WorldWideScience

Sample records for plasma sheath formation

  1. Sheath formation of a plasma containing multiply charged ions, cold and hot electrons, and emitted electrons

    International Nuclear Information System (INIS)

    You, H.J.

    2012-01-01

    It is quite well known that ion confinement is an important factor in an electron cyclotron resonance ion source (ECRIS) as it is closely related to the plasma potential. A model of sheath formation was extended to a plasma containing multiply charged ions (MCIs), cold and hot electrons, and secondary electrons emitted either by MCIs or hot electrons. In the model, a modification of the 'Bohm criterion' was given, the sheath potential drop and the critical emission condition were also analyzed. It appears that the presence of hot electrons and emitted electrons strongly affects the sheath formation so that smaller hot electrons and larger emission current result in reduced sheath potential (or floating potential). However the sheath potential was found to become independent of the emission current J when J > J c , (where J c is the critical emission current. The paper is followed by the associated poster

  2. Communication through plasma sheaths

    International Nuclear Information System (INIS)

    Korotkevich, A. O.; Newell, A. C.; Zakharov, V. E.

    2007-01-01

    We wish to transmit messages to and from a hypersonic vehicle around which a plasma sheath has formed. For long distance transmission, the signal carrying these messages must be necessarily low frequency, typically 2 GHz, to which the plasma sheath is opaque. The idea is to use the plasma properties to make the plasma sheath appear transparent

  3. Plasma sheath criterion in thermal electronegative plasmas

    International Nuclear Information System (INIS)

    Ghomi, Hamid; Khoramabadi, Mansour; Ghorannevis, Mahmod; Shukla, Padma Kant

    2010-01-01

    The sheath formation criterion in electronegative plasma is examined. By using a multifluid model, it is shown that in a collisional sheath there will be upper as well as lower limits for the sheath velocity criterion. However, the parameters of the negative ions only affect the lower limit.

  4. Electromagnetic particle in cell modeling of the plasma focus: Current sheath formation and lift off

    International Nuclear Information System (INIS)

    Seng, Y. S.; Lee, P.; Rawat, R. S.

    2014-01-01

    The shaping and formation of the current sheath takes place in the breakdown phase of a plasma focus device and critically controls the device performance. Electrostatic particle in cell codes, with magnetic effects ignored, have been used to model the breakdown phase. This Letter reports the successful development and implementation of an electromagnetic particle in cell (EMPIC) code, including magnetic effects self-consistently, to simulate the breakdown phase; from the ionization, localization and gliding discharge along the insulator to the time instant of current sheath lift off. The magnetic field was found to be appreciable from the time the current sheath came into contact with the anode with increased local current, initiating the voltage breakdown of the device as a result

  5. Influence of vacuum space on formation of potential sheath in plasmas

    International Nuclear Information System (INIS)

    Uhm, H.S.

    1997-01-01

    Properties of potential sheaths developed in plasmas are investigated in terms of the plasma Debye length and the dimension of vacuum space. Biased plasma potential and the potential profile depend very sensitively on the geometrical configuration of plasma and vacuum space. The potential sheath is never developed near electrodes in high-density plasmas where the Debye length is much less than the dimension of the vacuum space. In this case, most of the potential drops occur in the vacuum space and almost no electric field exists inside the plasma. Parametric investigation of the potential sheath in terms of the vacuum-space and plasma dimensions is carried out. (orig.)

  6. Barrier cell sheath formation

    International Nuclear Information System (INIS)

    Kesner, J.

    1980-04-01

    The solution for electrostatic potential within a simply modeled tandem mirror thermal barrier is seen to exhibit a sheath at each edge of the cell. The formation of the sheath requires ion collisionality and the analysis assmes that the collisional trapping rate into the barrier is considerably slower than the barrier pump rate

  7. Stability of the plasma sheath

    International Nuclear Information System (INIS)

    Franklin, R.N.

    1979-12-01

    The stability of a collisionless sheath joined to a plasma in the presence of secondary emission of electrons from the sheath boundary is examined in the fluid approximation. Instability is unlikely to occur under floating conditions but if significant currents flow corresponding to increased wall-plasma potentials the system can go unstable. (author)

  8. Revisiting the plasma sheath—dust in plasma sheath

    Energy Technology Data Exchange (ETDEWEB)

    Das, G. C. [Mathematical Science Division, IASST, Guwahati 781014 (India); Deka, R.; Bora, M. P., E-mail: mpbora@gauhati.ac.in [Physics Department, Gauhati University, Guwahati 781014 (India)

    2016-04-15

    In this work, we have considered the formation of warm plasma sheath in the vicinity of a wall in a plasma with considerable presence of dust particles. As an example, we have used the parameters relevant in case of plasma sheath formed around surfaces of various solid bodies in space, though the results obtained in this work can be applied to any other physical situation such as laboratory plasma. In the ion-acoustic time scale, we neglect the dust dynamics. The dust particles affect the sheath dynamics by affecting the Poisson equation which determines the plasma potential in the sheath region. It is important to note that our calculations are valid only when the amount of dust particles is not sufficient so as to affect the plasma dynamics in the dust-acoustic time scale, but enough to affect the plasma sheath. We have assumed the current to a dust particle to be balanced throughout the analysis. This makes the grain potential dependent on plasma potential, which is then incorporated into the Poisson equation. The resultant numerical model becomes an initial value problem, which is described by a 1-D integro-differential equation, which is then solved self-consistently by incorporating the change in plasma potential caused by inclusion of the dust potential in the Poisson equation.

  9. Plasma sheath in non-Maxwellian plasma

    International Nuclear Information System (INIS)

    Shimizu, Takuo; Horigome, Takashi

    1992-01-01

    Reviewing many theoretical and experimental works on the electron-energy distributions (EEDF) of various plasmas, we point out that many plasmas have EEDF of non-Maxwellian in shape. Therefore, the recent treatment of plasma sheath using the Maxwell-Boltzmann distribution approximation should be improved. To do this, we have adopted Rutcher's standard distribution as a generalized form in place of the traditional Maxwellian, and found that the minimum energy of ions entering the sheath edge (Bohm's criterion) varies largely, and have also shown the variation of Debye length with the shape of EEDF. The length is the most important parameter to proceed with more detailed analysis on plasma-sheaths, and also to control them in the future. (author)

  10. The electrostatic cylindrical sheath in a plasma

    International Nuclear Information System (INIS)

    Wang Chunhua; Sun Xiaoxia; Bai Dongxue

    2004-01-01

    The electrostatic sheath with a cylindrical geometry in an ion-electron plasma is investigated. Assuming a Boltzmann response to electrons and cold ions with bulk flow, it is shown that the radius of the cylindrical geometry do not affect the sheath potential significantly. The authors also found that the sheath potential profile is steeper in the cylindrical sheath compared to the slab sheath. The distinct feature of the cylindrical sheath is that the ion density distribution is not monotonous. The sheath region can be divided into three regions, two ascendant regions and one descendant region. (author)

  11. Ion acceleration in the plasma source sheath

    International Nuclear Information System (INIS)

    Birdsall, C.K.

    1986-01-01

    This note is a calculation of the potential drop for a planar plasma source, across the source sheath, into a uniform plasma region defined by vector E = 0 and/or perhaps ∂ 2 PHI/∂ x 2 = 0. The calculation complements that of Bohm who obtained the potential drop at the other end of a plasma, at a planar collector sheath. The result is a relation between the source ion flux and the source sheath potential drop and the accompanying ion acceleration. This planar source sheath ion acceleration mechanism (or that from a distributed source) can provide the pre-collector-sheath ion acceleration as found necessary by Bohm. 3 refs

  12. Non-Maxwellian plasma sheaths

    International Nuclear Information System (INIS)

    Haines, M.G.

    1998-01-01

    There is much experimental evidence that heat flux to divertor plates or to limiters is very asymmetric. For example, Lowry made measurements on poloidal limiters in JET, Stangeby and McCracken reported asymmetries in several experiments. In 1991 Haines considered the effects on the Child-Langmuir sheaths of having a net current flow. It was found that a sheath that receives more ions than electrons receives more energy flux than a sheath that receives more electrons than ions. We now extend the model to include for the electrons departures from a Maxwellian distribution arising from a net current flow, heat flow and thermoelectric effects in the scrape-off layer (SOL). It is envisaged that a net current flows in the SOL due to applied or induced electric fields, and is of a magnitude similar to that in the adjacent bulk plasma, though reduced due to the lower temperature in the SOL. We employ conventional linear transport theory eg. Braginskii, Epperlein and Haines in which the ions are a stationary Maxwellian. (orig.)

  13. Anode Sheath Switching in a Carbon Nanotube Arc Plasma

    International Nuclear Information System (INIS)

    Fetterman, Abe; Raitses, Yevgeny; Keidar, Michael

    2008-01-01

    The anode ablation rate is investigated as a function of anode diameter for a carbon nanotube arc plasma. It is found that anomalously high ablation occurs for small anode diameters. This result is explained by the formation of a positive anode sheath. The increased ablation rate due to this positive anode sheath could imply greater production rate for carbon nanotubes.

  14. How to Patch Active Plasma and Collisionless Sheath: Practical Guide

    International Nuclear Information System (INIS)

    Kaganovich, Igor D.

    2002-01-01

    Most plasmas have a very thin sheath compared with the plasma dimension. This necessitates separate calculations of the plasma and sheath. The Bohm criterion provides the boundary condition for calculation of plasma profiles. To calculate sheath properties, a value of electric field at the plasma-sheath interface has to be specified in addition to the Bohm criterion. The value of the boundary electric field and robust procedure to approximately patch plasma and collisionless sheath with a very good accuracy are reported

  15. Simulations of rf-driven sheath formation in two dimensions

    International Nuclear Information System (INIS)

    Riyopoulos, S.; Grossmann, W.; Drobot, A.; Kress, M.

    1992-01-01

    The results from two-dimensional particle simulations of sheath formation around periodic metal arrays placed inside magnetized plasmas and driven by oscillating voltages are reported. The main goal is the modeling of the plasma interaction with the Faraday bars surrounding the antennas during ion cyclotron tokamak heating. The study of the time-averaged potentials shows that the two-dimensional sheath structure depends on both the sheath length-to-thickness ratio and the inclination of the magnetic lines. The equipotential surfaces form closed, nested cells between adjacent bars. When the magnetic lines are nearly perpendicular to the potential gradients, the ion motion is dominated by the ExB drift, and ion streamlines form vortices around the equipotentials. At larger inclinations of the magnetic lines, the flow decouples from the equipotentials and ion transport is mainly along the potential gradients. The critical angle for the transition from vortex circulation to field aligned flow is computed. The effects of the cross-field ion transport on the sheath properties are discussed. It is shown that the sheath length and the magnetic line inclination affect the sheath scaling in the two-dimensional case. The one-dimensional theory results are recovered in the limit of high length-to-thickness ratio and large inclination of the magnetic lines

  16. ICRF antenna Faraday shield plasma sheath model

    International Nuclear Information System (INIS)

    Whealton, J.H.; Ryan, P.M.; Raridon, R.J.

    1990-01-01

    A two-dimensional nonlinear formulation that explicitly considers the plasma edge near a Faraday shield in a self-consistent manner is used in the modeling of the ion motion for a Faraday shield concept and model suggested by Perkins. Two models are considered that may provide significant insight into the generation of impurities for ion cyclotron resonance heating (ICRH) antennas. In one of these models a significant sheath periodically forms next to the Faraday screen, with ion acoustic waves heating the ions in the plasma. (orig.)

  17. The plasma-sheath boundary region

    International Nuclear Information System (INIS)

    Franklin, R N

    2003-01-01

    In this review an attempt is made to give a broad coverage of the problem of joining plasma and sheath over a wide range of physical conditions. We go back to the earliest works quoting them, where appropriate, to understand what those who introduced the various terms associated with the structure of the plasma-sheath had in mind. We try to bring out the essence of the insights that have been gained subsequently, by quoting from the literature selectively, indicating how misunderstandings have arisen. In order to make it accessible to the generality of those currently working in low temperature plasmas we have sought to avoid mathematical complexity but retain physical insight, quoting from published work where appropriate. Nevertheless, in clarifying my own ideas I have found it necessary to do additional original work in order to give a consistent picture. In this way I have sought to bring together work in the late 1920s, the 1960s, and now mindful of the commercial importance of plasma processing, work over the past 15 years that adds to the general understanding. (topical review)

  18. Axial sheath dynamics in a plasma focus

    International Nuclear Information System (INIS)

    Soliman, H.M.; El-Khalafawy, T.A.; Masoud, M.M.

    1990-01-01

    This paper presents the result of investigation with a 10 kJ Mather type plasma focus. It is operated in hydrogen gas at ambient pressure of 0.15--1 torr and charging voltage of 8--11 kV. Radial distribution of the current sheath density with axial distance has been estimated. Plasma rotation in the expansion chamber in the absence of external magnetic field has been detected. A plasma flare from the plasma focus region propagating in the radial direction has been observed. Streak photography shows two plasma streams flowing simultaneously out of the muzzle. The mean energy of the electron beam ejected from the pinch region of the focused plasma, was measured by retarding field analyzer to be 0.32 keV. The electron temperature of the plasma focus at peak compression was determined by measuring the X-ray intensity as a function of absorber thickness at a distance of 62 cm from the focus. The electron temperature has been found to 3 keV

  19. Controlling laser ablation plasma with external electrodes. Application to sheath dynamics study and beam physics

    International Nuclear Information System (INIS)

    Isono, Fumika; Nakajima, Mitsuo; Hasegawa, Jun; Kawamura, Tohru; Horioka, Kazuhiko

    2013-01-01

    The potential of laser ablation plasma was controlled successfully by using external ring electrodes. We found that an electron sheath is formed at the plasma boundary, which plays an important role in the potential formation. When the positively biased plasma reaches a grounded grid, electrons in the plasma are turned away and ions are accelerated, which leads to the formation of a virtual anode between the grid and an ion probe. We think that this device which can raise the plasma potential up to order of kV can be applied to the study of sheath dynamics and to a new type of ion beam extraction. (author)

  20. Influence of plasma density and plasma sheath dynamics on the ion implantation by plasma immersion technique

    OpenAIRE

    Ensinger, Wolfgang

    1996-01-01

    Influence of plasma density and plasma sheath dynamics on the ion implantation by plasma immersion technique / B. Rauschenbach ... - In: Nuclear instruments and methods in physics research. B. 113. 1996. S. 266-269

  1. Dynamics of Dust in a Plasma Sheath with Magnetic Field

    International Nuclear Information System (INIS)

    Duan Ping; Liu Jinyuan; Gon Ye; Liu Yue; Wang Xiaogang

    2007-01-01

    Dynamics of dust in a plasma sheath with a magnetic field was investigated using a single particle model. The result shows that the radius, initial position, initial velocity of the dust particles and the magnetic field do effect their movement and equilibrium position in the plasma sheath. Generally, the dust particles with the same size, whatever original velocity and position they have, will locate at the same position in the end under the net actions of electrostatic, gravitational, neutral collisional, and Lorentz forces. But the dust particles will not locate in the plasma sheath if their radius is beyond a certain value

  2. Sheath impedance effects in very high frequency plasma experiments

    International Nuclear Information System (INIS)

    Schwarzenbach, W.; Howling, A.A.; Fivaz, M.; Brunner, S.; Hollenstein, C.

    1995-05-01

    The frequency dependence (13.56 MHz to 70 MHz) of the ion energy distribution at the ground electrode was measured by mass spectrometry in a symmetrical capacitive argon discharge. Reduced sheath impedance at Very High Frequency allows high levels of plasma power and substrate ion flux whilst maintaining low levels of ion energy and electrode voltage. The lower limit of ion bombardment energy is fixed by the sheath floating potential at high frequency, in contrast to low frequencies where only the rf voltage amplitude is determinant. The capacitive sheaths are thinner at high frequencies which accentuates the high frequency reduction in sheath impedance. It is argued that the frequency dependence of sheath impedance is responsible for the principal characteristics of Very High Frequency plasmas. The measurements are summarised by simple physical descriptions and compared with a Particle-In-Cell simulation. (author) figs., tabs., refs

  3. Experimental test of models of radio-frequency plasma sheaths

    International Nuclear Information System (INIS)

    Sobolewski, M.A.

    1997-01-01

    The ion current and sheath impedance were measured at the radio-frequency-powered electrode of an asymmetric, capacitively coupled plasma reactor, for discharges in argon at 1.33 endash 133 Pa. The measurements were used to test the models of the radio frequency sheath derived by Lieberman [IEEE Trans. Plasma Sci. 17, 338 (1989)] and Godyak and Sternberg [Phys. Rev. A 42, 2299 (1990)], and establish the range of pressure and sheath voltage in which they are valid. copyright 1997 American Institute of Physics

  4. Effects of emitted electron temperature on the plasma sheath

    International Nuclear Information System (INIS)

    Sheehan, J. P.; Kaganovich, I. D.; Wang, H.; Raitses, Y.; Sydorenko, D.; Hershkowitz, N.

    2014-01-01

    It has long been known that electron emission from a surface significantly affects the sheath surrounding that surface. Typical fluid theory of a planar sheath with emitted electrons assumes that the plasma electrons follow the Boltzmann relation and the emitted electrons are emitted with zero energy and predicts a potential drop of 1.03T e /e across the sheath in the floating condition. By considering the modified velocity distribution function caused by plasma electrons lost to the wall and the half-Maxwellian distribution of the emitted electrons, it is shown that ratio of plasma electron temperature to emitted electron temperature significantly affects the sheath potential when the plasma electron temperature is within an order of magnitude of the emitted electron temperature. When the plasma electron temperature equals the emitted electron temperature the emissive sheath potential goes to zero. One dimensional particle-in-cell simulations corroborate the predictions made by this theory. The effects of the addition of a monoenergetic electron beam to the Maxwellian plasma electrons were explored, showing that the emissive sheath potential is close to the beam energy only when the emitted electron flux is less than the beam flux

  5. Plasma Sheath Behavior in a Coaxial Discharge Device

    International Nuclear Information System (INIS)

    EL-Aragi, G.; Soliman, H.M.; Masoud, M.M.

    2001-01-01

    The behavior of the plasma sheath has been studied experimentally and theoretically for 3 kJ coaxial discharge device. The discharge takes place in argon gas with pressure of 0.8 mbar. The experiments are conducted with a 10 kV bank charging voltage, which corresponds to 110 kA peak discharge current with time period of 34 μs. The experimental investigations have been studied using a magnetic probes and a miniature Rogowsky coil. A snowplough model is used to drive an analytical solution of the plasma sheath behavior in axial direction. Measurements of radial distribution of plasma sheath current density J r at the muzzle, show that J r has the following relation, J r is proportional to r -1.1 . From the experimental results and theoretical calculations of axial distribution of azimuthal magnetic field induction and plasma sheath velocity, the inclination angle between the normal of the plasma sheath with the axial distance at any axial position is evaluated and it has approximately a constant value for most axial distances. Also, the axial motion of plasma sheath acceleration is estimated experimentally a max = 0.13 x 10 12 ' cm / s 2 at z = 11 cm and from theoretical calculations a max = 0.15 x 10 12 cm/ s 2 at max z = 1.6 cm. A comparison of the experimental results with the theoretical calculations, under the assumption of the snowplough model are not in agreement. (author)

  6. Experiments on Alignment of Dust Particles in Plasma Sheath

    International Nuclear Information System (INIS)

    Samarian, A.A.; Vladimirov, S.V.; James, B.W.

    2005-01-01

    Here, we report an experimental investigation of the stability of vertical and horizontal confinement of dust particles levitated in an rf sheath. The experiments were carried out in argon plasma with micron-sized dust particles. Changes of particle arrangement were triggered by changing the discharge parameters, applying an additional bias to the confining electrode and by laser beam. The region where the transition was triggered by changes of discharge parameters and the transition from horizontal to vertical alignment has been found to be more pronounced than for the reverse transition. A clear hysteretic effect was observed for transitions triggered by changes of the confining voltage. A vertical alignment occurs in a system of two dust horizontally arranged particles with the decrease of the particle separation. This disruption is attributed to the formation of the common ion wake in the system

  7. Charge of a macroscopic particle in a plasma sheath

    International Nuclear Information System (INIS)

    Samarian, A.A.; Vladimirov, S.V.

    2003-01-01

    Charging of a macroscopic body levitating in a rf plasma sheath is studied experimentally and theoretically. The nonlinear charge vs size dependence is obtained. The observed nonlinearity is explained on the basis of an approach taking into account different plasma conditions for the levitation positions of different particles. The importance of suprathermal electrons' contribution to the charging process is demonstrated

  8. Dynamic sheath studies in plasma source ion implantation

    International Nuclear Information System (INIS)

    Schever, J.T.; Shamim, M.; Conrad, J.R.

    1990-01-01

    Plasma Source Ion Implantation (PSII) is a non-line-of-sight method for materials processing in which a target is immersed in a plasma and pulse biased to a high negative voltage (∼ 50 kV). A model of the dynamic sheath which forms under these conditions has been developed and applied to planar, cylindrical and spherical geometries. This model assumes that the transient sheath obeys the Child-Langmuir law for space charge limited emission at each instant during the propagation. Ions uncovered by the propagating sheath edge supply the space charge limited current. This yields an equation relating sheath edge velocity to position, which can be integrated to obtain the sheath edge position as a function of time. The same procedure used in cylindrical and spherical geometry results in a similar equation which must be integrated numerically. Comparison of results of experimental measurements, our model and simulation will be presented for the dynamic sheath edge position and target current waveform. Measurements of implanted dose uniformity of wedge shaped targets are also presented

  9. Plasma sheath axial phase dynamics in coaxial device

    Energy Technology Data Exchange (ETDEWEB)

    Soliman, H.M. (Plasma Physics Dept., NRC, Atomic Energy Authority, Cairo (Egypt)); Masoud, M.M. (Plasma Physics Dept., NRC, Atomic Energy Authority, Cairo (Egypt))

    1994-10-01

    The study of the plasma sheath dynamics in the axial phase has been carried out in a 3 kJ coaxial system of Mather type for two different inner electrode (IE) lengths, 20 cm and 31.5 cm. For both lengths, measurements showed that the plasma sheath is splitted into two layers at the breech, which is referred to as a shock front and its magnetic piston. It has been found that the two layers of the plasma current sheath rotate around the inner electrode. At the muzzle the back layer reverse its rotation direction due to the magnetic field structure of the system. Results showed that the axial velocity of the first layer is greater than the second one all over the axial phase within the range between 1.4 and 1.7. (orig.).

  10. Plasma sheath axial phase dynamics in coaxial device

    International Nuclear Information System (INIS)

    Soliman, H.M.; Masoud, M.M.

    1994-01-01

    The study of the plasma sheath dynamics in the axial phase has been carried out in a 3 kJ coaxial system of Mather type for two different inner electrode (IE) lengths, 20 cm and 31.5 cm. For both lengths, measurements showed that the plasma sheath is splitted into two layers at the breech, which is referred to as a shock front and its magnetic piston. It has been found that the two layers of the plasma current sheath rotate around the inner electrode. At the muzzle the back layer reverse its rotation direction due to the magnetic field structure of the system. Results showed that the axial velocity of the first layer is greater than the second one all over the axial phase within the range between 1.4 and 1.7. (orig.)

  11. The characteristics of RF modulated plasma boundary sheaths: An analysis of the standard sheath model

    Science.gov (United States)

    Naggary, Schabnam; Brinkmann, Ralf Peter

    2015-09-01

    The characteristics of radio frequency (RF) modulated plasma boundary sheaths are studied on the basis of the so-called ``standard sheath model.'' This model assumes that the applied radio frequency ωRF is larger than the plasma frequency of the ions but smaller than that of the electrons. It comprises a phase-averaged ion model - consisting of an equation of continuity (with ionization neglected) and an equation of motion (with collisional ion-neutral interaction taken into account) - a phase-resolved electron model - consisting of an equation of continuity and the assumption of Boltzmann equilibrium -, and Poisson's equation for the electrical field. Previous investigations have studied the standard sheath model under additional approximations, most notably the assumption of a step-like electron front. This contribution presents an investigation and parameter study of the standard sheath model which avoids any further assumptions. The resulting density profiles and overall charge-voltage characteristics are compared with those of the step-model based theories. The authors gratefully acknowledge Efe Kemaneci for helpful comments and fruitful discussions.

  12. Effect of radiofrequency on capacitance of low density plasma sheath

    International Nuclear Information System (INIS)

    Carneiro, L.T.; Cunha Rapozo, C. da

    1988-01-01

    It is shown that the influence of induced radiofrequency potential (V RF ) modifies the Bohm theory on ion saturation current, measured with Langmuir probes. The effect of radiofrequency potential on diode type plasma sheath resonance is also investigated. (M.C.K.)

  13. The Bohm criterion for a dusty plasma sheath

    Indian Academy of Sciences (India)

    undergo temperature fluctuations due to collision, the mean square fluctuation in their temperature is much less than the equilibrium temperature. The problem of sheath dynamics with the plasma–wall interactions is of great importance in a number of areas, viz., plasma ion implantation, high-density com- puter chip ...

  14. Measurements of the sheath potential in low density plasmas

    International Nuclear Information System (INIS)

    Bradley, J.W.; Khamis, R.A.; Sanduk, M.I.; Elliott, J.A.; Rusbridge, M.G.

    1992-01-01

    We have measured the sheath potential around a probe in a range of different plasma conditions in the UMIST, University of Manchester Institute of Science and Technology, quadrupole GOLUX and in a related experiment in which the plasma expands freely to supersonic velocity. In the latter case, the sheath potential agrees well with an appropriately modified form of the usual expression for a field-free plasma, for both hydrogen and argon plasmas. In GOLUX, however, the sheath potential is found to be significantly less than the accepted value, even when the magnetic field is taken into account. For the slow moving plasma in the outer part of the quadrupole confining field, we present both theoretical and experimental results showing that the reduction is due to truncation of the electron velocity distribution as the probe drains electrons from a closed flux tube faster than they can be replaced. In the central hot plasma, however, this explanation cannot apply. Here, the plasma is moving at about sonic speed and magnetic effects are weak. Nevertheless, the results are significantly different from both in the field free experiment. (author)

  15. Comprehensive Study of Plasma-Wall Sheath Transport Phenomena

    Science.gov (United States)

    2016-10-26

    the floating potential of wall material samples immersed in a low-temperature plasma were studied. Hysteresis is found to be due to secondary electron...continued research into plasma sheath physics. Hysteresis effects observed in the floating potential of wall material samples immersed in a low... Journal of Applied Physics, Volume 119, March 2016, pp. 113305 1-5. DISTRIBUTION A: Distribution approved for public release. 8 Figure 2

  16. Comment on open-quote open-quote Bohm criterion for the collisional sheath close-quote close-quote [Phys. Plasmas 3, 1459 (1996)

    International Nuclear Information System (INIS)

    Riemann, K.U.; Meyer, P.

    1996-01-01

    Recently, Valentini [Phys. Plasmas 3, 1459 (1996)] investigated the influence of collisions on the space charge formation and derived a modified Bohm criterion accounting for collisions in the sheath. It is shown that this derivation is wrong and is based on a misinterpretation of the plasma sheath concept. copyright 1996 American Institute of Physics

  17. Experimental investigation of plasma sheaths in magnetic mirror and cusp configurations

    Science.gov (United States)

    Jiang, Zhengqi; Wei, Zi-an; Ma, J. X.

    2017-11-01

    Sheath structures near a metal plate in a magnetized plasma were experimentally investigated in magnetic mirror and cusp configurations. Plasma parameters and the sheath potential distributions were probed by a planar and an emissive probe, respectively. The measured sheath profiles in the mirror configuration show that the sheath thickness first decreases and then increases when the magnetic strength is raised. A magnetic flux-tube model was used to explain this result. In the cusp configuration, the measured sheath thickness decreases with the increase of the coil current creating the magnetic cusp. However, when normalized by the electron Debye length, the dependence of the sheath thickness on the coil current is reversed.

  18. Plasma sheath dynamics in pinch discharge

    International Nuclear Information System (INIS)

    Mansour, A.A.Abd-Fattah

    1995-01-01

    The main interest of the study was to understand the dynamic and to determine the plasma parameters in the 3.5 meter θ-pinch discharge. The 3.5 meter thetatron plasma device has been reconstructed and developed which consist of four capacitor banks: a) Main pinch capacitor bank, (θ-pinch bank) consists of 40 capacitors connected in parallel each of 1.5 μ F., with maximum energy equal to 48 k Joule. b) Preionization capacitor bank (z-pinch) consists of capacitors connected in series each of 1.5μ F., with maximum energy to 0.94 k Joule. c) Bias field bank consists of 4 capacitors connected in parallel each of 38μ F., with maximum energy equal to 4.46 k Joule. d) Screw pinch capacitor bank consists of 5 capacitors connected in parallel each of 1.5μ F., with maximum energy equal to 6 k Joule

  19. Behavior of collisional sheath in electronegative plasma with q-nonextensive electron distribution

    Science.gov (United States)

    Borgohain, Dima Rani; Saharia, K.

    2018-03-01

    Electronegative plasma sheath is addressed in a collisional unmagnetized plasma consisting of q-nonextensive electrons, Boltzmann distributed negative ions and cold fluid positive ions. Considering the positive ion-neutral collisions and ignoring the effects of ionization and collisions between negative species and positive ions (neutrals), a modified Bohm sheath criterion and hence floating potential are derived by using multifluid model. Using the modified Bohm sheath criterion, the sheath characteristics such as spatial profiles of density, potential and net space charge density have been numerically investigated. It is found that increasing values of q-nonextensivity, electronegativity and collisionality lead to a decrease of the sheath thickness and an increase of the sheath potential and the net space charge density. With increasing values of the electron temperature to negative ion temperature ratio, the sheath thickness increases and the sheath potential as well as the net space charge density in the sheath region decreases.

  20. An analytic expression for the sheath criterion in magnetized plasmas with multi-charged ion species

    International Nuclear Information System (INIS)

    Hatami, M. M.

    2015-01-01

    The generalized Bohm criterion in magnetized multi-component plasmas consisting of multi-charged positive and negative ion species and electrons is analytically investigated by using the hydrodynamic model. It is assumed that the electrons and negative ion density distributions are the Boltzmann distribution with different temperatures and the positive ions enter into the sheath region obliquely. Our results show that the positive and negative ion temperatures, the orientation of the applied magnetic field and the charge number of positive and negative ions strongly affect the Bohm criterion in these multi-component plasmas. To determine the validity of our derived generalized Bohm criterion, it reduced to some familiar physical condition and it is shown that monotonically reduction of the positive ion density distribution leading to the sheath formation occurs only when entrance velocity of ion into the sheath satisfies the obtained Bohm criterion. Also, as a practical application of the obtained Bohm criterion, effects of the ionic temperature and concentration as well as magnetic field on the behavior of the charged particle density distributions and so the sheath thickness of a magnetized plasma consisting of electrons and singly charged positive and negative ion species are studied numerically

  1. Studies on the transmission of sub-THz waves in magnetized inhomogeneous plasma sheath

    Science.gov (United States)

    Yuan, Kai; Shen, Linfang; Yao, Ming; Deng, Xiaohua; Chen, Zhou; Hong, Lujun

    2018-01-01

    There have been many studies on the sub-terahertz (sub-THz) wave transmission in reentry plasma sheaths. However, only some of them have paid attention to the transmission of sub-THz waves in magnetized plasma sheaths. In this paper, the transmission of sub-THz waves in both unmagnetized and magnetized reentry plasma sheaths was investigated. The impacts of temporal evolution of the plasma sheath on the wave transmission were studied. The transmission of "atmospheric window" frequencies in a magnetized plasma sheath was discussed in detail. According to the study, the power transmission rates (Tp) for the left hand circular (LHC) and the right hand circular modes in the magnetized plasma sheath are obviously higher and lower than those in the unmagnetized plasma sheath, respectively. The Tp of LHC mode increases with both wave frequency and external magnetic field strength. Also, the Tp of LHC mode in both magnetized and unmagnetized plasma sheaths varies with time due to the temporal evolution of the plasma sheath. Moreover, the performance of sub-THz waves in magnetized plasma sheath hints at a new approach to the "blackout" problem. The new approach, which is in the capability of modern technology, is to utilize the communication system operating at 140 GHz with an onboard magnet installed near the antenna.

  2. Sheath formation and extraction of ions from a constricted R.F ion source

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Salam, F W; Helal, A G; El-Khabeary, H; El-Merai, N T [Accelerators Dept., Nuclear Research Center, Atomic Energy Authority, Cairo, (Egypt)

    1997-12-31

    The present work investigates the plasma characteristics in a constricted R. F. ion source. The extraction of ions from the plasma boundary and sheath formation were studied. The ion source physical parameters are discussed in order to understand the physical processes occurring within the discharge region up to the extraction system. Electron temperature and density were determined using Langmuir probe. The probe current-voltage characteristics were measured for different extraction voltages (ext.) = 0,500,1000, and 1250 volt at various constant R.F. powers. The effect of R.F. power on electron temperature was deduced for a beam = plasma discharge. This revealed that for a quasi-neutral (plasma) region the electron temperature increased linearly with the R.F. Power which leads to substantial electron heating and efficient electron energy transport in this region. Applying extraction voltage, the electron temperature drops as the ionization rate increases. The sheath thickness was obtained at constant extraction voltages. The curves show that if the ion current density increased, the sheath thickness decreased while it increases by increasing extraction voltage, and it is negligible in the plasma region. 13 figs.

  3. Properties of plasma sheath with ion temperature in magnetic fusion devices

    International Nuclear Information System (INIS)

    Liu Jinyuan; Wang Feng; Sun Jizhong

    2011-01-01

    The plasma sheath properties in a strong magnetic field are investigated in this work using a steady state two-fluid model. The motion of ions is affected heavily by the strong magnetic field in fusion devices; meanwhile, the effect of ion temperature cannot be neglected for the plasma in such devices. A criterion for the plasma sheath in a strong magnetic field, which differs from the well-known Bohm criterion for low temperature plasma sheath, is established theoretically with a fluid model. The fluid model is then solved numerically to obtain detailed sheath information under different ion temperatures, plasma densities, and magnetic field strengths.

  4. Electric sheath and presheath in a collisionless, finite ion temperature plasma

    International Nuclear Information System (INIS)

    Emmert, G.A.; Wieland, R.M.; Mense, A.T.; Davidson, J.N.

    1980-01-01

    The plasma-sheath equation for a collisionless plasma with arbitrary ion temperature in plane geometry is formulated. Outside the sheath, this equation is approximated by the plasma equation, for which an analytic solution for the electrostatic potential is obtained. In addition, the ion distribution function, the wall potential, and the ion energy and particle flux into the sheath are explicitly calculated. The plasma-sheath equation is also solved numerically with no approximation of the Debye length. The numerical results compare well with the analytical results when the Debye length is small

  5. Electron inertia effects on the planar plasma sheath problem

    International Nuclear Information System (INIS)

    Duarte, V. N.; Clemente, R. A.

    2011-01-01

    The steady one-dimensional planar plasma sheath problem, originally considered by Tonks and Langmuir, is revisited. Assuming continuously generated free-falling ions and isothermal electrons and taking into account electron inertia, it is possible to describe the problem in terms of three coupled integro-differential equations that can be numerically integrated. The inclusion of electron inertia in the model allows us to obtain the value of the plasma floating potential as resulting from an electron density discontinuity at the walls, where the electrons attain sound velocity and the electric potential is continuous. Results from numerical computation are presented in terms of plots for densities, electric potential, and particles velocities. Comparison with results from literature, corresponding to electron Maxwell-Boltzmann distribution (neglecting electron inertia), is also shown.

  6. Dusty Plasma Modeling of the Fusion Reactor Sheath Including Collisional-Radiative Effects

    International Nuclear Information System (INIS)

    Dezairi, Aouatif; Samir, Mhamed; Eddahby, Mohamed; Saifaoui, Dennoun; Katsonis, Konstantinos; Berenguer, Chloe

    2008-01-01

    The structure and the behavior of the sheath in Tokamak collisional plasmas has been studied. The sheath is modeled taking into account the presence of the dust 2 and the effects of the charged particle collisions and radiative processes. The latter may allow for optical diagnostics of the plasma.

  7. Discrete focusing effect of positive ions by a plasma-sheath lens

    International Nuclear Information System (INIS)

    Stamate, E.; Sugai, H.

    2005-01-01

    We demonstrate that the sheath created adjacent to the surface of a negatively biased electrode that interfaces an insulator acts as a lens that focuses the positive ions to distinct regions on the surface. Thus, the positive ion flux is discrete, leading to the formation of a passive surface, of no ion impact, near the edge and an active surface at the center. Trajectories of positive ions within the sheath are obtained by solving in three dimensions the Poisson equation for electrodes of different geometry. Simulations are confirmed by developing the ion flux profile on the electrode surface as the sputtering pattern produced by ion impact. Measurements are performed in a dc plasma produced in Ar gas

  8. The magnetized sheath of a dusty plasma with grains size distribution

    International Nuclear Information System (INIS)

    Ou, Jing; Gan, Chunyun; Lin, Binbin; Yang, Jinhong

    2015-01-01

    The structure of a plasma sheath in the presence of dust grains size distribution (DGSD) is investigated in the multi-fluid framework. It is shown that effect of the dust grains with different sizes on the sheath structure is a collective behavior. The spatial distributions of electric potential, the electron and ion densities and velocities, and the dust grains surface potential are strongly affected by DGSD. The dynamics of dust grains with different sizes in the sheath depend on not only DGSD but also their radius. By comparison of the sheath structure, it is found that under the same expected value of DGSD condition, the sheath length is longer in the case of lognormal distribution than that in the case of uniform distribution. In two cases of normal and lognormal distributions, the sheath length is almost equal for the small variance of DGSD, and then the difference of sheath length increases gradually with increase in the variance

  9. Ratio of sheath thickness to Debye length for a slightly ionized continuum plasma

    International Nuclear Information System (INIS)

    Hamilton, J.

    1980-01-01

    The penetration of plasma sheaths for spherical probes in a slightly ionized continuum plasma has been computed for values of epsilon (the ratio of ion to electron temperature) of 0.01 and 1.0 with rhosub(p) (the ratio of probe radius to plasma Debye length) set at 5.10,20 and 30. Values of the potential drops at the sheath boundaries are presented

  10. Ion trapping within the dust grain plasma sheath

    International Nuclear Information System (INIS)

    Jovanovic, D.; Shukla, P.K.

    2002-01-01

    One of the most important and still unresolved problems in the physics of dusty plasmas is the determination of the dust charge. The grains are not directly accessible to measurements and it is necessary to have a reliable theoretical model of the electron and ion dynamics inside the Debye sphere for the interpretation of the relevant experimental data, which include also the effects of the surrounding electron and ion clouds. Recent computer simulations [6] and laboratory experiments [9] indicate that the plasma sheath is dominated by trapped ions, orbiting the grain on closed trajectories at distances smaller than the Debye radius, that cannot be accounted for by the classical theories. We present the first analytical, fully self-consistent, calculations of the electrostatic shielding of a charged dust grain in a collisional plasma. In the regime when the mean free path for the ion-dust collisions is larger than that for the ion-neutral collisions, we solve the kinetic equation for the ions, coupled with Boltzmann distributed electrons and Poisson's equation. The ion velocity distribution function, in the form of a spherically symmetric ion hole, is found to be anisotropic in the presence of charge-exchange collisions. The number of trapped ions and their spatial distribution are determined from the interplay between the collective plasma interaction and the collisional trapping/de-trapping. The stationary state results from the self-tuning of the trapped ion density by the feedback based on the nonlocality of the collisional integral, and on the ion mixing in the radial direction along elongated orbits. Our results confirm the existence of a strong Debye shielding of the dust charge, allowing also the over-population of the trapped ion distribution (ion hump)

  11. Reflection of ion acoustic waves by the plasma sheath

    International Nuclear Information System (INIS)

    Ibrahim, I.; Kuehl, H.H.

    1984-01-01

    The reflection coefficient R for linear monochromatic ion acoustic waves incident on the transonic layer and sheath from the plasma interior is calculated. The treatment differs from previous analyses in that (1) the exact zero-order ion density and velocity profiles for a planar, bounded plasma are used, and the zero-order charge separation is not neglected, and (2) the first-order quantities near the transonic layer are considered in detail, including first-order charge separation, whereby it is found that no coupling to the beam modes exists, and that the functional form of the first-order solution is completely determined. It is shown that the upper bound for Vertical BarRVertical Bar is (1)/(3) . The largest reflection occurs for frequencies which are small compared with the ionization frequency, and generally decreases with increasing frequency. By Fourier superposition, the reflection of a pulse is computed. For a narrow incident pulse, the reflected pulse is greatly distorted and is small compared with the incident pulse. For a broad pulse, the reflected pulse is similar in shape to the incident pulse, and has a magnitude which is approximately (1)/(3) of the incident pulse

  12. Levitation and dynamics of a collection of dust particles in a fully ionized plasma sheath

    International Nuclear Information System (INIS)

    Nitter, T.; Aslaksen, T.K.; Melandsoe, F.; Havnes, O.

    1994-01-01

    The authors have examined the dynamics of a collection of charged dust particles in the plasma sheath above a large body in a fully ionized space plasma when the radius of the large body is much larger than the sheath thickness. The dust particles are charged by the plasma, and the forces on the dust particles are assumed to be from the electric field in the sheath and from gravitation only. These forces will often act in opposite direction and may balance, making dust suspension and collection possible. The dust particles are supplied by injection or by electrostatic levitation. The ability of the sheath to collect dust particles, will be optimal for a certain combination of gravitation and plasma and dust particle parameters. In a dense dust sheath, the charges on the dust particles contribute significantly to the total space charge, and collective effects become important. These effects will reduce the magnitude of the sheath electric field strength and the charge on the dust particles. As dust particles are collected, the dust sheath is stretched and the largest dust particles may drop out, because the sheath is no longer able to suspend them. In a tenuous dust sheath, the inner layer, from the surface and about one Debye length thick, will be unstable for dust particle motion, and dust will not collect there. In a dense dust sheath, collective effects will decrease the thickness of this inner dust-free layer, making dust collection closer to the surface possible. By linearization of the force and current equations, they find the necessary and sufficient conditions which resemble those of planetary system bodies, but the results may also be of relevance to some laboratory plasmas

  13. Measurement of sheath thickness by lining out grooves in the Hall-type stationary plasma thrusters

    International Nuclear Information System (INIS)

    Yu Daren; Wu Zhiwen; Ning Zhongxi; Wang Xiaogang

    2007-01-01

    Using grooves created along the axial direction of the discharge channel, a method for measuring sheath thickness in Hall-type stationary plasma thrusters has been developed. By distorting the wall surface using these grooves, it is possible to numerically study the effect of the wall surface on the sheath and near wall conductivity. Monte Carlo method is applied to calculate the electron temperature variation with different groove depths. The electron dynamic process in the plasma is described by a test particle method with the electron randomly entering the sheath from the discharge channel and being reflected back. Numerical results show that the reflected electron temperature is hardly affected by the wall surface if the groove depth is much less than the sheath thickness. On the other hand, the reflected electron temperature increases if the groove depth is much greater than the sheath thickness. The reflected electron temperature has a sharp jump when the depth of groove is on the order of the sheath thickness. The simulation is repeated with different sheath thicknesses and the results are the same. Therefore, a diagnosis mean of the sheath thickness can be developed based on the method. Also the simulation results are in accord with the experimental data. Besides, the measurement method may be applicable to other plasma device with similar orthogonal steady state electrical and magnetic fields

  14. Dynamics of the plasma current sheath in plasma focus discharges in different gases

    Energy Technology Data Exchange (ETDEWEB)

    Vinogradov, V. P.; Krauz, V. I., E-mail: krauz-vi@nrcki.ru [National Research Center Kurchatov Institute (Russian Federation); Mokeev, A. N. [Project Center ITER (Russian Federation); Myalton, V. V.; Kharrasov, A. M. [National Research Center Kurchatov Institute (Russian Federation)

    2016-12-15

    The shape of the plasma current sheath (PCS) in the final stage of its radial compression, the dynamics of pinching, and the subsequent pinch decay in plasma focus (PF) discharges in different gases are studied using an improved multichannel system of electron-optical plasma photography and a newly elaborated synchronization system. The PCS structure in discharges in heavy gases (Ne, Ar) is found to differ significantly from that in discharges in hydrogen and deuterium. The influence of a heavy gas (Xe) additive to hydrogen and deuterium on the structure and compression dynamics of the PCS is investigated.

  15. Effects of Reentry Plasma Sheath on GPS Patch Antenna Polarization Property

    Directory of Open Access Journals (Sweden)

    L. Zhao

    2013-01-01

    Full Text Available A plasma sheath enveloping a reentry vehicle would affect performances of on-board antenna greatly, especially the navigation antennas. This paper studies the effects of reentry plasma sheath on a GPS right-hand circularly polarized (RHCP patch antenna polarization property during a typical reentry process. Utilizing the algorithm of finite integration technique, the polarization characteristic of a GPS antenna coated by a plasma sheath is obtained. Results show that the GPS RHCP patch antenna radiation pattern distortions as well as polarization deteriorations exist during the entire reentry process, and the worst polarization mismatch loss between a GPS antenna and RHCP GPS signal is nearly 3 dB. This paper also indicates that measures should be taken to alleviate the plasma sheath for maintaining the GPS communication during the reentry process.

  16. Effect of rise-time patterns on dynamics of sheath expansion during plasma immersion ion implantation

    International Nuclear Information System (INIS)

    Huang Yongxian; Tian Xiubo; Yang Shiqin; Fu Ricky; Paul, C.K.

    2007-01-01

    Plasma immersion ion implantation (PIII) has been developed as a low-cost and efficient surface modification technique of irregularly-shaped objects. The effect of six pulse waves with different rise-time patterns on the spatio-temporal evolution of plasma sheath,energy and dose of ion implantation has been simulated by particle-in-cell modeling. Statistical results may be obtained through assuming the Boltzmann distribution of electrons, and solving Poisson and Newton equations for tracing each ion in the plasma sheath. The results show that rise-time pattern has a critical influence on the evolution of plasma sheath. There exists maximum thickness difference of plasma sheath for different waveforms. The acceleration of ions is non-uniform due to the non-uniformity of electrical field strength. The maximum gradient of electrical field appears near the edge of plasma sheath. The results also show that optimization of dose and energy of incident ions may be achieved through modification of rise-time pattern. The numerical simulation of sheath expansion can be effectively used to provide a scientific basis for optimizing the PIII process. (authors)

  17. Effect of two-temperature electrons distribution on an electrostatic plasma sheath

    International Nuclear Information System (INIS)

    Ou, Jing; Xiang, Nong; Gan, Chunyun; Yang, Jinhong

    2013-01-01

    A magnetized collisionless plasma sheath containing two-temperature electrons is studied using a one-dimensional model in which the low-temperature electrons are described by Maxwellian distribution (MD) and high-temperature electrons are described by truncated Maxwellian distribution (TMD). Based on the ion wave approach, a modified sheath criterion including effect of TMD caused by high-temperature electrons energy above the sheath potential energy is established theoretically. The model is also used to investigate numerically the sheath structure and energy flux to the wall for plasmas parameters of an open divertor tokamak-like. Our results show that the profiles of the sheath potential, two-temperature electrons and ions densities, high-temperature electrons and ions velocities as well as the energy flux to the wall depend on the high-temperature electrons concentration, temperature, and velocity distribution function associated with sheath potential. In addition, the results obtained in the high-temperature electrons with TMD as well as with MD sheaths are compared for the different sheath potential

  18. Accounting for Debye sheath expansion for proud Langmuir probes in magnetic confinement fusion plasmas.

    Science.gov (United States)

    Tsui, C K; Boedo, J A; Stangeby, P C

    2018-01-01

    A Child-Langmuir law-based method for accounting for Debye sheath expansion while fitting the current-voltage I-V characteristic of proud Langmuir probes (electrodes that extend into the volume of the plasma) is described. For Langmuir probes of a typical size used in tokamak plasmas, these new estimates of electron temperature and ion saturation current density values decreased by up to 60% compared to methods that did not account for sheath expansion. Changes to the collection area are modeled using the Child-Langmuir law and effective expansion perimeter l p , and the model is thus referred to as the "perimeter sheath expansion method." l p is determined solely from electrode geometry, so the method may be employed without prior measurement of the magnitude of the sheath expansion effects for a given Langmuir probe and can be used for electrodes of different geometries. This method correctly predicts the non-saturating ΔI/ΔV slope for cold, low-density plasmas where sheath-expansion effects are strong, as well as for hot plasmas where ΔI/ΔV ∼ 0, though it is shown that the sheath can still significantly affect the collection area in these hot conditions. The perimeter sheath expansion method has several advantages compared to methods where the non-saturating current is fitted: (1) It is more resilient to scatter in the I-V characteristics observed in turbulent plasmas. (2) It is able to separate the contributions to the ΔI/ΔV slope from sheath expansion to that of the high energy electron tail in high Te conditions. (3) It calculates the change in the collection area due to the Debye sheath for conditions where ΔI/ΔV ∼ 0 and for V = V f .

  19. Scattering characteristics of electromagnetic waves in time and space inhomogeneous weakly ionized dusty plasma sheath

    Science.gov (United States)

    Guo, Li-xin; Chen, Wei; Li, Jiang-ting; Ren, Yi; Liu, Song-hua

    2018-05-01

    The dielectric coefficient of a weakly ionised dusty plasma is used to establish a three-dimensional time and space inhomogeneous dusty plasma sheath. The effects of scattering on electromagnetic (EM) waves in this dusty plasma sheath are investigated using the auxiliary differential equation finite-difference time-domain method. Backward radar cross-sectional values of various parameters, including the dust particle radius, charging frequency of dust particles, dust particle concentration, effective collision frequency, rate of the electron density variation with time, angle of EM wave incidence, and plasma frequency, are analysed within the time and space inhomogeneous plasma sheath. The results show the noticeable effects of dusty plasma parameters on EM waves.

  20. Thermographic determination of the sheath heat transmission coefficient in a high density plasma

    NARCIS (Netherlands)

    Berg, van den M.A.; Bystrov, K.E.; Pasquet, R.; Zielinski, J.J.; De Temmerman, G.C.

    2013-01-01

    Experiments were performed in the Pilot-PSI linear plasma device, to determine the sheath heat transmission coefficients in a high recycling regime under various conditions of density (1–20 × 1020 m-3) and plasma composition (H2, Ar, N2) relevant for the ITER divertor plasma. The 2D surface

  1. Dust particle charge and screening in the collisional RF plasma sheath

    NARCIS (Netherlands)

    Beckers, J.; Trienekens, D.J.M.; Kroesen, G.M.W.; Sprouse, G.D.

    2012-01-01

    Once immersed in plasma, a dust particle gathers a highly negative charge due to the net collection of free electrons. In most plasma's on earth and with particle sizes is in the micrometer range, the gravitational force is dominant and consequently the particle ends up within the plasma sheath

  2. Difference in chemical reactions in bulk plasma and sheath regions during surface modification of graphene oxide film using capacitively coupled NH{sub 3} plasma

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung-Youp; Kim, Chan; Kim, Hong Tak, E-mail: zam89blue@gmail.com [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of)

    2015-09-14

    Reduced graphene oxide (r-GO) films were obtained from capacitively coupled NH{sub 3} plasma treatment of spin-coated graphene oxide (GO) films at room temperature. Variations were evaluated according to the two plasma treatment regions: the bulk plasma region (R{sub bulk}) and the sheath region (R{sub sheath}). Reduction and nitridation of the GO films began as soon as the NH{sub 3} plasma was exposed to both regions. However, with the increase in treatment time, the reduction and nitridation reactions differed in each region. In the R{sub bulk}, NH{sub 3} plasma ions reacted chemically with oxygen functional groups on the GO films, which was highly effective for reduction and nitridation. While in the R{sub sheath}, physical reactions by ion bombardment were dominant because plasma ions were accelerated by the strong electrical field. The accelerated plasma ions reacted not only with the oxygen functional groups but also with the broken carbon chains, which caused the removal of the GO films by the formation of hydrocarbon gas species. These results showed that reduction and nitridation in the R{sub bulk} using capacitively coupled NH{sub 3} plasma were very effective for modifying the properties of r-GO films for application as transparent conductive films.

  3. Plasma sheath physics and dose uniformity in enhanced glow discharge plasma immersion ion implantation and deposition

    International Nuclear Information System (INIS)

    Li Liuhe; Li Jianhui; Kwok, Dixon T. K.; Chu, Paul K.; Wang Zhuo

    2009-01-01

    Based on the multiple-grid particle-in-cell code, an advanced simulation model is established to study the sheath physics and dose uniformity along the sample stage in order to provide the theoretical basis for further improvement of enhanced glow discharge plasma immersion ion implantation and deposition. At t=7.0 μs, the expansion of the sheath in the horizontal direction is hindered by the dielectric cage. The electron focusing effect is demonstrated by this model. Most of the ions at the inside wall of the cage are implanted into the edge of the sample stage and a relatively uniform ion fluence distribution with a large peak is observed at the end. Compared to the results obtained from the previous model, a higher implant fluence and larger area of uniformity are disclosed.

  4. An integrative time-varying frequency detection and channel sounding method for dynamic plasma sheath

    Science.gov (United States)

    Shi, Lei; Yao, Bo; Zhao, Lei; Liu, Xiaotong; Yang, Min; Liu, Yanming

    2018-01-01

    The plasma sheath-surrounded hypersonic vehicle is a dynamic and time-varying medium and it is almost impossible to calculate time-varying physical parameters directly. The in-fight detection of the time-varying degree is important to understand the dynamic nature of the physical parameters and their effect on re-entry communication. In this paper, a constant envelope zero autocorrelation (CAZAC) sequence based on time-varying frequency detection and channel sounding method is proposed to detect the plasma sheath electronic density time-varying property and wireless channel characteristic. The proposed method utilizes the CAZAC sequence, which has excellent autocorrelation and spread gain characteristics, to realize dynamic time-varying detection/channel sounding under low signal-to-noise ratio in the plasma sheath environment. Theoretical simulation under a typical time-varying radio channel shows that the proposed method is capable of detecting time-variation frequency up to 200 kHz and can trace the channel amplitude and phase in the time domain well under -10 dB. Experimental results conducted in the RF modulation discharge plasma device verified the time variation detection ability in practical dynamic plasma sheath. Meanwhile, nonlinear phenomenon of dynamic plasma sheath on communication signal is observed thorough channel sounding result.

  5. Physical models for the description of an electrodynamically accelerated plasma sheath

    International Nuclear Information System (INIS)

    Zambreanu, V.

    1977-01-01

    An analysis of the models proposed for the description of the plasma sheath dynamics in a coaxial system (of the same type as that operating at the Bucharest Institute of Physics) is presented. A particular attention is paid to the physical structure of the accelerated plasma. It has been shown that a self-consistent model could be derived from a phenomenological description of the sheath structure. The physical models presented so far in the literature have been classified into three groups: the hydrodynamic models, the plasma sheet models and the shock wave models. Each of these models is briefly described. The simplifying assumptions used in the construction of these models have been pointed out. The final conclusion has been that, under these assumptions, none of these models taken separately could completely and correctly describe the dynamical state of the plasma sheath. (author)

  6. Fine structure of modal focusing effect in a three dimensional plasma-sheath-lens formed by disk electrodes

    DEFF Research Database (Denmark)

    Stamate, Eugen; Yamaguchi, Masahito

    2015-01-01

    Modal and discrete focusing effects associated with three-dimensional plasma-sheath-lenses show promising potential for applications in ion beam extraction, mass spectrometry, plasma diagnostics and for basic studies of plasma sheath. The ion focusing properties can be adjusted by controlling the...

  7. Modeling of Sheath Ion-Molecule Reactions in Plasma Enhanced Chemical Vapor Deposition of Carbon Nanotubes

    Science.gov (United States)

    Hash, David B.; Govindan, T. R.; Meyyappan, M.

    2004-01-01

    In many plasma simulations, ion-molecule reactions are modeled using ion energy independent reaction rate coefficients that are taken from low temperature selected-ion flow tube experiments. Only exothermic or nearly thermoneutral reactions are considered. This is appropriate for plasma applications such as high-density plasma sources in which sheaths are collisionless and ion temperatures 111 the bulk p!asma do not deviate significantly from the gas temperature. However, for applications at high pressure and large sheath voltages, this assumption does not hold as the sheaths are collisional and ions gain significant energy in the sheaths from Joule heating. Ion temperatures and thus reaction rates vary significantly across the discharge, and endothermic reactions become important in the sheaths. One such application is plasma enhanced chemical vapor deposition of carbon nanotubes in which dc discharges are struck at pressures between 1-20 Torr with applied voltages in the range of 500-700 V. The present work investigates The importance of the inclusion of ion energy dependent ion-molecule reaction rates and the role of collision induced dissociation in generating radicals from the feedstock used in carbon nanotube growth.

  8. A matching approach to communicate through the plasma sheath surrounding a hypersonic vehicle

    International Nuclear Information System (INIS)

    Gao, Xiaotian; Jiang, Binhao

    2015-01-01

    In order to overcome the communication blackout problem suffered by hypersonic vehicles, a matching approach has been proposed for the first time in this paper. It utilizes a double-positive (DPS) material layer surrounding a hypersonic vehicle antenna to match with the plasma sheath enclosing the vehicle. Analytical analysis and numerical results indicate a resonance between the matched layer and the plasma sheath will be formed to mitigate the blackout problem in some conditions. The calculated results present a perfect radiated performance of the antenna, when the match is exactly built between these two layers. The effects of the parameters of the plasma sheath have been researched by numerical methods. Based on these results, the proposed approach is easier to realize and more flexible to the varying radiated conditions in hypersonic flight comparing with other methods

  9. Cutoff effects of electron velocity distribution to the properties of plasma parameters near the plasma-sheath boundary

    International Nuclear Information System (INIS)

    Jelic, N.

    2011-01-01

    The plasma properties under high thermodynamic non-equilibrium condition, established due to the presence of electrically biased electrode, are investigated. Assumption of electron cut-off velocity distribution function (VDF), as done by Andrews and Varey in their investigations of the sheath region [J. Phys. A 3, 413 (1970)], has been extended here to both plasma and sheath regions. Analytic expressions for the moments of electron VDF, as well as for the electron screening temperature function dependence on the plasma-sheath local potential are derived. In deriving the ion velocity distribution the ''standard'' assumption of strict plasma quasineutrality, or equivalently vanishing of the plasma Debye length, is employed, whereas the ions are assumed to be generated at rest over the plasma region. However, unlike the standard approach of solving the plasma equation, where pure Boltzmann electron density profile is used, here we employ modified Boltzmann's electron density profile, due to cutoff effect of the electron velocity distribution. It is shown that under these conditions the quasineutrality equation solution is characterised by the electric field singularity for any negative value of the electrode bias potential as measured with respect to the plasma potential. The point of singularity i.e., the plasma length and its dependence on the electrode bias and sheath potential is established for the particular case of ionization profile mechanism proportional to the local electron density. Relevant parameters for the kinetic Bohm criterion are explicitly calculated for both ions and electrons, for arbitrary electrode bias.

  10. The dust characteristics in the collisional plasma sheath at the presence of external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Shourkaei, Hossein Akbarian [AEOI, Tehran (Iran, Islamic Republic of). Plasma Physics Research Group

    2015-05-15

    The characteristics of dust in a plasma sheath are investigated in the presence of an external magnetic field and taking into account neutral collision forces. By using the fluid model, the continuity and momentum equations of ions and dusts are solved numerically with various magnitudes of collision force. In various magnitude and directions of the magnetic field, the electron and ion density distribution, ion flow velocity, electron potential have been calculated. It is shown that magnetic field has obvious effect on the plasma sheath and the collision force reduces the dust kinetic energy.

  11. The role of the sheath in magnetized plasma turbulence and flows

    International Nuclear Information System (INIS)

    Loizu, J.

    2013-01-01

    Controlled nuclear fusion could provide our society with a clean, safe, and virtually inexhaustible source of electric power production. The tokamak has proven to be capable of producing large amounts of fusion reactions by conning magnetically the fusion fuel at sufficiently high density and temperature, thus in the plasma state. Because of turbulence, however, high temperature plasma reaches the outermost region of the tokamak, the Scrape-Off Layer (SOL), which features open magnetic field lines that channel particles and heat into a dedicated region of the vacuum vessel. The plasma dynamics in the SOL is crucial in determining the performance of tokamak devices, and constitutes one of the greatest uncertainties in the success of the fusion program. In the last few years, the development of numerical codes based on reduced fluid models has provided a tool to study turbulence in open field line configurations. In particular, the GBS (Global Braginskii Solver) code has been developed at CRPP and is used to perform global, three-dimensional, full-n, flux-driven simulations of plasma turbulence in open field lines. Reaching predictive capabilities is an outstanding challenge that involves a proper treatment of the plasma-wall interactions at the end of the field lines, to well describe the particle and energy losses. This involves the study of plasma sheaths, namely the layers forming at the interface between plasmas and solid surfaces, where the drift and quasi neutrality approximations break down. This is an investigation of general interest, as sheaths are present in all laboratory plasmas. This thesis presents progress in the understanding of plasma sheaths and their coupling with the turbulence in the main plasma. A kinetic code is developed to study the magnetized plasma-wall transition region and derive a complete set of analytical boundary conditions that supply the sheath physics to fluid codes. These boundary conditions are implemented in the GBS code and

  12. Effects of Reentry Plasma Sheath on Mutual-Coupling Property of Array Antenna

    Directory of Open Access Journals (Sweden)

    B. W. Bai

    2015-01-01

    Full Text Available A plasma sheath enveloping a reentry vehicle would cause the failure of on-board antennas, which is an important effect that contributes to the “blackout” problem. The method of replacing the on-board single antenna with the array antennas and using beamforming technology has been proposed to mitigate “blackout” problem by many other researchers. Because the plasma sheath is a reflective medium, plasma will alter the mutual coupling between array elements and degrade the beamforming performance of array antenna. In this paper, the effects of the plasma sheath on the mutual coupling properties between adjacent array elements are studied utilizing the algorithm of finite integration technique. Results show that mutual coupling coefficients of array elements are deteriorating more seriously with the decrease of collision frequency. Moreover, when electron density and collision frequency are both large, plasma sheath improves the mutual coupling property of array elements; this conclusion suggests that replacing the on-board single antenna with the array antennas and using beamforming technology can be adopted to mitigate the blackout problem in this condition.

  13. Measurements of the asymmetric dynamic sheath around a pulse biased sphere immersed in flowing metal plasma

    International Nuclear Information System (INIS)

    Wu Hongchen; Anders, Andre

    2008-01-01

    A long-probe technique was utilized to record the expansion and retreat of the dynamic sheath around a spherical substrate immersed in pulsed cathode arc metal plasma. Positively biased, long cylindrical probes were placed on the side and downstream of a negatively pulsed biased stainless steel sphere of 1 in. (25.4 mm) diameter. The amplitude and width of the negative high voltage pulses (HVPs) were 2 kV, 5 kV, 10 kV, and 2 μs, 4 μs, 10 μs, respectively. The variation of the probe (electron) current during the HVP is a direct measure for the sheath expansion and retreat. Maximum sheath sizes were determined for the different parameters of the HVP. The expected rarefaction zone behind the biased sphere (wake) due to the fast plasma flow was clearly established and quantified.

  14. Measurements of the asymmetric dynamic sheath around a pulse biased sphere immersed in flowing metal plasma

    Science.gov (United States)

    Wu, Hongchen; Anders, André

    2008-08-01

    A long-probe technique was utilized to record the expansion and retreat of the dynamic sheath around a spherical substrate immersed in pulsed cathode arc metal plasma. Positively biased, long cylindrical probes were placed on the side and downstream of a negatively pulsed biased stainless steel sphere of 1 in. (25.4 mm) diameter. The amplitude and width of the negative high voltage pulses (HVPs) were 2 kV, 5 kV, 10 kV, and 2 µs, 4 µs, 10 µs, respectively. The variation of the probe (electron) current during the HVP is a direct measure for the sheath expansion and retreat. Maximum sheath sizes were determined for the different parameters of the HVP. The expected rarefaction zone behind the biased sphere (wake) due to the fast plasma flow was clearly established and quantified.

  15. Floating potential and sheath thickness for cylindrical and spherical probes in electronegative plasmas

    International Nuclear Information System (INIS)

    Morales Crespo, R.; Fernandez Palop, J.I.; Hernandez, M.A.; Borrego del Pino, S.; Diaz-Cabrera, J.M.; Ballesteros, J.

    2006-01-01

    In this paper, the floating potential, for cylindrical and spherical Langmuir probes immersed into an electronegative plasma, is determined by using a radial model described in a previous paper. This floating potential is determined for several probe radius values and ranks of plasma electronegativity, from almost electropositive plasmas to high electronegative plasmas. The thickness of the positive ion sheath is also determined for this kind of probes in electronegative plasmas, as well as the analytical expressions fitting this thickness, showing its dependence on the probe radius and electric potential

  16. Effects of a reentry plasma sheath on the beam pointing properties of an array antenna

    Directory of Open Access Journals (Sweden)

    Bowen Bai

    2018-03-01

    Full Text Available The reduction in the gain of an on-board antenna caused by a reentry plasma sheath is an important effect that contributes to the reentry “blackout” problem. Using phased array antenna and beamforming technology could provide higher gain and an increase in the communication signal intensity. The attenuation and phase delay of the electromagnetic (EM waves transmitting through the plasma sheath are direction-dependent, and the radiation pattern of the phased array antenna is affected, leading to a deviation in the beam pointing. In this paper, the far-field pattern of a planar array antenna covered by a plasma sheath is deduced analytically by considering both refraction and mutual coupling effects. A comparison between the analytic results and the results from an electromagnetic simulation is carried out. The effect of the plasma sheath on the radiation pattern and the beam pointing errors of the phased array antenna is studied systematically, and the derived results could provide useful information for the correction of pointing errors.

  17. Tearing mode of a neutral current sheath in a plasma flux

    International Nuclear Information System (INIS)

    Gubchenko, V.M.

    1982-01-01

    The linear stage of the tearing mode of diffusion neutral current sheath immersed in the plasma flux directed along the magnetic field is considered. It follows form the obtained dispersion characteristics that the flux exerts a stabilizing effect on the mode and leads to appearance of phase drift velocity

  18. Theory of a wall sheath in a gas-discharge plasma

    International Nuclear Information System (INIS)

    Dvinin, S.A.; Dovzhenko, V.A.; Kuzovnikov, A.A.

    1999-01-01

    An integro-differential equation is proposed that generalizes the plasma-sheath (Langmuir-Tonks) equation to include charge exchange between ions and neutrals in a discharge plasma and makes it possible to correctly analyze how the discharge evolves from the regime of collisionless ion motion to the diffusive regime in pure gases with allowance for the space charge in the sheath at the plasma boundary. The integro-differential equation is solved numerically, and the ionization rate is calculated as a function of the ratio between the ion mean free path and the characteristic discharge dimension. The ion energy distribution function in the positive column of a discharge plasma is computed. The parameter range in which the positive column can exist is examined, and the limits of applicability of different discharge models are analyzed depending on the relations between the ion mean free path, Debye length, and discharge dimension

  19. Equilibrium properties of the plasma sheath with a magnetic field parallel to the wall

    International Nuclear Information System (INIS)

    Krasheninnikova, Natalia S.; Tang Xianzhu

    2011-01-01

    Motivated by the Magnetized Target Fusion (MTF), a systematic investigation of the equilibrium properties of a 1D plasma sheath with a magnetic field parallel to the wall was carried out using analytical theory and kinetic simulations. Initially uniform full Maxwellian plasma consisting of equal temperature collisionless electrons and ions is allowed to interact with a perfectly absorbing conducting wall, which charges positively due to large ions gyro-radii. The analysis of the steady-state plasma and field profiles reveals the importance of the relation between electron and ion thermal Larmor radii and plasma Debye length. In particular, the sheath width scaling, the details of the particle flows and the break-down of force balance components exhibit different behaviors in three possible regimes. Despite our primary motivation, the results in this paper can also be applicable to the divertor and the first wall of tokamaks.

  20. X-band microwave generation caused by plasma-sheath instability

    International Nuclear Information System (INIS)

    Bliokh, Y.; Felsteiner, J.; Slutsker, Ya. Z.

    2012-01-01

    It is well known that oscillations at the electron plasma frequency may appear due to instability of the plasma sheath near a positively biased electrode immersed in plasma. This instability is caused by transit-time effects when electrons, collected by this electrode, pass through the sheath. Such oscillations appear as low-power short spikes due to additional ionization of a neutral gas in the electrode vicinity. Herein we present first results obtained when the additional ionization was eliminated. We succeeded in prolonging the oscillations during the whole time a positive bias was applied to the electrode. These oscillations could be obtained at much higher frequency than previously reported (tens of GHz compared to few hundreds of MHz) and power of tens of mW. These results in combination with presented theoretical estimations may be useful, e.g., for plasma diagnostics.

  1. Sheath-lens probe for negative ion detection in reactive plasmas

    International Nuclear Information System (INIS)

    Stamate, E.; Sugai, H.; Takai, O.; Ohe, K.

    2004-01-01

    A method that allows easy and inexpensive detection of negative ions is introduced. The method is based upon the electrostatic lens effect of the sheath layer evolving to a positively biased planar probe that focuses the negative charges to distinct regions on the surface. Trajectories of negative ions inside the sheath are obtained after computing the potential and electric field distribution by solving in three dimensions the nonlinear Poisson equation. The negative ions' flux to square and disk probes is developed in Ar/SF 6 and O 2 plasmas. The method allows negative ion detection with sensitivity higher than that of Langmuir probes

  2. Measurement of electric field and gradient in the plasma sheath using clusters of floating microspheres

    International Nuclear Information System (INIS)

    Sheridan, T. E.; Katschke, M. R.; Wells, K. D.

    2007-01-01

    A method for measuring the time-averaged vertical electric field and its gradient in the plasma sheath using clusters with n=2 or 3 floating microspheres of known mass is described. The particle charge q is found by determining the ratio of the breathing frequency to the center-of-mass frequency for horizontal (in-plane) oscillations. The electric field at the position of the particles is then calculated using the measured charge-to-mass ratio, and the electric-field gradient is determined from the vertical resonance frequency. The Debye length is also found. Experimental results are in agreement with a simple sheath model

  3. Potential Formation in Front of an Electron Emitting Electrode in a Two-Electron Temperature Plasma

    International Nuclear Information System (INIS)

    Gyergyek, T.; Cercek, M.; Erzen, D.

    2003-01-01

    Plasma potential formation in the pre-sheath region of a floating electron emitting electrode (collector) is studied theoretically in a two-electron-temperature plasma using a static kinetic plasma-sheath model. Dependence of the collector floating potential, the plasma potential in the pre-sheath region, and the critical emission coefficient on the hot electron density and temperature is calculated. It is found that for high hot to cool electron temperature ratio a double layer like solutions exist in a certain range of hot to cool electron densities

  4. Electrostatic sheath at the boundary of a collisional dusty plasma

    Indian Academy of Sciences (India)

    Department of Physics, Cotton College, Guwahati 781 001, India. Abstract. Considering the Boltzmann response of the ions ... respect to normal electronic charge (q ~105. –106e). The mass of the dust grains can have very high value too, up to ... degrees of plasma dynamics. Thus, the theoretical modeling of a dusty plasma ...

  5. Density and velocity measurements of a sheath plasma from MPD thruster

    Energy Technology Data Exchange (ETDEWEB)

    Ko, J.J.; Cho, T.S.; Choi, M.C.; Choi, E.H.; Cho, G.S.; Uhm, H.S.

    1999-07-01

    Magnetoplasma is the plasma that the electron and ion orbits are strongly confined by intense magnetic field. Recently, magnetoplasma dynamics (MPD) has been investigated in connection with applications to the rocket thruster in USA, Germany, etc. It can be widely applicable, including modification of satellite position and propulsion of the interplanetary space shuttle. A travel for a long distance journey is possible because a little amount of neutral gases is needed for the plasma source. Besides, this will provide a pollution free engine for future generations. MPD thruster is not a chemical engine. The authors have built a Mather type MPD thruster, which has 1 kV max charging, 10 kA max current flows, and has about 1 ms characteristic operation time. The Paschen curve of this thruster is measured and its minimum breakdown voltage occurs in the pressure range of 0.1 to 1 Torr. Langmuir and double probes are fabricated to diagnose the sheath plasma from the thruster. The temperature and density are calculated to be 2.5 eV and 10{sup 15} cm {sup {minus}3}, respectively, from the probe data. Making use of photo diode, an optical probe is fabricated to measure propagation velocity of the sheath plasma. The sheath plasma from the MPD thruster in the experiment propagates with velocity of 1 cm/{micro}s.

  6. Current sheath curvature correlation with the neon soft x-ray emission from plasma focus device

    International Nuclear Information System (INIS)

    Zhang, T; Lin, X; Chandra, K A; Tan, T L; Springham, S V; Patran, A; Lee, P; Lee, S; Rawat, R S

    2005-01-01

    The insulator sleeve length is one of the major parameters that can severely affect the neon soft x-ray yield from a plasma focus. The effect of the insulation sleeve length on various characteristic timings of plasma focus discharges and hence the soft x-ray emission characteristics has been investigated using a resistive divider. The pinhole images and laser shadowgraphy are used to explain the observed variation in the average soft x-ray yield (measured using a diode x-ray spectrometer) with variation of the insulator sleeve length. We have found that for a neon filled plasma focus device the change in insulator sleeve length changes the current sheath curvature angle and thus the length of the focused plasma column. The optimized current sheath curvature angle is found to be between 39 0 and 41 0 , at the specific axial position of 6.2-9.3 cm from the cathode support plate, for our 3.3 kJ plasma focus device. A strong dependence of the neon soft x-ray yield on the current sheath curvature angle has thus been reported

  7. Plasma formation in TBR

    International Nuclear Information System (INIS)

    Del Bosco, E.

    1981-01-01

    In this work are presented and discussed results of the formation and equilibrium of the plasma current in TBR, a small tokamak, designed and contructed at the Instituto de Fisica of Universidade de Sao Paulo. The measured breakdown curves for H 2 , A and He are compared with the predictions of a simple model with reasonable agreement. The influence of stray magnetic fields in the plasma formation is investigated and conditions are chosen to facilitate the breakdown. The time profile of loop voltage and plasma current for shots with plasma equilibrium are shown. A comparison is made between experimental results and analytical-numerical model for tokamaks discharges with ohmic heating. Reasonable agreement is obtained when Z, effective atomic number, is assumed as a parameter. (Author) [pt

  8. Collaborative Research: Understanding Ion Losses to Plasma Boundaries Sheaths and Presheaths

    Energy Technology Data Exchange (ETDEWEB)

    Hershkowitz, Noah [Univ. of Wisconsin, Madison, WI (United States)

    2015-10-01

    Sheaths are common to all bounded steady-state plasmas. This includes laboratory, industrial, fusion, and in some cases even space plasmas. They form in general to balance particle loss and maintain quasi-neutrality in plasmas. Electrons are lighter than the ions by 2000 times or more (depending on the gas), and in most plasmas ion temperatures are rarely higher than the electron temperature and generally much lower. Thus in most cases, negative potential sheaths occur to confine electrons and allow ions to be freely lost. We have investigated how a plasma locally response to a positive bias on a small electrode, and have established area criteria which plasma reacts differently to the positive bias – first a pure electron sheath, and a global non-ambipolar regime where all electrons are lost to the electrode, and a double layer structure identified as a virtual cathode forms to limiting electron loss and maintain quasi-neutrality, and finally a anode spot regime where a secondary discharge occurs in front of the electrode, turning it into the major loss area of the entire plasma. Electrode area and plasma parameters criteria for these regimes were established, and the effect of the virtual cathode on the electrode’s I-V characteristics was investigated. We have also developed a global non-ambipolar electron source to replace hollow cathodes in a number of plasma applications. This eliminates the lifetime limitation and maintenance cost of hollow cathodes as they easily wear out easily and cannot be replaced in space applications.

  9. ICRF Faraday shield plasma sheath physics: The Perkins paradigm

    International Nuclear Information System (INIS)

    Whealton, J.H.; Ryan, P.M.; Raridon, R.J.

    1989-01-01

    Using a 2-D nonlinear formulation which considers the plasma edge near a Faraday shield in a self consistent manner, progress is indicated in the modeling of the ion motion for a Perkins embodiment. Ambiguities in the formulation are also indicated, the resolution of which will provide significant insight into the impurities generation for ICRH antennas. 6 refs., 3 figs

  10. Shear flow instability in a partially-ionized plasma sheath around a fast-moving vehicle

    International Nuclear Information System (INIS)

    Sotnikov, V. I.; Mudaliar, S.; Genoni, T. C.; Rose, D. V.; Oliver, B. V.; Mehlhorn, T. A.

    2011-01-01

    The stability of ion acoustic waves in a sheared-flow, partially-ionized compressible plasma sheath around a fast-moving vehicle in the upper atmosphere, is described and evaluated for different flow profiles. In a compressible plasma with shear flow, instability occurs for any velocity profile, not just for profiles with an inflection point. A second-order differential equation for the electrostatic potential of excited ion acoustic waves in the presence of electron and ion collisions with neutrals is derived and solved numerically using a shooting method with boundary conditions appropriate for a finite thickness sheath in contact with the vehicle. We consider three different velocity flow profiles and find that in all cases that neutral collisions can completely suppress the instability.

  11. Sheath and bulk expansion induced by RF bias in atmospheric pressure microwave plasma

    Science.gov (United States)

    Lee, Jimo; Nam, Woojin; Lee, Jae Koo; Yun, Gunsu

    2017-10-01

    A large axial volume expansion of microwave-driven plasma at atmospheric pressure is achieved by applying a low power radio frequency (RF) bias at an axial location well isolated from the original plasma bulk. The evolution of the plasma plume visualized by high speed ICCD imaging suggest that the free electrons drifting toward the bias electrode cause the prodigious expansion of the sheath, creating a stable plasma stream channel between the microwave and the RF electrodes. For argon plasma in ambient air, enhanced emissions of OH and N2 spectral lines are measured in the extended plume region, supporting the acceleration of electrons and subsequent generation of radical species. The coupling of RF bias with microwave provides an efficient way of enlarging the plasma volume and enhancing the production of radicals. Work supported by the National Research Foundation of Korea under BK21+ program and Grant No. 2015R1D1A1A01061556 (Ministry of Education).

  12. Excitation of surface waves and electrostatic fields by a RF (radiofrequency systems) wave in a plasma sheath with current

    International Nuclear Information System (INIS)

    Gutierrez Tapia, C.

    1990-01-01

    It is shown in a one-dimensional model that when a current in a plasma sheath is present, the excitation of surface waves and electrostatic fields by a RF wave is possible in the sheath. This phenomena depends strongly on the joint action of Miller's and driven forces. It is also shown that the action of these forces are carried out at different characteristic times when the wave front travels through the plasma sheath. The influence of the current, in the steady limit, is taken into account by a small functional variation of the density perturbations and generated electrostatic field. (Author)

  13. Plasma sheath dynamics and parameters in focus and defocus conditions. Vol. 2

    International Nuclear Information System (INIS)

    Masoud, M.M.; Soliman, H.M.; El-Aragi, G.M.

    1996-01-01

    The study deals with the effect of the inner electrode polarity on the dynamic behaviour and parameters of plasma sheath in a coaxial discharge. The experimental investigations presented here were carried out in a coaxial plasma focus discharge device of mather geometry. It consisted of coaxial stainless steel hollow cylindrical electrodes with inner electrode 18.2 cm length and outer-electrode 31.5 cm length. The diameter of the inner and outer electrodes are 3.2 cm and 6.6 cm, respectively. The two electrodes are separated by a teflon disc at the breech. The outer electrode muzzle is connected to stainless steel expansion chamber of 23 cm length and 17 cm diameter. The discharge takes place in hydrogen gas with a base pressure of 1 torr. The experiments were conducted with 10 kV bank voltage, which corresponds to 100 K A peak discharge current. By using a double electric probe, It was found that the plasma electron density was higher near the negative electrode. Investigations using a miniature rogovsky coil have shown that, the radial and azimuthal current density increased with radial distance from negative electrode to positive electrode. The shape and the axial velocity of plasma sheath were measured using a magnetic probe. The experimental results indicate that, the plasma is thick near the negative electrode, in both cases of the outer or the inner electrode. Also it has been found that the axial plasma sheath velocity reaches its maximum value at the muzzle for positive and negative inner electrode. The magnitude of maximum axial velocity reaches 1.7 x 10 60 cm/s for positive inner electrode and decreased by 25% for negative inner electrode further investigations revealed that on interchanging the polarity from normal operation (positive inner electrode), it was found that with negative inner electrode the soft x-ray emission intensity dropped by three orders of magnitude from that with positive inner electrode. 9 figs

  14. Plasma sheath dynamics and parameters in focus and defocus conditions. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Masoud, M M; Soliman, H M; El-Aragi, G M [Plasma Physics and Nuclear Fusion Department, Nuclear Research Centre, Atomic Energy Aurhority, Cairo (Egypt)

    1996-03-01

    The study deals with the effect of the inner electrode polarity on the dynamic behaviour and parameters of plasma sheath in a coaxial discharge. The experimental investigations presented here were carried out in a coaxial plasma focus discharge device of mather geometry. It consisted of coaxial stainless steel hollow cylindrical electrodes with inner electrode 18.2 cm length and outer-electrode 31.5 cm length. The diameter of the inner and outer electrodes are 3.2 cm and 6.6 cm, respectively. The two electrodes are separated by a teflon disc at the breech. The outer electrode muzzle is connected to stainless steel expansion chamber of 23 cm length and 17 cm diameter. The discharge takes place in hydrogen gas with a base pressure of 1 torr. The experiments were conducted with 10 kV bank voltage, which corresponds to 100 K A peak discharge current. By using a double electric probe, It was found that the plasma electron density was higher near the negative electrode. Investigations using a miniature rogovsky coil have shown that, the radial and azimuthal current density increased with radial distance from negative electrode to positive electrode. The shape and the axial velocity of plasma sheath were measured using a magnetic probe. The experimental results indicate that, the plasma is thick near the negative electrode, in both cases of the outer or the inner electrode. Also it has been found that the axial plasma sheath velocity reaches its maximum value at the muzzle for positive and negative inner electrode. The magnitude of maximum axial velocity reaches 1.7 x 10{sup 60} cm/s for positive inner electrode and decreased by 25% for negative inner electrode further investigations revealed that on interchanging the polarity from normal operation (positive inner electrode), it was found that with negative inner electrode the soft x-ray emission intensity dropped by three orders of magnitude from that with positive inner electrode. 9 figs.

  15. Thermionic emission from monolayer graphene, sheath formation and its feasibility towards thermionic converters

    Science.gov (United States)

    Misra, Shikha; Upadhyay Kahaly, M.; Mishra, S. K.

    2017-02-01

    A formalism describing the thermionic emission from a single layer graphene sheet operating at a finite temperature and the consequent formation of the thermionic sheath in its proximity has been established. The formulation takes account of two dimensional densities of state configuration, Fermi-Dirac (f-d) statistics of the electron energy distribution, Fowler's treatment of electron emission, and Poisson's equation. The thermionic current estimates based on the present analysis is found to be in reasonably good agreement with experimental observations (Zhu et al., Nano Res. 07, 1 (2014)). The analysis has further been simplified for the case where f-d statistics of an electron energy distribution converges to Maxwellian distribution. By using this formulation, the steady state sheath features, viz., spatial dependence of the surface potential and electron density structure in the thermionic sheath are derived and illustrated graphically for graphene parameters; the electron density in the sheath is seen to diminish within ˜10 s of Debye lengths. By utilizing the graphene based cathode in configuring a thermionic converter (TC), an appropriate operating regime in achieving the efficient energy conversion has been identified. A TC configured with the graphene based cathode (operating at ˜1200 K/work function 4.74 V) along with the metallic anode (operating at ˜400 K/ work function 2.0 V) is predicted to display ˜56% of the input thermal flux into the electrical energy, which infers approximately ˜84% of the Carnot efficiency.

  16. Doppler spectroscopic measurements of sheath ion velocities in radio-frequency plasmas

    International Nuclear Information System (INIS)

    Woodcock, B.K.; Busby, J.R.; Freegarde, T.G.; Hancock, G.

    1997-01-01

    We have measured the distributions of N 2 + ion velocity components parallel and perpendicular to the electrode in the sheath of a radio-frequency nitrogen reactive ion etching discharge, using pulsed laser-induced fluorescence. Parallel to the electrode, the ions have throughout a thermal distribution that is found to be consistent with the rotational temperature of 355 K. In the perpendicular direction, we see clearly the acceleration of the ions towards the electrode, and our results agree well with theoretical predictions although an unexpected peak of unaccelerated ions persists. We have also determined the absolute ion concentrations in the sheath, which we have calibrated by analyzing the decay in laser-induced fluorescence in the plasma bulk after discharge extinction. At 20 mTorr, the bulk concentration of 1.0x10 10 cm -3 falls to around 2x10 8 cm -3 at 2 mm from the electrode. copyright 1997 American Institute of Physics

  17. Axial magnetic field restriction of plasma sheath in a coaxial discharge

    International Nuclear Information System (INIS)

    Masoud, M. M.; Soliman, H. M.; Ibrahim, F. A.

    1999-01-01

    The study deals with the effect of an applied axial magnetic field on the dynamics and parameters of the plasma sheath and the expanded plasma in a coaxial discharge. Experimental investigations were carried out with a 3 kJ coaxial discharge device of a Mather geometry. The discharge takes place in Hydrogen gas with base pressure of 1 torr. The experiments were conducted with a 10 kV bank voltage, which corresponds to 100 kA discharge currents. The investigations have shown that the maximum axial plasma sheath velocity is decreased by 20% when applying the external axial magnetic field along the coaxial electrodes of intensity 2.6 kG. The experimental results of axial magnetic field intensity B z along the coaxial electrodes indicated that the application of external axial magnetic field causes an increases of B z ∼ 40% at a mid-distance between the breech and the muzzle and a decrease by 75% at the muzzle. The experimental results of expanded plasma electron temperature T e and density n e cleared that when the axial magnetic field is applied the maximum T e is decreased by 2.6 and 3 times, while the maximum n e is increased by 2.8 and 2 times for the first and second half cycles respectively. (author)

  18. Analytical solutions and particle simulations of cross-field plasma sheaths

    International Nuclear Information System (INIS)

    Gerver, M.J.; Parker, S.E.; Theilhaber, K.

    1989-01-01

    Particles simulations have been made of an infinite plasma slab, bounded by absorbing conducting walls, with a magnetic field parallel to the walls. The simulations have been either 1-D, or 2-D, with the magnetic field normal to the simulation plane. Initially, the plasma has a uniform density between the walls, and there is a uniform source of ions and electrons to replace particles lost to the walls. In the 1-D case, there is no diffusion of the particle guiding centers, and the plasma remains uniform in density and potential over most of the slab, with sheaths about a Debye length wide where the potential rises to the wall potential. In the 2-D case, the density profile becomes parabolic, going almost to zero at the walls, and there is a quasineutral presheath in the bulk of the plasma, in addition to sheaths near the walls. Analytic expressions are found for the density and potential profiles in both cases, including, in the 2-D case, the magnetic presheath due to finite ion Larmor radius, and the effects of the guiding center diffusion rate being either much less than or much grater than the energy diffusion rate. These analytic expressions are shown to agree with the simulations. A 1-D simulation with Monte Carlo guiding center diffusion included gives results that are good agreement with the much more expensive 2-D simulation. 17 refs., 10 figs

  19. Physics of the intermediate layer between a plasma and a collisionless sheath and mathematical meaning of the Bohm criterion

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, N. A.; Benilov, M. S. [Departamento de Fisica, CCCEE, Universidade da Madeira Largo do Municipio, 9000 Funchal (Portugal)

    2012-07-15

    A transformation of the ion momentum equation simplifies a mathematical description of the transition layer between a quasi-neutral plasma and a collisionless sheath and clearly reveals the physics involved. Balance of forces acting on the ion fluid is delicate in the vicinity of the sonic point and weak effects come into play. For this reason, the passage of the ion fluid through the sonic point, which occurs in the transition layer, is governed not only by inertia and electrostatic force but also by space charge and ion-atom collisions and/or ionization. Occurrence of different scenarios of asymptotic matching in the plasma-sheath transition is analyzed by means of simple mathematical examples, asymptotic estimates, and numerical calculations. In the case of a collisionless sheath, the ion speed distribution plotted on the logarithmic scale reveals a plateau in the intermediate region between the sheath and the presheath. The value corresponding to this plateau has the meaning of speed with which ions leave the presheath and enter the sheath; the Bohm speed. The plateau is pronounced reasonably well provided that the ratio of the Debye length to the ion mean free path is of the order of 10{sup -3} or smaller. There is no such plateau if the sheath is collisional and hence no sense in talking of a speed with which ions enter the sheath.

  20. Bounds imposed on the sheath velocity of a dense plasma focus by conservation laws and ionization stability condition

    International Nuclear Information System (INIS)

    Auluck, S. K. H.

    2014-01-01

    Experimental data compiled over five decades of dense plasma focus research are consistent with the snowplow model of sheath propagation, based on the hypothetical balance between magnetic pressure driving the plasma into neutral gas ahead and “wind pressure” resisting its motion. The resulting sheath velocity, or the numerically proportional “drive parameter,” is known to be approximately constant for devices optimized for neutron production over 8 decades of capacitor bank energy. This paper shows that the validity of the snowplow hypothesis, with some correction, as well as the non-dependence of sheath velocity on device parameters, have their roots in local conservation laws for mass, momentum, and energy coupled with the ionization stability condition. Both upper and lower bounds on sheath velocity are shown to be related to material constants of the working gas and independent of the device geometry and capacitor bank impedance

  1. Bounds imposed on the sheath velocity of a dense plasma focus by conservation laws and ionization stability condition

    Energy Technology Data Exchange (ETDEWEB)

    Auluck, S. K. H., E-mail: skhauluck@gmail.com, E-mail: skauluck@barc.gov.in [Physics Group, Bhabha Atomic Research Center, Mumbai (India)

    2014-09-15

    Experimental data compiled over five decades of dense plasma focus research are consistent with the snowplow model of sheath propagation, based on the hypothetical balance between magnetic pressure driving the plasma into neutral gas ahead and “wind pressure” resisting its motion. The resulting sheath velocity, or the numerically proportional “drive parameter,” is known to be approximately constant for devices optimized for neutron production over 8 decades of capacitor bank energy. This paper shows that the validity of the snowplow hypothesis, with some correction, as well as the non-dependence of sheath velocity on device parameters, have their roots in local conservation laws for mass, momentum, and energy coupled with the ionization stability condition. Both upper and lower bounds on sheath velocity are shown to be related to material constants of the working gas and independent of the device geometry and capacitor bank impedance.

  2. Computational study of sheath structure in oxygen containing plasmas at medium pressures

    Science.gov (United States)

    Hrach, Rudolf; Novak, Stanislav; Ibehej, Tomas; Hrachova, Vera

    2016-09-01

    Plasma mixtures containing active species are used in many plasma-assisted material treatment technologies. The analysis of such systems is rather difficult, as both physical and chemical processes affect plasma properties. A combination of experimental and computational approaches is the best suited, especially at higher pressures and/or in chemically active plasmas. The first part of our study of argon-oxygen mixtures was based on experimental results obtained in the positive column of DC glow discharge. The plasma was analysed by the macroscopic kinetic approach which is based on the set of chemical reactions in the discharge. The result of this model is a time evolution of the number densities of each species. In the second part of contribution the detailed analysis of processes taking place during the interaction of oxygen containing plasma with immersed substrates was performed, the results of the first model being the input parameters. The used method was the particle simulation technique applied to multicomponent plasma. The sheath structure and fluxes of charged particles to substrates were analysed in the dependence on plasma pressure, plasma composition and surface geometry.

  3. Plasma-Sheath Instability in Hall Thrusters Due to Periodic Modulation of the Energy of Secondary Electrons in Cyclotron Motion

    International Nuclear Information System (INIS)

    Sydorenko, D.; Smolyakov, A.; Kaganovich, I.; Raitses, Y.

    2008-01-01

    Particle-in-cell simulation of Hall thruster plasmas reveals a plasma-sheath instability manifesting itself as a rearrangement of the plasma sheath near the thruster channel walls accompanied by a sudden change of many discharge parameters. The instability develops when the sheath current as a function of the sheath voltage is in the negative conductivity regime. The major part of the sheath current is produced by beams of secondary electrons counter-streaming between the walls. The negative conductivity is the result of nonlinear dependence of beam-induced secondary electron emission on the plasma potential. The intensity of such emission is defined by the beam energy. The energy of the beam in crossed axial electric and radial magnetic fields is a quasi-periodical function of the phase of cyclotron rotation, which depends on the radial profile of the potential and the thruster channel width. There is a discrete set of stability intervals determined by the final phase of the cyclotron rotation of secondary electrons. As a result, a small variation of the thruster channel width may result in abrupt changes of plasma parameters if the plasma state jumps from one stability interval to another

  4. Modeling of polarization phenomena due to RF sheaths and electron beams in magnetized plasma

    International Nuclear Information System (INIS)

    Faudot, E.

    2005-01-01

    This work investigates the problematic of hot spots induced by accelerated particle fluxes in tokamaks. It is shown that the polarization due to sheaths in the edge plasma in which an electron beam at a high level of energy is injected, can reach several hundreds volts and thus extend the deposition area. The notion of obstructed sheath is introduced and explains the acceleration of energy deposition by the decreasing of the sheath potential. Then, a 2-dimensional fluid modeling of flux tubes in front of ICRF antennae allows us to calculate the rectified potentials taking into account RF polarization currents transverse to magnetic field lines. The 2-dimensional fluid code designed validates the analytical results which show that the DC rectified potential is 50% greater with polarization currents than without. Finally, the simultaneous application of an electron beam and a RF potential reveals that the potentials due to each phenomenon are additives when RF potential is much greater than beam polarization. The density depletion of polarized flux tubes in 2-dimensional PIC (particles in cells) simulations is characterized but not yet explained. (author)

  5. A fully kinetic, self-consistent particle simulation model of the collisionless plasma--sheath region

    International Nuclear Information System (INIS)

    Procassini, R.J.; Birdsall, C.K.; Morse, E.C.

    1990-01-01

    A fully kinetic particle-in-cell (PIC) model is used to self-consistently determine the steady-state potential profile in a collisionless plasma that contacts a floating, absorbing boundary. To balance the flow of particles to the wall, a distributed source region is used to inject particles into the one-dimensional system. The effect of the particle source distribution function on the source region and collector sheath potential drops, and particle velocity distributions is investigated. The ion source functions proposed by Emmert et al. [Phys. Fluids 23, 803 (1980)] and Bissell and Johnson [Phys. Fluids 30, 779 (1987)] (and various combinations of these) are used for the injection of both ions and electrons. The values of the potential drops obtained from the PIC simulations are compared to those from the theories of Emmert et al., Bissell and Johnson, and Scheuer and Emmert [Phys. Fluids 31, 3645 (1988)], all of which assume that the electron density is related to the plasma potential via the Boltzmann relation. The values of the source region and total potential drop are found to depend on the choice of the electron source function, as well as the ion source function. The question of an infinite electric field at the plasma--sheath interface, which arises in the analyses of Bissell and Johnson and Scheuer and Emmert, is also addressed

  6. Charge and Levitation of Grains in Plasma Sheath with Dust Thermic Emission

    International Nuclear Information System (INIS)

    Wu Haicheng; Xie Baisong

    2005-01-01

    By taking into account thermic emission current from hot dust surface, the problem involved in dust charging and levitation of dust grains in plasma sheath has been researched. The results are compared to that without including thermal emission current while the system parameters are same. It is found that the thermal emission current has played a significant role on modifying the dust charging and balance levitations. Both of the charging numbers of dust and the dust radius in balance are dramatically reduced. The stability of dust levitation is also analyzed and discussed.

  7. Laser-induced fluorescence measurements of argon and xenon ion velocities near the sheath boundary in 3 ion species plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Yip, Chi-Shung; Hershkowitz, Noah [Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Severn, Greg [Department of Physics, University of San Diego, San Diego, California 92110 (United States); Baalrud, Scott D. [Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242 (United States)

    2016-05-15

    The Bohm sheath criterion is studied with laser-induced fluorescence in three ion species plasmas using two tunable diode lasers. Krypton is added to a low pressure unmagnetized DC hot filament discharge in a mixture of argon and xenon gas confined by surface multi-dipole magnetic fields. The argon and xenon ion velocity distribution functions are measured at the sheath-presheath boundary near a negatively biased boundary plate. The potential structures of the plasma sheath and presheath are measured by an emissive probe. Results are compared with previous experiments with Ar–Xe plasmas, where the two ion species were observed to reach the sheath edge at nearly the same speed. This speed was the ion sound speed of the system, which is consistent with the generalized Bohm criterion. In such two ion species plasmas, instability enhanced collisional friction was demonstrated [Hershkowitz et al., Phys. Plasmas 18(5), 057102 (2011).] to exist which accounted for the observed results. When three ion species are present, it is demonstrated under most circumstances the ions do not fall out of the plasma at their individual Bohm velocities. It is also shown that under most circumstances the ions do not fall out of the plasma at the system sound speed. These observations are also consistent with the presence of the instabilities.

  8. Sheath and heat flow of a two-electron-temperature plasma in the presence of electron emission

    International Nuclear Information System (INIS)

    Sato, Kunihiro; Miyawaki, Fujio

    1992-01-01

    The electrostatic sheath and the heat flow of a two-electron-temperature plasma in the presence of electron emission are investigated analytically. It is shown that the energy flux is markedly enhanced to a value near the electron free-flow energy flux as a result of considerable reduction of the sheath potential due to electron emission if the fraction of hot electrons at the sheath edge is much smaller than one. If the hot- to cold-electron temperature ratio is of the order of ten and the hot electron density is comparable to the cold electron density, the action of the sheath as a thermal insulator is improved as a result of suppression of electron emission due to the space-charge effect of hot electrons. (author)

  9. Research on the FDTD method of scattering effects of obliquely incident electromagnetic waves in time-varying plasma sheath on collision and plasma frequencies

    Science.gov (United States)

    Chen, Wei; Guo, Li-xin; Li, Jiang-ting

    2017-04-01

    This study analyzes the scattering characteristics of obliquely incident electromagnetic (EM) waves in a time-varying plasma sheath. The finite-difference time-domain algorithm is applied. According to the empirical formula of the collision frequency in a plasma sheath, the plasma frequency, temperature, and pressure are assumed to vary with time in the form of exponential rise. Some scattering problems of EM waves are discussed by calculating the radar cross section (RCS) of the time-varying plasma. The laws of the RCS varying with time are summarized at the L and S wave bands.

  10. Fast, kinetically self-consistent simulation of RF modulated plasma boundary sheaths

    International Nuclear Information System (INIS)

    Shihab, Mohammed; Ziegler, Dennis; Brinkmann, Ralf Peter

    2012-01-01

    A mathematical model is presented which enables the efficient, kinetically self-consistent simulation of RF modulated plasma boundary sheaths in all technically relevant discharge regimes. It is defined on a one-dimensional geometry where a Cartesian x-axis points from the electrode or wall at x E ≡ 0 towards the plasma bulk. An arbitrary endpoint x B is chosen ‘deep in the bulk’. The model consists of a set of kinetic equations for the ions, Boltzmann's relation for the electrons and Poisson's equation for the electrical field. Boundary conditions specify the ion flux at x B and a periodically—not necessarily harmonically—modulated sheath voltage V(t) or sheath charge Q(t). The equations are solved in a statistical sense. However, it is not the well-known particle-in-cell (PIC) scheme that is employed, but an alternative iterative algorithm termed ensemble-in-spacetime (EST). The basis of the scheme is a discretization of the spacetime, the product of the domain [x E , x B ] and the RF period [0, T]. Three modules are called in a sequence. A Monte Carlo module calculates the trajectories of a large set of ions from their start at x B until they reach the electrode at x E , utilizing the potential values on the nodes of the spatio-temporal grid. A harmonic analysis module reconstructs the Fourier modes n im (x) of the ion density n i (x, t) from the calculated trajectories. A field module finally solves the Boltzmann-Poisson equation with the calculated ion densities to generate an updated set of potential values for the spatio-temporal grid. The iteration is started with the potential values of a self-consistent fluid model and terminates when the updates become sufficiently small, i.e. when self-consistency is achieved. A subsequent post-processing determines important quantities, in particular the phase-resolved and phase-averaged values of the ion energy and angular distributions and the total energy flux at the electrode. A drastic reduction of the

  11. Reconstruction of the time-averaged sheath potential profile in an argon RF plasma using the ion energy distribution

    International Nuclear Information System (INIS)

    Fivaz, M.; Brunner, S.; Schwarzenbach, W.; Howling, A.A.; Hollenstein, C.

    1994-10-01

    Charge-exchange collisions and radio-frequency excitation combine to give peaks in the ion energy distribution measured at the ground electrode of an argon plasma in a capacitive reactor. These peaks are used as a diagnostic to reconstruct the profile of the time-averaged potential in the sheath. Particle-In-Cell simulations show that the method is accurate. The method is applied to investigate the sheath thickness as a function of excitation frequency at constant plasma power. The time-averaged potential is found to be parabolic in both experimental measurements and numerical simulation. (author) 6 figs., 1 tab., 15 refs

  12. A suitable boundary condition for bounded plasma simulation without sheath resolution

    International Nuclear Information System (INIS)

    Parker, S.E.; Procassini, R.J.; Birdsall, C.K.; Cohen, B.I.

    1993-01-01

    We have developed a technique that allows for a sheath boundary layer without having to resolve the inherently small space and time scales of the sheath region. We refer to this technique as the logical sheath boundary condition. This boundary condition, when incorporated into a direct-implicit particle code, permits large space- and time-scale simulations of bounded systems, which would otherwise be impractical on current supercomputers. The lack of resolution of the collector sheath potential drop obtained from conventional implicit simulations at moderate values of ω pe Δt and Δz/λ De provides the motivation for the development of the logical sheath boundary condition. The algorithm for use of the logical sheath boundary condition in a particle simulation is presented. Results from simulations which use the logical sheath boundary condition are shown to compare reasonably well with those from an analytic theory and simulations in which the sheath is resolved

  13. Equilibrium properties of the plasma sheath with a magnetic field parallel to the wall

    International Nuclear Information System (INIS)

    Krasheninnikova, Natalia S.; Tang Xianzhu

    2010-01-01

    Motivated by the magnetized target fusion (MTF) experiment [R. E. Siemon et al., Comments Plasma Phys. Controlled Fusion 18, 363 (1999)], a systematic investigation of the force balance and equilibrium plasma flows was carried out using analytical theory and the particle-in-cell code VPIC[K. J. Bowers et al., Phys. Plasmas 15, 055703 (2008)] for a one-dimensional plasma sheath with a magnetic field parallel to the wall. Initially uniform full Maxwellian plasma consisting of equal temperature collisionless electrons and ions is allowed to interact with a perfectly absorbing wall. The analysis of the steady-state force balance of the entire plasma as well as its individual components illuminates the roles that the hydrodynamic, magnetic, and electric forces play. In particular, when ρ thi D , the magnetic force balances the divergence of the pressure tensor. As the magnetic field is decreased, the electric force becomes prominent in areas where quasineutrality breaks, which can be a substantial part of the sheath. Its importance depends on the relation between three parameters, namely, electron and ion thermal Larmor radii and plasma Debye length: ρ the , ρ thi , and λ D . The relative importance of the electron and ion current in the magnetic or Lorentz force term can be understood through the analysis of the two-fluid force balance. It reveals that the current is carried primarily by the electrons. This is due to the direction of the electric field that helps confine the ions, but not the electrons, which are forced to carry a large current to confine themselves magnetically. In the regimes where the electric field is negligible, the ions also need the current for confinement, but in these cases the divergence of ion pressure tensor is much smaller than that of the electrons. Consequently the ion current is also smaller. The study of the electron and ion flow parallel to the wall clarifies this picture even further. In the regime of strong magnetic field, the

  14. Effects of fast monoenergetic electrons on the ion dynamics near the cathode in a pulsed direct current plasma sheath

    International Nuclear Information System (INIS)

    Sharifian, M.; Shokri, B.

    2008-01-01

    A detailed one-dimensional simulation of the ion dynamics of the plasma sheath near a substrate (cathode) in the presence of fast monoenergetic electrons has been carried out in this article. The sheath evolution is investigated by using a fluid model assuming that the ions, plasma electrons and monoenergetic, fast electrons act as three fluids (fluid approach). The effect of the density of fast electrons on the ion density, ion velocity, and ion energy near the cathode and the evolution of the sheath boundary in front of the cathode are separately explored. Also, the variation of the ion velocity and ion density at the vicinity of the cathode as a function of time is investigated in the absence and presence of the electron beam. Results indicate that the presence of fast electrons in the sheath causes significant change in the sheath thickness and therefore basically changes the ion velocity, ion density, and ion impact energy on the cathode compared to the absence of the electron beam case

  15. Hedgehog signaling is required for formation of the notochord sheath and patterning of nuclei pulposi within the intervertebral discs.

    Science.gov (United States)

    Choi, Kyung-Suk; Harfe, Brian D

    2011-06-07

    The vertebrae notochord is a transient rod-like structure that produces secreted factors that are responsible for patterning surrounding tissues. During later mouse embryogenesis, the notochord gives rise to the middle part of the intervertebral disc, called the nucleus pulposus. Currently, very little is known about the molecular mechanisms responsible for forming the intervertebral discs. Here we demonstrate that hedgehog signaling is required for formation of the intervertebral discs. Removal of hedgehog signaling in the notochord and nearby floorplate resulted in the formation of an aberrant notochord sheath that normally surrounds this structure. In the absence of the notochord sheath, small nuclei pulposi were formed, with most notochord cells dispersed throughout the vertebral bodies during embryogenesis. Our data suggest that the formation of the notochord sheath requires hedgehog signaling and that the sheath is essential for maintaining the rod-like structure of the notochord during early embryonic development. As notochord cells form nuclei pulposi, we propose that the notochord sheath functions as a "wrapper" around the notochord to constrain these cells along the vertebral column.

  16. Laser-induced fluorescence measurements of argon ion velocities near the sheath boundary of an argon-xenon plasma

    International Nuclear Information System (INIS)

    Lee, Dongsoo; Severn, Greg; Oksuz, Lutfi; Hershkowitz, Noah

    2006-01-01

    The Bohm sheath criterion in single- and two-ion species plasma is studied with laser-induced fluorescence using a diode laser. Xenon is added to a low pressure unmagnetized dc hot filament argon discharge confined by surface multidipole magnetic fields. The Ar II transition at 668.614 nm is adopted for optical pumping to detect the fluorescence from the plasma and to measure the argon ion velocity distribution functions with respect to positions relative to a negatively biased boundary plate. The structures of the plasma sheath and presheath are measured by an emissive probe. The ion concentrations of the two-species in the bulk plasma are calculated from ion acoustic wave experiments. Results are compared with previous experiments of Ar-He plasmas in which the argon ions were the heavier ion species. Unlike the previous results, the argon speed is slower than its own Bohm velocity near the sheath-presheath boundary in the Ar-Xe plasma where argon ions are the lighter ion species. We argue that this result is consistent with the behaviour of the helium ion required by the generalized Bohm criterion in the previous experiments with Ar-He plasmas. Further, our results suggest that the measured argon ion speed approaches the ion sound speed of the system

  17. Stability analysis of a model equilibrium for a gravito-electrostatic sheath in a colloidal plasma under external gravity effect

    International Nuclear Information System (INIS)

    Rajkhowa, Kavita Rani; Bujarbarua, S.; Dwivedi, C.B.

    1999-01-01

    The present contribution tries to find a scientific answer to the question of stability of an equilibrium plasma sheath in a colloidal plasma system under external gravity effect. A model equilibrium of hydrodynamical character has been discussed on the basis of quasi-hydrostatic approximation of levitational condition. It is found that such an equilibrium is highly unstable to a modified-ion acoustic wave with a conditional likelihood of linear driving of the so-called acoustic mode too. Thus, it is reported (within fluid treatment) that a plasma-sheath edge in a colloidal plasma under external gravity effect could be highly sensitive to the acoustic turbulence. Its consequential role on possible physical mechanism of Coulomb phase transition has been conjectured. However, more rigorous calculations as future course of work are required to corroborate our phenomenological suggestions. (author)

  18. Simulation of the influence high-frequency (2 MHz) capacitive gas discharge and magnetic field on the plasma sheath near a surface in hypersonic gas flow

    International Nuclear Information System (INIS)

    Schweigert, I. V.

    2012-01-01

    The plasma sheath near the surface of a hypersonic aircraft formed under associative ionization behind the shock front shields the transmission and reception of radio signals. Using two-dimensional kinetic particle-in-cell simulations, we consider the change in plasma-sheath parameters near a flat surface in a hypersonic flow under the action of electrical and magnetic fields. The combined action of a high-frequency 2-MHz capacitive discharge, a constant voltage, and a magnetic field on the plasma sheath allows the local electron density to be reduced manyfold.

  19. Formation of Stylet Sheaths in āere (in air from eight species of phytophagous hemipterans from six families (Suborders: Auchenorrhyncha and Sternorrhyncha.

    Directory of Open Access Journals (Sweden)

    J Kent Morgan

    Full Text Available Stylet sheath formation is a common feature among phytophagous hemipterans. These sheaths are considered essential to promote a successful feeding event. Stylet sheath compositions are largely unknown and their mode of solidification remains to be elucidated. This report demonstrates the formation and solidification of in āere (in air produced stylet sheaths by six hemipteran families: Diaphorina citri (Psyllidae, Asian citrus psyllid, Aphis nerii (Aphididae, oleander/milkweed aphid, Toxoptera citricida (Aphididae, brown citrus aphid, Aphis gossypii (Aphididae, cotton melon aphid, Bemisia tabaci biotype B (Aleyrodidae, whitefly, Homalodisca vitripennis (Cicadellidae, glassy-winged sharpshooter, Ferrisia virgata (Pseudococcidae, striped mealybug, and Protopulvinaria pyriformis (Coccidae, pyriform scale. Examination of in āere produced stylet sheaths by confocal and scanning electron microscopy shows a common morphology of an initial flange laid down on the surface of the membrane followed by continuous hollow core structures with sequentially stacked hardened bulbous droplets. Single and multi-branched sheaths were common, whereas mealybug and scale insects typically produced multi-branched sheaths. Micrographs of the in āere formed flanges indicate flange sealing upon stylet bundle extraction in D. citri and the aphids, while the B. tabaci whitefly and H. vitripennis glassy-winged sharpshooter flanges remain unsealed. Structural similarity of in āere sheaths are apparent in stylet sheaths formed in planta, in artificial diets, or in water. The use of 'Solvy', a dissolvable membrane, for intact stylet sheath isolation is reported. These observations illustrate for the first time this mode of stylet sheath synthesis adding to the understanding of stylet sheath formation in phytophagous hemipterans and providing tools for future use in structural and compositional analysis.

  20. Measurements of electric charge and screening length of microparticles in a plasma sheath

    International Nuclear Information System (INIS)

    Nakamura, Y.; Ishihara, O.

    2009-01-01

    An experiment is described in which microparticles are levitated within a rf sheath above a conducting plate in argon plasma. The microparticles forming a two-dimensional crystal structure are considered to possess Debye screening Coulomb potential φ(r)=(Q/4πε 0 r)exp(-r/λ), where Q is the electric charge, r is distance, and λ is the screening length. When the crystal structure is slanted with an angle θ, a particle experiences a force Mg sin θ, where M is the mass of the particle and g is acceleration due to gravity, which must be equal to the Debye screened Coulomb force from other particles. By changing θ, relations for λ(Q) are measured. The screening length λ and Q are determined uniquely from the crossing points of several relations. The electric charge Q is also estimated from a floating potential measured with a probe. The measured λ is nearly equal to an ion Debye length.

  1. Gap formation processes in a high-density plasma opening switch

    International Nuclear Information System (INIS)

    Grossmann, J.M.; Swanekamp, S.B.; Ottinger, P.F.; Commisso, R.J.; Hinshelwood, D.D.; Weber, B.V.

    1995-01-01

    A gap opening process in plasma opening switches (POS) is examined with the aid of numerical simulations. In these simulations, a high density (n e =10 14 --5x10 15 cm -3 ) uniform plasma initially bridges a small section of the coaxial transmission line of an inductive energy storage generator. A short section of vacuum transmission line connects the POS to a short circuit load. The results presented here extend previous simulations in the n e =10 12 --10 13 cm -3 density regime. The simulations show that a two-dimensional (2-D) sheath forms in the plasma near a cathode. This sheath is positively charged, and electrostatic sheath potentials that are large compared to the anode--cathode voltage develop. Initially, the 2-D sheath is located at the generator edge of the plasma. As ions are accelerated out of the sheath, it retains its original 2-D structure, but migrates axially toward the load creating a magnetically insulated gap in its wake. When the sheath reaches the load edge of the POS, the POS stops conducting current and the load current increases rapidly. At the end of the conduction phase a gap exists in the POS whose size is determined by the radial dimensions of the 2-D sheath. Simulations at various plasma densities and current levels show that the radial size of the gap scales roughly as B/n e , where B is the magnetic field. The results of this work are discussed in the context of long-conduction-time POS physics, but exhibit the same physical gap formation mechanisms as earlier lower density simulations more relevant to short-conduction-time POS. copyright 1995 American Institute of Physics

  2. Ripple formation on Si surfaces during plasma etching in Cl2

    Science.gov (United States)

    Nakazaki, Nobuya; Matsumoto, Haruka; Sonobe, Soma; Hatsuse, Takumi; Tsuda, Hirotaka; Takao, Yoshinori; Eriguchi, Koji; Ono, Kouichi

    2018-05-01

    Nanoscale surface roughening and ripple formation in response to ion incidence angle has been investigated during inductively coupled plasma etching of Si in Cl2, using sheath control plates to achieve the off-normal ion incidence on blank substrate surfaces. The sheath control plate consisted of an array of inclined trenches, being set into place on the rf-biased electrode, where their widths and depths were chosen in such a way that the sheath edge was pushed out of the trenches. The distortion of potential distributions and the consequent deflection of ion trajectories above and in the trenches were then analyzed based on electrostatic particle-in-cell simulations of the plasma sheath, to evaluate the angular distributions of ion fluxes incident on substrates pasted on sidewalls and/or at the bottom of the trenches. Experiments showed well-defined periodic sawtooth-like ripples with their wave vector oriented parallel to the direction of ion incidence at intermediate off-normal angles, while relatively weak corrugations or ripplelike structures with the wave vector perpendicular to it at high off-normal angles. Possible mechanisms for the formation of surface ripples during plasma etching are discussed with the help of Monte Carlo simulations of plasma-surface interactions and feature profile evolution. The results indicate the possibility of providing an alternative to ion beam sputtering for self-organized formation of ordered surface nanostructures.

  3. Simulation of a two-dimensional sheath over a flat insulator-conductor interface on a radio-frequency biased electrode in a high-density plasma

    International Nuclear Information System (INIS)

    Kim, Doosik; Economou, Demetre J.

    2004-01-01

    A combined fluid/Monte Carlo (MC) simulation was developed to study the two-dimensional (2D) sheath over a flat insulator/conductor interface on a radio-frequency (rf) biased electrode in a high-density plasma. The insulator capacitance increased the local impedance between the plasma and the bias voltage source. Thus, for uniform ion density and electron temperature far away from the wall, the sheath potential over the insulator was only a fraction of that over the conductor, resulting in a thinner sheath over the insulator. The fluid model provided the spatiotemporal profiles of the 2D sheath electric field. These were used as input to the MC simulation to compute the ion energy distribution (IED) and ion angular distribution (IAD) at different locations on the surface. The ion flux, IED, and IAD changed drastically across the insulator/conductor interface due to the diverging rf electric field in the distorted sheath. The ion flux was larger on the conductor at the expense of that on the insulator. Both the ion impact angle and angular spread increased progressively as the material interface was approached. The ion impact energy and energy spread were smaller on the insulator as compared to the conductor. For given plasma parameters, as the insulator thickness was increased, the sheath potential and thickness over the insulator decreased, and sheath distortion became more pronounced

  4. Sheath structure transition controlled by secondary electron emission

    Science.gov (United States)

    Schweigert, I. V.; Langendorf, S. J.; Walker, M. L. R.; Keidar, M.

    2015-04-01

    In particle-in-cell Monte Carlo collision (PIC MCC) simulations and in an experiment we study sheath formation over an emissive floating Al2O3 plate in a direct current discharge plasma at argon gas pressure 10-4 Torr. The discharge glow is maintained by the beam electrons emitted from a negatively biased hot cathode. We observe three types of sheaths near the floating emissive plate and the transition between them is driven by changing the negative bias. The Debye sheath appears at lower voltages, when secondary electron emission is negligible. With increasing applied voltage, secondary electron emission switches on and a first transition to a new sheath type, beam electron emission (BEE), takes place. For the first time we find this specific regime of sheath operation near the floating emissive surface. In this regime, the potential drop over the plate sheath is about four times larger than the temperature of plasma electrons. The virtual cathode appears near the emissive plate and its modification helps to maintain the BEE regime within some voltage range. Further increase of the applied voltage U initiates the second smooth transition to the plasma electron emission sheath regime and the ratio Δφs/Te tends to unity with increasing U. The oscillatory behavior of the emissive sheath is analyzed in PIC MCC simulations. A plasmoid of slow electrons is formed near the plate and transported to the bulk plasma periodically with a frequency of about 25 kHz.

  5. Stochastic heating of a single Brownian particle by charge fluctuations in a radio-frequency produced plasma sheath

    Science.gov (United States)

    Schmidt, Christian; Piel, Alexander

    2015-10-01

    The Brownian motion of a single particle in the plasma sheath is studied to separate the effect of stochastic heating by charge fluctuations from heating by collective effects. By measuring the particle velocities in the ballistic regime and by carefully determining the particle mass from the Epstein drag it is shown that for a pressure of 10 Pa, which is typical of many experiments, the proper kinetic temperature of the Brownian particle remains close to the gas temperature and rises only slightly with particle size. This weak effect is confirmed by a detailed model for charging and charge fluctuations in the sheath. A substantial temperature rise is found for decreasing pressure, which approximately shows the expected scaling with p-2. The system under study is an example for non-equilibrium Brownian motion under the influence of white noise without corresponding dissipation.

  6. Eddy intrusion of hot plasma into the polar cap and formation of polar-cap arcs

    International Nuclear Information System (INIS)

    Chiu, Y.T.; Gorney, D.J.

    1983-01-01

    We present plasma and electric field data obtained by the S3-3 satellite over the polar caps. We demonstrate that: (1) plasma signatures in the polar cap arc formation region near 5000 km altitude show clear intrusions of plasma sheet (approx.keV) and magneto sheath (approx.100 eV) plasma into a background of low-energy polar cap plasma; (2) the combined plasma and electric field signatures (electron inverted-V, ion beam and delxE<0) are exactly the same as in the evening discrete arc. We interpret this equivalence of polar cap and evening discrete arc signatures as indication that their formation processes are identical. The spatial structures of polar cap electric fields and the associated plasma signatures are consistent with the hypothesis that plasma intrusion into the polar cap takes the form of multiple cellular eddies. This hypothesis provides a unifying view of arc formation and arc configurations

  7. Formation of cavities in dusty plasmas

    International Nuclear Information System (INIS)

    Kravchenko, O.Yu.; Chutov, Yu.Yi.; Yurchuk, M.M.

    2003-01-01

    The computer modeling of evolution one-dimensional dusty of sheaths which is taking place in unbounded argon plasma will be carried out. For examination the magneto-hydrodynamics equations for particles of a dusty particles and ions,and also equilibrium approach for electrons will be utilized. As a result of the carried out calculations the spatial distributions of parameters of plasma in different instants are obtained. It is shown,that in a series of modes of the dusty particles are collected in layers which separated by areas where dusty particles practically miss. At increasing of concentration of neutral particles this effect disappears owing to action of a frictional force between dusty particles and neutral component of plasma. It is shown,that depending on concentration of plasma the dusty particles can be dilated or be compressed under action of an ion wind force

  8. Breakdown of a Space Charge Limited Regime of a Sheath in a Weakly Collisional Plasma Bounded by Walls with Secondary Electron Emission

    International Nuclear Information System (INIS)

    Sydorenko, D.; Smolyakov, A.; Kaganovich, I.; Raitses, Y.

    2009-01-01

    A new regime of plasma-wall interaction is identified in particle-in-cell simulations of a hot plasma bounded by walls with secondary electron emission. Such a plasma has a strongly non-Maxwellian electron velocity distribution function and consists of bulk plasma electrons and beams of secondary electrons. In the new regime, the plasma sheath is not in a steady space charge limited state even though the secondary electron emission produced by the plasma bulk electrons is so intense that the corresponding partial emission coefficient exceeds unity. Instead, the plasma-sheath system performs relaxation oscillations by switching quasiperiodically between the space charge limited and non-space-charge limited states.

  9. What is the size of a floating sheath? An answer

    Science.gov (United States)

    Voigt, Farina; Naggary, Schabnam; Brinkmann, Ralf Peter

    2016-09-01

    The formation of a non-neutral boundary sheath in front of material surfaces is universal plasma phenomenon. Despite several decades of research, however, not all related issues are fully clarified. In a recent paper, Chabert pointed out that this lack of clarity applies even to the seemingly innocuous question ``What the size of a floating sheath?'' This contribution attempts to provide an answer that is not arbitrary: The size of a floating sheath is defined as the plate separation of an equivalent parallel plate capacitor. The consequences of the definition are explored with the help of a self-consistent sheath model, and a comparison is made with other sheath size definitions. Deutsche Forschungsgemeinschaft within SFB TR 87.

  10. Studies on waves and instabilities in a plasma sheath formed on the outer surface of a space craft

    International Nuclear Information System (INIS)

    Aria, Anil K.; Malik, Hitendra K.

    2008-01-01

    Using the normal mode analysis, the number of possible modes is obtained in a magnetized inhomogeneous plasma sheath formed during the motion of a space craft which consists of negative ions (due to dust) along with the positive ions and the isothermal electrons. In addition to three propagating modes with phase velocities λ 1 , λ 2 , and λ 3 such that λ 1 2 3 , two types of instabilities with growth rates γ 1 and γ 2 also occur in such a plasma sheath. The growth rate γ 1 is increased with the negative to positive ion density ratio r 0 , ion temperature T, and obliqueness θ of the magnetic field B 0 . The growth rate γ 2 of the other instability gets lower with the density ratio r 0 but gets higher with the temperature T. The growth rate γ 2 is sensitive to the temperature T, whereas the growth rate γ 1 gets prominently changed with the density ratio r 0 . The increase in the growth rate γ 1 with the obliqueness θ is more pronounced under the effect of stronger magnetic field. On other hand, the phase velocity λ 1 shows weak dependence on r 0 and T (though it gets larger) but it gets significantly changed (increased) for the larger obliqueness θ. The phase velocity λ 2 gets larger with r 0 , B 0 , and θ and becomes lower for the higher temperature T. The phase velocity λ 3 is decreased for the higher values of r 0 and B 0 and is increased for the larger values of T and θ

  11. Simulation study of wave phenomena from the sheath region in single frequency capacitively coupled plasma discharges; field reversals and ion reflection

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, S.; Turner, M. M. [National Centre for Plasma Science and Technology, School of Physical Sciences, Dublin City University, Dublin 9 (Ireland)

    2013-07-15

    Capacitively coupled radio-frequency (RF) discharges have great significance for industrial applications. Collisionless electron heating in such discharges is important, and sometimes is the dominant mechanism. This heating is usually understood to originate in a stochastic interaction between electrons and the electric fields. However, other mechanisms may also be important. There is evidence of wave emission with a frequency near the electron plasma frequency, i.e., ω{sub pe}, from the sheath region in collisionless capacitive RF discharges. This is the result of a progressive breakdown of quasi-neutrality close to the electron sheath edge. These waves are damped in a few centimeters during their propagation from the sheath towards the bulk plasma. The damping occurs because of the Landau damping or some related mechanism. This research work reports that the emission of waves is associated with a field reversal during the expanding phase of the sheath. Trapping of electrons near to this field reversal region is observed. The amplitude of the wave increases with increasing RF current density amplitude J(tilde sign){sub 0} until some maximum is reached, beyond which the wave diminishes and a new regime appears. In this new regime, the density of the bulk plasma suddenly increases because of ion reflection, which occurs due to the presence of strong field reversal near sheath region. Our calculation shows that these waves are electron plasma waves. These phenomena occur under extreme conditions (i.e., higher J(tilde sign){sub 0} than in typical experiments) for sinusoidal current waveforms, but similar effects may occur with non-sinusoidal pulsed waveforms for conditions of experimental interest, because the rate of change of current is a relevant parameter. The effect of electron elastic collisions on plasma waves is also investigated.

  12. BRIEF COMMUNICATION: The negative ion flux across a double sheath at the formation of a virtual cathode

    Science.gov (United States)

    McAdams, R.; Bacal, M.

    2010-08-01

    For the case of negative ions from a cathode entering a plasma, the maximum negative ion flux and the positive ion flux before the formation of a virtual cathode have been calculated for particular plasma conditions. The calculation is based on a simple modification of an analysis of electron emission into a plasma containing negative ions. The results are in good agreement with a 1d3v PIC code model.

  13. Experimental Studies of Anode Sheath Phenomena in a Hall Thruster Discharge

    International Nuclear Information System (INIS)

    Dorf, L.; Raitses, Y.; Fisch, N.J.

    2004-01-01

    Both electron-repelling and electron-attracting anode sheaths in a Hall thruster were characterized by measuring the plasma potential with biased and emissive probes [L. Dorf, Y. Raitses, V. Semenov, and N.J. Fisch, Appl. Phys. Let. 84 (2004) 1070]. In the present work, two-dimensional structures of the plasma potential, electron temperature, and plasma density in the near-anode region of a Hall thruster with clean and dielectrically coated anodes are identified. Possible mechanisms of anode sheath formation in a Hall thruster are analyzed. The path for current closure to the anode appears to be the determining factor in the anode sheath formation process. The main conclusion of this work is that the anode sheath formation in Hall thrusters differs essentially from that in the other gas discharge devices, like a glow discharge or a hollow anode, because the Hall thruster utilizes long electron residence times to ionize rather than high neutral pressures

  14. Laboratory simulation of laser propagation through plasma sheaths containing ablation particles of ZrB2-SiC-C during hypersonic flight.

    Science.gov (United States)

    Zang, Qing; Bai, Xiangxing; Ma, Ping; Huang, Jie; Ma, Jing; Yu, Siyuan; Shi, Hongyan; Sun, Xiudong; Liu, Yang; Lu, Yueguang

    2017-02-15

    The optical communication method has potential for solving the blackout problem, which is a big challenge faced in the development of aerospace. Two laser transmission systems were set up to explore the influence of the plasma and the ablation particles on the propagation of the laser. The experimental results indicate that the laser can transmit through the plasma with little attenuation. When there are ablation particles of ZrB2-SiC-C added in the plasma, the intensity of the laser has fluctuations. The work introduced in this Letter can be regarded as basic research of the propagation characters of the laser through plasma sheaths.

  15. On electromagnetic wave propagation through a plasma sheath produced by a moving ionization source

    International Nuclear Information System (INIS)

    Semenova, V.I.

    1977-01-01

    Features of the interaction of electromagnetic waves are considered with a nonstationary plasma layer of a finite thickness, produced in an immovable gas by a movable ionization source. It is shown that a static magnetic field excited on the ionization front in build-up of electrons produced in the incident wave field reemits the energy to the electromagnetic wave during the plasma relaxation caused by recombination processes. As a result the electromagnetic wave of a finite amplitude may propagate behind the nonstationary layer of an ''opaque'' (ωsub(p)sup(2)>>ωsub(urc)sup((0))sup(2)) plasma as distinct from the layer of a movable stationary plasma with the same parameters

  16. Sheath physics and materials science results from recent plasma source ion implantation experiments

    International Nuclear Information System (INIS)

    Conrad, J.R.; Radtke, J.L.; Dodd, R.A.; Worzala, F.J.

    1987-01-01

    Plasma Source Ion Implantation (PSII) is a surface modification technique which has been optimized for ion-beam processing of materials. PSII departs radically from conventional implantation by circumventing the line of sight restriction inherent in conventional ion implantation. The authors used PSII to implant cutting tools and dies and have demonstrated substantial improvements in lifetime. Recent results on plasma physics scaling laws, microstructural, mechanical, and tribological properties of PSII-implanted materials are presented

  17. Spheroidization of silica powders by radio frequency inductively coupled plasma with Ar-H2 and Ar-N2 as the sheath gases at atmospheric pressure

    Science.gov (United States)

    Li, Lin; Ni, Guo-hua; Guo, Qi-jia; Lin, Qi-fu; Zhao, Peng; Cheng, Jun-li

    2017-09-01

    Amorphous spherical silica powders were prepared by inductively coupled thermal plasma treatment at a radio frequency of 36.2 MHz. The effects of the added content of hydrogen and nitrogen into argon (serving as the sheath gas), as well as the carrier gas flow rate, on the spheroidization rate of silica powders, were investigated. The prepared silica powders before and after plasma treatment were examined by scanning electron microscopy, X-ray diffraction, and laser granulometric analysis. Results indicated that the average size of the silica particles increased, and the transformation of crystals into the amorphous state occurred after plasma treatment. Discharge image processing was employed to analyze the effect of the plasma temperature field on the spheroidization rate. The spheroidization rate of the silica powder increased with the increase of the hydrogen content in the sheath gas. On the other hand, the spheroidization rate of the silica power first increased and then decreased with the increase of the nitrogen content in the sheath gas. Moreover, the amorphous content increased with the increase of the spheroidization rate of the silica powder.

  18. The influence of electric fields and neutral particles on the plasma sheath at ITER divertor conditions

    NARCIS (Netherlands)

    Shumack, A.E.

    2011-01-01

    The purpose of this thesis is to support the optimization of the ‘exhaust-pipe’, or so-called ‘divertor’, of the nuclear fusion experiment ITER, a large international fusion reactor now under construction in the south of France. We focus particularly on two ‘tools’ for optimization of the plasma

  19. ICRF Faraday shield plasma sheath models: Low and high conductivity limits

    International Nuclear Information System (INIS)

    Whealton, J.H.; Ryan, P.M.; Raridon, R.J.

    1989-01-01

    Using a 2-D nonlinear formulation which explicitly considers the plasma edge near a Faraday shield in a self consistent manner, progress is indicated in the modeling of the ion motion for a Faraday shield concept and model suggested by Perkins. Several models are considered which may provide significant insight into the impurities generation for ICRH antennas. 6 refs., 8 figs

  20. RF Sheath-Enhanced Plasma Surface Interaction Studies using Beryllium Optical Emission Spectroscopy in JET ITER-Like Wall

    Energy Technology Data Exchange (ETDEWEB)

    Agarici, G. [Fusion for Energy (F4E), Barcelona, Spain; Klepper, C Christopher [ORNL; Colas, L. [French Atomic Energy Commission (CEA); Krivska, Alena [Ecole Royale Militaire, Brussels Belgium; Bobkov, V. [Max-Planck-Institut fur Plasmaphysik, EURATOM Association, Garching, Germany; Jacquet, P. [Culham Centre for Fusion Energy (CCFE), Abingdon, UK; Delabie, Ephrem G. [ORNL; Giroud, C. [EURATOM / UKAEA, UK; Kirov, K K. [Association EURATOM-CCFE, Abingdon, UK; Lasa Esquisabel, Ane [ORNL; Lerche, E. [ERM-KMS, Association EURATOM-Belgian State, Brussels, Belgium; Dumortier, P. [ERM-KMS, Association EURATOM-Belgian State, Brussels, Belgium; Durodie, Frederic [Ecole Royale Militaire, Brussels Belgium

    2017-10-01

    A dedicated study on JET-ILW, deploying two types of ICRH antennas and spectroscopic observation spots at two outboard, beryllium limiters, has provided insight on long-range (up to 6m) RFenhanced plasma-surface interactions (RF-PSI) due to near-antenna electric fields. To aid in the interpretation of optical emission measurements of these effects, the antenna near-fields are computed using the TOPICA code, specifically run for the ITER-like antenna (ILA); similar modelling already existed for the standard JET antennas (A2). In the experiment, both antennas were operated in current drive mode, as RF-PSI tends to be higher in this phasing and at similar power (∼0.5 MW). When sweeping the edge magnetic field pitch angle, peaked RF-PSI effects, in the form of 2-4 fold increase in the local Be source,are consistently measured with the observation spots magnetically connect to regions of TOPICAL-calculated high near-fields, particularly at the near-antenna limiters. It is also found that similar RF-PSI effects are produced by the two types of antenna on similarly distant limiters. Although this mapping of calculated near-fields to enhanced RF-PSI gives only qualitative interpretion of the data, the present dataset is expected to provide a sound experimental basis for emerging RF sheath simulation model validation.

  1. Using the cold plasma dispersion relation and whistler mode waves to quantify the antenna sheath impedance of the Van Allen Probes EFW instrument

    Czech Academy of Sciences Publication Activity Database

    Hartley, D. P.; Kletzing, C. A.; Kurth, W. S.; Bounds, S. R.; Averkamp, T. F.; Hospodarsky, G. B.; Wygant, J. R.; Bonnell, J. W.; Santolík, Ondřej; Watt, C. E. J.

    2016-01-01

    Roč. 121, č. 5 (2016), s. 4590-4606 ISSN 2169-9380 R&D Projects: GA MŠk(CZ) LH15304 Institutional support: RVO:68378289 Keywords : EFW * EMFISIS * plasmaspheric hiss * sheath impedance * Van Allen Probes * whistler mode chorus Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.733, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/2016JA022501/abstract

  2. An analytical investigation: Effect of solar wind on lunar photoelectron sheath

    Science.gov (United States)

    Mishra, S. K.; Misra, Shikha

    2018-02-01

    The formation of a photoelectron sheath over the lunar surface and subsequent dust levitation, under the influence of solar wind plasma and continuous solar radiation, has been analytically investigated. The photoelectron sheath characteristics have been evaluated using the Poisson equation configured with population density contributions from half Fermi-Dirac distribution of the photoemitted electrons and simplified Maxwellian statistics of solar wind plasma; as a consequence, altitude profiles for electric potential, electric field, and population density within the photoelectron sheath have been derived. The expression for the accretion rate of sheath electrons over the levitated spherical particles using anisotropic photoelectron flux has been derived, which has been further utilized to characterize the charging of levitating fine particles in the lunar sheath along with other constituent photoemission and solar wind fluxes. This estimate of particle charge has been further manifested with lunar sheath characteristics to evaluate the altitude profile of the particle size exhibiting levitation. The inclusion of solar wind flux into analysis is noticed to reduce the sheath span and altitude of the particle levitation; the dependence of the sheath structure and particle levitation on the solar wind plasma parameters has been discussed and graphically presented.

  3. Mechanism of the formation of silver-sheathed HTSC ceramics and its fine structure

    International Nuclear Information System (INIS)

    Blinova, Yu.V.; Sudareva, S.V.; Krinitsina, T.P.; Romanov, E.P.; Akimov, I.I.

    2005-01-01

    Electron microscopical data are reported which point to the fact that two mechanisms of formation of main superconducting phase 2223 in Bi,Pb-2223/Ag exist: liquid phase mechanism and solid-phase one. Along crystallite boundaries the spherical outlined by Ag interlayers are observed. These are former eutectic liquid droplets of ∼ 2223 composition from which Ag is liberated on solidification. In the initial stage of phase formation inside of a 2212 phase the platelets of phase 2223 are found out with the same orientation as the matrix (a solid-phase mechanism). Certain relationships of structure to superconducting properties are shown [ru

  4. True Asymptotic Plasma-Sheath Matching with an Asymptotically Correct Collisional Presheath

    Science.gov (United States)

    1989-06-30

    and shifted in velocity according to a generalization sructure amkse acca un redected l.ow, trapped ions, and of the Bohm criterion [51. (61. urice...2,10.2) (IPARAM(I),I-1,5) CLOSE (2) WRITE (*, 109) STOP c 101 FORMAT ( F8 .1/F8.1/F6.3/F6.3/F6.3/F6.3/F7.2/F5.2/F6. 1) 102 FORMAT (I1/I1/I3/I3/I3) 103...150 FRA(X’********************I &JX’****TEC START 151 FORMAT(F8.1/ F8 .i/F6.3/F6.3

  5. Debye sheath mechanism at laser plasma interaction and generalization to nuclear forces and quark-gluon plasma

    Science.gov (United States)

    Osman, Frederick; Ghahramani, Nader; Hora, Heinrich

    2005-10-01

    The studies of laser ablation have lead to a new theory of nuclei, endothermic nuclei generation, and quark-gluon plasmas. The surface of ablated plasma expanding into vacuum after high power laser irradiation of targets contains an electric double layer having the thickness of the Debye length. This led to the discovery of surface tension in plasmas, and led to the internal dynamic electric fields in all inhomogeneous plasmas. The surface tension causes stabilization by short length surface wave smoothing the expanding plasma plume and to stabilization against the Rayleigh Taylor instability. Generalizing this to the degenerate electrons in a metal with the Fermi energy instead of the temperature resulted in the first quantum theory of surface tension of metals in agreement with measurements. Taking the Fermi energy in the Debye length for nucleons results in a theory of nuclei with stable confinement of protons and neutrons just at the well-known nuclear density, and the Debye lengths equal to the Hofstadter decay of the nuclear surface. Increasing the nuclear density by a factor of 10 leads to a change of the Fermi energy into its relativistic branch where no surface energy is possible and the particle mass is not defined, permitting the quark gluon plasma. Expansion of this higher density at the big bang or in super-nova results in nucleation and element generation. The Boltzmann equilibrium permits the synthesis of nuclei even in the endothermic range, however with the limit to about uranium. A relation for the magic numbers leads to a quark structure of nuclear shells that can be understood as a duality property of nuclei with respect to nucleons and quarks

  6. Mathematical study and numerical simulations of bi-kinetic plasma sheaths

    International Nuclear Information System (INIS)

    Badsi, Mehdi

    2016-01-01

    This thesis focuses on the construction and the numerical simulation theoretical models of plasmas in interaction with an absorbing wall. These models are based on two species Vlasov-Poisson or Vlasov-Ampere systems in the presence of boundary conditions. The expected stationary solutions must verify the balance of the flux of charges in the orthogonal direction to the wall. This feature is called the ambi-polarity. Through the study of a non linear Poisson equation, we prove the well-posedness of 1d-1v stationary Vlasov-Poisson system, for which we determine incoming particles distributions and a wall potential that induces the ambi-polarity as well as a non negative charge density hold. We also give a quantitative estimates of the thickness of the boundary layer that develops at the wall. These results are illustrated numerically. We prove the linear stability of the electronic stationary solution for a non-stationary Vlasov-Ampere system. Finally, we study a 1d-3v stationary Vlasov-Poisson system in the presence of a constant and parallel to the wall magnetic field. We determine incoming particles distributions and a wall potential so that the ambi-polarity holds. We study a non linear Poisson equation through a non linear functional energy that admits minimizers. We established some bounds on the numerical parameters inside which, our model is relevant and we propose an interpretation of the results. (author)

  7. Anode sheath in Hall thrusters

    International Nuclear Information System (INIS)

    Dorf, L.; Semenov, V.; Raitses, Y.

    2003-01-01

    A set of hydrodynamic equations is used to describe quasineutral plasma in ionization and acceleration regions of a Hall thruster. The electron distribution function and Poisson equation are invoked for description of a near-anode region. Numerical solutions suggest that steady-state operation of a Hall thruster can be achieved at different anode sheath regimes. It is shown that the anode sheath depends on the thruster operating conditions, namely the discharge voltage and the mass flow rate

  8. RF sheaths for arbitrary B field angles

    Science.gov (United States)

    D'Ippolito, Daniel; Myra, James

    2014-10-01

    RF sheaths occur in tokamaks when ICRF waves encounter conducting boundaries and accelerate electrons out of the plasma. Sheath effects reduce the efficiency of ICRF heating, cause RF-specific impurity influxes from the edge plasma, and increase the plasma-facing component damage. The rf sheath potential is sensitive to the angle between the B field and the wall, the ion mobility and the ion magnetization. Here, we obtain a numerical solution of the non-neutral rf sheath and magnetic pre-sheath equations (for arbitrary values of these parameters) and attempt to infer the parametric dependences of the Child-Langmuir law. This extends previous work on the magnetized, immobile ion regime. An important question is how the rf sheath voltage distributes itself between sheath and pre-sheath for various B field angles. This will show how generally previous estimates of the rf sheath voltage and capacitance were reasonable, and to improve the RF sheath BC. Work supported by US DOE grants DE-FC02-05ER54823 and DE-FG02-97ER54392.

  9. Adaptation of the perfect linear model for ion beam formation to the case of plasma sources with electron electrostatic containment

    International Nuclear Information System (INIS)

    Coste, Ph.; Aubert, J.; Lejeune, C.

    1991-01-01

    The extensive development of ion beam technologies in the last years, in particular for thin film deposition and etching, poses the problem of predicting the behaviour of the ion beam from convenient models. One of the existing models, the 'perfect linear model', is easy to use and provides information about the geometrical parameters of the ion beam envelope. In this model, however, the plasma potential must be close to the plasma electrode potential. Now, ion sources with electrostatic containment of the ionizing electrons -very attractive because of their improved ionization efficiency - have a plasma potential higher than the plasma electrode potential. Thus, a space-charge sheath with a non-negligible thickness exists, which modifies the equilibrium conditions of the plasma meniscus and, therefore, the initial divergence of the ion beam. In this paper an adaptation of the perfect linear model for ion beam formation to the case of plasma sources with electron electrostatic containment is presented. (author)

  10. Sheath waves, non collisional dampings

    International Nuclear Information System (INIS)

    Marec, Jean Lucien Ernest

    1974-01-01

    When a metallic conductor is inserted into an ionised gas, an area of electron depletion is formed between the conductor and the plasma: the ionic sheath. Moreover, if the conductor is excited by an electric field, this ionic sheath plays an important role with respect to microwave properties. In this research thesis, the author addresses the range of frequencies smaller than the plasma frequency, and reports the study of resonance phenomena. After a presentation of the problem through a bibliographical study, the author recalls general characteristics of sheath wave propagation and of sheath resonances, and discusses the validity of different hypotheses (for example and among others, electrostatic approximations, cold plasma). Then, the author more particularly addresses theoretical problems related to non collisional dampings: brief bibliographical study, detailed presentation and description of the theoretical model, damping calculation methods. The author then justifies the design and performance of an experiment, indicates measurement methods used to determine plasma characteristics as well as other magnitudes which allow the description of mechanisms of propagation and damping of sheath waves. Experimental results are finally presented with respect to various parameters. The author discusses to which extent the chosen theoretical model is satisfying [fr

  11. Cavitational micro-particles: plasma formation mechanisms

    International Nuclear Information System (INIS)

    Bica, Ioan

    2005-01-01

    Cavitational micro-particles are a class to which the micro-spheres, the micro-tubes and the octopus-shaped micro-particles belong. The cavitational micro-particles (micro-spheres, micro-tubes and octopus-shaped micro-particles) at an environmental pressure. The micro-spheres, the micro-tubes and the ligaments of the octopus-shaped micro-particles are produced in the argon plasma and are formed of vapors with low values of the molar concentration in comparison with the molar density of the gas and vapor mixture, the first one on the unstable and the last two on the stable movement of the vapors. The ligaments of the octopus-shaped micro-particles are open at the top for well-chosen values of the sub-cooling of the vapor and gas cylinders. The nitrogen in the air favors the formation of pores in the wall of the micro-spheres. In this paper we present the cavitational micro-particles, their production in the plasma and some mechanisms for their formation in the plasma. (author)

  12. Structural instability of sheath potential distribution and its possible implications for the L/H transition in tokamak plasmas

    International Nuclear Information System (INIS)

    Yoshida, Zensho; Yamada, Hiroshi.

    1988-07-01

    The Bohm equation of electrostatic potential distributions in one-dimensional plasmas has been studied for various Mach numbers and plasma potentials. Solvability and structural stability have been discussed using the Sagdeev potential. Implications of the structural stability for the L/H transitions in tokamak plasmas has been also discussed. (author)

  13. Modeling of polarization phenomena due to RF sheaths and electron beams in magnetized plasma; Modelisation de phenomenes de polarisation par des gaines rf et des faisceaux electroniques dans un plasma magnetise

    Energy Technology Data Exchange (ETDEWEB)

    Faudot, E

    2005-07-01

    This work investigates the problematic of hot spots induced by accelerated particle fluxes in tokamaks. It is shown that the polarization due to sheaths in the edge plasma in which an electron beam at a high level of energy is injected, can reach several hundreds volts and thus extend the deposition area. The notion of obstructed sheath is introduced and explains the acceleration of energy deposition by the decreasing of the sheath potential. Then, a 2-dimensional fluid modeling of flux tubes in front of ICRF antennae allows us to calculate the rectified potentials taking into account RF polarization currents transverse to magnetic field lines. The 2-dimensional fluid code designed validates the analytical results which show that the DC rectified potential is 50% greater with polarization currents than without. Finally, the simultaneous application of an electron beam and a RF potential reveals that the potentials due to each phenomenon are additives when RF potential is much greater than beam polarization. The density depletion of polarized flux tubes in 2-dimensional PIC (particles in cells) simulations is characterized but not yet explained. (author)

  14. Method for finding the distribution function of the ions formed in an electrode sheath in a plasma

    International Nuclear Information System (INIS)

    Chumenkov, V.

    1981-01-01

    A steady-state one-dimensional kinetic equation is studied for the ions formed in an electrode sheath in a discharge in a transverse magnetic field and also in the ionization--acceleration zone of Hall accelerators. Only single ionization of atoms by electron impact is considered in the collision term on the right side of the equation. The variables which appear on the right side are grouped into an expression which is a measure of the ion energy distribution. The problem is solved through the use of an empirical expression for the integrated ion energy distribution. This approach for finding the ion distribution function makes it a comparatively simple matter to trace the evolution of the distribution function due to changes in the external parameters (the magnetic field, the discharge voltage, and the pressure) or in the geometric characteristics of the discharge apparatus

  15. Predictable topography simulation of SiO2 etching by C5F8 gas combined with a plasma simulation, sheath model and chemical reaction model

    International Nuclear Information System (INIS)

    Takagi, S; Onoue, S; Iyanagi, K; Nishitani, K; Shinmura, T; Kanoh, M; Itoh, H; Shioyama, Y; Akiyama, T; Kishigami, D

    2003-01-01

    We have developed a simulation for predicting reactive ion etching (RIE) topography, which is a combination of plasma simulation, the gas reaction model, the sheath model and the surface reaction model. The simulation is applied to the SiO 2 etching process of a high-aspect-ratio contact hole using C 5 F 8 gas. A capacitively coupled plasma (CCP) reactor of an 8-in. wafer was used in the etching experiments. The baseline conditions are RF power of 1500 W and gas pressure of 4.0 Pa in a gas mixture of Ar, O 2 and C 5 F 8 . The plasma simulation reproduces the tendency that CF 2 radical density increases rapidly and the electron density decreases gradually with increasing gas flow rate of C 5 F 8 . In the RIE topography simulation, the etching profiles such as bowing and taper shape at the bottom are reproduced in deep holes with aspect ratios greater than 19. Moreover, the etching profile, the dependence of the etch depth on the etching time, and the bottom diameter can be predicted by this simulation

  16. Self-consistent radial sheath

    International Nuclear Information System (INIS)

    Hazeltine, R.D.

    1988-12-01

    The boundary layer arising in the radial vicinity of a tokamak limiter is examined, with special reference to the TEXT tokamak. It is shown that sheath structure depends upon the self-consistent effects of ion guiding-center orbit modification, as well as the radial variation of E /times/ B-induced toroidal rotation. Reasonable agreement with experiment is obtained from an idealized model which, however simplified, preserves such self-consistent effects. It is argued that the radial sheath, which occurs whenever confining magnetic field-lines lie in the plasma boundary surface, is an object of some intrinsic interest. It differs from the more familiar axial sheath because magnetized charges respond very differently to parallel and perpendicular electric fields. 11 refs., 1 fig

  17. Analysis of Electromagnetic Wave Propagation in a Magnetized Re-Entry Plasma Sheath Via the Kinetic Equation

    Science.gov (United States)

    Manning, Robert M.

    2009-01-01

    Based on a theoretical model of the propagation of electromagnetic waves through a hypersonically induced plasma, it has been demonstrated that the classical radiofrequency communications blackout that is experienced during atmospheric reentry can be mitigated through the appropriate control of an external magnetic field of nominal magnitude. The model is based on the kinetic equation treatment of Vlasov and involves an analytical solution for the electric and magnetic fields within the plasma allowing for a description of the attendant transmission, reflection and absorption coefficients. The ability to transmit through the magnetized plasma is due to the magnetic windows that are created within the plasma via the well-known whistler modes of propagation. The case of 2 GHz transmission through a re-entry plasma is considered. The coefficients are found to be highly sensitive to the prevailing electron density and will thus require a dynamic control mechanism to vary the magnetic field as the plasma evolves through the re-entry phase.

  18. Plasma crowbars in cylindrical flux compression experiments

    International Nuclear Information System (INIS)

    Suter, L.J.

    1979-01-01

    We have done a series of one- and two-dimensional calculations of hard-core Z-pinch flux compression experiments in order to study the effect of a plasma on these systems. These calculations show that including a plasma can reduce the amount of flux lost during the compression. Flux losses to the outer wall of such experiments can be greatly reduced by a plasma conducting sheath which forms along the wall. This conducting sheath consists of a cold, dense high β, unmagnetized plasma which has enough pressure to balance a large field gradient. Flux which is lost into the center conductor is not effectively stopped by this plasma sheath until late in the implosion, at which time a layer similar to the one formed at the outer wall is created. Two-dimensionl simulations show that flux losses due to arching along the sliding contact of the experiment can be effectively stopped by the formation of a plasma conducting sheath

  19. Three-dimensional analysis of antenna sheaths

    International Nuclear Information System (INIS)

    Myra, J.R.; D'Ippolito, D.A.; Ho, Y.L.

    1996-01-01

    The present work is motivated by the importance of r.f. sheaths in determining the antenna-plasma interaction and the sensitivity of the sheaths to the complicated three-dimensional structure of modern ion cyclotron range of frequency (ICRF) antennas. To analyze r.f. sheaths on the plasma facing regions of the launcher, we first calculate the contact points of the tokamak magnetic field lines on the surface of the antenna Faraday screen and nearby limiters for realistic three-dimensional magnetic flux surface and antenna geometries. Next, the r.f. voltage that can drive sheaths at the contact points is determined and used to assess the resulting sheath power dissipation, r.f.-driven sputtering, and r.f.-induced convective cells (which produce edge profile modification). The calculations are embodied in a computer code, ANSAT (antenna sheath analysis tool), and sample ANSAT runs are shown to highlight the physics- and geometry-dependent characteristics of the r.f. sheaths and their relationship to the antenna design. One use of ANSAT is therefore as a design tool, to assess the strengths and weaknesses of a given design with respect to critical voltage handling and edge plasma interaction issues. Additionally, examples are presented where ANSAT has been useful in the analysis and interpretation of ICRF experiments (orig.)

  20. Vortex formation during rf heating of plasma

    International Nuclear Information System (INIS)

    Motley, R.W.

    1980-05-01

    Experiments on a test plasma show that the linear theory of waveguide coupling to slow plasma waves begins to break down if the rf power flux exceeds approx. 30 W/cm 2 . Probe measurements reveal that within 30 μs an undulation appears in the surface plasma near the mouth of the twin waveguide. This surface readjustment is part of a vortex, or off-center convective cell, driven by asymmetric rf heating of the plasma column

  1. Dust particle formation in silane plasmas

    NARCIS (Netherlands)

    Sorokin, M.

    2005-01-01

    Dust can be found anywhere: in the kitchen, in the car, in space… Not surprisingly we also see dust in commercial and laboratory plasmas. Dust can be introduced in the plasma, but it can also grow there by itself. In the microelectronics industry, contamination of the processing plasma by dust is an

  2. Formation of intermediate cementum. III: 3H-tryptophan and 3H-proline uptake into the epithelial root sheath of Hertwig in vitro

    International Nuclear Information System (INIS)

    Lindskog, S.; Hammarstroem, L.

    1982-01-01

    The intermediate cementum is a narrow, mineralized tissue between the cementum and dentin. Recent studies have shown that this tissue is mineralized by the epithelial root sheath in a way similar to the mineralization of the innermost layer of aprismatic enamel. In the present investigation uptake of proline and tryptophan into the epithelial root sheath was studied with autoradiography. Tryptophan is an amino acid that is incorporated into enamel matrix but not into collagen. Tryptophan uptake was significant in the whole epithelial root sheath, but not into the odontoblasts or predentin. Proline was incorporated into the predentin while the root sheath was unlabeled. This indicated that the matrix of the intermediate cementum was formed by the epithelial root sheath of Hertwig, and that this matrix was a noncollagenous matrix possibly of the same nature as enamel matrix

  3. Cluster ion formation during sputtering processes: a complementary investigation by ToF-SIMS and plasma ion mass spectrometry

    International Nuclear Information System (INIS)

    Welzel, T; Ellmer, K; Mändl, S

    2014-01-01

    Plasma ion mass spectrometry using a plasma process monitor (PPM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) have been complementarily employed to investigate the sputtering and ion formation processes of Al-doped zinc oxide. By comparing the mass spectra, insights on ion formation and relative cross-sections have been obtained: positive ions as measured during magnetron sputtering by PPM are originating from the plasma while those in SIMS start at the surface leading to large differences in the mass spectra. In contrast, negative ions originating at the surface will be accelerated through the plasma sheath. They arrive at the PPM after traversing the plasma nearly collisionless as seen from the rather similar spectra. Hence, it is possible to combine the high mass resolution of ToF-SIMS to obtain insight for separating cluster ions, e.g. Zn x and ZnO y , and the energy resolution of PPM to find fragmentation patterns for negative ions. While the ion formation processes during both experiments can be assumed to be similar, differences may arise due to the lower volume probed by SIMS. In the latter case, there is a chance of small target inhomogeneities being able to be enhanced and lower surface temperatures leading to less outgassing and, thus, retention of volatile compounds. (paper)

  4. Nonlocality of plasma fluctuations and transport in magnetically confined plasmas nonlocal plasma transport and radial structural formation

    International Nuclear Information System (INIS)

    Toi, Kazuo

    2002-01-01

    Experimental evidence and underlying physical processes of nonlocal characters and structural formation in magnetically confined toroidal plasmas are reviewed. Radial profiles of the plasmas exhibit characteristic structures, depending on the various confinement regimes. Profile stiffness subjected to some global constraint and rapid plasma responses to applied plasma perturbation result from nonlocal transport. Once the plasma is free from the constraint, the plasma state can be changed to a new state exhibiting various types of prominent structural formation such as an internal transport barrier. (author)

  5. Bywalled plasma formation in vacuum prolonged channels

    International Nuclear Information System (INIS)

    Korenev, S.A.; Rubin, N.B.

    1982-01-01

    To produce homogeneous along the channel length plasma the application of incomplete rate-in surface dielectric discharge for generating the bywalled plasma in prolonged cylindrical channels at a pressure of the residual gas of P approximately 10 -5 Torr is proposed. Experimental set-up consisted of a pulse voltage generator and a plasma channel. The plasma channel was a coaxial system of three tubes inserted into each other. The first outer tube is made of a stainless steel, the second - of a dielectric material, the third - of smallsized stainless steel greed. It is demonstrated that the plasma being formed in the process is sufficiently homogeneous by concentration of the components, by the channel length and azimuth. The length of the experimental channel under investigation was 1.6 m, its diameter amounted 0.05 m. The maximum concentration of electron component was 10 17 m -3

  6. On plasma ion beam formation in the Advanced Plasma Source

    International Nuclear Information System (INIS)

    Harhausen, J; Foest, R; Hannemann, M; Ohl, A; Brinkmann, R P; Schröder, B

    2012-01-01

    The Advanced Plasma Source (APS) is employed for plasma ion-assisted deposition (PIAD) of optical coatings. The APS is a hot cathode dc glow discharge which emits a plasma ion beam to the deposition chamber at high vacuum (p ≲ 2 × 10 −4 mbar). It is established as an industrial tool but to date no detailed information is available on plasma parameters in the process chamber. As a consequence, the details of the generation of the plasma ion beam and the reasons for variations of the properties of the deposited films are barely understood. In this paper the results obtained from Langmuir probe and retarding field energy analyzer diagnostics operated in the plasma plume of the APS are presented, where the source was operated with argon. With increasing distance to the source exit the electron density (n e ) is found to drop by two orders of magnitude and the effective electron temperature (T e,eff ) drops by a factor of five. The parameters close to the source region read n e ≳ 10 11 cm −3 and T e,eff ≳ 10 eV. The electron distribution function exhibits a concave shape and can be described in the framework of the non-local approximation. It is revealed that an energetic ion population leaves the source region and a cold ion population in the plume is build up by charge exchange collisions with the background neutral gas. Based on the experimental data a scaling law for ion beam power is deduced, which links the control parameters of the source to the plasma parameters in the process chamber. (paper)

  7. Hedgehog signaling is required for formation of the notochord sheath and patterning of nuclei pulposi within the intervertebral discs

    OpenAIRE

    Choi, Kyung-Suk; Harfe, Brian D.

    2011-01-01

    The vertebrae notochord is a transient rod-like structure that produces secreted factors that are responsible for patterning surrounding tissues. During later mouse embryogenesis, the notochord gives rise to the middle part of the intervertebral disc, called the nucleus pulposus. Currently, very little is known about the molecular mechanisms responsible for forming the intervertebral discs. Here we demonstrate that hedgehog signaling is required for formation of the intervertebral discs. Remo...

  8. Model of the macrostructure formation of plasma sprayed coatings

    International Nuclear Information System (INIS)

    Gnedovets, A.G.; Kalita, V.I.

    2007-01-01

    A 3D discrete ballistic model of plasma sprayed coatings structure formation is presented. The effect of a spraying angle on porous macrostructure of coatings is investigated by numerical computations.Computer simulation results as well as experimental data show that at a sputtering angle less than 45 deg the mechanism of surface relief formation is changed and the relief consists of valleys and ridges under such conditions of plasma spraying [ru

  9. Rectus sheath abscess after laparoscopic appendicectomy

    Directory of Open Access Journals (Sweden)

    Golash Vishwanath

    2007-01-01

    Full Text Available Port site wound infection, abdominal wall hematoma and intraabdominal abscess formation has been reported after laparoscopic appendicectomy. We describe here a rectus sheath abscess which occurred three weeks after the laparoscopic appendicectomy. It was most likely the result of secondary infection of the rectus sheath hematoma due to bleeding into the rectus sheath from damage to the inferior epigastric arteries or a direct tear of the rectus muscle. As far as we are aware this complication has not been reported after laparoscopic appendicectomy.

  10. Theory of the Electron Sheath and Presheath

    Science.gov (United States)

    Scheiner, Brett; Baalrud, Scott; Yee, Benjamin; Hopkins, Matthew; Barnat, Edward

    2015-09-01

    Electron sheaths are commonly found near Langmuir probes collecting the electron saturation current. The common assumption is that the probe collects the random flux of electrons incident on the sheath, which tacitly implies that there is no electron presheath and that the flux collected is due to a velocity space truncation of the velocity distribution function (VDF). This work provides a dedicated theory of electron sheaths, which suggests that electron sheaths are not so simple. Motivated by VDFs observed in recent Particle-In-Cell (PIC) simulations, we develop a 1D model for the electron sheath and presheath. In the model, under low temperature plasma conditions, an electron pressure gradient accelerates electrons in the presheath to a flow velocity that exceeds the electron thermal speed at the sheath edge. This pressure gradient allows the generation of large flows compared to those that would be generated by the electric field alone. It is due to this pressure gradient that the electron presheath extends much further into the plasma (nominally by a factor of √{mi /me }) than an analogous ion presheath. Results of the model are compared with PIC simulations. This work was supported by the Office of Fusion Energy Science at the U.S. Department of Energy under contract DE-AC04-94SL85000 and by the Office of Science Graduate Student Research (SCGSR) program under Contract Number DE-AC05-06OR23100.

  11. A sheath model for arbitrary radiofrequency waveforms

    Science.gov (United States)

    Turner, M. M.; Chabert, Pascal

    2012-10-01

    The sheath is often the most important region of a rf plasma, because discharge impedance, power absorption and ion acceleration are critically affected by the behaviour of the sheath. Consequently, models of the sheath are central to any understanding of the physics of rf plasmas. Lieberman has supplied an analytical model for a radio-frequency sheath driven by a single frequency, but in recent years interest has been increasing in radio-frequency discharges excited by increasingly complex wave forms. There has been limited success in generalizing the Lieberman model in this direction, because of mathematical complexities. So there is essentially no sheath model available to describe many modern experiments. In this paper we present a new analytical sheath model, based on a simpler mathematical framework than that of Lieberman. For the single frequency case, this model yields scaling laws that are identical in form to those of Lieberman, differing only by numerical coefficients close to one. However, the new model may be straightforwardly solved for arbitrary current waveforms, and may be used to derive scaling laws for such complex waveforms. In this paper, we will describe the model and present some illustrative examples.

  12. ALINE: A device dedicated to understanding radio-frequency sheaths

    Directory of Open Access Journals (Sweden)

    S. Devaux

    2017-08-01

    Full Text Available In fusion devices, radiofrequency (RF antennas are used for heating the plasma. Those antennas and the plasma interact with each other through the so-called RF sheaths, layers of plasma where the quasi-neutrality breaks down and large electric fields arise. Among the effects of RF sheaths, there is the enhancement of the particles and energy fluxes toward the surface of the antenna, which in turn generate hot spots and release impurities, which are both deleterious for plasma operations. RF sheaths comprehension stumbles on the difficulty to achieve in situ measurements of the sheath properties, as scrape-off layer plasmas are a harsh environment. The very goal of the ALINE device is to tackle this issue and to fulfil the blank between numerical simulations and full-scale experiment by providing measurements within the RF sheaths in a controlled environment. In this paper we report on the latest experimental results from ALINE, in which a cylindrical Langmuir probe mounted on a remotely controlled and programmable arm allows for plasma characterizations in the three dimensions of space around the stainless steel antenna, including the sheath. We present a series of density and potential profiles and three dimension (3D maps in the plasma surrounding a stainless-steel RF antenna as well as in the sheath itself, for unmagnetized and magnetized plasmas.

  13. Radio frequency sheaths in an oblique magnetic field

    International Nuclear Information System (INIS)

    Myra, J. R.; D'Ippolito, D. A.

    2015-01-01

    The physics of radio-frequency (rf) sheaths near a conducting surface is studied for plasmas immersed in a magnetic field that makes an oblique angle θ with the surface. A set of one-dimensional equations is developed that describes the dynamics of the time-dependent magnetic presheath and non-neutral Debye sheath. The model employs Maxwell-Boltzmann electrons, and the magnetization and mobility of the ions is determined by the magnetic field strength, and wave frequency, respectively. The angle θ, assumed to be large enough to insure an electron-poor sheath, is otherwise arbitrary. Concentrating on the ion-cyclotron range of frequencies, the equations are solved numerically to obtain the rectified (dc) voltage, the rf voltage across the sheath, and the rf current flowing through the sheath. As an application of this model, the sheath voltage-current relation is used to obtain the rf sheath impedance, which in turn gives an rf sheath boundary condition for the electric field at the sheath-plasma interface that can be used in rf wave codes. In general, the impedance has both resistive and capacitive contributions, and generalizes previous sheath boundary condition models. The resistive part contributes to parasitic power dissipation at the wall

  14. Composition of the sheath produced by the green alga Chlorella sorokiniana.

    Science.gov (United States)

    Watanabe, K; Imase, M; Sasaki, K; Ohmura, N; Saiki, H; Tanaka, H

    2006-05-01

    To investigate the chemical characterization of the mucilage sheath produced by Chlorella sorokiniana. Algal mucilage sheath was hydrolysed with NaOH, containing EDTA. The purity of the hydrolysed sheath was determined by an ATP assay. The composition of polysaccharide in the sheath was investigated by high-performance anion-exchange chromatography with pulsed amperometric detection. Sucrose, galacturonic acid, xylitol, inositol, ribose, mannose, arabinose, galactose, rhamnose and fructose were detected in the sheath as sugar components. Magnesium was detected in the sheath as a divalent cation using inductively coupled argon plasma. The sheath matrix also contained protein. It appears that the sheath is composed of sugars and metals. Mucilage sheath contains many kinds of saccharides that are produced as photosynthetic metabolites and divalent cations that are contained in the culture medium. This is the first report on chemical characterization of the sheath matrix produced by C. sorokiniana.

  15. Analysis of Multigrid Extraction Plasma Meniscus Formation

    CERN Document Server

    Cavenago, Marco; Sattin, Fabio; Tanga, Arturo

    2005-01-01

    Effects of plasma meniscus on the emittance in negative ion source proposed for spallation sources or neutral beam injectors (NBI) for tokamaks are particularly interesting to study with fluid models because: 1) at least three different charged fluid can be recognised: the thermalized and fully magnetized electrons; the slightly magnetized and roughly thermalized positive ions; the negative ions, typically formed within few cm from meniscus; 2) different implementation of the magnetic filter system need to be compared; 3) optimization of electron dump and outlet electrode strongly depends on plasma meniscus contact point. With reasonable assumption on system geometry, 2D and 3D charged fluid quation for the selfconsistent electrostatic field can be written and effect of grid aperture is investigated. Moreover, these equations are easily implemented into a multiphysics general purpose program. Preliminary results are described, and compared to existing codes.

  16. Diagnostic study of multiple double layer formation in expanding RF plasma

    Science.gov (United States)

    Chakraborty, Shamik; Paul, Manash Kumar; Roy, Jitendra Nath; Nath, Aparna

    2018-03-01

    Intensely luminous double layers develop and then expand in size in a visibly glowing RF discharge produced using a plasma source consisting of a semi-transparent cylindrical mesh with a central electrode, in a linear plasma chamber. Although RF discharge is known to be independent of device geometry in the absence of magnetic field, the initiation of RF discharge using such a plasma source results in electron drift and further expansion of the plasma in the vessel. The dynamics of complex plasma structures are studied through electric probe diagnostics in the expanding RF plasma. The measurements made to study the parametric dependence of evolution of double layer structures are analyzed and presented here. The plasma parameter measurements suggest that the complex potential structures initially form with low potential difference between the layers and then gradually expand producing burst oscillations. The present study provides interesting information about the stability of plasma sheath and charge particle dynamics in it that are important to understand the underlying basic sheath physics along with applications in plasma acceleration and propulsion.

  17. Sheath heating in low-pressure capacitive radio frequency discharges

    International Nuclear Information System (INIS)

    Wood, B.P.

    1991-01-01

    Capacitively coupled, parallel plate, r.f. discharges are commonly used for materials processing. The electrons in such a discharge gain and lose energy by reflection from the oscillating sheaths which form at the electrodes. Previous models of the electron heating by this mechanism have assumed that the sheath motion is slow compared to the electron thermal velocity, so that the electron energy change from each reflection is small. Here, the heating rate, density, and sheath width relations are derived analytically in the limit of very fast sheath motion. Numerical results are presented spanning the slow and fast limits. Results from particle-in-cell simulations show that in the large-energy-change regime, an electron beam is produced on each sheath expansion. At low pressure, this beam can traverse the plasma and interact with the sheath at the opposite electrode, producing a beam energy and density dependence on the length of the discharge. The beam produces a time and space varying warm tail on the electron energy distribution. Two revised heating models are derived, assuming power-law and two-temperature electron energy distributions, with temporal variation in electron temperature. These revised models yield new predictions for the variation of the power, density, and sheath thickness with applied r.f. voltage. These predictions are compared with simulation results and laboratory experiment. The electron sheath motion is investigated experimentally by observing the signal on a floating probe in the sheath region. This is compared to the signal product by a non-linear circuit model which accounts for the perturbation of the sheath potential by the probe and includes various forms of sheath motion. The experimental observations are consistent with the analytical predictions. Experimental observations of plasma-sheath resonance oscillations are presented which agree with analytical predictions

  18. Effect of electron emission on an ion sheath structure

    International Nuclear Information System (INIS)

    Mishra, M K; Phukan, A; Chakraborty, M

    2014-01-01

    This article reports on the variations of ion sheath structures due to the emission of both hot and cold electrons in the target plasma region of a double plasma device. The ion sheath is produced in front of a negatively biased plate. The plasma is produced by hot filament discharge in the source region, and no discharge is created in the target region of the device. The plate is placed in the target (diffused plasma) region where cold electron emitting filaments are present. These cold electrons are free from maintenance of discharge, which is sustained in the source region. The hot ionizing electrons are present in the source region. Three important parameters are changed by both hot and cold electrons i.e. plasma density, plasma potential and electron temperature. The decrease in plasma potential and the increase in plasma density lead to the contraction of the sheath. (paper)

  19. Dynamics of intense laser channel formation in an underdense plasma

    International Nuclear Information System (INIS)

    Davis, J.; Petrov, G.M.; Velikovich, A.L.

    2005-01-01

    Efficient guiding and propagation of multi-keV x-rays in plasmas can be achieved by dynamically modifying the media through plasma channel formation. The dynamics of plasma channel formation is studied in preformed underdense plasma irradiated by a high intensity laser. This is done by a two-dimensional model coupling laser propagation to a relativistic particle-in-cell model. For laser intensity of 10 20 W/cm 2 and a laser beam width of 5 μm the channel formation proceeds on a time scale of 60-70 fs in uniform plasma with density 10 18 cm -3 . The channel closes shortly after the rear of the laser pulse has passed due to Coulomb attraction from the ion core. Electron cavitation occurs only if the laser intensity is above a certain threshold intensity and the laser pulse duration exceeds 100 fs. X-ray generation and propagation is feasible for ultrarelativistic laser pulses with small beam width, less than ∼20 μm, and duration of more than 100 fs

  20. Formation of a compact torus using a toroidal plasma gun

    International Nuclear Information System (INIS)

    Levine, M.A.; Pincosy, P.A.

    1981-01-01

    Myers, Levine and Pincosy earlier reported results using a toroidal plasma gun. The device differs from the usual coaxial plasma gun in the use of a strong toroidal bias current for enhanced efficiency, a pair of disk-like accelerating electrodes for reduced viscosity and a fast pulsed toroidal gas valve for more effective use of the injected gas sample. In addition, a technique is used for generating a toroidal current in the plasma ring. The combination offers an opportunity to deliver a plasma with a large amount of energy and to vary the density and relative toroidal and poloidal magnetic field intensities over a range of values. It is the purpose of this paper to report further experimental results, to project the gun's applications to the formation of a compact torus, and to propose a simple modification of the present apparatus as a test

  1. New Paradigm for Plasma Crystal Formation with weak grain interaction

    International Nuclear Information System (INIS)

    Tsytovich, V.N.; Morfill, G.E.

    2005-01-01

    New results for non-linear grain screening, non-linear ion drag and non-linear collective attractions appropriate for existing experiments are used for the first time together to explain the observed phenomena of plasma condensation. Based on the physics of collective non-linear grain attraction a paradigm for plasma crystal formation is formulated according to which plasma the crystal formation is due to localization of grains in weak non-linear collective attraction wells. Nonlinearity in screening is an important feature of new paradigm and takes into account that the grain charges are large. The physical consequence of large non-linearity is the presence of relative large attraction potential well at distances several times larger then the non-linear screening radius. Calculated location of the potential well is of the order of the observed inter-grain distances in plasma crystals and the calculated deepness of the potential well determining the temperature of phase transition is close to that observed. The calculations of the deepness of the attraction collective well and the critical value of the coupling constant are performed using an assumption that the collective attraction length is larger than the non-linear screening length. The concept of collective grain interaction in complex plasmas is considered for the case where the non-linear screening is fully determining the collective attraction well

  2. Slow Wave Propagation and Sheath Interaction for ICRF Waves in the Tokamak SOL

    International Nuclear Information System (INIS)

    Myra, J. R.; D'Ippolito, D. A.

    2009-01-01

    In previous work we studied the propagation of slow-wave resonance cones launched parasitically by a fast-wave antenna into a tenuous magnetized plasma. Here we extend the previous calculation to ''dense'' scrape-off-layer (SOL) plasmas where the usual slow wave is evanescent. Using the sheath boundary condition, it is shown that for sufficiently close limiters, the slow wave couples to a sheath plasma wave and is no longer evanescent, but radially propagating. A self-consistent calculation of the rf-sheath width yields the resulting sheath voltage in terms of the amplitude of the launched SW, plasma parameters and connection length.

  3. Formation of plasma and gaseous toroidal vortices in air

    International Nuclear Information System (INIS)

    Yusupaliev, U.; Yusupaliev, P. U.; Shuteev, S. A.

    2007-01-01

    The mechanism for the formation of high-temperature (plasma) vortices and low-temperature vortex rings produced by ejecting pulsed subsonic plasma/gas jets into air was investigated experimentally. A toroidal vortex forms due to the interaction between a pulsed jet with the flow induced by this jet in the ambient medium. By analyzing the experimental data and conservation laws, an equation is derived that allows one to determine the initial propagation velocity of the vortex as a function of the characteristics of the vortex generator and the ambient medium. The results obtained by solving this equation agree well with the experimental data

  4. Formation of Imploding Plasma Liners for HEDP and MIF Application

    Energy Technology Data Exchange (ETDEWEB)

    Witherspoon, F. Douglas [HyperV Technologies Corp., Chantilly, VA (United States); Case, Andrew [HyperV Technologies Corp., Chantilly, VA (United States); Brockington, Samuel [HyperV Technologies Corp., Chantilly, VA (United States); Messer, Sarah [HyperV Technologies Corp., Chantilly, VA (United States); Bomgardner, Richard [HyperV Technologies Corp., Chantilly, VA (United States); Phillips, Mike [HyperV Technologies Corp., Chantilly, VA (United States); Wu, Linchun [HyperV Technologies Corp., Chantilly, VA (United States); Elton, Ray [Univ. of Maryland, College Park, MD (United States)

    2014-11-11

    /s for the Plasma Liner Experiment (PLX) at Los Alamos National Laboratory (LANL). Initial work used existing computational and analytical tools to develop and refine a specific plasma gun concept having a novel tapered coaxial electromagnetic accelerator contour with an array of symmetric ablative plasma injectors. The profile is designed to suppress the main barrier to success in coaxial guns, namely the blow-by instability in which the arc slips past and outruns the bulk of the plasma mass. Efforts to begin developing a set of annular non-ablative plasma injectors for the coaxial gun, in order to accelerate pure gases, resulted in development of linear parallel-plate MiniRailguns that turned out to work well as plasma guns in their own right and we subsequently chose them for an initial plasma liner experiment on the PLX facility at LANL. This choice was mainly driven by cost and schedule for that particular experiment, while longer term goals still projected use of coaxial guns for reactor-relevant applications for reasons of better symmetry, lower impurities, more compact plasma jet formation, and higher gun efficiency. Our efforts have focused mainly on 1) developing various plasma injection systems for both coax and linear railguns and ensuring they work reliably with the accelerator section, 2) developing a suite of plasma and gun diagnostics, 3) performing computational modeling to design and refine the plasma guns, 4) establishing a research facility dedicated to plasma gun development, and finally, 5) developing plasma guns and associated pulse power systems capable of achieving these goals and installing and testing the first two gun sets on the PLX facility at LANL. During the second funding cycle for this program, HyperV joined in a collaborative effort with LANL, the University of Alabama at Huntsville, and the University of New Mexico to perform a plasma liner experiment (PLX) to investigate the physics and technology of forming spherically imploding

  5. Diagnostic studies of ion beam formation in inductively coupled plasma

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Jenee L. [Iowa State Univ., Ames, IA (United States)

    2015-01-01

    This dissertation describes a variety of studies focused on the plasma and the ion beam in inductively coupled plasma mass spectrometry (ICP-MS). The ability to use ICP-MS for measurements of trace elements in samples requires the analytes to be efficiently ionized. Updated ionization efficiency tables are discussed for ionization temperatures of 6500 K and 7000 K with an electron density of 1 x 1015 cm-3. These values are reflective of the current operating parameters of ICP-MS instruments. Calculations are also discussed for doubly charged (M2+) ion formation, neutral metal oxide (MO) ionization, and metal oxide (MO+) ion dissociation for similar plasma temperature values. Ionization efficiency results for neutral MO molecules in the ICP have not been reported previously.

  6. Carbon dust formation in a cold plasma from cathode sputtering

    International Nuclear Information System (INIS)

    Arnas, C.; Mouberi, A.; Hassouni, K.; Michau, A.; Lombardi, G.; Bonnin, X.; Benedic, F.; Pegourie, B.

    2009-01-01

    Nanoparticles are produced in argon glow plasmas where carbon is introduced by sputtering of a graphite cathode. A scaling law of growth is reported on as a function of the discharge time. Two successive stages of growth of concomitant agglomeration and carbon deposition are observed, followed by a final stage of growth by carbon deposition. A model of formation of molecular precursors by coagulation of neutral clusters on the one hand and of neutral-negative clusters on the other hand is presented, based on formation enthalpy and cluster geometry.

  7. Carbon dust formation in a cold plasma from cathode sputtering

    Science.gov (United States)

    Arnas, C.; Mouberi, A.; Hassouni, K.; Michau, A.; Lombardi, G.; Bonnin, X.; Bénédic, F.; Pégourié, B.

    2009-06-01

    Nanoparticles are produced in argon glow plasmas where carbon is introduced by sputtering of a graphite cathode. A scaling law of growth is reported on as a function of the discharge time. Two successive stages of growth of concomitant agglomeration and carbon deposition are observed, followed by a final stage of growth by carbon deposition. A model of formation of molecular precursors by coagulation of neutral clusters on the one hand and of neutral-negative clusters on the other hand is presented, based on formation enthalpy and cluster geometry.

  8. About the EDF formation in a capacitively coupled argon plasma

    International Nuclear Information System (INIS)

    Tatanova, M; Thieme, G; Basner, R; Hannemann, M; Golubovskii, Yu B; Kersten, H

    2006-01-01

    The formation of the electron distribution function (EDF) in the bulk plasma of a capacitively coupled radio-frequency (rf) discharge in argon generated in the plasma-chemical reactor PULVA-INP is investigated experimentally and theoretically. Measurements of the EDF and internal plasma parameters were performed by means of a Langmuir probe at pressures of 0.5-100 Pa and discharge powers of 5-100 W. The observed EDFs have revealed a two-temperature behaviour at low pressures and evolved into a Maxwellian distribution at high gas pressures and large discharge powers. Theoretical determination of the EDF is based on the numerical solution of the Boltzmann kinetic equation in the local and non-local approaches under experimental conditions. The model includes elastic and inelastic electron-atom collisions and electron-electron interactions. Low electron temperatures and relatively high ionization degrees are the features of the PULVA-INP rf discharge. This leads to significant influence of the electron-electron collisions on the EDF formation. The modelled and measured distributions show good agreement in a wide range of discharge parameters, except for a range of low gas pressures, where the stochastic electron heating is intense. Additionally, mechanisms of the EDF formation in the dc and rf discharge were compared under similar discharge conditions

  9. About the EDF formation in a capacitively coupled argon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Tatanova, M [Institute of Physics, Saint-Petersburg State University, ul. Ulianovskaja 1, 198504 Saint-Petersburg (Russian Federation); Thieme, G [Institut fur Niedertemperatur-Plasmaphysik, Friedrich-Ludwig-Jahn-Str 19, D-17489 Greifswald (Germany); Basner, R [Institut fur Niedertemperatur-Plasmaphysik, Friedrich-Ludwig-Jahn-Str 19, D-17489 Greifswald (Germany); Hannemann, M [Institut fur Niedertemperatur-Plasmaphysik, Friedrich-Ludwig-Jahn-Str 19, D-17489 Greifswald (Germany); Golubovskii, Yu B [Institute of Physics, Saint-Petersburg State University, ul. Ulianovskaja 1, 198504 Saint-Petersburg (Russian Federation); Kersten, H [Institut fur Niedertemperatur-Plasmaphysik, Friedrich-Ludwig-Jahn-Str 19, D-17489 Greifswald (Germany)

    2006-08-01

    The formation of the electron distribution function (EDF) in the bulk plasma of a capacitively coupled radio-frequency (rf) discharge in argon generated in the plasma-chemical reactor PULVA-INP is investigated experimentally and theoretically. Measurements of the EDF and internal plasma parameters were performed by means of a Langmuir probe at pressures of 0.5-100 Pa and discharge powers of 5-100 W. The observed EDFs have revealed a two-temperature behaviour at low pressures and evolved into a Maxwellian distribution at high gas pressures and large discharge powers. Theoretical determination of the EDF is based on the numerical solution of the Boltzmann kinetic equation in the local and non-local approaches under experimental conditions. The model includes elastic and inelastic electron-atom collisions and electron-electron interactions. Low electron temperatures and relatively high ionization degrees are the features of the PULVA-INP rf discharge. This leads to significant influence of the electron-electron collisions on the EDF formation. The modelled and measured distributions show good agreement in a wide range of discharge parameters, except for a range of low gas pressures, where the stochastic electron heating is intense. Additionally, mechanisms of the EDF formation in the dc and rf discharge were compared under similar discharge conditions.

  10. General principles for the formation of dust self-organizing structures. Dust collective attraction and plasma crystal formation

    International Nuclear Information System (INIS)

    Tsytovich, V.N.

    2005-01-01

    It is demonstrated that a homogeneous dusty plasma is universally unstable to form structures. The effect of collective grain attraction is a basic phenomenon for the proposed new paradigm (general principles) for the plasma crystal formation

  11. Effect of collisions on photoelectron sheath in a gas

    Science.gov (United States)

    Sodha, Mahendra Singh; Mishra, S. K.

    2016-02-01

    This paper presents a study of the effect of the collision of electrons with atoms/molecules on the structure of a photoelectron sheath. Considering the half Fermi-Dirac distribution of photo-emitted electrons, an expression for the electron density in the sheath has been derived in terms of the electric potential and the structure of the sheath has been investigated by incorporating Poisson's equation in the analysis. The method of successive approximations has been used to solve Poisson's equation with the solution for the electric potential in the case of vacuum, obtained earlier [Sodha and Mishra, Phys. Plasmas 21, 093704 (2014)], being used as the zeroth order solution for the present analysis. The inclusion of collisions influences the photoelectron sheath structure significantly; a reduction in the sheath width with increasing collisions is obtained.

  12. Electric field measurements in the sheath of an argon RF discharge by probing with microparticles under varying gravity conditions

    NARCIS (Netherlands)

    Beckers, J.; Stoffels, W.W.; Kroesen, G.M.W.; Ockenga, T.; Wolter, M.; Kersten, H.

    2010-01-01

    The electric field profile in the plasma sheath of an argon rf plasma has been determined by measuring the equilibrium height and the resonance frequency of plasma-confined microparticles. In order to determine the electric field structure at any position in the plasma sheath without the discharge

  13. Formation and treatment of materials with microwave plasmas

    International Nuclear Information System (INIS)

    Camps, E.; Garcia, J.L.; Romero, S.

    1996-01-01

    The plasmas technology occupies day by day a more important place in the development of new materials, with properties superior to those developed with conventional techniques. Some processes have already been established and are exploited to industrial level. These basically include the plasmas that are generated within discharges of continuous current, as well as those with alternate fields of frequency in the range of radiofrequency (13.6 MHz usually). Nevertheless, the need to increase the efficiency of the work of plasma used, has given as a result the study of plasmas generated to higher frequencies (2.45 GHz), known as m icrowave plasmas . An important development in the treatment of materials at low pressures and temperature, are those known as microwave discharges of the type of cyclotron resonances of the electrodes, that is, a discharge submerged into a magnetic field. These discharges have the advantage of not including electrodes, they can generate plasmas with higher density of ionized and excited particles, can work under low pressures (∼ 1m Torr), and have higher ionizing coefficient (∼ 1%), than other kind of discharge. With the aim to study the accuracy in work of the microwave discharges in magnetic fields, the National Institute of Nuclear Research (ININ) designed and built a gadget of this type which is actually used in the formation of thin films of the diamond type and of amorphous silicon. At the same time, experiments for nitrating steels, in order to establish the mechanisms that would allow to build samples, with surfaces stronger and resistant to corrosion, at short-time treatments, than those needed, when using other kinds of discharges. (Author)

  14. Numerical model of the plasma formation at electron beam welding

    Energy Technology Data Exchange (ETDEWEB)

    Trushnikov, D. N., E-mail: trdimitr@yandex.ru [The Department for Applied Physics, Perm National Research Polytechnic University, Perm 614990 (Russian Federation); The Department for Welding Production and Technology of Constructional Materials, Perm National Research Polytechnic University, Perm 614990 (Russian Federation); Mladenov, G. M., E-mail: gmmladenov@abv.bg [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Shose, 1784 Sofia (Bulgaria); Technology Centre of Electron Beam and Plasma Technologies and Techniques, 68-70 Vrania, ap.10, Banishora, 1309 Sofia (Bulgaria)

    2015-01-07

    The model of plasma formation in the keyhole in liquid metal as well as above the electron beam welding zone is described. The model is based on solution of two equations for the density of electrons and the mean electron energy. The mass transfer of heavy plasma particles (neutral atoms, excited atoms, and ions) is taken into account in the analysis by the diffusion equation for a multicomponent mixture. The electrostatic field is calculated using the Poisson equation. Thermionic electron emission is calculated for the keyhole wall. The ionization intensity of the vapors due to beam electrons and high-energy secondary and backscattered electrons is calibrated using the plasma parameters when there is no polarized collector electrode above the welding zone. The calculated data are in good agreement with experimental data. Results for the plasma parameters for excitation of a non-independent discharge are given. It is shown that there is a need to take into account the effect of a strong electric field near the keyhole walls on electron emission (the Schottky effect) in the calculation of the current for a non-independent discharge (hot cathode gas discharge). The calculated electron drift velocities are much bigger than the velocity at which current instabilities arise. This confirms the hypothesis for ion-acoustic instabilities, observed experimentally in previous research.

  15. A technique to reduce plasma armature formation voltage

    International Nuclear Information System (INIS)

    Jamison, K.A.; Littrell, D.M.

    1991-01-01

    The initiation of a plasma armature by foil vaporization in a railgun is often accompanied by a large, fast, voltage transient appearing on both the breech and muzzle of the gun. For a railgun driven by an inductor/opening switch power supply, this voltage transient becomes a concern during current commutation from the switch to the railgun. To lessen the requirements on the opening switch, techniques must be found to reduce the armature formation voltage. This paper presents the experimental results from railgun firings at AFATL's Electromagnetic Launcher Basic Research Facility (Site A-15, Eglin Air Force Base, Florida) using different shapes of initiation foils. These foils have been designed to vaporize into a plasma armature with reduced transient voltages. A design criteria was developed to ensure that all portions of the foil vaporize at slightly different times

  16. Formation and control of plasma potentials in TMX upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Simonen, T.C.; Orzechowski, T.J.; Porkolab, M.; Stallard, B.W.

    1981-05-06

    The methods to be employed to form and control plasma potentials in the TMX Upgrade tandem mirror with thermal barriers are described. ECRH-generated mirror -confined electron plasmas are used to establish a negative potential region to isolate the end-plug and central-cell celectrons. This thermal isolation will allow a higher end-plug electron temperature and an increased central-cell confining potential. Improved axial central-cell ion confinement results since higher temperature central-cell ions can be confined. This paper describes: (1) calculations of the sensitivity of barrier formation to vacuum conditions and to the presence of impurities in the neutral beams, (2) calculations of microwave penetration and absorption used to design the ECRH system, and (3) techniques to limit electron runaway to high energies by localized microwave beams and by relativistic detuning.

  17. Formation and control of plasma potentials in TMX upgrade

    International Nuclear Information System (INIS)

    Simonen, T.C.; Orzechowski, T.J.; Porkolab, M.; Stallard, B.W.

    1981-01-01

    The methods to be employed to form and control plasma potentials in the TMX Upgrade tandem mirror with thermal barriers are described. ECRH-generated mirror -confined electron plasmas are used to establish a negative potential region to isolate the end-plug and central-cell celectrons. This thermal isolation will allow a higher end-plug electron temperature and an increased central-cell confining potential. Improved axial central-cell ion confinement results since higher temperature central-cell ions can be confined. This paper describes: (1) calculations of the sensitivity of barrier formation to vacuum conditions and to the presence of impurities in the neutral beams, (2) calculations of microwave penetration and absorption used to design the ECRH system, and (3) techniques to limit electron runaway to high energies by localized microwave beams and by relativistic detuning

  18. Rydberg-atom formation in strongly correlated ultracold plasmas

    International Nuclear Information System (INIS)

    Bannasch, G.; Pohl, T.

    2011-01-01

    In plasmas at very low temperatures, the formation of neutral atoms is dominated by collisional three-body recombination, owing to the strong ∼T -9/2 scaling of the corresponding recombination rate with the electron temperature T. While this law is well established at high temperatures, the unphysical divergence as T→0 clearly suggests a breakdown in the low-temperature regime. Here, we present a combined molecular dynamics Monte Carlo study of electron-ion recombination over a wide range of temperatures and densities. Our results reproduce the known behavior of the recombination rate at high temperatures, but reveal significant deviations with decreasing temperature. We discuss the fate of the kinetic bottleneck and resolve the divergence problem as the plasma enters the ultracold, strongly coupled domain.

  19. Formation and dissociation of dust molecules in dusty plasma

    International Nuclear Information System (INIS)

    Yan Jia; Feng Fan; Liu Fucheng; Dong Lifang; He Yafeng

    2016-01-01

    Dust molecules are observed in a dusty plasma experiment. By using measurements with high spatial resolution, the formation and dissociation of the dust molecules are studied. The ion cloud in the wake of an upper dust grain attracts the lower dust grain nearby. When the interparticle distance between the upper dust grain and the lower one is less than a critical value, the two dust grains would form a dust molecule. The upper dust grain always leads the lower one as they travel. When the interparticle distance between them is larger than the critical value, the dust molecule would dissociate. (paper)

  20. Vortex lattice formation in 2D magnetized plasmas

    International Nuclear Information System (INIS)

    Kono, M.

    1998-01-01

    Formation or self-organization of coherent structures play a crucial role to the macroscopic properties of the system. Observations of long-lived ordered (crystallization) motion of well-defined vortices suggest that the relaxation to the ordered states may be described by introducing a point vortices. The structure of vortex lattice which is intimately related to the profile of the linear eigen function may be controlled by the unperturbed density profile. In experiments the density profile is rather sensitive to the plasma production. (M. Tanaka)

  1. Time-Domain Modeling of RF Antennas and Plasma-Surface Interactions

    Directory of Open Access Journals (Sweden)

    Jenkins Thomas G.

    2017-01-01

    Full Text Available Recent advances in finite-difference time-domain (FDTD modeling techniques allow plasma-surface interactions such as sheath formation and sputtering to be modeled concurrently with the physics of antenna near- and far-field behavior and ICRF power flow. Although typical sheath length scales (micrometers are much smaller than the wavelengths of fast (tens of cm and slow (millimeter waves excited by the antenna, sheath behavior near plasma-facing antenna components can be represented by a sub-grid kinetic sheath boundary condition, from which RF-rectified sheath potential variation over the surface is computed as a function of current flow and local plasma parameters near the wall. These local time-varying sheath potentials can then be used, in tandem with particle-in-cell (PIC models of the edge plasma, to study sputtering effects. Particle strike energies at the wall can be computed more accurately, consistent with their passage through the known potential of the sheath, such that correspondingly increased accuracy of sputtering yields and heat/particle fluxes to antenna surfaces is obtained. The new simulation capabilities enable time-domain modeling of plasma-surface interactions and ICRF physics in realistic experimental configurations at unprecedented spatial resolution. We will present results/animations from high-performance (10k-100k core FDTD/PIC simulations of Alcator C-Mod antenna operation.

  2. Slow-wave propagation and sheath interaction in the ion-cyclotron frequency range

    International Nuclear Information System (INIS)

    Myra, J R; D'Ippolito, D A

    2010-01-01

    In previous work (Myra J R and D'Ippolito D A 2008 Phys. Rev. Lett. 101 195004) we studied the propagation of slow-wave (SW) resonance cones launched parasitically by a fast-wave antenna into a tenuous magnetized plasma. Here we extend the treatment of SW propagation and sheath interaction to 'dense' scrape-off-layer plasmas where the usual cold-plasma SW is evanescent. Using the sheath boundary condition, it is shown that for sufficiently close limiters, the SW couples to a sheath-plasma wave and is no longer evanescent, but radially propagating. A self-consistent calculation of the rf-sheath width yields the resulting sheath voltage in terms of the amplitude of the launched SW, plasma parameters and connection length. The conditions for avoiding potentially deleterious rf-wall interactions in tokamak rf heating experiments are summarized.

  3. Evolution of the SOL plasma background at density shoulder formation

    International Nuclear Information System (INIS)

    D'Isa, Federico Antonio; Carralero, Daniel; Lunt, Tilmann

    2016-01-01

    One of the main problems of our age is the ever increasing demand of energy. This prompts the search for new energy sources which should have the advantages of being nearly inexhaustible and usable to produce a predictable amount of energy. A possible solution is to build a reactor based on nuclear fusion. ITER will be the first divertor Tokamak to reach fusion break even and it will pave the way to a commercial use of fusion to produce sustainable and clean energy. One of the biggest obstacles to the construction of a commercial fusion reactor is represented by the heat and particle flux toward the main chamber plasma facing components and the divertor targets. A fusion reactor will likely experience power loads and erosion on the verge of the technical limits of available plasma facing materials. To predict properly the distribution of those fluxes between the divertor and the main chamber, a better understanding of the physics in the open field lines region (called Scrape-off layer or SOL) is required. This thesis, being developed in partnership with the Max-Planck-institut fuer Plasmaphysik (Garching bei Muenchen, DE), is framed in this context. In the SOL of L-mode (low confinement) discharges, qualitatively two kinds of density profiles can be distinguished. The first one is characterized by a strong density gradient in the vicinity of the separatrix, followed by a flat region towards the far SOL. The second profile lacks such a strong gradient and displays an almost linear decay in the whole SOL. The latter kind of density profile is characterized by stronger fluxes toward the first wall with respect to the first kind. This my be a threat for the ITER unlike the divertor targets which are made of tungsten, the first wall will be made beryllium which can suffer damage from sputtering. This work is focused on understanding the physics behind the transition between those two profiles, the so-called density shoulder formation. After the shoulder formation it is

  4. Evolution of the SOL plasma background at density shoulder formation

    Energy Technology Data Exchange (ETDEWEB)

    D' Isa, Federico Antonio; Carralero, Daniel; Lunt, Tilmann; Collaboration: ASDEX Upgrade Team

    2016-12-15

    One of the main problems of our age is the ever increasing demand of energy. This prompts the search for new energy sources which should have the advantages of being nearly inexhaustible and usable to produce a predictable amount of energy. A possible solution is to build a reactor based on nuclear fusion. ITER will be the first divertor Tokamak to reach fusion break even and it will pave the way to a commercial use of fusion to produce sustainable and clean energy. One of the biggest obstacles to the construction of a commercial fusion reactor is represented by the heat and particle flux toward the main chamber plasma facing components and the divertor targets. A fusion reactor will likely experience power loads and erosion on the verge of the technical limits of available plasma facing materials. To predict properly the distribution of those fluxes between the divertor and the main chamber, a better understanding of the physics in the open field lines region (called Scrape-off layer or SOL) is required. This thesis, being developed in partnership with the Max-Planck-institut fuer Plasmaphysik (Garching bei Muenchen, DE), is framed in this context. In the SOL of L-mode (low confinement) discharges, qualitatively two kinds of density profiles can be distinguished. The first one is characterized by a strong density gradient in the vicinity of the separatrix, followed by a flat region towards the far SOL. The second profile lacks such a strong gradient and displays an almost linear decay in the whole SOL. The latter kind of density profile is characterized by stronger fluxes toward the first wall with respect to the first kind. This my be a threat for the ITER unlike the divertor targets which are made of tungsten, the first wall will be made beryllium which can suffer damage from sputtering. This work is focused on understanding the physics behind the transition between those two profiles, the so-called density shoulder formation. After the shoulder formation it is

  5. Characterizing Suspension Plasma Spray Coating Formation Dynamics through Curvature Measurements

    Science.gov (United States)

    Chidambaram Seshadri, Ramachandran; Dwivedi, Gopal; Viswanathan, Vaishak; Sampath, Sanjay

    2016-12-01

    Suspension plasma spraying (SPS) enables the production of variety of microstructures with unique mechanical and thermal properties. In SPS, a liquid carrier (ethanol/water) is used to transport the sub-micrometric feedstock into the plasma jet. Considering complex deposition dynamics of SPS technique, there is a need to better understand the relationships among spray conditions, ensuing particle behavior, deposition stress evolution and resultant properties. In this study, submicron yttria-stabilized zirconia particles suspended in ethanol were sprayed using a cascaded arc plasma torch. The stresses generated during the deposition of the layers (termed evolving stress) were monitored via the change in curvature of the substrate measured using an in situ measurement apparatus. Depending on the deposition conditions, coating microstructures ranged from feathery porous to dense/cracked deposits. The evolving stresses and modulus were correlated with the observed microstructures and visualized via process maps. Post-deposition bi-layer curvature measurement via low temperature thermal cycling was carried out to quantify the thermo-elastic response of different coatings. Lastly, preliminary data on furnace cycle durability of different coating microstructures were evaluated. This integrated study involving in situ diagnostics and ex situ characterization along with process maps provides a framework to describe coating formation mechanisms, process parametrics and microstructure description.

  6. Structure formation in turbulent plasmas - test of nonlinear processes in plasma experiments

    International Nuclear Information System (INIS)

    Itoh, S.-I.; Yagi, Masatoshi; Inagaki, Shigeru

    2009-01-01

    Full text: Recent developments in plasma physics, either in the fusion research in a new era of ITER, or in space and in astro-physics, the world-wide and focused research has been developed on the subject of structural formation in turbulent plasma being associated with electro-magnetic field formation. Keys for the progress were a change of the physics view from the 'linear, local and deterministic' picture to the description based on 'nonlinear instability, nonlocal interaction and probabilistic excitation' for the turbulent state, and the integration of the theory-simulation-experiment. In this presentation, we first briefly summarize the theory of microscopic turbulence and mesoscale fluctuations and selection rules. In addition, the statistical formation of large-scale structure/deformation by turbulence is addressed. Then, the experimental measurements of the mesoscale structures (e.g., zonal flows, zonal fields, streamer and transport interface) and of the nonlinear interactions among them in turbulent plasmas are reported. Confirmations by, and new challenges from, the experiments are overviewed. Work supported by the Grant-in-Aid for Specially-Promoted Research (16002005). (author)

  7. Observations of dense plasma formation in the vacuum spark

    International Nuclear Information System (INIS)

    Chuaqui, H.; Favre, M.; Wyndham, E.; Aliaga R, R.; Choi, P.; Dumitrescu-Zoita, C.

    1994-01-01

    A series of experimental observations have been performed on the dense plasma formations or Hot Spots generated in the Vacuum Spark. The plasma discharges are driven by a 1.5 Ohm, 120 ns line at currents up to 100 KA. The line may be used to deliver a rectangular current pulse when the line gap is used. Alternatively when the line gap is shorted, the Vacuum Spark itself switches the line. A Nd: Yag Laser, with an energy of 0.5 J in an 8 ns pulse, is used to pre ionizing the discharge. The formation of Hot Spots is studied under a range of different conditions. These include the pre ionizing conditions, as well as the Anode shape and the Anode Cathode separation. The optimization of these parameters permit very reproducible shot to shot behaviour. Of particular interest is the Hot Spot size dependence as a function of its temperature and of time. The use of a new variant on the Pin Hole Camera, the Slit Wire Camera provides a new method of measuring with precision the Hot Spot dimensions in different X-ray emission energy ranges. A quadruple hole Camera is used to measure the temperature of the Hot Spots. The temporal and spatial evolution of the X-ray emission is measured using using a Slit Wire, Scintillator, Fibre Optic, Photomultiplier array. The temporal emission of the X-rays is also observed using an array of PIN X-ray diodes. (author). 5 refs, 6 figs

  8. The dynamics of low-β plasma clouds as simulated by a three-dimensional, electromagnetic particle code

    International Nuclear Information System (INIS)

    Neubert, T.; Miller, R.H.; Buneman, O.; Nishikawa, K.I.

    1992-01-01

    The dynamics of low-β plasma clouds moving perpendicular to an ambient magnetic field in vacuum and in a background plasma is simulated by means of a three-dimensional, electromagnetic, and relativistic particle simulation code. The simulations show the formation of the space charge sheaths at the sides of the cloud with the associated polarization electric field which facilitate the cross-field propagation, as well as the sheaths at the front and rear end of the cloud caused by the larger ion Larmor radius, which allows ions to move ahead and lag behind the electrons as they gyrate. Results on the cloud dynamics and electromagnetic radiation include the following: (1) In a background plasma, electron and ion sheaths expand along the magnetic field at the same rate, whereas in vacuum the electron sheath expands much faster than the ion sheath. (2) Sheath electrons are accelerated up to relativistic energies. This result indicates that artificial plasma clouds released in the ionosphere or magnetosphere may generate optical emissions (aurora) as energetic sheath electrons scatter in the upper atmosphere. (3) The expansion of the electron sheaths is analogous to the ejection of high-intensity electron beams from spacecraft. (4) Second-order and higher-order sheaths are formed which extend out into the ambient plasma. (5) Formation of the sheaths and the polarization field reduces the forward momentum of the cloud. (6) The coherent component of the particle gyromotion is damped in time as the particles establish a forward directed drift velocity. (7) The coherent particle gyrations generate electromagnetic radiation

  9. Dust crystal in the electrode sheath of a gaseous discharge

    International Nuclear Information System (INIS)

    Schweigert, I.V.; Schweigert, V.A.

    2002-01-01

    The phenomena observed in strongly coupled dusty plasmas in the electrode sheath of gas discharge clearly indicate that the screened Coulomb potential is not valid for inter-particle interaction. The reason why the conventional model breaks down is clear now. The strong electric field, accelerating ions toward the cathode, leads to an asymmetrical particle shielding and the appearance of an attractive component in the inter-particle force. The sheath plasma with micro-particles is non Hamiltonian system because of input of energy from ion flux from the bulk plasma. The models of interaction potential of microparticles in sheath are proposed. The first is the linear effective positive charge (EPC). On the basis of this model the stability of the dust crystal in the sheath is analyzed both analytically and in MD simulations. The scenario of crystal melting is described. The role of different types of defects in the local heating of the crystal is considered. The next non-linear model of sheath plasma with micro-particles allows to find all parameter of plasma crystal: particle charge, inter-particle distance and study the structural transition. We constructed the analytical expression for inter-particle potential and have found the mechanism acceleration of extra particle beneath the monolayer. Recently new more simple analytical kinetic approach, accounting for ion collisions, have been developed. The structural transition in the dust molecular was obtained in simulation with multipole expansion model interaction potential

  10. Nanostructure formation on refractory metal surfaces irradiated by helium plasmas

    International Nuclear Information System (INIS)

    Takamura, Shuichi; Kajita, Shin; Ohno, Noriyasu

    2013-01-01

    Helium defects on plasma-facing refractory metals like tungsten have been studied in fusion sciences from the view point of the effects on metal surface properties, concentrating on the bubble formation. However, the surface morphology over the lower surface temperature range was found recently to be changed drastically, something like cotton down or arborescence, sometimes called as “fuzz”. The formation process, although still open problem, would be discussed in terms of viscoelastic model with the effect of surface tension, taking account of its thermal properties and nano-bubbles inside the thin fibers. Some physical surface characteristics like electron emission, radiation emissivity and sputtering are quite influenced by its forest-like structure. Unipolar arcing has been newly studied by using such a surface structure which makes its initiation controllable. In the present report, other examples of nanostructure formation in a variety of particle incident conditions have been introduced as well as the possibility of its industrial applications to enhance interdisciplinary interests. (author)

  11. Importance of field-reversing ion ring formation in hot electron plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ikuta, K.

    1975-11-01

    Formation of the field reversing ion ring in the mirror confined hot electron plasma may offer a device to confine the fusion plasma even under the restriction of the present technology. (Author) (GRA)

  12. Kaon versus pion interferometry signatures of quark-gluon plasma formation

    International Nuclear Information System (INIS)

    Gyulassy, M.; Padula, S.S.

    1990-01-01

    The advantages of kaon versus pion interferometry as a probe of quark-gluon plasma formation in high energy nuclear collisions are studied by comparing predictions of Lund resonance gas and plasma hydrodynamic models

  13. Note on the formation of the fireball plasma

    International Nuclear Information System (INIS)

    Silberg, P.A.

    1978-01-01

    A model for the formation of the fireball arc or spark discharge, sometimes called a fireball plasma, is developed based on the nonlinearity of the voltage-current characteristics of a high-current arc discharge. A nonlinear transmission line equation for the discharge current is obtained which is solved in terms of the Jacobi elliptic functions. Under certain prescribed conditions the current field collapses into a small region. This collapse of the current field is taken to be the fireball. It is additionally pointed out that nonlinearities other than the voltage-current characteristics of the high-current arc could produce similar results. Finally, it is suggested that Ball Lightning may have the same origin

  14. Formation and dissociation of dust molecules in dusty plasma

    Science.gov (United States)

    Yan, Jia; Feng, Fan; Liu, Fucheng; Dong, Lifang; He, Yafeng

    2016-09-01

    Dust molecules are observed in a dusty plasma experiment. By using measurements with high spatial resolution, the formation and dissociation of the dust molecules are studied. The ion cloud in the wake of an upper dust grain attracts the lower dust grain nearby. When the interparticle distance between the upper dust grain and the lower one is less than a critical value, the two dust grains would form a dust molecule. The upper dust grain always leads the lower one as they travel. When the interparticle distance between them is larger than the critical value, the dust molecule would dissociate. Project supported by the National Natural Science Foundation of China (Grant Nos. 11205044 and 11405042), the Natural Science Foundation of Hebei Province, China (Grant Nos. A2011201006 and A2012201015), the Research Foundation of Education Bureau of Hebei Province, China (Grant No. Y2012009), the Program for Young Principal Investigators of Hebei Province, China, and the Midwest Universities Comprehensive Strength Promotion Project, China.

  15. The formation of ethane from carbon dioxide under cold plasma

    International Nuclear Information System (INIS)

    Zhang Xiuling; Zhang Lin; Dai Bin; Gong Weimin; Liu Changhou

    2001-01-01

    Pulsed-corona plasma has been used as a new method for ethane dehydrogenation at low temperature and normal pressure using carbon dioxide as an oxidant. The effect of carbon dioxide content in the feed, power input, and flow rate of the reactants on the ethane dehydrogenation has been investigated. The experimental results show that the conversion of ethane increases with the increasing in the amount of carbon dioxide in the feed. The yield of ethylene and acetylene decreases with the increasing in the yield of carbon monoxide, indicating that the increased carbon dioxide leads to the part of ethylene and acetylene being oxidized to carbon monoxide. Power input is primarily an electrical parameter in pulsed-corona plasma, which plays an important role in reactant conversion and product formation. When the power input reaches 16 W, ethane conversion is 41.0% and carbon dioxide conversion is 26.3%. The total yield of ethylene and acetylene is 15.6%. The reduced flow rate of feed improves the conversion of ethane, carbon dioxide and the yield of acetylene, and induces carbon deposit as well

  16. Frequency threshold for ion beam formation in expanding RF plasma

    Science.gov (United States)

    Chakraborty Thakur, Saikat; Harvey, Zane; Biloiu, Ioana; Hansen, Alex; Hardin, Robert; Przybysz, William; Scime, Earl

    2008-11-01

    We observe a threshold frequency for ion beam formation in expanding, low pressure, argon helicon plasma. Mutually consistent measurements of ion beam energy and density relative to the background ion density obtained with a retarding field energy analyzer and laser induced fluorescence indicate that a stable ion beam of 15 eV appears for source frequencies above 11.5 MHz. Reducing the frequency increases the upstream beam amplitude. Downstream of the expansion region, a clear ion beam is seen only for the higher frequencies. At lower frequencies, large electrostatic instabilities appear and an ion beam is not observed. The upstream plasma density increases sharply at the same threshold frequency that leads to the appearance of a stable double layer. The observations are consistent with the theoretical prediction that downstream electrons accelerated into the source by the double layer lead to increased ionization, thus balancing the higher loss rates upstream [1]. 1. M. A. Lieberman, C. Charles and R. W. Boswell, J. Phys. D: Appl. Phys. 39 (2006) 3294-3304

  17. Stability of the Tonks–Langmuir discharge pre-sheath

    Energy Technology Data Exchange (ETDEWEB)

    Tskhakaya, D. D. [Fusion@ÖAW, Institute of Applied Physics, TU Wien, Wiedner Hauptstraße 8-10, 1040 Vienna (Austria); Kos, L. [LECAD Laboratory, Faculty of Mechanical Engineering, University of Ljubljana, SI-1000 Ljubljana (Slovenia); Tskhakaya, D. [Fusion@ÖAW, Institute of Applied Physics, TU Wien, Wiedner Hauptstraße 8-10, 1040 Vienna (Austria); Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck (Austria)

    2016-03-15

    The article formulates the stability problem of the plasma sheath in the Tonks–Langmuir discharge. Using the kinetic description of the ion gas, i.e., the stability of the potential shape in the quasi-neutral pre-sheath regarding the high and low frequency, the perturbations are investigated. The electrons are assumed to be Maxwell–Boltzmann distributed. Regarding high-frequency perturbations, the pre-sheath is shown to be stable. The stability problem regarding low-frequency perturbations can be reduced to an analysis of the “diffusion like” equation, which results in the instability of the potential distribution in the pre-sheath. By means of the Particle in Cell simulations, also the nonlinear stage of low frequency oscillations is investigated. Comparing the figure obtained with the figure for linear stage, one can find obvious similarity in the spatial-temporal behavior of the potential.

  18. Axial magnetic field and toroidally streaming fast ions in the dense plasma focus are natural consequences of conservation laws in the curved axisymmetric geometry of the current sheath. II. Towards a first principles theory

    Science.gov (United States)

    Auluck, S. K. H.

    2017-11-01

    This paper continues earlier discussion [S. K. H. Auluck, Phys. Plasmas 21, 102515 (2014)] concerning the formulation of conservation laws of mass, momentum, and energy in a local curvilinear coordinate system in the dense plasma focus. This formulation makes use of the revised Gratton-Vargas snowplow model [S. K. H. Auluck, Phys. Plasmas 20, 112501 (2013)], which provides an analytically defined imaginary surface in three dimensions which resembles the experimentally determined shape of the plasma. Unit vectors along the local tangent to this surface, along the azimuth, and along the local normal define a right-handed orthogonal local curvilinear coordinate system. The simplifying assumption that physical quantities have significant variation only along the normal enables writing laws of conservation of mass, momentum, and energy in the form of effectively one-dimensional hyperbolic conservation law equations using expressions for various differential operators derived for this coordinate system. This formulation demonstrates the highly non-trivial result that the axial magnetic field and toroidally streaming fast ions, experimentally observed by multiple prestigious laboratories, are natural consequences of conservation of mass, momentum, and energy in the curved geometry of the dense plasma focus current sheath. The present paper continues the discussion in the context of a 3-region shock structure similar to the one experimentally observed: an unperturbed region followed by a hydrodynamic shock containing some current followed by a magnetic piston. Rankine-Hugoniot conditions are derived, and expressions are obtained for the specific volumes and pressures using the mass-flux between the hydrodynamic shock and the magnetic piston and current fraction in the hydrodynamic shock as unknown parameters. For the special case of a magnetic piston that remains continuously in contact with the fluid being pushed, the theory gives closed form algebraic results for the

  19. Use of guiding sheaths in peroral fluoroscopic gastroduodenal stent placement

    International Nuclear Information System (INIS)

    Bae, Jae-Ik; Shin, Ji Hoon; Song, Ho-Young; Yoon, Chang Jin; Nam, Deok Ho; Choi, Won-Chan; Lim, Jin-Oh

    2005-01-01

    Our purpose was to assess the safety and usefulness of guiding sheaths in peroral fluoroscopic gastroduodenal stent placement. Two types of guiding sheath were made from straight polytetrafluoroethylene tubes. Type A was 80 cm in length, 4 mm in outer diameter and 3 mm in inner diameter. Type B was 70 cm in length, 6 mm in outer diameter and 5 mm in inner diameter. The type A sheath was used in 18 patients in whom a catheter-guide wire combination failed to pass through a stricture. The type B sheath was used in 22 patients in whom a stent delivery system failed to pass through the stricture due to loop formation within the gastric lumen. The overall success rate for guiding a catheter-guide wire through a stricture after using the type A sheath was 89%. The overall success rate for passing a stent delivery system through a stricture after using the type B sheath was 100%. All procedures were tolerated by the patients without any significant complications. The guiding sheaths were safe and useful in peroral fluoroscopic gastroduodenal stent placement. (orig.)

  20. The Tubular Sheaths Encasing Methanosaeta thermophila Filaments Are Functional Amyloids.

    Science.gov (United States)

    Dueholm, Morten S; Larsen, Poul; Finster, Kai; Stenvang, Marcel R; Christiansen, Gunna; Vad, Brian S; Bøggild, Andreas; Otzen, Daniel E; Nielsen, Per Halkjær

    2015-08-14

    Archaea are renowned for their ability to thrive in extreme environments, although they can be found in virtually all habitats. Their adaptive success is linked to their unique cell envelopes that are extremely resistant to chemical and thermal denaturation and that resist proteolysis by common proteases. Here we employ amyloid-specific conformation antibodies and biophysical techniques to show that the extracellular cell wall sheaths encasing the methanogenic archaea Methanosaeta thermophila PT are functional amyloids. Depolymerization of sheaths and subsequent MS/MS analyses revealed that the sheaths are composed of a single major sheath protein (MspA). The amyloidogenic nature of MspA was confirmed by in vitro amyloid formation of recombinant MspA under a wide range of environmental conditions. This is the first report of a functional amyloid from the archaeal domain of life. The amyloid nature explains the extreme resistance of the sheath, the elastic properties that allow diffusible substrates to penetrate through expandable hoop boundaries, and how the sheaths are able to split and elongate outside the cell. The archaeal sheath amyloids do not share homology with any of the currently known functional amyloids and clearly represent a new function of the amyloid protein fold. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Agglomeration processes sustained by dust density waves in Ar/C2H2 plasma: From C2H2 injection to the formation of an organized structure

    International Nuclear Information System (INIS)

    Dap, Simon; Hugon, Robert; Poucques, Ludovic de; Briancon, Jean-Luc; Bougdira, Jamal; Lacroix, David

    2013-01-01

    In this paper, an experimental investigation of dust particle agglomeration in a capacitively coupled RF discharge is reported. Carbonaceous particles are produced in an argon plasma using acetylene. As soon as the particle density becomes sufficient, dust density waves (DDWs) are spontaneously excited within the cathode sheath. Recently, it was proven that DDWs can significantly enhance the agglomeration rate between particles by transferring them a significant kinetic energy. Thus, it helps them to overcome Coulomb repulsion. The influence of this mechanism is studied from acetylene injection to the formation of very large agglomerates forming an organized structure after a few dozens of seconds. For this purpose, three diagnostic tools are used: extinction measurements to probe nanometer-sized particles, fast imaging for large agglomerates and a dust extraction technique developed for ex-situ analysis.

  2. The dust motion inside the magnetized sheath - The effect of drag forces

    International Nuclear Information System (INIS)

    Pandey, B. P.; Samarian, A.; Vladimirov, S. V.

    2010-01-01

    The isolated charged dust inside the magnetized plasma sheath moves under the influence of the electron and ion drag force and the sheath electrostatic field. The charge on the dust is a function of its radius as well as the value of the ambient sheath potential. It is shown that the charge on the dust determines its trajectory and dust performs the spiraling motion inside the sheath. The location of the turning spiral is determined by the number of negative charge on the dust, which in turn is a function of the dust radius. The back and forth spiraling motion finally causes the dust to move in a small, narrow region of the sheath. For a bigger dust particle, the dust moves closer to the sheath presheath boundary suggesting that the bigger grains, owing to the strong repulsion between the wall and dust, will be unable to travel inside the sheath. Only small, micron-sized grains can travel closer to the wall before repulsion pushes it back toward the plasma-sheath boundary. The temporal behavior of the spiraling dust motion appears like a damped harmonic oscillation, suggesting that the plasma drag force causes dissipation of the electrostatic energy. However, after initial damping, the grain keeps oscillating although with much smaller amplitude. The possible application of the present results to the ongoing sheath experiments is discussed.

  3. Formation of compact toroidal plasmas by magnetized coaxial plasma gun injection into an oblate flux conserver

    International Nuclear Information System (INIS)

    Turner, W.C.; Goldenbaum, G.C.; Granneman, E.H.A.; Hartman, C.W.; Prono, D.S.; Taska, J.; Smith, A.C. Jr.

    1980-01-01

    Initial results are reported on the formation of compact toroidal plasmas in an oblate shaped metallic flux conserver. A schematic of the experimental apparatus is shown. The plasma injector is a coaxial plasma gun with solenoid coils wound on the inner and outer electrodes. The electrode length is 100 cm, the diameter of the inner (outer) electrode is 19.3 cm (32.4 cm). Deuterium gas is puffed into the region between electrodes by eight pulsed valves located on the outer electrode 50 cm from the end of the gun. The gun injects into a cylindrically symmetrical copper shell (wall thickness = 1.6 mm) which acts as a flux conserver for the time scale of experiments reported here. The copper shell consists of a transition cylinder 30 cm long, 34 cm in diameter, a cylindrical oblate pill box 40 cm long, 75 cm in diameter and a downstream cylinder 30 cm long, 30 cm in diameter. The gap between the gun and transition cylinder is 6 cm. An axial array of coils outside the vacuum chamber can be used to establish an initial uniform bias field

  4. Formation of ECR Plasma in a Dielectric Plasma Guide under Self-Excitation of a Standing Ion-Acoustic Wave

    Science.gov (United States)

    Balmashnov, A. A.; Kalashnikov, A. V.; Kalashnikov, V. V.; Stepina, S. P.; Umnov, A. M.

    2018-01-01

    The formation of a spatially localized plasma with a high brightness has been experimentally observed in a dielectric plasma guide under the electron cyclotron resonance discharge at the excitation of a standing ion-acoustic wave. The results obtained show the possibility of designing compact high-intensity radiation sources with a spectrum determined by the working gas or gas mixture type, high-intensity chemically active particle flow sources, and plasma thrusters for correcting orbits of light spacecraft.

  5. A Physics Exploratory Experiment on Plasma Liner Formation

    Science.gov (United States)

    Thio, Y. C. Francis; Knapp, Charles E.; Kirkpatrick, Ronald C.; Siemon, Richard E.; Turchi, Peter

    2002-01-01

    Momentum flux for imploding a target plasma in magnetized target fusion (MTF) may be delivered by an array of plasma guns launching plasma jets that would merge to form an imploding plasma shell (liner). In this paper, we examine what would be a worthwhile experiment to do in order to explore the dynamics of merging plasma jets to form a plasma liner as a first step in establishing an experimental database for plasma-jets driven magnetized target fusion (PJETS-MTF). Using past experience in fusion energy research as a model, we envisage a four-phase program to advance the art of PJETS-MTF to fusion breakeven Q is approximately 1). The experiment (PLX (Plasma Liner Physics Exploratory Experiment)) described in this paper serves as Phase I of this four-phase program. The logic underlying the selection of the experimental parameters is presented. The experiment consists of using twelve plasma guns arranged in a circle, launching plasma jets towards the center of a vacuum chamber. The velocity of the plasma jets chosen is 200 km/s, and each jet is to carry a mass of 0.2 mg - 0.4 mg. A candidate plasma accelerator for launching these jets consists of a coaxial plasma gun of the Marshall type.

  6. On the biogenesis of the myelin sheath : Cognate polarized trafficking pathways in oligodendrocytes

    NARCIS (Netherlands)

    de Vries, H; Hoekstra, D

    2000-01-01

    Oligodendrocytes, the myelinating cells of the central nervous system, are capable of transporting vast quantities of proteins and of lipids, In particular galactosphingolipids, to the myelin sheath. The sheath is continuous with the plasma membrane of the oligodendrocyte, but the composition of

  7. Modelling of the dual frequency capacitive sheath in the intermediate pressure range

    International Nuclear Information System (INIS)

    Boyle, P C; Robiche, J; Turner, M M

    2004-01-01

    The nonlinearity of the plasma sheath in dual frequency capacitively coupled reactors is investigated for frequencies well above the ion plasma frequency. This work focuses on the behaviour of the voltage and the sheath width with respect to the driving current source and the collisionality regime. For typical plasma processing applications, the gas pressure ranges from a few milliTorrs to hundreds of milliTorrs, and the ion dynamics span different collisional regimes. To describe these different ion dynamics, we have used a collisionless model and a variable mobility model. The sheath widths and the voltages obtained from these two models have then been compared

  8. Anomalous Capacitive Sheath with Deep Radio Frequency Electric Field Penetration

    International Nuclear Information System (INIS)

    Kaganovich, Igor D.

    2002-01-01

    A novel nonlinear effect of anomalously deep penetration of an external radio-frequency electric field into a plasma is described. A self-consistent kinetic treatment reveals a transition region between the sheath and the plasma. Because of the electron velocity modulation in the sheath, bunches in the energetic electron density are formed in the transition region adjusted to the sheath. The width of the region is of order V(subscript T)/omega, where V(subscript T) is the electron thermal velocity, and w is frequency of the electric field. The presence of the electric field in the transition region results in a cooling of the energetic electrons and an additional heating of the cold electrons in comparison with the case when the transition region is neglected

  9. Formation dynamics of UV and EUV induced hydrogen plasma

    NARCIS (Netherlands)

    Dolgov, A.A.; Lee, Christopher James; Yakushev, O.; Lopaev, D.V.; Abrikosov, A.; Krivtsun, V.M.; Zotovich, A.; Bijkerk, F.

    2014-01-01

    The comparative study of the dynamics of ultraviolet (UV) and extreme ultraviolet (EUV) induced hydrogen plasma was performed. It was shown that for low H2 pressures and bias voltages, the dynamics of the two plasmas are significantly different. In the case of UV radiation, the plasma above the

  10. Annihilation model of the Tormac sheath

    International Nuclear Information System (INIS)

    Hammer, J.H.

    1979-02-01

    A one-dimensional, steady state fluid model is developed to describe the boundary layer between plasma and magnetic field that occurs in the Tormac sheath. Similar systems which may be treatable by the same model are tokamaks with divertors and reversed field mirrors. The model includes transport across the magnetic field as well as mirror losses along the field, the latter being represented as annihilation terms in the one-dimensional equations. The model equations are derived from the two-dimensional, time dependent hierarchy of equations generated by taking velocity moments of the kinetic equation including collisions

  11. The Sheath-less Planar Langmuir Probe

    Science.gov (United States)

    Cooke, D. L.

    2017-12-01

    The Langmuir probe is one of the oldest plasma diagnostics, provided the plasma density and species temperature from analysis of a current-voltage curve as the voltage is swept over a practically chosen range. The analysis depends on a knowledge or theory of the many factors that influence the current-voltage curve including, probe shape, size, nearby perturbations, and the voltage reference. For applications in Low Earth Orbit, the Planar Langmuir Probe, PLP, is an attractive geometry because the ram ion current is very constant over many Volts of a sweep, allowing the ion density and electron temperature to be determined independently with the same instrument, at different points on the sweep. However, when the physical voltage reference is itself small and electrically floating as with a small spacecraft, the spacecraft and probe system become a double probe where the current collection theory depends on the interaction of the spacecraft with the plasma which is generally not as simple as the probe itself. The Sheath-less PLP, SPLP, interlaces on a single ram facing surface, two variably biased probe elements, broken into many small and intertwined segments on a scale smaller than the plasma Debye length. The SPLP is electrically isolated from the rest of the spacecraft. For relative bias potentials of a few volts, the ion current to all segments of each element will be constant, while the electron currents will vary as a function of the element potential and the electron temperature. Because the segments are small, intertwined, and floating, the assembly will always present the same floating potential to the plasma, with minimal growth as a function of voltage, thus sheath-less and still planar. This concept has been modelled with Nascap, and tested with a physical model inserted into a Low Earth Orbit-like chamber plasma. Results will be presented.

  12. BOOK REVIEW: Transport and Structural Formation in Plasmas

    Science.gov (United States)

    Thyagaraja, A.

    1999-06-01

    The book under review is one of a series of monographs on plasma physics published by the Institute of Physics under the editorship of Peter Stott and Hans Wilhelmsson. It is nicely produced and is aimed at research workers and advanced students of both laboratory (i.e. tokamak plasmas) and astrophysical plasma physics. The authors are prolific contributors to the subject of plasma turbulence and transport with a well-defined message: ``The authors' view is that the plasma structure, fluctuations and turbulent transport are continually regulating each other and, in addition, that the structural formation and structural transition of plasmas are typical of the physics of far from equilibrium systems. The book presents and explains why the plasma inhomogeneity is the ordering parameter governing transport and how self-sustained fluctuations can be driven through subcritical excitation even beyond linear instability''. This point of view is expounded in 24 chapters, including topics such as transport phenomena in toroidal plasmas (Chapters 2-4), low frequency modes and instabilities of confined systems (Chapters 5-7), renormalization (Chapter 8), self-sustained turbulence due to the current diffusive mode and resistive effects (Chapters 9-11), subcritical turbulence and numerical simulations (Chapters 12-14), scale invariance arguments (Chapter 15), electric field effects (Chapters 17-21) and self-organized dynamics (Chapter 22). The material is essentially drawn from the authors' many and varied original contributions to the plasma turbulence and transport literature. Whatever view one might have about the merits of this work, there is little doubt in this reviewer's mind that it is indeed thought-provoking and presents a worthy intellectual challenge to plasma theorists and experimentalists alike. The authors take a consistent stance and discuss the issues from their own standpoint. They observe that the plasmas one encounters in practice (for definiteness, the

  13. Sheath-accumulating Propagation of Interplanetary Coronal Mass Ejection

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Takuya; Shibata, Kazunari, E-mail: takahasi@kusastro.kyoto-u.ac.jp [Kwasan and Hida Observatories, Kyoto University, Yamashina, Kyoto 607–8471 (Japan)

    2017-03-10

    Fast interplanetary coronal mass ejections (ICMEs) are the drivers of strong space weather storms such as solar energetic particle events and geomagnetic storms. The connection between the space-weather-impacting solar wind disturbances associated with fast ICMEs at Earth and the characteristics of causative energetic CMEs observed near the Sun is a key question in the study of space weather storms, as well as in the development of practical space weather prediction. Such shock-driving fast ICMEs usually expand at supersonic speeds during the propagation, resulting in the continuous accumulation of shocked sheath plasma ahead. In this paper, we propose a “sheath-accumulating propagation” (SAP) model that describes the coevolution of the interplanetary sheath and decelerating ICME ejecta by taking into account the process of upstream solar wind plasma accumulation within the sheath region. Based on the SAP model, we discuss (1) ICME deceleration characteristics; (2) the fundamental condition for fast ICMEs at Earth; (3) the thickness of interplanetary sheaths; (4) arrival time prediction; and (5) the super-intense geomagnetic storms associated with huge solar flares. We quantitatively show that not only the speed but also the mass of the CME are crucial for discussing the above five points. The similarities and differences between the SAP model, the drag-based model, and the“snow-plow” model proposed by Tappin are also discussed.

  14. Sheath-accumulating Propagation of Interplanetary Coronal Mass Ejection

    International Nuclear Information System (INIS)

    Takahashi, Takuya; Shibata, Kazunari

    2017-01-01

    Fast interplanetary coronal mass ejections (ICMEs) are the drivers of strong space weather storms such as solar energetic particle events and geomagnetic storms. The connection between the space-weather-impacting solar wind disturbances associated with fast ICMEs at Earth and the characteristics of causative energetic CMEs observed near the Sun is a key question in the study of space weather storms, as well as in the development of practical space weather prediction. Such shock-driving fast ICMEs usually expand at supersonic speeds during the propagation, resulting in the continuous accumulation of shocked sheath plasma ahead. In this paper, we propose a “sheath-accumulating propagation” (SAP) model that describes the coevolution of the interplanetary sheath and decelerating ICME ejecta by taking into account the process of upstream solar wind plasma accumulation within the sheath region. Based on the SAP model, we discuss (1) ICME deceleration characteristics; (2) the fundamental condition for fast ICMEs at Earth; (3) the thickness of interplanetary sheaths; (4) arrival time prediction; and (5) the super-intense geomagnetic storms associated with huge solar flares. We quantitatively show that not only the speed but also the mass of the CME are crucial for discussing the above five points. The similarities and differences between the SAP model, the drag-based model, and the“snow-plow” model proposed by Tappin are also discussed.

  15. Electron sheath collapse in an applied-B ion diode

    International Nuclear Information System (INIS)

    Grechikha, A.V.

    1996-01-01

    The effect of the electron sheath collapse in an applied-B ion diode due to the presence of the resistive anode plasma layer was found. This effect is more damaging at higher diode voltages and may be responsible for the parasitic load effect observed in the experiments. (author). 4 figs., 2 refs

  16. On the upper bound in the Bohm sheath criterion

    Energy Technology Data Exchange (ETDEWEB)

    Kotelnikov, I. A., E-mail: I.A.Kotelnikov@inp.nsk.su; Skovorodin, D. I., E-mail: D.I.Skovorodin@inp.nsk.su [Russian Academy of Sciences, Budker Institute of Nuclear Physics, Siberian Branch (Russian Federation)

    2016-02-15

    The question is discussed about the existence of an upper bound in the Bohm sheath criterion, according to which the Debye sheath at the interface between plasma and a negatively charged electrode is stable only if the ion flow velocity in plasma exceeds the ion sound velocity. It is stated that, with an exception of some artificial ionization models, the Bohm sheath criterion is satisfied as an equality at the lower bound and the ion flow velocity is equal to the speed of sound. In the one-dimensional theory, a supersonic flow appears in an unrealistic model of a localized ion source the size of which is less than the Debye length; however, supersonic flows seem to be possible in the two- and three-dimensional cases. In the available numerical codes used to simulate charged particle sources with a plasma emitter, the presence of the upper bound in the Bohm sheath criterion is not supposed; however, the correspondence with experimental data is usually achieved if the ion flow velocity in plasma is close to the ion sound velocity.

  17. Electron sheath collapse in an applied-B ion diode

    Energy Technology Data Exchange (ETDEWEB)

    Grechikha, A V [Forschungszentrum Karlsruhe (Germany). Institut fuer Neutronenphysik und Reaktortechnik

    1997-12-31

    The effect of the electron sheath collapse in an applied-B ion diode due to the presence of the resistive anode plasma layer was found. This effect is more damaging at higher diode voltages and may be responsible for the parasitic load effect observed in the experiments. (author). 4 figs., 2 refs.

  18. Cdc42 and Rac1 signaling are both required for and act synergistically in the correct formation of myelin sheaths in the CNS

    DEFF Research Database (Denmark)

    Thurnherr, Tina; Benninger, Yves; Wu, Xunwei

    2006-01-01

    . This was characterized by the extraordinary enlargement of the inner tongue of the oligodendrocyte process and concomitant formation of a myelin outfolding as a result of abnormal accumulation of cytoplasm in this region. Ablation of Rac1 also resulted in the abnormal accumulation of cytoplasm in the inner tongue...... of the oligodendrocyte process, and we provide genetic evidence that rac1 synergizes with cdc42 in a gene dosage-dependent way to regulate myelination....

  19. Verification of high voltage rf capacitive sheath models with particle-in-cell simulations

    Science.gov (United States)

    Wang, Ying; Lieberman, Michael; Verboncoeur, John

    2009-10-01

    Collisionless and collisional high voltage rf capacitive sheath models were developed in the late 1980's [1]. Given the external parameters of a single-frequency capacitively coupled discharge, plasma parameters including sheath width, electron and ion temperature, plasma density, power, and ion bombarding energy can be estimated. One-dimensional electrostatic PIC codes XPDP1 [2] and OOPD1 [3] are used to investigate plasma behaviors within rf sheaths and bulk plasma. Electron-neutral collisions only are considered for collisionless sheaths, while ion-neutral collisions are taken into account for collisional sheaths. The collisionless sheath model is verified very well by PIC simulations for the rf current-driven and voltage-driven cases. Results will be reported for collisional sheaths also. [1] M. A. Lieberman, IEEE Trans. Plasma Sci. 16 (1988) 638; 17 (1989) 338 [2] J. P. Verboncoeur, M. V. Alves, V. Vahedi, and C. K. Birdsall, J. Comp. Phys. 104 (1993) 321 [3] J. P. Verboncoeur, A. B. Langdon and N. T. Gladd, Comp. Phys. Comm. 87 (1995) 199

  20. Formation of thermal eddies during rf heating of plasma

    International Nuclear Information System (INIS)

    Motley, R.W.; Hooke, W.M.; Anania, G.

    1979-07-01

    Moderate power (approx.1 kW) excitation of lower hybrid waves in a linear plasma column is found to increase the reflectivity of the phased waveguide exciter and to change the vertical position of the resonance cone. Probing of the plasma near the mouth of the waveguide reveals that the increased reflection results from an undulation in the plasma surface. We present evidence that this surface distortion is driven by thermal eddies associated with asymmetrical electron heating

  1. Studies of RF sheaths and diagnostics on IShTAR

    Energy Technology Data Exchange (ETDEWEB)

    Crombé, K., E-mail: Kristel.Crombe@UGent.be [Department of Applied Physics, Ghent University, Ghent (Belgium); LPP-ERM/KMS, Royal Military Academy, Brussels (Belgium); Devaux, S.; Faudot, E.; Heuraux, S.; Moritz, J. [YIJL, UMR7198 CNRS-Université de Lorraine, Nancy (France); D’Inca, R.; Faugel, H.; Fünfgelder, H.; Jacquot, J.; Ochoukov, R. [Max-Planck-Institut für Plasmaphysik, Garching (Germany); Louche, F.; Tripsky, M.; Van Eester, D.; Wauters, T. [LPP-ERM/KMS, Royal Military Academy, Brussels (Belgium); Noterdaeme, J.-M. [Department of Applied Physics, Ghent University, Ghent (Belgium); Max-Planck-Institut für Plasmaphysik, Garching (Germany)

    2015-12-10

    IShTAR (Ion cyclotron Sheath Test ARrangement) is a linear magnetised plasma test facility for RF sheaths studies at the Max-Planck-Institut für Plasmaphysik in Garching. In contrast to a tokamak, a test stand provides more liberty to impose the parameters and gives better access for the instrumentation and antennas. The project will support the development of diagnostic methods for characterising RF sheaths and validate and improve theoretical predictions. The cylindrical vacuum vessel has a diameter of 1 m and is 1.1 m long. The plasma is created by an external cylindrical plasma source equipped with a helical antenna that has been designed to excite the m=1 helicon mode. In inductive mode, plasma densities and electron temperatures have been characterised with a planar Langmuir probe as a function of gas pressure and input RF power. A 2D array of RF compensated Langmuir probes and a spectrometer are planned. A single strap RF antenna has been designed; the plasma-facing surface is aligned to the cylindrical plasma to ease the modelling. The probes will allow direct measurements of plasma density profiles in front of the RF antenna, and thus a detailed study of the density modifications induced by RF sheaths, which influences the coupling. The RF antenna frequency has been chosen to study different plasma wave interactions: the accessible plasma density range includes an evanescent and propagative behaviour of slow or fast waves, and allows the study of the effect of the lower hybrid resonance layer.

  2. Formation of presheath and current-free double layer in a two-electron-temperature plasma

    International Nuclear Information System (INIS)

    Sato, Kunihiro; Miyawaki, Fujio

    1992-02-01

    Development of the steady-state potential in a two-temperature-electron plasma in contact with the wall is investigated analytically. It is shown that if the hot- to cold electron temperature ratio is greater than ten, the potential drop in the presheath, which is allowed to have either a small value characterized by the cold electrons or a large value by the hot electrons, discontinuously changes at a critical value for the hot- to total electron density ratio. It is also found that the monotonically decreasing potential structure which consists of the first presheath, a current-free double layer, the second presheath, and the sheath can be steadily formed in a lower range of the hot- to total electron density ratio around the critical value. The current-free double layer is set up due to existence of the two electron species and cold ions generated by ionization so as to connect two presheath potentials at different levels. (author)

  3. Formation of a three-dimensional plasma boundary after decay of the plasma response to resonant magnetic perturbation fields

    Science.gov (United States)

    Schmitz, O.; Evans, T. E.; Fenstermacher, M. E.; Lanctot, M. J.; Lasnier, C. L.; Mordijck, S.; Moyer, R. A.; Reimerdes, H.; the DIII-D Team

    2014-01-01

    First time experimental evidence is presented for a direct link between the decay of a n = 3 plasma response and the formation of a three-dimensional (3D) plasma boundary. We inspect a lower single-null L-mode plasma which first reacts at sufficiently high rotation with an ideal resonant screening response to an external toroidal mode number n = 3 resonant magnetic perturbation field. Decay of this response due to reduced bulk plasma rotation changes the plasma state considerably. Signatures such as density pump out and a spin up of the edge rotation—which are usually connected to formation of a stochastic boundary—are detected. Coincident, striation of the divertor single ionized carbon emission and a 3D emission structure in double ionized carbon at the separatrix is seen. The striated C II pattern follows in this stage the perturbed magnetic footprint modelled without a plasma response (vacuum approach). This provides for the first time substantial experimental evidence, that a 3D plasma boundary with direct impact on the divertor particle flux pattern is formed as soon as the internal plasma response decays. The resulting divertor structure follows the vacuum modelled magnetic field topology. However, the inward extension of the perturbed boundary layer can still not directly be determined from these measurements.

  4. Sheath structure in negative ion sources for fusion (invited)

    International Nuclear Information System (INIS)

    McAdams, R.; King, D. B.; Surrey, E.; Holmes, A. J. T.

    2012-01-01

    In fusion negative ion sources, the negative ions are formed on the caesiated plasma grid predominantly by hydrogen atoms from the plasma. The space charge of the negative ions leaving the wall is not fully compensated by incoming positive ions and at high enough emission a virtual cathode is formed. This virtual cathode limits the flux of negative ions transported across the sheath to the plasma. A 1D collisionless model of the sheath is presented taking into account the virtual cathode. The model will be applied to examples of the ion source operation. Extension of the model to the bulk plasma shows good agreement with experimental data. A possible role for fast ions is discussed.

  5. Solid density, low temperature plasma formation in a capillary discharge

    International Nuclear Information System (INIS)

    Kania, D.R.; Jones, L.A.; Maestas, M.D.; Shepherd, R.L.

    1987-01-01

    This work discusses the ability of the authors to produce solid density, low temperature plasmas in polyurethane capillary discharges. The initial capillary diameter is 20 μm. The plasma is produced by discharging a one Ohm parallel plate waterline and Marx generator system through the capillary. A peak current of 340 kA in 300 ns heats the inner wall of the capillary, and the plasma expands into the surrounding material. The authors studied the evolution of the discharge using current and voltage probes, axial and radial streak photography, axial x-ray diode array and schlieren photography, and have estimated the peak temperature of the discharge to be approximately 10 eV and the density to be near 10/sup 23/cm/sup -3/. This indicates that the plasma may approach the strongly coupled regime. They discuss their interpretation of the data and compare their results with theoretical models of the plasma dynamics

  6. Simulations of radiative shocks and jet formation in laboratory plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Velarde, P; Gonzalez, M; GarcIa-Fernandez, C; Oliva, E [Instituto de Fusion Nuclear, Universidad Politcnica de Madrid, Madrid (Spain) (Spain); Kasperczuk, A; Pisarczyk, T [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland) (Poland); Ullschmied, J [Institute of Plasma Physics AS CR, Prague (Czech Republic) (Czech Republic); Stehle, C [LERMA, Observatoire de Paris, Meudon (France) (France); Rus, B [Institute of Physics, PALS Center, Prague (Czech Republic) (Czech Republic); GarcIa-Senz, D; Bravo, E; Relano, A [Departament de Fisica i Enginyeria Nuclear. Universitat Politecnica de Catalunya. Barcelona (Spain) (Spain)], E-mail: velarde@din.upm.es

    2008-05-01

    We present the simulations of two relevant hydrodynamical problems related to astrophysical phenomena performed by three different codes. The numerical results from these codes will be compared in order to test both the numerical method implemented inside them and the influence of the physical phenomena simulated by the codes. Under some conditions laser produced plasmas could be scaled to the typical conditions prevailing in astrophysical plasmas. Therefore, such similarity allows to use existing laser facilities and numerical codes suitable to a laser plasma regime, for studying astrophysical proccesses. The codes are the radiation fluid dynamic 2D ARWEN code and the 3D HERACLES, and, without radiation energy transport, a Smoothed-Particle Hydrodynamics (SPH) code. These codes use different numerical techniques and have overlapping range of application, from laser produced plasmas to astrophysical plasmas. We also present the first laser experiments obtaining cumulative jets with a velocity higher than 100 km/s.

  7. Use of a hot sheath Tormac for advance fuels

    International Nuclear Information System (INIS)

    Levine, M.A.

    1977-01-01

    The use of hot electrons in a Tormac sheath is predicted to improve stability and increase ntau by an order of magnitude. An effective ntau for energy containment is derived and system parameters for several advance fuels are shown. In none of the advance fuels cases considered is a reactor with fields greater than 10 Wb or major plasma radius of more than 3 m required for ignition. Minimum systems have power output of under 100 MW thermal. System parameters for a hot sheath Tormac have a wide latitude. Sizes, magnetic fields, operating temperatures can be chosen to optimize engineering and economic considerations

  8. Investigation of magnetic drift on transport of plasma across magnetic field

    International Nuclear Information System (INIS)

    Hazarika, Parismita; Chakraborty, Monojit; Das, Bidyut; Bandyopadhyay, Mainak

    2015-01-01

    When a metallic body is inserted inside plasma chamber it is always associated with sheath which depends on plasma and wall condition. The effect of sheath formed in the magnetic drift and magnetic field direction on cross field plasma transport has been investigated in a double Plasma device (DPD). The drifts exist inside the chamber in the transverse magnetic field (TMF) region in a direction perpendicular to both magnetic field direction and axis of the DPD chamber. The sheath are formed in the magnetic drift direction in the experimental chamber is due to the insertion of two metallic plates in these directions and in the magnetic field direction sheath is formed at the surface of the TMF channels. These metallic plates are inserted in order to obstruct the magnetic drift so that we can minimised the loss of plasma along drift direction and density in the target region is expected to increase due to the obstruction. It ultimately improves the negative ion formation parameters. The formation of sheath in the transverse magnetic field region is studied by applying electric field both parallel and antiparallel to drift direction. Data are acquired by Langmuir probe in source and target region of our chamber. (author)

  9. Models of the plasma corona formation and stratification of exploding micro-wires

    International Nuclear Information System (INIS)

    Volkov, N.B.; Sarkisov, G.S.; Struve, K.W.; McDaniel, D.H.

    2005-01-01

    There are proposed the models pf plasma corona formation and stratification of a gas-plasma core of exploding micro-wire. The opportunity of use for the description of physical processes in a formed plasma corona of an electronic magnetohydrodynamics is generalized in view of change of particle number as a result of evaporation, ionization and a leaving of electrons on a wire surface. Necessity of the account of influence of a hot plasma corona on stratification of a gas-plasma core was grounded [ru

  10. Potential formation in the plasma confinement region of a radio-frequency plugged linear device

    International Nuclear Information System (INIS)

    Fujita, Hideki; Kumazawa, Ryuhei; Howald, A.M.; Okamura, Shoichi; Sato, Teruyuki; Adati, Keizo; Garner, H.R.; Nishimura, Kiyohiko.

    1987-08-01

    Plasma potential formation in an open-ended plasma confinement system with RF plugging (the RFC-XX-M device) is investigated. The plasma potential in the central confinement region is measured with a heavy ion beam probe system and potentials at the RF plug section are measured with multi-grid energy analyzers. The measured plasma potential is compared with that deduced from the generalized Pastukhov formula. Results show that the plasma potential develops as an ambipolar potential to equate ion and electron end losses. During RF plugging, electrons are heated by Landau damping, while ions are not heated since adiabatic conditions apply during ion plugging in this experiment. (author)

  11. High density plasmas formation in Inertial Confinement Fusion and Astrophysics

    International Nuclear Information System (INIS)

    Martinez-Val, J. M.; Minguez, E.; Velarde, P.; Perlado, J. M.; Velarde, G.; Bravo, E.; Eliezer, S.; Florido, R.; Garcia Rubiano, J.; Garcia-Senz, D.; Gil de la Fe, J. M.; Leon, P. T.; Martel, P.; Ogando, F.; Piera, M.; Relano, A.; Rodriguez, R.; Garcia, C.; Gonzalez, E.; Lachaise, M.; Oliva, E.

    2005-01-01

    In inertially confined fusion (ICF), high densities are required to obtain high gains. In Fast Ignition, a high density, low temperature plasma can be obtained during the compression. If the final temperature reached is low enough, the electrons of the plasma can be degenerate. In degenerate plasmas. Bremsstrahlung emission is strongly suppressed an ignition temperature becomes lower than in classical plasmas, which offers a new design window for ICF. The main difficulty of degenerate plasmas in the compression energy needed for high densities. Besides that, the low specific heat of degenerate electrons (as compared to classical values) is also a problem because of the rapid heating of the plasma. Fluid dynamic evolution of supernovae remnants is a very interesting problem in order to predict the thermodynamical conditions achieved in their collision regions. Those conditions have a strong influence in the emission of light and therefore the detection of such events. A laboratory scale system has been designed reproducing the fluid dynamic field in high energy experiments. The evolution of the laboratory system has been calculated with ARWEN code, 2D Radiation CFD that works with Adaptive Mesh Refinement. Results are compared with simulations on the original system obtained with a 3D SPH astrophysical code. New phenomena at the collision plane and scaling of the laboratory magnitudes will be described. Atomic physics for high density plasmas has been studied with participation in experiments to obtain laser produced high density plasmas under NLTE conditions, carried out at LULI. A code, ATOM3R, has been developed which solves rate equations for optically thin plasmas as well as for homogeneous optically thick plasmas making use of escape factors. New improvements in ATOM3R are been done to calculate level populations and opacities for non homogeneous thick plasmas in NLTE, with emphasis in He and H lines for high density plasma diagnosis. Analytical expression

  12. Stochastic layers of magnetic field lines and formation of ITB in a toroidal plasma

    International Nuclear Information System (INIS)

    Volkov, E.D.; Bererzhnyi, V.L.; Bondarenko, V.N.

    2003-01-01

    The results of local measurements of RF discharge plasma parameters in the process of ITB formation in the vicinity of rational magnetic surfaces in the Uragan-3M torsatron are presented. The next phenomena were observed in the process of ITB formation: the widening of the radial density distribution, the formation of pedestals on radial density and electron temperature distributions, the formation of regions with high shear of poloidal plasma rotation velocity and radial electric field in the vicinity of stochastic layers of magnetic field lines, the decrease of density fluctuations and their radial correlation length, the decorrelation of density fluctuations, the increase of the bootstrap current. After the ITB formation, the transition to the improved plasma confinement regime takes place. The transition moves to the beginning of the discharge with the increase of heating power. The possible mechanism of ITB formation near rational surfaces is discussed. (orig.)

  13. Particle formation and its control in dual frequency plasma etching reactors

    International Nuclear Information System (INIS)

    Kim, Munsu; Cheong, Hee-Woon; Whang, Ki-Woong

    2015-01-01

    The behavior of a particle cloud in plasma etching reactors at the moment when radio frequency (RF) power changes, that is, turning off and transition steps, was observed using the laser-light-scattering method. Two types of reactors, dual-frequency capacitively coupled plasma (CCP) and the hybrid CCP/inductively coupled plasma (ICP), were set up for experiments. In the hybrid CCP/ICP reactor (hereafter ICP reactor), the position and shape of the cloud were strongly dependent on the RF frequency. The particle cloud becomes larger and approaches the electrode as the RF frequency increases. By turning the lower frequency power off later with a small delay time, the particle cloud is made to move away from the electrode. Maintaining lower frequency RF power only was also helpful to reduce the particle cloud size during this transition step. In the ICP reactor, a sufficient bias power is necessary to make a particle trap appear. A similar particle cloud to that in the CCP reactor was observed around the sheath region of the lower electrode. The authors can also use the low-frequency effect to move the particle cloud away from the substrate holder if two or more bias powers are applied to the substrate holder. The dependence of the particle behavior on the RF frequencies suggests that choosing the proper frequency at the right moment during RF power changes can reduce particle contamination effectively

  14. Formation of Plasma Around a Small Meteoroid: Simulation and Theory

    Science.gov (United States)

    Sugar, G.; Oppenheim, M. M.; Dimant, Y. S.; Close, S.

    2018-05-01

    High-power large-aperture radars detect meteors by reflecting radio waves off dense plasma that surrounds a hypersonic meteoroid as it ablates in the Earth's atmosphere. If the plasma density profile around the meteoroid is known, the plasma's radar cross section can be used to estimate meteoroid properties such as mass, density, and composition. This paper presents head echo plasma density distributions obtained via two numerical simulations of a small ablating meteoroid and compares the results to an analytical solution found in Dimant and Oppenheim (2017a, https://doi.org/10.1002/2017JA023960, 2017b, https://doi.org/10.1002/2017JA023963). The first simulation allows ablated meteoroid particles to experience only a single collision to match an assumption in the analytical solution, while the second is a more realistic simulation by allowing multiple collisions. The simulation and analytical results exhibit similar plasma density distributions. At distances much less than λT, the average distance an ablated particle travels from the meteoroid before a collision with an atmospheric particle, the plasma density falls off as 1/R, where R is the distance from the meteoroid center. At distances substantially greater than λT, the plasma density profile has an angular dependence, falling off as 1/R2 directly behind the meteoroid, 1/R3 in a plane perpendicular to the meteoroid's path that contains the meteoroid center, and exp[-1.5(R/λT2/3)]/R in front of the meteoroid. When used for calculating meteoroid masses, this new plasma density model can give masses that are orders of magnitude different than masses calculated from a spherically symmetric Gaussian distribution, which has been used to calculate masses in the past.

  15. Coronal mass ejections and their sheath regions in interplanetary space

    Science.gov (United States)

    Kilpua, Emilia; Koskinen, Hannu E. J.; Pulkkinen, Tuija I.

    2017-11-01

    Interplanetary coronal mass ejections (ICMEs) are large-scale heliospheric transients that originate from the Sun. When an ICME is sufficiently faster than the preceding solar wind, a shock wave develops ahead of the ICME. The turbulent region between the shock and the ICME is called the sheath region. ICMEs and their sheaths and shocks are all interesting structures from the fundamental plasma physics viewpoint. They are also key drivers of space weather disturbances in the heliosphere and planetary environments. ICME-driven shock waves can accelerate charged particles to high energies. Sheaths and ICMEs drive practically all intense geospace storms at the Earth, and they can also affect dramatically the planetary radiation environments and atmospheres. This review focuses on the current understanding of observational signatures and properties of ICMEs and the associated sheath regions based on five decades of studies. In addition, we discuss modelling of ICMEs and many fundamental outstanding questions on their origin, evolution and effects, largely due to the limitations of single spacecraft observations of these macro-scale structures. We also present current understanding of space weather consequences of these large-scale solar wind structures, including effects at the other Solar System planets and exoplanets. We specially emphasize the different origin, properties and consequences of the sheaths and ICMEs.

  16. Coronal mass ejections and their sheath regions in interplanetary space

    Directory of Open Access Journals (Sweden)

    Emilia Kilpua

    2017-11-01

    Full Text Available Abstract Interplanetary coronal mass ejections (ICMEs are large-scale heliospheric transients that originate from the Sun. When an ICME is sufficiently faster than the preceding solar wind, a shock wave develops ahead of the ICME. The turbulent region between the shock and the ICME is called the sheath region. ICMEs and their sheaths and shocks are all interesting structures from the fundamental plasma physics viewpoint. They are also key drivers of space weather disturbances in the heliosphere and planetary environments. ICME-driven shock waves can accelerate charged particles to high energies. Sheaths and ICMEs drive practically all intense geospace storms at the Earth, and they can also affect dramatically the planetary radiation environments and atmospheres. This review focuses on the current understanding of observational signatures and properties of ICMEs and the associated sheath regions based on five decades of studies. In addition, we discuss modelling of ICMEs and many fundamental outstanding questions on their origin, evolution and effects, largely due to the limitations of single spacecraft observations of these macro-scale structures. We also present current understanding of space weather consequences of these large-scale solar wind structures, including effects at the other Solar System planets and exoplanets. We specially emphasize the different origin, properties and consequences of the sheaths and ICMEs.

  17. Formation of carbon nanostructures using acetylene, argon-acetylene and argon-hydrogen-acetylene plasmas

    International Nuclear Information System (INIS)

    Marcinauskas, L.; Grigonis, A.; Minialga, V.; Marcinauskas, L.; Valincius, V.

    2013-01-01

    The films prepared in argon-acetylene plasma are attributed to graphite-like carbon films. Addition of the hydrogen decreases growth rate and the surface roughness of the films and lead to the formation of nanocrystalline graphite. The carbon nanotubes were formed at low (≤ 450°C; p = 40 Pa) temperature in pure acetylene plasma. (authors)

  18. Modeling to study the role of catalyst in the formation of graphitic shells during carbon nanofiber growth subjected to reactive plasma

    Science.gov (United States)

    Gupta, Ravi; Gupta, Neha; Sharma, Suresh C.

    2018-04-01

    An analytical model to study the role of a metal catalyst nanofilm in the nucleation, growth, and resulting structure of carbon nanofibers (CNFs) in low-temperature hydrogen diluted acetylene plasma has been developed. The model incorporates the nanostructuring of thin catalyst films, growth of CNF, restructuring of catalyst nanoparticles during growth, and its repercussion on the resulting structure (alignment of rolled graphene sheets around catalyst nanoparticles) by taking into account the plasma sheath formalization, kinetics of neutrals and positively charged species in the reactive plasma, flux of plasma species onto the catalyst front surface, and numerous surface reactions for carbon generation. In order to examine the influence of the catalyst film on the growth of CNFs, the numerical solutions of the model equations have been obtained for experimentally determined initial conditions and glow discharge plasma parameters. From the solutions obtained, we found that nanostructuring of thin films leads to the formation of small nanoparticles with high surface number density. The CNF nucleates over these small-sized nanoparticles grow faster and attain early saturation because of the quick poisoning of small-sized catalyst particles, and contain only a few graphitic shells. However, thick nanofilms result in shorter CNFs with large diameters composed of many graphitic shells. Moreover, we found that the inclination of graphitic shells also depends on the extent up to which the catalyst can reconstruct itself during the growth. The small nanoparticles show much greater elongation along the growth axis and also show a very small difference between their tip and base diameter during the growth due to which graphitic shells align at very small angles as compared to the larger nanoparticles. The present study is useful to synthesize the thin and more extended CNFs/CNTs having a smaller opening angle (inclination angle of graphene layers) as the opening angle has a

  19. Formation test of the plasma micro-undulator

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Noriyasu; Hashimoto, Kiyoshi; Aoki, Nobutada; Kimura, Hironobu; Konagai, Chikara; Nakagawa, Satoshi [Toshiba Corp., Yokohama, Kanagawa (Japan); Suzuki, Yasuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-03-01

    An electrostatic plasma micro-undulator was demonstrated by utilizing methods of a laser interference and resonant photoionization. An ion-ripple can be formed across a relativistic electron beam injected into the micro-undulator. Thereby, synchrotron radiation light can be projected. Neodymium (Nd) target is ablated by a pulsed Nd-YAG laser beam, and the vapor is ionized by another laser beam with a wavelength tuned to a resonant ionization line of Nd atom. The laser beam for ionization is irradiated into Nd vapor using interference optics, and a micro-sized plasma-ripple corresponding to the interference fringes is shaped. In the experiment, the interference fringe with a periodic length from 10 to 300 {mu}m was formed, and the plasma-ripple was observed. The plasma density of order of 10{sup 13} cm{sup -3}, under the experimental condition, was not sufficient to obtain an effect expected as an undulator. However, optimization of a distance from the ablation spot to the laser plasma fringe and increase of laser power could achieve an undulator parameter K of more than 0.1. (author)

  20. Antihydrogen formation by autoresonant excitation of antiproton plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Bertsche, William Alan, E-mail: bertsche@cern.ch [Swansea University, Department of Physics (United Kingdom); Andresen, G. B. [Aarhus University, Department of Physics and Astronomy (Denmark); Ashkezari, M. D. [Simon Fraser University, Department of Physics (Canada); Baquero-Ruiz, M. [University of California, Department of Physics (United States); Bowe, P. D. [Aarhus University, Department of Physics and Astronomy (Denmark); Carpenter, P. T. [Auburn University, Department of Physics (United States); Butler, E. [CERN, Physics Department (Switzerland); Cesar, C. L. [Universidade Federal do Rio de Janeiro, Instituto de Fisica (Brazil); Chapman, S. F. [University of California, Department of Physics (United States); Charlton, M.; Eriksson, S. [Swansea University, Department of Physics (United Kingdom); Fajans, J. [University of California, Department of Physics (United States); Friesen, T. [University of Calgary, Department of Physics and Astronomy (Canada); Fujiwara, M. C.; Gill, D. R. [TRIUMF (Canada); Gutierrez, A. [University of British Columbia, Department of Physics and Astronomy (Canada); Hangst, J. S. [Aarhus University, Department of Physics and Astronomy (Denmark); Hardy, W. N. [University of British Columbia, Department of Physics and Astronomy (Canada); Hayano, R. S. [University of Tokyo, Department of Physics (Japan); Hayden, M. E. [Simon Fraser University, Department of Physics (Canada); Collaboration: ALPHA Collaboration; and others

    2012-12-15

    In efforts to trap antihydrogen, a key problem is the vast disparity between the neutral trap energy scale ({approx} 50 {mu}eV), and the energy scales associated with plasma confinement and space charge ({approx}1 eV). In order to merge charged particle species for direct recombination, the larger energy scale must be overcome in a manner that minimizes the initial antihydrogen kinetic energy. This issue motivated the development of a novel injection technique utilizing the inherent nonlinear nature of particle oscillations in our traps. We demonstrated controllable excitation of the center-of-mass longitudinal motion of a thermal antiproton plasma using a swept-frequency autoresonant drive. When the plasma is cold, dense and highly collective in nature, we observe that the entire system behaves as a single-particle nonlinear oscillator, as predicted by a recent theory. In contrast, only a fraction of the antiprotons in a warm or tenuous plasma can be similarly excited. Antihydrogen was produced and trapped by using this technique to drive antiprotons into a positron plasma, thereby initiating atomic recombination. The nature of this injection overcomes some of the difficulties associated with matching the energies of the charged species used to produce antihydrogen.

  1. Antihydrogen formation by autoresonant excitation of antiproton plasmas

    International Nuclear Information System (INIS)

    Bertsche, William Alan; Andresen, G. B.; Ashkezari, M. D.; Baquero-Ruiz, M.; Bowe, P. D.; Carpenter, P. T.; Butler, E.; Cesar, C. L.; Chapman, S. F.; Charlton, M.; Eriksson, S.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayano, R. S.; Hayden, M. E.

    2012-01-01

    In efforts to trap antihydrogen, a key problem is the vast disparity between the neutral trap energy scale (∼ 50 μeV), and the energy scales associated with plasma confinement and space charge (∼1 eV). In order to merge charged particle species for direct recombination, the larger energy scale must be overcome in a manner that minimizes the initial antihydrogen kinetic energy. This issue motivated the development of a novel injection technique utilizing the inherent nonlinear nature of particle oscillations in our traps. We demonstrated controllable excitation of the center-of-mass longitudinal motion of a thermal antiproton plasma using a swept-frequency autoresonant drive. When the plasma is cold, dense and highly collective in nature, we observe that the entire system behaves as a single-particle nonlinear oscillator, as predicted by a recent theory. In contrast, only a fraction of the antiprotons in a warm or tenuous plasma can be similarly excited. Antihydrogen was produced and trapped by using this technique to drive antiprotons into a positron plasma, thereby initiating atomic recombination. The nature of this injection overcomes some of the difficulties associated with matching the energies of the charged species used to produce antihydrogen.

  2. Co-electrospinning fabrication and photocatalytic performance of TiO2/SiO2 core/sheath nanofibers with tunable sheath thickness

    International Nuclear Information System (INIS)

    Cao, Houbao; Du, Pingfan; Song, Lixin; Xiong, Jie; Yang, Junjie; Xing, Tonghai; Liu, Xin; Wu, Rongrong; Wang, Minchao; Shao, Xiaoli

    2013-01-01

    Graphical abstract: - Highlights: • The core–sheath TiO 2 /SiO 2 nanofibers were fabricated by co-electrospinning technique. • The catalytic property of nanofibers with different sheath thickness was studied. • The potential methods of improving catalytic efficiency are suggested. - Abstract: In this paper, core/sheath TiO 2 /SiO 2 nanofibers with tunable sheath thickness were directly fabricated via a facile co-electrospinning technique with subsequent calcination at 500 °C. The morphologies and structures of core/sheath TiO 2 /SiO 2 nanofibers were characterized by TGA, FESEM, TEM, FTIR, XPS and BET. It was found that the 1D core/sheath nanofibers are made up of anatase–rutile TiO 2 core and amorphous SiO 2 sheath. The influences of SiO 2 sheath and its thickness on the photoreactivity were evaluated by observing photo-degradation of methylene blue aqueous solution under the irradiation of UV light. Compared with pure TiO 2 nanofibers, the core/sheath TiO 2 /SiO 2 nanofibers performed a better catalytic performance. That was attributed to not only efficient separation of hole–electron pairs resulting from the formation of heterojunction but also larger surface area and surface silanol group which will be useful to provide higher capacity for oxygen adsorption to generate more hydroxyl radicals. And the optimized core/sheath TiO 2 /SiO 2 nanofibers with a sheath thickness of 37 nm exhibited the best photocatalytic performance

  3. Analytical studies of plasma extraction electrodes and ion beam formation

    International Nuclear Information System (INIS)

    Hassan, A.; Elsaftawy, A.; Zakhary, S. G.

    2007-01-01

    In this work a theoretical and computational study on the space charge dominated beams extracted from a plasma ion source through a spherical and planer electrode is simulated and optimized. The influence of some electrode parameters: axial position, electrode diameter, material and shape; on ion current extracted from a plasma source; were investigated and compared. The optimum values and conditions of the curvature of the plasma boundary, angular divergence, perveance, and the extraction gap were optimized to extract a high quality beams. It has shown that for a planar electrode system there is usually a minimum for optimum perveance versus angular divergence at about ? 0.6 for corresponding aspect ratios. This was assured by experimental data. The appropriate spherical electrode system focus the beam to a minimum value located at a distance equal to the focal length of the spherical extraction electrode.

  4. Observations and Simulations of Formation of Broad Plasma Depletions Through Merging Process

    Science.gov (United States)

    Huang, Chao-Song; Retterer, J. M.; Beaujardiere, O. De La; Roddy, P. A.; Hunton, D.E.; Ballenthin, J. O.; Pfaff, Robert F.

    2012-01-01

    Broad plasma depletions in the equatorial ionosphere near dawn are region in which the plasma density is reduced by 1-3 orders of magnitude over thousands of kilometers in longitude. This phenomenon is observed repeatedly by the Communication/Navigation Outage Forecasting System (C/NOFS) satellite during deep solar minimum. The plasma flow inside the depletion region can be strongly upward. The possible causal mechanism for the formation of broad plasma depletions is that the broad depletions result from merging of multiple equatorial plasma bubbles. The purpose of this study is to demonstrate the feasibility of the merging mechanism with new observations and simulations. We present C/NOFS observations for two cases. A series of plasma bubbles is first detected by C/NOFS over a longitudinal range of 3300-3800 km around midnight. Each of the individual bubbles has a typical width of approx 100 km in longitude, and the upward ion drift velocity inside the bubbles is 200-400 m/s. The plasma bubbles rotate with the Earth to the dawn sector and become broad plasma depletions. The observations clearly show the evolution from multiple plasma bubbles to broad depletions. Large upward plasma flow occurs inside the depletion region over 3800 km in longitude and exists for approx 5 h. We also present the numerical simulations of bubble merging with the physics-based low-latitude ionospheric model. It is found that two separate plasma bubbles join together and form a single, wider bubble. The simulations show that the merging process of plasma bubbles can indeed occur in incompressible ionospheric plasma. The simulation results support the merging mechanism for the formation of broad plasma depletions.

  5. Spine Patterning Is Guided by Segmentation of the Notochord Sheath

    NARCIS (Netherlands)

    Wopat, Susan; Bagwell, Jennifer; Sumigray, Kaelyn D.; Dickson, Amy L.; Huitema, Leonie F.A.; Poss, Kenneth D.; Schulte-Merker, Stefan; Bagnat, Michel

    2018-01-01

    The spine is a segmented axial structure made of alternating vertebral bodies (centra) and intervertebral discs (IVDs) assembled around the notochord. Here, we show that, prior to centra formation, the outer epithelial cell layer of the zebrafish notochord, the sheath, segments into alternating

  6. Plasma turbulence. Structure formation, selection rule, dynamic response and dynamics transport

    International Nuclear Information System (INIS)

    Ito, Sanae I.

    2010-01-01

    The five-year project of Grant-in-Aid for Specially Promoted Research entitled general research on the structure formation and selection rule in plasma turbulence had brought many outcomes. Based on these outcomes, the Grant-in-Aid for Scientific Research (S) program entitled general research on dynamic response and dynamic transport in plasma turbulence has started. In the present paper, the state-of-the-art of the research activities on the structure formation, selection rule and dynamics in plasma turbulence are reviewed with reference to outcomes of these projects. (author)

  7. Formation of Field-reversed-Configuration Plasma with Punctuated-betatron-orbit Electrons

    International Nuclear Information System (INIS)

    Welch, D.R.; Cohen, S.A.; Genoni, T.C.; Glasser, A.H.

    2010-01-01

    We describe ab initio, self-consistent, 3D, fully electromagnetic numerical simulations of current drive and field-reversed-configuration plasma formation by odd-parity rotating magnetic fields (RMFo). Magnetic-separatrix formation and field reversal are attained from an initial mirror configuration. A population of punctuated-betatron-orbit electrons, generated by the RMFo, carries the majority of the field-normal azimuthal electrical current responsible for field reversal. Appreciable current and plasma pressure exist outside the magnetic separatrix whose shape is modulated by the RMFo phase. The predicted plasma density and electron energy distribution compare favorably with RMFo experiments.

  8. Intrapontine malignant nerve sheath tumor

    DEFF Research Database (Denmark)

    Kozić, Dusko; Nagulić, Mirjana; Samardzić, Miroslav

    2008-01-01

    . On pathological examination, the neoplasm appeared to be an intrapontine nerve sheath tumor originating most likely from the intrapontine segment of one of the cranial nerve fibres. The tumor showed exophytic growth, with consequent spread to adjacent subaracnoid space. MR spectroscopy revealed the presence......The primary source of malignant intracerebral nerve sheath tumors is still unclear We report the imaging and MR spectroscopic findings in a 39-year-old man with a very rare brain stem tumor MR examination revealed the presence of intraaxial brain stem tumor with a partial exophytic growth...

  9. Return-current formation in the electron beam - plasma system

    Czech Academy of Sciences Publication Activity Database

    Karlický, Marian; Bárta, Miroslav

    2009-01-01

    Roč. 16, č. 4 (2009), s. 525-532 ISSN 1023-5809 R&D Projects: GA AV ČR IAA300030701 Institutional research plan: CEZ:AV0Z10030501 Keywords : solar flares * plasma instabilities * numerical simulations Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.152, year: 2009

  10. Progress In Plasma Accelerator Development for Dynamic Formation of Plasma Liners

    Science.gov (United States)

    Thio, Y. C. Francis; Eskridge, Richard; Martin, Adam; Smith, James; Lee, Michael; Cassibry, Jason T.; Griffin, Steven; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    An experimental plasma accelerator for magnetic target fusion (MTF) applications under development at the NASA Marshall Space Flight Center is described. The accelerator is a coaxial pulsed plasma thruster (Figure 1). It has been tested experimentally and plasma jet velocities of approx.50 km/sec have been obtained. The plasma jet has been photographed with 10-ns exposure times to reveal a stable and repeatable plasma structure (Figure 2). Data for velocity profile information has been obtained using light pipes and magnetic probes embedded in the gun walls to record the plasma and current transit respectively at various barrel locations. Preliminary spatially resolved spectral data and magnetic field probe data are also presented. A high speed triggering system has been developed and tested as a means of reducing the gun "jitter". This jitter is being characterized and future work for second generation "ultra-low jitter" gun development is being identified.

  11. Plasma Accelerator Development for Dynamic Formation of Plasma Liners: A Status Report

    Science.gov (United States)

    Thio, Y. C. Francis; Eskridge, Richard; Martin, Adam; Smith, James; Lee, Michael; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    An experimental plasma accelerator for magnetic target fusion (MTF) applications under development at the NASA Marshall Space Flight Center is described. The accelerator is a pulsed plasma thruster and has been tested experimentally and plasma jet velocities of approximately 50 km/sec have been obtained. The plasma jet structure has been photographed with 10 ns exposure times to reveal a stable and repeatable plasma structure. Data for velocity profile information has been obtained using light pipes embedded in the gun walls to record the plasma transit at various barrel locations. Preliminary spatially resolved spectral data and magnetic field probe data are also presented. A high speed triggering system has been developed and tested as a means of reducing the gun "jitter". This jitter is being characterized and future work for second generation "ultra-low jitter" gun development is being identified.

  12. The Role of an Electric Field in the Formation of a Detached Regime in Tokamak Plasma

    Science.gov (United States)

    Senichenkov, I.; Kaveeva, E.; Rozhansky, V.; Sytova, E.; Veselova, I.; Voskoboynikov, S.; Coster, D.

    2018-03-01

    Modeling of the transition to the detachment of ASDEX Upgrade tokamak plasma with increasing density is performed using the SOLPS-ITER numerical code with a self-consistent account of drifts and currents. Their role in plasma redistribution both in the confinement region and in the scrape-off layer (SOL) is investigated. The mechanism of high field side high-density formation in the SOL in the course of detachment is suggested. In the full detachment regime, when the cold plasma region expands above the X-point and reaches closed magnetic-flux surfaces, plasma perturbation in a confined region may lead to a change in the confinement regime.

  13. Experimental study of the initial plasma formation stage in a linear theta pinch of inverted field

    International Nuclear Information System (INIS)

    Casin, G.C.; Alvarez, Ricardo; Rojkind, R.H.; Rodrigo, A.B.

    1986-01-01

    The initial stage of the plasma formation was studied in a linear theta pinch. Experiments were made to determine the machine operating conditions for good shot-to-shot reproducibility. Spectroscopic measurements of electron density and of electron and ion temperature were made afterwards to characterize the plasma at different stages of its heating process. The results obtained indicate that shot-to-shot reproducibility is strongly influenced by the presence of impurities and by the plasma preionization technique used. Under proper operating conditions, excellent reproducibility was observed. The measured values of the plasma parameters are compatible with those determined for similar machines. (Author) [es

  14. Influence of surface finish on the plasma formation at the skin explosion

    International Nuclear Information System (INIS)

    Datsko, I M; Chaikovsky, S A; Labetskaya, N A; Rybka, D V; Oreshkin, V I; Khishchenko, K V

    2016-01-01

    The paper reports on experiments to investigate how the quality of surface finish, i.e., surface roughness, influences the plasma formation in a skin explosion of conductors. The experiments were performed on a MIG terawatt generator with a current amplitude of up to 2.5 MA and current rise time of 100 ns. The plasma formation at the conductor surface and the evolution of the plasma boundary was recorded using a four-frame optical camera with an exposure time of 3 ns per frame. It is shown that the quality of surface finish little affects the onset of plasma formation in a skin explosion of stainless steel and St3 steel conductors at a magnetic field of up to 400 T. (paper)

  15. Formation of large-amplitude dust ion-acoustic shocks in dusty plasmas

    International Nuclear Information System (INIS)

    Eliasson, B.; Shukla, P.K.

    2005-01-01

    Theoretical and numerical studies of self-steepening and shock formation of large-amplitude dust ion-acoustic waves in dusty plasmas are presented. A comparison is made between the nondispersive two fluid model, which predicts the formation of large-amplitude compressive and rarefactive dust ion-acoustic shocks, Vlasov simulations, and recent laboratory experiments

  16. Ontogeny of the sheathing leaf base in maize (Zea mays).

    Science.gov (United States)

    Johnston, Robyn; Leiboff, Samuel; Scanlon, Michael J

    2015-01-01

    Leaves develop from the shoot apical meristem (SAM) via recruitment of leaf founder cells. Unlike eudicots, most monocot leaves display parallel venation and sheathing bases wherein the margins overlap the stem. Here we utilized computed tomography (CT) imaging, localization of PIN-FORMED1 (PIN1) auxin transport proteins, and in situ hybridization of leaf developmental transcripts to analyze the ontogeny of monocot leaf morphology in maize (Zea mays). CT imaging of whole-mounted shoot apices illustrates the plastochron-specific stages during initiation of the basal sheath margins from the tubular disc of insertion (DOI). PIN1 localizations identify basipetal auxin transport in the SAM L1 layer at the site of leaf initiation, a process that continues reiteratively during later recruitment of lateral leaf domains. Refinement of these auxin transport domains results in multiple, parallel provascular strands within the initiating primordium. By contrast, auxin is transported from the L2 toward the L1 at the developing margins of the leaf sheath. Transcripts involved in organ boundary formation and dorsiventral patterning accumulate within the DOI, preceding the outgrowth of the overlapping margins of the sheathing leaf base. We suggest a model wherein sheathing bases and parallel veins are both patterned via the extended recruitment of lateral maize leaf domains from the SAM. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  17. Nanoparticle formation in a low pressure argon/aniline RF plasma

    Science.gov (United States)

    Pattyn, C.; Kovacevic, E.; Hussain, S.; Dias, A.; Lecas, T.; Berndt, J.

    2018-01-01

    The formation of nanoparticles in low temperature plasmas is of high importance for different fields: from astrophysics to microelectronics. The plasma based synthesis of nanoparticles is a complex multi-scale process that involves a great variety of different species and comprises timescales ranging from milliseconds to several minutes. This contribution focuses on the synthesis of nanoparticles in a low temperature, low pressure capacitively coupled plasma containing mixtures of argon and aniline. Aniline is commonly used for the production of polyaniline, a material that belongs to the family of conductive polymers, which has attracted increasing interest in the last few years due to the large number of potential applications. The nanoparticles which are formed in the plasma volume and levitate there due to the collection of negative charges are investigated in this contribution by means of in-situ FTIR spectroscopy. In addition, the plasma is analyzed by means of plasma (ion) mass spectroscopy. The experiments reveal the possibility to synthesize nanoparticles both in continuous wave and in pulsed discharges. The formation of particles in the plasma volume can be suppressed by pulsing the plasma in a specific frequency range. The in-situ FTIR analysis also reveals the influence of the argon plasma on the characteristics of the nanoparticles.

  18. Sausage instability threshold in a low energy plasma focus

    International Nuclear Information System (INIS)

    Zakaullah, M.; Nasir, M.; Khattak, F.Y.; Murtaza, G.

    1993-01-01

    Development of sausage instability (m = 0 mode) is studied in a small low energy Mather-type plasma focus. A shadow graphic study of the current sheath has shown that the focused plasma necks off during the radial phase before the maximum compression. This may indicate the lowering of the instability threshold. Three hook-type structures are observed which may not be due to the multifoci formation. The bubble shape structure is observed to be developed in the expansion phase. (author)

  19. Multiple void formation in plasmas containing multispecies charged grains

    International Nuclear Information System (INIS)

    Liu, Y. H.; Chen, Z. Y.; Bogaerts, A.; Yu, M. Y.

    2006-01-01

    Self-organized separation of charged-dust species in two-dimensional dusty plasmas is studied by means of molecular-dynamics simulation. The multispecies dust grains, interacting through a screened Coulomb potential with a long-range attractive component, are confined by an external quadratic potential and subjected to a radially outward ion drag force. It is found that, in general, the species are spatially separated by bandlike dust-free (or void) regions, and grains of the same species tend to populate a common shell. At large ion drag and/or large plasma screening, a central disklike void as well as concentric bandlike voids separating the different species appear. Because of the outward drag and the attractive component of the dust-dust interaction forces, highly asymmetrical states consisting of species-separated dust clumps can also exist despite the fact that all the forces are either radial or central

  20. Phase Formation Control in Plasma Sprayed Alumina–Chromia Coatings

    Czech Academy of Sciences Publication Activity Database

    Dubský, Jiří; Chráska, Pavel; Kolman, Blahoslav Jan; Stahr, C.Ch.; Berger, L.-M.

    2011-01-01

    Roč. 55, č. 3 (2011), s. 294-300 ISSN 0862-5468 R&D Projects: GA ČR GA106/08/1240 Institutional research plan: CEZ:AV0Z20430508 Keywords : Alumina * Chromia * Plasma spraying * Phase stabilization Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 0.382, year: 2011 http://www.ceramics-silikaty.cz/2011/2011_03_294.htm

  1. Fundamental studies of fusion plasmas. Final report

    International Nuclear Information System (INIS)

    Aamodt, R.E.

    1998-01-01

    Lodestar has carried out a vigorous research program in the areas of rf, edge plasma and divertor physics, with emphasis largely geared towards improving the understanding and performance of ion-cyclotron heating and current drive (ICRF) systems. Additionally, a research program in the field of edge plasma and divertor modeling was initiated. Theoretical work on high power rf sheath formation for multi-strap rf arrays was developed and benchmarked against recent experimental data from the new JET A2 antennas. Sophisticated modeling tools were employed to understand the sheath formation taking into account realistic three-dimensional antenna geometry. A novel physics explanation of an observed anomaly in the low power loading of antennas was applied to qualitatively interpret data on DIII-D in terms of rf sheaths, and potential applications of the idea to develop a near-field sheath diagnostic were explored. Other rf-wave related topics were also investigated. Full wave ICRF modeling studies were carried out in support of ongoing and planned tokamaks experiments, including the investigation of low frequency plasma heating and current drive regimes for IGNITOR. In a cross-disciplinary study involving both MHD and ICRF physics, ponderomotive feedback stabilization by rf was investigated as a potential means of controlling external kink mode disruptions. In another study, the instability of the ion hybrid wave (IHW) in the presence of fusion alpha particles was studied. In the field of edge plasma and divertor modeling studies, Lodestar began the development of a theory of generalized ballooning and sheath instabilities in the scrape off layer (SOL) of divertor tokamaks. A detailed summary of the technical progress in these areas during the contract period is included, as well as where references to published work can be found. A separate listing of publications, meeting abstracts, and other presentations is also given at the end of this final report

  2. Increase in the energy absorption of pulsed plasma by the formation of tungsten nanostructure

    Science.gov (United States)

    Sato, D.; Ohno, N.; Domon, F.; Kajita, S.; Kikuchi, Y.; Sakuma, I.

    2017-06-01

    The synergistic effects of steady-state and pulsed plasma irradiation to material have been investigated in the device NAGDIS-PG (NAGoya DIvertor Simulator with Plasma Gun). The duration of the pulsed plasma was ~0.25 ms. To investigate the pulsed plasma heat load on the materials, we developed a temperature measurement system using radiation from the sample in a high time resolution. The heat deposited in response to the transient plasma on a tungsten surface was revealed by using this system. When the nanostructures were formed by helium plasma irradiation, the temperature increase on the bulk sample was enhanced. The result suggested that the amount of absorbed energy on the surface was increased by the formation of nanostructures. The possible mechanisms causing the phenomena are discussed with the calculation of a sample temperature in response to the transient heat load.

  3. Nanopattern formation using localized plasma for growth of single-standing carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Javadi, Mohammad; Abdi, Yaser, E-mail: y.abdi@ut.ac.ir [University of Tehran, Nanophysics Research Laboratory, Department of Physics (Iran, Islamic Republic of)

    2017-01-15

    We report a novel method for formation of self-organized single-standing carbon nanotubes by customizing a plasma-based process. The growth of carbon nanotubes by plasma-enhanced chemical vapor deposition provides suitable grounds to utilize plasma–solid interactions for nanopatterning. The bulk plasma is utilized to fabricate carbon nanotubes on the prepatterned Ni catalyst which in turn can confine the plasma to the growth region. The plasma localization leads to a dielectrophoretic force exerted on Ni atoms and can be engineered in order to grow a specific pattern of self-organized single-standing carbon nanotubes. Numerical simulations based on the plasma localization and dielectrophoretic force confirmed the experimental results. This method provides a simple and cost-effective approach to obtain nanopatterned arrays of carbon nanotubes which can be used for fabrication of photonic and phononic crystals, self-gated field emission-based transistors and displays.

  4. Carbon distribution during plasma detachment triggered by edge magnetic island formation in LHD

    International Nuclear Information System (INIS)

    Dong, C.F.; Morita, S.; Kobayashi, M.; Oishi, T.; Goto, M.; Wang, E.H.; Huang, X.L.

    2013-01-01

    The detached plasma has been successfully achieved by applying the edge 1/1 magnetic island in Large Helical Device (LHD). Carbon, which is uniquely the dominant intrinsic impurity in general LHD discharges, is considered to be the main radiating species in the island-triggered detached plasma. The vertical profile of CIV measured from general discharges of LHD is characterized by a single edge intensity peak. In detached plasmas triggered by the edge magnetic island formation, however, the vertical profile of CIV shows a significant difference. Double edge peaks of CIV are found during the plasma detachment and the CIV radiation is also remarkably enhanced in the vicinity of X-point, whereas the vertical profile of CVI does not show any significant difference in both the attached and detached plasmas. In this proceeding the carbon distribution during the plasma detachment is presented and the results are discussed with edge magnetic field structure. (author)

  5. Flow structure formation in an ion-unmagnetized plasma: The HYPER-II experiments

    Science.gov (United States)

    Terasaka, K.; Tanaka, M. Y.; Yoshimura, S.; Aramaki, M.; Sakamoto, Y.; Kawazu, F.; Furuta, K.; Takatsuka, N.; Masuda, M.; Nakano, R.

    2015-01-01

    The HYPER-II device has been constructed in Kyushu University to investigate the flow structure formation in an ion-unmagnetized plasma, which is an intermediate state of plasma and consists of unmagnetized ions and magnetized electrons. High density plasmas are produced by electron cyclotron resonance heating, and the flow field structure in an inhomogeneous magnetic field is investigated with a directional Langmuir probe method and a laser-induced fluorescence method. The experimental setup has been completed and the diagnostic systems have been installed to start the experiments. A set of coaxial electrodes will be introduced to control the azimuthal plasma rotation, and the effect of plasma rotation to generation of rectilinear flow structure will be studied. The HYPER-II experiments will clarify the overall flow structure in the inhomogeneous magnetic field and contribute to understanding characteristic feature of the intermediate state of plasma.

  6. Dissociation and Re-Aggregation of Multicell-Ensheathed Fragments Responsible for Rapid Production of Massive Clumps of Leptothrix Sheaths

    Science.gov (United States)

    Kunoh, Tatsuki; Nagaoka, Noriyuki; McFarlane, Ian R.; Tamura, Katsunori; El-Naggar, Mohamed Y.; Kunoh, Hitoshi; Takada, Jun

    2016-01-01

    Species of the Fe/Mn-oxidizing bacteria Leptothrix produce tremendous amounts of microtubular, Fe/Mn-encrusted sheaths within a few days in outwells of groundwater that can rapidly clog water systems. To understand this mode of rapid sheath production and define the timescales involved, behaviors of sheath-forming Leptothrix sp. strain OUMS1 were examined using time-lapse video at the initial stage of sheath formation. OUMS1 formed clumps of tangled sheaths. Electron microscopy confirmed the presence of a thin layer of bacterial exopolymer fibrils around catenulate cells (corresponding to the immature sheath). In time-lapse videos, numerous sheath filaments that extended from the periphery of sheath clumps repeatedly fragmented at the apex of the same fragment, the fragments then aggregated and again elongated, eventually forming a large sheath clump comprising tangled sheaths within two days. In this study, we found that fast microscopic fragmentation, dissociation, re-aggregation and re-elongation events are the basis of the rapid, massive production of Leptothrix sheaths typically observed at macroscopic scales. PMID:27490579

  7. Variation of the Plasma Density in a Glow Discharge Upon the Application of A High Voltage

    International Nuclear Information System (INIS)

    Akman, S.

    2004-01-01

    It is emphasized and demonstrated that, during the formation of an ion-matrix sheath in a glow discharge upon the application of a high voltage pulse, the existing neutral plasma density should change as well. An explicit and practical expression for the neutral plasma density in terms of the gas pressure, secondary electron emission coefficient and the applied voltage is derived, so that the consequent sheath behavior can be formulated correctly. The theoretical result is compared with the data of an experiment, particularly designed and performed to test its validity, and found to be in good agreement with the latter

  8. Soliton formation at critical density in laser-irradiated plasmas

    International Nuclear Information System (INIS)

    Anderson, D.; Bondeson, A.; Lisak, M.

    1979-01-01

    The generation of Langmuir solitons at the resonance layer in a plasma irradiated by a strong high-frequency pump is investigated. The process is modelled by the nonlinear Schrodinger equation including an external pump, a density gradient and linear damping. The evolution equation is reformulated as an exact variational principle and the one-soliton generation process is studied by substituting various trial solutions. The applicability conditions for the nonlinear Schrodinger equation are re-examined and found to be more restrictive than previously stated. (author)

  9. Finite size effects in quark-gluon plasma formation

    International Nuclear Information System (INIS)

    Gopie, Andy; Ogilvie, Michael C.

    1999-01-01

    Using lattice simulations of quenched QCD we estimate the finite size effects present when a gluon plasma equilibrates in a slab geometry, i.e., finite width but large transverse dimensions. Significant differences are observed in the free energy density for the slab when compared with bulk behavior. A small shift in the critical temperature is also seen. The free energy required to liberate heavy quarks relative to bulk is measured using Polyakov loops; the additional free energy required is on the order of 30 - 40 MeV at 2 - 3 T c

  10. Macroscopic domain formation in the platelet plasma membrane

    DEFF Research Database (Denmark)

    Bali, Rachna; Savino, Laura; Ramirez, Diego A.

    2009-01-01

    There has been ample debate on whether cell membranes can present macroscopic lipid domains as predicted by three-component phase diagrams obtained by fluorescence microscopy. Several groups have argued that membrane proteins and interactions with the cytoskeleton inhibit the formation of large d...

  11. Statistical analysis of mirror mode waves in sheath regions driven by interplanetary coronal mass ejection

    Science.gov (United States)

    Ala-Lahti, Matti M.; Kilpua, Emilia K. J.; Dimmock, Andrew P.; Osmane, Adnane; Pulkkinen, Tuija; Souček, Jan

    2018-05-01

    We present a comprehensive statistical analysis of mirror mode waves and the properties of their plasma surroundings in sheath regions driven by interplanetary coronal mass ejection (ICME). We have constructed a semi-automated method to identify mirror modes from the magnetic field data. We analyze 91 ICME sheath regions from January 1997 to April 2015 using data from the Wind spacecraft. The results imply that similarly to planetary magnetosheaths, mirror modes are also common structures in ICME sheaths. However, they occur almost exclusively as dip-like structures and in mirror stable plasma. We observe mirror modes throughout the sheath, from the bow shock to the ICME leading edge, but their amplitudes are largest closest to the shock. We also find that the shock strength (measured by Alfvén Mach number) is the most important parameter in controlling the occurrence of mirror modes. Our findings suggest that in ICME sheaths the dominant source of free energy for mirror mode generation is the shock compression. We also suggest that mirror modes that are found deeper in the sheath are remnants from earlier times of the sheath evolution, generated also in the vicinity of the shock.

  12. The collisional capacitive RF sheath and the assumption of a sharp electron edge

    Science.gov (United States)

    Brinkmann, Ralf Peter

    2008-10-01

    The transition from quasi-neutrality to charge depletion is one of the characteristic features of the plasma boundary sheath. It is often described in terms of the so-called step model which assumes a transition point (electron step) where the electron density drops from a value equal to the ion density (in the bulk) to a value of zero (in the sheath). Inserted into Poisson's equation, the step model yields an expression for the field which is realistic deep in the sheath but fails to merge correctly into the ambipolar field of the bulk. This work studies the consequences of that approximation for the example of the collision-dominated, capacitive RF sheath by Lieberman [1]. First, the model is solved exactly, using a relaxation scheme. Then, the step approximation is applied which recovers Lieberman's semi-analytical solution. It is demonstrated that the step approximation induces a spurious divergence of the ion density at the sheath edge and prevents a matching of the sheath model to a bulk model. Integral sheath quantities, on the other hand, like the capacitance or the overall voltage drop, are faithfully reproduced. [1] M. A. Lieberman, IEEE Trans. Plasma Sci. 16, pp. 638-644 (1988).

  13. Dust charging and charge fluctuations in a weakly collisional radio-frequency sheath at low pressure

    International Nuclear Information System (INIS)

    Piel, Alexander; Schmidt, Christian

    2015-01-01

    Models for the charging of dust particles in the bulk plasma and in the sheath region are discussed. A new model is proposed that describes collision-enhanced ion currents in the sheath. The collisions result in a substantial reduction of the negative charge of the dust. Experimental data for the dust charge in the sheath can be described by this model when a Bi-Maxwellian electron distribution is taken into account. Expressions for the dust charging rate for all considered models are presented and their influence on the rise of the kinetic dust temperature is discussed

  14. Experimental study of the interaction between RF antennas and the edge plasma of a tokamak

    International Nuclear Information System (INIS)

    Kubic, Martin

    2013-01-01

    Antennas operating in the ion cyclotron range of frequency (ICRF) provide a useful tool for plasma heating in many tokamaks and are foreseen to play an important role in ITER. However, in addition to the desired heating in the core plasma, spurious interactions with the plasma edge and material boundary are known to occur. Many of these deleterious effects are caused by the formation of radio-frequency (RF) sheaths. The aim of this thesis is to study, mainly experimentally, scrape-off layer (SOL) modifications caused by RF sheaths effects by means of Langmuir probes that are magnetically connected to a powered ICRH antenna. Effects of the two types of Faraday screens' operation on RF-induced SOL modifications are studied for different plasma and antenna configurations - scans of strap power ratio imbalance, injected power and SOL density. In addition to experimental work, the influence of RF sheaths on retarding field analyzer (RFA) measurements of sheath potential is investigated with one-dimensional particle-in-cell code. One-dimensional particle-in-cell simulations show that the RFA is able to measure reliably the sheath potential only for ion plasma frequencies ω π similar to RF cyclotron frequency ω rf , while for the real SOL conditions (ω π ≥ ω rf ), when the RFA is magnetically connected to RF region, it is strongly underestimated. An alternative method to investigate RF sheaths effects is proposed by using broadening of the ion distribution function as an evidence of the RF electric fields in the sheath. RFA measurements in Tore Supra indicate that RF potentials do indeed propagate from the antenna 12 m along magnetic field lines. (author) [fr

  15. Shock-wave structure formation in a dusty plasma

    International Nuclear Information System (INIS)

    Popel', S.I.; Golub', A.P.; Loseva, T.V.; Bingkhem, R.; Benkadda, S.

    2001-01-01

    Nonstationary problem on evolution perturbation and its transformation into nonlinear wave structure is considered. The method developed permits finding solution to the system of nonlinear evolution equations describing dust particles with variable charge, Boltzmann electron and inertia ions. An accurate stationary solution as ion-sonic wave structures explained by anomalous dissipation due to electric discharge of dust particles was found. Evolution of two types of initial perturbations was studied, i.e.: soliton and immobile region with increased density of ions - a step. Soliton evolution in plasma with variable charge of dust particles results in the appearance on nonstationary shock-wave structure, whereas the step evolution gives rise to appearance of a shock wave similar to the stationary one along with rarefaction wave [ru

  16. Dynamics of C2 formation in laser-produced carbon plasma in helium environment

    International Nuclear Information System (INIS)

    Al-Shboul, K. F.; Harilal, S. S.; Hassanein, A.; Polek, M.

    2011-01-01

    We investigated the role of helium ambient gas on the dynamics of C 2 species formation in laser-produced carbon plasma. The plasma was produced by focusing 1064 nm pulses from an Nd:YAG laser onto a carbon target. The emission from the C 2 species was studied using optical emission spectroscopy, and spectrally resolved and integrated fast imaging. Our results indicate that the formation of C 2 in the plasma plume is strongly affected by the pressure of the He gas. In vacuum, the C 2 emission zone was located near the target and C 2 intensity oscillations were observed both in axial and radial directions with increasing the He pressure. The oscillations in C 2 intensity at higher pressures in the expanding plume could be caused by various formation zones of carbon dimers.

  17. Effect of density control and impurity transport on internal transport barrier formation in tokamak plasma

    International Nuclear Information System (INIS)

    Yamakami, Tomoyuki; Fujita, Takaaki; Arimoto, Hideki; Yamazaki, Kozo

    2014-01-01

    In future fusion reactors, density control, such as fueling by pellet injection, is an effective method to control the formation of the internal transport barrier (ITB) in reversed magnetic shear plasma, which can improve plasma performance. On the other hand, an operation with ITB can cause accumulation of impurities inside the core ITB region. We studied the relation between pellet injection and ITB formation and the effect of impurity transport on the core of ITB for tokamak plasmas by using the toroidal transport analysis linkage. For ITB formation, we showed that the pellet has to be injected beyond the position where the safety factor q takes the minimum value. We confirmed that the accumulation of impurities causes the attenuation of ITB owing to radiation loss inside the ITB region. Moreover, in terms of the divertor heat flux reduction by impurity gas, the line radiation loss is high for high-Z noble gas impurities, such as Kr, whereas factor Q decreases slightly. (author)

  18. Formation conditions for electron internal transport barriers in JT-60U plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, T [Japan Atomic Energy Research Institute, Naka Fusion Research Establishment, Naka-machi, Naka-gun, Ibaraki 311-0193 (Japan); Fukuda, T [Osaka University, Suita, Osaka 565-0871 (Japan); Sakamoto, Y [Japan Atomic Energy Research Institute, Naka Fusion Research Establishment, Naka-machi, Naka-gun, Ibaraki 311-0193 (Japan); Ide, S [Japan Atomic Energy Research Institute, Naka Fusion Research Establishment, Naka-machi, Naka-gun, Ibaraki 311-0193 (Japan); Suzuki, T [Japan Atomic Energy Research Institute, Naka Fusion Research Establishment, Naka-machi, Naka-gun, Ibaraki 311-0193 (Japan); Takenaga, H [Japan Atomic Energy Research Institute, Naka Fusion Research Establishment, Naka-machi, Naka-gun, Ibaraki 311-0193 (Japan); Ida, K [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Idei, H [Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Shimozuma, T [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Fujisawa, A [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Ohdachi, S [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Toi, K [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan)

    2004-05-01

    The formation of electron internal transport barriers (ITBs) was studied using electron cyclotron (EC) heating in JT-60U positive shear (PS) and reversed shear (RS) plasmas with scan of neutral beam (NB) power. With no or low values of NB power and with a small radial electric field (E{sub r}) gradient, a strong, box-type electron ITB was formed in RS plasmas while a peaked profile with no strong electron ITBs was observed in PS plasmas within the available EC power. When the NB power and the E{sub r} gradient were increased, the electron transport in strong electron ITBs with EC heating in RS plasmas was not affected, while electron thermal diffusivity was reduced in conjunction with the reduction of ion thermal diffusivity, and strong electron and ion ITBs were formed in PS plasmas.

  19. Study of the phosphine plasma decomposition and its formation by ablation of red phosphorus in hydrogen plasma

    Science.gov (United States)

    Bruno, G.; Losurdo, M.; Capezzuto, P.

    1995-03-01

    Mass spectrometry and optical emission spectroscopy have been used to study the chemistry of PH(sub 3) plasma decomposition as well as its formation by ablation of red phosphorus in hydrogen plasma. It has been shown that PH(sub 3) decomposition easily equilibrates at low levels of PH(sub 3) depletion (15%-30%), this depending mainly on the rf power. The ablation of red phosphorus in H(sub 2) plasma produces phosphine in significant amount, depending mainly on the total pressure but also on the rf power. It has also been found that H(sup *) and PH(sup *) emitting species originate not only by the dissociative excitation of H(sub 2) and PH(sub 3), respectively, but also by the direct excitation of the same species in the ground state. Considerations are developed on how to derive the H-atom and PH radical densities by actinometry, under specific experimental conditions. Besides, the linear dependence of PH(sub 3) formation rate, r(sub PH(3)), on H-atom density, (left bracket) H (right bracket), leads to the definition of the kinetic equation r(sub PH(3)) = k (left bracket) H (right bracket), and to the hypothesis that the formation of PH radical on the surface or its desorption is the dominant mechanism for PH(sub 3) production.

  20. Formation and termination of High ion temperature mode in Heliotron/torsatron plasmas

    International Nuclear Information System (INIS)

    Ida, K.; Kondo, K.; Nagasaki, K.

    1997-01-01

    Physics of the formation and termination of High ion temperature mode (high T i mode) are studied by controlling density profiles and radial electric field. High ion temperature mode is observed for neutral beam heated plasmas in Heliotron/torsatron plasmas (Heliotron-E). This high T i mode plasma is characterized by a peaked ion temperature profile and is associated with a peaked electron density profile produced by neutral beam fueling with low wall recycling. This high T i mode is terminated by flattening the electron density caused by either gas puffing or second harmonic ECH (core density 'pump-out'). (author)

  1. Charge-exchange-induced formation of hollow atoms in high-intensity laser-produced plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Rosmej, F.B. [TU-Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany); Faenov, A.Ya.; Pikuz, T.A.; Magunov, A.I.; Skobelev, I.Yu. [Multicharged Ions Spectra Data Center of VNIIFTRI, Mendeleevo (Russian Federation); Auguste, T.; D' Oliveira, P.; Hulin, S.; Monot, P. [Commissariat a lEnergie Atomique DSM/DRECAM/SPAM, Gif-Sur-Yvette Cedex (France); Andreev, N.E.; Chegotov, M.V.; Veisman, M.E. [High Energy Density Research Centre, Institute of High Temperatures of Russian Academy of Sciences, Moscow (Russian Federation)

    1999-03-14

    For the first time registration of high-resolution soft x-ray emission and atomic data calculations of hollow-atom dielectronic satellite spectra of highly charged nitrogen have been performed. Double-electron charge-exchange processes from excited states are proposed for the formation of autoionizing levels nln'l' in high-intensity laser-produced plasmas, when field-ionized ions penetrate into the residual gas. Good agreement is found between theory and experiment. Plasma spectroscopy with hollow ions is proposed and a temperature diagnostic for laser-produced plasmas in the long-lasting recombining regime is developed. (author). Letter-to-the-editor.

  2. Ion clusters, REB, and current sheath characteristics in focused discharges

    International Nuclear Information System (INIS)

    Bortolotti, A.; Brzosko, J.; DeChiara, P.; Kilic, H.; Mezzetti, F.; Nardi, V.; Powell, C.; Zeng, D.

    1990-01-01

    Small fluctuations in the current sheath characteristics (peak current density, FWHM of leading sheath, control parameters of sheath internal structure) are linked to wide fluctuations of ion and ion cluster emission from the pinch. Magnetic probe data are used for correlating variations of current sheath parameters with particle emission intensity, Z/M composition, particle energy spectrum. The emission of ion and ion clusters at 90 degrees from the axis of a plasma focus discharge is monitored simultaneously with the 0 degrees emission. The particle energy spectrum is analyzed with a Thomson (parabola) spectrometer (time resolution ∼ 1 nanosec). The cross-sectional structure of the REB at 180 degrees along the discharge axis is monitored via the deposition of collective-field accelerated ions on a target in the REB direction. Etched tracks of ion and ion clusters are in all cases recorded on CR-39 plates. Sharp peaks of the D + -ion spectrum at 90 degrees are found for E > 200 keV/unit charge in all focused discharges. These peaks are due to ion crossing of the azimuthal magnetic field of the pinch region, in a predominant ion cluster structure

  3. Spectroscopic analysis of Zirconium plasma in different ambient and optimizing conditions for nanoclusters formation

    International Nuclear Information System (INIS)

    Yadav, Dheerendra; Thareja, Raj K.

    2010-01-01

    The laser produced zirconium plasma has been studied by emission spectroscopy and fast photography using intensified charged coupled device at different ambient pressures of nitrogen (0.1, 1.0 and 10 mbar). Formation of zirconium clusters are arising at ambient pressure of 1.0 mbar at the plume periphery due to the chemical reactions between the plasma plume and the ambient and confirmed using optical emission spectroscopy. The optimum parameters for existence cluster formation are reported. The ZrN clusters are deposited on silicon substrate and characterized by AFM, XRD and EDAX techniques. (author)

  4. Studies of the formation of field reversed plasma by a magnetized co-axial plasma gun

    International Nuclear Information System (INIS)

    Turner, W.C.; Granneman, E.H.A.; Hartman, C.W.; Prono, D.S.; Taska, J.; Smith, A.C. Jr.

    1980-01-01

    The gun injects axially into a drift tank followed by a magnetic mirror. For the experiments reported here, only the guide coils outside the vacuum vessel and solenoids on the plasma gun electrodes were used; the mirror coil was not energized. A stainless steel flux conserver is placed in the mirror throat to prevent the plasma from contacting the nonconducting vacuum wall in the region of the mirror. An axis encircling array of magnetic loop probes includes four diamagnetic loops and a loop which measures the azimuthally averaged outward pointing radial component of magnetic field. These loop probes are stainless steel jacketed and form a flux conserving boundary (at a radius = 30 cm) for plasma emitted from the gun. A five tip probe that can be positioned anywhere along the axis of the experiment is used to measure internal components of magnetic field

  5. Effects of a nonuniform open magnetic field on the plasma presheath

    International Nuclear Information System (INIS)

    Sato, Kunihiro; Miyawaki, Fujio

    1991-01-01

    Effects of a nonuniform magnetic field on the plasma presheath is numerically investigated using the plasma equation for a collisionless plasma with a finite-temperature particle source. The present calculation confirms that analytical solutions previously published by the authors are available over a wide range of mirror ratio. Potential drop in the presheath, which considerably depends on both the magnetic strength profile and the spatial distribution of the particle source, is remarkably increased by applying an expanding magnetic field when plasma particles are generated in the inner part of the plasma. An effect of a nonuniform magnetic field on sheath formation is also discussed by using the calculated ion distribution function. If the plasma equation has no singularity at the sheath edge, its solution satisfies the generalized Bohm criterion with the inequality sign in the expanding magnetic field. (author)

  6. The role of plasma proteins in formation of obstructive protamine complexes

    International Nuclear Information System (INIS)

    De Paulis, R.; Mohammad, S.F.; Chiariello, L.; Morea, M.; Olsen, D.B.

    1991-01-01

    Formation of complexes between heparin and protamine (in saline), or heparin, plasma proteins, and protamine (in plasma) was assessed by measurements of light transmission through different test solutions. To examine the formation of these complexes, 125I-labeled protamine was used. Addition of 125I-protamine to plasma or blood resulted in the sedimentation of 125I-protamine in the form of insoluble complexes. This complex formation was not affected by the presence of heparin, suggesting that protamine-plasma protein interaction may be primarily responsible for precipitation of 125I-protamine. To assess the capability of these complexes to obstruct the pulmonary circulation, an in vitro experimental model was developed. Citrated serum, plasma, blood, or saline were allowed to flow through a glass bead column with the help of a peristaltic pump. A pressure transducer positioned before the column allowed pressure measurements at a constant flow rate during the experiment. Mixing of protamine with plasma or blood prior to their passage through the glass bead column resulted in a significant increase in pressure suggesting that the column was being clogged with insoluble complexes. The increase in pressure occurred both in the presence and absence of heparin in plasma or blood. Under identical experimental conditions, the increase in pressure was insignificant when protamine was added to saline or serum regardless of whether heparin was present or absent. This was further confirmed by the use of 125I-protamine. These observations suggest that protamine forms insoluble complexes with certain plasma proteins. Based on these observations, it is hypothesized that following intravenous administration, protamine immediately forms complexes in circulating blood

  7. Redefinition of the self-bias voltage in a dielectrically shielded thin sheath RF discharge

    Science.gov (United States)

    Ho, Teck Seng; Charles, Christine; Boswell, Rod

    2018-05-01

    In a geometrically asymmetric capacitively coupled discharge where the powered electrode is shielded from the plasma by a layer of dielectric material, the self-bias manifests as a nonuniform negative charging in the dielectric rather than on the blocking capacitor. In the thin sheath regime where the ion transit time across the powered sheath is on the order of or less than the Radiofrequency (RF) period, the plasma potential is observed to respond asymmetrically to extraneous impedances in the RF circuit. Consequently, the RF waveform on the plasma-facing surface of the dielectric is unknown, and the behaviour of the powered sheath is not easily predictable. Sheath circuit models become inadequate for describing this class of discharges, and a comprehensive fluid, electrical, and plasma numerical model is employed to accurately quantify this behaviour. The traditional definition of the self-bias voltage as the mean of the RF waveform is shown to be erroneous in this regime. Instead, using the maxima of the RF waveform provides a more rigorous definition given its correlation with the ion dynamics in the powered sheath. This is supported by a RF circuit model derived from the computational fluid dynamics and plasma simulations.

  8. Effect of plasma formation on electron pinching and microwave emission in a virtual cathode oscillator

    International Nuclear Information System (INIS)

    Yatsuzuka, M.; Nakayama, M.; Nobuhara, S.; Young, D.; Ishihara, O.

    1996-01-01

    Time and spatial evolutions of anode and cathode plasmas in a vircator diode were observed with a streak camera. A cathode plasma appeared immediately after the rise of a beam current and was followed by an anode plasma typically after about 30 ns. Both plasmas expanded with almost the same speed of order of 104 m/s. The anode plasma was confirmed as a hydrogen plasma with an optical filter for H β line and study of anode-temperature rise. Electron beam pinching immediately followed by microwave emission was observed at the beam current less than the critical current for diode pinching in the experiment and the simulation. The electron beam current in the diode region is well characterized by the electron space-charge-limited current in bipolar flow with the expanding plasmas between the anode-cathode gap. As a result, electron bombardment produced the anode plasma, which made the electron beam strongly pinched, resulting in virtual cathode formation and microwave emission. (author). 5 figs., 5 refs

  9. Effect of plasma formation on electron pinching and microwave emission in a virtual cathode oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Yatsuzuka, M; Nakayama, M; Nobuhara, S [Himeji Institute of Technology (Japan); Young, D; Ishihara, O [Texas Tech Univ., Lubbock, TX (United States)

    1997-12-31

    Time and spatial evolutions of anode and cathode plasmas in a vircator diode were observed with a streak camera. A cathode plasma appeared immediately after the rise of a beam current and was followed by an anode plasma typically after about 30 ns. Both plasmas expanded with almost the same speed of order of 104 m/s. The anode plasma was confirmed as a hydrogen plasma with an optical filter for H{sub {beta}} line and study of anode-temperature rise. Electron beam pinching immediately followed by microwave emission was observed at the beam current less than the critical current for diode pinching in the experiment and the simulation. The electron beam current in the diode region is well characterized by the electron space-charge-limited current in bipolar flow with the expanding plasmas between the anode-cathode gap. As a result, electron bombardment produced the anode plasma, which made the electron beam strongly pinched, resulting in virtual cathode formation and microwave emission. (author). 5 figs., 5 refs.

  10. Pattern formation and filamentation in low temperature, magnetized plasmas - a numerical approach

    Science.gov (United States)

    Menati, Mohamad; Konopka, Uwe; Thomas, Edward

    2017-10-01

    In low-temperature discharges under the influence of high magnetic field, pattern and filament formation in the plasma has been reported by different groups. The phenomena present themselves as bright plasma columns (filaments) oriented parallel to the magnetic field lines at high magnetic field regime. The plasma structure can filament into different shapes from single columns to spiral and bright rings when viewed from the top. In spite of the extensive experimental observations, the observed effects lack a detailed theoretical and numerical description. In an attempt to numerically explain the plasma filamentation, we present a simplified model for the plasma discharge and power deposition into the plasma. Based on the model, 2-D and 3-D codes are being developed that solve Poisson's equation along with the fluid equations to obtain a self-consistent description of the plasma. The model and preliminary results applied to the specific plasma conditions will be presented. This work was supported by the US Dept. of Energy and NSF, DE-SC0016330, PHY-1613087.

  11. Hot-electron plasma formation and confinement in the Tandem Mirror Experiment-Upgrade

    International Nuclear Information System (INIS)

    Ress, D.B.

    1988-01-01

    Electron-cyclotron range-of-frequency heating (ECRH) at 28 GHz is used to create a population of mirror-confined hot electrons in the Tandem Mirror Experiment-Upgrade (TMX-U). Generation of a large fraction of such electrons within each end-cell of TMX-U is essential to the formation of the desired electrostatic potential profile of the thermal-barrier tandem mirror. The formation and confinement of the ECRH-generated hot-electron plasma was investigated with a variety of diagnostic instruments, including a novel instrumented limiter probe. The author characterized the spatial structure of the hot-electron plasma. Details of the heating process cause the plasma to separate into two regions: a halo, consisting entirely of energetic electrons, and a core, which is dominated by cooler electrons. The plasma structure forms rapidly under the action of second-harmonic ECRH. Fundamental ECRH, which is typically applied simultaneously, is only weakly absorbed and generally does not create energetic electrons. The ECRH-generated plasma displays several loss mechanisms. Hot electrons in the halo region, with T e ∼ 30 keV, are formed by localized ECRH near the plasma boundary, and are lost through a radial process involving open magnetic-curvature-drift surfaces

  12. Profile formation and sustainment of autonomous tokamak plasma with current hole configuration

    International Nuclear Information System (INIS)

    Hayashi, N.; Takizuka, T.; Ozeki, T.

    2005-01-01

    We have investigated the profile formation and sustainment of tokamak plasmas with the current hole (CH) configuration by using 1.5D time-dependent transport simulations. A model of the current limit inside the CH on the basis of the Axisymmetric Tri-Magnetic-Islands equilibrium is introduced into the transport simulation. We found that a transport model with the sharp reduction of anomalous transport in the reversed-shear (RS) region can reproduce the time evolution of profiles observed in JT-60U experiments. The transport becomes neoclassical-level in the RS region, which results in the formation of profiles with internal transport barrier (ITB) and CH. The CH plasma has an autonomous property because of the strong interaction between a pressure profile and a current profile through the large bootstrap current fraction. The ITB width determined by the neoclassical-level transport agrees well with that measured in JT-60U. The energy confinement inside the ITB agrees with the scaling based on the JT-60U data. The scaling means the autonomous limitation of energy confinement in the CH plasma. The plasma with the large CH is sustained with the full current drive by the bootstrap current. The plasma with the small CH and the small bootstrap current fraction shrinks due to the penetration of inductive current. This shrink is prevented and the CH size can be controlled by the appropriate external current drive (CD). The CH plasma is found to respond autonomically to the external CD. (author)

  13. Formation of compact toroidal configurations for magnetic confinement of high temperature plasmas

    International Nuclear Information System (INIS)

    Fuentes, N.O.; Rodrigo, A.B.

    1986-01-01

    The formation stage of inverted magnetic field toroidal configurations (FRC) for hot plasmas confinement using a low energy linear theta pinch is studied. The diagnostic techniques used are based on optical spectroscopy, ultrarapid photography, magnetic probes and excluded flux compensated bonds. The generalities of the present research program, the used diagnostic techniques and the results obtained are discussed. (Author)

  14. Effect of rhenium addition on tungsten fuzz formation in helium plasmas

    NARCIS (Netherlands)

    Khan, A.; De Temmerman, G.; Morgan, T. W.; M. B. Ward,

    2016-01-01

    The effect of the addition of rhenium to tungsten on the formation of a nanostructure referred to as ‘fuzz’ when exposed to helium plasmas at fusion relevant ion fluxes was investigated in the Magnum and Pilot PSI devices at the FOM Institute DIFFER. The effect rhenium had on fuzz growth was seen to

  15. Formation of methyl nitrite and methyl nitrate during plasma treatment of diesel exhaust

    DEFF Research Database (Denmark)

    Wallington, TJ; Hoard, JW; Andersen, Mads Peter Sulbæk

    2003-01-01

    FIR spectroscopy was used to identify CH3ONO and CH3ONO2 as products of the nonthermal plasma treatment of simulated diesel exhaust. This is the first observation of CH3ONO formation in such systems. The yield of CH3ONO relative to CH3ONO2 scaled linearly with the average [NO]/ [NO2] ratio in the...

  16. Numerical study on formation process of helical nonneutral plasmas using electron injection from outside magnetic surfaces

    International Nuclear Information System (INIS)

    Nakamura, Kazutaka; Himura, Haruhiko; Masamune, Sadao; Sanpei, Akio; Isobe, Mitsutaka

    2009-01-01

    In order to investigate the formation process of helical nonneutral plasmas, we calculate the orbits of electron injected in the stochastic magnetic field when the closed helical magnetic surfaces is correspond with the equipotential surfaces. Contrary to the experimental observation, there are no electrons inward penetrating. (author)

  17. Influence of low atomic number plasma component on the formation of laser-produced plasma jets

    Czech Academy of Sciences Publication Activity Database

    Kasperczuk, A.; Pisarczyk, T.; Badziak, J.; Borodziuk, S.; Chodukowski, T.; Gus’kov, S.Yu.; Demchenko, N. N.; Ullschmied, Jiří; Krouský, Eduard; Mašek, Karel; Pfeifer, Miroslav; Rohlena, Karel; Skála, Jiří; Pisarczyk, P.

    2010-01-01

    Roč. 17, č. 11 (2010), s. 114505 ISSN 1070-664X R&D Projects: GA MŠk(CZ) LC528 Institutional research plan: CEZ:AV0Z20430508; CEZ:AV0Z10100523 Keywords : Composed laser targets * target material * laser produced-plasma jets * PALS laser Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.320, year: 2010 http://pop.aip.org/ resource /1/phpaen/v17/i11/p114505_s1

  18. Structure Formation in Complex Plasma - Quantum Effects in Cryogenic Complex Plasmas

    Science.gov (United States)

    2014-09-26

    strings. Analytical perturbation study supports the findings of numerical simulations. (Paper #2) Theory In a cryogenic plasma Debye length becomes...the Debye length , while ions are trapped at a certain distance around a dust particle without hitting the surface. Negatively charged dust particles...glass tube of 100cm in length and 15cm in inner diameter. The tube is connected to the bellows at the left end. A stainless steel plate of 2mm in

  19. Plasma-Jet-Driven Magneto-Inertial Fusion (PJMIF): Physics and Design for a Plasma Liner Formation Experiment

    Science.gov (United States)

    Hsu, Scott; Cassibry, Jason; Witherspoon, F. Douglas

    2014-10-01

    Spherically imploding plasma liners are a potential standoff compression driver for magneto-inertial fusion, which is a hybrid of and operates in an intermediate density between those of magnetic and inertial fusion. We propose to use an array of merging supersonic plasma jets to form a spherically imploding plasma liner. The jets are to be formed by pulsed coaxial guns with contoured electrodes that are placed sufficiently far from the location of target compression such that no hardware is repetitively destroyed. As such, the repetition rate can be higher (e.g., 1 Hz) and ultimately the power-plant economics can be more attractive than most other MIF approaches. During the R&D phase, a high experimental shot rate at reasonably low cost (e.g., gun plasma-liner-formation experiment, which will provide experimental data on: (i) scaling of peak liner ram pressure versus initial jet parameters, (ii) liner non-uniformity characterization and control, and (iii) control of liner profiles for eventual gain optimization.

  20. The limits of the Bohm criterion in collisional plasmas

    International Nuclear Information System (INIS)

    Valentini, H.-B.; Kaiser, D.

    2015-01-01

    The sheath formation within a low-pressure collisional plasma is analysed by means of a two-fluid model. The Bohm criterion takes into account the effects of the electric field and the inertia of the ions. Numerical results yield that these effects contribute to the space charge formation, only, if the collisionality is lower than a relatively small threshold. It follows that a lower and an upper limit of the drift speed of the ions exist where the effects treated by Bohm can form a sheath. This interval becomes narrower as the collisionality increases and vanishes at the mentioned threshold. Above the threshold, the sheath is mainly created by collisions and the ionisation. Under these conditions, the sheath formation cannot be described by means of Bohm like criteria. In a few references, a so-called upper limit of the Bohm criterion is stated for collisional plasmas where the momentum equation of the ions is taken into account, only. However, the present paper shows that this limit results in an unrealistically steep increase of the space charge density towards the wall, and, therefore, it yields no useful limit of the Bohm velocity

  1. Laboratory simulation of the formation of an ionospheric depletion using Keda Space Plasma EXperiment (KSPEX

    Directory of Open Access Journals (Sweden)

    Pengcheng Yu

    2017-10-01

    Full Text Available In the work, the formation of an ionospheric depletion was simulated in a controlled laboratory plasma. The experiment was performed by releasing chemical substance sulfur hexafluoride (SF6 into the pure argon discharge plasma. Results indicate that the plasma parameters change significantly after release of chemicals. The electron density is nearly depleted due to the sulfur hexafluoride-electron attachment reaction; and the electron temperature and space potential experience an increase due to the decrease of the electron density. Compared to the traditional active release experiments, the laboratory scheme can be more efficient, high repetition rate and simpler measurement of the varying plasma parameter after chemical releasing. Therefore, it can effective building the bridge between the theoretical work and real space observation.

  2. Current limitation and formation of plasma double layers in a non-uniform magnetic field

    International Nuclear Information System (INIS)

    Plamondon, R.; Teichmann, J.; Torven, S.

    1986-07-01

    Formation of strong double layers has been observed experimentally in a magnetised plasma column maintained by a plasma source. The magnetic field is approximately axially homogenous except in a region at the anode where the electric current flows into a magnetic mirror. The double layer has a stationary position only in the region of non-uniform magnetic field or at the aperture separating the source and the plasma column. It is characterized by a negative differential resistance in the current-voltage characteristic of the device. The parameter space,where the double layer exists, has been studied as well as the corresponding potential profiles and fluctuation spectra. The electric current and the axial electric field are oppositely directed between the plasma source and a potential minimum which is formed in the region of inhomogeneous magnetic field. Electron reflection by the resulting potential barrier is found to be an important current limitation mechanism. (authors)

  3. Meson emissions from quark-gluon plasma through formation and fission of chromoelectric flux tubes

    International Nuclear Information System (INIS)

    Matsui, T.; Banerjee, B.; Glendenning, N.K.

    1983-06-01

    In the present work we study a facet of the plasma evolution, the formation and radiation of mesons at the surface of hog plasma. The surface meson radiation would play two important roles. First, it may carry some information about the pre-freezeout stage of the plasma evolution. Second, it causes a pressure decrease at the surface that works against the expansion. In the extreme, the plasma may extinct very rapidly by the surface meson radiation without collective expansion. It is very unclear how the incident quark degrees of freedom is converted into mesonic degrees of freedom and how the color confinement works in such a process. We have studied the problem by fully employing the chromoelectric flux tube model. We found that their parametrization is quite unsatisfactory and is actually incompatible with a dynamical description of color confinement. We briefly recapitulate our treatments and findings

  4. Three-dimensional simulation of diamagnetic cavity formation by a finite-sized plasma beam

    International Nuclear Information System (INIS)

    Thomas, V.A.

    1989-01-01

    The problem of collisionless coupling between a plasma beam and a background plasma is examined using a three-dimensional hybrid code. The beam is assumed to be moving parallel to an ambient magnetic field at a speed greater than the local Alfven speed. In addition, the beam has a finite spatial extent in the directions perpendicular to the magnetic field and is uniform and infinite in the direction parallel to the ambient magnetic field. Such a system is susceptible to coupling of the beam ions with the background ions via an electromagnetic ion beam instability. This instability isotropizes the beam and energizes the background plasma. A large-amplitude Alfven wave traveling radially away from the interaction region is associated with the energized background plasma. The process described here is one which may be responsible for the formation of diamagnetic cavities observed in the solar wind. copyright American Geophysical Union 1989

  5. Normal tendon sheath of the second to fifth fingers as seen on oblique views

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, E.

    1984-01-01

    Oblique views of the fingers, using a low kilovolt technique, show a portion of the tendon sheaths which can be regarded as representative of the entire sheath. Because of the varying obliquity of each finger, this proportion differs in the fingers. With increasing age the projected portion of the sheath becomes smaller because it is covered by increasing bone formation in the insertion of the tendon sheat. Normal values have been obtained for adults according to their decades; from these, quite minor degrees of tendon sheat thickening can be determined. In camptodactyly of the fifth finger, which is not uncommon, the tendon sheat may be widened in the absence of a tenosynovitis.

  6. Formation of imploding plasma liners for fundamental HEDP studies and MIF Standoff Driver Concept

    Energy Technology Data Exchange (ETDEWEB)

    Cassibry, Jason [Univ. of AL in Huntsville; Hatcher, Richard [Univ. of AL in Huntsville; Stanic, Milos [Univ. of AL in Huntsville

    2013-08-17

    The disciplines of High Energy Density Physics (HEDP) and Inertial Confinement Fusion (ICF) are characterized by hypervelocity implosions and strong shocks. The Plasma Liner Experiment (PLX) is focused on reaching HEDP and/or ICF relevant regimes in excess of 1 Mbar peak pressure by the merging and implosion of discrete plasma jets, as a potentially efficient path towards these extreme conditions in a laboratory. In this work we have presented the first 3D simulations of plasma liner, formation, and implosion by the merging of discrete plasma jets in which ionization, thermal conduction, and radiation are all included in the physics model. The study was conducted by utilizing a smoothed particle hydrodynamics code (SPHC) and was a part of the plasma liner experiment (PLX). The salient physics processes of liner formation and implosion are studied, namely vacuum propagation of plasma jets, merging of the jets (liner forming), implosion (liner collapsing), stagnation (peak pressure), and expansion (rarefaction wave disassembling the target). Radiative transport was found to significantly reduce the temperature of the liner during implosion, thus reducing the thermal leaving more pronounced gradients in the plasma liner during the implosion compared with ideal hydrodynamic simulations. These pronounced gradients lead to a greater sensitivity of initial jet geometry and symmetry on peak pressures obtained. Accounting for ionization and transport, many cases gave higher peak pressures than the ideal hydrodynamic simulations. Scaling laws were developed accordingly, creating a non-dimensional parameter space in which performance of an imploding plasma jet liner can be estimated. It is shown that HEDP regimes could be reached with ~ 5 MJ of liner energy, which would translate to roughly 10 to 20 MJ of stored (capacitor) energy. This is a potentially significant improvement over the currently available means via ICF of achieving HEDP and nuclear fusion relevant parameters.

  7. Effect of ablation geometry on the formation of stagnation layer in laterally colliding plasmas

    International Nuclear Information System (INIS)

    Mondal, Alamgir; Singh, Rajesh K.; Kumar, Ajai

    2015-01-01

    Interaction between two parallel propagating plasma plumes have been investigated in two different ablation schemes e.g. laser-blow-off (LBO) of thin film and conventional laser ablation (LPP). Fast imagine technique is used to study the dynamical and geometrical aspect of seed plasmas and induced stagnation layer in between the two expanding seed plasmas. Interaction between the energetic particles, coming from the seed plasmas are responsible for formation of stagnation layer. It has been found that geometrical shape, size, kinetic energy and divergence of plasma plumes are highly dependent on the ablation geometry. These variations in seed plasmas initiate the significant differences in the stagnation layer formed by LBO and LPP geometry. In this presentation, characteristic feature of stagnation layer which includes density, initiation time, emissive life time and geometry in both LBO and LPP geometry are briefly discussed. A comparative study of present results suggests that the plume composition and directionality of seed plasma play crucial role in mechanistic aspect of stagnation layer. (author)

  8. Potential formation and confinement in high density plasma on the GAMMA 10 tandem mirror

    International Nuclear Information System (INIS)

    Yatsu, K.

    2002-01-01

    After the attainment of doubling of the density due to the potential confinement, GAMMA 10 experiments have been directed to realization of a high density plasma and also to study dependence of the confining potential and confinement time on the plasma density. These problems are important to understand the physics of potential formation in tandem mirrors and also for the development of a tandem mirror reactor. We reported high density plasma production by using an ion cyclotron range of frequency heating at a high harmonic frequency in the last IAEA Conference. However, the diamagnetic signal of the high density plasma decreased when electron cyclotron resonance heating (ECRH) was applied due to some instabilities. Recently, the high density plasma production was much improved by adjusting the spacing of the conducting plates installed in the anchor transition regions, which enabled us to produce a high density plasma without degradation of the diamagnetic signal with ECRH and also to study the density dependence. In this paper we report production of a high density plasma and dependence of the confining potential and the confinement time on the density. (author)

  9. Formation of Imploding Plasma Liners for HEDP and MIF Applications - Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, Mark [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Electrical and Computer Engineering. Dept. of Physics and Astronomy; Hsu, Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Witherspoon, F. Douglas [HyperV Technologies Corp., Chantilly, VA (United States); Cassibry, Jason [Univ. of Alabama, Huntsville, AL (United States); Bauer, Bruno S. [Univ. of Nevada, Reno, NV (United States)

    2015-04-27

    The goal of the plasma liner experiment (PLX) was to explore and demonstrate the feasibility of forming imploding spherical plasma liners that can reach High Energy Density (HED)-relevant (~ 0.1 Mbar) pressures upon stagnation. The plasma liners were to be formed by a spherical array of 30 – 36 railgun-driven hypervelocity plasma jets (Mach 10 – 50). Due to funding and project scope reductions in year two of the project, this initial goal was revised to focus on studies of individual jet propagation, and on two jet merging physics. PLX was a collaboration between a number of partners including Los Alamos National Laboratory, HyperV Technologies, University of New Mexico (UNM), University of Alabama, Huntsville, and University of Nevada, Reno. UNM’s part in the collaboration was primary responsibility for plasma diagnostics. Though full plasma liner experiments could not be performed, the results of single and two jet experiments nevertheless laid important groundwork for future plasma liner investigations. Though challenges were encountered, the results obtained with one and two jets were overwhelmingly positive from a liner formation point of view, and were largely in agreement with predictions of hydrodynamic models.

  10. Ultrasound diagnosis of rectus sheath hematoma

    International Nuclear Information System (INIS)

    Hwang, M. S.; Chang, J. C.; Rhee, C. B.

    1984-01-01

    6 cases of rectus sheath hematoma were correctly diagnosed by ultrasound. 2 cases had bilateral rectus sheath hematoma and 4 cases were unilateral. On ultrasound finding, relatively well defined oval or spindle like cystic mass situated in the area of rectus muscle on all cases. Ultrasound examination may give more definite diagnosis and extension rectus sheath hematoma and also helpful to follow up study of hematoma

  11. Plasma-gun-assisted field-reversed configuration formation in a conical θ-pinch

    Energy Technology Data Exchange (ETDEWEB)

    Weber, T. E., E-mail: tweber@lanl.gov; Intrator, T. P. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Smith, R. J. [Department of Aeronautics and Astronautics, University of Washington, Seattle, Washington 98195 (United States)

    2015-04-15

    Injection of plasma via an annular array of coaxial plasma guns during the pre-ionization phase of field-reversed configuration (FRC) formation is shown to catalyze the bulk ionization of a neutral gas prefill in the presence of a strong axial magnetic field and change the character of outward flux flow during field-reversal from a convective process to a much slower resistive diffusion process. This approach has been found to significantly improve FRC formation in a conical θ-pinch, resulting in a ∼350% increase in trapped flux at typical operating conditions, an expansion of accessible formation parameter space to lower densities and higher temperatures, and a reduction or elimination of several deleterious effects associated with the pre-ionization phase.

  12. Plasma-gun-assisted field-reversed configuration formation in a conical θ-pinch

    Science.gov (United States)

    Weber, T. E.; Intrator, T. P.; Smith, R. J.

    2015-04-01

    Injection of plasma via an annular array of coaxial plasma guns during the pre-ionization phase of field-reversed configuration (FRC) formation is shown to catalyze the bulk ionization of a neutral gas prefill in the presence of a strong axial magnetic field and change the character of outward flux flow during field-reversal from a convective process to a much slower resistive diffusion process. This approach has been found to significantly improve FRC formation in a conical θ-pinch, resulting in a ˜350% increase in trapped flux at typical operating conditions, an expansion of accessible formation parameter space to lower densities and higher temperatures, and a reduction or elimination of several deleterious effects associated with the pre-ionization phase.

  13. Similarities and distinctions of CIR and Sheath

    Science.gov (United States)

    Yermolaev, Yuri; Lodkina, Irina; Nikolaeva, Nadezhda; Yermolaev, Michael

    2016-04-01

    On the basis of OMNI data and our catalog of large scale solar wind (SW) streams during 1976-2000 [Yermolaev et al., 2009] we study the average temporal profiles for two types of compressed regions: CIR (corotating interaction region - compressed region before High Speed Stream (HSS)) and Sheath (compressed region before fast Interplanetary CMEs (ICMEs), including Magnetic Cloud (MC) and Ejecta). As have been shown by Nikolaeva et al, [2015], the efficiency of magnetic storm generation is ~50% higher for Sheath and CIR than for ICME (MC and Ejecta), i.e. reaction magnetosphere depends on type of driver. To take into account the different durations of SW types, we use the double superposed epoch analysis (DSEA) method: rescaling the duration of the interval for all types in such a manner that, respectively, beginning and end for all intervals of selected type coincide [Yermolaev et al., 2010; 2015]. Obtained data allows us to suggest that the formation of all types of compression regions has the same physical mechanism irrespective of piston (HSS or ICME) type and differences are connected with geometry and full jumps of speed in edges of compression regions. If making the natural assumption that the gradient of speed is directed approximately on normal to the piston, CIR has the largest angle between the gradient of speed and the direction of average SW speed, and ICME - the smallest angle. The work was supported by the Russian Foundation for Basic Research, projects 13-02-00158, 16-02-00125 and by Program of Presidium of the Russian Academy of Sciences. References: Nikolaeva, N. S. , Yu. I. Yermolaev, and I. G. Lodkina (2015), Modeling of the Corrected Dst* Index Temporal Profile on the Main Phase of the Magnetic Storms Generated by Different Types of Solar Wind, Cosmic Research, Vol. 53, No. 2, pp. 119-127. Yermolaev, Yu. I., N. S. Nikolaeva, I. G. Lodkina, and M. Yu. Yermolaev (2009), Catalog of Large-Scale Solar Wind Phenomena during 1976-2000, Cosmic Research

  14. Tendon sheath fibroma in the thigh.

    Science.gov (United States)

    Moretti, Vincent M; Ashana, Adedayo O; de la Cruz, Michael; Lackman, Richard D

    2012-04-01

    Tendon sheath fibromas are rare, benign soft tissue tumors that are predominantly found in the fingers, hands, and wrists of young adult men. This article describes a tendon sheath fibroma that developed in the thigh of a 70-year-old man, the only known tendon sheath fibroma to form in this location. Similar to tendon sheath fibromas that develop elsewhere, our patient's lesion presented as a painless, slow-growing soft tissue nodule. Physical examination revealed a firm, nontender mass with no other associated signs or symptoms. Although the imaging appearance of tendon sheath fibromas varies, our patient's lesion appeared dark on T1- and bright on T2-weighted magnetic resonance imaging. It was well marginated and enhanced with contrast.Histologically, tendon sheath fibromas are composed of dense fibrocollagenous stromas with scattered spindle-shaped fibroblasts and narrow slit-like vascular spaces. Most tendon sheath fibromas can be successfully removed by marginal excision, although 24% of lesions recur. No lesions have metastasized. Our patient's tendon sheath fibroma was removed by marginal excision, and the patient remained disease free 35 months postoperatively. Despite its rarity, tendon sheath fibroma should be included in the differential diagnosis of a thigh mass on physical examination or imaging, especially if it is painless, nontender, benign appearing, and present in men. Copyright 2012, SLACK Incorporated.

  15. Retroperitoneal and rectus sheath hematomas.

    Science.gov (United States)

    Kasotakis, George

    2014-02-01

    The retroperitoneum is rich in vascular structures and can harbor large hematomas, traumatic or spontaneous. The management of retroperitoneal hematomas depends on the mechanism of injury and whether they are pulsatile/expanding. Rectus sheath hematomas are uncommon abdominal wall hematomas secondary to trauma to the epigastric arteries of the rectus muscle. The common risk factors include anticoagulation, strenuous exercise, coughing, coagulation disorders, and invasive procedures on/through the abdominal wall. The management is largely supportive, with the reversal of anticoagulation and transfusions; angioembolization may be necessary. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Effects of Fast-Ion Injection on a Magnetized Sheath near a Floating Wall

    International Nuclear Information System (INIS)

    Li Jiajia; Hu Zhanghu; Song Yuanhong; Wang Younian

    2013-01-01

    A fully kinetic particle-in-cell/Monte Carlo model is employed to self-consistently study the effects of fast-ion injection on sheath potential and electric field profile in collisional magnetized plasma with a floating absorbing wall. The influences of the fast-ion injection velocity and density, the magnetic field and angle θ 0 formed by the magnetic field and the x-axis on the sheath potential and electric field are discussed in detail. Numerical results show that increasing fast-ion injection density or decreasing injection velocity can enhance the potential drop and electric field in the sheath. Also, increasing the magnetic field strength can weaken the loss of charged particles to the wall and thus decrease the potential and electric field in the sheath. The time evolution of ion flux and velocity distribution on the wall is found to be significantly affected by the magnetic field.

  17. Plasma Formation during Acoustic Cavitation: Toward a New Paradigm for Sonochemistry

    Directory of Open Access Journals (Sweden)

    Sergey I. Nikitenko

    2014-01-01

    Full Text Available The most recent spectroscopic studies of single bubble (SBSL and multibubble (MBSL sonoluminescence reveal that the origin of extreme intrabubble conditions is related to nonequilibrium plasma formed inside the collapsing bubbles. Analysis of the relative populations of OH(A2Σ+ vibrational states observed during MBSL in water saturated with noble gases shows that in the presence of argon at low ultrasonic frequency weakly excited plasma is formed. At high-frequency ultrasound the plasma inside the collapsing bubbles exhibits Treanor behavior typical for strong vibrational excitation. Plasma formation during SBSL was observed in concentrated H2SO4 preequilibrated with Ar. The light emission spectra exhibit the lines from excited Ar atoms and ionized oxygen O2+. Formation of O2+ species is inconsistent with any thermal process. Furthermore, the SBSL spectra in H2SO4 show emission lines from Xe+, Kr+, and Ar+ in full agreement with plasma hypothesis. The photons and the “hot” particles generated by cavitation bubbles enable the excitation of nonvolatile species in solutions increasing their chemical reactivity. Secondary sonochemical products may arise from chemically active species that are formed inside the bubble but then diffuse into the liquid phase and react with solution precursors to form a variety of products.

  18. Computer simulation of the formation of Langmuir solitons and holes in a cylindrical magnetized plasma column

    International Nuclear Information System (INIS)

    Turikov, V.A.

    1978-06-01

    Nonlinear plasma oscillations in a cylindrical plasma resulting from a short localized external excitation are examined by means of a particle-in-cell simulation scheme. Computer calculations are performed for describing the experimental results obtained in a single-ended Q-machine plasma in a cylindrical waveguide. It is assumed that there is a strong magnetic field in the direction of the column axis. When the amplitude of the excitation potential is close to the kinetic energy of electrons having a phase velocity of the electron plasma wave, the formation is observed of solitons and holes in phase space. After formation, the solitons and holes move with constant velocities. The velocities of solitons are close to the wave-phase velocity, while holes move with smaller velocities. When the external potential amplitude is increased, there is a tendency that the number of holes grows. The potential amplitude of the self-consistent field in the soliton region damps in time with increasing soliton width. The potential profile of the hole does not change after its formation. (Auth.)

  19. Anxiety-induced plasma norepinephrine augmentation increases reactive oxygen species formation by monocytes in essential hypertension.

    Science.gov (United States)

    Yasunari, Kenichi; Matsui, Tokuzo; Maeda, Kensaku; Nakamura, Munehiro; Watanabe, Takanori; Kiriike, Nobuo

    2006-06-01

    An association between anxiety and depression and increased blood pressure (BP) and cardiovascular disease risk has not been firmly established. We examined the hypothesis that anxiety and depression lead to increased plasma catecholamines and to production of reactive oxygen species (ROS) by mononuclear cells (MNC) in hypertensive individuals. We also studied the role of BP in this effect. In Protocol 1, a cross-sectional study was performed in 146 hypertensive patients to evaluate whether anxiety and depression affect BP and ROS formation by MNC through increasing plasma catecholamines. In Protocol 2, a 6-month randomized controlled trial using a subtherapeutic dose of the alpha(1)-adrenergic receptor antagonist doxazosin (1 mg/day) versus placebo in 86 patients with essential hypertension was performed to determine whether the increase in ROS formation by MNC was independent of BP. In Protocol 1, a significant relationship was observed between the following: trait anxiety and plasma norepinephrine (r = 0.32, P anxiety may increase plasma norepinephrine and increase ROS formation by MNC independent of BP in hypertensive patients.

  20. Plasma-induced formation of flower-like Ag2O nanostructures

    International Nuclear Information System (INIS)

    Yang, Zen-Hung; Ho, Chun-Hsien; Lee, Szetsen

    2015-01-01

    Graphical abstract: Flower-like Ag 2 O nanostructures. - Highlights: • Flower-like Ag 2 O nanostructures were synthesized from Ag colloids using plasma. • XPS was used to monitor plasma treatment effect on Ag colloids. • SERS of methyl orange was used to monitor the plasma oxidation–reduction processes. • Photocatalytic degradation of methylene blue was performed using Ag 2 O. • Ag 2 O is a more efficient visible light photocatalyst than Ag colloids. - Abstract: Plasma treatment effect on Ag colloids was investigated using X-ray photoelectron spectroscopy (XPS) and surface-enhanced Raman scattering (SERS) techniques. XPS showed that O 2 plasma was critical in removing organic residues in Ag colloids synthesized using citric acid as a reducing agent. With O 2 plasma treatment, Ag colloids were also oxidized to form flower-like Ag 2 O nanostructures. The formation mechanism is proposed. The SERS spectral intensity of methyl orange (MO) adsorbed on Ag surface became deteriorated with O 2 plasma treatment. Followed by H 2 plasma treatment, the SERS intensity of MO on Ag regained, which indicated that Ag 2 O has been reduced to Ag. Nonetheless, the reduction by H 2 plasma could not bring Ag back to the original as-synthesized nanoparticle morphology. The flower-like nanostructure morphology still remained. The photocatalytic degradation reactions of methylene blue (MB) aqueous solutions were carried out using Ag colloids and Ag 2 O nanostructures. The results show that Ag 2 O is more efficient than Ag colloids and many other metal oxides for the photocatalytic degradation of MB in solution when utilizing visible light

  1. Plasma-induced formation of flower-like Ag{sub 2}O nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zen-Hung; Ho, Chun-Hsien; Lee, Szetsen, E-mail: slee@cycu.edu.tw

    2015-09-15

    Graphical abstract: Flower-like Ag{sub 2}O nanostructures. - Highlights: • Flower-like Ag{sub 2}O nanostructures were synthesized from Ag colloids using plasma. • XPS was used to monitor plasma treatment effect on Ag colloids. • SERS of methyl orange was used to monitor the plasma oxidation–reduction processes. • Photocatalytic degradation of methylene blue was performed using Ag{sub 2}O. • Ag{sub 2}O is a more efficient visible light photocatalyst than Ag colloids. - Abstract: Plasma treatment effect on Ag colloids was investigated using X-ray photoelectron spectroscopy (XPS) and surface-enhanced Raman scattering (SERS) techniques. XPS showed that O{sub 2} plasma was critical in removing organic residues in Ag colloids synthesized using citric acid as a reducing agent. With O{sub 2} plasma treatment, Ag colloids were also oxidized to form flower-like Ag{sub 2}O nanostructures. The formation mechanism is proposed. The SERS spectral intensity of methyl orange (MO) adsorbed on Ag surface became deteriorated with O{sub 2} plasma treatment. Followed by H{sub 2} plasma treatment, the SERS intensity of MO on Ag regained, which indicated that Ag{sub 2}O has been reduced to Ag. Nonetheless, the reduction by H{sub 2} plasma could not bring Ag back to the original as-synthesized nanoparticle morphology. The flower-like nanostructure morphology still remained. The photocatalytic degradation reactions of methylene blue (MB) aqueous solutions were carried out using Ag colloids and Ag{sub 2}O nanostructures. The results show that Ag{sub 2}O is more efficient than Ag colloids and many other metal oxides for the photocatalytic degradation of MB in solution when utilizing visible light.

  2. Properties of highly electronegative plasmas produced in a multipolar magnetic-confined device with a transversal magnetic filter

    DEFF Research Database (Denmark)

    Draghici, Mihai; Stamate, Eugen

    2010-01-01

    Highly electronegative plasmas were produced in Ar/SF6 gas mixtures in a dc discharge with multipolar magnetic confinement and transversal magnetic filter. Langmuir probe and mass spectrometry were used for plasma diagnostics. Plasma potential drift, the influence of small or large area biased...... electrodes on plasma parameters, the formation of the negative ion sheath and etching rates by positive and negative ions have been investigated for different experimental conditions. When the electron temperature was reduced below 1 eV the density ratio of negative ion to electron exceeded 100 even for very...... low amounts of SF6 gas. The plasma potential drift could be controlled by proper wall conditioning. A large electrode biased positively had no effect on plasma potential for density ratios of negative ions to electrons larger than 50. For similar electronegativities or higher a negative ion sheath...

  3. Preionization Techniques in a kJ-Scale Dense Plasma Focus

    Science.gov (United States)

    Povilus, Alexander; Shaw, Brian; Chapman, Steve; Podpaly, Yuri; Cooper, Christopher; Falabella, Steve; Prasad, Rahul; Schmidt, Andrea

    2016-10-01

    A dense plasma focus (DPF) is a type of z-pinch device that uses a high current, coaxial plasma gun with an implosion phase to generate dense plasmas. These devices can accelerate a beam of ions to MeV-scale energies through strong electric fields generated by instabilities during the implosion of the plasma sheath. The formation of these instabilities, however, relies strongly on the history of the plasma sheath in the device, including the evolution of the gas breakdown in the device. In an effort to reduce variability in the performance of the device, we attempt to control the initial gas breakdown in the device by seeding the system with free charges before the main power pulse arrives. We report on the effectiveness of two techniques developed for a kJ-scale DPF at LLNL, a miniature primer spark gap and pulsed, 255nm LED illumination. Prepared by LLNL under Contract DE-AC52-07NA27344.

  4. Negative ion mass spectra and particulate formation in rf silane plasma deposition experiments

    International Nuclear Information System (INIS)

    Howling, A.A.; Dorier, J.L.; Hollenstein, C.

    1992-09-01

    Negative ions have been clearly identified in silane rf plasmas used for the deposition of amorphous silicon. Mass spectra were measured for monosilicon up to pentasilicon negative ion radical groups in power-modulated plasmas by means of a mass spectrometer mounted just outside the glow region. Negative ions were only observed over a limited range of power modulation frequency which corresponds to particle-free conditions. The importance of negative ions regarding particulate formation is demonstrated and commented upon. (author) 3 figs., 19 refs

  5. Formation of surface nano-structures by plasma expansion induced by highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Moslem, W. M. [Department of Physics, Faculty of Science, Port Said University, Port Said (Egypt); Centre for Theoretical Physics, The British University in Egypt (BUE), El-Shorouk City, Cairo (Egypt) and International Centre for Advanced Studies in Physical Sciences, Faculty of Physics and Astronomy, Ruhr University Bochum, D-44780 Bochum (Germany); El-Said, A. S. [Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Nuclear and Radiation Physics Laboratory, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura (Egypt) and Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstr. 128, 01328 Dresden (Germany)

    2012-12-15

    Slow highly charged ions (HCIs) create surface nano-structures (nano-hillocks) on the quartz surface. The formation of hillocks was only possible by surpassing a potential energy threshold. By using the plasma expansion approach with suitable hydrodynamic equations, the creation mechanism of the nano-hillocks induced by HCIs is explained. Numerical analysis reveal that within the nanoscale created plasma region, the increase of the temperature causes an increase of the self-similar solution validity domain, and consequently the surface nano-hillocks become taller. Furthermore, the presence of the negative (positive) nano-dust particles would lead to increase (decrease) the nano-hillocks height.

  6. Negative ion beam formation using thermal contact ionization type plasma source

    Energy Technology Data Exchange (ETDEWEB)

    Fukuura, Yoshiyuki; Murakami, Kazutugu; Masuoka, Toshio; Katsumata, Itsuo [Osaka City Univ. (Japan). Faculty of Engineering

    1997-02-01

    The small ion sources utilizing thermal ionization have been already developed, and at present, in order to increase ion yield, that being developed to the cylindrical plasma prototype having the inner surface of a Re foil cylinder as the ionization surface, and stably functioning at 3,000 K has been developed, and by using this plasma source, the research on the formation of various ions has been carried out. At present, the research on the formation of Li negative ion beam is carried out. The separation of negative ions from electrons is performed with the locally limited magnetic field using a small iron core electromagnet placed behind the electrostatic accelerating lens system. So for, the formation of about 2 {mu}A at maximum of negative ions was confirmed. It was decided to identify the kinds of ions by time of flight (TOF) process, and the various improvements for this purpose were carried out. The experimental setup, the structure of the plasma source, the circuits for TOF measurement and so on are explained. The experimental results are reported. The problems are the possibility of the formation of alkali metals, the resolution of the time axis of the TOF system and so on. (K.I.)

  7. Load Designs For MJ Dense Plasma Foci

    Science.gov (United States)

    Link, A.; Povlius, A.; Anaya, R.; Anderson, M. G.; Angus, J. R.; Cooper, C. M.; Falabella, S.; Goerz, D.; Higginson, D.; Holod, I.; McMahon, M.; Mitrani, J.; Koh, E. S.; Pearson, A.; Podpaly, Y. A.; Prasad, R.; van Lue, D.; Watson, J.; Schmidt, A. E.

    2017-10-01

    Dense plasma focus (DPF) Z-pinches are compact pulse power driven devices with coaxial electrodes. The discharge of DPF consists of three distinct phases: first generation of a plasma sheath, plasma rail gun phase where the sheath is accelerated down the electrodes and finally an implosion phase where the plasma stagnates into a z-pinch geometry. During the z-pinch phase, DPFs can produce MeV ion beams, x-rays and neutrons. Megaampere class DPFs with deuterium fills have demonstrated neutron yields in the 1012 neutrons/shot range with pulse durations of 10-100 ns. Kinetic simulations using the code Chicago are being used to evaluate various load configurations from initial sheath formation to the final z-pinch phase for DPFs with up to 5 MA and 1 MJ coupled to the load. Results will be presented from the preliminary design simulations. LLNL-ABS-734785 This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory (LLNL) under Contract DE-AC52-07NA27344 and with support from the Computing Grand Challenge program at LLNL.

  8. Investigation of mechanism of anode plasma formation in ion diode with dielectric anode

    International Nuclear Information System (INIS)

    Pushkarev, A.

    2015-01-01

    The results of investigation of the anode plasma formation in a diode with a passive anode in magnetic insulation mode are presented. The experiments have been conducted using the BIPPAB-450 ion accelerator (350–400 kV, 6–8 kA, 80 ns) with a focusing conical diode with B r external magnetic field (a barrel diode). For analysis of plasma formation at the anode and the distribution of the ions beam energy density, infrared imaging diagnostics (spatial resolution of 1–2 mm) is used. For analysis of the ion beam composition, time-of-flight diagnostics (temporal resolution of 1 ns) were used. Our studies have shown that when the magnetic induction in the A-C gap is much larger than the critical value, the ion beam energy density is close to the one-dimensional Child-Langmuir limit on the entire working surface of the diode. Formation of anode plasma takes place only by the flashover of the dielectric anode surface. In this mode, the ion beam consists primarily of singly ionized carbon ions, and the delay of the start of formation of the anode plasma is 10–15 ns. By reducing the magnetic induction in the A-C gap to a value close to the critical one, the ion beam energy density is 3–6 times higher than that calculated by the one-dimensional Child-Langmuir limit, but the energy density of the ion beam is non-uniform in cross-section. In this mode, the anode plasma formation occurs due to ionization of the anode material with accelerated electrons. In this mode, also, the delay in the start of the formation of the anode plasma is much smaller and the degree of ionization of carbon ions is higher. In all modes occurred effective suppression of the electronic component of the total current, and the diode impedance was 20–30 times higher than the values calculated for the mode without magnetic insulation of the electrons. The divergence of the ion beam was 4.5°–6°

  9. Formation of plasma around wire fragments created by electrically exploded copper wire

    International Nuclear Information System (INIS)

    Taylor, Michael J.

    2002-01-01

    The physical processes occurring during the electrical explosion of metallic conductors has attracted interest for many years. Applications include circuit breakers, segmented lightning divertor strips for aircraft radomes, disruption of metallic shaped charge jets, plasma armatures for electromagnetic railguns and plasma generators for electrothermal-chemical guns. Recent work has cited the phenomenology of the fragmentation processes, particularly the development of a plasma around the lower resistance condensed fragments. An understanding of both the fragmentation process and the development of the accompanying formation of plasma is essential for the optimization of devices that utilize either of these phenomena. With the use of x-radiography and fast photography, this paper explores the wire explosion process, in particular the relationship between the fragmentation, plasma development and resistance rise that occurs during this period. A hypothesis is put forward to account for the development of plasma around the condensed wire fragments. Experimental parameters used in this study are defined. Wires studied were typically copper, with a diameter of 1 mm and length in excess of 150 mm. Circuit inductance used were from 26 to 800 μH. This relatively high circuit inductance gave circuit rise times less than 180 MA s -1 , slow with respect to many other exploding wire studies. Discharge duration ranged from 0.8 to 10 ms. (author)

  10. Formation of plasma channels in air under filamentation of focused ultrashort laser pulses

    International Nuclear Information System (INIS)

    Ionin, A A; Seleznev, L V; Sunchugasheva, E S

    2015-01-01

    The formation of plasma channels in air under filamentation of focused ultrashort laser pulses was experimentally and theoretically studied together with theoreticians of the Moscow State University and the Institute of Atmospheric Optics. The influence of various characteristics of ultrashort laser pulses on these plasma channels is discussed. Plasma channels formed under filamentation of focused laser beams with a wavefront distorted by spherical aberration (introduced by adaptive optics) and by astigmatism, with cross-section spatially formed by various diaphragms and with different UV and IR wavelengths, were experimentally and numerically studied. The influence of plasma channels created by a filament of a focused UV or IR femtosecond laser pulse (λ = 248 nm or 740 nm) on characteristics of other plasma channels formed by a femtosecond pulse at the same wavelength following the first one with varied nanosecond time delay was also experimentally studied. An application of plasma channels formed due to the filamentation of focused UV ultrashort laser pulses including a train of such pulses and a combination of ultrashort and long (∼100 ns) laser pulses for triggering and guiding long (∼1 m) electric discharges is discussed. (topical review)

  11. Analysis of laser-induced evaporation of Al target under conditions of vapour plasma formation

    International Nuclear Information System (INIS)

    Mazhukin, V.I.; Nossov, V.V.; Smurov, I.

    2004-01-01

    The plasma-controlled evaporation of the Al target induced by the laser pulse with intensity of 10 9 W/cm 2 and wavelength of 1.06 μm is analysed with account for the two-dimensional effects. The self consistent model is applied, including the heat transfer equation in condensed medium, the equations of radiation gas dynamics in evaporated substance and the Knudsen layer model at the two media boundary. It is found that the phase transition at the target surface is controlled by the two factors: the surface temperature that depends on the transmitted radiation intensity, and the plasma pressure, governed by the expansion regime. The process comes through three characteristic stages, the sonic evaporation at the beginning, the condensation during the period of plasma formation and initial expansion, and finally, the re-start of evaporation in subsonic regime after the partial brightening of the plasma. During the subsonic evaporation stage the vapour flow and the mass removal rate are much higher near the beam boundaries than in the centre due to smaller plasma counter-pressure. The vapour plasma pattern is characterised by the dense hot zone near the surface where the absorption of laser energy occurs, and rapid decrease of density outside the zone due to three-dimensional expansion

  12. Production-Worthy USJ Formation by Self-Regulatory Plasma Doping Method

    International Nuclear Information System (INIS)

    Sasaki, Y.; Ito, H.; Okashita, K.; Tamura, H.; Jin, C. G.; Mizuno, B.; Okumura, T.; Aiba, I.; Sauddin, H.; Iwai, H.; Fukagawa, Y.; Tsutsui, K.

    2006-01-01

    A new method of plasma doping that achieves tight control on dosimetry and uniformity has been developed. It uses a self-regulatory behavior of plasma processes that brings high accuracy on dose control and uniformity within 1.5%. The largest advantage of this self-regulatory plasma doping (SRPD) is that the accuracy of the process control is much less dependent on the uniformity of the plasma, which makes a revolutionary difference to the plasma process as it becomes free from the primary hardware constraint. A typical doping of boron using B2H6/He gas mixture at dose of 1x1015 ions/cm2 can achieve a uniformity of less than 1.5% across a 300mm silicon wafer when the plasma uniformity above the wafer plane is as poor as 10%. The SRPD process also forms very abrupt junctions such as less than 2nm/decade at the junction depth of 10nm due to an instantaneous amorphization of the wafer surface within the first 5 seconds of the process duration. Combined with the throughput advantage at low energy against the conventional ion implantation, the SRPD offers an ideal performance for USJ formation for 45nm technology node and beyond

  13. Research on stress distribution regularity of cement sheaths of radial well based on ABAQUS

    Science.gov (United States)

    Shi, Jihui; Cheng, Yuanfang; Li, Xiaolong; Xiao, Wen; Li, Menglai

    2017-12-01

    To ensure desirable outcome of hydraulic fracturing based on ultra-short radius radial systems, it is required to investigate the stress distribution regularity and stability of the cement sheath. On the basis of the theoretical model of the cement sheath stress distribution, a reservoir mechanical model was built using the finite element software, ABAQUS, according to the physical property of a certain oil reservoir of the Shengli oilfield. The stress distribution of the casing-cement-sheath-formation system under the practical condition was simulated, based on which analyses were conducted from multiple points of view. Results show that the stress on the internal interface of the cement sheath exceeds that on the external interface, and fluctuates with higher amplitudes, which means that the internal interface is the most failure-prone. The unevenness of the cement sheath stress distribution grows with the increasing horizontal principal stress ratio, and so does the variation magnitude. This indicates that higher horizontal principal stress ratios are unfavourable for the structural stability of the cement sheath. Both the wellbore quantity of the URRS and the physical property of the material can affect the cement sheath distribution. It is suggested to optimize the quantity of the radial wellbore and use cement with a lower elastic modulus and higher Poisson’s ratio. At last, the impact level of the above factor was analysed, with the help of the grey correlation analysis.

  14. Multislit streak photography for plasma dynamics studies

    International Nuclear Information System (INIS)

    Tou, T.Y.; Lee, S.

    1988-01-01

    A microscope slide with several transparent slits installed in a streak camera is used to record time-resolved two-dimensional information when a curved luminous plasma sheath traverses these slits. Applying this method to the plasma focus experiment, the axial run-down trajectory and the shapes of the plasma sheath at various moments can be obtained from a single streak photograph

  15. The effect of pre-plasma formation under nonlocal transport conditions for ultra-relativistic laser-plasma interaction

    Science.gov (United States)

    Holec, M.; Nikl, J.; Vranic, M.; Weber, S.

    2018-04-01

    Interaction of high-power lasers with solid targets is in general strongly affected by the limited contrast available. The laser pre-pulse ionizes the target and produces a pre-plasma which can strongly modify the interaction of the main part of the laser pulse with the target. This is of particular importance for future experiments which will use laser intensities above 1021 W cm-2 and which are subject to the limited contrast. As a consequence the main part of the laser pulse will be modified while traversing the pre-plasma, interacting with it partially. A further complication arises from the fact that the interaction of a high-power pre-pulse with solid targets very often takes place under nonlocal transport conditions, i.e. the characteristic mean-free-path of the particles and photons is larger than the characteristic scale-lengths of density and temperature. The classical diffusion treatment of radiation and heat transport in the hydrodynamic model is then insufficient for the description of the pre-pulse physics. These phenomena also strongly modify the formation of the pre-plasma which in turn affects the propagation of the main laser pulse. In this paper nonlocal radiation-hydrodynamic simulations are carried out and serve as input for subsequent kinetic simulations of ultra-high intensity laser pulses interacting with the plasma in the ultra-relativistic regime. It is shown that the results of the kinetic simulations differ considerably whether a diffusive or nonlocal transport is used for the radiation-hydrodynamic simulations.

  16. Topology of magnetic flux ropes and formation of fossil flux transfer events and boundary layer plasmas

    Science.gov (United States)

    Lee, L. C.; Ma, Z. W.; Fu, Z. F.; Otto, A.

    1993-01-01

    A mechanism for the formation of fossil flux transfer events and the low-level boundary layer within the framework of multiple X-line reconnection is proposed. Attention is given to conditions for which the bulk of magnetic flux in a flux rope of finite extent has a simple magnetic topology, where the four possible connections of magnetic field lines are: IMF to MSP, MSP to IMF, IMF to IMF, and MSP to MSP. For a sufficient relative shift of the X lines, magnetic flux may enter a flux rope from the magnetosphere and exit into the magnetosphere. This process leads to the formation of magnetic flux ropes which contain a considerable amount of magnetosheath plasma on closed magnetospheric field lines. This process is discussed as a possible explanation for the formation of fossil flux transfer events in the magnetosphere and the formation of the low-latitude boundary layer.

  17. Hybrid simulation research on formation mechanism of tungsten nanostructure induced by helium plasma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Atsushi M., E-mail: ito.atsushi@nifs.ac.jp [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Takayama, Arimichi; Oda, Yasuhiro [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Tamura, Tomoyuki; Kobayashi, Ryo; Hattori, Tatsunori; Ogata, Shuji [Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Ohno, Noriyasu; Kajita, Shin [Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Yajima, Miyuki [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Noiri, Yasuyuki [Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Yoshimoto, Yoshihide [University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Saito, Seiki [Kushiro National College of Technology, Kushiro, Hokkaido 084-0916 (Japan); Takamura, Shuichi [Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota 470-0392 (Japan); Murashima, Takahiro [Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-Ward, Sendai 980-8578 (Japan); Miyamoto, Mitsutaka [Shimane University, Matsue, Shimane 690-8504 (Japan); Nakamura, Hiroaki [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2015-08-15

    The generation of tungsten fuzzy nanostructure by exposure to helium plasma is one of the important problems for the use of tungsten material as divertor plates in nuclear fusion reactors. In the present paper, the formation mechanisms of the helium bubble and the tungsten fuzzy nanostructure were investigated by using several simulation methods. We proposed the four-step process which is composed of penetration step, diffusion and agglomeration step, helium bubble growth step, and fuzzy nanostructure formation step. As the fourth step, the formation of the tungsten fuzzy nanostructure was successfully reproduced by newly developed hybrid simulation combining between molecular dynamics and Monte-Carlo method. The formation mechanism of tungsten fuzzy nanostructure observed by the hybrid simulation is that concavity and convexity of the surface are enhanced by the bursting of helium bubbles in the region around the concavity.

  18. Formation of stable, high-beta, relativistic-electron plasmas using electron cyclotron heating

    International Nuclear Information System (INIS)

    Guest, G.E.; Miller, R.L.

    1988-01-01

    A one-dimensional, steady-state, relativistic Fokker-Planck model of electron cyclotron heating (ECH) is used to analyse the heating kinetics underlying the formation of the two-component hot-electron plasmas characteristic of ECH in magnetic mirror configurations. The model is first applied to the well diagnosed plasmas obtained in SM-1 and is then used to simulate the effective generation of relativistic electrons by upper off-resonant heating (UORH), as demonstrated empirically in ELMO. The characteristics of unstable whistler modes and cyclotron maser modes are then determined for two-component hot-electron plasmas sustained by UORH. Cyclotron maser modes are shown to be strongly suppressed by the colder background electron species, while the growth rates of whistler modes are reduced by relativistic effects to levels that may render them unobservable, provided the hot-electron pressure anisotropy is below an energy dependent threshold. (author). 29 refs, 10 figs, 1 tab

  19. Formation of Wear Resistant Steel Surfaces by Plasma Immersion Ion Implantation

    Science.gov (United States)

    Mändl, S.; Rauschenbach, B.

    2003-08-01

    Plasma immersion ion implantation (PIII) is a versatile and fast method for implanting energetic ions into large and complex shaped three-dimensional objects where the ions are accelerated by applying negative high voltage pulses to a substrate immersed in a plasma. As the line-of-sight restrictions of conventional implanters are circumvented, it results in a fast and cost-effective technology. Implantation of nitrogen at 30 - 40 keV at moderate temperatures of 200 - 400 °C into steel circumvents the diminishing thermal nitrogen activation encountered, e.g., in plasma nitriding in this temperature regime, thus enabling nitriding of additional steel grades. Nitride formation and improvement of the mechanical properties after PIII are presented for several steel grades, including AISI 316Ti (food industry), AISI D2 (used for bending tools) and AISI 1095 (with applications in the textile industry).

  20. Formation of Wear Resistant Steel Surfaces by Plasma Immersion Ion Implantation

    International Nuclear Information System (INIS)

    Maendl, S.; Rauschenbach, B.

    2003-01-01

    Plasma immersion ion implantation (PIII) is a versatile and fast method for implanting energetic ions into large and complex shaped three-dimensional objects where the ions are accelerated by applying negative high voltage pulses to a substrate immersed in a plasma. As the line-of-sight restrictions of conventional implanters are circumvented, it results in a fast and cost-effective technology. Implantation of nitrogen at 30 - 40 keV at moderate temperatures of 200 - 400 deg. C into steel circumvents the diminishing thermal nitrogen activation encountered, e.g., in plasma nitriding in this temperature regime, thus enabling nitriding of additional steel grades. Nitride formation and improvement of the mechanical properties after PIII are presented for several steel grades, including AISI 316Ti (food industry), AISI D2 (used for bending tools) and AISI 1095 (with applications in the textile industry)

  1. Turbulence simulations of blob formation and radial propagation in toroidally magnetized plasmas

    DEFF Research Database (Denmark)

    Garcia, O.E.; Naulin, V.; Nielsen, A.H.

    2006-01-01

    the presence of long- range correlations in the particle density fluctuations. Finally, conditional statistics of the particle flux demonstrates the intermittency of the turbulent plasma transport and the quasi-periodic apparency of blob structures due to bursting in the global turbulence level....... of particles and heat, which is coupled to a scrape-off layer with linear damping terms for all dependent variables corresponding to transport along open magnetic field lines. The formation of blob structures is related to profile variations caused by bursting in the global turbulence level, which is due...... to a dynamical regulation by self- sustained differential rotation of the plasma layer. Radial propagation of the blob structures follows from a vertical charge polarization due to magnetic guiding centre drifts in the toroidally magnetized plasma. Statistical analysis of the particle density, radial electric...

  2. Deuterium-induced nanostructure formation on tungsten exposed to high-flux plasma

    Energy Technology Data Exchange (ETDEWEB)

    Xu, H.Y., E-mail: donaxu@163.com [Key Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang, Sichuan 621907 (China); De Temmerman, G. [FOM Institute DIFFER, Dutch Institute For Fundamental Energy Research, Ass. EURATOM-FOM, Trilateral Euregio Cluster, Postbus 1207, 3430BE Nieuwegein (Netherlands); ITER Organization, Route de Vinon-sur-Verdon CS 90046-13067, St Paul Lez Durance Cedex (France); Luo, G.-N. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Jia, Y.Z.; Yuan, Y.; Fu, B.Q.; Godfrey, A. [Key Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Liu, W., E-mail: liuw@mail.tsinghua.edu.cn [Key Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2015-08-15

    Surface topography of polycrystalline tungsten (W) have been examined after exposure to a low-energy (38 eV/D), high-flux (∼1.1–1.5 × 10{sup 24} m{sup −2} s{sup −1}) deuterium plasma in the Pilot-PSI linear plasma device. The methods used were scanning electron microscopy (SEM), transmission electron microscopy (TEM), positron annihilation Doppler broadening (PADB) and grazing incident X-ray diffraction (GI-XRD). After exposure to high flux D plasma, blisters and nanostructures are formed on the W surface. Generation of defects was evidenced by PADB, while high stress and mixture of phases were detected in depth of 50 nm by GI-XRD. TEM observation revealed fluctuations and disordered microstructure on the outmost surface layer. Based on these results, surface reconstruction is considered as a possible mechanism for the formation of defects and nanostructures.

  3. Plasma potential formation and measurement in TMX-U and MFTF-B

    International Nuclear Information System (INIS)

    Grubb, D.P.

    1984-01-01

    Tandem mirrors control the axial variation of the plasma potential to create electrostatic plugs that improve the axial confinement of central cell ions and, in a thermal barrier tandem mirror, control the electron axial heat flow. Measurements of the spatial and temporal variations of the plasma potential are, therefore, important to the understanding of confinement in a tandem mirror. In this paper we discuss potential formation in a thermal barrier tandem mirror and examine the diagnostics and data obtained on the TMX-U device, including measurements of the thermal barrier potential profile using a diagnostic neutral beam and charged particle energy-spectroscopy. We then describe the heavy ion beam probe and other new plasma potential diagnostics that are under development for TMX-U and MFTF-B and examine problem areas where additional diagnostic development is desirable

  4. Effects of neutral gas collisions on the power transmission factor at the divertor sheath

    International Nuclear Information System (INIS)

    Futch, A.H.; Matthews, G.F.; Buchenauer, D.; Hill, D.N.; Jong, R.A.; Porter, G.D.

    1992-01-01

    We show that charge-exchange and other ion-neutral collision can reduce the power transmission factor of the plasma sheath, thereby lowering the ion impact energy and target plate sputtering. The power transmission factor relates the heat flux reaching the divertor target to the plasma density and temperature just in front of the surface: δ=Q surf /J ew k T e . Experimental data from the DIII-D tokamak suggests that δ could be as low as 2-3 near the region of peak divertor particle flux, instead of the 7-8 expected from usual sheath theory. Several effects combine to allow ion-neutral interactions to be important in the divertor plasma sheath. The shallow angle of incidence of the magnetic field (1-3deg in DIII-D) leads to the spatial extension of the sheath from approximately ρ i ∝1 mm normal to the plate to several centimeters along the field lines. Ionization reduces the sheath potential, and collisions reduce the ion impact energy. (orig.)

  5. A tentative opinion of modeling plasma formation in metallic wire Z pinch

    International Nuclear Information System (INIS)

    Ding Ning

    2002-01-01

    Numerous experiments in both single wire and in wire arrays have attracted much attention. For the wire array Z-pinch implosions the plasma formation in the metallic wire Z pinches is a key question. By means of analyzing a number of single-wire and multi-wire experiments, two models to describe the behavior of a wire array Z-pinch in initial phase are suggested. In this phase each wire carries a rising current and behaves independently in a way similar to that found in single wire Z-pinch experiments in which a comparable current in one wire is employed. Based on one- or/and two-dimensional magnetohydrodynamics (MHD) theory, one model is used to simulate the electrical explosion stage of the metallic wire, another is used to simulate the wire-plasma formation stage

  6. Numerical modeling of formation of helical structures in reversed-field-pinch plasma

    International Nuclear Information System (INIS)

    Mizuguchi, N.; Ichiguchi, K.; Todo, Y.; Sanpei, A.; Oki, K.; Masamune, S.; Himura, H.

    2012-11-01

    Nonlinear three-dimensional magnetohydrodynamic(MHD) simulations have been executed for the low-aspect-ratio reversed-field-pinch (RFP) plasma to reveal the physical mechanism of the formation processes of helical structures. The simulation results show a clear formation of n=4 structure as a result of dominant growth of resistive modes, where n represents the toroidal mode number. The resultant relaxed helical state consists of a unique bean-shaped and hollow pressure profile in the poloidal cross section for both cases of resonant and non-resonant triggering instability modes. The results are partially comparable to the experimental observations. The physical mechanisms of those processes are examined. (author)

  7. Modeling and experimental validation of TCE abatement and ozone formation with non thermal plasma

    OpenAIRE

    Vandenbroucke, Arne; Aerts, Robby; Morent, Rino; De Geyter, Nathalie; Bogaerts, Annemie; Leys, Christophe

    2012-01-01

    In this study, the formation of ozone and the abatement of trichloroethylene (TCE) with non thermal plasma was experimentally and theoretically investigated. The model predicts that the ozone formation increases with the energy deposition and decreases with the relative humidity (RH) of the air, which is qualitatively in agreement with experimental data. For an energy deposition of 0.136 J/cm³, the abatement of 1000 ppm TCE in air with 5 % RH is dominated by atomic oxygen and to a lesser exte...

  8. Modeling of Plasma-Induced Ignition and Combustion

    National Research Council Canada - National Science Library

    Boyd, Iain D; Keidar, Michael

    2008-01-01

    .... Phenomena that must be considered in an electrothermal chemical gun model include the initial capillary plasma properties, the plasma-air interaction, plasma sheath effects, and the plasma-propellant interaction itself...

  9. A model of early formation of uranium molecular oxides in laser-ablated plasmas

    Science.gov (United States)

    Finko, Mikhail; Curreli, Davide; Azer, Magdi; Weisz, David; Crowhurst, Jonathan; Rose, Timothy; Koroglu, Batikan; Radousky, Harry; Zaug, Joseph; Armstrong, Mike

    2017-10-01

    An important problem within the field of nuclear forensics is fractionation: the formation of post-detonation nuclear debris whose composition does not reflect that of the source weapon. We are investigating uranium fractionation in rapidly cooling plasma using a combined experimental and modeling approach. In particular, we use laser ablation of uranium metal samples to produce a low-temperature plasma with physical conditions similar to a condensing nuclear fireball. Here we present a first plasma-chemistry model of uranium molecular species formation during the early stage of laser ablated plasma evolution in atmospheric oxygen. The system is simulated using a global kinetic model with rate coefficients calculated according to literature data and the application of reaction rate theory. The model allows for a detailed analysis of the evolution of key uranium molecular species and represents the first step in producing a uranium fireball model that is kinetically validated against spatially and temporally resolved spectroscopy measurements. This project was sponsored by the DoD, Defense Threat Reduction Agency, Grant HDTRA1-16- 1-0020. This work was performed in part under the auspices of the U.S. DoE by Lawrence Livermore National Laboratory under Contract DE-AC52- 07NA27344.

  10. Zirconium dioxide ultrafine powders formation in ultra-high frequency discharge plasma

    International Nuclear Information System (INIS)

    Triotskij, V.N.; Kurkin, E.N.; Torbov, V.I.; Berestenko, V.I.; Torbova, O.D.; Gurov, S.V.; Alekseev, N.V.

    1995-01-01

    ZrO 2 fine powders of 30...60 nm particle size were synthesized by ZrCl 4 oxidation in a flow of oxygen microwave plasma. Oxygen flow rate and ZrCl 4 feeding rate were the defining parameters effecting on powder particles size at constant discharge power.At predominant contribution of the coalescence process into ZrO 2 powder particles formation their heterogeneous growth was shown necessary to take into account. 16 refs.; 5 figs

  11. Tripolar vortex formation in dense quantum plasma with ion-temperature-gradients

    Science.gov (United States)

    Qamar, Anisa; Ata-ur-Rahman, Mirza, Arshad M.

    2012-05-01

    We have derived system of nonlinear equations governing the dynamics of low-frequency electrostatic toroidal ion-temperature-gradient mode for dense quantum magnetoplasma. For some specific profiles of the equilibrium density, temperature, and ion velocity gradients, the nonlinear equations admit a stationary solution in the form of a tripolar vortex. These results are relevant to understand nonlinear structure formation in dense quantum plasmas in the presence of equilibrium ion-temperature and density gradients.

  12. Tripolar vortex formation in dense quantum plasma with ion-temperature-gradients

    Energy Technology Data Exchange (ETDEWEB)

    Qamar, Anisa; Ata-ur-Rahman [Institute of Physics and Electronics, University of Peshawar, Khyber Pakhtoon Khwa 25000 (Pakistan); National Center for Physics Shahdrah Valley Road, Islamabad 44000 (Pakistan); Mirza, Arshad M. [Theoretical Plasma Physics Group, Physics Department, Quaid-i-Azam University, Islamabad 45320 (Pakistan)

    2012-05-15

    We have derived system of nonlinear equations governing the dynamics of low-frequency electrostatic toroidal ion-temperature-gradient mode for dense quantum magnetoplasma. For some specific profiles of the equilibrium density, temperature, and ion velocity gradients, the nonlinear equations admit a stationary solution in the form of a tripolar vortex. These results are relevant to understand nonlinear structure formation in dense quantum plasmas in the presence of equilibrium ion-temperature and density gradients.

  13. Tripolar vortex formation in dense quantum plasma with ion-temperature-gradients

    International Nuclear Information System (INIS)

    Qamar, Anisa; Ata-ur-Rahman; Mirza, Arshad M.

    2012-01-01

    We have derived system of nonlinear equations governing the dynamics of low-frequency electrostatic toroidal ion-temperature-gradient mode for dense quantum magnetoplasma. For some specific profiles of the equilibrium density, temperature, and ion velocity gradients, the nonlinear equations admit a stationary solution in the form of a tripolar vortex. These results are relevant to understand nonlinear structure formation in dense quantum plasmas in the presence of equilibrium ion-temperature and density gradients.

  14. Contribution to the physical study of sheath failure detections

    International Nuclear Information System (INIS)

    Mangin, Jean-Paul

    1968-11-01

    As the study of an installation aimed at the detection of sheath failure requires the knowledge of a great number of data related to all the fields of nuclear technology (fission mechanisms, sheath failure mechanisms, recoil of fission products, distribution of the heat transfer fluid in the reactor, techniques of measurement of beta and gamma neutrons, nuclear safety, and so on), this report aims at highlighting some specific issues, more particularly those related to sensors based on delayed neutrons. After having recalled the principles of sheath failure detection, the author presents the various aspects of the study of the formation of fission products and of their passage into the heat transfer fluid: detection by using delayed neutrons, detection by electrostatic collection, passage of fuel fission products into the coolant (recoil, corrosion, gaseous diffusion in the fuel), formation of fission products in the fuel (fission product efficiency). He reports the study of the transport of fission products by the coolant from their place of birth to the place of measurement. He presents the system of measurement by detection of delayed neutrons and by electrostatic collection, reports a sensitivity calculation, a background noise assessment, the determination of detection threshold, and the application of sensitivity and detection thresholds calculations [fr

  15. Primary optic nerve sheath meningioma

    Energy Technology Data Exchange (ETDEWEB)

    Jeremic, Branislav [International Atomic Energy Agency, Vienna (Austria); Pitz, Susanne (eds.) [University Eye Hospital, Mainz (Germany)

    2008-07-01

    Optic nerve sheath meningioma (ONSM) is a rare tumour. Cases are usually separated into primary ONSM, which arises either intraorbitally or, less commonly, intracanalicularly, and secondary ONSM, which arises intracranially and subsequently invades the optic canal and orbit. This is the first book to cover all important aspects of the diagnosis and treatment of primary ONSM. After a general introduction, individual chapters discuss the clinical presentation, clinical examination and diagnosis, imaging, and histology. Treatment options are then addressed in detail, with special emphasis on external beam radiation therapy, and in particular stereotactic fractionated radiation therapy. The latter has recently produced consistently good results and is now considered the emerging treatment of choice for the vast majority of patients with primary ONSM. This well-illustrated book will prove invaluable to all practitioners who encounter primary ONSM in their clinical work. (orig.)

  16. Plasma formation and first OH experiments in GLOBUS-M tokamak

    International Nuclear Information System (INIS)

    Gusev, V.K.; Aleksandrov, S.V.; Burtseva, T.A.

    2001-01-01

    The paper reports results of experimental campaigns on plasma ohmic heating, performed during 1999-2000 on the spherical tokamak Globus-M. Later experimental results with tokamak fed by thyristor rectifiers are presented in detail. The toroidal magnetic field and plasma pulse duration in these experiments were significantly increased. The method of stray magnetic field compensation is described. The technology of vacuum vessel conditioning, including boronization of the vessel performed at the end of the experiments, is briefly discussed. Also discussed is the influence of ECR preioniziation on the breakdown conditions. Experimental data on plasma column formation and current ramp-up in different regimes of operation with the magnetic flux of the central solenoid (CS) limited to ∼100 mVs are presented. Ramp-up of the plasma current of 0.25 MA for the time interval ∼0.03 s with about 0.02 s flat-top at the toroidal field (TF) strength of 0.35 T allows the conclusion that power supplies, control system and wall conditioning work well. The same conclusion can be drawn from observation of plasma density behavior the density is completely controlled with external gas puff and the influence of the wall is negligible after boronization. The magnetic flux consumption efficiency is discussed. The results of magnetic equilibrium simulations are presented and compared with experiment. (author)

  17. The Tubular Sheaths Encasing Methanosaeta and Methanospirillum Filaments are Functional Amyloids

    DEFF Research Database (Denmark)

    Dueholm, Morten Simonsen; Larsen, Poul; Nielsen, Per Halkjær

    Archaea are well-recognized for their ability to thrive in extreme environments, although they can be found in virtually all habitats. Their adaptive success is linked to their unique cell envelopes, which often display extremely resistant to chemical and thermal denaturation and resist proteolysis...... techniques to show that the extracellular cell wall sheaths of the methanogenic archaea Methanosaeta and Methanospirillum are functional amyloid structures. Depolymerization of sheaths with formic acid and reducing agents and subsequent MS/MS analysis revealed that the sheaths are composed of a single major...... sheath protein (MspA). The amyloidogenic nature of MspA was confirmed by in vitro amyloid formation of recombinant MspA under a wide range of environmental conditions. This is the first report of a functional amyloid from the archaeal domain of life. The amyloid properties explain the extreme resistance...

  18. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Thresholds of surface plasma formation by the interaction of laser pulses with a metal

    Science.gov (United States)

    Borets-Pervak, I. Yu; Vorob'ev, V. S.

    1995-04-01

    An analysis is made of a model of the formation of a surface laser plasma which takes account of the heating and vaporisation of thermally insulated surface microdefects. This model is used in an interpretation of experiments in which such a plasma has been formed by irradiation of a titanium target with microsecond CO2 laser pulses. A comparison with the experimental breakdown intensities is used to calculate the average sizes of microdefects and their concentration: the results are in agreement with the published data. The dependence of the delay time of plasma formation on the total energy in a laser pulse is calculated.

  19. Experimental study of current loss and plasma formation in the Z machine post-hole convolute

    Directory of Open Access Journals (Sweden)

    M. R. Gomez

    2017-01-01

    Full Text Available The Z pulsed-power generator at Sandia National Laboratories drives high energy density physics experiments with load currents of up to 26 MA. Z utilizes a double post-hole convolute to combine the current from four parallel magnetically insulated transmission lines into a single transmission line just upstream of the load. Current loss is observed in most experiments and is traditionally attributed to inefficient convolute performance. The apparent loss current varies substantially for z-pinch loads with different inductance histories; however, a similar convolute impedance history is observed for all load types. This paper details direct spectroscopic measurements of plasma density, temperature, and apparent and actual plasma closure velocities within the convolute. Spectral measurements indicate a correlation between impedance collapse and plasma formation in the convolute. Absorption features in the spectra show the convolute plasma consists primarily of hydrogen, which likely forms from desorbed electrode contaminant species such as H_{2}O, H_{2}, and hydrocarbons. Plasma densities increase from 1×10^{16}  cm^{−3} (level of detectability just before peak current to over 1×10^{17}  cm^{−3} at stagnation (tens of ns later. The density seems to be highest near the cathode surface, with an apparent cathode to anode plasma velocity in the range of 35–50  cm/μs. Similar plasma conditions and convolute impedance histories are observed in experiments with high and low losses, suggesting that losses are driven largely by load dynamics, which determine the voltage on the convolute.

  20. ALCBEAM - Neutral beam formation and propagation code for beam-based plasma diagnostics

    Science.gov (United States)

    Bespamyatnov, I. O.; Rowan, W. L.; Liao, K. T.

    2012-03-01

    ALCBEAM is a new three-dimensional neutral beam formation and propagation code. It was developed to support the beam-based diagnostics installed on the Alcator C-Mod tokamak. The purpose of the code is to provide reliable estimates of the local beam equilibrium parameters: such as beam energy fractions, density profiles and excitation populations. The code effectively unifies the ion beam formation, extraction and neutralization processes with beam attenuation and excitation in plasma and neutral gas and beam stopping by the beam apertures. This paper describes the physical processes interpreted and utilized by the code, along with exploited computational methods. The description is concluded by an example simulation of beam penetration into plasma of Alcator C-Mod. The code is successfully being used in Alcator C-Mod tokamak and expected to be valuable in the support of beam-based diagnostics in most other tokamak environments. Program summaryProgram title: ALCBEAM Catalogue identifier: AEKU_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKU_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 66 459 No. of bytes in distributed program, including test data, etc.: 7 841 051 Distribution format: tar.gz Programming language: IDL Computer: Workstation, PC Operating system: Linux RAM: 1 GB Classification: 19.2 Nature of problem: Neutral beams are commonly used to heat and/or diagnose high-temperature magnetically-confined laboratory plasmas. An accurate neutral beam characterization is required for beam-based measurements of plasma properties. Beam parameters such as density distribution, energy composition, and atomic excited populations of the beam atoms need to be known. Solution method: A neutral beam is initially formed as an ion beam which is extracted from

  1. Parametric studies in a small plasma focus device

    International Nuclear Information System (INIS)

    Chuaqui, H.; Favre, M.; Silva, P.; Wyndham, E.

    1996-01-01

    Very high temperature and density plasmas can be produced in modest size plasma focus devices at the kJ level. Much of the scaling parameters on the plasma focus have been evaluated, though many questions still remain. The modest cost and simple construction allows easy modification to the device and the discharge parameters. In this paper the authors report on a small plasma focus device, which is set-up to investigate the effect of some of those modifications on the plasma, with detailed experimental diagnostics. Experiments have been carried out in various gases and with mixtures of different ratios. Extended operating range from below 0.5 torr upwards has been achieved with the implementation of the auxiliary discharge circuit. Despite the low voltage and low energy operation, energetic beam formation has been observed at the time of the final compression, prior to disruption. Current sheath formation and evolution has been characterized using the magnetic probes array, in correlation with beam formation and plasma emission. The relationship of the current sheath structure and that of the pinched plasma, as shown by the filtered X-ray pinhole camera, has been investigated

  2. The formation of metallic plasmas in transient capillary discharges at high current

    International Nuclear Information System (INIS)

    Wyndham, E S; Favre, M; Aliaga-Rossel, R

    2006-01-01

    We report observations of the formation of a metallic plasma in a high aspect ratio z-pinch confined within a ceramic capillary. A series of experiments on different capillary geometries was undertaken in which titanium metal rings were used to promote the formation of a titanium plasma through preferential ablation. In an initial vacuum a titanium seed plasma is formed in the hollow cathode (HC) volume by a low energy laser spark. This pre-ionizing plasma is assisted in its expansion into the z-pinch volume by the electron beams generated by a pre-ionizing discharge in the capillary, due to the HC effect. Further intense e-beam activity occurs on applying the main driver current to the capillary electrodes before the discharge impedance abruptly drops to give rise to an ensuing high current z-pinch. A segmented titanium ring structure within the capillary promotes metal ablation. The discharges are performed in tubes of 60 to 110 mm length and 3 and 5 mm effective internal diameter. The main discharge current is provided from a small pulsed power switched coaxial line, at up to 150 kA. The generator may be configured to deliver two different rates of current rise and this is found to have a significant effect on the plasma dynamics. The plasma properties are obtained from observations of the axial x-ray emission. The diagnostics used are filtered Si diodes, filtered time-resolved multi-pinhole camera images and the time resolved soft x-ray spectrum from 3 to 20 nm. While a single species metal plasma is not obtained, a very significant proportion of Ti is achieved in the higher rate of current rise configuration. The fraction of Ti diminishes for the longest length discharges and for the larger diameter tube diameter, as does the observed z-pinch uniformity. There is a weak dependance of the electron temperature with tube geometry, but the plasma density falls substantially in the longer discharges. This coincides with diminished effectiveness of the transient HC

  3. Tunneled dialysis catheter exchange with fibrin sheath disruption is not associated with increased rate of bacteremia.

    Science.gov (United States)

    Valliant, Amanda M; Chaudhry, Muhammad K; Yevzlin, Alexander S; Astor, Brad; Chan, Micah R

    2015-01-01

    Tunneled dialysis catheters are the most common form of vascular access among incident dialysis patients in the United States. Fibrin sheath formation is a frequent cause of late catheter dysfunction requiring an exchange procedure with balloon disruption of the fibrin sheath. It is unknown whether fibrin sheath disruption is associated with increased incidence of bacteremia or catheter failure. We reviewed all tunneled dialysis catheter exchange procedures at the University of Wisconsin between January 2008 and December 2011. The primary outcome was incidence of bacteremia, defined as positive blood cultures within 2 weeks of the procedure. Catheter failure, requiring intervention or replacement, was examined as a secondary outcome. Baseline characteristics examined included diabetic status, gender, race and age. A total of 163 procedures were reviewed; 67 (41.1%) had fibrin sheath disruption and 96 did not. Bacteremia occurred in 4.5% (3/67) of those with and 3.1% (3/97) of those without fibrin sheath disruption (p=0.65). Fibrin sheath disruption was not significantly associated with the risk of catheter failure (adjusted hazard ratio [aHR]=1.34; 95% confidence interval [CI]: 0.87-2.10; p=0.18). Diabetes was associated with greater risk of catheter failure (aHR=1.88; 95% CI: 1.19-2.95; p=0.006), whereas higher age was associated with a lower risk of catheter failure (aHR per 10 years=0.83; 95% CI: 0.72-0.96; p=0.01). This study demonstrates that there is no significant increase in bacteremia and subsequent catheter dysfunction rates after fibrin sheath disruption compared to simple over the wire exchange. These results are encouraging given the large numbers of patients utilizing tunneled catheters for initial hemodialysis access and the known rates of fibrin sheath formation leading to catheter failure.

  4. Collector floating potentials in a discharge plasma

    International Nuclear Information System (INIS)

    Cercek, M.; Gyergyek, T.

    1999-01-01

    We present the results of a study on electrode floating potential formation in a hot-cathode discharge plasma. The electron component of the plasma is composed from two populations. The high temperature component develops from primary electrons and the cool component from secondary electrons born by ionisation of cold neutral gas. A static, kinetic plasma-sheath model is use to calculate the pre-sheath potential and the floating potential of the electrode. For hot primary electrons a truncated Maxwellian distribution is assumed. The plasma system is also modelled numerically with a dynamic, electrostatic particle simulation. The plasma source injects temporally equal fluxes of ions and electrons with half-Maxwellian velocities. Again, the hot electron distribution is truncated in the high velocity tail. The plasma parameters, such as ion temperature and mass, electron temperatures, discharge voltages, etc. correspond to experimental values. The experimental measurements of the electrode floating potential are performed in weakly magnetised plasma produced with hot cathode discharge in argon gas. Theoretical, simulation and experimental results are compared and they agree very well.(author)

  5. Sheath and plasma parameters in a magnetized plasma system

    Indian Academy of Sciences (India)

    through the negatively biased grid from the source region into the diffused region. It is observed that the electron temperature increases with the magnetic field in the diffused region whereas it decreases in the source region of the system for a constant grid biasing voltage. Also, investigation is done to see the change of ...

  6. Decisive factors affecting plasma resistance and roughness formation in ArF photoresist

    Energy Technology Data Exchange (ETDEWEB)

    Jinnai, Butsurin; Uesugi, Takuji; Koyama, Koji; Samukawa, Seiji [Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Kato, Keisuke; Yasuda, Atsushi; Maeda, Shinichi [Yokohama Research Laboratories, Mitsubishi Rayon Co., Ltd, 10-1 Daikoku-cho, Tsurumi-ku, Yokohama 230-0053 (Japan); Momose, Hikaru, E-mail: samukawa@ifs.tohoku.ac.j [Corporate Research Laboratories, Mitsubishi Rayon Co., Ltd, 2-1 Miyuki-cho, Otake, Hiroshima 739-0693 (Japan)

    2010-10-06

    Low plasma resistance and roughness formation in an ArF photoresist are serious issues in plasma processes. To resolve these issues, we investigated several factors that affect the roughness formation and plasma resistance in an ArF photoresist. We used our neutral beam process to categorize the effects of species from the plasma on the ArF photoresist into physical bombardment, chemical reactions and ultraviolet/vacuum ultraviolet (UV/VUV) radiation. The UV/VUV radiation drastically increased the etching rates of the ArF photoresist films, and, in contrast, chemical reactions increased the formation of surface roughness. FTIR analysis indicated that the UV/VUV radiation preferentially dissociates C-H bonds in the ArF photoresist, rather than C=O bonds, because of the dissociation energies of the bonds. This indicated that the etching rates of the ArF photoresist are determined by the UV/VUV radiation because this radiation can break C-H bonds, which account for the majority of structures in the ArF photoresist. In contrast, FTIR analysis showed that chemical species such as radicals and ions were likely to react with C=O bonds, in particular C=O bonds in the lactone groups of the ArF photoresist, due to the structural and electronic effects of the lactone groups. As a result, the etching rates of the ArF photoresist can vary in different bond structures, leading to increased surface roughness in the ArF photoresist.

  7. Plasma ignition and steady state simulations of the Linac4 H$^{-}$ ion source

    CERN Document Server

    Mattei, S; Yasumoto, M; Hatayama, A; Lettry, J; Grudiev, A

    2014-01-01

    The RF heating of the plasma in the Linac4 H- ion source has been simulated using an Particle-in-Cell Monte Carlo Collision method (PIC-MCC). This model is applied to investigate the plasma formation starting from an initial low electron density of 1012 m-3 and its stabilization at 1018 m-3. The plasma discharge at low electron density is driven by the capacitive coupling with the electric field generated by the antenna, and as the electron density increases the capacitive electric field is shielded by the plasma and induction drives the plasma heating process. Plasma properties such as e-/ion densities and energies, sheath formation and shielding effect are presented and provide insight to the plasma properties of the hydrogen plasma.

  8. Experimental investigation on the weld pool formation process in plasma keyhole arc welding

    Science.gov (United States)

    Van Anh, Nguyen; Tashiro, Shinichi; Van Hanh, Bui; Tanaka, Manabu

    2018-01-01

    This paper seeks to clarify the weld pool formation process in plasma keyhole arc welding (PKAW). We adopted, for the first time, the measurement of the 3D convection inside the weld pool in PKAW by stereo synchronous imaging of tungsten tracer particles using two sets of x-ray transmission systems. The 2D convection on the weld pool surface was also measured using zirconia tracer particles. Through these measurements, the convection in a wide range of weld pools from the vicinity of the keyhole to the rear region was successfully visualized. In order to discuss the heat transport process in a weld pool, the 2D temperature distribution on the weld pool surface was also measured by two-color pyrometry. The results of the comprehensive experimental measurement indicate that the shear force due to plasma flow is found to be the dominant driving force in the weld pool formation process in PKAW. Thus, heat transport in a weld pool is considered to be governed by two large convective patterns near the keyhole: (1) eddy pairs on the surface (perpendicular to the torch axis), and (2) eddy pairs on the bulk of the weld pool (on the plane of the torch). They are formed with an equal velocity of approximately 0.35 m s-1 and are mainly driven by shear force. Furthermore, the flow velocity of the weld pool convection becomes considerably higher than that of other welding processes, such as TIG welding and GMA welding, due to larger plasma flow velocity.

  9. Laboratory studies of the dynamic of resonance cones formation in magnetized plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Nazarov, V. V.; Starodubtsev, M. V.; Kostrov, A. V. [Russian Academy of Sciences, Institute of Applied Physics, Nizhny Novgorod (Russian Federation)

    2013-03-15

    The paper is devoted to experimental studies of formation of resonance cones in magnetized plasmas by pulsed RF source in the lower-hybrid (whistler) and the upper-hybrid frequency ranges. It is shown that in both frequency ranges, resonance cones exhibit similar dynamics after switching-on the RF source: at first, wide maxima of radiation are formed in non-resonance directions, which then become narrower, with their direction approaching the resonance one. While the resonance cones are being formed, one observes a fine structure in the form of secondary radiation maxima. It is shown that the characteristic formation time of stationary resonance cones is determined by the minimal value of the group velocity of the quasi-electrostatic waves excited by the antenna. In the low-temperature plasma, this value is limited in the lower-hybrid frequency range by the spatial spectrum of the emitting antenna and in the upper-hybrid range, by the effects of spatial plasma dispersion.

  10. Radiation damage and redeposited-layer formation on plasma facing materials in the TRIAM-1M

    International Nuclear Information System (INIS)

    Hirai, Takeshi; Tokunaga, Kazutoshi; Fujiwara, Tadashi; Yoshida, Naoaki; Itoh, Satoshi

    1997-01-01

    As an aim to obtain some informations of material damage at long time discharge and redeposited-layer formed by scrape off layer (SOL), two collector probe experiments were conducted by using Tokamak of Research Institute for Applied Mechanics (TRIAM-IM). As a result, radiation damage due to charge exchange neutral particles of more than 2 MeV high energy component flying from plasma was observed. And in either experiment, redeposited-layer formation due to deposite of impurity atoms in the plasma could be observed. In the first experiment, a redeposited-layer with fine crystalline particles was observed, which was formed to contain multi-component system of Fe, Cr and Ni and light elements O and C. And, in the second experiment, a redeposited-layer grain-grown in which main component was Mo was observed. Surface modification of plasma facing material such as above-mentioned damage induction, redeposited-layer formation, and so on, was thought to much affect deterioration of materials and recycling of hydrogen. (G.K.)

  11. Collision-dominated dust sheaths and voids - observations in micro-gravity experiments and numerical investigation of the force balance relations

    International Nuclear Information System (INIS)

    Tsytovich, V N; Morfill, G; Konopka, U; Thomas, H

    2003-01-01

    Numerical solutions of stationary force balance equations are used to investigate the possible dust configurations (dust structures) in complex plasmas between two floating potential plane electrodes. The distance between electrodes is assumed to be larger than the ion-neutral mean free path and the hydrodynamic description is used. It includes the known forces operating in this limit, the ionization source and the dust charge variations. The stationary balance equations are solved both in the case of the presence of one-size dust grains and for the case of a mixture of grains with two different sizes. Recent micro-gravity experiments with single-size dust grains and two-different-size dust grains show the formation of a system of dust sheaths and dust voids between the two plane electrodes. The observed configurations of dust structures depend strongly on the gas pressure and the degree of ionization used. The numerical investigations are able to show the necessary conditions for the types of structure to be created and give their size. The size of the structures observed is larger than the ion-neutral mean free path and is of the order of magnitude of that obtained numerically. The numerical investigations give details of the spatial distributions, the dust particles, the electron/ion densities, the ion drift velocity and dust charges inside and outside different dust structures. These details have not yet been investigated experimentally and can indicate directions for further experimental work to be performed. The single-dust-sheath structure with single-size dust particles surrounded by dust free regions (dust wall-voids) and floating potential electrodes is computed. Such a structure was observed recently and the computational results are in agreement with observations. It is shown that more often a dust void in the centre is observed. It is found that a dust void in the centre region between two electrodes is formed if the ionization rate is larger than the

  12. Theoretical and computational studies of the sheath of a planar wall

    Science.gov (United States)

    Giraudo, Martina; Camporeale, Enrico; Delzanno, Gian Luca; Lapenta, Giovanni

    2012-03-01

    We present an investigation of the stability and nonlinear evolution of the sheath of a planar wall. We focus on the electrostatic limit. The stability analysis is conducted with a fluid model where continuity and momentum equations for the electrons and ions are coupled through Poisson's equation. The effect of electron emission from the wall is studied parametrically. Our results show that a sheath instability associated with the emitted electrons can exist. Following Ref. [1], it is interpreted as a Rayleigh-Taylor instability driven by the favorable combination of the sheath electron density gradient and electric field. Fully kinetic Particle-In-Cell (PIC) simulations will also be presented to investigate whether this instability indeed exists and to study the nonlinear effect of electron emission on the sheath profiles. The simulations will be conducted with CPIC, a new electrostatic PIC code that couples the standard PIC algorithm with strategies for generation and adaptation of the computational grid. [4pt] [1] G.L. Delzanno, ``A paradigm for the stability of the plasma sheath against fluid perturbations,'' Phys. Plasmas 18, 103508 (2011).

  13. The effect of polycarboxylate shell of magnetite nanoparticles on protein corona formation in blood plasma

    Energy Technology Data Exchange (ETDEWEB)

    Szekeres, Márta, E-mail: szekeres@chem.u-szeged.hu [Department of Physical Chemistry and Materials Sciences, University of Szeged, Hungary, 1 Aradi vt, 6720 Szeged (Hungary); Tóth, Ildikó Y. [Department of Physical Chemistry and Materials Sciences, University of Szeged, Hungary, 1 Aradi vt, 6720 Szeged (Hungary); Turcu, R. [National Institute R& D for Isotopic and Molecular Technology, Cluj-Napoca 400293 (Romania); Tombácz, Etelka [Department of Physical Chemistry and Materials Sciences, University of Szeged, Hungary, 1 Aradi vt, 6720 Szeged (Hungary)

    2017-04-01

    The development of protein corona around nanoparticles upon administration to the human body is responsible in a large part for their biodistribution, cell-internalization and toxicity or biocompatibility. We studied the influence of the chemical composition of polyelectrolyte shells (citric acid (CA) and poly(acrylic-co-maleic acid) (PAM)) of core-shell magnetite nanoparticles (MNPs) on the evolution of protein corona in human plasma (HP). The aggregation state and zeta potential of the particles were measured in the range of HP concentration between 1 and 80 (v/v)% 3 min and 20 h after dispersing the particles in HP diluted with Tris buffered saline. Naked MNPs aggregated in HP solution, but the carboxylated MNPs became stabilized colloidally at higher plasma concentrations. Significant differences were observed at low plasma concentration. CA@MNPs aggregated instantly while the hydrodynamic diameter of PAM@MNP increased only slightly at 1–3 v/v % HP concentrations. The observed differences in protein corona formation can be explained by the differences in the steric effects of the polycarboxylate shells. It is interesting that relatively small but systematic changes in zeta potential alter the aggregation state significantly. - Highlights: • Human plasma protein corona cannot stabilize naked and citrate-coated magnetite nanoparticles. • Polycarboxylic acid (PAM) coated MNPs are well stabilized with HP protein corona. • Stability pattern of naked, CA and PAM-coated MNPs is not predicted by zeta potential.

  14. Measuring Plasma Formation Field Strength and Current Loss in Pulsed Power Diodes

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Mark D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Radiographic Technologies Dept.; Patel, Sonal G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Radiographic Technologies Dept.; Falcon, Ross Edward [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Radiographic Technologies Dept.; Cartwright, Keith [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Radiographic Technologies Dept.; Kiefer, Mark L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Radiographic Technologies Dept.; Cuneo, Michael E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Radiographic Technologies Dept.; Maron, Yitzhak [Weizmann Inst. of Science, Rehovot (Israel)

    2017-11-01

    This LDRD investigated plasma formation, field strength, and current loss in pulsed power diodes. In particular the Self-Magnetic Pinch (SMP) e-beam diode was studied on the RITS-6 accelerator. Magnetic fields of a few Tesla and electric fields of several MV/cm were measured using visible spectroscopy techniques. The magnetic field measurements were then used to determine the current distribution in the diode. This distribution showed that significant beam current extends radially beyond the few millimeter x-ray focal spot diameter. Additionally, shielding of the magnetic field due to dense electrode surface plasmas was observed, quantified, and found to be consistent with the calculated Spitzer resistivity. In addition to the work on RITS, measurements were also made on the Z-machine looking to quantify plasmas within the power flow regions. Measurements were taken in the post-hole convolute and final feed gap regions on Z. Dopants were applied to power flow surfaces and measured spectroscopically. These measurements gave species and density/temperature estimates. Preliminary B-field measurements in the load region were attempted as well. Finally, simulation work using the EMPHASIS, electromagnetic particle in cell code, was conducted using the Z MITL conditions. The purpose of these simulations was to investigate several surface plasma generations models under Z conditions for comparison with experimental data.

  15. Interleaflet Coupling, Pinning, and Leaflet Asymmetry—Major Players in Plasma Membrane Nanodomain Formation

    Science.gov (United States)

    Fujimoto, Toyoshi; Parmryd, Ingela

    2017-01-01

    The plasma membrane has a highly asymmetric distribution of lipids and contains dynamic nanodomains many of which are liquid entities surrounded by a second, slightly different, liquid environment. Contributing to the dynamics is a continuous repartitioning of components between the two types of liquids and transient links between lipids and proteins, both to extracellular matrix and cytoplasmic components, that temporarily pin membrane constituents. This make plasma membrane nanodomains exceptionally challenging to study and much of what is known about membrane domains has been deduced from studies on model membranes at equilibrium. However, living cells are by definition not at equilibrium and lipids are distributed asymmetrically with inositol phospholipids, phosphatidylethanolamines and phosphatidylserines confined mostly to the inner leaflet and glyco- and sphingolipids to the outer leaflet. Moreover, each phospholipid group encompasses a wealth of species with different acyl chain combinations whose lateral distribution is heterogeneous. It is becoming increasingly clear that asymmetry and pinning play important roles in plasma membrane nanodomain formation and coupling between the two lipid monolayers. How asymmetry, pinning, and interdigitation contribute to the plasma membrane organization is only beginning to be unraveled and here we discuss their roles and interdependence. PMID:28119914

  16. Simulation of Plasma Jet Merger and Liner Formation within the PLX- α Project

    Science.gov (United States)

    Samulyak, Roman; Chen, Hsin-Chiang; Shih, Wen; Hsu, Scott

    2015-11-01

    Detailed numerical studies of the propagation and merger of high Mach number argon plasma jets and the formation of plasma liners have been performed using the newly developed method of Lagrangian particles (LP). The LP method significantly improves accuracy and mathematical rigor of common particle-based numerical methods such as smooth particle hydrodynamics while preserving their main advantages compared to grid-based methods. A brief overview of the LP method will be presented. The Lagrangian particle code implements main relevant physics models such as an equation of state for argon undergoing atomic physics transformation, radiation losses in thin optical limit, and heat conduction. Simulations of the merger of two plasma jets are compared with experimental data from past PLX experiments. Simulations quantify the effect of oblique shock waves, ionization, and radiation processes on the jet merger process. Results of preliminary simulations of future PLX- alpha experiments involving the ~ π / 2 -solid-angle plasma-liner configuration with 9 guns will also be presented. Partially supported by ARPA-E's ALPHA program.

  17. Quantum effects on the formation of negative hydrogen ion by polarization electron capture in partially ionized dense hydrogen plasmas

    International Nuclear Information System (INIS)

    Jung, Young-Dae; Kato, Daiji

    2009-05-01

    The quantum effects on the formation of the negative hydrogen ion (H - ) by the polarization electron capture process are investigated in partially ionized dense hydrogen plasmas. It is shown that the quantum effect strongly suppresses the electron capture radius as well as the cross section for the formation of the negative hydrogen ion. In addition, it has been found that the electron capture position is receded from the center of the projectile with decreasing the quantum effect of the plasma. (author)

  18. The Presence of Turbulent and Ordered Local Structure within the ICME Shock-sheath and Its Contribution to Forbush Decrease

    Energy Technology Data Exchange (ETDEWEB)

    Shaikh, Zubair; Bhaskar, Ankush [Indian Institute of Geomagnetism (IIG), New Panvel, Navi Mumbai-410218 (India); Raghav, Anil, E-mail: raghavanil1984@gmail.com [University Department of Physics, University of Mumbai, Vidyanagari, Santacruz (E), Mumbai-400098 (India)

    2017-08-01

    The transient interplanetary disturbances evoke short-time cosmic-ray flux decrease, which is known as Forbush decrease. The traditional model and understanding of Forbush decrease suggest that the sub-structure of an interplanetary counterpart of coronal mass ejection (ICME) independently contributes to cosmic-ray flux decrease. These sub-structures, shock-sheath, and magnetic cloud (MC) manifest as classical two-step Forbush decrease. The recent work by Raghav et al. has shown multi-step decreases and recoveries within the shock-sheath. However, this cannot be explained by the ideal shock-sheath barrier model. Furthermore, they suggested that local structures within the ICME’s sub-structure (MC and shock-sheath) could explain this deviation of the FD profile from the classical FD. Therefore, the present study attempts to investigate the cause of multi-step cosmic-ray flux decrease and respective recovery within the shock-sheath in detail. A 3D-hodogram method is utilized to obtain more details regarding the local structures within the shock-sheath. This method unambiguously suggests the formation of small-scale local structures within the ICME (shock-sheath and even in MC). Moreover, the method could differentiate the turbulent and ordered interplanetary magnetic field (IMF) regions within the sub-structures of ICME. The study explicitly suggests that the turbulent and ordered IMF regions within the shock-sheath do influence cosmic-ray variations differently.

  19. Rectus sheath hematoma: three case reports

    Directory of Open Access Journals (Sweden)

    Kapan Selin

    2008-01-01

    Full Text Available Abstract Introduction Rectus sheath hematoma is an uncommon cause of acute abdominal pain. It is an accumulation of blood in the sheath of the rectus abdominis, secondary to rupture of an epigastric vessel or muscle tear. It could occur spontaneously or after trauma. They are usually located infraumblically and often misdiagnosed as acute abdomen, inflammatory diseases or tumours of the abdomen. Case presentation We reported three cases of rectus sheath hematoma presenting with a mass in the abdomen and diagnosed by computerized tomography. The patients recovered uneventfully after bed rest, intravenous fluid replacement, blood transfusion and analgesic treatment. Conclusion Rectus sheath hematoma is a rarely seen pathology often misdiagnosed as acute abdomen that may lead to unnecessary laparotomies. Computerized tomography must be chosen for definitive diagnosis since ultrasonography is subject to error due to misinterpretation of the images. Main therapy is conservative management.

  20. Heavy ion beam study of potential formation in bumpy torus plasma

    International Nuclear Information System (INIS)

    Takasugi, Keiichi.

    1985-01-01

    A heavy ion beam probe is constructed for the study of plasma confinement in Nagoya Bumpy Torus (NBT-1/1M). The measurement of the local plasma potential as well as the electron density profile is possible with good spatial (1 -- 2 cm) and temporal (-- 1 msec) resolutions. The feedback controlled detection technique and the time resolved fast detection technique are coupled to use, which enables us to measure local potential reliably even in the pulsed experiments. The process of the devlopment of concentric equipotential surface is observed. The cold and collisional plasma in bumpy torus is not in the equilibrium (C-mode), and the vertically polarized potential profile is produced by the toroidal drift. With the growth of warm collisionless electron component, the polarization is poloidally short-circuited, and the concentric equipotential surface is developed. The concentric negative potential well and its positive rim are observed in the standard operation. The position of the potential boundary (rim) moves with the second harmonic ECRH zone at the midplane of each mirror section, where the hot electron ring exists. The rim potential is formed by the direct loss of warm electrons. It is confirmed that the core electron heating is essential for the negative potential formation. The potential depth is much larger than the ion temperature Tsub(i), and cannot be explained by the existing neoclassical theory. A stable positive potential is observed near T-M transition. The positive potential is also observed in the ion heated plasma. Relating to the growth of the high energy component, the potential formation due to direct loss process is discussed. (author)

  1. Generalized statistics and the formation of a quark-gluon plasma

    International Nuclear Information System (INIS)

    Teweldeberhan, A.M.; Miller, H.G.; Tegen, R.

    2003-01-01

    The aim of this paper is to investigate the effect of a non-extensive form of statistical mechanics proposed by Tsallis on the formation of a quark-gluon plasma (QGP). We suggest to account for the effects of the dominant part of the long-range interactions among the constituents in the QGP by a change in the statistics of the system in this phase, and we study the relevance of this statistics for the phase transition. The results show that small deviations (≈ 10%) from Boltzmann–Gibbs statistics in the QGP produce a noticeable change in the phase diagram, which can, in principle, be tested experimentally. (author)

  2. Experimental evidence for collisional shock formation via two obliquely merging supersonic plasma jets

    Energy Technology Data Exchange (ETDEWEB)

    Merritt, Elizabeth C., E-mail: emerritt@lanl.gov; Adams, Colin S. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); University of New Mexico, Albuquerque, New Mexico 87131 (United States); Moser, Auna L.; Hsu, Scott C., E-mail: scotthsu@lanl.gov; Dunn, John P.; Miguel Holgado, A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Gilmore, Mark A. [University of New Mexico, Albuquerque, New Mexico 87131 (United States)

    2014-05-15

    We report spatially resolved measurements of the oblique merging of two supersonic laboratory plasma jets. The jets are formed and launched by pulsed-power-driven railguns using injected argon, and have electron density ∼10{sup 14} cm{sup −3}, electron temperature ≈1.4 eV, ionization fraction near unity, and velocity ≈40 km/s just prior to merging. The jet merging produces a few-cm-thick stagnation layer, as observed in both fast-framing camera images and multi-chord interferometer data, consistent with collisional shock formation [E. C. Merritt et al., Phys. Rev. Lett. 111, 085003 (2013)].

  3. ICME-driven sheath regions deplete the outer radiation belt electrons

    Science.gov (United States)

    Hietala, H.; Kilpua, E. K.; Turner, D. L.

    2013-12-01

    It is an outstanding question in space weather and solar wind-magnetosphere interaction studies, why some storms result in an increase of the outer radiation belt electron fluxes, while others deplete them or produce no change. One approach to this problem is to look at differences in the storm drivers. Traditionally drivers have been classified to Stream Interaction Regions (SIRs) and Interplanetary Coronal Mass Ejections (ICMEs). However, an 'ICME event' is a complex structure: The core is a magnetic cloud (MC; a clear flux rope structure). If the mass ejection is fast enough, it can drive a shock in front of it. This leads to the formation of a sheath region between the interplanetary shock and the leading edge of the MC. While both the sheath and the MC feature elevated solar wind speed, their other properties are very different. For instance, the sheath region has typically a much higher dynamic pressure than the magnetic cloud. Moreover, the sheath region has a high power in magnetic field and dynamic pressure Ultra Low Frequency (ULF) range fluctuations, while the MC is characterised by an extremely smooth magnetic field. Magnetic clouds have been recognised as important drivers magnetospheric activity since they can comprise long periods of very large southward Interplanetary Magnetic Field (IMF). Nevertheless, previous studies have shown that sheath regions can also act as storm drivers. In this study, we analyse the effects of ICME-driven sheath regions on the relativistic electron fluxes observed by GOES satellites on the geostationary orbit. We perform a superposed epoch analysis of 31 sheath regions from solar cycle 23. Our results show that the sheaths cause an approximately one order of magnitude decrease in the 24h-averaged electron fluxes. Typically the fluxes also stay below the pre-event level for more than two days. Further analysis reveals that the decrease does not depend on, e.g., whether the sheath interval contains predominantly northward

  4. Sheared flow layer formation in tokamak plasmas with reversed magnetic shear

    International Nuclear Information System (INIS)

    Dong, J.Q.; Long, Y.X.; Mou, Z.Z.; Zhang, J.H.; Li, J.Q.

    2005-01-01

    Sheared flow layer (SFL) formation due to magnetic energy release through tearing-reconnections in tokamak plasmas is investigated. The characteristics of the SFLs created in the development of double tearing mode, mediated by electron viscosity in configurations with non-monotonic safety factor q profiles and, therefore, two rational flux surfaces of same q value, are analyzed in detail as an example. Quasi-linear simulations demonstrate that the sheared flows induced by the mode have desirable characteristics (lying at the boundaries of the magnetic islands), and sufficient levels required for internal transport barrier (ITB) formation. A possible correlation of the SFLs with experimental observations, that double transport barrier structures are preferentially formed in proximity of the two rational surfaces, is also proffered. (author)

  5. Electron density as the main parameter influencing the formation of fullerenes in a carbon plasma

    International Nuclear Information System (INIS)

    Churilov, G.N.; Bulina, N.V.; Novikov, P.V.; Lopatin, V.A.; Vnukova, N.G.; Bachilo, S.M.; Tsyboulski, D.; Weisman, R.B.

    2002-01-01

    Thermodynamic estimates are presented for the formation of spheroidal and flat carbon clusters from reactant species of different charges. Charge is shown to strongly influence the geometry and stability of flat clusters. Changes in the charge of flat clusters can promote both their folding to spheroidal structures and their dissociation. It is concluded that the fluctuations of electron concentration in carbon plasma can result in the accumulation of fullerene clusters and the dissociation of flat clusters. Computer simulations of fullerene C 60 formation from carbon clusters having different charges are carried out using the program HyperChem 5 to calculate the optimal geometry of molecules and their molecular dynamics at different temperatures [ru

  6. Self-formation of polymer nanostructures in plasma etching: mechanisms and applications

    Science.gov (United States)

    Du, Ke; Jiang, Youhua; Huang, Po-Shun; Ding, Junjun; Gao, Tongchuan; Choi, Chang-Hwan

    2018-01-01

    In recent years, plasma-induced self-formation of polymer nanostructures has emerged as a simple, scalable and rapid nanomanufacturing technique to pattern sub-100 nm nanostructures. High-aspect-ratio nanostructures (>20:1) are fabricated on a variety of polymer surfaces such as poly(methylmethacrylate) (PMMA), polystyrene (PS), polydimethylsiloxane (PDMS), and fluorinated ethylene propylene (FEP). Sub-100 nm nanostructures (i.e. diameter  ⩽  50 nm) are fabricated in this one-step process without relying on slow and expensive nanolithography techniques. This review starts with discussion of the self-formation mechanisms including surface modulation, random masks, and materials impurities. Emphasis is put on the applications of polymer nanostructures in the fields of hierarchical nanostructures, liquid repellence, adhesion, lab-on-a-chip, surface enhanced Raman scattering (SERS), organic light emitting diode (OLED), and energy harvesting. The unique advantages of this nanomanufacturing technique are illustrated, followed by prospects.

  7. Synthesis of sheath voltage drops in asymmetric radio-frequency discharges

    International Nuclear Information System (INIS)

    Yonemura, Shigeru; Nanbu, Kenichi; Iwata, Naoaki

    2004-01-01

    A sheath voltage drop in asymmetric discharges is one of the most important parameters of radio-frequency capacitively coupled plasmas because it determines the kinetic energy of the ions incident on the target or substrate. In this study, we developed a numerical simulation code to estimate the sheath voltage drops and, consequently, the self-bias voltage. We roughly approximated general asymmetric rf discharges to one-dimensional spherical ones. The results obtained by using our simulation code are consistent with measurements and Lieberman's theory

  8. In vacuo substrate pretreatments for enhancing nanodiamond formation in electron cyclotron resonance plasma

    International Nuclear Information System (INIS)

    Teii, Kungen; Kouzuma, Yutaka; Uchino, Kiichiro

    2006-01-01

    Substrate pretreatment conditions at low pressures have been examined for enhancing nanocrystalline diamond formation on silicon in electron cyclotron resonance (ECR) plasma. Three kinds of pretreatments (I) exposure to an ECR H 2 plasma with application of a substrate bias from -100 to +30 V (II) hot-filament heating in H 2 gas, and (III) hot-filament heating in vacuum, were used alone or followed by carburization prior to a two-step process of ion-enhanced nucleation in an ECR plasma and subsequent growth in a hot-filament system. The number density of diamond particles after the final growth step was greatly increased up to the order of 10 7 -10 8 cm -2 when applying pretreatment (I) at the bias of 0 V corresponding to the ion-bombardment energy of around 10 eV. In this treatment, a clean and smooth surface with minimal damage was made by the dominance of anisotropic etching by hydrogen ions over isotropic etching by hydrogen atoms. The number density of diamond particles was still more increased when applying pretreatment (II), but the treated surface was unfavorably contaminated and roughened

  9. Formation of microchannels from low-temperature plasma-deposited silicon oxynitride

    Science.gov (United States)

    Matzke, Carolyn M.; Ashby, Carol I. H.; Bridges, Monica M.; Manginell, Ronald P.

    2000-01-01

    A process for forming one or more fluid microchannels on a substrate is disclosed that is compatible with the formation of integrated circuitry on the substrate. The microchannels can be formed below an upper surface of the substrate, above the upper surface, or both. The microchannels are formed by depositing a covering layer of silicon oxynitride over a mold formed of a sacrificial material such as photoresist which can later be removed. The silicon oxynitride is deposited at a low temperature (.ltoreq.100.degree. C.) and preferably near room temperature using a high-density plasma (e.g. an electron-cyclotron resonance plasma or an inductively-coupled plasma). In some embodiments of the present invention, the microchannels can be completely lined with silicon oxynitride to present a uniform material composition to a fluid therein. The present invention has applications for forming microchannels for use in chromatography and electrophoresis. Additionally, the microchannels can be used for electrokinetic pumping, or for localized or global substrate cooling.

  10. Plasma Turbulence Suppression and Transport Barrier Formation by Externally Driven RF Waves in Spherical Tokamaks

    International Nuclear Information System (INIS)

    Bruma, C.; Cuperman, S.C.; Komoshvili, K.

    2002-01-01

    Turbulent transport of heat and particles is the principle obstacle confronting controlled fusion today. Thus, we investigate quantitatively the suppression of turbulence and formation of transport barriers in spherical tokamaks by sheared electric fields generated by externally driven radio-frequency (RF) waves, in the frequency range o)A n o] < o)ci (e)A and o)ci are the Alfven and ion cyclotron frequencies). This investigation consists of the solution of the full-wave equation for a spherical tokamak in the presence of externally driven fast waves and the evaluation of the power dissipation by the mode-converted Alfven waves. This in turn, provides a radial flow shear responsible for the suppression of plasma turbulence. Thus, a strongly non-linear equation for the radial sheared electric field is solved, the turbulent transport suppression rate is evaluated and compared with the ion temperature gradient (ITG) instability increment. For illustration, the case of START-like device (Sykes 2000) is treated. Thus, (i) the exact D-shape cross-section is considered; (ii) additional kinetic (including Landau damping) and particle trapping effects are added to the resistive two-fluid dielectric tensor operator; (iii) a finite extension antenna located on the low-field-side of the plasma is considered; (iv) a rigorous 2.5 finite elements numerical code (Sewell 1993) is used; and (v) the turbulence and transport barrier generated as a result of wave-plasma interaction is evaluated

  11. Proton radiography of petawatt-driven channel formation in a plasma gradient

    Science.gov (United States)

    Hill, Matthew; Sircombe, Nathan; Ramsay, Martin; Brown, Colin; Hobbs, Lauren; Allan, Peter; James, Steven; Norreys, Peter; Ratan, Naren; Ceurvorst, Luke

    2015-11-01

    Channel formation by ultra-intense laser pulses in underdense plasmas is a challenging simulation problem with direct relevance to many areas of current research. Recent experiments at the Orion laser facility have used high-energy proton radiography (>40 MeV) driven by a 1 ω petawatt beam to directly probe the interaction of another petawatt beam with a well-characterized plasma density gradient. The interaction plasma was generated using a 3 ω long-pulse beam and diagnosed using a 2 ω optical probe, simultaneously imaged onto four gated optical imagers and two streak cameras. The unique capabilities of the Orion facility allowed a comparison of the channels generated by intense 1 ω (1 μm, 100-500 J, 0.6 ps, 1021 W/cm2, f/3 parabola) and 2 ω (0.5 μm, 100 J, 0.6 ps, 1020 W/cm2, f/6 parabola) pulses. Proton radiographs of these channels are presented along with PIC simulations performed using the EPOCH code, supported by K- α measurements of hot electron beam divergence and magnetic spectrometer data. Together these provide a solid foundation for improvements to hydrodynamic and PIC simulations, further developing the predictive capabilities required to optimize future experiments.

  12. Effects of foreign gases on H- formation in a magnetic multipole hydrogen plasma source

    International Nuclear Information System (INIS)

    Mosbach, T

    2005-01-01

    The effects of admixtures of argon and xenon and of nitrogen (for the purpose of comparison between atomic and molecular additives) to a given H 2 base pressure are investigated with respect to the vibrational populations of hydrogen molecules in the electronic ground state, to the density of negative ions and to the electron energy distribution function (EEDF). This work aims to unravel the influence of the vibrational population distribution and the EEDF on the formation of negative hydrogen ions in the volume of a magnetic multipole plasma source. The admixtures of these foreign gases lead to a measurable state-specific decrease in the population of the high vibrational states of the H 2 molecule. Higher states exhibit a clearly stronger decrease with increasing foreign gas partial pressure. The measured density of the negative ions decreases with increasing noble gas partial pressure, despite the fact that the low-energy fraction of the measured EEDF is modified such that the efficiency of ion formation by dissociative attachment is more favourable. The various measurements are compared for the case of the H 2 -Ar discharge, with a global model developed for the stationary plasma state. The decrease in the density of the negative ions with increasing argon admixture can be reproduced by the model with high accuracy on the basis of measured population distributions of the vibrationally excited H 2 molecules and the measured EEDF

  13. Formation of Negative Metal Ions in a Field-Free Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, E

    1969-02-15

    A field-free and homogeneous plasma of a large volume is formed by neutron irradiation of {sup 3}He at a density corresponding to NTP and at gas temperatures in the range 300-1600 deg K. The accuracy and ease by which the source density of free electrons can be varied and controlled offers special possibilities to study recombination and attachment phenomena in the absence of diffusion. These possibilities are described and utilized for the study of the effects of mixing the helium gas with metal vapours. Attachment of electrons to neutral metal atoms is found to be the dominant cause of electron removal for metal concentrations above certain limits. Negative metal ions are formed and the rate of their formation was determined to be about 10{sup -13} cm{sup 3}/s. Evidence is also presented, that for such conditions where formation of negative metal ions does not occur, the electrons are lost in electron-ion recombinations, in which the third body is not an electron. No molecular helium spectrum is observed from the plasma when it is very close to spectroscopic purity. Instead, between 3,000-7,000 A only one atomic helium line at 5875 A is observed. The recombination of He{sup +}{sub 2} may therefore be dissociative. A difference in recombination behaviour between {sup 3}He and {sup 4}He at high pressures may therefore exist considering results from previous work on {sup 4}He.

  14. Fluorocarbon polymer formation, characterization, and reduction in polycrystalline-silicon etching with CF4-added plasma

    International Nuclear Information System (INIS)

    Xu Songlin; Sun Zhiwen; Chen Arthur; Qian Xueyu; Podlesnik, Dragan

    2001-01-01

    Addition of CF 4 into HBr-based plasma for polycrystalline-silicon gate etching reduces the deposition of an etch byproduct, silicon oxide, onto the chamber wall but tends to generate organic polymer. In this work, a detailed study has been carried out to analyze the mechanism of polymerization and to characterize the polymer composition and quantity. The study has shown that the polymer formation is due to the F-radical depletion by H atoms dissociated from HBr. The composition of the polymer changes significantly with CF 4 concentration in the gas feed, and the polymer deposition rate depends on CF 4 % and other process conditions such as source power, bias power, and pressure. Surface temperature also affects the polymer deposition rate. Adding O 2 into the plasma can clean the organic polymer, but the O 2 amount has to be well controlled in order to prevent the formation of silicon oxide. Based on a series of tests to evaluate polymer deposition and oxide cleaning with O 2 addition, an optimized process regime in terms of O 2 -to-CF 4 ratio has been identified to simultaneously suppress the polymer and oxide deposition so that the etch process becomes self-cleaning

  15. Formation of Negative Metal Ions in a Field-Free Plasma

    International Nuclear Information System (INIS)

    Larsson, E.

    1969-02-01

    A field-free and homogeneous plasma of a large volume is formed by neutron irradiation of 3 He at a density corresponding to NTP and at gas temperatures in the range 300-1600 deg K. The accuracy and ease by which the source density of free electrons can be varied and controlled offers special possibilities to study recombination and attachment phenomena in the absence of diffusion. These possibilities are described and utilized for the study of the effects of mixing the helium gas with metal vapours. Attachment of electrons to neutral metal atoms is found to be the dominant cause of electron removal for metal concentrations above certain limits. Negative metal ions are formed and the rate of their formation was determined to be about 10 -13 cm 3 /s. Evidence is also presented, that for such conditions where formation of negative metal ions does not occur, the electrons are lost in electron-ion recombinations, in which the third body is not an electron. No molecular helium spectrum is observed from the plasma when it is very close to spectroscopic purity. Instead, between 3,000-7,000 A only one atomic helium line at 5875 A is observed. The recombination of He + 2 may therefore be dissociative. A difference in recombination behaviour between 3 He and 4 He at high pressures may therefore exist considering results from previous work on 4 He

  16. Electrostatic wave heating and possible formation of self-generated high electric fields in a magnetized plasma

    Science.gov (United States)

    Mascali, D.; Celona, L.; Gammino, S.; Miracoli, R.; Castro, G.; Gambino, N.; Ciavola, G.

    2011-10-01

    A plasma reactor operates at the Laboratori Nazionali del Sud of INFN, Catania, and it has been used as a test-bench for the investigation of innovative mechanisms of plasma ignition based on electrostatic waves (ES-W), obtained via the inner plasma EM-to-ES wave conversion. Evidences of Bernstein wave (BW) generation will be shown. The Langmuir probe measurements have revealed a strong increase of the ion saturation current, where the BW are generated or absorbed, this being a signature of possible high energy ion flows. The results are interpreted through the Bernstein wave heating theory, which predicts the formation of high speed rotating layers of the plasma (a dense plasma ring is in fact observed). High intensity inner plasma self-generated electric fields (on the order of several tens of kV/cm) come out by our calculations.

  17. Parallel Transport with Sheath and Collisional Effects in Global Electrostatic Turbulent Transport in FRCs

    Science.gov (United States)

    Bao, Jian; Lau, Calvin; Kuley, Animesh; Lin, Zhihong; Fulton, Daniel; Tajima, Toshiki; Tri Alpha Energy, Inc. Team

    2017-10-01

    Collisional and turbulent transport in a field reversed configuration (FRC) is studied in global particle simulation by using GTC (gyrokinetic toroidal code). The global FRC geometry is incorporated in GTC by using a field-aligned mesh in cylindrical coordinates, which enables global simulation coupling core and scrape-off layer (SOL) across the separatrix. Furthermore, fully kinetic ions are implemented in GTC to treat magnetic-null point in FRC core. Both global simulation coupling core and SOL regions and independent SOL region simulation have been carried out to study turbulence. In this work, the ``logical sheath boundary condition'' is implemented to study parallel transport in the SOL. This method helps to relax time and spatial steps without resolving electron plasma frequency and Debye length, which enables turbulent transports simulation with sheath effects. We will study collisional and turbulent SOL parallel transport with mirror geometry and sheath boundary condition in C2-W divertor.

  18. On the Mechanism of In Nanoparticle Formation by Exposing ITO Thin Films to Hydrogen Plasmas.

    Science.gov (United States)

    Fan, Zheng; Maurice, Jean-Luc; Chen, Wanghua; Guilet, Stéphane; Cambril, Edmond; Lafosse, Xavier; Couraud, Laurent; Merghem, Kamel; Yu, Linwei; Bouchoule, Sophie; Roca I Cabarrocas, Pere

    2017-10-31

    We present our systematic work on the in situ generation of In nanoparticles (NPs) from the reduction of ITO thin films by hydrogen (H 2 ) plasma exposure. In contrast to NP deposition from the vapor phase (i.e., evaporation), the ITO surface can be considered to be a solid reservoir of In atoms thanks to H 2 plasma reduction. On one hand, below the In melting temperature, solid In NP formation is governed by the island-growth mode, which is a self-limiting process because the H 2 plasma/ITO interaction will be gradually eliminated by the growing In NPs that cover the ITO surface. On the other hand, we show that above the melting temperature In droplets prefer to grow along the grain boundaries on the ITO surface and dramatic coalescence occurs when the growing NPs connect with each other. This growth-connection-coalescence behavior is even strengthened on In/ITO bilayers, where In particles larger than 10 μm can be formed, which are made of evaporated In atoms and in situ released ones. Thanks to this understanding, we manage to disperse dense evaporated In NPs under H 2 plasma exposure when inserting an ITO layer between them and substrate like c-Si wafer or glass by modifying the substrate surface chemistry. Further studies are needed for more precise control of this self-assembling method. We expect that our findings are not limited to ITO thin films but could be applicable to various metal NPs generation from the corresponding metal oxide thin films.

  19. Modeling Plasma Formation in a Micro-gap at Microwave Frequency

    Science.gov (United States)

    Bowman, Arthur; Remillard, Stephen

    2013-03-01

    In the presence of a strong electric field, gas molecules become ionized, forming a plasma. The study of this dielectric breakdown at microwave frequency has important applications in improving the operation of radio frequency (RF) devices, where the high electric fields present in small gaps can easily ionize gases like air. A cone and tuner resonant structure was used to induce breakdown of diatomic Nitrogen in adjustable micro-gaps ranging from 13 to 1,156 μm. The electric field for plasma formation exhibited strong pressure dependence in the larger gap sizes, as predicted by previous theoretical and experimental work. Pressure is proportional to the frequency of collision between electrons and molecules, which increases with pressure when the gap is large, but levels off in the micro-gap region. A separate model of the breakdown electric field based on the characteristic diffusion length of the plasma also fit the data poorly for these smaller gap sizes. This may be explained by a hypothesis that dielectric breakdown at and below the 100 μm gap size occurs outside the gap, an argument that is supported by the observation of very high breakdown threshold electric fields in this region. Optical emissions revealed that vibrational and rotational molecular transitions of the first positive electronic system are suppressed in micro-gaps, indicating that transitions into the molecular ground state do not occur in micro-gap plasmas. Acknowledgements: National Science Foundation under NSF-REU Grant No. PHY/DMR-1004811, the Provost's Office of Hope College, and the Hope College Division of Natural and Applied Sciences.

  20. Investigations of the role of nonlinear couplings in structure formation and transport regulation in plasma turbulence

    Science.gov (United States)

    Holland, Christopher George

    Studies of nonlinear couplings and dynamics in plasma turbulence are presented. Particular areas of focus are analytic studies of coherent structure formation in electron temperature gradient turbulence, measurement of nonlinear energy transfer in simulations of plasma turbulence, and bispectral analysis of experimental and computational data. The motivation for these works has been to develop and expand the existing theories of plasma transport, and verify the nonlinear predictions of those theories in simulation and experiment. In Chapter II, we study electromagnetic secondary instabilities of electron temperature gradient turbulence. The growth rate for zonal flow generation via modulational instability of electromagnetic ETG turbulence is calculated, as well as that for zonal (magnetic) field generation. In Chapter III, the stability and saturation of streamers in ETG turbulence is considered, and shown to depend sensitively upon geometry and the damping rates of the Kelvin-Helmholtz mode. Requirements for a credible theory of streamer transport are presented. In addition, a self-consistent model for interactions between ETG and ITG (ion temperature gradient) turbulence is presented. In Chapter IV, the nonlinear transfer of kinetic and internal energy is measured in simulations of plasma turbulence. The regulation of turbulence by radial decorrelation due to zonal flows and generation of zonal flows via the Reynolds stress are explicitly demonstrated, and shown to be symmetric facets of a single nonlinear process. Novel nonlinear saturation mechanisms for zonal flows are discussed. In Chapter V, measurements of fluctuation bicoherence in the edge of the DIII-D tokamak are presented. It is shown that the bicoherence increases transiently before a L-H transition, and decays to its initial value after the barrier has formed. The increase in bicoherence is localized to the region where the transport barrier forms, and shows strong coupling between well

  1. Modeling of low pressure plasma sources for microelectronics fabrication

    International Nuclear Information System (INIS)

    Agarwal, Ankur; Bera, Kallol; Kenney, Jason; Rauf, Shahid; Likhanskii, Alexandre

    2017-01-01

    Chemically reactive plasmas operating in the 1 mTorr–10 Torr pressure range are widely used for thin film processing in the semiconductor industry. Plasma modeling has come to play an important role in the design of these plasma processing systems. A number of 3-dimensional (3D) fluid and hybrid plasma modeling examples are used to illustrate the role of computational investigations in design of plasma processing hardware for applications such as ion implantation, deposition, and etching. A model for a rectangular inductively coupled plasma (ICP) source is described, which is employed as an ion source for ion implantation. It is shown that gas pressure strongly influences ion flux uniformity, which is determined by the balance between the location of plasma production and diffusion. The effect of chamber dimensions on plasma uniformity in a rectangular capacitively coupled plasma (CCP) is examined using an electromagnetic plasma model. Due to high pressure and small gap in this system, plasma uniformity is found to be primarily determined by the electric field profile in the sheath/pre-sheath region. A 3D model is utilized to investigate the confinement properties of a mesh in a cylindrical CCP. Results highlight the role of hole topology and size on the formation of localized hot-spots. A 3D electromagnetic plasma model for a cylindrical ICP is used to study inductive versus capacitive power coupling and how placement of ground return wires influences it. Finally, a 3D hybrid plasma model for an electron beam generated magnetized plasma is used to understand the role of reactor geometry on plasma uniformity in the presence of E  ×  B drift. (paper)

  2. Modeling of low pressure plasma sources for microelectronics fabrication

    Science.gov (United States)

    Agarwal, Ankur; Bera, Kallol; Kenney, Jason; Likhanskii, Alexandre; Rauf, Shahid

    2017-10-01

    Chemically reactive plasmas operating in the 1 mTorr-10 Torr pressure range are widely used for thin film processing in the semiconductor industry. Plasma modeling has come to play an important role in the design of these plasma processing systems. A number of 3-dimensional (3D) fluid and hybrid plasma modeling examples are used to illustrate the role of computational investigations in design of plasma processing hardware for applications such as ion implantation, deposition, and etching. A model for a rectangular inductively coupled plasma (ICP) source is described, which is employed as an ion source for ion implantation. It is shown that gas pressure strongly influences ion flux uniformity, which is determined by the balance between the location of plasma production and diffusion. The effect of chamber dimensions on plasma uniformity in a rectangular capacitively coupled plasma (CCP) is examined using an electromagnetic plasma model. Due to high pressure and small gap in this system, plasma uniformity is found to be primarily determined by the electric field profile in the sheath/pre-sheath region. A 3D model is utilized to investigate the confinement properties of a mesh in a cylindrical CCP. Results highlight the role of hole topology and size on the formation of localized hot-spots. A 3D electromagnetic plasma model for a cylindrical ICP is used to study inductive versus capacitive power coupling and how placement of ground return wires influences it. Finally, a 3D hybrid plasma model for an electron beam generated magnetized plasma is used to understand the role of reactor geometry on plasma uniformity in the presence of E  ×  B drift.

  3. Formation of plasma induced surface damage in silica glass etching for optical waveguides

    International Nuclear Information System (INIS)

    Choi, D.Y.; Lee, J.H.; Kim, D.S.; Jung, S.T.

    2004-01-01

    Ge, B, P-doped silica glass films are widely used as optical waveguides because of their low losses and inherent compatibility with silica optical fibers. These films were etched by ICP (inductively coupled plasma) with chrome etch masks, which were patterned by reactive ion etching (RIE) using chlorine-based gases. In some cases, the etched surfaces of silica glass were very rough (root-mean square roughness greater than 100 nm) and we call this phenomenon plasma induced surface damage (PISD). Rough surface cannot be used as a platform for hybrid integration because of difficulty in alignment and bonding of active devices. PISD reduces the etch rate of glass and it is very difficult to remove residues on a rough surface. The objective of this study is to elucidate the mechanism of PISD formation. To achieve this goal, PISD formation during different etching conditions of chrome etch mask and silica glass was investigated. In most cases, PISD sources are formed on a glass surface after chrome etching, and metal compounds are identified in theses sources. Water rinse after chrome etching reduces the PISD, due to the water solubility of metal chlorides. PISD is decreased or even disappeared at high power and/or low pressure in glass etching, even if PISD sources were present on the glass surface before etching. In conclusion, PISD sources come from the chrome etching process, and polymer deposition on these sources during the silica etching cause the PISD sources to grow. In the area close to the PISD source there is a higher ion flux, which causes an increase in the etch rate, and results in the formation of a pit

  4. Elevated plasma factor VIII enhances venous thrombus formation in rabbits: contribution of factor XI, von Willebrand factor and tissue factor.

    Science.gov (United States)

    Sugita, Chihiro; Yamashita, Atsushi; Matsuura, Yunosuke; Iwakiri, Takashi; Okuyama, Nozomi; Matsuda, Shuntaro; Matsumoto, Tomoko; Inoue, Osamu; Harada, Aya; Kitazawa, Takehisa; Hattori, Kunihiro; Shima, Midori; Asada, Yujiro

    2013-07-01

    Elevated plasma levels of factor VIII (FVIII) are associated with increased risk of deep venous thrombosis. The aim of this study is to elucidate how elevated FVIII levels affect venous thrombus formation and propagation in vivo. We examined rabbit plasma FVIII activity, plasma thrombin generation, whole blood coagulation, platelet aggregation and venous wall thrombogenicity before and one hour after an intravenous infusion of recombinant human FVIII (rFVIII). Venous thrombus induced by the endothelial denudation of rabbit jugular veins was histologically assessed. Thrombus propagation was evaluated as indocyanine green fluorescence intensity. Argatroban, a thrombin inhibitor, and neutralised antibodies for tissue factor (TF), factor XI (FXI), and von Willebrand factor (VWF) were infused before or after thrombus induction to investigate their effects on venous thrombus formation or propagation. Recombinant FVIII (100 IU/kg) increased rabbit plasma FVIII activity two-fold and significantly enhanced whole blood coagulation and total plasma thrombin generation, but did not affect initial thrombin generation time, platelet aggregation and venous wall thrombogenicity. The rFVIII infusion also increased the size of venous thrombus 1 hour after thrombus induction. Argatroban and the antibodies for TF, FXI or VWF inhibited such enhanced thrombus formation and all except TF suppressed thrombus propagation. In conclusion, elevated plasma FVIII levels enhance venous thrombus formation and propagation. Excess thrombin generation by FXI and VWF-mediated FVIII recruitment appear to contribute to the growth of FVIII-driven venous thrombus.

  5. RF-sheath assessment of ICRF antenna geometry for long pulses

    International Nuclear Information System (INIS)

    Colas, L.; Bremond, S.

    2003-01-01

    Monitoring powered ion cyclotron resonance frequency (ICRF) antennas in magnetic fusion devices has revealed localized modifications of the plasma edge in the antenna shadow, most of them probably related to an enhanced polarization of the scrape-off layer (SOL) through radio-frequency (RF) sheath rectification. Although tolerable on present short RF pulses, sheaths should be minimized, as they may hinder proper operation of steady-state antennas and other subsystems connected magnetically to them, such as lower hybrid grills. As a first step towards mitigating RF sheaths in the design of future antennas, the present paper analyses the spatial structure of sheath potential maps in their vicinity, in relation with the 3D topology of RF near fields and the geometry of antenna front faces. Various combinations of poloidal radiating straps are first considered, and results are confronted to those inferred from transmission line theory. The dependence of sheath potentials on RF voltages or RF currents is studied. The role of RF near-field symmetries along tilted field lines is stressed to interpret such effects as that of strap phasing. A generalization of the 'dipole effect' is proposed. With similar arguments, the behavior of Faraday screen corners, where hot spots concentrate on Tore-Supra (TS), is then studied. The merits of aligning the antenna structure with the tilted magnetic field are thus discussed. The effect of switching from TS (high RF voltage near corners) to ITER-like electrical configurations of the straps (high voltage near equatorial plane) is also analyzed. (authors)

  6. Anode sheath transition in an anodic arc for synthesis of nanomaterials

    Science.gov (United States)

    Nemchinsky, V. A.; Raitses, Y.

    2016-06-01

    The arc discharge with ablating anode or so-called anodic arc is widely used for synthesis of nanomaterials, including carbon nanotubes and fullerens, metal nanoparticles etc. We present the model of this arc, which confirms the existence of the two different modes of the arc operation with two different anode sheath regimes, namely, with negative anode sheath and with positive anode sheath. It was previously suggested that these regimes are associated with two different anode ablating modes—low ablation mode with constant ablation rate and the enhanced ablation mode (Fetterman et al 2008 Carbon 46 1322). The transition of the arc operation from low ablation mode to high ablation mode is determined by the current density at the anode. The model can be used to self-consistently determine the distribution of the electric field, electron density and electron temperature in the near-anode region of the arc discharge. Simulations of the carbon arc predict that for low arc ablating modes, the current is driven mainly by the electron diffusion to the anode. For positive anode sheath, the anode voltage is close to the ionization potential of anode material, while for negative anode sheath, the anode voltage is an order of magnitude smaller. It is also shown that the near-anode plasma, is far from the ionization equilibrium.

  7. Anode sheath transition in an anodic arc for synthesis of nanomaterials

    International Nuclear Information System (INIS)

    Nemchinsky, V A; Raitses, Y

    2016-01-01

    The arc discharge with ablating anode or so-called anodic arc is widely used for synthesis of nanomaterials, including carbon nanotubes and fullerens, metal nanoparticles etc. We present the model of this arc, which confirms the existence of the two different modes of the arc operation with two different anode sheath regimes, namely, with negative anode sheath and with positive anode sheath. It was previously suggested that these regimes are associated with two different anode ablating modes—low ablation mode with constant ablation rate and the enhanced ablation mode (Fetterman et al 2008 Carbon 46 1322). The transition of the arc operation from low ablation mode to high ablation mode is determined by the current density at the anode. The model can be used to self-consistently determine the distribution of the electric field, electron density and electron temperature in the near-anode region of the arc discharge. Simulations of the carbon arc predict that for low arc ablating modes, the current is driven mainly by the electron diffusion to the anode. For positive anode sheath, the anode voltage is close to the ionization potential of anode material, while for negative anode sheath, the anode voltage is an order of magnitude smaller. It is also shown that the near-anode plasma, is far from the ionization equilibrium. (paper)

  8. Downstream plasma transport and metal ionization in a high-powered pulsed-plasma magnetron

    International Nuclear Information System (INIS)

    Meng, Liang; Szott, Matthew M.; McLain, Jake T.; Ruzic, David N.; Yu, He

    2014-01-01

    Downstream plasma transport and ionization processes in a high-powered pulsed-plasma magnetron were studied. The temporal evolution and spatial distribution of electron density (n e ) and temperature (T e ) were characterized with a 3D scanning triple Langmuir probe. Plasma expanded from the racetrack region into the downstream region, where a high n e peak was formed some time into the pulse-off period. The expansion speed and directionality towards the substrate increased with a stronger magnetic field (B), largely as a consequence of a larger potential drop in the bulk plasma region during a relatively slower sheath formation. The fraction of Cu ions in the deposition flux was measured on the substrate using a gridded energy analyzer. It increased with higher pulse voltage. With increased B field from 200 to 800 Gauss above racetrack, n e increased but the Cu ion fraction decreased from 42% to 16%. A comprehensive model was built, including the diffusion of as-sputtered Cu flux, the Cu ionization in the entire plasma region using the mapped n e and T e data, and ion extraction efficiency based on the measured plasma potential (V p ) distribution. The calculations matched the measurements and indicated the main causes of lower Cu ion fractions in stronger B fields to be the lower T e and inefficient ion extraction in a larger pre-sheath potential.

  9. Particle flows to shape and voltage surface discontinuities in the electron sheath surrounding a high voltage solar array in LEO

    Science.gov (United States)

    Metz, Roger N.

    1991-01-01

    This paper discusses the numerical modeling of electron flows from the sheath surrounding high positively biased objects in LEO (Low Earth Orbit) to regions of voltage or shape discontinuity on the biased surfaces. The sheath equations are derived from the Two-fluid, Warm Plasma Model. An equipotential corner and a plane containing strips of alternating voltage bias are treated in two dimensions. A self-consistent field solution of the sheath equations is outlined and is pursued through one cycle. The electron density field is determined by numerical solution of Poisson's equation for the electrostatic potential in the sheath using the NASCAP-LEO relation between electrostatic potential and charge density. Electron flows are calculated numerically from the electron continuity equation. Magnetic field effects are not treated.

  10. Formation of palladium hydrides in low temperature Ar/H_2-plasma

    International Nuclear Information System (INIS)

    Wulff, H.; Quaas, M.; Deutsch, H.; Ahrens, H.; Fröhlich, M.; Helm, C.A.

    2015-01-01

    20 nm thick Pd coatings deposited on Si substrates with 800 nm SiO_2 and 1 nm Cr buffer layers were treated in a 2.45 GHz microwave plasma source at 700 W plasma power and 40 Pa working pressure without substrate heating. For obtaining information on the effect of energy influx due to ion energy on the palladium films the substrate potential was varied from U_s_u_b = 0 V to − 150 V at constant gas flow corresponding to mean ion energies E_i from 0.22 eV ∙ cm"−"2 ∙ s"−"1 to 1.28 eV ∙ cm"−"2 ∙ s"−"1. In contrast to high pressure reactions with metallic Pd, under plasma exposure we do not observe solid solutions over a wide range of hydrogen concentration. The hydrogen incorporation in Pd films takes place discontinuously. At 0 V substrate voltage palladium hydride is formed in two steps to PdH_0_._1_4 and PdH_0_._5_7. At − 50 V substrate voltage PdH_0_._5_7 is formed directly. However, substrate voltages of − 100 V and − 150 V cause shrinking of the unit cell. We postulate the formation of two fcc vacancy palladium hydride clusters PdH_V_a_c(I) and PdH_V_a_c(II). Under longtime plasma exposure the fcc PdH_V_a_c(II) phase forms cubic PdH_1_._3_3. The fcc PdH_0_._5_7 phase decomposes at temperatures > 300 °C to form metallic fcc Pd. The hydrogen removal causes a decrease of lattice defects. In situ high temperature diffractometry measurements also confirm the existence of PdH_V_a_c(II) as a palladium hydride phase. Stoichiometric relationship between cubic PdH_1_._3_3 and fcc PdH_V_a_c(II) becomes evident from XR measurements and structure considerations. We assume both phases have the chemical composition Pd_3H_4. Up to 700 °C we observe phase transformation between both the fcc PdH_V_a_c(II) and cubic PdH_1_._3_3 phases. These phase transformations could be explained analog to a Bain distortion by displacive solid state structural changes. - Highlights: • Thin Pd films were treated under low pressure conditions by an Ar/H_2-plasma. • The

  11. Formation of palladium hydrides in low temperature Ar/H{sub 2}-plasma

    Energy Technology Data Exchange (ETDEWEB)

    Wulff, H., E-mail: wulff@uni-greifswald.de [University of Greifswald, Institute of Physics, Felix-Hausdorff-Straße 6, 17487 Greifswald (Germany); Quaas, M. [LITEC-LP, Brandteichstraße 20, 17489 Greifswald (Germany); Deutsch, H.; Ahrens, H. [University of Greifswald, Institute of Physics, Felix-Hausdorff-Straße 6, 17487 Greifswald (Germany); Fröhlich, M. [Leibniz Institute for Plasma Science and Technology e.V., Felix-Hausdorff-Straße 2 (Germany); Helm, C.A. [University of Greifswald, Institute of Physics, Felix-Hausdorff-Straße 6, 17487 Greifswald (Germany)

    2015-12-01

    20 nm thick Pd coatings deposited on Si substrates with 800 nm SiO{sub 2} and 1 nm Cr buffer layers were treated in a 2.45 GHz microwave plasma source at 700 W plasma power and 40 Pa working pressure without substrate heating. For obtaining information on the effect of energy influx due to ion energy on the palladium films the substrate potential was varied from U{sub sub} = 0 V to − 150 V at constant gas flow corresponding to mean ion energies E{sub i} from 0.22 eV ∙ cm{sup −2} ∙ s{sup −1} to 1.28 eV ∙ cm{sup −2} ∙ s{sup −1}. In contrast to high pressure reactions with metallic Pd, under plasma exposure we do not observe solid solutions over a wide range of hydrogen concentration. The hydrogen incorporation in Pd films takes place discontinuously. At 0 V substrate voltage palladium hydride is formed in two steps to PdH{sub 0.14} and PdH{sub 0.57}. At − 50 V substrate voltage PdH{sub 0.57} is formed directly. However, substrate voltages of − 100 V and − 150 V cause shrinking of the unit cell. We postulate the formation of two fcc vacancy palladium hydride clusters PdH{sub Vac}(I) and PdH{sub Vac}(II). Under longtime plasma exposure the fcc PdH{sub Vac}(II) phase forms cubic PdH{sub 1.33}. The fcc PdH{sub 0.57} phase decomposes at temperatures > 300 °C to form metallic fcc Pd. The hydrogen removal causes a decrease of lattice defects. In situ high temperature diffractometry measurements also confirm the existence of PdH{sub Vac}(II) as a palladium hydride phase. Stoichiometric relationship between cubic PdH{sub 1.33} and fcc PdH{sub Vac}(II) becomes evident from XR measurements and structure considerations. We assume both phases have the chemical composition Pd{sub 3}H{sub 4}. Up to 700 °C we observe phase transformation between both the fcc PdH{sub Vac}(II) and cubic PdH{sub 1.33} phases. These phase transformations could be explained analog to a Bain distortion by displacive solid state structural changes. - Highlights: • Thin Pd films

  12. Circuit Model Simulations for Ionospheric Plasma Response to High Potential System

    Directory of Open Access Journals (Sweden)

    Hwang-Jae Rhee

    2000-06-01

    Full Text Available When a deployed probe is biased by a high positive potential during a space experiment, the payload is induced to a negative voltage in order to balance the total current in the whole system. The return currents are due to the responding ions and secondary electrons on the payload surface. In order to understand the current collection mechanism, the process was simulated with a combination of resistor, inductor, and capacitor in SPICE program which was equivalent to the background plasma sheath. The simulation results were compared with experimental results from SPEAR-3 (Space Power Experiment Aboard Rocket-3. The return current curve in the simulation was compatible to the experimental result, and the simulation helped to predict the transient plasma response to a high voltage during the plasma sheath formation.

  13. Freeze-dried plasma enhances clot formation and inhibits fibrinolysis in the presence of tissue plasminogen activator similar to pooled liquid plasma.

    Science.gov (United States)

    Huebner, Benjamin R; Moore, Ernest E; Moore, Hunter B; Sauaia, Angela; Stettler, Gregory; Dzieciatkowska, Monika; Hansen, Kirk; Banerjee, Anirban; Silliman, Christopher C

    2017-08-01

    Systemic hyperfibrinolysis is an integral part of trauma-induced coagulopathy associated with uncontrolled bleeding. Recent data suggest that plasma-first resuscitation attenuates hyperfibrinolysis; however, the availability, transport, storage, and administration of plasma in austere environments remain challenging and have limited its use. Freeze-dried plasma (FDP) is a potential alternative due to ease of storage, longer shelf life, and efficient reconstitution. FDP potentially enhances clot formation and resists breakdown better than normal saline (NS) and albumin and similar to liquid plasma. Healthy volunteers underwent citrated blood draw followed by 50% dilution with NS, albumin, pooled plasma (PP), or pooled freeze-dried plasma (pFDP). Citrated native and tissue plasminogen activator (t-PA)-challenge (75 ng/mL) thrombelastography were done. Proteins in PP, pFDP, and albumin were analyzed by mass spectroscopy. pFDP and PP had superior clot-formation rates (angle) and clot strength (maximum amplitude) compared with NS and albumin in t-PA-challenge thrombelastographies (angle: pFDP, 67.9 degrees; PP, 67.8 degrees; NS, 40.6 degrees; albumin, 35.8 degrees; maximum amplitude: pFDP, 62.4 mm; PP, 63.5 mm; NS, 44.8 mm; albumin, 41.1 mm). NS and albumin dilution increased susceptibility to t-PA-induced hyperfibrinolysis compared with pFDP and PP (NS, 62.4%; albumin, 62.6%; PP, 8.5%; pFDP, 6.7%). pFDP was similar to PP in the attenuation of t-PA-induced fibrinolysis. Most proteins (97%) were conserved during the freeze-dry process, with higher levels in 12% of pFDP proteins compared with PP. pFDP enhances clot formation and attenuates hyperfibrinolysis better than NS and albumin and is a potential alternative to plasma resuscitation in the treatment of hemorrhagic shock. © 2017 AABB.

  14. Experimental simulation and numerical modeling of vapor shield formation and divertor material erosion for ITER typical plasma disruptions

    International Nuclear Information System (INIS)

    Wuerz, H.; Arkhipov, N.I.; Bakhtin, V.P.; Konkashbaev, I.; Landman, I.; Safronov, V.M.; Toporkov, D.A.; Zhitlukhin, A.M.

    1995-01-01

    The high divertor heat load during a tokamak plasma disruption results in sudden evaporation of a thin layer of divertor plate material, which acts as vapor shield and protects the target from further excessive evaporation. Formation and effectiveness of the vapor shield are theoretically modeled and are experimentally analyzed at the 2MK-200 facility under conditions simulating the thermal quench phase of ITER tokamak plasma disruptions. ((orig.))

  15. Formation of electron-root radial electric field and its effect on thermal transport in LHD high Te plasma

    International Nuclear Information System (INIS)

    Matsuoka, Seikichi; Satake, Shinsuke; Takahashi, Hiromi; Yokoyama, Masayuki; Ido, Takeshi; Shimizu, Akihiro; Shimozuma, Takashi; Wakasa, Arimitsu; Murakami, Sadayoshi

    2013-01-01

    Neoclassical transport analyses have been performed for a high electron temperature LHD plasma with steep temperature gradient using a neoclassical transport simulation code, FORTEC-3D. It is shown that the large positive radial electric field is spontaneously formed at the core along with the increase in the electron temperature, while the neoclassical heat diffusivity remains almost unchanged. This indicates that the 1/ν-type increase expected in the neoclassical transport in helical plasmas can be avoided by the spontaneous formation of the radial electric field. At the same time, it is found that the experimentally estimated heat diffusivity is significantly reduced. This suggests that the formation process of the transport barrier in the high electron temperature plasma can be caused by the spontaneous formation of the radial electric field. (author)

  16. Effect of rhenium addition on tungsten fuzz formation in helium plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Aneeqa, E-mail: aneeqa.khan-3@postgrad.manchester.ac.uk [School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, M13 9PL (United Kingdom); De Temmerman, Gregory [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046 - 13067 St Paul Lez Durance Cedex (France); Morgan, Thomas W. [FOM Institute DIFFER – Dutch Institute for Fundamental Energy Research, Partner in the Trilateral Euregio Cluster, Eindhoven (Netherlands); Ward, Michael B. [Institute for Materials Research, School of Chemical Process Engineering, University of Leeds, Leeds, LS2 9JT (United Kingdom)

    2016-06-15

    The effect of the addition of rhenium to tungsten on the formation of a nanostructure referred to as ‘fuzz’ when exposed to helium plasmas at fusion relevant ion fluxes was investigated in the Magnum and Pilot PSI devices at the FOM Institute DIFFER. The effect rhenium had on fuzz growth was seen to be dependent on time, temperature and flux. Initial fuzz growth was seen to be highly dependent on grain orientation, with rhenium having little effect. Once the fuzz was fully developed, the effect of grain orientation disappeared and the rhenium had an inhibiting effect on growth. This could be beneficial for inhibiting fuzz growth in a future fusion reactor, where transmutation of tungsten to rhenium is expected. It also appears that erosion or annealing of the fuzz is limiting growth of fuzz at higher temperatures in the range of ∼1340 °C.

  17. Formation of a Spinel Coating on AZ31 Magnesium Alloy by Plasma Electrolytic Oxidation

    Science.gov (United States)

    Sieber, Maximilian; Simchen, Frank; Scharf, Ingolf; Lampke, Thomas

    2016-03-01

    Plasma electrolytic oxidation (PEO) is a common means for the surface modification of light metals. However, PEO of magnesium substrates in dilute electrolytes generally leads to the formation of coatings consisting of unfavorable MgO magnesium oxide. By incorporation of electrolyte components, the phase constitution of the oxide coatings can be modified. Coatings consisting exclusively of MgAl2O4 magnesium-aluminum spinel are produced by PEO in an electrolyte containing hydroxide, aluminate, and phosphate anions. The hardness of the coatings is 3.5 GPa on Martens scale on average. Compared to the bare substrate, the coatings reduce the corrosion current density in dilute sodium chloride solution by approx. one order of magnitude and slightly shift the corrosion potential toward more noble values.

  18. Experimental characterization of plasma formation and shockwave propagation induced by high power pulsed underwater electrical discharge.

    Science.gov (United States)

    Claverie, A; Deroy, J; Boustie, M; Avrillaud, G; Chuvatin, A; Mazanchenko, E; Demol, G; Dramane, B

    2014-06-01

    High power pulsed electrical discharges into liquids are investigated for new industrial applications based on the efficiency of controlled shock waves. We present here new experimental data obtained by combination of detailed high speed imaging equipments. It allows the visualization of the very first instants of plasma discharge formation, and then the pulsations of the gaseous bubble with an accurate timing of events. The time history of the expansion/compression of this bubble leads to an estimation of the energy effectively transferred to water during the discharge. Finally, the consecutive shock generation driven by this pulsating bubble is optically monitored by shadowgraphs and schlieren setup. These data provide essential information about the geometrical pattern and chronometry associated with the shock wave generation and propagation.

  19. Conclusive evidence of abrupt coagulation inside the void during cyclic nanoparticle formation in reactive plasma

    International Nuclear Information System (INIS)

    Wetering, F. M. J. H. van de; Nijdam, S.; Beckers, J.

    2016-01-01

    In this letter, we present scanning electron microscopy (SEM) results that confirm in a direct way our earlier explanation of an abrupt coagulation event as the cause for the void hiccup. In a recent paper, we reported on the fast and interrupted expansion of voids in a reactive dusty argon–acetylene plasma. The voids appeared one after the other, each showing a peculiar, though reproducible, behavior of successive periods of fast expansion, abrupt contraction, and continued expansion. The abrupt contraction was termed “hiccup” and was related to collective coagulation of a new generation of nanoparticles growing in the void using relatively indirect methods: electron density measurements and optical emission spectroscopy. In this letter, we present conclusive evidence using SEM of particles collected at different moments in time spanning several growth cycles, which enables us to follow the nanoparticle formation process in great detail.

  20. Effect of rhenium addition on tungsten fuzz formation in helium plasmas

    International Nuclear Information System (INIS)

    Khan, Aneeqa; De Temmerman, Gregory; Morgan, Thomas W.; Ward, Michael B.

    2016-01-01

    The effect of the addition of rhenium to tungsten on the formation of a nanostructure referred to as ‘fuzz’ when exposed to helium plasmas at fusion relevant ion fluxes was investigated in the Magnum and Pilot PSI devices at the FOM Institute DIFFER. The effect rhenium had on fuzz growth was seen to be dependent on time, temperature and flux. Initial fuzz growth was seen to be highly dependent on grain orientation, with rhenium having little effect. Once the fuzz was fully developed, the effect of grain orientation disappeared and the rhenium had an inhibiting effect on growth. This could be beneficial for inhibiting fuzz growth in a future fusion reactor, where transmutation of tungsten to rhenium is expected. It also appears that erosion or annealing of the fuzz is limiting growth of fuzz at higher temperatures in the range of ∼1340 °C.

  1. PLASMA DEVICE

    Science.gov (United States)

    Gow, J.D.; Wilcox, J.M.

    1961-12-26

    A device is designed for producing and confining highenergy plasma from which neutrons are generated in copious quantities. A rotating sheath of electrons is established in a radial electric field and axial magnetic field produced within the device. The electron sheath serves as a strong ionizing medium to gas introdueed thereto and also functions as an extremely effective heating mechanism to the resulting plasma. In addition, improved confinement of the plasma is obtained by ring magnetic mirror fields produced at the ends of the device. Such ring mirror fields are defined by the magnetic field lines at the ends of the device diverging radially outward from the axis of the device and thereafter converging at spatial annular surfaces disposed concentrically thereabout. (AFC)

  2. Mechanism of plasma-arc formation of fullerenes from coal and related materials

    Energy Technology Data Exchange (ETDEWEB)

    Pang, L S.K.; Wilson, M A; Quezada, R A [CSIRO Petroleum, North Ryde (Australia); and others

    1996-12-31

    When an arc is struck across graphite or coal electrodes in a helium atmosphere several products are formed including soot containing fullerenes. The mechanism by which fullerenes and nanotubes are formed is not understood. At arc temperatures exceeding 3000{degrees}C, highly ordered fullerenes might be expected to be less stable than graphite, and hence fullerene production is believed to proceed in cooler regions at the edge of the arc. There is irrefutable evidence that [C{sub 60}]-fullerene grows in a plasma from atomic carbon vapour or equivalent. When {sup 13}C-labelled carbon powder is packed into the anode, the fullerenes as produced contain a statistical distribution of {sup 13}C atoms. This implies that graphite has split into small units, predominantly C{sub 1} or C{sub 2} in the plasma and these units are involved in fullerene formation. When coal or other organic materials are used in the anode, weaker bonds are present, which may break preferentially. As a result, larger fragments, other than C{sub 1} and C{sub 2} units can exist in the plasma. This paper demonstrates the existence of such larger fragments when various coals are used and this implies that fullerenes can be formed from larger units than C{sub 1} and C{sub 2}. The distribution of polycyclic hydrocarbons formed depends very much on the structure of the coal used for the arcing experiments. The distribution of the natural abundance of {sup 13}C/{sup 12}C ratios in the fullerene products further supports this evidence.

  3. Optic Nerve Sheath Meningocele: A Case Report

    Science.gov (United States)

    Halimi, E.; Wavreille, O.; Rosenberg, R.; Bouacha, I.; Lejeune, J.-P.; Defoort-Dhellemmes, S.

    2013-01-01

    Abstract Isolated optic nerve sheath meningocele is a rare affection defined as the cystic enlargement of the optic nerve sheath filled with cerebrospinal fluid. We report the case of a 39-year-old woman presenting with bilateral meningocele uncovered during a routine examination for headache complaints. A 5-year follow-up validated the lesion’s clinical and imaging stability. Magnetic resonance imaging (MRI) is an essential tool in the diagnosis of this pathology, alongside characteristic symptoms indicating that the meningocele might have progressively expanded into the orbit. In this case we present a therapeutic approach based on pathophysiological hypotheses and review of the literature. PMID:28163760

  4. Simulation of the formation of two-dimensional Coulomb liquids and solids in dusty plasmas

    International Nuclear Information System (INIS)

    Hwang, H.H.; Kushner, M.J.

    1997-01-01

    Dust particle transport in low-temperature plasmas has recently received considerable attention due to the desire to minimize contamination of wafers during plasma processing of microelectronics devices. Laser light scattering observations of dust particles near wafers in reactive-ion-etching (RIE) radio frequency (rf) discharges have revealed clouds which display collective behavior. These observations have motivated experimental studies of the Coulomb liquid and solid properties of these systems. In this paper, we present results from a two-dimensional model for dust particle transport in RIE rf discharges in which we include particle-particle Coulomb interactions. We predict the formation of Coulomb liquids and solids. These predictions are based both on values of Γ>2 (liquid) and Γ>170 (solid), where Γ is the ratio of electrostatic potential energy to thermal energy, and on crystal-like structure in the pair correlation function. We find that Coulomb liquids and solids composed of trapped dust particles in RIE discharges are preferentially formed with increasing gas pressure, decreasing particle size, and decreasing rf power. We also observe the ejection of particles from dust crystals which completely fill trapping sites, as well as lattice disordering followed by annealing and refreezing. copyright 1997 American Institute of Physics

  5. Solar Wind Plasma Interaction with Asteroid 16 Psyche: Implication for Formation Theories

    Science.gov (United States)

    Fatemi, Shahab; Poppe, Andrew R.

    2018-01-01

    The asteroid 16 Psyche is a primitive metal-rich asteroid that has not yet been visited by spacecraft. Based on remote observations, Psyche is most likely composed of iron and nickel metal; however, the history of its formation and solidification is still unknown. If Psyche is a remnant core of a differentiated planetesimal exposed by collisions, it opens a unique window toward understanding the cores of the terrestrial bodies, including the Earth and Mercury. If not, it is perhaps a reaccreted rubble pile that has never melted. In the former case, Psyche may have a remanent, dipolar magnetic field; in the latter case, Psyche may have no intrinsic field, but nevertheless would be a conductive object in the solar wind. We use Advanced Modeling Infrastructure in Space Simulation (AMITIS), a three-dimensional GPU-based hybrid model of plasma that self-consistently couples the interior electromagnetic response of Psyche (i.e., magnetic diffusion) to its ambient plasma environment in order to quantify the different interactions under these two cases. The model results provide estimates for the electromagnetic environment of Psyche, showing that the magnetized case and the conductive case present very different signatures in the solar wind. These results have implications for an accurate interpretation of magnetic field observations by NASA's Discovery mission (Psyche mission) to the asteroid 16 Psyche.

  6. Ion irradiation effects on ionic liquids interfaced with rf discharge plasmas

    International Nuclear Information System (INIS)

    Baba, K.; Kaneko, T.; Hatakeyama, R.

    2007-01-01

    The availability of plasma ion irradiation toward a gas-liquid interface is investigated in a rf discharge system incorporating an ionic liquid. The introduction of the ionic liquid to the plasma causes the formation of a sheath electric field on the ionic liquid surface, resulting in the acceleration of the ions to the ionic liquid and the generation of secondary electrons from the ionic liquid by the ion irradiation. These effects are found to advance the discharge process and enhance the plasma production

  7. Electron internal transport barrier formation and dynamics in the plasma core of the TJ-II stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Estrada, T [Laboratorio Nacional de Fusion por Confinamiento Magnetico, Asociacion Euratom-CIEMAT, 28040 Madrid (Spain); Krupnik, L [Institute of Plasma Physics, NSC ' KIPT' , Kharkov (Ukraine); Dreval, N [Institute of Plasma Physics, NSC ' KIPT' , Kharkov (Ukraine); Melnikov, A [Institute of Nuclear Fusion, RRC ' Kurchatov Institute' , Moscow, Russia (Russian Federation); Khrebtov, S M [Institute of Plasma Physics, NSC ' KIPT' , Kharkov (Ukraine); Hidalgo, C [Laboratorio Nacional de Fusion por Confinamiento Magnetico, Asociacion Euratom-CIEMAT, 28040 Madrid (Spain); Milligen, B van [Laboratorio Nacional de Fusion por Confinamiento Magnetico, Asociacion Euratom-CIEMAT, 28040 Madrid (Spain); Castejon, F [Laboratorio Nacional de Fusion por Confinamiento Magnetico, Asociacion Euratom-CIEMAT, 28040 Madrid (Spain); AscasIbar, E [Laboratorio Nacional de Fusion por Confinamiento Magnetico, Asociacion Euratom-CIEMAT, 28040 Madrid (Spain); Eliseev, L [Institute of Nuclear Fusion, RRC ' Kurchatov Institute' , Moscow, Russia (Russian Federation); Chmyga, A A [Institute of Plasma Physics, NSC ' KIPT' , Kharkov (Ukraine); Komarov, A D [Institute of Plasma Physics, NSC ' KIPT' , Kharkov (Ukraine); Kozachok, A S [Institute of Plasma Physics, NSC ' KIPT' , Kharkov (Ukraine); Tereshin, V [Institute of Plasma Physics, NSC ' KIPT' , Kharkov (Ukraine)

    2004-01-01

    The influence of magnetic topology on the formation of electron internal transport barriers (e-ITBs) has been studied experimentally in electron cyclotron heated plasmas in the stellarator TJ-II. e-ITB formation is characterized by an increase in core electron temperature and plasma potential. The positive radial electric field increases by a factor of 3 in the central plasma region when an e-ITB forms. The experiments reported demonstrate that the formation of an e-ITB depends on the magnetic configuration. Calculations of the modification of the rotational transform due to plasma current lead to the interpretation that the formation of an e-ITB can be triggered by positioning a low order rational surface close to the plasma core region. In configurations without any central low order rational, no barrier is formed for any accessible value of heating power. Different mechanisms associated with neoclassical/turbulent bifurcations and kinetic effects are put forward to explain the impact of magnetic topology on radial electric fields and confinement.

  8. Magnetic sheath effect on the gross and net erosion rates due to impurities

    Science.gov (United States)

    Mellet, N.; Pégourié, B.; Martin, C.; Gunn, J. P.; Bufferand, H.; Roubin, P.

    2016-02-01

    Simulations of impurity trajectories in deuterium plasmas in the vicinity of the surface are performed by taking into account the magnetic sheath in conditions relevant for ITER and WEST. We show that the magnetic sheath has a strong effect on the average impact angle of impurities in divertor conditions and that it can lead to an increase of ≈ 60% at the gross erosion maximum for neon (Ne+4) compared to the case when only the cyclotron motion is considered. The evaluation of the net erosion has been undertaken by retaining local redeposition of tungsten (W). We investigate how it is affected by the sheath magnetic potential profile. The largest effect is however observed when an energy distribution is considered. In this case the number of particles that manage to exit the sheath is larger as it is dominated by the more energetic particles. The comparison with other work is also discussed. The application to a scenario of the WEST project is finally performed, which exhibits a moderate, however non negligible, erosion of the plasma facing components.

  9. Transport of negative ions across a double sheath with a virtual cathode

    International Nuclear Information System (INIS)

    McAdams, R; King, D B; Surrey, E; Holmes, A J T

    2011-01-01

    A one-dimensional analytical model of the sheath in a negative ion source, such as those proposed for heating and diagnostic beams on present and future fusion devices, has been developed. The model, which is collisionless, describes the transport of surface produced negative ions from a cathode, across the sheath to a plasma containing electrons, positive ions and negative ions. It accounts for the situation where the emitted flux of negative ions is greater than the space charge limit, where the electric field at the cathode is negative, and a virtual cathode is formed. It is shown that, in the presence of a virtual cathode, there is a maximum current density of negative ions that can be transported across the sheath into the plasma. Furthermore, for high rates of surface production the virtual cathode persists regardless of the negative bias applied to the cathode, so that the current density transported across the sheath is limited. This is a significant observation and implies that present negative ion sources may not be exploiting all of the surface production available. The model is used to calculate the transported negative ion flux in a number of examples. The limitations of the model and proposed future work are also discussed.

  10. The effect of an auxiliary discharge on anode sheath potentials in a transverse discharge

    International Nuclear Information System (INIS)

    Foster, J.E.; Gallimore, A.D.

    1997-01-01

    A novel scheme that employs the use of an auxiliary discharge has been shown to reduce markedly anode sheath potentials in a transverse discharge. An 8.8 A low-pressure argon discharge in the presence of a transverse magnetic field was used as the plasma source in this study. In such discharges, the transverse flux that is collected by the anode is severely limited due to marked reductions in the transverse diffusion coefficient. Findings of this study indicate that the local electron number density and the transverse flux increase when the auxiliary discharge is operated. Changes in these parameters are reflected in the measured anode sheath voltage. Anode sheath potentials, estimated by using Langmuir probes, were shown to be reduced by over 33% when the auxiliary discharge is operated. These reductions in anode sheath potentials translated into significant reductions in anode power flux as measured using water calorimeter techniques. The reductions in anode power flux also correlate well with changes in the electron transverse flux. Finally, techniques implementing these positive effects in real plasma accelerators are discussed. copyright 1997 American Institute of Physics

  11. The ion polytropic coefficient in a collisionless sheath containing hot ions

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Binbin; Xiang, Nong, E-mail: xiangn@ipp.ac.cn; Ou, Jing [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Center for Magnetic Fusion Theory, Chinese Academy of Sciences, Hefei 230031 (China)

    2016-08-15

    The fluid approach has been widely used to study plasma sheath dynamics. For a sheath containing hot ions whose temperature is greater than the electron's, how to truncate the fluid hierarchy chain equations while retaining to the fullest extent of the kinetic effects is always a difficult problem. In this paper, a one-dimensional, collisionless sheath containing hot ions is studied via particle-in-cell simulations. By analyzing the ion energy equation and taking the kinetic effects into account, we have shown that the ion polytropic coefficient in the vicinity of the sheath edge is approximately constant so that the state equation with the modified polytropic coefficient can be used to close the hierarchy chain of the ion fluid equations. The value of the polytropic coefficient strongly depends on the hot ion temperature and its concentration in the plasma. The semi-analytical model is given to interpret the simulation results. As an application, the kinetic effects on the ion saturation current density in the probe theory are discussed.

  12. Simulation of electron beam formation and transport in a gas-filled electron-optical system with a plasma emitter

    Energy Technology Data Exchange (ETDEWEB)

    Grishkov, A. A. [Russian Academy of Sciences, Institute of High Current Electronics, Siberian Branch (Russian Federation); Kornilov, S. Yu., E-mail: kornilovsy@gmail.com; Rempe, N. G. [Tomsk State University of Control Systems and Radioelectronics (Russian Federation); Shidlovskiy, S. V. [Tomsk State University (Russian Federation); Shklyaev, V. A. [Russian Academy of Sciences, Institute of High Current Electronics, Siberian Branch (Russian Federation)

    2016-07-15

    The results of computer simulations of the electron-optical system of an electron gun with a plasma emitter are presented. The simulations are performed using the KOBRA3-INP, XOOPIC, and ANSYS codes. The results describe the electron beam formation and transport. The electron trajectories are analyzed. The mechanisms of gas influence on the energy inhomogeneity of the beam and its current in the regions of beam primary formation, acceleration, and transport are described. Recommendations for optimizing the electron-optical system with a plasma emitter are presented.

  13. Fundamental studies of fusion plasmas

    International Nuclear Information System (INIS)

    Aamodt, R.E.; Catto, P.J.; D'Ippolito, D.A.; Myra, J.R; Russell, D.A.

    1991-01-01

    This report discusses: ICRF impurity studies; ICRF convective cells; sheath plasma waves and anomalous IBW loading; a quasilinear description for fast wave minority heating permitting off magnetic axis heating in a tokamak; and runaway electrons studies in support of TEXT

  14. FUNCTION OF MALATDEHYDROGENASE COMPLEX OF MAIZE MESOPHYLL AND BUNDLE SHEATH CELLS UNDER SALT STRESS CONDITION

    Directory of Open Access Journals (Sweden)

    Еprintsev А.Т.

    2006-12-01

    Full Text Available Salt-induced changes in malatdehydrogenase system activity make the essential contribution to cell adaptation to stress condition. The enzyme systems of C4-plants are most interesting due to their ability for adaptation to environment conditions. The role of separate components of malatdehydrogenase complex of mesophyll and bundle sheath cells of corn in formation of adaptive reaction in stressful conditions is investigated in presented work.The activation of all enzymes of malatdehydrogenase system and the subsequent decrease in their activity was observed in mesophyll durring the first stage of adaptation to salt influence. In bundle sheath cells such parameters are differed from control less essentially. Fast accumulation of piruvate in cells and malate in both investigated tissues was induced. The further salinity led to falling of concentration this intermediate. The concentration of piruvate was below control level, and it was raised by the end of an exposition.The results show that sodium chloride causes induction of Krebs-cycle in mesophyll and bundle sheath cells of corn and intensification of Hatch-Slack cycle. The described differences in function malatdehydrogenase systems of mesophyll and bundle sheath cells of leaves of corn under salinity mainly consist of the activity of enzymes of a studied complex in bundle sheath cells is subject to the minimal changes in comparison with mesophyll. Role of this enzymesystem in mechanisms of adaptive reaction of various tissues of corn to salt stress is discussed.

  15. The normal tendon sheath of the second to fifth fingers as seen on oblique views

    International Nuclear Information System (INIS)

    Fischer, E.

    1984-01-01

    Oblique views of the fingers, using a low kilovolt technique, show a portion of the tendon sheaths which can be regarded as representative of the entire sheath. Because of the varying obliquity of each finger, this proportion differs in the fingers. With increasing age the projected portion of the sheath becomes smaller because it is covered by increasing bone formation in the insertion of the tendon sheat. Normal values have been obtained for adults according to their decades; from these, quite minor degrees of tendon sheat thickening can be determined. In camptodactyly of the fifth finger, which is not uncommon, the tendon sheat may be widened in the absence of a tenosynovitis. (orig.) [de

  16. Temporal and spatial spectroscopy of the plasma formation in crossed electric and magnetic fields

    International Nuclear Information System (INIS)

    Miljevic, V.I.; Tosic, D.D.

    1980-01-01

    The formation of argon plasma in crossed electric and magnetic fields in a cylindrical diode with an incandescent cathode has been studied by means of the delay time of the anode current pulse and photon pulse (corresponding to the optical transitions) and the shape of the voltage collapse. The working conditions were: pressure p=10 -5 --10 -3 Torr, anode voltage U/sub a/=800 V, and maximum magnetic field B/sub max/=1200 Gs. Photoelectrical recording of spectral lines was performed with a monochromator in the wavelength range 3600--6000 A, and the total optical spectrum was recorded simultaneously on a photoplate in a separate spectrograph in the wavelength range 2000--10 000 A. The delay time of the anode current pulse and photon pulse are approximately the same and are in the millisecond range. The delay time of the photon pulse does not depend on the wavelength. Simultaneously the spectral lines of the working gas (A II), residual gas (O II), and tungsten (W I) appear. Tungsten atoms appear at the moment of breakdown as a result of ion bombardment of the cathode. Neutral atomic lines of the working gas (A I) have not been observed. Radial analysis shows that the delay time of the photon pulse does not depend on the radius. Spectroscopic results have been analyzed in terms of excitation and ionization processes during the formation time. The shape of the voltage collapse suggests the streamer breakdown mechanism

  17. Microscopy of Alloy Formation on Arc Plasma Sintered Oxide Dispersion Strengthen (ODS) Steel

    Science.gov (United States)

    Bandriyana, B.; Sujatno, A.; Salam, R.; Dimyati, A.; Untoro, P.

    2017-07-01

    The oxide dispersed strengthened (ODS) alloys steel developed as structure material for nuclear power plants (NPP) has good resistant against creep due to their unique microstructure. Microscopy investigation on the microstructure formation during alloying process especially at the early stages was carried out to study the correlation between structure and property of ODS alloys. This was possible thanks to the arc plasma sintering (APS) device which can simulate the time dependent alloying processes. The ODS sample with composition of 88 wt.% Fe and 12 wt.% Cr powder dispersed with 1 wt.% ZrO2 nano powder was mixed in a high energy milling, isostatic compressed to form sample coins and then alloyed in APS. The Scanning Electron Microscope (SEM) with X-ray Diffraction Spectroscopy (EDX) line scan and mapping was used to characterize the microstructure and elemental composition distribution of the samples. The alloying process with unification of each Fe and Cr phase continued by the alloying formation of Fe-Cr by inter-diffusion of both Fe and Cr and followed by the improvement of the mechanical properties of hardness.

  18. FEAST 3.1: finite-element modeling of sheath deformation such as longitudinal ridging and collapse into axial gap

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.; Xu, Z.; Kim, Y-S.; Lai, L.; Cheng, G.; Xu, S. [Atomic Energy of Canada Limited, Mississauga, Ontario (Canada)

    2010-07-01

    During normal operation, the collapsible CANDU® fuel sheath deforms, especially, it may deform into longitudinal ridges or collapse instantaneously into the axial gaps between the end pellet and endcap or between two neighbouring pellets. These phenomena occur under certain conditions, such as the coolant pressure exceeding critical pressures for longitudinal ridging or axial collapse. Both longitudinal ridging and axial collapse phenomena result from plastic instability in the sheath under coolant pressure. Longitudinal ridging features one or multiple lobes or 'ridges' (outward from the sheath surface) formed along the sheath in the longitudinal direction. Axial collapse features a 'valley' around the sheath circumference. Both phenomena can lead to sheath overstrain, which in turn potentially leads to sheath failure. The LONGER code, which contains empirical correlations, has been used to predict the critical pressures for these two sheath deformation phenomena. To study fuel behaviour outside of the application ranges of the LONGER empirical correlations, a mechanistic model is needed. FEAST (Finite Element Analysis for Stresses) is an AECL computer code used to assess the structural integrity of the CANDU fuel element. The FEAST code has recently been developed (to Version 3.1) to model processes occurring during longitudinal ridge formation and instantaneous collapse into the axial gap. The new models include those for geometric non-linearity (large deformation, large material rotation), non-linear stress-strain curve for plastic deformation, Zr-4 sheath creep law, and variable Young’s Modulus etc. This paper describes the mechanistic model (FEAST 3.1) development for analyses of longitudinal ridging and instantaneous collapse into axial gap, and the comparison with the results from empirical correlations in LONGER. (author)

  19. FEAST 3.1: finite-element modeling of sheath deformation such as longitudinal ridging and collapse into axial gap

    International Nuclear Information System (INIS)

    Wang, X.; Xu, Z.; Kim, Y-S.; Lai, L.; Cheng, G.; Xu, S.

    2010-01-01

    During normal operation, the collapsible CANDU® fuel sheath deforms, especially, it may deform into longitudinal ridges or collapse instantaneously into the axial gaps between the end pellet and endcap or between two neighbouring pellets. These phenomena occur under certain conditions, such as the coolant pressure exceeding critical pressures for longitudinal ridging or axial collapse. Both longitudinal ridging and axial collapse phenomena result from plastic instability in the sheath under coolant pressure. Longitudinal ridging features one or multiple lobes or 'ridges' (outward from the sheath surface) formed along the sheath in the longitudinal direction. Axial collapse features a 'valley' around the sheath circumference. Both phenomena can lead to sheath overstrain, which in turn potentially leads to sheath failure. The LONGER code, which contains empirical correlations, has been used to predict the critical pressures for these two sheath deformation phenomena. To study fuel behaviour outside of the application ranges of the LONGER empirical correlations, a mechanistic model is needed. FEAST (Finite Element Analysis for Stresses) is an AECL computer code used to assess the structural integrity of the CANDU fuel element. The FEAST code has recently been developed (to Version 3.1) to model processes occurring during longitudinal ridge formation and instantaneous collapse into the axial gap. The new models include those for geometric non-linearity (large deformation, large material rotation), non-linear stress-strain curve for plastic deformation, Zr-4 sheath creep law, and variable Young’s Modulus etc. This paper describes the mechanistic model (FEAST 3.1) development for analyses of longitudinal ridging and instantaneous collapse into axial gap, and the comparison with the results from empirical correlations in LONGER. (author)

  20. Excitation of collective plasma modes during collisions between dust grains and the formation of dust plasma crystals

    International Nuclear Information System (INIS)

    Goree, J.A.; Morfill, G.; Tsytovich, V.N.

    1998-01-01

    Dust plasma crystals have recently been produced in experiments in a number of laboratories. For dust crystallization to occur, there should exist an efficient mechanism for the cooling of the dust plasma component. It is shown that the excitation of collective plasma modes during collisions between the grains may serve as the required cooling mechanism. The excitation of dust sound waves is found to be most efficient. It is shown that the cooling of dust grains via the excitation of collective plasma modes can be even more efficient than that due to collisions with neutral particles, which was previously considered to be the only mechanism for cooling of the dust plasma component. At present, the first experiments are being carried out to study collisions between individual dust grains. High efficiency of the excitation of plasma modes caused by collisions between dust grains is attributed to the coherent displacement of the plasma particles that shield the grains. it is shown that the excitation efficiency is proportional to the fourth power of the charge of the dust grains and to a large power of their relative velocity, and is independent of their mass. The results obtained can be checked in experiments studying how the binary collisions between dust grains and the pressure of the neutral component influence the dust crystallization

  1. Fluid model of the sheath in front of a floating electrode immersed in a magnetized plasma with oblique magnetic field: Some comments on ion source terms and ion temperature effects

    International Nuclear Information System (INIS)

    Gyergyek, T.; Kovačič, J.

    2015-01-01

    A one-dimensional fluid model of the magnetized plasma-wall transition region in front of a floating electrode immersed in a magnetized plasma with oblique magnetic field is presented. The Boltzmann relation is assumed for the electrons, while the positive ions obey the ion continuity and momentum exchange equation. The ions are assumed to be isothermal. By comparison with a two-fluid model, it is shown that assuming the Boltzmann relation for the electrons implies that there is no creation or annihilation of the electrons. Consequently, there should not be any creation and annihilation of the positive ions either. The models that assume the Boltzmann relation for the electrons and a non-zero ion source term at the same time are therefore inconsistent, but such models have nevertheless been used extensively by many authors. So, in this work, an extensive comparison of the results obtained using the zero source term on one hand and three different non-zero source terms on the other hand is made. Four different ion source terms are considered in total: the zero source term and three different non-zero ion source terms. When the zero source term is used, the model becomes very sensitive to the boundary conditions, and in some cases, the solutions exhibit large amplitude oscillations. If any of the three non-zero ion source terms is used, those problems are eliminated, but also the consistency of the model is broken. The model equations are solved numerically in the entire magnetized plasma-wall transition region. For zero ion temperature, the model can be solved even if a very small ion velocity is selected as a boundary condition. For finite ion temperature, the system of equations becomes stiff, unless the ion velocity at the boundary is increased slightly above the ion thermal velocity. A simple method how to find a solution with a very small ion velocity at the boundary also for finite ion temperature in the entire magnetized plasma-wall transition region is

  2. Arthroscopic sheath design and technical evaluation

    NARCIS (Netherlands)

    Tuijthof, Gabriëlle J. M.; Blankevoort, Leendert; Herder, Just L.; van Dijk, C. Niek

    2009-01-01

    The maintenance of a clear view on the operation area is essential to perform a minimally invasive procedure In arthroscopy, this is achieved by irrigating the Joint with a saline fluid that is pumped through the joint At present the arthroscopic sheaths are not designed for optimal irrigation,

  3. A coverslip-based technique for evaluating Staphylococcus aureus biofilm formation on human plasma

    Directory of Open Access Journals (Sweden)

    Jennifer N Walker

    2012-03-01

    Full Text Available The ability of the opportunistic pathogen, Staphylococcus aureus, to form biofilms is increasingly being viewed as an important contributor to chronic infections. In vitro methods for analyzing S. aureus biofilm formation have focused on bacterial attachment and accumulation on abiotic surfaces, such as in microtiter plate and flow cell assays. Microtiter plates provide a rapid measure of relative biomass levels, while flow cells have limited experimental throughput but are superior for confocal microscopy biofilm visualization. Although these assays have proven effective at identifying mechanisms involved in cell attachment and biofilm accumulation, the significance of these assays in vivo remains unclear. Studies have shown that when medical devices are implanted they are coated with host factors, such as matrix proteins, that facilitate S. aureus attachment and biofilm formation. To address the challenge of integrating existing biofilm assay features with a biotic surface, we have established an in vitro biofilm technique utilizing UV-sterilized coverslips coated with human plasma. The substratum more closely resembles the in vivo state and provides a platform for S. aureus to establish a robust biofilm. Importantly, these coverslips are amenable to confocal microscopy imaging to provide a visual reference of the biofilm growth stage, effectively merging the benefits of the microtiter and flow cell assays. We confirmed the approach using clinical S. aureus isolates and mutants with known biofilm phenotypes. Altogether, this new biofilm assay can be used to assess the function of S. aureus virulence factors associated with biofilm formation and for monitoring the efficacy of biofilm treatment modalities.

  4. Time-resolved electron thermal conduction by probing of plasma formation in transparent solids with high power subpicosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Vu, Brian -Tinh Van [Univ. of California, Davis, CA (United States)

    1994-02-01

    This dissertation work includes a series of experimental measurements in a search for better understanding of high temperature (104-106K) and high density plasmas (1022-1024cm-3) produced by irradiating a transparent solid target with high intensity (1013 - 1015W/cm2) and subpicosecond (10-12-10-13s) laser pulses. Experimentally, pump and probe schemes with both frontside (vacuum-plasma side) and backside (plasma-bulk material side) probes are used to excite and interrogate or probe the plasma evolution, thereby providing useful insights into the plasma formation mechanisms. A series of different experiments has been carried out so as to characterize plasma parameters and the importance of various nonlinear processes. Experimental evidence shows that electron thermal conduction is supersonic in a time scale of the first picosecond after laser irradiation, so fast that it was often left unresolved in the past. The experimental results from frontside probing demonstrate that upon irradiation with a strong (pump) laser pulse, a thin high temperature (~40eV) super-critical density (~1023/cm3) plasma layer is quickly formed at the target surface which in turn becomes strongly reflective and prevents further transmission of the remainder of the laser pulse. In the bulk region behind the surface, it is also found that a large sub-critical (~1018/cm3) plasma is produced by inverse Bremsstrahlung absorption and collisional ionization. The bulk underdense plasma is evidenced by large absorption of the backside probe light. A simple and analytical model, modified from the avalanche model, for plasma evolution in transparent materials is proposed to explain the experimental results. Elimination of the bulk plasma is then experimentally illustrated by using targets overcoated with highly absorptive films.

  5. Time-resolved electron thermal conduction by probing of plasma formation in transparent solids with high power subpicosecond laser pulses

    International Nuclear Information System (INIS)

    Vu, B.T.V.

    1994-02-01

    This dissertation work includes a series of experimental measurements in a search for better understanding of high temperature (10 4 -10 6 K) and high density plasmas (10 22 -10 24 cm -3 ) produced by irradiating a transparent solid target with high intensity (10 13 - 10 15 W/cm 2 ) and subpicosecond (10 -12 -10 -13 s) laser pulses. Experimentally, pump and probe schemes with both frontside (vacuum-plasma side) and backside (plasma-bulk material side) probes are used to excite and interrogate or probe the plasma evolution, thereby providing useful insights into the plasma formation mechanisms. A series of different experiments has been carried out so as to characterize plasma parameters and the importance of various nonlinear processes. Experimental evidence shows that electron thermal conduction is supersonic in a time scale of the first picosecond after laser irradiation, so fast that it was often left unresolved in the past. The experimental results from frontside probing demonstrate that upon irradiation with a strong (pump) laser pulse, a thin high temperature (∼40eV) super-critical density (∼10 23 /cm 3 ) plasma layer is quickly formed at the target surface which in turn becomes strongly reflective and prevents further transmission of the remainder of the laser pulse. In the bulk region behind the surface, it is also found that a large sub-critical (∼10 18 /cm 3 ) plasma is produced by inverse Bremsstrahlung absorption and collisional ionization. The bulk underdense plasma is evidenced by large absorption of the backside probe light. A simple and analytical model, modified from the avalanche model, for plasma evolution in transparent materials is proposed to explain the experimental results. Elimination of the bulk plasma is then experimentally illustrated by using targets overcoated with highly absorptive films

  6. A comprehensive study of different gases in inductively coupled plasma torch operating at one atmosphere

    International Nuclear Information System (INIS)

    Punjabi, Sangeeta B.; Joshi, N. K.; Mangalvedekar, H. A.; Lande, B. K.; Das, A. K.; Kothari, D. C.

    2012-01-01

    A numerical study is done to understand the possible operating regimes of RF-ICP torch (3 MHz, 50 kW) using different gases for plasma formation at atmospheric pressure. A two dimensional numerical simulation of RF-ICP torch using argon, nitrogen, oxygen, and air as plasma gas has been investigated using computational fluid dynamic (CFD) software fluent (c) . The operating parameters varied here are central gas flow, sheath gas flow, RF-power dissipated in plasma, and plasma gas. The temperature contours, flow field, axial, and radial velocity profiles were investigated under different operating conditions. The plasma resistance, inductance of the torch, and the heat distribution for various plasma gases have also been investigated. The plasma impedance of ICP torch varies with different operating parameters and plays an important role for RF oscillator design and power coupling. These studies will be useful to decide the design criteria for ICP torches required for different material processing applications.

  7. Effect of basic physical parameters to control plasma meniscus and beam halo formation in negative ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Okuda, S.; Nishioka, S.; Hatayama, A. [Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)

    2013-09-14

    Our previous study shows that the curvature of the plasma meniscus causes the beam halo in the negative ion sources: the negative ions extracted from the periphery of the meniscus are over-focused in the extractor due to the electrostatic lens effect, and consequently become the beam halo. In this article, the detail physics of the plasma meniscus and beam halo formation is investigated with two-dimensional particle-in-cell simulation. It is shown that the basic physical parameters such as the H{sup −} extraction voltage and the effective electron confinement time significantly affect the formation of the plasma meniscus and the resultant beam halo since the penetration of electric field for negative ion extraction depends on these physical parameters. Especially, the electron confinement time depends on the characteristic time of electron escape along the magnetic field as well as the characteristic time of electron diffusion across the magnetic field. The plasma meniscus penetrates deeply into the source plasma region when the effective electron confinement time is short. In this case, the curvature of the plasma meniscus becomes large, and consequently the fraction of the beam halo increases.

  8. Effect of basic physical parameters to control plasma meniscus and beam halo formation in negative ion sources

    International Nuclear Information System (INIS)

    Miyamoto, K.; Okuda, S.; Nishioka, S.; Hatayama, A.

    2013-01-01

    Our previous study shows that the curvature of the plasma meniscus causes the beam halo in the negative ion sources: the negative ions extracted from the periphery of the meniscus are over-focused in the extractor due to the electrostatic lens effect, and consequently become the beam halo. In this article, the detail physics of the plasma meniscus and beam halo formation is investigated with two-dimensional particle-in-cell simulation. It is shown that the basic physical parameters such as the H − extraction voltage and the effective electron confinement time significantly affect the formation of the plasma meniscus and the resultant beam halo since the penetration of electric field for negative ion extraction depends on these physical parameters. Especially, the electron confinement time depends on the characteristic time of electron escape along the magnetic field as well as the characteristic time of electron diffusion across the magnetic field. The plasma meniscus penetrates deeply into the source plasma region when the effective electron confinement time is short. In this case, the curvature of the plasma meniscus becomes large, and consequently the fraction of the beam halo increases

  9. Formation and Characterization of Inkjet-Printed Nanosilver Lines on Plasma-Treated Glass Substrates

    Directory of Open Access Journals (Sweden)

    Jae-Sung Kwon

    2018-02-01

    Full Text Available In this study, we investigated geometrical characteristics of the inkjet-printed lines with non-zero receding contact angle (CA on plasma-treated substrates in terms of various printing variables and analyzed the fluidic behavior and hydrodynamic instability involved in the line formation process. The printing variables included surface energy, droplet overlap ratio, printing frequency, a number of ink droplets, substrate temperature and printing procedures. For the study, a colloidal suspension containing 56 wt % silver nanoparticles in tetradecane solvent was used as a printing ink. It has electrical resistivity of 4.7 μΩ·cm. The substrates were obtained by performing a plasma enhanced chemical vapor deposition (PECVD process with C4F8 and O2 under various treatment conditions. As results of the experiments, the surface shape and pattern of the inkjet-printed Ag lines were dominantly influenced by the surface energy of the substrates, among the printing variables. Accordingly even when the receding CA was non-zero, bulging instability of the lines occurred forming separate circular patterns or regular bulges connected by ridges. It is a new finding of this study, which is completely different with the bulging instability of inkjet lines with zero receding CA specified by previous researches. The bulging instability decreased by increasing surface temperature of the substrates or employing interlacing procedure instead of continuous procedure for printing. The interlacing procedure also was advantageous to fabricate thick and narrow Ag lines with well-defined shape through overprinting on a hydrophobic substrate. These results will contribute greatly to not only the production of various printed electronics containing high-aspect-ratio structures but also the improvement of working performance of the devices.

  10. Proteomics of plasma membranes from poplar trees reveals tissue distribution of transporters, receptors, and proteins in cell wall formation.

    Science.gov (United States)

    Nilsson, Robert; Bernfur, Katja; Gustavsson, Niklas; Bygdell, Joakim; Wingsle, Gunnar; Larsson, Christer

    2010-02-01

    By exploiting the abundant tissues available from Populus trees, 3-4 m high, we have been able to isolate plasma membranes of high purity from leaves, xylem, and cambium/phloem at a time (4 weeks after bud break) when photosynthesis in the leaves and wood formation in the xylem should have reached a steady state. More than 40% of the 956 proteins identified were found in the plasma membranes of all three tissues and may be classified as "housekeeping" proteins, a typical example being P-type H(+)-ATPases. Among the 213 proteins predicted to be integral membrane proteins, transporters constitute the largest class (41%) followed by receptors (14%) and proteins involved in cell wall and carbohydrate metabolism (8%) and membrane trafficking (8%). ATP-binding cassette transporters (all members of subfamilies B, C, and G) and receptor-like kinases (four subfamilies) were two of the largest protein families found, and the members of these two families showed pronounced tissue distribution. Leaf plasma membranes were characterized by a very high proportion of transporters, constituting almost half of the integral proteins. Proteins involved in cell wall synthesis (such as cellulose and sucrose synthases) and membrane trafficking were most abundant in xylem plasma membranes in agreement with the role of the xylem in wood formation. Twenty-five integral proteins and 83 soluble proteins were exclusively found in xylem plasma membranes, which identifies new candidates associated with cell wall synthesis and wood formation. Among the proteins uniquely found in xylem plasma membranes were most of the enzymes involved in lignin biosynthesis, which suggests that they may exist as a complex linked to the plasma membrane.

  11. Application of a magnetized coaxial plasma gun for formation of a high-beta field-reversed configuration

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, T. [College of Science and Technology, Nihon University, 1-8 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Kiguchi, T. [College of Science and Technology, Nihon University, 1-8 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Asai, T. [College of Science and Technology, Nihon University, 1-8 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan)]. E-mail: asai@phys.cst.nihon-u.ac.jp; Takahashi, T. [College of Science and Technology, Nihon University, 1-8 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Matsuzawa, Y. [College of Science and Technology, Nihon University, 1-8 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Okano, T. [College of Science and Technology, Nihon University, 1-8 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Nogi, Y. [College of Science and Technology, Nihon University, 1-8 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan)

    2006-11-15

    We have tested a field-reversed configuration (FRC) formation with a spheromak injection for the first time. In this method, initial pre-ionized plasma is injected as a magnetized spheromak-like plasmoid into the discharge chamber prior to main field reversal. The FRC plasma with an electron density of 1.3 x 10{sup 21} m{sup -3}, a separatrix radius of 0.04 m and a plasma length of 0.8 m was produced successfully in initial background plasma of about 1.6 x 10{sup 19} m{sup -3} by spheromak injection. The density is about one third of the conventional formed by the z-ionized method.

  12. Formation of toroidal pre-heat plasma without residual magnetic field for high-beta pinch experiments

    International Nuclear Information System (INIS)

    Ikeda, Nagayasu; Tamaru, Ken; Nagata, Akiyoshi.

    1979-01-01

    Formation of toroidal pre-heat plasma was studied. The pre-heat plasma without residual magnetic field was made by chopping the current for pre-heat, A small toroidal-pinch system was used for the experiment. The magnetic field was measured with a magnetic probe. One turn loop was used for the measurement of the toroidal one-turn electric field. A pair of Rogoski coil was used for the measurement of plasma current. The dependence of residual magnetic field on chopping time was measured. By fast chopping of the primary current in the pre-heating circuit, the poloidal magnetic field was reduced to several percent within 5 microsecond. After chopping, no instability was observed in the principal discharge plasma produced within several microsecond. As the conclusion, it can be said that the control of residual field can be made by current chopping. (Kato, T.)

  13. Possibility of internal transport barrier formation and electric field bifurcation in LHD plasma

    International Nuclear Information System (INIS)

    Sanuki, H.; Itoh, K.; Yokoyama, M.; Fujisawa, A.; Ida, K.; Toda, S.; Itoh, S.-I.; Yagi, M.; Fukuyama, A.

    1999-05-01

    Theoretical analysis of the electric field bifurcation is made for the LHD plasma. For given shapes of plasma profiles, a region of bifurcation is obtained in a space of the plasma parameters. In this region of plasma parameters, the electric field domain interface is predicted to appear in the plasma column. The reduction of turbulent transport is expected to occur in the vicinity of the interface, inducing a internal transport barrier. Within this simple model, the plasma with internal barriers is predicted to be realized for the parameters of T e (0) ∼ 2 keV and n(0) ≅ 10 18 m -3 . (author)

  14. Self-consistent non-linear description of radio-frequency wave propagation and of the edge of a magnetized plasma

    International Nuclear Information System (INIS)

    Jacquot, Jonathan

    2013-01-01

    A correct understanding of the interactions between the edge plasma and the ion cyclotron (IC) waves (40-80 MHz) is needed to inject reliably large amount of power required for self-sustainable fusion plasmas. These thesis objectives were to model separately, with Comsol Multiphysics, but in compatible approaches the wave coupling and the radio-frequency (RF) sheath formation to anticipate development of a single code combining both. Modelling of fast wave coupling requires a detailed description of the antenna (2D or 3D) and of the plasma environment by a full wave approach for a cold plasma. Absorption of outgoing waves is emulated by perfectly matched layers, rendered compatible with a plasma dielectric tensor. Experimental trends for the coupling resistance of the antennas of Tore Supra are qualitatively reproduced but the coupling efficiency is overestimated. In parallel a novel self-consistent description, including RF sheaths, of the interplay between the cold wave propagation and DC biasing of the magnetized edge plasma of a tokamak was developed with the minimum set of physics ingredients. For Tore Supra antenna cases, the code coupled with TOPICA allowed to unveil qualitatively some unexpected observations on the latest design of Tore Supra Faraday screens whose electrical design was supposed to minimize RF sheaths. From simulations, a DC (Direct Current) current transport appears necessary to explain the radial structures of measurements. Cantilevered bars have been identified as the design element in the antenna structure enhancing the plasma potential. (author) [fr

  15. A mechanism for the formation of knots, kinks and discontinuous events in the plasma tail of comets

    International Nuclear Information System (INIS)

    Wang Shui.

    1989-08-01

    In this paper, we investigate the growth rates and eigenmodes of the streaming sausage, kink and tearing instabilities in the plasma tail of comets. The results show that both the sausage and kink modes can be excited by the sheared plasma flow, which is low at the centre of the plasma sheet and high on the two sides of the plasma sheet. The streaming sausage mode grows faster than the streaming kink mode when β L L >1.5, the streaming kink instability has a higher growth rate. The instability condition for both the streaming sausage and kink modes is found to be V L > or approx. 1.2 V AL . Here β L is the ratio between the plasma and magnetic pressures, V AL the Alfven velocity and V L the plasma flow velocity in the lobes of the cometary tail. In the presence of a finite resistivity, the streaming sausage mode evolves into the streaming tearing mode, which leads to the formation of magnetic islands. We suggest that some of the knots, kinks and disconnection events observed in the plasma tail of comets may be associated with the streaming sausage, kink and tearing instabilities, respectively. (author). 34 refs, 7 figs

  16. Fast wave experiments in LAPD: RF sheaths, convective cells and density modifications

    Science.gov (United States)

    Carter, T. A.; van Compernolle, B.; Martin, M.; Gekelman, W.; Pribyl, P.; van Eester, D.; Crombe, K.; Perkins, R.; Lau, C.; Martin, E.; Caughman, J.; Tripathi, S. K. P.; Vincena, S.

    2017-10-01

    An overview is presented of recent work on ICRF physics at the Large Plasma Device (LAPD) at UCLA. The LAPD has typical plasma parameters ne 1012 -1013 cm-3, Te 1 - 10 eV and B 1000 G. A new high-power ( 150 kW) RF system and fast wave antenna have been developed for LAPD. The source runs at a frequency of 2.4 MHz, corresponding to 1 - 7fci , depending on plasma parameters. Evidence of rectified RF sheaths is seen in large increases ( 10Te) in the plasma potential on field lines connected to the antenna. The rectified potential scales linearly with antenna current. The rectified RF sheaths set up convective cells of local E × B flows, measured indirectly by potential measurements, and measured directly with Mach probes. At high antenna powers substantial modifications of the density profile were observed. The plasma density profile initially exhibits transient low frequency oscillations (10 kHz). The amplitude of the fast wave fields in the core plasma is modulated at the same low frequency, suggesting fast wave coupling is affected by the density rearrangement. Work performed at the Basic Plasma Science Facility, supported jointly by the National Science Foundation and the Department of Energy.

  17. Effect of pores formation process and oxygen plasma treatment to hydroxyapatite formation on bioactive PEEK prepared by incorporation of precursor of apatite.

    Science.gov (United States)

    Yabutsuka, Takeshi; Fukushima, Keito; Hiruta, Tomoko; Takai, Shigeomi; Yao, Takeshi

    2017-12-01

    When bioinert substrates with fine-sized pores are immersed in a simulated body fluid (SBF) and the pH value or the temperature is increased, fine particles of calcium phosphate, which the authors denoted as 'precursor of apatite' (PrA), are formed in the pores. By this method, hydroxyapatite formation ability can be provided to various kinds of bioinert materials. In this study, the authors studied fabrication methods of bioactive PEEK by using the above-mentioned process. First, the fine-sized pores were formed on the surface of the PEEK substrate by H 2 SO 4 treatment. Next, to provide hydrophilic property to the PEEK, the surfaces of the PEEK were treated with O 2 plasma. Finally, PrA were formed in the pores by the above-mentioned process, which is denoted as 'Alkaline SBF' treatment, and the bioactive PEEK was obtained. By immersing in SBF with the physiological condition, hydroxyapatite formation was induced on the whole surface of the substrate within 1day. The formation of PrA directly contributed to hydroxyapatite formation ability. By applying the O 2 plasma treatment, hydroxyapatite formation was uniformly performed on the whole surface of the substrate. The H 2 SO 4 treatment contributed to a considerable enhancement of adhesive strength of the formed hydroxyapatite layer formed in SBF because of the increase of surface areas of the substrate. As a comparative study, the sandblasting method was applied as the pores formation process instead of the H 2 SO 4 treatment. Although hydroxyapatite formation was provided also in this case, however, the adhesion of the formed hydroxyapatite layer to the substrate was not sufficient even if the O 2 plasma treatment was conducted. This result indicates that the fine-sized pores should be formed on the whole surface of the substrate uniformly to achieve high adhesive strength of the hydroxyapatite layer. Therefore, it is considered that the H 2 SO 4 treatment before the O 2 plasma and the 'Alkaline SBF' treatment

  18. Plasma pre beta-HDL formation is decreased by atorvastatin treatment in type 2 diabetes mellitus : Role of phospholipid transfer protein

    NARCIS (Netherlands)

    Dallinga-Thie, G. M.; van Tol, A.; Dullaart, R. P. F.

    Atorvastatin lowers plasma phospholipid transfer protein (PLTP) activity, which stimulates pre-beta-HDL, generation in vitro. We determined the effect of atorvastatin on pre-beta-HDL formation and its relation with PLTP activity in type 2 diabetes. Methods: Plasma pre-beta-HDL formation as well as

  19. Dense-plasma-driven ultrafast formation of FePt organization on ...

    Indian Academy of Sciences (India)

    1Kyushu Institute of Technology, Iizuka, Fukuoka 8208502, Japan. 2Department of Physics ... e-beam, and imprint lithography used for nano-patterning and array ... 2. Experimental. The plasma focus device (figure 1a) is a coaxial plasma gun.

  20. Effect of oxygen plasma etching on pore size-controlled 3D polycaprolactone scaffolds for enhancing the early new bone formation in rabbit calvaria.

    Science.gov (United States)

    Kook, Min-Suk; Roh, Hee-Sang; Kim, Byung-Hoon

    2018-05-02

    This study was to investigate the effects of O 2 plasma-etching of the 3D polycaprolactone (PCL) scaffold surface on preosteoblast cell proliferation and differentiation, and early new bone formation. The PCL scaffolds were fabricated by 3D printing technique. After O 2 plasma treatment, surface characterizations were examined by scanning electron microscopy, atomic force microscopy, and contact angle. MTT assay was used to determine cell proliferation. To investigate the early new bone formation, rabbits were sacrificed at 2 weeks for histological analyses. As the O 2 plasma etching time is increased, roughness and hydrophilicity of the PCL scaffold surface increased. The cell proliferation and differentiation on plasma-etched samples was significantly increased than on untreated samples. At 2 weeks, early new bone formation in O 2 plasma-etched PCL scaffolds was the higher than that of untreated scaffolds. The O 2 plasma-etched PCL scaffolds showed increased preosteoblast differentiation as well as increased new bone formation.

  1. Topics on the formation and stability of magnetic-mirror-confined plasmas

    International Nuclear Information System (INIS)

    Wickham, M.G.

    1981-01-01

    We have investigated two methods of creating a magnetic mirror confined plasma. The first method used the direct cross-field injection of a potassium plasma into a magnetic mirror, and the second applied ion-cyclotron-resonance heating (ICRH) to a barium Q-machine plasma in a simple axisymmetric mirror field. The latter procedure provided a plasma which was particularly suitable for the investigation of MHD stability and kinetic microstability

  2. Experimental Investigation of Molecular Species Formation in Metal Plasmas During Laser Ablation

    Science.gov (United States)

    Radousky, H.; Crowhurst, J.; Rose, T.; Armstrong, M.; Stavrou, E.; Zaug, J.; Weisz, D.; Azer, M.; Finko, M.; Curreli, D.

    2016-10-01

    Atomic and molecular spectra on metal plasmas generated by laser ablation have been measured using single, nominally 6-7 ns pulses at 1064 nm, and with energies less than 50 mJ. The primary goal for these studies is to constrain the physical and chemical mechanisms that control the distribution of radionuclides in fallout after a nuclear detonation. In this work, laser emission spectroscopy was used to obtain in situdata for vapor phase molecular species as they form in a controlled oxygen atmosphere for a variety of metals such as Fe, Al, as well as preliminary results for U. In particular, the ablation plumes created from these metals have been imaged with a resolution of 10 ns, and it is possible to observe the expansion of the plume out to 0.5 us. These data serve as one set of inputs for a semi-empirical model to describe the chemical fractionation of uranium during fallout formation. Prepared by LLNL under Contract DE-AC52-07NA27344. This project was sponsored by the Department of the Defense, Defense Threat Reduction Agency, under Grant Number HDTRA1-16-1-0020.

  3. Building a patchwork - The yeast plasma membrane as model to study lateral domain formation.

    Science.gov (United States)

    Schuberth, Christian; Wedlich-Söldner, Roland

    2015-04-01

    The plasma membrane (PM) has to fulfill a wide range of biological functions including selective uptake of substances, signal transduction and modulation of cell polarity and cell shape. To allow efficient regulation of these processes many resident proteins and lipids of the PM are laterally segregated into different functional domains. A particularly striking example of lateral segregation has been described for the budding yeast PM, where integral membrane proteins as well as lipids exhibit very slow translational mobility and form a patchwork of many overlapping micron-sized domains. Here we discuss the molecular and physical mechanisms contributing to the formation of a multi-domain membrane and review our current understanding of yeast PM organization. Many of the fundamental principles underlying membrane self-assembly and organization identified in yeast are expected to equally hold true in other organisms, even for the more transient and elusive organization of the PM in mammalian cells. This article is part of a Special Issue entitled: Nanoscale membrane organisation and signalling. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Plasma formation and target preheating by prepulse of PW laser light

    Science.gov (United States)

    Sentoku, Yasuhiko; Iwata, Natsumi; Koga, James; Dover, Nicholas; Nishiuchi, Mamiko

    2017-10-01

    An intense short pulse laser with intensity over 1021 W/cm2 has become available, i.e. J-KAREN-P at QST. Although the contrast of the short pulse is improved to be of the order of 10-11, there is an unavoidable prepulse, which has multiple spikes (ps) on top of an exponential profile with intensity greater than 1014 W/cm2 about 50 ps in front of the main pulse. The prepulse preheats the target and also produces tenuous plasmas in front of a target before the main pulse arrives. It is critical to understand such preheating of the target, where the nonlocal heat transport is essential at intensity >1014 W/cm2, since the target condition might totally change before the interaction with the main pulse. Using a hydro code, FLASH, and a collisional particle-in-cell code, PICLS, we study the preplasma formation and target preheating over tens of picoseconds timescale, and discuss the prepulse effects on the main pulse interaction. Work supported by the JSPS KAKENHI under Grant No. JP15K21767.

  5. Ammonia formation and W coatings interaction with deuterium/nitrogen plasmas in the linear device GyM

    Energy Technology Data Exchange (ETDEWEB)

    Laguardia, L., E-mail: laguardia@ifp.cnr.it [CNR, Istituto di Fisica del Plasma“P. Caldirola”, Milan (Italy); Caniello, R.; Cremona, A. [CNR, Istituto di Fisica del Plasma“P. Caldirola”, Milan (Italy); Dellasega, D. [CNR, Istituto di Fisica del Plasma“P. Caldirola”, Milan (Italy); Politecnico di Milano, Dipartimento di Energia, Milan (Italy); Dell’Era, F.; Ghezzi, F.; Gittini, G.; Granucci, G.; Mellera, V.; Minelli, D.; Pallotta, F. [CNR, Istituto di Fisica del Plasma“P. Caldirola”, Milan (Italy); Passoni, M. [CNR, Istituto di Fisica del Plasma“P. Caldirola”, Milan (Italy); Politecnico di Milano, Dipartimento di Energia, Milan (Italy); Ricci, D.; Vassallo, E. [CNR, Istituto di Fisica del Plasma“P. Caldirola”, Milan (Italy)

    2015-08-15

    In this work results of the first D{sub 2}/N{sub 2} experiments in GyM, a linear device able to produce plasmas of interest for the ITER divertor (n{sub e} 5 ⋅ 10{sup 10} cm{sup −3}, Te 5 eV, ion flux 3–5 ⋅ 10{sup 20} m{sup −2}s{sup −1}) are presented. Plasmas simulating a N-seeding scenario have been performed to evaluate ammonia formation and its effect on exposed W coatings. The presence of ND emission lines in the plasma can be correlated with the formation of ammonia, further directly detected and quantified by chromatography analysis of the exhaust. Four different W specimens were exposed in GyM to a plasma fluence of 8.78 ⋅ 10{sup 23} m{sup −2}. XPS analysis evidenced the formation of W{sub x}N{sub y} layers with nitrogen concentration in the range of 1–10% depending on the initial morphology and structure of the W samples. In all analyzed cases, nitrogen was bound and retained within the first 6 nm below the surface and no further diffusion of N into the bulk was observed.

  6. Fundamental studies of the plasma extraction and ion beam formation processes in inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Niu, Hongsen.

    1995-01-01

    The fundamental and practical aspects are described for extracting ions from atmospheric pressure plasma sources into an analytical mass spectrometer. Methodologies and basic concepts of inductively coupled plasma mass spectrometry (ICP-MS) are emphasized in the discussion, including ion source, sampling interface, supersonic expansion, slumming process, ion optics and beam focusing, and vacuum considerations. Some new developments and innovative designs are introduced. The plasma extraction process in ICP-MS was investigated by Langmuir measurements in the region between the skimmer and first ion lens. Electron temperature (T e ) is in the range 2000--11000 K and changes with probe position inside an aerosol gas flow. Electron density (n e ) is in the range 10 8 --10 10 -cm at the skimmer tip and drops abruptly to 10 6 --10 8 cm -3 near the skimmer tip and drops abruptly to 10 6 --10 8 cm -3 downstream further behind the skimmer. Electron density in the beam leaving the skimmer also depends on water loading and on the presence and mass of matrix elements. Axially resolved distributions of electron number-density and electron temperature were obtained to characterize the ion beam at a variety of plasma operating conditions. The electron density dropped by a factor of 101 along the centerline between the sampler and skimmer cones in the first stage and continued to drop by factors of 10 4 --10 5 downstream of skimmer to the entrance of ion lens. The electron density in the beam expansion behind sampler cone exhibited a 1/z 2 intensity fall-off (z is the axial position). An second beam expansion originated from the skimmer entrance, and the beam flow underwent with another 1/z 2 fall-off behind the skimmer. Skimmer interactions play an important role in plasma extraction in the ICP-MS instrument

  7. Genetic instability in nerve sheath cell tumors

    DEFF Research Database (Denmark)

    Rogatto, Silvia Regina; Casartelli, Cacilda; Rainho, Claudia Aparecida

    1995-01-01

    After in vitro culture, we analyzed cytogenetically four acoustic nerve neurinomas, one intraspinal neurinoma and one neurofibroma obtainedfrom unrelated patients. Monosomy of chromosomes 22 and 16 was an abnormality common to all cases, followed in frequency by loss of chromosomes 18 (three cases...... by the presence of polyploid cells with inconsistent abnormalities, endoreduplications and telomeric associations resulting in dicentric chromosomes. It is probable that these cytogenetic abnormalities represent some kind of evolutionary advantage for the in vitro progression of nerve sheath tumors....

  8. Nonlinear structure formation in ion-temperature-gradient driven drift waves in pair-ion plasma with nonthermal electron distribution

    Science.gov (United States)

    Razzaq, Javaria; Haque, Q.; Khan, Majid; Bhatti, Adnan Mehmood; Kamran, M.; Mirza, Arshad M.

    2018-02-01

    Nonlinear structure formation in ion-temperature-gradient (ITG) driven waves is investigated in pair-ion plasma comprising ions and nonthermal electrons (kappa, Cairns). By using the transport equations of the Braginskii model, a new set of nonlinear equations are derived. A linear dispersion relation is obtained and discussed analytically as well as numerically. It is shown that the nonthermal population of electrons affects both the linear and nonlinear characteristics of the ITG mode in pair-ion plasma. This work will be useful in tokamaks and stellarators where non-Maxwellian population of electrons may exist due to resonant frequency heating, electron cyclotron heating, runaway electrons, etc.

  9. Formation of a Boundary-Free Dust Cluster in a Low-Pressure Gas-Discharge Plasma

    International Nuclear Information System (INIS)

    Usachev, A. D.; Zobnin, A. V.; Petrov, O. F.; Fortov, V. E.; Annaratone, B. M.; Thoma, M. H.; Hoefner, H.; Kretschmer, M.; Fink, M.; Morfill, G. E.

    2009-01-01

    An attraction between negatively charged micron-sized plastic particles was observed in the bulk of a low-pressure gas-discharge plasma under microgravity conditions. This attraction had led to the formation of a boundary-free dust cluster, containing one big central particle with a radius of about 6 μm and about 30 1 μm-sized particles situated on a sphere with a radius of 190 μm and with the big particle in the center. The stability of this boundary-free dust cluster was possible due to its confinement by the plasma flux on the central dust particle

  10. Plasma structures in front of a floated emissive electrode

    International Nuclear Information System (INIS)

    Ishiguro, S.; Sato, N.

    1993-01-01

    A particle simulation with plasma source is carried out on plasma structures generated by an electron emissive electrode floated in a collisionless plasma. When low-temperature, high-density thermal electrons are emitted, there appears a negative potential dip in front of the electrode, which is always accompanied by a low-frequency oscillation. On the other hand, three regimes of plasma structures appear for an electron beam injection. When a high-flux electron beam is injected, an electron sheath is generated in front of the electrode. The sheath reflects ions flowing to the electrode, providing an increase in the plasma density. When a low-flux electron beam is injected, no electron sheath is generated. When an intermediate-flux beam is injected, the electron sheath structure appears periodically in time. The lifetime of the sheath is proportional to the system length. These results of beam injection are almost consistent with those of a Q-machine experiment

  11. Formation of cerussite and hydrocerussite during adsorption of lead from aqueous solution on oxidized carbons by cold oxygen plasma

    Energy Technology Data Exchange (ETDEWEB)

    De Velasco Maldonado, Paola S. [Instituto Tecnologico de Aguascalientes, Av. Adolfo López Mateos No. 1801 Ote. C.P, Aguascalientes, Ags, 20256 (Mexico); Hernández-Montoya, Virginia, E-mail: virginia.hernandez@yahoo.com.mx [Instituto Tecnologico de Aguascalientes, Av. Adolfo López Mateos No. 1801 Ote. C.P, Aguascalientes, Ags, 20256 (Mexico); Concheso, A.; Montes-Morán, Miguel A. [Instituto Nacional del Carbon, INCAR-CSIC, Apartado 73, E-33080, Oviedo (Spain)

    2016-11-15

    Highlights: • The formation of cerussite and hydrocerussite was observed on the carbon surface. • Occurrence of CaCO{sub 3} on the carbons surface plays a crucial role in the formation. • The carbons were prepared by carbonization and oxidation with cold oxygen plasma. • Oxidation with cold oxygen plasma increases the formation of these compounds. - Abstract: A new procedure of elimination of Pb{sup 2+} from aqueous solution using carbon adsorbents, in which high amounts of cerussite and hydrocerussite are deposited on the carbon surfaces, is reported. The procedure includes the preparation of carbons from selected lignocellulosic wastes (pecan nut shells and peach stones) by single carbonization and further oxidation with cold oxygen plasma. The materials prior and after the oxidation treatment were characterized using elemental analysis, FT-IR spectroscopy, SEM/EDX analysis, adsorption of N{sub 2} at −196 °C and X-ray photoelectron spectroscopy. The adsorption of Pb{sup 2+} was carried out in batch systems under constant agitation. The formation of cerussite and hydrocerussite on the spent carbon surfaces was confirmed by XRD, SEM/EDX and FT-IR. A Pb{sup 2+} removal mechanism is proposed in which a co-precipitation of lead nitrate and calcium carbonate would render the formation of the lead carbonates. In such mechanism, the occurrence of CaCO{sub 3} on the surface of the adsorbents plays a crucial role. The presence of calcium carbonate on the precursors is understood on the basis of the thermal evolution of calcium oxalate originally present in the biomass. The oxygen plasma treatment helps to expose the calcium carbonate nanocrystals thus improving dramatically the removal capacity of Pb{sup 2+}. Accordingly, retention capacities as high as 63 mg of Pb{sup 2+} per gram of adsorbent have been attained.

  12. Formation of cerussite and hydrocerussite during adsorption of lead from aqueous solution on oxidized carbons by cold oxygen plasma

    International Nuclear Information System (INIS)

    De Velasco Maldonado, Paola S.; Hernández-Montoya, Virginia; Concheso, A.; Montes-Morán, Miguel A.

    2016-01-01

    Highlights: • The formation of cerussite and hydrocerussite was observed on the carbon surface. • Occurrence of CaCO_3 on the carbons surface plays a crucial role in the formation. • The carbons were prepared by carbonization and oxidation with cold oxygen plasma. • Oxidation with cold oxygen plasma increases the formation of these compounds. - Abstract: A new procedure of elimination of Pb"2"+ from aqueous solution using carbon adsorbents, in which high amounts of cerussite and hydrocerussite are deposited on the carbon surfaces, is reported. The procedure includes the preparation of carbons from selected lignocellulosic wastes (pecan nut shells and peach stones) by single carbonization and further oxidation with cold oxygen plasma. The materials prior and after the oxidation treatment were characterized using elemental analysis, FT-IR spectroscopy, SEM/EDX analysis, adsorption of N_2 at −196 °C and X-ray photoelectron spectroscopy. The adsorption of Pb"2"+ was carried out in batch systems under constant agitation. The formation of cerussite and hydrocerussite on the spent carbon surfaces was confirmed by XRD, SEM/EDX and FT-IR. A Pb"2"+ removal mechanism is proposed in which a co-precipitation of lead nitrate and calcium carbonate would render the formation of the lead carbonates. In such mechanism, the occurrence of CaCO_3 on the surface of the adsorbents plays a crucial role. The presence of calcium carbonate on the precursors is understood on the basis of the thermal evolution of calcium oxalate originally present in the biomass. The oxygen plasma treatment helps to expose the calcium carbonate nanocrystals thus improving dramatically the removal capacity of Pb"2"+. Accordingly, retention capacities as high as 63 mg of Pb"2"+ per gram of adsorbent have been attained.

  13. Spatio-temporal powder formation and trapping in RF silane plasmas using 2-D polarization-sensitive laser scattering

    International Nuclear Information System (INIS)

    Dorier, J.L.; Hollenstein, C.; Howling, A.A.

    1994-09-01

    Powder formation studies in deposition plasmas are motivated by the need to reduce contamination in the plasma and films. Models for the force acting upon particles in rf discharges suffer from a lack of quantitative experimental data for comparison in the case of silane-containing plasmas. In this work, a cross-section of the parallel-plate capacitor discharge is illuminated with a polarized beam-expanded laser and global spatio-temporal scattered light and extinction are recorded by CCD cameras. Spatially-regular periodic bright/dark zones due to constructive/destructive Mie interference are visible over large regions of the powder layers, which shows the uniform nature of particle growth in silane plasmas. For particles trapped in an argon plasma, as for steady-state conditions in silane, spatial size segregation is demonstrated by fringes which reverse according to the polarisation of scattered light. The method allow a self-consistent estimation of particle size and number density throughout the discharge volume from which strong particle Coulomb coupling (Γ>40) is suggested to influence powder dynamics. Correction must be made to the plasma emission profile for the extinction by powder. In conclusion, this global diagnostics improves understanding of particle growth and dynamics in silane rf discharges and provides experimental input for testing the validity of models. (author) 6 figs., 43 refs

  14. The influence of low-energy helium plasma on bubble formation in micro-engineered tungsten

    Science.gov (United States)

    Gao, Edward; Nadvornick, Warren; Doerner, Russ; Ghoniem, Nasr M.

    2018-04-01

    Four different types of micro-engineered tungsten surfaces were exposed to low energy helium plasma, with a planar surface as control. These samples include two surfaces covered with uniform W-coated rhenium micro-pillars; one with cylindrical pillars 1 μm in diameter and 25 μm in height, and one with dendritic conical pillars 4-10 μm in diameter and 20 μm in height. Additionally, two samples with reticulated open-cell foam geometry, one at 45 pores per inch (PPI), and the other at 80 PPI were fabricated with Chemical Vapor Deposition (CVD). The samples were exposed to helium plasma at 30-100 eV ion energy, 823-1123 K temperature, and 5 × 1025 - 2 × 1026 m-2 ion fluence. It is shown that the formation of nanometer-scale tendrils (fuzz) on micro-engineered W surfaces is greatly reduced as compared to planar surfaces. This is attributed to more significant ion backscattering and the increased effective surface area that intercept incident ions in micro-engineered W. A 20% decrease in the average ion incident angle on pillar type surfaces leads to ∼30% decrease in bubble size, down to 30 nm in diameter. W fuzz was found to be absent from pillar sides due to high ion backscattering rates from pillar sides. In foam samples, 28% higher PPI is observed to have 24.7%-36.7% taller fuzz, and 17.0%-25.0% larger subsurface bubbles. These are found to be an order of magnitude smaller than those found in planar surfaces of similar environment. The helium bubble density was found to increase with ion energy in pillars, roughly from 8.2% to 48.4%, and to increase with increasing PPI, from 36.4% to 116.2%, and with bubble concentrations up to 9.1 × 1021 m-3. Geometric shadowing effects in or near surface ligaments are observed in all foam samples, with near absence of helium bubbles or fuzz in deeper layers of the foam.

  15. Recent results on medium-size plasma-focus device

    International Nuclear Information System (INIS)

    Miklaszewski, R.; Kasperczuk, A.; Paduch, M.; Tomaszewaski, K.; Wereszczynski, Z.

    1992-01-01

    A brief history of investigation carried out on the PF-150 plasma-focus device is presented. Essential results concerning the dynamics of plasma sheath are summarized. The present state of investigation and main areas of interest are shown. (author)

  16. Interaction of magnetized electrons with a boundary sheath: investigation of a specular reflection model

    Science.gov (United States)

    Krüger, Dennis; Brinkmann, Ralf Peter

    2017-11-01

    This publication reports analytical and numerical results concerning the interaction of gyrating electrons with a plasma boundary sheath, with focus on partially magnetized technological plasmas. It is assumed that the electron Debye length {λ }{{D}} is much smaller than the electron gyroradius {r}{{L}}, and {r}{{L}} in turn much smaller than the mean free path λ and the gradient length L of the fields. Focusing on the scale of the gyroradius, the sheath is assumed as infinitesimally thin ({λ }{{D}}\\to 0), collisions are neglected (λ \\to ∞ ), the magnetic field is taken as homogeneous, and electric fields (=potential gradients) in the bulk are neglected (L\\to ∞ ). The interaction of an electron with the electric field of the plasma boundary sheath is represented by a specular reflection {v}\\to {v}-2{v}\\cdot {{e}}z {{e}}z of the velocity {v} at the plane z = 0 of a naturally oriented Cartesian coordinate system (x,y,z). The electron trajectory is then given as sequences of helical sections, with the kinetic energy ɛ and the canonical momenta p x and p y conserved, but not the position of the axis (base point {{R}}0), the slope (pitch angle χ), and the phase (gyrophase φ). A ‘virtual interaction’ which directly maps the incoming electrons to the outgoing ones is introduced and studied in dependence of the angle γ between the field and the sheath normal {{e}}z. The corresponding scattering operator is constructed, mathematically characterized, and given as an infinite matrix. An equivalent boundary condition for a transformed kinetic model is derived.

  17. Optic Nerve Sheath Mechanics in VIIP Syndrome

    Science.gov (United States)

    Raykin, Julia; Forte, Taylor E.; Wang, Roy; Feola, Andrew; Samuels, Brian; Myers, Jerry; Nelson, Emily; Gleason, Rudy; Ethier, C. Ross

    2016-01-01

    Visual Impairment Intracranial Pressure (VIIP) syndrome is a major concern in current space medicine research. While the exact pathology of VIIP is not yet known, it is hypothesized that the microgravity-induced cephalad fluid shift increases intracranial pressure (ICP) and drives remodeling of the optic nerve sheath. To investigate this possibility, we are culturing optic nerve sheath dura mater samples under different pressures and investigating changes in tissue composition. To interpret results from this work, it is essential to first understand the biomechanical response of the optic nerve sheath dura mater to loading. Here, we investigated the effects of mechanical loading on the porcine optic nerve sheath.Porcine optic nerves (number: 6) were obtained immediately after death from a local abattoir. The optic nerve sheath (dura mater) was isolated from the optic nerve proper, leaving a hollow cylinder of connective tissue that was used for biomechanical characterization. We developed a custom mechanical testing system that allowed for unconfined lengthening, twisting, and circumferential distension of the dura mater during inflation and under fixed axial loading. To determine the effects of variations in ICP, the sample was inflated (0-60 millimeters Hg) and circumferential distension was simultaneously recorded. These tests were performed under variable axial loads (0.6 grams - 5.6 grams at increments of 1 gram) by attaching different weights to one end of the dura mater. Results and Conclusions: The samples demonstrated nonlinear behavior, similar to other soft connective tissue (Figure 1). Large increases in diameter were observed at lower transmural pressures (approximately 0 to 5 millimeters Hg), whereas only small diameter changes were observed at higher pressures. Particularly interesting was the existence of a cross-over point at a pressure of approximately 11 millimeters Hg. At this pressure, the same diameter is obtained for all axial loads applied

  18. Electron dynamics and plasma jet formation in a helium atmospheric pressure dielectric barrier discharge jet

    Energy Technology Data Exchange (ETDEWEB)

    Algwari, Q. Th. [Centre for Plasma Physics, School of Maths and Physics, Queen' s University Belfast, University Road, Belfast, Northern Ireland BT7 1NN (United Kingdom); Electronic Department, College of Electronics Engineering, Mosul University, Mosul 41002 (Iraq); O' Connell, D. [Centre for Plasma Physics, School of Maths and Physics, Queen' s University Belfast, University Road, Belfast, Northern Ireland BT7 1NN (United Kingdom); York Plasma Institute, Department of Physics, University of York, York YO10 5DD (United Kingdom)

    2011-09-19

    The excitation dynamics within the main plasma production region and the plasma jets of a kHz atmospheric pressure dielectric barrier discharge (DBD) jet operated in helium was investigated. Within the dielectric tube, the plasma ignites as a streamer-type discharge. Plasma jets are emitted from both the powered and grounded electrode end; their dynamics are compared and contrasted. Ignition of these jets are quite different; the jet emitted from the powered electrode is ignited with a slight time delay to plasma ignition inside the dielectric tube, while breakdown of the jet at the grounded electrode end is from charging of the dielectric and is therefore dependent on plasma production and transport within the dielectric tube. Present streamer theories can explain these dynamics.

  19. Crystal orientation effects on helium ion depth distributions and adatom formation processes in plasma-facing tungsten

    International Nuclear Information System (INIS)

    Hammond, Karl D.; Wirth, Brian D.

    2014-01-01

    We present atomistic simulations that show the effect of surface orientation on helium depth distributions and surface feature formation as a result of low-energy helium plasma exposure. We find a pronounced effect of surface orientation on the initial depth of implanted helium ions, as well as a difference in reflection and helium retention across different surface orientations. Our results indicate that single helium interstitials are sufficient to induce the formation of adatom/substitutional helium pairs under certain highly corrugated tungsten surfaces, such as (1 1 1)-orientations, leading to the formation of a relatively concentrated layer of immobile helium immediately below the surface. The energies involved for helium-induced adatom formation on (1 1 1) and (2 1 1) surfaces are exoergic for even a single adatom very close to the surface, while (0 0 1) and (0 1 1) surfaces require two or even three helium atoms in a cluster before a substitutional helium cluster and adatom will form with reasonable probability. This phenomenon results in much higher initial helium retention during helium plasma exposure to (1 1 1) and (2 1 1) tungsten surfaces than is observed for (0 0 1) or (0 1 1) surfaces and is much higher than can be attributed to differences in the initial depth distributions alone. The layer thus formed may serve as nucleation sites for further bubble formation and growth or as a source of material embrittlement or fatigue, which may have implications for the formation of tungsten “fuzz” in plasma-facing divertors for magnetic-confinement nuclear fusion reactors and/or the lifetime of such divertors.

  20. Experimental and theoretical investigations of mechanisms responsible for plasma jets formation at PALS

    Czech Academy of Sciences Publication Activity Database

    Kasperczuk, A.; Pisarczyk, T.; Demchenko, N. N.; Gus'kov, S. Yu.; Kálal, M.; Ullschmied, Jiří; Krouský, Eduard; Mašek, Karel; Pfeifer, Miroslav; Rohlena, Karel; Skála, Jiří; Pisarczyk, P.

    2009-01-01

    Roč. 27, č. 3 (2009), s. 415-427 ISSN 0263-0346 R&D Projects: GA MŠk(CZ) LC528 Institutional research plan: CEZ:AV0Z20430508; CEZ:AV0Z10100523 Keywords : Laser-plasma interaction * laser produced-plasma jet * radiative cooling * target irradiation geometry * PALS laser * laser interferometry Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 4.420, year: 2008