WorldWideScience

Sample records for plasma sheath generated

  1. Communication through Plasma Sheaths

    CERN Document Server

    Korotkevich, A O; Zakharov, V E

    2007-01-01

    We wish to transmit messages to and from a hypersonic vehicle around which a plasma sheath has formed. For long distance transmission, the signal carrying these messages must be necessarily low frequency, typically 2 GHz, to which the plasma sheath is opaque. The idea is to use the plasma properties to make the plasma sheath appear transparent.

  2. Magnetic field generation in a jet-sheath plasma via the kinetic Kelvin-Helmholtz instability

    Directory of Open Access Journals (Sweden)

    K.-I. Nishikawa

    2013-09-01

    Full Text Available We have investigated the generation of magnetic fields associated with velocity shear between an unmagnetized relativistic jet and an unmagnetized sheath plasma. We have examined the strong magnetic fields generated by kinetic shear (Kelvin–Helmholtz instabilities. Compared to the previous studies using counter-streaming performed by Alves et al. (2012, the structure of the kinetic Kelvin–Helmholtz instability (KKHI of our jet-sheath configuration is slightly different, even for the global evolution of the strong transverse magnetic field. In our simulations the major components of growing modes are the electric field Ez, perpendicular to the flow boundary, and the magnetic field By, transverse to the flow direction. After the By component is excited, an induced electric field Ex, parallel to the flow direction, becomes significant. However, other field components remain small. We find that the structure and growth rate of KKHI with mass ratios mi/me = 1836 and mi/me = 20 are similar. In our simulations saturation in the nonlinear stage is not as clear as in counter-streaming cases. The growth rate for a mildly-relativistic jet case (γj = 1.5 is larger than for a relativistic jet case (γj = 15.

  3. Dusty Sheaths in Magnetized Plasmas

    Institute of Scientific and Technical Information of China (English)

    Yu. I. Chutov; O. Yu. Kravchenko; S. Masuzaki; A. Sagara; R. D. Smirnov; Yu. Tomita

    2004-01-01

    Parameters of self-consistent magnetized dusty sheaths are investigated using computer simulations of a temporal evolution of one-dimensional slab plasma with dust particles. The evolution is caused by a collection of electrons and ions by both a wall (electrode) and dust particles, which are initially immersed into plasma and distributed in front of the electrode. Obtained results show the existence of oscillations of a self-consistent potential in magnetized dusty sheaths including boundary potentials. Dust particles weaken magnetized sheaths and create additional sheaths close to a boundary of dust particles. The magnetic field does not influence on the dust particle charge.

  4. Revisiting the plasma sheath - dust in plasma sheath

    CERN Document Server

    Das, G C; Bora, M P

    2015-01-01

    In this work, we have considered the formation of warm plasma sheath in the vicinity of a wall in a plasma with considerable presence of dust particles. As an example, we have used the parameters relevant in case of lunar plasma sheath, though the results obtained in this work could be applied to any other physical situation such as laboratory plasma. In the ion-acoustic time scale, we neglect the dust dynamics. The dust particles affect the sheath dynamics by affecting the Poisson equation which determines the plasma potential in the sheath region. We have assumed the current to a dust particle to be balanced throughout the analysis. This makes the grain potential dependent on plasma potential, which is then incorporated into the Poisson equation. The resultant numerical model becomes an initial value problem, which is described by a 1-D integro-differential equation, which is then solved self-consistently by incorporating the change in plasma potential caused by inclusion of the dust potential in the Poisso...

  5. Sheath Structures of Strongly Electronegative Plasmas

    Institute of Scientific and Technical Information of China (English)

    段萍; 王正汹; 王文春; 刘金远; 刘悦; 王晓钢

    2005-01-01

    The sheath structures of strongly electronegative plasmas are investigated on basis of the accurate Bohm criterion obtained by Sagdeev potential. It is found that the presheath transition between the bulk plasma and the sheath almost does not exist there, and that distributions of electrons, negative and positive ions in the sheath form a pure positive ion sheath near the boundary of the electrode. Furthermore, the density distribution of space net charge has a peak near the sheath edge, the spatial potential within the sheath falls faster, and the sheath thickness becomes thinner.

  6. Theory of sheath in a collisional multi-component plasma

    Indian Academy of Sciences (India)

    M K Mahanta; K S Goswami

    2001-04-01

    The aim of this brief report is to study the behaviour of sheath structure in a multicomponent plasma with dust-neutral collisions. The plasma consists of electrons, ions, micron size negatively charged dust particles and neutrals. The sheath-edge potential and sheath width are calculated for collisionally dominated sheath. Comparison of collisionless and collisionally dominated sheath are made.

  7. Sheath Characteristic in ECR Plasma Nitriding

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The sheath plasma characteristics changing with the negative bias applied to the substrate during electron cyclotron resonance plasma nitriding are studied. The sheath characteristics obtained by a Langmuir single probe and an ion energy analyzer show that when the negative bias applied to the substrate is increasing, the most probable energy of ions in the sheath and the full width of half maximum of ions energy distribution increase, the thickness of the sheath also increases, whereas the saturation current of ion decreases. It has been found from the optical emission spectrum that there are strong lines of N2 and N2+. Based on our experiment results the mechanism of plasma nitriding is discussed.

  8. Sheath Structure of an Electronegative Plasma

    Institute of Scientific and Technical Information of China (English)

    王正汹; 刘金远; 邹秀; 刘悦; 王晓钢

    2003-01-01

    We investigate the sheath structure of an electronegative plasma at steady state with the assumptions of cold positive ions and hot negative ions. The modified Bohm criterion is obtained with the Sagdeev potential by introducing a modified ion sound velocity. At the same time the electric potential, net space charge and particles densities in the sheath are analysed in several cases of different temperature ratios of electrons to negative ions and different density ratios of negative ions to positive ions.

  9. Wave rectification in plasma sheaths surrounding electric field antennas

    Science.gov (United States)

    Boehm, M. H.; Carlson, C. W.; Mcfadden, J. P.; Clemmons, J. H.; Ergun, R. E.; Mozer, F. S.

    1994-01-01

    Combined measurements of Langmuir or broadband whistler wave intensity and lower-frequency electric field waveforms, all at 10-microsecond time resolution, were made on several recent sounding rockets in the auroral ionosphere. It is found that Langmuir and whistler waves are partically rectified in the plasma sheaths surrounding the payload and the spheres used as antennas. This sheath rectification occurs whenever the high frequency (HF) potential across the sheath becomes of the same order as the electron temperature or higher, for wave frequencies near or above the ion plasma frequency. This rectification can introduce false low-frequency waves into measurements of electric field spectra when strong high-frequency waves are present. Second harmonic signals are also generated, although at much lower levels. The effect occurs in many different plasma conditions, primarily producing false waves at frequencies that are low enough for the antenna coupling to the plasma to be resistive.

  10. How to Patch Active Plasma and Collisionless Sheath: Pragmatical Guide

    Science.gov (United States)

    Shneider, Mikhail N.; Kaganovich, Igor D.

    2002-11-01

    Most plasmas have very thin sheath compared with plasma dimension. This necessitates separate calculation of plasma and sheath. Bohm criterion provides boundary condition for calculation of plasma profiles. To calculate sheath properties a value of electric field at the plasma-sheath interface has to be specified in addition to Bohm criterion. The value of the boundary electric field and robust procedure to approximately patch plasma and collisionless sheath with a very good accuracy is reported. Additional information on the subject will be posted in http://www.pppl.gov/pub/report/2002/ http://arxiv.org/abs/physics/ Work supported by the Princeton Plasma Physics Laboratory through a University Research Support Program.

  11. Sheath Criterion for a Collisional Electronegative Plasma Sheath in an Applied Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    邹秀; 刘惠平; 邱明辉; 孙骁航

    2011-01-01

    The sheath criterion for a collisional electronegative plasma sheath in an applied magnetic field is investigated.It is assumed that the system consists of hot electrons,hot negative ions and cold positive ions.The effect of an applied magnetic field on the sheath criterion is discussed.The results reveal that the magnetic field has effects on both the upper and lower limits,which cause the range of the ion Mach number to increase.In addition,the numerical calculations of the electronegative plasma sheath are carried out to demonstrate the effects of sheath criterion on the characteristics of the sheath.%The sheath criterion for a collisioned electronegative plasma sheath in an applied magnetic Geld is investigated. It is assumed that the system consists of hot electrons, hot negative ions and cold positive ions. The effect of an applied magnetic Reid on the sheath criterion is discussed. The results reveal that the magnetic field has effects on both the upper and lower limits, which cause the range of the ion Mach number to increase. In addition, the numerical calculations of the electronegative plasma sheath are carried out to demonstrate the effects of sheath criterion on the characteristics of the sheath.

  12. Magnetic Field Generation in Core-Sheath Jets via the Kinetic Kelvin-Helmholtz Instability

    CERN Document Server

    Nishikawa, K -I; Dutan, I; Niemiec, J; Medvedev, M; Mizuno, Y; Meli, A; Sol, H; Zhang, B; Pohl, M; Hartmann, D H

    2014-01-01

    We have investigated magnetic field generation in velocity shears via the kinetic Kelvin-Helmholtz instability (kKHI) using a relativistic plasma jet core and stationary plasma sheath. Our three-dimensional particle-in-cell simulations consider plasma jet cores with Lorentz factors of 1.5, 5, and 15 for both electron-proton and electron-positron plasmas. For electron-proton plasmas we find generation of strong large-scale DC currents and magnetic fields which extend over the entire shear-surface and reach thicknesses of a few tens of electron skin depths. For electron-positron plasmas we find generation of alternating currents and magnetic fields. Jet and sheath plasmas are accelerated across the shear surface in the strong magnetic fields generated by the kKHI. The mixing of jet and sheath plasmas generates transverse structure similar to that produced by the Weibel instability.

  13. Magnetic field generation in core-sheath jets via the kinetic Kelvin-Helmholtz instability

    Energy Technology Data Exchange (ETDEWEB)

    Nishikawa, K.-I. [Department of Physics, University of Alabama in Huntsville, ZP12, Huntsville, AL 35899 (United States); Hardee, P. E. [Department of Physics and Astronomy, The University of Alabama, Tuscaloosa, AL 35487 (United States); Duţan, I. [Institute of Space Science, Atomistilor 409, Bucharest-Magurele RO-077125 (Romania); Niemiec, J. [Institute of Nuclear Physics PAN, ul. Radzikowskiego 152, 31-342 Kraków (Poland); Medvedev, M. [Department of Physics and Astronomy, University of Kansas, KS 66045 (United States); Mizuno, Y. [Institute of Astronomy, National Tsing-Hua University, Hsinchu, Taiwan 30013 (China); Meli, A. [Department of Physics and Astronomy, University of Gent, Proeftuinstraat 86 B-9000, Gent (Belgium); Sol, H. [LUTH, Observatore de Paris-Meudon, 5 place Jules Jansen, F-92195 Meudon Cedex (France); Zhang, B. [Department of Physics, University of Nevada, Las Vegas, NV 89154 (United States); Pohl, M. [Institut fur Physik und Astronomie, Universität Potsdam, D-14476 Potsdam-Golm (Germany); Hartmann, D. H., E-mail: ken-ichi.nishikawa@nasa.gov [Department of Physics and Astronomy, Clemson University, Clemson, SC 29634 (United States)

    2014-09-20

    We have investigated magnetic field generation in velocity shears via the kinetic Kelvin-Helmholtz instability (kKHI) using a relativistic plasma jet core and stationary plasma sheath. Our three-dimensional particle-in-cell simulations consider plasma jet cores with Lorentz factors of 1.5, 5, and 15 for both electron-proton and electron-positron plasmas. For electron-proton plasmas, we find generation of strong large-scale DC currents and magnetic fields that extend over the entire shear surface and reach thicknesses of a few tens of electron skin depths. For electron-positron plasmas, we find generation of alternating currents and magnetic fields. Jet and sheath plasmas are accelerated across the shear surface in the strong magnetic fields generated by the kKHI. The mixing of jet and sheath plasmas generates a transverse structure similar to that produced by the Weibel instability.

  14. Influence of plasma density and plasma sheath dynamics on the ion implantation by plasma immersion technique

    OpenAIRE

    Ensinger, Wolfgang

    1996-01-01

    Influence of plasma density and plasma sheath dynamics on the ion implantation by plasma immersion technique / B. Rauschenbach ... - In: Nuclear instruments and methods in physics research. B. 113. 1996. S. 266-269

  15. Electronegative Plasma Sheath Structure in a Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    ZOU Xiu; LIU Jin-Yuan; WANG Zheng-Xiong; GONG Ye; LIU Yue; WANG Xiao-Gang

    2004-01-01

    @@ The structure of an electronegative plasma sheath in an oblique magnetic field is investigated with a fluid model. We assume the system consists of hot electrons and negative ions as well as cold positive ions. Densities of particles and distributions of the spacious potential in various states of magnetic field are studied. The result shows that the existence of magnetic field and negative ions has great effects on the plasma sheath structures. In addition, the effects of negative ion density and temperature on the structure of the electronegative plasma sheath are discussed.

  16. Dust Charging in the Sheath of an Electronegative Plasma

    Institute of Scientific and Technical Information of China (English)

    王正汹; 王文春; 刘悦; 刘金远; 王晓钢

    2004-01-01

    We theoretically investigate the dust charging in the sheath of an electronegative plasma, by using a single dust grain model based on a previous sheath structure [Chin. Phys. Lett 20 (2003) 1537] in which cold positive ions and hot negative ions have been assumed. It is found that dust grains are first charged negatively at the sheath edge and then begin to be charged positively in the sheath. Moreover, both the temperature ratio of electrons to negative ions and the density ratio of negative ions to positive ions have effects on the neutral point of the dust charge.

  17. Enhancing Micro-Cathode Arc Thruster (muCAT) Plasma Generation to Analyze Magnetic Field Angle Effects on Sheath Formation in Hall Thrusters

    Science.gov (United States)

    Lukas, Joseph Nicholas

    Using a Delta IV or Atlas V launch vehicle to send a payload into Low Earth Orbit can cost between 13,000 and 14,000 per kilogram. With payloads that utilize a propulsion system, maximizing the efficiency of that propulsion system would not only be financially beneficial, but could also increase the range of possible missions and allow for a longer mission lifetime. This dissertation looks into efficiency increases in the Micro-Cathode Arc Thruster (muCAT) and Hall Thruster. The muCAT is an electric propulsion device that ablates solid cathode material, through an electrical arc discharge, to create plasma and ultimately produce thrust. About 90% of the arc discharge current is conducted by electrons, which go toward heating the anode and contribute very little to thrust, with only the remaining 10% going toward thrust in the form of ion current. I will discuss the results of an experiment in which electron heating on a low melting point anode was shown to increase ion current, which theoretically should increase thrust levels at low frequencies. Another feature of the muCAT is the use of an external magnetic solenoid which increases thrust, ion current, and causes uniform cathode erosion. An experiment has shown that efficiency can also be increased by removing the external magnetic field power supply and, instead, utilizing the residual arc current to power the magnetic solenoid. A Hall Thruster is a type of electric propulsion device that accelerates ions across an electric potential between an anode and magnetically trapped electrons. The limiting factor in Hall Thruster operation is the lifetime of the wall material. During operation, a positively charged layer forms over the surface of the walls, known as a plasma sheath, which contributes to wall erosion. Therefore, by reducing or eliminating the sheath layer, Hall Thruster operational lifetime can increase. Computational modeling has shown that large magnetic field angles and large perpendicular electric

  18. Characteristics of Dust Plasma Sheath in an Oblique Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    ZOU Xiu

    2006-01-01

    @@ The characteristics of dust plasma sheath in an oblique magnetic field are investigated with a fluid model. Hot electrons, cold ions, neutral particles, and dust grains are taken into account in this system.

  19. Electron Sheaths: The Outsized Influence of Positive Boundaries on Plasmas

    CERN Document Server

    Yee, Benjamin T; Baalrud, Scott D; Barnat, Edward V; Hopkins, Matthew M

    2015-01-01

    Electron sheaths form near the surface of objects biased more positive than the plasma potential, such as in the electron saturation region of a Langmuir probe trace. They are commonly thought to be local phenomena that collect the random thermal electron current, but do not otherwise perturb a plasma. Here, using experiments, particle-in-cell simulations and theory, it is shown that under low temperature plasma conditions ($T_e \\gg T_i$) electron sheaths are far from local. Instead, a long presheath region extends into the plasma where electrons are accelerated via a pressure gradient to a flow speed exceeding the electron thermal speed at the sheath edge. This fast flow is found to excite instabilities, causing strong fluctuations near the sheath edge.

  20. Laser Diagnostic Method for Plasma Sheath Potential Mapping

    Science.gov (United States)

    Walsh, Sean P.

    Electric propulsion systems are gaining popularity in the aerospace field as a viable option for long term positioning and thrusting applications. In particular, Hall thrusters have shown promise as the primary propulsion engine for space probes during interplanetary journeys. However, the interaction between propellant xenon ions and the ceramic channel wall continues to remain a complex issue. The most significant source of power loss in Hall thrusters is due to electron and ion currents through the sheath to the channel wall. A sheath is a region of high electric field that separates a plasma from a wall or surface in contact. Plasma electrons with enough energy to penetrate the sheath may result emission of a secondary electron from the wall. With significant secondary electron emission (SEE), the sheath voltage is reduced and so too is the electron retarding electric field. Therefore, a lower sheath voltage further increases the particle loss to the wall of a Hall thruster and leads to plasma cooling and lower efficiency. To further understand sheath dynamics, laser-induced fluorescence is employed to provide a non-invasive, in situ, and spatially resolved technique for measuring xenon ion velocity. By scanning the laser wavelength over an electronic transition of singly ionized xenon and collecting the resulting fluorescence, one can determine the ion velocity from the Doppler shifted absorption. Knowing the velocity at multiple points in the sheath, it can be converted to a relative electric potential profile which can reveal a lot about the plasma-wall interaction and the severity of SEE. The challenge of adequately measuring sheath potential profiles is optimizing the experiment to maximize the signal-to-noise ratio. A strong signal with low noise, enables high resolution measurements and increases the depth of measurement in the sheath, where the signal strength is lowest. Many improvements were made to reduce the background luminosity, increase the

  1. Approximation analytical solutions for a unified plasma sheath model by double decomposition method

    Institute of Scientific and Technical Information of China (English)

    FangJin-Qing

    1998-01-01

    A unified plasma sheath model and its potential equation are proposed.Any higher-order approximation analytical solutions for the unified plasma sheath potential equation are derived by double decomposition method.

  2. Sheath overlap during very large scale plasma source ion implantation

    Science.gov (United States)

    Cluggish, B. P.; Munson, C. P.

    1998-12-01

    Measurements of plasma source ion implantation have been performed on a large target of complex geometry. The target consists of 1000 aluminum, automotive piston surrogates mounted on four racks; total surface area is over 16 m2. The four racks are positioned parallel to each other, 0.25 m apart, in an 8 m3 vacuum chamber. The racks of pistons are immersed in a capacitive radio frequency plasma, with an argon gas pressure of 20-65 mPa. Langmuir probe measurements indicate that the plasma density profile is highly nonuniform, due to particle losses to the racks of pistons. The plasma ions are implanted into the pistons by pulse biasing the workpiece to negative voltages as low as -18 kV for up to 20 μs. During the voltage pulse, the high-voltage sheaths from adjacent racks of pistons converge towards each other. At plasma densities less than 109 cm-3 the sheaths are observed to overlap. Measurements of the sheath overlap time are compared with standard analytic theory and with simulations run with a two-dimensional particle-in-cell code.

  3. Nonextensivity effect on radio-wave transmission in plasma sheath

    Science.gov (United States)

    Mousavi, A.; Esfandiari-Kalejahi, A.; Akbari-Moghanjoughi, M.

    2016-04-01

    In this paper, new theoretical findings on the application of magnetic field in effective transmission of electromagnetic (EM) waves through a plasma sheath around a hypersonic vehicle are reported. The results are obtained by assuming the plasma sheath to consist of nonextensive electrons and thermal ions. The expressions for the electric field and effective collision frequency are derived analytically in the framework of nonextensive statistics. Examination of the reflection, transmission, and absorption coefficients regarding the strength of the ambient magnetic field shows the significance of q-nonextensive parameter effect on these entities. For small values of the magnetic field, the transmission coefficient increases to unity only in the range of - 1 hypersonic flights.

  4. Plasma Processes : Sheath and plasma parameters in a magnetized plasma system

    Indian Academy of Sciences (India)

    Bornali Singha; A Sharma; J Chutia

    2000-11-01

    The variation of electron temperature and plasma density in a magnetized 2 plasma is studied experimentally in presence of a grid placed at the middle of the system. Plasma leaks through the negatively biased grid from the source region into the diffused region. It is observed that the electron temperature increases with the magnetic field in the diffused region whereas it decreases in the source region of the system for a constant grid biasing voltage. Also, investigation is done to see the change of electron temperature with grid biasing voltage for a constant magnetic field. This is accompanied by the study of the variation of sheath structure across the grid for different magnetic field and grid biasing voltage as well. It reveals that with increasing magnetic field and negative grid biasing voltage, the sheath thickness expands.

  5. Temporal behavior of microwave sheath-voltage combination plasma

    CERN Document Server

    Kar, Satyananda; Raja, Laxminarayan L

    2015-01-01

    Microwave sheath-Voltage combination Plasma (MVP) is a high density plasma source and can be used as a suitable plasma processing device (e.g., ionized physical vapor deposition). In the present report, the temporal behavior of an argon MVP sustained along a direct-current biased Ti rod is investigated. Two plasma modes are observed, one is an "oxidized state" (OS) at the early time of the microwave plasma and the other is "ionized sputter state" (ISS) at the later times. Transition of the plasma from OS to ISS, results a prominent change in the visible color of the plasma, resulting from a significant increase in the plasma density, as measured by a Langmuir probe. In the OS, plasma is dominated by Ar ions and the density is order 10^11 cm^-3. In the ISS, metal ions from the Ti rod contribute significantly to the ion composition and higher density plasma (10^12 cm^-3) is produced. Nearly uniform high density plasma along the length of the Ti rod is produced at very low input microwave powers (around 30 W). O...

  6. The Bohm criterion for a dusty plasma sheath

    Indian Academy of Sciences (India)

    B P Pandey; Anjan Dutta

    2005-07-01

    The formation of the sheath in a dusty plasma is investigated. The Bohm criterion is derived for two different cases: (a) when electrons are in thermodynamic equilibrium and dust grains provide the immobile, stationary background and (b) when both electrons and ions are in thermodynamic equilibrium and dust grains are moving. In the first case, Bohm criterion gets modified due to the fluctuation of the charge on the grain surface. In the second case, the collisional and Coulombic drag play important role in determining the Bohm criterion.

  7. The modeling and simulation of plasma sheath effect on GNSS system

    Science.gov (United States)

    Song, Zhongguo; Liu, Jiangfan; Du, Yongxing; Xi, Xiaoli

    2015-11-01

    Plasma sheath can potentially degrade global navigation satellite system (GNSS) through signal attenuation as well as phase noise when a hypersonic vehicle reenters the Earth's atmosphere. Modeling and simulation method of GNSS system disturbed by plasma sheath is introduced in this paper by means of electromagnetic wave propagation theory combined with the satellite signal simulation technique. The transmission function of the plasma sheath with stratified model is derived utilizing scattering matrix method. The effects of the plasma sheath on GPS signal reception and positioning performance are examined. Experimental results are presented and discussed, partly supporting the validity of the analytical method proposed.

  8. Colloidal Plasmas : Electrostatic sheath at the boundary of a collisional dusty plasma

    Indian Academy of Sciences (India)

    S K Baishya; G C Das; Joyanti Chutia

    2000-11-01

    Considering the Boltzmann response of the ions and electrons in plasma dynamics and inertial dynamics of the dust charged grains in a highly collisional dusty plasma, the nature of the electrostatic potential near a boundary is investigated. Based on the fluid approximation, the formation as well as the characteristic behaviours of the sheath is studied. It is expected that the presence of dust charged grains will lead to a very different behaviour of the sheath as compared to that of electron-ion plasma. Moreover, the collisions of the dust charged grains with the neutrals are expected to exhibit novel features.

  9. Collisional Sheath in the Electronegative Radio-Frequency Plasma

    Institute of Scientific and Technical Information of China (English)

    GAN Baoxia; DENG Wenjuan; CHEN Yinhua

    2007-01-01

    A model of collisional RF sheath with negative ions is discussed in this paper.The influences of collision and negative ions on the parameters of the sheath are studied through numerical simulation.It is found that when the collision coefficient increases and the RF power is fixed,the electrode potential and sheath electric field potential increase,the electrode current and thickness of the sheath decrease.When the negative ion content changes,the same phenomenon occurs.

  10. A Method for Measurement of Dynamic Sheath Behavior in Plasma Immersion Ion Implantation and Deposition Process

    Institute of Scientific and Technical Information of China (English)

    WU Hongchen; MA Guojia; PENG Liping; FENG Jianji; ZHANG Huafang; MA Tengcai

    2008-01-01

    A method to measure temporal and spatial evolution of sheath in plasma immersion ion implantation (PⅢ) process is presented.A long Langrnuir probe (φ 5 mm×φ 78 mm) with low bias is used to detect the sheath propagation and backup with time.The aubstrate made of Al cylinder (φ20 mm×φ150 mm) is immersed in nitrogen and argon plasma induced by magnetron self-sustained discharge.The maximum sheath sizes,at different plasma densities under different discharge currents,are measured and compared.

  11. Surface Potential of Dust Grains at the Sheath Edge of Electronegative Dusty Plasmas

    Institute of Scientific and Technical Information of China (English)

    段萍; 王正汹; 王文春; 刘金远; 刘悦; 王晓钢

    2004-01-01

    In this paper we investigate the dust surface potential at the sheath edge of electronegative dusty plasmas theoretically, using the standard fluid model for the sheath and treating electrons and negative ions as Boltzmann particles but positive ions and dust grains as cold fluids.The dust charging model is self-consistently coupled with the sheath formation criterion by the dust surface potential and the ion Mach number, moreover the dust density variation is taken into account. The numerical results reveal that the dust number density and negative ion number density as well as its temperature can significantly affect the dust surface potential at the sheath edge.

  12. Simulation methods of ion sheath dynamics in plasma source ion implantation

    Institute of Scientific and Technical Information of China (English)

    WANG Jiuli; ZHANG Guling; WANG Younian; LIU Yuanfu; LIU Chizi; YANG Size

    2004-01-01

    Progress of the theoretical studies on the ion sheath dynamics in plasma source ion implantation (PSII) is reviewed in this paper. Several models for simulating the ion sheath dynamics in PSII are provided. The main problem of nonuniform ion implantation on the target in PSII is discussed by analyzing some calculated results. In addition, based on the relative researches in our laboratory, some calculated results of the ion sheath dynamics in PSII for inner surface modification of a cylindrical bore are presented. Finally, new ideas and tendency for future researches on ion sheath dynamics in PSII are proposed.

  13. Effect of the shear viscosity on plasma sheath in an oblique magnetic field

    Science.gov (United States)

    Wang, Ting-Ting; Li, Jing-Ju; Ma, J. X.

    2016-12-01

    In a magnetized plasma sheath, strong velocity shear exists owing to the three-dimensional nature of ion velocity. Thus, the ion viscosity should have an important effect on the sheath structure, which has not been studied. This article presents the study of the effect of ion shear viscosity on the sheath in an oblique magnetic field within the framework of classical cross-field transport. It is shown that the inclusion of the shear viscosity in the ion momentum equation results in a significant reduction in the sheath thickness. It is also shown that the "generalized Bohm criterion" is not affected by the shear viscosity within the present model. However, additional boundary conditions such as the velocity shear arise in the viscous case. The appropriate boundary conditions are formulated, accounting for E × B and diamagnetic drifts at the sheath edge, which affects the criterion and sheath profiles.

  14. Dynamics of the plasma current sheath in plasma focus discharges in different gases

    Energy Technology Data Exchange (ETDEWEB)

    Vinogradov, V. P.; Krauz, V. I., E-mail: krauz-vi@nrcki.ru [National Research Center Kurchatov Institute (Russian Federation); Mokeev, A. N. [Project Center ITER (Russian Federation); Myalton, V. V.; Kharrasov, A. M. [National Research Center Kurchatov Institute (Russian Federation)

    2016-12-15

    The shape of the plasma current sheath (PCS) in the final stage of its radial compression, the dynamics of pinching, and the subsequent pinch decay in plasma focus (PF) discharges in different gases are studied using an improved multichannel system of electron-optical plasma photography and a newly elaborated synchronization system. The PCS structure in discharges in heavy gases (Ne, Ar) is found to differ significantly from that in discharges in hydrogen and deuterium. The influence of a heavy gas (Xe) additive to hydrogen and deuterium on the structure and compression dynamics of the PCS is investigated.

  15. Effects of Reentry Plasma Sheath on GPS Patch Antenna Polarization Property

    Directory of Open Access Journals (Sweden)

    L. Zhao

    2013-01-01

    Full Text Available A plasma sheath enveloping a reentry vehicle would affect performances of on-board antenna greatly, especially the navigation antennas. This paper studies the effects of reentry plasma sheath on a GPS right-hand circularly polarized (RHCP patch antenna polarization property during a typical reentry process. Utilizing the algorithm of finite integration technique, the polarization characteristic of a GPS antenna coated by a plasma sheath is obtained. Results show that the GPS RHCP patch antenna radiation pattern distortions as well as polarization deteriorations exist during the entire reentry process, and the worst polarization mismatch loss between a GPS antenna and RHCP GPS signal is nearly 3 dB. This paper also indicates that measures should be taken to alleviate the plasma sheath for maintaining the GPS communication during the reentry process.

  16. Characteristics of single and dual radio-frequency (RF) plasma sheaths

    Institute of Scientific and Technical Information of China (English)

    DAI Zhong-ling; WANG You-nian

    2006-01-01

    The characteristics of radio-frequency(RF)plasma sheaths have been topics of much scientific study for decades,and have also been of great importance in the manufacture of integrated circuits and fabricating microelectromechanical systems (MEMS),as well as in the study of physical phenomena in dusty plasmas.The sheaths behave special properties under various situations where they can be treated as collisionless or collisional,single- or dual-RF,one- or two-dimensional (1D or 2D) sheaths,etc.This paper reviews our recent progress on the dynamics of RF plasma sheaths using a fluid method that includes the fluid equations and Poission's equation coupled with an equivalent circuit model and a hybrid method in which the fluid model is combined with the Monte-Carlo (MC)method.The structures of RF sheaths behave differently in various situations and plasma parameters such as the ion density,electron temperature,as well as the external parameters such as the applied frequency,power,gas pressure,magnetic field,are crucial for determining the characteristics of plasma sheaths.

  17. A different way of looking at the Plasma-Sheath Boundary Region

    Science.gov (United States)

    Franklin, Raoul

    2003-10-01

    The plasma-sheath boundary region has been the subject of study for eighty years, but there are aspects that are still not well understood. At low pressures it is clear that the structure is - plasma-transition layer-thin electron sheath -(thick)ion sheath, and at high pressures it is plasma-collisional sheath, without the need to introduce further structure. As the plasma becomes collisional, there is a question as to how long it is appropriate to speak in terms of the Bohm criterion. Furthermore if the sheath is many ion mean free paths long, the ions may be brought back into collisional equilibrium with the electric field, even though their speed exceeds the ion sound speed of the plasma from which they derive. We examine computationally this intermediate pressure region in terms of how to describe the ion motion, showing how the two limits go over from the one to the other. Most practical gas discharge plasmas are in such a transitional pressure region.

  18. Fine structure of modal focusing effect in a three dimensional plasma-sheath-lens formed by disk electrodes

    DEFF Research Database (Denmark)

    Stamate, Eugen; Yamaguchi, Masahito

    2015-01-01

    Modal and discrete focusing effects associated with three-dimensional plasma-sheath-lenses show promising potential for applications in ion beam extraction, mass spectrometry, plasma diagnostics and for basic studies of plasma sheath. The ion focusing properties can be adjusted by controlling the...

  19. The Effect of Polarization on the Stability of Current Sheaths in Space Plasma

    Science.gov (United States)

    Lyahov, Vladimir; Neshchadim, Vladimir

    2013-04-01

    The procedure of study of the stability of current sheath taking into account the effect of plasma polarization is proposed. The kinetic equation with self-consistent electromagnetic field for perturbation of distribution function is solved. On the basis of this solution the tensor of dielectric permeability of nonelectroneutral sharply-irregular current sheath plasma is calculated and the dispersion equation to study the possible instability modes of this sheath is obtained. Instability of the current sheath of magnetospheric tail with respect to the tearing-perturbations as well as influence of the effect of plasma polarization on the development of tearing instability is investigated. As a result of application of the offered procedure the existence of low-frequency tearing-like modes which essentially differ from the formerly known tiring-perturbations is revealed even for the case of an electroneutral current sheath. The increment of growth of those modes is positive within very wide interval of wave lengths and attains much bigger quantities than it was supposed earlier for the tearing-instability. Due to this polarization effect, the area of existence of those low-frequency tearing-like modes is displaced from the area of strong stationary electric field more close to the magnitoneutral (and electroneutral) plane at the center of symmetry of the current sheath. The problem of structural stability of the nonelectroneutral current sheath is explored. The equilibrium model represents a system of four connected non-linear first-order differential equations and hence it should manifest the property of structural instability - sensitivity to infinitesimal changes of the parameters and initial conditions. The solution for such current sheath is realized only in some areas of 7-dimensional space of model parameters. The phase volume of those areas is small in comparison with the entire phase volume in the interval on which the parameters are defined. The above is

  20. Thermographic determination of the sheath heat transmission coefficient in a high density plasma

    NARCIS (Netherlands)

    van den Berg, M. A.; Bystrov, K.; Pasquet, R.; Zielinski, J. J.; De Temmerman, G.

    2013-01-01

    Experiments were performed in the Pilot-PSI linear plasma device, to determine the sheath heat transmission coefficients in a high recycling regime under various conditions of density (1–20 × 1020 m−3) and plasma composition (H2, Ar, N2) relevant for the

  1. Thermographic determination of the sheath heat transmission coefficient in a high density plasma

    NARCIS (Netherlands)

    van den Berg, M. A.; Bystrov, K.; Pasquet, R.; Zielinski, J. J.; De Temmerman, G.

    2013-01-01

    Experiments were performed in the Pilot-PSI linear plasma device, to determine the sheath heat transmission coefficients in a high recycling regime under various conditions of density (1–20 × 1020 m−3) and plasma composition (H2, Ar, N2) relevant for the

  2. Plasma sheath properties in a magnetic field parallel to the wall

    Science.gov (United States)

    Moritz, J.; Faudot, E.; Devaux, S.; Heuraux, S.

    2016-06-01

    Particle in cell simulations were carried out with a plasma bounded by two absorbing walls and a magnetic field applied parallel to them. Both the sheath extent and the potential drop in it were derived from simulations for different plasma parameters, such as the electron and ion temperature Ti, particle density, and ion mass. Both of them exhibit a power law dependent on the Larmor to plasma ion pulsation ratio Ωi. For increasing values of the magnetic field, the potential drop within the sheath decreases from a few Ti/e down to zero, where e stands for the electron charge. The space charge extent increases with Ωi and saturates to 2.15 ion Larmor radius. A simple model of sheath formation in such a magnetic field configuration is presented. Assuming strongly magnetized electrons, and neglecting collisions and ionizations, a new typical length is evidenced, which depends on the ratio Ωi. The charge separation sheath width is theoretically found to increase from a combination of the electron gyroradius and the ion Debye length for low Ωi ratios up to several ion gyroradii for strongly magnetized ions. Both the calculated sheath extent and plasma potential show a fair agreement with the numerical simulations.

  3. A matching approach to communicate through the plasma sheath surrounding a hypersonic vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Xiaotian; Jiang, Binhao, E-mail: jiangbh@hit.edu.cn [Harbin Institute of Technology, 92 West Dazhi Street, Nan Gang District, Harbin (China)

    2015-06-21

    In order to overcome the communication blackout problem suffered by hypersonic vehicles, a matching approach has been proposed for the first time in this paper. It utilizes a double-positive (DPS) material layer surrounding a hypersonic vehicle antenna to match with the plasma sheath enclosing the vehicle. Analytical analysis and numerical results indicate a resonance between the matched layer and the plasma sheath will be formed to mitigate the blackout problem in some conditions. The calculated results present a perfect radiated performance of the antenna, when the match is exactly built between these two layers. The effects of the parameters of the plasma sheath have been researched by numerical methods. Based on these results, the proposed approach is easier to realize and more flexible to the varying radiated conditions in hypersonic flight comparing with other methods.

  4. Fluid Simulation of the Ion Temperature Effects on a Collisional Magnetized Sheath of a Dusty Plasma

    Directory of Open Access Journals (Sweden)

    I Driouch

    2013-01-01

    Full Text Available The properties of magnetized dusty plasma sheath with finite ion temperature are studied using a fluid model. Hot electrons, fluid ions, neutral particles and cold fluid dust grains are taken into account in this system. Considering the cross section for collisions between the dust and neutrals has a power law dependence on the dust flow velocity, the fluid model is then solved numerically to obtain detailed sheath information under different ion temperatures. A significant change is observed in the quantities characterizing the sheath with respect to the cold ion assumption. In addition, the result reveals that the effect of ion temperature is more obvious on the dust dynamics in collisional sheath with constant cross section.

  5. PIC Simulation of RF Plasma Sheath Formation and Initial Validation of Optical Diagnostics using HPC Resources

    Science.gov (United States)

    Icenhour, Casey; Exum, Ashe; Martin, Elijah; Green, David; Smithe, David; Shannon, Steven

    2014-10-01

    The coupling of experiment and simulation to elucidate near field physics above ICRF antennae presents challenges on both the experimental and computational side. In order to analyze this region, a new optical diagnostic utilizing active and passive spectroscopy is used to determine the structure of the electric fields within the sheath region. Parallel and perpendicular magnetic fields with respect to the sheath electric field have been presented. This work focuses on the validation of these measurements utilizing the Particle-in-Cell (PIC) simulation method in conjunction with High Performance Computing (HPC) resources on the Titan supercomputer at Oak Ridge National Laboratory (ORNL). Plasma parameters of interest include electron density, electron temperature, plasma potentials, and RF plasma sheath voltages and thicknesses. The plasma is modeled utilizing the VSim plasma simulation tool, developed by the Tech-X Corporation. The implementation used here is a two-dimensional electromagnetic model of the experimental setup. The overall goal of this study is to develop models for complex RF plasma systems and to help outline the physics of RF sheath formation and subsequent power loss on ICRF antennas in systems such as ITER. This work is carried out with the support of Oak Ridge National Laboratory and the Tech-X Corporation.

  6. Low-frequency sheath instability in a non-Maxwellian plasma with energetic ions.

    Science.gov (United States)

    Starodubtsev, Mikhail; Kamal-Al-Hassan, Md; Ito, Hiroaki; Yugami, Noboru; Nishida, Yasushi

    2004-01-30

    Spontaneous low-frequency oscillations have been observed in the circuit of a positively biased electrode when the ambient nonuniform plasma is irradiated by a microwave pulse of short duration, which is approximately equal to the ion-plasma period. The instability with its characteristic frequency below the ion-plasma frequency is driven by an accelerated ion component interacting with the sheath of the electrode. A qualitative model of the instability is suggested.

  7. Effect of sheath gas in atmospheric-pressure plasma jet for potato sprouting suppression

    Science.gov (United States)

    Nishiyama, S.; Monma, M.; Sasaki, K.

    2016-09-01

    Recently, low-temperature atmospheric-pressure plasma jets (APPJs) attract much interest for medical and agricultural applications. We try to apply APPJs for the suppression of potato sprouting in the long-term storage. In this study, we investigated the effect of sheath gas in APPJ on the suppression efficiency of the potato sprouting. Our APPJ was composed of an insulated thin wire electrode, a glass tube, a grounded electrode which was wound on the glass tube, and a sheath gas nozzle which was attached at the end of the glass tube. The wire electrode was connected to a rectangular-waveform power supply at a frequency of 3 kHz and a voltage of +/- 7 kV. Helium was fed through the glass tube, while we tested dry nitrogen, humid nitrogen, and oxygen as the sheath gas. Eyes of potatoes were irradiated by APPJ for 60 seconds. The sprouting probability was evaluated at two weeks after the plasma irradiation. The sprouting probability was 28% when we employed no sheath gases, whereas an improved probability of 10% was obtained when we applied dry nitrogen as the sheath gas. Optical emission spectroscopy was carried out to diagnose the plasma jet. It was suggested that reactive species originated from nitrogen worked for the efficient suppression of the potato sprouting.

  8. Solid expellant plasma generator

    Science.gov (United States)

    Stone, Nobie H. (Inventor); Poe, Garrett D. (Inventor); Rood, Robert (Inventor)

    2010-01-01

    An improved solid expellant plasma generator has been developed. The plasma generator includes a support housing, an electrode rod located in the central portion of the housing, and a mass of solid expellant material that surrounds the electrode rod within the support housing. The electrode rod and the solid expellant material are made of separate materials that are selected so that the electrode and the solid expellant material decompose at the same rate when the plasma generator is ignited. This maintains a point of discharge of the plasma at the interface between the electrode and the solid expellant material.

  9. Measurements of the asymmetric, dynamic sheath around a pulse biased sphere immersed in flowing metal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Andre; Wu, Hongchen; Anders, Andre

    2008-06-13

    A long-probe technique was utilized to record the expansion and retreat of the dynamic sheath around a spherical substrate immersed in pulsed cathode arc metal plasma. Positively biased, long cylindrical probes were placed on the side and downstream of a negatively pulsed biased stainless steel sphere of 1" (25.4 mm) diameter. The amplitude and width of the negative high voltage pulses (HVP) were 2 kV, 5 kV, 10 kV, and 2 mu s, 4 mu s, 10 mu s, respectively. The variation of the probe (electron) current during the HVP is a direct measure for the sheath expansion and retreat. Maximum sheath sizes were determined for the different parameters of the HVP. The expected rarefaction zone behind the biased sphere (wake) due to the fast plasma flow was clearly established and quantified.

  10. Levitation and Oscillation of Dust Grains in Plasma Sheath with Wake Potential

    Institute of Scientific and Technical Information of China (English)

    练海俊; 谢柏松; 周宏余

    2002-01-01

    We investigate the equilibrium and levitation of dust grains in a plasma sheath with various forces, in particular the wake potential force. The vertical oscillation frequency of dust chains is also obtained by including the wake potential term. It is found that the wake potential has a significant role for the levitation and oscillation of dust grains.

  11. Transmission Properties of Radar Wave through Reentry Plasma Sheath

    Institute of Scientific and Technical Information of China (English)

    GAO Zheng-ping; MA Zhao-guo; LIU Jing; LI Zhong-ping; ZHANG Da-hai

    2007-01-01

    In this paper, by taking into account the coupling of the ionization of ablation gas and atmosphere, an electrons density distribution model is built. Using this model, the transmission properties of different polarization radar wave through sheath are evaluated on the basis of the transmission matrix theory. Then, we discuss the effects of the electrons density, the added magnetic field, and the radar wave frequency on the transmission properties. As a result of this investigation,greater transmission power could be gained in order to efficiently shorten communication blackout,by reducing the electrons density or choosing proper added magnetic field and the frequency of the radar wave according to the different polarization form of the radar wave.

  12. Confinement and structure of electrostatically coupled dust clouds in a direct current plasma-sheath

    Science.gov (United States)

    Nunomura, S.; Ohno, N.; Takamura, S.

    1998-10-01

    Mechanisms for the confinement and the internal structure of an electrostatically coupled dust cloud formed in a dc glow discharge have been investigated from a comparative viewpoint between experimental observations and a simple model. Two kinds of dust clouds with different internal structures are clearly observed, depending on the dispersion of the size distribution of dust particles. The dust cloud can be trapped only in the plasma-sheath boundary area, corresponding to the potential minimum region determined by gravitational and electrostatic forces in the cathode sheath. No dust particles were found deep inside of the sheath, which is consistent with the analysis because the dust particles may be charged positively due to an extreme reduction of the electron density. The internal structure of the electrostatically coupled dust cloud was found to be arranged so that the total potential energy, including the repulsive Coulomb interaction among negative dust particles, may become minimal.

  13. Sheath structure in plasma with two species of positive ions and secondary electrons

    Science.gov (United States)

    Xiao-Yun, Zhao; Nong, Xiang; Jing, Ou; De-Hui, Li; Bin-Bin, Lin

    2016-02-01

    The properties of a collisionless plasma sheath are investigated by using a fluid model in which two species of positive ions and secondary electrons are taken into account. It is shown that the positive ion speeds at the sheath edge increase with secondary electron emission (SEE) coefficient, and the sheath structure is affected by the interplay between the two species of positive ions and secondary electrons. The critical SEE coefficients and the sheath widths depend strongly on the positive ion charge number, mass and concentration in the cases with and without SEE. In addition, ion kinetic energy flux to the wall and the impact of positive ion species on secondary electron density at the sheath edge are also discussed. Project supported by the National Natural Science Foundation of China (Grant Nos. 11475220 and 11405208), the Program of Fusion Reactor Physics and Digital Tokamak with the CAS “One-Three-Five” Strategic Planning, the National ITER Program of China (Grant No. 2015GB101003), and the Higher Education Natural Science Research Project of Anhui Province, China (Grant No. 2015KJ009).

  14. Helium metastable dynamics in sheath or bulk dominated rf micro-plasma jets

    CERN Document Server

    Niermann, B; Wollny, A; Böke, M; Brinkmann, R P; Mussenbrock, T; Winter, J

    2011-01-01

    Space resolved concentrations of helium He metastable atoms in an atmospheric pressure radio-frequency micro-plasma jet were measured using tunable diode laser absorption spectroscopy. The spatial profile of metastable atoms in the volume between the electrodes was deduced for various electrode gap distances. Density profiles reveal the sheath structure and reflect the plasma excitation distribution, as well as the dominance of the alpha-mode discharge. Gap width variations show the transition from a normal glow plasma to a pure sheath discharge. In order to analyze and verify the experimentally observed profiles of the metastable atoms a 2-dimensional simulation model was set up. Applying an appropriate He/N2/O2 chemistry model the correlation between the metastable profiles and the underlying excitation mechanisms was obtained.

  15. Re-entry communication through a plasma sheath using standing wave detection and adaptive data rate control

    Science.gov (United States)

    Xie, Kai; Yang, Min; Bai, Bowen; Li, Xiaoping; Zhou, Hui; Guo, Lixin

    2016-01-01

    Radio blackout during the re-entry has puzzled the aerospace industry for decades and has not yet been completely resolved. To achieve a continuous data link in the spacecraft's re-entry period, a simple and practicable communication method is proposed on the basis that (1) the electromagnetic-wave backscatter of the plasma sheath affects the voltage standing wave ratio (VSWR) of the antenna, and the backscatter is negatively correlated to transmission components, and (2) the transmission attenuation caused by the plasma sheath reduces the channel capacity. We detect the voltage standing wave ratio changes of the antenna and then adjust the information rate to accommodate the varying channel capacity, thus guaranteeing continuous transmission (for fewer critical data). The experiment was carried out in a plasma generator with an 18-cm-thick and 30-cm-diameter hollow propagation path, and the adaptive communication was implemented using spread spectrum frequency, shift key modulation with a variable spreading factor. The experimental results indicate that, when the over-threshold of VSWR was detected, the bit rate reduced to 250 bps from 4 Mbps automatically and the tolerated plasma density increased by an order of magnitude, which validates the proposed scheme. The proposed method has little additional cost, and the adaptive control does not require a feedback channel. The method is therefore applicable to data transmission in a single direction, such as that of a one-way telemetry system.

  16. Chromospheric and Coronal Wave Generation in a Magnetic Flux Sheath

    Science.gov (United States)

    Kato, Yoshiaki; Steiner, Oskar; Hansteen, Viggo; Gudiksen, Boris; Wedemeyer, Sven; Carlsson, Mats

    2016-08-01

    Using radiation magnetohydrodynamic simulations of the solar atmospheric layers from the upper convection zone to the lower corona, we investigate the self-consistent excitation of slow magneto-acoustic body waves (slow modes) in a magnetic flux concentration. We find that the convective downdrafts in the close surroundings of a two-dimensional flux slab “pump” the plasma inside it in the downward direction. This action produces a downflow inside the flux slab, which encompasses ever higher layers, causing an upwardly propagating rarefaction wave. The slow mode, excited by the adiabatic compression of the downflow near the optical surface, travels along the magnetic field in the upward direction at the tube speed. It develops into a shock wave at chromospheric heights, where it dissipates, lifts the transition region, and produces an offspring in the form of a compressive wave that propagates further into the corona. In the wake of downflows and propagating shock waves, the atmosphere inside the flux slab in the chromosphere and higher tends to oscillate with a period of ν ≈ 4 mHz. We conclude that this process of “magnetic pumping” is a most plausible mechanism for the direct generation of longitudinal chromospheric and coronal compressive waves within magnetic flux concentrations, and it may provide an important heat source in the chromosphere. It may also be responsible for certain types of dynamic fibrils.

  17. The effect of intermediate frequency on sheath dynamics in collisionless current driven triple frequency capacitive plasmas

    Science.gov (United States)

    Sharma, S.; Mishra, S. K.; Kaw, P. K.; Turner, M. M.

    2017-01-01

    The Capacitively Coupled Plasma discharge featuring operation in current driven triple frequency configuration has analytically been investigated, and the outcome is verified by utilising the 1D3V particle-in-cell (PIC) simulation code. In this analysis, the role of middle frequency component of the applied signal has precisely been explored. The discharge parameters are seen to be sensitive to the ratio of the chosen middle frequency to lower and higher frequencies for fixed amplitudes of the three frequency components. On the basis of analysis and PIC simulation results, the middle frequency component is demonstrated to act as additional control over sheath potential, electron sheath heating, and ion energy distribution function (iedf) of the plasma discharge. For the electron sheath heating, effect of the middle frequency is seen to be pronounced as it approaches to the lower frequency component. On the other hand, for the iedf, the control is more sensitive as the middle frequency approaches towards the higher frequency. The PIC estimate for the electron sheath heating is found to be in reasonably good agreement with the analytical prediction based on the Kaganovich formulation.

  18. Collaborative Research: Understanding Ion Losses to Plasma Boundaries Sheaths and Presheaths

    Energy Technology Data Exchange (ETDEWEB)

    Hershkowitz, Noah [Univ. of Wisconsin, Madison, WI (United States)

    2015-10-01

    Sheaths are common to all bounded steady-state plasmas. This includes laboratory, industrial, fusion, and in some cases even space plasmas. They form in general to balance particle loss and maintain quasi-neutrality in plasmas. Electrons are lighter than the ions by 2000 times or more (depending on the gas), and in most plasmas ion temperatures are rarely higher than the electron temperature and generally much lower. Thus in most cases, negative potential sheaths occur to confine electrons and allow ions to be freely lost. We have investigated how a plasma locally response to a positive bias on a small electrode, and have established area criteria which plasma reacts differently to the positive bias – first a pure electron sheath, and a global non-ambipolar regime where all electrons are lost to the electrode, and a double layer structure identified as a virtual cathode forms to limiting electron loss and maintain quasi-neutrality, and finally a anode spot regime where a secondary discharge occurs in front of the electrode, turning it into the major loss area of the entire plasma. Electrode area and plasma parameters criteria for these regimes were established, and the effect of the virtual cathode on the electrode’s I-V characteristics was investigated. We have also developed a global non-ambipolar electron source to replace hollow cathodes in a number of plasma applications. This eliminates the lifetime limitation and maintenance cost of hollow cathodes as they easily wear out easily and cannot be replaced in space applications.

  19. Self-consistent multicomponent plasma sheath theory for the extraction of H- ions (invited)

    Science.gov (United States)

    Becker, Reinard

    2004-05-01

    A self-consistent one-dimensional plasma sheath theory is presented to provide the basis for a correct numerical simulation of the extraction of volume produced H- ions. The plasma may consist not only of electrons and H- ions, but may also contain other positive ions such as protons, molecular ions and those of heavier elements, like cesium or tantalum. For the transition from the classical plasma sheath with a falling potential to the extraction region for H- ions with an increasing potential there exists the problem of a saddle point with adverse optical properties. This is eliminated by requiring sufficient space charge of H- ions near the extraction electrode. The formation of a virtual cathode in the extraction region by reflected positive ions is also taken into account. The integration of the Poisson equation in the extraction region establishes a criterion to avoid the creation of a nonphysical periodical sequence of potential maximums and minima. This criterion is an antithesis to the Bohm sheath criterion and has a corresponding interpretation: a virtual cathode in the extraction region can only be avoided, if the space charge of positive ions rapidly decreases. The acceptable range of parameters is thus reduced considerably. The resulting axial potential function is then used to derive the shape of the plasma wall electrode in the vicinity of the ion beam edge in order to obtain an aberration free beam boundary, this information being equivalent to the Pierce angle in the case of solid electron or ion emitters.

  20. An amplitude modulated radio frequency plasma generator

    Science.gov (United States)

    Lei, Fan; Li, Xiaoping; Liu, Yanming; Liu, Donglin; Yang, Min; Xie, Kai; Yao, Bo

    2017-04-01

    A glow discharge plasma generator and diagnostic system has been developed to study the effects of rapidly variable plasmas on electromagnetic wave propagation, mimicking the plasma sheath conditions encountered in space vehicle reentry. The plasma chamber is 400 mm in diameter and 240 mm in length, with a 300-mm-diameter unobstructed clear aperture. Electron densities produced are in the mid 1010 electrons/cm3. An 800 W radio frequency (RF) generator is capacitively coupled through an RF matcher to an internally cooled stainless steel electrode to form the plasma. The RF power is amplitude modulated by a waveform generator that operates at different frequencies. The resulting plasma contains electron density modulations caused by the varying power levels. A 10 GHz microwave horn antenna pair situated on opposite sides of the chamber serves as the source and detector of probe radiation. The microwave power feed to the source horn is split and one portion is sent directly to a high-speed recording oscilloscope. On mixing this with the signal from the pickup horn antenna, the plasma-induced phase shift between the two signals gives the path-integrated electron density with its complete time dependent variation. Care is taken to avoid microwave reflections and extensive shielding is in place to minimize electronic pickup. Data clearly show the low frequency modulation of the electron density as well as higher harmonics and plasma fluctuations.

  1. Comprehensive Study of Plasma-Wall Sheath Transport Phenomena

    Science.gov (United States)

    2016-10-26

    temperature is always well below that expected for significant thermionic emission from LaB6, and the heat flux from the plasma is also low given the order...measurements from HET materials is their low electrical conductivity. In a typical electron emission study, a primary electron beam is focused onto to...Transition Controlled by Secondary Electron Emission at Low Gas Pressure,” 67th Annual Gaseous Electronics Conference, Raleigh, NC, November 2-7, 2014

  2. Plasma driven neutron/gamma generator

    Energy Technology Data Exchange (ETDEWEB)

    Leung, Ka-Ngo; Antolak, Arlyn

    2015-03-03

    An apparatus for the generation of neutron/gamma rays is described including a chamber which defines an ion source, said apparatus including an RF antenna positioned outside of or within the chamber. Positioned within the chamber is a target material. One or more sets of confining magnets are also provided to create a cross B magnetic field directly above the target. To generate neutrons/gamma rays, the appropriate source gas is first introduced into the chamber, the RF antenna energized and a plasma formed. A series of high voltage pulses are then applied to the target. A plasma sheath, which serves as an accelerating gap, is formed upon application of the high voltage pulse to the target. Depending upon the selected combination of source gas and target material, either neutrons or gamma rays are generated, which may be used for cargo inspection, and the like.

  3. Potential application of X-ray communication through a plasma sheath encountered during spacecraft reentry into earth's atmosphere

    Science.gov (United States)

    Li, Huan; Tang, Xiaobin; Hang, Shuang; Liu, Yunpeng; Chen, Da

    2017-03-01

    Rapid progress in exploiting X-ray science has fueled its potential application in communication networks as a carrier wave for transmitting information through a plasma sheath during spacecraft reentry into earth's atmosphere. In this study, we addressed the physical transmission process of X-rays in the reentry plasma sheath and near-earth space theoretically. The interactions between the X-rays and reentry plasma sheath were investigated through the theoretical Wentzel-Kramers-Brillouin method, and the Monte Carlo simulation was employed to explore the transmission properties of X-rays in the near-earth space. The simulation results indicated that X-ray transmission was not influenced by the reentry plasma sheath compared with regular RF signals, and adopting various X-ray energies according to different spacecraft reentry altitudes is imperative when using X-ray uplink communication especially in the near-earth space. Additionally, the performance of the X-ray communication system was evaluated by applying the additive white Gaussian noise, Rayleigh fading channel, and plasma sheath channel. The Doppler shift, as a result of spacecraft velocity changes, was also calculated through the Matlab Simulink simulation, and various plasma sheath environments have no significant influence on X-ray communication owing to its exceedingly high carrier frequency.

  4. Oscillations of Magnetized Dust Grains in Plasma Sheath with Negative Ions

    Institute of Scientific and Technical Information of China (English)

    GAN Bao-Xia; CHEN Yin-Hua

    2007-01-01

    The oscillations of a single magnetized dust grain in electronegative plasma sheath are investigated taking into account the existence of an external magnetic field. The influence of the content of negative ions and the magnetic field intensity on the properties of the dust vibration is analysed. The result shows that the existence of the negative ions in plasma reduces the dust oscillation frequency and drops the equilibrium position of dust, whereas the magnetic field raises the equilibrium position and also reduces the dust oscillation frequency on the condition considered.

  5. Geoeffectiveness and efficiency of CIR, Sheath and ICME in generation of magnetic storms

    CERN Document Server

    Yermolaev, Yu I; Lodkina, I G; Yermolaev, M Yu

    2011-01-01

    We investigate relative role of various types of solar wind streams in generation of magnetic storms. On the basis of the OMNI data of interplanetary measurements for the period of 1976-2000 we analyze 798 geomagnetic storms with Dst < -50 nT and their interplanetary sources: corotating interaction regions (CIR), interplanetary CME (ICME) including magnetic clouds (MC) and Ejecta and compression regions Sheath before both types of ICME. For various types of solar wind we study following relative characteristics: occurrence rate; mass, momentum, energy and magnetic fluxes; probability of generation of magnetic storm (geoeffectiveness) and efficiency of process of this generation. Obtained results show that despite magnetic clouds have lower occurrence rate and lower efficiency than CIR and Sheath they play an essential role in generation of magnetic storms due to higher geoeffectiveness of storm generation (i.e higher probability to contain large and long-term southward IMF Bz component).

  6. Influence of residual plasma drift velocity on the post-arc sheath expansion of vacuum circuit breakers

    Energy Technology Data Exchange (ETDEWEB)

    Mo, Yongpeng; Shi, Zongqian; Jia, Shenli; Wang, Lijun [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Bai, Zhibin [State Grid Yulin Electric Power Supply Company, Shaanxi 719000 (China)

    2016-05-15

    The residual plasma in the inter-contact region of a vacuum circuit breaker moves towards the post-arc cathode at current zero, because the residual plasma mainly comes from the cathode spots during the arc burning process. In the most previous theoretical researches on the post-arc sheath expansion process of vacuum circuit breakers, only the thermal motion of residual plasma was taken into consideration. Alternately, the residual plasma was even assumed to be static at the moment of current zero in some simplified models. However, the influence of residual plasma drift velocity at current zero on the post-arc sheath expansion process was rarely investigated. In this paper, this effect is investigated by a one-dimensional particle-in-cell model. Simulation results indicate that the sheath expands slower with higher residual plasma drift velocity in the initial sheath expansion stage. However, with the increase of residual plasma drift velocity, the overall plasma density in the inter-contact region decreases faster, and the sheath expansion velocity increases earlier. Consequently, as a whole, it needs shorter time to expel the residual plasma from the inter-contact region. Furthermore, if the residual plasma drift velocity is high enough, the sheath expansion process ceases before it develops to the post-arc anode. Besides, the influence of the collisions between charges and neutrals is investigated as well in terms of the density of metal vapor. It shows that the residual plasma drift velocity takes remarkable effect only if the density of the metal vapor is relatively low, which corresponds to the circumstance of low-current interruptions.

  7. Influence of residual plasma drift velocity on the post-arc sheath expansion of vacuum circuit breakers

    Science.gov (United States)

    Mo, Yongpeng; Shi, Zongqian; Bai, Zhibin; Jia, Shenli; Wang, Lijun

    2016-05-01

    The residual plasma in the inter-contact region of a vacuum circuit breaker moves towards the post-arc cathode at current zero, because the residual plasma mainly comes from the cathode spots during the arc burning process. In the most previous theoretical researches on the post-arc sheath expansion process of vacuum circuit breakers, only the thermal motion of residual plasma was taken into consideration. Alternately, the residual plasma was even assumed to be static at the moment of current zero in some simplified models. However, the influence of residual plasma drift velocity at current zero on the post-arc sheath expansion process was rarely investigated. In this paper, this effect is investigated by a one-dimensional particle-in-cell model. Simulation results indicate that the sheath expands slower with higher residual plasma drift velocity in the initial sheath expansion stage. However, with the increase of residual plasma drift velocity, the overall plasma density in the inter-contact region decreases faster, and the sheath expansion velocity increases earlier. Consequently, as a whole, it needs shorter time to expel the residual plasma from the inter-contact region. Furthermore, if the residual plasma drift velocity is high enough, the sheath expansion process ceases before it develops to the post-arc anode. Besides, the influence of the collisions between charges and neutrals is investigated as well in terms of the density of metal vapor. It shows that the residual plasma drift velocity takes remarkable effect only if the density of the metal vapor is relatively low, which corresponds to the circumstance of low-current interruptions.

  8. Online platform for simulations of ion energy distribution functions behind a plasma boundary sheath

    Science.gov (United States)

    Wollny, Alexander; Shihab, Mohammed; Brinkmann, Ralf Peter

    2012-10-01

    Plasma processes, particularly plasma etching and plasma deposition are crucial for a large variety of industrial manufacturing purposes. For these processes the knowledge of the ion energy distribution function plays a key role. Measurements of the ion energy and ion angular distribution functions (IEDF, IADF) are at least challenging and often impossible in industrial processes. An alternative to measurements of the IEDF are simulations. With this contribution we present a self-consistent model available online for everyone. The simulation of ion energy and ion angular distribution functions involves the well known plasma boundary sheath model by Brinkmann [1-4], which is controlled via a web interface (http://sheath.tet.rub.de). After a successful simulation run all results are evaluable within the browser and ready for download for further analysis.[4pt] [1] R.P. Brinkmann, J. Phys. D: Appl. Phys. 44, 042002 (2011)[0pt] [2] R.P. Brinkmann, J. Phys. D: Appl. Phys. 42, 194009 (2009)[0pt] [3] R.P. Brinkmann, J. App. Phys. 102, 093303 (2007)[0pt] [4] M. Kratzer et al., J. Appl. Phys. 90, 2169 (2001)

  9. Chromospheric and Coronal Wave Generation in a Magnetic Flux Sheath

    CERN Document Server

    Kato, Yoshiaki; Hansteen, Viggo; Gudiksen, Boris; Wedemeyer, Sven; Carlsson, Mats

    2016-01-01

    Using radiation magnetohydrodynamic simulations of the solar atmospheric layers from the upper convection zone to the lower corona, we investigate the self-consistent excitation of slow magneto-acoustic body waves (slow modes) in a magnetic flux concentration. We find that the convective downdrafts in the close surroundings of a two-dimensional flux slab "pump" the plasma inside it in the downward direction. This action produces a downflow inside the flux slab, which encompasses ever higher layers, causing an upwardly propagating rarefaction wave. The slow mode, excited by the adiabatic compression of the downflow near the optical surface, travels along the magnetic field in the upward direction at the tube speed. It develops into a shock wave at chromospheric heights, where it dissipates, lifts the transition region, and produces an offspring in the form of a compressive wave that propagates further into the corona. In the wake of downflows and propagating shock waves, the atmosphere inside the flux slab in ...

  10. Physics of the intermediate layer between a plasma and a collisionless sheath and mathematical meaning of the Bohm criterion

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, N. A.; Benilov, M. S. [Departamento de Fisica, CCCEE, Universidade da Madeira Largo do Municipio, 9000 Funchal (Portugal)

    2012-07-15

    A transformation of the ion momentum equation simplifies a mathematical description of the transition layer between a quasi-neutral plasma and a collisionless sheath and clearly reveals the physics involved. Balance of forces acting on the ion fluid is delicate in the vicinity of the sonic point and weak effects come into play. For this reason, the passage of the ion fluid through the sonic point, which occurs in the transition layer, is governed not only by inertia and electrostatic force but also by space charge and ion-atom collisions and/or ionization. Occurrence of different scenarios of asymptotic matching in the plasma-sheath transition is analyzed by means of simple mathematical examples, asymptotic estimates, and numerical calculations. In the case of a collisionless sheath, the ion speed distribution plotted on the logarithmic scale reveals a plateau in the intermediate region between the sheath and the presheath. The value corresponding to this plateau has the meaning of speed with which ions leave the presheath and enter the sheath; the Bohm speed. The plateau is pronounced reasonably well provided that the ratio of the Debye length to the ion mean free path is of the order of 10{sup -3} or smaller. There is no such plateau if the sheath is collisional and hence no sense in talking of a speed with which ions enter the sheath.

  11. Bounds imposed on the sheath velocity of a dense plasma focus by conservation laws and ionization stability condition

    CERN Document Server

    Auluck, S K H

    2014-01-01

    Experimental data compiled over five decades of dense plasma focus research is consistent with the snowplow model of sheath propagation, based on the hypothetical balance between magnetic pressure driving the plasma into neutral gas ahead and wind pressure resisting its motion. The resulting sheath velocity, or the numerically proportional drive parameter, is known to be approximately constant for devices optimized for neutron production over 8 decades of capacitor bank energy. This paper shows that the validity of the snowplow hypothesis, with some correction, as well as the non-dependence of sheath velocity on device parameters, have their roots in local conservation laws for mass, momentum and energy coupled with the ionization stability condition. Both upper and lower bounds on sheath velocity are shown to be related to material constants of the working gas and independent of the device geometry and capacitor bank impedance.

  12. Bounds imposed on the sheath velocity of a dense plasma focus by conservation laws and ionization stability condition

    Science.gov (United States)

    Auluck, S. K. H.

    2014-09-01

    Experimental data compiled over five decades of dense plasma focus research are consistent with the snowplow model of sheath propagation, based on the hypothetical balance between magnetic pressure driving the plasma into neutral gas ahead and "wind pressure" resisting its motion. The resulting sheath velocity, or the numerically proportional "drive parameter," is known to be approximately constant for devices optimized for neutron production over 8 decades of capacitor bank energy. This paper shows that the validity of the snowplow hypothesis, with some correction, as well as the non-dependence of sheath velocity on device parameters, have their roots in local conservation laws for mass, momentum, and energy coupled with the ionization stability condition. Both upper and lower bounds on sheath velocity are shown to be related to material constants of the working gas and independent of the device geometry and capacitor bank impedance.

  13. Effect of Discharge Voltage on an Ion Sheath Formed at a Grid in a Multi-Dipole Discharge Plasma

    Institute of Scientific and Technical Information of China (English)

    M.K.Mishra; A.Phukan

    2008-01-01

    @@ It is experimentally demonstrated that a relatively strong ion-rich sheath formed at a fixed negative bias of the grid can be changed to arather weak ion sheath(sheath potential weakly retards dectrons)only by increasing the discharge voltage in the system.At sufficiently high negative grid bias,an increase of discharge voltage enhances the ion collection current at the grid.An explanation is put forward in support of this experimental observation.A slight density enhancement with a fall in plasma electron temperature is also observed with the increasing negative grid bias.

  14. Plasma-Sheath Instability in Hall Thrusters Due to Periodic Modulation of the Energy of Secondary Electrons in Cyclotron Motion

    Energy Technology Data Exchange (ETDEWEB)

    Sydorenko, D.; Smolyakov, A.; Kaganovich, I.; Raitses, Y.

    2008-04-23

    Particle-in-cell simulation of Hall thruster plasmas reveals a plasma-sheath instability manifesting itself as a rearrangement of the plasma sheath near the thruster channel walls accompanied by a sudden change of many discharge parameters. The instability develops when the sheath current as a function of the sheath voltage is in the negative conductivity regime. The major part of the sheath current is produced by beams of secondary electrons counter-streaming between the walls. The negative conductivity is the result of nonlinear dependence of beam-induced secondary electron emission on the plasma potential. The intensity of such emission is defined by the beam energy. The energy of the beam in crossed axial electric and radial magnetic fields is a quasi-periodical function of the phase of cyclotron rotation, which depends on the radial profile of the potential and the thruster channel width. There is a discrete set of stability intervals determined by the final phase of the cyclotron rotation of secondary electrons. As a result, a small variation of the thruster channel width may result in abrupt changes of plasma parameters if the plasma state jumps from one stability interval to another.

  15. Description of plasma focus current sheath as the Turner relaxed state of a Hall magnetofluid

    Science.gov (United States)

    Auluck, S. K. H.

    2009-12-01

    The central mystery of plasma focus research is the two orders-of-magnitude-higher-than-thermal fusion reaction rate and the fact that both the space-resolved neutron spectra and space-resolved reaction proton spectra show features which can be ascribed only to a rotational motion of the center-of-mass of the reacting deuteron population. It has been suggested earlier [S. K. H. Auluck, IEEE Trans. Plasma Sci. 25, 37 (1997)] that this and other experimental observations can be consistently explained in terms of a hypothesis involving rotation of the current carrying plasma annulus behind the imploding gas-dynamic shock. Such rotation (more generally, mass flow) is an in-built feature of relaxed state of a two-fluid plasma [R. N. Sudan, Phys. Rev. Lett. 42, 1277 (1979)]. Relaxation in the "Hall magnetofluid" approximation, in which the generalized Ohm's law includes the Hall effect term and the magnetic convection term but omits the contributions to the electric field from resistive dissipation, electron pressure gradient, thermoelectric effect, electron inertia, etc., has been extensively studied by many authors. In the present paper, Turner's [IEEE Trans. Plasma Sci. PS-14, 849 (1986)] degenerate solution for the relaxed state of the Hall magnetohydrodynamic plasma has been adapted to the case of an infinitely long annular current carrying plasma, a tractable idealization of the current sheath of a plasma focus. The resulting model is consistent with experimental values of ion kinetic energy and observation of predominantly radially directed neutron emission in good shots.

  16. Dusty plasma sheath-like structure in the region of lunar terminator

    Energy Technology Data Exchange (ETDEWEB)

    Popel, S. I.; Zelenyi, L. M. [Space Research Institute of the Russian Academy of Sciences, Moscow 117997, Russia and Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow Region 141700 (Russian Federation); Atamaniuk, B. [Space Research Center of the Polish Academy of Sciences, Warsaw 00-716 (Poland)

    2015-12-15

    The main properties of the dusty plasma layer near the surface over the illuminated and dark parts of the Moon are described. They are used to realize dusty plasma behaviour and to determine electric fields over the terminator region. Possibility of the existence of a dusty plasma sheath-like structure in the region of lunar terminator is shown. The electric fields excited in the terminator region are demonstrated to be on the order of 300 V/m. These electric fields can result in rise of dust particles of the size of 2–3 μm up to an altitude of about 30 cm over the lunar surface that explains the effect of “horizon glow” observed at the terminator by Surveyor lunar lander.

  17. Charge and Levitation of Grains in Plasma Sheath with Dust Thermic Emission

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    By taking into account thermic emission current from hot dust surface, the problem involved in dust charging and levitation of dust grains in plasma sheath has been researched. The results are compared to that without including thermal emission current while the system parameters are same. It is found that the thermal emission current has played a significant role on modifying the dust charging and balance levitations. Both of the charging numbers of dust and the dust radius in balance are dramatically reduced. The stability of dust levitation is also analyzed and discussed.

  18. First experimental studies of ion flow in 3 ion species plasmas at the presheath-sheath transition

    Science.gov (United States)

    Severn, Greg

    2016-09-01

    The Bohm sheath criterion is studied with laser-induced fluorescence (LIF) in three ion species plasmas using two tunable diode lasers. KrI or HeI is added to a low pressure unmagnetized dc hot filament discharge in a mixture of argon and xenon gas confined by surface multi-dipole magnetic fields. The argon and xenon ion velocity distribution functions are measured at the sheath-presheath boundary near a negatively biased boundary plate. The potential structures of the plasma sheath and presheath are measured by an emissive probe. Results are compared with previous experiments with Ar-Xe plasmas, where the two ion species were observed to reach the sheath edge at nearly the same speed. This speed was the ion sound speed of the system, which is consistent with the generalized Bohm criterion. In such two ion species plasmas instability enhanced collisional friction (IEF) was demonstrated to exist which accounted for the observed results. When three ion species are present, it is demonstrated under most circumstances the ions do not fall out of the plasma at their individual Bohm velocities. It is also shown that under most circumstances the ions do not fall out of the plasma at the system sound speed. Results are consistent with the presence of instabilities. Author gratefully acknowledges collaborators Dr. Noah Hershkowtiz, Dr. Chi-Shung Yip, Dept. of Engineering Physics, Univ. Wisconsin-Madison, and Dr. Scott Baalrud, Dept. Physics, Univ. Iowa. Thanks to US DOE, grant DE-SC00014226.

  19. Particle in cell calculation of plasma force on a small grain in a non-uniform collisional sheath

    CERN Document Server

    Hutchinson, I H

    2013-01-01

    The plasma force on grains of specified charge and height in a collisional plasma sheath are calculated using the multidimensional particle in cell code COPTIC. The background ion velocity distribution functions for the unperturbed sheath vary substantially with collisionality. The grain force is found to agree quite well with a combination of background electric field force plus ion drag force. However, the drag force must take account of the non-Maxwellian (and spatially varying) ion distribution function, and the collisional drag enhancement. It is shown how to translate the dimensionless results into practical equilibrium including other forces such as gravity.

  20. Pulsed ion sheath dynamics in a cylindrical bore for inner surface grid-enhanced plasma source ion implantation

    CERN Document Server

    Wang Jiu Li; Fan Song Hua; Yang Wu Bao; Yang Size

    2002-01-01

    Based on authors' recently proposed grid-enhanced plasma source ion implantation (GEPSII) technique for inner surface modification of materials with cylindrical geometry, the authors present the corresponding theoretical studies of the temporal evolution of the plasma ion sheath between the grid electrode and the target in a cylindrical bore. Typical results such as the ion sheath evolution, time-dependent ion density and time-integrated ion energy distribution at the target are calculated by solving Poisson's equation coupled with fluid equations for collisionless ions and Boltzmann assumption for electrons using finite difference methods. The calculated results can further verify the feasibility and superiority of this new technique

  1. Two-dimensional simulation and modeling for dynamic sheath expansion during plasma immersion ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Qin, S.; Zhou, Y.; Chan, C. [Northeastern Univ., Boston, MA (United States)

    1996-12-31

    Plasma immersion ion implantation (PIII) has been utilized as a low cost, low energy doping method for large area targets with applications to semiconductor manufacturing. They include doping, shallow junction formation, hydrogenation for poly-Si thin film transistors, and SIMOX (Separated by IMplant of OXygen) structure formation. The characteristics of the dynamic sheath expansion during PIII process is very important for the optimum PIII configuration design and process control in order to obtain more accurate doping results such as the implant dose and impurity profile. For example, the sheath thickness is critical to chamber design and monoenergetic ion implant for a more accurate control of as-implanted impurity profile of shallow junction and SIMOX structures. A PDP2 simulation code has been used to simulate PIII process which will aid in understanding the physics of PIII processes and obtain the optimum process parameters. This model was verified by comparing with the PDP2 computer simulations and the experimental results of the PIII doping processes.

  2. Dusty plasma sheath-like structure in the lunar terminator region

    Science.gov (United States)

    Popel, Sergey; Zelenyi, Lev; Atamaniuk, Barbara

    2016-07-01

    The main properties of the dusty plasma layer near the surface over the illuminated and dark parts of the Moon are described. They are used to realize dusty plasma behaviour and to determine electric fields over the terminator region. Possibility of the existence of a dusty plasma sheath-like structure [1] in the region of lunar terminator is shown. The electric fields excited in the terminator region are demonstrated to be on the order of 300 V/m. These electric fields can result in rise of dust particles of the size of a few micrometers up to an altitude of about 30 cm over the lunar surface that explains the effect of ``horizon glow" observed at the terminator by Surveyor lunar lander. This work was supported in part by the Presidium of the Russian Academy of Sciences (under Fundamental Research Program No. 7, ``Experimental and Theoretical Study of the Solar System Objects and Stellar Planet Systems. Transient Explosion Processes in Astrophysics" and the Russian Foundation for Basic Research (Project No. 15-02-05627-a). [1] S. I. Popel, L. M. Zelenyi, and B. Atamaniuk, Phys. Plasmas 22, 123701 (2015); doi: 10.1063/1.4937368.

  3. Temporal Evolution of the Plasma Sheath Surrounding Solar Cells in Low Earth Orbit

    Science.gov (United States)

    Willis, Emily M.; Pour, Maria Z. A.

    2017-01-01

    High voltage solar array interactions with the space environment can have a significant impact on array performance and spacecraft charging. Over the past 10 years, data from the International Space Station has allowed for detailed observations of these interactions over long periods of time. Some of the surprising observations have been floating potential transients, which were not expected and are not reproduced by existing models. In order to understand the underlying processes producing these transients, the temporal evolution of the plasma sheath surrounding the solar cells in low Earth orbit is being investigated. This study includes lumped element modeling and particle-in-cell simulation methods. This presentation will focus on recent results from the on-going investigations.

  4. Stability analysis of the Gravito-Electrostatic Sheath-based solar plasma equilibrium

    Science.gov (United States)

    Karmakar, P. K.; Goutam, H. P.; Lal, M.; Dwivedi, C. B.

    2016-08-01

    We present approximate solutions of non-local linear perturbational analysis for discussing the stability properties of the Gravito-Electrostatic Sheath (GES)-based solar plasma equilibrium, which is indeed non-uniform on both the bounded and unbounded scales. The relevant physical variables undergoing perturbations are the self-solar gravity, electrostatic potential and plasma flow along with plasma population density. We methodologically derive linear dispersion relation for the GES fluctuations, and solve it numerically to identify and characterize the existent possible natural normal modes. Three distinct natural normal modes are identified and named as the GES-oscillator mode, GES-wave mode and usual (classical) p-mode. In the solar wind plasma, only the p-mode survives. These modes are found to be linearly unstable in wide-range of the Jeans-normalized wavenumber, k. The local plane-wave approximation marginally limits the validity or reliability of the obtained results in certain radial- and k-domains only. The phase and group velocities, time periods of these fluctuation modes are investigated. It is interesting to note that, the oscillation time periods of these modes are 3-10 min, which match exactly with those of the observed helio-seismic waves and solar surface oscillations. The proposed GES model provides a novel physical view of the waves and oscillations of the Sun from a new perspective of plasma-wall interaction physics. Due to simplified nature of the considered GES equilibrium, it is a neonatal stage to highlight its applicability in the real Sun. The proposed GES model and subsequent fluctuation analysis need further improvements to make it more realistic.

  5. Impact of plasma sheath on rocket-based E-region ion measurements

    Science.gov (United States)

    Imtiaz, Nadia; Burchill, Johnathan; Marchand, Richard

    2015-01-01

    We model the particle velocity distribution functions around the entrance window of the Suprathermal Ion Imager (SII). The SII sensor was mounted on a 1 m boom carried by the scientific payload of NASA rocket 36.234 as part of Joule II mission to investigate Joule heating in the E-region ionosphere. The rocket flew above Northern Alaska on 19 January 2007. The payload was spin-stabilized with a period of 1.6 s, giving an apparent rotation of the ion flow velocity in the frame of reference of the payload. The SII sensor is an electrostatic analyzer that measures two dimensional slices of the distribution of the kinetic energies and arrival-angles of low energy ions. The study is concerned with the interpretation of data obtained from the SII sensor. For this purpose, we numerically investigate ram velocity effects on ions velocity distributions in the vicinity of the SII sensor aperture at an altitudes of approximately 150 km. The electrostatic sheath profiles surrounding the SII sensor, boom and payload are calculated numerically with the PIC code PTetra. It is observed that the direction of the ion flow velocity modifies the plasma sheath potential profile. This in turn impacts the velocity distributions of NO+ and ions at the aperture of the particle sensor. The velocity distribution functions at the sensor aperture are calculated by using test-particle modeling. These particle distribution functions are then used to inject particles in the sensor, and calculate the fluxes on the sensor microchannel plate (MCP), from which comparisons with the measurements can be made.

  6. Secondary electron emission from plasma-generated nanostructured tungsten fuzz

    Science.gov (United States)

    Patino, M.; Raitses, Y.; Wirz, R.

    2016-11-01

    Recently, several researchers [e.g., Yang et al., Sci. Rep. 5, 10959 (2015)] have shown that tungsten fuzz can grow on a hot tungsten surface under bombardment by energetic helium ions in different plasma discharges and applications, including magnetic fusion devices with plasma facing tungsten components. This work reports the direct measurements of the total effective secondary electron emission (SEE) from tungsten fuzz. Using dedicated material surface diagnostics and in-situ characterization, we find two important results: (1) SEE values for tungsten fuzz are 40%-63% lower than for smooth tungsten and (2) the SEE values for tungsten fuzz are independent of the angle of the incident electron. The reduction in SEE from tungsten fuzz is most pronounced at high incident angles, which has important implications for many plasma devices since in a negative-going sheath the potential structure leads to relatively high incident angles for the electrons at the plasma confining walls. Overall, low SEE will create a relatively higher sheath potential difference that reduces plasma electron energy loss to the confining wall. Thus, the presence or self-generation in a plasma of a low SEE surface such as tungsten fuzz can be desirable for improved performance of many plasma devices.

  7. Characterization of the ionization degree evolution of the PF-400J plasma sheath by means of time resolved optical spectroscopy

    Science.gov (United States)

    Avaria, G.; Cuadrado, O.; Moreno, J.; Pavez, C.; Soto, L.

    2016-05-01

    Spectral measurements in the visible range of the plasma sheath ionization degree evolution on the plasma focus device PF-400J are presented. The measurements were done with temporal and spatial resolution in a plasma focus device of low stored energy: PF-400J (176-539 J, 880 nF, 20-35 kV, quarter period ∼ 300ns) [1]. An ICCD was attached to a 0.5 m focal length visible spectrometer, which enabled the acquisition of time resolved spectrum with 20 ns integration time throughout the whole current pulse evolution. The spatial resolution was attained using a set of lenses which allowed the focusing of a small volume of the plasma sheath in different positions of the inter-electrode space. Discharges were carried out in mixtures of Hydrogen with gases in different proportions: 5% Neon, 5% Krypton and 2% Nitrogen. Discharges using Neon as an impurity showed no ionization of the gas, just a very low intensity emission of Ne I at times much larger than the maximum current. Nitrogen, on the other hand, showed a high ionization reaching N V (N 4+) at the end of the axial phase, with a distinctive evolution of the ionization degree as the plasma sheath moved towards the end of the electrodes. A mixed result was found when using Krypton, since the ionization degree only reached levels around Kr II/III, even though it has an ionization potential lower than Neon.

  8. Expanding sheath in a bounded plasma in the context of the post-arc phase of a vacuum arc

    Energy Technology Data Exchange (ETDEWEB)

    Sarrailh, P [LAboratoire PLAsma et Conversion de l' Energie (LAPLACE), UMR5213, Universite Paul Sabatier, bat. 3R2, 118 route de Narbonne, 31062 Toulouse cedex 4 (France); Garrigues, L [LAboratoire PLAsma et Conversion de l' Energie (LAPLACE), UMR5213, Universite Paul Sabatier, bat. 3R2, 118 route de Narbonne, 31062 Toulouse cedex 4 (France); Hagelaar, G J M [LAboratoire PLAsma et Conversion de l' Energie (LAPLACE), UMR5213, Universite Paul Sabatier, bat. 3R2, 118 route de Narbonne, 31062 Toulouse cedex 4 (France); Sandolache, G [Schneider Electric Centre de Recherche, 38 TEC, 38050 Grenoble Cedex 09 (France); Rowe, S [Schneider Electric Centre de Recherche, 38 TEC, 38050 Grenoble Cedex 09 (France); Jusselin, B [Schneider Electric Centre de Recherche, 38 TEC, 38050 Grenoble Cedex 09 (France); Boeuf, J P [LAboratoire PLAsma et Conversion de l' Energie (LAPLACE), UMR5213, Universite Paul Sabatier, bat. 3R2, 118 route de Narbonne, 31062 Toulouse cedex 4 (France)

    2008-01-07

    A numerical model of sheath expansion and plasma decay in a bounded plasma subjected to a linearly increasing voltage has been developed. Numerical results obtained with a hybrid-MB model (Maxwell-Boltzmann electrons, particle ions and Poisson's equations) are compared with analytical theory and results from particle-in-cell (PIC) simulations. The hybrid-MB model is similar to models used for plasma immersion ion implantation except that plasma decay due to particle losses to the electrodes is taken into account. The comparisons with more accurate and much more time consuming PIC models show that the hybrid-MB model provides a very satisfactory description of the sheath expansion and plasma decay even for conditions where the grid spacing is much larger than the Debye length. The model is used for high plasma density conditions, corresponding to the post-arc phase of a vacuum arc circuit breaker where a vacuum gap is subject to a transient recovery voltage (TRV) after it has ceased to sustain a vacuum arc. The results show that the plasma sheath expansion is subsonic under these conditions, and that the plasma starts to decay exponentially after two rarefaction waves from the cathode and anode merge in the centre of the gap. A parametric study also shows the strong influence of the TRV rise rate and initial plasma density on the plasma decay time and on the ion current collected by each electrode. The effect of collisions between charged particles and metal atoms resulting for the electrode evaporation is also discussed.

  9. The Study Of Low-Frequency Instabilities Of Current Sheaths Of Space Plasma Within The Quasi-Linear Theory

    Science.gov (United States)

    Lyahov, Vladimir; Neshchadim, Vladimir

    2015-04-01

    Investigation of the stability nonelectroneutral current sheets in the linear approximation [1-4] gives information only on the initial stage of development of perturbations when their amplitudes are small. Within the framework of the quasi-linear theory one can give an answer to the question of how long the initial perturbations can grow and how change the equilibrium state of the plasma current sheet under the reverse effect of these perturbations. We derive a system of nonlinear kinetic equation with self-consistent electromagnetic field in order to study the evolution of the distribution function of the background plasma current sheet in the approximation of low-frequency eigenmodes of instabilities. Evolution equation was obtained for the perturbation of the electromagnetic field and the instability growth rate in the current sheet. Algorithms were tested for solutions of the equations obtained. 1. Lyahov V.V., Neshchadim V.M. Kinetic theory of the current sheath. I. On polarization of an equilibrium current sheath// Advances in Space Research. -2012. -Vol. 50. -P. 318-326. 2. Lyahov V.V., Neshchadim V.M. Kinetic theory of the current sheath. II. Effect of polarization on the stability of a current sheath.// Advances in Space Research.-2013. -Vol. 51. -P. 730-741. 3. Lyahov V.V., Neshchadim V.M. The Effect of Polarization on the Stability of Current Sheaths in Space Plasma // EGU General Assembly 2013, held 7-12 April, 2013 in Vienna, Austria, id. EGU2013-1379, 04/2013, Bibliographic Code: 2013EGUGA..15.1379L 4. Lyahov V.V., Neshchadim V.M. About the eguilibrium and stability of nonelectroneutral current sheats // Advances in Space Research.-2014. -Vol. 54. -P. 901-907.

  10. Probing the sheath electric field with a crystal lattice by using thermophoresis in dusty plasma

    CERN Document Server

    Land, Victor; Matthews, Lorin; Hyde, Truell

    2010-01-01

    A two-dimensional dust crystal levitated in the sheath of a modified Gaseous Electronics Conference (GEC) reference cell is manipulated by heating or cooling the lower electrode. The dust charge is obtained by measuring global characteristics of the levitated crystal obtained from top-view pictures. From the force balance, the electric field in the sheath is reconstructed. From the Bohm criterion, we conclude that the dust crystal is levitated mainly above and just below the classical Bohm point.

  11. Stochastic heating of a single Brownian particle by charge fluctuations in a radio-frequency produced plasma sheath.

    Science.gov (United States)

    Schmidt, Christian; Piel, Alexander

    2015-10-01

    The Brownian motion of a single particle in the plasma sheath is studied to separate the effect of stochastic heating by charge fluctuations from heating by collective effects. By measuring the particle velocities in the ballistic regime and by carefully determining the particle mass from the Epstein drag it is shown that for a pressure of 10 Pa, which is typical of many experiments, the proper kinetic temperature of the Brownian particle remains close to the gas temperature and rises only slightly with particle size. This weak effect is confirmed by a detailed model for charging and charge fluctuations in the sheath. A substantial temperature rise is found for decreasing pressure, which approximately shows the expected scaling with p(-2). The system under study is an example for non-equilibrium Brownian motion under the influence of white noise without corresponding dissipation.

  12. Advanced targets, diagnostics and applications of laser-generated plasmas

    Science.gov (United States)

    Torrisi, L.

    2015-04-01

    High-intensity sub-nanosecond-pulsed lasers irradiating thin targets in vacuum permit generation of electrons and ion acceleration and high photon yield emission in non-equilibrium plasmas. At intensities higher than 1015 W/cm2 thin foils can be irradiated in the target-normal sheath acceleration regime driving ion acceleration in the forward direction above 1 MeV per charge state. The distributions of emitted ions in terms of energy, charge state and angular emission are controlled by laser parameters, irradiation conditions, target geometry and composition. Advanced targets can be employed to increase the laser absorption in thin foils and to enhance the energy and the yield of the ion acceleration process. Semiconductor detectors, Thomson parabola spectrometer and streak camera can be employed as online plasma diagnostics to monitor the plasma parameters, shot by shot. Some applications in the field of the multiple ion implantation, hadrontherapy and nuclear physics are reported.

  13. A different way of looking at the Plasma-Sheath boundary when both the ion mean free path and the Debye length are finite

    Science.gov (United States)

    Franklin, Raoul

    2003-10-01

    The plasma-sheath boundary region has been the subject of study for eighty years, but there are aspects that are still not well understood. At low pressures it is clear that the structure is - plasma-transition layer-thin electron sheath-(thick)ion sheath, and at high pressures it is plasma-collisional sheath, without the need to introduce further structure. As the plasma becomes collisional, there is the question as to how long it is appropriate to talk in terms of the Bohm criterion. Furthermore if the total sheath region is many ion mean free paths long, then the ions may be brought back into collisional equilibrium with the electric field, even though their speed exceeds the ion sound speed of the plasma from which they derive. We examine computationally this intermediate pressure region in terms of of how to describe the ion motion, showing how the two limits go over from the one to the other. Most practical plasmas in gas discharges are in such a transitional pressure region.

  14. Surface rippling by oblique ion incidence during plasma etching of silicon: Experimental demonstration using sheath control plates

    Science.gov (United States)

    Nakazaki, Nobuya; Matsumoto, Haruka; Eriguchi, Koji; Ono, Kouichi

    2015-09-01

    In the microfabrication of 3D transistors (e.g. Fin-FET), the sidewall roughness, such as LER and LWR caused by off-normal or oblique ion incidence during plasma etching, is a critical issue to be resolved, which in turn requires a better understanding of the effects of ion incidence angle θi on surface roughening. This paper presents surface roughening and rippling by oblique ion incidence during inductively coupled plasma etching of Si in Cl2, using the experimental setup as in our previous study. The oblique ion incidence was achieved by sheath control plates, which were placed on and electrically connected to the wafer stage. The plates had slits to vary the sheath structure thereon and to extract ions from plasma to samples on the bottom and/or side of the slits. The results indicated that at θi ~ 40° or oblique incidence; ripple structures were formed on surfaces perpendicularly to the direction of ion incidence, on the other hand, at θi ~ 80° or grazing incidence, small ripples or slit like grooves were formed on surfaces parallel to the direction of ion incidence, as predicted in our previous numerical investigations.

  15. Intense ion beam generation, plasma radiation source and plasma opening switch research

    Science.gov (United States)

    Hammer, D. A.; Coleman, M. D.; Qi, N.; Similon, P. L.; Sudan, R. N.

    1989-04-01

    This report describes research on intense ion beam diodes, plasma opening switches and dense z-pinch plasma radiators. Laser induced fluorescence spectroscopy has been used to map the electrostatic potential profile in a plasma-prefilled magnetically insulated ion diode. In a simple planar diode, the measured profile is inconsistent with the electrons being confined in a sheath near the cathode by the magnetic field. Rather, the profile implies the presence of electrons throughout the accelerating gap. A theoretical model of the penetration of current and magnetic field into a plasma, and of the current-driven effective collision frequency has been developed. The snowplow action of the rising magnetic field causes a steep rise in the plasma density at the leading edge. The subsequent multistreaming of the ions caused by ion reflection at the current layer could lead to ion heating through collective effects. The two-dimensional electron flow in the plasma cathode vacuum gap is also treated. Dense z-pinch plasma radiation source experiments have been initiated on the LION accelerator using gas puff and fine wire loads. The x-pinch was found to be a more effective way to generate soft x-rays than a single wire pinch or a gas puff implosion. Plasma opening switch experiments being initiated, and plasma anode ion diode development work being terminated are also briefly described.

  16. Breakdown of a space charge limited regime of a sheath in a weakly collisional plasma bounded by walls with secondary electron emission.

    Science.gov (United States)

    Sydorenko, D; Kaganovich, I; Raitses, Y; Smolyakov, A

    2009-10-02

    A new regime of plasma-wall interaction is identified in particle-in-cell simulations of a hot plasma bounded by walls with secondary electron emission. Such a plasma has a strongly non-Maxwellian electron velocity distribution function and consists of bulk plasma electrons and beams of secondary electrons. In the new regime, the plasma sheath is not in a steady space charge limited state even though the secondary electron emission produced by the plasma bulk electrons is so intense that the corresponding partial emission coefficient exceeds unity. Instead, the plasma-sheath system performs relaxation oscillations by switching quasiperiodically between the space charge limited and non-space-charge limited states.

  17. Numerical solutions of sheath structures around a moderate negative biased electron-emitting cylindrical probe in low-density isotropic plasma

    Science.gov (United States)

    Din, Alif

    2017-09-01

    The potential structures around a moderate negative biased electron-emitting cylindrical probe in low-density isotropic plasma are calculated in the collisionless sheath region. The formalisms, equations, and solutions for the entire electron emitting range (i.e., subcritical, critical, and supercritical) from the cylindrical emitter and collector surface are discussed. The plasma-electron and emitted-electron are assumed to have half Maxwellian velocity distributions at their respective sheath entering boundaries with cold plasma ions. Poisson's equation is solved numerically in the sheath region for the subcritical, critical, and supercritical emissions. The I-V characteristics for these three cases are presented in tabular form. The results show that we need very high emitted-electron current to solve Poisson's equation for the critical and spercritical emissions. Thus, the floating potential is far away in these scenarios. Also, the number density of emitted-and plasma-electron are comparable at the sheath edge so we cannot neglect the density of former in comparison with latter at the sheath edge.

  18. Characteristics of sheath-driven tangential flow produced by a low-current DC surface glow discharge plasma actuator

    Science.gov (United States)

    Shin, Jichul; Shajid Rahman, Mohammad

    2014-08-01

    An experimental investigation of low-speed flow actuation at near-atmospheric pressure is presented. The flow actuation is achieved via low-current ( \\lesssim 1.0 mA) continuous or pulsed DC surface glow discharge plasma. The plasma actuator, consisting of two sharp-edged nickel electrodes, produces a tangential flow in a direction from anode to cathode, and is visualized using high-speed schlieren photography. The induced flow velocity estimated via the schlieren images reaches up to 5 m/s in test cases. The actuation capability increases with pressure and electrode gap distances, and the induced flow velocity increases logarithmically with the discharge power. Pulsed DC exhibits slightly improved actuation capability with better directionality. An analytic estimation of induced flow velocity obtained based on ion momentum in the cathode sheath and gas dynamics in one-dimensional flow yields values similar to those measured.

  19. Observation of ion-ion counter streaming instability in presheath-sheath region of a mesh grid immersed in low temperature plasma

    Science.gov (United States)

    Prasad Kella, Vara; Ghosh, J.; Chattopadhyay, P. K.; Sharma, D.; Saxena, Y. C.

    2017-03-01

    Instabilities in the sheath-presheath region formed in plasma-boundary layers are known to modify the particle flow velocities and their distribution functions, hence influencing the particle transport in this region significantly. In this paper, experimental observations of the ion-ion counter streaming instability excited in the sheath-presheath region of Argon (Ar), Helium (He), and Ar + He plasmas have been reported. These instabilities are excited in the vicinity of a stainless steel mesh grid placed inside the plasma. Floating potential (FP) fluctuations from the grid and from a movable Langmuir probe placed in the sheath-presheath region are measured. The frequency spectra of FP fluctuations in an argon plasma show a dominant broad peak in the range of 10-20 kHz centering around 15 kHz, which is identified as due to the ion-ion counter streaming instability. This frequency peak exists only in the sheath-presheath region and ceases to exist when the mesh grid is covered with a thin metal foil from one side, which restricts the counter streaming of the ions. The measured wave number, k, of the wave matches quite well with the calculated one from the dispersion relation of ion-ion counter streaming instability. The experiments are repeated to study the instability in He and Ar + He (two ion species) plasmas in similar experimental conditions. The neutral pressure threshold for sustenance of this instability has also been observed.

  20. Multi-wavelength microflow cytometer using groove-generated sheath flow.

    Science.gov (United States)

    Golden, Joel P; Kim, Jason S; Erickson, Jeffrey S; Hilliard, Lisa R; Howell, Peter B; Anderson, George P; Nasir, Mansoor; Ligler, Frances S

    2009-07-07

    A microflow cytometer was developed that ensheathed the sample (core) fluid on all sides and interrogated each particle in the sample stream at four different wavelengths. Sheathing was achieved by first sandwiching the core fluid with the sheath fluid laterally via fluid focusing. Chevron-shaped groove features fabricated in the top and bottom of the channel directed sheath fluid from the sides to the top and bottom of the channel, completely surrounding the sample stream. Optical fibers inserted into guide channels provided excitation light from diode lasers at 532 and 635 nm and collected the emission wavelengths. Two emission collection fibers were connected to PMTs through a multimode fiber splitter and optical filters for detection at 635 nm (scatter), 665 nm and 700 nm (microsphere identification) and 565 nm (phycoerythrin tracer). The cytometer was capable of discriminating microspheres with different amounts of the fluorophores used for coding and detecting the presence of a phycoerythrin antibody complex on the surface of the microspheres. Assays for Escherichia coli were compared with a commercial Luminex flow cytometer.

  1. Low Temperature Plasmas Generated and Sustained Indefinitely Using a Focused Microwave Beam

    Science.gov (United States)

    Reid, Remington; Hoff, Brad; Lepell, Paul; AFRL Team

    2016-10-01

    The Air Force Research Laboratory has constructed a device that can initiate a plasma discharge in a focused microwave beam and sustain it indefinitely. A 10 kW, 4.5 GHz beam is passed through a vacuum chamber outfitted with pressure windows that are transparent to 4.5 GHz radiation. The pressure windows are large enough in diameter to prevent any interactions between the beam and the metallic chamber. The entire experiment is housed inside an anechoic chamber to minimize reflections. This novel plasma source generates low temperature, low density plasmas that have no contact with the walls which minimizes contamination and sheath formation.

  2. Generation of anomalously energetic suprathermal electrons by an electron beam interacting with a nonuniform plasma

    CERN Document Server

    Sydorenko, D; Chen, L; Ventzek, P L G

    2015-01-01

    Generation of anomalously energetic suprathermal electrons was observed in simulation of a high- voltage dc discharge with electron emission from the cathode. An electron beam produced by the emission interacts with the nonuniform plasma in the discharge via a two-stream instability. Efficient energy transfer from the beam to the plasma electrons is ensured by the plasma nonuniformity. The electron beam excites plasma waves whose wavelength and phase speed gradually decrease towards anode. The short waves near the anode accelerate plasma bulk electrons to suprathermal energies. The sheath near the anode reflects some of the accelerated electrons back into the plasma. These electrons travel through the plasma, reflect near the cathode, and enter the accelerating area again but with a higher energy than before. Such particles are accelerated to energies much higher than after the first acceleration. This mechanism plays a role in explaining earlier experimental observations of energetic suprathermal electrons i...

  3. Optical plasma torch electron bunch generation in plasma wakefield accelerators

    Directory of Open Access Journals (Sweden)

    G. Wittig

    2015-08-01

    Full Text Available A novel, flexible method of witness electron bunch generation in plasma wakefield accelerators is described. A quasistationary plasma region is ignited by a focused laser pulse prior to the arrival of the plasma wave. This localized, shapeable optical plasma torch causes a strong distortion of the plasma blowout during passage of the electron driver bunch, leading to collective alteration of plasma electron trajectories and to controlled injection. This optically steered injection is more flexible and faster when compared to hydrodynamically controlled gas density transition injection methods.

  4. Theory of the Electron Sheath and Presheath

    CERN Document Server

    Scheiner, Brett; Yee, Benjamin T; Hopkins, Matthew M; Barnat, Edward V

    2015-01-01

    Electron sheaths are commonly found near Langmuir probes collecting the electron saturation current. The common assumption is that the probe collects the random flux of electrons incident on the sheath, which tacitly implies that there is no electron presheath and that the flux collected is due to a velocity space truncation of the electron velocity distribution function (EVDF). This work provides a dedicated theory of electron sheaths, which suggests that they are not so simple. Motivated by EVDFs observed in Particle-In-Cell (PIC) simulations, a 1D model for the electron sheath and presheath is developed. In the model, under low temperature plasma conditions ($T_e\\gg T_i$), an electron pressure gradient accelerates electrons in the presheath to a flow velocity that exceeds the electron thermal speed at the sheath edge. This pressure gradient generates large flow velocities compared to what would be generated by ballistic motion in response to the electric field. It is found that in many situations, under co...

  5. A hard microflow cytometer using groove-generated sheath flow for multiplexed bead and cell assays.

    Science.gov (United States)

    Thangawng, Abel L; Kim, Jason S; Golden, Joel P; Anderson, George P; Robertson, Kelly L; Low, Vyechi; Ligler, Frances S

    2010-11-01

    With a view toward developing a rugged microflow cytometer, a sheath flow system was micromachined in hard plastic (polymethylmethacrylate) for analysis of particles and cells using optical detection. Six optical fibers were incorporated into the interrogation region of the chip, in which hydrodynamic focusing narrowed the core stream to ~35 μm × 40 μm. The use of a relatively large channel at the inlet as well as in the interrogation region (375 μm × 125 μm) successfully minimized the risk of clogging. The device could withstand pressures greater than 100 psi without leaking. Assays using both coded microparticles and cells were demonstrated using the microflow cytometer. Multiplexed immunoassays detected nine different bacteria and toxins using a single mixture of coded microspheres. A549 cancer cells processed with locked nucleic acid probes were evaluated using fluorescence in situ hybridization.

  6. Modelling of new generation plasma optical devices

    Directory of Open Access Journals (Sweden)

    Litovko Irina V.

    2016-06-01

    Full Text Available The paper presents new generation plasma optical devices based on the electrostatic plasma lens configuration that opens a novel attractive possibility for effective high-tech practical applications. Original approaches to use of plasma accelerators with closed electron drift and open walls for the creation of a cost-effective low-maintenance plasma lens with positive space charge and possible application for low-cost, low-energy rocket engine are described. The preliminary experimental, theoretical and simulation results are presented. It is noted that the presented plasma devices are attractive for many different applications in the state-of-the-art vacuum-plasma processing.

  7. The effect of anode shape on neon soft x-ray emissions and current sheath configuration in plasma focus device

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, M A; Sobhanian, S [Faculty of Physics, University of Tabriz, Tabriz (Iran, Islamic Republic of); Wong, C S [Plasma Research Laboratory, Physics Department, University of Malaya, Kuala Lumpur (Malaysia); Lee, S; Lee, P; Rawat, R S, E-mail: rajdeep.rawat@nie.edu.s [Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University (Singapore)

    2009-02-21

    The effect of three different anode shapes, flat, tapered and hemispherical, on the x-ray emission characteristics of a neon filled UNU-ICTP plasma focus device is investigated. The current sheath dynamics, in the radial collapse phase, has been simultaneously interrogated using the laser shadowgraphy method to understand the variation in x-ray emission characteristics for anodes of different shapes used in the experiments. The maximum neon soft x-ray (SXR) yield for the flat anode is about 7.5 {+-} 0.4 J at 4 mbar, whereas for hemispherical and tapered anodes the neon SXR is almost halved with the optimum pressure shifting to a lower value of 3 mbar. The laser shadowgraphic images confirm that the reduction in the overall neon SXR yield is due to the reduced focused plasma column length for these anodes. The relative HXR yield was the highest for the hemispherical anode followed by the tapered and the flat anodes in that order. The shadowgraphic images and the voltage probe signals confirmed that for the hemispherical anode the multiple-pinch phenomenon was most commonly observed, which could be responsible for multiple HXR bursts for this anode with maximum HXR yields.

  8. Plasma generation induced by triboelectrification

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Singh, Shailendra Vikram; Michelsen, Poul

    2009-01-01

    A gas discharge plasma can be induced by triboelectrification around a sliding contact. The detailed physical mechanism of triboelectrification is unknown, but an empirical classification scheme can be referred to in practice. It is reported that intense ultra-violet emission from a plasma...

  9. Proton driven plasma wakefield generation in a parabolic plasma channel

    Science.gov (United States)

    Golian, Y.; Dorranian, D.

    2016-11-01

    An analytical model for the interaction of charged particle beams and plasma for a wakefield generation in a parabolic plasma channel is presented. In the suggested model, the plasma density profile has a minimum value on the propagation axis. A Gaussian proton beam is employed to excite the plasma wakefield in the channel. While previous works investigated on the simulation results and on the perturbation techniques in case of laser wakefield accelerations for a parabolic channel, we have carried out an analytical model and solved the accelerating field equation for proton beam in a parabolic plasma channel. The solution is expressed by Whittaker (hypergeometric) functions. Effects of plasma channel radius, proton bunch parameters and plasma parameters on the accelerating processes of proton driven plasma wakefield acceleration are studied. Results show that the higher accelerating fields could be generated in the PWFA scheme with modest reductions in the bunch size. Also, the modest increment in plasma channel radius is needed to obtain maximum accelerating gradient. In addition, the simulations of longitudinal and total radial wakefield in parabolic plasma channel are presented using LCODE. It is observed that the longitudinal wakefield generated by the bunch decreases with the distance behind the bunch while total radial wakefield increases with the distance behind the bunch.

  10. Effect of driving frequency on the electron energy distribution function and electron-sheath interaction in a low pressure capacitively coupled plasma

    Science.gov (United States)

    Sharma, S.; Sirse, N.; Kaw, P. K.; Turner, M. M.; Ellingboe, A. R.

    2016-11-01

    By using a self-consistent particle-in-cell simulation, we investigated the effect of driving frequency (27.12-70 MHz) on the electron energy distribution function (EEDF) and electron-sheath interaction in a low pressure (5 mTorr) capacitively coupled Ar discharge for a fixed discharge voltage. We observed a mode transition with driving frequency, changing the shape of EEDF from a strongly bi-Maxwellian at a driving frequency of 27.12 MHz to a convex type distribution at an intermediate frequency, 50 MHz, and finally becomes a weak bi-Maxwellian at a higher driving frequency, i.e., above 50 MHz. The transition is caused by the electric field transients, which is of the order of electron plasma frequency caused by the energetic "beams" of electrons ejected from near the sheath edge. Below the transition frequency, 50 MHz, these high energy electrons redistribute their energy with low energy electrons, thereby increasing the effective electron temperature in the plasma, whereas the plasma density remains nearly constant. Above the transition frequency, high-energy electrons are confined between opposite sheaths, which increase the ionization probability and therefore the plasma density increases drastically.

  11. Hollow-Cathode Source Generates Plasma

    Science.gov (United States)

    Deininger, W. D.; Aston, G.; Pless, L. C.

    1989-01-01

    Device generates argon, krypton, or xenon plasma via thermionic emission and electrical discharge within hollow cathode and ejects plasma into surrounding vacuum. Goes from cold start up to full operation in less than 5 s after initial application of power. Exposed to moist air between operations without significant degradation of starting and running characteristics. Plasma generated by electrical discharge in cathode barrel sustained and aided by thermionic emission from emitter tube. Emitter tube does not depend on rare-earth oxides, making it vulnerable to contamination by exposure to atmosphere. Device modified for use as source of plasma in laboratory experiments or industrial processes.

  12. Physics issues associated with low-beta plasma generators

    Science.gov (United States)

    Borovsky, Joseph E.

    1992-01-01

    Kinetic aspects of MHD generators are explored by examining the propagation of dense, low-beta streams of plasma. Three situations are considered: the basic principles of plasma-stream propagation, the propagation of plasma streams into vacuum, and the propagation of plasma streams into ambient plasmas. These three situations are analogous to plasma generators, plasma generators with vacuum loads, and plasma generators with plasma loads. Kinetic (microphysics) aspects include oscillations of the generator plasma, the effects of diocotron instabilities, the acceleration of particles, the starvation of current systems, and plasma-wave production.

  13. Chaotic-to-ordered state transition of cathode-sheath instabilities in DC glow discharge plasmas

    Indian Academy of Sciences (India)

    Md Nurujjaman; A N Sekar Iyengar

    2006-08-01

    Transition from chaotic to ordered state has been observed during the initial stage of a discharge in a cylindrical DC glow discharge plasma. Initially it shows a chaotic behavior but increasing the discharge voltage changes the characteristics of the discharge glow and shows a period subtraction of order 7 period → 5 period → 3 period → 1 period, i.e. the system goes to single mode through odd cycle subtraction. On further increasing the discharge voltage, the system goes through period doubling, like 1 period → 2 period → 4 period. On further increasing the voltage, the system goes to stable state through two period subtraction, like 4 period → 2 period → stable.

  14. Using the cold plasma dispersion relation and whistler mode waves to quantify the antenna sheath impedance of the Van Allen Probes EFW instrument

    Science.gov (United States)

    Hartley, D. P.; Kletzing, C. A.; Kurth, W. S.; Bounds, S. R.; Averkamp, T. F.; Hospodarsky, G. B.; Wygant, J. R.; Bonnell, J. W.; Santolík, O.; Watt, C. E. J.

    2016-05-01

    Cold plasma theory and parallel wave propagation are often assumed when approximating the whistler mode magnetic field wave power from electric field observations. The current study is the first to include the wave normal angle from the Electric and Magnetic Field Instrument Suite and Integrated Science package on board the Van Allen Probes in the conversion factor, thus allowing for the accuracy of these assumptions to be quantified. Results indicate that removing the assumption of parallel propagation does not significantly affect calculated plasmaspheric hiss wave powers. Hence, the assumption of parallel propagation is valid. For chorus waves, inclusion of the wave normal angle in the conversion factor leads to significant alterations in the distribution of wave power ratios (observed/ calculated); the percentage of overestimates decreases, the percentage of underestimates increases, and the spread of values is significantly reduced. Calculated plasmaspheric hiss wave powers are, on average, a good estimate of those observed, whereas calculated chorus wave powers are persistently and systematically underestimated. Investigation of wave power ratios (observed/calculated), as a function of frequency and plasma density, reveals a structure consistent with signal attenuation via the formation of a plasma sheath around the Electric Field and Waves spherical double probes instrument. A simple, density-dependent model is developed in order to quantify this effect of variable impedance between the electric field antenna and the plasma interface. This sheath impedance model is then demonstrated to be successful in significantly improving agreement between calculated and observed power spectra and wave powers.

  15. A non-equilibrium plasma generator

    Energy Technology Data Exchange (ETDEWEB)

    Lineberry, J.T.; Wu, Y.C.L.; Martin, J.F. [ERC, Incorporated, Tullahoma, TN (United States)

    1993-12-31

    This paper summarizes research ideas, results and activities on a DOE MHD SBIR entitled: {open_quote}A Light Metal Fueled Nonequilibrium Plasma Generator (NPG){close_quotes}. The NPG is a concept for a device that has the capability of producing a nonequilibrium plasma from metal combustion. The results of preliminary studies on the NPG concept are given. These studies address fundamentals of the NPG including operating concepts of the NPG concept, results of studies on the quality of the plasma that it can produce, and theoretical evaluations of the nonequilibrium ionization process in an MHD disk generator driven by an NPG. A discussion of potential applications for the NPG is given. These applications encompass pulse MHD power, commercial MHD power and disk MHD generator research.

  16. Surface plasma source with saddle antenna radio frequency plasma generator.

    Science.gov (United States)

    Dudnikov, V; Johnson, R P; Murray, S; Pennisi, T; Piller, C; Santana, M; Stockli, M; Welton, R

    2012-02-01

    A prototype RF H(-) surface plasma source (SPS) with saddle (SA) RF antenna is developed which will provide better power efficiency for high pulsed and average current, higher brightness with longer lifetime and higher reliability. Several versions of new plasma generators with small AlN discharge chambers and different antennas and magnetic field configurations were tested in the plasma source test stand. A prototype SA SPS was installed in the Spallation Neutron Source (SNS) ion source test stand with a larger, normal-sized SNS AlN chamber that achieved unanalyzed peak currents of up to 67 mA with an apparent efficiency up to 1.6 mA∕kW. Control experiments with H(-) beam produced by SNS SPS with internal and external antennas were conducted. A new version of the RF triggering plasma gun has been designed. A saddle antenna SPS with water cooling is fabricated for high duty factor testing.

  17. Generation of heavy ion beams using femtosecond laser pulses in the target normal sheath acceleration and radiation pressure acceleration regimes

    Science.gov (United States)

    Petrov, G. M.; McGuffey, C.; Thomas, A. G. R.; Krushelnick, K.; Beg, F. N.

    2016-06-01

    Theoretical study of heavy ion acceleration from sub-micron gold foils irradiated by a short pulse laser is presented. Using two dimensional particle-in-cell simulations, the time history of the laser pulse is examined in order to get insight into the laser energy deposition and ion acceleration process. For laser pulses with intensity 3 × 10 21 W / cm 2 , duration 32 fs, focal spot size 5 μm, and energy 27 J, the calculated reflection, transmission, and coupling coefficients from a 20 nm foil are 80%, 5%, and 15%, respectively. The conversion efficiency into gold ions is 8%. Two highly collimated counter-propagating ion beams have been identified. The forward accelerated gold ions have average and maximum charge-to-mass ratio of 0.25 and 0.3, respectively, maximum normalized energy 25 MeV/nucleon, and flux 2 × 10 11 ions / sr . An analytical model was used to determine a range of foil thicknesses suitable for acceleration of gold ions in the radiation pressure acceleration regime and the onset of the target normal sheath acceleration regime. The numerical simulations and analytical model point to at least four technical challenges hindering the heavy ion acceleration: low charge-to-mass ratio, limited number of ions amenable to acceleration, delayed acceleration, and high reflectivity of the plasma. Finally, a regime suitable for heavy ion acceleration has been identified in an alternative approach by analyzing the energy absorption and distribution among participating species and scaling of conversion efficiency, maximum energy, and flux with laser intensity.

  18. Polarization force-induced changes in the dust sheath formation

    Energy Technology Data Exchange (ETDEWEB)

    Mayout, Saliha; Bentabet, Karima; Tribeche, Mouloud [Plasma Physics Group (PPG), Theoretical Physics Laboratory (TPL), Faculty of Physics, University of Bab-Ezzouar, USTHB, BP 32, El Alia, Algiers 16111 (Algeria)

    2015-09-15

    The modifications arising in the dusty plasma sheath structure due to the presence of polarization forces acting on the dust grains are investigated. The corresponding appropriate Bohm criterion for sheath formation is obtained. It is found that the critical Mach number, beyond which the dusty plasma electrostatic sheath sets in, decreases whenever the polarization effects become important. In addition, when the polarization force dominates over the electrical one, the dust plasma sheath cannot set in. This happens whenever the dust grain size exceeds a critical threshold. Moreover, the sheath electrostatic potential-gradient becomes abruptly steep, and the sheath thickness becomes broader as the polarization force effects strengthen.

  19. Effect of driving frequency on the electron-sheath interaction and electron energy distribution function in a low pressure capacitively coupled plasmas

    Science.gov (United States)

    Sharma, Sarveshwar; Sirse, Nishant; Kaw, Predhiman; Turner, Miles; Ellingboe, Albert R.; InstitutePlasma Research, Gandhinagar, Gujarat Team; School Of Physical Sciences; Ncpst, Dublin City University, Dublin 9, Ireland Collaboration

    2016-09-01

    The effect of driving frequency (27.12-70 MHz) on the electron-sheath interaction and electron energy distribution function (EEDF) is investigated in a low pressure capacitive discharges using a self-consistent particle-in-cell simulation. At a fixed discharge voltage the EEDF evolves from a strongly bi-Maxwellian at low frequency, 27.12 MHz, to a convex type distribution at an intermediate frequency, 50 MHz, and finally becomes a weak biMaxwellian above 50 MHz. The EEDF evolution leads to a two-fold increase in the effective electron temperature up to 50 MHz, whereas the electron density remains constant in this range. After 50MHz, the electron density increases rapidly and the electron temperature decreases. The transition is caused by the transient electric field excited by bursts of high energy electrons interacting strongly with the sheath edge. Above the transition frequency, high energy electrons are confined between two sheaths which increase the ionization probability and thus the plasma density increases.

  20. Nanomaterial Synthesis Using Plasma Generation in Liquid

    Directory of Open Access Journals (Sweden)

    Genki Saito

    2015-01-01

    Full Text Available Over the past few decades, the research field of nanomaterials (NMs has developed rapidly because of the unique electrical, optical, magnetic, and catalytic properties of these materials. Among the various methods available today for NM synthesis, techniques for plasma generation in liquid are relatively new. Various types of plasma such as arc discharge and glow discharge can be applied to produce metal, alloy, oxide, inorganic, carbonaceous, and composite NMs. Many experimental setups have been reported, in which various parameters such as the liquid, electrode material, electrode configuration, and electric power source are varied. By examining the various electrode configurations and power sources available in the literature, this review classifies all available plasma in liquid setups into four main groups: (i gas discharge between an electrode and the electrolyte surface, (ii direct discharge between two electrodes, (iii contact discharge between an electrode and the surface of surrounding electrolyte, and (iv radio frequency and microwave plasma in liquid. After discussion of the techniques, NMs of metal, alloy, oxide, silicon, carbon, and composite produced by techniques for plasma generation in liquid are presented, where the source materials, reaction media, and electrode configurations are discussed in detail.

  1. Nonequilibrium plasma generator (NPG) project - experimental program

    Energy Technology Data Exchange (ETDEWEB)

    Lineberry, J.T.; Wu, Y.C.L.; Lin, B.C. [and others

    1995-12-31

    This paper summarizes research conducted under a DOE MHD SBIR entitled: {open_quotes}A Light Metal Fueled Non-equilibrium Plasma Generator (NPG){close_quotes}. It is a summary paper presenting the idea of the NPG and activities of the NPG SBIR research program along with experimental results from NPG Proof-of-Principle tests. The NPG is an innovative concept for a combustion device that can produce a nonequilibrium plasma. This device bums powdered metal fuel, and it can be used to drive an MHD disk generator pulse power unit or a similar nonequilibrium MHD device or system. The NPG research program was concluded over the past two years under sponsorship of a DOE Phase II SBIR grant. This program focused on addressing fundamental and practical aspects of the NPG concept and its system design. The research included investigation of the physics of the NPG concept through theoretical and experimental studies on the quality of the plasma that it can produce, theoretical evaluations of the nonequilibrium ionization processes in an MHD disk generator driven by an NPG, and experimental validation of the NPG concept in Proof-of-Principle tests. At the conclusion of this research it was determined that the NPG is indeed a viable concept. Results from combustion tests using powdered aluminum fuel reveal that the NPG can produce an extremely hot argon plasma clean enough to support nonequilibrium ionization in an MHD device.

  2. Properties of plasmas generated in microdischarges

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-Serrano, E; Hagelaar, G; Callegari, Th; Boeuf, J P; Pitchford, L C [Centre de Physique des Plasmas et Applications de Toulouse (CPAT) Universite Paul Sabatier, Toulouse III, and CNRS UMR 5002 118 route de Narbonne, 31062 Toulouse (France)

    2006-12-15

    We present in this paper a discussion of the properties of plasmas generated in microhollow cathode geometries and in microcathode sustained discharge geometries. The results presented here are derived from models. This work is part of a joint modelling/experimental programme whose objective is the evaluation of the potential of the high-pressure, non-thermal plasmas created in microdischarges (e.g. discharges in small, 100s of micrometre sized geometries) for the production of large quantities of radical species, and in particular oxygen singlet delta (metastable) molecules, O{sub 2}({sup 1}{delta})

  3. Opacity of Shock-Generated Argon Plasmas

    Institute of Scientific and Technical Information of China (English)

    王藩侯; 陈敬平; 周显明; 李西军; 经福谦; 孟续军; 孙永盛

    2001-01-01

    Argon plasmas with uniform density and temperature are generated by a planar shock wave through argon gas. The opacities of argon plasma, covering the thermodynamic states at temperatures of 1.4-2.2eV and in densities of 0.0083- 0.015 g/cm3, are investigated by measuring the emitted radiance versus time at several visible wavelengths. Comparison of the measured opacities with those calculated demonstrates that the average atom model can be used well to describe the essential transport behaviour of photons in argon plasma under the abovementioned thermodynamic condition. A simplified and self-consistent method to deduce the reflectivity R(λ) at the baseplate surface is applied. It demonstrates that the values of R(λ) are all around 0.4 in the experiments, which are basically in agreement with those given by Erskine previously (1994 J. Quant. Spectrosc. Radiat.Transfer 51 97).

  4. The use of cold plasma generators in medicine

    National Research Council Canada - National Science Library

    Kolomiiets R.O; Nikitchuk T.M; Hrek O.V

    2017-01-01

    Cold plasma treatment of wounds is a modern area of therapeutic medicine. We describe the physical mechanisms of cold plasma, the principles of therapeutic effects and design of two common types of cold plasma generators for medical use...

  5. The design of a plasma generator used in ships

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The process and condition of arc starting and discharge and heat balance rela-tionship in a plasma generator that takes water as propellant are analyzed. Two questions that must be paid attention to arise, when designing the plasma gen-erator. Water resistance in a plasma generator should be as big as possible, and inductive reactance of electric source should be equal to capacity reactance of plasma generator so that resonance is generated in electric circuit, voltage be-tween two electrodes in the plasma generator reaches the highest value, and arc starting and discharge also occur between electrodes in the plasma generator. When energy that electric source supplies is greater than or equal to the energy required when water becomes plasma, a mixture of plasma and steam ejects from the generator outlet. So it is necessary that cavity between electrodes in the plasma generator should be as big as possible, time that water stays in the plasma gen-erator should be long enough so that water obtains enough energy from the electric source, but resistance of water becomes small and arc starting is not easy to occur. Through manufacturing and experimentes on four kinds of plasma generators as well as the contrast between experimental results, the plasma generator model is established and the plasma generator is manufactured.

  6. The design of a plasma generator used in ships

    Institute of Scientific and Technical Information of China (English)

    WANG XinZhang; YANG JiaXiang; LAN Bo; XU ZuoMing; GAO Ying

    2008-01-01

    The process and condition of arc starting and discharge and heat balance rela-tionship in a plasma generator that takes water as propellant are analyzed.Two questions that must be paid attention to arise,when designing the plasma gen-erator.Water resistance in a plasma generator should be as big as possible,and inductive reactance of electric source should be equal to capacity reactance of plasma generator so that resonance is generated in electric circuit,voltage be-tween two electrodes in the plasma generator reaches the highest value,and arc starting and discharge also occur between electrodes in the plasma generator.When energy that electric source supplies is greater than or equal to the energy required when water becomes plasma,a mixture of plasma and steam ejects from the generator outlet.So it is necessary that cavity between electrodes in the plasma generator should be as big as possible,time that water stays in the plasma gen-erator should be long enough so that water obtains enough energy from the electric source,but resistance of water becomes small and arc starting is not easy to occur.Through manufacturing and experimentes on four kinds of plasma generators as well as the contrast between experimental results,the plasma generator model is established and the plasma generator is manufactured.

  7. Effects of electron emission on sheath potential

    Science.gov (United States)

    Dow, Ansel; Khrabrov, Alexander; Kaganovich, Igor; Schamis, Hanna

    2015-11-01

    We investigate the potential profile of a sheath under the influence of surface electron emission. The plasma and sheath profiles are simulated using the Large Scale Plasma (LSP) particle-in-cell code. Using one dimensional models we corroborate the analytical relationship between sheath potential and plasma electron and emitted electron temperatures derived earlier. This work was made possible by funding from the Department of Energy for the Summer Undergraduate Laboratory Internship (SULI) program. This work is supported by the US DOE Contract No. DE-AC02-09CH11466.

  8. Thyristor stack for pulsed inductive plasma generation.

    Science.gov (United States)

    Teske, C; Jacoby, J; Schweizer, W; Wiechula, J

    2009-03-01

    A thyristor stack for pulsed inductive plasma generation has been developed and tested. The stack design includes a free wheeling diode assembly for current reversal. Triggering of the device is achieved by a high side biased, self supplied gate driver unit using gating energy derived from a local snubber network. The structure guarantees a hard firing gate pulse for the required high dI/dt application. A single fiber optic command is needed to achieve a simultaneous turn on of the thyristors. The stack assembly is used for switching a series resonant circuit with a ringing frequency of 30 kHz. In the prototype pulsed power system described here an inductive discharge has been generated with a pulse duration of 120 micros and a pulse energy of 50 J. A maximum power transfer efficiency of 84% and a peak power of 480 kW inside the discharge were achieved. System tests were performed with a purely inductive load and an inductively generated plasma acting as a load through transformer action at a voltage level of 4.1 kV, a peak current of 5 kA, and a current switching rate of 1 kA/micros.

  9. Study of a dual frequency capacitively coupled rf discharge in the background of multi-component plasma and its validation by a simple analytical sheath model

    Science.gov (United States)

    Bhuyan, Heman; Saikia, Partha; Favre, Mario; Wyndham, Edmundo; Veloso, Felipe

    2016-10-01

    The behavior of a phase-locked dual frequency capacitively coupled rf discharges (2f-CCRF) in the background of multi-component plasma is experimentally studied by rf current-voltage measurements and optical emission spectroscopy (OES). The multi-component plasma is produced by adding hydrogen to the argon CCRF discharge. Variation of experimental parameters, like working pressure, low frequency (LF) and high frequency (HF) rf power indicate significant changes in the electron density and temperature as well as the DC self-bias developed on the power electrode. It is observed that the electron density decreases as the percentage of hydrogen increases in the argon plasma while the electron temperature follows opposite trend. An analytical sheath model for the 2f-CCRF discharge in the background of multi-component plasma is developed and its prediction on the observed variation of DC self-bias is well agreed with the experimental observations. Authors acknowledge Proyecto Puente No P1611 and FONDECYT 3160179.

  10. Axial magnetic field and toroidally streaming fast ions in the dense plasma focus are natural consequences of conservation laws in the curved axisymmetric geometry of the current sheath

    CERN Document Server

    Auluck, S K H

    2014-01-01

    Direct measurement of axial magnetic field in the PF-1000 dense plasma focus (DPF), and its reported correlation with neutron emission, call for a fresh look at previous reports of existence of axial magnetic field component in the DPF from other laboratories, and associated data suggesting toroidal directionality of fast ions participating in fusion reactions, with a view to understand the underlying physics. In this context, recent work dealing with application of the hyperbolic conservation law formalism to the DPF is extended in this paper to a curvilinear coordinate system, which reflects the shape of the DPF current sheath. Locally-unidirectional shock propagation in this coordinate system enables construction of a system of 7 one-dimensional hyperbolic conservation law equations with geometric source terms, taking into account all the components of magnetic field and flow velocity. Rankine-Hugoniot jump conditions for this system lead to expressions for the axial magnetic field and three components of ...

  11. Power consumption analysis DBD plasma ozone generator

    Science.gov (United States)

    Nur, M.; Restiwijaya, M.; Muchlisin, Z.; Susan, I. A.; Arianto, F.; Widyanto, S. A.

    2016-11-01

    Studies on the consumption of energy by an ozone generator with various constructions electrodes of dielectric barrier discharge plasma (DBDP) reactor has been carried out. This research was done to get the configuration of the reactor, that is capable to produce high ozone concentrations with low energy consumption. BDBP reactors were constructed by spiral- cylindrical configuration, plasma ozone was generated by high voltage AC voltage up to 25 kV and maximum frequency of 23 kHz. The reactor consists of an active electrode in the form of a spiral-shaped with variation diameter Dc, and it was made by using copper wire with diameter Dw. In this research, we variated number of loops coil windings N as well as Dc and Dw. Ozone concentrations greater when the wire's diameter Dw and the diameter of the coil windings applied was greater. We found that impedance greater will minimize the concentration of ozone, in contrary to the greater capacitance will increase the concentration of ozone. The ozone concentrations increase with augmenting of power. Maximum power is effective at DBD reactor spiral-cylinder is on the Dc = 20 mm, Dw = 1.2 mm, and the number of coil windings N = 10 loops with the resulting concentration is greater than 20 ppm and it consumes energy of 177.60 watts

  12. Modeling of polarization phenomena due to RF sheaths and electron beams in magnetized plasma; Modelisation de phenomenes de polarisation par des gaines rf et des faisceaux electroniques dans un plasma magnetise

    Energy Technology Data Exchange (ETDEWEB)

    Faudot, E

    2005-07-01

    This work investigates the problematic of hot spots induced by accelerated particle fluxes in tokamaks. It is shown that the polarization due to sheaths in the edge plasma in which an electron beam at a high level of energy is injected, can reach several hundreds volts and thus extend the deposition area. The notion of obstructed sheath is introduced and explains the acceleration of energy deposition by the decreasing of the sheath potential. Then, a 2-dimensional fluid modeling of flux tubes in front of ICRF antennae allows us to calculate the rectified potentials taking into account RF polarization currents transverse to magnetic field lines. The 2-dimensional fluid code designed validates the analytical results which show that the DC rectified potential is 50% greater with polarization currents than without. Finally, the simultaneous application of an electron beam and a RF potential reveals that the potentials due to each phenomenon are additives when RF potential is much greater than beam polarization. The density depletion of polarized flux tubes in 2-dimensional PIC (particles in cells) simulations is characterized but not yet explained. (author)

  13. The Bohm criterion and sheath formation

    Energy Technology Data Exchange (ETDEWEB)

    Riemann, K.U. (Bochum Univ. (Germany). Inst. fuer Theoretische Physik 1)

    1990-11-01

    In the limit of a small Debye length ({lambda}{sub D}{yields}0) the analysis of the plasma boundary layer leads to a two scale problem of a collision free sheath and of a quasineutral presheath. Bohm's criterion expresses a necessary condition for the formation of a stationary sheath in front of a negative absorbing wall. The basic features of the plasma-sheath transition and their relation to the Bohm criterion are discussed and illustrated from a simple cold-ion fluid model. A rigorous kinetic analysis of the vicinity of the sheath edge allows to generalize Bohm's criterion acounting not only for arbitrary ion- and electron distributions, but also for general boundary conditions at the wall. It is shown that the generalized sheath condition is (apart from special exceptions) fulfilled marginally and related to a sheath edge field singularity. Due to this singularity a smooth matching of the presheath and sheath solutions requires an additional transition layer. Previous investigations concerning special problems of the plasma-sheath transition are reviewed in the light of the general relations. (orig.).

  14. Analysis of Electromagnetic Wave Propagation in a Magnetized Re-Entry Plasma Sheath Via the Kinetic Equation

    Science.gov (United States)

    Manning, Robert M.

    2009-01-01

    Based on a theoretical model of the propagation of electromagnetic waves through a hypersonically induced plasma, it has been demonstrated that the classical radiofrequency communications blackout that is experienced during atmospheric reentry can be mitigated through the appropriate control of an external magnetic field of nominal magnitude. The model is based on the kinetic equation treatment of Vlasov and involves an analytical solution for the electric and magnetic fields within the plasma allowing for a description of the attendant transmission, reflection and absorption coefficients. The ability to transmit through the magnetized plasma is due to the magnetic windows that are created within the plasma via the well-known whistler modes of propagation. The case of 2 GHz transmission through a re-entry plasma is considered. The coefficients are found to be highly sensitive to the prevailing electron density and will thus require a dynamic control mechanism to vary the magnetic field as the plasma evolves through the re-entry phase.

  15. Plasmas generated by ultra-violet light rather than electron impact

    Energy Technology Data Exchange (ETDEWEB)

    Franklin, R. N. [Department of Astronomy and Physics, The Open University, Milton Keynes MK7 6AA (United Kingdom); Allen, J. E. [University College, University of Oxford, Oxford OX1 4BH, United Kingdom and OCIAM, Mathematical Institute, University of Oxford, Oxford OX2 6GG (United Kingdom); Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BW (United Kingdom); Thomas, D. M. [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BW (United Kingdom); Benilov, M. S. [Departamento de Fisica, CCCEE, Universidade de Madeira, Largo do Municipio, 9000 Funchal (Portugal)

    2013-12-15

    We analyze, in both plane and cylindrical geometries, a collisionless plasma consisting of an inner region where generation occurs by UV illumination, and an un-illuminated outer region with no generation. Ions generated in the inner region flow outwards through the outer region and into a wall. We solve for this system's steady state, first in the quasi-neutral regime (where the Debye length λ{sub D} vanishes and analytic solutions exist) and then in the general case, which we solve numerically. In the general case, a double layer forms where the illuminated and un-illuminated regions meet, and an approximately quasi-neutral plasma connects the double layer to the wall sheath; in plane geometry, the ions coast through the quasi-neutral section at slightly more than the Bohm speed c{sub s}. The system, although simple, therefore has two novel features: a double layer that does not require counter-streaming ions and electrons, and a quasi-neutral plasma where ions travel in straight lines with at least the Bohm speed. We close with a précis of our asymptotic solutions of this system, and suggest how our theoretical conclusions might be extended and tested in the laboratory.

  16. Plasma cell treatment device Plasma-on-Chip: Monitoring plasma-generated reactive species in microwells

    Science.gov (United States)

    Oh, Jun-Seok; Kojima, Shinya; Sasaki, Minoru; Hatta, Akimitsu; Kumagai, Shinya

    2017-01-01

    We have developed a plasma cell treatment device called Plasma-on-Chip that enables the real-time monitoring of a single cell culture during plasma treatment. The device consists of three parts: 1) microwells for cell culture, 2) a microplasma device for generating reactive oxygen and nitrogen species (RONS) for use in cell treatment, and 3) through-holes (microchannels) that connect each microwell with the microplasma region for RONS delivery. Here, we analysed the delivery of the RONS to the liquid culture medium stored in the microwells. We developed a simple experimental set-up using a microdevice and applied in situ ultraviolet absorption spectroscopy with high sensitivity for detecting RONS in liquid. The plasma-generated RONS were delivered into the liquid culture medium via the through-holes fabricated into the microdevice. The RONS concentrations were on the order of 10–100 μM depending on the size of the through-holes. In contrast, we found that the amount of dissolved oxygen was almost constant. To investigate the process of RONS generation, we numerically analysed the gas flow in the through-holes. We suggest that the circulating gas flow in the through-holes promotes the interaction between the plasma (ionised gas) and the liquid, resulting in enhanced RONS concentrations. PMID:28176800

  17. Plasma generated during underwater pulsed laser processing

    Science.gov (United States)

    Hoffman, Jacek; Chrzanowska, Justyna; Moscicki, Tomasz; Radziejewska, Joanna; Stobinski, Leszek; Szymanski, Zygmunt

    2017-09-01

    The plasma induced during underwater pulsed laser ablation of graphite is studied both experimentally and theoretically. The results of the experiment show that the maximum plasma temperature of 25000 K is reached 20 ns from the beginning of the laser pulse and decreases to 6500 K after 1000 ns. The observed OH absorption band shows that the plasma plume is surrounded by the thin layer of dissociated water vapour at a temperature around 5500 K. The hydrodynamic model applied shows similar maximum plasma temperature at delay times between 14 ns and 30 ns. The calculations show also that already at 14th ns, the plasma electron density reaches 0.97·1027 m-3, which is the critical density for 1064 nm radiation. At the same time the plasma pressure is 2 GPa, which is consisted with earlier measurements of the peak pressure exerted on a target in similar conditions.

  18. Ion acceleration from intense laser-generated plasma: methods, diagnostics and possible applications

    Directory of Open Access Journals (Sweden)

    Torrisi Lorenzo

    2015-06-01

    Full Text Available Many parameters of non-equilibrium plasma generated by high intensity and fast lasers depend on the pulse intensity and the laser wavelength. In conditions favourable for the target normal sheath acceleration (TNSA regime the ion acceleration from the rear side of the target can be enhanced by increasing the thin foil absorbance through the use of nanoparticles and nanostructures promoting the surface plasmon resonance effect. In conditions favourable for the backward plasma acceleration (BPA regime, when thick targets are used, a special role is played by the laser focal position with respect to the target surface, a proper choice of which may result in induced self-focusing effects and non-linear acceleration enhancement. SiC detectors employed in the time-of-flight (TOF configuration and a Thomson parabola spectrometer permit on-line diagnostics of the ion streams emitted at high kinetic energies. The target composition and geometry, apart from the laser parameters and to the irradiation conditions, allow further control of the plasma characteristics and can be varied by using advanced targets to reach the maximum ion acceleration. Measurements using advanced targets with enhanced the laser absorption effect in thin films are presented. Applications of accelerated ions in the field of ion source, hadrontherapy and nuclear physics are discussed.

  19. Generator of chemically active low-temperature plasma

    Science.gov (United States)

    Tyuftyaev, A. S.; Gadzhiev, M. Kh; Sargsyan, M. A.; Demirov, N. A.; Spector, N. O.

    2016-11-01

    A new generator of high enthalpy (H 0 > 40 kJ/g), chemically active nitrogen and air plasmas was designed and constructed. Main feature of the generator is an expanding channel of an output electrode; the generator belongs to the class of DC plasma torches with thermionic cathode with an efficiency of 80%. The generator ensures the formation of a slightly divergent plasma jet (2α = 12°) with a diameter of D = 10-12 mm, an electric arc maximum power of 20-50 kW, plasma forming gas flow rate 1.0-2.0 g/s, and the average plasma temperature at an outlet of 8000-11000 K.

  20. 正离子初速度对电负性等离子体磁鞘结构的影响%Effects of Positive Ion Initial Velocity on Electronegative Plasma Sheath Structure in a Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    刘惠平; 邹秀; 邱明辉; 张志华; 何明

    2011-01-01

    Using a fluid model, the Bohm criterion is obtained for the electronegative plasma sheath in a magnetic field by theoretical deduction, and the effects of positive ion initial velocity into the sheath on the charged particle density and electric potential distributions in electronegative plasma sheath in the presence of a magnetic field are numerically investigated. The results reveal that the initial velocity of positive ion in the y axis direction has greater effects on the charged particle density and electric potential distributions , while the influence of positive ion initial velocity in z axis on the charged particle density distributions is unconspicuous.%采用流体模型经过理论推导得到了电负性等离子体磁鞘的玻姆判据,并数值研究了正离子进入鞘层时的初速度对电负性等离子体磁鞘中带电粒子密度及电势分布的影响.研究结果表明:正离子进入鞘层时y方向的初速度对磁鞘中带电粒子的密度和电势分布有较大的影响,而其z方向的初速度对磁鞘中带电粒子密度分布的影响很小.

  1. High density plasma production in a multicusp plasma generator with RF antenna

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Yasuo; Hanada, Masaya; Okumura, Yoshikazu; Tanaka, Masanobu [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1992-10-01

    A high density plasma was produced by radio-frequency in a multicusp plasma generator. The generator is a cylindrical chamber of 200 mm in inner diameter and 270 mm in length with 1-3 turn copper tube antenna. By injecting a 2 MHz, 20 kW RF into the multicusp plasma generator, hydrogen plasma of an ion saturation current density of 120 mA/cm{sup 2} and a hydrogen plasma of a density of 6.0 x 10{sup 11} cm{sup -3} was produced at a pressure of 0.6 Pa in the generator. The ion saturation current density was uniform over the central area of 100 mm in diameter. Coating the antenna with an insulator, we proved that the efficiency of the plasma production was improved. (author).

  2. High density plasma production in a multicusp plasma generator with RF antenna

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Yasuo; Hanada, Masaya; Okumura, Yoshikazu; Tanaka, Masanobu (Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment)

    1992-10-01

    A high density plasma was produced by radio-frequency in a multicusp plasma generator. The generator is a cylindrical chamber of 200 mm in inner diameter and 270 mm in length with 1-3 turn copper tube antenna. By injecting a 2 MHz, 20 kW RF into the multicusp plasma generator, hydrogen plasma of an ion saturation current density of 120 mA/cm[sup 2] and a hydrogen plasma of a density of 6.0 x 10[sup 11] cm[sup -3] was produced at a pressure of 0.6 Pa in the generator. The ion saturation current density was uniform over the central area of 100 mm in diameter. Coating the antenna with an insulator, we proved that the efficiency of the plasma production was improved. (author).

  3. Slot-Antenna/Permanent-Magnet Device for Generating Plasma

    Science.gov (United States)

    Foster, John E.

    2007-01-01

    A device that includes a rectangular-waveguide/slot-antenna structure and permanent magnets has been devised as a means of generating a substantially uniform plasma over a relatively large area, using relatively low input power and a low gas flow rate. The device utilizes electron cyclotron resonance (ECR) excited by microwave power to efficiently generate plasma in a manner that is completely electrodeless in the sense that, in principle, there is no electrical contact between the plasma and the antenna. Plasmas generated by devices like this one are suitable for use as sources of ions and/or electrons for diverse material-processing applications (e.g., etching or deposition) and for ion thrusters. The absence of plasma/electrode contact essentially prevents plasma-induced erosion of the antenna, thereby also helping to minimize contamination of the plasma and of objects exposed to the plasma. Consequently, the operational lifetime of the rectangular-waveguide/ slot-antenna structure is long and the lifetime of the plasma source is limited by the lifetime of the associated charged-particle-extraction grid (if used) or the lifetime of the microwave power source. The device includes a series of matched radiating slot pairs that are distributed along the length of a plasma-source discharge chamber (see figure). This arrangement enables the production of plasma in a distributed fashion, thereby giving rise to a uniform plasma profile. A uniform plasma profile is necessary for uniformity in any electron- or ion-extraction electrostatic optics. The slotted configuration of the waveguide/ antenna structure makes the device scalable to larger areas and higher powers. All that is needed for scaling up is the attachment of additional matched radiating slots along the length of the discharge chamber. If it is desired to make the power per slot remain constant in scaling up, then the input microwave power must be increased accordingly. Unlike in prior ECR microwave plasma-generating

  4. Characteristics of a Sheath with Secondary Electron Emission in the Double Walls of a Hall Thruster

    Institute of Scientific and Technical Information of China (English)

    段萍; 李肸; 沈鸿娟; 陈龙; 鄂鹏

    2012-01-01

    In order to investigate the effects of secondary electrons, which are emitted from the wall, on the performance of a thruster, a one-dimensional fluid model of the plasma sheath in double walls is applied to study the characteristics of a magnetized sheath. The effects of secondary electron emission (SEE) coefficients and trapping coefficients, as well as magnetic field, on the structure of the plasma sheath are investigated. The results show that sheath potential and wall potential rise with the increment of SEE coefficient and trapping coefficient which results in a reduced sheath thickness. In addition, magnetic field strength will influence the sheath potential distributions.

  5. Ultra-High Intensity Magnetic Field Generation in Dense Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Fisch, Nathaniel J. [Princeton Univ., NJ (United States)

    2014-01-08

    The main objective of this grant proposal was to explore the efficient generation of intense currents. Whereas the efficient generation of electric current in low-­energy-­density plasma has occupied the attention of the magnetic fusion community for several decades, scant attention has been paid to carrying over to high-­energy-­density plasma the ideas for steady-­state current drive developed for low-­energy-­density plasma, or, for that matter, to inventing new methodologies for generating electric current in high-­energy-­density plasma. What we proposed to do was to identify new mechanisms to accomplish current generation, and to assess the operation, physics, and engineering basis of new forms of current drive in regimes appropriate for new fusion concepts.

  6. Ultra-High Intensity Magnetic Field Generation in Dense Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Fisch, Nathaniel J

    2014-01-08

    I. Grant Objective The main objective of this grant proposal was to explore the efficient generation of intense currents. Whereasthefficient generation of electric current in low-­energy-­density plasma has occupied the attention of the magnetic fusion community for several decades, scant attention has been paid to carrying over to high-­energy-­density plasma the ideas for steady-­state current drive developed for low-­energy-­density plasma, or, for that matter, to inventing new methodologies for generating electric current in high-­energy-­density plasma. What we proposed to do was to identify new mechanisms to accomplish current generation, and to assess the operation, physics, and engineering basis of new forms of current drive in regimes appropriate for new fusion concepts.

  7. Electron beam manipulation, injection and acceleration in plasma wakefield accelerators by optically generated plasma density spikes

    Energy Technology Data Exchange (ETDEWEB)

    Wittig, Georg; Karger, Oliver S.; Knetsch, Alexander [Institute of Experimental Physics, University of Hamburg, 22761 Hamburg (Germany); Xi, Yunfeng; Deng, Aihua; Rosenzweig, James B. [Particle Beam Physics Laboratory, UCLA, Los Angeles, CA 90095 (United States); Bruhwiler, David L. [RadiaSoft LLC, Boulder, CO 80304 (United States); RadiaBeam Technologies LLC (United States); Smith, Jonathan [Tech-X UK Ltd, Daresbury, Cheshire WA4 4FS (United Kingdom); Sheng, Zheng-Ming; Jaroszynski, Dino A.; Manahan, Grace G. [Physics Department, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Hidding, Bernhard [Institute of Experimental Physics, University of Hamburg, 22761 Hamburg (Germany); Physics Department, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

    2016-09-01

    We discuss considerations regarding a novel and robust scheme for optically triggered electron bunch generation in plasma wakefield accelerators [1]. In this technique, a transversely propagating focused laser pulse ignites a quasi-stationary plasma column before the arrival of the plasma wake. This localized plasma density enhancement or optical “plasma torch” distorts the blowout during the arrival of the electron drive bunch and modifies the electron trajectories, resulting in controlled injection. By changing the gas density, and the laser pulse parameters such as beam waist and intensity, and by moving the focal point of the laser pulse, the shape of the plasma torch, and therefore the generated trailing beam, can be tuned easily. The proposed method is much more flexible and faster in generating gas density transitions when compared to hydrodynamics-based methods, and it accommodates experimentalists needs as it is a purely optical process and straightforward to implement.

  8. Electron beam manipulation, injection and acceleration in plasma wakefield accelerators by optically generated plasma density spikes

    Science.gov (United States)

    Wittig, Georg; Karger, Oliver S.; Knetsch, Alexander; Xi, Yunfeng; Deng, Aihua; Rosenzweig, James B.; Bruhwiler, David L.; Smith, Jonathan; Sheng, Zheng-Ming; Jaroszynski, Dino A.; Manahan, Grace G.; Hidding, Bernhard

    2016-09-01

    We discuss considerations regarding a novel and robust scheme for optically triggered electron bunch generation in plasma wakefield accelerators [1]. In this technique, a transversely propagating focused laser pulse ignites a quasi-stationary plasma column before the arrival of the plasma wake. This localized plasma density enhancement or optical "plasma torch" distorts the blowout during the arrival of the electron drive bunch and modifies the electron trajectories, resulting in controlled injection. By changing the gas density, and the laser pulse parameters such as beam waist and intensity, and by moving the focal point of the laser pulse, the shape of the plasma torch, and therefore the generated trailing beam, can be tuned easily. The proposed method is much more flexible and faster in generating gas density transitions when compared to hydrodynamics-based methods, and it accommodates experimentalists needs as it is a purely optical process and straightforward to implement.

  9. The Dynamical Generation of Current Sheets in Astrophysical Plasma Turbulence

    CERN Document Server

    Howes, Gregory G

    2016-01-01

    Turbulence profoundly affects particle transport and plasma heating in many astrophysical plasma environments, from galaxy clusters to the solar corona and solar wind to Earth's magnetosphere. Both fluid and kinetic simulations of plasma turbulence ubiquitously generate coherent structures, in the form of current sheets, at small scales, and the locations of these current sheets appear to be associated with enhanced rates of dissipation of the turbulent energy. Therefore, illuminating the origin and nature of these current sheets is critical to identifying the dominant physical mechanisms of dissipation, a primary aim at the forefront of plasma turbulence research. Here we present evidence from nonlinear gyrokinetic simulations that strong nonlinear interactions between counterpropagating Alfven waves, or strong Alfven wave collisions, are a natural mechanism for the generation of current sheets in plasma turbulence. Furthermore, we conceptually explain this current sheet development in terms of the nonlinear...

  10. Plasma erosion switches with imploding plasma loads on the pithon generator

    Science.gov (United States)

    Stringfield, R.; Schneider, R.; Genuario, R. D.; Roth, I.; Childers, K.; Stallings, C.; Dakin, D.

    1981-03-01

    Plasma erosion switches have been fielded on the PITHON generator during imploding plasma experiments. Theta pinch plasma guns were used to inject carbon plasmas of densities in the range 10 12-10 14/cm 3 between the electrodes of the vacuum power feed region, upstream from an imploding plasma load. Current monitors indicated that the erosion switches carried substantial current early in time, diverting it from the load. Late in the pulse the erosion switches opened, transferring the current to an imploding plasma with the effect of sharpening the current risetime at the load. Associated with the sharper risetime was an improvement in the quality of the plasma implosions. The results of varying the density and total number of particles in the plasma of the switches are presented with regard to the effect on the current along the vacuum feed and on the behavior of vacuum flowing electrons.

  11. Plasma erosion switches with imploding plasma loads on a multiterawatt pulsed power generator

    Science.gov (United States)

    Stringfield, R.; Schneider, R.; Genuario, R. D.; Roth, I.; Childers, K.; Stallings, C.; Dakin, D.

    1981-03-01

    Plasma erosion switches have been fielded on the PITHON generator during imploding plasma experiments. Theta pinch plasma guns were used to inject carbon plasmas of densities in the range of 10 to the 12th to 10 to the 14th/cu cm between the electrodes of the vacuum power feed region, upstream from an imploding plasma load. Current monitors indicated that the erosion switches carried substantial current early in time, diverting it from the load. Late in the pulse the erosion switches opened, transferring the current to an imploding plasma with the effect of sharpening the current rise time at the load. Associated with the sharper rise time was an improvement in the quality of the plasma implosions. The results of varying the density and total number of particles in the plasma of the switches are presented with regard to the effect on the current along the vacuum feed and on the behavior of vacuum flowing electrons.

  12. A large volume uniform plasma generator for the experiments of electromagnetic wave propagation in plasma

    Energy Technology Data Exchange (ETDEWEB)

    Yang Min; Li Xiaoping; Xie Kai; Liu Donglin [School of Electronical and Mechanical Engineering, Xidian University, Xi' an Shaanxi 710071 (China); Liu Yanming [School of Telecommunications Engineering, Xidian University, Xi' an Shaanxi 710071 (China)

    2013-01-15

    A large volume uniform plasma generator is proposed for the experiments of electromagnetic (EM) wave propagation in plasma, to reproduce a 'black out' phenomenon with long duration in an environment of the ordinary laboratory. The plasma generator achieves a controllable approximate uniform plasma in volume of 260 mm Multiplication-Sign 260 mm Multiplication-Sign 180 mm without the magnetic confinement. The plasma is produced by the glow discharge, and the special discharge structure is built to bring a steady approximate uniform plasma environment in the electromagnetic wave propagation path without any other barriers. In addition, the electron density and luminosity distributions of plasma under different discharge conditions were diagnosed and experimentally investigated. Both the electron density and the plasma uniformity are directly proportional to the input power and in roughly reverse proportion to the gas pressure in the chamber. Furthermore, the experiments of electromagnetic wave propagation in plasma are conducted in this plasma generator. Blackout phenomena at GPS signal are observed under this system and the measured attenuation curve is of reasonable agreement with the theoretical one, which suggests the effectiveness of the proposed method.

  13. Carbon Multicharged Ion Generation from Laser Plasma

    Science.gov (United States)

    Balki, Oguzhan; Elsayed-Ali, Hani E.

    2014-10-01

    Multicharged ions (MCI) have potential uses in different areas such as microelectronics and medical physics. Carbon MCI therapy for cancer treatment is considered due to its localized energy delivery to hard-to-reach tumors at a minimal damage to surrounding tissues. We use a Q-switched Nd:YAG laser with 40 ns pulse width operated at 1064 nm to ablate a graphite target in ultrahigh vacuum. A time-of-flight energy analyzer followed by a Faraday cup is used to characterize the carbon MCI extracted from the laser plasma. The MCI charge state and energy distribution are obtained. With increase in the laser fluence, the ion charge states and ion energy are increased. Carbon MCI up to C+6 are observed along with carbon clusters. When an acceleration voltage is applied between the carbon target and a grounded mesh, ion extraction is observed to increase with the applied voltage. National Science Foundation.

  14. On the generation of magnetic field enhanced microwave plasma line

    Science.gov (United States)

    Chen, Longwei; Zhao, Ying; Wu, Kenan; Wang, Qi; Meng, Yuedong; Ren, Zhaoxing

    2016-12-01

    Microwave linear plasmas sustained by surface waves have attracted much attention due to the potential abilities to generate large-scale and uniform non-equilibrium plasmas. An external magnetic field was generally applied to enhance and stabilize plasma sources because the magnetic field decreased the electron losses on the wall. The effects of magnetic field on the generation and propagation mechanisms of the microwave plasma were tentatively investigated based on a 2-D numerical model combining a coupled system of Maxwell's equations and continuity equations. The mobility of electrons and effective electric conductivity of the plasma were considered as a full tensor in the presence of magnetic field. Numerical results indicate that both cases of magnetic field in the axial-direction and radial-direction benefit the generation of a high-density plasma; the former one allows the microwave to propagate longer in the axis direction compared to the latter one. The time-averaged power flow density and the amplitude of the electric field on the inner rod of coaxial waveguide attenuate with the propagation of the microwave for both cases of with and without external magnetic field. The attenuation becomes smaller in the presence of appropriately higher axial-direction magnetic field, which allows more microwave energies to transmit along the axial direction. Meanwhile, the anisotropic properties of the plasma, like electron mobility, in the presence of the magnetic field confine more charged particles in the direction of the magnetic field line.

  15. Characterization of inductively coupled plasma generated by a quadruple antenna

    Science.gov (United States)

    Shafir, G.; Zolotukhin, D.; Godyak, V.; Shlapakovski, A.; Gleizer, S.; Slutsker, Ya; Gad, R.; Bernshtam, V.; Ralchenko, Yu; Krasik, Ya E.

    2017-02-01

    The results of the characterization of large-scale RF plasma for studying nonlinear interaction with a high-power (˜400 MW) short duration (˜0.8 ns) microwave (˜10 GHz) beam are presented. The plasma was generated inside a Pyrex tube 80 cm in length and 25 cm in diameter filled by either Ar or He gas at a pressure in the range 1.3-13 Pa using a 2 MHz RF generator with a matching system and a quadruple antenna. Good matching was obtained between the plasma parameters, which were determined using different methods including a movable Langmuir probe, microwave cut-off, interferometry, and optical emission spectroscopy. It was shown that, depending on the gas pressure and RF power delivered to the antenna, the plasma density and electron temperature can be controlled in the range 1 × 1010-5 × 1012 cm-3 and 1-3.5 eV, respectively. The plasma density was found to be uniform in terms of axial (˜60 cm) and radial (˜10 cm) dimensions. Further, it was also shown that the application of the quadruple antenna, with resonating capacitors inserted in its arms, decreases the capacitive coupling of the antenna and the plasma as well as the RF power loss along the antenna. These features make this plasma source suitable for microwave plasma wake field experiments.

  16. Two Types of Magnetohydrodynamic Sheath Jets

    CERN Document Server

    Kaburaki, Osamu

    2009-01-01

    Recent observations of astrophysical jets emanating from various galactic nuclei strongly suggest that a double layered structure, or a spine-sheath structure, is likely to be their common feature. We propose that such a sheath jet structure can be formed magnetohydrodynamically within a valley of the magnetic pressures, which is formed between the peaks due to the poloidal and toroidal components, with the centrifugal force acting on the rotating sheath plasma is balanced by the hoop stress of the toroidal field. The poloidal field concentrated near the polar axis is maintained by a converging plasma flow toward the jet region, and the toroidal field is developed outside the jet cone owing to the poloidal current circulating through the jet. Under such situations, the set of magnetohydrodynamic (MHD) equations allows two main types of solutions, at least, in the region far from the footpoint. The first type solution describes the jets of marginally bound nature. This type is realized when the jet temperature...

  17. Laser-generated plasma by carbon nanoparticles embedded into polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Torrisi, L., E-mail: lorenzo.torrisi@unime.it [Dipartimento di Scienze Fisiche MIFT, Università di Messina, V.le F.S. D’Alcontres 31, 98166 S. Agata, Messina (Italy); Ceccio, G. [Dipartimento di Scienze Fisiche MIFT, Università di Messina, V.le F.S. D’Alcontres 31, 98166 S. Agata, Messina (Italy); Cutroneo, M. [Nuclear Physics Institute, AS CR, 25068 Rez (Czech Republic)

    2016-05-15

    Highlights: • Advanced targets are prepared using UHMWPE containing CNT at different concentrations. • The composite has different optical, mechanical, electrical and compositional properties with respect to polyethylene. • Higher ion accelerations with respect to the pure polyethylene are obtained from laser generated plasmas at 10{sup 10} W/cm{sup 2} intensity. • High carbon ion yields with respect to the pure polyethylene are obtained from laser generated plasmas at 10{sup 10} W/cm{sup 2} intensity. • Advanced targets were prepared to be irradiated in TNSA regime using laser at 10{sup 18} W/cm{sup 2} intensity. - Abstract: Carbon nanoparticles have been embedded into polyethylene at different concentrations by using chemical–physical processes. The synthesized material was characterized in terms of physical modifications concerning the mechanical, compositional and optical properties. Obtained flat targets have been irradiated by Nd:YAG laser at intensities of the order of 10{sup 10} W/cm{sup 2} in order to generate non-equilibrium plasma in vacuum. The laser–matter interaction produces charge separation effects with consequent acceleration of protons and carbon ions. Plasma was characterized using time-of-flight measurements of the accelerated ions. Applications of the produced targets in order to generate carbon ion beams from laser-generated plasma are presented and discussed.

  18. Study of parameters of a facility generating compressive plasma flows

    Science.gov (United States)

    Leyvi, A. Ya

    2017-05-01

    The prosperity of plasma technologies stimulates making of a facility generating compressive plasma flows at the South Ural State University. The facility is a compact-geometry magnetoplasma compressor with the following parameters: stored energy up to 15 kJ, voltage of a bank from 3 to 5 kV; nitrogen, air, and other gases can serve as its operating gas. The investigation of parameters of the facility showed the following parameters of compressive plasma flows: impulse duration of up to 120 μs, discharge current of 50-120 kA, speed of plasma flow of 15-30 km/s. By contrast to the available facilities, the parameters of the developed facility can be adjusted in a wide range of voltage from 2 kV to 10 kV, its design permits generating CPF in horizontal and vertical positions.

  19. Electrode assemblies, plasma apparatuses and systems including electrode assemblies, and methods for generating plasma

    Science.gov (United States)

    Kong, Peter C; Grandy, Jon D; Detering, Brent A; Zuck, Larry D

    2013-09-17

    Electrode assemblies for plasma reactors include a structure or device for constraining an arc endpoint to a selected area or region on an electrode. In some embodiments, the structure or device may comprise one or more insulating members covering a portion of an electrode. In additional embodiments, the structure or device may provide a magnetic field configured to control a location of an arc endpoint on the electrode. Plasma generating modules, apparatus, and systems include such electrode assemblies. Methods for generating a plasma include covering at least a portion of a surface of an electrode with an electrically insulating member to constrain a location of an arc endpoint on the electrode. Additional methods for generating a plasma include generating a magnetic field to constrain a location of an arc endpoint on an electrode.

  20. Generation of Diffuse Large Volume Plasma by an Ionization Wave from a Plasma Jet

    Science.gov (United States)

    Laroussi, Mounir; Razavi, Hamid

    2015-09-01

    Low temperature plasma jets emitted in ambient air are the product of fast ionization waves that are guided within a channel of a gas flow, such as helium. This guided ionization wave can be transmitted through a dielectric material and under some conditions can ignite a discharge behind the dielectric material. Here we present a novel way to produce large volume diffuse low pressure plasma inside a Pyrex chamber that does not have any electrodes or electrical energy directly applied to it. The diffuse plasma is ignited inside the chamber by a plasma jet located externally to the chamber and that is physically and electrically unconnected to the chamber. Instead, the plasma jet is just brought in close proximity to the external wall/surface of the chamber or to a dielectric tubing connected to the chamber. The plasma thus generated is diffuse, large volume and with physical and chemical characteristics that are different than the external plasma jet that ignited it. So by using a plasma jet we are able to ``remotely'' ignite volumetric plasma under controlled conditions. This novel method of ``remote'' generation of a low pressure, low temperature diffuse plasma can be useful for various applications including material processing and biomedicine.

  1. Generation of auroral kilometric radiation in inhomogeneous magnetospheric plasma

    Science.gov (United States)

    Burinskaya, T. M.; Shevelev, M. M.

    2017-01-01

    The generation of auroral kilometric radiation in a narrow 3D plasma cavity, in which a weakly relativistic electron flow is propagated along the magnetic field against a low-density cold background plasma, is studied. The time dynamics of the propagation and intensification of waves are analyzed using geometric optics equations. The waves have different wave vector components and start from the cavity center at an altitude of about the Earth's radius at plasma parameters typical for the auroral zone at this altitude. It is shown that the global inhomogeneity of the Earth's magnetic field is of key importance in shaping the auroral kilometric radiation spectra.

  2. Report of the Plasma Physics and Environmental Perturbation Laboratory (PPEPL) working groups. Volume 1: Plasma probes, wakes, and sheaths working group

    Science.gov (United States)

    1974-01-01

    It is shown in this report that comprehensive in-situ study of all aspects of the entire zone disturbance caused by a body in a flowing plasma resulted in a large number if requirements on the shuttle-PPEPL facility. A large amount of necessary in-situ observation can be obtained by adopting appropriate modes of performing the experiments. Requirements are indicated for worthwhile studies, of some aspects of the problems, which can be carried out effectively while imposing relatively few constraints on the early missions. Considerations for the desired growth and improvement of the PPEPL to facilitate more complete studies in later missions are also discussed. For Vol. 2, see N74-28170; for Vol# 3, see N74-28171.

  3. Laser-generated plasma by carbon nanoparticles embedded into polyethylene

    Science.gov (United States)

    Torrisi, L.; Ceccio, G.; Cutroneo, M.

    2016-05-01

    Carbon nanoparticles have been embedded into polyethylene at different concentrations by using chemical-physical processes. The synthesized material was characterized in terms of physical modifications concerning the mechanical, compositional and optical properties. Obtained flat targets have been irradiated by Nd:YAG laser at intensities of the order of 1010 W/cm2 in order to generate non-equilibrium plasma in vacuum. The laser-matter interaction produces charge separation effects with consequent acceleration of protons and carbon ions. Plasma was characterized using time-of-flight measurements of the accelerated ions. Applications of the produced targets in order to generate carbon ion beams from laser-generated plasma are presented and discussed.

  4. Generation of low-temperature air plasma for food processing

    Science.gov (United States)

    Stepanova, Olga; Demidova, Maria; Astafiev, Alexander; Pinchuk, Mikhail; Balkir, Pinar; Turantas, Fulya

    2015-11-01

    The project is aimed at developing a physical and technical foundation of generating plasma with low gas temperature at atmospheric pressure for food industry needs. As known, plasma has an antimicrobial effect on the numerous types of microorganisms, including those that cause food spoilage. In this work an original experimental setup has been developed for the treatment of different foods. It is based on initiating corona or dielectric-barrier discharge in a chamber filled with ambient air in combination with a certain helium admixture. The experimental setup provides various conditions of discharge generation (including discharge gap geometry, supply voltage, velocity of gas flow, content of helium admixture in air and working pressure) and allows for the measurement of the electrical discharge parameters. Some recommendations on choosing optimal conditions of discharge generation for experiments on plasma food processing are developed.

  5. Analyses of the plasma generated by laser irradiation on sputtered target for determination of the thickness used for plasma generation

    Energy Technology Data Exchange (ETDEWEB)

    Kumaki, Masafumi, E-mail: masafumi.kumaki@riken.jp [Cooperative Major in Nuclear Energy, Waseda University, Shinjuku, Tokyo (Japan); RIKEN, Wako, Saitama (Japan); Ikeda, Shunsuke; Sekine, Megumi; Munemoto, Naoya [RIKEN, Wako, Saitama (Japan); Department of Energy Sciences, Tokyo Institute of Technology, Meguro, Tokyo (Japan); Fuwa, Yasuhiro [RIKEN, Wako, Saitama (Japan); Department of Physics and Astronomy, Kyoto University, Uji, Kyoto (Japan); Cinquegrani, David [American Nuclear Society, University of Michigan, Ann Arbor, Michigan 48109 (United States); Kanesue, Takeshi; Okamura, Masahiro [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Washio, Masakazu [Cooperative Major in Nuclear Energy, Waseda University, Shinjuku, Tokyo (Japan)

    2014-02-15

    In Brookhaven National Laboratory, laser ion source has been developed to provide heavy ion beams by using plasma generation with 1064 nm Nd:YAG laser irradiation onto solid targets. The laser energy is transferred to the target material and creates a crater on the surface. However, only the partial material can be turned into plasma state and the other portion is considered to be just vaporized. Since heat propagation in the target material requires more than typical laser irradiation period, which is typically several ns, only the certain depth of the layers may contribute to form the plasma. As a result, the depth is more than 500 nm because the base material Al ions were detected. On the other hand, the result of comparing each carbon thickness case suggests that the surface carbon layer is not contributed to generate plasma.

  6. Interstellar Turbulent Magnetic Field Generation by Plasma Instabilities

    CERN Document Server

    Tautz, R C

    2013-01-01

    The maximum magnetic field strength generated by Weibel-type plasma instabilities is estimated for typical conditions in the interstellar medium. The relevant kinetic dispersion relations are evaluated by conducting a parameter study both for Maxwellian and for suprathermal particle distributions showing that micro Gauss magnetic fields can be generated. It is shown that, depending on the streaming velocity and the plasma temperatures, either the longitudinal or a transverse instability will be dominant. In the presence of an ambient magnetic field, the filamentation instability is typically suppressed while the two-stream and the classic Weibel instability are retained.

  7. Overdense plasma generation in a compact ion source

    Science.gov (United States)

    Castro, G.; Mascali, D.; Gammino, S.; Torrisi, G.; Romano, F. P.; Celona, L.; Altana, C.; Caliri, C.; Gambino, N.; Lanaia, D.; Miracoli, R.; Neri, L.; Sorbello, G.

    2017-05-01

    Electron cyclotron resonance ion sources (ECRIS) are widely used plasma based machines for the production of intense ion beams in science and industry. The performance of modern devices is limited by the presence of the density cut-off, above which electromagnetic (EM) waves sustaining the plasma are reflected. We hereby discuss the systematic data analysis of electrostatic wave generation in an ECR prototype operating at 3.75 GHz-0.1 THz. In particular, electron Bernstein waves (EBW) have been excited. EBW have already been generated in large-scale plasma devices for thermonuclear fusion purposes. In ion sources where L c ˜ λ RF (L c being the plasma chamber size and λ RF the pumping wave wavelength) the EM field assumes a modal behaviour; thus both plasma and EM field self-organize so that no optical-like wave launching is possible (i.e. the cavity effect dominates on the optical path). The collected data, however, supported by 3D full-wave simulations, actually demonstrate that a Budden-type X-B conversion scenario can be established above some critical RF power thresholds, operating in an off-ECR regime. The generation and absorption of the EBW has been demonstrated by the presence of three peculiar signatures: along with the establishment of an overdense plasma, generation of supra-thermal electrons and modification (non-linear broadening) of the EM spectrum measured within the plasma have been observed. At the threshold establishing such a heating regime, the collected data provide evidence for a fast rotation of the electron fluid.

  8. Plasma effect on the phase matching of high harmonic generation

    Institute of Scientific and Technical Information of China (English)

    Hui Lu; Candong Liu; Shitong Zhao; Peng Liu

    2011-01-01

    By optimizing the phase matching condition of high harmonic generation (HHG) from a supersonic neon gas jet, the enhanced HHG in the region of 60-70 eV has been selected. Three-dimensional numerical calculation shows that plasma plays a significant role in the phase matching process of HHG in a supersonic gas jet with short medium length. Due to plasma formation, the harmonic emission decays as the laser intensity reaches over 3.5 × 1014 W/cm2. The plasma induces the broadening and blue shift of the HHG spectra, which provides a method for fine-tuning the harmonic wavelength.%@@ By optimizing the phase matching condition of high harmonic generation (HHG) from a supersonic neon gas jet, the enhanced HHG in the region of 60-70 eV has been selected. Three-dimensional numerical calculation shows that plasma plays a significant role in the phase matching process of HHG in a supersonic gas jet with short medium length. Due to plasma formation, the harmonic emission decays as the laser intensity reaches over 3.5 × 1014 W/cm2. The plasma induces the broadening and blue shift of the HHG spectra, which provides a method for fine-tuning the harmonic wavelength.

  9. Opacity measurements in shock-generated argon plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Erskine, D.

    1993-07-01

    Dense plasmas having uniform and constant density and temperature are generated by passage of a planar shock wave through gas. The opacity of the plasma is accurately measured versus wavelength by recording the risetime of emitted light. This technique is applicable to a wide variety of species and plasma conditions. Initial experiments in argon have produced plasmas with 2 eV temperatures, 0.004--0.04 g/cm{sup 3} densities, and coupling parameters {Gamma} {approximately}0.3--0.7. Measurements in visible light are compared with calculations using the HOPE code. An interesting peak in the capacity at 400 nm is observed for the first time and is identified with the 4s-5p transition in excited neutral argon atoms.

  10. The high flux plasma generator Magnum-PSI

    Science.gov (United States)

    van Eck, H. J. N.; Kleyn, A. W.; Koppers, W. R.; Rapp, J.; Zeijlmans van Emmichoven, P. A.

    2010-11-01

    Magnum-PSI is a magnetized (3 T), high-flux (up to 10^24 H^+ ions m-2s-1) plasma generator, capable of delivering 10 MW m-2 steady-state power fluxes to a large area target. Magnum-PSI is a highly accessible laboratory experiment in which the interaction of magnetized plasma with different surfaces can be studied. This experiment will provide new insights in the complex physics and chemistry that will occur in the divertor region of the future experimental fusion reactor ITER and reactors beyond ITER. In this contribution, we will present the design and characterization of the Magnum-PSI experiment. The differentially pumped vacuum system, the superconducting magnet, the plasma source, the target plate and manipulator will be presented. Simulations and measurements of the neutral gas flow, as well as electron density and temperature measurements of the plasma beam will be presented. Furthermore, a flavor of upcoming PSI experiments will be given.

  11. Generation of radiation by intense plasma and electromagnetic undulators

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, C.

    1991-10-01

    We examine the characteristics of the classical radiation emission resulting from the interaction of a relativistic electron beam that propagates perpendicularly through a large amplitude relativistic plasma wave. Such a study is useful for evaluating the feasibility of using relativistic plasma waves as extremely short wavelength undulators for generating short wavelength radiation. The electron trajectories in a plasma wave undulator and in an ac FEL undulator are obtained using perturbation techniques. The spontaneous radiation frequency spectrum and angular distribution emitted by a single electron oscillating in these two undulators are then calculated. The radiation gain of a copropagating electromagnetic wave is calculated. The approximate analytic results for the trajectories, spontaneous radiation and gain are compared with 3-D simulation results. The characteristics of the plasma wave undulator are compared with the ac FEL undulator and linearly polarized magnetic undulator. 50 refs., 26 figs., 3 tabs.

  12. Generation of nano roughness on fibrous materials by atmospheric plasma

    Science.gov (United States)

    Kulyk, I.; Scapinello, M.; Stefan, M.

    2012-12-01

    Atmospheric plasma technology finds novel applications in textile industry. It eliminates the usage of water and of hazard liquid chemicals, making production much more eco-friendly and economically convenient. Due to chemical effects of atmospheric plasma, it permits to optimize dyeing and laminating affinity of fabrics, as well as anti-microbial treatments. Other important applications such as increase of mechanical resistance of fiber sleeves and of yarns, anti-pilling properties of fabrics and anti-shrinking property of wool fabrics were studied in this work. These results could be attributed to the generation of nano roughness on fibers surface by atmospheric plasma. Nano roughness generation is extensively studied at different conditions. Alternative explanations for the important practical results on textile materials and discussed.

  13. Pre-Excitation Studies for Rubidium-Plasma Generation

    CERN Document Server

    Aladi, M; Barna, I.F.; Czitrovszky, Aladar; Djotyan, Gagik; Dombi, Peter; Dzsotjan, David; FöLdes, Istvan; Hamar, Gergo; Ignacz, Peter; Kedves, Miklos; Kerekes, Attila; Levai, Peter; Marton, Istvan; Nagy, Attila; Oszetzky, Daniel; Pocsai, Mihaly; Racz, Peter; Raczkevi, Bela; Szigeti, Janos; Sörlei, Zsuzsa; Szipöcs, Robert; Varga, Dezso; Varga-Umbrich, Karoly; Varro, Sandor; Vamos, Lenard; Vesztergombi, György

    2014-01-01

    The key element in the Proton-Driven-Plasma-Wake-Field-Accelerator (AWAKE) project is the generation of highly uniform plasma from Rubidium vapor. The standard way to achieve full ionization is to use high power laser which can assure the over-barrier-ionization (OBI) along the 10 meters long active region. The Wigner-team in Budapest is investigating an alternative way of uniform plasma generation. The proposed Resonance Enhanced Multi Photon Ionization (REMPI) scheme probably can be realized by much less laser power. In the following the resonant pre-excitations of the Rb atoms are investigated, theoretically and the status report about the preparatory work on the experiment are presented.

  14. Characteristics of Collision, Capacitive Radio Frequency Sheath

    Institute of Scientific and Technical Information of China (English)

    Zhang Yu; DingWanYu; Wang Wenchun; Liu JinYuan; Wang Xiaogang; Liu Yue

    2005-01-01

    A simple collisional radio frequency (rf) sheath fluid model, which is not restricted by the ratio of rf frequency to ion plasma frequency (β=ωrf/ωpi), was established and solved numerically. In the ion balance equation, the effect of the collision on the ion and the ion velocity is assumed to be a direct ratio to ion velocity. The ion energy distributions (IEDs) calculated in the model in comparison with the experimental data [M. A. Sobolewski, J. K. Olthoff, and Y.C. Wang, J. Appl. Phys. 85, 3966 (1999)], proved the validity of the model. And the effect of the collision on the sheath characteristic was obtained and discussed. This paper demonstrates that the collision frequency is another crucial parameter as well as the ratio β to determine the rf sheath characteristics and the shape of IE Ds.

  15. Application possibilities of plasmas generated by high power laser ablation

    OpenAIRE

    Torrisi, L.

    2009-01-01

    High-power pulsed lasers emitting IR and visible radiation with intensities ranging between 10^8 and 10^16 W/cm2, pulse duration from 0.4 to 9 ns and energy from 100 mJ up to 600 J, operating in single mode or in repetition rate, can be employed to produce non-equilibrium plasma in vacuum by irradiating solid targets. Such a laser-produced plasma generates highly charged and high-energy ions of various elements, as well as soft and hard X-ray radiations. Heavy ions with charge state up to 58+...

  16. Magnetohydrodynamic dynamo: global flow generation in plasma turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Yokoi, Nobumitsu; Yoshizawa, Akira [Tokyo Univ. (Japan). Inst. of Industrial Science; Itoh, Kimitaka; Itoh, Sanae-I.

    1999-07-01

    Generation mechanism of the spontaneous plasma rotation observed in an improved confinement mode in tokamak's is examined from the viewpoint of the turbulent magnetohydrodynamic (MHD) dynamo. A dynamo model, where the concept of cross helicity (velocity/magnetic-field correlation) plays a key role, is applied to the reversed shear (RS) modes. The concave electric-current profile occurred in the RS modes is shown to be a cause of the global plasma rotation through a numerical simulation of the cross-helicity turbulence model. (author)

  17. A novel, all-dielectric, microwave plasma generator towards development of plasma metamaterials

    Science.gov (United States)

    Cohick, Zane; Luo, Wei; Perini, Steven; Baker, Amanda; Wolfe, Douglas; Lanagan, Michael

    2016-11-01

    A proof of concept for a microwave microplasma generator that consists of a halved dielectric resonator is presented. The generator functions via leaking electric fields of the resonant modes — TE01δ and HEM12δ modes are explored. Computational results illustrate the electric fields, whereas the stability of resonance and coupling are studied experimentally. Finally, a working device is presented. This generator promises potentially wireless and low-loss operation. This device may find relevance in plasma metamaterials; each resonator may generate the plasma structures necessary to manipulate electromagnetic radiation. In particular, the all-dielectric nature of the generator will allow low-loss interaction with high-frequency (GHz–THz) waves.

  18. Electromagnetic radiation generated by arcing in low density plasma

    Science.gov (United States)

    Vayner, Boris V.; Ferguson, Dale C.; Snyder, David B.; Doreswamy, C. V.

    1996-01-01

    An unavoidable step in the process of space exploration is to use high-power, very large spacecraft launched into Earth orbit. Obviously, the spacecraft will need powerful energy sources. Previous experience has shown that electrical discharges occur on the surfaces of a high-voltage array, and these discharges (arcs) are undesirable in many respects. Moreover, any high voltage conductor will interact with the surrounding plasma, and that interaction may result in electrical discharges between the conductor and plasma (or between two conductors with different potentials, for example, during docking and extravehicular activity). One very important aspect is the generation of electromagnetic radiation by arcing. To prevent the negative influence of electromagnetic noise on the operation of spacecraft systems, it seems necessary to determine the spectra and absolute levels of the radiation, and to determine limitations on the solar array bias voltage that depend on the parameters of LEO plasma and the technical requirements of the spacecraft equipment. This report describes the results of an experimental study and computer simulation of the electromagnetic radiation generated by arcing on spacecraft surfaces. A large set of high quality data was obtained during the Solar Array Module Plasma Interaction Experiment (SAMPIE, flight STS-62) and ground test. These data include the amplitudes of current, pulse forms, duration of each arc, and spectra of plasma waves. A theoretical explanation of the observed features is presented in this report too. The elaborated model allows us to determine the parameters of the electromagnetic noise for different frequency ranges, distances from the arcing site, and distinct kinds of plasma waves.

  19. Plasma-generated reactive oxygen species for biomedical applications

    Science.gov (United States)

    Sousa, J. S.; Hammer, M. U.; Winter, J.; Tresp, H.; Duennbier, M.; Iseni, S.; Martin, V.; Puech, V.; Weltmann, K. D.; Reuter, S.

    2012-10-01

    To get a better insight into the effects of reactive oxygen species (ROS) on cellular components, fundamental studies are essential to determine the nature and concentration of plasma-generated ROS, and the chemistry induced in biological liquids by those ROS. In this context, we have measured the absolute density of the main ROS created in three different atmospheric pressure plasma sources: two geometrically distinct RF-driven microplasma jets (μ-APPJ [1] and kinpen [2]), and an array of microcathode sustained discharges [3]. Optical diagnostics of the plasma volumes and effluent regions have been performed: UV absorption for O3 and IR emission for O2(a^1δ) [4]. High concentrations of both ROS have been obtained (10^14--10^17cm-3). The effect of different parameters, such as gas flows and mixtures and power coupled to the plasmas, has been studied. For plasma biomedicine, the determination of the reactive species present in plasma-treated liquids is of great importance. In this work, we focused on the measurement of the concentration of H2O2 and NOX radicals, generated in physiological solutions like NaCl and PBS.[4pt] [1] N. Knake et al., J. Phys. D: App. Phys. 41, 194006 (2008)[0pt] [2] K.D. Weltmann et al., Pure Appl. Chem. 82, 1223 (2010)[0pt] [3] J.S. Sousa et al., Appl. Phys. Lett. 97, 141502 (2010)[0pt] [4] J.S. Sousa et al., Appl. Phys. Lett. 93, 011502 (2008)

  20. Simulation of current generation in a 3-D plasma model

    Energy Technology Data Exchange (ETDEWEB)

    Tsung, F.S.; Dawson, J.M. [Univ. of California, Los Angeles, CA (United States)

    1996-12-31

    Two wires carrying current in the same direction will attract each other, and two wires carrying current in the opposite direction will repel each other. Now, consider a test charge in a plasma. If the test charge carries current parallel to the plasma, then it will be pulled toward the plasma core, and if the test charge carries current anti-parallel to the plasma, then it will be pushed to the edge. The electromagnetic coupling between the plasma and a test charge (i.e., the A{sub {parallel}} {circ} v{sub {parallel}} term in the test charge`s Hamiltonian) breaks the symmetry in the parallel direction, and gives rise to a diffusion coefficient which is dependent on the particle`s parallel velocity. This is the basis for the {open_quotes}preferential loss{close_quotes} mechanism described in the work by Nunan et al. In our previous 2+{1/2}D work, in both cylindrical and toroidal geometries, showed that if the plasma column is centrally fueled, then an initial current increases steadily. The results in straight, cylindrical plasmas showed that self generated parallel current arises without trapped particle or neoclassical diffusion, as assumed by the bootstrap theory. It suggests that the fundamental mechanism seems to be the conservation of particles canonical momenta in the direction of the ignorable coordinate. We have extended the simulation to 3D to verify the model put forth. A scalable 3D EM-PIC code, with a localized field-solver, has been implemented to run on a large class of parallel computers. On the 512-node SP2 at Cornell Theory Center, we have benchmarked the 2+{1/2}D calculations using 32 grids in the previously ignored direction, and a 100-fold increase in the number of particles. Our preliminary results show good agreements between the 2+{1/2}D and the 3D calculations. We will present our 3D results at the meeting.

  1. Neutron Generation and Kinetic Energy of Expanding Laser Plasmas

    Institute of Scientific and Technical Information of China (English)

    HUANG Yong-Sheng; WANG Nai-Yan; DUAN Xiao-Jiao; LAN Xiao-Fei; TAN Zhi-Xin; TANG Xiu-Zhang; HE Ye-Xi

    2007-01-01

    We investigate the kinetic energy of expanding plasma of a solid target heated by a ultra-short and ultra-intense laser pulse and the efficiency of energy coupling between the ultra-intense laser pulse and the solid target, in order to increase the utilization ratio of laser energy and to raise the neutron generation farther. Some new ideas about improving the energy utilization by head-on collisions between the expanding plasmas are proposed. The significance is the raise of generation of shorter duration neutron, of the order of picoseconds, which allows for an increase of energy resolution in time-of-flight experiments and also for the investigation of the dynamics of nuclear processes with high temporal resolution.

  2. Measurement of effective sheath width around the cutoff probe based on electromagnetic simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. W.; Oh, W. Y., E-mail: sjyou@cnu.ac.kr, E-mail: woh1@kaist.ac.kr [Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); You, S. J., E-mail: sjyou@cnu.ac.kr, E-mail: woh1@kaist.ac.kr [Department of Physics, Chungnam National University, Daejeon 305-701 (Korea, Republic of); Kim, J. H. [Center for Vacuum Technology, Korea Research Institute of Standards and Science, Daejeon 305-306 (Korea, Republic of); Chang, H. Y. [Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); Yoon, J.-S. [Plasma Technology Research Center, National Fusion Research Institute, Gunsan 573-540 (Korea, Republic of)

    2016-05-15

    We inferred the effective sheath width using the cutoff probe and incorporating a full-wave three-dimensional electromagnetic (EM) simulation. The EM simulation reproduced the experimentally obtained plasma-sheath resonance (PSR) on the microwave transmission (S{sub 21}) spectrum well. The PSR frequency has a one-to-one correspondence with the width of the vacuum layer assumed to be the effective sheath in the EM simulation model. The sheath width was estimated by matching the S{sub 21} spectra of the experiment and the EM simulation for different widths of the sheath. We found that the inferred sheath widths quantitatively and qualitatively agree with the sheath width measured by incorporating an equivalent circuit model. These results demonstrate the excellent potential of the cutoff probe for inferring the effective sheath width from its experimental spectrum data.

  3. Propagation of Plasma Generated by Intense Pulsed Ion Beam Irradiation

    Institute of Scientific and Technical Information of China (English)

    WU Di; GONG Ye; LIU Jin-Yuan; WANG Xiao-Gang; LIU Yue; MA Teng-Cai

    2006-01-01

    @@ Taking the calculation results based on the established two-dimensional ablation model of the intense-pulsed-ion-beam (IPIB) irradiation process as initial conditions, we build a two-dimensional hydrodynamic ejection model of plasma produced by an IPIB-irradiated metal titanium target into ambient gas. We obtain the conclusions that shock waves generate when the background pressure is around 133 mTorr and also obtain the plume splitting phenomenon that has been observed in the experiments.

  4. Flowing dusty plasma experiments: generation of flow and measurement techniques

    Science.gov (United States)

    Jaiswal, S.; Bandyopadhyay, P.; Sen, A.

    2016-12-01

    A variety of experimental techniques for the generation of subsonic/supersonic dust fluid flows and means of measuring such flow velocities are presented. The experiments have been carried out in a \\Pi -shaped dusty plasma experimental device with micron size kaolin/melamine formaldehyde particles embedded in a background of argon plasma created by a direct current glow discharge. A stationary dust cloud is formed over the cathode region by precisely balancing the pumping speed and gas flow rate. A flow of dust particles/fluid is generated by additional gas injection from a single or dual locations or by altering the dust confining potential. The flow velocity is then estimated by three different techniques, namely, by super particle identification code, particle image velocimetry analysis and the excitation of dust acoustic waves. The results obtained from these three different techniques along with their merits and demerits are discussed. An estimation of the neutral drag force responsible for the generation as well as the attenuation of the dust fluid flow is made. These techniques can be usefully employed in laboratory devices to investigate linear and non-linear collective excitations in a flowing dusty plasma.

  5. High-order harmonic generation in laser plasma plumes

    CERN Document Server

    Ganeev, Rashid A

    2013-01-01

    This book represents the first comprehensive treatment of high-order harmonic generation in laser-produced plumes, covering the principles, past and present experimental status and important applications. It shows how this method of frequency conversion of laser radiation towards the extreme ultraviolet range matured over the course of multiple studies and demonstrated new approaches in the generation of strong coherent short-wavelength radiation for various applications. Significant discoveries and pioneering contributions of researchers in this field carried out in various laser scientific centers worldwide are included in this first attempt to describe the important findings in this area of nonlinear spectroscopy. "High-Order Harmonic Generation in Laser Plasma Plumes" is a self-contained and unified review of the most recent achievements in the field, such as the application of clusters (fullerenes, nanoparticles, nanotubes) for efficient harmonic generation of ultrashort laser pulses in cluster-containin...

  6. Laser plasma simulations of the generation processes of Alfven and collisionless shock waves in space plasma

    Science.gov (United States)

    Prokopov, P. A.; Zakharov, Yu P.; Tishchenko, V. N.; Shaikhislamov, I. F.; Boyarintsev, E. L.; Melekhov, A. V.; Ponomarenko, A. G.; Posukh, V. G.; Terekhin, V. A.

    2016-11-01

    Generation of Alfven waves propagating along external magnetic field B0 and Collisionless Shock Waves propagating across B0 are studied in experiments with laser- produced plasma and magnetized background plasma. The collisionless interaction of interpenetrating plasma flows takes place through a so-called Magnetic Laminar Mechanism (MLM) or Larmor Coupling. At the edge of diamagnetic cavity LP-ions produce induction electric field Eφ which accelerates BP-ions while LP-ions rotate in opposite direction. The ions movement generates sheared azimuthal magnetic field Bφ which could launches torsional Alfven wave. In previous experiments at KI-1 large scale facility a generation of strong perturbations propagating across B0 with magnetosonic speed has been studied at a moderate value of interaction parameter δ∼0.3. In the present work we report on experiments at conditions of 5∼R2 and large Alfven-Mach number MA∼10 in which strong transverse perturbations traveling at a scale of ∼1 m in background plasma at a density of ∼3*1013 cm-3 is observed. At the same conditions but smaller MA ∼ 2 a generation, the structure and dynamic of Alfven wave with wavelength ∼0.5 m propagating along fields B0∼100÷500 G for a distance of ∼2.5 m is studied.

  7. On parallel electric field generation in transversely inhomogeneous plasmas

    CERN Document Server

    Tsiklauri, David

    2007-01-01

    The generation of parallel electric fields by the propagation of ion cyclotron waves in the plasma with a transverse density inhomogeneity was studied. It was proven that the minimal model required to reproduce the previous kinetic simulation results of E_{||} generation [Tsiklauri et al 2005, Genot et al 2004] is the two-fluid, cold plasma approximation in the linear regime. By considering the numerical solutions it was also shown that the cause of E_{||} generation is the electron and ion flow separation induced by the transverse density inhomogeneity. We also investigate how E_{||} generation is affected by the mass ratio and found that amplitude attained by E_{||} decreases linearly as inverse of the mass ratio m_i/m_e. For realistic mass ratio of m_i/m_e=1836, such empirical scaling law, within a time corresponding to 3 periods of the driving ion cyclotron wave, is producing E_{||}=14 Vm^{-1} for solar coronal parameters. Increase in mass ratio does not have any effect on final parallel (magnetic field a...

  8. Electron beam generated plasmas for the processing of graphene

    Science.gov (United States)

    Walton, S. G.; Hernández, S. C.; Boris, D. R.; Petrova, Tz B.; Petrov, G. M.

    2017-09-01

    The Naval Research Laboratory (NRL) has developed a processing system based on an electron beam-generated plasma and applied it to the processing of graphene. Unlike conventional discharges produced by electric fields (DC, RF, microwave, etc), the plasma is driven by a high-energy (~few keV) electron beam, an approach that simplifies the relative production of species while providing comparatively high ion-to-radical production rates. The resulting plasmas are characterized by high charged particle densities (1010-1011 cm-3) and electron temperatures that are typically about 1.0 eV or lower. Accordingly, the flux to adjacent surfaces is generally dominated by ions with kinetic energies in the range of 1-5 eV, a value at or near the bond strength of most materials. This provides the potential for controllably engineering materials with monolayer precision, an attribute attractive for the processing of atomically thin material systems. This work describes the attributes of electron beam driven plasma processing system and its use in modification of graphene.

  9. Laser propagation and soliton generation in strongly magnetized plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Feng, W.; Li, J. Q.; Kishimoto, Y. [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2016-03-15

    The propagation characteristics of various laser modes with different polarization, as well as the soliton generation in strongly magnetized plasmas are studied numerically through one-dimensional (1D) particle-in-cell (PIC) simulations and analytically by solving the laser wave equation. PIC simulations show that the laser heating efficiency substantially depends on the magnetic field strength, the propagation modes of the laser pulse and their intensities. Generally, large amplitude laser can efficiently heat the plasma with strong magnetic field. Theoretical analyses on the linear propagation of the laser pulse in both under-dense and over-dense magnetized plasmas are well confirmed by the numerical observations. Most interestingly, it is found that a standing or moving soliton with frequency lower than the laser frequency is generated in certain magnetic field strength and laser intensity range, which can greatly enhance the laser heating efficiency. The range of magnetic field strength for the right-hand circularly polarized (RCP) soliton formation with high and low frequencies is identified by solving the soliton equations including the contribution of ion's motion and the finite temperature effects under the quasi-neutral approximation. In the limit of immobile ions, the RCP soliton tends to be peaked and stronger as the magnetic field increases, while the enhanced soliton becomes broader as the temperature increases. These findings in 1D model are well validated by 2D simulations.

  10. Material for electrodes of low temperature plasma generators

    Science.gov (United States)

    Caplan, Malcolm; Vinogradov, Sergel Evge'evich; Ribin, Valeri Vasil'evich; Shekalov, Valentin Ivanovich; Rutberg, Philip Grigor'evich; Safronov, Alexi Anatol'evich

    2008-12-09

    Material for electrodes of low temperature plasma generators. The material contains a porous metal matrix impregnated with a material emitting electrons. The material uses a mixture of copper and iron powders as a porous metal matrix and a Group IIIB metal component such as Y.sub.2O.sub.3 is used as a material emitting electrons at, for example, the proportion of the components, mass %: iron: 3-30; Y.sub.2O.sub.3:0.05-1; copper: the remainder. Copper provides a high level of heat conduction and electric conductance, iron decreases intensity of copper evaporation in the process of plasma creation providing increased strength and lifetime, Y.sub.2O.sub.3 provides decreasing of electronic work function and stability of arc burning. The material can be used for producing the electrodes of low temperature AC plasma generators used for destruction of liquid organic wastes, medical wastes, and municipal wastes as well as for decontamination of low level radioactive waste, the destruction of chemical weapons, warfare toxic agents, etc.

  11. The interaction of explosively generated plasma with explosives

    Science.gov (United States)

    Tasker, Douglas G.; Whitley, Von H.; Johnson, Carl E.

    2017-01-01

    It has been shown that the temperature of explosively generated plasma (EGP) is of the order of 1 eV and plasma ejecta can be focused to achieve velocities as high as 25 km/s. Proof-of-principle tests were performed to determine if EGP could be used for explosive ordnance demolition and other applications. The goals were: to benignly disable ordnance containing relatively sensitive high performance explosives (PBX-9501); and to investigate the possibility of interrupting an ongoing detonation in a powerful high explosive (again PBX-9501) with EGP. Experiments were performed to establish the optimum sizes of plasma generators for the benign deactivation of high explosives, i.e., the destruction of the ordnance without initiating a detonation or comparable violent event. These experiments were followed by attempts to interrupt an ongoing detonation by the benign disruption of the unreacted explosive in its path. The results were encouraging. First, it was demonstrated that high explosives could be destroyed without the initiation of a detonation or high order reaction. Second, ongoing detonations were successfully interrupted with EGP. [LA-UR-15-25350

  12. Nonthermal Argon Plasma Generator and Some Potential Applications

    Directory of Open Access Journals (Sweden)

    Bunoiu M.

    2015-12-01

    Full Text Available A laboratory - made nonthermal plasma generator is presented. It has a diameter of 0.020 m and length of 0.155 m and contains two electrodes. The first electrode is a 2% Th-W alloy, 0.002 m in diameter bar, centred inside the generator’s body by means of a four channel teflon piece; the other three channels, 0.003 m in diameter, are used for Ar supply. The second electrode is a nozzle of 0.002 m - 0.008 m diameter and 0.005m length. A ~500 kV/m electric field is generated between the two electrodes by a high frequency source (13.56 MHz ±5%, equipped with a OT-1000 (Tungsram power triode. For Ar flows ranging from 0.00008 m3/s to 0.00056 m3/s, a plasma jet of length not exceeding 0.015 m and temperature below 315 K is obtained. Anthurium andraeanumis sample , blood matrix, human hair and textile fibers may be introduced in the plasma jet. For time periods of 30 s and 60 s, various effects like, cell detexturization, fast blood coagulation or textile fiber or hair cleaning and smoothing are obtained. These effects are presented and discussed in the paper.

  13. Measurement of sheath thickness at a floating potential

    Energy Technology Data Exchange (ETDEWEB)

    Han, Hyung-Sik; Lee, Hyo-Chang; Oh, Se-Jin; Chung, Chin-Wook, E-mail: joykang@hanyang.ac.kr [Department of Electrical Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of)

    2014-02-15

    In a cylindrical Langmuir probe measurement, ion current is collected from the surface of the sheath surrounded at probe tip, not at the surface of the probe tip. By using this, the sheath thickness can be obtained, if we know some unknown parameters, such as ion current, plasma density, and electron temperature. In this paper, we present a method to measure sheath thickness by using a wave cutoff method and a floating harmonic method. The measured result is in a good agreement with Allen-Boyd-Reynolds theory.

  14. Solar Wind Strahl Broadening by Self-Generated Plasma Waves

    Science.gov (United States)

    Pavan, J.; Vinas, A. F.; Yoon, P. H.; Ziebell, L. F.; Gaelzer, R.

    2013-01-01

    This Letter reports on the results of numerical simulations which may provide a possible explanation for the strahl broadening during quiet solar conditions. The relevant processes involved in the broadening are due to kinetic quasi-linear wave-particle interaction. Making use of static analytical electron distribution in an inhomogeneous field, it is found that self-generated electrostatic waves at the plasma frequency, i.e., Langmuir waves, are capable of scattering the strahl component, resulting in energy and pitch-angle diffusion that broadens its velocity distribution significantly. The present theoretical results provide an alternative or complementary explanation to the usual whistler diffusion scenario, suggesting that self-induced electrostatic waves at the plasma frequency might play a key role in broadening the solar wind strahl during quiet solar conditions.

  15. Slow electrostatic fluctuations generated by beam-plasma interaction

    CERN Document Server

    Pommois, Karen; Pezzi, Oreste; Veltri, Pierluigi

    2016-01-01

    Eulerian simulations of the Vlasov-Poisson equations have been employed to analyze the excitation of slow electrostatic fluctuations (with phase speed close to the electron thermal speed), due to a beam-plasma interaction, and their propagation in linear and nonlinear regime. In 1968, O'Neil and Malmberg [Phys. Fluids {\\bf 11}, 1754 (1968)] dubbed these waves "beam modes". In the present paper, it is shown that, in the presence of a cold and low density electron beam, these beam modes can become unstable and then survive Landau damping unlike the Langmuir waves. When an electron beam is launched in a plasma of Maxwellian electrons and motionless protons and this initial equilibrium is perturbed by a monochromatic density disturbance, the electric field amplitude grows exponentially in time and then undergoes nonlinear saturation, associated with the kinetic effects of particle trapping and phase space vortex generation. Moreover, if the initial density perturbation is setup in the form of a low amplitude rand...

  16. Shock Generation and Control Using DBD Plasma Actuators

    Science.gov (United States)

    Patel, Mehul P.; Cain, Alan B.; Nelson, Christopher C.; Corke, Thomas C.; Matlis, Eric H.

    2012-01-01

    This report is the final report of a NASA Phase I SBIR contract, with some revisions to remove company proprietary data. The Shock Boundary Layer Interaction (SBLI) phenomena in a supersonic inlet involve mutual interaction of oblique shocks with boundary layers, forcing the boundary layer to separate from the inlet wall. To improve the inlet efficiency, it is desired to prevent or delay shock-induced boundary layer separation. In this effort, Innovative Technology Applications Company (ITAC), LLC and the University of Notre Dame (UND) jointly investigated the use of dielectric-barrier-discharge (DBD) plasma actuators for control of SBLI in a supersonic inlet. The research investigated the potential for DBD plasma actuators to suppress flow separation caused by a shock in a turbulent boundary layer. The research involved both numerical and experimental investigations of plasma flow control for a few different SBLI configurations: (a) a 12 wedge flow test case at Mach 1.5 (numerical and experimental), (b) an impinging shock test case at Mach 1.5 using an airfoil as a shock generator (numerical and experimental), and (c) a Mach 2.0 nozzle flow case in a simulated 15 X 15 cm wind tunnel with a shock generator (numerical). Numerical studies were performed for all three test cases to examine the feasibility of plasma flow control concepts. These results were used to guide the wind tunnel experiments conducted on the Mach 1.5 12 degree wedge flow (case a) and the Mach 1.5 impinging shock test case (case b) which were at similar flow conditions as the corresponding numerical studies to obtain experimental evidence of plasma control effects for SBLI control. The experiments also generated data that were used in validating the numerical studies for the baseline cases (without plasma actuators). The experiments were conducted in a Mach 1.5 test section in the University of Notre Dame Hessert Laboratory. The simulation results from cases a and b indicated that multiple

  17. Magnetic field generation during intense laser channelling in underdense plasma

    Science.gov (United States)

    Smyth, A. G.; Sarri, G.; Vranic, M.; Amano, Y.; Doria, D.; Guillaume, E.; Habara, H.; Heathcote, R.; Hicks, G.; Najmudin, Z.; Nakamura, H.; Norreys, P. A.; Kar, S.; Silva, L. O.; Tanaka, K. A.; Vieira, J.; Borghesi, M.

    2016-06-01

    Channel formation during the propagation of a high-energy (120 J) and long duration (30 ps) laser pulse through an underdense deuterium plasma has been spatially and temporally resolved via means of a proton imaging technique, with intrinsic resolutions of a few μm and a few ps, respectively. Conclusive proof is provided that strong azimuthally symmetric magnetic fields with a strength of around 0.5 MG are created inside the channel, consistent with the generation of a collimated beam of relativistic electrons. The inferred electron beam characteristics may have implications for the cone-free fast-ignition scheme of inertial confinement fusion.

  18. Continuum Kinetic and Multi-Fluid Simulations of Classical Sheaths

    CERN Document Server

    Cagas, Petr; Juno, James; Srinivasan, Bhuvana

    2016-01-01

    The kinetic study of plasma sheaths is critical, among other things, to understand the deposition of heat on walls, the effect of sputtering, and contamination of the plasma with detrimental impurities. The plasma sheath also provides a boundary condition and can often have a significant global impact on the bulk plasma. In this paper, kinetic studies of classical sheaths are performed with the continuum code, Gkeyll, that directly solves the Vlasov-Poisson/Maxwell equations. The code uses a novel version of the finite-element discontinuous Galerkin (DG) scheme that conserves energy in the continuous-time limit. The electrostatic field is computed using the Poisson equation. Ionization and scattering collisions are included, however, surface effects are neglected. The aim of this work is to introduce the continuum-kinetic method and compare its results to those obtained from an already established finite-volume multi-fluid model also implemented in Gkeyll. Novel boundary conditions on the fluids allow the she...

  19. Generation of attosecond electron bunches in a laser-plasma accelerator using a plasma density upramp

    Energy Technology Data Exchange (ETDEWEB)

    Weikum, M.K., E-mail: maria.weikum@desy.de [Deutsches Elektronensynchrotron (DESY), Bdg. 30b, Notkestr. 85, 22607 Hamburg (Germany); Department of Physics, University of Strathclyde, G4 0NG Glasgow (United Kingdom); Li, F.Y. [Department of Physics, University of Strathclyde, G4 0NG Glasgow (United Kingdom); Assmann, R.W. [Deutsches Elektronensynchrotron (DESY), Bdg. 30b, Notkestr. 85, 22607 Hamburg (Germany); Sheng, Z.M. [Department of Physics, University of Strathclyde, G4 0NG Glasgow (United Kingdom); Laboratory for Laser Plasmas and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Jaroszynski, D. [Department of Physics, University of Strathclyde, G4 0NG Glasgow (United Kingdom)

    2016-09-01

    Attosecond electron bunches and attosecond radiation pulses enable the study of ultrafast dynamics of matter in an unprecedented regime. In this paper, the suitability for the experimental realization of a novel scheme producing sub-femtosecond duration electron bunches from laser-wakefield acceleration in plasma with self-injection in a plasma upramp profile has been investigated. While it has previously been predicted that this requires laser power above a few hundred terawatts typically, here we show that the scheme can be extended with reduced driving laser powers down to tens of terawatts, generating accelerated electron pulses with minimum length of around 166 attoseconds and picocoulombs charge. Using particle-in-cell simulations and theoretical models, the evolution of the accelerated electron bunch within the plasma as well as simple scalings of the bunch properties with initial laser and plasma parameters are presented. - Highlights: • LWFA with an upramp density profile can trap and accelerate sub-fs electron beams. • A reduction of the necessary threshold laser intensity by a factor 4 is presented. • Electron properties are tuned by varying initial laser and plasma parameters. • Simulations predict electron bunch lengths below 200 attoseconds with pC charge. • Strong bunch evolution effects and a large energy spread still need to be improved.

  20. Generation of anomalously energetic suprathermal electrons by an electron beam interacting with a nonuniform plasma

    Science.gov (United States)

    Sydorenko, Dmytro; Kaganovich, Igor D.; Ventzek, Peter L. G.

    2016-10-01

    Electrons emitted from electrodes are accelerated by the sheath electric field and become the electron beams penetrating the plasma. The electron beam can interact with the plasma in collisionless manner via two-stream instability and produce suprathermal electrons. In order to understand the mechanism of suprathermal electrons acceleration, a beam-plasma system was simulated using a 1D3V particle-in-cell code EDIPIC. These simulation results show that the acceleration may be caused by the effects related to the plasma nonuniformity. The electron beam excites plasma waves whose wavelength and phase speed gradually decrease towards anode. The short waves near the anode accelerate plasma bulk electrons to suprathermal energies. Rich complexity of beam- plasma interaction phenomena was also observed: intermittency and multiple regimes of two-stream instability in a dc discharge, band structure of the growth rate of the two-stream instability of an electron beam propagating in a bounded plasma, multi-stage acceleration of electrons in a finite system.

  1. Calibrated automated thrombin generation measurement in clotting plasma.

    Science.gov (United States)

    Hemker, H Coenraad; Giesen, Peter; Al Dieri, Raed; Regnault, Véronique; de Smedt, Eric; Wagenvoord, Rob; Lecompte, Thomas; Béguin, Suzette

    2003-01-01

    Calibrated automated thrombography displays the concentration of thrombin in clotting plasma with or without platelets (platelet-rich plasma/platelet-poor plasma, PRP/PPP) in up to 48 samples by monitoring the splitting of a fluorogenic substrate and comparing it to a constant known thrombin activity in a parallel, non-clotting sample. Thus, the non-linearity of the reaction rate with thrombin concentration is compensated for, and adding an excess of substrate can be avoided. Standard conditions were established at which acceptable experimental variation accompanies sensitivity to pathological changes. The coefficients of variation of the surface under the curve (endogenous thrombin potential) are: within experiment approximately 3%; intra-individual: AVK, heparin(-likes), direct inhibitors]. In PRP, it is diminished in von Willebrand's disease, but it also shows the effect of platelet inhibitors (e.g. aspirin and abciximab). Addition of activated protein C (APC) or thrombomodulin inhibits thrombin generation and reflects disorders of the APC system (congenital and acquired resistance, deficiencies and lupus antibodies) independent of concomitant inhibition of the procoagulant pathway as for example by anticoagulants.

  2. Ge laser-generated plasma for ion implantation

    Science.gov (United States)

    Giuffrida, L.; Torrisi, L.; Czarnecka, A.; Wołowski, J.; Quarta, Ge; Calcagnile, L.; Lorusso, A.; Nassisi, V.

    Laser-generated plasma obtained by Ge ablation in vacuum was investigated with the aim to implant energetic Ge ions in light substrates (C, Si, SiO2). Different intensities of laser sources were employed for these experiments: Nd:Yag of Catania-LNS; Nd:Yag of Warsaw-IPPL; excimer laser of Lecce-INFN; iodine laser of Prague-PALS. Different experimental setups were used to generate multiple ion stream emissions, multiple ion energetic distributions, high implantation doses, thin film deposition and post-acceleration effects. `On line' measurements of ion energy were obtained with ion collectors and ion energy analyzer in time-of-flight configuration. `Off line' measurement of Ge implants were obtained with 2.25 MeV helium beam in Rutherford backscattering spectrometry. Results indicated that ion implants show typical deep profiles only for substrates placed along the normal to the target surface at which the ion energy is maximum.

  3. Peculiarities of Efficient Plasma Generation in Air and Water by Short Duration Laser Pulses

    Science.gov (United States)

    Adamovsky, Grigory; Floyd, Bertram M.

    2017-01-01

    We have conducted experiments to demonstrate an efficient generation of plasma discharges by focused nanosecond pulsed laser beams in air and provided recommendations on the design of optical systems to implement such plasma generation. We have also demonstrated generation of the secondary plasma discharge using the unused energy from the primary one. Focused nanosecond pulsed laser beams have also been utilized to generate plasma in water where we observed self-focusing and filamentation. Furthermore, we applied the laser generated plasma to the decomposition of methylene blue dye diluted in water.

  4. Fibroma of tendon sheath.

    Science.gov (United States)

    Smith, P S; Pieterse, A S; McClure, J

    1982-01-01

    A series of nine cases of fibroma of tendon sheath is described including details of the ultrastructural features of two cases. The series was composed of lesions from six males and three females with a mean age of 38 yr. The most common site of involvement was the hand (including fingers) and the mean greater diameter was 19 mm. Typically the tumours were lobulated and microscopically there was a collagenous stroma with spindle and stellate cells in a moderate degree of cellularity. One recurrence was noted in the series. The lesion was distinguished from circumscribed fibromatosis, nodular fasciitis, neurofibroma, leiomyoma, scar tissue, giant cell tumour of tendon sheath (localised nodular tenosynovitis) and fibrous histiocytoma. Ultrastructural studies revealed that the large majority of cells present in the two cases studied were myofibroblasts and fibroma of tendon sheath is therefore the third instance of a benign tumour containing these cells (the other two being dermatofibroma and giant cell fibroma of the oral mucosa). Images PMID:7107956

  5. Bernstein wave aided laser third harmonic generation in a plasma

    Science.gov (United States)

    Tyagi, Yachna; Tripathi, Deepak; Kumar, Ashok

    2016-09-01

    The process of Bernstein wave aided resonant third harmonic generation of laser in a magnetized plasma is investigated. The extra-ordinary mode (X-mode) laser of frequency ω 0 and wave number k → 0 , travelling across the magnetic field in a plasma, exerts a second harmonic ponderomotive force on the electrons imparting them an oscillatory velocity v → 2 ω0 , 2 k → 0 . This velocity beats with the density perturbation due to the Bernstein wave to produce a density perturbation at cyclotron frequency shifted second harmonic. The density perturbation couples with the oscillatory velocity v → ω0 , k → 0 of X-mode of the laser to produce the cyclotron frequency shifted third harmonic current density leading to harmonic radiation. The phase matching condition for the up shifted frequency is satisfied when the Bernstein wave is nearly counter-propagating to the laser. As the transverse wave number of the Bernstein wave is large, it is effective in the phase matched third harmonic generation, when the laser frequency is not too far from the upper hybrid frequency.

  6. Flowing dusty plasma experiments: Generation of flow and measurement techniques

    CERN Document Server

    Jaiswal, S; Sen, A

    2016-01-01

    A variety of experimental techniques for the generation of subsonic/supersonic dust fluid flows and means of measuring such flow velocities are presented. The experiments have been carried out in a $\\Pi-$shaped Dusty Plasma Experimental (DPEx) device with micron size kaolin/Melamine Formaldehyde (MF) particles embedded in a background of Argon plasma created by a direct current (DC) glow discharge. A stationary dust cloud is formed over the cathode region by precisely balancing the pumping speed and gas flow rate. A flow of dust particles/fluid is generated by additional gas injection from a single or dual locations or by altering the dust confining potential. The flow velocity is then estimated by three different techniques, namely, by super Particle Identification (sPIT) code, Particle Image Velocimetry (PIV) analysis and the excitation of Dust Acoustic Waves (DAWs). The results obtained from these three different techniques along with their merits and demerits are discussed. An estimation of the neutral dr...

  7. Nuclear Fusion Effects Induced in Intense Laser-Generated Plasmas

    Directory of Open Access Journals (Sweden)

    Lorenzo Torrisi

    2013-01-01

    Full Text Available Deutered polyethylene (CD2n thin and thick targets were irradiated in high vacuum by infrared laser pulses at 1015W/cm2 intensity. The high laser energy transferred to the polymer generates plasma, expanding in vacuum at supersonic velocity, accelerating hydrogen and carbon ions. Deuterium ions at kinetic energies above 4 MeV have been measured by using ion collectors and SiC detectors in time-of-flight configuration. At these energies the deuterium–deuterium collisions may induce over threshold fusion effects, in agreement with the high D-D cross-section valuesaround 3 MeV energy. At the first instants of the plasma generation, during which high temperature, density and ionacceleration occur, the D-D fusions occur as confirmed by the detection of mono-energetic protonsand neutrons with a kinetic energy of 3.0 MeV and 2.5 MeV, respectively, produced by the nuclear reaction. The number of fusion events depends strongly on the experimental set-up, i.e. on the laser parameters (intensity, wavelength, focal spot dimension, target conditions (thickness, chemical composition, absorption coefficient, presence of secondary targets and used geometry (incidence angle, laser spot, secondary target positions.A number of D-D fusion events of the order of 106÷7 per laser shot has been measured.

  8. High duty factor plasma generator for CERN's Superconducting Proton Linac.

    Science.gov (United States)

    Lettry, J; Kronberger, M; Scrivens, R; Chaudet, E; Faircloth, D; Favre, G; Geisser, J-M; Küchler, D; Mathot, S; Midttun, O; Paoluzzi, M; Schmitzer, C; Steyaert, D

    2010-02-01

    CERN's Linac4 is a 160 MeV linear accelerator currently under construction. It will inject negatively charged hydrogen ions into CERN's PS-Booster. Its ion source is a noncesiated rf driven H(-) volume source directly inspired from the one of DESY and is aimed to deliver pulses of 80 mA of H(-) during 0.4 ms at a 2 Hz repetition rate. The Superconducting Proton Linac (SPL) project is part of the luminosity upgrade of the Large Hadron Collider. It consists of an extension of Linac4 up to 5 GeV and is foreseen to deliver protons to a future 50 GeV synchrotron (PS2). For the SPL high power option (HP-SPL), the ion source would deliver pulses of 80 mA of H(-) during 1.2 ms and operate at a 50 Hz repetition rate. This significant upgrade motivates the design of the new water cooled plasma generator presented in this paper. Its engineering is based on the results of a finite element thermal study of the Linac4 H(-) plasma generator that identified critical components and thermal barriers. A cooling system is proposed which achieves the required heat dissipation and maintains the original functionality. Materials with higher thermal conductivity are selected and, wherever possible, thermal barriers resulting from low pressure contacts are removed by brazing metals on insulators. The AlN plasma chamber cooling circuit is inspired from the approach chosen for the cesiated high duty factor rf H(-) source operating at SNS.

  9. Promoting Plasma Physics as a Career: A Generational Approach

    Science.gov (United States)

    Morgan, James

    2005-10-01

    A paradigm shift is occurring in education physics programs. Educators are shifting from the traditional teaching focus to concentrate on student learning. Students are unaware of physics as a career, plasma physics or the job opportunities afforded to them with a physics degree. The physics profession needs to promote itself to the younger generations, or specifically the millennial generation (Born in the 1980's-2000's). Learning styles preferred by ``Millennials'' include a technological environment that promotes learning through active task performance rather than passive attendance at lectures. Millennials respond well to anything experiential and will be motivated by opportunities for creativity and challenging learning environments. The open-ended access to information, the ability to tailor learning paths, and continuous and instantaneous performance assessment offer flexibility in the design of curricula as well as in the method of delivery. Educators need to understand the millennial generation, appeal to their motivations and offer a learning environment designed for their learning style. This poster suggests promoting a physics career by focusing on generational learning styles and preferences.

  10. Microwave power coupling in a surface wave excited plasma

    CERN Document Server

    Kar, Satyananda; Kousaka, Hiroyuki

    2014-01-01

    In recent decades, different types of plasma sources have been used for various types of plasma processing, such as, etching and thin film deposition. The critical parameter for effective plasma processing is high plasma density. One type of high density plasma source is Microwave sheath-Voltage combination Plasma (MVP). In the present investigation, a better design of MVP source is reported, in which over-dense plasma is generated for low input microwave powers. The results indicate that the length of plasma column increases significantly with increase in input microwave power.

  11. Operational characteristics of the high flux plasma generator Magnum-PSI

    NARCIS (Netherlands)

    van Eck, H. J. N.; Abrams, T.; van den Berg, M. A.; Brons, S.; van Eden, G. G.; Jaworski, M. A.; Kaita, R.; van der Meiden, H. J.; Morgan, T. W.; van de Pol, M.J.; Scholten, J.; Smeets, P. H. M.; De Temmerman, G.; de Vries, P. C.; van Emmichoven, P. A. Zeijlma

    2014-01-01

    Abstract In Magnum-PSI (MAgnetized plasma Generator and \\{NUMerical\\} modeling for Plasma Surface Interactions), the high density, low temperature plasma of a wall stabilized dc cascaded arc is confined to a magnetized plasma beam by a quasi-steady state axial magnetic field up to 1.3 T. It

  12. Local Magnetohydrodynamic Characteristics of the Plasma Stream generated by MPC

    Directory of Open Access Journals (Sweden)

    Tatyana N. Cherednychenko

    2013-01-01

    Full Text Available This paper investigates the spatial distributions of electrical current which flows inside the plasma stream generated by a magnetoplasma compressor (MPC. Two different modes of MPC operation with different gas supply scenarios have been applied in the experiments presented here. The first is the operation mode with a pulse injection of xenon into the interelectrode space, and the second is the operation mode with residual helium in the chamber and local injection of xenon directly into the compression zone. The maximum value of the electric current observed outside the MPC channel is 15 ÷ 20% of the total discharge current. Electric current vortices were discovered in the plasma stream. The amplitude of the current in the vortices reaches 50% of the total discharge current. The maximum EUV radiation power was measured in the mode of MPC operation with local xenon injection. Power in the wave range 12.2 ÷ 15.8 nm achieves up to 16 ÷ 18 kW.

  13. Silicon carbide detector for laser-generated plasma radiation

    Science.gov (United States)

    Bertuccio, Giuseppe; Puglisi, Donatella; Torrisi, Lorenzo; Lanzieri, Claudio

    2013-05-01

    We present the performance of a Silicon Carbide (SiC) detector in the acquisition of the radiation emitted by laser generated plasmas. The detector has been employed in time of flight (TOF) configuration within an experiment performed at the Prague Asterix Laser System (PALS). The detector is a 5 mm2 area 100 nm thick circular Nisbnd SiC Schottky junction on a high purity 4Hsbnd SiC epitaxial layer 115 μm thick. Current signals from the detector with amplitudes up to 1.6 A have been measured, achieving voltage signals over 80 V on a 50 Ω load resistance with excellent signal to noise ratios. Resolution of few nanoseconds has been experimentally demonstrated in TOF measurements. The detector has operated at 250 V DC bias under extreme operating conditions with no observable performance degradation.

  14. Radio-frequency sheath voltages and slow wave electric field spatial structure

    Energy Technology Data Exchange (ETDEWEB)

    Colas, Laurent, E-mail: laurent.colas@cea.fr; Lu, Ling-Feng [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Křivská, Alena [LPP-ERM-KMS, TEC partner, Brussels (Belgium); Jacquot, Jonathan [Max-Planck-Institut für Plasmaphysik, Garching (Germany)

    2015-12-10

    We investigate theoretically how sheath radio-frequency (RF) oscillations relate to the spatial structure of the RF parallel electric field emitted by Ion Cyclotron (IC) wave launchers, using a simple model of Slow Wave (SW) evanescence coupled with Direct Current (DC) plasma biasing via sheath boundary conditions in a plasma-filled 2-dimensional (parallel, radial) rectangle. Within a “wide sheaths” asymptotic regime, valid for large-amplitude near RF fields, our model becomes partly linear: the sheath oscillating voltage at open field line boundaries is a linear combination of elementary contributions by every source point of the radiated RF field map. These individual contributions are all the more intense as the SW emission point is toroidally nearer to the sheath walls. A limit formula is given for a source infinitely close to the sheaths. The decay of sheath RF voltages with the sheath/source parallel distance is quantified as a function of two characteristic SW evanescence lengths. Decay lengths are smaller than antenna parallel extensions. The sheath RF voltages at an IC antenna side limiter are therefore mainly sensitive to SW emission near this limiter, as recent observations suggest. Toroidal proximity effects could also explain why sheath oscillations persist with antisymmetric strap toroidal phasing, despite the parallel anti-symmetry of the radiated field map. They could also justify current attempts at reducing the RF fields induced near antenna boxes to attenuate sheath oscillations in their vicinity.

  15. Coupling of a RF generator to a plasma reactor; Acoplamiento de un generador RF a un reactor de plasma

    Energy Technology Data Exchange (ETDEWEB)

    Salazar T, J.A

    2003-07-01

    The following thesis presents the development of the generation from a capacitive plasma through of radiofrequency discharges, for their realization it was needed of a series of elements capable of development such task, as they are it: the RF generator, the couple circuit of impedances and a plasma reactor. The main characteristics of each part is also described that composes the one system, as well as the results obtained experimentally, calculations and the devices used and designed to generate the capacitive thermal plasma. Moreover, is sought that this joining system is the base for later developments in those that intervene the generation of a capacitive plasma and one can to consider for practical and theoretical developments in the improvement of other processes as they are it: the generation of particles of carbon with different gases and hydrocarbons, the polymerization of metals, to synthesize pure molecules, for illumination purposes, etc. (Author)

  16. Continuum kinetic and multi-fluid simulations of classical sheaths

    Science.gov (United States)

    Cagas, P.; Hakim, A.; Juno, J.; Srinivasan, B.

    2017-02-01

    The kinetic study of plasma sheaths is critical, among other things, to understand the deposition of heat on walls, the effect of sputtering, and contamination of the plasma with detrimental impurities. The plasma sheath also provides a boundary condition and can often have a significant global impact on the bulk plasma. In this paper, kinetic studies of classical sheaths are performed with the continuum kinetic code, Gkeyll, which directly solves the Vlasov-Maxwell equations. The code uses a novel version of the finite-element discontinuous Galerkin scheme that conserves energy in the continuous-time limit. The fields are computed using Maxwell equations. Ionization and scattering collisions are included; however, surface effects are neglected. The aim of this work is to introduce the continuum kinetic method and compare its results with those obtained from an already established finite-volume multi-fluid model also implemented in Gkeyll. Novel boundary conditions on the fluids allow the sheath to form without specifying wall fluxes, so the fluids and fields adjust self-consistently at the wall. The work presented here demonstrates that the kinetic and fluid results are in agreement for the momentum flux, showing that in certain regimes, a multi-fluid model can be a useful approximation for simulating the plasma boundary. There are differences in the electrostatic potential between the fluid and kinetic results. Further, the direct solutions of the distribution function presented here highlight the non-Maxwellian distribution of electrons in the sheath, emphasizing the need for a kinetic model. The densities, velocities, and the potential show a good agreement between the kinetic and fluid results. However, kinetic physics is highlighted through higher moments such as parallel and perpendicular temperatures which provide significant differences from the fluid results in which the temperature is assumed to be isotropic. Besides decompression cooling, the heat flux

  17. Physics-based parametrization of the surface impedance for radio frequency sheaths

    Science.gov (United States)

    Myra, J. R.

    2017-07-01

    The properties of sheaths near conducting surfaces are studied for the case where both magnetized plasma and intense radio frequency (rf) waves coexist. The work is motivated primarily by the need to understand, predict, and control ion cyclotron range of frequency (ICRF) interactions with tokamak scrape-off layer plasmas and is expected to be useful in modeling rf sheath interactions in global ICRF codes. Employing a previously developed model for oblique angle magnetized rf sheaths [J. R. Myra and D. A. D'Ippolito, Phys. Plasmas 22, 062507 (2015)], an investigation of the four-dimensional parameter space governing these sheath is carried out. By combining numerical and analytical results, a parametrization of the surface impedance and voltage rectification for rf sheaths in the entire four-dimensional space is obtained.

  18. Generation of low-temperature plasma by low-pressure arcs for synthesis of nitride coatings

    Science.gov (United States)

    Krysina, O. V.; Koval, N. N.; Lopatin, I. V.; Shugurov, V. V.; Kovalsky, S. S.

    2016-01-01

    Experiments were performed to study gas, metal, and mixed metal-gas plasmas. The plasmas were generated with the use of an arc evaporator and a gas-plasma source with a hot filament and hollow cathode that were operated independently or simultaneously. It has been revealed that the arc current of gas-plasma source affects the parameters of the metal-gas plasma and the element concentrations in the coatings. It has been demonstrated that the characteristics of the nitride coatings produced by plasma-assisted vacuum-arc deposition can be controlled by varying the parameters of the arc in the gas-plasma source.

  19. Efficient generation of ozone in arrays of microchannel plasmas

    Science.gov (United States)

    Kim, M. H.; Cho, J. H.; Ban, S. B.; Choi, R. Y.; Kwon, E. J.; Park, S.-J.; Eden, J. G.

    2013-07-01

    Ozone is produced efficiently in arrays of low-temperature, linear microplasmas having a trapezoidal or parabolic cross-sectional profile and generated within nanoporous alumina (Al2O3) microchannels. Fabricated from aluminum foil by wet chemical processing, micropowder ablation, and one photolithographic step, arrays of microchannel plasma devices 3 cm in length and 250 µm in width at the aperture of the channel produce spatially uniform glow discharges in O2 feedstock gas at a pressure of 1 atm and flow rates of 0.25-2.5 standard litres per minute. Several device and array structures, incorporating embedded electrodes and Al/Al2O3 or glass channels, have been fabricated and tested extensively. A design based solely on microchannels fabricated in nanoporous alumina, flanked by Al electrodes buried in the channel wall, is found to be superior in performance to other materials and geometries. Altering the electric field profile inside the microchannels (by means of the electrode geometry) is found to have a significant impact on the reactor efficiency. Ozone output is observed to scale linearly with the number of microchannels in the array and the feedstock gas flow rate. Efficiencies and O3 concentrations surpassing 85 g kWh-1 and 17 g m-3, respectively, have been measured, and arrays as large as 120 microchannels have been realized to date. The results presented here suggest a new approach to plasma-chemical reactors, one in which ‘massively parallel’ processing of one or more gases in non-streamer (glow) discharges efficiently produces products of commercial value in thousands of micropores or microchannels fabricated in recyclable and inexpensive materials. Reductions of an order of magnitude in the weight and volume of microplasma-based O3 reactors, relative to conventional dielectric barrier discharge technology, appear to be feasible.

  20. Terahertz generation by beating two Langmuir waves in a warm and collisional plasma

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiao-Bo; Qiao, Xin; Cheng, Li-Hong; Tang, Rong-An; Zhang, Ai-Xia; Xue, Ju-Kui, E-mail: xuejk@nwnu.edu.cn [Key Laboratory of Atomic & Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 730070 (China)

    2015-09-15

    Terahertz (THz) radiation generated by beating of two Langmuir waves in a warm and collisional plasma is discussed theoretically. The critical angle between the two Langmuir waves and the critical wave-length (wave vector) of Langmuir waves for generating THz radiation are obtained analytically. Furthermore, the maximum radiation energy is obtained. We find that the critical angle, the critical wave-length, and the generated radiation energy strongly depend on plasma temperature and wave-length of the Langmuir waves. That is, the THz radiation generated by beating of two Langmuir waves in a warm and collisional plasma can be controlled by adjusting the plasma temperature and the Langmuir wave-length.

  1. Generation of whistler mode in a relativistic plasma

    Indian Academy of Sciences (India)

    N K Deka; B J Saikia; K S Goswami

    2008-03-01

    This paper contains the plasma maser interaction between high frequency nonresonant whistler R-mode and low frequency resonant ion acoustic mode in a relativistic plasma. It shows that the whistler R-mode grows through the plasma maser interaction between the relativistic electrons and the ion acoustic fluctuation.

  2. On the biogenesis of the myelin sheath : Cognate polarized trafficking pathways in oligodendrocytes

    NARCIS (Netherlands)

    de Vries, H; Hoekstra, D

    2000-01-01

    Oligodendrocytes, the myelinating cells of the central nervous system, are capable of transporting vast quantities of proteins and of lipids, In particular galactosphingolipids, to the myelin sheath. The sheath is continuous with the plasma membrane of the oligodendrocyte, but the composition of bot

  3. Analytical expression for the sheath edge around wedge-shaped cathodes

    Science.gov (United States)

    Sheridan, T. E.

    2008-03-01

    The sheath is the boundary layer separating a quasi-neutral plasma from a material electrode. Understanding the sheath is important for numerous applications, including plasma-based ion implantation, plasma etching of semiconductors, plasma assisted electrostatic cleaning, and Langmuir probes. In a 1D planar geometry, the Child-Langmuir (CL) law describes the sheath when the bias on a negative electrode, i.e., a cathode, is much greater than the electron temperature. In this case, the sheath width s is an eigenvalue of the problem. In 2D, the sheath edge is an unknown line (an ``eigen-boundary") which is determined by a set of coupled, nonlinear, partial differential equations. I have found an expression for the sheath edge around a 2D wedge-shaped cathode with included angle θw. In polar coordinates (r,θ), the sheath edge is a solution of r(aθ)=as where s is the planar sheath width far from the corner and θw=2π- π/a, so that a=1/2 gives a knife edge, while a=2/3 gives a square corner. This result is verified by comparison with the numerical solutions of Watterson [P. A. Watterson, J. Phys. D 22, 1300 (1989)].

  4. Modelling of the dual frequency capacitive sheath in the intermediate pressure range

    Energy Technology Data Exchange (ETDEWEB)

    Boyle, P C [Plasma Research Laboratory, National Centre for Plasma Science and Technology and School of Physical Sciences, Dublin City University, Dublin 9 (Ireland); Robiche, J [Laboratoire de Physique et Technologie des Plasmas, Ecole Polytechnique, Palaiseau 91 128 Cedex (France); Turner, M M [Plasma Research Laboratory, National Centre for Plasma Science and Technology and School of Physical Sciences, Dublin City University, Dublin 9 (Ireland)

    2004-05-21

    The nonlinearity of the plasma sheath in dual frequency capacitively coupled reactors is investigated for frequencies well above the ion plasma frequency. This work focuses on the behaviour of the voltage and the sheath width with respect to the driving current source and the collisionality regime. For typical plasma processing applications, the gas pressure ranges from a few milliTorrs to hundreds of milliTorrs, and the ion dynamics span different collisional regimes. To describe these different ion dynamics, we have used a collisionless model and a variable mobility model. The sheath widths and the voltages obtained from these two models have then been compared.

  5. The sheath effect on the floating harmonic method

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jaewon; Kim, Kyung-Hyun; Chung, Chin-Wook, E-mail: joykang@hanyang.ac.kr [Department of Electrical Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of)

    2015-12-15

    The floating harmonic method biases sinusoidal voltage to a probe sheath, and as its response, harmonic currents can be obtained. These currents can be used to determine the plasma parameters. However, different shapes of probes have different shapes of sheaths that can affect the diagnostic results. However, no research has been done on the sheath effect on the floating harmonic method. Therefore, we investigate the effect of the sheath during floating harmonic diagnostics by comparing cylindrical and planar probes. While the sinusoidal voltages were applied to a probe, because the sheath oscillated, the time variant ion current and their harmonic currents were added to the electron harmonic currents. In the floating harmonic method, the harmonic currents are composed of only the electron harmonic currents. Therefore, the ion harmonic currents affect the diagnostic results. In particular, the electron temperature obtained by the small probe tip was higher than that of the large probe tip. This effect was exacerbated when the ratio of the probe tip radius to the sheath length was smaller.

  6. High quality electron bunch generation using a longitudinal density-tailored plasma-based accelerator in the three-dimensional blowout regime

    CERN Document Server

    Xu, X L; An, W; Yu, P; Lu, W; Joshi, C; Mori, W B

    2016-01-01

    The generation of very high quality electron bunches (high brightness and low energy spread) from a plasma-based accelerator in the three-dimensional blowout regime using self-injection in tailored plasma density profiles is analyzed theoretically and with particle-in-cell simulations. The underlying physical mechanism that leads to the generation of high quality electrons is uncovered by tracking the trajectories of the electrons as they cross the sheath and are trapped by the wake. Details on how the intensity of the driver and the density scale-length of the plasma control the ultimate beam quality are described. Three-dimensional particle-in-cell simulations indicate that this concept has the potential to produce beams with peak brightnesses between $10^{20}$ and $10^{21}$ $\\mathrm{A}/\\mathrm{m}^2/\\mathrm{rad}^2$and with absolute projected energy spreads of $\\sim 0.3~\\mathrm{MeV}$ using existing lasers or electron beams to drive nonlinear wakefields.

  7. Hydrogen Plasma Generation with 200 MHz RF Ion Source

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeongtae; Park, Kwangmook; Seo, Dong Hyuk; Kim, Han-Sung; Kwon, Hyeok-Jung; Cho, Yong-Sub [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    The ion source for the system is required to be rugged with 2000 hours maintenance free operation time because it is installed in the vessel filled with SF6 gas at the pressure of 10 bar. A 200 MHz RF ion source is considered as an ion source. It is a simple construction and provides long life operation. The specifications of the ion source are 5 kV extraction voltage and 1 mA beam current referenced to the proton. RF ion source has been developed and undergone a performance test. Results of the test are presented. 200 MHz RF ion source is designated and manufactured. First of all test stand test of ion source are set up for a performance test of ion source. It includes a RF ion source, a 200-MHz RF system, beam extraction system, vacuum system, beam extraction system, and beam diagnostic system. At pressure of 1.2E-5 torr, hydrogen plasma is generated with net RF power 70 W. Pyrex tube surrounded by an inductive coil takes the role of vessel and discharge is enhanced with field of permanent magnets.

  8. Naphthalene and acenaphthene decomposition by electron beam generated plasma application

    Energy Technology Data Exchange (ETDEWEB)

    Ostapczuk, A.; Hakoda, T.; Shimada, A.; Kojima, T. [Institute for Nuclear Chemistry and Technology, Warsaw (Poland)

    2008-08-15

    The application of non-thermal plasma generated by electron beam (EB) was investigated in laboratory scale to study decomposition of polycyclic aromatic hydrocarbons like naphthalene and acenaphthene in flue gas. PAH compounds were treated by EB with the dose up to 8 kGy in dry and humid base gas mixtures. Experimentally established G-values gained 1.66 and 3.72 mol/100 eV for NL and AC at the dose of 1 kGy. NL and AC removal was observed in dry base gas mixtures showing that the reaction with OH radical is not exclusive pathway to initialize PAH decomposition; however in the presence of water remarkably higher decomposition efficiency was observed. As by-products of NL decomposition were identified compounds containing one aromatic ring and oxygen atoms besides CO and CO{sub 2}. It led to the conclusion that PAH decomposition process in humid flue gas can be regarded as multi-step oxidative de-aromatization analogical to its atmospheric chemistry.

  9. Arc generation from sputtering plasma-dielectric inclusion interactions

    CERN Document Server

    Wickersham, C E J; Fan, J S

    2002-01-01

    Arcing during sputter deposition and etching is a significant cause of particle defect generation during device fabrication. In this article we report on the effect of aluminum oxide inclusion size, shape, and orientation on the propensity for arcing during sputtering of aluminum targets. The size, shape, and orientation of a dielectric inclusion plays a major role in determining the propensity for arcing and macroparticle emission. In previous studies we found that there is a critical inclusion size required for arcing to occur. In this article we used high-speed videos, electric arc detection, and measurements of particle defect density on wafers to study the effect of Al sub 2 O sub 3 inclusion size, shape, and orientation on arc rate, intensity, and silicon wafer particle defect density. We found that the cross-sectional area of the inclusion exposed to the sputtering plasma is the critical parameter that determines the arc rate and rate of macroparticle emission. Analysis of the arc rate, particle defect...

  10. Recombination and population inversion in plasmas generated by tunneling ionization.

    Science.gov (United States)

    Pert, G J

    2006-06-01

    Above-threshold ionization (ATI) ionization by linearly polarized light has been proposed by several authors as a means of driving recombination lasers in the soft x-ray spectral region. The pump radiation generates a cold electron plasma with ions in a single ionization stage, which is an ideal starting condition for strong recombination. Population inversions form during the recombination cascade to the ground state of the next ionization stage. In the absence of any relaxation the electron distribution is strongly peaked near zero energy. However, a number of different processes all heat the cold electrons towards Maxwellian, and may thereby reduce the recombination rate in the higher levels. Using numerical models we investigate these relaxation processes and their effect on recombination. We show that the recombination can be well described by the standard cascade model, provided an appropriate temperature is used. We examine two cases in detail, hydrogen-like lithium where the inversion is with respect to the ground state, and lithium-like nitrogen where it is with the first excited state. The two cases differ markedly in the degree of relaxation achieved, and in the duration of the population inversion.

  11. Laer Pulse Driven THz Generation via Resonant Transition Radiation in Inhomogeneous Plasmas

    CERN Document Server

    Miao, Chenlong; Antonsen, Thomas M

    2016-01-01

    An intense, short laser pulse propagating across a plasma boundary ponderomotively drives THz radiation. Full format PIC simulations and theoretical analysis are conducted to investigate the properties of this radiation. Simulation results show the THz emission originates in regions of varying density and covers a broad spectrum with maximum frequency close to the maximum plasma frequency. In the case of a sharp vacuum-plasma boundary, the radiation is generated symmetrically at the plasma entrance and exit, and its properties are independent of plasma density when the density exceeds a characteristic value determined by the product of the plasma frequency and the laser pulse duration. For a diffuse vacuum-plasma boundary, the emission from the plasma entrance and exit is asymmetric: increasing and decreasing density ramps enhance and diminish the radiated energy respectively. Enhancements by factors of 50 are found and simulations show that a 1.66 J, 50 fs driver pulse can generate ~400 \\mu J of THz radiatio...

  12. Plasma diagnostics and plasma-surface interactions in inductively coupled plasmas

    Science.gov (United States)

    Titus, Monica Joy

    square root of the plasma density at the plasma-sheath interface, one-fourth root of the electron temperature, and one-fourth root of the RF bias voltage under conditions where the sheath is predominantly capacitive. When the sheath impedance becomes increasingly resistive, the sensor measurements deviate from the scaling law and tend to be directly proportional to the plasma density. Vacuum ultraviolet (VUV) emissions in Ar ICPs are characterized and the chemical and physical modifications to 193 nm photoresist (PR) polymer materials processed in Ar ICPs are investigated. Fourier transform infrared (FTIR) transmission measurements as a function of VUV photon fluence demonstrate that VUV-induced bond breaking occurs over a period of time. A numerical model demonstrates that VUV photons deplete near-surface O-containing bonds, leading to deeper, subsequent penetration and more bond losses, while the remaining near-surface C--C bonds absorb the incident radiation and slow VUV photon penetration. The roughening mechanism of blanket and patterned 193 nm PR samples are explored in a well characterized Ar ICP. FTIR and atomic force microscopy (AFM) analysis of plasma processed 193 nm PR suggests that ion-induced generation of a graphitized layer at high energies, combined with VUV bulk modification of 193 nm PR may initiate PR roughening. The roughness of blanket samples increases as a function of VUV fluence, ion energy, and substrate temperature. Line width roughness (LWR) measurements of patterned samples demonstrate a similar trend suggesting that LWR may correlate with surface roughness of patterns. The results are compared to PR studies previously conducted in an ultra-high vacuum beam system demonstrating that the vacuum beam system is a useful tool that can deconvolute and simplify complex plasma systems.

  13. Control of disruption-generated runaway plasmas in TFTR

    Science.gov (United States)

    Fredrickson, E. D.; Bell, M. G.; Taylor, G.; Medley, S. S.

    2015-01-01

    Many disruptions in the Tokamak Fusion Test Reactor (TFTR) (Meade and the TFTR Group 1991 Proc. Int. Conf. on Plasma Physics and Controlled Nuclear Fusion (Washington, DC, 1990) vol 1 (Vienna: IAEA) pp 9-24) produced populations of runaway electrons which carried a significant fraction of the original plasma current. In this paper, we describe experiments where, following a disruption of a low-beta, reversed-shear plasma, currents of up to 1 MA carried mainly by runaway electrons were controlled and then ramped down to near zero using the ohmic transformer. In the longer lasting runaway plasmas, events resembling Parail-Pogutse instabilities were observed.

  14. Generation of powerful terahertz emission in a beam-driven strong plasma turbulence

    OpenAIRE

    Arzhannikov, A.V.; Timofeev, I. V.

    2012-01-01

    Generation of terahertz electromagnetic radiation due to coalescence of upper-hybrid waves in the long-wavelength region of strong plasma turbulence driven by a high-current relativistic electron beam in a magnetized plasma is investigated. The width of frequency spectrum as well as angular characteristics of this radiation for various values of plasma density and turbulence energy are calculated using the simple theoretical model adequately describing beam-plasma experiments at mirror traps....

  15. Generation of Electrojets in Weakly Ionized Plasmas through a Collisional Dynamo

    CERN Document Server

    Dimant, Yakov S; Fletcher, Alex C

    2016-01-01

    Intense electric currents called electrojets occur in weakly ionized magnetized plasmas. An example occurs in the Earth's ionosphere near the magnetic equator where neutral winds drive the plasma across the geomagnetic field. Similar processes take place in the Solar chromosphere and MHD generators. This letter argues that not all convective neutral flows generate electrojets and it introduces the corresponding universal criterion for electrojet formation, $\

  16. Studies of RF sheaths and diagnostics on IShTAR

    Energy Technology Data Exchange (ETDEWEB)

    Crombé, K., E-mail: Kristel.Crombe@UGent.be [Department of Applied Physics, Ghent University, Ghent (Belgium); LPP-ERM/KMS, Royal Military Academy, Brussels (Belgium); Devaux, S.; Faudot, E.; Heuraux, S.; Moritz, J. [YIJL, UMR7198 CNRS-Université de Lorraine, Nancy (France); D’Inca, R.; Faugel, H.; Fünfgelder, H.; Jacquot, J.; Ochoukov, R. [Max-Planck-Institut für Plasmaphysik, Garching (Germany); Louche, F.; Tripsky, M.; Van Eester, D.; Wauters, T. [LPP-ERM/KMS, Royal Military Academy, Brussels (Belgium); Noterdaeme, J.-M. [Department of Applied Physics, Ghent University, Ghent (Belgium); Max-Planck-Institut für Plasmaphysik, Garching (Germany)

    2015-12-10

    IShTAR (Ion cyclotron Sheath Test ARrangement) is a linear magnetised plasma test facility for RF sheaths studies at the Max-Planck-Institut für Plasmaphysik in Garching. In contrast to a tokamak, a test stand provides more liberty to impose the parameters and gives better access for the instrumentation and antennas. The project will support the development of diagnostic methods for characterising RF sheaths and validate and improve theoretical predictions. The cylindrical vacuum vessel has a diameter of 1 m and is 1.1 m long. The plasma is created by an external cylindrical plasma source equipped with a helical antenna that has been designed to excite the m=1 helicon mode. In inductive mode, plasma densities and electron temperatures have been characterised with a planar Langmuir probe as a function of gas pressure and input RF power. A 2D array of RF compensated Langmuir probes and a spectrometer are planned. A single strap RF antenna has been designed; the plasma-facing surface is aligned to the cylindrical plasma to ease the modelling. The probes will allow direct measurements of plasma density profiles in front of the RF antenna, and thus a detailed study of the density modifications induced by RF sheaths, which influences the coupling. The RF antenna frequency has been chosen to study different plasma wave interactions: the accessible plasma density range includes an evanescent and propagative behaviour of slow or fast waves, and allows the study of the effect of the lower hybrid resonance layer.

  17. Magnetized sheath near positively biased wall between two permanent magnetic plates

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yan; Wei, Zi-an; Ma, J. X., E-mail: jxma@ustc.edu.cn; Jiang, Zheng-qi; Wu, Fei [Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); CAS Key Laboratory of Geospace Environment, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2015-06-15

    The characteristics of magnetized electron sheath near a positively biased conducting wall parallel to magnetic field formed between two permanent magnetic plates were experimentally investigated in a double plasma device. The magnetic field strength between the magnetic plates is about 1200 G which is sufficient to magnetize the plasma such that the ion gyroradius is comparable to the electron Debye length. A virtual cathode (or potential dip) structure was found between the electron-rich sheath and bulk plasma. For a given neutral gas pressure, the potential minimum (dip position) remains almost the same for different positive biases on the wall. For a given bias on the wall, however, the electron sheath thickness and the potential drop from the bulk plasma to the dip decrease with the increase of the neutral gas pressure. In addition, the electron sheath and potential dip appear to be wider and deeper in the downstream side of the wall.

  18. Dust generation at interaction of plasma jet with surfaces

    Science.gov (United States)

    Ticos, Catalin; Toader, Dorina; Banu, Nicoleta; Scurtu, Adrian; Oane, Mihai

    2013-10-01

    Coatings of W and C with widths of a few microns will be exposed to plasma jet for studying the erosion of the surface and detachment of micron size dust particles. A coaxial plasma gun has been built inside a vacuum chamber for producing supersonic plasma jets. Its design is based on a 50 kJ coaxial plasma gun which has been successfully used for accelerating hypervelocity dust. Initial shots were carried out for a capacitor bank with C = 12 μF and charged up to 2 kV. Currents of tens of amps were measured with a Rogowsky coil and plasma flow speeds of 4 km/s were inferred from high-speed images of jet propagation. An upgrade consisting in adding capacitors in parallel will be performed in order to increase the energy up to 2 kJ. A coil will be installed at the gun muzzle to compress the plasma flow and increase the energy density of the jet on the sample surface. A CCD camera with a maximum recording speed of 100 k fps and a maximum resolution of 1024 × 1024 pixels was set for image acquisition of the plasma and dust. A laser system used to illuminate the ejected dust from the surface includes a laser diode emitting at 650 nm with a beam power of 25 mW. The authors acknowledge support from EURATOM WP13-IPH-A03-P2-02-BS22.

  19. Generation and remote delivery of plasma activated species

    Science.gov (United States)

    Maguire, Paul; Mahony, Charles; Kelsey, Colin; Rutherford, David; Mariotti, Davide; Macias-Montero, Manuel; Perez-Martin, Fatima; Diver, Declan

    2016-09-01

    Plasma interactions with microdroplets offer new opportunities to deliver active chemical agents and nanoparticles to remote substrates downstream with many potential applications from cancer theranostics and wound healing in biomedicine, gentle food decontamination and seed germination in plasma agriculture to catalyst production and photonic structures fabrication, among others. We demonstrate plasma-liquid based pristine nanomaterials synthesis in flight and subsequent delivery up to 120mm from the atmospheric pressure plasma source. Monosized and non-aggregating metal nanoparticles are formed in the rf plasma in less than 100us, representing an increase in precursor reduction rate that is many (>4) orders of magnitude faster than that observed with standard colloidal chemistry or via high energy radiolytic techniques. Also the collection and purification limitations of the latter are avoided. Plasma activated liquid including OH radicals and H2O2 are transported over 120mm and have demonstrated high efficacy bacterial decontamination. These results will be compared with charge species and radical transport from the rf plasma without microdroplets. Reaction models based on high solvated surface electron concentrations will be presented. Funding from EPSRC acknowledged (Grants EP/K006088/1 and EP/K006142/1).

  20. Impurity generation, transport and redeposition at plasma boundary

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, M.; Ido, Y.; Ezumi, N.; Ohno, N.; Takamura, S. [Nagoya Univ. (Japan)

    1997-12-31

    Erosion and redeposition processes have been investigated using a linear plasma device and a Monte-Carlo simulation code. Molybdenum substrate is exposed to argon plasmas for oblique incidence of magnetic field under well-defined plasma conditions. The effect of magnetic field directions on the erosion distribution is clearly observed. We have a qualitative explanation for the erosion profiles with the effect of prompt redeposition of high Z material in comparison with numerical code predictions. However, we have quantitative differences for their erosion rates. (author)

  1. Atmospheric-pressure plasma jet induces apoptosis involving mitochondria via generation of free radicals.

    Directory of Open Access Journals (Sweden)

    Hak Jun Ahn

    Full Text Available The plasma jet has been proposed as a novel therapeutic method for anticancer treatment. However, its biological effects and mechanism of action remain elusive. Here, we investigated its cell death effects and underlying molecular mechanisms, using air and N₂ plasma jets from a micro nozzle array. Treatment with air or N₂ plasma jets caused apoptotic death in human cervical cancer HeLa cells, simultaneously with depolarization of mitochondrial membrane potential. In addition, the plasma jets were able to generate reactive oxygen species (ROS, which function as surrogate apoptotic signals by targeting the mitochondrial membrane potential. Antioxidants or caspase inhibitors ameliorated the apoptotic cell death induced by the air and N₂ plasma jets, suggesting that the plasma jet may generate ROS as a proapoptotic cue, thus initiating mitochondria-mediated apoptosis. Taken together, our data suggest the potential employment of plasma jets as a novel therapy for cancer.

  2. Atmospheric-pressure plasma jet induces apoptosis involving mitochondria via generation of free radicals.

    Science.gov (United States)

    Ahn, Hak Jun; Kim, Kang Il; Kim, Geunyoung; Moon, Eunpyo; Yang, Sang Sik; Lee, Jong-Soo

    2011-01-01

    The plasma jet has been proposed as a novel therapeutic method for anticancer treatment. However, its biological effects and mechanism of action remain elusive. Here, we investigated its cell death effects and underlying molecular mechanisms, using air and N₂ plasma jets from a micro nozzle array. Treatment with air or N₂ plasma jets caused apoptotic death in human cervical cancer HeLa cells, simultaneously with depolarization of mitochondrial membrane potential. In addition, the plasma jets were able to generate reactive oxygen species (ROS), which function as surrogate apoptotic signals by targeting the mitochondrial membrane potential. Antioxidants or caspase inhibitors ameliorated the apoptotic cell death induced by the air and N₂ plasma jets, suggesting that the plasma jet may generate ROS as a proapoptotic cue, thus initiating mitochondria-mediated apoptosis. Taken together, our data suggest the potential employment of plasma jets as a novel therapy for cancer.

  3. High density plasma gun generates plasmas at 190 kilometers per second

    Science.gov (United States)

    Espy, P. N.

    1971-01-01

    Gun has thin metal foil disc which positions or localizes gas to be ionized during electrical discharge cycle, overcoming major limiting factor in obtaining such plasmas. Expanding plasma front travels at 190 km/sec, compared to plasmas of 50 to 60 km/sec previously achieved.

  4. Reactive species in non-equilibrium atmospheric-pressure plasmas: Generation, transport, and biological effects

    Science.gov (United States)

    Lu, X.; Naidis, G. V.; Laroussi, M.; Reuter, S.; Graves, D. B.; Ostrikov, K.

    2016-05-01

    Non-equilibrium atmospheric-pressure plasmas have recently become a topical area of research owing to their diverse applications in health care and medicine, environmental remediation and pollution control, materials processing, electrochemistry, nanotechnology and other fields. This review focuses on the reactive electrons and ionic, atomic, molecular, and radical species that are produced in these plasmas and then transported from the point of generation to the point of interaction with the material, medium, living cells or tissues being processed. The most important mechanisms of generation and transport of the key species in the plasmas of atmospheric-pressure plasma jets and other non-equilibrium atmospheric-pressure plasmas are introduced and examined from the viewpoint of their applications in plasma hygiene and medicine and other relevant fields. Sophisticated high-precision, time-resolved plasma diagnostics approaches and techniques are presented and their applications to monitor the reactive species and plasma dynamics in the plasma jets and other discharges, both in the gas phase and during the plasma interaction with liquid media, are critically reviewed. The large amount of experimental data is supported by the theoretical models of reactive species generation and transport in the plasmas, surrounding gaseous environments, and plasma interaction with liquid media. These models are presented and their limitations are discussed. Special attention is paid to biological effects of the plasma-generated reactive oxygen and nitrogen (and some other) species in basic biological processes such as cell metabolism, proliferation, survival, etc. as well as plasma applications in bacterial inactivation, wound healing, cancer treatment and some others. Challenges and opportunities for theoretical and experimental research are discussed and the authors' vision for the emerging convergence trends across several disciplines and application domains is presented to

  5. Reactive species in non-equilibrium atmospheric-pressure plasmas: Generation, transport, and biological effects

    Energy Technology Data Exchange (ETDEWEB)

    Lu, X., E-mail: luxinpei@hotmail.com [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China); Naidis, G.V. [Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412 (Russian Federation); Laroussi, M. [Plasma Engineering & Medicine Institute, Old Dominion University, Norfolk, VA 23529 (United States); Reuter, S. [Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff-Strasse 2, 17489 Greifswald (Germany); Graves, D.B. [Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720 (United States); Ostrikov, K. [Institute for Future Environments, Queensland University of Technology, Brisbane, QLD 4000 (Australia); School of Physics, Chemistry, and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000 (Australia); Commonwealth Scientific and Industrial Research Organization, P.O.Box 218, Lindfield, NSW 2070 (Australia); School of Physics, The University of Sydney, Sydney, NSW 2006 (Australia)

    2016-05-04

    Non-equilibrium atmospheric-pressure plasmas have recently become a topical area of research owing to their diverse applications in health care and medicine, environmental remediation and pollution control, materials processing, electrochemistry, nanotechnology and other fields. This review focuses on the reactive electrons and ionic, atomic, molecular, and radical species that are produced in these plasmas and then transported from the point of generation to the point of interaction with the material, medium, living cells or tissues being processed. The most important mechanisms of generation and transport of the key species in the plasmas of atmospheric-pressure plasma jets and other non-equilibrium atmospheric-pressure plasmas are introduced and examined from the viewpoint of their applications in plasma hygiene and medicine and other relevant fields. Sophisticated high-precision, time-resolved plasma diagnostics approaches and techniques are presented and their applications to monitor the reactive species and plasma dynamics in the plasma jets and other discharges, both in the gas phase and during the plasma interaction with liquid media, are critically reviewed. The large amount of experimental data is supported by the theoretical models of reactive species generation and transport in the plasmas, surrounding gaseous environments, and plasma interaction with liquid media. These models are presented and their limitations are discussed. Special attention is paid to biological effects of the plasma-generated reactive oxygen and nitrogen (and some other) species in basic biological processes such as cell metabolism, proliferation, survival, etc. as well as plasma applications in bacterial inactivation, wound healing, cancer treatment and some others. Challenges and opportunities for theoretical and experimental research are discussed and the authors’ vision for the emerging convergence trends across several disciplines and application domains is presented to

  6. High power, fast, microwave components based on beam generated plasmas

    Science.gov (United States)

    Manheimer, W. M.; Fernsler, R. F.; Gitlin, M. S.

    1998-10-01

    It is shown that the agile mirror plasma, under development as a device to simply and cheaply give electronic steering to microwave beams, also has application as a fast, electronically controlled, high power reflector, or phase shifter. In a radar system, this can lead to such applications as pulse to pulse polarization agility and electronic control of antenna gain, as well as to innovative approaches to high power millimeter wave circulators. The basic theory of the enhanced glow plasma is also developed.

  7. Studies of HED Plasmas with Self-Generated Magnetic Field

    Energy Technology Data Exchange (ETDEWEB)

    Medvedev, Mikhail [Univ. of Kansas, Lawrence, KS (United States)

    2016-02-08

    High-amplitude sub-Larmor-scale electromagnetic turbulence is ubiquitous in high-energy density environments, such as laboratory plasmas produced by high-intensity lasers, e.g., NIF, Omega-EP, Trident, and others, and in astrophysical and space plasmas, e.g., at high-Mach-number collisionless shocks in weakly magnetized plasmas upstream regions of quasi-parallel shocks, sites of magnetic reconnection and others. Studies of plasmas and turbulence in these environments are important for fusion energy sciences and the inertial confinement concept, in particular, as well as to numerous astrophysical systems such as gamma-ray bursts, supernovae blast waves, jets of quasars and active galactic nuclei, shocks in the interplanetary medium, solar flares and many more. Such turbulence can be of various origin and thus have rather different properties, from being purely magnetic (Weibel) turbulence to various types of electromagnetic turbulence (for example, whistler wave turbulence or turbulence produced by filamentation or Weibel-type streaming instability), to purely electrostatic Langmuir turbulence. In this project we use analytical and numerical tools to study the transport, radiative, and magneto-optical properties of plasmas with sub-Larmor-scale turbulence. We discovered the connection of transport/diffusion properties to certain spectral benchmark features of (jitter) radiation produced by the plasma and radiation propagation through it. All regimes, from the relativistic to non-relativistic, were thoroughly investigated and predictions were made for laboratory plasmas and astrophysical plasmas. Thus, all the tasks outlined in the proposal were fully and successfully accomplished.

  8. Downramp-assisted underdense photocathode electron bunch generation in plasma wakefield accelerators

    CERN Document Server

    Knetsch, Alexander; Wittig, Georg; Groth, Henning; Xi, Yunfeng; Deng, Aihua; Rosenzweig, James Benjamin; Bruhwiler, David Leslie; Smith, Johnathan; Jaroszynski, Dino Anthony; Sheng, Zheng-Ming; Manahan, Grace Gloria; Xia, Guoxing; Jamison, Steven; Hidding, Bernhard

    2014-01-01

    It is shown that the requirements for high quality electron bunch generation and trapping from an underdense photocathode in plasma wakefield accelerators can be substantially relaxed through localizing it on a plasma density downramp. This depresses the phase velocity of the accelerating electric field until the generated electrons are in phase, allowing for trapping in shallow trapping potentials. As a consequence the underdense photocathode technique is applicable by a much larger number of accelerator facilities. Furthermore, dark current generation is effectively suppressed.

  9. Numerical Study of Plasma-Fluid Behavior and Generation Characteristics of the Closed Loop MHD Electrical Power Generator

    Science.gov (United States)

    Ohno, Jun; Liberati, Alessandro; Murakami, Tomoyuki; Okuno, Yoshihiro

    Time dependent r-z two-dimensional numerical simulations with LES technique have been carried out in order to clarify the plasma fluid behavior and power generation characteristics of the disk MHD generator under the rated operation conditions demonstrated in the closed loop experimental facility at Tokyo Tech. The generator currently installed could suffer from the non-uniform and low electrical conductivity, and the boundary layer separation even under the rated operation conditions. The large amount of generated electric power is consumed in the boundary layer separation region, which reduces a net output power. Reducing the back pressure and improving the inlet plasma conditions surely provide the higher generator performance. The influence of 90 degree bend downstream duct on the generator performance is found to be not marked.

  10. Elongation of plasma channel generated by temporally shaped femtosecond laser pulse

    Science.gov (United States)

    Chen, Anmin; Li, Suyu; Qi, Hongxia; Jiang, Yuanfei; Hu, Zhan; Huang, Xuri; Jin, Mingxing

    2017-01-01

    Temporally shaped femtosecond laser pulse is used to generate the air plasma channel. The length of plasma channel is optimized by a genetic algorithm. Compared with the transform-limited pulse, the temporally shaped femtosecond laser produced by the spatial light modulator with the genetic algorithm can lead to a significant increase in length and brightness of plasma channel in atmosphere. In particular, the length of the plasma channel produced by the optimized shaped pulse can be extended by 50%. This method can be especially advantageous in the context of femtosecond laser-induced plasma channel.

  11. Inclined slot-excited annular electron cyclotron resonance plasma source for hyperthermal neutral beam generation.

    Science.gov (United States)

    You, H-J; Kim, D-W; Koo, M; Jang, S-O; Jung, Y-H; Hong, S-H; Lee, B-J

    2011-01-01

    An inclined slot-excited antenna (ISLAN) electron cyclotron resonance (ECR) plasma source is newly designed and constructed for higher flux hyperthermal neutral beam (HNB) generation. The developed ISLAN source is modified from vertical slot-excited antenna (VSLAN) source in two aspects: one is the use of inclined slots instead of vertical slots, and the other is a cusp magnetic field configuration rather than a toroidal configuration. Such modifications allow us to have more uniform arrangement of slots and magnets, then enabling plasma generation more uniform and thinner. Moreover, ECR plasma allows higher ionization rate, enabling plasma density higher even in submillitorr pressures, therefore decreasing the collision rate and∕or the reionization rate of the reflected atoms while passing through the plasma, and eventually getting higher flux of HNBs. In this paper, we report the design features and the plasma characteristics of the ISLAN source by doing plasma measurements and electromagnetic simulations. It was found that ISLAN source can be a high potential source for larger flux HNB generation; the source was found to give higher plasma densities and better uniformities than inductively coupled plasma source, particularly in low pressure ranges. Also, it is important that using ISLAN gives easier matching and better stability, i.e., ISLAN shows similar field patterns and good plasma symmetries irrespective of the variations of the mean diameter of the ring resonator and∕or the presence of a limiter or a reflector, and the operating pressures.

  12. Chemically reactive species in liquids generated by atmospheric-pressure plasmas and their roles in plasma medicine

    Energy Technology Data Exchange (ETDEWEB)

    Hamaguchi, Satoshi [Center for Atomic and Molecular Technologies, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2013-07-11

    Plasmas whose gas temperatures are close to room temperature may be generated in ambient air or a gas at atmospheric pressure with the use of low-frequency high voltage or low-power radio-frequency (RF) or microwave power applied to electrodes. Such plasmas can serve as a powerful source of free radicals and/or chemically reactive species that arise from atoms and molecules of the ambient gas. Recently use of such plasmas for medical purposes has attracted much attention as they can be implemented in possible medical devices that can cause blood coagulation, heal wounds, facilitate angiogenesis, sterilize surgical devices as well as living tissues without harming healthy cells, and selectively inactivate cancer cells. Especially of interest among reactive species generated by atmospheric-pressure plasmas (APP) are reactive oxygen species (ROS) and reactive nitrogen species (RNS) that are generated in liquid phase. Since most living tissues and cells are immersed in liquids (such as blood or culture media), reactive species generated by APPs in the gas phase are transported to the liquid phase and possibly converted to different types of reactive species therein before causing some influence on the tissues or cells. In this study, the rate equations are solved to evaluate concentrations of various reactive species in pure water that are originated by plasma reactions in atmosphere and possible effects of such species (including ROS/RNS) on living tissues and cells are discussed.

  13. Forced KLF4 expression increases the generation of mature plasma cells and uncovers a network linked with plasma cell stage.

    Science.gov (United States)

    Schoenhals, Matthieu; Jourdan, Michel; Seckinger, Anja; Pantesco, Véronique; Hose, Dirk; Kassambara, Alboukadel; Moreaux, Jérôme; Klein, Bernard

    2016-07-17

    A role of the transcription factor Krüppel-like factor 4 (KLF4) in the generation of mature plasma cells (PC) is unknown. Indeed, KLF4 is critical in controlling the differentiation of various cell linages, particularly monocytes and epithelial cells. KLF4 is expressed at low levels in pro-B cells and its expression increases as they mature into pre-B cells, resting naïve B cells and memory B cells. We show here that KLF4 is expressed in human bone marrow plasma cells and its function was studied using an in vitro model of differentiation of memory B cells into long lived plasma cells. KLF4 is rapidly lost when memory B cells differentiate into highly cell cycling plasmablasts, poorly cycling early plasma cells and then quiescent long-lived plasma cells. A forced expression of KLF4 in plasmablasts enhances the yield of their differentiation into early plasma cell and long lived plasma cells, by inhibiting apoptosis and upregulating previously unknown plasma cell pathways.

  14. Temporal evolution of electron beam generated Argon plasma in pasotron device

    Science.gov (United States)

    Khandelwal, Neha; Pal, U. N.; Prakash, Ram; Choyal, Y.

    2016-10-01

    The plasma- assisted slow wave oscillator (PASOTRON) is a high power microwave source in which the electron beam in the interaction region is confined by the background plasma. The plasma is generated by impact ionization of background gas with the electron beam. A model has been developed for temporal evolution of Argon plasma in pasotron device. In this model, we consider electron beam of energy E interacting with Argon gas. The resulting ionization creates quasi neutral argon plasma composed of argon Ar atoms, singly ionized ions Ar+1and electrons having energy from 0 to E. Electron impact excitation, ionization, radiative decay, radiative recombination and three body recombination processes are considered in this model. Population of ground and excited states of argon atom, ground state of argon ion as well as the population of electron energy groups is calculated by solving time dependent rate equations. Temporal evolution of electron beam generated plasma is given.

  15. Generation of high-power electromagnetic radiation by a beam-driven plasma antenna

    Science.gov (United States)

    Annenkov, V. V.; Volchok, E. P.; Timofeev, I. V.

    2016-04-01

    In this paper we study how efficiently electromagnetic radiation can be generated by a relativistic electron beam with a gigawatt power level during its injection into a thin magnetized plasma. It is shown that, if the transverse beam and plasma size is compared with the radiation wavelength and the plasma density is modulated along the magnetic field, such a beam-plasma system can radiate electromagnetic waves via the antenna mechanism. We propose a theoretical model describing generation of electromagnetic waves by this plasma antenna and calculate its main radiation characteristics. In the two-dimensional case theoretical predictions on the radiation efficiency are shown to be confirmed by the results of particle-in-cell simulations, and the three-dimensional variant of this theory is used to estimate the peak power of sub-terahertz radiation that can be achieved in beam-plasma experiments in mirror traps.

  16. High heat flux plasma generator for new divertor plasma simulator in Nagoya University

    Energy Technology Data Exchange (ETDEWEB)

    Narita, S.; Ezumi, N.; Ohno, N.; Uesugi, Y.; Takamura, S. [Nagoya Univ. (Japan)

    1997-12-31

    A new divertor simulator called NAGDIS-II has been constructed in order to investigate edge plasma physics in fusion devices. Improved TP-D type plasma source, which consists of LaB{sub 6} cathode with a Mo hollow shield and external heating system, water-cooled intermediate electrode and anode was employed to make a high density plasma in the NAGDIS-II. The performance and reliability of the discharge system was confirmed by quantitatively measuring neutral pressure, heating efficiency and plasma parameters. (author)

  17. Recent sheath physics studies on DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, J.G., E-mail: watkins@fusion.gat.com [Sandia National Laboratories, PO Box 969, Livermore, CA 94551 (United States); Labombard, B. [MIT Plasma Science and Fusion Center, 175 Albany St, Cambridge, MA 02139 (United States); Stangeby, P.C. [University of Toronto Institute for Aerospace Studies, Toronto M3H 5T6 (Canada); Lasnier, C.J.; McLean, A.G. [Lawrence Livermore National Laboratory, 700 East Ave, Livermore, CA 94550 (United States); Nygren, R.E. [Sandia National Laboratories, PO Box 969, Livermore, CA 94551 (United States); Boedo, J.A. [University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0417 (United States); Leonard, A.W. [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Rudakov, D.L. [University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0417 (United States)

    2015-08-15

    A study to examine some current issues in the physics of the plasma sheath has been recently carried out in DIII-D low power Ohmic plasmas using both flush and domed Langmuir probes, divertor Thomson scattering (DTS), an infrared camera (IRTV), and a new calorimeter triple probe assembly mounted on the Divertor Materials Evaluation System (DIMES). The sheath power transmission factor was found to be consistent with the theoretically predicted value of 7 (±2) for low power plasmas. Using this factor, the three heat flux profiles derived from the LP, DTS, and calorimeter diagnostic measurements agree. Comparison of flush and domed Langmuir probes and divertor Thomson scattering indicates that proper interpretation of flush probe data to get target plate density and temperature is feasible and could potentially yield accurate measurements of target plate conditions where the probes are located.

  18. Wakefields generated by collisional neutrinos in neutral-electron-positron-ion plasma

    Energy Technology Data Exchange (ETDEWEB)

    Tinakiche, Nouara [Faculty of Sciences, Department of Physics, University of Boumeredes U.M.B.B., Boumerdes 35000 (Algeria)

    2015-12-15

    A classical fluid description is adopted to investigate nonlinear interaction between an electron-type neutrino beam and a relativistic collisionless unmagnetized neutral-electron-positron-ion plasma. In this work, we consider the collisions of the neutrinos with neutrals in the plasma and study their effect on the generation of wakefields in presence of a fraction of ions in a neutral-electron-positron plasma. The results obtained in the present work are interpreted and compared with previous studies.

  19. Magnetic field generation from Self-Consistent collective neutrino-plasma interactions

    Energy Technology Data Exchange (ETDEWEB)

    Brizard, A.J.; Murayama H.; Wurtele, J.S.

    1999-11-24

    A new Lagrangian formalism for self-consistent collective neutrino-plasma interactions is presented in which each neutrino species is described as a classical ideal fluid. The neutrino-plasma fluid equations are derived from a covariant relativistic variational principle in which finite-temperature effects are retained. This new formalism is then used to investigate the generation of magnetic fields and the production of magnetic helicity as a result of collective neutrino-plasma interactions.

  20. Nanoparticle generation by intensified solution crystallization using cold plasma

    NARCIS (Netherlands)

    Radacsi, N.; Heijden, A.E.D.M. van der; Stankiewicz, A.I.; Horst, J.H. ter

    2013-01-01

    In this study, atmospheric pressure cold plasma (surface dielectric barrier discharge) was used as an alternative energy form to intensify solution crystallization and produce nano-sized organic crystals. Nano-sized particles can have beneficial product properties such as improved internal quality

  1. Nanoparticle generation by intensified solution crystallization using cold plasma

    NARCIS (Netherlands)

    Radacsi, N.; Heijden, A.E.D.M. van der; Stankiewicz, A.I.; Horst, J.H. ter

    2013-01-01

    In this study, atmospheric pressure cold plasma (surface dielectric barrier discharge) was used as an alternative energy form to intensify solution crystallization and produce nano-sized organic crystals. Nano-sized particles can have beneficial product properties such as improved internal quality a

  2. Cold atmospheric plasma jet-generated RONS and their selective effects on normal and carcinoma cells.

    Science.gov (United States)

    Kim, Sun Ja; Chung, T H

    2016-02-03

    Cold atmospheric helium plasma jets were fabricated and utilized for plasma-cell interactions. The effect of operating parameters and jet design on the generation of specific reactive oxygen and nitrogen species (RONS) within cells and cellular response were investigated. It was found that plasma treatment induced the overproduction of RONS in various cancer cell lines selectively. The plasma under a relatively low applied voltage induced the detachment of cells, a reduction in cell viability, and apoptosis, while the plasma under higher applied voltage led to cellular necrosis in our case. To determine whether plasma-induced reactive oxygen species (ROS) generation occurs through interfering with mitochondria-related cellular response, we examined the plasma effects on ROS generation in both parental A549 cells and A549 ρ(0) cells. It was observed that cancer cells were more susceptible to plasma-induced RONS (especially nitric oxide (NO) and nitrogen dioxide (NO2(-)) radicals) than normal cells, and consequently, plasma induced apoptotic cell responses mainly in cancer cells.

  3. Generation of magnetic fields by the ponderomotive force of electromagnetic waves in dense plasmas

    OpenAIRE

    Shukla, P K; Shukla, Nitin; Stenflo, Lennart

    2010-01-01

    We show that the non-stationary ponderomotive force of a, large-amplitude electromagnetic move in a very dense quantum plasma wall streaming degenerate electrons can spontaneously create d.c. magnetic fields. The present result can account for the seed magnetic fields in compact astrophysical objects and in the next-generation intense laser-solid density, plasma interaction experiments.

  4. Generation of fast electrons by breaking of a laser-induced plasma wave

    NARCIS (Netherlands)

    Trines, Rmgm; Goloviznin, V. V.; Kamp, L. P. J.; Schep, T. J.

    2001-01-01

    A one-dimensional model for fast electron generation by an intense, nonevolving laser pulse propagating through an underdense plasma has been developed. Plasma wave breaking is considered to be the dominant mechanism behind this process, and wave breaking both in front of and behind the laser pulse

  5. Software architecture for control and data acquisition of linear plasma generator Magnum-PSI

    NARCIS (Netherlands)

    Groen, P. W. C.; van Beveren, V.; Broekema, A.; Busch, P. J.; Genuit, J. W.; Kaas, G.; Poelman, A. J.; Scholten, J.; van Emmichoven, P. A. Zeijlma

    2013-01-01

    The FOM Institute DIFFER – Dutch Institute for Fundamental Energy Research has completed the construction phase of Magnum-PSI, a magnetized, steady-state, large area, high-flux linear plasma beam generator to study plasma surface interactions under ITER divertor conditions. Magnum-PSI consists of se

  6. Modeling and experiments on differential pumping in linear plasma generators operating at high gas flows

    NARCIS (Netherlands)

    van Eck, H. J. N.; Koppers, W. R.; van Rooij, G. J.; W. J. Goedheer,; Engeln, R.; D.C. Schram,; Cardozo, N. J. L.; Kleyn, A. W.

    2009-01-01

    The direct simulation Monte Carlo (DSMC) method was used to investigate the efficiency of differential pumping in linear plasma generators operating at high gas flows. Skimmers are used to separate the neutrals from the plasma beam, which is guided from the source to the target by a strong axial mag

  7. Experimental studies of axial magnetic fields generated in ultrashort-pulse laser-plasma interaction

    Institute of Scientific and Technical Information of China (English)

    李玉同; 张杰; 陈黎明; 赵理曾; 夏江帆; 魏志义; 江文勉

    2000-01-01

    The quasistatic axial magnetic fields in plasmas produced by ultrashort laser pulses were measured by measuring the Faraday rotation angle of the backscattered emission. The spatial distribution of the axial magnetic field was obtained with a peak value as high as 170 Tesla. Theory suggests that the axial magnetic field is generated by dynamo effect in laser-plasma interaction.

  8. Software architecture for control and data acquisition of linear plasma generator Magnum-PSI

    NARCIS (Netherlands)

    Groen, P. W. C.; van Beveren, V.; Broekema, A.; Busch, P. J.; Genuit, J. W.; Kaas, G.; Poelman, A. J.; Scholten, J.; van Emmichoven, P. A. Zeijlma

    2013-01-01

    The FOM Institute DIFFER – Dutch Institute for Fundamental Energy Research has completed the construction phase of Magnum-PSI, a magnetized, steady-state, large area, high-flux linear plasma beam generator to study plasma surface interactions under ITER divertor conditions. Magnum-PSI consists of

  9. Characterization of a copper spark discharge plasma in argon atmosphere used for nanoparticle generation

    Science.gov (United States)

    Kohut, Attila; Galbács, Gábor; Márton, Zsuzsanna; Geretovszky, Zsolt

    2017-04-01

    Spark discharge nanoparticle generation is a dynamically developing application of discharge plasmas. In the present study a spark plasma used for nanoparticle generation is characterized by means of spatially and temporally resolved optical emission spectroscopy (OES) supplemented by fast imaging. The data acquired during the generation of copper nanoparticles in argon ambient is used to describe the spatial and temporal evolution of the species in the spark gap and to derive plasma parameters such as excitation temperature and electron concentration on one hand, and the concentration of the Cu species eroded by a single spark on the other. It is shown that temporally and spatially resolved OES together with a simple equilibrium model are efficient tools to estimate the characteristics of the spark discharge plasma that typically exists in spark discharge nanoparticle generators.

  10. Gap formation processes in a high-density plasma opening switch

    Science.gov (United States)

    Grossmann, J. M.; Swanekamp, S. B.; Ottinger, P. F.; Commisso, R. J.; Hinshelwood, D. D.; Weber, B. V.

    1995-01-01

    A gap opening process in plasma opening switches (POS) is examined with the aid of numerical simulations. In these simulations, a high density (ne=1014-5×1015 cm-3) uniform plasma initially bridges a small section of the coaxial transmission line of an inductive energy storage generator. A short section of vacuum transmission line connects the POS to a short circuit load. The results presented here extend previous simulations in the ne=1012-1013 cm-3 density regime. The simulations show that a two-dimensional (2-D) sheath forms in the plasma near a cathode. This sheath is positively charged, and electrostatic sheath potentials that are large compared to the anode-cathode voltage develop. Initially, the 2-D sheath is located at the generator edge of the plasma. As ions are accelerated out of the sheath, it retains its original 2-D structure, but migrates axially toward the load creating a magnetically insulated gap in its wake. When the sheath reaches the load edge of the POS, the POS stops conducting current and the load current increases rapidly. At the end of the conduction phase a gap exists in the POS whose size is determined by the radial dimensions of the 2-D sheath. Simulations at various plasma densities and current levels show that the radial size of the gap scales roughly as B/ne, where B is the magnetic field. The results of this work are discussed in the context of long-conduction-time POS physics, but exhibit the same physical gap formation mechanisms as earlier lower density simulations more relevant to short-conduction-time POS.

  11. Magnetic field generation and amplification in an expanding plasma

    CERN Document Server

    Schoeffler, K M; Fonseca, R A; Silva, L O

    2013-01-01

    Particle-in-cell simulations are used to investigate the formation of magnetic fields, B, in plasmas with perpendicular electron density and temperature gradients. For system sizes, L, comparable to the ion skin depth, d_i, it is shown that B ~ d_i/L, consistent with the Biermann battery effect. However, for large L/d_i, it is found that the Weibel instability (due to electron temperature anisotropy) supersedes the Biermann battery as the main producer of B. The Weibel-produced fields saturate at a finite amplitude (plasma \\beta \\approx 100), independent of L. The magnetic energy spectra below the electron Larmor radius scale is well fitted by power law with slope -16/3, as predicted in Schekochihin et al., Astrophys. J. Suppl. Ser 182, 310 (2009).

  12. High Magnetic field generation for laser-plasma experiments

    Energy Technology Data Exchange (ETDEWEB)

    Pollock, B B; Froula, D H; Davis, P F; Ross, J S; Fulkerson, S; Bower, J; Satariano, J; Price, D; Glenzer, S H

    2006-05-01

    An electromagnetic solenoid was developed to study the effect of magnetic fields on electron thermal transport in laser plasmas. The solenoid, which is driven by a pulsed power system suppling 30 kJ, achieves magnetic fields of 13 T. The field strength was measured on the solenoid axis with a magnetic probe and optical Zeeman splitting. The measurements agree well with analytical estimates. A method for optimizing the solenoid design to achieve magnetic fields exceeding 20 T is presented.

  13. VUV SOURCE FROM PULSED-LASER GENERATED PLASMA

    OpenAIRE

    Laporte, P.; Damany, N.; Damany, H.

    1987-01-01

    We describe a pulsed vacuum ultraviolet (VUV) source consisting of a plasma created by focusing a NdYAG laser beam into rare gases under moderate pressure, and we report on spectral and time properties of that source. Main features are : continuum emission in a large spectral range, with only few lines superimposed, good time characteristics of the pulses, stability, cleanliness, and relatively high repetition rate (20 Hz).

  14. Optical Characterization of Plasma Generated in a Commercial Grade Plasma Etching System

    Science.gov (United States)

    Hardy, Ashley; Drake, Dereth

    2015-11-01

    The use of plasma for etching and cleaning of many types of metal surfaces is becoming more prominent in industry. This is primarily due to the fact that plasma etching can reduce the amount of time necessary to clean/etch the surface and does not require large amounts of environmentally hazardous chemicals. Most plasma etching systems are designed and built in academic institutions. These systems provide reasonable etching rates and easy accessibility for monitoring plasma parameters. The downside is that the cost is typically high. Recently a number of commercial grade plasma etchers have been introduced on the market. These etching systems cost near a fraction of the price, making them a more economical choice for researchers in the field. However, very few academics use these devices because their effectiveness has not yet been adequately verified in the current literature. We will present the results from experiments performed in a commercial grade plasma etching system, including analysis of the pulse characteristics observed by a photo diode and the plasma parameters obtained with optical emission spectroscopy.

  15. Optimized plasma high harmonics generation from ultra-intense laser pulses

    CERN Document Server

    Tang, Suo; Keitel, Christoph H

    2016-01-01

    Plasma high harmonics generation from extremely intense short-pulse laser is explored by including the effects of ion motion and radiation reaction force in the plasma dynamics. The laser radiation pressure induces plasma ion motion through the hole-boring effect resulting into the frequency shifting and widening of the harmonic spectra thereby constraining the coherence properties of the harmonics. Radiation reaction force slightly mitigates the effects caused by the ion motion. Based on the analytical estimates and particle-in-cell simulation results, an optimum parameter regime of plasma high-harmonics is presented.

  16. High-temperature coal-syngas plasma characteristics for advanced MHD power generation

    Energy Technology Data Exchange (ETDEWEB)

    Mikheev, A.V.; Kayukawa, N.; Okinaka, N.; Kamada, Y.; Yatsu, S. [Hokkaido University, Hokkaido (Japan)

    2006-03-15

    Properties of magnetohydrodynamic (MHD) plasma based on syngas (CO, H{sub 2}) combustion products were investigated experimentally with shock tube facility. The experiments were carried out under various MHD generator load and shock tube operation conditions. Important characteristics of syngas plasma such as temperature, electric field, conductivity, and total output power were directly measured and evaluated. Special attention was paid to the influence of syngas composition (CO : H{sub 2} : O{sub 2} ratio). The results show that syngas combustion can provide high plasma ionization and attainable plasma electrical conductivity has an order of 60-80 S/m at gas temperature 3100-3300 K.

  17. Targeting cancer cells with reactive oxygen and nitrogen species generated by atmospheric-pressure air plasma.

    Directory of Open Access Journals (Sweden)

    Hak Jun Ahn

    Full Text Available The plasma jet has been proposed as a novel therapeutic method for cancer. Anticancer activity of plasma has been reported to involve mitochondrial dysfunction. However, what constituents generated by plasma is linked to this anticancer process and its mechanism of action remain unclear. Here, we report that the therapeutic effects of air plasma result from generation of reactive oxygen/nitrogen species (ROS/RNS including H2O2, Ox, OH-, •O2, NOx, leading to depolarization of mitochondrial membrane potential and mitochondrial ROS accumulation. Simultaneously, ROS/RNS activate c-Jun NH2-terminal kinase (JNK and p38 kinase. As a consequence, treatment with air plasma jets induces apoptotic death in human cervical cancer HeLa cells. Pretreatment of the cells with antioxidants, JNK and p38 inhibitors, or JNK and p38 siRNA abrogates the depolarization of mitochondrial membrane potential and impairs the air plasma-induced apoptotic cell death, suggesting that the ROS/RNS generated by plasma trigger signaling pathways involving JNK and p38 and promote mitochondrial perturbation, leading to apoptosis. Therefore, administration of air plasma may be a feasible strategy to eliminate cancer cells.

  18. Computer Model for Electrode Plasma Generation by Electron and Ion Flows

    Science.gov (United States)

    Ryzhov, Victor V.; Bespalov, Valeri I.; Kirikov, Alexander V.; Turchanovskii, Igor. Yu.; Tarakanov, Vladimir P.

    2002-12-01

    A model is proposed for computer simulation of the electrode plasma generation by electron and ion flows. The distribution of the absorbed energy of particles in the electrode material is calculated by the Monte-Carlo codes. This provides a possibility to control the electrode temperature by solving the heat conductivity equation for specified distributions of thermal sources and to calculate the rate of plasma generation. The behavior of the plasma in the gap can be modeled based on simple model where the velocity, the density, and the temperature of the plasma can be given by some dependence. Within the framework of the model proposed, numerical study is performed on the effect of the plasma flows in Rod Pinch Diodes and in the Insulator Stack of the Z-accelerator.

  19. Negative-permittivity plasma generation in negative-permeability space with high-energy metamaterials

    Science.gov (United States)

    Sakai, Osamu; Nakamura, Yoshihiro; Iwai, Akinori; Iio, Satoshi

    2016-10-01

    Plasma generation by electromagnetic waves in negative-permeability space is analyzed using experimental results and theoretical models. Installation of negative-permeability metamaterials triggers drastic changes to the propagation of electromagnetic waves. Unlike usual cases in which permeability is  +1, negative permeability induces evanescent modes in a space without plasma. However, if permittivity becomes negative due to high-electron-density or overdense plasma, electromagnetic waves can propagate because negative-refractive-index states emerge. In this study, reviewing our previous experimental data, we study the underlying physical processes in plasma generation in terms of wave propagation and parameters of wave media. We confirm nonlinear (transition) processes in the phase of density evolution up to the negative permittivity state and negative-refractive-index states in the quasi-steady phase. We also note that such energetic metamaterials are built up when we use plasma, unlike conventional metamaterials composed of solid-state materials.

  20. Effects of cold atmospheric plasma generated in DI water on Cancer cells

    CERN Document Server

    Chen, Zhitong; Cheng, Xiaoqian; Gjika, Eda; Keidar, Michael

    2016-01-01

    Cold atmospheric plasma (CAP) has been shown to affect cells not only directly, but also by means of indirect treatment with previously prepared plasma stimulated solution. The objective of this study is to reveal the effects of plasma-stimulated media (PSM) on breast cancer cells (MDA-MB-231) and gastric cancer cells (NCl-N87). In our experiments, cold atmospheric plasma is generated in water using helium as carrier gas. The plasma generated in DI water during a 30-minute treatment had the strongest affect in inducing apoptosis in cultured human breast and gastric cancer cells. This result can be attributed to the presence of reactive oxygen species (ROS) and reactive nitrogen species (RNS) produced in water during treatment.

  1. Turbulent jet flow generated downstream of a low temperature dielectric barrier atmospheric pressure plasma device

    Science.gov (United States)

    Whalley, Richard D.; Walsh, James L.

    2016-08-01

    Flowing low temperature atmospheric pressure plasma devices have been used in many technological applications ranging from energy efficient combustion through to wound healing and cancer therapy. The generation of the plasma causes a sudden onset of turbulence in the inhomogeneous axisymmetric jet flow downstream of the plasma plume. The mean turbulent velocity fields are shown to be self-similar and independent of the applied voltage used to generate the plasma. It is proposed that the production of turbulence is related to a combination of the small-amplitude plasma induced body forces and gas heating causing perturbations in the unstable shear layers at the jet exit which grow as they move downstream, creating turbulence.

  2. Turbulent jet flow generated downstream of a low temperature dielectric barrier atmospheric pressure plasma device.

    Science.gov (United States)

    Whalley, Richard D; Walsh, James L

    2016-08-26

    Flowing low temperature atmospheric pressure plasma devices have been used in many technological applications ranging from energy efficient combustion through to wound healing and cancer therapy. The generation of the plasma causes a sudden onset of turbulence in the inhomogeneous axisymmetric jet flow downstream of the plasma plume. The mean turbulent velocity fields are shown to be self-similar and independent of the applied voltage used to generate the plasma. It is proposed that the production of turbulence is related to a combination of the small-amplitude plasma induced body forces and gas heating causing perturbations in the unstable shear layers at the jet exit which grow as they move downstream, creating turbulence.

  3. Operational characteristics of the high flux plasma generator Magnum-PSI

    Energy Technology Data Exchange (ETDEWEB)

    Eck, H.J.N. van, E-mail: h.j.n.vaneck@differ.nl [FOM Institute DIFFER, Dutch Institute For Fundamental Energy Research, Association EURATOM-FOM, Trilateral Euregio Cluster, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands); Abrams, T. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Berg, M.A. van den; Brons, S.; Eden, G.G. van [FOM Institute DIFFER, Dutch Institute For Fundamental Energy Research, Association EURATOM-FOM, Trilateral Euregio Cluster, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands); Jaworski, M.A.; Kaita, R. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Meiden, H.J. van der; Morgan, T.W.; Pol, M.J. van de; Scholten, J.; Smeets, P.H.M.; De Temmerman, G.; Vries, P.C. de; Zeijlmans van Emmichoven, P.A. [FOM Institute DIFFER, Dutch Institute For Fundamental Energy Research, Association EURATOM-FOM, Trilateral Euregio Cluster, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands)

    2014-10-15

    Highlights: •We have described the design and capabilities of the plasma experiment Magnum-PSI. •The plasma conditions are well suited for PSI studies in support of ITER. •Quasi steady state heat fluxes over 10 MW m{sup −2} have been achieved. •Transient heat and particle loads can be generated to simulate ELM instabilities. •Lithium coating can be applied to the surfaces of samples under vacuum. -- Abstract: In Magnum-PSI (MAgnetized plasma Generator and NUMerical modeling for Plasma Surface Interactions), the high density, low temperature plasma of a wall stabilized dc cascaded arc is confined to a magnetized plasma beam by a quasi-steady state axial magnetic field up to 1.3 T. It aims at conditions that enable fundamental studies of plasma–surface interactions in the regime relevant for fusion reactors such as ITER: 10{sup 23}–10{sup 25} m{sup −2} s{sup −1} hydrogen plasma flux densities at 1–5 eV. To study the effects of transient heat loads on a plasma-facing surface, a high power pulsed magnetized arc discharge has been developed. Additionally, the target surface can be transiently heated with a pulsed laser system during plasma exposure. In this contribution, the current status, capabilities and performance of Magnum-PSI are presented.

  4. Electron beam generated whistler emissions in a laboratory plasma

    Energy Technology Data Exchange (ETDEWEB)

    Van Compernolle, B., E-mail: bvcomper@physics.ucla.edu; Pribyl, P.; Gekelman, W. [Department of Physics, University of California, Los Angeles (United States); An, X.; Bortnik, J.; Thorne, R. M. [Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles (United States)

    2015-12-10

    Naturally occurring whistler mode emissions in the magnetosphere, are important since they are responsible for the acceleration of outer radiation belt electrons to relativistic energies and also for the scattering loss of these electrons into the atmosphere. Recently, we reported on the first laboratory experiment where whistler waves exhibiting fast frequency chirping have been artificially produced [1]. A beam of energetic electrons is launched into a cold plasma and excites both chirping whistler waves and broadband waves. Here we extend our previous analysis by comparing the properties of the broadband waves with linear theory.

  5. Electron beam generated whistler emissions in a laboratory plasma

    Science.gov (United States)

    Van Compernolle, B.; An, X.; Bortnik, J.; Thorne, R. M.; Pribyl, P.; Gekelman, W.

    2015-12-01

    Naturally occurring whistler mode emissions in the magnetosphere, are important since they are responsible for the acceleration of outer radiation belt electrons to relativistic energies and also for the scattering loss of these electrons into the atmosphere. Recently, we reported on the first laboratory experiment where whistler waves exhibiting fast frequency chirping have been artificially produced [1]. A beam of energetic electrons is launched into a cold plasma and excites both chirping whistler waves and broadband waves. Here we extend our previous analysis by comparing the properties of the broadband waves with linear theory.

  6. Helium generated cold plasma finely regulates activation of human fibroblast-like primary cells.

    Directory of Open Access Journals (Sweden)

    Paola Brun

    Full Text Available Non-thermal atmospheric pressure plasmas are being developed for a wide range of health care applications, including wound healing. However in order to exploit the potential of plasma for clinical applications, the understanding of the mechanisms involved in plasma-induced activation of fibroblasts, the cells active in the healing process, is mandatory. In this study, the role of helium generated plasma in the tissue repairing process was investigated in cultured human fibroblast-like primary cells, and specifically in hepatic stellate cells and intestinal subepithelial myofibroblasts. Five minutes after treatment, plasma induced formation of reactive oxygen species (ROS in cultured cells, as assessed by flow cytometric analysis of fluorescence-activated 2',7'-dichlorofluorescein diacetate probe. Plasma-induced intracellular ROS were characterized by lower concentrations and shorter half-lives with respect to hydrogen peroxide-induced ROS. Moreover ROS generated by plasma treatment increased the expression of peroxisome proliferator activated receptor (PPAR-γ, nuclear receptor that modulates the inflammatory responses. Plasma exposure promoted wound healing in an in vitro model and induced fibroblast migration and proliferation, as demonstrated, respectively, by trans-well assay and partitioning between daughter cells of carboxyfluorescein diacetate succinimidyl ester fluorescent dye. Plasma-induced fibroblast migration and proliferation were found to be ROS-dependent as cellular incubation with antioxidant agents (e.g. N-acetyl L-cysteine cancelled the biological effects. This study provides evidence that helium generated plasma promotes proliferation and migration in liver and intestinal fibroblast-like primary cells mainly by increasing intracellular ROS levels. Since plasma-evoked ROS are time-restricted and elicit the PPAR-γ anti-inflammatory molecular pathway, this strategy ensures precise regulation of human fibroblast activation and

  7. Intraoral myxoid nerve sheath tumour

    NARCIS (Netherlands)

    Schortinghuis, J; Hille, JJ; Singh, S

    2001-01-01

    A case of an intraoral myxoid nerve sheath tumour of the dorsum of the tongue in a 73-year-old Caucasian male is reported. This case describes the oldest patient with this pathology to date. Immunoperoxidase staining for neuronspecific enolase (NSE) and epithelial membrane antigen (EMA) expression d

  8. Intraoral myxoid nerve sheath tumour

    NARCIS (Netherlands)

    Schortinghuis, J; Hille, JJ; Singh, S

    2001-01-01

    A case of an intraoral myxoid nerve sheath tumour of the dorsum of the tongue in a 73-year-old Caucasian male is reported. This case describes the oldest patient with this pathology to date. Immunoperoxidase staining for neuronspecific enolase (NSE) and epithelial membrane antigen (EMA) expression d

  9. Neutron Generation by Laser-Driven Spherically Convergent Plasma Fusion

    Science.gov (United States)

    Ren, G.; Yan, J.; Liu, J.; Lan, K.; Chen, Y. H.; Huo, W. Y.; Fan, Z.; Zhang, X.; Zheng, J.; Chen, Z.; Jiang, W.; Chen, L.; Tang, Q.; Yuan, Z.; Wang, F.; Jiang, S.; Ding, Y.; Zhang, W.; He, X. T.

    2017-04-01

    We investigate a new laser-driven spherically convergent plasma fusion scheme (SCPF) that can produce thermonuclear neutrons stably and efficiently. In the SCPF scheme, laser beams of nanosecond pulse duration and 1 014- 1 015 W /cm2 intensity uniformly irradiate the fuel layer lined inside a spherical hohlraum. The fuel layer is ablated and heated to expand inwards. Eventually, the hot fuel plasmas converge, collide, merge, and stagnate at the central region, converting most of their kinetic energy to internal energy, forming a thermonuclear fusion fireball. With the assumptions of steady ablation and adiabatic expansion, we theoretically predict the neutron yield Yn to be related to the laser energy EL, the hohlraum radius Rh, and the pulse duration τ through a scaling law of Yn∝(EL/Rh1.2τ0.2 )2.5. We have done experiments at the ShengGuangIII-prototype facility to demonstrate the principle of the SCPF scheme. Some important implications are discussed.

  10. Basic characteristics of an atmospheric pressure rf generated plasma jet

    Institute of Scientific and Technical Information of China (English)

    Wang Shou-Guo; Li Hai-Jiang; Ye Tian-Chun; Zhao Ling-Li

    2004-01-01

    A plasma jet has been developed which operates using radio frequency (rf) power and produces a stable homogeneous discharge at atmospheric pressure. Its discharge characteristics, especially the dependence of stable discharge operating range on the feed gas, were studied, and the electric parameters such as RMS current, RMS voltage and reflected power were obtained with different gas flows. These studies indicate that there is an optimum range of operation of the plasma jet for a filling with a gas mixture of He and O2. Two "failure" modes of the discharge are identified.One is a filamentary arc when the input power is raised above a critical level, another is that the discharge disappears gradually as the addition of O2 approaches 3.2%. Possible explanations for the two failure modes have been given. The current and voltage waveform measurements show that there is a clear phase shift between normal and failure modes.In addition, Ⅰ-Ⅴ curves as a function of pure helium and for 1% addition of oxygen have been studied.

  11. Simulation of runaway electron generation during plasma shutdown by impurity injection

    Energy Technology Data Exchange (ETDEWEB)

    Feher, Tamas

    2011-03-15

    Disruptions are dangerous instabilities in tokamaks that should be avoided or mitigated. One possible disruption mitigation method is to inject impurities into the plasma to shut it down in a controlled way. Runaway Electrons (REs) can be generated after the plasma is cooled down by the impurities and these electrons can damage the tokamak. In this work a simulation code is developed to investigate different disruption mitigation scenarios. The response of the bulk plasma, more precisely the temperature evolution of electrons, deuterium and impurity ions are described by energy balance equations in a 1D cylindrical plasma model. The induction and resistive diffusion of electric field is calculated. RE generation rates are used to calculate the runaway current. The Dreicer, hot-tail and avalanche effect is taken into account and a simple model for RE losses is also included. RE generation is studied in JET-like plasmas during pellet injection. Carbon pellets cause effective cooling but these scenarios are prone to runaway generation. A mixture of argon and deuterium gas could be used for safe shutdown without RE generation. In ITER the hot-tail RE generation process becomes important, and the simulation is therefore extended to take this into account. Shutdown scenarios with different concentration of neon and argon impurities were tested in ITER-like plasmas. To simplify the problem the impurity injection into the plasma is not modeled in these cases, only the response of the bulk plasma. The avalanche process cannot be suppressed in a simple way and would produce high runaway current. It can be avoided if some runaway loss phenomenon is included in the simulations, like diffusion due to magnetic perturbations

  12. Radial interchange motions of plasma filaments

    DEFF Research Database (Denmark)

    Garcia, O.E.; Bian, N.H.; Fundamenski, W.

    2006-01-01

    Radial convection of isolated filamentary structures due to interchange motions in magnetized plasmas is investigated. Following a basic discussion of vorticity generation, ballooning, and the role of sheaths, a two-field interchange model is studied by means of numerical simulations...... on a biperiodic domain perpendicular to the magnetic field. It is demonstrated that a blob-like plasma structure develops dipolar vorticity and electrostatic potential fields, resulting in rapid radial acceleration and formation of a steep front and a trailing wake. While the dynamical evolution strongly depends...... as the acoustic speed times the square root of the structure size relative to the length scale of the magnetic field. The plasma filament eventually decelerates due to mixing and collisional dissipation. Finally, the role of sheath dissipation is investigated. When included in the simulations, it significantly...

  13. A simplified analytic form for generation of axisymmetric plasma boundaries

    Science.gov (United States)

    Luce, T. C.

    2017-04-01

    An improved method has been formulated for generating analytic boundary shapes as input for axisymmetric MHD equilibria. This method uses the family of superellipses as the basis function, as previously introduced. The improvements are a simplified notation, reduction of the number of simultaneous nonlinear equations to be solved, and the realization that not all combinations of input parameters admit a solution to the nonlinear constraint equations. The method tests for the existence of a self-consistent solution and, when no solution exists, it uses a deterministic method to find a nearby solution. Examples of generation of boundaries, including tests with an equilibrium solver, are given.

  14. The Generation of Magnetic Field by Transverse Plasmons in Laser-Produced Plasma

    Institute of Scientific and Technical Information of China (English)

    LIU Shan-qiu; LI Xiao-qing

    2000-01-01

    In this paper, it is studied that a quasi-steady magnetic field could be generated in laser-producde plasmas with high-frequency electromagnetic radiation through wave-wave and wave-partide interactions in the vicinity of critical point. The behavior of self-generated magnetic field can be described by nonlinear coupling equatiom.

  15. Generation of high-field narrowband terahertz radiation by counterpropagating plasma wakefields

    Science.gov (United States)

    Timofeev, I. V.; Annenkov, V. V.; Volchok, E. P.

    2017-10-01

    It is found that nonlinear interaction of plasma wakefields driven by counterpropagating laser or particle beams can efficiently generate high-power electromagnetic radiation at the second harmonic of the plasma frequency. Using a simple analytical theory and particle-in-cell simulations, we show that this phenomenon can be attractive for producing high-field ( ˜10 MV/cm) tunable terahertz radiation with a narrow line width. For laser drivers produced by existing petawatt-class systems, this nonlinear process opens the way to the generation of gigawatt, multi-millijoule terahertz pulses which are not presently available for any other generating schemes.

  16. Spatial properties of a terahertz beam generated from a two-color air plasma

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Wang, Tianwu; Buron, Jonas Christian Due

    2013-01-01

    We present a spatial characterization of terahertz (THz) beams generated from a two-color air plasma under different conditions by measuring full 3D beam profiles using a commercial THz camera. We compare two THz beam profiles emitted from plasmas generated by 35 fs and 100 fs laser pulses......, and show that the spatial properties of the two THz beams do not change significantly. For the THz beam profile generated by the 35 fs pulse, the spatial effect of eliminating the lower frequencies is investigated by implementing two crossed polarizers working as a high-pass filter. We show...

  17. Dust charging and charge fluctuations in a weakly collisional radio-frequency sheath at low pressure

    Energy Technology Data Exchange (ETDEWEB)

    Piel, Alexander, E-mail: piel@physik.uni-kiel.de; Schmidt, Christian [IEAP, Christian-Albrechts-Universität, Kiel (Germany)

    2015-05-15

    Models for the charging of dust particles in the bulk plasma and in the sheath region are discussed. A new model is proposed that describes collision-enhanced ion currents in the sheath. The collisions result in a substantial reduction of the negative charge of the dust. Experimental data for the dust charge in the sheath can be described by this model when a Bi-Maxwellian electron distribution is taken into account. Expressions for the dust charging rate for all considered models are presented and their influence on the rise of the kinetic dust temperature is discussed.

  18. Development of a new atmospheric pressure cold plasma jet generator and application in sterilization

    Institute of Scientific and Technical Information of China (English)

    Cheng Cheng; Liu Peng; Xu Lei; Zhang Li-Ye; Zhan Ru-Juan; Zhang Wen-Rui

    2006-01-01

    This paper reports that a new plasma generator at atmospheric pressure, which is composed of two homocentric cylindrical all-metal tubes, successfully generates a cold plasma jet. The inside tube electrode is connected to ground,the outside tube electrode is connected to a high-voltage power supply, and a dielectric layer is covered on the outside tube electrode. When the reactor is operated by low-frequency (6 kHz-20 kHz) AC supply in atmospheric pressure and argon is steadily fed as a discharge gas through inside tube electrode, a cold plasma jet is blown out into air and the plasma gas temperature is only 25-30 ℃. The electric character of the discharge is studied by using digital real-time oscilloscope (TDS 200-Series), and the discharge is capacitive. Preliminary results are presented on the decontamination of E.colis bacteria and Bacillus subtilis bacteria by this plasma jet, and an optical emission analysis of the plasma jet is presented in this paper. The ozone concentration generated by the plasma jet is 1.0 × 1016cm-3 which is acquired by using the ultraviolet absorption spectroscopy.

  19. Generation of zonal flows in rotating fluids and magnetized plasmas

    DEFF Research Database (Denmark)

    Juul Rasmussen, J.; Garcia, O.E.; Naulin, V.

    2006-01-01

    contribution the generation of zonal flows will be illustrated in a simple fluid experiment performed in a rotating container with radial symmetric bottom topography. An effective mixing that homogenizes the potential vorticity in the fluid layer will lead to the replacement of the high-potential vorticity...

  20. Fully kinetic model of breakdown during sheath expansion after interruption of vacuum arcs

    Science.gov (United States)

    Wang, Zhenxing; Wang, Haoran; Zhou, Zhipeng; Tian, Yunbo; Geng, Yingsan; Wang, Jianhua; Liu, Zhiyuan

    2016-08-01

    Research on sheath expansion is critical to the understanding of the dielectric recovery process in a vacuum interrupter after interruption of vacuum arcs. In this paper, we investigated how residual plasma affects breakdown in the sheath expansion period after the current zero. To simulate sheath expansion and breakdown, we developed a fully kinetic particle-in-cell Monte Carlo collision model with one spatial dimension and three velocity dimensions. The model accounted for various collisions, including ionization, excitation, elastic collisions, charge exchange, and momentum exchange, and we added an external circuit to the model to make the calculations self-consistent. The existence of metal vapor slowed the sheath expansion in the gap and caused high electric field formation in front of the cathode surface. The initial residual plasma, which was at sufficiently low density, seemed to have a limited impact on breakdown, and the metal vapor dominated the breakdown in this case. Additionally, the breakdown probability was sensitive to the initial plasma density if the value exceeded a specific threshold, and plasma at sufficiently high density could mean that breakdown would occur more easily. We found that if the simulation does not take the residual plasma into account, it could overestimate the critical value of the metal vapor density, which is always used to describe the boundary of breakdown after interruption of vacuum arcs. We discussed the breakdown mechanism in sheath expansion, and the breakdown is determined by a combination of metal vapor, residual plasma, and the electric field in front of the cathode surface.

  1. New approaches for the reduction of plasma arc drop in second-generation thermionic converters

    Science.gov (United States)

    Hatziprokopiou, M. E.; Shaw, D. T.

    1981-03-01

    Investigations of ion generation and recombination mechanisms in the cesium plasma are described with respect to the advanced mode thermionic energy converter. The changes in plasma density and temperature within the converter were studied under the influence of several promising auxiliary ionization candidate sources. Three novel approaches of external cesium ion generation were studied in some detail, namely vibrationally excited N2 as an energy source of ionization of Cs ions in a dc discharge, microwave power as a means of resonant sustenance of the cesium plasma, and ion generation in a pulse N2-Cs mixture. The data obtained show that all three techniques - i.e., the non-LTE high voltage pulsing, the energy transfer from vibrationally excited diatomic gases, and the external pumping with a microwave power have considerable promise as schemes in auxiliary ion generation applicable to the advanced thermionic energy converter.

  2. Self-consistent modeling of radio-frequency plasma generation in stellarators

    Science.gov (United States)

    Moiseenko, V. E.; Stadnik, Yu. S.; Lysoivan, A. I.; Korovin, V. B.

    2013-11-01

    A self-consistent model of radio-frequency (RF) plasma generation in stellarators in the ion cyclotron frequency range is described. The model includes equations for the particle and energy balance and boundary conditions for Maxwell's equations. The equation of charged particle balance takes into account the influx of particles due to ionization and their loss via diffusion and convection. The equation of electron energy balance takes into account the RF heating power source, as well as energy losses due to the excitation and electron-impact ionization of gas atoms, energy exchange via Coulomb collisions, and plasma heat conduction. The deposited RF power is calculated by solving the boundary problem for Maxwell's equations. When describing the dissipation of the energy of the RF field, collisional absorption and Landau damping are taken into account. At each time step, Maxwell's equations are solved for the current profiles of the plasma density and plasma temperature. The calculations are performed for a cylindrical plasma. The plasma is assumed to be axisymmetric and homogeneous along the plasma column. The system of balance equations is solved using the Crank-Nicholson scheme. Maxwell's equations are solved in a one-dimensional approximation by using the Fourier transformation along the azimuthal and longitudinal coordinates. Results of simulations of RF plasma generation in the Uragan-2M stellarator by using a frame antenna operating at frequencies lower than the ion cyclotron frequency are presented. The calculations show that the slow wave generated by the antenna is efficiently absorbed at the periphery of the plasma column, due to which only a small fraction of the input power reaches the confinement region. As a result, the temperature on the axis of the plasma column remains low, whereas at the periphery it is substantially higher. This leads to strong absorption of the RF field at the periphery via the Landau mechanism.

  3. Fast camera studies at an electron cyclotron resonance table plasma generator

    Energy Technology Data Exchange (ETDEWEB)

    Rácz, R., E-mail: rracz@atomki.hu [Institute for Nuclear Research (ATOMKI), H-4026 Debrecen, Bem tér 18/c (Hungary); Department of Experimental Physics, University of Debrecen, H-4032 Debrecen, Egyetem tér 1 (Hungary); Biri, S. [Institute for Nuclear Research (ATOMKI), H-4026 Debrecen, Bem tér 18/c (Hungary); Hajdu, P.; Pálinkás, J. [Department of Experimental Physics, University of Debrecen, H-4032 Debrecen, Egyetem tér 1 (Hungary)

    2014-02-15

    A simple table-size ECR plasma generator operates in the ATOMKI without axial magnetic trap and without any particle extraction tool. Radial plasma confinement is ensured by a NdFeB hexapole. The table-top ECR is a simplified version of the 14 GHz ATOMKI-ECRIS. Plasma diagnostics experiments are planned to be performed at this device before installing the measurement setting at the “big” ECRIS. Recently, the plasma generator has been operated in pulsed RF mode in order to investigate the time evolution of the ECR plasma in two different ways. (1) The visible light radiation emitted by the plasma was investigated by the frames of a fast camera images with 1 ms temporal resolution. Since the visible light photographs are in strong correlation with the two-dimensional spatial distribution of the cold electron components of the plasma it can be important to understand better the transient processes just after the breakdown and just after the glow. (2) The time-resolved ion current on a specially shaped electrode was measured simultaneously in order to compare it with the visible light photographs. The response of the plasma was detected by changing some external setting parameters (gas pressure and microwave power) and was described in this paper.

  4. Generation Control of ZnO Nanoparticles Using a Coaxial Gas-Flow Pulse Plasma Ar/O2 Plasma

    Directory of Open Access Journals (Sweden)

    Hiroki Shirahata

    2015-01-01

    Full Text Available Generation of ZnO nanoparticles was investigated using a coaxial gas-flow pulse plasma. We studied how zinc atoms, sputtered from a zinc target, reacted with oxygen in a plasma and/or on a substrate to form ZnO nanoparticles when the discharge parameters, such as applied pulse voltage and gas flow rate, were controlled in an O2/Ar plasma. The formation processes were estimated by SEM, TEM, and EDX. We observed many ZnO nanoparticles deposited on Si substrate. The particle yield and size were found to be controlled by changing the experimental parameters. The diameter of the particles was typically 50–200 nm.

  5. Optical emission spectroscopy of the Linac4 and superconducting proton Linac plasma generators

    Energy Technology Data Exchange (ETDEWEB)

    Lettry, J.; Kronberger, M.; Mahner, E.; Schmitzer, C.; Sanchez, J.; Scrivens, R.; Midttun, O.; O' Neil, M.; Pereira, H.; Paoluzzi, M. [European Organization for Nuclear Research, CERN, 1211 Geneva 23 (Switzerland); Fantz, U.; Wuenderlich, D. [Max-Planck-Institut fuer Plasmaphysik, IPP, 85748 Garching (Germany); Kalvas, T.; Koivisto, H.; Komppula, J.; Myllyperkioe, P.; Tarvainen, O. [Department of Physics, University of Jyvaeskylae, 40500 Jyvaeskylae (Finland)

    2012-02-15

    CERN's superconducting proton Linac (SPL) study investigates a 50 Hz high-energy, high-power Linac for H{sup -} ions. The SPL plasma generator is an evolution of the DESY ion source plasma generator currently operated at CERN's Linac4 test stand. The plasma generator is a step towards a particle source for the SPL, it is designed to handle 100 kW peak RF-power at a 6% duty factor. While the acquisition of an integrated hydrogen plasma optical spectrum is straightforward, the measurement of a time-resolved spectrum requires dedicated amplification schemes. The experimental setup for visible light based on photomultipliers and narrow bandwidth filters and the UV spectrometer setup are described. The H{sub {alpha}}, H{sub {beta}}, and H{sub {gamma}} Balmer line intensities, the Lyman band and alpha transition were measured. A parametric study of the optical emission from the Linac4 ion source and the SPL plasma generator as a function of RF-power and gas pressure is presented. The potential of optical emission spectrometry coupled to RF-power coupling measurements for on-line monitoring of short RF heated hydrogen plasma pulses is discussed.

  6. A 3-dimensional model for inductively coupled plasma etching reactors: Coil generated plasma asymmetries

    Energy Technology Data Exchange (ETDEWEB)

    Kushner, M.J.; Collison, W.Z.; Grapperhaus, M.J. [Univ. of Illinois, Urbana, IL (United States). Dept. of Electrical and Computer Engineering

    1996-12-31

    Inductively Coupled Plasma (ICP) reactors are being developed as high plasma density, low gas pressure sources for etching and deposition of semiconductor materials. In this paper, the authors describe a 3-dimensional, time dependent model for ICP reactors whose intent is to provide an infrastructure to investigate asymmetries in plasma etching and deposition tools. The model is a 3-dimensional extension of a previously described 2-dimensional simulation called the Hybrid Plasma Equipment Model (HPEM). HPEM-3D consists of an electromagnetics module (EMM), a Boltzmann-electron energy module (BEM) and a fluid-chemical kinetics simulation (FKS). The inductively coupled electromagnetic fields are produced by the EMM. Results from HPEM-3D will be discussed for reactors using etching (Cl{sub 2}, BCl{sub 3}) and non-etching (Ar, Ar/N{sub 2}) gas mixtures, and which have geometrical asymmetries such as wafer clamps and load-lock bays. The authors show how details in the design of the coil, such as the value of the termination capacitance or number of turns, lead to azimuthal variations in the inductive electric field.

  7. Plasma characterization of the superconducting proton linear accelerator plasma generator using a 2 MHz compensated Langmuir probe.

    Science.gov (United States)

    Schmitzer, C; Kronberger, M; Lettry, J; Sanchez-Arias, J; Störi, H

    2012-02-01

    The CERN study for a superconducting proton Linac (SPL) investigates the design of a pulsed 5 GeV Linac operating at 50 Hz. As a first step towards a future SPL H(-) volume ion source, a plasma generator capable of operating at Linac4 or nominal SPL settings has been developed and operated at a dedicated test stand. The hydrogen plasma is heated by an inductively coupled RF discharge e(-) and ions are confined by a magnetic multipole cusp field similar to the currently commissioned Linac4 H(-) ion source. Time-resolved measurements of the plasma potential, temperature, and electron energy distribution function obtained by means of a RF compensated Langmuir probe along the axis of the plasma generator are presented. The influence of the main tuning parameters, such as RF power and frequency and the timing scheme is discussed with the aim to correlate them to optimum H(-) ion beam parameters measured on an ion source test stand. The effects of hydrogen injection settings which allow operation at 50 Hz repetition rate are discussed.

  8. Two-Color Laser High-Harmonic Generation in Cavitated Plasma Wakefields

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Carl; Benedetti, Carlo; Esarey, Eric; Leemans, Wim

    2016-10-03

    A method is proposed for producing coherent x-rays via high-harmonic generation using a laser interacting with highly-stripped ions in cavitated plasma wakefields. Two laser pulses of different colors are employed: a long-wavelength pulse for cavitation and a short-wavelength pulse for harmonic generation. This method enables efficient laser harmonic generation in the sub-nm wavelength regime.

  9. Using Dust as Probes to Determine Sheath Extent and Structure

    CERN Document Server

    Douglass, Angela; Qiao, Ke; Matthews, Lorin; Hyde, Truell

    2016-01-01

    Two in-situ experimental methods are presented in which dust particles are used to determine the extent of the sheath and gain information about the time-averaged electric force profile within a RF plasma sheath. These methods are advantageous because they are not only simple and quick to carry out, but they also can be performed using standard dusty plasma experimental equipment. In the first method, dust particles are tracked as they fall through the plasma toward the lower electrode. These trajectories are then used to determine the electric force on the particle as a function of height as well as the extent of the sheath. In the second method, dust particle levitation height is measured across a wide range of RF voltages. Similarities were observed between the two experiments, but in order to understand the underlying physics behind these observations, the same conditions were replicated using a self-consistent fluid model. Through comparison of the fluid model and experimental results, it is shown that t...

  10. High Power, Solid-State RF Generation for Plasma Heating

    Science.gov (United States)

    Prager, James; Ziemba, Timothy; Miller, Kenneth; Pierren, Chris

    2016-10-01

    Radio Frequency heating systems are rarely used by the small-scale validation platform experiments due to the high cost and complexity of these systems. Eagle Harbor Technologies (EHT), Inc. is developing an all-solid-state RF plasma heating system that uses EHT's nanosecond pulser technology in an inductive adder configuration to drive nonlinear transmission lines (NLTL). The system under development does not require the use of vacuum tube technology, is inherently lower cost, and is more robust than traditional high power RF heating schemes. The inductive adder can produce 0 to20 kV pulses into 50 Ohms with sub-10 ns rise times. The inductive adder has been used to drive NLTLs near 2 GHz with other frequencies to be tested in the future. EHT will present experimental results, including RF measurements with D-dot probes and capacitve voltage probes. During this program, EHT will test the system on Helicity Injected Torus at the University of Washington and the High Beta Tokamak at Columbia University.

  11. Preionization Techniques in a kJ-Scale Dense Plasma Focus

    Science.gov (United States)

    Povilus, Alexander; Shaw, Brian; Chapman, Steve; Podpaly, Yuri; Cooper, Christopher; Falabella, Steve; Prasad, Rahul; Schmidt, Andrea

    2016-10-01

    A dense plasma focus (DPF) is a type of z-pinch device that uses a high current, coaxial plasma gun with an implosion phase to generate dense plasmas. These devices can accelerate a beam of ions to MeV-scale energies through strong electric fields generated by instabilities during the implosion of the plasma sheath. The formation of these instabilities, however, relies strongly on the history of the plasma sheath in the device, including the evolution of the gas breakdown in the device. In an effort to reduce variability in the performance of the device, we attempt to control the initial gas breakdown in the device by seeding the system with free charges before the main power pulse arrives. We report on the effectiveness of two techniques developed for a kJ-scale DPF at LLNL, a miniature primer spark gap and pulsed, 255nm LED illumination. Prepared by LLNL under Contract DE-AC52-07NA27344.

  12. Plasma wave and third harmonic generation by a Gaussian electromagnetic beam in a collisionless magnetoplasma

    Energy Technology Data Exchange (ETDEWEB)

    Sodha, M.S.; Govind; Sharma, R.P. (Indian Inst. of Tech., New Delhi. Centre of Energy Studies)

    1981-05-01

    An investigation of the plasma wave and third harmonic generation by a Gaussian electromagnetic (em) beam, propagating in extraordinary mode in a collisionless hot magnetoplasma has been made. On account of the (VXB) force, a plasma wave at twice the pump wave frequency gets excited. The interaction of the plasma wave with the pump wave leads to third harmonic generation. By taking into account the self-focusing of the pump wave on account of non-uniform intensity distribution along the wave front, a modification is effected in the power of the plasma wave and the third harmonic em wave. The dependence of these phenomena on the strength of the static magnetic field has also been studied.

  13. Second harmonic generation of Cosh-Gaussian laser beam in collisional plasma with nonlinear absorption

    Science.gov (United States)

    Singh, Navpreet; Gupta, Naveen; Singh, Arvinder

    2016-12-01

    This paper investigates second harmonic generation (SHG) of an intense Cosh-Gaussian (ChG) laser beam propagating through a preformed underdense collisional plasma with nonlinear absorption. Nonuniform heating of plasma electrons takes place due to the nonuniform irradiance of intensity along the wavefront of laser beam. This nonuniform heating of plasma leads to the self-focusing of the laser beam and thus produces strong density gradients in the transverse direction. The density gradients so generated excite an electron plasma wave (EPW) at pump frequency that interacts with the pump beam to produce its second harmonics. To envision the propagation dynamics of the ChG laser beam, moment theory in Wentzel-Kramers-Brillouin (W.K.B) approximation has been invoked. The effects of nonlinear absorption on self-focusing of the laser beam as well as on the conversion efficiency of its second harmonics have been theoretically investigated.

  14. On radiative acceleration in spine-sheath structured blazar jets

    CERN Document Server

    Chhotray, Atul; Ghisellini, Gabriele; Salafia, Om Sharan; Tavecchio, Fabrizio; Lazzati, Davide

    2016-01-01

    It has been proposed that blazar jets are structured, with a fast spine surrounded by a slower sheath or layer. This structured jet model explains some properties of their emission and morphology. Because of their relative motion, the radiation produced by one component is seen amplified by the other, thus enhancing the inverse Compton emission of both. Radiation is emitted anisotropically in the comoving frames, and causes the emitting plasma to recoil. As seen in the observer frame, this corresponds to a deceleration of the fastest component (the spine) and an acceleration of the slower one (the layer). While the deceleration of the spine has already been investigated, here we study for the first time the acceleration of the sheath and find self-consistent velocity profile solutions for both the spine and the sheath while accounting for radiative cooling. We find that the sheath can be accelerated to the velocities required by the observations if its leptons remain energetic in the acceleration region, assu...

  15. A differentially pumped argon plasma in the linear plasma generator Magnum-PSI: gas flow and dynamics of the ionized fraction

    NARCIS (Netherlands)

    van Eck, H. J. N.; Hansen, T. A. R.; Kleyn, A. W.; van der Meiden, H. J.; D.C. Schram,; van Emmichoven, P. A. Zeijlma

    2011-01-01

    Magnum-PSI is a linear plasma generator designed to reach the plasma-surface interaction (PSI) regime of ITER and nuclear fusion reactors beyond ITER. To reach this regime, the influx of cold neutrals from the source must be significantly lower than the plasma flux reaching the target. This is

  16. A differentially pumped argon plasma in the linear plasma generator Magnum-PSI: gas flow and dynamics of the ionized fraction

    NARCIS (Netherlands)

    van Eck, H. J. N.; Hansen, T. A. R.; Kleyn, A. W.; van der Meiden, H. J.; D.C. Schram,; van Emmichoven, P. A. Zeijlma

    2011-01-01

    Magnum-PSI is a linear plasma generator designed to reach the plasma-surface interaction (PSI) regime of ITER and nuclear fusion reactors beyond ITER. To reach this regime, the influx of cold neutrals from the source must be significantly lower than the plasma flux reaching the target. This is achie

  17. Generation of powerful terahertz emission in a beam-driven strong plasma turbulence

    CERN Document Server

    Arzhannikov, A V

    2012-01-01

    Generation of terahertz electromagnetic radiation due to coalescence of upper-hybrid waves in the long-wavelength region of strong plasma turbulence driven by a high-current relativistic electron beam in a magnetized plasma is investigated. The width of frequency spectrum as well as angular characteristics of this radiation for various values of plasma density and turbulence energy are calculated using the simple theoretical model adequately describing beam-plasma experiments at mirror traps. It is shown that the power density of electromagnetic emission at the second harmonic of plasma frequency in the terahertz range for these laboratory experiments can reach the level of 1 ${MW/cm}^3$ with 1% conversion efficiency of beam energy losses to electromagnetic emission.

  18. Exogenous nitric oxide (NO) generated by NO-plasma treatment modulates osteoprogenitor cells early differentiation

    Science.gov (United States)

    Elsaadany, Mostafa; Subramanian, Gayathri; Ayan, Halim; Yildirim-Ayan, Eda

    2015-09-01

    In this study, we investigated whether nitric oxide (NO) generated using a non-thermal plasma system can mediate osteoblastic differentiation of osteoprogenitor cells without creating toxicity. Our objective was to create an NO delivery mechanism using NO-dielectric barrier discharge (DBD) plasma that can generate and transport NO with controlled concentration to the area of interest to regulate osteoprogenitor cell activity. We built a non-thermal atmospheric pressure DBD plasma nozzle system based on our previously published design and similar designs in the literature. The electrical and spectral analyses demonstrated that N2 dissociated into NO under typical DBD voltage-current characteristics. We treated osteoprogenitor cells (MC3T3-E1) using NO-plasma treatment system. Our results demonstrated that we could control NO concentration within cell culture media and could introduce NO into the intracellular space using NO-plasma treatment with various treatment times. We confirmed that NO-plasma treatment maintained cell viability and did not create any toxicity even with prolonged treatment durations. Finally, we demonstrated that NO-plasma treatment induced early osteogenic differentiation in the absence of pro-osteogenic growth factors/proteins. These findings suggest that through the NO-plasma treatment system we are able to generate and transport tissue-specific amounts of NO to an area of interest to mediate osteoprogenitor cell activity without subsequent toxicity. This opens up the possibility to develop DBD plasma-assisted tissue-specific NO delivery strategies for therapeutic intervention in the prevention and treatment of bone diseases.

  19. Generation of high-field narrowband terahertz radiation by counterpropagating plasma wakes

    CERN Document Server

    Timofeev, I V; Volchok, E P

    2016-01-01

    It is found that nonlinear interaction of plasma wakefields driven by counterpropagating laser or particle beams can efficiently generate high-power electromagnetic radiation at the second harmonic of the plasma frequency. Using a simple analytical theory and particle-in-cell simulations, we show that this phenomenon can be attractive for producing high-field ($\\sim 10$ MV/cm) narrowband terahertz pulses with the gigawatt power level and millijoule energy content.

  20. Divertor conditions relevant for fusion reactors achieved with linear plasma generator

    NARCIS (Netherlands)

    van Eck, H. J. N.; Kleyn, A. W.; Lof, A.; van der Meiden, H. J.; van Rooij, G. J.; Scholten, J.; van Emmichoven, P. A. Zeijlma

    2012-01-01

    Intense magnetized hydrogen and deuterium plasmas have been produced with electron densities up to 3.6 × 1020 m−3 and electron temperatures up to 3.7 eV with a linear plasma generator. Exposure of a W target has led to average heat and particle flux densities well in excess of 4 MW m−2 and 1024 m−2

  1. Divertor conditions relevant for fusion reactors achieved with linear plasma generator

    NARCIS (Netherlands)

    H.J.N. van Eck; A.W. Kleijn; A. Lof; H.J. van der Meiden; G.J. van Rooij; J. Scholten; P.A. Zeijlmans van Emmichoven

    2012-01-01

    Intense magnetized hydrogen and deuterium plasmas have been produced with electron densities up to 3.6 × 10 20 m−3 and electron temperatures up to 3.7 eV with a linear plasma generator. Exposure of a W target has led to average heat and particle flux densities well in excess of 4 MW m−2 and 10 24 m−

  2. Generation of a neutral, high-density electron-positron plasma in the laboratory

    CERN Document Server

    Sarri, G; Cole, J; Schumaker, W; Di Piazza, A; Reville, B; Doria, D; Dromey, B; Gizzi, L; Green, A; Grittani, G; Kar, S; Keitel, C H; Krushelnick, K; Kushel, S; Mangles, S; Najmudin, Z; Thomas, A G R; Vargas, M; Zepf, M

    2013-01-01

    We report on the laser-driven generation of purely neutral, relativistic electron-positron pair plasmas. The overall charge neutrality, high average Lorentz factor ($\\gamma_{e/p} \\approx 15$), small divergence ($\\theta_{e/p} \\approx 10 - 20$ mrad), and high density ($n_{e/p}\\simeq 10^{15}$cm$^{-3}$) of these plasmas open the pathway for the experimental study of the dynamics of this exotic state of matter, in regimes that are of relevance to electron-positron astrophysical plasmas.

  3. Characteristics of Plasma Shock Waves Generated in the Pulsed Laser Ablation Process

    Institute of Scientific and Technical Information of China (English)

    李智华; 张端明; 郁伯铭; 关丽

    2002-01-01

    We modify the Sedov theory to describe plasma shock waves generated in a pulsed laser ablating process. We also study the propagation characteristics of plasma shock waves during the preparation process of functional thin films deposited by a pulsed laser. In particular, we discuss in detail the temporal behaviour of energy causing the difference of the propagation characteristics between the plasma shock wave and the ideal shock wave in the point explosion model. Under the same experimental conditions, the theoretical results calculated with our modified Sedov theory are in good agreement with the existing experimental data.

  4. Numerical simulation of discharge plasma generation and nitriding the metals and alloys

    Science.gov (United States)

    Koval, T. V.; Manakov, R. A.; Nguyen Bao, Hung; Tran My, Kim An

    2017-01-01

    This research provides the numerical simulation of the plasma generation in a hollow cathode as well as the diffusion of nitrogen atoms into the metal in the low-pressure glow discharge plasma. The characteristics of the gas discharge were obtained and the relation of the basic technological parameters and the structural and phase state of the nitrided material were defined. Authors provided the comparison of calculations with the experimental results of titanium nitriding by low-pressure glow discharge plasma in a hollow cathode.

  5. Charged particle flows in an explosively generated non-ideal plasma

    Science.gov (United States)

    Boswell, C. J.; Carney, J. R.; Wilkinson, J.; Pangilinan, G. I.; Whitley, V. H.

    2007-06-01

    Non-ideal plasmas occur as a result of the stimulation of matter by strong shocks, detonation waves, or concentrated laser irradiation. Since all of these methods of generating non-ideal plasmas are already in use to address other problems, we focus on a detailed understanding of this plasma. In particular, we study the flow of charged particles in a non-ideal plasma generated using an explosive to compress the gas into the non- ideal plasma state. The shock wave in the gas is generated by an explosive located at one end of a guide tube filled with the gas. The detonation produces a shock wave strong enough to ionize the gas. Spectral line emission profiles, recorded with a streak emission spectroscopy system, are used to ascertain neutral and ionized gas properties. The electric and magnetic fields are measured by electrostatic probes and magnetic induction coils which permit the measurement of the temperature, density, and electric potential of the non-ideal plasma; as well as the flow of net electric charges respectively. The results demonstrate that a separation of the positive and negative charges occurs in the vicinity of the shock wave.

  6. A study of increasing radical density and etch rate using remote plasma generator system

    Science.gov (United States)

    Lee, Jaewon; Kim, Kyunghyun; Cho, Sung-Won; Chung, Chin-Wook

    2013-09-01

    To improve radical density without changing electron temperature, remote plasma generator (RPG) is applied. Multistep dissociation of the polyatomic molecule was performed using RPG system. RPG is installed to inductively coupled type processing reactor; electrons, positive ions, radicals and polyatomic molecule generated in RPG and they diffused to processing reactor. The processing reactor dissociates the polyatomic molecules with inductively coupled power. The polyatomic molecules are dissociated by the processing reactor that is operated by inductively coupled power. Therefore, the multistep dissociation system generates more radicals than single-step system. The RPG was composed with two cylinder type inductively coupled plasma (ICP) using 400 kHz RF power and nitrogen gas. The processing reactor composed with two turn antenna with 13.56 MHz RF power. Plasma density, electron temperature and radical density were measured with electrical probe and optical methods.

  7. Numerical simulation study of disk MHD generator for nonequilibrium plasma (NPG) system

    Energy Technology Data Exchange (ETDEWEB)

    Tsunoda, Kazumi [Shibaura Institute of Technology, Tokyo (Japan); Harada, Nob [Nagaoka Univ. of Technology (Japan)

    1995-12-31

    Design and performance prediction of a disk-shaped magnetohydrodynamic (MHD) generator, which is applied to the nonequilibrium plasma generator (NPG) system, have been carried out by means of a quasi-one-dimensional numerical simulation. The calculations have been performed for generator with constant height which is planned to be used for NPG-MHD disk generator pulse power demonstration. A maximum enthalpy extraction ratio obtained from the present calculation reached up to 20%, and, in this case, the electron temperature of working plasma fluctuated in the unstable regime against ionization instability. Taking into account this phenomenon, in order to obtain much higher generator performance, the MHD channel, in which electron temperature was kept at 5000 K, was designed. With this channel, enthalpy extraction ratio of 40% and output power of 7.2 MW were achieved without major modification of the supersonic nozzle, the inlet swirl vanes and the configuration of magnet system.

  8. Analysis and characterization of microwave plasma generated with rectangular all-dielectric resonators

    Science.gov (United States)

    Kourtzanidis, K.; Raja, L. L.

    2017-04-01

    We report on a computational modeling study of small scale plasma discharge formation with rectangular dielectric resonators (DR). An array of rectangular dielectric slabs, separated by a gap of millimeter dimensions is used to provide resonant response when illuminated by an incident wave of 1.26 GHz. A coupled electromagnetic (EM) wave–plasma model is used to describe the breakdown, early response and steady state of the argon discharge. We characterize the plasma generation with respect to the input power, background gas pressure and gap size. It is found that the plasma discharge is generated mainly inside the gaps between the DR at positions that correspond to the antinodes of the resonant enhanced electric field pattern. The enhancement of the electric field inside the gaps is due to a combination of leaking and displacement current radiation from the DR. The plasma is sustained in over-critical densities due to the large skin depth with respect to the gap and plasma size. Electron densities are calculated in the order of {10}18{--}{10}19 {{{m}}}-3 for a gas pressure of 10 Torr, while they exceed 1020 {{{m}}}-3 in atmospheric conditions. Increase of input power leads to more intense ionization and thus faster plasma formation and results to a more symmetric plasma pattern. For low background gas pressure the discharge is diffusive and extends away from the gap region while in high pressure it is constricted inside the gap. An optimal gap size can be found to provide maximum EM energy transfer to the plasma. This fact demonstrates that the gap size dictates to a certain extent the resonant frequency and the Q-factor of the dielectric array and the breakdown fields can not be determined in a straight-forward way but they are functions of the resonators geometry and incident field frequency.

  9. Plasma-water systems studied with optical diagnostics including sum-frequency generation spectroscopy

    Science.gov (United States)

    Ito, Tsuyohito

    2016-09-01

    Recently, various applications of plasma-water systems have been reported, such as materials synthesis, agricultural applications, and medical treatments. As one of basic studies of such systems, we are investigating water surface structure influenced by a plasma via vibrational sum-frequency generation spectroscopy. Vibrational sum-frequency generation spectroscopy is known to be an interfacially active diagnostic technique, as such process occurs in noncentrosymmetric medium. Visible and wavenumber-tunable infrared beams are simultaneously irradiated to the interface. The interfacial water has ice-like ( 3200 cm-1), liquid-like ( 3400 cm-1), and free OH (3700 cm-1) structures (assignment of the ice-like structure still remains contentious), and the intensity of the signal becomes stronger when the tunable infrared beam resonates with a vibration of the structures. The results indicate that with generating air dielectric barrier discharges for supplying reactive species to the water surface, all investigated signals originating from the above-mentioned three structures decrease. Furthermore, the signal strengths are recovered after terminating the plasma generation. We currently believe that the surface density of the reactive species should be high when they are found at the water surface. Details on the experimental results of the sum-frequency generation spectroscopy, as well as other spectroscopic results of plasma-water systems, will be presented at the conference.

  10. Radiation-Hydrodynamic Simulation of Experiments With Intense Lasers Generating Collisionless Interpenetrating Plasmas

    Science.gov (United States)

    Grosskopf, Michael; Drake, R.; Kuranz, C.; Park, H.; Kugland, N.; Pollaine, S.; Ross, J.; Remington, B.; Spitkovsky, A.; Gargate, L.; Gregori, G.; Bell, A.; Murphy, C.; Meinecke, J.; Reville, B.; Sakawa, Y.; Kuramitsu, Y.; Takabe, H.; Froula, D.; Fiksel, G.; Miniati, F.; Koenig, M.; Ravasio, A.; Liang, E.; Woolsey, N.

    2012-05-01

    Collisionless shocks, shocks generated by plasma wave interactions in regions where the collisional mean-free-path for ions is long compared to the length scale for instabilities that generate magnetic fields, are found in many astrophysical systems such as supernova remnants and planetary bow shocks. Generating conditions to investigate collisionless shock physics is difficult to achieve in a laboratory setting; however, high-energy-density physics facilities have made this a possibility. Experiments whose goal is to investigate the production and growth of magnetic fields in collisionless shocks in laboratory-scale systems are being carried out on intense lasers, several of which are measuring the plasma properties and magnetic field strength in counter-streaming, collisionless flows generated by laser ablation. This poster reports radiation-hydrodynamic simulations using the CRASH code to model the ablative flow of plasma generated in order to assess potential designs, as well as infer properties of collected data from previous experiments. This work is funded by the Predictive Sciences Academic Alliances Program in NNSA-ASC via grant DEFC52- 08NA28616, by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, grant number DE-FG52-09NA29548, and by the National Laser User Facility Program, grant number DE-NA0000850.

  11. Determination of self generated magnetic field and the plasma density using Cotton Mouton polarimetry with two color probes

    Directory of Open Access Journals (Sweden)

    Joshi A.S.

    2013-11-01

    Full Text Available Self generated magnetic fields (SGMF in laser produced plasmas are conventionally determined by measuring the Faraday rotation angle of a linearly polarized laser probe beam passing through the plasma along with the interferogram for obtaining plasma density. In this paper, we propose a new method to obtain the plasma density and the SGMF distribution from two simultaneous measurements of Cotton Mouton polarimetry of two linearly polarized probe beams of different colors that pass through plasma in a direction normal to the planar target. It is shown that this technique allows us to determine the distribution of SGMF and the plasma density without doing interferometry of laser produced plasmas.

  12. A Multiple Z-Pinch Configuration for the Generation of High-Density, Magnetized Plasmas

    Science.gov (United States)

    Tarditi, Alfonso G.

    2015-11-01

    The z-pinch is arguably the most straightforward and economical approach for the generation and confinement of hot plasmas, with a long history of theoretical investigations and experimental developments. While most of the past studies were focused on countering the natural tendency of z-pinches to develop instabilities, this study attempts to take advantage of those unstable regimes to form a quasi-stable plasma, with higher density and temperature, possibly of interest for a fusion reactor concept. For this purpose, a configuration with four z-pinch discharges, with axis parallel to each other and symmetrically positioned, is considered. Electrodes for the generation of the discharges and magnetic coils are arranged to favor the formation of concave discharge patterns. The mutual attraction from the co-streaming discharge currents enhances this pattern, leading to bent plasma streams, all nearing towards the axis. This configuration is intended to excite and sustain a ``kink'' unstable mode for each z-pinch, eventually producing either plasmoid structures, detached from each discharge, or sustained kink patterns: both these cases appear to lead to plasmas merging in the central region. The feasibility of this approach in creating a higher density, hotter, meta-stable plasma regime is investigated computationally, addressing both the kink excitation phase and the dynamics of the converging plasma columns.

  13. Ar plasma treated polytetrafluoroethylene films for a highly efficient triboelectric generator

    Science.gov (United States)

    Kim, Dong Yeong; Kim, Hyun Soo; Jung, Jong Hoon

    2016-12-01

    We report an Ar plasma treated polytetrafluoroethylene (PTFE) film based triboelectric device for a highly enhanced electric power generation. The plasma treatment of the PTFE in flowing Ar gas results in a sharp increase in surface roughness ( 46 nm), as compared with the as-received film ( 25 nm). In addition, the F ion content decreases whereas the O ion increases with increasing plasma reaction time. Because of the increased number of polar O ions, the surface becomes hydrophilic, as confirmed by water contact angle measurements. After the Ar plasma treatment, the PTFE based triboelectric device, which is periodically contacted with and separated from the ITO electrode, generates a 715 V open-circuit voltage and a 16 μA closed-circuit current, which are almost 79 and 32 times larger than those for as-received PTFE based device. Using the Ar plasma treated PTFE based triboelectric generator, we can turn on the 120 light emitting diodes (LEDs) without any batteries.

  14. Generation and detection of whistler wave induced space plasma turbulence at Gakona, Alaska

    Science.gov (United States)

    Rooker, L. A.; Lee, M. C.; Pradipta, R.; Watkins, B. J.

    2013-07-01

    We report on high-frequency wave injection experiments using the beat wave technique to study the generation of very-low-frequency (VLF) whistler waves in the ionosphere above Gakona, Alaska. This work is aimed at investigating whistler wave interactions with ionospheric plasmas and radiation belts. The beat wave technique involves injecting two X-mode waves at a difference frequency in the VLF range using the High-frequency Active Auroral Research Program (HAARP) heating facility. A sequence of beat wave-generated whistler waves at 2, 6.5, 7.5, 8.5, 9.5, 11.5, 15.5, 22.5, 28.5 and 40.5 kHz were detected in our 2011 experiments. We present Modular Ultra-high-frequency Ionospheric Radar (MUIR) (446 MHz) measurements of ion lines as the primary diagnosis of ionospheric plasma effects caused by beat wave-generated whistler waves. A magnetometer and digisonde were used to monitor the background ionospheric plasma conditions throughout the experiments. Our theoretical and data analyses show that VLF whistler waves can effectively interact with ionospheric plasmas via two different four-wave interaction processes leading to energization of electrons and ions. These preliminary results support our Arecibo experiments to study NAU-launched 40.75 kHz whistler wave interactions with space plasmas.

  15. High-Power Tunable Laser Pulse Driven Terahertz Generation in Corrugated Plasma Waveguides

    Science.gov (United States)

    Miao, Chenlong; Palastro, John; Antonsen, Thomas

    2016-10-01

    Excitation of terahertz radiation by the interaction of an ultra-short laser pulse and the fields of a miniature, corrugated plasma waveguide is considered. Plasma structures of this type have been realized experimentally and they can support electromagnetic (EM) channel modes with properties that allow for radiation generation. In particular, the mode have subluminal field components, thus allowing phase matching between the generated THz modes and the ponderomotive potential of the laser pulse. Theoretical analysis and full format PIC simulations are conducted. We find THz generated by this slow wave phase matching mechanism is characterized by lateral emission and a coherent, narrow band, tunable spectrum with relatively high power and conversion efficiency. We investigated two different types of channels, and a range of realistic laser pulses and plasma profile parameters are considered with the goal of increasing the conversion of optical energy to THz radiation. We find high laser intensities strongly modify the THz spectrum by exciting higher order channel modes. Enhancement of a specific channel mode can be realized by using an optimum pulse duration and plasma density. As an example, a fixed drive pulse (0.55 J) with spot size of 15 µm and pulse duration of 15 fs excites 37.8 mJ of THz radiation in a 1.5 cm corrugated plasma waveguide with on axis average density of 1.4×1018cm-3, conversion efficiency exceeding 8% is achieved.

  16. Manipulation of laser-generated energetic proton spectra in near critical density plasma

    Science.gov (United States)

    Palmer, Charlotte A. J.; Dover, Nicholas P.; Pogorelsky, Igor; Streeter, Matthew J. V.; Najmudin, Zulfikar

    2015-01-01

    We present simulations that demonstrate the production of quasi-monoenergetic proton bunches from the interaction of a CO2 laser pulse train with a near-critical density hydrogen plasma. The multi-pulse structure of the laser leads to a steepening of the plasma density gradient, which the simulations show is necessary for the formation of narrow-energy spread proton bunches. Laser interactions with a long, front surface, scale-length (>> c/ωp ) plasma, with linear density gradient, were observed to generate proton beams with a higher maximum energy, but a much broader spectrum compared to step-like density profiles. In the step-like cases, a peak in the proton energy spectra was formed and seen to scale linearly with the ratio of laser intensity to plasma density.

  17. High quality electron beam generation in a proton-driven hollow plasma wakefield accelerator

    CERN Document Server

    Li, Yangmei; Lotov, Konstantin V; Sosedkin, Alexander P; Hanahoe, Kieran; Mete-Apsimon, Oznur

    2016-01-01

    Proton-driven plasma wakefield accelerators have numerically demonstrated substantially higher accelerating gradients compared to conventional accelerators and the viability of accelerating electrons to energy frontier in a single plasma stage. However, due to the intrinsic strong and radially varying transverse fields, the beam quality is still far from suitable for practical application in future colliders. Here we propose a new accelerating region which is free from both plasma electrons and ions in the proton-driven hollow plasma channel. The high quality electron beam is therefore generated with this scheme without transverse plasma fields. The results show that a 1 TeV proton driver can propagate and accelerate an electron beam to 0.62 TeV with correlated energy spread of 4.6% and well-preserved normalized emittance below 2.4 mm mrad in a single hollow plasma channel of 700 m. More importantly, the beam loading tolerance is significantly improved compared to the uniform plasma case. This high quality an...

  18. The distribution and depth of ion doses implanted into wedges by plasma immersion ion implantation in drifting and stationary plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Tarrant, R N; Devasahayam, S; McKenzie, D R; Bilek, M M M [School of Physics (A28), University of Sydney, NSW 2006 (Australia)

    2006-08-15

    The distribution of ion dose arising from plasma immersion ion implantation (PIII) of a complex shape in the form of a wedge is measured. Two types of plasma are considered: a drifting titanium plasma derived from a pulsed cathodic arc and a stationary plasma generated by PIII pulses in oxygen or nitrogen gas. The distributions of the implanted material over the surface of the aluminium wedge were studied using secondary ion mass spectroscopy and Rutherford backscattering. The effects of varying the apex angles of the wedge and the plasma density are investigated. We conclude that ion-focusing effects at the apex of the wedge were more important for the drifting plasma than for the stationary plasmas. In a drifting plasma, the ion drift velocity directed towards the apex of the wedge compresses the sheath close to the apex and enhances the concentration of the dose. For the stationary plasma, the dose is more uniform.

  19. Plasma Processing of SRF Cavities for the next Generation Of Particle Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Vuskovic, Leposava

    2015-11-23

    The cost-effective production of high frequency accelerating fields are the foundation for the next generation of particle accelerators. The Ar/Cl2 plasma etching technology holds the promise to yield a major reduction in cavity preparation costs. Plasma-based dry niobium surface treatment provides an excellent opportunity to remove bulk niobium, eliminate surface imperfections, increase cavity quality factor, and bring accelerating fields to higher levels. At the same time, the developed technology will be more environmentally friendly than the hydrogen fluoride-based wet etching technology. Plasma etching of inner surfaces of standard multi-cell SRF cavities is the main goal of this research in order to eliminate contaminants, including niobium oxides, in the penetration depth region. Successful plasma processing of multi-cell cavities will establish this method as a viable technique in the quest for more efficient components of next generation particle accelerators. In this project the single-cell pill box cavity plasma etching system is developed and etching conditions are determined. An actual single cell SRF cavity (1497 MHz) is plasma etched based on the pill box cavity results. The first RF test of this plasma etched cavity at cryogenic temperature is obtained. The system can also be used for other surface modifications, including tailoring niobium surface properties, surface passivation or nitriding for better performance of SRF cavities. The results of this plasma processing technology may be applied to most of the current SRF cavity fabrication projects. In the course of this project it has been demonstrated that a capacitively coupled radio-frequency discharge can be successfully used for etching curved niobium surfaces, in particular the inner walls of SRF cavities. The results could also be applicable to the inner or concave surfaces of any 3D structure other than an SRF cavity.

  20. New technique for withdrawing broken sheath

    Directory of Open Access Journals (Sweden)

    Süleyman Cagan Efe

    2016-03-01

    Full Text Available A sheath that is broken inside vessel is a rare complication, and intravascular fragments from broken sheaths are retrieving transcutaneously by techniques including the loop snare catheter, basket catheter, and grasping/biopsy forceps. We reported a less common type of broken central venous sheath in location and a successful unique technique for retrieving it from subclavian vein by using noncompliant balloon from 40 year old female patient.

  1. BN coatings deposition by magnetron sputtering of B and BN targets in electron beam generated plasma

    Science.gov (United States)

    Kamenetskikh, A. S.; Gavrilov, N. V.; Koryakova, O. V.; Cholakh, S. O.

    2017-05-01

    Boron nitride coatings were deposited by reactive pulsed magnetron sputtering of B and BN targets (50 kHz, 10 µs for B; 13.56 MHz for BN) at 2-20 mA/cm2 ion current density on the substrate. The effect of electron beam generated plasma on characteristics of magnetron discharge and phase composition of coatings was studied.

  2. Tendon sheath fibroma in the thigh.

    Science.gov (United States)

    Moretti, Vincent M; Ashana, Adedayo O; de la Cruz, Michael; Lackman, Richard D

    2012-04-01

    Tendon sheath fibromas are rare, benign soft tissue tumors that are predominantly found in the fingers, hands, and wrists of young adult men. This article describes a tendon sheath fibroma that developed in the thigh of a 70-year-old man, the only known tendon sheath fibroma to form in this location. Similar to tendon sheath fibromas that develop elsewhere, our patient's lesion presented as a painless, slow-growing soft tissue nodule. Physical examination revealed a firm, nontender mass with no other associated signs or symptoms. Although the imaging appearance of tendon sheath fibromas varies, our patient's lesion appeared dark on T1- and bright on T2-weighted magnetic resonance imaging. It was well marginated and enhanced with contrast.Histologically, tendon sheath fibromas are composed of dense fibrocollagenous stromas with scattered spindle-shaped fibroblasts and narrow slit-like vascular spaces. Most tendon sheath fibromas can be successfully removed by marginal excision, although 24% of lesions recur. No lesions have metastasized. Our patient's tendon sheath fibroma was removed by marginal excision, and the patient remained disease free 35 months postoperatively. Despite its rarity, tendon sheath fibroma should be included in the differential diagnosis of a thigh mass on physical examination or imaging, especially if it is painless, nontender, benign appearing, and present in men.

  3. Atmospheric plasma generates oxygen atoms as oxidizing species in aqueous solutions

    Science.gov (United States)

    Mokhtar Hefny, Mohamed; Pattyn, Cedric; Lukes, Petr; Benedikt, Jan

    2016-10-01

    A remote microscale atmospheric pressure plasma jet (µAPPJ) with He, He/H2O, He/O2, and He/O2/H2O gas mixtures was used to study the transport of reactive species from the gas phase into the liquid and the following aqueous phase chemistry. The effects induced by the µAPPJ in water were quantitatively studied using phenol as a chemical probe and by measuring H2O2 concentration and pH values. These results were combined with the analysis of the absolute densities of the reactive species and the modeling of convective/diffusion transport and recombination reactions in the effluent of the plasma jet. Additionally, modified plasma jets were used to show that the role of emitted photons in aqueous chemistry is negligible for these plasma sources. The fastest phenol degradation was measured for the He/O2 plasma, followed by He/H2O, He/O2/H2O, and He plasmas. The modeled quantitative flux of O atoms into the liquid in the He/O2 plasma case was highly comparable with the phenol degradation rate and showed a very high transfer efficiency of reactive species from the plasma into the liquid, where more than half of the O atoms leaving the jet nozzle entered the liquid. The results indicate that the high oxidative effect of He/O2 plasma was primarily due to solvated O atoms, whereas OH radicals dominated the oxidative effects induced in water by plasmas with other gas mixtures. These findings help to understand, in a quantitative way, the complex interaction of cold atmospheric plasmas with aqueous solutions and will allow a better understanding of the interaction of these plasmas with water or buffered solutions containing biological macromolecules, microorganisms, or even eukaryotic cells. Additionally, the µAPPJ He/O2 plasma source seems to be an ideal tool for the generation of O atoms in aqueous solutions for any future studies of their reactivity.

  4. Methods of Generation and Detailed Characterization of Millimeter-Scale Plasmas Using a Gasbag Target

    Institute of Scientific and Technical Information of China (English)

    李志超; 尹强; 朱芳华; 郭亮; 袁鹏; 刘慎业; 丁永坤; 郑坚; 蒋小华; 王哲斌; 杨冬; 章欢; 李三伟; 王峰; 彭晓世

    2011-01-01

    Gasbag targets are useful for the research of laser-plasma interactions in inertial confinement fusion,especial in the laser overlapping regime.We report that on the Shengguang-Ⅱ laser facility,millimeter-scale plasm are successfully generated by four 0.35 μm laser beams using a gasbag target.Multiple diagnostics are applied to characterize the millimeter-scale plasmas in detail.The images from the x-ray pinhole cameras confirm that millimeter-scale plasmas are indeed created.An optical Thomson scattering system diagnoses the electron temperature of the CH filling plasmas by probing the thermal ion-acoustic fluctuations,which indicates that the electron temperature has a 600eV fiat roof in 0.7-1.3ns.Another key parameter,i.e.the electron density of the millimeter-scale plasmas,is inferred by the spectrum of the back stimulated Raman scattering of an addition 0.53 μm laser beam.The inferred electron density keeps stable at 0.1nc in early time consistent with the controlled filling pressure and splits into a higher density in late time,which is attributed to the blast wave entering in the SRS interaction region.%Gasbag targets are useful for the research of laser-plasma interactions in inertial confinement fusion, especially in the laser overlapping regime. We report that on the Shengguang-S laser facility, millimeter-scale plasmas are successfully generated by four 0.35 \\im laser beams using a gasbag target. Multiple diagnostics are applied to characterize the millimeter-scale plasmas in detail. The images from the x-ray pinhole cameras confirm that millimeter-scale plasmas are indeed created. An optical Thomson scattering system diagnoses the electron temperature of the CH filling plasmas by probing the thermal ion-acoustic fluctuations, which indicates that the electron temperature has a 600eV flat roof in 0.7-1.3ns. Another key parameter, I.e. The electron density of the millimeter-scale plasmas, is inferred by the spectrum of the back stimulated Raman

  5. Impact of plasma jet vacuum ultraviolet radiation on reactive oxygen species generation in bio-relevant liquids

    Energy Technology Data Exchange (ETDEWEB)

    Jablonowski, H.; Hammer, M. U.; Reuter, S. [Center for Innovation Competence plasmatis, Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany); Leibniz Institute for Plasma Science and Technology, INP Greifswald e.V. Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany); Bussiahn, R.; Weltmann, K.-D.; Woedtke, Th. von [Leibniz Institute for Plasma Science and Technology, INP Greifswald e.V. Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany)

    2015-12-15

    Plasma medicine utilizes the combined interaction of plasma produced reactive components. These are reactive atoms, molecules, ions, metastable species, and radiation. Here, ultraviolet (UV, 100–400 nm) and, in particular, vacuum ultraviolet (VUV, 10–200 nm) radiation generated by an atmospheric pressure argon plasma jet were investigated regarding plasma emission, absorption in a humidified atmosphere and in solutions relevant for plasma medicine. The energy absorption was obtained for simple solutions like distilled water (dH{sub 2}O) or ultrapure water and sodium chloride (NaCl) solution as well as for more complex ones, for example, Rosewell Park Memorial Institute (RPMI 1640) cell culture media. As moderate stable reactive oxygen species, hydrogen peroxide (H{sub 2}O{sub 2}) was studied. Highly reactive oxygen radicals, namely, superoxide anion (O{sub 2}{sup •−}) and hydroxyl radicals ({sup •}OH), were investigated by the use of electron paramagnetic resonance spectroscopy. All species amounts were detected for three different treatment cases: Plasma jet generated VUV and UV radiation, plasma jet generated UV radiation without VUV part, and complete plasma jet including all reactive components additionally to VUV and UV radiation. It was found that a considerable amount of radicals are generated by the plasma generated photoemission. From the experiments, estimation on the low hazard potential of plasma generated VUV radiation is discussed.

  6. Impact of plasma jet vacuum ultraviolet radiation on reactive oxygen species generation in bio-relevant liquids

    Science.gov (United States)

    Jablonowski, H.; Bussiahn, R.; Hammer, M. U.; Weltmann, K.-D.; von Woedtke, Th.; Reuter, S.

    2015-12-01

    Plasma medicine utilizes the combined interaction of plasma produced reactive components. These are reactive atoms, molecules, ions, metastable species, and radiation. Here, ultraviolet (UV, 100-400 nm) and, in particular, vacuum ultraviolet (VUV, 10-200 nm) radiation generated by an atmospheric pressure argon plasma jet were investigated regarding plasma emission, absorption in a humidified atmosphere and in solutions relevant for plasma medicine. The energy absorption was obtained for simple solutions like distilled water (dH2O) or ultrapure water and sodium chloride (NaCl) solution as well as for more complex ones, for example, Rosewell Park Memorial Institute (RPMI 1640) cell culture media. As moderate stable reactive oxygen species, hydrogen peroxide (H2O2) was studied. Highly reactive oxygen radicals, namely, superoxide anion (O2•-) and hydroxyl radicals (•OH), were investigated by the use of electron paramagnetic resonance spectroscopy. All species amounts were detected for three different treatment cases: Plasma jet generated VUV and UV radiation, plasma jet generated UV radiation without VUV part, and complete plasma jet including all reactive components additionally to VUV and UV radiation. It was found that a considerable amount of radicals are generated by the plasma generated photoemission. From the experiments, estimation on the low hazard potential of plasma generated VUV radiation is discussed.

  7. Feature profile evolution in plasma processing using on-wafer monitoring system

    CERN Document Server

    Samukawa, Seiji

    2014-01-01

    This book provides for the first time a good understanding of the etching profile technologies that do not disturb the plasma. Three types of sensors are introduced: on-wafer UV sensors, on-wafer charge-up sensors and on-wafer sheath-shape sensors in the plasma processing and prediction system of real etching profiles based on monitoring data. Readers are made familiar with these sensors, which can measure real plasma process surface conditions such as defect generations due to UV-irradiation, ion flight direction due to charge-up voltage in high-aspect ratio structures and ion sheath conditions at the plasma/surface interface. The plasma etching profile realistically predicted by a computer simulation based on output data from these sensors is described.

  8. CERN LINAC4 H- Source and SPL plasma generator RF systems, RF power coupling and impedance measurements

    CERN Document Server

    Paoluzzi, M; Marques-Balula, J; Nisbet, D

    2010-01-01

    In the LINAC4 H- source and the SPL plasma generator at CERN, the plasma is heated by a 100 kW, 2 MHz RF system. Matching of the load impedance to the final amplifier is achieved with a resonant network. The system implements a servo loop for power stabilization and frequency hopping to cope with the detuning effects induced by the plasma. This paper provides a detailed description of the system, including the pulse rate increase to 50 Hz for use in the SPL plasma generator. The performances, measurements of RF power coupling, contribution of the plasma to the impedance as well as first operation are reported.

  9. Generation of fast highly charged ions in laser-plasma interaction

    Energy Technology Data Exchange (ETDEWEB)

    Wolowski, J [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Badziak, J [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Boody, F P [Ion Light Technologies GmbH, Bad Abbach (Germany); Czarnecka, A [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Gammino, S [INFN-Laboratori Nazionali del Sud, Catania (Italy); Jablonski, S [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Krasa, J [Institute of Physics, ASCR (Czech Republic); Laska, L [Institute of Physics, ASCR (Czech Republic); Parys, P [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Rohlena, K [Institute of Physics, ASCR (Czech Republic); Rosinski, M [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Ryc, L [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Torrisi, L [INFN-Laboratori Nazionali del Sud, Catania (Italy); Ullschmied, J [IPALS Research Centre ASCR, Prague (Czech Republic)

    2006-12-15

    The nonthermal and nonlinear coupling of strong laser light wave with plasma transfers a part of laser energy into hot electrons and fast ions. The efficiency of these effects depends on the characteristics of a laser pulse, target properties and irradiation geometry. The reported studies were performed with the use of a high-power and high-energy iodine PALS laser system (energy up to 1 kJ in a 0.4 ns pulse at wavelength of 1315 nm and energy up to 250 J at wavelength of 438 nm). The properties of the laser-produced ion streams were determined with the use of ion diagnostics based on the time-of-flight method. The characteristics of x-rays were measured using various semiconductor detectors. The main ion stream characteristics as well as the ion acceleration processes in plasmas of different Z numbers were studied in dependence on laser pulse parameters. The parameters of a fast ion group depend evidently on Z number of the ions. The influence of the electron density scale length on fast ion generation was investigated using a low intensity laser pre-pulses to generate preformed plasmas (pre-plasmas) with which the main laser pulse interacted. The obtained results suggest that ion acceleration processes were most effective at a specific electron density gradient scale length of pre-plasma determined by the pre-pulse parameters.

  10. Evaluation of Ash Toxicity Generated From the Thermal Plasma Pyrolysis of Used Automobile Tires

    Science.gov (United States)

    Chang, J. S.; Novog, D. R.; Jamal, S.

    1996-10-01

    The disposal of used tires represents a severe environmental problem. As the heat content of the rubber tires is even higher than that of coal it should be considered as a future source of alternate fuel for power generation. There have been attempts to burn old tires directly in cofired boilers for production of electricity. However, there are several environmental concerns since the combustion flue gas may contain a significant concentration heavy metals (Fe, Zn, Cd, As, etc.). One technique currently being developed is the pyrolyzation of rubber tires by a thermal plasma to produce combustible gases. In this work, ashes generated during the plasma pyrolysis of used automobile tires using a DC Argon thermal plasma were analyzed using Neutron Activation Analysis (NAA) and produced syngas composition was analyzed by FT-IR.. The gas analysis indicates a significant quantity of combustible gases (CH4, C2H2, C2H4, CO, H2 etc..) was produced from the thermal plasma pyrolysis of used tires. The results also indicate that a majority of the heavy metals present in used tires were concentrated in the ashes deposited in reaction chamber wall and in the two-stage filtering system. Furthermore the heavy metal concentration decreases significantly with increasing distance from the plasma torch. Toxic components such as Zn, As and Cl were also collected in the filtering process.

  11. Scavenging of hydroxyl radicals generated in human plasma following X-ray irradiation.

    Science.gov (United States)

    Hosokawa, Yoichiro; Sano, Tomoaki

    2015-11-01

    There are various antioxidant materials that scavenge free radicals in human plasma. It is possible that the radical-scavenging function causes a radiation protective effect in humans. This study estimated the hydroxyl (OH) radical-scavenging activity induced by X-ray irradiation in human plasma. The test subjects included 111 volunteers (75 males and 36 females) ranging from 22 to 35 years old (average, 24.0). OH radicals generated in irradiated human plasma were measured by electron spin resonance (ESR). The relationships between the amount of the OH radical and chemical and biological parameters [total protein, total cholesterol, triglycerides and hepatitis B surface (HBs) antibodies] were estimated in the plasma of the 111 volunteers by a multivariate analysis. The presence of HBs antibodies had the greatest influence on OH radical-scavenging activity. One volunteer who did not have the HBs antibody was given an inoculation of the hepatitis B vaccine. There was a remarkable decrease in the amount of OH radical generated from plasma after the HBs antibody was produced. The results indicate that the HBs antibody is an important factor for the scavenging of OH radicals initiated by X-ray irradiation in the human body.

  12. Study of an Atmospheric Pressure Plasma Jet of Argon Generated by Column Dielectric Barrier Discharge

    Science.gov (United States)

    Nur, M.; Kinandana, A. W.; Winarto, P.; Muhlisin, Z.; Nasrudin

    2016-11-01

    An atmospheric of argon plasma jet was generated by using column dielectric barrier discharge has been investigated. In this study, argon gas was passed through the capillary column by regulating the flow rate of gas. This atmospheric pressure plasma jet (APPJ) was generated by a sinusoidal AC high voltage in the range of 0.4 kV to 10 kV and at frequencies of 15 kHz and 26 kHz. APPJ has been produced with flow rate of argon gas from 1 litter/min - 10 litters/min. The electric current has been taken with variation of voltage and each interval argon gas flow rate of 1 litter/min. The results show that electric current increase linearly and then it trends to saturation condition by the increasing of applied voltage. We found also that the length of the plasma jet increase by augmenting of applied voltage both for frequencies of 15 kHz and 26 kHz. Furthermore, our results show that length of plasma jet optimum for flow rate of argon gas of 2 litters/minute. In addition, we obtained that the larger applied voltage, the greater the temperature of the plasma jet.

  13. Generation of intense circularly polarized attosecond light bursts from relativistic laser plasmas

    CERN Document Server

    Ma, Guangjin; Yu, M Y; Shen, Baifei; Veisz, Laszlo

    2016-01-01

    We have investigated the polarization of attosecond light bursts generated by nanobunches of electrons from relativistic few-cycle laser pulse interaction with the surface of overdense plasmas. Particle-in-cell simulation shows that the polarization state of the generated attosecond burst depends on the incident-pulse polarization, duration, carrier envelope phase, as well as the plasma scale length. Through laser and plasma parameter control, without compromise of generation efficiency, a linearly polarized laser pulse with azimuth $\\theta^i=10^\\circ$ can generate an elliptically polarized attosecond burst with azimuth $|\\theta^r_{\\rm atto}|\\approx61^\\circ$ and ellipticity $\\sigma^r_{\\rm atto}\\approx0.27$; while an elliptically polarized laser pulse with $\\sigma^i\\approx0.36$ can generate an almost circularly polarized attosecond burst with $\\sigma^r_{\\rm atto}\\approx0.95$. The results propose a new way to a table-top circularly polarized XUV source as a probe with attosecond scale time resolution for many a...

  14. Development of plasma streamwise vortex generators for increased boundary layer control authority

    Science.gov (United States)

    Bowles, Patrick; Schatzman, David; Corke, Thomas; Thomas, Flint

    2009-11-01

    This experimental study focuses on active boundary layer flow control utilizing streamwise vorticity produced by a single dielectric barrier discharge plasma actuator. A novel plasma streamwise vortex generator (PSVG) layout is presented that mimics the passive flow control characteristics of the trapezoidal vane vortex generator. The PSVG consists of a common insulated electrode and multiple, exposed streamwise oriented electrodes used to produce counter-rotating vortical structures. Smoke and oil surface visualization of boundary layer flow over a flat plate compare the characteristics of passive control techniques and different PSVG designs. Passive and active control over a generic wall-mounted hump model, Rec = 288,000-575,000, are compared through static wall pressure measurements along the model's centerline. Different geometric effects of the PSVG electrode configuration were investigated. PSVG's with triangular exposed electrodes outperformed ordinary PSVG's under certain circumstances. The electrode arrangement produced flow control mechanisms and effectiveness similar to the passive trapezoidal vane vortex generators.

  15. Characteristics of a long and stable filamentary argon plasma jet generated in ambient atmosphere

    Science.gov (United States)

    Teodorescu, M.; Bazavan, M.; Ionita, E. R.; Dinescu, G.

    2015-04-01

    We present a study of a long (up to 60 mm) and thin (600 μm) plasma jet generated at 13.56 MHz in argon expanding in an open atmosphere from inside of a thin glass tube. The discharge is operated with one annular external electrode on the tube, in the absence of any grounded electrode in the discharge proximity. The study comprises image, spectral and electrical measurements, aiming to define and understand the operating domains of this plasma jet source. Two plasma zones were identified, which coexist: a long filament accompanied by a diffuse discharge. The coexistence of these plasma zones was studied in the power-mass flow rate parameter space. An electric model is proposed, considering the jet as a radiating antenna, which allows the determination of the main electrical parameters like capacitance, resistance and active RF power dissipated in the discharge. The specific zones on the I-V characteristics were assigned to the operating domains observed visually. The spectral emission of plasma has been used to characterize the jet in respect to the gas temperature, excitation temperature and plasma density.

  16. Influence of impact conditions on plasma generation during hypervelocity impact by aluminum projectile

    Science.gov (United States)

    Song, Weidong; Lv, Yangtao; Li, Jianqiao; Wang, Cheng; Ning, Jianguo

    2016-07-01

    For describing hypervelocity impact (relative low-speed as related to space debris and much lower than travelling speed of meteoroids) phenomenon associated with plasma generation, a self-developed 3D code was advanced to numerically simulate projectiles impacting on a rigid wall. The numerical results were combined with a new ionization model which was developed in an early study to calculate the ionized materials during the impact. The calculated results of ionization were compared with the empirical formulas concluded by experiments in references and a good agreement was obtained. Then based on the reliable 3D numerical code, a series of impacts with different projectile configurations were simulated to investigate the influence of impact conditions on hypervelocity impact generated plasma. It was found that the form of empirical formula needed to be modified. A new empirical formula with a critical impact velocity was advanced to describe the velocity dependence of plasma generation and the parameters of the modified formula were ensured by the comparison between the numerical predictions and the empirical formulas. For different projectile configurations, the changes of plasma charges with time are different but the integrals of charges on time almost stayed in the same level.

  17. Temperature and Nitric Oxide Generation in a Pulsed Arc Discharge Plasma

    Institute of Scientific and Technical Information of China (English)

    T.NAMIHIRA; S.SAKAI; M.MATSUDA; D.WANG; T.KIYAN; H.AKIYAMA; K.OKAMOTO; K.TODA

    2007-01-01

    Nitric oxide (NO) is increasingly being used in medical treatments of high blood pressure,acute respiratory distress syndrome and other illnesses related to the lungs.Currently a NO inhalation system consists of a gas cylinder of N2 mixed with a high concentration of NO.This arrangement is potentially risky due to the possibility of an accidental leak of NO from the cylinder.The presence of NO in the air leads to the formation of nitric dioxide (NO2),which is toxic to the lungs.Therefore,an on-site generator of NO would be highly desirable for medical doctors to use with patients with lung disease.To develop the NO inhalation system without a gas cylinder,which would include a high concentration of NO,NAMIHIRA et al have recently reported on the production of NO from room air using a pulsed arc discharge.In the present work,the temperature of the pulsed arc discharge plasma used to generate NO was measured to optimize the discharge condition.The results of the temperature measurements showed the temperature of the pulsed arc discharge plasma reached about 10,000 K immediately after discharge initiation and gradually decreased over tens of microseconds.In addition,it was found that NO was formed in a discharge plasma having temperatures higher than 9,000 K and a smaller input energy into the discharge plasma generates NO more efficiently than a larger one.

  18. Design of Plasma Generator Driven by High-frequency High-voltage Power Supply

    Directory of Open Access Journals (Sweden)

    C. Yong-Nong

    2013-03-01

    Full Text Available In this research, a high-frequency high-voltage power supply designed for plasma generator is presented. The powersupply mainly consists of a series resonant converter with a high-frequency high-voltage boost transformer. Due to theindispensable high-voltage inheritance in the operation of plasma generator, the analysis of transformer needconsidering not only winding resistance, leakage inductance, magnetizing inductance, and core-loss resistance, butalso parasitic capacitance resulted from the insulation wrappings on the high-voltage side. This research exhibits asimple approach to measuring equivalent circuit parameters of the high-frequency, high-voltage transformer with straycapacitance being introduced into the conventional modeling. The proposed modeling scheme provides not only aprecise measurement procedure but also effective design information for series-load resonant converter. The plasmadischarging plate is designed as part of the electric circuit in the series load-resonant converter and the circuit modelof the plasma discharging plate is also conducted as well. Thus, the overall model of the high-voltage plasmagenerator is built and the designing procedures for appropriate selections of the corresponding resonant-circuitparameters can be established. Finally, a high-voltage plasma generator with 220V, 60Hz, and 1kW input, along witha 22 kHz and over 8kV output, is realized and implemented.

  19. Dynamics of surface plasma generation by the microsecond emission of the XeF laser

    Science.gov (United States)

    Min'ko, L. Ia.; Chumakov, A. N.; Efremov, V. V.; Bakeev, A. A.; Nikolashina, L. I.; Prokopenko, N. V.; Sorokin, V. A.

    1991-06-01

    The dynamics of surface plasma generation by the microsecond emission of the XeF laser and the interaction of the ultraviolet emission with absorbent materials and the plasma at atmospheric pressure were investigated experimentally. The XeF laser used in the experiments operated at a wavelength of 0.35 micron, with a maximum emergy of 30 J and a pulse width of 3 microsec; the target materials included aluminum, bismuth, and graphite. The experimental results are presented in graphic form and compared with theoretical data.

  20. Study of hot electrons generated from intense laser-plasma interaction employing Image Plate

    Institute of Scientific and Technical Information of China (English)

    LIANG WenXi; JIN Zhan; WEI ZhiYi; ZHAO Wei; LI YingJun; ZHANG Jie; LI YuTong; XU MiaoHua; YUAN XiaoHui; ZHENG ZhiYuan; ZHANG Yi; LIU Feng; WANG ZhaoHua; LI HanMing

    2008-01-01

    Image Plate (IP) is convenient to be used and very suitable for radiation detection because of its advantages such as wide dynamic range, high detective quantum efficiency, ultrahigh sensitivity and superior linearity. The function mechanism and characteristics of IP are introduced in this paper. IP was employed in the study of hot electrons generated from intense laser-plasma interaction. The angular distri-bution and energy spectrum of hot electrons were measured with IP in the experi-ments. The results demonstrate that IP is an effective radiation detector for the study of laser-plasma interaction.

  1. Study of hot electrons generated from intense laser-plasma interaction employing Image Plate

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Image Plate (IP) is convenient to be used and very suitable for radiation detection because of its advantages such as wide dynamic range, high detective quantum efficiency, ultrahigh sensitivity and superior linearity. The function mechanism and characteristics of IP are introduced in this paper. IP was employed in the study of hot electrons generated from intense laser-plasma interaction. The angular distri- bution and energy spectrum of hot electrons were measured with IP in the experi- ments. The results demonstrate that IP is an effective radiation detector for the study of laser-plasma interaction.

  2. Studies of anode sheath phenomena in a Hall-effect thruster discharge

    Science.gov (United States)

    Dorf, Leonid

    2005-10-01

    Crossed electric and magnetic fields devices (plasma thrusters, magnetrons, coaxial plasma guns, plasma opening switches, etc.) are routinely used for plasma production and in other applications. Despite these numerous applications, the fundamental anode sheath phenomena in many of these devices have received surprisingly little experimental scrutiny. We chose a Hall-effect thruster (HT) discharge for our study of the anode sheath. It has been typically assumed in most fluid models of an HT that its steady-state operation requires the presence of a negative anode fall (electron-repelling anode sheath). Such anode fall behavior, opposite to that in typical glow discharges or hollow-anode plasma sources, is the result of a relatively high degree of ionization in HTs, achieved by applying a radial magnetic field transverse to the direction of the discharge current. Our data from non-perturbing probe measurements showed for the first time that the anode fall in HTs can be either negative or positive (electron-attracting anode sheath), depending on conditions at the anode surface. The path for current closure to the anode turns out to be quite subtle in HTs. This path determines the mechanism of the anode fall formation. In varying the magnetic field topology in the channel from a more uniform to a cusp-like one, we uncover intriguing results. For cusp configurations, in which the radial magnetic field changes polarity somewhere along the channel, the anode fall is positive, whereas it is negative for a more uniform field. This polarity difference could be attributed to the decreased electron mobility across the magnetic field in the cusp-like configuration. Our theoretical modeling of the anode sheath correlates well with the experimental results in describing how the magnitude of the sheath varies with the discharge voltage and mass flow rate.

  3. Arrangement of burner with sheath tube

    Energy Technology Data Exchange (ETDEWEB)

    Graat, J.W.; Remie, H.T.; Verhagen, A.M.

    1980-10-02

    This is concerned with an addition to the burner described in patent 28 28 319 in which fluid pulverised fuel and air is burnt in a chamber. The additional patent concerns a sheath tube, which surrounds the chamber and conducts the burnt gases on. The sheath tube has openings for better guidance of the thermal flow.

  4. Megagauss field generation for high-energy-density plasma science experiments.

    Energy Technology Data Exchange (ETDEWEB)

    Rovang, Dean Curtis; Struve, Kenneth William; Porter, John Larry Jr.

    2008-10-01

    There is a need to generate magnetic fields both above and below 1 megagauss (100 T) with compact generators for laser-plasma experiments in the Beamlet and Petawatt test chambers for focused research on fundamental properties of high energy density magnetic plasmas. Some of the important topics that could be addressed with such a capability are magnetic field diffusion, particle confinement, plasma instabilities, spectroscopic diagnostic development, material properties, flux compression, and alternate confinement schemes, all of which could directly support experiments on Z. This report summarizes a two-month study to develop preliminary designs of magnetic field generators for three design regimes. These are, (1) a design for a relatively low-field (10 to 50 T), compact generator for modest volumes (1 to 10 cm3), (2) a high-field (50 to 200 T) design for smaller volumes (10 to 100 mm3), and (3) an extreme field (greater than 600 T) design that uses flux compression. These designs rely on existing Sandia pulsed-power expertise and equipment, and address issues of magnetic field scaling with capacitor bank design and field inductance, vacuum interface, and trade-offs between inductance and coil designs.

  5. Integral equation for electrostatic waves generated by a point source in a spatially homogeneous magnetized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Podesta, John J. [Space Science Institute, Boulder, Colorado 80301 (United States)

    2012-08-15

    The electric field generated by a time varying point charge in a three-dimensional, unbounded, spatially homogeneous plasma with a uniform background magnetic field and a uniform (static) flow velocity is studied in the electrostatic approximation which is often valid in the near field. For plasmas characterized by Maxwell distribution functions with isotropic temperatures, the linearized Vlasov-Poisson equations may be formulated in terms of an equivalent integral equation in the time domain. The kernel of the integral equation has a relatively simple mathematical form consisting of elementary functions such as exponential and trigonometric functions (sines and cosines), and contains no infinite sums of Bessel functions. Consequently, the integral equation is amenable to numerical solutions and may be useful for the study of the impulse response of magnetized plasmas and, more generally, the response to arbitrary waveforms.

  6. A microfluidic chip for generating reactive plasma at gas-gas interface formed in laminar flow

    Science.gov (United States)

    Hashimoto, Masahiro; Tsukasaki, Katsuki; Kumagai, Shinya; Sasaki, Minoru

    2015-01-01

    A gas-gas interface is used for generating a localized reactive plasma flow at an atmospheric pressure. A microfluidic chip is fabricated as the reactor integrating a small plasma source located upstream. Within a Y-shaped microchannel, a discharging gas flows with a chemical gas. Owing to the small width of the microchannel, the gas flow is stabilized in a laminar flow. The resultant gas-gas interface is formed in the area where two gases flow facing each other activating the chemical gas through the energetic species in the discharging gas. A characteristic stream pattern is observed as the etching profile of a carbon film with a sub-µm sharp step change that can be explained by the spatial distribution of the reactive oxygen. This etching profile is different from that obtained when plasma discharging occurs near the channel exit being affected by the turbulent flow.

  7. Extreme ultraviolet emission from dense plasmas generated with sub-10-fs laser pulses

    CERN Document Server

    Osterholz, J; Cerchez, M; Fischer, T; Hemmers, D; Hidding, B; Pipahl, A; Pretzler, G; Rose, S J; Willi, O

    2008-01-01

    The extreme ultraviolet (XUV) emission from dense plasmas generated with sub-10-fs laser pulses with varying peak intensities up to 3*10^16 W/cm^2 is investigated for different target materials. K shell spectra are obtained from low Z targets (carbon and boron nitride). In the spectra a series limit for the hydrogen and helium like resonance lines is observed indicating that the plasma is at high density and pressure ionization has removed the higher levels. In addition, L shell spectra from titanium targets were obtained. Basic features of the K and L shell spectra are reproduced with computer simulations. The calculations include hydrodynamic simulation of the plasma expansion and collisional radiative calculations of the XUV emission.

  8. Harmonic generation by atomic and nanoparticle precursors in a ZnS laser ablation plasma

    Science.gov (United States)

    Oujja, M.; Lopez-Quintas, I.; Benítez-Cañete, A.; de Nalda, R.; Castillejo, M.

    2017-01-01

    Harmonic generation of a driving laser propagating across a laser ablation plasma serves for the diagnosis of multicomponent plumes. Here we study the contribution of atomic and nanoparticle precursors to the generation of coherent ultraviolet and vacuum ultraviolet light as low-order harmonics of the fundamental emission (1064 nm) of a Q-switched Nd:YAG laser in a nanosecond infrared ZnS laser ablation plasma. Odd harmonics from the 3rd up to the 9th order (118.2 nm) have been observed with distinct temporal and spatial characteristics which were determined by varying the delay between the ablation and driving nanosecond pulses and by spatially scanning the plasma with the focused driving beam propagating parallel to the target. At short distances from the target surface (≤1 mm), the harmonic intensity displays two temporal components peaked at around 250 ns and 10 μs. While the early component dies off quickly with increasing harmonic order and vanishes for the 9th order, the late component is notably intense for the 7th harmonic and is still clearly visible for the 9th. Spectral analysis of spontaneous plume emissions help to assign the origin of the two components. While the early plasma component is mainly constituted by neutral Zn atoms, the late component is mostly due to nanoparticles, which upon interaction with the driving laser are subject to breakup and ionization. With the aid of calculations of the phase matching integrals within the perturbative model of optical harmonic generation, these results illustrate how atom and nanoparticle populations, with differing temporal and spatial distributions within the ablation plasma, contribute to the nonlinear medium.

  9. Modeling laser produced plasmas with smoothed particle hydrodynamics for next generation advanced light sources

    Science.gov (United States)

    Holladay, Robert; Griffith, Alec; Murillo, Michael S.

    2016-10-01

    A computational model has been developed to study the evolution of a plasma generated by next-generation advanced light sources such as SLAC's LCLS and LANL's proposed MaRIE. Smoothed Particle Hydrodynamics (SPH) is used to model the plasma evolution because of the ease with which it handles the open boundary conditions and large deformations associated with these experiments. Our work extends the basic SPH method by utilizing a two-fluid model of an electron-ion plasma that also incorporates time dependent ionization and recombination by allowing the SPH fluid particles to have an evolving mass based on the mean ionization state of the plasma. Additionally, inter-species heating, thermal conduction, and electric fields are also accounted for. The effects of various initial conditions and model parameters will be presented, with the goal of using this framework to develop a model that can be used in the design and interpretation of future experiments. This work was supported by the Los Alamos National Laboratory Computational Physics Workshop.

  10. Iron plasma generation using a Nd:YAG laser pulse of several hundred picoseconds

    Science.gov (United States)

    Tamura, Jun; Kumaki, Masafumi; Kondo, Kotaro; Kanesue, Takeshi; Okamura, Masahiro

    2016-02-01

    We investigated the high intensity plasma generated by using a Nd:YAG laser to apply a laser-produced plasma to the direct plasma injection scheme. The capability of the source to generate high charge state ions strongly depends on the power density of the laser irradiation. Therefore, we focused on using a higher power laser with several hundred picoseconds of pulse width. The iron target was irradiated with the pulsed laser, and the ion current of the laser-produced iron plasma was measured using a Faraday cup and the charge state distribution was investigated using an electrostatic ion analyzer. We found that higher charge state iron ions (up to Fe21+) were obtained using a laser pulse of several hundred picoseconds in comparison to those obtained using a laser pulse of several nanoseconds (up to Fe19+). We also found that when the laser irradiation area was relatively large, the laser power was absorbed mainly by the contamination on the target surface.

  11. Ion flow and sheath structure near positively biased electrodes

    Science.gov (United States)

    Hood, R.; Scheiner, B.; Baalrud, S. D.; Hopkins, M. M.; Barnat, E. V.; Yee, B. T.; Merlino, R. L.; Skiff, F.

    2016-11-01

    What effect does a dielectric material surrounding a small positively biased electrode have on the ion flow and sheath structure near the electrode? Measurements of the ion velocity distribution function and plasma potential near positively biased electrodes were made using laser-induced fluorescence and an emissive probe. The results were compared with 2D particle-in-cell simulations. Both measurements and simulations showed that when the positive electrode was surrounded by the dielectric material, ions were accelerated toward the electrode to approximately 0.5 times the ion sound speed before being deflected radially by the electron sheath potential barrier of the electrode. The axial potential profile in this case contained a virtual cathode. In comparison, when the dielectric material was removed from around the electrode, both the ion flow and virtual cathode depth near the electrode were dramatically reduced. These measurements suggest that the ion presheath from the dielectric material surrounding the electrode may enclose the electron sheath of the electrode, resulting in a virtual cathode that substantially influences the ion flow profile in the region.

  12. Treatment of gastric cancer cells with non-thermal atmospheric plasma generated in water

    CERN Document Server

    Chen, Zhitong; Cheng, Xiaoqian; Gjika, Eda; Keidar, Michael

    2016-01-01

    Non-thermal atmospheric plasma (NTAP) can be applied to living tissues and cells as a novel technology for cancer therapy. Even though studies report on the successful use of NTAP to directly irradiate cancer cells, this technology can cause cell death only in the upper 3-5 cell layers. We report on a NTAP argon solution generated in DI water for treating human gastric cancer cells (NCl-N87). Our findings showed that the plasma generated in DI water during a 30-minute treatment had the strongest affect in inducing apoptosis in cultured human gastric cancer cells. This result can be attributed to presence of reactive oxygen species (ROS) and reactive nitrogen species (RNS) produced in water during treatment. Furthermore, the data showed that elevated levels of RNS may play an even more significant role than ROS in the rate of apoptosis in gastric cancer cells.

  13. High density ultrashort relativistic positron beam generation by laser-plasma interaction

    Science.gov (United States)

    Gu, Y. J.; Klimo, O.; Weber, S.; Korn, G.

    2016-11-01

    A mechanism of high energy and high density positron beam creation is proposed in ultra-relativistic laser-plasma interaction. Longitudinal electron self-injection into a strong laser field occurs in order to maintain the balance between the ponderomotive potential and the electrostatic potential. The injected electrons are trapped and form a regular layer structure. The radiation reaction and photon emission provide an additional force to confine the electrons in the laser pulse. The threshold density to initiate the longitudinal electron self-injection is obtained from analytical model and agrees with the kinetic simulations. The injected electrons generate γ-photons which counter-propagate into the laser pulse. Via the Breit-Wheeler process, well collimated positron bunches in the GeV range are generated of the order of the critical plasma density and the total charge is about nano-Coulomb. The above mechanisms are demonstrated by particle-in-cell simulations and single electron dynamics.

  14. A 7 T Pulsed Magnetic Field Generator for Magnetized Laser Plasma Experiments

    Science.gov (United States)

    Hu, Guangyue; Liang, Yihan; Song, Falun; Yuan, Peng; Wang, Yulin; Zhao, Bin; Zheng, Jian

    2015-02-01

    A pulsed magnetic field generator was developed to study the effect of a magnetic field on the evolution of a laser-generated plasma. A 40 kV pulsed power system delivered a fast (~230 ns), 55 kA current pulse into a single-turn coil surrounding the laser target, using a capacitor bank of 200 nF, a laser-triggered switch and a low-impedance strip transmission line. A one-dimensional uniform 7 T pulsed magnetic field was created using a Helmholtz coil pair with a 6 mm diameter. The pulsed magnetic field was controlled to take effect synchronously with a nanosecond heating laser beam, a femtosecond probing laser beam and an optical Intensified Charge Coupled Device (ICCD) detector. The preliminary experiments demonstrate bifurcation and focusing of plasma expansion in a transverse magnetic field.

  15. High quality electron bunch generation with CO2-laser plasma accelerator

    CERN Document Server

    Zhang, L G; Xu, J C; Ji, L L; Zhang, X M; Wang, W P; Zhao, X Y; Yi, L Q; Yu, Y H; Shi, Y; Xu, T J; Xu, Z Z

    2014-01-01

    CO2 laser-driven electron acceleration is demonstrated with particle-in-cell simulation in low-density plasma. An intense CO2 laser pulse with long wavelength excites wakefield. The bubble behind it has a broad space to sustain a large amount of electrons before reaching its charge saturation limit. A transversely propagating inject pulse is used to induce and control the ambient electron injection. The accelerated electron bunch with total charge up to 10 nC and the average charge per energy interval of more than 0.6 nC/MeV are obtained. Plasma-based electron acceleration driven by intense CO2 laser provides a new potential way to generate high-charge electron bunch with low energy spread, which has broad applications, especially for X-ray generation by table-top FEL and bremsstrahlung.

  16. Fast ion generation and bulk plasma heating with three-ion ICRF scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Kazakov, Ye. O., E-mail: yevgen.kazakov@rma.ac.be; Van Eester, D.; Ongena, J.; Lerche, E.; Messiaen, A. [Laboratory for Plasma Physics, LPP-ERM/KMS, EUROfusion Consortium Member, Brussels (Belgium); Dumont, R. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France)

    2015-12-10

    Launching electromagnetic waves in the ion cyclotron range of frequencies (ICRF) is an efficient method of plasma heating, actively employed in most of fusion machines. ICRF has a number of important supplementary applications, including the generation of high-energy ions. In this paper, we discuss a new set of three-ion ICRF scenarios and the prospect of their use as a dedicated tool for fast ion generation in tokamaks and stellarators. A distinct feature of these scenarios is a strong absorption efficiency possible at very low concentrations of resonant minority ions (∼ 1% or even below). Such concentration levels are typical for impurities contaminating fusion plasmas. An alternative ICRF scenario for maximizing the efficiency of bulk D-T ion heating is suggested for JET and ITER tokamaks, which is based on three-ion ICRF heating of intrinsic Beryllium impurities.

  17. Fast ion generation and bulk plasma heating with three-ion ICRF scenarios

    Science.gov (United States)

    Kazakov, Ye. O.; Van Eester, D.; Dumont, R.; Ongena, J.; Lerche, E.; Messiaen, A.

    2015-12-01

    Launching electromagnetic waves in the ion cyclotron range of frequencies (ICRF) is an efficient method of plasma heating, actively employed in most of fusion machines. ICRF has a number of important supplementary applications, including the generation of high-energy ions. In this paper, we discuss a new set of three-ion ICRF scenarios and the prospect of their use as a dedicated tool for fast ion generation in tokamaks and stellarators. A distinct feature of these scenarios is a strong absorption efficiency possible at very low concentrations of resonant minority ions (˜ 1% or even below). Such concentration levels are typical for impurities contaminating fusion plasmas. An alternative ICRF scenario for maximizing the efficiency of bulk D-T ion heating is suggested for JET and ITER tokamaks, which is based on three-ion ICRF heating of intrinsic Beryllium impurities.

  18. Study of magnetic field expansion using a plasma generator for space radiation active protection

    Institute of Scientific and Technical Information of China (English)

    JIA Xiang-Hong; JIA Shao-Xia; XU Feng; BAI Yan-Qiang; WAN Jun; LIU Hong-Tao; JIANG Rui

    2013-01-01

    There are many active protecting methods including Electrostatic Fields,Confined Magnetic Field,Unconfined Magnetic Field and Plasma Shielding etc.for defending the high-energy solar particle events (SPE) and Galactic Cosmic Rays (GCR) in deep space exploration.The concept of using cold plasma to expand a magnetic field is the best one of all possible methods so far.The magnetic field expansion caused by plasma can improve its protective efficiency of space particles.One kind of plasma generator has been developed and installed into the cylindrical permanent magnet in the eccentric.A plasma stream is produced using a helical-shaped antenna driven by a radio-frequency (RF) power supply of 13.56 MHz,which exits from both sides of the magnet and makes the magnetic field expand on one side.The discharging belts phenomenon is similar to the Earth's radiation belt,but the mechanism has yet to be understood.A magnetic probe is used to measure the magnetic field expansion distributions,and the results indicate that the magnetic field intensity increases under higher increments of the discharge power.

  19. Observation of Self-Sustaining Relativistic Ionization Wave Launched by a Sheath Field

    Science.gov (United States)

    McCormick, M.; Arefiev, A. V.; Quevedo, H. J.; Bengtson, R. D.; Ditmire, T.

    2014-01-01

    We present experimental evidence supported by simulations of a relativistic ionization wave launched into a surrounding gas by the sheath field of a plasma filament with high energy electrons. Such a filament is created by irradiating a clustering gas jet with a short pulse laser (115 fs) at a peak intensity of 5×1017 W/cm2. We observe an ionization wave propagating radially through the gas for about 2 ps at 0.2-0.5 c after the laser has passed, doubling the initial radius of the filament. The gas is ionized by the sheath field, while the longevity of the wave is explained by a moving field structure that traps the high energy electrons near the boundary, maintaining a strong sheath field despite the significant expansion of the plasma.

  20. Observation of Self-Sustaining Relativistic Ionization Wave Launched by Sheath Field

    CERN Document Server

    McCormick, M W; Quevedo, H J; Bengtson, R D; Ditmire, T

    2013-01-01

    We present experimental evidence supported by simulations of a relativistic ionization wave launched into surrounding gas by the sheath field of a plasma filament with high energy electrons. Such filament is created by irradiating a clustering gas jet with a short pulse laser ($\\sim$115 fs) at a peak intensity of $5 \\times 10^{17}$ W/cm$^2$. We observe an ionization wave propagating radially through the gas for about 2 ps at 0.2-0.5 $c$ after the laser has passed, doubling the initial radius of the filament. The gas is ionized by the sheath field, while the longevity of the wave is explained by a moving field structure that traps the high energy electrons near the boundary, maintaining a strong sheath field despite the significant expansion of the plasma.

  1. Laser-driven electron beamlines generated by coupling laser-plasma sources with conventional transport systems

    Energy Technology Data Exchange (ETDEWEB)

    Antici, P. [Istituto Nazionale di Fisica Nucleare (INFN), Laboratori Nazionali di Frascati, Via E. Fermi, 40, 00044 Frascati (Italy); SAPIENZA, University of Rome, Dip. SBAI, Via A. Scarpa 14, 00161 Rome (Italy); INFN - Sezione di Roma, c/o Dipartimento di Fisica - SAPIENZA, University of Rome, P.le Aldo Moro, 2 - 00185 Rome (Italy); Bacci, A.; Chiadroni, E.; Ferrario, M.; Rossi, A. R. [Istituto Nazionale di Fisica Nucleare (INFN), Laboratori Nazionali di Frascati, Via E. Fermi, 40, 00044 Frascati (Italy); Benedetti, C. [University of Bologna and INFN - Bologna (Italy); Lancia, L.; Migliorati, M.; Mostacci, A.; Palumbo, L. [SAPIENZA, University of Rome, Dip. SBAI, Via A. Scarpa 14, 00161 Rome (Italy); INFN - Sezione di Roma, c/o Dipartimento di Fisica - SAPIENZA, University of Rome, P.le Aldo Moro, 2 - 00185 Rome (Italy); Serafini, L. [INFN-Milan and Department of Physics, University of Milan, Via Celoria 16, 20133 Milan (Italy)

    2012-08-15

    Laser-driven electron beamlines are receiving increasing interest from the particle accelerator community. In particular, the high initial energy, low emittance, and high beam current of the plasma based electron source potentially allow generating much more compact and bright particle accelerators than what conventional accelerator technology can achieve. Using laser-generated particles as injectors for generating beamlines could significantly reduce the size and cost of accelerator facilities. Unfortunately, several features of laser-based particle beams need still to be improved before considering them for particle beamlines and thus enable the use of plasma-driven accelerators for the multiple applications of traditional accelerators. Besides working on the plasma source itself, a promising approach to shape the laser-generated beams is coupling them with conventional accelerator elements in order to benefit from both a versatile electron source and a controllable beam. In this paper, we perform start-to-end simulations to generate laser-driven beamlines using conventional accelerator codes and methodologies. Starting with laser-generated electrons that can be obtained with established multi-hundred TW laser systems, we compare different options to capture and transport the beams. This is performed with the aim of providing beamlines suitable for potential applications, such as free electron lasers. In our approach, we have analyzed which parameters are critical at the source and from there evaluated different ways to overcome these issues using conventional accelerator elements and methods. We show that electron driven beamlines are potentially feasible, but exploiting their full potential requires extensive improvement of the source parameters or innovative technological devices for their transport and capture.

  2. Laser-driven electron beamlines generated by coupling laser-plasma sources with conventional transport systems

    Science.gov (United States)

    Antici, P.; Bacci, A.; Benedetti, C.; Chiadroni, E.; Ferrario, M.; Rossi, A. R.; Lancia, L.; Migliorati, M.; Mostacci, A.; Palumbo, L.; Serafini, L.

    2012-08-01

    Laser-driven electron beamlines are receiving increasing interest from the particle accelerator community. In particular, the high initial energy, low emittance, and high beam current of the plasma based electron source potentially allow generating much more compact and bright particle accelerators than what conventional accelerator technology can achieve. Using laser-generated particles as injectors for generating beamlines could significantly reduce the size and cost of accelerator facilities. Unfortunately, several features of laser-based particle beams need still to be improved before considering them for particle beamlines and thus enable the use of plasma-driven accelerators for the multiple applications of traditional accelerators. Besides working on the plasma source itself, a promising approach to shape the laser-generated beams is coupling them with conventional accelerator elements in order to benefit from both a versatile electron source and a controllable beam. In this paper, we perform start-to-end simulations to generate laser-driven beamlines using conventional accelerator codes and methodologies. Starting with laser-generated electrons that can be obtained with established multi-hundred TW laser systems, we compare different options to capture and transport the beams. This is performed with the aim of providing beamlines suitable for potential applications, such as free electron lasers. In our approach, we have analyzed which parameters are critical at the source and from there evaluated different ways to overcome these issues using conventional accelerator elements and methods. We show that electron driven beamlines are potentially feasible, but exploiting their full potential requires extensive improvement of the source parameters or innovative technological devices for their transport and capture.

  3. Specular Reflectivity and Hot-Electron Generation in High-Contrast Relativistic Laser-Plasma Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, Gregory Elijah [The Ohio State Univ., Columbus, OH (United States)

    2013-01-01

    Ultra-intense laser (> 1018 W/cm2) interactions with matter are capable of producing relativistic electrons which have a variety of applications in state-of-the-art scientific and medical research conducted at universities and national laboratories across the world. Control of various aspects of these hot-electron distributions is highly desired to optimize a particular outcome. Hot-electron generation in low-contrast interactions, where significant amounts of under-dense pre-plasma are present, can be plagued by highly non-linear relativistic laser-plasma instabilities and quasi-static magnetic field generation, often resulting in less than desirable and predictable electron source characteristics. High-contrast interactions offer more controlled interactions but often at the cost of overall lower coupling and increased sensitivity to initial target conditions. An experiment studying the differences in hot-electron generation between high and low-contrast pulse interactions with solid density targets was performed on the Titan laser platform at the Jupiter Laser Facility at Lawrence Livermore National Laboratory in Livermore, CA. To date, these hot-electrons generated in the laboratory are not directly observable at the source of the interaction. Instead, indirect studies are performed using state-of-the-art simulations, constrained by the various experimental measurements. These measurements, more-often-than-not, rely on secondary processes generated by the transport of these electrons through the solid density materials which can susceptible to a variety instabilities and target material/geometry effects. Although often neglected in these types of studies, the specularly reflected light can provide invaluable insight as it is directly influenced by the interaction. In this thesis, I address the use of (personally obtained) experimental specular reflectivity measurements to indirectly study hot-electron generation in the context of high-contrast, relativistic

  4. Primary optic nerve sheath meningioma

    Energy Technology Data Exchange (ETDEWEB)

    Jeremic, Branislav [International Atomic Energy Agency, Vienna (Austria); Pitz, Susanne (eds.) [University Eye Hospital, Mainz (Germany)

    2008-07-01

    Optic nerve sheath meningioma (ONSM) is a rare tumour. Cases are usually separated into primary ONSM, which arises either intraorbitally or, less commonly, intracanalicularly, and secondary ONSM, which arises intracranially and subsequently invades the optic canal and orbit. This is the first book to cover all important aspects of the diagnosis and treatment of primary ONSM. After a general introduction, individual chapters discuss the clinical presentation, clinical examination and diagnosis, imaging, and histology. Treatment options are then addressed in detail, with special emphasis on external beam radiation therapy, and in particular stereotactic fractionated radiation therapy. The latter has recently produced consistently good results and is now considered the emerging treatment of choice for the vast majority of patients with primary ONSM. This well-illustrated book will prove invaluable to all practitioners who encounter primary ONSM in their clinical work. (orig.)

  5. Measurement of stability of electron beam generated by laser-driven plasma-based accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, S; Miura, E; Koyama, K; Kato, S [National Institute of Advanced Industrial Science and Technology, Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan)], E-mail: shi-masuda@aist.go.jp

    2008-05-01

    Quasi-monoenergetic electron beams with the energy of 30-80 MeV and large number of electrons more than 10{sup 8} were produced by focusing a 8TW, 50 fs Ti:sapphire laser pulse onto 1.6-1.9 x 10{sup 19} cm{sup -3} plasmas. Stability of the quasi-monoenergetic electron beam generation was evaluated using an in-situ observation system for the electron beam diagnostics.

  6. Efficiency of pulse high-current generator energy transfer into plasma liner energy

    Science.gov (United States)

    Oreshkin, V. I.

    2013-08-01

    The efficiency of capacitor-bank energy transfer from a high-current pulse generator into kinetic energy of a plasma liner has been analyzed. The analysis was performed using a model including the circuit equations and equations of the cylindrical shell motion. High efficiency of the energy transfer into kinetic energy of the liner is shown to be achieved only by a low-inductance generator. We considered an "ideal" liner load in which the load current is close to zero in the final of the shell compression. This load provides a high (up to 80%) efficiency of energy transfer and higher stability when compressing the liner.

  7. High-harmonic generation from plasma mirrors at kilohertz repetition rate

    OpenAIRE

    Quéré, Fabien

    2011-01-01

    International audience; We report the first demonstration of high-harmonic generation from plasma mirrors at a 1 kHz repetition rate. Harmonics up to nineteenth order are generated at peak intensities close to 1018 W=cm2 by focusing 1 mJ, 25 fs laser pulses down to 1:7 μm FWHM spot size without any prior wavefront correction onto a moving target. We minimize target surface motion with respect to the laser focus using online interferometry to ensure reproducible interaction conditions for ever...

  8. Study on the Generation Characteristics of Dielectric Barrier Discharge Plasmas on Water Surface

    Science.gov (United States)

    Liu, Wenzheng; Li, Chuanhui

    2014-01-01

    A new contact glow discharge electrode on the surface of water was designed and employed in this study. Because of the strong field strength in the small air gap formed by the electrode and the water surface, glow discharge plasmas were generated and used to treat waste water. The electric field distribution of the designed electrode model was simulated by MAXWELL 3D® simulation software, and the discharge parameters were measured. Through a series of experiments, we investigated the impact of optimal designs, such as the dielectric of the electrode, immersion depths, and curvature radii of the electrode on the generation characteristics of plasmas. In addition, we designed an equipotential multi-electrode configuration to treat a Methyl Violet solution and observe the discoloration effect. The experimental and simulation results indicate that the designed electrodes can realize glow discharge with a relative low voltage, and the generated plasmas covered a large area and were in stable state. The efficiency of water treatment is improved and optimized with the designed electrodes.

  9. Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows

    Energy Technology Data Exchange (ETDEWEB)

    Huntington, C. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fiuza, F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ross, J. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zylstra, A. B. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Drake, R. P. [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Atmospheric, Oceanic, and Space Sciences; Froula, D. H. [Univ. of Rochester, NY (United States). Physics Dept. and Lab. for Laser Energetics; Gregori, G. [Univ. of Oxford (United Kingdom). Dept. of Physics; Kugland, N. L. [Lam Research Corp., Fremont, CA (United States); Kuranz, C. C. [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Atmospheric, Oceanic, and Space Sciences; Levy, M. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Li, C. K. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Meinecke, J. [Univ. of Oxford (United Kingdom). Dept. of Physics; Morita, T. [Osaka Univ. (Japan). Inst. of Laser Engineering; Petrasso, R. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Plechaty, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Remington, B. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ryutov, D. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sakawa, Y. [Osaka Univ. (Japan). Inst. of Laser Engineering; Spitkovsky, A. [Princeton Univ., NJ (United States). Dept. of Astrophysical Sciences; Takabe, H. [Osaka Univ. (Japan). Inst. of Laser Engineering; Park, H.-S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-01-19

    Collisionless shocks can be produced as a result of strong magnetic fields in a plasma flow, and therefore are common in many astrophysical systems. The Weibel instability is one candidate mechanism for the generation of su fficiently strong fields to create a collisionless shock. Despite their crucial role in astrophysical systems, observation of the magnetic fields produced by Weibel instabilities in experiments has been challenging. Using a proton probe to directly image electromagnetic fields, we present evidence of Weibel-generated magnetic fields that grow in opposing, initially unmagnetized plasma flows from laser-driven laboratory experiments. Three-dimensional particle-in-cell simulations reveal that the instability effi ciently extracts energy from the plasma flows, and that the self-generated magnetic energy reaches a few percent of the total energy in the system. Furthermore, this result demonstrates an experimental platform suitable for the investigation of a wide range of astrophysical phenomena, including collisionless shock formation in supernova remnants, large-scale magnetic field amplification, and the radiation signature from gamma-ray bursts.

  10. Helium-3 Generation from the Interaction of Deuterium Plasma inside a Hydrogenated Lattice: Red Fusion

    Science.gov (United States)

    Leal-Quiros, Edbertho; Leal-Escalante, David A.

    2015-03-01

    Helium-3 has been created in a nuclear fusion reaction by fusing deuterium ions from deuterium plasma with hydrogen ions in a “RED” (the Spanish word for net) or crystal lattice, a method we called red fusion ("Fusion en la red cristalina"), because is a new method to make nuclear fusion reaction. In this paper, it will be show the experimental results where the helium-3 has been generated for the first time in this kind of new method to confine deuterium and hydrogen inside the RED or lattice of the hydrogenated crystal and that confinement inside the RED facilitated overcoming the Coulomb barrier between them and helium-3 and phonons are produced in this fusion reaction. The results of a long time research in which helium-3, has been created in a fusion reaction inside the lattice or RED of the crystal that contained hydrogen after adequate interaction of deuterium plasma at appropriate high temperature and magnetic confinement of the Mirror/Cusp Plasma Machine at Polytechnic University of Puerto Rico, designed by the authors. Several mass spectra and visible light spectrum where the presence of helium-3 was detected are shown. The experiment was repeated more than 200 times showing always the generation of helium-3. In this experiment no gamma rays were detected. For this experiment several diagnostic instruments were used. The data collection with these control instrumentation are shown. Thus, it is an important new way to generate Helium-3. reserved.

  11. Planar magnetic structures in coronal mass ejection-driven sheath regions

    Energy Technology Data Exchange (ETDEWEB)

    Palmerio, Erika; Kilpua, Emilia K.J. [Helsinki Univ. (Finland). Dept. of Physics; Savani, Neel P. [Maryland Univ., Baltimore County, MD (United States). Goddard Planetary Heliophysics Inst. (GPHI); NASA Goddard Space Flight Center, Greenbelt, MD (United States)

    2016-05-01

    Planar magnetic structures (PMSs) are periods in the solar wind during which interplanetary magnetic field vectors are nearly parallel to a single plane. One of the specific regions where PMSs have been reported are coronal mass ejection (CME)-driven sheaths. We use here an automated method to identify PMSs in 95 CME sheath regions observed in situ by the Wind and ACE spacecraft between 1997 and 2015. The occurrence and location of the PMSs are related to various shock, sheath, and CME properties. We find that PMSs are ubiquitous in CME sheaths; 85% of the studied sheath regions had PMSs with the mean duration of 6 h. In about one-third of the cases the magnetic field vectors followed a single PMS plane that covered a significant part (at least 67 %) of the sheath region. Our analysis gives strong support for two suggested PMS formation mechanisms: the amplification and alignment of solar wind discontinuities near the CME-driven shock and the draping of the magnetic field lines around the CME ejecta. For example, we found that the shock and PMS plane normals generally coincided for the events where the PMSs occurred near the shock (68% of the PMS plane normals near the shock were separated by less than 20 from the shock normal), while deviations were clearly larger when PMSs occurred close to the ejecta leading edge. In addition, PMSs near the shock were generally associated with lower upstream plasma beta than the cases where PMSs occurred near the leading edge of the CME. We also demonstrate that the planar parts of the sheath contain a higher amount of strong southward magnetic field than the non-planar parts, suggesting that planar sheaths are more likely to drive magnetospheric activity.

  12. Particle-in-cell study of the ion-to-electron sheath transition

    CERN Document Server

    Scheiner, Brett; Hopkins, Matthew M; Yee, Benjamin T; Barnat, Edward V

    2016-01-01

    The form of a sheath near a small electrode, with bias changing from below to above the plasma potential is studied using 2D particle-in-cell (PIC) simulations. Five cases are studied: (A) an electrode biased more than the electron temperature ($T_e/e$) below the plasma potential, (B) an electrode biased less than $T_e/2e$ below the plasma potential, (C) an electrode biased nearly at the plasma potential, (D) an electrode biased more than $T_i/2e$ but less than $T_e/2e$ above the plasma potential, and (E) an electrode biased much greater than $T_e/2e$ above the plasma potential. In case (A), the electron velocity distribution function (EVDF) is observed to be Maxwellian with a Boltzmann-type exponential density decay through the ion sheath and presheath. In cases (B) and (C), the EVDFs exhibit a loss-cone type truncation due to fast electrons overcoming the small potential difference between the electrode and plasma. No sheath is present in this regime, and the plasma remains quasineutral up to the electrode....

  13. Structural properties of proteins specific to the myelin sheath.

    Science.gov (United States)

    Kursula, P

    2008-02-01

    The myelin sheath is an insulating membrane layer surrounding myelinated axons in vertebrates, which is formed when the plasma membrane of an oligodendrocyte or a Schwann cell wraps itself around the axon. A large fraction of the total protein in this membrane layer is comprised of only a small number of individual proteins, which have certain intriguing structural properties. The myelin proteins are implicated in a number of neurological diseases, including, for example, autoimmune diseases and peripheral neuropathies. In this review, the structural properties of a number of myelin-specific proteins are described.

  14. Genome expression profile analysis of the maize sheath in response to inoculation to R. solani.

    Science.gov (United States)

    Gao, Jian; Chen, Zhe; Luo, Mao; Peng, Hua; Lin, Haijian; Qin, Cheng; Yuan, Guangsheng; Shen, Yaou; Ding, Haiping; Zhao, Maojun; Pan, Guangtang; Zhang, Zhiming

    2014-01-01

    Currently, the molecular regulation mechanisms of disease-resistant involved in maize leaf sheaths infected by banded leaf and sheath blight (BLSB) are poorly known. To gain insight into the transcriptome dynamics that are associated with their disease-resistant, genome-wide gene expression profiling was conducted by Solexa sequencing. More than four million tags were generated from sheath tissues without any leaf or development leaf, including 193,222 and 204,824 clean tags in the two libraries, respectively. Of these, 82,864 (55.4 %) and 91,678 (51.5 %) tags were matched to the reference genes. The most differentially expressed tags with log2 ratio >2 or maize sheath infected by BLSB and provide a comprehensive set of data that are essential for understanding its molecular regulation mechanism.

  15. Magnetic loop generation by collisionless gravitationally bound plasmas in axisymmetric tori.

    Science.gov (United States)

    Cremaschini, Claudio; Stuchlík, Zdeněk

    2013-04-01

    Current-carrying string loops are adopted in astrophysics to model the dynamics of isolated flux tubes of magnetized plasma expected to arise in the gravitational field of compact objects, such as black holes. Recent studies suggest that they could provide a framework for the acceleration and collimation of jets of plasma observed in these systems. However, the problem remains of the search of physical mechanisms which can consistently explain the occurrence of such plasma toroidal structures characterized by nonvanishing charge currents and are able to self-generate magnetic loops. In this paper, the problem is addressed in the context of Vlasov-Maxwell theory for nonrelativistic collisionless plasmas subject to both gravitational and electromagnetic fields. A kinetic treatment of quasistationary axisymmetric configurations of charged particles exhibiting epicyclic motion is obtained. Explicit solutions for the species equilibrium phase-space distribution function are provided. These are shown to have generally a non-Maxwellian character and to be characterized by nonuniform fluid fields and temperature anisotropy. Calculation of the relevant fluid fields and analysis of the Ampere equation then show the existence of nonvanishing current densities. As a consequence, the occurrence of a kinetic dynamo is proved, which can explain the self-generation of both azimuthal and poloidal magnetic fields by the plasma itself. This mechanism can operate in the absence of instabilities, turbulence, or accretion phenomena and is intrinsically kinetic in character. In particular, several kinetic effects contribute to it, identified here with finite Larmor radius, diamagnetic and energy-correction effects together with temperature anisotropy, and non-Maxwellian features of the equilibrium distribution function.

  16. Studies of extreme ultraviolet emission from laser produced plasmas, as sources for next generation lithography

    Science.gov (United States)

    Cummins, Thomas

    The work presented in this thesis is primarily concerned with the optimisation of extreme ultraviolet (EUV) photoemission around 13.5 nm, from laser produced tin (Sn) plasmas. EUV lithography has been identified as the leading next generation technology to take over from the current optical lithography systems, due to its potential of printing smaller feature sizes on integrated circuits. Many of the problems hindering the implementation of EUV lithography for high volume manufacturing have been overcome during the past 20 years of development. However, the lack of source power is a major concern for realising EUV lithography and remains a major roadblock that must be overcome. Therefore in order to optimise and improve the EUV emission from Sn laser plasma sources, many parameters contributing to the make-up of an EUV source are investigated. Chapter 3 presents the results of varying several different experimental parameters on the EUV emission from Sn laser plasmas. Several of the laser parameters including the energy, gas mixture, focusing lens position and angle of incidence are changed, while their effect on the EUV emission is studied. Double laser pulse experiments are also carried out by creating plasma targets for the main laser pulse to interact with. The resulting emission is compared to that of a single laser pulse on solid Sn. Chapter 4 investigates tailoring the CO2 laser pulse duration to improve the efficiency of an EUV source set-up. In doing so a new technique for shortening the time duration of the pulse is described. The direct effects of shortening the CO2 laser pulse duration on the EUV emission from Sn are then studied and shown to improve the efficiency of the source. In Chapter 5 a new plasma target type is studied and compared to the previous dual laser experiments. Laser produced colliding plasma jet targets form a new plasma layer, with densities that can be optimised for re-heating with the main CO2 laser pulse. Chapter 6 will present

  17. Occurrence and location of concentrated load and generator regions observed by Cluster in the plasma sheet

    Directory of Open Access Journals (Sweden)

    M. Hamrin

    2009-11-01

    Full Text Available Here, and in a companion paper by Hamrin et al. (2009 [Scale size and life time of energy conversion regions observed by Cluster in the plasma sheet], we investigate localized energy conversion regions (ECRs in the Earth's plasma sheet. In total we have studied 151 ECRs within 660 h of plasma sheet data from the summer and fall of 2001 when Cluster was close to apogee at an altitude of about 15–20 RE. Cluster offers appropriate conditions for the investigation of energy conversion by the evaluation of the power density, E·J, where E is the electric field and J the current density. From the sign of the power density, we have identified more than three times as many Concentrated Load Regions (CLRs as Concentrated Generator Regions (CGRs. We also note that the CLRs appear to be stronger. To our knowledge, these are the first in situ observations confirming the general notion of the plasma sheet, on the average, behaving as a load. At the same time the plasma sheet appears to be highly structured, with energy conversion occurring in both directions between the fields and the particles. From our data we also find that the CLRs appear to be located closer to the neutral sheet, while CGRs prefer locations towards the plasma sheet boundary layer (PSBL. For both CLRs and CGRs, E and J in the GSM y (cross-tail direction dominate the total power density, even though the z contribution occasionally can be significant. The prevalence of the y-direction seems to be weaker for the CGRs, possibly related to a higher fluctuation level near the PSBL.

  18. Outlook for the use of microsecond plasma opening switches to generate high-power nanosecond current pulses

    Science.gov (United States)

    Dolgachev, G. I.; Maslennikov, D. D.; Ushakov, A. G.

    2006-12-01

    An analysis is made of the current break process in microsecond plasma opening switches and their possible application in high-current generators. Necessary conditions are determined for generating megavolt pulses in the erosion mode of a plasma opening switch with the gap insulated by an external magnetic field. Under these conditions, efficient sharpening of high-power submegampere current pulses can be achieved. The possibility of using plasma opening switches operating at voltages of 5 6 MV to generate X-ray and gamma emission is discussed. The main operating and design parameters of a six-module plasma opening switch with a current pulse amplitude of 3.7 MA and voltage of 4 6 MV for use in the MOL generator, which is the prototype of one of the 24 modules of the projected Baikal multimegajoule generator, are estimated by using the available scalings.

  19. Rectus sheath abscess after laparoscopic appendicectomy

    Directory of Open Access Journals (Sweden)

    Golash Vishwanath

    2007-01-01

    Full Text Available Port site wound infection, abdominal wall hematoma and intraabdominal abscess formation has been reported after laparoscopic appendicectomy. We describe here a rectus sheath abscess which occurred three weeks after the laparoscopic appendicectomy. It was most likely the result of secondary infection of the rectus sheath hematoma due to bleeding into the rectus sheath from damage to the inferior epigastric arteries or a direct tear of the rectus muscle. As far as we are aware this complication has not been reported after laparoscopic appendicectomy.

  20. Side-welded fast response sheathed thermocouple

    Science.gov (United States)

    Carr, K.R.

    A method of fabricating the measuring junction of a grounded-junction sheathed thermocouple to obtain fast time response and good thermal cycling performance is provided. Slots are tooled or machined into the sheath wall at the measuring junction, the thermocouple wires are laser-welded into the slots. A thin metal closure cap is then laser-welded over the end of the sheath. Compared to a conventional grounded-junction thermocouple, the response time is 4 to 5 times faster and the thermal shock and cycling capabilities are substantially improved.

  1. Low-photon-energy plasma flash x-ray generator (LPFXG-2002)

    Science.gov (United States)

    Komatsu, Makoto; Sato, Eiichi; Hayasi, Yasuomi; Usuki, Tatsumi; Sato, Koetsu; Tanaka, Etsuro; Mori, Hidezo; Ojima, Hidenori; Takayama, Kazuyoshi; Ido, Hideaki

    2003-07-01

    In this study, we have made a low photon energy flash x-ray generator with a titanium target and have measured the radiographic characteristics. The flash x-ray generator consists of a high-voltage power supply, a high-voltage condenser, a turbo molecular pump and a flash x-ray tube. The condenser is charged up to about 30 kV, and the electric charges in the condenser are discharged to the tube after triggering the cathode. The linear plasma x-ray source forms from the target evaporation, and then the flash x-rays are generated from the plasma in the axial direction. K-series emission of titanium has been confirmed in experiments qualitatively and characteristics of the generator have been measured. K-series x-ray of titanium had a high resolution and enable us to take radiographs of a thin rabbit's ear clearly using the CR (Computed Radiography) system. The effect of titanium on the target of the soft flash x-ray tube has been indicated accordingly.

  2. A Tesla-pulse forming line-plasma opening switch pulsed power generator

    Science.gov (United States)

    Novac, B. M.; Kumar, R.; Smith, I. R.

    2010-10-01

    A pulsed power generator based on a high-voltage Tesla transformer which charges a 3.85 Ω/55 ns water-filled pulse forming line to 300 kV has been developed at Loughborough University as a training tool for pulsed power students. The generator uses all forms of insulation specific to pulsed power technology, liquid (oil and water), gas (SF6), and magnetic insulation in vacuum, and a number of fast voltage and current sensors are implemented for diagnostic purposes. A miniature (centimeter-size) plasma opening switch has recently been coupled to the output of the pulse forming line, with the overall system comprising the first phase of a program aimed at the development of a novel repetitive, table-top generator capable of producing 15 GW pulses for high power microwave loads. Technical details of all the generator components and the main experimental results obtained during the program and demonstrations of their performance are presented in the paper, together with a description of the various diagnostic tools involved. In particular, it is shown that the miniature plasma opening switch is capable of reducing the rise time of the input current while significantly increasing the load power. Future plans are outlined in the conclusions.

  3. Generation of high quality electron beams via ionization injection in a plasma wakefield accelerator

    Science.gov (United States)

    Vafaei-Najafabadi, Navid; Joshi, Chan; E217 SLAC Collaboration

    2016-10-01

    Ionization injection in a beam driven plasma wakefield accelerator has been used to generate electron beams with over 30 GeV of energy in a 130 cm of lithium plasma. The experiments were performed using the 3 nC, 20.35 GeV electron beam at the FACET facility of the SLAC National Accelerator Laboratory as the driver of the wakefield. The ionization of helium atoms in the up ramp of a lithium plasma were injected into the wake and over the length of acceleration maintained an emittance on the order of 30 mm-mrad, which was an order of magnitude smaller than the drive beam, albeit with an energy spread of 10-20%. The process of ionization injection occurs due to an increase in the electric field of the drive beam as it pinches through its betatron oscillations. Thus, this energy spread is attributed to the injection region encompassing multiple betatron oscillations. In this poster, we will present evidence through OSIRIS simulations of producing an injected beam with percent level energy spread and low emittance by designing the plasma parameters appropriately, such that the ionization injection occurs over a very limited distance of one betatron cycle. Work at UCLA was supported by the NSF Grant Number PHY-1415386 and DOE Grant Number DE-SC0010064. Work at SLAC was supported by DOE contract number DE-AC02-76SF00515. Simulations used the Hoffman cluster at UCLA.

  4. Mechanism analysis of radiation generated by the beam-plasma interaction in a vacuum diode

    Science.gov (United States)

    Zengchao, Ji; Shixiu, Chen; Shen, Gao

    2017-01-01

    When we were studying the vacuum switch, we found that the vacuum diode can radiate a broadband microwave. The vacuum diode is comprised of a cathode with a trigger device and planar anode, there is not a metallic bellows waveguide structure in this device, so the radiation mechanism of the vacuum diode is different from the plasma filled microwave device. It is hard to completely imitate the theory of the plasma filled microwave device. This paper analyzes the breakdown process of the vacuum diode, establishes the mathematical model of the radiating microwave from the vacuum diode. Based on the analysis of the dispersion relation in the form of a refractive index, the electromagnetic waves generated in the vacuum diode will resonate. The included angle between the direction of the electromagnetic radiation and the initial motion direction of electron beam is 45 degrees. The paper isolates the electrostatic effect from the beam-plasma interaction when the electromagnetic radiation occurs. According to above analyses, the dispersion relations of radiation are obtained by solving the wave equation. The dispersion curves are also obtained based on the theoretical dispersion relations. The theoretical dispersion curves are consistent with the actual measurement time-frequency maps of the radiation. Theoretical deduction and experiments indicate that the reason for microwave radiating from the vacuum diode can be well explained by the interaction of the electron beam and magnetized plasma. Supported by National Nature Science Foundation of China (No. 11075123), the Young Scientists Fund of Nature Science Foundation of China (No. 51207171).

  5. Monoenergetic proton emission from nuclear reaction induced by high intensity laser-generated plasma.

    Science.gov (United States)

    Torrisi, L; Cavallaro, S; Cutroneo, M; Giuffrida, L; Krasa, J; Margarone, D; Velyhan, A; Kravarik, J; Ullschmied, J; Wolowski, J; Szydlowski, A; Rosinski, M

    2012-02-01

    A 10(16) W∕cm(2) Asterix laser pulse intensity, 1315 nm at the fundamental frequency, 300 ps pulse duration, was employed at PALS laboratory of Prague, to irradiate thick and thin primary CD(2) targets placed inside a high vacuum chamber. The laser irradiation produces non-equilibrium plasma with deutons and carbon ions emission with energy of up to about 4 MeV per charge state, as measured by time-of-flight (TOF) techniques by using ion collectors and silicon carbide detectors. Accelerated deutons may induce high D-D cross section for fusion processes generating 3 MeV protons and 2.5 MeV neutrons, as measured by TOF analyses. In order to increase the mono-energetic proton yield, secondary CD(2) targets can be employed to be irradiated by the plasma-accelerated deutons. Experiments demonstrated that high intensity laser pulses can be employed to promote nuclear reactions from which characteristic ion streams may be developed. Results open new scenario for applications of laser-generated plasma to the fields of ion sources and ion accelerators.

  6. Monoenergetic proton emission from nuclear reaction induced by high intensity laser-generated plasma

    Energy Technology Data Exchange (ETDEWEB)

    Torrisi, L. [INFN-LNS Via S. Sofia 44, 95123 Catania (Italy); Dip.to di Fisica, Universita di Messina, V.le F.S. D' Alcontres 31, 98166 S. Agata, Messina (Italy); Cavallaro, S.; Giuffrida, L. [INFN-LNS Via S. Sofia 44, 95123 Catania (Italy); Cutroneo, M. [Dip.to di Fisica, Universita di Messina, V.le F.S. D' Alcontres 31, 98166 S. Agata, Messina (Italy); Krasa, J.; Margarone, D.; Velyhan, A.; Ullschmied, J. [Institute of Physics, ASCR, v.v.i., 182 21 Prague 8 (Czech Republic); Kravarik, J. [Czech Technical University, Faculty of Electro-Engineering, Prague (Czech Republic); Wolowski, J.; Szydlowski, A.; Rosinski, M. [Institute of Plasma Physics and Laser Microfusion, IPPLM, 23 Hery Str., 01-497 Warsaw (Poland)

    2012-02-15

    A 10{sup 16} W/cm{sup 2} Asterix laser pulse intensity, 1315 nm at the fundamental frequency, 300 ps pulse duration, was employed at PALS laboratory of Prague, to irradiate thick and thin primary CD{sub 2} targets placed inside a high vacuum chamber. The laser irradiation produces non-equilibrium plasma with deutons and carbon ions emission with energy of up to about 4 MeV per charge state, as measured by time-of-flight (TOF) techniques by using ion collectors and silicon carbide detectors. Accelerated deutons may induce high D-D cross section for fusion processes generating 3 MeV protons and 2.5 MeV neutrons, as measured by TOF analyses. In order to increase the mono-energetic proton yield, secondary CD{sub 2} targets can be employed to be irradiated by the plasma-accelerated deutons. Experiments demonstrated that high intensity laser pulses can be employed to promote nuclear reactions from which characteristic ion streams may be developed. Results open new scenario for applications of laser-generated plasma to the fields of ion sources and ion accelerators.

  7. Reduction of TiO2 with hydrogen cold plasma in DC pulsed glow discharge

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yu-wen; DING Wei-zhong; LU Xiong-gang; GUO Shu-qiang; XU Kuang-di

    2005-01-01

    The reduction of TiO2 to Ti2O3 with hydrogen cold plasma generated by a DC pulsed glow discharge was realized under 2 500 Pa at 1 233 K. Only a little of Ti10O19 and Ti9O17 was detected for using molecular hydrogen.Enhancement effects of hydrogen cold plasma on the reduction were discussed in terms of thermodynamic coupling,kinetics and plasma sheath. The exited hydrogen species are considered more effective reducing agents. It is instructive to reduce refractory oxides with plasma hydrogen at the reduced temperature.

  8. Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows

    CERN Document Server

    Huntington, C M; Ross, J S; Zylstra, A B; Drake, R P; Froula, D H; Gregori, G; Kugland, N L; Kuranz, C C; Levy, M C; Li, C K; Meinecke, J; Morita, T; Petrasso, R; Plechaty, C; Remington, B A; Ryutov, D D; Sakawa, Y; Spitkovsky, A; Takabe, H; Park, H -S

    2013-01-01

    As the ejecta from supernovae or other energetic astrophysical events stream through the interstellar media, this plasma is shaped by instabilities that generate electric and magnetic fields. Among these instabilities, the Weibel filamentation instability plays a particularly important role, as it can generate significant magnetic fields in an initially un-magnetized medium. It is theorized that these Weibel fields are responsible for the observed gamma-ray burst light curve, particle acceleration in shock waves, and for providing seed fields for larger-scale cosmological magnetic structures. While the presence of these instability-generated fields has been inferred from astrophysical observation and predicted in simulation, observation in experiments is challenging. Here we report direct observation of well-organized, large-amplitude, filamentary magnetic fields associated with the Weibel instability in a scaled laboratory experiment. The experimental images, captured with proton radiography, are shown to be...

  9. Generation of metal ions in the beam plasma produced by a forevacuum-pressure electron beam source

    Energy Technology Data Exchange (ETDEWEB)

    Tyunkov, A. V.; Yushkov, Yu. G., E-mail: YuYushkov@sibmail.com; Zolotukhin, D. B.; Klimov, A. S. [Tomsk State University of Control Systems and Radioelectronics, Tomsk 634050 (Russian Federation); Savkin, K. P. [High Current Electronics Institute, Russian Academy of Sciences, Tomsk 634055 (Russian Federation)

    2014-12-15

    We report on the production of metal ions of magnesium and zinc in the beam plasma formed by a forevacuum-pressure electron source. Magnesium and zinc vapor were generated by electron beam evaporation from a crucible and subsequently ionized by electron impact from the e-beam itself. Both gaseous and metallic plasmas were separately produced and characterized using a modified RGA-100 quadrupole mass-spectrometer. The fractional composition of metal isotopes in the plasma corresponds to their fractional natural abundance.

  10. Astrophysics of magnetically collimated jets generated from laser-produced plasmas

    CERN Document Server

    Ciardi, A; Fuchs, J; Albertazzi, B; Riconda, C; Pépin, H; Portugall, O

    2012-01-01

    The generation of astrophysically relevant jets, from magnetically collimated, laser-produced plasmas, is investigated through three-dimensional, magneto-hydrodynamic simulations. We show that for laser intensities I ~ 10^12 - 10^14 W/cm^2, a magnetic field in excess of ~ 0.1 MG, can collimate the plasma plume into a prolate cavity bounded by a shock envelope with a standing conical shock at its tip, which re-collimates the flow into a super magneto-sonic jet beam. This mechanism is equivalent to astrophysical models of hydrodynamic inertial collimation, where an isotropic wind is focused into a jet by a confining circumstellar torus-like envelope. The results suggest an alternative mechanism for a large-scale magnetic field to produce jets from wide-angle winds. (abridged version)

  11. Generation of Cold Argon Plasma Jet at the End of Flexible Plastic Tube

    CERN Document Server

    Kostov, Konstantin G; Prysiazhnyi, Vadym

    2014-01-01

    This brief communication reports a new method for generation of cold atmospheric pressure plasma jet at the downstream end of a flexible plastic tube. The device consists of a small chamber where dielectric barrier discharge (DBD) is ignited in Argon. The discharge is driven by a conventional low frequency AC power supply. The exit of DBD reactor is connected to a commercial flexible plastic tube (up to 4 meters long) with a thin floating Cu wire inside. Under certain conditions an Ar plasma jet can be extracted from the downstream tube end and there is no discharge inside the plastic tube. The jet obtained by this method is cold enough to be put in direct contact with human skin without electric shock and can be used for medical treatment and decontamination.

  12. Generation and characterization of OH and O radicals by atmospheric pressure steam/oxygen plasma

    CERN Document Server

    Roy, N C; Alam, M K; Talukder, M R

    2016-01-01

    Atmospheric pressure steam/oxygen plasma is generated by a 88 Hz, 6kV AC power supply. The properties of the produced plasma are investigated by optical emission spectroscopy (OES). The relative intensity, rotational, vibrational, excitation temperatures and electron density are studied as function of applied voltage, electrode spacing and oxygen flow rate. The rotational and vibrational temperatures are determined simulating the bands with the aid of LIFBASE simulation software. The excitation temperature is obtained from the CuI transition taking non-thermal equilibrium condition into account employing intensity ratio method. The electron density is approximated from the H_{\\alpha} Stark broadening using the Voigt profile fitting method. It is observed that the rotational and vibrational temperatures are decreased with increasing electrode spacing and O2 flow rate, but increased with the applied voltage. The excitation temperature is found to increase with increasing applied voltage and O2 flow rate, but de...

  13. An All Solid-State Pulsed Power Generator for Plasma Immersion Ion Implantation (PⅢ)

    Institute of Scientific and Technical Information of China (English)

    LIU Kefu; QIU Jian; WU Yifan

    2009-01-01

    An all solid-state pulsed power generator for plasma immersion ion implantation (PⅢ) is described. The pulsed power system is based on a Marx circuit configuration and semi-conductor switches, which have many advantages in adjustable repetition frequency, pulse width modulation and long serving life compared with the conventional circuit category, tube-based technologies such as gridded vacuum tubes, thyratrons, pulse forming networks and transformers.The operation of PⅢ with pulse repetition frequencies up to 500 Hz has been achieved at a pulse voltage amplitude from 2 kV to 60 kV, with an adjustable pulse duration from 1 μs to 100 μs.The proposed system and its performance, as used to drive a plasma ion implantation chamber,axe described in detail on the basis of the experimental results.

  14. The third generation multi-purpose plasma immersion ion implanter for surface modification of materials

    CERN Document Server

    Tang Bao Yin; Wang Xiao Feng; Gan Kong Yin; Wang Song Yan; Chu, P K; Huang Nian Ning; Sun Hong

    2002-01-01

    The third generation multi-purpose plasma immersion ion implantation (PIII) equipment has been successfully used for research and development of surface modification of biomedical materials, metals and their alloys in the Southwest Jiaotong University. The implanter equipped with intense current, pulsed cathodic arc metal plasma sources which have both strong coating function and gas and metal ion implantation function. Its pulse high voltage power supply can provide big output current. It can acquire very good implantation dose uniformity. The equipment can both perform ion implantation and combine ion implantation with sputtering deposition and coating to form many kinds of synthetic surface modification techniques. The main design principles, features of important components and achievement of research works in recent time have been described

  15. Effects of laser polarizations on shock generation and shock ion acceleration in overdense plasmas

    Science.gov (United States)

    Kim, Young-Kuk; Kang, Teyoun; Jung, Moon Youn; Hur, Min Sup

    2016-09-01

    The effects of laser-pulse polarization on the generation of an electrostatic shock in an overdense plasma were investigated using particle-in-cell simulations. We found, from one-dimensional simulations, that total and average energies of reflected ions from a circular polarization- (CP) driven shock front are a few times higher than those from a linear polarization- (LP) driven one for a given pulse energy. Moreover, it was discovered that the pulse transmittance is the single dominant factor for determining the CP-shock formation, while the LP shock is affected by the plasma scale length as well as the transmittance. In two-dimensional simulations, it is observed that the transverse instability, such as Weibel-like instability, can be suppressed more efficiently by CP pulses.

  16. A compact, low cost Marx bank for generating capillary discharge plasmas

    Science.gov (United States)

    Dyson, A. E.; Thornton, C.; Hooker, S. M.

    2016-09-01

    We describe in detail a low power Compact Marx Bank (CMB) circuit that can provide 20 kV, 500 A pulses of approximately 100-200 ns duration. One application is the generation of capillary discharge plasmas of density ≈1018 cm-3 used in laser plasma accelerators. The CMB is triggered with a high speed solid state switch and gives a high voltage output pulse with a ns scale rise time into a 50 Ω load (coaxial cable) with run at shot repetition rates of ≳1 Hz. This low power requirement means that the circuit can easily be powered by a small lead acid battery and, therefore, can be floated relative to laboratory earth. The CMB is readily scalable and pulses >45 kV are demonstrated in air discharges.

  17. Astrophysics of magnetically collimated jets generated from laser-produced plasmas.

    Science.gov (United States)

    Ciardi, A; Vinci, T; Fuchs, J; Albertazzi, B; Riconda, C; Pépin, H; Portugall, O

    2013-01-11

    The generation of astrophysically relevant jets, from magnetically collimated, laser-produced plasmas, is investigated through three-dimensional, magnetohydrodynamic simulations. We show that for laser intensities I∼10(12)-10(14) W cm(-2), a magnetic field in excess of ∼0.1  MG, can collimate the plasma plume into a prolate cavity bounded by a shock envelope with a standing conical shock at its tip, which recollimates the flow into a supermagnetosonic jet beam. This mechanism is equivalent to astrophysical models of hydrodynamic inertial collimation, where an isotropic wind is focused into a jet by a confining circumstellar toruslike envelope. The results suggest an alternative mechanism for a large-scale magnetic field to produce jets from wide-angle winds.

  18. Intrasellar malignant peripheral nerve sheath tumor (MPNST).

    Science.gov (United States)

    Krayenbühl, N; Heppner, F; Yonekawa, Y; Bernays, R L

    2007-02-01

    Intracranial malignant peripheral nerve sheath tumors (MPNST) and intrasellar schwannomas are rare tumors. We describe a case of an intrasellar schwannoma with progression to a MPNST, a finding that, although very rare, extends the differential diagnosis of intrasellar lesions.

  19. Rectus sheath hematoma: three case reports

    Directory of Open Access Journals (Sweden)

    Kapan Selin

    2008-01-01

    Full Text Available Abstract Introduction Rectus sheath hematoma is an uncommon cause of acute abdominal pain. It is an accumulation of blood in the sheath of the rectus abdominis, secondary to rupture of an epigastric vessel or muscle tear. It could occur spontaneously or after trauma. They are usually located infraumblically and often misdiagnosed as acute abdomen, inflammatory diseases or tumours of the abdomen. Case presentation We reported three cases of rectus sheath hematoma presenting with a mass in the abdomen and diagnosed by computerized tomography. The patients recovered uneventfully after bed rest, intravenous fluid replacement, blood transfusion and analgesic treatment. Conclusion Rectus sheath hematoma is a rarely seen pathology often misdiagnosed as acute abdomen that may lead to unnecessary laparotomies. Computerized tomography must be chosen for definitive diagnosis since ultrasonography is subject to error due to misinterpretation of the images. Main therapy is conservative management.

  20. En Route: next-generation laser-plasma-based electron accelerators; En Route: Elektronenbeschleuniger der naechsten Generation auf Laser-Plasma-Basis

    Energy Technology Data Exchange (ETDEWEB)

    Hidding, Bernhard

    2008-05-15

    Accelerating electrons to relativistic energies is of fundamental interest, especially in particle physics. Today's accelerator technology, however, is limited by the maximum electric fields which can be created. This thesis presents results on various mechanisms aiming at exploiting the fields in focussed laser pulses and plasma waves for electron acceleration, which can be orders of magnitude higher than with conventional accelerators. With relativistic, underdense laser-plasma-interaction, quasimonoenergetic electron bunches with energies up to {approx}50 MeV and normalized emittances of the order of 5mmmrad have been generated. This was achieved by focussing the {approx}80 fs, 1 J pulses of the JETI-laser at the FSU Jena to intensities of several 10{sup 19}W=cm{sup 2} into gas jets. The experimental observations could be explained via 'bubble acceleration', which is based on self-injection and acceleration of electrons in a highly nonlinear breaking plasma wave. For the rst time, this bubble acceleration was achieved explicitly in the self-modulated laser wakefield regime (SMLWFA). This quasimonoenergetic SMLWFA-regime stands out by relaxing dramatically the requirements on the driving laser pulse necessary to trigger bubble acceleration. This is due to self-modulation of the laser pulse in high-density gas jets, leading to ultrashort laser pulse fragments capable of initiating bubble acceleration. Electron bunches with durations

  1. Experimental Study of Plasma Under-liquid Electrolysis in Hydrogen Generation

    Institute of Scientific and Technical Information of China (English)

    严宗诚; 陈砺; 王红林

    2006-01-01

    The application and characteristics of relatively big volume plasma produced with cathodic glow discharges taking place across a gaseous envelope over the cathode which was dipped into electrolyte in hydrogen generation were studied. A critical investigation of the influence of methanol concentration and voltage across the circuit on the composition and power consumption per cubic meter of cathode liberating gas was carried out. The course of plasma under-liquid electrolysis has the typical characteristics of glow discharge electrolysis. The cathode liberating gas was in substantial excess of the Faraday law value. When the voltage across the circuit was equal to 550 V, the volume of cathodic gas with sodium carbonate solution was equal to 16.97 times the Faraday law value. The study showed that methanol molecules are more active than water molecules.The methanol molecules were decomposed at the plasma-catholyte interface by the radicals coming out the plasma mantle.Energy consumption per cubic meter of cathodic gases (WV) decreased while methanol concentration of the electrolytes increased. When methanol concentration equaled 5% (ψ), WV was 10.381×103 kJ/m3, less than the corresponding theoretic value of conventional water electrolysis method. The cathodic liberating gas was a mixture of hydrogen, carbon dioxide and carbon monoxide with over 95% hydrogen, if methanol concentration was more than 15% (ψ). The present research work revealed an innovative application of glow discharge and a new highly efficient hydrogen generation method, which depleted less resource and energy than normal electrolysis and is environmentally friendly.

  2. Advanced Thomson scattering system for high-flux linear plasma generator

    Energy Technology Data Exchange (ETDEWEB)

    Meiden, H. J. van der; Lof, A. R.; Berg, M. A. van den; Brons, S.; Eck, H. J. N. van; Koelman, P. M. J.; Koppers, W. R.; Kruijt, O. G.; Oyevaar, T.; Prins, P. R.; Rapp, J.; Scholten, J.; Smeets, P. H. M.; Star, G. van der; Zeijlmans van Emmichoven, P. A. [FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM, Trilateral Euregio Cluster, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands); Donne, A. J. H.; Schram, D. C. [FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM, Trilateral Euregio Cluster, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands); Eindhoven University of Technology, Eindhoven (Netherlands); Naumenko, N. N. [IPh NASB, Minsk (Belarus); Tugarinov, S. N. [SRC TRINITI, Troitsk, Moscow Reg. (Russian Federation)

    2012-12-15

    An advanced Thomson scattering system has been built for a linear plasma generator for plasma surface interaction studies. The Thomson scattering system is based on a Nd:YAG laser operating at the second harmonic and a detection branch featuring a high etendue (f /3) transmission grating spectrometer equipped with an intensified charged coupled device camera. The system is able to measure electron density (n{sub e}) and temperature (T{sub e}) profiles close to the output of the plasma source and, at a distance of 1.25 m, just in front of a target. The detection system enables to measure 50 spatial channels of about 2 mm each, along a laser chord of 95 mm. By summing a total of 30 laser pulses (0.6 J, 10 Hz), an observational error of 3% in n{sub e} and 6% in T{sub e} (at n{sub e}= 9.4 Multiplication-Sign 10{sup 18} m{sup -3}) can be obtained. Single pulse Thomson scattering measurements can be performed with the same accuracy for n{sub e} > 2.8 Multiplication-Sign 10{sup 20} m{sup -3}. The minimum measurable density and temperature are n{sub e} < 1 Multiplication-Sign 10{sup 17} m{sup -3} and T{sub e} < 0.07 eV, respectively. In addition, using the Rayleigh peak, superimposed on the Thomson scattered spectrum, the neutral density (n{sub 0}) of the plasma can be measured with an accuracy of 25% (at n{sub 0}= 1 Multiplication-Sign 10{sup 20} m{sup -3}). In this report, the performance of the Thomson scattering system will be shown along with unprecedented accurate Thomson-Rayleigh scattering measurements on a low-temperature argon plasma expansion into a low-pressure background.

  3. Operating conditions for the generation of stable anode spot plasma in front of a positively biased electrode

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yeong-Shin; Lee, Yuna; Dang, Jeong-Jeung [Department of Nuclear Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Chung, Kyoung-Jae, E-mail: jkjlsh1@snu.ac.kr [Center for Advance Research in Fusion Reactor Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Hwang, Y. S. [Department of Nuclear Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Center for Advance Research in Fusion Reactor Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of)

    2014-02-15

    Stability of an anode spot plasma, which is an additional high density plasma generated in front of a positively biased electrode immersed in ambient plasma, is a critical issue for its utilization to various types of ion sources. In this study, operating conditions for the generation of stable anode spot plasmas are experimentally investigated. Diagnostics of the bias current flowing into the positively biased electrode and the properties of ambient plasma reveal that unstable nature of the anode spot is deeply associated with the reduction of double layer potential between the anode spot plasma and the ambient plasma. It is found that stability of the anode spot plasma can be improved with increasing the ionization rate in ambient plasma so as to compensate the loss of electrons across the double layer or with enlarging the area of the biased electrode to prevent electron accumulation inside the anode spot. The results obtained from the present study give the guideline for operating conditions of anode spot plasmas as an ion source with high brightness.

  4. Third Harmonic Generation of a Short Pulse Laser in a Tunnel Ionizing Plasma: Effect of Self-Defocusing

    OpenAIRE

    Niti Kant

    2013-01-01

    Third harmonic generation of a Gaussian short pulse laser in a tunnel ionizing plasma is investigated. A Gaussian short pulse laser propagating through a tunnel ionizing plasma generates third harmonic wave. Inhomogeneity of the electric field along the wavefront of the fundamental laser pulse causes more ionization along the axis of propagation while less ionization off axis, leading to strong density gradient with its maximum on the axis of propagation. The medium acts like a diverging lens...

  5. Ablation of Barrett’s esophagus using the second-generation argon plasma coagulation

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Objective To investigate the efficacy and safety of the second-generation argon plasma coagulation (VIO APC) in ablation of Barrett’s esophagus. Methods Eighteen patients with Barrett’s esophagus (12 males, median age of 55 years, median length of 2.1 cm,1 low-grade dysplasia, 13 cases of short segment Barrett’s esophagus) received VIO APC, which was performed at a power setting of 40W and argon gas flow at 1.5-2.0 L/min, "forced" mode, in 1-3 sessions (mean 1.3). All the patients received treatment with hi...

  6. Isolated sub-fs XUV pulse generation in Mn plasma ablation.

    Science.gov (United States)

    Ganeev, R A; Witting, T; Hutchison, C; Frank, F; Tudorovskaya, M; Lein, M; Okell, W A; Zaïr, A; Marangos, J P; Tisch, J W G

    2012-11-05

    We report studies of high-order harmonic generation in laser-produced manganese plasmas using sub-4-fs drive laser pulses. The measured spectra exhibit resonant enhancement of a small spectral region of about 2.5 eV width around the 31st harmonic (~50eV). The intensity contrast relative to the directly adjacent harmonics exceeds one order of magnitude. This finding is in sharp contrast to the results reported previously for multi-cycle laser pulses [Physical Review A 76, 023831 (2007)]. Theoretical modelling suggests that the enhanced harmonic emission forms an isolated sub-femtosecond pulse.

  7. High-Power γ-Ray Flash Generation in Ultraintense Laser-Plasma Interactions

    Science.gov (United States)

    Nakamura, Tatsufumi; Koga, James K.; Esirkepov, Timur Zh.; Kando, Masaki; Korn, Georg; Bulanov, Sergei V.

    2012-05-01

    When high-intensity laser interaction with matter enters the regime of dominated radiation reaction, the radiation losses open the way for producing short pulse high-power γ-ray flashes. The γ-ray pulse duration and divergence are determined by the laser pulse amplitude and by the plasma target density scale length. On the basis of theoretical analysis and particle-in-cell simulations with the radiation friction force incorporated, optimal conditions for generating a γ-ray flash with a tailored overcritical density target are found.

  8. Iodine Determination by Microwave Plasma Torch Atomic Emission Spectrometer Coupled with Online Preconcentration Vapor Generation Technique

    Institute of Scientific and Technical Information of China (English)

    FEI Yan-qun; LUO Gui-min; FENG Guo-dong; CHEN Huan-wen; FEI Qiang; HUAN Yan-fu; JIN Qin-han

    2008-01-01

    This article focuses on iodine determination by microwave plasma torch atomic emission spectrometry (MPT-AES) coupled with online preconcentration vapor generation method.A new desolvation device,multistrand Nation dryer,was used as the substitute for condenser desolvation system.Some experimental conditions,such as preconcentration time,acidity of sample solution,rinsing solution acidity and dynamic linear range were investigated and optimized.The new desolvation system eliminates the problem of decreasing emission intensity of I(I) 206.238 nm line with the increase of working time on a conventional condenser desolvation system,thus greatly improving the reproducibility.

  9. A laser-generated plasma as a source of VUV continuum radiation for photoelectronic spectroscopy

    OpenAIRE

    Heckenkamp, Ch.; Heinzmann, Ulrich; Schönhense, G.; BURGESS.D.D; Thorne, A. P.; Wheaton, J. E. G.

    1981-01-01

    The feasibility of using laser-generated plasmas as VUV continuum sources for photoelectron spectroscopy has been demonstrated by measuring the spectral intensity distribution of the VUV continuum in the wavelength region from 79 to 43 nm by energy analysis of the photoelectrons ejected from argon atoms. The maximum photon flux obtained after reflection at a gold-coated spherical mirror was of the order of 10(11) photons nm(-1) per pulse at 50 nm for a laser energy of 830 mJ. The results show...

  10. Non-thermal atmospheric pressure HF plasma source: generation of nitric oxide and ozone for bio-medical applications

    Science.gov (United States)

    Kühn, S.; Bibinov, N.; Gesche, R.; Awakowicz, P.

    2010-01-01

    A new miniature high-frequency (HF) plasma source intended for bio-medical applications is studied using nitrogen/oxygen mixture at atmospheric pressure. This plasma source can be used as an element of a plasma source array for applications in dermatology and surgery. Nitric oxide and ozone which are produced in this plasma source are well-known agents for proliferation of the cells, inhalation therapy for newborn infants, disinfection of wounds and blood ozonation. Using optical emission spectroscopy, microphotography and numerical simulation, the gas temperature in the active plasma region and plasma parameters (electron density and electron distribution function) are determined for varied nitrogen/oxygen flows. The influence of the gas flows on the plasma conditions is studied. Ozone and nitric oxide concentrations in the effluent of the plasma source are measured using absorption spectroscopy and electro-chemical NO-detector at variable gas flows. Correlations between plasma parameters and concentrations of the particles in the effluent of the plasma source are discussed. By varying the gas flows, the HF plasma source can be optimized for nitric oxide or ozone production. Maximum concentrations of 2750 ppm and 400 ppm of NO and O3, correspondingly, are generated.

  11. A linear-field plasma jet for generating a brush-shaped laminar plume at atmospheric pressure

    Science.gov (United States)

    Li, Xuechen; Li, Jiyuan; Chu, Jingdi; Zhang, Panpan; Jia, Pengying

    2016-06-01

    A linear-field plasma jet composed of line-to-plate electrodes is used to generate a large-scale brush-shaped plasma plume with flowing argon used as working gas. Through electrical measurement and fast photography, it is found that the plasma plume bridges the two electrodes for the discharge in the positive voltage half-cycle, which behaves like fast moving plasma bullets directed from the anode to the cathode. Compared with the positive discharge, the negative discharge only develops inside the nozzle and propagates much slower. Results also indicate that the gas temperature of the plume is close to room temperature, which is promising for biomedical application.

  12. Modeling of low pressure plasma sources for microelectronics fabrication

    Science.gov (United States)

    Agarwal, Ankur; Bera, Kallol; Kenney, Jason; Likhanskii, Alexandre; Rauf, Shahid

    2017-10-01

    Chemically reactive plasmas operating in the 1 mTorr–10 Torr pressure range are widely used for thin film processing in the semiconductor industry. Plasma modeling has come to play an important role in the design of these plasma processing systems. A number of 3-dimensional (3D) fluid and hybrid plasma modeling examples are used to illustrate the role of computational investigations in design of plasma processing hardware for applications such as ion implantation, deposition, and etching. A model for a rectangular inductively coupled plasma (ICP) source is described, which is employed as an ion source for ion implantation. It is shown that gas pressure strongly influences ion flux uniformity, which is determined by the balance between the location of plasma production and diffusion. The effect of chamber dimensions on plasma uniformity in a rectangular capacitively coupled plasma (CCP) is examined using an electromagnetic plasma model. Due to high pressure and small gap in this system, plasma uniformity is found to be primarily determined by the electric field profile in the sheath/pre-sheath region. A 3D model is utilized to investigate the confinement properties of a mesh in a cylindrical CCP. Results highlight the role of hole topology and size on the formation of localized hot-spots. A 3D electromagnetic plasma model for a cylindrical ICP is used to study inductive versus capacitive power coupling and how placement of ground return wires influences it. Finally, a 3D hybrid plasma model for an electron beam generated magnetized plasma is used to understand the role of reactor geometry on plasma uniformity in the presence of E  ×  B drift.

  13. Temporal evolution of linear kinetic Alfvén waves in inhomogeneous plasmas and turbulence generation

    Science.gov (United States)

    Goyal, Ravinder; Sharma, R. P.

    2016-07-01

    The coronal ion heating in the Sun is primarily considered due to Alfvén wave dissipation. The Hinode data which has provided strong evidence for the presence of Alfvén waves in the corona and in coronal loops, has lead laboratory investigations and numerical simulations of Alfvén wave propagation and damping. The inhomogeneous plasmas with steep density gradients can be employed to study such phenomenon in relatively shorter systems. This article presents a model for the propagation of Kinetic Alfvén waves (KAWs) in inhomogeneous plasma when the inhomogeneity is in transverse and parallel directions relative to the background magnetic field. The semi-analytical technique and numerical simulations have been performed to study the KAW dynamics when plasma inhomogeneity is incorporated in the dynamics. The model equations are solved in order to study the localization of KAW and their magnetic power spectrum which indicates the direct transfer of energy from lower to higher wave numbers as well as frequencies. The inhomogeneity scale lengths in both directions may control the nature of fluctuations and localization of the waves and play a very important role in the turbulence generation and its level. We present a theoretical study of the localization of KAWs, variations in magnetic field amplitude in time, and variation in the frequency spectra arising from inhomogeneities. The relevance of the model to space and laboratory observations is discussed.

  14. Plasma formation and dynamics in conical wire arrays in the Llampudken pulsed power generator

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz, C. Gonzalo, E-mail: gamunoz2f@uc.cl, E-mail: fveloso@fis.puc.cl; Valenzuela, Vicente, E-mail: gamunoz2f@uc.cl, E-mail: fveloso@fis.puc.cl; Veloso, Felipe, E-mail: gamunoz2f@uc.cl, E-mail: fveloso@fis.puc.cl; Favre, Mario, E-mail: gamunoz2f@uc.cl, E-mail: fveloso@fis.puc.cl; Wyndham, Edmund, E-mail: gamunoz2f@uc.cl, E-mail: fveloso@fis.puc.cl [Instituto de Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago (Chile)

    2014-12-15

    Plasma formation and dynamics from conical wire array is experimentally studied. Ablation from the wires is observed, forming plasma accumulation at the array axis and subsequently a jet outflow been expelled toward the top of the array. The arrays are composed by 16 equally spaced 25μ diameter tungsten wires. Their dimensions are 20mm height, with base diameters of 8mm and 16mm top diameter. The array loads are design to be overmassed, hence no complete ablation of the wires is observed during the current rise. The experiments have been carried out in the Llampudken. pulsed power generator (∼350kA in ∼350ns). Plasma dynamics is studied in both side-on and end-on directions. Laser probing (shadowgraphy) is achieved using a frequency doubled Nd:YAG laser (532nm, 12ps FWHM) captured by CCD cameras. Pinhole XUV imaging is captured using gated microchannel plate cameras with time resolution ∼5ns. Results on the jet velocity and the degree of collimation indicating the plausibility on the use of these jets as comparable to the study astrophysically produced jets are presented and discussed.

  15. High harmonic generation in underdense plasmas by intense laser pulses with orbital angular momentum

    Energy Technology Data Exchange (ETDEWEB)

    Mendonça, J. T., E-mail: josetitomend@gmail.com [IPFN, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal and Instituto de Física, Universidade de São Paulo, 05508-090 São Paulo, SP (Brazil); Vieira, J., E-mail: jorge.vieira@ist.utl.pt [GoLP, IPFN, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal)

    2015-12-15

    We study high harmonic generation produced by twisted laser pulses, with orbital angular momentum in the relativistic regime, for pulse propagation in underdense plasma. We consider fast time scale processes associated with an ultra-short pulse, where the ion motion can be neglected. We use both analytical models and numerical simulations using a relativistic particle-in-cell code. The present description is valid for relativistic laser intensities, when the normalized field amplitude is much larger than one, a ≫ 1. We also discuss two distinct processes associated with linear and circular polarization. Using both analytical solutions and particle-in-cell simulations, we are able to show that, for laser pulses in a well defined Laguerre-Gauss mode, angular momentum conservation is observed during the process of harmonic generation. Intensity modulation of the harmonic spectrum is also verified, as imposed by the nonlinear time-scale for energy transfer between different harmonics.

  16. Small-size plasma diode with a transparent internal cathode for neutron generation

    Science.gov (United States)

    Shikanov, A. E.; Vovchenko, E. D.; Kozlovskii, K. I.; Shatokhin, V. L.

    2015-01-01

    A discharge plasma system for neutron generation based on the concept of inertial electrostatic confinement is considered. The system is made in the form of a gas-filled (1-60 Pa) diode with a composite hollow cathode placed at its center symmetrically to an embracing hollow cylindrical anode. Preionization of the discharge gap and an original design of the electrode system with a transparent central part make it possible to initiate a pulse high-voltage (100-150 kV) volume discharge in the ion oscillation mode. Estimates of the neutron emission in such a deuterium-filled diode show the feasibility of generating a pulse with a neutron yield on the order of 105 in the reaction D( d, n)3He, which is confirmed in experiments with an optimized geometry of the electrodes.

  17. High quality electron bunch generation with CO2-laser-plasma interaction

    Science.gov (United States)

    Zhang, Lingang; Shen, Baifei; Xu, Jiancai; Ji, Liangliang; Zhang, Xiaomei; Wang, Wenpeng; Zhao, Xueyan; Yi, Longqing; Yu, Yahong; Shi, Yin; Xu, Tongjun; Xu, Zhizhan

    2015-02-01

    CO2 laser-driven electron acceleration in low-density plasma is demonstrated using particle-in-cell simulation. An intense CO2 laser pulse of long wavelength excites a wake bubble that has a large elongated volume for accelerating a large number of electrons before reaching the charge saturation limit. A transversely injected laser pulse is used to induce and control the electron injection. It is found that an electron bunch with total charge up to 10 nC and absolute energy spread less than 16 MeV can be obtained. As a result, the charge per energy interval of the bunch reaches up to 0.6 nC/MeV. Intense CO2-laser based electron acceleration can provide a new direction for generating highly charged electron bunches with low energy spread, which is of much current interest, especially for table-top X-ray generation.

  18. Optical properties of the atmospheric pressure helium plasma jet generated by alternative current (a.c.) power supply

    Science.gov (United States)

    Ilik, Erkan; Akan, Tamer

    2016-05-01

    In this work, an atmospheric pressure plasma jet (APPJ) was produced to generate cold flowing post-discharge plasma of pure helium gas. The main aim of this study was to generate cold flowing APPJ of pure helium gas and to determine how their optical emission spectrum change influences varying different flow rates. Lengths of early, middle, and late post-discharge plasma (jet) regions and their fluctuations were determined, respectively. Then, ignition condition dependence of the post-discharge plasma for flow rate was specified at a constant voltage. Spectroscopic studies of an atmospheric pressure plasma jet of helium were presented via analyzing OH, N2, N2+, oxygen, and helium intensities for various flow rates.

  19. Numerical Study of Injection Mechanisms for Generation of Mono-Energetic Femtosecond Electron Bunch from the Plasma Cathode

    CERN Document Server

    Ohkubo, Takeru; Zhidkov, Alexei

    2005-01-01

    Acceleration gradients of up to the order of 100GV/m and mono-energetic electron bunch up to 200MeV have recently been observed in several plasma cathode experiments. However, mechanisms of self-injection in plasma are not sufficiently clarified, presently. In this study, we carried out 2D PIC simulation to reveal the mechanisms of mono-energetic femtosecond electron bunch generation. We found two remarkable conditions for the generation: electron density gradient at vacuum-plasma interface and channel formation in plasma. Steep electron density gradient (~ plasma wave length) causes rapid injection and produces an electron bunch with rather high charge and less than 100fs duration. The channel formation guides an injected laser pulse and decreases the threshold of laser self-focusing, which leads to high electric field necessary for wave-breaking injection.

  20. Evaluation of Novel Integrated Dielectric Barrier Discharge Plasma as Ozone Generator

    Directory of Open Access Journals (Sweden)

    Muhammad Nur

    2017-04-01

    Full Text Available This paper presents a characterization of an integrated ozone generator constructed by seven of reactors of Dielectric Barrier Discharge Plasma (DBDP. DBDP a has spiral-cylindrical configuration. Silence plasma produced ozone inside the DBDP reactor was generated by AC-HV with voltage up to 25 kV and maximum frequency of 23 kHz. As a source of ozone, dry air was pumped into the generator and controlled by valves system and a flowmeter. We found ozone concentration increased with the applied voltage, but in contrary, the concentration decreased with the flow rate of dry air. It was also found that a maximum concentration was 20 mg/L and ozone capacity of 48 g/h with an input power of 1.4 kW. Moreover, in this generator, IP efficiency of 8.13 g/kWh was obtained at input power 0.45 kW and air flow rate of 9 L/min. Therefore, be the higher ozone capacity can be produced with higher input power; however, it provided lower IP efficiency. The effect of dry air flow rate and applied voltage on ozone concentrations have been studied. At last, spiral wire copper was very corrosive done to the interaction with ozone, and it is necessary to do a research for finding the best metals as an active electrode inside of the quartz dielectric. Copyright © 2017 BCREC GROUP. All rights reserved Received: 18th July 2016; Revised: 25th September 2016; Accepted: 5th October 2016 How to Cite: Nur, M., Susan, A.I., Muhlisin, Z., Arianto, F., Kinandana, A.W., Nurhasanah, I., Sumariyah, S., Wibawa, P.J., Gunawan, G., Usman, A. (2017. Evaluation of Novel Integrated Dielectric Barrier Discharge Plasma as Ozone Generator. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (1: 24-31 (doi:10.9767/bcrec.12.1.605.24-31 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.1.605.24-31

  1. Second harmonic wave generation from a nonlinear combination of volume wave and overdense plasma in negative permeability space

    Science.gov (United States)

    Iwai, Akinori; Nakamura, Yoshihiro; Sakai, Osamu

    2016-09-01

    We clarify the relation between second harmonic wave (SH wave) and plasma generation in various experimental conditions by detecting properties of propagating electromagnetic waves (EM waves). Plasma has a nonlinear reaction against EM wave, generating harmonic waves which depends on electron density ne. In the case with increased ne, EM wave comes to be prevented from going into plasma with negative permittivity ɛp. Double-split-ring resonators (DSRRs), one of metamaterials, make permeability μD negative. We have shown that EM wave being volume wave can propagate into the combination of overdense plasma and DSRRs because of real negative value refractive index N. In our previous paper, we have confirmed enhanced SH wave (4.9 GHz) generation in the composite with 2.45-GHz input. In this report, we show the dependence of the SH wave emission with plasma generation on plasma parameters and gas conditions of plasma. Furthermore, we show the phase change with N variation of the composite space in the case with various input power as the proof of the negative index state.

  2. The possibility of a Hall thruster operation in the absence of the anode sheath

    CERN Document Server

    Dorf, L; Raitses, Y; Fisch, N J

    2002-01-01

    A method of determining boundary conditions for quasi 1-D modeling of steady-state operation of a Hall Thruster with ceramic channel is presented. For a given mass flow rate and magnetic field profile the imposed condition of a smooth sonic transition uniquely determines plasma density at the anode. The discharge voltage determines the structure of the anode sheath and thus determines electron and ion velocities at the anode. These parameters appear to be sufficient for constructing a solution with given temperature profile. It is shown that a good correlation between simulated and experimental results can be achieved by selecting an appropriate electron mobility and temperature profile. The structure of the electrode sheath was studied theoretically over a wide range of input parameters, such as discharge voltage, incoming neutral velocity and channel length, and the possibility of realization of the no-sheath operating regime is discussed here.

  3. Plasma Interaction with International Space Station High Voltage Solar Arrays

    Science.gov (United States)

    Heard, John W.

    2002-01-01

    The International Space Station (ISS) is presently being assembled in low-earth orbit (LEO) operating high voltage solar arrays (-160 V max, -140 V typical with respect to the ambient atmosphere). At the station's present altitude, there exists substantial ambient plasma that can interact with the solar arrays. The biasing of an object to an electric potential immersed in plasma creates a plasma "sheath" or non-equilibrium plasma around the object to mask out the electric fields. A positively biased object can collect electrons from the plasma sheath and the sheath will draw a current from the surrounding plasma. This parasitic current can enter the solar cells and effectively "short out" the potential across the cells, reducing the power that can be generated by the panels. Predictions of collected current based on previous high voltage experiments (SAMPIE (Solar Array Module Plasma Interactions Experiment), PASP+ (Photovoltaic Array Space Power) were on the order of amperes of current. However, present measurements of parasitic current are on the order of several milliamperes, and the current collection mainly occurs during an "eclipse exit" event, i.e., when the space station comes out of darkness. This collection also has a time scale, t approx. 1000 s, that is much slower than any known plasma interaction time scales. The reason for the discrepancy between predictions and present electron collection is not understood and is under investigation by the PCU (Plasma Contactor Unit) "Tiger" team. This paper will examine the potential structure within and around the solar arrays, and the possible causes and reasons for the electron collection of the array.

  4. Differential in vitro inhibition of thrombin generation by anticoagulant drugs in plasma from patients with cirrhosis.

    Directory of Open Access Journals (Sweden)

    Wilma Potze

    Full Text Available BACKGROUND: Treatment and prevention of thrombotic complications is frequently required in patients with cirrhosis. However anticoagulant therapy is often withheld from these patients, because of the perceived bleeding diathesis. As a result of the limited clinical experience, the anticoagulant of choice for the various indications is still not known. OBJECTIVES: We evaluated the in vitro effect of clinically approved anticoagulant drugs in plasma from patients with cirrhosis. PATIENTS/METHODS: Thirty patients with cirrhosis and thirty healthy controls were studied. Thrombin generation assays were performed before and after addition of unfractionated heparin, low molecular weight heparin, fondaparinux, dabigatran, and rivaroxaban, to estimate anticoagulant potencies of these drugs. RESULTS: Addition of dabigatran led to a much more pronounced reduction in endogenous thrombin potential in patients compared to controls (72.6% reduction in patients vs. 12.8% reduction in controls, P<0.0001. The enhanced effect of dabigatran was proportional to the severity of disease. In contrast, only a slightly increased anticoagulant response to heparin and low molecular weight heparin and even a reduced response to fondaparinux and rivaroxaban was observed in plasma from cirrhotic patients as compared to control plasma. CONCLUSIONS: The anticoagulant potency of clinically approved drugs differs substantially between patients with cirrhosis and healthy individuals. Whereas dabigatran and, to a lesser extent, heparin and low molecular weight heparin are more potent in plasma from patients with cirrhosis, fondaparinux and rivaroxaban showed a decreased anticoagulant effect. These results may imply that in addition to dose adjustments based on altered pharmacokinetics, drug-specific dose adjustments based on altered anticoagulant potency may be required in patients with cirrhosis.

  5. Phonon spectral functions of photo-generated hot carrier plasmas: effects of carrier screening and plasmon-phonon coupling

    Science.gov (United States)

    Yi, Kyung-Soo; Kim, Hye-Jung

    2017-02-01

    We investigate spectral behavior of phonon spectral functions in an interacting multi-component hot carrier plasma. Spectral analysis of various phonon spectral functions is performed considering carrier-phonon channels of polar and nonpolar optical phonons, acoustic deformation-potential, and piezoelectric Coulomb couplings. Effects of phonon self-energy corrections are examined at finite temperature within a random phase approximation extended to include the effects of dynamic screening, plasmon-phonon coupling, and local-field corrections of the plasma species. We provide numerical data for the case of a photo-generated electron-hole plasma formed in a wurtzite GaN. Our result shows the clear significance of the multiplicity of the plasma species in the phonon spectral functions of a multi-component plasma giving rise to a variety of spectral behaviors of carrier-phonon coupled collective modes. A useful sum rule on the plasma-species-resolved dielectric functions is also found.

  6. Ion acceleration enhancement in laser-generated plasmas by metallic doped hydrogenated polymers

    Directory of Open Access Journals (Sweden)

    Angela Maria Mezzasalma

    2009-05-01

    Full Text Available Laser-generated plasmas in vacuum were obtained by ablating hydrogenated polymers at the Physics Department of the University of Messina and at the PALS Laboratory in Prague. In the first case a 3 ns,532 nm Nd:Yag laser, at 1010 W/cm2 intensity was employed.In the second case a 300 ps, 438 nm iodine laser, at 5x1014W/cm2 intensity was employed. Different ion collectors were usedin a time-of-flight configuration to monitor the ejected ions from theplasma at different angles with respect to the direction normal tothe target surface. Measurements demonstrated that the mean ionvelocity, directed orthogonally to the target surface, increases forablation of polymers doped with metallic elements with respect tothe nondoped one. The possible mechanism explaining theresults can be found in the different electron density of theplasma, due to the higher number of electrons coming from the dopingelements. This charge enhancement increases the equivalent ionvoltage acceleration, i.e. the electric field generated in the non-equilibrium plasma placed in front of the ablated target surface.

  7. High duty factor Plasma Generator for CERN’s Superconducting Proton Linac

    CERN Document Server

    Lettry, J; Scrivens, R; Chaudet, E; Faircloth, D; Favre, G; Geisser, JM; Kuchler, D; Mathot, S; Midttun, O; Paoluzzi, M; Schmitzer, C; Steyaert, D

    2010-01-01

    CERN’s Linac4 is a 160 MeV linear accelerator currently under construction. It will inject negatively charged hydrogen ions into CERN’s PS-Booster. Its ion source is a non-cesiated RF driven H- volume source directly inspired from the one of DESY and is aimed to deliver pulses of 80 mA of H- during 0.4 ms at a 2 Hz repetition rate. The Superconducting Proton Linac (SPL) project is part of the luminosity upgrade of the LHC, it consists of an extension of Linac4 up to 5 GeV and is foreseen to deliver protons to a future 50 GeV Synchrotron (PS2). For the SPL high power option (HP-SPL), the ion source would deliver pulses of 80 mA of H- during 1.2 ms and operate at a 50 Hz repetition rate. This significant upgrade motivates the design of the new water cooled plasma generator presented in this paper. Its engineering is based on the results of a finite element thermal study of the Linac4 H- plasma generator that identified critical components and thermal barriers. A cooling system is proposed which achieves the...

  8. Brilliant petawatt gamma-ray pulse generation in quantum electrodynamic laser-plasma interaction

    Science.gov (United States)

    Chang, H. X.; Qiao, B.; Huang, T. W.; Xu, Z.; Zhou, C. T.; Gu, Y. Q.; Yan, X. Q.; Zepf, M.; He, X. T.

    2017-03-01

    We show a new resonance acceleration scheme for generating ultradense relativistic electron bunches in helical motions and hence emitting brilliant vortical γ-ray pulses in the quantum electrodynamic (QED) regime of circularly-polarized (CP) laser-plasma interactions. Here the combined effects of the radiation reaction recoil force and the self-generated magnetic fields result in not only trapping of a great amount of electrons in laser-produced plasma channel, but also significant broadening of the resonance bandwidth between laser frequency and that of electron betatron oscillation in the channel, which eventually leads to formation of the ultradense electron bunch under resonant helical motion in CP laser fields. Three-dimensional PIC simulations show that a brilliant γ-ray pulse with unprecedented power of 6.7 PW and peak brightness of 1025 photons/s/mm2/mrad2/0.1% BW (at 15 MeV) is emitted at laser intensity of 1.9 × 1023 W/cm2.

  9. Effects of permanent magnet arrangements and antenna locations on the generation of multicusp electron cyclotron resonance plasma

    Energy Technology Data Exchange (ETDEWEB)

    Namura, T. (Kyoto Research Laboratory, Matsushita Electronics Corporation, Kyoto 601 (Japan)); Arikata, I. (Himeji Institute of Technology, Syosha, Himeji 671-22 (Japan)); Fukumasa, O. (Department of Electrical Engineering, Yamaguchi University, Ube 755 (Japan)); Kubo, M.; Itatani, R. (Department of Electronics, Kyoto University, Kyoto 606 (Japan))

    1992-01-01

    A comparative study on the generation of 2.45-GHz multicusp electron cyclotron resonance (ECR) plasma is performed. Looped cusp structures such as the ring-cusp give a low-power and low-pressure ignition, and vice versa, indicating an importance to keep the electron trajetory of gradient-{ital B} drift motion inside the chamber even in the case of ECR plasmas. The importance of the antenna location in such multicusp fields is elucidated by comparison in two cases of the axial antenna located in the weak magnetic field region, generating a hydrogen plasma of limited density ({ital n}{sub {ital e}}{lt}7.4{times}10{sup 10} cm{sup {minus}3}), and a radial antenna located in the strong magnetic field region, generating an overdense plasma ({ital n}{sub {ital e}}{similar to}2{times}10{sup 11} cm{sup {minus}3}).

  10. Generation and analysis of plasmas with centrally reduced helicity in full-tungsten ASDEX upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Bock, Alexander

    2016-03-01

    The most promising concepts for harnessing nuclear fusion are toroidal devices like tokamaks, where a plasma is confined by helically twisted magnetic field lines. To provide the twisting of the field lines, a tokamak relies on a toroidal current in the plasma, which is largely generated by a transformer. As such, conventional tokamaks are limited to pulsed operation. Moreover, this current makes tokamak plasmas prone to numerous confinement degrading magnetohydrodynamic (MHD) instabilities that can emerge at locations where the field line helicity q takes on rational values like 1/1, 3/2 or 2/1, i.e. sawteeth or neoclassical tearing modes (NTMs). This thesis presents studies of plasmas with centrally elevated q-profiles created by external electron-cyclotron and neutral beam current drive (ECCD/NBCD) under steady-state conditions in the full-tungsten tokamak ASDEX Upgrade. Without the usually monotonic q-profile, instabilities of low helicity disappear, thereby improving the plasma stability. Furthermore, elevating q increases the amount of so-called (toroidal) bootstrap current, which the plasma drives by itself in the presence of pressure gradients, thereby reducing the reliance on the transformer. In the best case, an advanced tokamak (AT) could thus run in steady state. Additionally, an elevated and thus flat/slightly reversed q-profile is thought to improve confinement by impeding turbulent transport. Reconstruction of the tailored q-profile is accomplished with the new integrated data equilibrium (IDE) code and information from a key diagnostic that is based on the Motional Stark Effect (MSE). During the course of this work it was discovered that the MSE diagnostic suffers from interference from polarised background light. A prototype mitigation system was successfully tested. Also, non-linearities in the diagnostic's optical relay system were found and a calibration scheme devised to take them into account. Both the conventional approach of AT

  11. Anode sheath transition in an anodic arc for synthesis of nanomaterials

    Science.gov (United States)

    Nemchinsky, V. A.; Raitses, Y.

    2016-06-01

    The arc discharge with ablating anode or so-called anodic arc is widely used for synthesis of nanomaterials, including carbon nanotubes and fullerens, metal nanoparticles etc. We present the model of this arc, which confirms the existence of the two different modes of the arc operation with two different anode sheath regimes, namely, with negative anode sheath and with positive anode sheath. It was previously suggested that these regimes are associated with two different anode ablating modes—low ablation mode with constant ablation rate and the enhanced ablation mode (Fetterman et al 2008 Carbon 46 1322). The transition of the arc operation from low ablation mode to high ablation mode is determined by the current density at the anode. The model can be used to self-consistently determine the distribution of the electric field, electron density and electron temperature in the near-anode region of the arc discharge. Simulations of the carbon arc predict that for low arc ablating modes, the current is driven mainly by the electron diffusion to the anode. For positive anode sheath, the anode voltage is close to the ionization potential of anode material, while for negative anode sheath, the anode voltage is an order of magnitude smaller. It is also shown that the near-anode plasma, is far from the ionization equilibrium.

  12. A Coupled MHD and Thermal Model Including Electrostatic Sheath for Magnetoplasmadynamic Thruster Simulation

    Science.gov (United States)

    Kawasaki, Akira; Kubota, Kenichi; Funaki, Ikkoh; Okuno, Yoshihiro

    2016-09-01

    Steady-state and self-field magnetoplasmadynamic (MPD) thruster, which utilizes high-intensity direct-current (DC) discharge, is one of the prospective candidates of future high-power electric propulsion devices. In order to accurately assess the thrust performance and the electrode temperature, input electric power and wall heat flux must correctly be evaluated where electrostatic sheaths formed in close proximity of the electrodes affect these quantities. Conventional model simulates only plasma flows occurring in MPD thrusters with the absence of electrostatic sheath consideration. Therefore, this study extends the conventional model to a coupled magnetohydrodynamic (MHD) and thermal model by incorporating the phenomena relevant to the electrostatic sheaths. The sheaths are implemented as boundary condition of the MHD model on the walls. This model simulated the operation of the 100-kW-class thruster at discharge current ranging from 6 to 10 kA with argon propellant. The extended model reproduced the discharge voltages and wall heat load which are consistent with past experimental results. In addition, the simulation results indicated that cathode sheath voltages account for approximately 5-7 V subject to approximately 20 V of discharge voltages applied between the electrodes. This work was supported by JSPS KAKENHI Grant Numbers 26289328 and 15J10821.

  13. Estimation of sheath potentials in front of ASDEX upgrade ICRF antenna with SSWICH asymptotic code

    Science.gov (United States)

    Křivská, A.; Bobkov, V.; Colas, L.; Jacquot, J.; Milanesio, D.; Ochoukov, R.

    2015-12-01

    Multi-megawatt Ion Cyclotron Range of Frequencies (ICRF) heating became problematic in ASDEX Upgrade (AUG) tokamak after coating of ICRF antenna limiters and other plasma facing components by tungsten. Strong impurity influx was indeed produced at levels of injected power markedly lower than in the previous experiments. It is assumed that the impurity production is mainly driven by parallel component of Radio-Frequency (RF) antenna electric near-field E// that is rectified in sheaths. In this contribution we estimate poloidal distribution of sheath Direct Current (DC) potential in front of the ICRF antenna and simulate its relative variations over the parametric scans performed during experiments, trying to reproduce some of the experimental observations. In addition, relative comparison between two types of AUG ICRF antenna configurations, used for experiments in 2014, has been performed. For this purpose we use the Torino Polytechnic Ion Cyclotron Antenna (TOPICA) code and asymptotic version of the Self-consistent Sheaths and Waves for Ion Cyclotron Heating (SSWICH) code. Further, we investigate correlation between amplitudes of the calculated oscillating sheath voltages and the E// fields computed at the lateral side of the antenna box, in relation with a heuristic antenna design strategy at IPP Garching to mitigate RF sheaths.

  14. Estimation of sheath potentials in front of ASDEX upgrade ICRF antenna with SSWICH asymptotic code

    Energy Technology Data Exchange (ETDEWEB)

    Křivská, A., E-mail: alena.krivska@rma.ac.be [LPP-ERM/KMS, Royal Military Academy, 30 Avenue de la Renaissance B-1000, Brussels (Belgium); Bobkov, V.; Jacquot, J.; Ochoukov, R. [Max-Planck-Institut für Plasmaphysik, D-85748 Garching (Germany); Colas, L. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Milanesio, D. [Politecnico di Torino, Corso Duca degli Abruzzi 24, I-10129 Torino (Italy)

    2015-12-10

    Multi-megawatt Ion Cyclotron Range of Frequencies (ICRF) heating became problematic in ASDEX Upgrade (AUG) tokamak after coating of ICRF antenna limiters and other plasma facing components by tungsten. Strong impurity influx was indeed produced at levels of injected power markedly lower than in the previous experiments. It is assumed that the impurity production is mainly driven by parallel component of Radio-Frequency (RF) antenna electric near-field E// that is rectified in sheaths. In this contribution we estimate poloidal distribution of sheath Direct Current (DC) potential in front of the ICRF antenna and simulate its relative variations over the parametric scans performed during experiments, trying to reproduce some of the experimental observations. In addition, relative comparison between two types of AUG ICRF antenna configurations, used for experiments in 2014, has been performed. For this purpose we use the Torino Polytechnic Ion Cyclotron Antenna (TOPICA) code and asymptotic version of the Self-consistent Sheaths and Waves for Ion Cyclotron Heating (SSWICH) code. Further, we investigate correlation between amplitudes of the calculated oscillating sheath voltages and the E// fields computed at the lateral side of the antenna box, in relation with a heuristic antenna design strategy at IPP Garching to mitigate RF sheaths.

  15. Plasma Processing of Materials

    Science.gov (United States)

    1985-02-22

    used in France. In this case, three ’ movable electrodes arranged about the central axis with a coaxial sheath gas are employed. Initially the...Demiocratic Republic plasma furnace. chrome -magnesite; the bottom section is lined with rammed chrome -magnesite refractory. Due to the high heat loads... sheath injector design, cathode tip shape, and degree of water cooling are important parameters in providing a stable, uncontaminating, long-lifetime

  16. Stable droplet generator for a high brightness laser produced plasma extreme ultraviolet source

    Science.gov (United States)

    Vinokhodov, A.; Krivokorytov, M.; Sidelnikov, Yu.; Krivtsun, V.; Medvedev, V.; Bushuev, V.; Koshelev, K.; Glushkov, D.; Ellwi, S.

    2016-10-01

    We present the results of the low-melting liquid metal droplets generation based on excited Rayleigh jet breakup. We discuss on the operation of the industrial and in-house designed and manufactured dispensing devices for the droplets generation. Droplet diameter can be varied in the range of 30-90 μm. The working frequency of the droplets, velocity, and the operating temperature were in the ranges of 20-150 kHz, 4-15 m/s, and up to 250 °C, respectively. The standard deviations for the droplet center of mass position both their diameter σ < 1 μm at the distance of 45 mm from the nozzle. Stable operation in the long-term (over 1.5 h) was demonstrated for a wide range of the droplet parameters: diameters, frequencies, and velocities. Physical factors affecting the stability of the generator operation have been identified. The technique for droplet synchronization, allowing using the droplet as a target for laser produced plasma, has been created; in particular, the generator has been successfully used in a high brightness extreme ultraviolet (EUV) light source. The operation with frequency up to 8 kHz was demonstrated as a result of the experimental simulation, which can provide an average brightness of the EUV source up to ˜1.2 kW/mm2 sr.

  17. Formation and characterization of the vortices generated by a DBD plasma actuator in burst mode

    Science.gov (United States)

    Mishra, Bal Krishan; Panigrahi, P. K.

    2017-02-01

    The present study reports the formation and evolution characteristics of the continuously generated vortical structure and resulting flow field in quiescent air induced by a dielectric-barrier-discharge (DBD) plasma actuator in burst mode operation. A starting vortex is formed during the initial actuation period, which disappears after a small time interval for continuous mode operation of the DBD plasma actuator. A burst input signal to the actuator generates a train of self-similar vortices. The behaviour of vortices and the average flow field induced by the actuator has been studied using high speed schlieren visualization and particle image velocimetry technique for different actuation amplitude and duty cycle parameters. These repeating vortices travel faster than the starting vortex, and the vortex core velocity of these repeating vortices increases with increase in duty cycle parameter. Fuller u-velocity profile, higher v-velocity near the edge of the outer shear layer region, and higher growth of the wall jet thickness is observed due to enhanced entrainment by repeating vortices for burst mode operation. The repeating vortices travel at an angle of 21° relative to the wall surface for duty cycle parameter of 90.9% in comparison to 31° for the starting vortex. Self-similarity of the velocity profile is delayed in the streamwise direction for burst mode operation in comparison to that for the continuous mode of operation. This can be attributed to delay in attaining the maximum velocity of the wall jet profile and presence of coherent structures for the burst mode operation. The non-dimensional vortex core location and size for repeating vortices follow power law fit similar to the starting vortex with difference in value of the power law exponent. The phase difference between the input voltage and current drawn is in the range of π/12 to π/9 (in radians) for both continuous and burst mode operation indicating identical electrical behaviour of the

  18. Laser Plasma Physics - Forces and Nonlinear Principle

    CERN Document Server

    Hora, Heinrich

    2014-01-01

    This work is an electronic pre-publication of a book manuscript being under consideration in order to provide information to interested researchers about a review of mechanical forces in plasmas by electro-dynamic fields. Beginning with Kelvin's ponderomotive force of 1845 in electrostatics, the hydrodynamic force in a plasma is linked with quadratic force quantities of electric and magnetic fields. Hydrodynamics is interlinked with single particle motion of plasma particles electric field generation and double layers and sheaths due to properties of inhomogeneous plasmas. Consequences relate to laser driven particle acceleration and fusion energy. Beyond the very broad research field of fusion using nanosecond laser pulses based on thermodynamics, the new picosecond pulses of ultrahigh power opened a categorically different non-thermal interaction finally permitting proton-boron fusion with eliminating problems of nuclear radiation.

  19. Structured plasma waveguides and deep EUV generation enabled by intense laser-cluster interactions

    Science.gov (United States)

    Layer, Brian David

    Using the unique properties of the interaction between intense, short-pulse lasers and nanometer scale van-der-Waals bonded aggregates (or 'clusters'), modulated waveguides in hydrogen, argon and nitrogen plasmas were produced and extreme ultraviolet (EUV) light was generated in deeply ionized nitrogen plasmas. A jet of clusters behaves as an array of mass-limited, solid-density targets with the average density of a gas. Two highly versatile experimental techniques are demonstrated for making preformed plasma waveguides with periodic structure within a laser-ionized cluster jet. The propagation of ultra-intense femtosecond laser pulses with intensities up to 2 x1017 W/cm2 has been experimentally demonstrated in waveguides generated using both methods, limited by available laser energy. The first uses a 'ring grating' to impose radial intensity modulations on the channel-generating laser pulse, which leads to axial intensity modulations at the laser focus within the cluster jet target. This creates a waveguide with axial modulations in diameter with a period between 35 mum and 2 mm, determined by the choice of ring grating. The second method creates modulated waveguides by focusing a uniform laser pulse within a jet of clusters with ow that has been modulated by periodically spaced wire obstructions. These wires make sharp, stable voids as short as 50 mum with a period as small as 200 mum within waveguides of hydrogen, nitrogen, and argon plasma. The gaps persist as the plasma expands for the full lifetime of the waveguide. This technique is useful for quasi-phase matching applications where index-modulated guides are superior to diameter modulated guides. Simulations show that these 'slow wave' guiding structures could allow direct laser acceleration of electrons, achieving gradients of 80 MV/cm and 10 MV/cm for laser pulse powers of 1.9 TW and 30 GW, respectively. Results are also presented from experiments in which a nitrogen cluster jet from a cryogenically

  20. Transverse Dynamics and Energy Tuning of Fast Electrons Generated in Sub-Relativistic Intensity Laser Pulse Interaction with Plasmas

    CERN Document Server

    Mori, M; Daito, I; Kotaki, H; Hayashi, Y; Yamazaki, A; Ogura, K; Sagisaka, A; Koga, J; Nakajima, K; Daido, H; Bulanov, S V; Kimura, T

    2006-01-01

    The regimes of quasi-mono-energetic electron beam generation were experimentally studied in the sub-relativistic intensity laser plasma interaction. The observed electron acceleration regime is unfolded with two-dimensional-particle-in-cell simulations of laser-wakefield generation in the self-modulation regime.

  1. Plasma ignition and steady state simulations of the Linac4 H$^{-}$ ion source

    CERN Document Server

    Mattei, S; Yasumoto, M; Hatayama, A; Lettry, J; Grudiev, A

    2014-01-01

    The RF heating of the plasma in the Linac4 H- ion source has been simulated using an Particle-in-Cell Monte Carlo Collision method (PIC-MCC). This model is applied to investigate the plasma formation starting from an initial low electron density of 1012 m-3 and its stabilization at 1018 m-3. The plasma discharge at low electron density is driven by the capacitive coupling with the electric field generated by the antenna, and as the electron density increases the capacitive electric field is shielded by the plasma and induction drives the plasma heating process. Plasma properties such as e-/ion densities and energies, sheath formation and shielding effect are presented and provide insight to the plasma properties of the hydrogen plasma.

  2. Chemical erosion of carbon at ITER relevant plasma fluxes: Results from the linear plasma generator Pilot-PSI

    NARCIS (Netherlands)

    van Rooij, G. J.; Westerhout, J.; Brezinsek, S.; Rapp, J.

    2011-01-01

    The chemical erosion of carbon was investigated in the linear plasma device Pilot-PSI for ITER divertor relevant hydrogen plasma flux densities 10(23) < Gamma < 10(25) m(-2) s(-1). The erosion was analyzed in situ by optical emission spectroscopy and post mortem by surface profilometry. The ex

  3. Magnetic field generation, Weibel-mediated collisionless shocks, and magnetic reconnection in colliding laser-produced plasmas

    Science.gov (United States)

    Fox, W.; Bhattacharjee, A.; Fiksel, G.

    2016-10-01

    Colliding plasmas are ubiquitous in astrophysical environments and allow conversion of kinetic energy into heat and, most importantly, the acceleration of particles to extremely high energies to form the cosmic ray spectrum. In collisionless astrophysical plasmas, kinetic plasma processes govern the interaction and particle acceleration processes, including shock formation, self-generation of magnetic fields by kinetic plasma instabilities, and magnetic field compression and reconnection. How each of these contribute to the observed spectra of cosmic rays is not fully understood, in particular both shock acceleration processes and magnetic reconnection have been proposed. We will review recent results of laboratory astrophysics experiments conducted at high-power, inertial-fusion-class laser facilities, which have uncovered significant results relevant to these processes. Recent experiments have now observed the long-sought Weibel instability between two interpenetrating high temperature plasma plumes, which has been proposed to generate the magnetic field necessary for shock formation in unmagnetized regimes. Secondly, magnetic reconnection has been studied in systems of colliding plasmas using either self-generated magnetic fields or externally applied magnetic fields, and show extremely fast reconnection rates, indicating fast destruction of magnetic energy and further possibilities to accelerate particles. Finally, we highlight kinetic plasma simulations, which have proven to be essential tools in the design and interpretation of these experiments.

  4. New approaches for the reduction of plasma arc drop in second-generation thermionic converters. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hatziprokopiou, M.E.; Shaw, D.T.

    1981-03-31

    Investigations of ion generation and recombination mechanisms in the cesium plasma as they pertain to the advanced mode thermionic energy converter are described. The changes in plasma density and temperature within the converter have been studied under the influence of several promising auxiliary ionization candidate sources. Three novel approaches of external cesium ion generation have been investigated in some detail, namely vibrationally excited N/sub 2/ as an energy source of ionization of Cs ions in a DC discharge, microwave power as a means of resonant sustenance of the cesium plasma, and ion generation in a pulse N/sub 2/-Cs mixture. The experimental data obtained and discussed show that all three techniques - i.e. the non-LTE high-voltage pulsing, the energy transfer from vibrationally excited diatomic gases, and the external pumping with a microwave power - have considerable promise as schemes in auxiliary ion generation applicable to the advanced thermionic energy converter.

  5. Stark spectroscopy of atomic hydrogen balmer-alpha line for electric field measurement in plasmas by saturation spectroscopy

    Science.gov (United States)

    Nishiyama, S.; Katayama, K.; Nakano, H.; Goto, M.; Sasaki, K.

    2016-09-01

    Detailed structures of electric fields in sheath and pre-sheath regions of various plasmas are interested from the viewpoint of basic plasma physics. Several researchers observed Stark spectra of Doppler-broadened Rydberg states to evaluate electric fields in plasmas; however, these measurements needed high-power, expensive tunable lasers. In this study, we carried out another Stark spectroscopy with a low-cost diode laser system. We applied saturation spectroscopy, which achieves a Doppler-free wavelength resolution, to observe the Stark spectrum of the Balmer-alpha line of atomic hydrogen in the sheath region of a low-pressure hydrogen plasma. The hydrogen plasma was generated in an ICP source which was driven by on-off modulated rf power at 20 kHz. A planar electrode was inserted into the plasma. Weak probe and intense pump laser beams were injected into the plasma from the counter directions in parallel to the electrode surface. The laser beams crossed with a small angle above the electrode. The observed fine-structure spectra showed shifts, deformations, and/or splits when varying the distance between the observation position and the electrode surface. The detection limit for the electric field was estimated to be several tens of V/cm.

  6. Effects of assisted magnetic field to an atmospheric-pressure plasma jet on radical generation at the plasma-surface interface and bactericidal function

    Science.gov (United States)

    Liu, Chih-Tung; Kumakura, Takumi; Ishikawa, Kenji; Hashizume, Hiroshi; Takeda, Keigo; Ito, Masafumi; Hori, Masaru; Wu, Jong-Shinn

    2016-12-01

    A configuration of magnetic-assisted-plasma (MAP) on helium-based atmospheric-pressure plasma jet (APPJ) with an axial magnetic-field of 0.587 T is proposed, which provides good ability for killing bacteria Escherichia coli on the agar surface. Optically, we confirmed that the MAP increased approximately 2.4 times in the electron density estimated by the Stark broadening of H β line emission, and approximately 1.5 times enhancement of atomic oxygen concentration measured by vacuum ultraviolet absorption spectroscopy (VUVAS). Moreover, the generation of hydroxyl radical in the water increased 1.5 times, confirmed by the spin-trapping electron spin-resonance technique. In addition, the bactericidal experiments demonstrated 2.4 times higher for E. coli by the MAP treatment. The MAP configuration is proposed to be highly useful for future bio-medical applications by enhancing the radical generation at the plasma/substrate interface region.

  7. Direct Adherence of Fe(III Particles onto Sheaths of Leptothrix sp. Strain OUMS1 in Culture

    Directory of Open Access Journals (Sweden)

    Tatsuki Kunoh

    2016-01-01

    Full Text Available Leptothrix species, one of the Fe/Mn-oxidizing bacteria, oxidize Fe(II and produce extracellular, microtubuar, Fe-encrusted sheaths. Since protein(s involved in Fe(II oxidation is excreted from Leptothrix cells, the oxidation from Fe(II to Fe(III and subsequent Fe(III deposition to sheaths have been thought to occur in the vicinity or within the sheaths. Previously, Fe(III particles generated in MSVP medium amended with Fe(II salts by abiotic oxidation were directly recruited onto cell-encasing and/or -free sheaths of L. cholodnii SP-6. In this study, whether this direct Fe(III adherence to sheaths also occurs in silicon-glucose-peptone (SGP medium amended with Fe(0 (SGP + Fe was investigated using another strain of Leptothrix sp., OUMS1. Preparation of SGP + Fe with Fe powder caused turbidity within a few hours due to abiotic generation of Fe(III particles via Fe(II, and the medium remained turbid until day 8. When OUMS1 was added to SGP + Fe, the turbidity of the medium cleared within 35 h as Fe(III particles adhered to sheaths. When primitive sheaths, cell-killed, cell-free, or lysozyme/EDTA/SDS- and proteinase K-treated sheath remnants were mixed with Fe(III particles, the particles immediately adhered to each. Thus, vital activity of cells was not required for the direct Fe(III particle deposition onto sheaths regardless of Leptothrix strains.

  8. Oblique Bernstein Mode Generation Near the Upper-hybrid Frequency in Solar Pre-flare Plasmas

    Science.gov (United States)

    Kryshtal, A.; Fedun, V.; Gerasimenko, S.; Voitsekhovska, A.

    2015-11-01

    We study analytically the generation process of the first harmonics of the pure electron weakly oblique Bernstein modes. This mode can appear as a result of the rise and development of a corresponding instability in a solar active region. We assume that this wave mode is modified by the influence of pair Coulomb collisions and a weak large-scale sub-Dreicer electric field in the pre-flare chromosphere near the footpoints of a flare loop. To describe the pre-flare plasma we used the model of the solar atmosphere developed by Fontenla, Avrett, and Loeser ( Astrophys. J. 406, 319, 1993). We show that the generated first harmonic is close to the upper-hybrid frequency. This generation process begins at the very low threshold values of the sub-Dreicer electric field and well before the beginning of the preheating phase of a flare. We investigate the necessary conditions for the existence of non-damped first harmonics of oblique Bernstein waves with small amplitudes in the flare area.

  9. Software architecture for control and data acquisition of linear plasma generator Magnum-PSI

    Energy Technology Data Exchange (ETDEWEB)

    Groen, P.W.C., E-mail: p.w.c.groen@differ.nl [FOM Institute DIFFER – Dutch Institute For Fundamental Energy Research, Association EURATOM-FOM, Partner in the Trilateral Euregio Cluster, P.O. Box 1207, 3430 BE, Nieuwegein (Netherlands); Beveren, V. van; Broekema, A.; Busch, P.J.; Genuit, J.W.; Kaas, G.; Poelman, A.J.; Scholten, J.; Zeijlmans van Emmichoven, P.A. [FOM Institute DIFFER – Dutch Institute For Fundamental Energy Research, Association EURATOM-FOM, Partner in the Trilateral Euregio Cluster, P.O. Box 1207, 3430 BE, Nieuwegein (Netherlands)

    2013-10-15

    Highlights: ► An architecture based on a modular design. ► The design offers flexibility and extendability. ► The design covers the overall software architecture. ► It also covers its (sub)systems’ internal structure. -- Abstract: The FOM Institute DIFFER – Dutch Institute for Fundamental Energy Research has completed the construction phase of Magnum-PSI, a magnetized, steady-state, large area, high-flux linear plasma beam generator to study plasma surface interactions under ITER divertor conditions. Magnum-PSI consists of several hardware subsystems, and a variety of diagnostic systems. The COntrol, Data Acquisition and Communication (CODAC) system integrates these subsystems and provides a complete interface for the Magnum-PSI users. Integrating it all, from the lowest hardware level of sensors and actuators, via the level of networked PLCs and computer systems, up to functions and classes in programming languages, demands a sound and modular software architecture, which is extendable and scalable for future changes. This paper describes this architecture, and the modular design of the software subsystems. The design is implemented in the CODAC system at the level of services and subsystems (the overall software architecture), as well as internally in the software subsystems.

  10. Plasmoid ejection and secondary current sheet generation from magnetic reconnection in laser-plasma interaction.

    Science.gov (United States)

    Dong, Quan-Li; Wang, Shou-Jun; Lu, Quan-Ming; Huang, Can; Yuan, Da-Wei; Liu, Xun; Lin, Xiao-Xuan; Li, Yu-Tong; Wei, Hui-Gang; Zhong, Jia-Yong; Shi, Jian-Rong; Jiang, Shao-En; Ding, Yong-Kun; Jiang, Bo-Bin; Du, Kai; He, Xian-Tu; Yu, M Y; Liu, C S; Wang, Shui; Tang, Yong-Jian; Zhu, Jian-Qiang; Zhao, Gang; Sheng, Zheng-Ming; Zhang, Jie

    2012-05-25

    Reconnection of the self-generated magnetic fields in laser-plasma interaction was first investigated experimentally by Nilson et al. [Phys. Rev. Lett. 97, 255001 (2006)] by shining two laser pulses a distance apart on a solid target layer. An elongated current sheet (CS) was observed in the plasma between the two laser spots. In order to more closely model magnetotail reconnection, here two side-by-side thin target layers, instead of a single one, are used. It is found that at one end of the elongated CS a fanlike electron outflow region including three well-collimated electron jets appears. The (>1 MeV) tail of the jet energy distribution exhibits a power-law scaling. The enhanced electron acceleration is attributed to the intense inductive electric field in the narrow electron dominated reconnection region, as well as additional acceleration as they are trapped inside the rapidly moving plasmoid formed in and ejected from the CS. The ejection also induces a secondary CS.

  11. Effects of CSR Generated from Upstream Bends in a Laser Plasma Storage Ring

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, C.; Qiang, J.; Venturini, M.

    2013-08-28

    The recent proposal [1] of a Laser Plasma Storage Ring (LPSR) envisions the use of a laser-plasma (LP) acceleration module to inject an electron beam into a compact 500 MeV storage ring. Electron bunches generated by LP methods are naturally very short (tens of femtoseconds), presenting peak currents on the order of 10 kA or higher. Of obvious concern is the impact of collective effects and in particular Coherent Synchrotron Radiation (CSR) on the beam dynamics in the storage ring. Available simulation codes (e.g. Elegant [2]) usually include transient CSR effects but neglect the contribution of radiation emitted from trailing magnets. In a compact storage ring, with dipole magnets close to each other, cross talking between different magnets could in principle be important.In this note we investigate this effect for the proposed LPSR and show that, in fact, this effect is relatively small. However our analysis also indicates that CSR effects in general would be quite strong and deserve a a careful study.

  12. Effects of CSR Generated from Upstream Bends in a Laser Plasma Storage Ring

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, C.; Qiang, J.; Venturini, M.

    2013-08-28

    The recent proposal [1] of a Laser Plasma Storage Ring (LPSR) envisions the use of a laser-plasma (LP) acceleration module to inject an electron beam into a compact 500 MeV storage ring. Electron bunches generated by LP methods are naturally very short (tens of femtoseconds), presenting peak currents on the order of 10 kA or higher. Of obvious concern is the impact of collective effects and in particular Coherent Synchrotron Radiation (CSR) on the beam dynamics in the storage ring. Available simulation codes (e.g. Elegant [2]) usually include transient CSR effects but neglect the contribution of radiation emitted from trailing magnets. In a compact storage ring, with dipole magnets close to each other, cross talking between different magnets could in principle be important.In this note we investigate this effect for the proposed LPSR and show that, in fact, this effect is relatively small. However our analysis also indicates that CSR effects in general would be quite strong and deserve a a careful study.

  13. D-D nuclear fusion processes induced in polyethylene foams by TW Laser-generated plasma

    Science.gov (United States)

    Torrisi, L.; Cutroneo, M.; Cavallaro, S.; Ullschmied, J.

    2015-06-01

    Deuterium-Deuterium fusion processes were generated by focusing the 3 TW PALS Laser on solid deuterated polyethylene targets placed in vacuum. Deuterium ion acceleration of the order of 4 MeV was obtained using laser irradiance Iλ2 ˜ 5 × 1016 W μm2/cm2 on the target. Thin and thick targets, at low and high density, were irradiated and plasma properties were monitored "on line" and "off line". The ion emission from plasma was monitored with Thomson Parabola Spectrometer, track detectors and ion collectors. Fast semiconductor detectors based on SiC and fast plastic scintillators, both employed in time-of-flight configuration, have permitted to detect the characteristic 3.0 MeV protons and 2.45 MeV neutrons emission from the nuclear fusion reactions. From massive absorbent targets we have evaluated the neutron flux by varying from negligible values up to about 5 × 107 neutrons per laser shot in the case of foams targets, indicating a reaction rate of the order of 108 fusion events per laser shot using "advanced targets".

  14. Generation of uniform atmospheric pressure argon glow plasma by dielectric barrier discharge

    Indian Academy of Sciences (India)

    Raju Bhai Tyata; Deepak Prasad Subedi; Rajendra Shrestha; Chiow San Wong

    2013-03-01

    In this paper, atmospheric pressure glow discharges (APGD) in argon generated in parallel plate dielectric barrier discharge system is investigated by means of electrical and optical measurements. Using a high voltage (0–20 kV) power supply operating at 10–30 kHz, homogeneous and steady APGD has been observed between the electrodes with gap spacing from 0.5 mm to 2 mm and with a dielectric barrier of thickness 2 mm while argon gas is fed at a controlled flow rate of 11/min. The electron temperature and electron density of the plasma are determined by means of optical emission spectroscopy. Our results show that the electron density of the discharge obtained is of the order of 1016 cm-3 while the electron temperature is estimated to be 0.65 eV. The important result is that electron density determined from the line intensity ratio method and stark broadening method are in very good agreement. The Lissajous figure is used to estimate the energy deposited to the glow discharge. It is found that the energy deposited to the discharge is in the range of 20 to 25 $\\$J with a discharge voltage of 1.85 kV. The energy deposited to the discharge is observed to be higher at smaller gas spacing. The glow discharge plasma is tested to be effective in reducing the hydrophobicity of polyethylene film significantly.

  15. D-D nuclear fusion processes induced in polyethylene foams by TW Laser-generated plasma

    Directory of Open Access Journals (Sweden)

    Torrisi L.

    2015-01-01

    Full Text Available Deuterium-Deuterium fusion processes were generated by focusing the 3 TW PALS Laser on solid deuterated polyethylene targets placed in vacuum. Deuterium ion acceleration of the order of 4 MeV was obtained using laser irradiance Iλ2 ∼ 5 × 1016 W μm2/cm2 on the target. Thin and thick targets, at low and high density, were irradiated and plasma properties were monitored “on line” and “off line”. The ion emission from plasma was monitored with Thomson Parabola Spectrometer, track detectors and ion collectors. Fast semiconductor detectors based on SiC and fast plastic scintillators, both employed in time-of-flight configuration, have permitted to detect the characteristic 3.0 MeV protons and 2.45 MeV neutrons emission from the nuclear fusion reactions. From massive absorbent targets we have evaluated the neutron flux by varying from negligible values up to about 5 × 107 neutrons per laser shot in the case of foams targets, indicating a reaction rate of the order of 108 fusion events per laser shot using “advanced targets”.

  16. Dynamics of self-generated, large amplitude magnetic fields following high-intensity laser matter interaction

    CERN Document Server

    Sarri, G; Cecchetti, C A; Kar, S; Liseykina, T V; Yang, X H; Dieckmann, M E; Fuchs, J; Galimberti, M; Gizzi, L A; Jung, R; Kourakis, I; Osterholz, J; Pegoraro, F; Robinson, A P L; Romagnani, L; Willi, O; Borghesi, M

    2012-01-01

    The dynamics of magnetic fields with amplitude of several tens of Megagauss, generated at both sides of a solid target irradiated with a high intensity (? 1019W/cm2) picosecond laser pulse, has been spatially and temporally resolved using a proton imaging technique. The amplitude of the magnetic fields is sufficiently large to have a constraining effect on the radial expansion of the plasma sheath at the target surfaces. These results, supported by numerical simulations and simple analytical modeling, may have implications for ion acceleration driven by the plasma sheath at the rear side of the target as well as for the laboratory study of self-collimated high-energy plasma jets.

  17. Fluid model of the sheath in front of a floating electrode immersed in a magnetized plasma with oblique magnetic field: Some comments on ion source terms and ion temperature effects

    Energy Technology Data Exchange (ETDEWEB)

    Gyergyek, T. [University of Ljubljana, Faculty of Electrical Engineering, Tržaška 25, 1000 Ljubljana (Slovenia); Jožef Stefan Institute, Jamova 39, POB 100, 1000 Ljubljana (Slovenia); Kovačič, J. [Jožef Stefan Institute, Jamova 39, POB 100, 1000 Ljubljana (Slovenia)

    2015-04-15

    A one-dimensional fluid model of the magnetized plasma-wall transition region in front of a floating electrode immersed in a magnetized plasma with oblique magnetic field is presented. The Boltzmann relation is assumed for the electrons, while the positive ions obey the ion continuity and momentum exchange equation. The ions are assumed to be isothermal. By comparison with a two-fluid model, it is shown that assuming the Boltzmann relation for the electrons implies that there is no creation or annihilation of the electrons. Consequently, there should not be any creation and annihilation of the positive ions either. The models that assume the Boltzmann relation for the electrons and a non-zero ion source term at the same time are therefore inconsistent, but such models have nevertheless been used extensively by many authors. So, in this work, an extensive comparison of the results obtained using the zero source term on one hand and three different non-zero source terms on the other hand is made. Four different ion source terms are considered in total: the zero source term and three different non-zero ion source terms. When the zero source term is used, the model becomes very sensitive to the boundary conditions, and in some cases, the solutions exhibit large amplitude oscillations. If any of the three non-zero ion source terms is used, those problems are eliminated, but also the consistency of the model is broken. The model equations are solved numerically in the entire magnetized plasma-wall transition region. For zero ion temperature, the model can be solved even if a very small ion velocity is selected as a boundary condition. For finite ion temperature, the system of equations becomes stiff, unless the ion velocity at the boundary is increased slightly above the ion thermal velocity. A simple method how to find a solution with a very small ion velocity at the boundary also for finite ion temperature in the entire magnetized plasma-wall transition region is

  18. Synthesis and Sintering of Mg2Si Thermoelectric Generator by Spark Plasma Sintering

    Institute of Scientific and Technical Information of China (English)

    YANG Meijun; ZHANG Lianmeng; SHEN Qiang

    2008-01-01

    Raw Mg,Si powder were used to fabricate Mg2Si bulk thermoelectric generator by spark plasma sintering (SPS).The optimum parameters to synthesize pure Mg2Si powder were found to be 823 K,0 MPa,10 min with excessive content of 10wt% Mg from the stoichiometric Mg2Si.Mg2Si bulk was synthesized and densified simultaneously at low temperature (823 K) and high pressure (higher than 100 MPa) from the raw powder,but Mg,Si could not react completely,and the sample was not very dense with some microcracks on the surface.Then,Mg,Si powder reacted at 823 K,0 MPa,10 min in SPS chamber to form Mg2Si green compact,again sintered by SPS at 1023 K,20 MPa,5 min.The fabricated sample only contained MgESi phase with fully relative density.

  19. Further investigations on the Neutron Flux Generation in a Plasma Discharge Electrolytic Cell

    CERN Document Server

    Faccini, R; Polosa, A D; Angelone, M; Castagna, E; Lecci, S; Loreti, S; Pietropaolo, A; Pillon, M; Sansovini, M; Sarto, F; Violante, V; Bedogni, R; Esposito, A

    2014-01-01

    Our recent paper on the "Search for Neutron Flux Generation in a Plasma Discharge Electrolytic Cell" [1] has as main goal the validation of the experiment in Ref.[2]. As a follow-up, Ref.[3] moves a set of objections on our procedure and presents argumentations on why the experiments should not yield the same results. We collect here additional material and calculations that contribute to understanding the observed discrepancies. Furthermore we prove that the absence of signals from Indium activation detectors reported also for the experiment of Ref.[2] is a clear indication that neutron production does not occur. [1] R.Faccini et al arXiv:1310.4749 [2] D.Cirillo et al, Key Engineering Materials 495, 104 (2012). [3] A.Widom et al. arXiv:1311.2447

  20. Athermal Annealing of Semiconductors Using Shock Waves Generated by a Laser-Plasma

    Science.gov (United States)

    Fischer, R. P.; Grun, J.; Mignogna, R.; Donnelly, D. W.; Covington, B.

    2004-07-01

    We are investigating an annealing technique in which shock or sound waves generated by a laser-plasma are used to anneal a semiconductor. The athermal annealing (AA) process occurs very rapidly, which results in almost no diffusion of. dopants. A HeNe laser is used to measure the reflectivity of the silicon as a function of time. Measurements show that the annealing occurs in 1.8 μsec, which is the acoustic time scale for waves to propagate from the focus through the AA region. A knife-edge technique is employed to study acoustic waves in the sample by measuring the deflection of the probe beam. Initial results for aluminum samples irradiated at modest laser intensities (200 mJ, 50 nsec) show well-defined surface acoustic waves. However, both silicon and GaAs have more complicated structure which resemble Lamb (plate) waves.

  1. Electron Thermal Capacity in Plasma Generated at Cavitation Bubble Collapse in D-acetone

    CERN Document Server

    Kostenko, B F

    2004-01-01

    The latest experimental data on nuclear reaction product registration at cavitation bubble collapse in deuterated acetone (C$_3$D$_6$O) still argue in favour of existence of a new possibility to realize the thermonuclear synthesis. Theoretical description based on numerical solution of simultaneous conservation equations for gaseous and liquid phases also confirms this possibility, although it requires further more precise definitions. In particular, description of electron degrees of freedom in very dense nonequilibrium plasma generated at the final stage of bubble collapse needs specification. In the present paper, calculations of electron thermal capacity in the deuterated acetone multiple ionization region at electron temperatures $T_e \\simeq 10^4 $ K and above and compression range $\\rho/\\rho_0 \\simeq 1 \\div 100$ have been fulfilled on the basis of direct numerical solution of equation for chemical potential.

  2. Upgrade of the IGN-14 neutron generator for research on detection of fusion-plasma products

    Energy Technology Data Exchange (ETDEWEB)

    Igielski, Andrzej; Kurowski, Arkadiusz; Janik, Władysław; Gabańska, Barbara; Woźnicka, Urszula, E-mail: Urszula.Woznicka@ifj.edu.pl

    2015-10-11

    The fast neutron generator (IGN-14) at the Institute of Nuclear Physics of the Polish Academy of Sciences (IFJ PAN) in Kraków (Poland) is a laboratory multi-purpose experimental device. Neutrons are produced in a beam-target D–D or D–T reactions. A new vacuum chamber installed directly to the end of the ion guide of IGN-14 makes it possible to measure not only neutrons but also alpha particles in the presence of a mixed radiation field of other accompanying reaction products. The new experimental setup allows test detectors dedicated to spectrometric measurements of thermonuclear fusion reaction products. - Highlights: • Nuclear reactions at the target correspond to the fusion reaction in hot plasma. • Measuring vacuum chamber has been built and installed. • Spatial distribution of the particle mixed fields in chamber was calculated. • New experimental setup for tests of detectors dedicated to measure of fusion reaction products.

  3. Predictions for the energy loss of light ions in laser-generated plasmas at low and medium velocities.

    Science.gov (United States)

    Cayzac, W; Bagnoud, V; Basko, M M; Blažević, A; Frank, A; Gericke, D O; Hallo, L; Malka, G; Ortner, A; Tauschwitz, An; Vorberger, J; Roth, M

    2015-11-01

    The energy loss of light ions in dense plasmas is investigated with special focus on low to medium projectile energies, i.e., at velocities where the maximum of the stopping power occurs. In this region, exceptionally large theoretical uncertainties remain and no conclusive experimental data are available. We perform simulations of beam-plasma configurations well suited for an experimental test of ion energy loss in highly ionized, laser-generated carbon plasmas. The plasma parameters are extracted from two-dimensional hydrodynamic simulations, and a Monte Carlo calculation of the charge-state distribution of the projectile ion beam determines the dynamics of the ion charge state over the whole plasma profile. We show that the discrepancies in the energy loss predicted by different theoretical models are as high as 20-30%, making these theories well distinguishable in suitable experiments.

  4. Attenuation of low-frequency electromagnetic wave in the thin sheath enveloping a high-speed vehicle upon re-entry

    Science.gov (United States)

    Liu, DongLin; Li, XiaoPing; Liu, YanMing; Xie, Kai; Bai, BoWen

    2017-02-01

    Low-frequency (LF) electromagnetic (EM) waves are suggested as potentially solving "radio blackout" caused by a plasma sheath enveloping a high-speed vehicle on re-entry. However, the traditional plasma absorption theory neglects the fact that the plasma sheath is electrically small compared to LF EM wavelengths. To understand clearly the attenuation of such waves through the plasma sheath, different attenuation mechanisms for the electric field (SE) and magnetic field (SH) were studied using the equivalent circuit approach. Analytical expressions were derived by modeling the plasma sheath as a spherical shell, and numerical simulations were performed to validate the effectiveness of the expressions. SE and SH are calculated for various plasma parameter settings; the EM wave attenuations obtained from plasma absorption theory are used for comparison. Results show that, instead of SE and SH being equal in the plasma absorption theory, SE and SH are no longer the same for electrically small sizes. Whereas |SH| is close to that from plasma absorption theory, |SE| is much higher. Further analysis shows that |SH| is a function of the ratio of electron density (ne) and collision frequency (ve) and increases with increasing ne/ve. Numerical simulations with radio-attenuation-measurement-C-like vehicle's plasma sheath parameters are performed and the results show that the magnetic field attenuation in the front part of the vehicle is much lower than in the rear. So it is suggested to place the magnetic loop antenna in the very front part of the vehicle. Finally, SH at different frequencies are calculated using plasma sheath parameter values simulating the re-entry phase of a radio-attenuation measurement-C vehicle and results show that such a vehicle might overcome radio blackout during the entire re-entry phase if systems operating below 3 MHz and above the L-band are combined with a lower-frequency system working below Earth's ionosphere and a higher-frequency system

  5. Control of Reactive Species Generated by Low-frequency Biased Nanosecond Pulse Discharge in Atmospheric Pressure Plasma Effluent

    Science.gov (United States)

    Takashima, Keisuke; Kaneko, Toshiro

    2016-09-01

    The control of hydroxyl radical and the other gas phase species generation in the ejected gas through air plasma (air plasma effluent) has been experimentally studied, which is a key to extend the range of plasma treatment. Nanosecond pulse discharge is known to produce high reduced electric field (E/N) discharge that leads to efficient generation of the reactive species than conventional low frequency discharge, while the charge-voltage cycle in the low frequency discharge is known to be well-controlled. In this study, the nanosecond pulse discharge biased with AC low frequency high voltage is used to take advantages of these discharges, which allows us to modulate the reactive species composition in the air plasma effluent. The utilization of the gas-liquid interface and the liquid phase chemical reactions between the modulated long-lived reactive species delivered from the air plasma effluent could realize efficient liquid phase chemical reactions leading to short-lived reactive species production far from the air plasma, which is crucial for some plasma agricultural applications.

  6. Use of miniature, single-wire, sheathed thermocouples

    Science.gov (United States)

    Glawe, G. E.; Holanda, R.; Krause, L. N.

    1977-01-01

    Temperature measurement with small thermocouples is improved by device. Each wire is sheathed separately which increases the interelement insulation by factor of 2 1/2. Each wire in its separate sheath can be brought to junction by independent paths.

  7. Neutron generator for BNCT based on high current ECR ion source with gyrotron plasma heating.

    Science.gov (United States)

    Skalyga, V; Izotov, I; Golubev, S; Razin, S; Sidorov, A; Maslennikova, A; Volovecky, A; Kalvas, T; Koivisto, H; Tarvainen, O

    2015-12-01

    BNCT development nowadays is constrained by a progress in neutron sources design. Creation of a cheap and compact intense neutron source would significantly simplify trial treatments avoiding use of expensive and complicated nuclear reactors and accelerators. D-D or D-T neutron generator is one of alternative types of such sources for. A so-called high current quasi-gasdynamic ECR ion source with plasma heating by millimeter wave gyrotron radiation is suggested to be used in a scheme of D-D neutron generator in the present work. Ion source of that type was developed in the Institute of Applied Physics of Russian Academy of Sciences (Nizhny Novgorod, Russia). It can produce deuteron ion beams with current density up to 700-800 mA/cm(2). Generation of the neutron flux with density at the level of 7-8·10(10) s(-1) cm(-2) at the target surface could be obtained in case of TiD2 target bombardment with deuteron beam accelerated to 100 keV. Estimations show that it is enough for formation of epithermal neutron flux with density higher than 10(9) s(-1) cm(-2) suitable for BNCT. Important advantage of described approach is absence of Tritium in the scheme. First experiments performed in pulsed regime with 300 mA, 45 kV deuteron beam directed to D2O target demonstrated 10(9) s(-1) neutron flux. This value corresponds to theoretical estimations and proofs prospects of neutron generator development based on high current quasi-gasdynamic ECR ion source.

  8. High-order harmonic generation in a plasma plume of in situ laser-produced silver nanoparticles

    Science.gov (United States)

    Singhal, H.; Ganeev, R. A.; Naik, P. A.; Chakera, J. A.; Chakravarty, U.; Vora, H. S.; Srivastava, A. K.; Mukherjee, C.; Navathe, C. P.; Deb, S. K.; Gupta, P. D.

    2010-10-01

    The results of the experimental study of high-order harmonic generation (HHG) from the interaction of 45-fs Ti:sapphire laser pulses with plasma plumes of Ag nanoparticles produced in situ are presented in this article. The nanoparticles were generated by the interaction of 300-ps, 20-mJ laser pulses with bulk silver targets at an intensity of ~1×1013W/cm2. The spectral characteristics of the HHG from nanoparticles produced in situ are compared with the HHG from monoparticle plasma plumes and with the HHG from preformed nanoparticle-containing plasma plumes. The cutoff harmonic order generated using the in situ silver nanoparticles is at the 21st harmonic order.

  9. Macroscopic motion of sheath-connected blobs in magnetic fields with arbitrary topology

    Science.gov (United States)

    Stepanenko, A. A.; Lee, W.; Krasheninnikov, S. I.

    2017-01-01

    In this study, macroscopic motion of sheath-connected blobs in magnetic fields, having arbitrary topology of the field lines and unfrozen in plasma, is analyzed within the electrostatic limit. Two distinct cases of magnetic configurations, with small and large curvature of the field lines, are considered and the criterion to discern them is deduced. For magnetic configurations with small curvature of the field lines, it is demonstrated that asymmetry of plasma distribution at the blob ends can drive macroscopic motion of a filament due to formation of unequal sheath potentials and establishing the effective Boltzmann potential. For a specific case of magnetic fields with small curvature of the field lines and identical metrics at the sheaths, we show that macroscopic motion of a plasma filament is determined by an effective electrostatic potential, which remains constant in time. For magnetic configurations with large curvature of the field lines, it is shown that motion of sufficiently large blobs is governed by integral distribution of plasma and magnetic field parameters along the field lines leading to blob adjusting its shape and position to the lead of the magnetic field lines in the course of its motion, whereas propagation of small and medium sized blobs can be represented as mutually independent motion of filament transverse cross-sections across the magnetic field lines. The qualitative conclusions on regularities of filament motion are supplied with numerical simulations of blob dynamics in two cases of tokamak-like magnetic fields with sheared and non-sheared field lines.

  10. Effect of plasma jet diameter on the efficiency of reactive oxygen and nitrogen species generation in water

    Science.gov (United States)

    Oh, Jun-Seok; Kakuta, Maito; Furuta, Hiroshi; Akatsuka, Hiroshi; Hatta, Akimitsu

    2016-06-01

    The plasma jet generation of reactive oxygen and nitrogen species (RONS) in solution is important in biology, medicine, and disinfection. Studies using a wide variety of plasma jet devices have been carried out for this purpose, making it difficult to compare the performance between devices. In this study, we compared the efficiency of RONS generation in deionized (DI) water between 3.7-mm- and 800-µm-sized helium (He) plasma jets (hereafter mm-jet and µm-jet, respectively) at different treatment distances and times. The efficiency of RONS generation was determined by considering the total amount of RONS generated in DI water with respect to the input energy and gas consumption. We found that the mm-jet generated 20% more RONS in the DI water than the µm-jet at the optimized distance. However, when the input power and He gas consumption were taken into account, we discovered that the µm-jet was 5 times more efficient in generating RONS in the DI water. Under the parameters investigated in this study, the concentration of RONS continued to increase as a function of treatment time (up to 30 min). However treatment distance had a marked effect on the efficiency of RONS generation: treatment distances of 25 and 30 mm were optimal for the mm-jet and µm-jet, respectively. Our method of comparing the efficiency of RONS generation in solution between plasma jets could be used as a reference protocol for the development of efficient plasma jet sources for use in medicine, biology, and agriculture.

  11. Generation of Volatile Cadmium and Zinc Species Based on Solution Anode Glow Discharge Induced Plasma Electrochemical Processes.

    Science.gov (United States)

    Liu, Xing; Liu, Zhifu; Zhu, Zhenli; He, Dong; Yao, Siqi; Zheng, Hongtao; Hu, Shenghong

    2017-03-21

    In this study, a novel high efficiency vapor generation strategy was proposed on the basis of solution anode glow discharge for the determination of Cd and Zn by atomic fluorescence spectrometry. In this approach, a glow discharge microplasma was acted as a gaseous cathode to initiate the plasma electrochemical vapor generation of Cd and Zn. Cadmium/zinc ions could be converted into molecular species efficiently at the plasma-liquid interface from a supporting electrolyte (HCl, pH = 3.2). It was found that the overall efficiency of the plasma electrochemical vapor generation (PEVG) system was much higher than the conventional electrochemical hydride generation (EcHG) and HCl-KBH4 system. With no requirement for other reducing reagents, this new approach enabled us to detect Cd and Zn with detection limits as low as 0.003 μg L(-1) for Cd and 0.3 μg L(-1) for Zn. Good repeatability (relative standard deviation (RSD), n = 5) was 2.4% for Cd (0.1 μg L(-1)) and 1.7% for Zn (10 μg L(-1)) standard. The accuracy of the proposed method was successfully validated through analysis of cadmium in reference material of stream sediment (GBW07311), soil (GBW07401), rice (GBW10045), and zinc in a simulated water sample (GSB 07-1184-2000). Replacing a metal electrode with a plasma offers the advantage of eliminating potential interactions between the species in liquid and the electrode, which solves the issues associated with electrode encountered in conventional EcHG. The ability to initiate electrochemical vapor generation reactions at the plasma-liquid interface opens a new approach for chemical vapor generation based on interactions between plasma gas-phase electrons and solutions.

  12. Low pressure arc discharges with hollow cathodes and their using in plasma generators and charged particle sources

    CERN Document Server

    Vintizenko, L G; Koval, N N; Tolkachev, V S; Lopatin, I V; Shchanin, P M

    2001-01-01

    Paper presents the results of investigation into arc discharges with a hollow cathode generating 10 sup 1 sup 0 -10 sup 1 sup 2 concentration gas-discharge plasma in essential (approx 1 m sup 3) volumes at low (10 sup - sup 2 -1 Pa) pressures and up to 200 A discharge currents. One studied design of discharge systems with heated and cold cathodes their peculiar features, presented the parameters of plasma generators and of charged particle sources based on arc discharges and discussed, as well, the problems of more rational application of those systems in the processes for surface modification of solids

  13. High-impedance wire grid method to study spatiotemporal behavior of hot electron clump generated in a plasma.

    Science.gov (United States)

    Terasaka, K; Yoshimura, S; Kato, Y; Furuta, K; Aramaki, M; Morisaki, T; Tanaka, M Y

    2014-11-01

    High-impedance Wire Grid (HIWG) detector has been developed to study spatiotemporal behavior of a hot electron clump generated in an electron cyclotron resonance (ECR) plasma. By measuring the floating potentials of the wire electrodes, and generating structure matrix made of geometrical means of the floating potentials, the HIWG detector reconstructs the spatial distribution of high-temperature electron clump at an arbitrary instant of time. Time slices of the spike event in floating potential revealed the growth and decay process of a hot spot occurs in an ECR plasma.

  14. Modeling of defect generation during plasma etching and its impact on electronic device performance—plasma-induced damage

    Science.gov (United States)

    Eriguchi, Koji

    2017-08-01

    The increasing demand for the higher performance of ultra-large-scale integration (ULSI) circuits requires the aggressive shrinkage of device feature sizes in accordance with the scaling law. Plasma processing plays an important role in achieving fine patterns with anisotropic features in metal-oxide-semiconductor field-effect transistors (MOSFETs). This article comprehensively addresses the negative aspects of plasma processing, i.e. plasma process-induced damage, in particular, the defect creation induced by ion bombardment in Si substrates during plasma etching. The ion bombardment damage forms a surface modified region and creates localized defect structures. Modeling and characterization techniques of the ion bombardment damage in Si substrates are overviewed. The thickness of the modified region, i.e. the damaged layer, is modeled by a modified range theory and the density of defects is characterized by photoreflectance spectroscopy (PRS) and the capacitance-voltage technique. The effects of plasma-induced damage (PID) on MOSFET performance are presented. In addition, some of the emerging topics—the enhanced parameter variability in ULSI circuits and recovery of the damage—are discussed as future perspectives.

  15. Whistler Wave generation by an electron beam in a LAPTAG Plasma Physics experiment

    Science.gov (United States)

    Bridges, Gabriel; Pribyl, Patrick; Gekelman, Walter; Thomas, Sam; Birge-Lee, Henry; Wise, Joe; Katz, Cami; Baker, Bob; Marmie, Ken; Wolman, Ben; Buckley-Bonnano, Samuel

    2015-11-01

    A multi-grid pulsed electron beam (Ebeam = 1-4.8 KV, area =1.32 cm2, τ >5 μs) is inserted into a background plasma (He, n = 5X1010 cm3, B0z = 80 G, L = 1.5 m, dia = 40 cm). The pulsed electron beam power supply, can generate up to 4800 Volts at 10 Amps and was constructed by the LAPTAG high school students. The beam can be oriented at any angle with respect to the background magnetic field. The pulsed beam generates whistler waves by Cherenkov radiation. The waves are detected with 3 axis magnetic pickup probes which can be moved in planes transverse or parallel to the background magnetic field under computer control. The whistler wave pattern is used to determine the wavenumber k and Fourier analysis of the signal determines ω. The wave dispersion relation is compared to theory. Work done at BaPSF at UCLA and supported by NSF and DOE.

  16. Injection inside the paraneural sheath of the sciatic nerve

    DEFF Research Database (Denmark)

    Andersen, Henning Lykke; Andersen, Sofie L; Tranum-Jensen, Jørgen

    2012-01-01

    There exists little anatomic knowledge regarding the structure and sonographic features of the sheath enveloping the sciatic nerve in the popliteal fossa. We investigated the spread of an injection inside the sheath to (1) determine whether the sheath is a structure distinct from the nerve or part...

  17. Negative plasma potential relative to electron-emitting surfaces.

    Science.gov (United States)

    Campanell, M D

    2013-09-01

    Most works on plasma-wall interaction predict that with strong electron emission, a nonmonotonic "space-charge-limited" (SCL) sheath forms where the plasma potential is positive relative to the wall. We show that a fundamentally different sheath structure is possible where the potential monotonically increases toward a positively charged wall that is shielded by a single layer of negative charge. No ion-accelerating presheath exists in the plasma and the ion wall flux is zero. An analytical solution of the "inverse sheath" regime is demonstrated for a general plasma-wall system where the plasma electrons and emitted electrons are Maxwellian with different temperatures. Implications of the inverse sheath effect are that (a) the plasma potential is negative, (b) ion sputtering vanishes, (c) no charge is lost at the wall, and (d) the electron energy flux is thermal. To test empirically what type of sheath structure forms under strong emission, a full plasma bounded by strongly emitting walls is simulated. It is found that inverse sheaths form at the walls and ions are confined in the plasma. This result differs from past particle-in-cell simulation studies of emission which contain an artificial "source sheath" that accelerates ions to the wall, leading to a SCL sheath at high emission intensity.

  18. Spatial proximity effects on the excitation of sheath RF voltages by evanescent slow waves in the ion cyclotron range of frequencies

    Science.gov (United States)

    Colas, Laurent; Lu, Ling-Feng; Křivská, Alena; Jacquot, Jonathan; Hillairet, Julien; Helou, Walid; Goniche, Marc; Heuraux, Stéphane; Faudot, Eric

    2017-02-01

    We investigate theoretically how sheath radio-frequency (RF) oscillations relate to the spatial structure of the near RF parallel electric field E ∥ emitted by ion cyclotron (IC) wave launchers. We use a simple model of slow wave (SW) evanescence coupled with direct current (DC) plasma biasing via sheath boundary conditions in a 3D parallelepiped filled with homogeneous cold magnetized plasma. Within a ‘wide-sheath’ asymptotic regime, valid for large-amplitude near RF fields, the RF part of this simple RF  +  DC model becomes linear: the sheath oscillating voltage V RF at open field line boundaries can be re-expressed as a linear combination of individual contributions by every emitting point in the input field map. SW evanescence makes individual contributions all the larger as the wave emission point is located closer to the sheath walls. The decay of |V RF| with the emission point/sheath poloidal distance involves the transverse SW evanescence length and the radial protrusion depth of lateral boundaries. The decay of |V RF| with the emitter/sheath parallel distance is quantified as a function of the parallel SW evanescence length and the parallel connection length of open magnetic field lines. For realistic geometries and target SOL plasmas, poloidal decay occurs over a few centimeters. Typical parallel decay lengths for |V RF| are found to be smaller than IC antenna parallel extension. Oscillating sheath voltages at IC antenna side limiters are therefore mainly sensitive to E ∥ emission by active or passive conducting elements near these limiters, as suggested by recent experimental observations. Parallel proximity effects could also explain why sheath oscillations persist with antisymmetric strap toroidal phasing, despite the parallel antisymmetry of the radiated field map. They could finally justify current attempts at reducing the RF fields induced near antenna boxes to attenuate sheath oscillations in their vicinity.

  19. An atmospheric-pressure, high-aspect-ratio, cold micro-plasma.

    Science.gov (United States)

    Lu, X; Wu, S; Gou, J; Pan, Y

    2014-01-01

    An atmospheric pressure nonequilibrium Ar micro-plasma generated inside a micro-tube with plasma radius of 3 μm and length of 2.7 cm is reported. The electron density of the plasma plume estimated from the broadening of the Ar emission line reaches as high as 3 × 10(16) cm(-3). The electron temperature obtained from CR model is 1.5 ev while the gas temperature of the plasma estimated from the N2 rotational spectrum is close to room temperature. The sheath thickness of the plasma could be close to the radius of the plasma. The ignition voltages of the plasma increase one order when the radius of the dielectric tube is decreased from 1 mm to 3 μm.

  20. STRETCHY ELECTRONICS. Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles.

    Science.gov (United States)

    Liu, Z F; Fang, S; Moura, F A; Ding, J N; Jiang, N; Di, J; Zhang, M; Lepró, X; Galvão, D S; Haines, C S; Yuan, N Y; Yin, S G; Lee, D W; Wang, R; Wang, H Y; Lv, W; Dong, C; Zhang, R C; Chen, M J; Yin, Q; Chong, Y T; Zhang, R; Wang, X; Lima, M D; Ovalle-Robles, R; Qian, D; Lu, H; Baughman, R H

    2015-07-24

    Superelastic conducting fibers with improved properties and functionalities are needed for diverse applications. Here we report the fabrication of highly stretchable (up to 1320%) sheath-core conducting fibers created by wrapping carbon nanotube sheets oriented in the fiber direction on stretched rubber fiber cores. The resulting structure exhibited distinct short- and long-period sheath buckling that occurred reversibly out of phase in the axial and belt directions, enabling a resistance change of less than 5% for a 1000% stretch. By including other rubber and carbon nanotube sheath layers, we demonstrated strain sensors generating an 860% capacitance change and electrically powered torsional muscles operating reversibly by a coupled tension-to-torsion actuation mechanism. Using theory, we quantitatively explain the complementary effects of an increase in muscle length and a large positive Poisson's ratio on torsional actuation and electronic properties.