere seems to remove the remainder of trapped ions.

  3. Radial structure of curvature-driven instabilities in a hot-electron plasma

    International Nuclear Information System (INIS)

    Spong, D.A.; Berk, H.L.; Van Dam, J.W.

    1984-01-01

    A nonlocal analysis of curvature-driven instabilities for a hot-electron ring interacting with a warm background plasma has been made. Four different instability modes characteristic of hot-electron plasmas have been examined: the high-frequency hot-electron interchange (at frequencies larger than the ion-cyclotron frequency), the compressional Alfven instability, the interacting background pressure-driven interchange, and the conventional hot-electron interchange (at frequencies below the ion-cyclotron frequency). The decoupling condition between core and hot-electron plasmas has also been examined, and its influence on the background and hot-electron interchange stability boundaries has been studied. The assumed equilibrium plasma profiles and resulting radial mode structure differ somewhat from those used in previous local analytic estimates; however, when the analysis is calibrated to the appropriate effective radial wavelength of the nonlocal calculation, reasonable agreement is obtained. Comparison with recent experimental measurements indicates that certain of these modes may play a role in establishing operating boundaries for the ELMO Bumpy Torus-Scale (EBT-S) experiment. The calculations given here indicate the necessity of having core plasma outside the ring to prevent the destabilizing wave resonance of the precessional mode with a cold plasma

  4. Theory of magnetospheric hydromagnetic waves excited by energetic ring-current protons

    International Nuclear Information System (INIS)

    Chen, Liu; Hasegawa, Akira.

    1987-06-01

    A general theoretical formulation, allowing finite ion Larmor radii, general magnetic field geometries and plasma equilibria, has been developed to investigate excitations of magnetohydrodynamic (MHD) Alfven waves within the earth's magnetosphere by the storm-time energetic ring-current protons. In particular, it is found that for adiabatically injected protons, various predicted instability properties are consistent with satellite observations. 8 refs

  5. Characteristics of hot electron ring in a simple magnetic mirror field

    International Nuclear Information System (INIS)

    Hosokawa, M.; Ikegami, H.

    1980-12-01

    Characteristics of hot electron ring are studied in a simple magnetic mirror machine (mirror ratio 2 : 1) with a diameter of 30 cm at the midplane and with the distance of 80 cm between the mirrors. Maximum microwave input power is 5 kW at 6.4 GHz with the corresponding power density of approximately 0.3 W/cm 3 . With a background cold plasma of 4 x 10 11 cm -3 , hot electron rings are most effectively generated in two cases when the magnetic field on the axis of the midplane is set near the fundamental or the second harmonic electron cyclotron resonance to the applied microwave frequency. Density profile of the hot electrons is observed to take a so-called ring shape with a radius controllable by the magnetic field intensity and with an axial length of approximately 10 cm. The radial cut view of the ring, however, indicates an M shape density profile, and the density of the hot electrons on the axis is about one half of the density at the ring. Approximately 30 msec is needed before generating the hot electron ring at the density of 10 10 cm -3 with an average kinetic energy of 100 keV. The ultimate energy distribution function is observed to have a stepwise cut in the high energy tail and no energetic components above 1 MeV are detected. The hot electron ring is susceptible to a few instabilities which can be artificially triggered. One of the instabilities is observed to associate with a loss of lower energetic electrons and microwave bursts. At the instability, the ring shape is observed to transform into a filled cylinder in a few microseconds and disappear. (author)

  6. Non-thermal Power-Law Distributions in Solar and Space Plasmas

    Science.gov (United States)

    Oka, M.; Battaglia, M.; Birn, J.; Chaston, C. C.; Effenberger, F.; Eriksson, E.; Fletcher, L.; Hatch, S.; Imada, S.; Khotyaintsev, Y. V.; Kuhar, M.; Livadiotis, G.; Miyoshi, Y.; Retino, A.

    2017-12-01

    Particles are accelerated to very high, non-thermal energies in solar and space plasma environments. While energy spectra of accelerated particles often exhibit a power-law and are characterized by the power-law index δ, it remains unclear how particles are accelerated to high energies and how δ is determined. Here, we review previous observations of the power-law index δ in a variety of different plasma environments with a particular focus on sub-relativistic electrons. It appears that in regions more closely related to magnetic reconnection (such as the "above-the-looptop" solar hard X-ray source and the plasma sheet in Earth's magnetotail), the spectra are typically soft (δ> 4). This is in contrast to the typically hard spectra (δuniform in the plasma sheet, while power-law distributions still exist even in quiet times. The role of magnetotail reconnection in the electron power-law formation could therefore be confounded with these background conditions. Because different regions have been studied with different instrumentations and methodologies, we point out a need for more systematic and coordinated studies of power-law distributions for a better understanding of possible scaling laws in particle acceleration as well as their universality.

  7. Superfund fact sheet: The remedial program. Fact sheet

    International Nuclear Information System (INIS)

    1992-09-01

    The fact sheet describes what various actions the EPA can take to clean up hazardous wastes sites. Explanations of how the criteria for environmental and public health risk assessment are determined and the role of state and local governments in site remediation are given. The fact sheet is one in a series providing reference information about Superfund issues and is intended for readers with no formal scientific training

  8. A Seemingly Simple Task: Filling a Solenoid Volume in Vacuum with Dense Plasma

    International Nuclear Information System (INIS)

    Anders, Andre; Kauffeldt, Marina; Roy, Prabir; Oks, Efim

    2010-01-01

    Space-charge neutralization of a pulsed, high-current ion beam is required to compress and focus the beam on a target for warm dense matter physics or heavy ion fusion experiments. We described attempts to produce dense plasma in and near the final focusing solenoid through which the ion beam travels, thereby providing an opportunity for the beam to acquire the necessary charge-compensating electrons. Among the options are plasma injection from four pulsed vacuum arc sources located outside the solenoid, and using a high current (> 4 kA) pulsed vacuum arc plasma from a ring cathode near the edge of the solenoid. The plasma distribution is characterized by photographic means and by an array of movable Langmuir probes. The plasma is produced at several cathode spots distributed azimuthally on the ring cathode. Beam neutralization and compression are accomplished, though issues of density, uniformity, and pulse-to-pulse reproducibly remain to be solved.

  9. Development, diagnostic and applications of radio-frequency plasma reactor

    Science.gov (United States)

    Puac, N.

    2008-07-01

    In many areas of the industry, plasma processing of materials is a vital technology. Nonequilibrium plasmas proved to be able to produce chemically reactive species at a low gas temperature while maintaining highly uniform reaction rates over relatively large areas (Makabe and Petrovic 2006). At the same time nonequilibrium plasmas provide means for good and precise control of the properties of active particles that determine the surface modification. Plasma needle is one of the atmospheric pressure sources that can be used for treatment of the living matter which is highly sensitive when it comes to low pressure or high temperatures (above 40 C). Dependent on plasma conditions, several refined cell responses are induced in mammalian cells (Sladek et al. 2005). It appears that plasma treatment may find many biomedical applications. However, there are few data in the literature about plasma effects on plant cells and tissues. So far, only the effect of low pressure plasmas on seeds was investigated. It was shown that short duration pretreatments by non equilibrium low temperature air plasma were stimulative in light induced germination of Paulownia tomentosa seeds (Puac et al. 2005). As membranes of plants have different properties to those of animals and as they show a wide range of properties we have tried to survey some of the effects of typical plasma which is envisaged to be used in biotechnological applications on plant cells. In this paper we will make a comparison between two configurations of plasma needle that we have used in treatment of biological samples (Puac et al. 2006). Difference between these two configurations is in the additional copper ring that we have placed around glass tube at the tip of the needle. We will show some of the electrical characteristics of the plasma needle (with and without additional copper ring) and, also, plasma emission intensity obtained by using fast ICCD camera.

  10. Beta II plasma-gun mechanical design and construction

    International Nuclear Information System (INIS)

    Pedrotti, L.; Deis, G.; Wong, R.; Calderon, M.; Chargin, A.; Garner, D.

    1979-01-01

    The magnetized coaxial plasma gun (located on the east end of the Beta II facility at the Lawrence Livermore Laboratory) will be used to test a new method of initiating a field reversed mirror plasma. The field-reversed mirror is expected to improve the mirror-fusion reactor by enhancing the ratio of fusion power to injected power. This paper concentrates on the mechanical design and construction of the magnetized coaxial plasma gun and also discusses the diagnostic devices necessary to demonstrate the formation of field-reversed rings

  11. Reasons for nonadherence to the dapivirine vaginal ring: narrative explanations of objective drug-level results.

    Science.gov (United States)

    Montgomery, Elizabeth T; Stadler, Jonathan; Naidoo, Sarita; Katz, Ariana W K; Laborde, Nicole; Garcia, Morgan; Reddy, Krishnaveni; Mansoor, Leila E; Etima, Juliane; Zimba, Chifundo; Chitukuta, Miria; Soto-Torres, Lydia

    2018-07-17

    MTN-020/ASPIRE trial and IPM-027/Ring Study recently proved the dapivirine vaginal ring was safe and effective with consistent use. To optimize the ring's impact, the barriers and facilitators to ring adherence must be understood and addressed. Former ASPIRE participants were stratified by age group (18-21; 22-45) and randomly selected at seven sites in Malawi, South Africa, Uganda and Zimbabwe, 12-17 months after trial exit. Using in-depth interviews or focus group discussions, ring use barriers were explored using structured guides and visual tools including individual-level depictions of dapivirine levels detected in plasma and returned rings. A total of 187 were enrolled; 37% were 18-21 years when they began ASPIRE. Most (75%) had drug-level results, suggesting inconsistent ring use throughout ASPIRE. Participants viewed themselves as adherent, while simultaneously describing regular instances and reasons for ring removal (e.g. for sex or menses). Less adherent women reported fears that partners would oppose the ring or feel it during sex. High adherers expressed altruistic motivations for ring use. Women of all ages attributed young women's nonadherence to their tendency to be less 'serious' about the future, HIV prevention and the study; motivated predominantly by benefits; more fearful of fertility-related consequences; and to having less relationship control. When presented with objective adherence data, participants provided reasons for intermittent ring use, while simultaneously portraying themselves as consistent ring users. Further research is needed to understand how women could use the ring in a way that fits into the context of their relationships and their lives while still conferring adequate HIV prophylaxis.

  12. Self-(Un)rolling Biopolymer Microstructures: Rings, Tubules, and Helical Tubules from the Same Material.

    Science.gov (United States)

    Ye, Chunhong; Nikolov, Svetoslav V; Calabrese, Rossella; Dindar, Amir; Alexeev, Alexander; Kippelen, Bernard; Kaplan, David L; Tsukruk, Vladimir V

    2015-07-13

    We have demonstrated the facile formation of reversible and fast self-rolling biopolymer microstructures from sandwiched active-passive, silk-on-silk materials. Both experimental and modeling results confirmed that the shape of individual sheets effectively controls biaxial stresses within these sheets, which can self-roll into distinct 3D structures including microscopic rings, tubules, and helical tubules. This is a unique example of tailoring self-rolled 3D geometries through shape design without changing the inner morphology of active bimorph biomaterials. In contrast to traditional organic-soluble synthetic materials, we utilized a biocompatible and biodegradable biopolymer that underwent a facile aqueous layer-by-layer (LbL) assembly process for the fabrication of 2D films. The resulting films can undergo reversible pH-triggered rolling/unrolling, with a variety of 3D structures forming from biopolymer structures that have identical morphology and composition. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Plasma parameters, fluctuations and kinetics in a magnetic field line reconnection experiment

    International Nuclear Information System (INIS)

    Wild, N.C. Jr.

    1983-01-01

    The processes associated with reconnecting magnetic field lines have been studied in a large experimental laboratory plasma. Detailed time- and space-resolved probe measurements of the plasma density, temperature, potential and electric and magnetic fields are discussed. Plasma currents are seen to modify the vacuum magnetic field topology. A flat neutral sheet develops along the separatrix where magnetic flux is transferred from regions of private to common flux. Forced tearing and magnetic island formation are also observed. Rapid electron heating, density and temperature nonuniformities and plasma potential gradients are all observed. The pressure is found to peak at the two edges of the neutral sheet. The dissipation E.J is determined and analyzed in terms of particle heating and fluid acceleration. A consistent, detailed picture of the energy flow via Poynting's theorem is also described. Significant temporal fluctuations in the magnetic fields and electron velocity distribution are measured and seen to give rise to anomalously high values for the plasma resistivity, the ion viscosity and the cross-field thermal conductivity. Electron temperature fluctuations, double layers associated with partial current disruptions, and whistler wave magnetic turbulence have all been identified and studied during the course of the reconnection event

  14. Radiation protecting sheet

    International Nuclear Information System (INIS)

    Makiguchi, Hiroshi.

    1989-01-01

    As protection sheets used in radioactivity administration areas, a thermoplastic polyurethane composition sheet with a thickness of less 0.5 mm, solid content (ash) of less than 5% and a shore D hardness of less than 60 is used. A composite sheet with thickness of less than 0.5 mm laminated or coated with such a thermoplastic polyurethane composition as a surface layer and the thermoplastic polyurethane composition sheet applied with secondary fabrication are used. This can satisfy all of the required properties, such as draping property, abrasion resistance, high breaking strength, necking resistance, endurance strength, as well as chemical resistance and easy burnability in burning furnace. Further, by forming uneveness on the surface by means of embossing, etc. safety problems such as slippage during operation and walking can be overcome. (T.M.)

  15. First operation of a wiggler-focused, sheet beam free electron laser amplifier

    International Nuclear Information System (INIS)

    Destler, W.W.; Cheng, S.; Zhang, Z.X.; Antonsen, T.M. Jr.; Granatstein, V.L.; Levush, B.; Rodgers, J.

    1994-01-01

    A wiggler-focused, sheet beam free electron laser (FEL) amplifier utilizing a short-period wiggler magnet has been proposed as a millimeter-wave source for current profile modification and/or electron cyclotron resonance heating of tokamak plasmas. As proposed, such an amplifier would operate at a frequency of approximately 100--200 GHz with an output power of 1--10 MW CW. Electron beam energy would be in the range 500--1000 keV. To test important aspects of this concept, an initial sheet beam FEL amplifier experiment has been performed using a 1 mmx2 cm sheet beam produced by a pulse line accelerator with a pulse duration of 100 ns. The 500--570 keV, 4--18 A sheet beam is propagated through a 56 period uniform wiggler (λ w =9.6 mm) with a peak wiggler amplitude of 2--5 kG. Linear amplification of a 5--10 W, 94 GHz signal injected in the TE 01 rectangular mode is observed. All features of the amplified signal, including pulse shape and duration, are in accordance with the predictions of numerical simulation. Amplified signal gain has been measured as a function of injected beam energy, current, and wiggler field amplitude and is also in good agreement with simulation results. Continuation of this experiment will involve studying nonlinear amplifier operation and adding a section of tapered wiggler

  16. Molybdenum plasma spray powder, process for producing said powder, and coating made therefrom

    International Nuclear Information System (INIS)

    Lafferty, W.D.; Cheney, R.F.; Pierce, R.H.

    1979-01-01

    Plasma spray powders of molybdenum particles containing 0.5 to 15 weight percent oxygen and obtained by reacting molybdenum particles with oxygen or oxides in a plasma, form plasma spray coatings exhibiting hardness comparable to flame sprayed coatings formed from molybdenum wire and plasma coatings of molybdenum powders. Such oxygen rich molybdenum powders may be used to form wear resistant coatings, such as for piston rings. (author)

  17. First experimental result of toroidal confinement of non-neutral plasma on Proto-RT

    International Nuclear Information System (INIS)

    Himura, H.; Yoshida, Z.; Morikawa, J.

    1999-01-01

    Recently, an internal-ring device named Proto-RT (Prototype Ring Trap) was constructed at University of Tokyo, and experiments on the device have been just initiated. The goal of Proto-RT is to explore an innovative way which has a possibility to attain a plasma equilibrium with extremely high-β (β>1) in a toroidal geometry using non-neutral condition. At the first series of the experiments, pure electron plasma (n e ∼10 12 m -3 ) is successfully confined inside a separatrix. No disruption is so far observed. The confinement time of the electron plasma is the order of 1 sec. A shear effect of magnetic fields seems to result in longer confinement. The non-neutrality of Δn e ∼10 12 m -3 is already beyond the value required to produce an enough self-electric field E in plasma, causing a strong ExB flow thoroughly all over the plasma where the hydrodynamic pressure of the flow is predicted to balance with the thermal pressure of the plasma. (author)

  18. Low-temperature graphene synthesis using microwave plasma CVD

    International Nuclear Information System (INIS)

    Yamada, Takatoshi; Kim, Jaeho; Ishihara, Masatou; Hasegawa, Masataka

    2013-01-01

    The graphene chemical vapour deposition (CVD) technique at substrate temperatures around 300 °C by a microwave plasma sustained by surface waves (surface wave plasma chemical vapour deposition, SWP-CVD) is discussed. A low-temperature, large-area and high-deposition-rate CVD process for graphene films was developed. It was found from Raman spectra that the deposited films on copper (Cu) substrates consisted of high-quality graphene flakes. The fabricated graphene transparent conductive electrode showed uniform optical transmittance and sheet resistance, which suggests the possibility of graphene for practical electrical and optoelectronic applications. It is intriguing that graphene was successfully deposited on aluminium (Al) substrates, for which we did not expect the catalytic effect to decompose hydrocarbon and hydrogen molecules. We developed a roll-to-roll SWP-CVD system for continuous graphene film deposition towards industrial mass production. A pair of winder and unwinder systems of Cu film was installed in the plasma CVD apparatus. Uniform Raman spectra were confirmed over the whole width of 297 mm of Cu films. We successfully transferred the deposited graphene onto PET films, and confirmed a transmittance of about 95% and a sheet resistance of less than 7 × 10 5 Ω/sq.

  19. Low-temperature graphene synthesis using microwave plasma CVD

    Science.gov (United States)

    Yamada, Takatoshi; Kim, Jaeho; Ishihara, Masatou; Hasegawa, Masataka

    2013-02-01

    The graphene chemical vapour deposition (CVD) technique at substrate temperatures around 300 °C by a microwave plasma sustained by surface waves (surface wave plasma chemical vapour deposition, SWP-CVD) is discussed. A low-temperature, large-area and high-deposition-rate CVD process for graphene films was developed. It was found from Raman spectra that the deposited films on copper (Cu) substrates consisted of high-quality graphene flakes. The fabricated graphene transparent conductive electrode showed uniform optical transmittance and sheet resistance, which suggests the possibility of graphene for practical electrical and optoelectronic applications. It is intriguing that graphene was successfully deposited on aluminium (Al) substrates, for which we did not expect the catalytic effect to decompose hydrocarbon and hydrogen molecules. We developed a roll-to-roll SWP-CVD system for continuous graphene film deposition towards industrial mass production. A pair of winder and unwinder systems of Cu film was installed in the plasma CVD apparatus. Uniform Raman spectra were confirmed over the whole width of 297 mm of Cu films. We successfully transferred the deposited graphene onto PET films, and confirmed a transmittance of about 95% and a sheet resistance of less than 7 × 105 Ω/sq.

  20. Diagnostics of atmospheric pressure air plasmas

    International Nuclear Information System (INIS)

    Laux, C.O.; Kruger, C.H.; Zare, R.N.

    2001-01-01

    Atmospheric pressure air plasmas are often thought to be in Local Thermodynamics Equilibrium (LTE) owing to fast interspecies collisional exchanges at high pressure. As will be seen here, this assumption cannot be relied upon, particularly with respect to optical diagnostics. Large velocity gradients in flowing plasmas and/or elevated electron temperatures created by electrical discharges can result in large departures from chemical and thermal equilibrium. Diagnostic techniques based on optical emission spectroscopy (OES) and Cavity Ring-Down Spectroscopy (CRDS) have been developed and applied at Stanford University to the investigation of atmospheric pressure plasmas under conditions ranging from thermal and chemical equilibrium to thermochemical nonequilibrium. This article presents a review of selected temperature and species concentration measurement techniques useful for the study of air and nitrogen plasmas

  1. The solar wind plasma density control of night-time auroral particle precipitation

    Directory of Open Access Journals (Sweden)

    V. G. Vorobjev

    2004-03-01

    Full Text Available DMSP F6 and F7 spacecraft observations of the average electron and ion energy, and energy fluxes in different night-time precipitation regions for the whole of 1986 were used to examine the precipitation features associated with solar wind density changes. It was found that during magnetic quietness |AL|<100nT, the enhancement of average ion fluxes was observed at least two times, along with the solar wind plasma density increase from 2 to 24cm–3. More pronounced was the ion flux enhancement that occurred in the b2i–b4s and b4s–b5 regions, which are approximately corresponding to the statistical auroral oval and map to the magnetospheric plasma sheet tailward of the isotropy boundary. The average ion energy decrease of about 2–4kev was registered simultaneously with this ion flux enhancement. The results verify the occurrence of effective penetration of the solar wind plasma into the magnetospheric tail plasma sheet. Key words. Ionosphere (auroral ionosphere, particle precipitation – Magnetospheric physics (solar windmagnetosphere interaction

  2. Non-ambipolar radio-frequency plasma electron source and systems and methods for generating electron beams

    Science.gov (United States)

    Hershkowitz, Noah [Madison, WI; Longmier, Benjamin [Madison, WI; Baalrud, Scott [Madison, WI

    2009-03-03

    An electron generating device extracts electrons, through an electron sheath, from plasma produced using RF fields. The electron sheath is located near a grounded ring at one end of a negatively biased conducting surface, which is normally a cylinder. Extracted electrons pass through the grounded ring in the presence of a steady state axial magnetic field. Sufficiently large magnetic fields and/or RF power into the plasma allow for helicon plasma generation. The ion loss area is sufficiently large compared to the electron loss area to allow for total non-ambipolar extraction of all electrons leaving the plasma. Voids in the negatively-biased conducting surface allow the time-varying magnetic fields provided by the antenna to inductively couple to the plasma within the conducting surface. The conducting surface acts as a Faraday shield, which reduces any time-varying electric fields from entering the conductive surface, i.e. blocks capacitive coupling between the antenna and the plasma.

  3. White Ring; White ring

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, H.; Yuzawa, H. [Nikken Sekkei Ltd., Osaka (Japan)

    1998-01-05

    White Ring is a citizen`s gymnasium used for figure skating and short track speed skating games of 18th Winter Olympic Games in 1998. White Ring is composed of a main-arena and a sub-arena. For the main-arena with an area 41mtimes66m, an ice link can be made by disengaging the potable floor and by flowing brine in the bridged polystyrene pipes embedded in the concrete floor. Due to the fortunate groundwater in this site, well water is used for the outside air treatment energy in 63% during heating and in 35% during cooling. Ammonia is used as a cooling medium for refrigerating facility. For the heating of audience area in the large space, heat load from the outside is reduced by enhancing the heat insulation performance of the roof of arena. The audience seats are locally heated using heaters. For the White Ring, high quality environment is realized for games through various functions of the large-scale roof of the large space. Success of the big event was expected. 15 figs., 4 tabs.

  4. Token Ring Project

    Directory of Open Access Journals (Sweden)

    Adela Ionescu

    2007-01-01

    Full Text Available Ring topology is a simple configuration used to connect processes that communicate among themselves. A number of network standards such as token ring, token bus, and FDDI are based on the ring connectivity. This article will develop an implementation of a ring of processes that communicate among themselves via pipe links. The processes are nodes in the ring. Each process reads from its standard input and writes in its standard output. N-1 process redirects the its standard output to a standard input of the process through a pipe. When the ring-structure is designed, the project can be extended to simulate networks or to implement algorithms for mutual exclusion

  5. Automobile sheet metal part production with incremental sheet forming

    Directory of Open Access Journals (Sweden)

    İsmail DURGUN

    2016-02-01

    Full Text Available Nowadays, effect of global warming is increasing drastically so it leads to increased interest on energy efficiency and sustainable production methods. As a result of adverse conditions, national and international project platforms, OEMs (Original Equipment Manufacturers, SMEs (Small and Mid-size Manufacturers perform many studies or improve existing methodologies in scope of advanced manufacturing techniques. In this study, advanced manufacturing and sustainable production method "Incremental Sheet Metal Forming (ISF" was used for sheet metal forming process. A vehicle fender was manufactured with or without die by using different toolpath strategies and die sets. At the end of the study, Results have been investigated under the influence of method and parameters used.Keywords: Template incremental sheet metal, Metal forming

  6. Semi-algebraic function rings and reflectors of partially ordered rings

    CERN Document Server

    Schwartz, Niels

    1999-01-01

    The book lays algebraic foundations for real geometry through a systematic investigation of partially ordered rings of semi-algebraic functions. Real spectra serve as primary geometric objects, the maps between them are determined by rings of functions associated with the spectra. The many different possible choices for these rings of functions are studied via reflections of partially ordered rings. Readers should feel comfortable using basic algebraic and categorical concepts. As motivational background some familiarity with real geometry will be helpful. The book aims at researchers and graduate students with an interest in real algebra and geometry, ordered algebraic structures, topology and rings of continuous functions.

  7. Reasons for non-adherence to the dapivirine vaginal ring: results of the MTN-032/ AHA study.

    Science.gov (United States)

    Montgomery, Elizabeth T; Stadler, Jonathan; Naidoo, Sarita; Katz, Ariana; Laborde, Nicole; Garcia, Morgan; Reddy, Krishnaveni; Mansoor, Leila; Etima, Juliane; Zimba, Chifundo; Chitukuta, Miria; Soto-Torres, Lydia

    2018-05-11

    METHODS:: Former ASPIRE participants were stratified by age group (18-21; 22-45) and randomly selected at seven sites in Malawi, South Africa, Uganda and Zimbabwe, 12-17 months after trial exit. Using in-depth interviews or focus group discussions, ring use barriers were explored using structured guides and visual tools including individual-level depictions of dapivirine levels detected in plasma and returned rings. 187 were enrolled; 37% were 18-21 when they began ASPIRE. Most (75%) had drug-level results suggesting inconsistent ring use throughout ASPIRE. Participants viewed themselves as adherent, while simultaneously describing regular instances and reasons for ring removal (e.g. for sex or menses). Less adherent women reported fears that partners would oppose the ring or feel it during sex. High adherers expressed altruistic motivations for ring use. Women of all ages attributed young women's non-adherence to their tendency to be less "serious" about the future, HIV prevention and the study; motivated predominantly by benefits; more fearful of fertility-related consequences; and to having less relationship control. When presented with objective adherence data, participants provided reasons for intermittent ring use, while simultaneously portraying themselves as consistent ring users. Further research is needed to understand how women could use the ring in a way that fits into the context of their relationships and their lives while still conferring adequate HIV prophylaxis.

  8. Optical diagnostics of atmospheric pressure air plasmas

    International Nuclear Information System (INIS)

    Laux, C O; Spence, T G; Kruger, C H; Zare, R N

    2003-01-01

    Atmospheric pressure air plasmas are often thought to be in local thermodynamic equilibrium owing to fast interspecies collisional exchange at high pressure. This assumption cannot be relied upon, particularly with respect to optical diagnostics. Velocity gradients in flowing plasmas and/or elevated electron temperatures created by electrical discharges can result in large departures from chemical and thermal equilibrium. This paper reviews diagnostic techniques based on optical emission spectroscopy and cavity ring-down spectroscopy that we have found useful for making temperature and concentration measurements in atmospheric pressure plasmas under conditions ranging from thermal and chemical equilibrium to thermochemical nonequilibrium

  9. Theoretical models of non-Maxwellian equilibria for one-dimensional collisionless plasmas

    Science.gov (United States)

    Allanson, O.; Neukirch, T.; Wilson, F.; Troscheit, S.

    2016-12-01

    It is ideal to use exact equilibrium solutions of the steady state Vlasov-Maxwell system to intialise collsionless simulations. However, exact equilibrium distribution functions (DFs) for a given macroscopic configuration are typically unknown, and it is common to resort to using `flow-shifted' Maxwellian DFs in their stead. These DFs may be consistent with a macrosopic system with the target number density and current density, but could well have inaccurate higher order moments. We present recent theoretical work on the `inverse problem in Vlasov-Maxwell equilibria', namely calculating an exact solution of the Vlasov equation for a specific given magnetic field. In particular, we focus on one-dimensional geometries in Cartesian (current sheets) coordinates.1. From 1D fields to Vlasov equilibria: Theory and application of Hermite Polynomials: (O. Allanson, T. Neukirch, S. Troscheit and F. Wilson, Journal of Plasma Physics, 82, 905820306 (2016) [28 pages, Open Access] )2. An exact collisionless equilibrium for the Force-Free Harris Sheet with low plasma beta: (O. Allanson, T. Neukirch, F. Wilson and S. Troscheit, Physics of Plasmas, 22, 102116 (2015) [11 pages, Open Access])3. Neutral and non-neutral collisionless plasma equilibria for twisted flux tubes: The Gold-Hoyle model in a background field (O. Allanson, F. Wilson and T. Neukirch, (2016)) (accepted, Physics of Plasmas)

  10. ASYMMETRIC MAGNETIC RECONNECTION IN WEAKLY IONIZED CHROMOSPHERIC PLASMAS

    International Nuclear Information System (INIS)

    Murphy, Nicholas A.; Lukin, Vyacheslav S.

    2015-01-01

    Realistic models of magnetic reconnection in the solar chromosphere must take into account that the plasma is partially ionized and that plasma conditions within any two magnetic flux bundles undergoing reconnection may not be the same. Asymmetric reconnection in the chromosphere may occur when newly emerged flux interacts with pre-existing, overlying flux. We present 2.5D simulations of asymmetric reconnection in weakly ionized, reacting plasmas where the magnetic field strengths, ion and neutral densities, and temperatures are different in each upstream region. The plasma and neutral components are evolved separately to allow non-equilibrium ionization. As in previous simulations of chromospheric reconnection, the current sheet thins to the scale of the neutral–ion mean free path and the ion and neutral outflows are strongly coupled. However, the ion and neutral inflows are asymmetrically decoupled. In cases with magnetic asymmetry, a net flow of neutrals through the current sheet from the weak-field (high-density) upstream region into the strong-field upstream region results from a neutral pressure gradient. Consequently, neutrals dragged along with the outflow are more likely to originate from the weak-field region. The Hall effect leads to the development of a characteristic quadrupole magnetic field modified by asymmetry, but the X-point geometry expected during Hall reconnection does not occur. All simulations show the development of plasmoids after an initial laminar phase

  11. Rotating ring-ring electrode theory and experiment

    NARCIS (Netherlands)

    Kuiken, H.K.; Bakkers, E.P.A.M.; Ligthart, H.; Kellyb, J.J.

    2000-01-01

    A model is presented for the rotating ring-ring electrode. Although the electrode is defined by four characteristic lengths, it is shown that the collection efficiency depends on only two dimensionless parameters. A simple relationship between these and the corresponding parameters for the rotating

  12. Three-dimensional equilibria for the extended magnetotail and the generation of field-aligned current sheets

    International Nuclear Information System (INIS)

    Birn, J.

    1989-01-01

    Using the magnetotail equilibrium theory and a solution method outlined by Birn (1987), we have constructed self-consistent three-dimensional models for the quiet average magnetotail beyond about 20 R/sub E/ distance but earthward of a potential distant neutral line, which take into account the decrease of the tail flaring with distance. We find that this effect is coupled with the presence of magnetic shear and thus with field-aligned electric currents. These currents have the signature of region 1 currents, toward the Earth on the dawnside and away on the duskside, and contribute about 5 x 10 5 A to the total Birkeland current. They are strongly concentrated near the plasma sheet-lobe boundary and increase toward the flanks of the tail. Associated with the field-aligned currents and the corresponding magnetic field shear there is a bulging effect that tends to deform a circular cross section of the tail near the Earth into one that has bulges in the low-latitude boundary region. We argue that this effect may be the cause for increased interaction with the solar wind in these regions, producing interconnected fields and tailward flowing plasma on magnetospheric-like fields in the low-latitude boundary layer, and deforming this boundary region into the observed dog bone shape of the plasma sheet cross section. copyright American Geophysical Union 1989

  13. Hollow cylindrical plasma filament waveguide with discontinuous finite thickness cladding

    International Nuclear Information System (INIS)

    Alshershby, Mostafa; Hao Zuoqiang; Lin Jingquan

    2013-01-01

    We have explored here a hollow cylindrical laser plasma multifilament waveguide with discontinuous finite thickness cladding, in which the separation between individual filaments is in the range of several millimeters and the waveguide cladding thickness is in the order of the microwave penetration depth. Such parameters give a closer representation of a realistic laser filament waveguide sustained by a long stable propagation of femtosecond (fs) laser pulses. We report how the waveguide losses depend on structural parameters like normalized plasma filament spacing, filament to filament distance or pitch, normal spatial frequency, and radius of the plasma filament. We found that for typical plasma parameters, the proposed waveguide can support guided modes of microwaves in extremely high frequency even with a cladding consisting of only one ring of plasma filaments. The loss of the microwave radiation is mainly caused by tunneling through the discontinuous finite cladding, i.e., confinement loss, and is weakly dependent on the plasma absorption. In addition, the analysis indicates that the propagation loss is fairly large compared with the loss of a plasma waveguide with a continuous infinite thickness cladding, while they are comparable when using a cladding contains more than one ring. Compared to free space propagation, this waveguide still presents a superior microwave transmission to some distance in the order of the filamentation length; thus, the laser plasma filaments waveguide may be a potential channel for transporting pulsed-modulated microwaves if ensuring a long and stable propagation of fs laser pulses.

  14. Enhanced photoluminescence from ring resonators in hydrogenated amorphous silicon thin films at telecommunications wavelengths.

    Science.gov (United States)

    Patton, Ryan J; Wood, Michael G; Reano, Ronald M

    2017-11-01

    We report enhanced photoluminescence in the telecommunications wavelength range in ring resonators patterned in hydrogenated amorphous silicon thin films deposited via low-temperature plasma enhanced chemical vapor deposition. The thin films exhibit broadband photoluminescence that is enhanced by up to 5 dB by the resonant modes of the ring resonators due to the Purcell effect. Ellipsometry measurements of the thin films show a refractive index comparable to crystalline silicon and an extinction coefficient on the order of 0.001 from 1300 nm to 1600 nm wavelengths. The results are promising for chip-scale integrated optical light sources.

  15. On current fluctuations in near-earth space plasma with lower-hybrid-drift turbulence

    International Nuclear Information System (INIS)

    Meister, C.V.

    1993-01-01

    Electron and ion current fluctuations caused by lower-hybrid-drift turbulence are estimated within nonlinear theory for the plasma of the ionospheric F-layer, as well as for the plasma mantle and the plasma sheet boundary layer of the tail of the earth's magnetosphere. They are found to be of the order of 10 -14 - 10 -11 A/m 2 and 10 -13 - 10 -9 A/m 2 , respectively. (orig.)

  16. Destruction of α-synuclein based amyloid fibrils by a low temperature plasma jet

    Science.gov (United States)

    Karakas, Erdinc; Munyanyi, Agatha; Greene, Lesley; Laroussi, Mounir

    2010-10-01

    Amyloid fibrils are ordered beta-sheet aggregates that are associated with a number of neurodegenerative diseases such as Alzheimer and Parkinson. At present, there is no cure for these progressive and debilitating diseases. Here we report initial studies that indicate that low temperature atmospheric pressure plasma can break amyloid fibrils into smaller units in vitro. The plasma was generated by the "plasma pencil," a device capable of emitting a long, low temperature plasma plume/jet. This avenue of research may facilitate the development of a plasma-based medical treatment.

  17. Destruction of α-synuclein based amyloid fibrils by a low temperature plasma jet

    International Nuclear Information System (INIS)

    Karakas, Erdinc; Laroussi, Mounir; Munyanyi, Agatha; Greene, Lesley

    2010-01-01

    Amyloid fibrils are ordered beta-sheet aggregates that are associated with a number of neurodegenerative diseases such as Alzheimer and Parkinson. At present, there is no cure for these progressive and debilitating diseases. Here we report initial studies that indicate that low temperature atmospheric pressure plasma can break amyloid fibrils into smaller units in vitro. The plasma was generated by the 'plasma pencil', a device capable of emitting a long, low temperature plasma plume/jet. This avenue of research may facilitate the development of a plasma-based medical treatment.

  18. Simulating Sources of Superstorm Plasmas

    Science.gov (United States)

    Fok, Mei-Ching

    2008-01-01

    We evaluated the contributions to magnetospheric pressure (ring current) of the solar wind, polar wind, auroral wind, and plasmaspheric wind, with the surprising result that the main phase pressure is dominated by plasmaspheric protons. We used global simulation fields from the LFM single fluid ideal MHD model. We embedded the Comprehensive Ring Current Model within it, driven by the LFM transpolar potential, and supplied with plasmas at its boundary including solar wind protons, polar wind protons, auroral wind O+, and plasmaspheric protons. We included auroral outflows and acceleration driven by the LFM ionospheric boundary condition, including parallel ion acceleration driven by upward currents. Our plasmasphere model runs within the CRCM and is driven by it. Ionospheric sources were treated using our Global Ion Kinetics code based on full equations of motion. This treatment neglects inertial loading and pressure exerted by the ionospheric plasmas, and will be superceded by multifluid simulations that include those effects. However, these simulations provide new insights into the respective role of ionospheric sources in storm-time magnetospheric dynamics.

  19. Synthesis by plasma of halogenated poly anilines

    International Nuclear Information System (INIS)

    Enriquez, M.A.; Olayo, M.G.; Cruz, G.J.

    2002-01-01

    In this work polymerization by plasma of aniline with iodine and chlorine bonded chemically to the aniline ring were realized. The results of the synthesis and characterizations are compared with those ones obtained starting from the poly aniline synthesis (P An) doped with iodine, where the dopant was aggregated in the moment of the polymerization. The objective is to study the dopant behavior in the synthesis by plasma in function of the properties of these polymers. (Author)

  20. Topological ring currents in the "empty" ring of benzo-annelated perylenes.

    Science.gov (United States)

    Dickens, Timothy K; Mallion, Roger B

    2011-01-27

    Cyclic conjugation in benzo-annelated perylenes is examined by means of the topological π-electron ring currents calculated for each of their constituent rings, in a study that is an exact analogy of a recent investigation by Gutman et al. based on energy-effect values for the corresponding rings in each of these structures. "Classical" approaches, such as Kekulé structures, Clar "sextet" formulas, and circuits of conjugation, predict that the central ring in perylene is "empty" and thus contributes negligibly to cyclic conjugation. However, conclusions from the present calculations of topological ring currents agree remarkably with those arising from the earlier study involving energy-effect values in that, contrary to what would be predicted from the classical approaches, rings annelated in an angular fashion relative to the central ring of these perylene structures materially increase the extent of that ring's involvement in cyclic conjugation. It is suggested that such close quantitative agreement between the predictions of these two superficially very different indices (energy effect and topological ring current) might be due to the fact that, ultimately, both depend, albeit in ostensibly quite different ways, only on an adjacency matrix that contains information about the carbon-carbon connectivity of the conjugated system in question.

  1. Geometry of thin liquid sheet flows

    Science.gov (United States)

    Chubb, Donald L.; Calfo, Frederick D.; Mcconley, Marc W.; Mcmaster, Matthew S.; Afjeh, Abdollah A.

    1994-01-01

    Incompresible, thin sheet flows have been of research interest for many years. Those studies were mainly concerned with the stability of the flow in a surrounding gas. Squire was the first to carry out a linear, invicid stability analysis of sheet flow in air and compare the results with experiment. Dombrowski and Fraser did an experimental study of the disintegration of sheet flows using several viscous liquids. They also detected the formulation of holes in their sheet flows. Hagerty and Shea carried out an inviscid stability analysis and calculated growth rates with experimental values. They compared their calculated growth rates with experimental values. Taylor studied extensively the stability of thin liquid sheets both theoretically and experimentally. He showed that thin sheets in a vacuum are stable. Brown experimentally investigated thin liquid sheet flows as a method of application of thin films. Clark and Dumbrowski carried out second-order stability analysis for invicid sheet flows. Lin introduced viscosity into the linear stability analysis of thin sheet flows in a vacuum. Mansour and Chigier conducted an experimental study of the breakup of a sheet flow surrounded by high-speed air. Lin et al. did a linear stability analysis that included viscosity and a surrounding gas. Rangel and Sirignano carried out both a linear and nonlinear invisid stability analysis that applies for any density ratio between the sheet liquid and the surrounding gas. Now there is renewed interest in sheet flows because of their possible application as low mass radiating surfaces. The objective of this study is to investigate the fluid dynamics of sheet flows that are of interest for a space radiator system. Analytical expressions that govern the sheet geometry are compared with experimental results. Since a space radiator will operate in a vacuum, the analysis does not include any drag force on the sheet flow.

  2. Plasmasphere and ring current electric fields observed by GEOS 2

    International Nuclear Information System (INIS)

    Schmidt, R.; Pedersen, A.

    1988-01-01

    The electric field double probe data from GEOS 2 have been statistically examined to study the consecutive passage of the afternoon plasmaspheric bulge and the trough at the geostationary orbit. It was found that the average location of the bulge depends on the magnetic activity and was encountered at earlier local times for higher magnetospheric activity. Within the bulge the electric field showed very frequently a typical directional change from dawnward outside to duskward inside the bulge. The magnitude of the magnetic field was frequently much smaller near the outbound crossing of the plasmaspheric bulge than is expected from a long-term average. The E x B/B-squared drift pointed azimuthally eastward prior to the encounter of the bulge and rotated into the sunward direction within the bulge. Following its passage through the dense, cold plasma in the bulge, GEOS 2 encountered a hot and tenuous plasma sheet-type plasma in the trough that occasionally corrupted the electric field measurements. Generally, the electric field in the trough is much smaller than in the bulge. A possible cause of the sunward plasma flow within the bulge is discussed on the basis of these data. 13 references

  3. Development of plasma targets for interaction experiments at Tokyo Institute of Technology

    International Nuclear Information System (INIS)

    Hosokai, T.; Miyamoto, S.; Ogawa, M.

    1996-01-01

    A plasma target of z-pinch discharge is developed to obtain a hydrogen plasma of density approaching 10 18 cm -3 . The target plasma has a duration of about 1 μs for an initial gas pressure of 80 Pa. Prior to the gas flow type of target, the z-pinch process of a gas-filled discharge tube was studied by comparison with a computer simulation. The behavior of the z pinch is understood in terms of the dynamics of a shock wave and a current boundary sheet. A laser-induced plasma is also examined as an alternative plasma target free from the plasma lens effect. (orig.)

  4. Theory of relativistic radiation reflection from plasmas

    Science.gov (United States)

    Gonoskov, Arkady

    2018-01-01

    We consider the reflection of relativistically strong radiation from plasma and identify the physical origin of the electrons' tendency to form a thin sheet, which maintains its localisation throughout its motion. Thereby, we justify the principle of relativistic electronic spring (RES) proposed in [Gonoskov et al., Phys. Rev. E 84, 046403 (2011)]. Using the RES principle, we derive a closed set of differential equations that describe the reflection of radiation with arbitrary variation of polarization and intensity from plasma with an arbitrary density profile for an arbitrary angle of incidence. We confirm with ab initio PIC simulations that the developed theory accurately describes laser-plasma interactions in the regime where the reflection of relativistically strong radiation is accompanied by significant, repeated relocation of plasma electrons. In particular, the theory can be applied for the studies of plasma heating and coherent and incoherent emissions in the RES regime of high-intensity laser-plasma interaction.

  5. The hot plasma environment at jupiter: ulysses results.

    Science.gov (United States)

    Lanzerotti, L J; Armstrong, T P; Gold, R E; Anderson, K A; Krimigis, S M; Lin, R P; Pick, M; Roelof, E C; Sarris, E T; Simnett, G M; Maclennan, C G; Choo, H T; Tappin, S J

    1992-09-11

    Measurements of the hot plasma environment during the Ulysses flyby of Jupiter have revealed several new discoveries related to this large rotating astrophysical system. The Jovian magnetosphere was found by Ulysses to be very extended, with the day-side magnetopause located at approximately 105 Jupiter radii. The heavy ion (sulfur, oxygen, and sodium) population in the day-side magnetosphere increased sharply at approximately 86 Jupiter radii. This is somewhat more extended than the "inner" magnetosphere boundary region identified by the Voyager hot plasma measurements. In the day-side magnetosphere, the ion fluxes have the anisotropy direction expected for corotation with the planet, with the magnitude of the anisotropy increasing when the spacecraft becomes more immersed in the hot plasma sheet. The relative abundances of sulfur, oxygen, and sodium to helium decreased somewhat with decreasing radial distance from the planet on the day-side, which suggests that the abundances of the Jupiter-derived species are dependent on latitude. In the dusk-side, high-latitude region, intense fluxes of counter-streaming ions and electrons were discovered from the edge of the plasma sheet to the dusk-side magnetopause. These beams of electrons and ions were found to be very tightly aligned with the magnetic field and to be superimposed on a time- and space-variable isotropic hot plasma background. The currents carried by the measured hot plasma particles are typically approximately 1.6 x 10(-4) microamperes per square meter or approximately 8 x 10(5) amperes per squared Jupiter radius throughout the high-latitude magnetosphere volume. It is likely that the intense particle beams discovered at high Jovian latitudes produce auroras in the polar caps of the planet.

  6. Kayser-Fleischer Rings

    Science.gov (United States)

    ... Support Contacts Lab Tracker/Copper Calculator Stories Programs & Research ... About Everything you need to know about Wilson Disease Kayser-Fleischer Rings Definition Kayser-Fleischer Ring: Clinical sign. Brownish-yellow ring visible around the corneo- ...

  7. Planetary Rings

    Science.gov (United States)

    Nicholson, P. D.

    2001-11-01

    A revolution in the studies in planetary rings studies occurred in the period 1977--1981, with the serendipitous discovery of the narrow, dark rings of Uranus, the first Voyager images of the tenuous jovian ring system, and the many spectacular images returned during the twin Voyager flybys of Saturn. In subsequent years, ground-based stellar occultations, HST observations, and the Voyager flybys of Uranus (1986) and Neptune (1989), as well as a handful of Galileo images, provided much additional information. Along with the completely unsuspected wealth of detail these observations revealed came an unwelcome problem: are the rings ancient or are we privileged to live at a special time in history? The answer to this still-vexing question may lie in the complex gravitational interactions recent studies have revealed between the rings and their retinues of attendant satellites. Among the four known ring systems, we see elegant examples of Lindblad and corotation resonances (first invoked in the context of galactic disks), electromagnetic resonances, spiral density waves and bending waves, narrow ringlets which exhibit internal modes due to collective instabilities, sharp-edged gaps maintained via tidal torques from embedded moonlets, and tenuous dust belts created by meteoroid impact onto parent bodies. Perhaps most puzzling is Saturn's multi-stranded, clumpy F ring, which continues to defy a simple explanation 20 years after it was first glimpsed in grainy images taken by Pioneer 11. Voyager and HST images reveal a complex, probably chaotic, dynamical interaction between unseen parent bodies within this ring and its two shepherd satellites, Pandora and Prometheus. The work described here reflects contributions by Joe Burns, Jeff Cuzzi, Luke Dones, Dick French, Peter Goldreich, Colleen McGhee, Carolyn Porco, Mark Showalter, and Bruno Sicardy, as well as those of the author. This research has been supported by NASA's Planetary Geology and Geophysics program and the

  8. FORMATION AND RECONNECTION OF THREE-DIMENSIONAL CURRENT SHEETS IN THE SOLAR CORONA

    International Nuclear Information System (INIS)

    Edmondson, J. K.; Antiochos, S. K.; DeVore, C. R.; Zurbuchen, T. H.

    2010-01-01

    Current-sheet formation and magnetic reconnection are believed to be the basic physical processes responsible for much of the activity observed in astrophysical plasmas, such as the Sun's corona. We investigate these processes for a magnetic configuration consisting of a uniform background field and an embedded line dipole, a topology that is expected to be ubiquitous in the corona. This magnetic system is driven by a uniform horizontal flow applied at the line-tied photosphere. Although both the initial field and the driver are translationally symmetric, the resulting evolution is calculated using a fully three-dimensional (3D) magnetohydrodynamic simulation with adaptive mesh refinement that resolves the current sheet and reconnection dynamics in detail. The advantage of our approach is that it allows us to directly apply the vast body of knowledge gained from the many studies of two-dimensional (2D) reconnection to the fully 3D case. We find that a current sheet forms in close analogy to the classic Syrovatskii 2D mechanism, but the resulting evolution is different than expected. The current sheet is globally stable, showing no evidence for a disruption or a secondary instability even for aspect ratios as high as 80:1. The global evolution generally follows the standard Sweet-Parker 2D reconnection model except for an accelerated reconnection rate at a very thin current sheet, due to the tearing instability and the formation of magnetic islands. An interesting conclusion is that despite the formation of fully 3D structures at small scales, the system remains close to 2D at global scales. We discuss the implications of our results for observations of the solar corona.

  9. Melatonin attenuates thiocyanate-induced vasoconstriction in aortic rings

    Directory of Open Access Journals (Sweden)

    Alexander M. Prusa

    2017-11-01

    Full Text Available Cigarette smoking not only has a carcinogenic effect but also leads to an increase in arterial blood pressure. Besides its main components, i.e. nicotine, tar, and carbon monoxide, cigarette smoke also contains thiocyanate. Thiocyanate anions (SCN− arise from the detoxification of hydrogen cyanide and its plasma concentrations were found to correlate significantly with cigarette consumption. There is also evidence that atherosclerotic disease progression is much more rapid when serum SCN− levels are increased. Melatonin, a non-toxic indolamine with various physiologic functions, is believed to protect against inflammatory processes and oxidative stress. It has been demonstrated that melatonin serves as free radical scavenger and represents a potent antioxidant. Therefore, it is believed that melatonin with its atheroprotective effects may be useful either as a sole therapy or in conjunction with others. The aim of this study was to quantify the thiocyanate-induced vasomotor response in aortic tissue and further to examine the potential of melatonin in affecting the generated vasoreactivity. Aortic rings of adult male normotensive Wistar rats were cut into 4-mm rings. Following the administration of thiocyanate in various concentrations, vasomotor response of aortic vessel segments was measured. To assess the effect of melatonin on vasomotor activity, organ bath concentrations were modulated from 60 to 360 pM, which corresponds to physiologic plasma up to the levels of patients with regular oral intake of 3 mg of melatonin as a supplement. Thirty-six rat aortic rings were studied. When exposed to thiocyanate, vessel segments revealed vasoconstriction in a concentration-dependent manner. In rings which were preincubated with melatonin at a concentration of 360 pM, a 56.5% reduction of effect size could be achieved (4.09 ± 1.22 mN versus 9.41 ± 1.74 mN, P < 0.0001. Additionally, administration of 360 pM melatonin at a

  10. Study of Anti-Hydrogen and Plasma Physics 4.Observation of Antiproton Beams and Nonneutral Plasmas

    CERN Document Server

    Hori, Masaki; Fujiwara, Makoto; Kuroda, Naofumi

    2004-01-01

    Diagnostics of antiproton beams and nonneutral plasmas are described in this chapter. Parallel plate secondary electron emission detectors are used to non-destructively observe the beam position and intensity without loss. Plastic scintillation tracking detectors are useful in determining the position of annihilations of antiprotons in the trap. Three-dimensional imaging of antiprotons in a Penning trap is discussed. The unique capability of antimatter particle imaging has allowed the observation of the spatial distribution of particle loss in a trap. Radial loss is localized to small spots, strongly breaking the azimuthal symmetry expected for an ideal trap. By observing electrostatic eigen-modes of nonneutral plasmas trapped in the Multi-ring electrode trap, the non-destructive measurement of plasma parameters is performed.

  11. Reply in response to comment by E. W. Hones. [concerning the paper, on hot tenuous plasmas, fireballs, and boundary layers in the earth's magnetotail by Frank, et al.

    Science.gov (United States)

    Frank, L. A.; Decoster, R. J.; Ackerson, K. L.

    1977-01-01

    Hones 1977 points out the marked disagreement between the plasma flow measurements reported by Frank et al. 1976 and those obtained with the LASL plasma analyzer. He suggests (1) that solar ultraviolet background rates may have been incorrectly accounted for in the computation of proton bulk flows in the magnetotail as reported by Frank et al. 1976 and (2) that bulk flows with substantial speeds, i.e., those speeds greater than 50 km per sec, are seldom encountered in the plasma sheet at geocentric radial distances approx. equal to 35 R sub E. It is demonstrated that such ultraviolet responses were carefully considered by Frank et al. 1976 and thus the conclusion is maintained that bulk flows greater than 50 km per sec frequently occur in the plasma sheet at these radial distances. Further, a direct comparison of the capabilities of the LASL plasma analyzer employed by Hones and of the LEPEDEA Frank et al., 1976 indicates that there are rather severe restrictions on which plasmas in the plasma sheet can be properly measured to gain proton temperatures, number densities and flow velocities with the LASL plasma analyzer.

  12. Best Management Practice, Fact Sheet 2. Sheet Flow to Open Space

    OpenAIRE

    Sample, David; Doumar, Lia

    2013-01-01

    This publication explains what sheet flow to open space is, where and how it is used, their limitations, routine and nonroutine maintenance, expected costs, and a glossary of terms. This fact sheet is one of a 15-part series on urban stormwater management practices.

  13. A MODEL FOR THE ELECTRICALLY CHARGED CURRENT SHEET OF A PULSAR

    Energy Technology Data Exchange (ETDEWEB)

    DeVore, C. R.; Antiochos, S. K.; Black, C. E. [Heliophysics Science Division, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Harding, A. K.; Kalapotharakos, C.; Kazanas, D.; Timokhin, A. N., E-mail: c.richard.devore@nasa.gov [Astrophysics Science Division, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States)

    2015-03-10

    Global-scale solutions for the magnetosphere of a pulsar consist of a region of low-lying, closed magnetic field near the star, bounded by opposite-polarity regions of open magnetic field along which the pulsar wind flows into space. Separating these open-field regions is a magnetic discontinuity—an electric current sheet—consisting of generally nonneutral plasma. We have developed a self-consistent model for the internal equilibrium structure of the sheet by generalizing the charge-neutral Vlasov/Maxwell equilibria of Harris and Hoh to allow for net electric charge. The resulting equations for the electromagnetic field are solved analytically and numerically. Our results show that the internal thermal pressure needed to establish equilibrium force balance, and the associated effective current-sheet thickness and magnetization, can differ by orders of magnitude from the Harris/Hoh charge-neutral limit. The new model provides a starting point for kinetic or fluid investigations of instabilities that can cause magnetic reconnection and flaring in pulsar magnetospheres.

  14. Nano-structuring of PTFE surface by plasma treatment, etching, and sputtering with gold

    International Nuclear Information System (INIS)

    Reznickova, Alena; Kolska, Zdenka; Hnatowicz, Vladimir; Svorcik, Vaclav

    2011-01-01

    Properties of pristine, plasma modified, and etched (by water and methanol) polytetrafluoroethylene (PTFE) were studied. Gold nanolayers sputtered on this modified PTFE have been also investigated. Contact angle, measured by goniometry, was studied as a function of plasma exposure and post-exposure aging times. Degradation of polymer chains was examined by etching of plasma modified PTFE in water or methanol. The amount of ablated and etched layer was measured by gravimetry. In the next step the pristine, plasma modified, and etched PTFE was sputtered with gold. Changes in surface morphology were observed using atomic force microscopy. Chemical structure of modified polymers was characterized by X-ray photoelectron spectroscopy (XPS). Surface chemistry of the samples was investigated by electrokinetic analysis. Sheet resistance of the gold layers was measured by two-point technique. The contact angle of the plasma modified PTFE decreases with increasing exposure time. The PTFE amount, ablated by the plasma treatment, increases with the plasma exposure time. XPS measurements proved that during the plasma treatment the PTFE macromolecular chains are degraded and oxidized and new –C–O–C–, –C=O, and –O–C=O groups are created in modified surface layer. Surface of the plasma modified PTFE is weakly soluble in methanol and intensively soluble in water. Zeta potential and XPS shown dramatic changes in PTFE surface chemistry after the plasma exposure, water etching, and gold deposition. When continuous gold layer is formed a rapid decrease of the sheet resistance of the gold layer is observed.

  15. Solar wind parameters responsible for the plasma injection into the magnetospheric ring current region

    International Nuclear Information System (INIS)

    Bobrov, M.S.

    1977-01-01

    Solar wind effect on the magnetospheric ring-current region has been considered. The correlations with solar wind parameters of the magnitude qsub(o) propor