WorldWideScience

Sample records for plasma scenarios equilibrium

  1. FAST Plasma Scenarios and Equilibrium Configurations

    International Nuclear Information System (INIS)

    Calabro, G.; Crisanti, F.; Ramogida, G.; Cardinali, A.; Cucchiaro, A.; Maddaluno, G.; Pizzuto, A.; Pericoli Ridolfini, V.; Tuccillo, A.A.; Zonca, F.; Albanese, R.; Granucci, G.; Nowak, S.

    2008-01-01

    In this paper we present the Fusion Advanced Studies Torus (FAST) plasma scenarios and equilibrium configurations, designed to reproduce the ITER ones (with scaled plasma current) and suitable to fulfil plasma conditions for integrated studies of burning plasma physics, Plasma Wall interaction, ITER relevant operation problems and Steady State scenarios. The attention is focused on FAST flexibility in terms of both performance and physics that can be investigated: operations are foreseen at a wide range of parameters from high performance H-Mode (toroidal field, B T , up to 8.5 T; plasma current, I P , up to 8 MA) to advanced tokamak (AT) operation (I P =3 MA) as well as full non inductive current scenario (I P =2 MA). The coupled heating power is provided with 30MW delivered by an Ion Cyclotron Resonance Heating (ICRH) system (30-90MHz), 6 MW by a Lower Hybrid (LH) system (3.7 or 5 GHz) for the long pulse AT scenario, 4 MW by an Electron Cyclotron Resonant Heating (ECRH) system (170 GHz-B T =6T) for MHD and electron heating localized control and, eventually, with 10 MW by a Negative Ion Beam (NNBI), which the ports are designed to accommodate. In the reference H-mode scenario FAST preserves (with respect to ITER) fast ions induced as well as turbulence fluctuation spectra, thus, addressing the cross-scale couplings issue of micro- to meso-scale physics. The noninductive scenario at I P =2MA is obtained with 60-70 % of bootstrap and the remaining by LHCD. Predictive simulations of the H-mode scenarios described above have been performed by means of JETTO code, using a semi-empirical mixed Bohm/gyro-Bohm transport model. Plasma position and Shape Control studies are also presented for the reference scenario

  2. Non equilibrium atomic processes and plasma spectroscopy

    International Nuclear Information System (INIS)

    Kato, Takako

    2003-01-01

    Along with the technical progress in plasma spectroscopy, non equilibrium ionization processes have been recently observed. We study non local thermodynamic equilibrium and non ionization equilibrium for various kinds of plasmas. Specifically we discuss non equilibrium atomic processes in magnetically confined plasmas, solar flares and laser produced plasmas using a collisional radiative model based on plasma spectroscopic data. (author)

  3. Deviations from thermal equilibrium in plasmas

    International Nuclear Information System (INIS)

    Burm, K.T.A.L.

    2004-01-01

    A plasma system in local thermal equilibrium can usually be described with only two parameters. To describe deviations from equilibrium two extra parameters are needed. However, it will be shown that deviations from temperature equilibrium and deviations from Saha equilibrium depend on one another. As a result, non-equilibrium plasmas can be described with three parameters. This reduction in parameter space will ease the plasma describing effort enormously

  4. Pre-equilibrium plasma dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Heinz, U.

    1986-01-01

    Approaches towards understanding and describing the pre-equilibrium stage of quark-gluon plasma formation in heavy-ion collisions are reviewed. Focus is on a kinetic theory approach to non-equilibrium dynamics, its extension to include the dynamics of color degrees of freedom when applied to the quark-gluon plasma, its quantum field theoretical foundations, and its relationship to both the particle formation stage at the very beginning of the nuclear collision and the hydrodynamic stage at late collision times. The usefulness of this approach to obtain the transport coefficients in the quark-gluon plasma and to derive the collective mode spectrum and damping rates in this phase are discussed. Comments are made on the general difficulty to find appropriated initial conditions to get the kinetic theory started, and a specific model is given that demonstrates that, once given such initial conditions, the system can be followed all the way through into the hydrodynamical regime. 39 refs., 7 figs. (LEW)

  5. Pre-equilibrium plasma dynamics

    International Nuclear Information System (INIS)

    Heinz, U.

    1986-01-01

    Approaches towards understanding and describing the pre-equilibrium stage of quark-gluon plasma formation in heavy-ion collisions are reviewed. Focus is on a kinetic theory approach to non-equilibrium dynamics, its extension to include the dynamics of color degrees of freedom when applied to the quark-gluon plasma, its quantum field theoretical foundations, and its relationship to both the particle formation stage at the very beginning of the nuclear collision and the hydrodynamic stage at late collision times. The usefulness of this approach to obtain the transport coefficients in the quark-gluon plasma and to derive the collective mode spectrum and damping rates in this phase are discussed. Comments are made on the general difficulty to find appropriated initial conditions to get the kinetic theory started, and a specific model is given that demonstrates that, once given such initial conditions, the system can be followed all the way through into the hydrodynamical regime. 39 refs., 7 figs

  6. Self-consistent simulation of plasma scenarios for ITER using a combination of 1.5D transport codes and free-boundary equilibrium codes

    Czech Academy of Sciences Publication Activity Database

    Parail, V.; Albanese, R.; Ambrosino, R.; Artaud, J.F.; Besseghir, K.; Cavinato, M.; Corrigan, G.; Garcia, J.; Garzotti, L.; Gribov, Y.; Imbeaux, F.; Koechl, F.; Labate, C.V.; Lister, J.; Litaudon, X.; Loarte, A.; Maget, P.; Mattei, M.; McDonald, D.; Nardon, E.; Saibene, G.; Sartori, R.; Urban, Jakub

    2013-01-01

    Roč. 53, č. 11 (2013), s. 113002-113002 ISSN 0029-5515 Institutional support: RVO:61389021 Keywords : operation * regimes * model * JET * ITER * plasma Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.243, year: 2013 http://iopscience.iop.org/0029-5515/53/11/113002/

  7. Nonideal plasmas as non-equilibrium media

    International Nuclear Information System (INIS)

    Morozov, I V; Norman, G E; Valuev, A A; Valuev, I A

    2003-01-01

    Various aspects of the collective behaviour of non-equilibrium nonideal plasmas are studied. The relaxation of kinetic energy to the equilibrium state is simulated by the molecular dynamics (MD) method for two-component non-degenerate strongly non-equilibrium plasmas. The initial non-exponential stage, its duration and the subsequent exponential stage of the relaxation process are studied for a wide range of ion charge, nonideality parameter and ion mass. A simulation model of the nonideal plasma excited by an electron beam is proposed. An approach is developed to calculate the dynamic structure factor in non-stationary conditions. Instability increment is obtained from MD simulations

  8. Plasma equilibrium and instabilities in tokamaks

    International Nuclear Information System (INIS)

    Caldas, I.L.; Vannucci, A.

    1985-01-01

    A phenomenological introduction of some of the main theoretical and experimental features on equilibrium and instabilities in tokamaks is presented. In general only macroscopic effects are considered, being the plasma described as a fluid. (L.C.) [pt

  9. Equilibrium fluctuation energy of gyrokinetic plasma

    International Nuclear Information System (INIS)

    Krommes, J.A.; Lee, W.W.; Oberman, C.

    1985-11-01

    The thermal equilibrium electric field fluctuation energy of the gyrokinetic model of magnetized plasma is computed, and found to be smaller than the well-known result (k)/8π = 1/2T/[1 + (klambda/sub D/) 2 ] valid for arbitrarily magnetized plasmas. It is shown that, in a certain sense, the equilibrium electric field energy is minimum in the gyrokinetic regime. 13 refs., 2 figs

  10. Aerospace Applications of Non-Equilibrium Plasma

    Science.gov (United States)

    Blankson, Isaiah M.

    2016-01-01

    Nonequilibrium plasma/non-thermal plasma/cold plasmas are being used in a wide range of new applications in aeronautics, active flow control, heat transfer reduction, plasma-assisted ignition and combustion, noise suppression, and power generation. Industrial applications may be found in pollution control, materials surface treatment, and water purification. In order for these plasma processes to become practical, efficient means of ionization are necessary. A primary challenge for these applications is to create a desired non-equilibrium plasma in air by preventing the discharge from transitioning into an arc. Of particular interest is the impact on simulations and experimental data with and without detailed consideration of non-equilibrium effects, and the consequences of neglecting non-equilibrium. This presentation will provide an assessment of the presence and influence of non-equilibrium phenomena for various aerospace needs and applications. Specific examples to be considered will include the forward energy deposition of laser-induced non-equilibrium plasmoids for sonic boom mitigation, weakly ionized flows obtained from pulsed nanosecond discharges for an annular Hall type MHD generator duct for turbojet energy bypass, and fundamental mechanisms affecting the design and operation of novel plasma-assisted reactive systems in dielectric liquids (water purification, in-pipe modification of fuels, etc.).

  11. Equilibrium and stability of a rotating plasma

    International Nuclear Information System (INIS)

    Janssen, P.A.E.M.

    1979-01-01

    The author considers the equilibrium and stability of a rotating plasma. The kinetic equations for ions and electrons supplemented with the Maxwell equations and the appropriate boundary conditions are used. Two different models for the rotating plasma are considered: the equilibrium of a 'fast' rotating plasma (Magneto Hydrodynamic ordering) and the stability of a slowly rotating, 'weakly' unstable plasma (Finite Larmor Radius ordering). A striking difference between these orderings is the fact that, regarding the stability of the plasma, for a F.L.R. plasma viscosity effects due to the finite Larmor radius are important, whereas in a M.H.D. plasma they are negligible (at least to the required order). (Auth.)

  12. Current control necessary for toroidal plasma equilibrium

    International Nuclear Information System (INIS)

    Nagao, S.

    1987-01-01

    It is shown that a significant amount of dipole current is necessary for the plasma equilibrium of toroidal configurations in general. Through the vector product with the poloidal field, this dipole current force has to balance with the hoop force of plasma pressure itself of the annular shape. The measurement of such a current of dipole type may be interesting for the confirmation of the plasma equilibrium in the toroidal system. Moreover it is certained that there is a new mode of a tokamak operation with such a dipole current component and with smaller vertical field than that based on the classical tokamak theory. (author) [pt

  13. Plasma equilibrium and stability in stellarators

    International Nuclear Information System (INIS)

    Pustovitov, V.D.; Shafranov, V.D.

    1987-01-01

    A review of theoretical methods of investigating plasma equilibrium and stability in stellarators is given. Principles forming the basis of toroidal plasma equilibrium and its stabilization, and the main results of analytical theory and numerical calculations are presented. Configurations with spiral symmetry and usual stellarators with plane axis and spiral fields are considered in detail. Derivation of scalar two-dimensional equations, describing equilibrium in these systems is given. These equations were used to obtain one-dimensional equations for displacement and ellipticity of magnetic surfaces. The model of weak-elliptic displaced surfaces was used to consider the evolution of plasma equilibrium in stellarators after elevation of its pressure: change of profile of rotational transformation after change of plasma pressure, current generation during its fast heating and its successive damping due to finite plasma conductivity were described. The derivation of equations of small oscillations in the form, suitable for local disturbance investigation is presented. These equations were used to obtain Mercier criteria and ballon model equations. General sufficient conditions of plasma stability in systems with magnetic confinement were derived

  14. Ionization equilibrium in dense plasmas

    International Nuclear Information System (INIS)

    Ying, R.

    1987-01-01

    The average degree of ionization for a strongly coupled plasma is investigated and calculated. Two widely used approaches: the Saha equation method and the Thomas-Fermi (TF) statistical atomic model are adopted to determine the degree of ionization. Both methods are modified in a number of ways to include the strong-coupling effect in the plasma. In the Saha equation approach, the strong-coupling effects are introduced through: (i) a replacement of the Coulomb potential by a screened Debye potential; (ii) adoption of the Planck-Larkin partition function; (iii) description of the electron component by Fermi-Dirac statistics. The calculated degree of ionization exceeds that obtained from the original Saha equation, exhibits a minimum as a function of the density and shows an abrupt phase transition from weakly ionized to a fully ionized state. The zero-temperature TF model for compressed ions and the finite-temperature TF model for ions are investigated for the first time. In order to take into account the strong-coupling effect in a systematic way, a strong-coupling TF model is set up. Favorable results with the relatively simple approximations indicate that the newly established strong-coupling TF model is a more systematic and physically consistent approach

  15. Non-equilibrium in flowing atmospheric plasmas

    International Nuclear Information System (INIS)

    Haas, J.C.M. de.

    1986-01-01

    This thesis deals with the fundamental aspects of two different plasmas applied in technological processes. The first one is the cesium seeded argon plasma in a closed cycle Magnetohydrodynamic (MHD) generator, the second is the thermal argon plasma in a cascade arc with an imposed flow. In Chapter 2 the influence of non-equilibrium on the mass and energy balances of a plasma is worked out. The general theory presented there can be applied to both the plasma in an MHD generator and to the cascade arc with imposed flow. Introductions to these plasmas are given in the Chapters 3 and 6 respectively. These chapters are both followed by two chapters which treat the theoretical and the experimental investigations. The results are summarized in Chapter 9. (Auth.)

  16. MHD equilibrium of heliotron J plasmas

    International Nuclear Information System (INIS)

    Suzuki, Yasuhiro; Nakamura, Yuji; Kondo, Katsumi; Nakajima, Noriyoshi; Hayashi, Takaya

    2004-01-01

    MHD equilibria of Heliotron J plasma are investigated by using HINT code. By assuming some profiles of the current density, effects of the net toroidal currents on the magnetohydrodynamics (MHD) equilibrium are investigated. If the rotational transform can be controlled by the currents, the generation of good flux surfaces is expected. In order to study equilibria with self-consistent bootstrap current, the boozer coordinates are constructed by converged HINT equilibrium as a preliminary study. Obtained spectra are compared with ones of VMEC code and both results are consistent. (author)

  17. Equilibrium and stability in strongly inhomogeneous plasmas

    International Nuclear Information System (INIS)

    Mynick, H.E.

    1978-10-01

    The equilibrium of strongly inhomogeneous, collisionless, slab plasmas, is studied using a generalized version of a formalism previously developed, which permits the generation of self-consistent equilibria, for plasmas with arbitrary magnetic shear, and variation of magnetic field strength. A systematic procedure is developed for deriving the form of the guiding-center Hamiltonian K, for finite eta, in an axisymmetric geometry. In the process of obtaining K, an expression for the first adiabatic invariant (the gyroaction) is obtained, which generalizes the usual expression 1/2 mv/sub perpendicular/ 2 /Ω/sub c/ (Ω/sub c/ = eB/mc), to finite eta and magnetic shear. A formalism is developed for the study of the stability of strongly-inhomogeneous, magnetized slab plasmas; it is then applied to the ion-drift-cyclotron instability

  18. Equilibrium of rotating and nonrotating plasmas in tokamaks

    International Nuclear Information System (INIS)

    Pustovitov, V.D.

    2003-01-01

    One studied plasma equilibrium in tokamak in case of toroidal rotation. Rotation associated centrifugal force is shown to result in decrease of equilibrium limit as to β. One analyzes unlike opinion and considers its supports. It is shown that in possible case of local improvement of equilibrium conditions associated with special selection of profile of plasma rotation rate, the combined integral effect turns to be negative one. But in case of typical conditions, decrease of equilibrium β caused by plasma rotation is negligible one and one may ignore effect of plasma rotation on its equilibrium for hot plasma [ru

  19. Effect of Equilibrium Flow on Plasma Parameters

    International Nuclear Information System (INIS)

    Mukhopadhyay, S.; Lahiri, S.; Sakanaka, P.H.; Dasgupta, B.

    2003-01-01

    The transition to high confinement modes have been identified with the occurrence of strong shear flow near the plasma boundary. Plasma flow has also been associated with various instabilities, heating and other physical processes. As a result, it has become very important to study the effect of such flows on various plasma parameters. In this paper, we present the numerical solution of plasma equilibrium with incompressible toroidal and poloidal flows in several magnetic confinement configurations including tokamaks. The code, which was reported in the last conference, has been used to solve the problem in both circular and D-shaped devices. A parametric study on the generation of shear flow due to radial electric fields has been carried out. Through this study, it has been possible to generate plasma equilibria having sharp pressure gradients which are remarkably close to those reported in various H-mode experiments. The effects of flow on reverse shear equilibria and on the position of the magnetic axis has been studied. Finally, a detailed study has been carried out to understand the effect of flows on important plasma parameters, such as the poloidal flux function, β, energy confinement time

  20. Non-equilibrium effects in the plasmas

    International Nuclear Information System (INIS)

    Einfeld, D.

    1975-01-01

    Radial dependences of non-equilibrium effects of a He plasma were studied in a wall-stabilized short-time discharge. The electron density (nsub(e) = 2.5 x 10 22 m -3 ), the electron temperature and the equilibrium shift were determined by calculations of the continuum beam density and the beam densities of one He-I and one He-II line, respectively. In the discharge axis, the overpopulation factors of the ground state of He-I and He-II are about 75. As the distance to the axis increases, they increase for He-I and decrease for He-II. Except for the usual errors of measurement, the overpopulation factors found here correspond to those calculated from the balance equations (Drawin). (orig./AK) [de

  1. Stability of plasma in static equilibrium

    Energy Technology Data Exchange (ETDEWEB)

    Krusiial, M D; Oberman, N R [Project Matterhorn, Princeton University, Princeton, NJ (United States)

    1958-07-01

    Our purpose is to derive from the Boltzmann equation in the small m/e limit, criteria useful in the discussion of stability of plasmas in static equilibrium. At first we ignore collisions but later show their effects may be taken into account. Our approach yields a generalization of the usual energy principles for investigating the stability of hydromagnetic systems to situations where the effect of heat flow along magnetic lines is not negligible, and hence to situations where the strictly hydrodynamic approach is inapplicable. In the first two sections we characterize our general method of approach and delineate the properties of the small m/e limit which we use to determine the constants of the motion and the condition for static equilibrium. In the next two sections we calculate the first and second variations of the energy and conclude with a statement of the general stability criterion. In the final three sections we state several theorems which relate our stability criterion to those of ordinary hydromagnetic theory, we show how to take into account the effect of collisions, and briefly discuss the remaining problem of incorporating the charge neutrality condition into the present stability theory. (author)

  2. Temperature relaxation in collisional non equilibrium plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Potapenko, I.F.; Bobylev, A.V.; Azevedo, C.A.; Assis, A.S. [Universidade do Estado, Rio de Janeiro, RJ (Brazil). Inst. de Fisica

    1997-12-31

    Full text. We study the relaxation of a space uniform plasma composed of electrons and one species of ions. To simplified the consideration, standard approach is usually accepted: the distribution functions are considered to be a Maxwellian with time dependent electron T{sub e}(t) and ion T{sub i}(t) temperatures. This approach imposes a severe restriction on the electron/ion distributions that could be very far from the equilibrium. In the present work the problem is investigated on the basis of the nonlinear kinetic Fokker - Planck equation, which is widely used for the description of collisional plasmas. This equation has many applications in plasma physics as an intrinsic part of physical models, both analytical and numerical. A new detailed description of this classical problem of the collisional plasma kinetic theory is given. A deeper examination of the problem shows that the unusual perturbation theory can not be used. The part of the perturbation of the electron distribution has the character of a boundary layer in the neighborhood of small velocities. In this work the boundary layer is thoroughly studied. The correct distribution electron function is given. Nonmonotonic character of the distribution relaxation in the tail region is observed. The corrected formula for temperature equalization is obtained. The comparison of the calculation results with the asymptotic approach is made. We should stress the important role of the completely conservative different scheme used here, which keeps the symmetric properties of the nonlinear exact equation. This allows us to make calculations without numerical error accumulations, except for machine errors. (author)

  3. Foundations of atmospheric pressure non-equilibrium plasmas

    Science.gov (United States)

    Bruggeman, Peter J.; Iza, Felipe; Brandenburg, Ronny

    2017-12-01

    Non-equilibrium plasmas have been intensively studied over the past century in the context of material processing, environmental remediation, ozone generation, excimer lamps and plasma display panels. Research on atmospheric pressure non-equilibrium plasmas intensified over the last two decades leading to a large variety of plasma sources that have been developed for an extended application range including chemical conversion, medicine, chemical analysis and disinfection. The fundamental understanding of these discharges is emerging but there remain a lot of unexplained phenomena in these intrinsically complex plasmas. The properties of non-equilibrium plasmas at atmospheric pressure span over a huge range of electron densities as well as heavy particle and electron temperatures. This paper provides an overview of the key underlying processes that are important for the generation and stabilization of atmospheric pressure non-equilibrium plasmas. The unique physical and chemical properties of theses discharges are also summarized.

  4. Determination of gross plasma equilibrium from magnetic multipoles

    Energy Technology Data Exchange (ETDEWEB)

    Kessel, C.E.

    1986-05-01

    A new approximate technique to determine the gross plasma equilibrium parameters, major radius, minor radius, elongation and triangularity for an up-down symmetric plasma is developed. It is based on a multipole representation of the externally applied poloidal magnetic field, relating specific terms to the equilibrium parameters. The technique shows reasonable agreement with free boundary MHD equilibrium results. The method is useful in dynamic simulation and control studies.

  5. Determination of gross plasma equilibrium from magnetic multipoles

    International Nuclear Information System (INIS)

    Kessel, C.E.

    1986-05-01

    A new approximate technique to determine the gross plasma equilibrium parameters, major radius, minor radius, elongation and triangularity for an up-down symmetric plasma is developed. It is based on a multipole representation of the externally applied poloidal magnetic field, relating specific terms to the equilibrium parameters. The technique shows reasonable agreement with free boundary MHD equilibrium results. The method is useful in dynamic simulation and control studies

  6. Advanced ST Plasma Scenario Simulations for NSTX

    International Nuclear Information System (INIS)

    Kessel, C.E.; Synakowski, E.J.; Gates, D.A.; Harvey, R.W.; Kaye, S.M.; Mau, T.K.; Menard, J.; Phillips, C.K.; Taylor, G.; Wilson, R.

    2004-01-01

    Integrated scenario simulations are done for NSTX [National Spherical Torus Experiment] that address four primary milestones for developing advanced ST configurations: high β and high β N inductive discharges to study all aspects of ST physics in the high-beta regime; non-inductively sustained discharges for flattop times greater than the skin time to study the various current-drive techniques; non-inductively sustained discharges at high β for flattop times much greater than a skin time which provides the integrated advanced ST target for NSTX; and non-solenoidal start-up and plasma current ramp-up. The simulations done here use the Tokamak Simulation Code (TSC) and are based on a discharge 109070. TRANSP analysis of the discharge provided the thermal diffusivities for electrons and ions, the neutral-beam (NB) deposition profile, and other characteristics. CURRAY is used to calculate the High Harmonic Fast Wave (HHFW) heating depositions and current drive. GENRAY/CQL3D is used to establish the heating and CD [current drive] deposition profiles for electron Bernstein waves (EBW). Analysis of the ideal-MHD stability is done with JSOLVER, BALMSC, and PEST2. The simulations indicate that the integrated advanced ST plasma is reachable, obtaining stable plasmas with β ∼ 40% at β N 's of 7.7-9, I P = 1.0 MA, and B T = 0.35 T. The plasma is 100% non-inductive and has a flattop of 4 skin times. The resulting global energy confinement corresponds to a multiplier of H 98(y,2) 1.5. The simulations have demonstrated the importance of HHFW heating and CD, EBW off-axis CD, strong plasma shaping, density control, and early heating/H-mode transition for producing and optimizing these plasma configurations

  7. Advanced ST plasma scenario simulations for NSTX

    International Nuclear Information System (INIS)

    Kessel, C.E.; Synakowski, E.J.; Gates, D.A.; Kaye, S.M.; Menard, J.; Phillips, C.K.; Taylor, G.; Wilson, R.; Harvey, R.W.; Mau, T.K.

    2005-01-01

    Integrated scenario simulations are done for NSTX that address four primary milestones for developing advanced ST configurations: high β and high β N inductive discharges to study all aspects of ST physics in the high beta regime; non-inductively sustained discharges for flattop times greater than the skin time to study the various current drive techniques; non-inductively sustained discharges at high βfor flattop times much greater than a skin time which provides the integrated advanced ST target for NSTX; and non-solenoidal startup and plasma current rampup. The simulations done here use the Tokamak Simulation Code (TSC) and are based on a discharge 109070. TRANSP analysis of the discharge provided the thermal diffusivities for electrons and ions, the neutral beam (NB) deposition profile and other characteristics. CURRAY is used to calculate the High Harmonic Fast Wave (HHFW) heating depositions and current drive. GENRAY/CQL3D is used to establish the heating and CD deposition profiles for electron Bernstein waves (EBW). Analysis of the ideal MHD stability is done with JSOLVER, BALMSC, and PEST2. The simulations indicate that the integrated advanced ST plasma is reachable, obtaining stable plasmas with β ∼ 40% at β N 's of 7.7-9, I P = 1.0 MA and B T = 0.35 T. The plasma is 100% non-inductive and has a flattop of 4 skin times. The resulting global energy confinement corresponds to a multiplier of H 98(y,2 ) = 1.5. The simulations have demonstrated the importance of HHFW heating and CD, EBW off-axis CD, strong plasma shaping, density control, and early heating/H-mode transition for producing and optimizing these plasma configurations (author)

  8. Non-equilibrium synergistic effects in atmospheric pressure plasmas.

    Science.gov (United States)

    Guo, Heng; Zhang, Xiao-Ning; Chen, Jian; Li, He-Ping; Ostrikov, Kostya Ken

    2018-03-19

    Non-equilibrium is one of the important features of an atmospheric gas discharge plasma. It involves complicated physical-chemical processes and plays a key role in various actual plasma processing. In this report, a novel complete non-equilibrium model is developed to reveal the non-equilibrium synergistic effects for the atmospheric-pressure low-temperature plasmas (AP-LTPs). It combines a thermal-chemical non-equilibrium fluid model for the quasi-neutral plasma region and a simplified sheath model for the electrode sheath region. The free-burning argon arc is selected as a model system because both the electrical-thermal-chemical equilibrium and non-equilibrium regions are involved simultaneously in this arc plasma system. The modeling results indicate for the first time that it is the strong and synergistic interactions among the mass, momentum and energy transfer processes that determine the self-consistent non-equilibrium characteristics of the AP-LTPs. An energy transfer process related to the non-uniform spatial distributions of the electron-to-heavy-particle temperature ratio has also been discovered for the first time. It has a significant influence for self-consistently predicting the transition region between the "hot" and "cold" equilibrium regions of an AP-LTP system. The modeling results would provide an instructive guidance for predicting and possibly controlling the non-equilibrium particle-energy transportation process in various AP-LTPs in future.

  9. Magnetohydrodynamic equilibrium with spheroidal plasma-vacuum interface

    International Nuclear Information System (INIS)

    Kaneko, Shobu; Chiyoda, Katsuji; Hirota, Isao.

    1983-01-01

    The Grad-Shafranov equations for an oblate and a prolate spheroidal plasmas are solved analytically under the assumptions, Bsub(phi) = 0 and dp/dpsi = constant. Here Bsub(phi) is the toroidal magnetic field, p is the kinetic pressure, and psi is the magnetic flux function. The plasmas in magnetohydrodynamic equilibrium are shown to be toroidal. The equilibrium magnetic-field configurations outside the spheroidal plasmas are considerably different from that of a spherical plasma. A line cusp or two point cusps appear outside the oblate or the prolate spheroidal plasma, respectively. (author)

  10. Wave propagation in a quasi-chemical equilibrium plasma

    Science.gov (United States)

    Fang, T.-M.; Baum, H. R.

    1975-01-01

    Wave propagation in a quasi-chemical equilibrium plasma is studied. The plasma is infinite and without external fields. The chemical reactions are assumed to result from the ionization and recombination processes. When the gas is near equilibrium, the dominant role describing the evolution of a reacting plasma is played by the global conservation equations. These equations are first derived and then used to study the small amplitude wave motion for a near-equilibrium situation. Nontrivial damping effects have been obtained by including the conduction current terms.

  11. Beta II compact torus experiment plasma equilibrium and power balance

    International Nuclear Information System (INIS)

    Turner, W.C.; Goldenbaum, G.C.; Granneman, E.H.A.; Prono, D.S.; Hartman, C.W.; Taska, J.

    1982-01-01

    In this paper we follow up some of our earlier work that showed the compact torus (CT) plasma equilibrium produced by a magnetized coaxial plasma gun is nearly force free and that impurity radiation plays a dominant role in determining the decay time of plasma currents in present generation experiments

  12. Analysis of equilibrium and topology of tokamak plasmas

    International Nuclear Information System (INIS)

    Milligen, B.P. van.

    1991-01-01

    In a tokamak, the plasma is confined by means of a magnetic field. There exists an equilibrium between outward forces due to the pressure gradient in plasma and inward forces due to the interaction between currents flowing inside the plasma and the magnetic field. The equilibrium magnetic field is characterized by helical field lines that lie on nested toroidal surfaces of constant flux. The equilibrium yields values for global and local plasma parameters (e.g. plasma position, total current, local pressure). Thus, precise knowledge of the equilibrium is essential for plasma control, for the understanding of many phenomena occurring in the plasma (in particular departures from the ideal equilibrium involving current filamentation on the flux surfaces that lead to the formation of islands, i.e. nested helical flux surfaces), and for the interpretation of many different types of measurements (e.g. the translation of line integrated electron density measurements made by laser beams probing the plasma into a local electron density on a flux surface). The problem of determining the equilibrium magnetic field from external magnetic field measurements has been studied extensively in literature. The problem is 'ill-posed', which means that the solution is unstable to small changes in the measurement data, and the solution has to be constrained in order to stabilize it. Various techniques for handling this problem have been suggested in literature. Usually ad-hoc restrictions are imposed on the equilibrium solution in order to stabilize it. More equilibrium solvers are not able to handle very dissimilar measurement data which means information on the equilibrium is lost. The generally do not allow a straightforward error estimate of the obtained results to be made, and they require large amounts of computing time. This problems are addressed in this thesis. (author). 104 refs.; 42 figs.; 6 tabs

  13. Frontier of plasma physics. 'Research network on non-equilibrium and extreme state plasmas'

    International Nuclear Information System (INIS)

    Itoh, Sanae-I.; Fujisawa, Akihide; Kodama, Ryosuke; Sato, Motoyasu; Tanaka, Kazuo A.; Hatakeyama, Rikizo; Itoh, Kimitaka

    2011-01-01

    Plasma physics and fusion science have been applied to a wide variety of plasmas such as nuclear fusion plasmas, high-energy-density plasmas, processing plasmas and nanobio- plasmas. They are pioneering science and technology frontiers such as new energy sources and new functional materials. A large project 'research network on non-equilibrium and extreme state plasmas' is being proposed to reassess individual plasma researches from a common view of the non-equilibrium extreme plasma and to promote collaboration among plasma researchers all over the country. In the present review, recent collaborative works related to this project are being introduced. (T.I.)

  14. Problems with the concept of plasma equilibrium in tokamaks

    International Nuclear Information System (INIS)

    Carreras, B.A.

    1992-01-01

    The equilibrium condition for a magnetically confined plasma in normally formulated in terms of macroscopic equations. In these equations, the plasma pressure is assumed to be a function of the magnetic flux with continuous derivatives. However, in three- dimensional systems this is not necessarily the case. Here, we look at the case of an intrinsically three-dimensional realistic tokamak, and we discuss the possible interconnection between the equilibrium and anomalous transport

  15. Non-equilibrium phase transitions in complex plasma

    International Nuclear Information System (INIS)

    Suetterlin, K R; Raeth, C; Ivlev, A V; Thomas, H M; Khrapak, S; Zhdanov, S; Rubin-Zuzic, M; Morfill, G E; Wysocki, A; Loewen, H; Goedheer, W J; Fortov, V E; Lipaev, A M; Molotkov, V I; Petrov, O F

    2010-01-01

    Complex plasma being the 'plasma state of soft matter' is especially suitable for investigations of non-equilibrium phase transitions. Non-equilibrium phase transitions can manifest in dissipative structures or self-organization. Two specific examples are lane formation and phase separation. Using the permanent microgravity laboratory PK-3 Plus, operating onboard the International Space Station, we performed unique experiments with binary mixtures of complex plasmas that showed both lane formation and phase separation. These observations have been augmented by comprehensive numerical and theoretical studies. In this paper we present an overview of our most important results. In addition we put our results in context with research of complex plasmas, binary systems and non-equilibrium phase transitions. Necessary and promising future complex plasma experiments on phase separation and lane formation are briefly discussed.

  16. Plasma equilibrium response modelling and validation on JT-60U

    International Nuclear Information System (INIS)

    Lister, J.B.; Sharma, A.; Limebeer, D.J.N.; Wainwright, J.P.; Nakamura, Y.; Yoshino, R.

    2002-01-01

    A systematic procedure to identify the plasma equilibrium response to the poloidal field coil voltages has been applied to the JT-60U tokamak. The required response was predicted with a high accuracy by a state-space model derived from first principles. The ab initio derivation of linearized plasma equilibrium response models is re-examined using an approach standard in analytical mechanics. A symmetric formulation is naturally obtained, removing a previous weakness in such models. RZIP, a rigid current distribution model, is re-derived using this approach and is compared with the new experimental plasma equilibrium response data obtained from Ohmic and neutral beam injection discharges in the JT-60U tokamak. In order to remove any bias from the comparison between modelled and measured plasma responses, the electromagnetic response model without plasma was first carefully tuned against experimental data, using a parametric approach, for which different cost functions for quantifying model agreement were explored. This approach additionally provides new indications of the accuracy to which various plasma parameters are known, and to the ordering of physical effects. Having taken these precautions when tuning the plasmaless model, an empirical estimate of the plasma self-inductance, the plasma resistance and its radial derivative could be established and compared with initial assumptions. Off-line tuning of the JT-60U controller is presented as an example of the improvements which might be obtained by using such a model of the plasma equilibrium response. (author)

  17. Applications of non-equilibrium plasma in chemical processes

    International Nuclear Information System (INIS)

    Patino, P.; Castro, A.

    2003-01-01

    By means of optical emission spectroscopy the population of O( 3 P) in a non-equilibrium, high voltage, oxygen plasma, and O( 3 P), H and OH in another of steam in radio frequency, have been followed. Reactions of both plasmas with liquid hydrocarbons have produced oxidation and/or hydrogenation, depending on the conditions of each one. (Author)

  18. Collision integral and equilibrium distributions for a bounded plasma

    International Nuclear Information System (INIS)

    Zagorodnij, A.G.; Usenko, A.S.; Yakimenko, I.P.

    1985-01-01

    A kinetic equation of Balesku-Lennard type for multicomponent system of charged particle limited by two flat-parallel surfaces is derived on the basis of the general theory of electromagnetic fluctuations in plasma. Equilibrium values of collision integral for a plasma with arbitrary configuration boundaries are calculated and general ratios describing charged particles density profiles in such systems are obtained

  19. Experimental approaches for studying non-equilibrium atmospheric plasma jets

    Energy Technology Data Exchange (ETDEWEB)

    Shashurin, A., E-mail: ashashur@purdue.edu [School of Aeronautics & Astronautics, Purdue University, West Lafayette, Indiana 47907 (United States); Keidar, M. [Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, District of Columbia 20052 (United States)

    2015-12-15

    This work reviews recent research efforts undertaken in the area non-equilibrium atmospheric plasma jets with special focus on experimental approaches. Physics of small non-equilibrium atmospheric plasma jets operating in kHz frequency range at powers around few Watts will be analyzed, including mechanism of breakdown, process of ionization front propagation, electrical coupling of the ionization front with the discharge electrodes, distributions of excited and ionized species, discharge current spreading, transient dynamics of various plasma parameters, etc. Experimental diagnostic approaches utilized in the field will be considered, including Rayleigh microwave scattering, Thomson laser scattering, electrostatic streamer scatterers, optical emission spectroscopy, fast photographing, etc.

  20. A toroidal plasma MHD equilibrium code 'EQUCIR version 1'

    International Nuclear Information System (INIS)

    Ninomiya, Hiromasa; Shinya, Kichiro; Kameari, Akihisa.

    1980-10-01

    A new free-boundary toroidal MHD equilibrium code ''EQUCIR version 1'' has been developed. The central problems approached by this code is as follows: 1) The magnetic flux distribution of a plasma at equilibrium is determined in the given external field. 2) A set of circuit equations between the plasma and the external conductors are constructed. These circuit equations and the Grad-Shafranov equation are solved self-consistently and the time evolutions of plasma equilibria and currents in external conductors are determined at the same time. 3) The currents in the external conductors are determined so that the plasma cross-section and plasma parameters are to be maintained with desired ones. It is shown that this code is very useful for study of the tokamak plasma equilibria, for design of the poloidal coil system and for investigation of experimental results. (author)

  1. A numerical solution for a toroidal plasma in equilibrium

    International Nuclear Information System (INIS)

    Hintz, E.; Sudano, J.P.

    1982-01-01

    The iterative techniques alternating direction implicit (ADI), sucessive ove-relaxation (SOR) and Gauss-Seidel are applied to a nonlinear elliptical second order differential equation (Grand-Shafranov). This equation was solve with the free boundary conditions plasma-vacuum interface over a rectangular section in cylindrical coordinates R and Z. The current density profile, plasma pressure profile, magnetic and isobaric surfaces are numerically determined for a toroidal plasma in equilibrium. (L.C.) [pt

  2. A dissipative model of plasma equilibrium in toroidal systems

    International Nuclear Information System (INIS)

    Wobig, H.

    1985-10-01

    In order to describe a steady-state plasma equilibrium in tokamaks, stellarators or other non-axisymmetric configurations, the model of ideal MHD with isotropic plasma pressure is widely used. The ideal MHD - model of a toroidal plasma equilibrium requires the existence of closed magnetic surfaces. Several numerical codes have been developed in the past to solve the three-dimensional equilibrium problem, but so far no existence theorem for a solution has been proved. Another difficulty is the formation of magnetic islands and field line ergodisation, which can only be described in terms of ideal MHD if the plasma pressure is constant in the ergodic region. In order to describe the formation of magnetic islands and ergodisation of surfaces properly, additional dissipative terms have to be incorporated to allow decoupling of the plasma and magnetic field. In a collisional plasma viscosity and inelastic collisions introduce such dissipative processes. In the model used a friction term proportional to the velocity v vector of the plasma is included. Such a term originates from charge exchange interaction of the plasma with a nuetral background. With these modifications, the equilibrium problem reduces to a set of quasilinear elliptic equations for the pressure, the electric potential and the magnetic field. The paper deals with an existence theorem based on the Fixed - Point method of Schauder. It can be shown that a self-consistent and unique equilibrium exists if the friction term is large and the plasma pressure is sufficiently low. The essential role of the dissipative terms is to remove the singularities of the ideal MHD model on rational magnetic surfaces. The problem has a strong similarity to Benard cell convection, and consequently similar behaviour such as bifurcation and exchange of stability are expected. (orig./GG)

  3. Quick plasma equilibrium reconstruction based on GPU

    International Nuclear Information System (INIS)

    Xiao Bingjia; Huang, Y.; Luo, Z.P.; Yuan, Q.P.; Lao, L.

    2014-01-01

    A parallel code named P-EFIT which could complete an equilibrium reconstruction iteration in 250 μs is described. It is built with the CUDA TM architecture by using Graphical Processing Unit (GPU). It is described for the optimization of middle-scale matrix multiplication on GPU and an algorithm which could solve block tri-diagonal linear system efficiently in parallel. Benchmark test is conducted. Static test proves the accuracy of the P-EFIT and simulation-test proves the feasibility of using P-EFIT for real-time reconstruction on 65x65 computation grids. (author)

  4. Non-equilibrium plasma reactor for natrual gas processing

    International Nuclear Information System (INIS)

    Shair, F.H.; Ravimohan, A.L.

    1974-01-01

    A non-equilibrium plasma reactor for natural gas processing into ethane and ethylene comprising means of producing a non-equilibrium chemical plasma wherein selective conversion of the methane in natural gas to desired products of ethane and ethylene at a pre-determined ethane/ethylene ratio in the chemical process may be intimately controlled and optimized at a high electrical power efficiency rate by mixing with a recycling gas inert to the chemical process such as argon, helium, or hydrogen, reducing the residence time of the methane in the chemical plasma, selecting the gas pressure in the chemical plasma from a wide range of pressures, and utilizing pulsed electrical discharge producing the chemical plasma. (author)

  5. Lower hybrid wave current ramp-up and plasma equilibrium

    International Nuclear Information System (INIS)

    Gong Xueyu

    1996-01-01

    Questions on lower hybrid driven current and plasma equilibrium are studied. With the induced electric field taken into account, a system of self-consistent equations is obtained. This theory has been applied to some moments of the current ramp-up phase for the Tokamak Engineering Test Breeder (TETB) to study the lower hybrid current drive and MHD equilibrium. So, better electron current and safety factor profiles are obtained

  6. Non-equilibrium Microwave Plasma for Efficient High Temperature Chemistry.

    Science.gov (United States)

    van den Bekerom, Dirk; den Harder, Niek; Minea, Teofil; Gatti, Nicola; Linares, Jose Palomares; Bongers, Waldo; van de Sanden, Richard; van Rooij, Gerard

    2017-08-01

    A flowing microwave plasma based methodology for converting electric energy into internal and/or translational modes of stable molecules with the purpose of efficiently driving non-equilibrium chemistry is discussed. The advantage of a flowing plasma reactor is that continuous chemical processes can be driven with the flexibility of startup times in the seconds timescale. The plasma approach is generically suitable for conversion/activation of stable molecules such as CO2, N2 and CH4. Here the reduction of CO2 to CO is used as a model system: the complementary diagnostics illustrate how a baseline thermodynamic equilibrium conversion can be exceeded by the intrinsic non-equilibrium from high vibrational excitation. Laser (Rayleigh) scattering is used to measure the reactor temperature and Fourier Transform Infrared Spectroscopy (FTIR) to characterize in situ internal (vibrational) excitation as well as the effluent composition to monitor conversion and selectivity.

  7. Magnetic analysis of tokamak plasma with approximate MHD equilibrium solution

    International Nuclear Information System (INIS)

    Moriyama, Shin-ichi; Hiraki, Naoji

    1993-01-01

    A magnetic analysis method for determining equilibrium configuration parameters (plasma shape, poloidal beta and internal inductance) on a non-circular tokamak is described. The feature is to utilize an approximate MHD equilibrium solution which explicitly relates the configuration parameters with the magnetic fields picked up by magnetic sensors. So this method is suitable for the real-time analysis performed during a tokamak discharge. A least-squares fitting procedure is added to the analytical algorithm in order to reduce the errors in the magnetic analysis. The validity is investigated through the numerical calculation for a tokamak equilibrium model. (author)

  8. Investigation of plasma equilibrium in HL-1 tokamak

    International Nuclear Information System (INIS)

    Lu Zhihong; Jiang Yunxia; Yang Jinwei; Zhang Baozhu; Qiu Wei; Qin Yunwen

    1987-01-01

    In this paper, the plasma equilibrium in HL-1 tokamak has been discussed. The horizontal and vertical displacement of plasma is measured using a symmetical magneic probe system, and the temporal evolution of displacements is given by a data acquisition system with micro-computer. The influence of various stray fields on plasma equilibrium has been analysed. The direction and value of horizontal stray field induced by the totoidal field coils and primary windings are determined using vertical displacement data. By adjusting parameters of internal and external vertical field, in the flat part of discharge current, the plasma can be kept in its equilibuium state at the place where is 3 cm outer of chamber certre, i.e nearby the centre of limiter

  9. Non-Equilibrium Modeling of Inductively Coupled RF Plasmas

    Science.gov (United States)

    2015-01-01

    wall can be approximated with the expression for an infinite solenoid , B(r = R) = µ0NIc, where quan- tities N and Ic are the number of turns per unit...Modeling of non-equilibrium plasmas in an induc- tively coupled plasma facility. AIAA Paper 2014– 2235, 2014. 45th AIAA Plasmadynamics and Lasers ...1993. 24th Plas- madynamics and Laser Conference, Orlando, FL. [22] M. Capitelli, I. Armenise, D. Bruno, M. Caccia- tore, R. Celiberto, G. Colonna, O

  10. Comparing DINA code simulations with TCV experimental plasma equilibrium responses

    International Nuclear Information System (INIS)

    Khayrutdinov, R.R.; Lister, J.B.; Lukash, V.E.; Wainwright, J.P.

    2000-08-01

    The DINA non-linear time dependent simulation code has been validated against an extensive set of plasma equilibrium response experiments carried out on the TCV tokamak. Limited and diverted plasmas are found to be well modelled during the plasma current flat top. In some simulations the application of the PF coil voltage stimulation pulse sufficiently changed the plasma equilibrium that the vertical position feedback control loop became unstable. This behaviour was also found in the experimental work, and cannot be reproduced using linear time-independent models. A single null diverted plasma discharge was also simulated from start-up to shut-down and the results were found to accurately reproduce their experimental equivalents. The most significant difference noted was the penetration time of the poloidal flux, leading to a delayed onset of sawtoothing in the DINA simulation. The complete set of frequency stimulation experiments used to measure the open loop tokamak plasma equilibrium response was also simulated using DINA and the results were analysed in an identical fashion to the experimental data. The frequency response of the DINA simulations agrees with the experimental results. Comparisons with linear models are also discussed to identify areas of good and only occasionally less good agreement. (author)

  11. Thermal equilibrium criteria in a nitrogen plasma

    International Nuclear Information System (INIS)

    Cilliers, W.A.; Hey, J.D.; Rash, J.P.S.

    1975-01-01

    A method for obtaining the lower electron density limit for LTE in a nitrogen plasma is described, whereby the experimentally determined ratio of the collisional-radiative ionization and recombination coefficients (S/α) is compared with the corresponding LTE value (Saha ratio). It is argued that if the electron density is increased from values of about 10 16 cm -3 , S/α should tend to the Saha ratio as LTE is approached For NII and NIII spectral lines, this is found to happen at an electron density of a few times 10 16 cm -3 when the electron temperature is about 3 eV, in good agreement with the LTE criterion of Griem. (author)

  12. On the axially symmetric equilibrium of a magnetically confined plasma

    International Nuclear Information System (INIS)

    Lehnert, B.

    1975-01-01

    The axially symmetric equilibrium of a magnetically confined plasma is reconsidered, with the special purpose of studying high-beta schemes with a purely poloidal magnetic field. A number of special solutions of the pressure and magnetic flux functions are shown to exist, the obtained results may form starting-points in a further analysis of physically relevant configurations. (Auth.)

  13. Local thermodynamic equilibrium in rapidly heated high energy density plasmas

    International Nuclear Information System (INIS)

    Aslanyan, V.; Tallents, G. J.

    2014-01-01

    Emission spectra and the dynamics of high energy density plasmas created by optical and Free Electron Lasers (FELs) depend on the populations of atomic levels. Calculations of plasma emission and ionization may be simplified by assuming Local Thermodynamic Equilibrium (LTE), where populations are given by the Saha-Boltzmann equation. LTE can be achieved at high densities when collisional processes are much more significant than radiative processes, but may not be valid if plasma conditions change rapidly. A collisional-radiative model has been used to calculate the times taken by carbon and iron plasmas to reach LTE at varying densities and heating rates. The effect of different energy deposition methods, as well as Ionization Potential Depression are explored. This work shows regimes in rapidly changing plasmas, such as those created by optical lasers and FELs, where the use of LTE is justified, because timescales for plasma changes are significantly longer than the times needed to achieve an LTE ionization balance

  14. Equilibrium and perturbations in plasma-vacuum systems

    International Nuclear Information System (INIS)

    Mercier, C.

    1974-01-01

    Thermonuclear plasmas must be maintained far from all material contact. In order to realize this condition, one uses in the vacuum surrounding the plasma, a metal wall supposed perfectly conducting and currents whose positions and intensities have to be suitably chosen. The problem of equilibrium consists of finding a toroidal solution of the system of equations JxB=grad P, div B=0, J=rot B, B,J, and P being respectively the magnetic field, current intensity and plasma pressure. The problem can be solved in symmetry of revolution using cylindrical coordinates. The arrangement and intensity of the currents found will not be exactly realized due to, for exemple, technical reasons. Consequently, the first problem of equilibrium is considered as a first approximation and the configuration which will be obtained under imposed real conditions is computed as perturbed equilibria [fr

  15. Behavior of Triple Langmuir Probes in Non-Equilibrium Plasmas

    Science.gov (United States)

    Polzin, Kurt A.; Ratcliffe, Alicia C.

    2018-01-01

    The triple Langmuir probe is an electrostatic probe in which three probe tips collect current when inserted into a plasma. The triple probe differs from a simple single Langmuir probe in the nature of the voltage applied to the probe tips. In the single probe, a swept voltage is applied to the probe tip to acquire a waveform showing the collected current as a function of applied voltage (I-V curve). In a triple probe three probe tips are electrically coupled to each other with constant voltages applied between each of the tips. The voltages are selected such that they would represent three points on the single Langmuir probe I-V curve. Elimination of the voltage sweep makes it possible to measure time-varying plasma properties in transient plasmas. Under the assumption of a Maxwellian plasma, one can determine the time-varying plasma temperature T(sub e)(t) and number density n(sub e)(t) from the applied voltage levels and the time-histories of the collected currents. In the present paper we examine the theory of triple probe operation, specifically focusing on the assumption of a Maxwellian plasma. Triple probe measurements have been widely employed for a number of pulsed and timevarying plasmas, including pulsed plasma thrusters (PPTs), dense plasma focus devices, plasma flows, and fusion experiments. While the equilibrium assumption may be justified for some applications, it is unlikely that it is fully justifiable for all pulsed and time-varying plasmas or for all times during the pulse of a plasma device. To examine a simple non-equilibrium plasma case, we return to basic governing equations of probe current collection and compute the current to the probes for a distribution function consisting of two Maxwellian distributions with different temperatures (the two-temperature Maxwellian). A variation of this method is also employed, where one of the Maxwellians is offset from zero (in velocity space) to add a suprathermal beam of electrons to the tail of the

  16. Global low-frequency modes in weakly ionized magnetized plasmas: effects of equilibrium plasma rotation

    International Nuclear Information System (INIS)

    Sosenko, P.; Pierre, Th.; Zagorodny, A.

    2004-01-01

    The linear and non-linear properties of global low-frequency oscillations in cylindrical weakly ionized magnetized plasmas are investigated analytically for the conditions of equilibrium plasma rotation. The theoretical results are compared with the experimental observations of rotating plasmas in laboratory devices, such as Mistral and Mirabelle in France, and KIWI in Germany. (authors)

  17. Structure of the automatic system for plasma equilibrium position control

    International Nuclear Information System (INIS)

    Gubarev, V.F.; Krivonos, Yu.G.; Samojlenko, Yu.I.; Snegur, A.A.

    1978-01-01

    Considered are the principles of construction of the automatic system for plasma filament equilibrium position control inside the discharge chamber for the installation of a tokamak type. The combined current control system in control winding is suggested. The most powerful subsystem creates current in the control winding according to the program calculated beforehand. This system provides plasma rough equilibrium along the ''big radius''. The subsystem performing the current change in small limits according to the principle of feed-back coupling is provided simultaneously. The stabilization of plasma position is achieved in the discharge chamber. The advantage of construction of such system is in decreasing of the automatic requlator power without lowering the requirements to the accuracy of equilibrium preservation. The subsystem of automatic control of plasma position over the vertical is put into the system. Such an approach to the construction of the automatic control system proves to be correct; it is based on the experience of application of similar devices for some existing thermonuclear plants

  18. Time parallelization of advanced operation scenario simulations of ITER plasma

    International Nuclear Information System (INIS)

    Samaddar, D; Casper, T A; Kim, S H; Houlberg, W A; Berry, L A; Elwasif, W R; Batchelor, D

    2013-01-01

    This work demonstrates that simulations of advanced burning plasma operation scenarios can be successfully parallelized in time using the parareal algorithm. CORSICA -an advanced operation scenario code for tokamak plasmas is used as a test case. This is a unique application since the parareal algorithm has so far been applied to relatively much simpler systems except for the case of turbulence. In the present application, a computational gain of an order of magnitude has been achieved which is extremely promising. A successful implementation of the Parareal algorithm to codes like CORSICA ushers in the possibility of time efficient simulations of ITER plasmas.

  19. Equilibrium measurements on the REPUTE-1 RFP plasma

    International Nuclear Information System (INIS)

    Ji, H.; Toyama, H.; Shinohara, S.; Fujisawa, A.; Yamagishi, K.; Shimazu, Y.; Ejiri, A.; Shimoji, K.; Miyamoto, K.

    1989-01-01

    Global plasma equilibrium measurements by external magnetic probes are widely introduced on the toroidal plasmas, i.e. tokamaks or RFPs, because of their simplicity and convenience. The measurement principle is based on Shafranov's toroidal equilibrium theory, which gives simple relations between the global equilibrium quantity and the external fields. These relations are valid in the either case of existence or absence of ideal shell just out the plasma column, however, not valid in the case of the thin (or resistive) shell, whose skin time τ s has the same order of the current rise time τ r . A method introduced by Swain et al. is effective in this case, in which the plasma current I p is replaced by 6 filament currents. However, by this method it is dificult to include the effect of iron core and computation requires a lot (beyond 14) of the measurement of the fields or flux loop. In this paper we introduce a simple method which is based on fitting measured fields to the vacuum approximate solution of Grad-Shafranov equation. The computation requires only a few measurements (≥6) of the fields. REPUTE-1 device is characterized by a thin shell of 5 mm thickness whose skin time τ s for the penetration of the vertical field is 1 ms compared with τ r of 0.5 ms. The optimum discharges whose duration τ d are about 3 times of τ s have been obtained. In spite of various efforts including vertical-ohmic coils series connection experiments, toroidal ripple reduction experiments and port bypass plate installation experiments, until now τ d is still limited by 3.2 ms. We should think that the equilibrium of plasma is lost due to an unfavorable vertical field. In this paper we present the measurements of the time evolution of the plasma position from the flat-top phase to the termination phase, at that time the plasma begins to lose its equilibrium. The liner has a major radius R L of 82 cm and a minor radius a L of 22 cm. (author) 6 refs., 4 figs

  20. Modeling of the equilibrium of a tokamak plasma

    International Nuclear Information System (INIS)

    Grandgirard, V.

    1999-12-01

    The simulation and the control of a plasma discharge in a tokamak require an efficient and accurate solving of the equilibrium because this equilibrium needs to be calculated again every microsecond to simulate discharges that can last up to 1000 seconds. The purpose of this thesis is to propose numerical methods in order to calculate these equilibrium with acceptable computer time and memory size. Chapter 1 deals with hydrodynamics equation and sets up the problem. Chapter 2 gives a method to take into account the boundary conditions. Chapter 3 is dedicated to the optimization of the inversion of the system matrix. This matrix being quasi-symmetric, the Woodbury method combined with Cholesky method has been used. This direct method has been compared with 2 iterative methods: GMRES (generalized minimal residual) and BCG (bi-conjugate gradient). The 2 last chapters study the control of the plasma equilibrium, this work is presented in the formalism of the optimized control of distributed systems and leads to non-linear equations of state and quadratic functionals that are solved numerically by a quadratic sequential method. This method is based on the replacement of the initial problem with a series of control problems involving linear equations of state. (A.C.)

  1. Deviations from excitation equilibrium in optically thick mercury arc plasmas

    International Nuclear Information System (INIS)

    Karabourniotis, D.; Couris, S.; Damelincourt, J.J.

    1989-01-01

    Up to date mercury arcs at pressure greater than 1 atm have been investigated as plasma systems in local thermodynamic equilibrium (LTE) state. These studies have been motivated by the applications of mercury arcs, e.g., in the lighting industry. The LTE-assumption simplifies the use of spectroscopic diagnostics and the performance of species-concentration calculations. A high pressure mercury arc of about 1 atm had been considered in two possibilities: excitation and gas temperatures are the same, the electron temperature is higher and excitation and electron temperatures are the same, the gas temperature is lower. Recent measurements in mercury arcs reveal the existence of severe departures from thermal equilibrium and suggest the absence of excitation equilibrium in the axis and in the periphery in such an arc. The deviation from equilibrium leads to complicated distributions, such that the system cannot be described correctly by any single temperature. This becomes quite complicated when plasma inhomogeneity and strong reabsorption of the radiation are present

  2. Model of opacity and emissivity of non-equilibrium plasma

    International Nuclear Information System (INIS)

    Politov V Y

    2008-01-01

    In this work the model describing absorption and emission properties of the non-equilibrium plasma is presented. It is based on the kinetics equations for populations of the ground, singly and doubly excited states of multi-charged ions. After solving these equations, the states populations together with the spectroscopic data, supplied in the special database for a lot ionization stages, are used for building the spectral distributions of plasma opacity and emissivity in STA approximation. Results of kinetics simulation are performed for such important X-ray converter as gold, which is investigated intensively in ICF-experiments

  3. Goya - an MHD equilibrium code for toroidal plasmas

    International Nuclear Information System (INIS)

    Scheffel, J.

    1984-09-01

    A description of the GOYA free-boundary equilibrium code is given. The non-linear Grad-Shafranov equation of ideal MHD is solved in a toroidal geometry for plasmas with purely poloidal magnetic fields. The code is based on a field line-tracing procedure, making storage of a large amount of information on a grid unnecessary. Usage of the code is demonstrated by computations of equi/libria for the EXTRAP-T1 device. (Author)

  4. Static and dynamic control of plasma equilibrium in a Tokamak

    International Nuclear Information System (INIS)

    Blum, J.; Dei Cas, R.

    1979-01-01

    We are dealing here with the problem of controlling the plasma boundary and its displacements. Static control consists in determining the currents in the external coils of the Tokamak so that the plasma boundary has certain fixed characteristics: radial position, vertical elongation, desired shape. A self-consistent method is proposed here, considering a free plasma boundary, and using the techniques of optimal control of distributed parameter systems to solve the problem. The dynamic control problem considered in the second part of the paper is the control of the plasma radial displacements. An elaborate system of preprogramming and feedback control has been developed to ensure equilibrium and stability of the horizontal plasma motions. Optimal control techniques have been used to calculate the optimal primary coils configuration, the preprogramming voltages and the feedback gains. A new stability diagrams has been obtained which takes into account the erosion of the plasma by the limiter. All these calculations have been applied successfully to TFR 600 where thin liner and the presence of an iron core make the problem of stabilization of the radial displacements very difficult

  5. Physical phenomena in a low-temperature non-equilibrium plasma and in MHD generators with non-equilibrium conductivity

    International Nuclear Information System (INIS)

    Velikhov, E.P.; Golubev, V.S.; Dykhne, A.M.

    1976-01-01

    The paper assesses the position in 1975 of theoretical and experimental work on the physics of a magnetohydrodynamic generator with non-equilibrium plasma conductivity. This research started at the beginning of the 1960s; as work on the properties of thermally non-equilibrium plasma in magnetic fields and also in MHD generator ducts progressed, a number of phenomena were discovered and investigated that had either been unknown in plasma physics or had remained uninvestigated until that time: ionization instability and ionization turbulence of plasma in a magnetic field, acoustic instability of a plasma with anisotropic conductivity, the non-equilibrium ionization wave and the energy balance of a non-equilibrium plasma. At the same time, it was discovered what physical requirements an MHD generator with non-equilibrium conductivity must satisfy to achieve high efficiency in converting the thermal or kinetic energy of the gas flow into electric energy. The experiments on MHD power generation with thermally non-equilibrium plasma carried out up to 1975 indicated that it should be possible to achieve conversion efficiencies of up to 20-30%. (author)

  6. Optimization of tokamak plasma equilibrium shape using parallel genetic algorithms

    International Nuclear Information System (INIS)

    Zhulin An; Bin Wu; Lijian Qiu

    2006-01-01

    In the device of non-circular cross sectional tokamaks, the plasma equilibrium shape has a strong influence on the confinement and MHD stability. The plasma equilibrium shape is determined by the configuration of the poloidal field (PF) system. Usually there are many PF systems that could support the specified plasma equilibrium, the differences are the number of coils used, their positions, sizes and currents. It is necessary to find the optimal choice that meets the engineering constrains, which is often done by a constrained optimization. The Genetic Algorithms (GAs) based method has been used to solve the problem of the optimization, but the time complexity limits the algorithms to become widely used. Due to the large search space that the optimization has, it takes several hours to get a nice result. The inherent parallelism in GAs can be exploited to enhance their search efficiency. In this paper, we introduce a parallel genetic algorithms (PGAs) based approach which can reduce the computational time. The algorithm has a master-slave structure, the slave explore the search space separately and return the results to the master. A program is also developed, and it can be running on any computers which support massage passing interface. Both the algorithm and the program are detailed discussed in the paper. We also include an application that uses the program to determine the positions and currents of PF coils in EAST. The program reach the target value within half an hour and yield a speedup rate of 5.21 on 8 CPUs. (author)

  7. Local thermodynamic equilibrium considerations in powerchip laser-induced plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Merten, Jonathan A., E-mail: jmerten@astate.edu; Smith, Benjamin W., E-mail: bwsmith@chem.ufl.edu; Omenetto, Nicoló, E-mail: omenetto@chem.ufl.edu

    2013-05-01

    Time-resolved emission experiments are reported in the fast-decaying transient plasma induced by a microchip laser on an aluminum target in three different cover gases, i.e., air, argon and helium. The laser operates at 532 nm, with a repetition frequency of 1 kHz and a pulse width of less than 0.5 ns. The overall persistence of plasma emission is of the order of 100 ns. We examine the existence of local thermodynamic equilibrium (LTE) by evaluating the temporal criteria required (in addition to the McWhirter criterion), as recommended by Cristoforetti et al. (Spectrochim. Acta Part B 65, 2010, 86–95). The temporal criteria examine the evolution of temperature and electron number density and compare their rate of change to the rate at which electron collisions can thermalize the change. These considerations are used to determine time windows in which LTE may be present. Our results suggest that calibration-free LIBS measurements with these lasers may be possible for some elements at early times, especially under argon. - Highlights: ► Powerchip laser-induced plasma evolution is affected by cover gas. ► Plasma often out of LTE, despite fulfilling the McWhirter criterion ► Calibration-free LIBS may be possible with powerchip laser plasmas.

  8. Local thermodynamic equilibrium considerations in powerchip laser-induced plasmas

    International Nuclear Information System (INIS)

    Merten, Jonathan A.; Smith, Benjamin W.; Omenetto, Nicoló

    2013-01-01

    Time-resolved emission experiments are reported in the fast-decaying transient plasma induced by a microchip laser on an aluminum target in three different cover gases, i.e., air, argon and helium. The laser operates at 532 nm, with a repetition frequency of 1 kHz and a pulse width of less than 0.5 ns. The overall persistence of plasma emission is of the order of 100 ns. We examine the existence of local thermodynamic equilibrium (LTE) by evaluating the temporal criteria required (in addition to the McWhirter criterion), as recommended by Cristoforetti et al. (Spectrochim. Acta Part B 65, 2010, 86–95). The temporal criteria examine the evolution of temperature and electron number density and compare their rate of change to the rate at which electron collisions can thermalize the change. These considerations are used to determine time windows in which LTE may be present. Our results suggest that calibration-free LIBS measurements with these lasers may be possible for some elements at early times, especially under argon. - Highlights: ► Powerchip laser-induced plasma evolution is affected by cover gas. ► Plasma often out of LTE, despite fulfilling the McWhirter criterion ► Calibration-free LIBS may be possible with powerchip laser plasmas

  9. MHD equilibrium of toroidal fusion plasma with stationary flows

    International Nuclear Information System (INIS)

    Galkowski, A.

    1994-01-01

    Non-linear ideal MHD equilibria in axisymmetric system with flows are examined, both in 1st and 2nd ellipticity regions. Evidence of the bifurcation of solutions is provided and numerical solutions of several problems in a tokamak geometry are given, exhibiting bifurcation phenomena. Relaxation of plasma in the presence of zero-order flows is studied in a realistic toroidal geometry. The field aligned flow allows equilibria with finite pressure gradient but with homogeneous temperature distribution. Numerical calculations have been performed for the 1st and 2nd ellipticity regimes of the extended Grad-Shafranov-Schlueter equation. Numerical technique, alternative to the well-known Grad's ADM methods has been proposed to deal with slow adiabatic evolution of toroidal plasma with flows. The equilibrium problem with prescribed adiabatic constraints may be solved by simultaneous calculations of flux surface geometry and original profile functions. (author). 178 refs, 37 figs, 5 tabs

  10. Poloidal field coil design for known plasma equilibrium states

    International Nuclear Information System (INIS)

    Paulson, C.C.; Todd, A.M.M.; Reusch, M.F.

    1986-01-01

    The technique for obtaining plasma equilibria with given boundary conditions has long been known and understood. The inverse problem of obtaining a poloidal field (PF) coil system from a given plasma equilibrium has been widely studied, however its solution has remained largely an art form. An investigation, by the writers, of this fundamentally ill-posed inverse problem has resulted in a new understanding of the requirements that solutions must satisfy. A set of interacting computer codes has been written which may be used to successfully design PF coil systems capable of supporting given plasma equilibria. It is shown that for discrete coil systems with a reasonable number of elements the standard minimization of the R M S flux error can lead to undesirable results. Examples are given to show that an additional stability requirement must be imposed on the regularization parameter to obtain correct solutions. For some equilibria, the authors find that the inverse problem admits dual solutions corresponding to two possible magnetic field configurations that fit the constraining relations on the plasma surface equally well. An additional minimization of the absolute value of the limiter flux is required to discriminate between these solutions

  11. Control strategy for plasma equilibrium in a tokamak

    International Nuclear Information System (INIS)

    Miskell, R.V.

    1975-01-01

    The dynamic control of the plasma position within the torus of a Tokamak fusion device is a significant factor in the development of nuclear fusion as an energy source. This investigation develops a state variable model of a TOKAMAK thermonuclear device, suitable for application of modern control theory techniques. The model considers eddy currents in the conducting shell surrounding the torus and the classical Shafranov equilibrium equation. The equations necessary to characterize the operating conditions of a TOKAMAK are cast in state variable form. Two control variables are selected, the vertical field current and the plasma temperature. The figure of merit chosen minimizes the shift of the plasma within the torus and considers position perturbations necessary to maintain the dense and hotter portions of the plasma profile in the center of the torus, i.e., overcome uneven poloidal fields due to the toroidal geometry. The model uses a Kalman filter to estimate unmeasured state variables, and uses the second variation of the calculus of variations to maintain an optimal control path. (Diss. Abstr. Int., B)

  12. Role of plasma equilibrium current in Alfven wave antenna optimization

    International Nuclear Information System (INIS)

    Puri, S.

    1986-12-01

    The modifications in the antenna loading produced by the plasma equilibrium current, the Faraday shield, and the finite electron temperature for coupling to the Alfven waves are studied using a self-consistent, three-dimensional, fully analytic periodic-loop-antenna model. The only significant changes are found to occur due to the plasma current and consist of an improved coupling (by a factor of ∝ 2.5) at low toroidal numbers (n ∝ 1-3). Despite this gain, however, the coupling to low n continues to be poor with R=0.03 Ω and Q=180 for n=2. Optimum coupling with R=0.71 Ω and Q=16.8 occurs for n=8 as was also the case in the absence of the plasma current. For the large n values, mode splitting due to the removal of the poloidal degeneracy combined with the finite electron temperatures effects lead to significant broadening of the energy absorption profile. Direct antenna coupling to the surface shear wave is small and no special provision, such as Faraday shielding, may be needed for preventing surface losses. The introduction of the Faraday screen, in fact, increases the coupling to the surface shear wave, possibly by acting as an impedance matching transformer between the antenna and the plasma. The finite electron temperature causes the predictable increase in the absorption width without influencing the antenna coupling. Thus the recommendations for antenna design for optimum coupling to the Alfven wave remain unaffected by the inclusion of the plasma current. Efficient coupling with capabilities for dynamic impedance tracking through purely electronic means may be obtained using a dense-cluster-array antenna with a toroidal configuration of n ∝ 8. (orig.)

  13. Correlations in plasma in thermodynamic equilibrium; Les correlations dans un plasma en equilibre

    Energy Technology Data Exchange (ETDEWEB)

    Yvon, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    This paper treats of a fully, ionized plasma in thermodynamic equilibrium. An attempt is made at reviewing the calculation of spatial correlations in such a plasma. The equation of recurrence and the principle of superposition are used. The linear approximation is first treated. The next higher approximation is studied in the case of a neutral homogeneous and isotropic plasma. (author) [French] Un plasma completement ionise est en equilibre thermodynamique. On tente une mise au point du calcul des correlations de position dans ce plasma. On utilise les equations de recurrence et le principe de superposition. On expose d'abord l'approximation lineaire. Dans le cas d'un plasma neutre homogene et isotrope l'etude est poursuivie a l'approximation suivante. (auteur)

  14. Plasma equilibrium control during slow plasma current quench with avoidance of plasma-wall interaction in JT-60U

    Science.gov (United States)

    Yoshino, R.; Nakamura, Y.; Neyatani, Y.

    1997-08-01

    In JT-60U a vertical displacement event (VDE) is observed during slow plasma current quench (Ip quench) for a vertically elongated divertor plasma with a single null. The VDE is generated by an error in the feedback control of the vertical position of the plasma current centre (ZJ). It has been perfectly avoided by improving the accuracy of the ZJ measurement in real time. Furthermore, plasma-wall interaction has been avoided successfully during slow Ip quench owing to the good performance of the plasma equilibrium control system

  15. Isodynamical (omnigenous) equilibrium in symmetrically confined plasma configurations

    International Nuclear Information System (INIS)

    Bernardin, M.P.; Moses, R.W.; Tataronis, J.A.

    1986-01-01

    Isodynamical or omnigenous equilibrium has the property that the magnitude of the magnetic field is constant on magnetic surfaces. It is shown that in plasma confinement configurations with one ignorable coordinate there are three possible classes of solutions, characterized by the properties of the curvature of the magnetic axis, the magnitude of the magnetic field on axis, and the closure of magnetic surfaces about the magnetic axis. Solutions belonging to class (i) have a straight magnetic axis, a finite field on axis, and closed magnetic surfaces. Solutions in class (ii) have a curved magnetic axis, closed magnetic surfaces, and a magnetic field that vanishes on axis. Finally, solutions in class (iii) have a curved magnetic axis, a finite magnetic field on axis, and open magnetic surfaces

  16. Integrated environmental assessment of future energy scenarios based on economic equilibrium models

    International Nuclear Information System (INIS)

    Igos, E.; Rugani, B.; Rege, S.; Benetto, E.; Drouet, L.; Zachary, D.; Haas, T.

    2014-01-01

    The future evolution of energy supply technologies strongly depends on (and affects) the economic and environmental systems, due to the high dependency of this sector on the availability and cost of fossil fuels, especially on the small regional scale. This paper aims at presenting the modeling system and preliminary results of a research project conducted on the scale of Luxembourg to assess the environmental impact of future energy scenarios for the country, integrating outputs from partial and computable general equilibrium models within hybrid Life Cycle Assessment (LCA) frameworks. The general equilibrium model for Luxembourg, LUXGEM, is used to evaluate the economic impacts of policy decisions and other economic shocks over the time horizon 2006-2030. A techno-economic (partial equilibrium) model for Luxembourg, ETEM, is used instead to compute operation levels of various technologies to meet the demand for energy services at the least cost along the same timeline. The future energy demand and supply are made consistent by coupling ETEM with LUXGEM so as to have the same macro-economic variables and energy shares driving both models. The coupling results are then implemented within a set of Environmentally-Extended Input-Output (EE-IO) models in historical time series to test the feasibility of the integrated framework and then to assess the environmental impacts of the country. Accordingly, a dis-aggregated energy sector was built with the different ETEM technologies in the EE-IO to allow hybridization with Life Cycle Inventory (LCI) and enrich the process detail. The results show that the environmental impact slightly decreased overall from 2006 to 2009. Most of the impacts come from some imported commodities (natural gas, used to produce electricity, and metalliferous ores and metal scrap). The main energy production technology is the combined-cycle gas turbine plant 'Twinerg', representing almost 80% of the domestic electricity production in Luxembourg

  17. On atmospheric-pressure non-equilibrium plasma jets and plasma bullets

    International Nuclear Information System (INIS)

    Lu, X; Laroussi, M; Puech, V

    2012-01-01

    Atmospheric-pressure non-equilibrium plasma jets (APNP-Js), which generate plasma in open space rather than in a confined discharge gap, have recently been a topic of great interest. In this paper, the development of APNP-Js will be reviewed. Firstly, the APNP-Js are grouped based on the type of gas used to ignite them and their characteristics are discussed in detail. Secondly, one of the most interesting phenomena of APNP-Js, the ‘plasma bullet’, is discussed and its behavior described. Thirdly, the very recent developments on the behavior of plasma jets when launched in a controlled environment and pressure are also introduced. This is followed by a discussion on the interaction between plasma jets. Finally, perspectives on APNP-J research are presented. (paper)

  18. Tokamak plasma equilibrium problems with anisotropic pressure and rotation and their numerical solution

    International Nuclear Information System (INIS)

    Ivanov, A. A.; Martynov, A. A.; Medvedev, S. Yu.; Poshekhonov, Yu. Yu.

    2015-01-01

    In the MHD tokamak plasma theory, the plasma pressure is usually assumed to be isotropic. However, plasma heating by neutral beam injection and RF heating can lead to a strong anisotropy of plasma parameters and rotation of the plasma. The development of MHD equilibrium theory taking into account the plasma inertia and anisotropic pressure began a long time ago, but until now it has not been consistently applied in computational codes for engineering calculations of the plasma equilibrium and evolution in tokamak. This paper contains a detailed derivation of the axisymmetric plasma equilibrium equation in the most general form (with arbitrary rotation and anisotropic pressure) and description of the specialized version of the SPIDER code. The original method of calculation of the equilibrium with an anisotropic pressure and a prescribed rotational transform profile is proposed. Examples of calculations and discussion of the results are also presented

  19. Updated Collisional Ionization Equilibrium Calculated for Optically Thin Plasmas

    Science.gov (United States)

    Savin, Daniel Wolf; Bryans, P.; Badnell, N. R.; Gorczyca, T. W.; Laming, J. M.; Mitthumsiri, W.

    2010-03-01

    Reliably interpreting spectra from electron-ionized cosmic plasmas requires accurate ionization balance calculations for the plasma in question. However, much of the atomic data needed for these calculations have not been generated using modern theoretical methods and their reliability are often highly suspect. We have carried out state-of-the-art calculations of dielectronic recombination (DR) rate coefficients for the hydrogenic through Na-like ions of all elements from He to Zn as well as for Al-like to Ar-like ions of Fe. We have also carried out state-of-the-art radiative recombination (RR) rate coefficient calculations for the bare through Na-like ions of all elements from H to Zn. Using our data and the recommended electron impact ionization data of Dere (2007), we present improved collisional ionization equilibrium calculations (Bryans et al. 2006, 2009). We compare our calculated fractional ionic abundances using these data with those presented by Mazzotta et al. (1998) for all elements from H to Ni. This work is supported in part by the NASA APRA and SHP SR&T programs.

  20. Stationary magnetohydrodynamic equilibrium of toroidal plasma in rotation

    International Nuclear Information System (INIS)

    Missiato, O.

    1986-01-01

    The stationary equations of classical magnetohydrodynamics are utilized to study the toroidal motion of a thermonuclear magnetically - confined plasma with toroidal symmetry (Tokamak). In the present work, we considered a purely toroidal stationary rotation and te problem is reduced to studing a second order partial differencial equation of eliptic type Maschke-Perrin. Assuming that the temperature remains constant on the magnetic surfaces, an analitic solution, valid for low Mach numbers (M ≤ 0 .4), was obtained for the above-mentioned equation by means of a technique developed by Pantuso Sudano. From the solution found, we traced graphs for the quantities which described the equilibrium state of the plasma, namely: mass density, pressure, temperature, electric current density and toroidal magnetic field. Finally we compare this analitical model with others works which utilized differents analitical models and numerical simulations. We conclude that the solutions obtained are in good agreement with the previos results. In addition, however, our model contains the results of Sudano-Goes with the additional advantage of employing much simple analitical expressions. (author) [pt

  1. Equilibrium and stability of a toroidal-sector plasma discharge in an EXTRAP configuration

    International Nuclear Information System (INIS)

    Drake, J.R.

    1982-02-01

    Experimental studies of the equilibrium and stability of a sector of a toroidal EXTRAP plasma discharge have been studied. The high β plasma discharge, which had an Alfven transit time about 0.5 μsec, could be positioned in a stable equilibrium for the 300μsec time scale of the experiment. (author)

  2. Control of tokamak plasma current and equilibrium with hybrid poloidal field coils

    International Nuclear Information System (INIS)

    Shimada, Ryuichi

    1982-01-01

    A control method with hybrid poloidal field system is considered, which comprehensively implements the control of plasma equilibrium and plasma current, those have been treated independently in Tokamak divices. Tokamak equilibrium requires the condition that the magnetic flux function value on plasma surface must be constant. From this, the current to be supplied to each coil is determined. Therefore, each coil current is the resultant of the component related to plasma current excitation and the component required for holding equilibrium. Here, it is intended to show a method by which the current to be supplied to each coil can easily be calculated by the introduction of hybrid control matrix. The text first considers the equilibrium of axi-symmetrical plasma and the equilibrium magnetic field outside plasma, next describes the determination of current using the above hybrid control matrix, and indicates an example of controlling Tokamak plasma current and equilibrium by the hybrid poloidal field coils. It also shows that the excitation of plasma current and the maintenance of plasma equilibrium can basically be available with a single power supply by the appropriate selection of the number of turns of each coil. These considerations determine the basic system configuration as well as decrease the installed capacity of power source for the poloidal field of a Tokamak fusion reactor. Finally, the actual configuration of the power source for hybrid poloidal field coils is shown for the above system. (Wakatsuki, Y.)

  3. A Tightly Coupled Non-Equilibrium Magneto-Hydrodynamic Model for Inductively Coupled RF Plasmas

    Science.gov (United States)

    2016-02-29

    development a tightly coupled magneto-hydrodynamic model for Inductively Coupled Radio- Frequency (RF) Plasmas. Non Local Thermodynamic Equilibrium (NLTE...for Inductively Coupled Radio-Frequency (RF) Plasmas. Non Local Thermodynamic Equilibrium (NLTE) effects are described based on a hybrid State-to-State...Inductively Coupled Plasma (ICP) torches have wide range of possible applications which include deposition of metal coatings, synthesis of ultra-fine powders

  4. Plasma boundary shape control and real-time equilibrium reconstruction on NSTX-U

    Science.gov (United States)

    Boyer, M. D.; Battaglia, D. J.; Mueller, D.; Eidietis, N.; Erickson, K.; Ferron, J.; Gates, D. A.; Gerhardt, S.; Johnson, R.; Kolemen, E.; Menard, J.; Myers, C. E.; Sabbagh, S. A.; Scotti, F.; Vail, P.

    2018-03-01

    The upgrade to the National Spherical Torus eXperiment (NSTX-U) included two main improvements: a larger center-stack, enabling higher toroidal field and longer pulse duration, and the addition of three new tangentially aimed neutral beam sources, which increase available heating and current drive, and allow for flexibility in shaping power, torque, current, and particle deposition profiles. To best use these new capabilities and meet the high-performance operational goals of NSTX-U, major upgrades to the NSTX-U control system (NCS) hardware and software have been made. Several control algorithms, including those used for real-time equilibrium reconstruction and shape control, have been upgraded to improve and extend plasma control capabilities. As part of the commissioning phase of first plasma operations, the shape control system was tuned to control the boundary in both inner-wall limited and diverted discharges. It has been used to accurately track the requested evolution of the boundary (including the size of the inner gap between the plasma and central solenoid, which is a challenge for the ST configuration), X-point locations, and strike point locations, enabling repeatable discharge evolutions for scenario development and diagnostic commissioning.

  5. Steady equilibrium of a cylindrically symmetric plasma sustained by fueling

    International Nuclear Information System (INIS)

    Tomita, Yukihiro; Momota, Hiromu

    1993-01-01

    By introducing a novel and natural method to obtain a steady equilibrium, it is shown that a pressure gradient produced by the particle injection or resultant diamagnetic current can sustain only an equilibrium of a diffused linear pinch. For an extremely elongated FRC where magnetic field vanishes at a certain point, a seed current is needed to sustain configuration in a steady state equilibrium. A directed flow of fusion produced protons forms a seed current and consequently it sustains a steady FRC equilibrium by fueling only once D- 3 He burning takes place. Effects of anomalous transports on the sustainment are discussed. (author)

  6. Non-equilibrium plasma chemistry at high pressure and its applications

    International Nuclear Information System (INIS)

    Bai Xiyao; Zhang Zhitao; Bai Mindong; Zhu Qiaoying

    2000-01-01

    A review is presented of research and development of gas discharge and non-equilibrium plasma including, new ideas of non-equilibrium plasma at high gas pressure. With special technology, strong electric fields (>400 Td) can be achieved by which electrons are accelerated suddenly, becoming high energy electrons (> 10 eV) at high pressure. On impact with the electrons, the gas molecules dissociate into ions, atomic ions, atoms and free radicals, and new substances or molecules can be synthesized through custom design. Chemical reaction difficult to achieve by conventional method can be realized or accelerated. Non-equilibrium plasma chemistry at high pressure has wide application prospects

  7. A two-temperature chemical non-equilibrium modeling of DC arc plasma

    International Nuclear Information System (INIS)

    Qian Haiyang; Wu Bin

    2011-01-01

    To a better understanding of non-equilibrium characteristics of DC arc plasma,a two-dimensional axisymmetric two-temperature chemical non-equilibrium (2T-NCE) model is applied for direct current arc argon plasma generator with water-cooled constrictor at atmospheric pressure. The results show that the electron temperature and heavy particle temperature has a relationship under different working parameters, indicating that DC arc plasma has a strong non-equilibrium characteristic, and the variation is obvious. (authors)

  8. Non-local thermodynamic equilibrium effects on isentropic coefficient in argon and helium thermal plasmas

    International Nuclear Information System (INIS)

    Sharma, Rohit; Singh, Kuldip

    2014-01-01

    In the present work, two cases of thermal plasma have been considered; the ground state plasma in which all the atoms and ions are assumed to be in the ground state and the excited state plasma in which atoms and ions are distributed over various possible excited states. The variation of Zγ, frozen isentropic coefficient and the isentropic coefficient with degree of ionization and non-equilibrium parameter θ(= T e /T h ) has been investigated for the ground and excited state helium and argon plasmas at pressures 1 atm, 10 atm, and 100 atm in the temperature range from 6000 K to 60 000 K. For a given value of non-equilibrium parameter, the relationship of Zγ with degree of ionization does not show any dependence on electronically excited states in helium plasma whereas in case of argon plasma this dependence is not appreciable till degree of ionization approaches 2. The minima of frozen isentropic coefficient shifts toward lower temperature with increase of non-equilibrium parameter for both the helium and argon plasmas. The lowering of non-equilibrium parameter decreases the frozen isentropic coefficient more emphatically in helium plasma at high pressures in comparison to argon plasma. The increase of pressure slightly reduces the ionization range over which isentropic coefficient almost remains constant and it does not affect appreciably the dependence of isentropic coefficient on non-equilibrium parameter

  9. Development of a real-time simulation tool towards self-consistent scenario of plasma start-up and sustainment on helical fusion reactor FFHR-d1

    Science.gov (United States)

    Goto, T.; Miyazawa, J.; Sakamoto, R.; Suzuki, Y.; Suzuki, C.; Seki, R.; Satake, S.; Huang, B.; Nunami, M.; Yokoyama, M.; Sagara, A.; the FFHR Design Group

    2017-06-01

    This study closely investigates the plasma operation scenario for the LHD-type helical reactor FFHR-d1 in view of MHD equilibrium/stability, neoclassical transport, alpha energy loss and impurity effect. In 1D calculation code that reproduces the typical pellet discharges in LHD experiments, we identify a self-consistent solution of the plasma operation scenario which achieves steady-state sustainment of the burning plasma with a fusion gain of Q ~ 10 was found within the operation regime that has been already confirmed in LHD experiment. The developed calculation tool enables systematic analysis of the operation regime in real time.

  10. Thermal equilibrium of pure electron plasmas across a central region of magnetic surfaces

    Science.gov (United States)

    Hahn, Michael; Pedersen, Thomas Sunn

    2009-06-01

    Measurements of the equilibria of plasmas created by emission from a biased filament located off the magnetic axis in the Columbia Non-neutral Torus (CNT) [T. S. Pedersen, J. P. Kremer, R. G. Lefrancois et al., Fusion Sci. Technol. 50, 372 (2006)] show that such plasmas have equilibrium properties consistent with the inner surfaces being in a state of cross-surface thermal equilibrium. Numerical solutions to the equilibrium equation were used to fit the experimental data and demonstrate consistency with cross-surface thermal equilibrium. Previous experiments in CNT showed that constant temperatures across magnetic surfaces are characteristic of CNT plasmas, implying thermal confinement times much less than particle confinement times. These results show that when emitting off axis there is a volume of inner surfaces where diffusion into that region is balanced by outward transport, producing a Boltzmann distribution of electrons. When combined with the low thermal energy confinement time this is a cross-surface thermal equilibrium.

  11. Thermal equilibrium of pure electron plasmas across a central region of magnetic surfaces

    International Nuclear Information System (INIS)

    Hahn, Michael; Pedersen, Thomas Sunn

    2009-01-01

    Measurements of the equilibria of plasmas created by emission from a biased filament located off the magnetic axis in the Columbia Non-neutral Torus (CNT) [T. S. Pedersen, J. P. Kremer, R. G. Lefrancois et al., Fusion Sci. Technol. 50, 372 (2006)] show that such plasmas have equilibrium properties consistent with the inner surfaces being in a state of cross-surface thermal equilibrium. Numerical solutions to the equilibrium equation were used to fit the experimental data and demonstrate consistency with cross-surface thermal equilibrium. Previous experiments in CNT showed that constant temperatures across magnetic surfaces are characteristic of CNT plasmas, implying thermal confinement times much less than particle confinement times. These results show that when emitting off axis there is a volume of inner surfaces where diffusion into that region is balanced by outward transport, producing a Boltzmann distribution of electrons. When combined with the low thermal energy confinement time this is a cross-surface thermal equilibrium.

  12. Dynamics and feedback control of plasma equilibrium position in a tokamak

    International Nuclear Information System (INIS)

    Burenko, O.

    1983-01-01

    A brief history of the beginnings of nuclear fusion research involving toroidal closed-system magnetic plasma containment is presented. A tokamak machine is defined mathematically for the purposes of plasma equilibrium position perturbation analysis. The perturbation equations of a tokamak plasma equilibrium position are developed. Solution of the approximated perturbation equations is carried out. A unique, simple, and useful plasma displacement dynamics transfer function of a tokamak is developed. The dominant time constants of the dynamics transfer function are determined in a symbolic form. This symbolic form of the dynamics transfer function makes it possible to study the stability of a tokamak's plasma equilibrium position. Knowledge of the dynamics transfer function permits systematic syntheses of the required plasma displacement feedback control systems

  13. Magnetohydrodynamic equilibrium and stability of spheromak with spheroidal plasma-vacuum interface

    International Nuclear Information System (INIS)

    Kaneko, Shobu; Kamitani, Atsushi; Takimoto, Akio.

    1985-05-01

    The analytic solutions to the Grad-Shafranov equation are obtained for a prolate and an oblate spheroidal plasma by using Hill's vortex model. Effects of a toroidal magnetic field Bsub(phi) on the MHD equilibrium configurations are investigated by using these analytic solutions. When Bsub(phi) is larger than that of the force-free configuration, the spheroidal plasmas in a vacuum magnetic field are shown to be unable in the MHD equilibrium. The several physical quantities on the equilibrium configuration are evaluated. The spheromak plasma is proved to be unstable if dp/d psi not equal 0 and d 2 V/d psi 2 >= 0 on the magnetic axis. Here p is the pressure and V(psi) the volume surrounded by a magnetic surface of psi=const. The equilibrium configurations of the spheroidal plasmas by using Hill's vortex model are shown to satisfy the above conditions, i.e., to be unstable. (author)

  14. Equilibrium and stability of high-β plasmas in W7-AS

    International Nuclear Information System (INIS)

    Geiger, J.; Weller, A.; Nuehrenberg, C.; Werner, A.; Zarnstorff, M.; Kolesnichenko, Ya.I.

    2003-01-01

    In this paper the optimization of equilibrium and stability of high-β plasmas by means of the reduction of the Pfirsch-Schlueter currents is described. Furthermore the Alfven modes driven by neutral-beam injection are considered. (HSI)

  15. Magnetohydrodynamic equilibrium and stability of spheromak with spheroidal plasma-vacuum interface

    International Nuclear Information System (INIS)

    Kaneko, Shobu; Kamitani, Atsushi; Takimoto, Akio

    1985-01-01

    The analytic solutions to the Grad-Shafranov equation are obtained for a prolate and an oblate spheroidal plasma by using Hill's vortex model. Effects of a toroidal magnetic field Bsub(phi) on the MHD equilibrium configurations are investigated by using these analytic solutions. When Bsub(phi) is stronger than that of the force-free configuration, the spheroidal plasmas in a vacuum magnetic field are shown to be unable in the MHD equilibrium. The several physical quantities on the equilibrium configuration are evaluated. The spheromak plasma is proved to be unstable if dp/d psi not equal 0 and d 2 V/d psi 2 >= 0 on the magnetic axis. Here p is the pressure and V(psi) the volume surrounded by a magnetic surface of psi = const. The equilibrium configurations of the spheroidal plasmas by using Hill's vortex model are shown to satisfy the above conditions, i.e., to be unstable. (author)

  16. Instability Versus Equilibrium Propagation of Laser Beam in Plasma

    OpenAIRE

    Lushnikov, Pavel M.; Rose, Harvey A.

    2003-01-01

    We obtain, for the first time, an analytic theory of the forward stimulated Brillouin scattering instability of a spatially and temporally incoherent laser beam, that controls the transition between statistical equilibrium and non-equilibrium (unstable) self-focusing regimes of beam propagation. The stability boundary may be used as a comprehensive guide for inertial confinement fusion designs. Well into the stable regime, an analytic expression for the angular diffusion coefficient is obtain...

  17. Equilibrium of plasma filament with inhomogeneous field along on axis and without of longitudinal current

    International Nuclear Information System (INIS)

    Dobryakov, A.V.

    1989-01-01

    The equilibrium of a plasma filament with an inhomogeneos nonuniform field along an axis that has not any asymmetry has been considered for the first order of β=8 πp/B 2 and the curvature. The filament is assumed to be inside an ideally-conducting sheath with a circular cross-section. It is shown that the filament shift depends noticeably on this sheath. The plasma equilibrium has been considered as an example in a Drakon magnetic trap. 9 refs

  18. Results of using the NSTX-U Plasma Control System for scenario development

    Science.gov (United States)

    Boyer, M. D.; Battaglia, D. J.; Gates, D. A.; Gerhardt, S.; Menard, J.; Mueller, D.; Myers, C. E.; Ferron, J.; Sabbagh, S.; NSTX-U Team

    2016-10-01

    To best use the new capabilities of NSTX-U (e.g., higher toroidal field and additional, more distributed heating and current drive sources) and to achieve the operational goals of the program, major upgrades to the Plasma Control System have been made. These include improvements to vertical control, real-time equilibrium reconstruction, and plasma boundary shape control and the addition of flexible algorithms for beam modulation and gas injection to control the upgraded actuators in real-time, enabling their use in algorithms for stored energy and profile control. Control system commissioning activities have so far focused on vertical position and shape control. The upgraded controllers have been used to explore the vertical stability limits in inner wall limited and diverted discharges, and control of X-point and strike point locations has been demonstrated and is routinely used. A method for controlling the mid-plane inner gap, a challenge for STs, has also been added to improve reproducible control of diverted discharges. A supervisory shutdown handling algorithm has also been commissioned to ramp the plasma down and safely turn off actuators after an event such as loss of vertical control. Use of the upgrades has contributed to achieving 1MA, 0.65T scenarios with greater than 1s pulse length. Work supported by U.S. D.O.E. Contract No. DE-AC02-09CH11466.

  19. Parallel application of plasma equilibrium fitting based on inhomogeneous platforms

    International Nuclear Information System (INIS)

    Liao Min; Zhang Jinhua; Chen Liaoyuan; Li Yongge; Pan Wei; Pan Li

    2008-01-01

    An online analysis and online display platform EFIT, which is based on the equilibrium-fitting mode, is inducted in this paper. This application can realize large data transportation between inhomogeneous platforms by designing a communication mechanism using sockets. It spends approximately one minute to complete the equilibrium fitting reconstruction by using a finite state machine to describe the management node and several node computers of cluster system to fulfill the parallel computation, this satisfies the online display during the discharge interval. An effective communication model between inhomogeneous platforms is provided, which could transport the computing results from Linux platform to Windows platform for online analysis and display. (authors)

  20. Non-equilibrium microwave plasma for efficient high temperature chemistry

    NARCIS (Netherlands)

    van den Bekerom, D.C.M.; den Harder, N.; Minea, T.; Palomares Linares, J.M.; Bongers, W.; van de Sanden, M.C.M.; van Rooij, G.J.

    2017-01-01

    This article describes a flowing microwave reactor that is used to drive efficient non-equilibrium chemistry for the application of conversion/activation of stable molecules such as CO2, N2 and CH4. The goal of the procedure described here is to measure the in situ gas temperature and gas

  1. Three-dimensional plasma equilibrium near a separatrix

    International Nuclear Information System (INIS)

    Reiman, A.H.; Pomphrey, N.; Boozer, A.H.

    1988-08-01

    The limiting behavior of a general three-dimensional MHD equilibrium near a separatrix is calculated explicitly. No expansions in β or assumptions about island widths are made. Implications of the results for the numerical calculation of such equilibria, are discussed, as well as for issues concerning the existence of three-dimensional MHD equilibria. 16 refs., 2 figs

  2. Energy Flow in Dense Off-Equilibrium Plasma

    Science.gov (United States)

    2016-07-15

    brings the electron density and light emission into LTE at the measured spectral temperature while leaving the ions cold. Because of their large mass... measurements of ionization potential lowering and collision times indense plasmas, allowing us to distinguish between competing dense-plasma models...Hydrodynamic analysis of shockwaves generated by sparks yielded similar measurements ina different, more accessible system. Ultra-fast observations

  3. Structure of non-equilibrium seeded plasma excited with microwave; Micro ha reiki hiheiko seed plasma no kozo

    Energy Technology Data Exchange (ETDEWEB)

    Miyakawa, M.; Murakami, T.; Suekane, T.; Okuno, Y.; Kabashima, S. [Tokyo Institute of Technology, Tokyo (Japan)

    1996-10-20

    Structure of non-equilibrium cesium seeded argon plasma excited with microwave power is simulated numerically. The plasmas produced at suitable microwave powers are found to consist of three regimes, that is, the region limited by charged particle loss toward the wall, the full seed ionization and the diffusion limited regions. The fully ionized seed plasma is produced within the skin-depth determined by the electrical conductivity of the plasma, and the thickness of the fully ionized seed plasma depends on the seed fractions gas pressure and microwave power. 15 refs., 6 figs.

  4. Equilibrium of high beta plasma in closed magnetic line system (MBT)

    International Nuclear Information System (INIS)

    Gesso, H.; Shiina, S.; Saito, K.; Nogi, Y.; Osaniai, Y.; Yoshimura, H.; Todoroki, J.; Hamada, S.; Nihon Univ., Tokyo. Atomic Energy Research Inst.)

    1985-01-01

    The beta effects on the plasma equilibrium in Modified Bumpy Torus (MBT) sector, which is an asymmetric closed line system with l = 0 and fairly large l = +- 1 field distortions, are studied. For this purpose, the equilibrium of high beta plasma produced by theta-pinch is compared with that of betaless plasma numerically calculated from the measured magnetic field profiles in device. The equilibrium condition depends weakly on beta value, but the plasma cross-section is vertically elongated as the beta value increases. The m = 1 long wavelength MHD instability is not observed during the observation time of approx. 15 μs. These experimental results are compared with MHD theory based on the new ordering taking the finiteness of l = +- 1 field distortion (deltasub(+-1) > or approx. 1) into account, which suggests significant stabilizing effects due to self formation of magnetic well and also due to the conducting wall. (author)

  5. ITER-FEAT magnetic configuration and plasma position/shape control in the nominal PF scenario

    International Nuclear Information System (INIS)

    Gribov, Y.V.; Albanese, R.; Ambrosino, G.

    2001-01-01

    The capability of the ITER-FEAT poloidal field system to support the four 'design' scenarios and the high current 'assessed' scenario have been studied. To operate with highly elongated plasma, the system has segmentation of the central solenoid and a separate fast feedback loop for plasma vertical stabilisation. Within the limits imposed on the coil currents, voltages and power, the poloidal field system provides the required plasma scenario and control capabilities. The separatrix deviation from the required position, in scenarios with minor disruptions is within less than about 100 mm. (author)

  6. Convective plasma stability consistent with MHD equilibrium in magnetic confinement systems with a decreasing field

    International Nuclear Information System (INIS)

    Tsventoukh, M. M.

    2010-01-01

    A study is made of the convective (interchange, or flute) plasma stability consistent with equilibrium in magnetic confinement systems with a magnetic field decreasing outward and large curvature of magnetic field lines. Algorithms are developed which calculate convective plasma stability from the Kruskal-Oberman kinetic criterion and in which the convective stability is iteratively consistent with MHD equilibrium for a given pressure and a given type of anisotropy in actual magnetic geometry. Vacuum and equilibrium convectively stable configurations in systems with a decreasing, highly curved magnetic field are calculated. It is shown that, in convectively stable equilibrium, the possibility of achieving high plasma pressures in the central region is restricted either by the expansion of the separatrix (when there are large regions of a weak magnetic field) or by the filamentation of the gradient plasma current (when there are small regions of a weak magnetic field, in which case the pressure drops mainly near the separatrix). It is found that, from the standpoint of equilibrium and of the onset of nonpotential ballooning modes, a kinetic description of convective stability yields better plasma confinement parameters in systems with a decreasing, highly curved magnetic field than a simpler MHD model and makes it possible to substantially improve the confinement parameters for a given type of anisotropy. For the Magnetor experimental compact device, the maximum central pressure consistent with equilibrium and stability is calculated to be as high as β ∼ 30%. It is shown that, for the anisotropy of the distribution function that is typical of a background ECR plasma, the limiting pressure gradient is about two times steeper than that for an isotropic plasma. From a practical point of view, the possibility is demonstrated of achieving better confinement parameters of a hot collisionless plasma in systems with a decreasing, highly curved magnetic field than those

  7. Analysis of the plasma magnetohydrodynamic equilibrium in iron core transformer Tokamak HL-1M

    International Nuclear Information System (INIS)

    Chen Xiaoguang; Yuan Baoshan

    1992-01-01

    The physical and mathematical model are presented on the problem of MHD equilibrium with the self consistent in iron core transformer HL-1M. Calculation and analysis for the plasma equilibrium of the stable boundary and free boundary are shown respectively, in an axisymmetric equilibrium model of two dimensions. First, a variation formulation of the problem is written and the equations of the poloided flux ψ are solved by a finite element method; the Picard and Newton algorithms are tested for the non-linearities. The plasma boundary and the magnetic surfaces are being simulated, with the currents in the coils, the total plasma current, its current density function and the magnetic permeability of the iron being the data for the problem; a certain number of the characteristic parameter of the equilibrium configuration is calculated. Secondly, a simple method of calculation is adopted in the determination of equilibrium fields and currents in iron core HL-1M tokamak device. In the plasma equilibrium, the magnetic effect of the air gaps in the iron core and the iron magnetic shielded plate are considered in HL-1M device. Reliable data are provided for designing and constructing the poloidal field system of HL-1M device. A good computer code is constructed, which may be useful in operating on analysis for the future device

  8. Numerical study for determining PF coil system parameters in MHD equilibrium of KT-2 tokamak plasma

    International Nuclear Information System (INIS)

    Ryu, J.; Hong, S.H.; Lee, K.W.; Hong, B.G.; In, S.R.; Kim, S.K.

    1995-01-01

    The KT-2 is a large-aspect-ratio medium-sized divertor tokamak in the conceptual design phase and planned to be operational in 1998 at the Korea Atomic Energy Research Institute (KAERI). Plasma equilibrium in tokamak can be acquired by controlling the current of poloidal field (PF) coils in appropriate geometries and positions. In this study, the authors have performed numerical calculations to achieve the various equilibrium conditions fitting given plasma shapes and satisfying PF current limitations. Usually an ideal magnetohydrodynamic (MHD) equation is used to obtain the equilibrium solution of tokamak plasma, and it is practical to take advantage of a numerical method in solving the MHD equation because it has nonlinear source terms. Two equilibrium codes have been applied to find a double-null configuration of free-boundary tokamak plasma in KT-2: one is of the authors' own developing and the other is a free-boundary tokamak equilibrium code (FBT) that has been used mainly for the verification of developed code's results. PF coil system parameters including their positions and currents are determined for the optimization of input power required when the specifications of KT-2 tokamak are met. Then, several sets of equilibrium conditions during the tokamak operation are found to observe the changes of poloidal field currents with the passing of operation time step, and the basic stability problems related with the magnetic field structure is also considered

  9. MAGNETIC RECONNECTION IN NON-EQUILIBRIUM IONIZATION PLASMA

    International Nuclear Information System (INIS)

    Imada, S.; Shimizu, T.; Murakami, I.; Watanabe, T.; Hara, H.

    2011-01-01

    We have studied the effect of time-dependent ionization and the recombination processes on magnetic reconnection in the solar corona. Petschek-type steady reconnection, in which the magnetic energy is mainly converted at the slow-mode shocks, was assumed. We carried out the time-dependent ionization calculation in the magnetic reconnection structure. We only calculated the transient ionization of iron; the other species were assumed to be in ionization equilibrium. The intensity of line emissions at specific wavelengths was also calculated for comparison with Hinode or other observations in future. We found the following: (1) iron is mostly in non-equilibrium ionization in the reconnection region; (2) the intensity of line emission estimated by the time-dependent ionization calculation is significantly different from that determined from the ionization equilibrium assumption; (3) the effect of time-dependent ionization is sensitive to the electron density in the case where the electron density is less than 10 10 cm –3 ; (4) the effect of thermal conduction lessens the time-dependent ionization effect; and (5) the effect of radiative cooling is negligibly small even if we take into account time-dependent ionization.

  10. Wall ablation of heated compound-materials into non-equilibrium discharge plasmas

    Science.gov (United States)

    Wang, Weizong; Kong, Linghan; Geng, Jinyue; Wei, Fuzhi; Xia, Guangqing

    2017-02-01

    The discharge properties of the plasma bulk flow near the surface of heated compound-materials strongly affects the kinetic layer parameters modeled and manifested in the Knudsen layer. This paper extends the widely used two-layer kinetic ablation model to the ablation controlled non-equilibrium discharge due to the fact that the local thermodynamic equilibrium (LTE) approximation is often violated as a result of the interaction between the plasma and solid walls. Modifications to the governing set of equations, to account for this effect, are derived and presented by assuming that the temperature of the electrons deviates from that of the heavy particles. The ablation characteristics of one typical material, polytetrafluoroethylene (PTFE) are calculated with this improved model. The internal degrees of freedom as well as the average particle mass and specific heat ratio of the polyatomic vapor, which strongly depends on the temperature, pressure and plasma non-equilibrium degree and plays a crucial role in the accurate determination of the ablation behavior by this model, are also taken into account. Our assessment showed the significance of including such modifications related to the non-equilibrium effect in the study of vaporization of heated compound materials in ablation controlled arcs. Additionally, a two-temperature magneto-hydrodynamic (MHD) model accounting for the thermal non-equilibrium occurring near the wall surface is developed and applied into an ablation-dominated discharge for an electro-thermal chemical launch device. Special attention is paid to the interaction between the non-equilibrium plasma and the solid propellant surface. Both the mass exchange process caused by the wall ablation and plasma species deposition as well as the associated momentum and energy exchange processes are taken into account. A detailed comparison of the results of the non-equilibrium model with those of an equilibrium model is presented. The non-equilibrium results

  11. Measurement of the open loop plasma equilibrium response in TCV

    International Nuclear Information System (INIS)

    Coutlis, A.; Bandyopadhyay, I.; Lister, J.B.; Vyas, P.; Albanese, R.; Limebeer, D.J.N.; Villone, F.; Wainwright, J.P.

    1999-01-01

    A new technique and results are presented for the estimation of the open loop frequency response of the plasma on TCV. Voltages were applied to poloidal field coils and the resulting plasma current, position and shape related parameters were measured. The results are compared with the CREATE-L model, and good agreement is confirmed. The results are a significant advance on previous comparisons with closed loop data, which were limited by the role of feedback in the system. A simpler circuit equation model has also been developed in order to understand the reasons for the good agreement and identify which plasma properties are important in determining the response. The reasons for the good agreement with this model are discussed. An alternative modelling method has been developed, combining features of both the theoretical and experimental techniques. Its advantage is that it incorporates well defined knowledge of the electromagnetic properties of the tokamak with experimental data to derive plasma related parameters. This new model provides further insight into the plasma behaviour. (author)

  12. Characterization of the equilibrium configuration for modulated beams in a plasma wakefield accelerator

    CERN Document Server

    Martorelli, Roberto

    2016-01-01

    We analyze the equilibrium configuration for a modulated beam with sharp boundaries exposed to the fields self-generated by the interaction with a plasma. Through a semi-analytical approach we show the presence of multiple equilibrium configurations and we determine the one more suitable for wakefield excitation. Once pointed out the absence of confinement for the front of the beam and the consequently divergence driven by the emittance, we study the evolution of the equilibrium configuration while propagating in the plasma, discarding all the others time-dependencies. We show the onset of a rigid backward drift of the equilibrium configuration and we provide an explanation in the increasing length of the first bunch.

  13. Relaxation with high-speed plasma flows and singularity analysis in MHD equilibrium

    International Nuclear Information System (INIS)

    Shiraishi, Junya; Ohsaki, Shuichi; Yoshida, Zensho

    2004-01-01

    Relaxation model that leads to plasma confinement with rigid-rotation is presented. This model applies to Jupiter's magnetosphere. It is shown that the invariance of canonical angular momentum of electron fluid, which is realized by axisymmetry through self-organization process, yields plasma confinement. including poloidal flows in equilibrium equation makes the problem rather complicated. Singularity due to the poloidal flow is focused on. It is shown that the singular equation for equilibrium has the same structure as the equation for linear Alfven wave. Since the singular solution for equilibrium equation is physically inadequate, the singularity may be removed by another physical effect. The Hall-effect is taken into account as a singular perturbation that removes the singularity of equilibrium equation for ideal magnetohydrodynamics. (author)

  14. Fluid dynamics of out of equilibrium boost invariant plasmas

    Science.gov (United States)

    Blaizot, Jean-Paul; Yan, Li

    2018-05-01

    By solving a simple kinetic equation, in the relaxation time approximation, and for a particular set of moments of the distribution function, we establish a set of equations which, on the one hand, capture exactly the dynamics of the kinetic equation, and, on the other hand, coincide with the hierarchy of equations of viscous hydrodynamics, to arbitrary order in the viscous corrections. This correspondence sheds light on the underlying mechanism responsible for the apparent success of hydrodynamics in regimes that are far from local equilibrium.

  15. An investigation of non-equilibrium effects in thermal argon plasmas

    International Nuclear Information System (INIS)

    Rosado, R.J.

    1981-01-01

    This thesis deals with the study of the validity of the assumption of Local Thermal Equilibrium (LTE) in the description of the parameters of a thermal argon plasma. The aim is twofold. As the studied plasma is close to, but not completely in equilibrium, the author first attempts to obtain a simple description of the plasma in terms of an LTE model in which suitable corrections for the deviations of the plasma parameters from their LTE values is introduced. To this end the plasma parameters are studied by means of a diagnostic method in which the assumption of LTE is not made. The evaluation of the usefulness of this method is the second aim of this thesis. (Auth.)

  16. Initial conditions of non-equilibrium quark-gluon plasma evolution

    International Nuclear Information System (INIS)

    Shmatov, S.V.

    2002-01-01

    In accordance with the hydrodynamic Bjorken limit, the initial energy density and temperature for a chemical non-equilibrium quark-gluon system formed in the heavy ion collisions at the LHC are computed. The dependence of this value on the type of colliding nuclei and the collision impact parameter is studied. The principle possibility of the non-equilibrium quark-gluon plasma (QGP) formation in the light nuclei collisions is shown. The life time of QGP is calculated. (author)

  17. The problem of evolution of toroidal plasma equilibrium

    International Nuclear Information System (INIS)

    Kostomarov, D.; Zaitsev, F.; Shishkin, A.

    1999-03-01

    This paper is devoted to an advanced mathematical model for a self-consistent description of the evolution of free boundary toroidal plasmas, with a description of numerical algorithms for the solution of the appropriate non-linear system of integro-differential equations, and discussion of some results from the model. (author)

  18. Equilibrium statistical mechanics of strongly coupled plasmas by numerical simulation

    International Nuclear Information System (INIS)

    DeWitt, H.E.

    1977-01-01

    Numerical experiments using the Monte Carlo method have led to systematic and accurate results for the thermodynamic properties of strongly coupled one-component plasmas and mixtures of two nuclear components. These talks are intended to summarize the results of Monte Carlo simulations from Paris and from Livermore. Simple analytic expressions for the equation of state and other thermodynamic functions have been obtained in which there is a clear distinction between a lattice-like static portion and a thermal portion. The thermal energy for the one-component plasma has a simple power dependence on temperature, (kT)/sup 3 / 4 /, that is identical to Monte Carlo results obtained for strongly coupled fluids governed by repulsive l/r/sup n/ potentials. For two-component plasmas the ion-sphere model is shown to accurately represent the static portion of the energy. Electron screening is included in the Monte Carlo simulations using linear response theory and the Lindhard dielectric function. Free energy expressions have been constructed for one and two component plasmas that allow easy computation of all thermodynamic functions

  19. Control strategy for plasma equilibrium in a tokamak

    International Nuclear Information System (INIS)

    Miskell, R.V.

    1975-08-01

    Dynamic control of the plasma position within the torus of a TOKAMAK fusion device is a significant factor in the development of nuclear fusion as an energy source. This investigation develops a state variable model of a TOKAMAK thermonuclear device, suitable for application of modern control theory techniques. (auth)

  20. EquilTheTA: Thermodynamic and transport properties of complex equilibrium plasmas

    International Nuclear Information System (INIS)

    Colonna, G.; D'Angola, A.

    2012-01-01

    EquilTheTA (EQUILibrium for plasma THErmodynamics and Transport Applications) is a web-based software which calculates chemical equilibrium product concentrations from any set of reactants and determines thermodynamic and transport properties for the product mixture in wide temperature and pressure ranges. The program calculates chemical equilibrium by using a hierarchical approach, thermodynamic properties and transport coefficients starting from recent and accurate databases of atomic and molecular energy levels and collision integrals. In the calculations, Debye length and cut-off are consistently updated and virial corrections (up to third order) can be considered. Transport coefficients are calculated by using high order approximations of the Chapman-Enskog method.

  1. New applications of Equinox code for real-time plasma equilibrium and profile reconstruction for tokamaks

    International Nuclear Information System (INIS)

    Bosak, K.; Blum, J.; Joffrin, E.

    2004-01-01

    Recent development of real-time equilibrium code Equinox using a fixed-point algorithm allow major plasma magnetic parameters to be identified in real-time, using rigorous analytical method. The code relies on the boundary flux code providing magnetic flux values on the first wall of vacuum vessel. By means of least-square minimization of differences between magnetic field obtained from previous solution and the next measurements the code identifies the source term of the non-linear Grad-Shafranov equation. The strict use of analytical equations together with a flexible algorithm offers an opportunity to include new measurements into stable magnetic equilibrium code and compare the results directly between several tokamaks while maintaining the same physical model (i.e. no iron model is necessary inside the equilibrium code). The successful implementation of this equilibrium code for JET and Tore Supra has already been published. In this paper, we show the preliminary results of predictive runs of the Equinox code using the ITER geometry. Because the real-time control experiments of plasma profile at JET using the code has been shown unstable when using magnetic and polarimetric measurements (that could be indirectly translated into accuracy vs robustness tradeoff), we plan an outline of the algorithm that will allow us to further constrain the plasma current profile using the central value of pressure of the plasma in real-time in order to better define the poloidal beta (this constraint is not necessary with purely magnetic equilibrium). (authors)

  2. New applications of Equinox code for real-time plasma equilibrium and profile reconstruction for tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Bosak, K.; Blum, J. [Universite de Nice-Sophia-Antipolis, Lab. J. A. Dieudonne, 06 - Nice (France); Joffrin, E. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee

    2004-07-01

    Recent development of real-time equilibrium code Equinox using a fixed-point algorithm allow major plasma magnetic parameters to be identified in real-time, using rigorous analytical method. The code relies on the boundary flux code providing magnetic flux values on the first wall of vacuum vessel. By means of least-square minimization of differences between magnetic field obtained from previous solution and the next measurements the code identifies the source term of the non-linear Grad-Shafranov equation. The strict use of analytical equations together with a flexible algorithm offers an opportunity to include new measurements into stable magnetic equilibrium code and compare the results directly between several tokamaks while maintaining the same physical model (i.e. no iron model is necessary inside the equilibrium code). The successful implementation of this equilibrium code for JET and Tore Supra has already been published. In this paper, we show the preliminary results of predictive runs of the Equinox code using the ITER geometry. Because the real-time control experiments of plasma profile at JET using the code has been shown unstable when using magnetic and polarimetric measurements (that could be indirectly translated into accuracy vs robustness tradeoff), we plan an outline of the algorithm that will allow us to further constrain the plasma current profile using the central value of pressure of the plasma in real-time in order to better define the poloidal beta (this constraint is not necessary with purely magnetic equilibrium). (authors)

  3. Fast non-linear extraction of plasma equilibrium parameters using a neural network mapping

    International Nuclear Information System (INIS)

    Lister, J.B.; Schnurrenberger, H.

    1990-07-01

    The shaping of non-circular plasmas requires a non-linear mapping between the measured diagnostic signals and selected equilibrium parameters. The particular configuration of Neural Network known as the multi-layer perceptron provides a powerful and general technique for formulating an arbitrary continuous non-linear multi-dimensional mapping. This technique has been successfully applied to the extraction of equilibrium parameters from measurements of single-null diverted plasmas in the DIII-D tokamak; the results are compared with a purely linear mapping. The method is promising, and hardware implementation is straightforward. (author) 15 refs., 7 figs

  4. Fast non-linear extraction of plasma equilibrium parameters using a neural network mapping

    International Nuclear Information System (INIS)

    Lister, J.B.; Schnurrenberger, H.

    1991-01-01

    The shaping of non-circular plasmas requires a non-linear mapping between the measured diagnostic signals and selected equilibrium parameters. The particular configuration of neural network known as the multilayer perceptron provides a powerful and general technique for formulating an arbitrary continuous non-linear multi-dimensional mapping. This technique has been successfully applied to the extraction of equilibrium parameters from measurements of single-null diverted plasmas in the DIII-D tokamak; the results are compared with a purely linear mapping. The method is promising, and hardware implementation is straightforward. (author). 17 refs, 8 figs, 2 tab

  5. Study on possibility of plasma current profile determination using an analytical model of tokamak equilibrium

    International Nuclear Information System (INIS)

    Moriyama, Shin-ichi; Hiraki, Naoji

    1996-01-01

    The possibility of determining the current profile of tokamak plasma from the external magnetic measurements alone is investigated using an analytical model of tokamak equilibrium. The model, which is based on an approximate solution of the Grad-Shafranov equation, can set a plasma current profile expressed with four free parameters of the total plasma current, the poloidal beta, the plasma internal inductance and the axial safety factor. The analysis done with this model indicates that, for a D-shaped plasma, the boundary poloidal magnetic field prescribing the external magnetic field distribution is dependent on the axial safety factor in spite of keeping the boundary safety factor and the plasma internal inductance constant. This suggests that the plasma current profile is reversely determined from the external magnetic analysis. The possibility and the limitation of current profile determination are discussed through this analytical result. (author)

  6. Analysis of plasma equilibrium based on orbit-driven current density profile in steady-state plasma on QUEST

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, K., E-mail: nakamura@triam.kyushu-u.ac.jp [RIAM, Kyushu University, Kasuga 816-8580 (Japan); Alam, M.M. [IGSES, Kyushu University, Kasuga 816-8580 (Japan); Jiang, Y.Z. [Tsinghua University, Beijing 100084 (China); Mitarai, O. [Tokai University, Kumamoto 862-8652 (Japan); Kurihara, K.; Kawamata, Y.; Sueoka, M.; Takechi, M. [Japan Atomic Energy Agency, Naka 311-0193 (Japan); Hasegawa, M.; Tokunaga, K.; Araki, K.; Zushi, H.; Hanada, K.; Fujisawa, A.; Idei, H.; Nagashima, Y.; Kawasaki, S.; Nakashima, H.; Higashijima, A.; Nagata, T. [RIAM, Kyushu University, Kasuga 816-8580 (Japan); and others

    2016-11-01

    Highlights: • High energy particle guiding center orbit is calculated as a contour plot of conserved variable. • Current density profile is analyzed based on the orbit-driven current. • Plasma equilibrium is reconstructed by considering the hollow current profile. - Abstract: In the present RF-driven (ECCD) steady-state plasma on QUEST (B{sub t} = 0.25 T, R = 0.68 m, a = 0.40 m), plasma current seems to flow in the open magnetic surface outside of the closed magnetic surface in the low-field region according to plasma current fitting (PCF) method. We consider that the current in the open magnetic surface is due to orbit-driven current by high-energy particles in RF-driven plasma. So based on the analysis of current density profile based on the orbit-driven current, plasma equilibrium is to be calculated. We calculated high energy particles guiding center orbits as a contour plot of conserved variable in Hamiltonian formulation and considered particles initial position with different levels of energy and pitch angles that satisfy resonance condition. Then the profile of orbit-driven current is estimated by multiplying the particle density on the resonance surface and the velocity on the orbits. This analysis shows negative current near the magnetic axis and hollow current profile is expected even if pressure driven current is considered. Considering the hollow current profile shifted toward the low-field region, the equilibrium is fitted by J-EFIT coded by MATLAB.

  7. Reactive species in non-equilibrium atmospheric-pressure plasmas: Generation, transport, and biological effects

    Energy Technology Data Exchange (ETDEWEB)

    Lu, X., E-mail: luxinpei@hotmail.com [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China); Naidis, G.V. [Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412 (Russian Federation); Laroussi, M. [Plasma Engineering & Medicine Institute, Old Dominion University, Norfolk, VA 23529 (United States); Reuter, S. [Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff-Strasse 2, 17489 Greifswald (Germany); Graves, D.B. [Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720 (United States); Ostrikov, K. [Institute for Future Environments, Queensland University of Technology, Brisbane, QLD 4000 (Australia); School of Physics, Chemistry, and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000 (Australia); Commonwealth Scientific and Industrial Research Organization, P.O.Box 218, Lindfield, NSW 2070 (Australia); School of Physics, The University of Sydney, Sydney, NSW 2006 (Australia)

    2016-05-04

    Non-equilibrium atmospheric-pressure plasmas have recently become a topical area of research owing to their diverse applications in health care and medicine, environmental remediation and pollution control, materials processing, electrochemistry, nanotechnology and other fields. This review focuses on the reactive electrons and ionic, atomic, molecular, and radical species that are produced in these plasmas and then transported from the point of generation to the point of interaction with the material, medium, living cells or tissues being processed. The most important mechanisms of generation and transport of the key species in the plasmas of atmospheric-pressure plasma jets and other non-equilibrium atmospheric-pressure plasmas are introduced and examined from the viewpoint of their applications in plasma hygiene and medicine and other relevant fields. Sophisticated high-precision, time-resolved plasma diagnostics approaches and techniques are presented and their applications to monitor the reactive species and plasma dynamics in the plasma jets and other discharges, both in the gas phase and during the plasma interaction with liquid media, are critically reviewed. The large amount of experimental data is supported by the theoretical models of reactive species generation and transport in the plasmas, surrounding gaseous environments, and plasma interaction with liquid media. These models are presented and their limitations are discussed. Special attention is paid to biological effects of the plasma-generated reactive oxygen and nitrogen (and some other) species in basic biological processes such as cell metabolism, proliferation, survival, etc. as well as plasma applications in bacterial inactivation, wound healing, cancer treatment and some others. Challenges and opportunities for theoretical and experimental research are discussed and the authors’ vision for the emerging convergence trends across several disciplines and application domains is presented to

  8. Local thermodynamic equilibrium in a laser-induced plasma evidenced by blackbody radiation

    Science.gov (United States)

    Hermann, Jörg; Grojo, David; Axente, Emanuel; Craciun, Valentin

    2018-06-01

    We show that the plasma produced by laser ablation of solid materials in specific conditions has an emission spectrum that is characterized by the saturation of the most intense spectral lines at the blackbody radiance. The blackbody temperature equals the excitation temperature of atoms and ions, proving directly and unambiguously a plasma in local thermodynamic equilibrium. The present investigations take benefit from the very rich and intense emission spectrum generated by ablation of a nickel-chromium-molybdenum alloy. This alternative and direct proof of the plasma equilibrium state re-opens the perspectives of quantitative material analyses via calibration-free laser-induced breakdown spectroscopy. Moreover, the unique properties of this laser-produced plasma promote its use as radiation standard for intensity calibration of spectroscopic instruments.

  9. Optical Measurements in Non-Equilibrium Plasmas and Flows

    Science.gov (United States)

    2009-09-01

    of the polarizability , , of the medium and the time-varying incident electric field ,E(t). p(t) E(t)  (14) Figure 2 Single...162 14 - 7 The polarizability is customarily expanded with respect to the vibrational normal coordinates (or “normal modes”), Q, of the molecule...spectrum, obtained from an argon glow discharge plasma at 50 mbar [36], is shown on the right side of Fig. 7. The inferred temperature is 479 ± 13 K

  10. Equilibrium and linear analysis of rotating plasmas: fluid and guiding center results

    International Nuclear Information System (INIS)

    Iacono, R.

    1990-06-01

    This work is devoted to the equilibrium and stability of rotating plasmas. Apart from its theoretical interest, this subject has become of practical importance in fusion research, due to the use in recent tokamak experiments of auxiliary heating methods such as neutral-beam injection, which can produce large plasma flows. Flow velocities up to the ion sound speed have been measured on different machines and new phenomena associated with the flow, such as distorsions of the plasma equilibrium profiles, have been observed. As a consequence, flows must be included in the macroscopic description of plasma equilibrium, which is the basis for the analysis and the design of magnetic confinement machines, and the stability properties of equilibria with flows need to be investigated. Here, attention is centered on toroidal confinement machines and in particular on tokamaks. However, some of the results to be presented may be of interest also for other domains (strong mass flows also occur in astrophysical and geophysical contexts such as in the Jovian magnetosphere or in the Earth's magnetopause and plasmapause. It should be noted that equilibrium and, in particular, stability with flows are poorly understood at present. Therefore, many of the questions we will consider are of quite a general nature. We are not yet at the point where quantitative comparisons with specific experiments can be made. Even the choice of a convenient model to study plasma flow is far from being evident. So far most of the theoretical investigations have used the magnetohydrodynamic (MHD) model, which is one of the simplest descriptions of a plasma. In this work, however, it will be shown that, for rotating plasmas, the 'simple' MHD model can give very complicated and physically meaningless results, while more 'complicated' models can provide a simpler and more realistic description of the plasma behaviour. 65 refs., 8 figs., 3 tabs

  11. Effect of Dielectric Barrier Discharge Plasma Actuators on Non-equilibrium Hypersonic Flows

    Science.gov (United States)

    2014-10-28

    results for MIG with the US3D code devel- oped at the University of Minnesota.61 US3D is an unstruc- tured CFD code for hypersonic flow solution used...Effect of dielectric barrier discharge plasma actuators on non-equilibrium hypersonic flows Ankush Bhatia,1 Subrata Roy,1 and Ryan Gosse2 1Applied...a cylindrical body in Mach 17 hypersonic flow is presented. This application focuses on using sinusoidal dielectric barrier discharge plasma actuators

  12. The equation of state and ionization equilibrium of dense aluminum plasma with conductivity verification

    International Nuclear Information System (INIS)

    Wang, Kun; Shi, Zongqian; Shi, Yuanjie; Bai, Jun; Wu, Jian; Jia, Shenli

    2015-01-01

    The equation of state, ionization equilibrium, and conductivity are the most important parameters for investigation of dense plasma. The equation of state is calculated with the non-ideal effects taken into consideration. The electron chemical potential and pressure, which are commonly used thermodynamic quantities, are calculated by the non-ideal free energy and compared with results of a semi-empirical equation of state based on Thomas-Fermi-Kirzhnits model. The lowering of ionization potential, which is a crucial factor in the calculation of non-ideal Saha equation, is settled according to the non-ideal free energy. The full coupled non-ideal Saha equation is applied to describe the ionization equilibrium of dense plasma. The conductivity calculated by the Lee-More-Desjarlais model combined with non-ideal Saha equation is compared with experimental data. It provides a possible approach to verify the accuracy of the equation of state and ionization equilibrium

  13. Characterization of RFX-mod passive conducting structures to optimize plasma start up and equilibrium control

    International Nuclear Information System (INIS)

    Marchiori, G.; Grando, L.; Cavinato, M.

    2007-01-01

    The load assembly of RFX-mod consists of three toroidal conducting structures whose eddy currents affect the plasma equilibrium magnetic configuration. The high number of electromagnetic probes mounted on the components of the load assembly allowed to analyse the response of each structure to a variation of the magnetic field vertical component. The capability of evaluating the axisymmetric toroidal currents in the passive structures and therefore their contribution to the equilibrium configuration by a 2D FE MHD equilibrium code was validated. The design and implementation of a feedback control system of the magnetic field vertical component before the gas ionization allowed meeting the requirement of an accurate control of this quantity in view of operation at higher plasma current and independently of the magnetizing winding programming

  14. Use of the stellarator expansion to investigate plasma equilibrium in modular stellarators

    International Nuclear Information System (INIS)

    Anania, G.; Johnson, J.L.; Weimer, K.E.

    1982-11-01

    A numerical code utilizing a large-aspect ratio, small-helical-distortion expansion is developed and used to investigate the effect of plasma currents on stellarator equilibrium. Application to modular stellarator configurations shows that a large rotational transform, and hence large coil deformation, is needed to achieve high-beta equilibria

  15. The energy balance of a plasma in partial local thermodynamic equilibrium

    NARCIS (Netherlands)

    Kroesen, G.M.W.; Schram, D.C.; Timmermans, C.J.; de Haas, J.C.M.

    1990-01-01

    The energy balance for electrons and heavy particles constituting a plasma in partial local thermodynamic equilibrium is derived. The formulation of the energy balance used allows for evaluation of the source terms without knowledge of the particle and radiation transport situation, since most of

  16. Equilibrium and stability of high-beta plasma in a finite l=+-1 toroidal system

    International Nuclear Information System (INIS)

    Shiina, S.; Saito, K.; Todoroki, J.; Hamada, S.; Gesso, H.; Nogi, Y.; Osanai, Y.; Yoshimura, H.

    1983-01-01

    The equilibrium and stability are theoretically and experimentally investigated of high-beta plasma in the Modified Bumpy Torus, which is an asymmetric closed-line system with fairly large l=0 and l=+-1 field components. The finiteness of the l=+-1 component induces significant stabilizing effects due both to self formation of a magnetic well and to the conducting wall. (author)

  17. Equilibrium and stability of high-beta plasma in Modified Bumpy Torus (MBT)

    International Nuclear Information System (INIS)

    Todoroki, J.; Shiina, S.; Saito, K.; Osanai, Y.; Nogi, Y.; Gesso, H.; Yagi, I.; Yokoyama, K.; Yoshimura, H.; Nihon Univ., Tokyo. Atomic Energy Research Inst.)

    1977-01-01

    The equilibrium and stability properties of the plasma in Modified Bumpy Torus, which is an asymmetric system with closed magnetic lines of force, is reported. For small beta value, the growth rate of m=1 mode instability in MBT can be smaller than that of Scyllac configuration. The results of 1/4 toroidal sector experiment are reported. (author)

  18. Dilepton production from quark gluon plasma using non-equilibrium thermodynamics

    International Nuclear Information System (INIS)

    Sinha, B.

    1984-01-01

    The importance of the approach phase to the thermodynamic equilibrium has been investigated for dilepton production from quark-gluon plasma - an effective temperature for the quarks as Brounian particle in a heat bath of gluons has been suggested. The spectrum for low invariant mass is, as a consequence, sharper

  19. Equilibrium fluctuations formulas for the quantum one-component plasma in a magnetic field

    NARCIS (Netherlands)

    John, P.; Suttorp, L.G.

    1993-01-01

    The authors derive a complete set of equilibrium fluctuation formulae for the charge density, the current density and the energy density of the quantum one-component plasma in a magnetic field. The derivation is based on the use of imaginary-time-dependent Green functions and their Kubo transforms.

  20. Ionization equilibrium and radiation losses of molybdenum in a high temperature plasma

    International Nuclear Information System (INIS)

    1976-11-01

    The ionization equilibrium and the associated radiation losses of molybdenum have been calculated as a function of the electron temperature. In the 1-2keV range the computed fractional abundances are supported by experimental facts obtained in T.F.R. Tokamak plasmas

  1. Specific features of plasma equilibrium in closed mixed-type stellarators

    International Nuclear Information System (INIS)

    Shafranov, V.D.; Mikhajlov, M.I.

    1992-01-01

    High values of rotational transformation (i/2π>1) are studied in terms of their usefulness for plasma equilibrium using stellarators with spatial magnetic axis and circular cross section of averaged magnetic surfaces. It is shown that, in contrast to a conventional stellarator with circular magnetic axis, where ultimate equilibrium pressure grows proportionally (i/2π) 2 equilibrium in lost in more complex stellarators consisting of heterogeneous sections as rotational transformation approaches, over period of the system, whole-number values. At the same time, in case when the transformation approaches a whole-number value of i/2π, short-circuit of secondary currents occurs within one of the periods of the system and ultimate equilibrium pressure value can exceed that in a conventional stellarator having the same length of the system and rotational transformation value

  2. Laser Thomson scattering diagnostics of non-equilibrium high pressure plasmas

    International Nuclear Information System (INIS)

    Muraoka, K.; Uchino, K.; Bowden, M.D.; Noguchi, Y.

    2001-01-01

    For various applications of non-equilibrium high pressure plasmas, knowledge of electron properties, such as electron density, electron temperature and/or electron energy distribution function (eedf), is prerequisite for any rational approach to understanding physical and chemical processes occurring in the plasmas. For this purpose, laser Thomson scattering has been successfully applied for the first time to measure the electron properties in plasmas for excimer laser pumping and in microdischarges. Although this diagnostic technique is well established for measurements in high temperature plasmas, its applications to these glow discharge plasmas have had various inherent difficulties, such as a presence of high density neutral particles (>10 21 m -3 ) in the excimer laser pumping discharges and an extremely small plasma size (<0.1 mm) and the presence of nearby walls for microdischarges. These difficulties have been overcome and clear signals have been obtained. The measured results are presented and their implications in the respective discharge phenomena are discussed

  3. Influence of Penning effect on the plasma features in a non-equilibrium atmospheric pressure plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Zhengshi; Zhang, Guanjun [School of Electrical Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Jiang, Nan; Cao, Zexian, E-mail: zxcao@iphy.ac.cn [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-03-14

    Non-equilibrium atmospheric pressure plasma jet (APPJ) is a cold plasma source that promises various innovative applications. The influence of Penning effect on the formation, propagation, and other physical properties of the plasma bullets in APPJ remains a debatable topic. By using a 10 cm wide active electrode and a frequency of applied voltage down to 0.5 Hz, the Penning effect caused by preceding discharges can be excluded. It was found that the Penning effect originating in a preceding discharge helps build a conductive channel in the gas flow and provide seed electrons, thus the discharge can be maintained at a low voltage which in turn leads to a smaller propagation speed for the plasma bullet. Photographs from an intensified charge coupled device reveal that the annular structure of the plasma plume for He is irrelevant to the Penning ionization process arising from preceding discharges. By adding NH{sub 3} into Ar to introduce Penning effect, the originally filamentous discharge of Ar can display a rather extensive plasma plume in ambient as He. These results are helpful for the understanding of the behaviors of non-equilibrium APPJs generated under distinct conditions and for the design of plasma jet features, especially the spatial distribution and propagation speed, which are essential for application.

  4. Enhancement of Combustion and Flame Stabilization Using Transient Non-Equilibrium Plasma

    Science.gov (United States)

    2007-03-31

    Plasma Chemistry, Taormina, Italy, ISPC-564, 22-27 June 2003. 8Ozlem, M.Y., Saveliev A.V., Porshnev, P.I., Fridman, A., Kennedy, L.A., "Non-Equilibrium...Kennedy, L.A., Saveliev , A. and Yardimci, O.M., "Gliding Arc Gas Discharge," Progress in Energy and Combustion Science, Vol. 25,1999, pp. 211-231...34Optical Diagnostics of Atmospheric Pressure Air Plasmas,"Plasma Sources Science and Technology, Vol. 12, May 2003, pp. 125-138.31Ozlem, M.Y., Saveliev

  5. Instability of the Shukla mode in a dusty plasma containing equilibrium density and magnetic field inhomogeneities

    International Nuclear Information System (INIS)

    Shukla, P.K.; Bharuthram, R.; Schlickeiser, R.

    2004-01-01

    It is shown that the dispersive Shukla mode [P.K. Shukla, Phys. Lett. A 316, 238 (2003)] can become unstable in the presence of equilibrium density and magnetic field inhomogeneities in a dusty plasma. A new dispersion relation for our nonuniform dusty magnetoplasma is derived and analyzed to show the modification of the Shukla mode frequency and its amplification due to combined action of the plasma density and magnetic field gradients. The present instability may account for the origin of low-frequency electromagnetic turbulence in molecular clouds and in cometary plasmas

  6. Analytical modeling of equilibrium of strongly anisotropic plasma in tokamaks and stellarators

    International Nuclear Information System (INIS)

    Lepikhin, N. D.; Pustovitov, V. D.

    2013-01-01

    Theoretical analysis of equilibrium of anisotropic plasma in tokamaks and stellarators is presented. The anisotropy is assumed strong, which includes the cases with essentially nonuniform distributions of plasma pressure on magnetic surfaces. Such distributions can arise at neutral beam injection or at ion cyclotron resonance heating. Then the known generalizations of the standard theory of plasma equilibrium that treat p ‖ and p ⊥ (parallel and perpendicular plasma pressures) as almost constant on magnetic surfaces are not applicable anymore. Explicit analytical prescriptions of the profiles of p ‖ and p ⊥ are proposed that allow modeling of the anisotropic plasma equilibrium even with large ratios of p ‖ /p ⊥ or p ⊥ /p ‖ . A method for deriving the equation for the Shafranov shift is proposed that does not require introduction of the flux coordinates and calculation of the metric tensor. It is shown that for p ⊥ with nonuniformity described by a single poloidal harmonic, the equation for the Shafranov shift coincides with a known one derived earlier for almost constant p ⊥ on a magnetic surface. This does not happen in the other more complex case

  7. Thermal structure of atmospheric pressure non-equilibrium plasmas

    International Nuclear Information System (INIS)

    Nozaki, Tomohiro; Unno, Yasuko; Okazaki, Ken

    2002-01-01

    The thermal structure of a methane-fed dielectric barrier discharge (DBD) and a atmospheric pressure glow-discharge (APG) has been extensively investigated in terms of time-averaged gas temperature profile between two parallel-plate electrodes separated by 1.0 mm. Emission spectroscopy of the rotational band of CH ((0, 0) A 2 Δ→X 2 Π:431 nm) was performed for this purpose. In order to minimize average temperature increase in the reaction field, DBD and APG were activated by 10 kHz with 2% duty cycle pulsed voltage (2 μs pulse width/100 μs interval). In DBD, temperature increase of a single microdischarge, on a time average, reached 200 K. It suddenly decreased below 100 K associated with the dark space formation near the dielectric barrier. Also, gas temperature in the surface discharge was fairly low because emission in these regions was limited within the initial stages of propagation (∼5 ns), whereas energy deposition would continue until microdischarge extinction; these facts implied that rotational temperature seemed to be far below the actual gas temperature in these regions. In APG, gas temperature was uniformly increased by positive column formation. In addition, a remarkable temperature increase due to negative glow formation was obtained only near the metallic electrode. For practical interest, we also investigated the net temperature increase with high frequency operations (AC-80 kHz), which depends not only on plasma properties, but also various engineering factors such as flow field, external cooling conditions, and total input power. In DBD, gas temperature in the middle of gas gap was significantly increased with increasing input power because of poor cooling conditions. In APG, in contrast, gas temperature near the electrodes was significantly increased associated with negative glow formation

  8. Molecular dynamics simulation of equilibrium configurations of plasmas containing multi-species dusts

    International Nuclear Information System (INIS)

    Liu, Yanhong; Chew, Lock Yue

    2007-01-01

    Equilibrium configurations of dusty plasmas with grains of different sizes, which interact through a screened Coulomb force field and confined by a two-dimensional quadratic potential, are studied using molecular dynamics simulation. The system configuration depends on the sizes, masses and charges of the grain species as well as the screening strength of the background plasma. The consideration of the grain size has established a different equilibrium configuration relative to that of point grains. In the new configurations, grains of different species separate into different shells, with the grains of larger mass and charge located away from the system center, forming a shell that surrounds the grains of smaller mass and charge at the system center. This configuration occurs beyond a critical grain radius, and its structure and size are determined by the competing effects between the inter-grain electrostatic repulsive force, the screening effect of the plasma and the mass-dependent confinement force of the quadratic potential

  9. Effect of the size of charged spherical macroparticles on their electrostatic interaction in an equilibrium plasma

    Energy Technology Data Exchange (ETDEWEB)

    Filippov, A. V., E-mail: fav@triniti.ru; Derbenev, I. N. [State Research Center of the Russian Federation, Troitsk Institute for Innovation and Fusion Research (Russian Federation)

    2016-12-15

    The effect of the size of two charged spherical macroparticles on their electrostatic interaction in an equilibrium plasma is analyzed within the linearized Poisson–Botzmann model. It is established that, under the interaction of two charged dielectric macroparticles in an equilibrium plasma, the forces acting on each particle turn out to be generally unequal. The forces become equal only in the case of conducting macroparticles or in the case of dielectric macroparticles of the same size and charge. They also turn out to be equal when the surface potentials of the macroparticles remain constant under the variation of interparticle distances. Formulas are proposed that allow one to calculate the interaction force with a high degree of accuracy under the condition that the radii of macroparticles are much less than the screening length, which is usually satisfied in experiments with dusty plasmas.

  10. Scenarios

    NARCIS (Netherlands)

    Pérez-Soba, Marta; Maas, Rob

    2015-01-01

    We cannot predict the future with certainty, but we know that it is influenced by our current actions, and that these in turn are influenced by our expectations. This is why future scenarios have existed from the dawn of civilization and have been used for developing military, political and economic

  11. Ion acceleration in non-equilibrium plasmas driven by fast drifting electron

    Energy Technology Data Exchange (ETDEWEB)

    Castro, G. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Università degli Studi di Catania, Dipartimento di Fisica e Astronomia, V. S.Sofia 64, 95123 Catania (Italy); Di Bartolo, F., E-mail: fdibartolo@unime.it [Università di Messina, V.le F. Stagno D’Alcontres 31, 98166, Messina (Italy); Gambino, N. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Università degli Studi di Catania, Dipartimento di Metodologie Fisiche e Chimiche per L’ingegneria, Viale A.Doria 6, 95125 Catania (Italy); Mascali, D. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); CSFNSM, Viale A. Doria 6, 95125 Catania (Italy); Romano, F.P. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); CNR-IBAM Via Biblioteca 4, 95124 Catania (Italy); Anzalone, A.; Celona, L.; Gammino, S. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Di Giugno, R. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Università degli Studi di Catania, Dipartimento di Fisica e Astronomia, V. S.Sofia 64, 95123 Catania (Italy); Lanaia, D. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Miracoli, R. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Università degli Studi di Catania, Dipartimento di Fisica e Astronomia, V. S.Sofia 64, 95123 Catania (Italy); Serafino, T. [CSFNSM, Viale A. Doria 6, 95125 Catania (Italy); Tudisco, S. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); CSFNSM, Viale A. Doria 6, 95125 Catania (Italy)

    2013-05-01

    We hereby present results on ion acceleration mechanisms in non equilibrium plasmas generated by microwaves or high intensity laser pulses. Experiments point out that in magnetized plasmas X–B conversion takes place for under resonance values of the magnetic field, i.e. an electromagnetic mode is converted into an electrostatic wave. The strong self-generated electric field, of the order of 10{sup 7} V/m, causes a E × B drift which accelerates both ions and electrons, as it is evident by localized sputtering in the plasma chamber. These fields are similar (in magnitude) to the ones obtainable in laser generated plasmas at intensity of 10{sup 12} W/cm{sup 2}. In this latter case, we observe that the acceleration mechanism is driven by electrons drifting much faster than plasma bulk, thus generating an extremely strong electric field ∼10{sup 7} V/m. The two experiments confirm that ions acceleration at low energy is possible with table-top devices and following complementary techniques: i.e. by using microwave-driven (producing CW beams) plasmas, or non-equilibrium laser-driven plasmas (producing pulsed beams). Possible applications involve ion implantation, materials surface modifications, ion beam assisted lithography, etc.

  12. Time-dependent free boundary equilibrium and resistive diffusion in a tokamak plasma

    International Nuclear Information System (INIS)

    Selig, G.

    2012-12-01

    In a Tokamak, in order to create the necessary conditions for nuclear fusion to occur, a plasma is maintained by applying magnetic fields. Under the hypothesis of an axial symmetry of the tokamak, the study of the magnetic configuration at equilibrium is done in two dimensions, and is deduced from the poloidal flux function. This function is solution of a non linear partial differential equation system, known as equilibrium problem. This thesis presents the time dependent free boundary equilibrium problem, where the circuit equations in the tokamak coils and passive conductors are solved together with the Grad-Shafranov equation to produce a dynamic simulation of the plasma. In this framework, the Finite Element equilibrium code CEDRES has been improved in order to solve the aforementioned dynamic problem. Consistency tests and comparisons with the DINA-CH code on an ITER vertical instability case have validated the results. Then, the resistive diffusion of the plasma current density has been simulated using a coupling between CEDRES and the averaged one-dimensional diffusion equation, and it has been successfully compared with the integrated modeling code CRONOS. (author)

  13. Departures from thermal equilibrium in a dense Z-pinch plasma

    International Nuclear Information System (INIS)

    Neufeld, C.R.

    1979-01-01

    This paper presents on analysis of several features of the emission spectrum obtained from a dense hydrogen Z-pinch plasma. The spectrum is characterized by an extremely broad H/sub β/ line and by the absence of an emission line at the H/sub b/ wavelength. Comparison with theory shows that the spectrum is inconsistent with the assumption of a thermal or collision-dominated plasma. The assumption of a substantial overpopulation of the atomic-hydrogen excited levels, ascribed to a rising degree of plasma ionization, provides a satisfactory description of the observed spectrum. This result illustrates the difficulty of establishing valid equilibrium criteria for transient plasmas, even in the case of plasma densities as high as 10 19 cm -3

  14. An equilibrium model for tungsten fuzz in an eroding plasma environment

    International Nuclear Information System (INIS)

    Doerner, R.P.; Baldwin, M.J.; Stangeby, P.C.

    2011-01-01

    A model equating the growth rate of tungsten fuzz on a plasma-exposed surface to the erosion rate of the fuzzy surface is developed to predict the likelihood of tungsten fuzz formation in the steady-state environment of toroidal confinement devices. To date this question has not been answered because the operational conditions in existing magnetic confinement machines do not necessarily replicate those expected in future fusion reactors (i.e. high-fluence operation, high temperature plasma-facing materials and edge plasma relatively free of condensable impurities). The model developed is validated by performing plasma exposure experiments at different incident ion energies (thereby varying the erosion rate) and measuring the resultant fuzz layer thickness. The results indicate that if the conditions exist for fuzz development in a steady-state plasma (surface temperature and energetic helium flux), then the erosion rate will determine the equilibrium thickness of the surface fuzz layer.

  15. Analysis of non-equilibrium phenomena in inductively coupled plasma generators

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, W.; Panesi, M., E-mail: mpanesi@illinois.edu [University of Illinois at Urbana-Champaign, Urbana, Illinois 61822 (United States); Lani, A. [Von Karman Institute for Fluid Dynamics, Rhode-Saint-Genèse (Belgium)

    2016-07-15

    This work addresses the modeling of non-equilibrium phenomena in inductively coupled plasma discharges. In the proposed computational model, the electromagnetic induction equation is solved together with the set of Navier-Stokes equations in order to compute the electromagnetic and flow fields, accounting for their mutual interaction. Semi-classical statistical thermodynamics is used to determine the plasma thermodynamic properties, while transport properties are obtained from kinetic principles, with the method of Chapman and Enskog. Particle ambipolar diffusive fluxes are found by solving the Stefan-Maxwell equations with a simple iterative method. Two physico-mathematical formulations are used to model the chemical reaction processes: (1) A Local Thermodynamics Equilibrium (LTE) formulation and (2) a thermo-chemical non-equilibrium (TCNEQ) formulation. In the TCNEQ model, thermal non-equilibrium between the translational energy mode of the gas and the vibrational energy mode of individual molecules is accounted for. The electronic states of the chemical species are assumed in equilibrium with the vibrational temperature, whereas the rotational energy mode is assumed to be equilibrated with translation. Three different physical models are used to account for the coupling of chemistry and energy transfer processes. Numerical simulations obtained with the LTE and TCNEQ formulations are used to characterize the extent of non-equilibrium of the flow inside the Plasmatron facility at the von Karman Institute. Each model was tested using different kinetic mechanisms to assess the sensitivity of the results to variations in the reaction parameters. A comparison of temperatures and composition profiles at the outlet of the torch demonstrates that the flow is in non-equilibrium for operating conditions characterized by pressures below 30 000 Pa, frequency 0.37 MHz, input power 80 kW, and mass flow 8 g/s.

  16. IEFIT - An Interactive Approach to High Temperature Fusion Plasma Magnetic Equilibrium Fitting

    International Nuclear Information System (INIS)

    Peng, Q.; Schachter, J.; Schissel, D.P.; Lao, L.L.

    1999-01-01

    An interactive IDL based wrapper, IEFIT, has been created for the magnetic equilibrium reconstruction code EFIT written in FORTRAN. It allows high temperature fusion physicists to rapidly optimize a plasma equilibrium reconstruction by eliminating the unnecessarily repeated initialization in the conventional approach along with the immediate display of the fitting results of each input variation. It uses a new IDL based graphics package, GaPlotObj, developed in cooperation with Fanning Software Consulting, that provides a unified interface with great flexibility in presenting and analyzing scientific data. The overall interactivity reduces the process to minutes from the usual hours

  17. Hot electron plasma equilibrium and stability in the Constance B mirror experiment

    International Nuclear Information System (INIS)

    Chen, Xing.

    1988-04-01

    An experimental study of the equilibrium and macroscopic stability property of an electron cyclotron resonance heating (ECRH) generated plasma in a minimum-B mirror is presented. The Constance B mirror is a single cell quadrupole magnetic mirror in which high beta (β ≤ 0.3) hot electron plasmas (T/sub e/≅400 keV) are created with up to 4 kW of ECRH power. The plasma equilibrium profile is hollow and resembles the baseball seam geometry of the magnet which provides the confining magnetic field. This configuration coincides with the drift orbit of deeply trapped particles. The on-axis hollowness of the hot electron density profile is 50 /+-/ 10%, and the pressure profile is at least as hollow as, if not more than, the hot electron density profile. The hollow plasma equilibrium is macroscopically stable and generated in all the experimental conditions in which the machine has been operated. Small macroscopic plasma fluctuations in the range of the hot electron curvature drift frequency sometimes occur but their growth rate is small (ω/sub i//ω/sub r/ ≤ 10 -2 ) and saturate at very low level (δB//bar B/ ≤ 10 -3 ). Particle drift reversal is predicted to occur for the model pressure profile which best fits the experimental data under the typical operating conditions. No strong instability is observed when the plasma is near the drift reversal parameter regime, despite a theoretical prediction of instability under such conditions. The experiment shows that the cold electron population has no stabilizing effect to the hot electrons, which disagrees with current hot electron stability theories and results of previous maximum-B experiments. A theoretical analysis using MHD theory shows that the compressibility can stabilize a plasma with a hollowness of 20--30% in the Constance B mirror well. 57 refs

  18. Electron density measurement of non-equilibrium atmospheric pressure plasma using dispersion interferometer

    Science.gov (United States)

    Yoshimura, Shinji; Kasahara, Hiroshi; Akiyama, Tsuyoshi

    2017-10-01

    Medical applications of non-equilibrium atmospheric plasmas have recently been attracting a great deal of attention, where many types of plasma sources have been developed to meet the purposes. For example, plasma-activated medium (PAM), which is now being studied for cancer treatment, has been produced by irradiating non-equilibrium atmospheric pressure plasma with ultrahigh electron density to a culture medium. Meanwhile, in order to measure electron density in magnetic confinement plasmas, a CO2 laser dispersion interferometer has been developed and installed on the Large Helical Device (LHD) at the National Institute for Fusion Science, Japan. The dispersion interferometer has advantages that the measurement is insensitive to mechanical vibrations and changes in neutral gas density. Taking advantage of these properties, we applied the dispersion interferometer to electron density diagnostics of atmospheric pressure plasmas produced by the NU-Global HUMAP-WSAP-50 device, which is used for producing PAM. This study was supported by the Grant of Joint Research by the National Institutes of Natural Sciences (NINS).

  19. Bootstrap current control studies in the Wendelstein 7-X stellarator using the free-plasma-boundary version of the SIESTA MHD equilibrium code

    Science.gov (United States)

    Peraza-Rodriguez, H.; Reynolds-Barredo, J. M.; Sanchez, R.; Tribaldos, V.; Geiger, J.

    2018-02-01

    The recently developed free-plasma-boundary version of the SIESTA MHD equilibrium code (Hirshman et al 2011 Phys. Plasmas 18 062504; Peraza-Rodriguez et al 2017 Phys. Plasmas 24 082516) is used for the first time to study scenarios with considerable bootstrap currents for the Wendelstein 7-X (W7-X) stellarator. Bootstrap currents in the range of tens of kAs can lead to the formation of unwanted magnetic island chains or stochastic regions within the plasma and alter the boundary rotational transform due to the small shear in W7-X. The latter issue is of relevance since the island divertor operation of W7-X relies on a proper positioning of magnetic island chains at the plasma edge to control the particle and energy exhaust towards the divertor plates. Two scenarios are examined with the new free-plasma-boundary capabilities of SIESTA: a freely evolving bootstrap current one that illustrates the difficulties arising from the dislocation of the boundary islands, and a second one in which off-axis electron cyclotron current drive (ECCD) is applied to compensate the effects of the bootstrap current and keep the island divertor configuration intact. SIESTA finds that off-axis ECCD is indeed able to keep the location and phase of the edge magnetic island chain unchanged, but it may also lead to an undesired stochastization of parts of the confined plasma if the EC deposition radial profile becomes too narrow.

  20. Equilibrium and stability studies for high beta plasmas in torsatron/heliotron devices

    International Nuclear Information System (INIS)

    Carreras, B.A.; Cooper, W.A.; Charlton, L.A.

    1983-01-01

    The equilibrium and stability properties of high β plasmas in torsatron/heliotron devices have been investigated. Three numerical approaches have been used to study plasma equilibria for a range of coil configurations. The method of averaging permits fast equilibrium and stability calculations. Two fully 3-D codes, namely the Chodura-Schluter code, and the NEAR code recently developed at ORNL, are used to explore selected regions of parameter space. The resulting equilibria calculated with different methods are in good agreement. This validates the average method approach and enhances its usefulness. Results are presented for configurations with different aspect ratios and number of field periods. The role of the vertical field has also been studied in detail. The main conclusion is that for moderate aspect ratios (Asub(p) <= 8), the self-stabilizing effect of the magnetic axis shift is large enough to open a direct path to the second stability regime. (author)

  1. Equilibrium and stability studies for high-beta plasmas in torsatron/heliotron devices

    International Nuclear Information System (INIS)

    Carreras, B.A.; Charlton, L.A.; Cooper, W.A.

    1983-01-01

    The equilibrium and stability properties of high-#betta# plasmas in torsatron/heliotron devices have been investigated. Three numerical approaches have been used to study plasma equilibria for a range of coil configurations. The method of averaging permits fast equilibrium and stability calculations. Two fully 3-D codes, namely the Chodura-Schluter code, and the NEAR code recently developed at ORNL, are used to explore selected regions of parameter space. The resulting equilibria calculated with different methods are in good agreement. This validates the average method approach and enhances its usefulness. Results are presented for configurations with different aspect ratios and number of field periods. The role of the vertical field has also been studied in detail. The main conclusion is that for moderate aspect ratios (A/sub p/ less than or equal to 8), the self-stabilizing effect of the magnetic-axis shift is large enough to open a direct path to the second-stability regime

  2. Equilibrium properties of the plasma sheath with a magnetic field parallel to the wall

    International Nuclear Information System (INIS)

    Krasheninnikova, Natalia S.; Tang Xianzhu

    2011-01-01

    Motivated by the Magnetized Target Fusion (MTF), a systematic investigation of the equilibrium properties of a 1D plasma sheath with a magnetic field parallel to the wall was carried out using analytical theory and kinetic simulations. Initially uniform full Maxwellian plasma consisting of equal temperature collisionless electrons and ions is allowed to interact with a perfectly absorbing conducting wall, which charges positively due to large ions gyro-radii. The analysis of the steady-state plasma and field profiles reveals the importance of the relation between electron and ion thermal Larmor radii and plasma Debye length. In particular, the sheath width scaling, the details of the particle flows and the break-down of force balance components exhibit different behaviors in three possible regimes. Despite our primary motivation, the results in this paper can also be applicable to the divertor and the first wall of tokamaks.

  3. Deviation from local thermodynamic equilibrium in a cesium-seeded argon plasma

    International Nuclear Information System (INIS)

    Stefanov, B.; Zarkova, L.

    1985-11-01

    The possibility of deviations from local thermodynamic equilibrium of a cesium seeded argon plasma has been analyzed. A four level model of cesium has been employed. Overpopulations of the ground state and the first excited state as well as the corresponding reduction of the electron density are calculated for cylindrical discharge structures by solving stationary rate equations. Numerical results are presented. These results indicate that in a large regime of plasma conditions the LTE assumption is valid for electron temperatures larger than 3000 K. (orig.)

  4. Equilibrium state analysis of a nonneutral plasma under a uniform magnetic field

    International Nuclear Information System (INIS)

    Fernandez, J.E.; Molinari, V.G.; Sumini, M.A.

    1990-01-01

    By recourse to the Boltzmann H-theorem, the existence of a thermodynamic equilibrium state has been proved for a nonneutral plasma under an external magnetic field. The equation describing the density profile of ions or electrons has been found. The density equation has been numerically solved for a generic magnetic field and plasma frequency, giving a parametric limit for the confinement region. An appropriate change of variable allows to approximate the density equation whose analytical solution has been found. The approximated density closely fits the numerical solution of the original equation. (Author)

  5. Evaluation of remote maintenance schemes by plasma equilibrium analysis in Tokamak DEMO reactor

    International Nuclear Information System (INIS)

    Utoh, Hiroyasu; Tobita, Kenji; Asakura, Nobuyuki; Sakamoto, Yoshiteru

    2014-01-01

    Highlights: • The remote maintenance schemes in DEMO reactor were evaluated by the plasma equilibrium analysis. • Horizontal sector transport maintenance scheme requires the largest total PF coil current. • The difference of total PF coil current for MHD equilibrium in between the large segmented divertor maintenance and the segmentalized divertor maintenance was about 10%. - Abstract: The remote maintenance schemes in a DEMO reactor are categorized by insertion direction, blanket segmentation, and divertor maintenance scheme, and are quantitatively evaluated by analysing the plasma equilibrium. The positions of the poloidal field (PF) coil are limited by the size of the toroidal field (TF) coil and the maintenance port layout of each remote maintenance scheme. Because the PF coils are located near the larger TF coil and far from the plasma surface, the horizontal sector transport maintenance scheme requires the largest part of total PF coil current, 25% larger than that required for separated sector transport using vertical maintenance ports with segmented divertor maintenance (SDM). In the unsegmented divertor maintenance (UDM) scheme, the total magnetic stored energy in the PF coils at plasma equilibrium is about 30% larger than that stored in the SDM scheme, but the time required for removal and installation of all the divertor cassettes in the UDM scheme is roughly a third of that required in the SDM scheme because the number of divertor cassettes in the UDM scheme is a third of that in the SDM scheme. From the viewpoint of simple maintenance operations, the merit of the UDM scheme has more merit than the SDM scheme

  6. Effect of configuration widths on the spectra of local thermodynamic equilibrium plasmas

    International Nuclear Information System (INIS)

    Bar-Shalom, A.; Oreg, J.; Goldstein, W.H.

    1995-01-01

    We present the extension of the supertransition-array (STA) theory to include configuration widths in the spectra of local thermodynamic equilibrium (LTE) plasmas. Exact analytic expressions for the moments of a STA are given, accounting for the detailed contributions of individual levels within the configurations that belong to a STA. The STA average energy is shifted and an additional term appears in its variance. Various cases are presented, demonstrating the effect of these corrections on the LTE spectrum

  7. First principles modeling of hydrocarbons conversion in non-equilibrium plasma

    Energy Technology Data Exchange (ETDEWEB)

    Deminsky, M.A.; Strelkova, M.I.; Durov, S.G.; Jivotov, V.K.; Rusanov, V.D.; Potapkin, B.V. [Russian Research Centre Kurchatov Inst., Moscow (Russian Federation)

    2001-07-01

    Theoretical justification of catalytic activity of non-equilibrium plasma in hydrocarbons conversion process is presented in this paper. The detailed model of highest hydrocarbons conversion includes the gas-phase reactions, chemistry of the growth of polycyclic aromatic hydrocarbons (PAHs), precursor of soot particles formation, neutral, charged clusters and soot particle formation, ion-molecular gas-phase and heterogeneous chemistry. The results of theoretical analysis are compared with experimental results. (authors)

  8. Bifurcation of plasma cylinder equilibrium into a stationary helical flow with magnetic islands

    International Nuclear Information System (INIS)

    Gubarev, V.F.; Dmitrenko, A.G.; Fesenko, A.I.

    1985-01-01

    Introduction of the low-hydrodynamic viscosity into the system of nonlinear MHD-equations enabled to use the bifurcation theory for the investigation into nonlinear phenomena connected with a tearing mode. The existance of a stable stationary helical flow with magnetic islands in the vicinity of a neutral curve is established. Fransfer from an axisymmetric equilibrium of a plasma cylinder to a helical one takes place only under soft conditions at both sides of the neutral curve. This result confirms the fact that the tearing mode, actually, is not an instability and may be con sidered only as a reason of formation of equilibrium with splitted magnetic surfaces. Really, changing the q 0 parameter (q 0 is the value proportional to a value of stability margin) at the plasma filament boundary a plasma equilibrium is attained corresponding to a stable branch of the bifurcation curve. In this case, a stable branch of the bifurcation curve corresponds to a helical stationary flow with magnetic islands in the instabwility region determined from the linear theory

  9. Effect of bootstrap current on MHD equilibrium beta limit in heliotron plasmas

    International Nuclear Information System (INIS)

    Watanabe, K.Y.

    2001-01-01

    The effect of bootstrap current on the beta limit of MHD equilibria is studied systematically by an iterative calculation of MHD equilibrium and the consistent bootstrap current in high beta heliotron plasmas. The LHD machine is treated as a standard configuration heliotron with an L=2 planar axis. The effects of vacuum magnetic configurations, pressure profiles and the vertical field control method are studied. The equilibrium beta limit with consistent bootstrap current is quite sensitive to the magnetic axis location for finite beta, compared with the currentless cases. For a vacuum configuration with the magnetic axis shifted inwards in the torus, even in the high beta regimes, the bootstrap current flows to increase the rotational transform, leading to an increase in the equilibrium beta limit. On the contrary, for a vacuum configuration with the magnetic axis shifted outwards in the torus, even in the low beta regimes, the bootstrap current flows so as to reduce the rotational transform; therefore, there is an acceleration of the Shafranov shift increase as beta increases, leading to a decrease in the equilibrium beta limit. The pressure profiles and vertical field control methods influence the equilibrium beta limit through the location of the magnetic axis for finite beta. These characteristics are independent of both device parameters, such as magnetic field strength, and device size in the low collisional regime. (author)

  10. Comparison of bootstrap current and plasma conductivity models applied in a self-consistent equilibrium calculation for Tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Maria Celia Ramos; Ludwig, Gerson Otto [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Plasma]. E-mail: mcr@plasma.inpe.br

    2004-07-01

    Different bootstrap current formulations are implemented in a self-consistent equilibrium calculation obtained from a direct variational technique in fixed boundary tokamak plasmas. The total plasma current profile is supposed to have contributions of the diamagnetic, Pfirsch-Schlueter, and the neoclassical Ohmic and bootstrap currents. The Ohmic component is calculated in terms of the neoclassical conductivity, compared here among different expressions, and the loop voltage determined consistently in order to give the prescribed value of the total plasma current. A comparison among several bootstrap current models for different viscosity coefficient calculations and distinct forms for the Coulomb collision operator is performed for a variety of plasma parameters of the small aspect ratio tokamak ETE (Experimento Tokamak Esferico) at the Associated Plasma Laboratory of INPE, in Brazil. We have performed this comparison for the ETE tokamak so that the differences among all the models reported here, mainly regarding plasma collisionality, can be better illustrated. The dependence of the bootstrap current ratio upon some plasma parameters in the frame of the self-consistent calculation is also analysed. We emphasize in this paper what we call the Hirshman-Sigmar/Shaing model, valid for all collisionality regimes and aspect ratios, and a fitted formulation proposed by Sauter, which has the same range of validity but is faster to compute than the previous one. The advantages or possible limitations of all these different formulations for the bootstrap current estimate are analysed throughout this work. (author)

  11. On non-equilibrium atmospheric pressure plasma jets and plasma bullet

    Science.gov (United States)

    Lu, Xinpei

    2012-10-01

    Because of the enhanced plasma chemistry, atmospheric pressure nonequilibrium plasmas (APNPs) have been widely studied for several emerging applications such as biomedical applications. For the biomedical applications, plasma jet devices, which generate plasma in open space (surrounding air) rather than in confined discharge gaps only, have lots of advantages over the traditional dielectric barrier discharge (DBD) devices. For example, it can be used for root canal disinfection, which can't be realized by the traditional plasma device. On the other hand, currently, the working gases of most of the plasma jet devices are noble gases or the mixtures of the noble gases with small amount of O2, or air. If ambient air is used as the working gas, several serious difficulties are encountered in the plasma generation process. Amongst these are high gas temperatures and disrupting instabilities. In this presentation, firstly, a brief review of the different cold plasma jets developed to date is presented. Secondly, several different plasma jet devices developed in our lab are reported. The effects of various parameters on the plasma jets are discussed. Finally, one of the most interesting phenomena of APNP-Js, the plasma bullet is discussed and its behavior is described. References: [1] X. Lu, M. Laroussi, V. Puech, Plasma Sources Sci. Technol. 21, 034005 (2012); [2] Y. Xian, X. Lu, S. Wu, P. Chu, and Y. Pan, Appl. Phys. Lett. 100, 123702 (2012); [3] X. Pei, X. Lu, J. Liu, D. Liu, Y. Yang, K. Ostrikov, P. Chu, and Y. Pan, J. Phys. D 45, 165205 (2012).

  12. Implementation of GPU parallel equilibrium reconstruction for plasma control in EAST

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yao, E-mail: yaohuang@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Xiao, B.J. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); School of Nuclear Science & Technology, University of Science & Technology of China (China); Luo, Z.P.; Yuan, Q.P.; Pei, X.F. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Yue, X.N. [School of Nuclear Science & Technology, University of Science & Technology of China (China)

    2016-11-15

    Highlights: • We described parallel equilibrium reconstruction code P-EFIT running on GPU was integrated with EAST plasma control system. • Compared with RT-EFIT used in EAST, P-EFIT has better spatial resolution and full algorithm of EFIT per iteration. • With the data interface through RFM, 65 × 65 spatial grids P-EFIT can satisfy the accuracy and time feasibility requirements for plasma control. • Successful control using ISOFLUX/P-EFIT was established in the dedicated experiment during the EAST 2014 campaign. • This work is a stepping-stone towards versatile ISOFLUX/P-EFIT control, such as real-time equilibrium reconstruction with more diagnostics. - Abstract: Implementation of P-EFIT code for plasma control in EAST is described. P-EFIT is based on the EFIT framework, but built with the CUDA™ architecture to take advantage of massively parallel Graphical Processing Unit (GPU) cores to significantly accelerate the computation. 65 × 65 grid size P-EFIT can complete one reconstruction iteration in 300 μs, with one iteration strategy, it can satisfy the needs of real-time plasma shape control. Data interface between P-EFIT and PCS is realized and developed by transferring data through RFM. First application of P-EFIT to discharge control in EAST is described.

  13. A MHD equilibrium code 'EQUCIR version 2' applicable to up-down asymmetric toroidal plasma

    International Nuclear Information System (INIS)

    Shinya, Kichiro; Ninomiya, Hiromasa

    1981-01-01

    Computer code EQUCIR version 2, which can analyse tokamak plasma equilibrium without assuming up-down symmetry with respect to the mid-plane, has been developed. This code is essentially the same as EQUCIR version 1 which has already been reported and can deal with only symmetrical plasma with respect to the mid-plane. Because data input stream is slightly different from version 1 physical background of the change and the method of calculation are explained. Data input manual for the different points is also summarized. The code has been applied to the analysis of INTOR single-null divertor plasmas and to the design of hybrid poloidal coils resulting in useful and powerful means for the design. (author)

  14. Equilibrium and dynamics of uniform density ellipsoidal non-neutral plasmas

    International Nuclear Information System (INIS)

    Dubin, D.H.E.

    1993-01-01

    When a single-species plasma is confined in a harmonic Penning trap at cryogenic temperature, the thermal equilibrium is approximately a uniform density spheroid (ellipsoid of revolution). Normal modes corresponding to quadrupole excitations of this plasma have recently been measured. In this paper, nonlinear equations of motion are derived for these quadrupole oscillations. For large amplitudes, the oscillations deform a spheroidal plasma into a triaxial ellipsoid with time-dependent shape and orientation. The integrals of the motion are found and the cylindrically symmetric finite-amplitude oscillations of a spheroid are studied. An analysis of all possible ellipsoidal equilibria is also carried out. New equilibria are discovered which correspond to finite-amplitude versions of the noncylindrically symmetric linear quadrupole oscillations. The equilibria are shown to fall into two classes in which the ellipsoids are either tilted or aligned with respect to the magnetic field. Some of these equilibria have densities well above the Brillouin limit

  15. Non-equilibrium nitrogen DC-arc plasma treatment of TiO2 nanopowder.

    Science.gov (United States)

    Suzuki, Yoshikazu; Gonzalez-Aguilar, José; Traisnel, Noel; Berger, Marie-Hélène; Repoux, Monique; Fulcheri, Laurent

    2009-01-01

    Non-equilibrium nitrogen DC-arc plasma treatment of a commercial TiO2 anatase nanopowder was examined to obtain nitrogen-doped TiO2. By using a non-thermal discharge at low current (150 mA) and high voltage (1200 V) using pure N2 gas, light yellowish-gray TiO2 powder was successfully obtained within a short period of 5-10 min. XPS and TEM-EELS studies confirmed the existence of doped nitrogen. Due to the relatively mild conditions (plasma power of 180 W), metastable anatase structure and fine crystallite size of TiO2 (ca. 10 nm) were maintained after the plasma treatment. The in-flight powder treatment system used in this study is promising for various type of powder treatment.

  16. A numerical model of non-equilibrium thermal plasmas. I. Transport properties

    Science.gov (United States)

    Zhang, Xiao-Ning; Li, He-Ping; Murphy, Anthony B.; Xia, Wei-Dong

    2013-03-01

    A self-consistent and complete numerical model for investigating the fundamental processes in a non-equilibrium thermal plasma system consists of the governing equations and the corresponding physical properties of the plasmas. In this paper, a new kinetic theory of the transport properties of two-temperature (2-T) plasmas, based on the solution of the Boltzmann equation using a modified Chapman-Enskog method, is presented. This work is motivated by the large discrepancies between the theories for the calculation of the transport properties of 2-T plasmas proposed by different authors in previous publications. In the present paper, the coupling between electrons and heavy species is taken into account, but reasonable simplifications are adopted, based on the physical fact that me/mh ≪ 1, where me and mh are, respectively, the masses of electrons and heavy species. A new set of formulas for the transport coefficients of 2-T plasmas is obtained. The new theory has important physical and practical advantages over previous approaches. In particular, the diffusion coefficients are complete and satisfy the mass conversation law due to the consideration of the coupling between electrons and heavy species. Moreover, this essential requirement is satisfied without increasing the complexity of the transport coefficient formulas. Expressions for the 2-T combined diffusion coefficients are obtained. The expressions for the transport coefficients can be reduced to the corresponding well-established expressions for plasmas in local thermodynamic equilibrium for the case in which the electron and heavy-species temperatures are equal.

  17. A numerical model of non-equilibrium thermal plasmas. I. Transport properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhang XiaoNing; Xia WeiDong [Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026 (China); Li HePing [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Murphy, Anthony B. [CSIRO Materials Science and Engineering, PO Box 218, Lindfield NSW 2070 (Australia)

    2013-03-15

    A self-consistent and complete numerical model for investigating the fundamental processes in a non-equilibrium thermal plasma system consists of the governing equations and the corresponding physical properties of the plasmas. In this paper, a new kinetic theory of the transport properties of two-temperature (2-T) plasmas, based on the solution of the Boltzmann equation using a modified Chapman-Enskog method, is presented. This work is motivated by the large discrepancies between the theories for the calculation of the transport properties of 2-T plasmas proposed by different authors in previous publications. In the present paper, the coupling between electrons and heavy species is taken into account, but reasonable simplifications are adopted, based on the physical fact that m{sub e}/m{sub h} Much-Less-Than 1, where m{sub e} and m{sub h} are, respectively, the masses of electrons and heavy species. A new set of formulas for the transport coefficients of 2-T plasmas is obtained. The new theory has important physical and practical advantages over previous approaches. In particular, the diffusion coefficients are complete and satisfy the mass conversation law due to the consideration of the coupling between electrons and heavy species. Moreover, this essential requirement is satisfied without increasing the complexity of the transport coefficient formulas. Expressions for the 2-T combined diffusion coefficients are obtained. The expressions for the transport coefficients can be reduced to the corresponding well-established expressions for plasmas in local thermodynamic equilibrium for the case in which the electron and heavy-species temperatures are equal.

  18. Three-dimensional plasma equilibrium model based on the poloidal representation of the magnetic field

    International Nuclear Information System (INIS)

    Gruber, R.; Degtyarev, L.M.; Kuper, A.; Martynov, A.A.; Medvedev, S.Yu.; Shafranov, V.D.

    1996-01-01

    Equations for the three-dimensional equilibrium of a plasma are formulated in the poloidal representation. The magnetic field is expressed in terms of the poloidal magnetic flux Ψ and the poloidal electric current F. As a result, three-dimensional equilibrium configurations are analyzed with the help of a set of equations including the elliptical equation for the poloidal flux, the magnetic differential equation for the parallel current, and the equations for the basis vector field b. To overcome the difficulties associated with peculiarities that can arise in solving the magnetic differential equation at rational toroidal magnetic surfaces, small regulating corrections are introduced into the proposed set of equations. In this case, second-order differential terms with a small parameter appear in the magnetic differential equations. As a result, these equations take the form of elliptical equations. Three versions of regulating corrections are proposed. The equations obtained can be used to develop numerical codes for calculating three-dimensional equilibrium plasma configurations with an island structure

  19. Toroidal equilibrium of a non-neutral plasma with toroidal current, inertia and pressure

    International Nuclear Information System (INIS)

    Bhattacharyya, S.N.; Avinash, K.

    1992-01-01

    Equilibrium of non-neutral clouds in a toroidal vessel with toroidal magnetic field is demonstrated in the presence of a toroidal current, finite mass and finite pressure. With a toroidal current, it is shown that in a large-aspect-ratio conducting torus the equilibrium is governed by competition between forces produced by image charges and image currents. When μ 0 ε 0 E r 2 >B θ 2 (whe re E r and B θ are the self electrostatic and self magnetic fields of the cloud), the confinement is electrostatic and plasma shifts inwards; when μ 0 ε 0 E r 2 θ 2 , the confinement is magnetic and plasma shifts outwards. For μ 0 ε 0 E r 2 = B θ 2 there is no equilibrium. With finite mass or finite pressure, it is shown, in a large-aspect-ratio approximation, that the fluid drift surfaces and equipotential surfaces are displaced with respect to each other. In both cases the fluid drift surfaces are shifted inwards from the equipotential surfaces. (author)

  20. Shear viscosity for dense plasmas by equilibrium molecular dynamics in asymmetric Yukawa ionic mixtures

    Science.gov (United States)

    Haxhimali, Tomorr; Rudd, Robert E.; Cabot, William H.; Graziani, Frank R.

    2015-11-01

    We present molecular dynamics (MD) calculations of shear viscosity for asymmetric mixed plasma for thermodynamic conditions relevant to astrophysical and inertial confinement fusion plasmas. Specifically, we consider mixtures of deuterium and argon at temperatures of 100-500 eV and a number density of 1025 ions/cc. The motion of 30 000-120 000 ions is simulated in which the ions interact via the Yukawa (screened Coulomb) potential. The electric field of the electrons is included in this effective interaction; the electrons are not simulated explicitly. Shear viscosity is calculated using the Green-Kubo approach with an integral of the shear stress autocorrelation function, a quantity calculated in the equilibrium MD simulations. We systematically study different mixtures through a series of simulations with increasing fraction of the minority high-Z element (Ar) in the D-Ar plasma mixture. In the more weakly coupled plasmas, at 500 eV and low Ar fractions, results from MD compare very well with Chapman-Enskog kinetic results. In the more strongly coupled plasmas, the kinetic theory does not agree well with the MD results. We develop a simple model that interpolates between classical kinetic theories at weak coupling and the Murillo Yukawa viscosity model at higher coupling. This hybrid kinetics-MD viscosity model agrees well with the MD results over the conditions simulated, ranging from moderately weakly coupled to moderately strongly coupled asymmetric plasma mixtures.

  1. Plasma Equilibrium Control in Nuclear Fusion Devices 2. Plasma Control in Magnetic Confinement Devices 2.1 Plasma Control in Tokamaks

    Science.gov (United States)

    Fukuda, Takeshi

    The plasma control technique for use in large tokamak devices has made great developmental strides in the last decade, concomitantly with progress in the understanding of tokamak physics and in part facilitated by the substantial advancement in the computing environment. Equilibrium control procedures have thereby been established, and it has been pervasively recognized in recent years that the real-time feedback control of physical quantities is indispensable for the improvement and sustainment of plasma performance in a quasi-steady-state. Further development is presently undertaken to realize the “advanced plasma control” concept, where integrated fusion performance is achieved by the simultaneous feedback control of multiple physical quantities, combined with equilibrium control.

  2. A spatial price equilibrium model in the oligopolistic market for oil derivatives: an application to the brazilian scenario

    Directory of Open Access Journals (Sweden)

    Fabiano Mezadre Pompermayer

    2007-01-01

    Full Text Available This paper presents a spatial price equilibrium model in an oligopoly market for refined oil products. Till 1997 the Brazilian oil market was characterized by the state monopoly of Petrobras, which up to 2001 remained the only firm authorized to import oil derivatives. With several agents operating in the primary oil supply market, the government stopped fixing the prices for Petrobras, which started to determine the prices based on competition with other players. In this new scenario some questions arise regarding the price levels at which refined products will be supplied in different regions across Brazil as well as the capacity of national refineries to compete with imported products. To answer those and other questions, a new oligopoly spatial equilibrium model is herein proposed, taking into account the special characteristics of production of refined oil products. An iterative Gauss-Seidel-like algorithm with sequential adjustments was developed and applied to Brazilian market data. The model, the algorithm and its application are described in this work. Such a model may be used both by regulatory authorities and by companies in the sector.Este artigo apresenta um modelo de equilíbrio espacial de preços em um mercado oligopolizado de derivados de petróleo. Até o ano de 1997, o mercado brasileiro era caracterizado pelo monopólio estatal da Petrobrás, a qual permaneceu, até 2001, como a única empresa autorizada a importar derivados de petróleo. Com vários agentes operando no mercado, o governo deixou de fixar os preços para a Petrobrás, que passou a determinar os preços baseada na competição com outros agentes. Neste cenário, surgem algumas questões relativas aos níveis de preços a serem oferecidos no mercado e relativas à capacidade das refinarias nacionais de competir com produtos importados. Para responder a estas e outras questões, um novo modelo de equilíbrio espacial de preços para um mercado oligopolizado foi

  3. Self-organization of dissipative and coherent vortex structures in non-equilibrium magnetized two-dimensional plasmas

    International Nuclear Information System (INIS)

    Bystrenko, O; Bystrenko, T

    2010-01-01

    The properties of non-equilibrium magnetized plasmas confined in planar geometry are studied on the basis of first-principle microscopic Langevin dynamics computer simulations. The non-equilibrium state of plasmas is maintained due to the recombination and generation of charges. The intrinsic microscopic structure of non-equilibrium steady-state magnetized plasmas, in particular the inter-particle correlations and self-organization of vortex structures, are examined. The simulations have been performed for a wide range of parameters including strong plasma coupling, high charge recombination and generation rates and intense magnetic field. As is shown in simulations, the non-equilibrium recombination and generation processes trigger the formation of ordered dissipative or coherent drift vortex states in 2D plasmas with distinctly spatially separated components, which are far from thermal equilibrium. This is evident from the unusual properties of binary distributions and behavior of the Coulomb energy of the system, which turn out to be quite different from the ones typical for the equilibrium state of plasmas under the same conditions.

  4. A conservative multicomponent diffusion algorithm for ambipolar plasma flows in local thermodynamic equilibrium

    International Nuclear Information System (INIS)

    Peerenboom, Kim; Van Boxtel, Jochem; Janssen, Jesper; Van Dijk, Jan

    2014-01-01

    The usage of the local thermodynamic equilibrium (LTE) approximation can be a very powerful assumption for simulations of plasmas in or close to equilibrium. In general, the elemental composition in LTE is not constant in space and effects of mixing and demixing have to be taken into account using the Stefan–Maxwell diffusion description. In this paper, we will introduce a method to discretize the resulting coupled set of elemental continuity equations. The coupling between the equations is taken into account by the introduction of the concept of a Péclet matrix. It will be shown analytically and numerically that the mass and charge conservation constraints can be fulfilled exactly. Furthermore, a case study is presented to demonstrate the applicability of the method to a simulation of a mercury-free metal-halide lamp. The source code for the simulations presented in this paper is provided as supplementary material (stacks.iop.org/JPhysD/47/425202/mmedia). (paper)

  5. Elemental transport coefficients in viscous plasma flows near local thermodynamic equilibrium

    International Nuclear Information System (INIS)

    Orsini, Alessio; Kustova, Elena V.

    2009-01-01

    We propose a convenient formulation of elemental transport coefficients in chemically reacting and plasma flows locally approaching thermodynamic equilibrium. A set of transport coefficients for elemental diffusion velocities, heat flux, and electric current is introduced. These coefficients relate the transport fluxes with the electric field and with the spatial gradients of elemental fractions, pressure, and temperature. The proposed formalism based on chemical elements and fully symmetric with the classical transport theory based on chemical species, is particularly suitable to model mixing and demixing phenomena due to diffusion of chemical elements. The aim of this work is threefold: to define a simple and rigorous framework suitable for numerical implementation, to allow order of magnitude estimations and qualitative predictions of elemental transport phenomena, and to gain a deeper insight into the physics of chemically reacting flows near local equilibrium.

  6. Study of shear viscosity for dense plasmas by equilibrium molecular dynamics in asymmetric Yukawa ionic mixtures

    Science.gov (United States)

    Haxhimali, Tomorr; Rudd, Robert; Cabot, William; Graziani, Frank

    2015-11-01

    We present molecular dynamics (MD) calculations of shear viscosity for asymmetric mixed plasma for thermodynamic conditions relevant to astrophysical and Inertial Confinement Fusion plasmas. Specifically, we consider mixtures of deuterium and argon at temperatures of 100-500 eV and a number density of 1025 ions/cc. The motion of 30000-120000 ions is simulated in which the ions interact via the Yukawa (screened Coulomb) potential. The electric field of the electrons is included in this effective interaction. Shear viscosity is calculated using the Green-Kubo approach with an integral of the shear stress autocorrelation function, a quantity calculated in the equilibrium MD simulations. We study different mixtures with increasing fraction of the minority high-Z element (Ar) in the D-Ar plasma mixture. In the more weakly coupled plasmas, at 500 eV and low Ar fractions, results from MD compare very well with Chapman-Enskog kinetic results. We introduce a model that interpolates between a screened-plasma kinetic theory at weak coupling and the Murillo Yukawa viscosity model at higher coupling. This hybrid kinetics-MD viscosity model agrees well with the MD results over the conditions simulated. This work was performed under the auspices of the US Dept. of Energy by Lawrence Livermore National Security, LLC under Contract DE-AC52-07NA27344.

  7. A consistent model for the equilibrium thermodynamic functions of partially ionized flibe plasma with Coulomb corrections

    International Nuclear Information System (INIS)

    Zaghloul, Mofreh R.

    2003-01-01

    Flibe (2LiF-BeF2) is a molten salt that has been chosen as the coolant and breeding material in many design studies of the inertial confinement fusion (ICF) chamber. Flibe plasmas are to be generated in the ICF chamber in a wide range of temperatures and densities. These plasmas are more complex than the plasma of any single chemical species. Nevertheless, the composition and thermodynamic properties of the resulting flibe plasmas are needed for the gas dynamics calculations and the determination of other design parameters in the ICF chamber. In this paper, a simple consistent model for determining the detailed plasma composition and thermodynamic functions of high-temperature, fully dissociated and partially ionized flibe gas is presented and used to calculate different thermodynamic properties of interest to fusion applications. The computed properties include the average ionization state; kinetic pressure; internal energy; specific heats; adiabatic exponent, as well as the sound speed. The presented results are computed under the assumptions of local thermodynamic equilibrium (LTE) and electro-neutrality. A criterion for the validity of the LTE assumption is presented and applied to the computed results. Other attempts in the literature are assessed with their implied inaccuracies pointed out and discussed

  8. An unstructured shock-fitting solver for hypersonic plasma flows in chemical non-equilibrium

    Science.gov (United States)

    Pepe, R.; Bonfiglioli, A.; D'Angola, A.; Colonna, G.; Paciorri, R.

    2015-11-01

    A CFD solver, using Residual Distribution Schemes on unstructured grids, has been extended to deal with inviscid chemical non-equilibrium flows. The conservative equations have been coupled with a kinetic model for argon plasma which includes the argon metastable state as independent species, taking into account electron-atom and atom-atom processes. Results in the case of an hypersonic flow around an infinite cylinder, obtained by using both shock-capturing and shock-fitting approaches, show higher accuracy of the shock-fitting approach.

  9. The electrostatic interaction of two point charges in equilibrium plasmas within the Debye approximation

    International Nuclear Information System (INIS)

    Filippov, A V

    2015-01-01

    This paper is devoted to a careful study of two charge interaction in an equilibrium plasma within the Debye approximation. The effect of external boundary conditions for the electric field strength and potential on the electrostatic force is studied. The problem is solved by the method of potential decomposition into Legendre polynomials up to the fifth multipole term included. It is shown that the effect of attraction of identically charged macroparticles is explained by the influence of the external boundary. When the size of a calculation cell is increased the attraction effect disappears and the electrostatic force is well described by the screened Debye-Hückel potential. (paper)

  10. Synthesis of silane and silicon in a non-equilibrium plasma jet

    Science.gov (United States)

    Calcote, H. F.; Felder, W.

    1977-01-01

    The feasibility of using a non-equilibrium hydrogen plasma jet as a chemical synthesis tool was investigated. Four possible processes were identified for further study: (1) production of polycrystalline silicon photovoltaic surfaces, (2) production of SiHCl3 from SiCl4, (3) production of SiH4 from SiHCl3, and (4) purification of SiCl4 by metal impurity nucleation. The most striking result was the recognition that the strongly adhering silicon films, amorphous or polycrystalline, produced in our studies could be the basis for preparing a photovoltaic surface directly; this process has potential advantages over other vapor deposition processes.

  11. MHD equilibrium of toroidal fusion plasma with stationary flows; Rownowaga MHD toroidalnej plazmy termojadrowej z przeplywami

    Energy Technology Data Exchange (ETDEWEB)

    Galkowski, A. [Institute of Atomic Energy, Otwock-Swierk (Poland)

    1994-12-31

    Non-linear ideal MHD equilibria in axisymmetric system with flows are examined, both in 1st and 2nd ellipticity regions. Evidence of the bifurcation of solutions is provided and numerical solutions of several problems in a tokamak geometry are given, exhibiting bifurcation phenomena. Relaxation of plasma in the presence of zero-order flows is studied in a realistic toroidal geometry. The field aligned flow allows equilibria with finite pressure gradient but with homogeneous temperature distribution. Numerical calculations have been performed for the 1st and 2nd ellipticity regimes of the extended Grad-Shafranov-Schlueter equation. Numerical technique, alternative to the well-known Grad`s ADM methods has been proposed to deal with slow adiabatic evolution of toroidal plasma with flows. The equilibrium problem with prescribed adiabatic constraints may be solved by simultaneous calculations of flux surface geometry and original profile functions. (author). 178 refs, 37 figs, 5 tabs.

  12. Plasma Shape Control on the National Spherical Torus Experiment using Real-time Equilibrium Reconstruction

    International Nuclear Information System (INIS)

    Gates, D.A.; Ferron, J.R.; Bell, M.; Gibney, T.; Johnson, R.; Marsala, R.J.; Mastrovito, D.; Menard, J.E.; Mueller, D.; Penaflor, B.; Sabbagh, S.A.; Stevenson, T.

    2005-01-01

    Plasma shape control using real-time equilibrium reconstruction has been implemented on the National Spherical Torus Experiment (NSTX). The rtEFIT code originally developed for use on DIII-D was adapted for use on NSTX. The real-time equilibria provide calculations of the flux at points on the plasma boundary, which is used as input to a shape control algorithm known as isoflux control. The flux at the desired boundary location is compared to a reference flux value, and this flux error is used as the basic feedback quantity for the poloidal-field coils on NSTX. The hardware that comprises the control system is described, as well as the software infrastructure. Examples of precise boundary control are also presented

  13. Non local-thermodynamical-equilibrium effects in the simulation of laser-produced plasmas

    Science.gov (United States)

    Klapisch, M.; Bar-Shalom, A.; Oreg, J.; Colombant, D.

    1998-05-01

    Local thermodynamic equilibrium (LTE) breaks down in directly or indirectly driven laser plasmas because of sharp gradients, energy deposition, etc. For modeling non-LTE effects in hydrodynamical simulations, Busquet's model [Phys. Fluids B 5, 4191 (1993)] is very convenient and efficient. It uses off-line generated LTE opacities and equation of states via an effective, radiation-dependent ionization temperature Tz. An overview of the model is given. The results are compared with an elaborate collisional radiative model based on superconfigurations. The agreements for average charge Z* and opacities are surprisingly good, even more so when the plasma is immersed in a radiation field. Some remaining discrepancy at low density is attributed to dielectronic recombination. Improvement appears possible, especially for emissivities, because the concept of ionization temperature seems to be validated.

  14. Non local-thermodynamical-equilibrium effects in the simulation of laser-produced plasmas

    International Nuclear Information System (INIS)

    Klapisch, M.; Bar-Shalom, A.; Oreg, J.; Colombant, D.

    1998-01-01

    Local thermodynamic equilibrium (LTE) breaks down in directly or indirectly driven laser plasmas because of sharp gradients, energy deposition, etc. For modeling non-LTE effects in hydrodynamical simulations, Busquet close-quote s model [Phys. Fluids B 5, 4191 (1993)] is very convenient and efficient. It uses off-line generated LTE opacities and equation of states via an effective, radiation-dependent ionization temperature T z . An overview of the model is given. The results are compared with an elaborate collisional radiative model based on superconfigurations. The agreements for average charge Z * and opacities are surprisingly good, even more so when the plasma is immersed in a radiation field. Some remaining discrepancy at low density is attributed to dielectronic recombination. Improvement appears possible, especially for emissivities, because the concept of ionization temperature seems to be validated. copyright 1998 American Institute of Physics

  15. Equilibrium and stability of theta-pinch plasma in modified toroidal multiple mirror field

    International Nuclear Information System (INIS)

    Shiina, S.; Saito, K.; Osanai, Y.; Itagaki, T.; Karakizawa, T.; Gesso, H.; Todoroki, J.; Kawakami, I.; Yoshimura, H.

    1976-01-01

    To confine a high-beta plasma a new toroidal magnetic configuration with closed lines of force has been proposed [1]. The configuration is an appropriate superposition of l = 0, l = +- 1, l = +- 2,sup(...), helical fields. In this experiment, it is generated by modifying the multiple mirror field by enclosing the discharge tube in a copper shell which has longitudinal gap. This configuration is preferred for the wall stabilizing effect to that with the separated helical windings. The characteristics of the equilibrium conditions are examined based on the near-axis approximation theory and compared with the experimental results. The stability of plasma in the configurations with l = 0 field and with superposition of l = 0, l = +- 2 fields is investigated in linear geometry. (author)

  16. Ideal MHD equilibrium of a weakly toroidal plasma column with elongated cross-section

    International Nuclear Information System (INIS)

    Heesch, E.J.M. van; Schuurman, W.

    1980-07-01

    Solutions are obtained of the ideal MHD equations describing the equilibrium of a weakly toroidal plasma with an elliptic cross-section surrounded by a force-free magnetic field with constant ratio between current density and magnetic field strength. The force-free field parameter causes the stagnation points to recede along the major axis of the ellipse. Above a certain value of the force-free field parameter, stagnation points do not exist, so that the compression ratio of the plasma column is no longer limited. The analysis was carried out to first order in the force-free field parameter as well as to second order for an estimate of the error

  17. A tightly coupled non-equilibrium model for inductively coupled radio-frequency plasmas

    International Nuclear Information System (INIS)

    Munafò, A.; Alfuhaid, S. A.; Panesi, M.; Cambier, J.-L.

    2015-01-01

    The objective of the present work is the development of a tightly coupled magneto-hydrodynamic model for inductively coupled radio-frequency plasmas. Non Local Thermodynamic Equilibrium (NLTE) effects are described based on a hybrid State-to-State approach. A multi-temperature formulation is used to account for thermal non-equilibrium between translation of heavy-particles and vibration of molecules. Excited electronic states of atoms are instead treated as separate pseudo-species, allowing for non-Boltzmann distributions of their populations. Free-electrons are assumed Maxwellian at their own temperature. The governing equations for the electro-magnetic field and the gas properties (e.g., chemical composition and temperatures) are written as a coupled system of time-dependent conservation laws. Steady-state solutions are obtained by means of an implicit Finite Volume method. The results obtained in both LTE and NLTE conditions over a broad spectrum of operating conditions demonstrate the robustness of the proposed coupled numerical method. The analysis of chemical composition and temperature distributions along the torch radius shows that: (i) the use of the LTE assumption may lead to an inaccurate prediction of the thermo-chemical state of the gas, and (ii) non-equilibrium phenomena play a significant role close the walls, due to the combined effects of Ohmic heating and macroscopic gradients

  18. Stability analysis of a model equilibrium for a gravito-electrostatic sheath in a colloidal plasma under external gravity effect

    International Nuclear Information System (INIS)

    Rajkhowa, Kavita Rani; Bujarbarua, S.; Dwivedi, C.B.

    1999-01-01

    The present contribution tries to find a scientific answer to the question of stability of an equilibrium plasma sheath in a colloidal plasma system under external gravity effect. A model equilibrium of hydrodynamical character has been discussed on the basis of quasi-hydrostatic approximation of levitational condition. It is found that such an equilibrium is highly unstable to a modified-ion acoustic wave with a conditional likelihood of linear driving of the so-called acoustic mode too. Thus, it is reported (within fluid treatment) that a plasma-sheath edge in a colloidal plasma under external gravity effect could be highly sensitive to the acoustic turbulence. Its consequential role on possible physical mechanism of Coulomb phase transition has been conjectured. However, more rigorous calculations as future course of work are required to corroborate our phenomenological suggestions. (author)

  19. Ultra-violet recombination continuum electron temperature measurements in a non-equilibrium atmospheric argon plasma

    International Nuclear Information System (INIS)

    Gordon, M.H.; Kruger, C.H.

    1991-01-01

    Emission measurements of temperature and electron density have been made downstream of a 50 kW induction plasma torch at temperatures and electron densities ranging between 6000 K and 8500 K and 10 to the 20th and 10 to the 21st/cu cm, respectively. Absolute and relative atomic line intensities, and absolute recombination continuum in both the visible and the UV were separately interpreted in order to characterize a recombining atmospheric argon plasma. Continuum measurements made in the UV at 270 nm were used to directly determine the kinetic electron temperature, independent of a Boltzmann equilibrium, assuming only that the electron velocity distribution is Maxwellian. The data indicate that a nonequilibrium condition exists in which the bound-excited and free electrons are nearly in mutual equilibrium down to the 4P level for electron densities as low as 2 x 10 to the 20th/cu m but that both are overpopulated with respect to the ground state due to finite recombination rates. 13 refs

  20. Study of plasma equilibrium during the AC current reversal phase in STOR-M

    International Nuclear Information System (INIS)

    Xiao, C.

    2002-01-01

    Alternating current (AC) tokamak operation and equilibrium studies have been performed on the STOR-M tokamak. The recent experiments have achieved consistent smooth current reversal through the implementation of a hybrid digital-analog position controller and by careful density control. In order to study the plasma equilibrium during the current reversal phase with negligible rotational transform, a segmented limiter with four isolated conducting plates has been installed. The plates can be connected outside the vacuum vessel, which allows measurements of currents flowing between limiter plates. When the current reversal is smooth with zero dwell time, the hydrogen line emission level and electron density remain finite, indicating a finite particle confinement. The current from the top to the bottom limiter plate is also finite and its direction is consistent with that of the grad-B drift. The observation suggests that the limiter and other conducting structures surrounding the plasmas plays the role, during the current reversal phase of AC tokamak operation, to short out the charge separation arising from the grad-B drift and to maintain a finite particle confinement. (author)

  1. Partial local thermal equilibrium in a low-temperature hydrogen plasma

    International Nuclear Information System (INIS)

    Hey, J.D.; Chu, C.C.; Rash, J.P.S.

    1999-01-01

    If the degree of ionisation is sufficient, competition between de-excitation by electron collisions and radiative decay determines the smallest principal quantum number (the so-called 'thermal limit') above which partial local thermodynamic equilibrium (PLTE) holds under the particular conditions of electron density and temperature. The LTE (PLTE) criteria of Wilson (JQSRT 1962;2:477-90), Griem (Phys Rev 1963;131:1170-6; Plasma Spectroscopy. New York: McGraw-Hill, 1964), Drawin (Z Physik 1969;228: 99-119), Hey (JQSRT 1976;16:69-75), and Fujimoto and McWhirter (Phys Rev A 1990;42:6588-601) are examined as regards their applicability to neutral atoms. For these purposes, we consider for simplicity an idealised, steady-state, homogeneous and primarily optically thin plasma, with some additional comments and numerical estimates on the roles of opacity and of atom-atom collisions. Particularly for atomic states of lower principal quantum number, the first two of the above criteria should be modified quite appreciably before application to neutral radiators in plasmas of low temperature, because of the profoundly different nature of the near-threshold collisional cross-sections for atoms and ions, while the most recent criterion should be applied with caution to PLTE of atoms in cold plasmas in ionisation balance. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  2. Non-Equilibrium Plasma Processing for the Preparation of Antibacterial Surfaces

    Directory of Open Access Journals (Sweden)

    Eloisa Sardella

    2016-06-01

    Full Text Available Non-equilibrium plasmas offer several strategies for developing antibacterial surfaces that are able to repel and/or to kill bacteria. Due to the variety of devices, implants, and materials in general, as well as of bacteria and applications, plasma assisted antibacterial strategies need to be tailored to each specific surface. Nano-composite coatings containing inorganic (metals and metal oxides or organic (drugs and biomolecules compounds can be deposited in one step, and used as drug delivery systems. On the other hand, functional coatings can be plasma-deposited and used to bind antibacterial molecules, for synthesizing surfaces with long lasting antibacterial activity. In addition, non-fouling coatings can be produced to inhibit the adhesion of bacteria and reduce the formation of biofilm. This paper reviews plasma-based strategies aimed to reduce bacterial attachment and proliferation on biomedical materials and devices, but also onto materials used in other fields. Most of the activities described have been developed in the lab of the authors.

  3. Heavy impurity confinement in hybrid operation scenario plasmas with a rotating 1/1 continuous mode

    Science.gov (United States)

    Raghunathan, M.; Graves, J. P.; Nicolas, T.; Cooper, W. A.; Garbet, X.; Pfefferlé, D.

    2017-12-01

    In future tokamaks like ITER with tungsten walls, it is imperative to control tungsten accumulation in the core of operational plasmas, especially since tungsten accumulation can lead to radiative collapse and disruption. We investigate the behavior of tungsten trace impurities in a JET-like hybrid scenario with both axisymmetric and saturated 1/1 ideal helical core in the presence of strong plasma rotation. For this purpose, we obtain the equilibria from VMEC and use VENUS-LEVIS, a guiding-center orbit-following code, to follow heavy impurity particles. In this work, VENUS-LEVIS has been modified to account for strong plasma flows with associated neoclassical effects arising from such flows. We find that the combination of helical core and plasma rotation augments the standard neoclassical inward pinch compared to axisymmetry, and leads to a strong inward pinch of impurities towards the magnetic axis despite the strong outward diffusion provided by the centrifugal force, as frequently observed in experiments.

  4. Experimental benchmark of non-local-thermodynamic-equilibrium plasma atomic physics codes

    International Nuclear Information System (INIS)

    Nagels-Silvert, V.

    2004-09-01

    The main purpose of this thesis is to get experimental data for the testing and validation of atomic physics codes dealing with non-local-thermodynamical-equilibrium plasmas. The first part is dedicated to the spectroscopic study of xenon and krypton plasmas that have been produced by a nanosecond laser pulse interacting with a gas jet. A Thomson scattering diagnostic has allowed us to measure independently plasma parameters such as electron temperature, electron density and the average ionisation state. We have obtained time integrated spectra in the range between 5 and 10 angstroms. We have identified about one hundred xenon rays between 8.6 and 9.6 angstroms via the use of the Relac code. We have discovered unknown rays for the krypton between 5.2 and 7.5 angstroms. In a second experiment we have extended the wavelength range to the X UV domain. The Averroes/Transpec code has been tested in the ranges from 9 to 15 angstroms and from 10 to 130 angstroms, the first range has been well reproduced while the second range requires a more complex data analysis. The second part is dedicated to the spectroscopic study of aluminium, selenium and samarium plasmas in femtosecond operating rate. We have designed an interferometry diagnostic in the frequency domain that has allowed us to measure the expanding speed of the target's backside. Via the use of an adequate isothermal model this parameter has led us to know the plasma electron temperature. Spectra and emission times of various rays from the aluminium and selenium plasmas have been computed satisfactorily with the Averroes/Transpec code coupled with Film and Multif hydrodynamical codes. (A.C.)

  5. Computer experiments on dynamical cloud and space time fluctuations in one-dimensional meta-equilibrium plasmas

    International Nuclear Information System (INIS)

    Rouet, J.L.; Feix, M.R.

    1996-01-01

    The test particle picture is a central theory of weakly correlated plasma. While experiments and computer experiments have confirmed the validity of this theory at thermal equilibrium, the extension to meta-equilibrium distributions presents interesting and intriguing points connected to the under or over-population of the tail of these distributions (high velocity) which have not yet been tested. Moreover, the general dynamical Debye cloud (which is a generalization of the static Debye cloud supposing a plasma at thermal equilibrium and a test particle of zero velocity) for any test particle velocity and three typical velocity distributions (equilibrium plus two meta-equilibriums) are presented. The simulations deal with a one-dimensional two-component plasma and, moreover, the relevance of the check for real three-dimensional plasma is outlined. Two kinds of results are presented: the dynamical cloud itself and the more usual density (or energy) fluctuation spectrums. Special attention is paid to the behavior of long wavelengths which needs long systems with very small graininess effects and, consequently, sizable computation efforts. Finally, the divergence or absence of energy in the small wave numbers connected to the excess or lack of fast particles of the two above mentioned meta-equilibrium is exhibited. copyright 1996 American Institute of Physics

  6. Radicals and Non-Equilibrium Processes in Low-Temperature Plasmas

    Science.gov (United States)

    Petrović, Zoran; Mason, Nigel; Hamaguchi, Satoshi; Radmilović-Radjenović, Marija

    2007-06-01

    Serbian Academy of Sciences and Arts and Institute of Physics, Belgrade. Each Symposium has sought to highlight a key topic of plasma research and the 5th EU - Japan symposium explored the role of Radicals and Non-Equilibrium Processes in Low-Temperature Plasmas since these are key elements of plasma processing. Other aspects of technologies for manufacturing integrated circuits were also considered. Unlike bio-medicine and perhaps politics, in plasma processing free radicals are `good radicals' but their kinetics are difficult to understand since there remains little data on their collisions with electrons and ions. One of the goals of the symposium was to facilitate communication between experimentalists and theorists in binary collision physics with plasma modellers and practitioners of plasma processing in order to optimize efforts to provide much needed data for both molecules and radicals of practical importance. The non-equilibrium nature of plasmas is critical in the efficient manufacturing of high resolution structures by anisotropic plasma etching on Si wafers since they allow separate control of the directionality and energy of ions and provide a high level of separation between the mean energies of electrons and ions. As nanotechnologies become practical, plasma processing may play a key role, not only in manufacturing of integrated circuits, but also for self-organization of massively parallel manufacturing of nanostructures. In this Symposium the key issues that are hindering the development of such new, higher resolution technologies were discussed and some possible solutions were proposed. In particular, damage control, fast neutral etching, processes at surface and modeling of profiles were addressed in several of the lectures. A wide range of topics are covered in this book including atomic and molecular collision physics - primarily focused towards formation and analysis of radicals, basic swarm data and breakdown kinetics, basic kinetics of RF and DC

  7. Comparison of fusion alpha performance in JET advanced scenario and H-mode plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Asunta, O; Kurki-Suonio, T; Tala, T; Sipilae, S; Salomaa, R [JET-EFDA, Culham Science Centre, OX14 3DB, Abingdon (United Kingdom)], E-mail: Otto.Asunta@tkk.fi

    2008-12-15

    Currently, plasmas with internal transport barriers (ITBs) appear the most likely candidates for steady-state scenarios for future fusion reactors. In such plasmas, the broad hot and dense region in the plasma core leads to high fusion gain, while the cool edge protects the integrity of the first wall. Economically desirable large bootstrap current fraction and low inductive current drive may, however, lead to degraded fast ion confinement. In this work the confinement and heating profile of fusion alphas were compared between H-mode and ITB plasmas in realistic JET geometry. The work was carried out using the Monte Carlo-based guiding-center-following code ASCOT. For the same plasma current, the ITB discharges were found to produce four to eight times more fusion power than a comparable ELMy H-mode discharge. Unfortunately, also the alpha particle losses were larger ({approx}16%) compared with the H-mode discharge (7%). In the H-mode discharges, alpha power was deposited to the plasma symmetrically around the magnetic axis, whereas in the current-hole discharge, the power was spread out to a larger volume in the plasma center. This was due to wider particle orbits, and the magnetic structure allowing for a broader hot region in the centre.

  8. Tungsten transport in JET H-mode plasmas in hybrid scenario, experimental observations and modelling

    Czech Academy of Sciences Publication Activity Database

    Angioni, C.; Mantica, P.; Pütterich, T.; Valisa, M.; Baruzzo, M.; Belli, A.E.; Belo, P.; Casson, F.J.; Challis, C.; Drewelow, P.; Giroud, C.; Hawkes, N.; Hender, T.C.; Hobirk, J.; Koskela, T.; Lauro Taroni, L.; Maggi, C.F.; Mlynář, Jan; Odstrčil, T.; Reinke, M.L.; Romanelli, M.

    2014-01-01

    Roč. 54, č. 8 (2014), 083028-083028 ISSN 0029-5515 Institutional support: RVO:61389021 Keywords : heavy impurity transport * H-mode hybrid scenario * neoclassical and turbulent transport Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.062, year: 2014 http://iopscience.iop.org/0029-5515/54/8/083028/pdf/0029-5515_54_8_083028.pdf

  9. Flow reactor studies of non-equilibrium plasma-assisted oxidation of n-alkanes.

    Science.gov (United States)

    Tsolas, Nicholas; Lee, Jong Guen; Yetter, Richard A

    2015-08-13

    The oxidation of n-alkanes (C1-C7) has been studied with and without the effects of a nanosecond, non-equilibrium plasma discharge at 1 atm pressure from 420 to 1250 K. Experiments have been performed under nearly isothermal conditions in a flow reactor, where reactive mixtures are diluted in Ar to minimize temperature changes from chemical reactions. Sample extraction performed at the exit of the reactor captures product and intermediate species and stores them in a multi-position valve for subsequent identification and quantification using gas chromatography. By fixing the flow rate in the reactor and varying the temperature, reactivity maps for the oxidation of fuels are achieved. Considering all the fuels studied, fuel consumption under the effects of the plasma is shown to have been enhanced significantly, particularly for the low-temperature regime (T<800 K). In fact, multiple transitions in the rates of fuel consumption are observed depending on fuel with the emergence of a negative-temperature-coefficient regime. For all fuels, the temperature for the transition into the high-temperature chemistry is lowered as a consequence of the plasma being able to increase the rate of fuel consumption. Using a phenomenological interpretation of the intermediate species formed, it can be shown that the active particles produced from the plasma enhance alkyl radical formation at all temperatures and enable low-temperature chain branching for fuels C3 and greater. The significance of this result demonstrates that the plasma provides an opportunity for low-temperature chain branching to occur at reduced pressures, which is typically observed at elevated pressures in thermal induced systems. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  10. The stationary non-equilibrium plasma of cosmic-ray electrons and positrons

    Science.gov (United States)

    Tomaschitz, Roman

    2016-06-01

    The statistical properties of the two-component plasma of cosmic-ray electrons and positrons measured by the AMS-02 experiment on the International Space Station and the HESS array of imaging atmospheric Cherenkov telescopes are analyzed. Stationary non-equilibrium distributions defining the relativistic electron-positron plasma are derived semi-empirically by performing spectral fits to the flux data and reconstructing the spectral number densities of the electronic and positronic components in phase space. These distributions are relativistic power-law densities with exponential cutoff, admitting an extensive entropy variable and converging to the Maxwell-Boltzmann or Fermi-Dirac distributions in the non-relativistic limit. Cosmic-ray electrons and positrons constitute a classical (low-density high-temperature) plasma due to the low fugacity in the quantized partition function. The positron fraction is assembled from the flux densities inferred from least-squares fits to the electron and positron spectra and is subjected to test by comparing with the AMS-02 flux ratio measured in the GeV interval. The calculated positron fraction extends to TeV energies, predicting a broad spectral peak at about 1 TeV followed by exponential decay.

  11. Vlasov equilibrium and nonlocal stability properties of an inhomogeneous plasma column

    International Nuclear Information System (INIS)

    Davidson, R.C.

    1976-01-01

    A fully kinetic, nonlocal, matrix dispersion equation is derived for electrostatic perturbations about a spatially nonuniform cylindrical plasma equilibrium. The analysis is carried out for the class of radially confined rigid-rotor equilibria described by f 0 /subj/(x,v) = (n/subj/m/subj//2πT/subj/) F (H/sub perpendicular//T/subj/- ω/subj/P/sub theta//T/subj/,v/subz/), where P/sub theta/ is the canonical angular momentum, v/subz/ is the axial velocity, H/sub perpendicular/ is the perpendicular energy, and n/subj/, T/subj/, and ω/subj/ are constants. Assuming equilibrium charge neutrality and negligible spatial variation in the axial magnetic field B 0 e/subz/, it is shown that the particle trajectories (in the equilibrium electric and magnetic fields) and the orbit integrals required in the stability analysis can be evaluated in closed form. Expanding the perturbed electrostatic potential in terms of the vacuum eigenfunctions ]J/subl/(lambda/subn/r) closing-brace for the conducting cylinder leads to a matrix dispersion equation of the form det[delta/subn//sub prime//subn+ Σ/subj/chi/subj//subn//sub prime//subn(ω)]=0, where the susceptibility chi/subj//subn//sub prime//subn(ω) is expressed as a phase-space integral over f 0 /subj/(x,v) and known functions of ω, r lambda/subn/, etc. The limiting case of strongly magnetized electrons and unmagnetized ions is considered together with a preliminary application to the lower-hyprid-drift instability

  12. Magnetohydrodynamic theory of plasma equilibrium and stability in stellarators: Survey of results

    International Nuclear Information System (INIS)

    Shafranov, V.D.

    1983-01-01

    The main advantage of a stellarator is its capability of steady-state operation. It can be exploited as a reactor if stable plasma confinement can be achieved with #betta#approx.10%. Therefore, this limiting pressure value is a key factor in stellarator development. This paper contains a survey of current ideas on the magnetohydrodynamic equilibrium and stability properties of stellarators with sufficiently high pressure. Here, any system of nested toroidal magnetic surfaces generated by external currents is considered a stellarator. Systems produced by helical or equivalent windings, including torsatrons and heliotrons, will be called ordinary stellarators, in contrast to those with spatial axes. It is shown that adequate confinement can be achieved

  13. MHD equilibrium and pressure driven instability in L=1 heliotron plasmas

    International Nuclear Information System (INIS)

    Nakamura, Y.; Suzuki, Y.; Yamagishi, O.; Kondo, K.; Nakajima, N.; Hayashi, T.; Monticello, D.A.; Reiman, A.H.

    2003-01-01

    Free boundary MHD equilibrium properties of Heliotron J are investigated by VMEC, HINT and PIES codes, and ideal MHD stability properties are studied by the Mercier criterion, the ballooning mode equation and the CAS3D global stability code. It is shown by the equilibrium calculations that the change of the plasma boundary shape is substantial in a low shear helical system even if the beta is relatively low. Preliminary comparison between PIES results and HINT results shows that the beta value at which the magnetic island begin to be perceptible is almost the same in both codes, but the island width seems to be different. From the stability analysis, good correlation is found between local and global analyses for the three dimensional(3D) or helical ballooning mode whose mode structure shows strong poloidal and toroidal mode (helical mode) coupling. In the helical ballooning mode, the Eigenmode is localized within a flux tube. It is also found that the positive shear of the rotational transform is favorable for the 3D ballooning mode stability in a low shear helical system. (author)

  14. Collective phenomena in the non-equilibrium quark-gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Schenke, Bjoern Peter

    2008-07-03

    In this work we study the non-equilibrium dynamics of a quark-gluon plasma, as created in heavy-ion collisions. We investigate how big of a role plasma instabilities can play in the isotropization and equilibration of a quark-gluon plasma. In particular, we determine, among other things, how much collisions between the particles can reduce the growth rate of unstable modes. This is done both in a model calculation using the hard-loop approximation, as well as in a real-time lattice simulation combining both classical Yang-Mills-fields as well as inter-particle collisions. The new extended version of the simulation is also used to investigate jet transport in isotropic media, leading to a cutoff-independent result for the transport coefficient q. The precise determination of such transport coefficients is essential, since they can provide important information about the medium created in heavy ion collisions. In anisotropic media, the effect of instabilities on jet transport is studied, leading to a possible explanation for the experimental observation that high-energy jets traversing the plasma perpendicular to the beam axis experience much stronger broadening in rapidity than in azimuth. The investigation of collective modes in the hard-loop limit is extended to fermionic modes, which are shown to be all stable. Finally, we study the possibility of using high energy photon production as a tool to experimentally determine the anisotropy of the created system. Knowledge of the degree of local momentum-space anisotropy reached in a heavy-ion collision is essential for the study of instabilities and their role for isotropization and thermalization, because their growth rate depends strongly on the anisotropy. (orig.)

  15. Decomposition of poly(amide-imide) film enameled on solid copper wire using atmospheric pressure non-equilibrium plasma.

    Science.gov (United States)

    Sugiyama, Kazuo; Suzuki, Katsunori; Kuwasima, Shusuke; Aoki, Yosuke; Yajima, Tatsuhiko

    2009-01-01

    The decomposition of a poly(amide-imide) thin film coated on a solid copper wire was attempted using atmospheric pressure non-equilibrium plasma. The plasma was produced by applying microwave power to an electrically conductive material in a gas mixture of argon, oxygen, and hydrogen. The poly(amide-imide) thin film was easily decomposed by argon-oxygen mixed gas plasma and an oxidized copper surface was obtained. The reduction of the oxidized surface with argon-hydrogen mixed gas plasma rapidly yielded a metallic copper surface. A continuous plasma heat-treatment process using a combination of both the argon-oxygen plasma and argon-hydrogen plasma was found to be suitable for the decomposition of the poly(amide-imide) thin film coated on the solid copper wire.

  16. Development of burning plasma and advanced scenarios in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Luce, T.C.

    2005-01-01

    Significant progress in the development of burning plasma scenarios, steady-state scenarios at high fusion performance, and basic tokamak physics has been made by the DIII-D Team. Discharges similar to the ITER baseline scenario have demonstrated normalized fusion performance nearly 50% higher than required for Q = 10 in ITER, under stationary conditions. Discharges that extrapolate to Q ∼ 10 for longer than one hour in ITER at reduced current have also been demonstrated in DIII-D under stationary conditions. Proof of high fusion performance with full noninductive operation has been obtained. Underlying this work are studies validating approaches to confinement extrapolation, disruption avoidance and mitigation, tritium retention, ELM avoidance, and operation above the no-wall pressure limit. In addition, the unique capabilities of the DIII-D facility have advanced studies of the sawtooth instability with unprecedented time and space resolution, threshold behavior in the electron heat transport, and rotation in plasmas in the absence of external torque. (author)

  17. A non-equilibrium simulation of thermal constriction in a cascaded arc hydrogen plasma

    International Nuclear Information System (INIS)

    Peerenboom, K S C; Goedheer, W J; Van Dijk, J; Kroesen, G M W

    2014-01-01

    The cascaded arc hydrogen plasma of Pilot-PSI is studied in a non-LTE model. We demonstrate that the effect of vibrationally excited molecules on the heavy-particle-assisted dissociation is crucial for obtaining thermal constriction. To the best of our knowledge, thermal constriction has not been obtained before in a non-LTE simulation. Probably, realistic numerical studies of this type of plasma were hindered by numerical problems, preventing the non-LTE simulations to show characteristic physical mechanisms such as thermal constriction. In this paper we show that with the help of appropriate numerical strategies thermal constriction can be obtained in a non-LTE simulation. To this end, a new source term linearization technique is developed, which ensures physical solutions even near chemical equilibrium where the composition is dominated by chemical source terms. Results of the model are compared with experiments on Pilot-PSI and show good agreement with pressure and voltage measurements in the source. (paper)

  18. Modelling and experimentation of the SO2 remotion through a plasma out of thermal equilibrium

    International Nuclear Information System (INIS)

    Moreno S, H.; Pacheco P, M.; Pacheco S, J.; Cruz A, A.

    2005-01-01

    In spite of the measures that have taken for the decrease of the emitted pollution by mobile sources ( T oday it doesn't Circulate , implementation of catalysts in those exhaust pipes,...), the pollution in the Valley of Mexico area overcomes the limits fixed by Mexican standards several days each year. It is foreseen that for 2020 those emissions of pollutants will be increase considerably, as example we can mention to the sulfur oxides which will be increase a 48% with regard to 1998. The purpose of this work is of proposing a technique for the degradation of the sulfur dioxide (SO 2 ) that consists in introducing this gas to a plasma out of thermal equilibrium where its were formed key radicals (O, OH) for its degradation. The proposed reactor has the advantage of combining the kindness of the dielectric barrier discharge and of corona discharge, besides working to atmospheric pressure and having small dimensions. The first obtained results of the modelling of the degradation of the SO 2 in plasma as well as those experimentally obtained are presented. (Author)

  19. CREATE-NL+: A robust control-oriented free boundary dynamic plasma equilibrium solver

    Energy Technology Data Exchange (ETDEWEB)

    Albanese, R. [Ass. EURATOM/ENEA/CREATE, Universita’ di Napoli “Federico II”, Naples (Italy); Ambrosino, R. [Ass. EURATOM/ENEA/CREATE, Universita’ di Napoli “Parthenope”, Naples (Italy); Mattei, M., E-mail: massimiliano.mattei@unina2.it [Ass. EURATOM/ENEA/CREATE, Seconda Universita’ di Napoli, Naples (Italy)

    2015-10-15

    CREATE-NL+ is a FEM (Finite Elements Method) solver of the free boundary dynamic plasma equilibrium problem, i.e. the MHD (Magneto Hydro Dynamics) time evolution of 2D axisymmetric plasmas in toroidal nuclear fusion devices, including eddy currents in the passive structures, and feedback control laws for current, position and shape control. This is an improved version of the CREATE-NL code developed in 2002 which was validated on JET and used for the design of the XSC (eXtreme Shape Controller), and for simulation studies on many existing and future tokamaks. A significant improvement was the use of a robust numerical scheme for the calculation of the Jacobian matrix within the Newton based scheme for the solution of the FEM nonlinear algebraic equations. The improved capability of interfacing with other codes, and a general decrease of the computational burden for the simulation of long pulses with small time steps makes this code a flexible tool for the design and testing of magnetic control in a tokamak.

  20. CREATE-NL+: A robust control-oriented free boundary dynamic plasma equilibrium solver

    International Nuclear Information System (INIS)

    Albanese, R.; Ambrosino, R.; Mattei, M.

    2015-01-01

    CREATE-NL+ is a FEM (Finite Elements Method) solver of the free boundary dynamic plasma equilibrium problem, i.e. the MHD (Magneto Hydro Dynamics) time evolution of 2D axisymmetric plasmas in toroidal nuclear fusion devices, including eddy currents in the passive structures, and feedback control laws for current, position and shape control. This is an improved version of the CREATE-NL code developed in 2002 which was validated on JET and used for the design of the XSC (eXtreme Shape Controller), and for simulation studies on many existing and future tokamaks. A significant improvement was the use of a robust numerical scheme for the calculation of the Jacobian matrix within the Newton based scheme for the solution of the FEM nonlinear algebraic equations. The improved capability of interfacing with other codes, and a general decrease of the computational burden for the simulation of long pulses with small time steps makes this code a flexible tool for the design and testing of magnetic control in a tokamak.

  1. Interaction of non-equilibrium phonons with electron-hole plasmas in germanium

    International Nuclear Information System (INIS)

    Kirch, S.J.

    1985-01-01

    This thesis presents results of experiments on the interaction of phonons and photo-excited electron-hole plasmas in Ge at low temperature. The first two studies involved the low-temperature fluid phase known as the electron-hole liquid (EHL). The third study involved a wider range of temperatures and includes the higher temperature electron-hole plasma (EHP). In the first experiment, superconducting tunnel junctions are used to produce quasi-monochromatic phonons, which propagate through the EHL. The magnitude of the absorption of these non-equilibrium phonons gives a direct measure of the coupling constant, the deformation potential. In the second experiment, the nonequilibrium phonons are generated by laser excitation of a metal film. An unusual sample geometry allows examination of the EHL-phonon interaction near the EHL excitation surface. This coupling is examined for both cw and pulsed EHL excitation. In the third experiment, the phonons are byproducts of the photo-excited carrier thermalization. The spatial, spectral and temporal dependence of the recombination luminescence is examined. A phonon wind force is observed to dominate the transport properties of the EHL and the EHP. These carriers are never observed to move faster than the phonon velocity even during the laser pulse

  2. Ultracentrifugation and inductively coupled plasma mass spectrometry for metal-protein equilibrium studies

    Energy Technology Data Exchange (ETDEWEB)

    Arnquist, Isaac J.; Holcombe, James A., E-mail: holcombe@mail.utexas.edu

    2012-10-15

    The coupling of separation by preparative ultracentrifugation and metal detection by inductively coupled plasma mass spectrometry (ICP-MS) has been explored for metal-protein equilibrium determinations. This study characterizes the stoichiometry as well as apparent (K{sub app}) and intrinsic (K{sub int}) binding affinities of the metal-protein association for a model protein. In particular, the affinity of Cu{sup 2+} for the high affinity binding site in bovine serum albumin (BSA) is determined. Once equilibrium is established between Cu{sup 2+} and BSA, preparative ultracentrifugation moves the metalloprotein away from the meniscus, leaving unbound equilibrium copper in the protein free solution. Since the initial (total) concentrations of purified BSA and Cu{sup 2+} can be determined, the free copper concentration at equilibrium can also be determined by taking a small aliquot above the sedimenting boundary for analysis using ICP-MS. This analysis allows for the determination of free Cu{sup 2+} ion, which is identical to the equilibrium concentration prior to ultracentrifugation. From these data K{sub app} and K{sub int} were determined at two different conditions, 100 mM Tris(hydroxymethyl)aminomethane (Tris) at pH 9.53 and pH 7.93. log K{sub app} values of 17.6 and 14.6 were determined at pH 9.53 and pH 7.93, respectively. Furthermore, pH-independent log K{sub int} values of - 1.43 and - 1.04 were determined at pH 9.53 and 7.93, respectively. While the log K{sub int} at pH 9.53 was in good agreement with literature values obtained from alternative methods, K{sub int} at pH 7.93 was about 2.5 Multiplication-Sign larger than previously reported. BSA undergoes a structural rearrangement between pH 7-9, and the generally accepted pH-dependency of protein tertiary structure may be responsible for the variations in the 'intrinsic' binding constant. The Cu-BSA binding affinity was also monitored in 100 mM Tris 0.1% sodium dodecyl sulfate (SDS) solution at p

  3. Combination of equilibrium models and hybrid life cycle-input–output analysis to predict the environmental impacts of energy policy scenarios

    International Nuclear Information System (INIS)

    Igos, Elorri; Rugani, Benedetto; Rege, Sameer; Benetto, Enrico; Drouet, Laurent; Zachary, Daniel S.

    2015-01-01

    Highlights: • The environmental impacts of two energy policy scenarios in Luxembourg are assessed. • Computable General Equilibrium (CGE) and Partial Equilibrium (PE) models are used. • Results from coupling of CGE and PE are integrated in hybrid Life Cycle Assessment. • Impacts due to energy related production and imports are likely to grow over time. • Carbon mitigation policies seem to not substantially decrease the impacts’ trend. - Abstract: Nowadays, many countries adopt an active agenda to mitigate the impact of greenhouse gas emissions by moving towards less polluting energy generation technologies. The environmental costs, directly or indirectly generated to achieve such a challenging objective, remain however largely underexplored. Until now, research has focused either on pure economic approaches such as Computable General Equilibrium (CGE) and partial equilibrium (PE) models, or on (physical) energy supply scenarios. These latter could be used to evaluate the environmental impacts of various energy saving or cleaner technologies via Life Cycle Assessment (LCA) methodology. These modelling efforts have, however, been pursued in isolation, without exploring the possible complementarities and synergies. In this study, we have undertaken a practical combination of these approaches into a common framework: on the one hand, by coupling a CGE with a PE model, and, on the other hand, by linking the outcomes from the coupling with a hybrid input–output−process based life cycle inventory. The methodological framework aimed at assessing the environmental consequences of two energy policy scenarios in Luxembourg between 2010 and 2025. The study highlights the potential of coupling CGE and PE models but also the related methodological difficulties (e.g. small number of available technologies in Luxembourg, intrinsic limitations of the two approaches, etc.). The assessment shows both environmental synergies and trade-offs due to the implementation of

  4. A comparative study of transfer coefficient of Iodine from grass to cow milk under equilibrium and postulated accidental scenario

    International Nuclear Information System (INIS)

    Geetha, P.V.; Karunakara, N.; Prabhu, Ujwal; Yashodhara, I.; Ravi, P.M.; Dileep, B.N.; Karpe, Rupali

    2014-01-01

    Extensive studies on transfer of 131 I through grass-cow-milk pathway after the Chernobyl accident were reported. But, under nor mal operational conditions of a power reactor, 131 I is not present in measurable concentration in environmental matrices around a nuclear power generating station. Hence, database on 131 I transfer coefficients for grass-cow-milk pathway in equilibrium conditions in the environment of a nuclear power plant are sparse. One of method to estimate the equilibrium transfer coefficient is to use stable iodine, which is present naturally in very low levels in the environmental matrices. By measuring the concentration of stable iodine concentration in grass and cow milk, the grass-to-milk transfer coefficient of iodine can be estimated. Since the metabolism of stable and radioiodine is same, the data obtained for transfer coefficient of stable iodine could be used for predicting the transfer for radioiodine to cow milk. The measurement of stable iodine in the environmental sample is very challenging because of its extremely low concentration. Neutron Activation Analysis (NAA) can be used to estimate stable iodine in the environment matrices after suitably optimizing the condition to minimize interferences. This paper presents the results of a systematic study on the transfer coefficients for grass-cow milk pathway of iodine in normal (equilibrium) situations as well as for a postulated (simulated) emergency condition in Kaiga region

  5. Equilibrium properties of the plasma sheath with a magnetic field parallel to the wall

    International Nuclear Information System (INIS)

    Krasheninnikova, Natalia S.; Tang Xianzhu

    2010-01-01

    Motivated by the magnetized target fusion (MTF) experiment [R. E. Siemon et al., Comments Plasma Phys. Controlled Fusion 18, 363 (1999)], a systematic investigation of the force balance and equilibrium plasma flows was carried out using analytical theory and the particle-in-cell code VPIC[K. J. Bowers et al., Phys. Plasmas 15, 055703 (2008)] for a one-dimensional plasma sheath with a magnetic field parallel to the wall. Initially uniform full Maxwellian plasma consisting of equal temperature collisionless electrons and ions is allowed to interact with a perfectly absorbing wall. The analysis of the steady-state force balance of the entire plasma as well as its individual components illuminates the roles that the hydrodynamic, magnetic, and electric forces play. In particular, when ρ thi D , the magnetic force balances the divergence of the pressure tensor. As the magnetic field is decreased, the electric force becomes prominent in areas where quasineutrality breaks, which can be a substantial part of the sheath. Its importance depends on the relation between three parameters, namely, electron and ion thermal Larmor radii and plasma Debye length: ρ the , ρ thi , and λ D . The relative importance of the electron and ion current in the magnetic or Lorentz force term can be understood through the analysis of the two-fluid force balance. It reveals that the current is carried primarily by the electrons. This is due to the direction of the electric field that helps confine the ions, but not the electrons, which are forced to carry a large current to confine themselves magnetically. In the regimes where the electric field is negligible, the ions also need the current for confinement, but in these cases the divergence of ion pressure tensor is much smaller than that of the electrons. Consequently the ion current is also smaller. The study of the electron and ion flow parallel to the wall clarifies this picture even further. In the regime of strong magnetic field, the

  6. Integrated discharge scenario for high-temperature helical plasma on LHD

    International Nuclear Information System (INIS)

    Nagaoka, K.; Takahashi, H.; Murakami, S.

    2014-10-01

    Discharge scenario of high temperature plasma with helical configuration has been significantly progressed. The increase of central ion temperature due to reduction of wall recycling was clearly observed. The neutral particle profile was measured with a high-dynamic range of Balmer-α spectroscopy, and the reduction of neutral density was identified after helium conditioning main discharges. The peaking of ion heating profile and the reduction of charge exchange loss of energetic ions play an important role for improvement of ion heat transport in the core. The ion ITB and electron ITB have been successfully integrated due to superposition of centrally focused electron cyclotron heating to the ion ITB plasma, and the high temperature regime of T i ∼T e has been significantly extended. The normalized temperature gradient of ion and electron (R/L T ) were observed to exceed 10, indicating the significant improvement of both ion and electron heat transports at the barrier position. The positive radial electric field was observed by heavy ion beam probe, while the negative radial electric field was observed in ion ITB plasmas. The ion temperature gradient was observed to decrease with the increase of temperature ratio (T e /T i ). This experiment demonstrated that the profile control is a key to combine ion ITB and electron ITB and have a potential to improve the performance of helical plasmas. (author)

  7. Kinetic equilibrium reconstruction for the NBI- and ICRH-heated H-mode plasma on EAST tokamak

    Science.gov (United States)

    Zhen, ZHENG; Nong, XIANG; Jiale, CHEN; Siye, DING; Hongfei, DU; Guoqiang, LI; Yifeng, WANG; Haiqing, LIU; Yingying, LI; Bo, LYU; Qing, ZANG

    2018-04-01

    The equilibrium reconstruction is important to study the tokamak plasma physical processes. To analyze the contribution of fast ions to the equilibrium, the kinetic equilibria at two time-slices in a typical H-mode discharge with different auxiliary heatings are reconstructed by using magnetic diagnostics, kinetic diagnostics and TRANSP code. It is found that the fast-ion pressure might be up to one-third of the plasma pressure and the contribution is mainly in the core plasma due to the neutral beam injection power is primarily deposited in the core region. The fast-ion current contributes mainly in the core region while contributes little to the pedestal current. A steep pressure gradient in the pedestal is observed which gives rise to a strong edge current. It is proved that the fast ion effects cannot be ignored and should be considered in the future study of EAST.

  8. Departure from Local Thermodynamic Equilibrium in argon plasmas sustained in a Torche à Injection Axiale sur Guide d'Ondes

    International Nuclear Information System (INIS)

    Rincón, R.; Muñoz, J.; Calzada, M.D.

    2015-01-01

    Plasma torches are suitable plasma sources for a wide range of applications. The capability of these discharges to produce processes like sample excitation or decomposition of molecules inside them depends on the density of the plasma species and their energies (temperatures). The relation between these parameters determines the specific state of thermodynamic equilibrium in the discharge. Thus, the understanding of plasma possibilities for application purposes is related to the knowledge of the plasma thermodynamic equilibrium degree. In this paper a discussion about the equilibrium state for Ar plasmas generated by using a Torche à Injection Axiale sur Guide d'Ondes, TIAGO device, is presented. Emission spectroscopy techniques were used to measure gas temperature and electron density at the exit of the nozzle torch and along the dart. Boltzmann-plots as well as b p parameters were calculated to characterize the type and degree of departure from partial Local Saha Equilibrium (pLSE). This study indicates that the closer situation to Local Thermodynamic Equilibrium (LTE) of the plasma corresponds to larger Ar flows which highlights the importance of the nitrogen (atmosphere surrounding the plasma) in the kinetics of Ar-TIAGO discharges. - Highlights: • Discharges sustained in Ar using a TIAGO Torch show a significant departure from Local Thermodynamic Equilibrium. • Nitrogen entrance from surrounding air highly influences Thermodynamic Equilibrium. • Departure from LTE has been studied by means of Boltzmann plots and b p parameters. • The discharge is ionizing at the nozzle exit plasma, while along the dart it becomes recombining

  9. Chemical kinetics and relaxation of non-equilibrium air plasma generated by energetic photon and electron beams

    International Nuclear Information System (INIS)

    Maulois, Melissa; Ribière, Maxime; Eichwald, Olivier; Yousfi, Mohammed; Azaïs, Bruno

    2016-01-01

    The comprehension of electromagnetic perturbations of electronic devices, due to air plasma-induced electromagnetic field, requires a thorough study on air plasma. In the aim to understand the phenomena at the origin of the formation of non-equilibrium air plasma, we simulate, using a volume average chemical kinetics model (0D model), the time evolution of a non-equilibrium air plasma generated by an energetic X-ray flash. The simulation is undertaken in synthetic air (80% N_2 and 20% O_2) at ambient temperature and atmospheric pressure. When the X-ray flash crosses the gas, non-relativistic Compton electrons (low energy) and a relativistic Compton electron beam (high energy) are simultaneously generated and interact with the gas. The considered chemical kinetics scheme involves 26 influent species (electrons, positive ions, negative ions, and neutral atoms and molecules in their ground or metastable excited states) reacting following 164 selected reactions. The kinetics model describing the plasma chemistry was coupled to the conservation equation of the electron mean energy, in order to calculate at each time step of the non-equilibrium plasma evolution, the coefficients of reactions involving electrons while the energy of the heavy species (positive and negative ions and neutral atoms and molecules) is assumed remaining close to ambient temperature. It has been shown that it is the relativistic Compton electron beam directly created by the X-ray flash which is mainly responsible for the non-equilibrium plasma formation. Indeed, the low energy electrons (i.e., the non-relativistic ones) directly ejected from molecules by Compton collisions contribute to less than 1% on the creation of electrons in the plasma. In our simulation conditions, a non-equilibrium plasma with a low electron mean energy close to 1 eV and a concentration of charged species close to 10"1"3" cm"−"3 is formed a few nanoseconds after the peak of X-ray flash intensity. 200 ns after the

  10. Observation of non-chemical equilibrium effect on Ar-CO2-H2 thermal plasma model by changing pressure

    International Nuclear Information System (INIS)

    Al-Mamun, Sharif Abdullah; Tanaka, Yasunori; Uesugi, Yoshihiko

    2009-01-01

    The authors developed a two-dimensional one-temperature chemical non-equilibrium (1T-NCE) model of Ar-CO 2 -H 2 inductively coupled thermal plasmas (ICTP) to investigate the effect of pressure variation. The basic concept of one-temperature model is the assumption and treatment of the same energy conservation equation for electrons and heavy particles. The energy conservation equations consider reaction heat effects and energy transfer among the species produced as well as enthalpy flow resulting from diffusion. Assuming twenty two (22) different particles in this model and by solving mass conservation equations for each particle, considering diffusion, convection and net production terms resulting from hundred and ninety eight (198) chemical reactions, chemical non-equilibrium effects were taken into account. Transport and thermodynamic properties of Ar-CO 2 -H 2 thermal plasmas were self-consistently calculated using the first-order approximation of the Chapman-Enskog method. Finally results obtained at atmospheric pressure (760 Torr) and at reduced pressure (500, 300 Torr) were compared with results from one-temperature chemical equilibrium (1T-CE) model. And of course, this comparison supported discussion of chemical non-equilibrium effects in the inductively coupled thermal plasmas (ICTP).

  11. Review of some research work on surface modification and polymerizations by non-equilibrium plasma in Turkey

    International Nuclear Information System (INIS)

    Akovali, Guneri

    2004-01-01

    Non equilibrium plasma studies in Turkey can be considered as organized on two different lines: surface modification studies and plasma polymerization studies. Plasma surface modification studies: In different laboratories in Turkey the modification of materials' surfaces by plasma covers a wide spectra, for example: fibers (Carbon (CF) and polyacrylonitrile (PAN)), fabrics (PET/Cotton and PET/PA), biomaterials-food oriented (PU), denture Acrylic matrix, plasmochemical modification of a (PE and PP) film surface by several selected silicon and tin containing monomers, polymer blends and composites, recycled rubber and epoxy systems, etc. Plasma polymerization studies: This topic is accomplished by a great number of projects, for instance: plasma initiation polymerization and copolymerization of Styrene and MMA, Plasma-initiated polymerizations of Acrylamide (AA), kinetics of polymer deposition of several selected saturated hydrocarbons, silanization treatments by hexamethyldisilazane (HDMS), Plasma initiated polymerization (PIP) of allyl alcohol and 1-propano, (PSP) and (PIP) studies related to activated charcoal are done to explore their applications in haemoperfusion, an amperometric alcohol single-layer electrode is prepared by (EDA) plasma polymerization, preparation of mass sensitive immuno sensors and single layer multi enzyme electrodes by plasma polymerisation technique, etc

  12. Non-equilibrium plasma kinetics of reacting CO: an improved state to state approach

    Science.gov (United States)

    Pietanza, L. D.; Colonna, G.; Capitelli, M.

    2017-12-01

    Non-equilibrium plasma kinetics of reacting CO for conditions typically met in microwave discharges have been developed based on the coupling of excited state kinetics and the Boltzmann equation for the electron energy distribution function (EEDF). Particular attention is given to the insertion in the vibrational kinetics of a complete set of electron molecule resonant processes linking the whole vibrational ladder of the CO molecule, as well as to the role of Boudouard reaction, i.e. the process of forming CO2 by two vibrationally excited CO molecules, in shaping the vibrational distribution of CO and promoting reaction channels assisted by vibrational excitation (pure vibrational mechanisms, PVM). PVM mechanisms can become competitive with electron impact dissociation processes (DEM) in the activation of CO. A case study reproducing the conditions of a microwave discharge has been considered following the coupled kinetics also in the post discharge conditions. Results include the evolution of EEDF in discharge and post discharge conditions highlighting the role of superelastic vibrational and electronic collisions in shaping the EEDF. Moreover, PVM rate coefficients and DEM ones are studied as a function of gas temperature, showing a non-Arrhenius behavior, i.e. the rate coefficients increase with decreasing gas temperature as a result of a vibrational-vibrational (V-V) pumping up mechanism able to form plateaux in the vibrational distribution function. The accuracy of the results is discussed in particular in connection to the present knowledge of the activation energy of the Boudouard process.

  13. Measurements and non-local thermodynamic equilibrium modeling of mid-Z plasma emission

    International Nuclear Information System (INIS)

    Jacquet, L.; Primout, M.; Kaiser, P.; Clouët, J. F.; Girard, F.; Villette, B.; Reverdin, C.; Oudot, G.

    2015-01-01

    The x-ray yields from laser-irradiated thin foils of iron, copper, zinc, and germanium have been measured in the soft and multi-keV x-ray ranges at the OMEGA laser at the Laboratory for Laser Energetics. The incident laser power had a pre-pulse to enhance the x-ray emission of a 1 ns flat-top main pulse. The experimental results have been compared with post-shot simulations performed with the two-dimensional radiation-hydrodynamics code FCI2. A new non-local thermodynamic equilibrium model, NOO-RAD, have been incorporated into FCI2. In this approach, the plasma ionization state is in-line calculated by the atomic physics NOHEL package. In the soft x-ray bands, both simulations using RADIOM [M. Busquet, Phys. Fluids B 5, 4191 (1993)] and NOO-RAD clearly over-predict the powers and energies measured by a broad-band spectrometer. In one case (the iron foil), the discrepancy between the measured and simulated x-ray output is nevertheless significantly reduced when NOO-RAD is used in the simulations. In the multi-keV x-ray bands, the simulations display a strong sensitivity to the coupling between the electron thermal conductivity and the NLTE models, and for some particular combinations of these, provide a close match to the measured emission. The comparison between the measured and simulated H-like to He-like line-intensity ratios deduced from high-resolution spectra indicates higher experimental electron temperatures were achieved, compared to the simulated ones. Measurements of the plasma conditions have been achieved using the Thomson-scattering diagnostic. The electron temperatures are found to range from 3 to 5 keV at the end of the laser pulse and are greater than predicted by the simulations. The measured flow velocities are in reasonable agreement with the calculated ones. This last finding gives us confidence in our numerical predictions for the plasma parameters, which are over that time mainly determined by hydrodynamics, such as the mass densities and

  14. Measurements and non-local thermodynamic equilibrium modeling of mid-Z plasma emission

    Science.gov (United States)

    Jacquet, L.; Primout, M.; Kaiser, P.; Clouët, J. F.; Girard, F.; Villette, B.; Reverdin, C.; Oudot, G.

    2015-12-01

    The x-ray yields from laser-irradiated thin foils of iron, copper, zinc, and germanium have been measured in the soft and multi-keV x-ray ranges at the OMEGA laser at the Laboratory for Laser Energetics. The incident laser power had a pre-pulse to enhance the x-ray emission of a 1 ns flat-top main pulse. The experimental results have been compared with post-shot simulations performed with the two-dimensional radiation-hydrodynamics code FCI2. A new non-local thermodynamic equilibrium model, NOO-RAD, have been incorporated into FCI2. In this approach, the plasma ionization state is in-line calculated by the atomic physics NOHEL package. In the soft x-ray bands, both simulations using RADIOM [M. Busquet, Phys. Fluids B 5, 4191 (1993)] and NOO-RAD clearly over-predict the powers and energies measured by a broad-band spectrometer. In one case (the iron foil), the discrepancy between the measured and simulated x-ray output is nevertheless significantly reduced when NOO-RAD is used in the simulations. In the multi-keV x-ray bands, the simulations display a strong sensitivity to the coupling between the electron thermal conductivity and the NLTE models, and for some particular combinations of these, provide a close match to the measured emission. The comparison between the measured and simulated H-like to He-like line-intensity ratios deduced from high-resolution spectra indicates higher experimental electron temperatures were achieved, compared to the simulated ones. Measurements of the plasma conditions have been achieved using the Thomson-scattering diagnostic. The electron temperatures are found to range from 3 to 5 keV at the end of the laser pulse and are greater than predicted by the simulations. The measured flow velocities are in reasonable agreement with the calculated ones. This last finding gives us confidence in our numerical predictions for the plasma parameters, which are over that time mainly determined by hydrodynamics, such as the mass densities and the

  15. Measurements and non-local thermodynamic equilibrium modeling of mid-Z plasma emission

    Energy Technology Data Exchange (ETDEWEB)

    Jacquet, L., E-mail: laurent.jacquet@cea.fr; Primout, M.; Kaiser, P.; Clouët, J. F.; Girard, F.; Villette, B.; Reverdin, C.; Oudot, G. [CEA, DAM, DIF, F-91297 Arpajon (France)

    2015-12-15

    The x-ray yields from laser-irradiated thin foils of iron, copper, zinc, and germanium have been measured in the soft and multi-keV x-ray ranges at the OMEGA laser at the Laboratory for Laser Energetics. The incident laser power had a pre-pulse to enhance the x-ray emission of a 1 ns flat-top main pulse. The experimental results have been compared with post-shot simulations performed with the two-dimensional radiation-hydrodynamics code FCI2. A new non-local thermodynamic equilibrium model, NOO-RAD, have been incorporated into FCI2. In this approach, the plasma ionization state is in-line calculated by the atomic physics NOHEL package. In the soft x-ray bands, both simulations using RADIOM [M. Busquet, Phys. Fluids B 5, 4191 (1993)] and NOO-RAD clearly over-predict the powers and energies measured by a broad-band spectrometer. In one case (the iron foil), the discrepancy between the measured and simulated x-ray output is nevertheless significantly reduced when NOO-RAD is used in the simulations. In the multi-keV x-ray bands, the simulations display a strong sensitivity to the coupling between the electron thermal conductivity and the NLTE models, and for some particular combinations of these, provide a close match to the measured emission. The comparison between the measured and simulated H-like to He-like line-intensity ratios deduced from high-resolution spectra indicates higher experimental electron temperatures were achieved, compared to the simulated ones. Measurements of the plasma conditions have been achieved using the Thomson-scattering diagnostic. The electron temperatures are found to range from 3 to 5 keV at the end of the laser pulse and are greater than predicted by the simulations. The measured flow velocities are in reasonable agreement with the calculated ones. This last finding gives us confidence in our numerical predictions for the plasma parameters, which are over that time mainly determined by hydrodynamics, such as the mass densities and

  16. Equilibrium and non-equilibrium phenomena in arcs and torches

    NARCIS (Netherlands)

    Mullen, van der J.J.A.M.

    2000-01-01

    A general treatment of non-equilibrium plasma aspects is obtained by relating transport fluxes to equilibrium restoring processes in so-called disturbed Bilateral Relations. The (non) equilibrium stage of a small microwave induced plasma serves as case study.

  17. Composition and partition functions of partially ionized hydrogen plasma in Non-Local Thermal Equilibrium (Non-LThE) and Non-Local Chemical Equilibrium (Non-LChE)

    International Nuclear Information System (INIS)

    Chen Kuan; Eddy, T.L.

    1993-01-01

    A GTME (Generalized MultiThermodynamic Equilibrium) plasma model is developed for plasmas in both Non-LThE (Non-Local Thermal Equilibrium) and Non-LChE (Non-Local Chemical Equilibrium). The model uses multitemperatures for thermal nonequilibrium and non-zero chemical affinities as a measure of the deviation from chemical equilibrium. The plasma is treated as an ideal gas with the Debye-Hueckel approximation employed for pressure correction. The proration method is used when the cutoff energy level is between two discrete levels. The composition and internal partition functions of a hydrogen plasma are presented for electron temperatures ranging from 5000 to 35000 K and pressures from 0.1 to 1000 kPa. Number densities of 7 different species of hydrogen plasma and internal partition functions of different energy modes (rotational, vibrational, and electronic excitation) are computed for three affinity values. The results differ from other plasma properties in that they 1) are not based on equilibrium properties; and 2) are expressed as a function of different energy distribution parameters (temperatures) within each energy mode of each species as appropriate. The computed number densities and partition functions are applicable to calculating the thermodynamic, transport, and radiation properties of a hydrogen plasma not in thermal and chemical equilibria. The nonequilibrium plasma model and plasma compositions presented in this paper are very useful to the diagnosis of high-speed and/or low-pressure plasma flows in which the assumptions of local thermal and chemical equilibrium are invalid. (orig.)

  18. Influence of the choice of internal temperatures on the composition of CxHyOzNt plasmas out of thermodynamic equilibrium: Application to CH2 plasma

    International Nuclear Information System (INIS)

    Koalaga, Zacharie

    2002-01-01

    The purpose of this paper is to study the influence of the choice of internal temperatures on the composition of C x H y O z N t plasmas out of thermodynamic equilibrium. The numerical calculation is specially performed for CH 2 plasma in the pressure range 0.1-1 MPa and for the electron temperature range 5000-30 000 K. Precisely, the investigation of this plasma allows one to show that the choice of internal temperatures can have more influence on plasma composition than the choice of the form of the two-temperature Saha and Guldberg-Waage laws. Indeed, for one of the supposed hypotheses, it is observed that the two forms of the two-temperature system used here can give the same equilibrium composition by uncoupling the excitation temperature of the diatomic and the monatomic species. Great attention must then be given to the adopted hypothesis for internal temperature and not only to the form of the two temperature system used. An accurate comparison between the two models requires the measurement of plasma parameters such as the various internal temperatures and the species concentration. Therefore, we have also carried out an analysis of the potential experimental diagnostics of these plasma parameters. Such diagnostics can help to test and validate theoretical models

  19. To the theory of fluctuations in a non-equilibrium plasma with taking into account the particle collisional interaction

    International Nuclear Information System (INIS)

    Puchkov, V.A.

    1998-01-01

    A method for calculation of non-equilibrium fluctuations in a totally ionized stable plasma with taking into account the particle collisions is proposed. The spectrum of high-frequency fluctuations of the electric field is calculated by the developed method. The formula obtained for the spectrum takes into consideration both the Coulomb collisions and influence of collective effects on the collisions and is applicable for stable arbitrary distributions of electrons and ions

  20. Direct evidence of departure from local thermodynamic equilibrium in a free-burning arc-discharge plasma

    International Nuclear Information System (INIS)

    Snyder, S.C.; Lassahn, G.D.; Reynolds, L.D.

    1993-01-01

    Radial profiles of gas temperature, electron temperature, and electron density were measured in a free-burning atmospheric-pressure argon arc-discharge plasma using line-shape analysis of scattered laser light. This method yields gas temperature, electron temperature, and electron density directly, with no reliance on the assumption of local thermodynamic equilibrium (LTE). Our results show a significant departure from LTE in the center of the discharge, contrary to expectations

  1. Heat-equilibrium low-temperature plasma decay in synthesis of ammonia via transient components N2H6

    International Nuclear Information System (INIS)

    Cao Guobin; Song Youqun; Chen Qing; Zhou Qiulan; Cao Yun; Wang Chunhe

    2001-01-01

    The author introduced a new method of heat-equilibrium low-temperature plasma in ammonia synthesis and a technique of continuous real-time inlet sampling mass-spectrometry to detect the reaction channel and step of the decay of transient component N 2 H 6 into ammonia. The experimental results indicated that in the process of ammonia synthesis by discharge of N 2 and H 2 mixture, the transient component N 2 H 6 is a necessary step

  2. Modelling of three dimensional equilibrium and stability of MAST plasmas with magnetic perturbations using VMEC and COBRA

    Energy Technology Data Exchange (ETDEWEB)

    Ham, C. J., E-mail: christopher.ham@ccfe.ac.uk; Chapman, I. T.; Kirk, A.; Saarelma, S. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom)

    2014-10-15

    It is known that magnetic perturbations can mitigate edge localized modes (ELMs) in experiments, for example, MAST [Kirk et al., Nucl. Fusion 53, 043007 (2013)]. One hypothesis is that the magnetic perturbations cause a three dimensional corrugation of the plasma and this corrugated plasma has different stability properties to peeling-ballooning modes compared to an axisymmetric plasma. It has been shown in an up-down symmetric plasma that magnetic perturbations in tokamaks will break the usual axisymmetry of the plasma causing three dimensional displacements [Chapman et al., Plasma Phys. Controlled Fusion 54, 105013 (2012)]. We produce a free boundary three-dimensional equilibrium of a lower single null MAST relevant plasma using VMEC [S. P. Hirshman and J. C. Whitson, Phys. Fluids 26, 3553 (1983)]. The safety factor and pressure profiles used for the modelling are similar to those deduced from axisymmetric analysis of experimental data with ELMs. We focus on the effect of applying n = 3 and n = 6 magnetic perturbations using the resonant magnetic perturbation (RMP) coils. A midplane displacement of over ±1 cm is seen when the full current is applied. The current in the coils is scanned and a linear relationship between coil current and midplane displacement is found. The pressure gradient in real space in different toroidal locations is shown to change when RMPs are applied. This effect should be taken into account when diagnosing plasmas with RMPs applied. The helical Pfirsch-Schlüter currents which arise as a result of the assumption of nested flux surfaces are estimated for this equilibrium. The effect of this non-axisymmetric equilibrium on infinite n ballooning stability is investigated using COBRA [Sanchez et al., J. Comput. Phys. 161, 576–588 (2000)]. The infinite n ballooning stability is analysed for two reasons; it may give an indication of the effect of non-axisymmetry on finite n peeling-ballooning modes, responsible for ELMs; and

  3. Modeling of the equilibrium of a tokamak plasma; Modelisation de l'equilibre d'un plasma de tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Grandgirard, V

    1999-12-01

    The simulation and the control of a plasma discharge in a tokamak require an efficient and accurate solving of the equilibrium because this equilibrium needs to be calculated again every microsecond to simulate discharges that can last up to 1000 seconds. The purpose of this thesis is to propose numerical methods in order to calculate these equilibrium with acceptable computer time and memory size. Chapter 1 deals with hydrodynamics equation and sets up the problem. Chapter 2 gives a method to take into account the boundary conditions. Chapter 3 is dedicated to the optimization of the inversion of the system matrix. This matrix being quasi-symmetric, the Woodbury method combined with Cholesky method has been used. This direct method has been compared with 2 iterative methods: GMRES (generalized minimal residual) and BCG (bi-conjugate gradient). The 2 last chapters study the control of the plasma equilibrium, this work is presented in the formalism of the optimized control of distributed systems and leads to non-linear equations of state and quadratic functionals that are solved numerically by a quadratic sequential method. This method is based on the replacement of the initial problem with a series of control problems involving linear equations of state. (A.C.)

  4. Experimental Evidence of Momentum Transport Induced by an Up-Down Asymmetric Magnetic Equilibrium in Toroidal Plasmas

    International Nuclear Information System (INIS)

    Camenen, Y.; Peeters, A. G.; Casson, F. J.; Hornsby, W. A.; Snodin, A. P.; Szepesi, G.; Bortolon, A.; Duval, B. P.; Federspiel, L.; Karpushov, A. N.; Piras, F.; Sauter, O.

    2010-01-01

    The first experimental evidence of parallel momentum transport generated by the up-down asymmetry of a toroidal plasma is reported. The experiments, conducted in the Tokamak a Configuration Variable, were motivated by the recent theoretical discovery of ion-scale turbulent momentum transport induced by an up-down asymmetry in the magnetic equilibrium. The toroidal rotation gradient is observed to depend on the asymmetry in the outer part of the plasma leading to a variation of the central rotation by a factor of 1.5-2. The direction of the effect and its magnitude are in agreement with theoretical predictions for the eight possible combinations of plasma asymmetry, current, and magnetic field.

  5. Influence of external 3D magnetic fields on helical equilibrium and plasma flow in RFX-mod

    International Nuclear Information System (INIS)

    Piovesan, P; Bonfiglio, D; Bonomo, F; Cappello, S; Carraro, L; Cavazzana, R; Gobbin, M; Marrelli, L; Martin, P; Martines, E; Momo, B; Piron, L; Puiatti, M E; Soppelsa, A; Valisa, M; Zanca, P; Zaniol, B

    2011-01-01

    A spontaneous transition to a helical equilibrium with an electron internal transport barrier is observed in RFX-mod as the plasma current is raised above 1 MA (Lorenzini R et al 2009 Nature Phys. 5 570). The helical magnetic equilibrium can be controlled with external three-dimensional (3D) magnetic fields applied by 192 active coils, providing proper helical boundary conditions either rotating or static. The persistence of the helical equilibrium is strongly increased in this way. A slight reduction in the energy confinement time of about 15% is observed, likely due to the increased plasma-wall interaction associated with the finite radial magnetic field imposed at the edge. A global helical flow develops in these states and is expected to play a role in the helical self-organization. In particular, its shear may contribute to the ITB formation and is observed to increase with the externally applied radial field. The possible origins of this flow, from nonlinear visco-resistive magnetohydrodynamic (MHD) and/or ambipolar electric fields, will be discussed.

  6. DEMONSTRATION IN THE DIII-D TOKAMAK OF AN ALTERNATE BASELINE SCENARIO FOR ITER AND OTHER BURNING PLASMA EXPERIMENTS

    International Nuclear Information System (INIS)

    LUCE, T.C.; WADE, M.R.; FERRON, J.R.; HYATT, A.W.; KELLMAN, A.G.; KINSEY, J.E.; LAHAY, R.J.; LASNIER, C.J.; MURAKAMI, M.; POLITZER, P.A.; SCOVILLE, J.T.

    2002-01-01

    OAK A271 DEMONSTRATION IN THE DIII-D TOKAMAK OF AN ALTERNATE BASELINE SCENARIO FOR ITER AND OTHER BURNING PLASMA EXPERIMENTS. Discharges which can satisfy the high gain goals of burning plasma experiments have been demonstrated in the DIII-D tokamak in stationary conditions with relatively low plasma current (q 95 > 4). A figure of merit for fusion gain Β N H 89 /q 95 2 has been maintained at values corresponding to Q = 10 operation in a burning plasma for > 6 s or 36 τ E and 2 τ R . The key element is the relaxation of the current profile to a stationary state with q min > 1, which allows stable operation up to the no-wall ideal β limit. These plasmas maintain particle balance by active pumping rather than transient wall conditions. The reduced current lessens significantly the potential for structural damage in the event of a major disruption

  7. Local thermodynamic equilibrium and related metrological issues involving collisional-radiative model in laser-induced aluminum plasmas

    International Nuclear Information System (INIS)

    Travaille, G.; Peyrusse, O.; Bousquet, B.; Canioni, L.; Pierres, K. Michel-Le; Roy, S.

    2009-01-01

    We present a collisional-radiative approach of the theoretical analysis of laser-induced breakdown spectroscopy (LIBS) plasmas. This model, which relies on an optimized effective potential atomic structure code, was used to simulate a pure aluminum plasma. The description of aluminum involved a set of 220 atomic levels representative of three different stages of ionization (Al 0 , Al + and Al ++ ). The calculations were carried for stationary plasmas, with input parameters (n e and T e ) ranging respectively between 10 13-18 cm -3 and 0.3-2 eV. A comparison of our atomic data with some existing databases is made. The code was mainly developed to address the validity of the local thermodynamic equilibrium (LTE) assumption. For usual LIBS plasma parameters, we did not reveal a sizeable discrepancy of the radiative equilibrium of the plasma towards LTE. For cases where LTE was firmly believed to stand, the Boltzmann plot outputs of this code were used to check the physical accuracy of the Boltzmann temperature, as it is currently exploited in several calibration-free laser-induced breakdown spectroscopy (CF-LIBS) studies. In this paper, a deviation ranging between 10 and 30% of the measured Boltzmann temperature to the real excitation temperature is reported. This may be due to the huge dispersion induced on the line emissivities, on which the Boltzmann plots are based to extract this parameter. Consequences of this fact on the CF-LIBS procedure are discussed and further insights to be considered for the future are introduced.

  8. Non-Equilibrium Plasma Applications for Water Purification Supporting Human Spaceflight and Terrestrial Point-of-Use

    Science.gov (United States)

    Blankson, Isaiah M.; Foster, John E.; Adamovsky, Grigory

    2016-01-01

    2016 NASA Glenn Technology Day Panel Presentation on May 24, 2016. The panel description is: Environmental Impact: NASA Glenn Water Capabilities Both global water scarcity and water treatment concerns are two of the most predominant environmental issues of our time. Glenn researchers share insights on a snow sensing technique, hyper spectral imaging of Lake Erie algal blooms, and a discussion on non-equilibrium plasma applications for water purification supporting human spaceflight and terrestrial point-of-use. The panel moderator will be Bryan Stubbs, Executive Director of the Cleveland Water Alliance.

  9. Validity of Saha's equation of thermal ionization for negatively charged spherical particles in complex plasmas in thermal equilibrium

    International Nuclear Information System (INIS)

    Sodha, M. S.; Mishra, S. K.

    2011-01-01

    The authors have discussed the validity of Saha's equation for the charging of negatively charged spherical particles in a complex plasma in thermal equilibrium, even when the tunneling of the electrons, through the potential energy barrier surrounding the particle is considered. It is seen that the validity requires the probability of tunneling of an electron through the potential energy barrier surrounding the particle to be independent of the direction (inside to outside and vice versa) or in other words the Born's approximation should be valid.

  10. Plasma equilibrium profiles with applied resonant fields on TBR-1 tokamak

    International Nuclear Information System (INIS)

    Castro, R.M. de; Heller, M.V.A.P.; Caldas, I.L.; Silva, R.P. da; Brasilio, Z.A.; Oda, G.A.

    1995-01-01

    In this work we present the measurements of the plasma potential, in the edge and in the scrape-off layer regions of plasma, with and without the presence of the magnetic field perturbations produced by resonant helical windings. (author). 6 refs., 6 figs

  11. On inverse and direct free boundary problems in the theory of plasma equilibrium in a Tokamak

    International Nuclear Information System (INIS)

    Demidov, A.; Petrova, V.; Silantiev, V.

    1996-01-01

    Theorems of existence of simply connected 'plasma' domain for the cylindrical case of the Grad-Shafranov equation Δu = F(u) are given. For the inverse problem upper and lower estimates of normal derivative of u on the boundary of the 'plasma' domain are obtained. (author)

  12. Toroidal confinement of non-neutral plasma - A new approach to high-beta equilibrium

    International Nuclear Information System (INIS)

    Yoshida, Z.; Ogawa, Y.; Morikawa, J.

    2001-01-01

    Departure from the quasi-neutral condition allows us to apply significant two-fluid effects that impart a new freedom to the design of high-performance fusion plasma. The self-electric field in a non-neutralized plasma induces a strong ExB-drift flow. A fast flow produces a large hydrodynamic pressure that can balance with the thermal pressure of the plasma. Basic concepts to produce a toroidal non-neutral plasma have been examined on the internal-conductor toroidal confinement device Proto-RT. A magnetic separatrix determines the boundary of the confinement region. Electrons describe chaotic orbits in the neighborhood of the magnetic null point on the separatrix. The chaos yields collisionless diffusion of electrons from the particle source (electron gun) towards the confinement region. Collisionless heating also occurs in the magnetic null region, which can be applied to produce a plasma. (author)

  13. A study on tokamak fusion reactor - Numerical analyses of MHD equilibrium= and edge plasma transport in tokamak fusion reactor with divertor configurations

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sang Hee; Lim, Ki Hang; Kang, Kyung Doo; Ryu, Ji Myung; Kim, Duk Kyu [Seoul National University, Seoul (Korea, Republic of); Cho, Soo Won [Kyungki Unviersity, Suwon (Korea, Republic of)

    1995-08-01

    In the present project for developing the numerical codes of 2-DMHD equilibrium, edge plasma transport and neutral particle transport for the tokamak plasmas, we compute the plasma equilibrium of double null type and calculate the external coil currents and the plasma parameters used for operation and control data. Also the numerical algorithm is developed to analyse the behavior of edge plasmas in poloidal and radial directions and the programming and debugging of a 2-D transport code are completed. Furthermore, a neutral particle transport code for the edge region is developed and then used for the analysis of the neutral transport phenomena giving the sources in the fluid equations, and expected to supply the input parameters for the edge plasma transport code. 34 refs., 5 tabs., 28 figs. (author)

  14. Evaluation of spectroscopic modeling for iron ions and study on non-equilibrium ionization phenomena for solar and LHD plasmas

    International Nuclear Information System (INIS)

    Watanabe, Tetsuya; Hara, Hirohisa; Yamamoto, Norimasa; Kato, Daiji; Sakaue, Hiroyuki A.; Murakami, Izumi

    2013-01-01

    Spectroscopic observations of EUV emission lines in the transition region (TR) and the corona provide unique information on physical conditions in the outer atmosphere of the Sun. The EUV Imaging Spectrometer (EIS) on board the Hinode satellite is capable of observing, for the first time in EUV, spectra and monochromatic images of plasmas in the solar TR and corona; these plasmas could possibly be in non-ionization-equilibrium conditions. EIS observes over two-wavelength bands of 170 - 210 Å and 250 - 290 Å, with typical time-resolutions of 1 - 10 seconds. Iron line emissions emerging from these wavelengths reveal that dynamic plasma accelerations and heating take place in the solar atmosphere. On the other hand, the tracer-encapsulated-pellet (TESPEL) experiments provide spectral information of EUV emission lines from iron ions produced in the Large Helical Device (LHD). Relatively cool plasmas with electron temperatures similar to those of the solar corona can be generated by controlling the neutral beam injector (NBI) system. A time-dependent collisional radiative (CR) model for elemental iron is developed as a common tool to diagnose temperatures and densities of those plasmas in the Sun and in LHD; no systematic model yet exists for iron ions in the L- and M-shell ionization stages, which are very important for coronal plasma diagnostics. Adopting the best available theoretical calculations, as well as generating the experimental data, we improve the atomic parameters of highly charged iron ions, and these results are used to extract more accurate diagnostic information out of the EIS spectra. (author)

  15. Diagnostics for Combustion and Ignition Enhancement Using the Non-Equilibrium Plasma

    National Research Council Canada - National Science Library

    Ju, Yiguang; Ombrello, Timothy; Won, Sanghee

    2008-01-01

    .... OH concentrations, O3 and O(1D) emissions, temperature distributions in plasma assisted combustion were measured by using the planar laser induced fluorescence, emission spectroscopy, and Rayleigh scattering...

  16. Enhancement of Combustion and Flame Stabilization Using Transient Non-Equilibrium Plasma

    National Research Council Canada - National Science Library

    Ju, Yiguang; Ombrello, Timothy; Fridman, Alexander; Gutsol, Alexander; Gangoli, Shailesh

    2007-01-01

    .... Laser diagnostics of flame temperature and OH distribution using planar Rayleigh scattering and planar laser-induced fluorescence revealed that the plasma-flame interaction at low air temperature...

  17. Plasma out of thermodynamical equilibrium: influence of the plasma environment on atomic structure and collisional cross sections

    International Nuclear Information System (INIS)

    Belkhiri, Madeny

    2014-01-01

    In hot dense plasmas, the free-electron and ion spatial distribution may strongly affect the atomic structure. To account for such effects we have implemented a potential correction based on the uniform electron gas model and on a Thomas-Fermi Approach in the Flexible Atomic Code (FAC). This code has been applied to obtain energies, wave-functions and radiative rates modified by the plasma environment. In hydrogen-like ions, these numerical results have been successfully compared to an analytical calculation based on first-order perturbation theory. In the case of multi-electron ions, we observe level crossings in agreement with another recent model calculation. Various methods for the collision cross-section calculations are reviewed. The influence of plasma environment on these cross-sections is analyzed in detail. Some analytical expressions are proposed for hydrogen-like ions in the limit where Born or Lotz approximations apply and are compared to the numerical results from the FAC code. Finally, from this work, we study the influence of the plasma environment on our collisional-radiative model so-called Foch. Because of this environment, the mean charge state of the ions increases. The line shift is observed on the bound-bound emission spectra. A good agreement is found between our work and experimental data on a Titanium plasma. (author) [fr

  18. Non-equilibrium effects in the processing of materials using plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Mangolini, Lorenzo [Univ. of California, Riverside, CA (United States)

    2016-06-02

    We have provided experimental evidence that nanoparticles in plasma are heated to temperatures that are significantly higher than that of the background gas. This result gives experimental confirmation to a number of theoretical/computational studies that predicted this behavior. Moreover, this study has provided with the first measurement of the temperature of nanoparticles in a processing dusty plasma, i.e. under conditions that are relevant for the growth and modification of nanopowders.

  19. Influence of non-equilibrium effects on plasma property functions in hybrid water-argon plasma torch

    Czech Academy of Sciences Publication Activity Database

    Křenek, Petr; Hrabovský, Milan

    2010-01-01

    Roč. 14, 1-2 (2010), s. 95-100 ISSN 1093-3611. [European High Temperature Plasma Processes (HTPP)/10th./. Patras (Patras University), 07.07.2008-11.07.2008] R&D Projects: GA ČR GA202/08/1084 Institutional research plan: CEZ:AV0Z20430508 Keywords : Thermal plasma * material properties * non-equlibrium phenomena * dc arc torch Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.189, year: 2010 http://www.begellhouse.com/journals/57d172397126f956,227c67f42b79464a,5bbc4c7760b4b6cb.html

  20. Parametric excitation electromagnetic radiation in a bounded non-equilibrium plasma

    International Nuclear Information System (INIS)

    Balakirev, V.A.; Tolstoluzhskij, A.P.

    1981-01-01

    An excitation mechanism of electromagnetic radiation in a bounded plasma-beam system which is based on the process of induced scattering of electron beam-strengthened high-frequency wave (HF) of a plasma waveguide with an ion-sound wave, is investigated. It is shown that the process under investigation is an effective mechanism of electromagnetic radiation production. Up to 73 % of the beam power is trabsformed to the electromagnetic radiation under the conditions considered. As the frequency of the irradiated wave is close to the plasma frequency it can vary within wide limits by the change in plasma density. It is noted that the necessary condition of electromagnetic radiation production in the mechanism under consideration has the form of inequality ωsub(l)-ωsub(s)/(ksub(l)-ksub(s)>c (ωsub(l) - frequency of HF wave, ωsub(s)- frequency of ion-sound wave) and is less rigid as compared with the synchronism conditions for three-wave resonant interaction of proper oscillations. Therefore, the considered induced scattering process is less sensitive to a possible inhomogeneity of plasma density [ru

  1. Full steady state LH scenarios in Tore Supra

    International Nuclear Information System (INIS)

    Kazarian-Vibert, F.; Litaudon, X.; Arslanbekov, R.; Hoang, G.T.; Moreau, D.; Peysson, Y.

    1995-01-01

    Lower Hybrid discharge have been realised in Tore Supra using feed-back control of the primary circuit voltage such that the loop voltage was maintained exactly to zero near the plasma surface. This new scenario allows the plasma current to float and quickly reach an equilibrium value determined by the current drive efficiency and Lower Hybrid power. Recent experimental results show that, with the new constant flux scenario the coupled plasma and primary currents reach a steady state in less than 10 s which is a good agreement with theoretical expectations. A complete analysis of this scenario is presented. (authors). 8 refs., 3 figs

  2. Equilibrium structure of the plasma sheet boundary layer-lobe interface

    Science.gov (United States)

    Romero, H.; Ganguli, G.; Palmadesso, P.; Dusenbery, P. B.

    1990-01-01

    Observations are presented which show that plasma parameters vary on a scale length smaller than the ion gyroradius at the interface between the plasma sheet boundary layer and the lobe. The Vlasov equation is used to investigate the properties of such a boundary layer. The existence, at the interface, of a density gradient whose scale length is smaller than the ion gyroradius implies that an electrostatic potential is established in order to maintain quasi-neutrality. Strongly sheared (scale lengths smaller than the ion gyroradius) perpendicular and parallel (to the ambient magnetic field) electron flows develop whose peak velocities are on the order of the electron thermal speed and which carry a net current. The free energy of the sheared flows can give rise to a broadband spectrum of electrostatic instabilities starting near the electron plasma frequency and extending below the lower hybrid frequency.

  3. Experimental benchmark of non-local-thermodynamic-equilibrium plasma atomic physics codes; Validation experimentale des codes de physique atomique des plasmas hors equilibre thermodynamique local

    Energy Technology Data Exchange (ETDEWEB)

    Nagels-Silvert, V

    2004-09-15

    The main purpose of this thesis is to get experimental data for the testing and validation of atomic physics codes dealing with non-local-thermodynamical-equilibrium plasmas. The first part is dedicated to the spectroscopic study of xenon and krypton plasmas that have been produced by a nanosecond laser pulse interacting with a gas jet. A Thomson scattering diagnostic has allowed us to measure independently plasma parameters such as electron temperature, electron density and the average ionisation state. We have obtained time integrated spectra in the range between 5 and 10 angstroms. We have identified about one hundred xenon rays between 8.6 and 9.6 angstroms via the use of the Relac code. We have discovered unknown rays for the krypton between 5.2 and 7.5 angstroms. In a second experiment we have extended the wavelength range to the X UV domain. The Averroes/Transpec code has been tested in the ranges from 9 to 15 angstroms and from 10 to 130 angstroms, the first range has been well reproduced while the second range requires a more complex data analysis. The second part is dedicated to the spectroscopic study of aluminium, selenium and samarium plasmas in femtosecond operating rate. We have designed an interferometry diagnostic in the frequency domain that has allowed us to measure the expanding speed of the target's backside. Via the use of an adequate isothermal model this parameter has led us to know the plasma electron temperature. Spectra and emission times of various rays from the aluminium and selenium plasmas have been computed satisfactorily with the Averroes/Transpec code coupled with Film and Multif hydrodynamical codes. (A.C.)

  4. Experimental benchmark of non-local-thermodynamic-equilibrium plasma atomic physics codes; Validation experimentale des codes de physique atomique des plasmas hors equilibre thermodynamique local

    Energy Technology Data Exchange (ETDEWEB)

    Nagels-Silvert, V

    2004-09-15

    The main purpose of this thesis is to get experimental data for the testing and validation of atomic physics codes dealing with non-local-thermodynamical-equilibrium plasmas. The first part is dedicated to the spectroscopic study of xenon and krypton plasmas that have been produced by a nanosecond laser pulse interacting with a gas jet. A Thomson scattering diagnostic has allowed us to measure independently plasma parameters such as electron temperature, electron density and the average ionisation state. We have obtained time integrated spectra in the range between 5 and 10 angstroms. We have identified about one hundred xenon rays between 8.6 and 9.6 angstroms via the use of the Relac code. We have discovered unknown rays for the krypton between 5.2 and 7.5 angstroms. In a second experiment we have extended the wavelength range to the X UV domain. The Averroes/Transpec code has been tested in the ranges from 9 to 15 angstroms and from 10 to 130 angstroms, the first range has been well reproduced while the second range requires a more complex data analysis. The second part is dedicated to the spectroscopic study of aluminium, selenium and samarium plasmas in femtosecond operating rate. We have designed an interferometry diagnostic in the frequency domain that has allowed us to measure the expanding speed of the target's backside. Via the use of an adequate isothermal model this parameter has led us to know the plasma electron temperature. Spectra and emission times of various rays from the aluminium and selenium plasmas have been computed satisfactorily with the Averroes/Transpec code coupled with Film and Multif hydrodynamical codes. (A.C.)

  5. Destruction of POPs agents in a Plasma-Arc Reactor and equilibrium calculations of steam injected for syngas

    International Nuclear Information System (INIS)

    Tian, Junguo; Li, Yaojian; Wang, Rui; Xu, Yongjiang; Sheng, Hongzhi

    2010-01-01

    Full text: A 30 kW DC plasma-arc reactor has been used to destruct hazardous Persistent Organic Pollutants (POPs) and the destruction and removal efficiency (DRE) of POPs is investigated. Due to similar to several POPs at chemical structure such as DDT, PCBs, pure chlorobenzene (C 6 H 5 Cl) is selected as the experimental material. Because the arc temperature attains 5000 K and the average temperature exceeds 1600 K in reaction area, the chlorinated organics, which are difficult to be destructed in conventional incinerators, can be rapidly pyrolyzed into simple molecules. Detected by Gas Chromatography (CP-3800 Varian), the off-gas is a mixture of H 2 , HCl and some hydrocarbons such as CH 4 , C 2 H 2 , C 2 H 4 , and C 6 H 5 Cl is not detected in the off-gas. Furthermore, the treatment of POPs in a steam-plasma system has been simulated. The process acts as energy transformation - electrical energy is restored in the syngas. Based on the principle of Gibbs free energy minimum, the equilibrium product distribution versus steam content and temperature is calculated. At the ideal temperature of POPs treatment, the energy recovered (Qre) minus the energy input (Qin) gets to maximum while the molar ration of oxygen to carbon (O/C) is near 1. The results show that the plasma-arc technology is environmentally friendly and economically feasible for disposal of POPs. (author)

  6. Non-equilibrium solid-to-plasma transition dynamics using XANES diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Dorchies, F., E-mail: dorchies@celia.u-bordeaux1.fr [Univ. Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33400 Talence (France); Recoules, V. [CEA-DAM-DIF, F-91297 Arpajon (France)

    2016-10-31

    The advent of femtosecond lasers has shed new light on non-equilibrium high energy density physics. The ultrafast energy absorption by electrons and the finite rate of their energy transfer to the lattice creates non-equilibrium states of matter, triggering a new class of non-thermal processes from the ambient solid up to extreme conditions of temperature and pressure, referred as the warm dense matter regime. The dynamical interplay between electron and atomic structures is the key issue that drives the ultrafast phase transitions dynamics. Bond weakening or bond hardening are predicted, but strongly depends on the material considered. Many studies have been conducted but this physics is still poorly understood. The experimental tools used up-to-now have provided an incomplete insight. Pure optical techniques measure only indirectly atomic motion through changes in the dielectric function whereas X-ray or electron diffraction only probes the average long-range order. This review is dedicated to recent developments in time-resolved X-ray absorption near-edge spectroscopy, which is expected to give a more complete picture by probing simultaneously the modifications of the near-continuum electron and local atomic structures. Results are reported for three different types of metals (simple, transition and noble metals) in which a confrontation has been carried out between measurements and ab initio simulations.

  7. Anomalous cross-field current and fluctuating equilibrium of magnetized plasmas

    DEFF Research Database (Denmark)

    Rypdal, K.; Garcia, O.E.; Paulsen, J.V.

    1997-01-01

    It is shown by simple physical arguments and fluid simulations that electrostatic flute-mode fluctuations can sustain a substantial cross-field current in addition to mass and energy transport. The simulations show that this current determines essential features of the fluctuating plasma...

  8. Thomson scattering on non-equilibrium low density plasmas : principles, practice and challenges

    NARCIS (Netherlands)

    Carbone, E.A.D.; Nijdam, S.

    2015-01-01

    In this paper, we review the main challenges related to laser Thomson scattering on low temperature plasmas. The main features of the triple grating spectrometer used to discriminate Thomson and Raman scattering signals from Rayleigh scattering and stray light are presented. The main parameters

  9. Impact of ECRH launcher flexibility on NTM stabilization and advanced scenarios in large toroidal configurations as JET plasmas

    International Nuclear Information System (INIS)

    Nowak, S.; Bruschi, A.; Ramponi, G.; Cirant, S.; Lazzaro, E.; Verhoeven, A.G.A.; Zohm, H.

    2003-01-01

    A beam-tracing code is used for extensive beam-tracing, ECCD and ECRH profile calculations in ideal JET-like plasmas with the main aim of specifying such crucial parameters for the ECRH launcher as the poloidal and toroidal steering ranges, the permitted error in the various launching angles and the optimal shape of the last mirrors reflecting surfaces. In order to be fusion-relevant, the calculations are performed on ideal target plasmas and equilibrium configurations scaled from real JET shots, selected by the JET-EP ECRH Physics Integration Project. The launching scheme is fully compliant with a launcher designed under the geometric constraints of JET, which consists of 6 to 8 beams arranged in pairs, with four end mirrors steerable both in the poloidal and in the toroidal directions. It is shown that with this arrangement all launching configurations requested by the physics goals of ECRH in a JET-like device are feasible. (authors)

  10. Catalytic Effect of Activated Carbon and Activated Carbon Fiber in Non-Equilibrium Plasma-Based Water Treatment

    Science.gov (United States)

    Zhang, Yanzong; Zheng, Jingtang; Qu, Xianfeng; Yu, Weizhao; Chen, Honggang

    2008-06-01

    Catalysis and regeneration efficiency of granular activated carbon (GAC) and activated carbon fiber (ACF) were investigated in a non-equilibrium plasma water treatment reactor with a combination of pulsed streamer discharge and GAC or ACF. The experimental results show that the degradation efficiency of methyl orange (MO) by the combined treatment can increase 22% (for GAC) and 24% (for ACF) respectively compared to pulsed discharge treatment alone, indicating that the combined treatment has a synergetic effect. The MO degradation efficiency by the combined treatment with pulsed discharge and saturated GAC or ACF can increase 12% and 17% respectively compared to pulsed discharge treatment alone. Both GAC and ACF show catalysis and the catalysis of ACF is prominent. Meanwhile, the regeneration of GAC and ACF are realized in this process. When H2O2 is introduced into the system, the utilization efficiency of ozone and ultraviolet light is improved and the regeneration efficiency of GAC and ACF is also increased.

  11. Direct measurement of the plasma equilibrium response to poloidal field changes and H∞ controller tests in TCV

    International Nuclear Information System (INIS)

    Lister, J.B.; Albanese, R.; Ambrosino, G.

    2001-01-01

    The control of ITER provides several challenges which can be met using existing techniques for the design of modern controllers. The specific case of the control of the Poloidal Field (PF) system has sollicited considerable interest. One feature of the design of such controllers is their dependence on a sufficiently accurate model of the full system under control. To this end, experiments have been performed on the TCV tokamak to validate one plasma equilibrium response model, the CREATE-L model. Using a new technique, the open loop response of TCV has been directly measured in the frequency domain. These experimental results compare well with the CREATE-L model. This model was subsequently used to design a PF system controller, using methods proposed during the ITER EDA and the first test on TCV has been successful. (author)

  12. Direct measurement of the plasma equilibrium response to poloidal field changes and H∞ controller tests in TCV

    International Nuclear Information System (INIS)

    Lister, J.B.; Albanese, R.; Ambrosino, G.

    1999-01-01

    The control of ITER provides several challenges which can be met using existing techniques for the design of modern controllers. The specific case of the control of the Poloidal Field (PF) system has solicited considerable interest. One feature of the design of such controllers is their dependence on a sufficiently accurate model of the full system under control. To this end, experiments have been performed on the TCV tokamak to validate one plasma equilibrium response model, the CREATE-L model. Using a new technique, the open loop response of TCV has been directly measured in the frequency domain. These experimental results compare well with the CREATE-L model. This model was subsequently used to design a PF system controller, using methods proposed during the ITER EDA and the first test on TCV has been successful. (author)

  13. New approach for sustaining energetic, efficient and scalable non-equilibrium plasma in water vapours at atmospheric pressure

    International Nuclear Information System (INIS)

    Malik, Muhammad Arif; Schoenbach, Karl H

    2012-01-01

    Energetic and scalable non-equilibrium plasma was formed in pure water vapour at atmospheric pressure between wire-to-strip electrodes on a dielectric surface with one of the electrodes extended forming a conductive plane on the back side of the dielectric surface. The energy deposition increased by an order of magnitude compared with the conventional pulsed corona discharges under the same conditions. The scalability was demonstrated by operating two electrode assemblies with a common conductive plane between two dielectric layers. The energy yields for hydrogen and hydrogen peroxide generation were measured as ∼1.2 g H 2 /kWh and ∼4 g H 2 O 2 /kWh. (fast track communication)

  14. Catalytic Effect of Activated Carbon and Activated Carbon Fiber in Non-Equilibrium Plasma-Based Water Treatment

    International Nuclear Information System (INIS)

    Zhang Yanzong; Zheng Jingtang; Qu Xianfeng; Yu Weizhao; Chen Honggang

    2008-01-01

    Catalysis and regeneration efficiency of granular activated carbon (GAC) and activated carbon fiber (ACF) were investigated in a non-equilibrium plasma water treatment reactor with a combination of pulsed streamer discharge and GAC or ACF. The experimental results show that the degradation efficiency of methyl orange (MO) by the combined treatment can increase 22% (for GAC) and 24% (for ACF) respectively compared to pulsed discharge treatment alone, indicating that the combined treatment has a synergetic effect. The MO degradation efficiency by the combined treatment with pulsed discharge and saturated GAC or ACF can increase 12% and 17% respectively compared to pulsed discharge treatment alone. Both GAC and ACF show catalysis and the catalysis of ACF is prominent. Meanwhile, the regeneration of GAC and ACF are realized in this process. When H 2 O 2 is introduced into the system, the utilization efficiency of ozone and ultraviolet light is improved and the regeneration efficiency of GAC and ACF is also increased.

  15. Tearing-mode stability in a cylindrical plasma with equilibrium flows

    International Nuclear Information System (INIS)

    Wessen, K.P.; Persson, M.; Australian National Univ., Canberra

    1991-01-01

    The effect of a sheared equilibrium mass flow on the resistive tearing mode is studied numerically by calculating Δ. Both stabilizing and destabilizing effects are found, depending on the velocity and magnetic field profiles. Specifically, when q o ''varies as'' 1, the flow is strongly stabilizing for centrally peaked current profiles, whereas the flow has a strongly destabilizing effect for flatter current profiles. While the extreme effects are more pronounced for larger flows, a smaller flow may have more influence on marginal stability. The case where the flow speed becomes comparable to the Alfven speed is also examined. It is found that this may lead to the equations being singular at points other than a rational surface, drastically changing the behaviour of the mode. (author)

  16. Equilibrium and stability of high-beta toroidal plasmas with toroidal and poloidal flow in reduced magnetohydrodynamic models

    International Nuclear Information System (INIS)

    Ito, A.; Nakajima, N.

    2010-11-01

    Effects of flow, finite ion temperature and pressure anisotropy on equilibrium and stability of a high-beta toroidal plasma are studied in the framework of reduced magnetohydrodynamics (MHD). A set of reduced equilibrium equations for high-beta tokamaks with toroidal and poloidal flow comparable to the poloidal sound velocity is derived in a unified form of single-fluid and Hall MHD models and a two-fluid MHD model with ion finite Larmor radius (FLR) terms. Pressure anisotropy is introduced with equations for the parallel heat flux which are closed by a fluid closure model. It is solved analytically for the single-fluid model and the solutions shows complicated characteristics in the region around the poloidal sound velocity due to pressure anisotropy and the parallel heat flux. Numerical solutions are found by using the finite element method for the two-fluid model with FLR effects in the case of isotropic, adiabatic pressure and indicate the following features of two-fluid equilibria: the isosurfaces of the magnetic flux, the pressure and the ion stream function do not coincide with each other, and the solutions depend on the sign of the radial electric field. Reduced single-fluid MHD equations with time evolution that are consistent with the above equilibria are also derived in order to study their stability. They conserve the energy up to the order required by the equilibria. (author)

  17. Equilibrium, stability and heating of plasmas in linear and toroidal Extrap pinches

    International Nuclear Information System (INIS)

    Bonnevier, B.; Drake, J.R.; Dalhed, H.E.

    1983-01-01

    The Extrap scheme consists of a Z-pinch immersed in an octupole field. The total magnetic field has no component along the pinch axis. Globally stable Z-pinch equilibria with a distributed plasma current density and a duration of about 100 Alfven transit times have been observed in linear and toroidal sector experiments. Theoretical studies indicate that this stability can be the result of constraints introduced by the octupole field and the resulting separatrix of the total field, in combination with finite-Larmor-radius effects. A scheme for ICRF heating of the plasma in configurations with a magnetic neutral line, being applicable to Extrap and FRC, is analysed. Wave propagation arises owing to the Hall effect. Particle resonances are responsible for the absorption, owing to a high parallel wavenumber and a weak magnetic field. (author)

  18. Impact of the plasma response in three-dimensional edge plasma transport modelling for RMP ELM control scenarios at ITER

    Science.gov (United States)

    Schmitz, Oliver

    2014-10-01

    The constrains used in magneto-hydrodynamic (MHD) modeling of the plasma response to external resonant magnetic perturbation (RMP) fields have a profound impact on the three-dimensional (3-D) shape of the plasma boundary induced by RMP fields. In this contribution, the consequences of the plasma response on the actual 3D boundary structure and transport during RMP application at ITER are investigated. The 3D fluid plasma and kinetic neutral transport code EMC3-Eirene is used for edge transport modeling. Plasma response modeling is conducted with the M3D-C1 code using a single fluid, non-linear and a two fluid, linear MHD constrain. These approaches are compared to results with an ideal MHD like plasma response. A 3D plasma boundary is formed for all cases consisting of magnetic finger structures at the X-point intersecting the divertor surface in a helical footprint pattern. The width of the helical footprint pattern is largely reduced compared to vacuum magnetic fields when using the ideal MHD like screening model. This yields increasing peak heat fluxes in contrast to a beneficial heat flux spreading seen with vacuum fields. The particle pump out as well as loss of thermal energy is reduced by a factor of two compared to vacuum fields. In contrast, the impact of the plasma response obtained from both MHD constrains in M3D-C1 is nearly negligible at the plasma boundary and only a small modification of the magnetic footprint topology is detected. Accordingly, heat and particle fluxes on the target plates as well as the edge transport characteristics are comparable to the vacuum solution. This span of modeling results with different plasma response models highlights the importance of thoroughly validating both, plasma response and 3D edge transport models for a robust extrapolation towards ITER. Supported by ITER Grant IO/CT/11/4300000497 and F4E Grant GRT-055 (PMS-PE) and by Start-Up Funds of the University of Wisconsin - Madison.

  19. Poloidal field equilibrium calculations for JET

    International Nuclear Information System (INIS)

    Khalafallah, A.K.

    1976-01-01

    The structure of the JET 2D Poloidal Field Analysis Package is discussed. The ability to cope with different plasma current density distributions (skin, flat or peaked), each with a range of Beta poloidal values and varying plasma shapes is a new feature of these calculations. It is possible to construct instant-by-instant pictures of equilibrium configurations for various plasma build up scenarios taking into account the level of flux in the iron core and return limbs. The equilibrium configurations are calculated for two possible sequences of plasma build up. Examples of the magnetic field calculations being carried out under contract to JET at the Rutherford Laboratory, using a 3D code, are also given

  20. Decomposition of poly(amide-imide) film using atmospheric pressure non-equilibrium plasma generated in a stream of H2O/Ar mixed gases

    International Nuclear Information System (INIS)

    Ueshima, M.; Aoki, Y.; Suzuki, K.; Kuwasima, S.; Sugiyama, K.

    2010-01-01

    Atmospheric pressure non-equilibrium Ar-H 2 O plasma was irradiated to exfoliate a thin film of a heat-resistant polymer, poly(amide-imide) coating on enamel copper wire. The plasma was produced by applying microwave power inducted with Ar-H 2 , Ar-O 2 , Ar-H 2 O or Ar-H 2 -O 2 mixed gases. The poly(amide-imide) thin film was exfoliate by those plasma irradiations. The magnitude of exfoliation depended on the distance of the copper wire from the plasma generating material and reached a maximum at a distance around 4 cm for each plasma irradiation. Surface conditions of the copper wire varied depending on the inducted gases. Ar-O 2 plasma irradiation oxidized the copper surface while other plasmas kept the copper surface unchanged. The time it took to exfoliate the poly(amide-imide) depended on the irradiation source, either Ar-O 2 (within 60 s), Ar-H 2 O (within 70 s), Ar-H 2 -O 2 (within 70 s) or Ar-H 2 (within 125 s). The Ar-H 2 O plasma irradiation under non-equilibrium atmospheric pressure was found to be the best method for exfoliating the poly(amide-imide) thin film coating on enamel copper wires rather than the Ar-H 2 -O 2 plasma because of its simplicity and safety.

  1. Conductivity of cesium-seeded atmospheric pressure plasmas near thermal equilibrium

    Energy Technology Data Exchange (ETDEWEB)

    Harris, L. P.

    1963-04-15

    Measurements were made of the electric conductivities of gaseous mixtures formed by the addition of small fractions of cesium vapor to nitrogen, helium, neon, or argon. The mixtures studied were maintained near thermal equilibrium at temperatures in the 1500 to 2000 deg K range and a total pressure of 1 atm. The cesium vapor pressures ranged over two decades, from 0.1 to 10 torr. The apparatus consists, in essence, of two heated zones connected by a slow flow. The first zone is a low-temperature (200 to 400 deg C) oven where the body-gas flow picks up the cesium vapor. The second zone is a small electrically heated furnace (1250 to 1850 deg C) containing a diode test section. The principal measurements taken were the seeding temperature, furnace temperature, and voltages and currents in the test section. The results exhibit variations with temperature, seeding pressure, and gas species that correlate reasonably well with simple theory and values for electron collision frequencies and cross sections taken from the literature. (auth)

  2. Monte Carlo simulations for thermodynamical properties calculations of plasmas at thermodynamical equilibrium. Applications to opacity and equation of state calculations

    International Nuclear Information System (INIS)

    Gilles, D.

    2005-01-01

    This report is devoted to illustrate the power of a Monte Carlo (MC) simulation code to study the thermodynamical properties of a plasma, composed of classical point particles at thermodynamical equilibrium. Such simulations can help us to manage successfully the challenge of taking into account 'exactly' all classical correlations between particles due to density effects, unlike analytical or semi-analytical approaches, often restricted to low dense plasmas. MC simulations results allow to cover, for laser or astrophysical applications, a wide range of thermodynamical conditions from more dense (and correlated) to less dense ones (where potentials are long ranged type). Therefore Yukawa potentials, with a Thomas-Fermi temperature- and density-dependent screening length, are used to describe the effective ion-ion potentials. In this report we present two MC codes ('PDE' and 'PUCE') and applications performed with these codes in different fields (spectroscopy, opacity, equation of state). Some examples of them are discussed and illustrated at the end of the report. (author)

  3. Effects of internal structure on equilibrium of field-reversed configuration plasma sustained by rotating magnetic field

    International Nuclear Information System (INIS)

    Yambe, Kiyoyuki; Inomoto, Michiaki; Okada, Shigefumi; Kobayashi, Yuka; Asai, Tomohiko

    2008-01-01

    The effects of an internal structure on the equilibrium of a field-reversed configuration (FRC) plasma sustained by rotating magnetic field is investigated by using detailed electrostatic probe measurements in the FRC Injection Experiment apparatus [S. Okada, et al., Nucl. Fusion. 45, 1094 (2005)]. An internal structure installed axially on the geometrical axis, which simulates Ohmic transformer or external toroidal field coils on the FRC device, brings about substantial changes in plasma density profile. The internal structure generates steep density-gradients not only on the inner side but on the outer side of the torus. The radial electric field is observed to sustain the ion thermal pressure-gradient in the FRC without the internal structure; however, the radial electric field is not sufficient to sustain the increased ion thermal pressure-gradient in the FRC with the internal structure. Spontaneously driven azimuthal ion flow will be accountable for the imbalance of the radial pressure which is modified by the internal structure.

  4. Numerical simulations of plasma equilibrium in a one-dimensional current sheet with a nonzero normal magnetic field component

    International Nuclear Information System (INIS)

    Mingalev, O. V.; Mingalev, I. V.; Malova, Kh. V.; Zelenyi, L. M.

    2007-01-01

    The force balance in a thin collisionless current sheet in the Earth's magnetotail with a given constant magnetic field component B z across the sheet is numerically studied for the first time in a self-consistent formulation of the problem. The current sheet is produced by oppositely directed plasma flows propagating from the periphery of the sheet toward the neutral plane. A substantially improved version of a macroparticle numerical model is used that makes it possible to simulate on the order of 10 7 macroparticles even with a personal computer and to calculate equilibrium configurations with a sufficiently low discrete noise level in the first-and second-order moments of the distribution function, which determine the stress tensor elements. Quasisteady configurations were calculated numerically for several sets of plasma parameters in some parts of the magnetotail. The force balance in the sheet was checked by calculating the longitudinal and transverse pressures as well as the elements of the full stress tensor. The stress tensor in the current sheet is found to be nondiagonal and to differ appreciably from the gyrotropic stress tensor in the Chew-Goldberger-Low model, although the Chew-Goldberger-Low theory and numerical calculations yield close results for large distances from the region of reversed magnetic field

  5. Integrated modeling of plasma ramp-up in DIII-D ITER-like and high bootstrap current scenario discharges

    Science.gov (United States)

    Wu, M. Q.; Pan, C. K.; Chan, V. S.; Li, G. Q.; Garofalo, A. M.; Jian, X.; Liu, L.; Ren, Q. L.; Chen, J. L.; Gao, X.; Gong, X. Z.; Ding, S. Y.; Qian, J. P.; Cfetr Physics Team

    2018-04-01

    Time-dependent integrated modeling of DIII-D ITER-like and high bootstrap current plasma ramp-up discharges has been performed with the equilibrium code EFIT, and the transport codes TGYRO and ONETWO. Electron and ion temperature profiles are simulated by TGYRO with the TGLF (SAT0 or VX model) turbulent and NEO neoclassical transport models. The VX model is a new empirical extension of the TGLF turbulent model [Jian et al., Nucl. Fusion 58, 016011 (2018)], which captures the physics of multi-scale interaction between low-k and high-k turbulence from nonlinear gyro-kinetic simulation. This model is demonstrated to accurately model low Ip discharges from the EAST tokamak. Time evolution of the plasma current density profile is simulated by ONETWO with the experimental current ramp-up rate. The general trend of the predicted evolution of the current density profile is consistent with that obtained from the equilibrium reconstruction with Motional Stark effect constraints. The predicted evolution of βN , li , and βP also agrees well with the experiments. For the ITER-like cases, the predicted electron and ion temperature profiles using TGLF_Sat0 agree closely with the experimental measured profiles, and are demonstrably better than other proposed transport models. For the high bootstrap current case, the predicted electron and ion temperature profiles perform better in the VX model. It is found that the SAT0 model works well at high IP (>0.76 MA) while the VX model covers a wider range of plasma current ( IP > 0.6 MA). The results reported in this paper suggest that the developed integrated modeling could be a candidate for ITER and CFETR ramp-up engineering design modeling.

  6. Analytical sudy on the equilibrium of quasi-stationary toroidal plasma with non-circular cross section of the Tokamak type

    International Nuclear Information System (INIS)

    Goes, L.C.S.

    1978-08-01

    It is assumed that the plasma is governed by the static - equilibrium equations of magnetohydrodynamics. An analytical study is described for the equilibrium of an axially symmetric plasma configuration in the form of a toroid, with non-circular cross-section, carrying a longitudinal current. A class of exact solutions, for two different current distributions, with a fixed toroidal boundary, is described. The main features o these solutions are: it remains valid for an arbitrary aspect ratio, in the neighbourhood of the magnetic axis, the magnetic surfaces are ellipses of known eccentricities, there is, far from the magnetic axis, a hyperbolic point of a separatrix, at the origin of the coordinate system. The equilibrium found is suitable for calculations of a future fusion reactor. (Author) [pt

  7. A study on the fusion reactor - Numerical analyses of MHD equilibrium and= edge plasma transport in tokamak fusion reactor with divertor configurations

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sang Hee; Kang, Kyung Doo; Ryu, Ji Myung; Kim, Deok Kyu; Chung, TaeKyun; Chung, Mo Se [Seoul National University, Seoul (Korea, Republic of); Cho, Su Won [Kyungki University, Suwon (Korea, Republic of)

    1995-08-01

    In the present project for developing the numerical codes of 2-D MHD equilibrium, edge plasma transport and neutral particle transport for the tokamak plasmas, we computed the MHD equilibria of single and double null configurations and determined the external coil currents and the plasma parameters used for operation and control data. Also we numerically acquired the distributions of edge plasma parameters in poloidal and radial directions= and the design-related values according to the various operating conditions using the developed plasma transport code. Furthermore, a neutral particle transport code for the edge region is developed and them used for the analysis of the neutral particle behavior yielding the source terms in the fluid transport equations, and expected to supply the input parameters for the edge plasma transport code. 53 refs., 12 tabs., 44 figs. (author)

  8. Solution adaptive triangular meshes with application to the simulation of plasma equilibrium

    International Nuclear Information System (INIS)

    Erlebacher, G.

    1984-01-01

    A new discrete Laplace operator is constructed on a local mesh molecule, second order accurate on symmetric cell regions, based on local Taylor series expansions. This discrete Laplacian is then compared to the one commonly used in the literature. A truncation error analysis of gradient and Laplace operators calculated at triangle centroids reveals that the maximum bounds of their truncation errors are minimized on equilateral triangles, for a fixed triangle perimeter. A new adaptive strategy on arbitrary triangular grids is developed in which a uniform grid is defined with respect to the solution surface, as opposed to the x,y plane. Departures from mesh uniformity arises from a spacially dependent mean-curvature of the solution surface. The power of this new adaptive technique is applied to the problem of finding free-boundary plasma equilibria within the context of MHD. The geometry is toroidal, and axisymmetry in the toroidal direction is assumed. We are led to conclude that the grid should move, not towards regions of high curvature of magnetic flux, but rather towards regions of greater toroidal current density. This has a direct bearing on the accuracy with which the Grad-Shafranov equation is being approximated

  9. Time-dependent two-temperature chemically non-equilibrium modelling of high-power Ar-N2 pulse-modulated inductively coupled plasmas at atmospheric pressure

    International Nuclear Information System (INIS)

    Tanaka, Yasunori

    2006-01-01

    A time-dependent, two-dimensional, two-temperature and chemical non-equilibrium model was developed for high-power Ar-N 2 pulse-modulated inductively coupled plasmas (PMICPs) at atmospheric pressure. The high-power PMICP is a new technique for sustaining high-power induction plasmas. It can control the plasma temperature and radical densities in the time domain. The PMICP promotes non-equilibrium effects by a sudden application of electric field, even in the high-power density plasmas. The developed model accounts separately for the time-dependent energy conservation equations of electrons and heavy particles. This model also considers reaction heat effects and energy transfer between electrons and heavy particles as well as enthalpy flow resulting from diffusion caused by the particle density gradient. Chemical non-equilibrium effects are also taken into account by solving time-dependent mass conservation equations for each particle, considering diffusion, convection and net production terms resulting from 30 chemical reactions. Transport and thermodynamic properties of Ar-N 2 plasmas are calculated self-consistently using the first order approximation of the Chapman-Enskog method at each position and iteration using the local particle composition, heavy particle temperature and electron temperature. This model is useful to discuss time evolution in temperature, gas flow fields and distribution of chemical species

  10. Enhanced nonlinear iterative techniques applied to a non-equilibrium plasma flow

    Energy Technology Data Exchange (ETDEWEB)

    Knoll, D.A.; McHugh, P.R. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1996-12-31

    We study the application of enhanced nonlinear iterative methods to the steady-state solution of a system of two-dimensional convection-diffusion-reaction partial differential equations that describe the partially-ionized plasma flow in the boundary layer of a tokamak fusion reactor. This system of equations is characterized by multiple time and spatial scales, and contains highly anisotropic transport coefficients due to a strong imposed magnetic field. We use Newton`s method to linearize the nonlinear system of equations resulting from an implicit, finite volume discretization of the governing partial differential equations, on a staggered Cartesian mesh. The resulting linear systems are neither symmetric nor positive definite, and are poorly conditioned. Preconditioned Krylov iterative techniques are employed to solve these linear systems. We investigate both a modified and a matrix-free Newton-Krylov implementation, with the goal of reducing CPU cost associated with the numerical formation of the Jacobian. A combination of a damped iteration, one-way multigrid and a pseudo-transient continuation technique are used to enhance global nonlinear convergence and CPU efficiency. GMRES is employed as the Krylov method with Incomplete Lower-Upper(ILU) factorization preconditioning. The goal is to construct a combination of nonlinear and linear iterative techniques for this complex physical problem that optimizes trade-offs between robustness, CPU time, memory requirements, and code complexity. It is shown that a one-way multigrid implementation provides significant CPU savings for fine grid calculations. Performance comparisons of the modified Newton-Krylov and matrix-free Newton-Krylov algorithms will be presented.

  11. The interplay between biological and physical scenarios of bacterial death induced by non-thermal plasma

    Czech Academy of Sciences Publication Activity Database

    Lunov, O.; Zablotskyy, V.; Churpita, O.; Jäger, A.; Polívka, L.; Syková, Eva; Dejneka, A.; Kubinová, Šárka

    2016-01-01

    Roč. 82, mar. (2016), s. 71-83 ISSN 0142-9612 R&D Projects: GA MŠk(CZ) LO1309 Institutional support: RVO:68378041 Keywords : non-thermal plasma * bacteria * cytotoxicity Subject RIV: FP - Other Medical Disciplines Impact factor: 8.402, year: 2016

  12. Departures from local thermodynamic equilibrium in cutting arc plasmas derived from electron and gas density measurements using a two-wavelength quantitative Schlieren technique

    International Nuclear Information System (INIS)

    Prevosto, L.; Mancinelli, B.; Artana, G.; Kelly, H.

    2011-01-01

    A two-wavelength quantitative Schlieren technique that allows inferring the electron and gas densities of axisymmetric arc plasmas without imposing any assumption regarding statistical equilibrium models is reported. This technique was applied to the study of local thermodynamic equilibrium (LTE) departures within the core of a 30 A high-energy density cutting arc. In order to derive the electron and heavy particle temperatures from the inferred density profiles, a generalized two-temperature Saha equation together with the plasma equation of state and the quasineutrality condition were employed. Factors such as arc fluctuations that influence the accuracy of the measurements and the validity of the assumptions used to derive the plasma species temperature were considered. Significant deviations from chemical equilibrium as well as kinetic equilibrium were found at elevated electron temperatures and gas densities toward the arc core edge. An electron temperature profile nearly constant through the arc core with a value of about 14000-15000 K, well decoupled from the heavy particle temperature of about 1500 K at the arc core edge, was inferred.

  13. Raman enhancement on ultra-clean graphene quantum dots produced by quasi-equilibrium plasma-enhanced chemical vapor deposition.

    Science.gov (United States)

    Liu, Donghua; Chen, Xiaosong; Hu, Yibin; Sun, Tai; Song, Zhibo; Zheng, Yujie; Cao, Yongbin; Cai, Zhi; Cao, Min; Peng, Lan; Huang, Yuli; Du, Lei; Yang, Wuli; Chen, Gang; Wei, Dapeng; Wee, Andrew Thye Shen; Wei, Dacheng

    2018-01-15

    Graphene is regarded as a potential surface-enhanced Raman spectroscopy (SERS) substrate. However, the application of graphene quantum dots (GQDs) has had limited success due to material quality. Here, we develop a quasi-equilibrium plasma-enhanced chemical vapor deposition method to produce high-quality ultra-clean GQDs with sizes down to 2 nm directly on SiO 2 /Si, which are used as SERS substrates. The enhancement factor, which depends on the GQD size, is higher than conventional graphene sheets with sensitivity down to 1 × 10 -9  mol L -1 rhodamine. This is attributed to the high-quality GQDs with atomically clean surfaces and large number of edges, as well as the enhanced charge transfer between molecules and GQDs with appropriate diameters due to the existence of Van Hove singularities in the electronic density of states. This work demonstrates a sensitive SERS substrate, and is valuable for applications of GQDs in graphene-based photonics and optoelectronics.

  14. Three dimensional equilibrium solutions for a current-carrying reversed-field pinch plasma with a close-fitting conducting shell

    Energy Technology Data Exchange (ETDEWEB)

    Koliner, J. J.; Boguski, J., E-mail: boguski@wisc.edu; Anderson, J. K.; Chapman, B. E.; Den Hartog, D. J.; Duff, J. R.; Goetz, J. A.; McGarry, M.; Morton, L. A.; Parke, E. [Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Cianciosa, M. R. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Hanson, J. D. [Department of Physics, Auburn University, Auburn, Alabama 36849 (United States); Brower, D. L.; Ding, W. X. [Department of Physics and Astronomy, University of California, Los Angeles, California 90095 (United States)

    2016-03-15

    In order to characterize the Madison Symmetric Torus (MST) reversed-field pinch (RFP) plasmas that bifurcate to a helical equilibrium, the V3FIT equilibrium reconstruction code was modified to include a conducting boundary. RFP plasmas become helical at a high plasma current, which induces large eddy currents in MST's thick aluminum shell. The V3FIT conducting boundary accounts for the contribution from these eddy currents to external magnetic diagnostic coil signals. This implementation of V3FIT was benchmarked against MSTFit, a 2D Grad-Shafranov solver, for axisymmetric plasmas. The two codes both fit B{sub θ} measurement loops around the plasma minor diameter with qualitative agreement between each other and the measured field. Fits in the 3D case converge well, with q-profile and plasma shape agreement between two distinct toroidal locking phases. Greater than 60% of the measured n = 5 component of B{sub θ} at r = a is due to eddy currents in the shell, as calculated by the conducting boundary model.

  15. The interplay between biological and physical scenarios of bacterial death induced by non-thermal plasma

    Czech Academy of Sciences Publication Activity Database

    Lunov, Oleg; Zablotskyy, Vitaliy A.; Churpita, Olexandr; Jäger, Aleš; Polívka, Leoš; Syková, E.; Dejneka, Alexandr; Kubinová, Šárka

    2016-01-01

    Roč. 82, Mar (2016), s. 71-83 ISSN 0142-9612 R&D Projects: GA MŠk LO1409; GA MŠk(CZ) LM2011026 Grant - others:FUNBIO(XE) CZ.2.16/3.1.00/21568; AV ČR(CZ) Fellowship J. E. Purkyně Institutional support: RVO:68378271 Keywords : non-thermal plasma * bacteria * cytotoxicity * apoptosis * bacterial inactivation * reactive oxygen species (ROS) Subject RIV: BO - Biophysics Impact factor: 8.402, year: 2016

  16. Power handling of a segmented bulk W tile for JET under realistic plasma scenarios

    Science.gov (United States)

    Jet-Efda Contributors Mertens, Ph.; Coenen, J. W.; Eich, T.; Huber, A.; Jachmich, S.; Nicolai, D.; Riccardo, V.; Senik, K.; Samm, U.

    2011-08-01

    A solid tungsten divertor row has been designed for JET in the frame of the ITER-like Wall project (ILW). The plasma-facing tiles are segmented in four stacks of tungsten lamellae oriented in the toroidal direction. Earlier estimations of the expected tile performance were carried out mostly for engineering purposes, to compare the permissible heat load with the power density of 7 MW/m2 originally specified for the ILW as a uniform load for 10 s.The global thermal model developed for the W modules delivers results for more realistic plasma footprints: the poloidal extension of the outer strike point was reduced from the full lamella width of 62 mm to ⩾15 mm. Model validation is given by the experimental exposure of a 1:1 prototype stack in the ion beam facility MARION (incidence ˜6°, load E ⩽ 66 MJ/m2 on the wetted surface). Spreading the deposited energy by appropriate sweeping over one or several stacks in the torus is beneficial for the tungsten lamellae and for the support structure.

  17. Equilibrium plasma corona surfaces

    International Nuclear Information System (INIS)

    Ensley, D.L.

    1979-07-01

    The distribution of charge of one sign when the opposite charge density is given is determined. Poisson's equation is solved in plane geometry for a simple specified ion density. This automatically gives the inverse solution for a given electron density, by reversing the sign of the potential. Some solutions can approximate a microwave confined corona, for very over dense cases

  18. The Gibbs Variational Method in Thermodynamics of Equilibrium Plasma: 1. General Conditions of Equilibrium and Stability for One-Component Charged Gas

    Science.gov (United States)

    2018-04-01

    the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the...unlimited. iv Acknowledgment The authors are sincerely and deeply grateful to the world-class expert in plasma physics , Dr Sergei Putvinski of Tri...of the incomplete EoSs is implied by the fact that they can be more easily extracted from physical experiments. One can ask, “Is there only one

  19. Development and application of a tree-code in simulation scenarios of the plasma-wall interaction

    International Nuclear Information System (INIS)

    Berberich, Benjamin

    2012-03-01

    Processes in the plasma edge layer of magnetic fusion devices occur on widely disparate length- and time-scales. Also recently developed features in this particular region, such as stochastic magnetic fields, underline the necessity for three dimensional, full-kinetic simulation tools. Contemporary programs often deploy ad hoc assumptions and approximations for microscopic phenomena for which self-consistent ab initio models in principle exist, but are still computationally too expensive or complex to implement. Recently, mesh-free methods have matured into a new class of tools for such first-principles computations which thanks to their geometric flexibility are highly promising for tackling complicated TOKAMAK regions. In this work we have develop the massively parallel Tree-Code PEPC-B (Pretty Efficient Parallel Coulomb solver) into a new tool for plasma material interaction studies. After a brief overview of the working principles of Tree-Codes two main topic groups are addressed: First the leap-frog Boris integration scheme is discussed and its numerical limitations are pointed out. To overcome these limitations the method is enhanced to a guiding-center integrator. As a proof of principal, numerical experiments are conducted reproducing the anticipated drift kinetic aspects of particle orbits. It turns out that this new technique is much less sensitive to large time steps than the original concept was. One major drawback of mesh-free methods which hinders their direct use for plasma-edge simulations is the difficulty in representing solid structures and associated boundary conditions. Therefore, an alternative concept is proposed using charge carrying Wall-Particles, which fits naturally in the mesh-free doctrine. These developments incorporate the second main topic group of this report. To prove the physical correctness of this new idea, a quasi one dimensional plasma-wall interface scenario is chosen. By studying the system with great detail, good agreement

  20. Non-inductive current start-up and plasma equilibrium with an inboard poloidal field null by means of electron cyclotron waves in QUEST

    International Nuclear Information System (INIS)

    Zushi, H.; Hasegawa, M.; Hanada, K.; Idei, H.; Nakamura, K.; Fujisawa, A.; Nagashima, Y.; Matsuoka, K.; Tashima, S.; Ishiguro, M.; Banerjee, S.; Sharma, S.K.; Liu, H.; Nishino, N.; Isobe, M.; Toi, K.; Okamura, S.; Maekawa, T.; Fukuyama, A.; Ejiri, A.; Yamaguchi, T.; Hiratsuka, J.; Takase, Y.; Kikuchi, Mitsuru; Ueda, Y.; Mitarai, O.

    2012-11-01

    Non-inductive current start-up via relativistic electron cyclotron resonance interaction is investigated for the high ratio (∼10%) of vertical B v to toroidal B t fields and the concave field lines in the QUEST spherical tokamak. In the start-up scenario with an internal poloidal field null (IPN), the fast current start-up rate of 0.3-0.5 MA/sec and correlation with mildly relativistic electrons accelerated due to multiple ECR interaction are observed. In steady state high β p equilibrium characterized by the inboard null (R s ∼ 0.7×R 0 ) and εβ p of 1.5 is achieved, where ε, β p are the inverse aspect ratio and poloidal beta, respectively. Relaxation oscillations in this equilibrium and confinement of the energetic electrons are discussed. (author)

  1. Non-equilibrium modeling of UV laser induced plasma on a copper target in the presence of Cu{sup 2+}

    Energy Technology Data Exchange (ETDEWEB)

    Ait Oumeziane, Amina, E-mail: a.aitoumeziane@gmail.com; Liani, Bachir [Laboratoire de Physique Théorique, Abou Beker Blekaid University (Algeria); Parisse, Jean-Denis [IUSTI UMR CNRS 7343, Aix-Marseille University (France); French Air School, Salon de Provence (France)

    2016-03-15

    This work is a contribution to the understanding of UV laser ablation of a copper sample in the presence of Cu{sup 2+} species as well as electronic non-equilibrium in the laser induced plasma. This particular study extends a previous paper and develops a 1D hydrodynamic model to describe the behavior of the laser induced plume, including the thermal non-equilibrium between electrons and heavy particles. Incorporating the formation of doubly charged ions (Cu{sup 2+}) in such an approach has not been considered previously. We evaluate the effect of the presence of doubly ionized species on the characteristics of the plume, i.e., temperature, pressure, and expansion velocity, and on the material itself by evaluating the ablation depth and plasma shielding effects. This study evaluates the effects of the doubly charged species using a non-equilibrium hydrodynamic approach which comprises a contribution to the understanding of the governing processes of the interaction of ultraviolet nanosecond laser pulses with metals and the parameter optimization depending on the intended application.

  2. Application of the 3D Iced-Ale method to equilibrium and stability problems of a magnetically confined plasma

    International Nuclear Information System (INIS)

    Barnes, D.C.; Brackbill, J.U.

    1977-01-01

    A numerical study of the equilibrium and stability properties of the Scyllac experiment at Los Alamos is described. The formulation of the numerical method, which is an extension of the ICED-ALE method to magnetohydrodynamic flow in three dimensions, is given. The properties of the method are discussed, including low computational diffusion, local conservation, and implicit formulation in the time variable. Also discussed are the problems encountered in applying boundary conditions and computing equilibria. The results of numerical computations of equilibria indicate that the helical field amplitudes must be doubled from their design values to produce equilibrium in the Scyllac experiment. This is consistent with other theoretical and experimental results

  3. Force response of an equilibrium magnetized plasma to an abrupt change in the heating power as a manifestation of the Le Chatelier principle

    International Nuclear Information System (INIS)

    Danilkin, I.S.

    1998-01-01

    It is shown that plasma that is in a force equilibrium with a magnetic field (τ f >>τ A,S ) responds to an abrupt (τ f E ) change in the heating power according to the Le Chatelier principle: it completely balances the effect of this change with respect to transverse degrees of freedom, i.e., at a level of two-thirds of the change in the net heating power. Here, τ A,S , τ f , and τ E are, respectively, the characteristic Alfven (or ion-sound) inertial time, the time during which the heating power changes, and the energy confinement time

  4. Stochastic linearization of turbulent dynamics of dispersive waves in equilibrium and non-equilibrium state

    International Nuclear Information System (INIS)

    Jiang, Shixiao W; Lu, Haihao; Zhou, Douglas; Cai, David

    2016-01-01

    Characterizing dispersive wave turbulence in the long time dynamics is central to understanding of many natural phenomena, e.g., in atmosphere ocean dynamics, nonlinear optics, and plasma physics. Using the β -Fermi–Pasta–Ulam nonlinear system as a prototypical example, we show that in thermal equilibrium and non-equilibrium steady state the turbulent state even in the strongly nonlinear regime possesses an effective linear stochastic structure in renormalized normal variables. In this framework, we can well characterize the spatiotemporal dynamics, which are dominated by long-wavelength renormalized waves. We further demonstrate that the energy flux is nearly saturated by the long-wavelength renormalized waves in non-equilibrium steady state. The scenario of such effective linear stochastic dynamics can be extended to study turbulent states in other nonlinear wave systems. (paper)

  5. MHD equilibrium with toroidal rotation

    International Nuclear Information System (INIS)

    Li, J.

    1987-03-01

    The present work attempts to formulate the equilibrium of axisymmetric plasma with purely toroidal flow within ideal MHD theory. In general, the inertial term Rho(v.Del)v caused by plasma flow is so complicated that the equilibrium equation is completely different from the Grad-Shafranov equation. However, in the case of purely toroidal flow the equilibrium equation can be simplified so that it resembles the Grad-Shafranov equation. Generally one arbitrary two-variable functions and two arbitrary single variable functions, instead of only four single-variable functions, are allowed in the new equilibrium equations. Also, the boundary conditions of the rotating (with purely toroidal fluid flow, static - without any fluid flow) equilibrium are the same as those of the static equilibrium. So numerically one can calculate the rotating equilibrium as a static equilibrium. (author)

  6. A verification scenario of nuclear plus interference scattering effects using neutron incident angle distribution to the wall in beam-injected deuterium plasmas

    International Nuclear Information System (INIS)

    Sugiyama, Shota; Matsuura, Hideaki; Uchiyama, Daisuke; Sawada, Daisuke; Watanabe, Tsuguhiro; Goto, Takuya; Mitarai, Osamu

    2015-01-01

    A verification scenario of knock-on tail formation in the deuteron distribution function due to nuclear plus interference scattering is presented by observing the incident angle distribution of neutrons in a vacuum vessel. Assuming a knock-on tail created in a "3He-beam-injected deuterium plasma, the incident angle distribution and energy spectra of the neutrons produced by fusion reactions between 1-MeV and thermal deuterons are evaluated. The relation between the neutron incident angle to the vacuum vessel and neutron energy is examined in the case of anisotropic neutron emission due to knock-on tail formation in neutral-beam-injected plasmas. (author)

  7. Reaction of carbon tetrachloride with methane in a non-equilibrium plasma at atmospheric pressure, and characterisation of the polymer thus formed

    Energy Technology Data Exchange (ETDEWEB)

    Gaikwad, Vaibhav [Process Safety and Environment Protection Research Group, School of Engineering, The University of Newcastle, Callaghan, NSW 2308 (Australia); Kennedy, Eric, E-mail: Eric.Kennedy@newcastle.edu.au [Process Safety and Environment Protection Research Group, School of Engineering, The University of Newcastle, Callaghan, NSW 2308 (Australia); Mackie, John [Process Safety and Environment Protection Research Group, School of Engineering, The University of Newcastle, Callaghan, NSW 2308 (Australia); Holdsworth, Clovia [Centre for Organic Electronics, Chemistry Building, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308 (Australia); Molloy, Scott; Kundu, Sazal; Stockenhuber, Michael [Process Safety and Environment Protection Research Group, School of Engineering, The University of Newcastle, Callaghan, NSW 2308 (Australia); Dlugogorski, Bogdan [School of Engineering and Information Technology, Murdoch University, Murdoch, WA 6150 (Australia)

    2014-09-15

    Highlights: • CCl{sub 4} remediation using non-equilibrium plasma and non-oxidative conditions is proposed. • The reaction mechanism relies on experimental data and quantum chemical analysis. • Comprehensive mass balance for the reaction is provided. • CCl{sub 4} is converted to an environmentally benign and potentially useful polymer. • Characterisation of the polymer structure based on NMR and FTIR analyses is presented. - Abstract: In this paper we focus on the development of a methodology for treatment of carbon tetrachloride utilising a non-equilibrium plasma operating at atmospheric pressure, which is not singularly aimed at destroying carbon tetrachloride but rather at converting it to a non-hazardous, potentially valuable commodity. This method encompasses the reaction of carbon tetrachloride and methane, with argon as a carrier gas, in a quartz dielectric barrier discharge reactor. The reaction is performed under non-oxidative conditions. Possible pathways for formation of major products based on experimental results and supported by quantum chemical calculations are outlined in the paper. We elucidate important parameters such as carbon tetrachloride conversion, product distribution, mass balance and characterise the chlorinated polymer formed in the process.

  8. Study in the plasma with non-equilibrium ionization state by relative intensities in K-spectra of multicharged ions

    International Nuclear Information System (INIS)

    Bojko, V.A.; Skobelev, I.Yu.; Faenov, A.Ya.

    1984-01-01

    The pressure of the K-spectra formation of multicharge h-, He-, Li-like ions in a plasma with an arbitrary ionization state are considered. It is shown that comparison of experimental and theoretical data on the intensities of f a number of spectral lines belonging to such ions allows one to determine both the plasma electron temperature and ion distribution versus the ionization degre ees. The proposed method of plasma diagnostics is used for measuring parameters of the expanding laser-produced magnesium plasme

  9. Fundamental processes of fuel removal by cyclotron frequency range plasmas and integral scenario for fusion application studied with carbon co-deposits

    Energy Technology Data Exchange (ETDEWEB)

    Möller, S., E-mail: s.moeller@fz-juelich.de [Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung – Plasmaphysik, Partner of the Trilateral Euregio Cluster (TEC), 52425 Jülich (Germany); Wauters, T. [Laboratory for Plasma Physics, ERM/KMS, TEC Partner, 1000 Brussels (Belgium); Kreter, A. [Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung – Plasmaphysik, Partner of the Trilateral Euregio Cluster (TEC), 52425 Jülich (Germany); Petersson, P.; Carrasco, A.G. [Fusion Plasma Physics, KTH Royal Institute of Technology, Teknikringen 31, 10044 Stockholm (Sweden)

    2015-08-15

    Plasma impact removal using radio frequency heated plasmas is a candidate method to control the co-deposit related tritium inventory in fusion devices. Plasma parameters evolve according to the balance of input power to losses (transport, radiation, collisions). Material is sputtered by the ion fluxes with impact energies defined by the plasma sheath. H{sub 2}, D{sub 2} and {sup 18}O{sub 2} plasmas are produced in the carbon limiter tokamak TEXTOR. Pre-characterised a-C:D layers are exposed to study local removal rates. The D{sub 2} plasma exhibits the highest surface release rate of 5.7 ± 0.9 ∗ 10{sup 19} D/m{sup 2}s. Compared to this the rate of the O{sub 2} plasma is 3-fold smaller due to its 11-fold lower ion flux density. Re-deposition of removed carbon is observed, indicating that pumping and ionisation are limiting the removal in TEXTOR. Presented models can explain the observations and allow tailoring removal discharges. An integral application scenario using ICWC and thermo-chemical removal is presented, allowing to remove 700 g T from a-C:DT co-deposits in 20 h with fusion compatible wall conditions using technical specifications similar to ITER.

  10. Feedback control of plasma equilibrium with control system aided by personal computer on the JIPP T-IIU tokamak

    International Nuclear Information System (INIS)

    Tsuzuki, T.; Toi, K.; Matsuura, K.

    1991-04-01

    A feedback control system aided by a personal computer is developed to maintain plasma position on the required position in the JIPP T-IIU tokamak. The personal computer enables to adjust various control parameters easily. In this control system, a control demand for driving the power supply of feedback controlled vertical field coils is composed to be proportional to a total plasma current. This system has been successfully employed throughout the discharge where the plasma current substantially changes from zero to hundreds of kiloamperes, because the feedback control can be done, being independent of the plasma current. The analysis of this feedback control system taken into account of digital sampling agrees well with the experimental results. (author)

  11. Radiation from an equilibrium CO2-N2 plasma in the [250-850 nm] spectral region: II. Spectral modelling

    International Nuclear Information System (INIS)

    Silva, M Lino da; Vacher, D; Andre, P; Faure, G; Dudeck, M

    2008-01-01

    In the first part of this work, described in a previous paper, the thermodynamic conditions in an atmospheric pressure inductively coupled CO 2 -N 2 plasma have been determined, and the radiation emission spectrum has been measured and calibrated in the [250-850 nm] spectral region. In the second part of this work, a synthetic radiation spectrum is obtained taking into account (a) the geometry of the plasma torch and (b) the local thermodynamic conditions of the plasma. This synthetic spectrum has then been compared against the measured spectrum. The good agreement between the two spectra allows validating the spectral database of the line-by-line code SPARTAN for the simulation of the radiative emission of CO 2 -N 2 plasmas from the near-UV to the near-IR spectral region.

  12. Equilibrium analysis of hydrogen production using the steam-plasma gasification process of the used car tires

    International Nuclear Information System (INIS)

    Kuznetsov, V A; Kumkova, I I; Lerner, A S; Popov, V E

    2012-01-01

    The paper deals with the treatment of used car tires. The method of used tires plasma gasification is proposed. The investigation of the syngas composition was carried out according to the temperature and plasma flow rate variation. The method of the steam catalytic conversion of CO, which is a part of the syngas, and CaO usage are suggested. The results of the calculation modeling at various temperatures, pressures, and steam flow rates are presented.

  13. Effect of variation in equilibrium shape on ELMing H-mode performance in DIII-D diverted plasmas

    International Nuclear Information System (INIS)

    Fenstermacher, M.E.; Osborne, T.H.; Petrie, T.W.

    2001-01-01

    The changes in the performance of the core, pedestal, scrape-off-layer (SOL), and divertor plasmas as a result of changes in triangularity, δ, up/down magnetic balance, and secondary divertor volume were examined in shape variation experiments using ELMing H mode plasmas on DIII-D. In moderate density, unpumped plasmas, high δ∼0.7 increased the energy in the H mode pedestal and the global energy confinement of the core, primarily due to an increase in the margin by which the edge pressure gradient exceeded the value which would have been expected had it been limited by infinite-n ideal ballooning modes. In addition, a nearly balanced double-null (DN) shape was effective for sharing the peak heat flux in the divertor in these attached plasmas. For detached plasmas good heat flux sharing was obtained for a substantial range of unbalanced DN shapes. Finally, the presence of a second X-point in unbalanced DN shapes did not degrade the plasma performance if it was sufficiently far inside the vacuum vessel. These results indicate that a high δ unbalanced DN shape has some advantages over a single null shape for future high power tokamak operation. (author)

  14. Cosmogonic scenario

    International Nuclear Information System (INIS)

    Alfven, H.; Arrhenius, G.

    1985-05-01

    A recent analysis demonstrates that the Saturnian C ring and essential features of the B and A rings agrees with the plasma cosmogony approach with an accuracy of about 1% or even better. This starts a transition of cosmogony from speculation to real science. Based on the monographs by Alfven and Arrhenius on the evolution of the solar system a cosmogonic scenario is tentatively proposed. This outlines the evolution of an interstellar cloud and the formation of stars surrounded by solar nebulae under the combined action of gravitational and electromagnetic forces. Further, matter falling in from the solar nebula towards the sun is processed by newly clarified electromagnetic processes and a plasma-planetesimal transition (PPT) occurs. Planetesimals accrete to planets and around some of them the same process in miniature leads to the formation of satellites. Also the origin of comets is discussed. (author)

  15. Radiofrequency power in plasmas

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This document includes the various communications that were presented at the 11th topical conference on radio frequency power in plasmas which took place in Palm Springs in May 1995. It includes current diffusion studies to assess the non-inductive current deposition profiles, experiments for plasma to reach quickly an equilibrium state, and modelling of electrons in plasma. Some comparison studies also reveal the efficiency of the Quasi-Optical Grill antenna for reactor applications. Finally, a scenario for efficient mode conversion heating in the ion cyclotron range of frequency is presented. Separate abstracts were prepared for the 6 papers in this volume. (TEC).

  16. Free radical generation by non-equilibrium atmospheric pressure plasma in alcohol-water mixtures: an EPR-spin trapping study

    Science.gov (United States)

    Uchiyama, Hidefumi; Ishikawa, Kenji; Zhao, Qing-Li; Andocs, Gabor; Nojima, Nobuyuki; Takeda, Keigo; Krishna, Murali C.; Ishijima, Tatsuo; Matsuya, Yuji; Hori, Masaru; Noguchi, Kyo; Kondo, Takashi

    2018-03-01

    Free radical species in aqueous solution—various alcohol-water reaction mixtures—by exposure to non-equilibrium cold atmospheric pressure Ar plasma (CAP), were monitored using electron paramagnetic resonance spin-trapping techniques with 3, 5-dibromo-4-nitrosobenzene sulfonate as a water soluble nitroso spin trap. The major radical species were formed by H-abstraction from alcohol molecules due to ·OH radicals. In the ethanol-water mixture ·CH2CH2OH produced by H abstraction from CH3 group of the ethanol and ·CH3 radicals were detected. The latter was due to the decomposition of unstable CH3·CHOH to form the ·CH3 radicals and the stable formaldehyde by C-C bond fission. These intermediates are similar to those observed by reaction with ·OH radicals generation in the H2O2-UV photolysis of the reaction mixtures. The evidence of ·CH3 radical formation in the pyrolytic decomposition of the reaction mixtures by exposure to ultrasound or in methane irradiated with microwave plasma have been reported previously. However, the pyrolytic ·CH3 radicals were not found in both plasma and H2O2-UV photolysis condition. These results suggests that free radicals produced by Ar-CAP are most likely due to the reaction between abundant ·OH radicals and alcohol molecules.

  17. Effect of oxygen atoms dissociated by non-equilibrium plasma on flame of methane oxygen and argon pre-mixture gas

    Science.gov (United States)

    Akashi, Haruaki; Yoshinaga, Tomokazu; Sasaki, Koichi

    2014-10-01

    For more efficient way of combustion, plasma-assisted combustion has been investigated by many researchers. But it is very difficult to clarify the effect of plasma even on the flame of methane. Because there are many complex chemical reactions in combustion system. Sasaki et al. has reported that the flame length of methane and air premixed burner shortened by irradiating microwave power. They also measured emission from Second Positive Band System of nitrogen during the irradiation. The emission indicates existence of high energy electrons which are accelerated by the microwave. The high energy electrons also dissociate oxygen molecules easily and oxygen atom would have some effects on the flame. But the dissociation ratio of oxygen molecules by the non-equilibrium plasma is significantly low, compared to that in the combustion reaction. To clarify the effect of dissociated oxygen atoms on the flame, dependence of dissociation ratio of oxygen on the flame has been examined using CHEMKIN. It is found that in the case of low dissociation ratio of 10-6, the ignition of the flame becomes slightly earlier. It is also found that in the case of high dissociation ratio of 10-3, the ignition time becomes significantly earlier by almost half. This work was supported by KAKENHI (22340170).

  18. Evaluation of Penicillium digitatum sterilization using non-equilibrium atmospheric pressure plasma by terahertz time-domain spectroscopy

    Science.gov (United States)

    Hiraoka, Takehiro; Ebizuka, Noboru; Takeda, Keigo; Ohta, Takayuki; Kondo, Hiroki; Ishikawa, Kenji; Kawase, Kodo; Ito, Masafumi; Sekine, Makoto; Hori, Masaru

    2011-10-01

    Recently, the plasma sterilization has attracted much attention as a new sterilization technique that takes the place of spraying agricultural chemicals. The conventional methods for sterilization evaluation, was demanded to culture the samples for several days after plasma treatment. Then, we focused on Terahertz time-domain spectroscopy (THz-TDS). At the THz region, vibrational modes of biological molecules and fingerprint spectra of biologically-relevant molecules were also observed. In this study, our purpose was measurement of the fingerprint spectrum of the Penicillium digitatum (PD) spore and establishment of sterilization method by THz-TDS. The sample was 40mg/ml PD spore suspensions which dropped on cover glass. The atmospheric pressure plasma generated under the conditions which Ar gas flow was 3slm, and alternating voltage of 6kV was applied. The samples were exposed the plasma from 10mm distance for 10 minutes. We could obtain the fingerprint spectrum of the PD spore from 0.5 to 0.9THz. This result indicated the possibility of in-situ evaluation for PD sterilization using THz-TDS.

  19. Effects of Non-Equilibrium Plasmas on Low-Pressure, Premixed Flames. Part 1: CH* Chemiluminescence, Temperature, and OH

    Science.gov (United States)

    2018-01-16

    Adamovich, Jeffrey A. Sutton1 Department of Mechanical and Aerospace Engineering , Ohio State University Abstract In this paper, we... chemistry . Qualitative imaging of CH* chemiluminescence indicates that during plasma discharge, the luminous flame zone is shifted upstream towards...Sutton Department of Mechanical and Aerospace Engineering , Ohio State University 1. Introduction In recent years, considerable interest has

  20. Scenario for equilibrium solid-stabilized emulsions

    NARCIS (Netherlands)

    Kegel, W.K.; Groenewold, J.

    2009-01-01

    We show theoretically that under certain conditions colloidal particles can give rise to spontaneous emulsification of oil/water systems. The capillary penalty to create a large interface is compensated by entropic contributions connected to ionic dissociation on the colloid surfaces. The colloids

  1. Non-equilibrium Modeling of the Fe XVII 3C/3D Line Ratio in an Intense X-Ray Free-Electron Laser Excited Plasma

    Science.gov (United States)

    Loch, S. D.; Ballance, C. P.; Li, Y.; Fogle, M.; Fontes, C. J.

    2015-03-01

    Recent measurements using an X-ray Free Electron Laser (XFEL) and an Electron Beam Ion Trap at the Linac Coherent Light Source facility highlighted large discrepancies between the observed and theoretical values for the Fe xvii 3C/3D line intensity ratio. This result raised the question of whether the theoretical oscillator strengths may be significantly in error, due to insufficiencies in the atomic structure calculations. We present time-dependent spectral modeling of this experiment and show that non-equilibrium effects can dramatically reduce the predicted 3C/3D line intensity ratio, compared with that obtained by simply taking the ratio of oscillator strengths. Once these non-equilibrium effects are accounted for, the measured line intensity ratio can be used to determine a revised value for the 3C/3D oscillator strength ratio, giving a range from 3.0 to 3.5. We also provide a framework to narrow this range further, if more precise information about the pulse parameters can be determined. We discuss the implications of the new results for the use of Fe xvii spectral features as astrophysical diagnostics and investigate the importance of time-dependent effects in interpreting XFEL-excited plasmas.

  2. FEM-DBEM approach to analyse crack scenarios in a baffle cooling pipe undergoing heat flux from the plasma

    Directory of Open Access Journals (Sweden)

    R. Citarella

    2017-02-01

    Full Text Available Wendelstein 7-X is the world’s largest nuclear fusion experiment of stellarator type, in which a hydrogen plasma is confined by a magnet field generated with external superconducting coils, allowing the plasma to be heated up to the fusion temperature. The water-cooled Plasma Facing Components (PFC protect the Plasma Vessel (PV against radiative and convective heat from the plasma. After the assembly process of heat shields and baffles, several cracks were found in the braze and cooling pipes. Due to heat load cycles occurring during each Operational Phase (OP, thermal stresses are generated in the heat sinks, braze root and cooling pipes, capable to drive fatigue crack-growth and, possibly, a water leak through the pipe thickness. The aim of this study is to assess the most dangerous initial crack configurations in one of the most critical baffles by using numerical models based on a FEM-DBEM approach.

  3. On local thermal equilibrium and potential gradient vs current characteristic in wall-stabilized argon plasma arc at 0.1 atm pressure

    International Nuclear Information System (INIS)

    Shindo, Haruo; Imazu, Shingo; Inaba, Tsuginori.

    1979-01-01

    In wall-stabilized arc which is a very useful means for determining the transport characteristics of high temperature gases, it is the premise that the inside of arc column is in complete local thermal equilibrium (LTE). In general, the higher the gas pressure, the easier the establishment of LTE, accordingly the experimental investigations on the characteristics of arc discharge as well as the transport characteristics so far were limited to the region of relatively high pressure. However, the authors have found that the theoretical potential vs. current characteristic obtained by the transport characteristic was greatly different from the actually measured one in low pressure region, as the fundamental characteristic of wall-stabilized argon plasma arc below atmospheric pressure. This time, they have clarified this discrepancy at 0.1 atm using the plasma parameters obtained through the spectroscopic measurements. The spectroscopic measurements have been performed through the side observation window at the position 5.5 cm away from the cathode, when arc was ignited vertically at the electrodes distant by 11 cm. Arc radius was 0.5 cm. Electron density and temperature, gas temperature and the excitation density of argon neutral atoms have been experimentally measured. The investigations showed that, in the region of low arc current, where the ratio of current to arc radius is less than 200 A/cm, the fall of gas temperature affected greatly on the decrease of axial electric field of arc column. The non-equilibrium between electron temperature and gas temperature decreased with the increase of arc current, and it was concluded that LTE has been formed at the center portion of arc column above I/R = 300 A/cm. (Wakatsuki, Y.)

  4. Real-time Equilibrium Reconstruction and Isoflux Control of Plasma Shape and Position in the National Spherical Torus Experiment (NSTX)

    International Nuclear Information System (INIS)

    Mueller, D.; Gates, D.A.; Menard, J.E.; Ferron, J.R.; Sabbagh, S.A.

    2004-01-01

    The implementation of the rtEFIT-isoflux algorithm in the digital control system for NSTX has led to improved ability to control the plasma shape. In particular, it has been essential for good gap control for radio-frequency experiments, for control of drsep in H-mode studies, and for X-point height control and κ control in a variety of experiments

  5. Plasma properties

    International Nuclear Information System (INIS)

    Weitzner, H.

    1990-06-01

    This paper discusses the following topics: MHD plasma activity: equilibrium, stability and transport; statistical analysis; transport studies; edge physics studies; wave propagation analysis; basic plasma physics and fluid dynamics; space plasma; and numerical methods

  6. Demonstration in the DIII-D tokamak of an alternate baseline scenario for ITER and other burning plasma experiments

    International Nuclear Information System (INIS)

    Luce, T.C.; Ferron, J.R.; Wade, M.R.

    2003-01-01

    Discharges which can satisfy the high gain goals of burning plasma experiments have been demonstrated in the DIII-D tokamak in stationary conditions with relatively low plasma current (q 95 > 4). A figure of merit for fusion gain β N H 89 / q 95 2 2 has been maintained at values corresponding to Q = 10 operation in a burning plasma for >6 s or 36 τ E and 2 τ R . The key element is the relaxation of the current profile to a stationary state with q min > 1, which allows stable operation up to the no-wall ideal β limit. These plasmas maintain particle balance by active pumping rather than transient wall conditioning. The reduced current lessens significantly the potential for structural damage in the event of a major disruption. (author)

  7. On determination of the degree of dissociation of hydrogen in non-equilibrium plasmas by means of emission spectroscopy: II. Experimental verification

    International Nuclear Information System (INIS)

    Lavrov, B P; Lang, N; Pipa, A V; Roepcke, J

    2006-01-01

    The method of spectroscopic determination of the degree of dissociation of hydrogen in non-equilibrium plasma, proposed in our previous paper, was verified under various plasma conditions. Three different gas discharges have been used, namely: (i) a DC-arc discharge (ii) an RF discharge, f = 200 kHz and (iii) an MW discharge, f = 2.45 GHz, under pressure p = 0.3-8 mbar. Relative intensities of atomic and molecular spectroscopic lines, the H α and H β line and the (2-2)Q1 line of the Fulcher-α system, and the gas temperature were measured in a wide range of discharge conditions and used for the determination of the degree of dissociation of hydrogen. It is shown that the method leads to plausible results in the whole range of discharge conditions studied in this paper. In particular, for the first time an influence of the redistribution of the population density of excited hydrogen atoms among fine structure sublevels on values of the degree of dissociation of hydrogen obtained by the method was investigated experimentally. It is also shown, that the influence is rather significant. The assumption of Boltzmann populations of the sublevels is more appropriate than neglecting the redistribution after electron impact excitation for p > 1 mbar

  8. Measurement of Stark width of some Ar I transitions and the investigation of local thermodynamic equilibrium (LTE) in an atmospheric d.c. argon plasma jet

    International Nuclear Information System (INIS)

    Bakshi, V.

    1988-01-01

    The Stark widths of seven Ar I transitions are reported. Axial line shape data from an atmospheric d.c. argon plasma jet were Abel-inverted to obtain radial line shapes. The electron-density was determined by Stark width measurements of the hydrogen H β transition. In the electron-density region of ≤6 x 10 22 m -3 the experimental Ar I Stark widths are fitted to a linear dependence on the electron-density. Values of Stark width extrapolated to other electron densities are compared to measurements reported in the literature on the 4s-4p array. Experimental values are up to 45% smaller than those predicted by Griem's theory of Stark broadening. Conditions for local thermodynamic equilibrium (LTE) to exist in an atmospheric argon plasma jet were studied. The experiment measures the emission coefficient of seven Ar I transitions and the line shape of the hydrogen H beta transition. After transforming the side-on data into radial space the excited neutral argon atom-density and the electron-density are determined. It is found LTE does not exist below an electron-density of 6 x 10 33 m -3 in the experimental conditions

  9. Simplified calculation of nonlocal thermodynamic equilibrium excited state populations contributing to 13.5 nm emission in a tin plasma

    International Nuclear Information System (INIS)

    White, J.; Cummings, A.; Dunne, P.; Hayden, P.; O'Sullivan, G.

    2007-01-01

    Extreme ultraviolet lithography schemes for the semiconductor industry are currently based on coupling radiation from a plasma source into a 2% bandwidth at 13.5 nm (91.8 eV). In this paper, we consider the case for a laser-produced plasma (LPP) and address the calculation of ionic level populations in the 4p 6 4d N , 4p 6 4d N-1 4f 1 , 4p 5 4d N+1 , and 4p 6 4d N-1 5p 1 configurations in a range of tin ions (Sn 6+ to Sn 13+ ) producing radiation in this bandwidth. The LPP is modeled using a one-dimensional hydrodynamics code, which uses a hydrogenic, average atom model, where the level populations are treated as l degenerate. Hartree-Fock calculations are used to remove the l degeneracy and an energy functional method to calculate the nl level populations involved in n=4-4 transitions as a function of distance from the target surface and time. Detailed data are presented for the tin ions that contribute to in-band emission

  10. Fast ion stabilization of the ion temperature gradient driven modes in the Joint European Torus hybrid-scenario plasmas: a trigger mechanism for internal transport barrier formation

    Energy Technology Data Exchange (ETDEWEB)

    Romanelli, M; Zocco, A [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom); Crisanti, F, E-mail: Michele.Romanelli@ccfe.ac.u [Associazione Euratom-ENEA sulla Fusione, C.R. Frascati, Frascati (Italy)

    2010-04-15

    Understanding and modelling turbulent transport in thermonuclear fusion plasmas are crucial for designing and optimizing the operational scenarios of future fusion reactors. In this context, plasmas exhibiting state transitions, such as the formation of an internal transport barrier (ITB), are particularly interesting since they can shed light on transport physics and offer the opportunity to test different turbulence suppression models. In this paper, we focus on the modelling of ITB formation in the Joint European Torus (JET) [1] hybrid-scenario plasmas, where, due to the monotonic safety factor profile, magnetic shear stabilization cannot be invoked to explain the transition. The turbulence suppression mechanism investigated here relies on the increase in the plasma pressure gradient in the presence of a minority of energetic ions. Microstability analysis of the ion temperature gradient driven modes (ITG) in the presence of a fast-hydrogen minority shows that energetic ions accelerated by the ion cyclotron resonance heating (ICRH) system (hydrogen, n{sub H,fast}/n{sub D,thermal} up to 10%, T{sub H,fast}/T{sub D,thermal} up to 30) can increase the pressure gradient enough to stabilize the ITG modes driven by the gradient of the thermal ions (deuterium). Numerical analysis shows that, by increasing the temperature of the energetic ions, electrostatic ITG modes are gradually replaced by nearly electrostatic modes with tearing parity at progressively longer wavelengths. The growth rate of the microtearing modes is found to be lower than that of the ITG modes and comparable to the local E x B-velocity shearing rate. The above mechanism is proposed as a possible trigger for the formation of ITBs in this type of discharges.

  11. Critical point of gas-liquid type phase transition and phase equilibrium functions in developed two-component plasma model.

    Science.gov (United States)

    Butlitsky, M A; Zelener, B B; Zelener, B V

    2014-07-14

    A two-component plasma model, which we called a "shelf Coulomb" model has been developed in this work. A Monte Carlo study has been undertaken to calculate equations of state, pair distribution functions, internal energies, and other thermodynamics properties. A canonical NVT ensemble with periodic boundary conditions was used. The motivation behind the model is also discussed in this work. The "shelf Coulomb" model can be compared to classical two-component (electron-proton) model where charges with zero size interact via a classical Coulomb law. With important difference for interaction of opposite charges: electrons and protons interact via the Coulomb law for large distances between particles, while interaction potential is cut off on small distances. The cut off distance is defined by an arbitrary ɛ parameter, which depends on system temperature. All the thermodynamics properties of the model depend on dimensionless parameters ɛ and γ = βe(2)n(1/3) (where β = 1/kBT, n is the particle's density, kB is the Boltzmann constant, and T is the temperature) only. In addition, it has been shown that the virial theorem works in this model. All the calculations were carried over a wide range of dimensionless ɛ and γ parameters in order to find the phase transition region, critical point, spinodal, and binodal lines of a model system. The system is observed to undergo a first order gas-liquid type phase transition with the critical point being in the vicinity of ɛ(crit) ≈ 13(T(*)(crit) ≈ 0.076), γ(crit) ≈ 1.8(v(*)(crit) ≈ 0.17), P(*)(crit) ≈ 0.39, where specific volume v* = 1/γ(3) and reduced temperature T(*) = ɛ(-1).

  12. Modelling and experimentation of the SO{sub 2} remotion through a plasma out of thermal equilibrium; Modelacion y experimentacion de la remocion del SO{sub 2} mediante un plasma fuera de equilibrio termico

    Energy Technology Data Exchange (ETDEWEB)

    Moreno S, H. [Instituto Tecnologico de Toluca, Metepec, Estado de Mexico (Mexico); Pacheco P, M.; Pacheco S, J.; Cruz A, A. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: hilda_saavedra@yahoo.com.mx

    2005-07-01

    In spite of the measures that have taken for the decrease of the emitted pollution by mobile sources (''Today it doesn't Circulate'', implementation of catalysts in those exhaust pipes,...), the pollution in the Valley of Mexico area overcomes the limits fixed by Mexican standards several days each year. It is foreseen that for 2020 those emissions of pollutants will be increase considerably, as example we can mention to the sulfur oxides which will be increase a 48% with regard to 1998. The purpose of this work is of proposing a technique for the degradation of the sulfur dioxide (SO{sub 2}) that consists in introducing this gas to a plasma out of thermal equilibrium where its were formed key radicals (O, OH) for its degradation. The proposed reactor has the advantage of combining the kindness of the dielectric barrier discharge and of corona discharge, besides working to atmospheric pressure and having small dimensions. The first obtained results of the modelling of the degradation of the SO{sub 2} in plasma as well as those experimentally obtained are presented. (Author)

  13. ``Statistical treatment of the spectral properties of plasmas in local thermodynamical equilibrium using a screened hydrogenic model``; ``Traitement statistique des proprietes spectrales des plasmas a l`equilibre thermodynamique local dans le cadre du modele hydrogenique ecrante``

    Energy Technology Data Exchange (ETDEWEB)

    Faussurier, G.

    1996-12-31

    A new screened hydrogenic model is presented. The screening constants depend both on the principal n and orbital l quantum numbers. They have been obtained from numerical fits over a large data base containing ionization potentials and one-electron excitation energies of ions. A rapid and original method to compute the bound-bound and bound-free oscillator strengths is proposed. The discrete spectrum and the series continuum are connected by continuity, and the sum rules are respected. The screened hydrogenic average atom is well-adapted to describe multicharged ion plasmas in local thermodynamic equilibrium (LTE). Using the key principle of statistical mechanics, it is shown first that this model is properly defined and thermodynamically coherent. Secondly, a new method of detailed ionization stage accounting of a LTE plasma is explained. It can be used to reconstruct the distribution of integer charge states in such a plasma from any average atom model. The l -splitting allows one-electron transitions between two subshells with the same principal quantum number n. They may be of great importance when the Rosseland opacity is computed. Though, methods of classical statistical mechanics are required to calculate the distribution of the configurations around the average atom one and so to improve the spectral opacities. The splitting in integer ionic stages can be easily included. The formalism is tested by comparisons with theoretical and experimental results published in the literature. From the photoabsorption spectra encountered, the main results are the correct estimations of both the Rosseland opacity and the detailed charge degrees accounting. (author).

  14. Vertical field and equilibrium calculation in ETE

    International Nuclear Information System (INIS)

    Montes, Antonio; Shibata, Carlos Shinya.

    1996-01-01

    The free-boundary MHD equilibrium code HEQ is used to study the plasma behaviour in the tokamak ETE, with optimized compensations coils and vertical field coils. The changes on the equilibrium parameters for different plasma current values are also investigated. (author). 5 refs., 4 figs., 2 tabs

  15. Local equilibrium

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1984-12-15

    From 3-6 September the First International Workshop on Local Equilibrium in Strong Interaction Physics took place in Bad-Honnef at the Physics Centre of the German Physical Society. A number of talks covered the experimental and theoretical investigation of the 'hotspots' effect, both in high energy particle physics and in intermediate energy nuclear physics.

  16. Equilibrium Dialysis

    African Journals Online (AJOL)

    context of antimicrobial therapy in malnutrition. Dialysis has in the past presented technical problems, being complicated and time-consuming. A new dialysis system based on the equilibrium technique has now become available, and it is the principles and practical application of this apparatus (Kontron Diapack; Kontron.

  17. Strategic Equilibrium

    NARCIS (Netherlands)

    van Damme, E.E.C.

    2000-01-01

    An outcome in a noncooperative game is said to be self-enforcing, or a strategic equilibrium, if, whenever it is recommended to the players, no player has an incentive to deviate from it.This paper gives an overview of the concepts that have been proposed as formalizations of this requirement and of

  18. Maximin equilibrium

    NARCIS (Netherlands)

    Ismail, M.S.

    2014-01-01

    We introduce a new concept which extends von Neumann and Morgenstern's maximin strategy solution by incorporating `individual rationality' of the players. Maximin equilibrium, extending Nash's value approach, is based on the evaluation of the strategic uncertainty of the whole game. We show that

  19. Discovery of recombining plasma from the faintest GeV supernova remnant HB 21 and a possible scenario for cosmic rays escaping from supernova remnant shocks

    Science.gov (United States)

    Suzuki, Hiromasa; Bamba, Aya; Nakazawa, Kazuhiro; Furuta, Yoshihiro; Sawada, Makoto; Yamazaki, Ryo; Koyama, Katsuji

    2018-06-01

    We present an X-ray study of the GeV gamma-ray supernova remnant (SNR) HB 21 with Suzaku. HB 21 is interacting with molecular clouds, and is the faintest in the GeV band among known GeV SNRs. We discovered strong radiative recombination continua of Si and S from the center of the remnant, which provide direct evidence of a recombining plasma (RP). The total emission can be explained with the RP and ionizing plasma components. The electron temperature and recombination timescale of the RP component were estimated as 0.17 (0.15-0.18) keV and 3.2 (2.0-4.8) × 1011 s cm-3, respectively. The estimated age of the RP (˜170 kyr) is the longest among known recombining GeV SNRs, because of a very low density of electrons (˜0.05 cm-3). We have examined the dependencies of GeV spectral indices on each of RP ages and SNR diameters for nine recombining GeV SNRs. Both showed possible positive correlations, indicating that both the parameters can be good indicators of properties of accelerated protons, for instance the degree of escape from SNR shocks. A possible scenario for a process of proton escape is introduced: interaction with molecular clouds makes weaker magnetic turbulence and cosmic-ray protons escape, simultaneously cooling down the thermal electrons and generating an RP.

  20. A new approach of equilibrium reconstruction for ITER

    International Nuclear Information System (INIS)

    Imazawa, R.; Kawano, Y.; Kusama, Y.

    2011-01-01

    We have proposed a new approach for equilibrium reconstruction that can be applied to ITER-like burning plasmas. In this study, we have focused on carrying out equilibrium reconstruction using polarimetry, which is feasible for ITER-like burning plasmas. Polarimetry in burning plasmas is different from that in the existing tokamaks in two regards: (1) increased importance of the relativistic effects and (2) significant coupling with the Faraday and Cotton–Mouton effects. We found that when polarimetric data (orientation angle, θ, and ellipticity angle, ε, of a polarization state) are used as the constraints in the equilibrium reconstruction, the optimum weighting factors for θ and ε depend on the magnetic surfaces through which the viewing chord of polarimetry passes. We applied our approach to the operation scenarios II (S2) and IV (S4) in ITER. In the case where the viewing chords are via both the equatorial and upper ports, the measurement requirements for the accuracy of the q-profile in ITER (±10%) were satisfied in S2 and S4 when the measuring errors of θ and ε were less than 0.5° and 3°, respectively.

  1. Sweatshop equilibrium

    OpenAIRE

    Chau, Nancy H.

    2009-01-01

    This paper presents a capability-augmented model of on the job search, in which sweatshop conditions stifle the capability of the working poor to search for a job while on the job. The augmented setting unveils a sweatshop equilibrium in an otherwise archetypal Burdett-Mortensen economy, and reconciles a number of oft noted yet perplexing features of sweatshop economies. We demonstrate existence of multiple rational expectation equilibria, graduation pathways out of sweatshops in complete abs...

  2. Study of heat and synchrotron radiation transport in fusion tokamak plasmas. Application to the modelling of steady state and fast burn termination scenarios for the international experimental fusion reactor ITER

    International Nuclear Information System (INIS)

    Villar Colome, J.

    1997-12-01

    The aim of this thesis is to give a global scope of the problem of energy transport within a thermonuclear plasma in the context of its power balance and the implications when modelling ITER operating scenarios. This is made in two phases. First, by furnishing new elements to the existing models of heat and synchrotron radiation transport in a thermonuclear plasma. Second, by applying the improved models to plasma engineering studies of ITER operating scenarios. The scenarios modelled are the steady state operating point and the transient that appears to have the biggest technological implications: the fast burn termination. The conduction-convection losses are modelled through the energy confinement time. This parameter is empirically obtained from the existing experimental data, since the underlying mechanisms are not well understood. In chapter 2 an expression for the energy confinement time is semi-analytically deduced from the Rebut-Lallia-Watkins local transport model. The current estimates of the synchrotron radiation losses are made with expressions of the dimensionless transparency factor deduced from a 0-dimensional cylindrical model proposed by Trubnikov in 1979. In chapter 3 realistic hypothesis for the cases of cylindrical and toroidal geometry are included in the model to deduce compact explicit expressions for the fast numerical computation of the synchrotron radiation losses. Numerical applications are provided for the cylindrical case. The results are checked against the existing models. In chapter 4, the nominal operating point of ITER and its thermal stability is studied by means of a 0-dimensional burn model of the thermonuclear plasma in ignition. This model is deduced by the elements furnished by the plasma particle and power balance. Possible heat overloading on the plasma facing components may provoke severe structural damage, implying potential safety problems related to tritium inventory and metal activation. In chapter 5, the assessment

  3. Study of heat and synchrotron radiation transport in fusion tokamak plasmas. Application to the modelling of steady state and fast burn termination scenarios for the international experimental fusion reactor ITER

    Energy Technology Data Exchange (ETDEWEB)

    Villar Colome, J. [Association Euratom-CEA, Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee]|[Universitat Polytechnica de Catalunya (Spain)

    1997-12-01

    The aim of this thesis is to give a global scope of the problem of energy transport within a thermonuclear plasma in the context of its power balance and the implications when modelling ITER operating scenarios. This is made in two phases. First, by furnishing new elements to the existing models of heat and synchrotron radiation transport in a thermonuclear plasma. Second, by applying the improved models to plasma engineering studies of ITER operating scenarios. The scenarios modelled are the steady state operating point and the transient that appears to have the biggest technological implications: the fast burn termination. The conduction-convection losses are modelled through the energy confinement time. This parameter is empirically obtained from the existing experimental data, since the underlying mechanisms are not well understood. In chapter 2 an expression for the energy confinement time is semi-analytically deduced from the Rebut-Lallia-Watkins local transport model. The current estimates of the synchrotron radiation losses are made with expressions of the dimensionless transparency factor deduced from a 0-dimensional cylindrical model proposed by Trubnikov in 1979. In chapter 3 realistic hypothesis for the cases of cylindrical and toroidal geometry are included in the model to deduce compact explicit expressions for the fast numerical computation of the synchrotron radiation losses. Numerical applications are provided for the cylindrical case. The results are checked against the existing models. In chapter 4, the nominal operating point of ITER and its thermal stability is studied by means of a 0-dimensional burn model of the thermonuclear plasma in ignition. This model is deduced by the elements furnished by the plasma particle and power balance. Possible heat overloading on the plasma facing components may provoke severe structural damage, implying potential safety problems related to tritium inventory and metal activation. In chapter 5, the assessment

  4. Equilibrium Trust

    OpenAIRE

    Luca Anderlini; Daniele Terlizzese

    2009-01-01

    We build a simple model of trust as an equilibrium phenomenon, departing from standard "selfish" preferences in a minimal way. Agents who are on the receiving end of an other to transact can choose whether to cheat and take away the entire surplus, taking into account a "cost of cheating." The latter has an idiosyncratic component (an agent's type), and a socially determined one. The smaller the mass of agents who cheat, the larger the cost of cheating suffered by those who cheat. Depending o...

  5. New Tore Supra steady state operating scenario

    International Nuclear Information System (INIS)

    Martin, G.; Parlange, F.; van Houtte, D.; Wijnands, T.

    1995-01-01

    This document deals with plasma control in steady state conditions. A new plasma control systems enabling feedback control of global plasma equilibrium parameters has been developed. It also enables to operate plasma discharge in steady state regime. (TEC). 4 refs., 5 figs

  6. Excitation of half-integer up-shifted decay channel and quasi-mode in plasma edge for high power electron Bernstein wave heating scenario

    Directory of Open Access Journals (Sweden)

    M. Ali Asgarian

    2018-04-01

    Full Text Available Electron Bernstein waves (EBW consist of promising tools in driving localized off-axis current needed for sustained operation as well as effective selective heating scenarios in advanced over dense fusion plasmas like spherical tori and stellarators by applying high power radio frequency waves within the range of Megawatts. Here some serious non-linear effects like parametric decay modes are highly expect-able which have been extensively studied theoretically and experimentally. In general, the decay of an EBW depends on the ratio of the incident frequency and electron cyclotron frequency. At ratios less than two, parametric decay leads to a lower hybrid wave (or an ion Bernstein wave and EBWs at a lower frequency. For ratios more than two, the daughter waves constitute either an electron cyclotron quasi-mode and another EBW or an ion wave and EBW. However, in contrast with these decay patterns, the excitation of an unusual up-shifted frequency decay channel for the ratio less than two is demonstrated in this study which is totally different as to its generation and persistence. It is shown that this mode varies from the conventional parametric decay channels which necessarily satisfy the matching conditions in frequency and wave-vector. Moreover, the excitation of some less-known local non-propagating quasi-modes (virtual modes through weak-turbulence theory and their contributions to energy leakage from conversion process leading the reduction in conversion efficiency is assessed.

  7. Excitation of half-integer up-shifted decay channel and quasi-mode in plasma edge for high power electron Bernstein wave heating scenario

    Science.gov (United States)

    Ali Asgarian, M.; Abbasi, M.

    2018-04-01

    Electron Bernstein waves (EBW) consist of promising tools in driving localized off-axis current needed for sustained operation as well as effective selective heating scenarios in advanced over dense fusion plasmas like spherical tori and stellarators by applying high power radio frequency waves within the range of Megawatts. Here some serious non-linear effects like parametric decay modes are highly expect-able which have been extensively studied theoretically and experimentally. In general, the decay of an EBW depends on the ratio of the incident frequency and electron cyclotron frequency. At ratios less than two, parametric decay leads to a lower hybrid wave (or an ion Bernstein wave) and EBWs at a lower frequency. For ratios more than two, the daughter waves constitute either an electron cyclotron quasi-mode and another EBW or an ion wave and EBW. However, in contrast with these decay patterns, the excitation of an unusual up-shifted frequency decay channel for the ratio less than two is demonstrated in this study which is totally different as to its generation and persistence. It is shown that this mode varies from the conventional parametric decay channels which necessarily satisfy the matching conditions in frequency and wave-vector. Moreover, the excitation of some less-known local non-propagating quasi-modes (virtual modes) through weak-turbulence theory and their contributions to energy leakage from conversion process leading the reduction in conversion efficiency is assessed.

  8. MHD equilibrium methods for ITER [International Thermonuclear Experimental Reactor] PF [poloidal field] coil design and systems analysis

    International Nuclear Information System (INIS)

    Strickler, D.J.; Galambos, J.D.; Peng, Y.K.M.

    1989-03-01

    Two versions of the Fusion Engineering Design Center (FEDC) free-boundary equilibrium code designed to computer the poloidal field (PF) coil current distribution of elongated, magnetically limited tokamak plasmas are demonstrated and applied to the systems analysis of the impact of plasma elongation on the design point of the International Thermonuclear Experimental Reactor (ITER). These notes were presented at the ITER Specialists' Meeting on the PF Coil System and Operational Scenario, held at the Max Planck Institute for Plasma Physics in Garching, Federal Republic of Germany, May 24--27, 1988. 8 refs., 6 figs., 4 tabs

  9. Equilibrium thermodynamics

    CERN Document Server

    de Oliveira, Mário J

    2017-01-01

    This textbook provides an exposition of equilibrium thermodynamics and its applications to several areas of physics with particular attention to phase transitions and critical phenomena. The applications include several areas of condensed matter physics and include also a chapter on thermochemistry. Phase transitions and critical phenomena are treated according to the modern development of the field, based on the ideas of universality and on the Widom scaling theory. For each topic, a mean-field or Landau theory is presented to describe qualitatively the phase transitions. These theories include the van der Waals theory of the liquid-vapor transition, the Hildebrand-Heitler theory of regular mixtures, the Griffiths-Landau theory for multicritical points in multicomponent systems, the Bragg-Williams theory of order-disorder in alloys, the Weiss theory of ferromagnetism, the Néel theory of antiferromagnetism, the Devonshire theory for ferroelectrics and Landau-de Gennes theory of liquid crystals. This new edit...

  10. Development and application of a tree-code in simulation scenarios of the plasma-wall interaction; Entwicklung und Anwendung eines Tree-Codes in Simulationsszenarios der Plasma-Wand-Wechselwirkung

    Energy Technology Data Exchange (ETDEWEB)

    Berberich, Benjamin

    2012-03-15

    Processes in the plasma edge layer of magnetic fusion devices occur on widely disparate length- and time-scales. Also recently developed features in this particular region, such as stochastic magnetic fields, underline the necessity for three dimensional, full-kinetic simulation tools. Contemporary programs often deploy ad hoc assumptions and approximations for microscopic phenomena for which self-consistent ab initio models in principle exist, but are still computationally too expensive or complex to implement. Recently, mesh-free methods have matured into a new class of tools for such first-principles computations which thanks to their geometric flexibility are highly promising for tackling complicated TOKAMAK regions. In this work we have develop the massively parallel Tree-Code PEPC-B (Pretty Efficient Parallel Coulomb solver) into a new tool for plasma material interaction studies. After a brief overview of the working principles of Tree-Codes two main topic groups are addressed: First the leap-frog Boris integration scheme is discussed and its numerical limitations are pointed out. To overcome these limitations the method is enhanced to a guiding-center integrator. As a proof of principal, numerical experiments are conducted reproducing the anticipated drift kinetic aspects of particle orbits. It turns out that this new technique is much less sensitive to large time steps than the original concept was. One major drawback of mesh-free methods which hinders their direct use for plasma-edge simulations is the difficulty in representing solid structures and associated boundary conditions. Therefore, an alternative concept is proposed using charge carrying Wall-Particles, which fits naturally in the mesh-free doctrine. These developments incorporate the second main topic group of this report. To prove the physical correctness of this new idea, a quasi one dimensional plasma-wall interface scenario is chosen. By studying the system with great detail, good agreement

  11. Scenario planning.

    Science.gov (United States)

    Enzmann, Dieter R; Beauchamp, Norman J; Norbash, Alexander

    2011-03-01

    In facing future developments in health care, scenario planning offers a complementary approach to traditional strategic planning. Whereas traditional strategic planning typically consists of predicting the future at a single point on a chosen time horizon and mapping the preferred plans to address such a future, scenario planning creates stories about multiple likely potential futures on a given time horizon and maps the preferred plans to address the multiple described potential futures. Each scenario is purposefully different and specifically not a consensus worst-case, average, or best-case forecast; nor is scenario planning a process in probabilistic prediction. Scenario planning focuses on high-impact, uncertain driving forces that in the authors' example affect the field of radiology. Uncertainty is the key concept as these forces are mapped onto axes of uncertainty, the poles of which have opposed effects on radiology. One chosen axis was "market focus," with poles of centralized health care (government control) vs a decentralized private market. Another axis was "radiology's business model," with one pole being a unified, single specialty vs a splintered, disaggregated subspecialty. The third axis was "technology and science," with one pole representing technology enabling to radiology vs technology threatening to radiology. Selected poles of these axes were then combined to create 3 scenarios. One scenario, termed "entrepreneurialism," consisted of a decentralized private market, a disaggregated business model, and threatening technology and science. A second scenario, termed "socialized medicine," had a centralized market focus, a unified specialty business model, and enabling technology and science. A third scenario, termed "freefall," had a centralized market focus, a disaggregated business model, and threatening technology and science. These scenarios provide a range of futures that ultimately allow the identification of defined "signposts" that can

  12. Scenarios and innovative systems

    International Nuclear Information System (INIS)

    2001-11-01

    The purpose of this workshop is to present to the GEDEON community the scenarios for the deployment of innovative nuclear solutions. Both steady state situations and possible transitions from the present to new reactors and fuel cycles are considered. Innovative systems that satisfy improved natural resource utilization and waste minimization criteria will be described as well as the R and D orientations of various partners. This document brings together the transparencies of 17 communications given at this workshop: general policy for transmutation and partitioning; Amster: a molten salt reactor (MSR) concept; MSR capabilities; potentials and capabilities of accelerator driven systems (ADS); ADS demonstrator interest as an experimental facility; innovative systems: gas coolant technologies; Pu management in EPR; scenarios with thorium fuel; scenarios at the equilibrium state; scenarios for transition; partitioning and specific conditioning; management of separated radio-toxic elements; European programs; DOE/AAA (Advanced Accelerator Applications) program; OECD scenario studies; CEA research programs and orientations; partitioning and transmutation: an industrial point of view. (J.S.)

  13. Data-driven robust control of the plasma rotational transform profile and normalized beta dynamics for advanced tokamak scenarios in DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Shi, W.; Wehner, W.P.; Barton, J.E.; Boyer, M.D. [Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA 18015 (United States); Schuster, E., E-mail: schuster@lehigh.edu [Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA 18015 (United States); Moreau, D. [CEA, IRFM, F-13018 St Paul lez Durance (France); Walker, M.L.; Ferron, J.R.; Luce, T.C.; Humphreys, D.A.; Penaflor, B.G.; Johnson, R.D. [General Atomics, San Diego, CA 92121 (United States)

    2017-04-15

    A control-oriented, two-timescale, linear, dynamic, response model of the rotational transform ι profile and the normalized beta β{sub N} is proposed based on experimental data from the DIII-D tokamak. Dedicated system-identification experiments without feedback control have been carried out to generate data for the development of this model. The data-driven dynamic model, which is both device-specific and scenario-specific, represents the response of the ι profile and β{sub N} to the electric field due to induction as well as to the heating and current drive (H&CD) systems during the flat-top phase of an H-mode discharge in DIII-D. The control goal is to use both induction and the H&CD systems to locally regulate the plasma ι profile and β{sub N} around particular target values close to the reference state used for system identification. A singular value decomposition (SVD) of the plasma model at steady state is carried out to decouple the system and identify the most relevant control channels. A mixed-sensitivity robust control design problem is formulated based on the dynamic model to synthesize a stabilizing feedback controller without input constraints that minimizes the reference tracking error and rejects external disturbances with minimal control energy. The feedback controller is then augmented with an anti-windup compensator, which keeps the given controller well-behaved in the presence of magnitude constraints in the actuators and leaves the nominal closed-loop system unmodified when no saturation is present. The proposed controller represents one of the first feedback profile controllers integrating magnetic and kinetic variables ever implemented and experimentally tested in DIII-D. The preliminary experimental results presented in this work, although limited in number and constrained by actuator problems and design limitations, as it will be reported, show good progress towards routine current profile control in DIII-D and leave valuable lessons

  14. Scenario? Guilty!

    DEFF Research Database (Denmark)

    Kyng, Morten

    1992-01-01

    Robert Campbell categorizes the word "scenario" as a buzzword, identifies four major uses within HCI and suggests that we adopt new terms differentiating these four uses of the word. My first reaction to reading the article was definitely positive, but rereading it gave me enough second thoughts...... to warrant a response. I should probably confess that I searched my latest paper for the word "scenario" and found eight occurrences, none of which fell in the categories described by Campbell....

  15. Equilibrium modeling of the TFCX poloidal field coil system

    International Nuclear Information System (INIS)

    Strickler, D.J.; Miller, J.B.; Rothe, K.E.; Peng, Y.K.M.

    1984-04-01

    The Toroidal Fusion Core Experiment (TFCX) isproposed to be an ignition device with a low safety factor (q approx. = 2.0), rf or rf-assisted startup, long inductive burn pulse (approx. 300 s), and an elongated plasma cross section (kappa = 1.6) with moderate triangularity (delta = 0.3). System trade studies have been carried out to assist in choosing an appropriate candidate for TFCX conceptual design. This report describes an important element in these system studies - the magnetohydrodynamic (MHD) equilibrium modeling of the TFCX poloidal field (PF) coil system and its impact on the choice of machine size. Reference design points for the all-super-conducting toroidal field (TF) coil (TFCX-S) and hybrid (TFCX-H) options are presented that satisfy given PF system criteria, including volt-second requirements during burn, mechanical configuration constraints, maximum field constraints at the superconducting PF coils, and plasma shape parameters. Poloidal coil current waveforms for the TFCX-S and TFCX-H reference designs consistent with the equilibrium requirements of the plasma startup, heating, and burn phases of a typical discharge scenario are calculated. Finally, a possible option for quasi-steady-state operation is discussed

  16. Current scenario

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Current scenario. India , like other parts of the world, is also facing the problem of increase in the incidence of drug resistance in tuberculosis. Multi-drug resistance (MDR, resistance to RIF & INH) and extensively drug resistant strains (X-DR, resistance to RIF, INH, FQs ...

  17. Investigation of local thermodynamic equilibrium of laser induced Al2O3–TiC plasma in argon by spatially resolved optical emission spectroscopy

    Directory of Open Access Journals (Sweden)

    K. Alnama

    2016-06-01

    Full Text Available Plasma plume of Al2O3–TiC is generated by third harmonic Q-switched Nd:YAG nanosecond laser. It is characterized using Optical Emission Spectroscopy (OES at different argon background gas pressures 10, 102, 103, 104 and 105 Pa. Spatial evolution of excitation and ionic temperatures is deduced from spectral data analysis. Temporal evolution of Ti I emission originated from different energy states is probed. The correlation between the temporal behavior and the spatial temperature evolution are investigated under LTE condition for the possibility to use the temporal profile of Ti I emission as an indicator for LTE validity in the plasma.

  18. An advanced plasma control system for Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Wijnands, T.; Martin, G.

    1996-01-01

    First results on plasma control with the new plasma control system of Tore Supra are presented. The system has been especially designed for long pulse operation: plasmas are controlled on reference signals, which can be varied in real time by using diagnostic measurements. On line determination of the global plasma equilibrium has enabled new operation scenarios in which both the power from the poloidal field generators and the total Lower Hybrid (LH) power are used to control the plasma. Experiments with feedback control of the safety factor on the plasma boundary, control of the LH driven current, control of the flux on the plasma boundary and control of the internal inductance are discussed. (author). 12 refs.

  19. An advanced plasma control system for Tore Supra

    International Nuclear Information System (INIS)

    Wijnands, T.; Martin, G.

    1996-01-01

    First results on plasma control with the new plasma control system of Tore Supra are presented. The system has been especially designed for long pulse operation: plasmas are controlled on reference signals, which can be varied in real time by using diagnostic measurements. On line determination of the global plasma equilibrium has enabled new operation scenarios in which both the power from the poloidal field generators and the total Lower Hybrid (LH) power are used to control the plasma. Experiments with feedback control of the safety factor on the plasma boundary, control of the LH driven current, control of the flux on the plasma boundary and control of the internal inductance are discussed. (author)

  20. Computational studies in tokamak equilibrium and transport

    International Nuclear Information System (INIS)

    Braams, B.J.

    1986-01-01

    This thesis is concerned with some problems arising in the magnetic confinement approach to controlled thermonuclear fusion. The work address the numerical modelling of equilibrium and transport properties of a confined plasma and the interpretation of experimental data. The thesis is divided in two parts. Part 1 is devoted to some aspects of the MHD equilibrium problem, both in the 'direct' formulation (given an equation for the plasma current, the corresponding equilibrium is to be determined) and in the 'inverse' formulation (the interpretation of measurements at the plasma edge). Part 2 is devoted to numerical studies of the edge plasma. The appropriate Navier-Stokes system of fluid equations is solved in a two-dimensional geometry. The main interest of this work is to develop an understanding of particle and energy transport in the scrape-off layer and onto material boundaries, and also to contribute to the conceptual design of the NET/INTOR tokamak reactor experiment. (Auth.)

  1. PCB 28 metabolites elimination kinetics in human plasma on a real case scenario: Study of hydroxylated polychlorinated biphenyl (OH-PCB) metabolites of PCB 28 in a highly exposed German Cohort.

    Science.gov (United States)

    Quinete, Natalia; Esser, André; Kraus, Thomas; Schettgen, Thomas

    2017-07-05

    Polychlorinated biphenyls (PCBs) are suspected of carcinogenic, neurotoxic and immunotoxic effects in animals and humans. Although background levels of PCBs have been slowly decreased after their ban, they are still among the most persistent and ubiquitous pollutants in the environment, remaining the subject of great concern. PCB 28 is a trichlorinated PCB found in high concentrations not only in human plasma but also in indoor air in Europe, yet little is known about its metabolic pathway and potential metabolites in humans. The present study aims to elucidate the kinetics of metabolite formation and elimination by analyzing four hydroxylated PCBs (OH-PCBs) in human plasma as potential metabolites of the PCB 28 congener. For this purpose, the study was conducted in plasma samples of highly PCB-exposed individuals (N=268), collected from 2010 to 2014 as a representation of a real case scenario with longitudinal data. OH-PCBs have been predicted, synthesized in the course of this study and further identified and quantitated in human plasma. This is the first time that previously unknown PCB 28 metabolites have been measured in human plasma and half-lives have been estimated for PCB metabolites, which could then provide further understanding in the toxicological consequences of exposure to PCBs in humans. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Effects of intravenous solutions on acid-base equilibrium: from crystalloids to colloids and blood components.

    Science.gov (United States)

    Langer, Thomas; Ferrari, Michele; Zazzeron, Luca; Gattinoni, Luciano; Caironi, Pietro

    2014-01-01

    Intravenous fluid administration is a medical intervention performed worldwide on a daily basis. Nevertheless, only a few physicians are aware of the characteristics of intravenous fluids and their possible effects on plasma acid-base equilibrium. According to Stewart's theory, pH is independently regulated by three variables: partial pressure of carbon dioxide, strong ion difference (SID), and total amount of weak acids (ATOT). When fluids are infused, plasma SID and ATOT tend toward the SID and ATOT of the administered fluid. Depending on their composition, fluids can therefore lower, increase, or leave pH unchanged. As a general rule, crystalloids having a SID greater than plasma bicarbonate concentration (HCO₃-) cause an increase in plasma pH (alkalosis), those having a SID lower than HCO₃- cause a decrease in plasma pH (acidosis), while crystalloids with a SID equal to HCO₃- leave pH unchanged, regardless of the extent of the dilution. Colloids and blood components are composed of a crystalloid solution as solvent, and the abovementioned rules partially hold true also for these fluids. The scenario is however complicated by the possible presence of weak anions (albumin, phosphates and gelatins) and their effect on plasma pH. The present manuscript summarises the characteristics of crystalloids, colloids, buffer solutions and blood components and reviews their effect on acid-base equilibrium. Understanding the composition of intravenous fluids, along with the application of simple physicochemical rules best described by Stewart's approach, are pivotal steps to fully elucidate and predict alterations of plasma acid-base equilibrium induced by fluid therapy.

  3. Advanced scenarios for ITER operation

    Energy Technology Data Exchange (ETDEWEB)

    Sips, A.C.C. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

    2004-07-01

    In thermonuclear fusion research using magnetic confinement, the tokamak is the leading candidate for achieving conditions required for a reactor. An international experiment, ITER is proposed as the next essential and critical step on the path to demonstrating the scientific and technological feasibility of fusion energy. ITER is to produce and study plasmas dominated by self heating. This would give unique opportunities to explore, in reactor relevant conditions, the physics of {alpha}-particle heating, plasma turbulence and turbulent transport, stability limits to the plasma pressure and exhaust of power and particles. Important new results obtained in experiments, theory and modelling, enable an improved understanding of the physical processes occurring in tokamak plasmas and give enhanced confidence in ITER achieving its goals. In particular, progress has been made in research to raise the performance of tokamaks, aimed to extend the discharge pulse length towards steady-state operation (advanced scenarios). Standard tokamak discharges have a current density increasing monotonically towards the centre of the plasma. Advanced scenarios on the other hand use a modified current density profile. Different advanced scenarios range from (i) plasmas that sustain a central region with a flat current density profile (zero magnetic shear), capable of operating stationary at high plasma pressure, to (ii) discharges with an off axis maximum of the current density profile (reversed magnetic shear in the core), able to form internal transport barriers, to increase the confinement of the plasma. The physics of advanced tokamak discharges is described, together with an overview of recent results from different tokamak experiments. International collaboration between experiments aims to provide a better understanding, control and optimisation of these plasmas. The ability to explore advanced scenarios in ITER is very desirable, in order to verify the result obtained in

  4. Experimental determination of some equilibrium parameter of Damavand tokamak by magnetic probe measurements for representing a physical model for plasma vertical movement.

    Science.gov (United States)

    Farahani, N Darestani; Davani, F Abbasi

    2015-10-01

    This investigation is about plasma modeling for the control of vertical instabilities in Damavand tokamak. This model is based on online magnetic measurement. The algebraic equation defining the vertical position in this model is based on instantaneous force-balance. Two parameters in this equation, including decay index, n, and lambda, Λ, have been considered as functions of time-varying poloidal field coil currents and plasma current. Then these functions have been used in a code generated for modeling the open loop response of plasma. The main restriction of the suitability analysis of the model is that the experiments always have to be performed in the presence of a control loop for stabilizing vertical position. As a result, open loop response of the system has been identified from closed loop experimental data by nonlinear neural network identification method. The results of comparison of physical model with identified open loop response from closed loop experiments show root mean square error percentage less than 10%. The results are satisfying that the physical model is useful as a Damavand tokamak vertical movement simulator.

  5. Ideal MHD Stability Prediction and Required Power for EAST Advanced Scenario

    International Nuclear Information System (INIS)

    Chen Junjie; Li Guoqiang; Qian Jinping; Liu Zixi

    2012-01-01

    The Experimental Advanced Superconducting Tokamak (EAST) is the first fully superconducting tokamak with a D-shaped cross-sectional plasma presently in operation. The ideal magnetohydrodynamic (MHD) stability and required power for the EAST advanced tokamak (AT) scenario with negative central shear and double transport barrier (DTB) are investigated. With the equilibrium code TOQ and stability code GATO, the ideal MHD stability is analyzed. It is shown that a moderate ratio of edge transport barriers' (ETB) height to internal transport barriers' (ITBs) height is beneficial to ideal MHD stability. The normalized beta β N limit is about 2.20 (without wall) and 3.70 (with ideal wall). With the scaling law of energy confinement time, the required heating power for EAST AT scenario is calculated. The total heating power P t increases as the toroidal magnetic field B T or the normalized beta β N is increased. (magnetically confined plasma)

  6. Equilibrium Droplets on Deformable Substrates: Equilibrium Conditions.

    Science.gov (United States)

    Koursari, Nektaria; Ahmed, Gulraiz; Starov, Victor M

    2018-05-15

    Equilibrium conditions of droplets on deformable substrates are investigated, and it is proven using Jacobi's sufficient condition that the obtained solutions really provide equilibrium profiles of both the droplet and the deformed support. At the equilibrium, the excess free energy of the system should have a minimum value, which means that both necessary and sufficient conditions of the minimum should be fulfilled. Only in this case, the obtained profiles provide the minimum of the excess free energy. The necessary condition of the equilibrium means that the first variation of the excess free energy should vanish, and the second variation should be positive. Unfortunately, the mentioned two conditions are not the proof that the obtained profiles correspond to the minimum of the excess free energy and they could not be. It is necessary to check whether the sufficient condition of the equilibrium (Jacobi's condition) is satisfied. To the best of our knowledge Jacobi's condition has never been verified for any already published equilibrium profiles of both the droplet and the deformable substrate. A simple model of the equilibrium droplet on the deformable substrate is considered, and it is shown that the deduced profiles of the equilibrium droplet and deformable substrate satisfy the Jacobi's condition, that is, really provide the minimum to the excess free energy of the system. To simplify calculations, a simplified linear disjoining/conjoining pressure isotherm is adopted for the calculations. It is shown that both necessary and sufficient conditions for equilibrium are satisfied. For the first time, validity of the Jacobi's condition is verified. The latter proves that the developed model really provides (i) the minimum of the excess free energy of the system droplet/deformable substrate and (ii) equilibrium profiles of both the droplet and the deformable substrate.

  7. Equilibrium vertical field in the TBR Tokamak

    International Nuclear Information System (INIS)

    Ueta, A.Y.

    1985-01-01

    An experimental study on the influence of the vertical magnetic field of the TBR tokamak on the stability and equilibrium of plasma column, was done. Magnetic pick-up coils were built to measure plasma current and position, together with active networks, necessary fo the electronic processing of signals. Some measurements were on the space configuration of the vertical field, and on the influence due to the toroidal vessel. From the data obtained it was possible to discuss the influence of the currents induced on the vessel surface, on plasma equilibrium. Theoretical and experimental results of the vertica field, as a function of plasma current were compared, and allowed an evaluation of the plasma kinetic pressure and temperature. (Author) [pt

  8. Some aspects of plasma thermodynamics

    International Nuclear Information System (INIS)

    Gorgoraki, V.I.

    1986-01-01

    The objective reasons which have inhibited the development of a plasma-thermodynamics theory are discussed and the authors formulate the fundamental principles which can be the basis of a common plasma-thermodynamics theory. Two kinds of thermodynamic equilibrium plasmas are discussed, an isothermal plasma and a nonisothermal plasma. An isothermal plasma is a high-temperature plasma; the Saha-Eggert equation describes its behavior. A nonisothermal plasma is a low-temperature plasma, and the reactions taking place therein are purely plasma-chemical. The ionization equilibrium and the composition of such a plasma can be found with the aid of the equations presented in this paper

  9. The Theory of Variances in Equilibrium Reconstruction

    International Nuclear Information System (INIS)

    Zakharov, Leonid E.; Lewandowski, Jerome; Foley, Elizabeth L.; Levinton, Fred M.; Yuh, Howard Y.; Drozdov, Vladimir; McDonald, Darren

    2008-01-01

    The theory of variances of equilibrium reconstruction is presented. It complements existing practices with information regarding what kind of plasma profiles can be reconstructed, how accurately, and what remains beyond the abilities of diagnostic systems. The σ-curves, introduced by the present theory, give a quantitative assessment of quality of effectiveness of diagnostic systems in constraining equilibrium reconstructions. The theory also suggests a method for aligning the accuracy of measurements of different physical nature

  10. Development of ITER 15 MA ELMy H-mode Inductive Scenario

    International Nuclear Information System (INIS)

    C. E. Kessel, D. Campbell, Y. Gribov, G. Saibene, G. Ambrosino, T. Casper, M. Cavinato, H. Fujieda, R. Hawryluk, L. D. Horton, A. Kavin, R. Kharyrutdinov, F. Koechl, J. Leuer, A. Loarte, P. J. Lomas, T. Luce, V. Lukash, M. Mattei, I.Nunes, V. Parail, A. Polevoi, A. Portone, R. Sartori, A.C.C. Sips, P. R. Thomas, A. Welander and J. Wesley

    2008-01-01

    The poloidal field (PF) coil system on ITER, which provides both feedforward and feedback control of plasma position, shape, and current, is a critical element for achieving mission performance. Analysis of PF capabilities has focused on the 15 MA Q = 10 scenario with a 300-500 s flattop burn phase. The operating space available for the 15 MA ELMy H-mode plasma discharges in ITER and upgrades to the PF coils or associated systems to establish confidence that ITER mission objectives can be reached have been identified. Time dependent self-consistent free-boundary calculations were performed to examine the impact of plasma variability, discharge programming, and plasma disturbances. Based on these calculations a new reference scenario was developed based upon a large bore initial plasma, early divertor transition, low level heating in L-mode, and a late H-mode onset. Equilibrium analyses for this scenario indicate that the original PF coil limitations do not allow low li (<0.8) operation or lower flux states, and the flattop burn durations were predicted to be less than the desired 400 s. This finding motivates the expansion of the operating space, considering several upgrade options to the PF coils. Analysis was also carried out to examine the feedback current reserve required in the CS and PF coils during a series of disturbances and a feasibility assessment of the 17 MA scenario was undertaken. Results of the studies show that the new scenario and modified PF system will allow a wide range of 15 MA 300-500 s operation and more limited but finite 17 MA operation

  11. Cold dark matter in brane cosmology scenario

    International Nuclear Information System (INIS)

    Dahab, Eiman Abou El; Khalil, Shaaban

    2006-01-01

    We analyze the dark matter problem in the context of brane cosmology. We investigate the impact of the non-conventional brane cosmology on the relic abundance of non-relativistic stable particles in high and low reheating temperature scenarios. We show that in case of high reheating temperature, the brane cosmology may enhance the dark matter relic density by many order of magnitudes and a stringent lower bound on the five dimensional scale is obtained. We also consider low reheating temperature scenarios with chemical equilibrium and non-equilibrium. We emphasize that in non-equilibrium case, the resulting relic density is very small. While with equilibrium, it is increased by a factor of O(10 2 ) with respect to the standard thermal production. Therefore, dark matter particles with large cross section, which is favored by detection expirements, can be consistent with the recent relic density observational limits

  12. Generalized study of the return to equilibrium of a particle in a plasma (Fokker-Planck formalism) (1961); Etude generale du retour a l'equilibre d'une particule au sein d'un plasma (formalisme de Fokker-Planck) (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Salmon, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Faculte des Sciences de Caen, 14 (France)

    1961-07-01

    The author examines the problem of the return to equilibrium of a particle in a plasma and completely explains Fokker-Planck equation. After that, he studies the possibility of interpreting the return of the test particle to Maxwellian distribution, using the development - which is obtained. He discusses the validity limits of the Rosenbluth, MacDonald and Judd approximation. (author) [French] Examinant le probleme du retour a l'equilibre d'une particule test au sein d'un plasma en equilibre, l'auteur cherche a expliciter completement l'expression de l'operateur de Fokker-Planck. Il etudie ensuite les conditions de coherence, c'est-a-dire la possibilite pour le developpement obtenu de traduire le retour de la particule test a l'etat maxwellien et discute des limites de validite de la formule de 'Rosenbluth, Mac Donald et Judd'. (auteur)

  13. MHD equilibrium identification on ASDEX-Upgrade

    International Nuclear Information System (INIS)

    McCarthy, P.J.; Schneider, W.; Lakner, K.; Zehrfeld, H.P.; Buechl, K.; Gernhardt, J.; Gruber, O.; Kallenbach, A.; Lieder, G.; Wunderlich, R.

    1992-01-01

    A central activity accompanying the ASDEX-Upgrade experiment is the analysis of MHD equilibria. There are two different numerical methods available, both using magnetic measurements which reflect equilibrium states of the plasma. The first method proceeds via a function parameterization (FP) technique, which uses in-vessel magnetic measurements to calculate up to 66 equilibrium parameters. The second method applies an interpretative equilibrium code (DIVA) for a best fit to a different set of magnetic measurements. Cross-checks with the measured particle influxes from the inner heat shield and the divertor region and with visible camera images of the scrape-off layer are made. (author) 3 refs., 3 figs

  14. Ion exchange equilibrium constants

    CERN Document Server

    Marcus, Y

    2013-01-01

    Ion Exchange Equilibrium Constants focuses on the test-compilation of equilibrium constants for ion exchange reactions. The book first underscores the scope of the compilation, equilibrium constants, symbols used, and arrangement of the table. The manuscript then presents the table of equilibrium constants, including polystyrene sulfonate cation exchanger, polyacrylate cation exchanger, polymethacrylate cation exchanger, polysterene phosphate cation exchanger, and zirconium phosphate cation exchanger. The text highlights zirconium oxide anion exchanger, zeolite type 13Y cation exchanger, and

  15. Quantity Constrained General Equilibrium

    NARCIS (Netherlands)

    Babenko, R.; Talman, A.J.J.

    2006-01-01

    In a standard general equilibrium model it is assumed that there are no price restrictions and that prices adjust infinitely fast to their equilibrium values.In case of price restrictions a general equilibrium may not exist and rationing on net demands or supplies is needed to clear the markets.In

  16. Role of quenching of metastable states in acetaldehyde decomposition by a non-equilibrium nitrogen plasma at sub-atmospheric pressure

    Science.gov (United States)

    Faider, W.; Pasquiers, S.; Blin-Simiand, N.; Magne, L.

    2013-03-01

    A photo-triggered discharge is used to study the decomposition processes of acetaldehyde in a high-pressure (460 mbar) nitrogen plasma, for a concentration of CH3CHO ranging from 500 up to 5000 ppm. Results of chromatographic measurements are compared with predictions of a self-consistent discharge and plasma kinetic model, for the primary molecule and for a number of detected by-products: H2, CH4, C2H2, C2H4, C2H6, CO and CH3COCH3. The main by-products are H2, CH4 and CO. It is proposed that CH3CHO mainly decomposes owing to quenching collisions of metastable states of the nitrogen molecule. The estimated coefficients for the quenching of N_2(A\\,^{3}\\!\\Sigma ^{{+}}_{\\rm{u}}) is 4.2 × 10-11 cm3 s-1, assuming that the coefficient for the singlet states equals the one previously known for the quenching of N2(a‧) by ethene, i.e. 4.0 × 10-10 cm3 s-1. A value of 6.5 × 10-11 cm3 s-1 constitutes a maximum for N_2(A\\,^{3}\\!\\Sigma^{{+}}_{\\rm{u}}) and a minimum for N2(a‧). The most probable exit routes (and the branching ratios) for the dissociation process of CH3CHO are CH3 + HCO (45%), CH4 + CO (30%), CH2CO + H2 (17%) and CH3CO + H (8%), as regards A\\,^{3}\\!\\Sigma ^{{+}}_{\\rm{u}} . For singlet states, a break of the double C = O bond occurs and the branching ratios are 15% for both exit channels producing C2H2 and C2H4 together with the oxygen atom. The model predictions for concentration values of C2H6 and CH3COCH3 are in good accordance with measurements, supporting the proposed dissociation pathways that lead to the production of methyl and acetyl radicals.

  17. Non-axisymmetric equilibrium reconstruction and suppression of density limit disruptions in a current-carrying stellarator

    Science.gov (United States)

    Ma, Xinxing; Ennis, D. A.; Hanson, J. D.; Hartwell, G. J.; Knowlton, S. F.; Maurer, D. A.

    2017-10-01

    Non-axisymmetric equilibrium reconstructions have been routinely performed with the V3FIT code in the Compact Toroidal Hybrid (CTH), a stellarator/tokamak hybrid. In addition to 50 external magnetic measurements, 160 SXR emissivity measurements are incorporated into V3FIT to reconstruct the magnetic flux surface geometry and infer the current distribution within the plasma. Improved reconstructions of current and q profiles provide insight into understanding the physics of density limit disruptions observed in current-carrying discharges in CTH. It is confirmed that the final scenario of the density limit of CTH plasmas is consistent with classic observations in tokamaks: current profile shrinkage leads to growing MHD instabilities (tearing modes) followed by a loss of MHD equilibrium. It is also observed that the density limit at a given current linearly increases with increasing amounts of 3D shaping fields. Consequently, plasmas with densities up to two times the Greenwald limit are attained. Equilibrium reconstructions show that addition of 3D fields effectively moves resonance surfaces towards the edge of the plasma where the current profile gradient is less, providing a stabilizing effect. This work is supported by US Department of Energy Grant No. DE-FG02-00ER54610.

  18. Equilibrium restoration in a class of tolerant strategies

    OpenAIRE

    Balanquit, Romeo

    2010-01-01

    This study shows that in a two-player infinitely repeated game where one is impatient, Pareto-superior subgame perfect equilibrium can still be achieved. An impatient player in this paper is depicted as someone who can truly destroy the possibility of attaining any feasible and individually rational outcome that is supported in equilibrium in repeated games, as asserted by the Folk Theorem. In this scenario, the main ingredient for the restoration of equilibrium is to introduce the notion of ...

  19. Measured MHD equilibrium in Alcator C

    International Nuclear Information System (INIS)

    Pribyl, P.A.

    1986-03-01

    A method of processing data from a set of partial Rogowski loops is developed to study the MHD equilibrium in Alcator C. Time dependent poloidal fields in the vicinity of the plasma are calculated from measured currents, with field penetration effects being accounted for. Fields from eddy currents induced by the plasma in the tokamak structure are estimated as well. Each of the set of twelve B/sub θ/ measurements can then be separated into a component from the plasma current and a component from currents external to the pickup loops. Harmonic solutions to Maxwell's equations in toroidal coordinates are fit to these measurements in order to infer the fields everywhere in the vacuum region surrounding the plasma. Using this diagnostic, plasma current, position, shape, and the Shafranov term Λ = β/sub p/ + l/sub i//2 - 1 may be computed, and systematic studies of these plasma parameters are undertaken for Alcator C plasmas

  20. Towards predictive scenario simulations combining LH, ICRH and ECRH heating

    International Nuclear Information System (INIS)

    Basiuk, V.; Artaud, J.F.; Becoulet, A.; Eriksson, L.G.; Hoang, G.T.; Huysmans, G.; Imbeaux, F.; Litaudon, X.; Mazon, D.; Passeron, C.; Peysson, Y.

    2003-01-01

    Reliable predictive simulations, combining current, heat and matter transport equation with a 2D equilibrium allowing diagnostic reconstruction such as Faraday angle and MSE angle are of a great interest for existing and future tokamak. The Cronos code with its various power deposition codes (Delphine, Rema, Pion) is a powerful tool to prepare such scenario in a reasonable CPU time (a few hours, for one minute plasma discharge). An example of such advanced scenario, with a negative seed of current at the center of the discharge is shown in this paper. It allows also testing new concept of feedback control, which will be directly implemented on the new real-time network of Tore-Supra. In this concept, the algorithm as to find itself the best and safe way to reach enhance performance (i.e. best plasma fusion power D-D) using different actuators (injected power,...). On this paper, we will focus on a simple example where the initial and final states are known and we will show why a steady state tokamak allowing long pulse operation is necessary for such control. (authors)

  1. Simulations of KSTAR high performance steady state operation scenarios

    International Nuclear Information System (INIS)

    Na, Yong-Su; Kessel, C.E.; Park, J.M.; Yi, Sumin; Kim, J.Y.; Becoulet, A.; Sips, A.C.C.

    2009-01-01

    We report the results of predictive modelling of high performance steady state operation scenarios in KSTAR. Firstly, the capabilities of steady state operation are investigated with time-dependent simulations using a free-boundary plasma equilibrium evolution code coupled with transport calculations. Secondly, the reproducibility of high performance steady state operation scenarios developed in the DIII-D tokamak, of similar size to that of KSTAR, is investigated using the experimental data taken from DIII-D. Finally, the capability of ITER-relevant steady state operation is investigated in KSTAR. It is found that KSTAR is able to establish high performance steady state operation scenarios; β N above 3, H 98 (y, 2) up to 2.0, f BS up to 0.76 and f NI equals 1.0. In this work, a realistic density profile is newly introduced for predictive simulations by employing the scaling law of a density peaking factor. The influence of the current ramp-up scenario and the transport model is discussed with respect to the fusion performance and non-inductive current drive fraction in the transport simulations. As observed in the experiments, both the heating and the plasma current waveforms in the current ramp-up phase produce a strong effect on the q-profile, the fusion performance and also on the non-inductive current drive fraction in the current flattop phase. A criterion in terms of q min is found to establish ITER-relevant steady state operation scenarios. This will provide a guideline for designing the current ramp-up phase in KSTAR. It is observed that the transport model also affects the predictive values of fusion performance as well as the non-inductive current drive fraction. The Weiland transport model predicts the highest fusion performance as well as non-inductive current drive fraction in KSTAR. In contrast, the GLF23 model exhibits the lowest ones. ITER-relevant advanced scenarios cannot be obtained with the GLF23 model in the conditions given in this work

  2. Local Nash equilibrium in social networks.

    Science.gov (United States)

    Zhang, Yichao; Aziz-Alaoui, M A; Bertelle, Cyrille; Guan, Jihong

    2014-08-29

    Nash equilibrium is widely present in various social disputes. As of now, in structured static populations, such as social networks, regular, and random graphs, the discussions on Nash equilibrium are quite limited. In a relatively stable static gaming network, a rational individual has to comprehensively consider all his/her opponents' strategies before they adopt a unified strategy. In this scenario, a new strategy equilibrium emerges in the system. We define this equilibrium as a local Nash equilibrium. In this paper, we present an explicit definition of the local Nash equilibrium for the two-strategy games in structured populations. Based on the definition, we investigate the condition that a system reaches the evolutionary stable state when the individuals play the Prisoner's dilemma and snow-drift game. The local Nash equilibrium provides a way to judge whether a gaming structured population reaches the evolutionary stable state on one hand. On the other hand, it can be used to predict whether cooperators can survive in a system long before the system reaches its evolutionary stable state for the Prisoner's dilemma game. Our work therefore provides a theoretical framework for understanding the evolutionary stable state in the gaming populations with static structures.

  3. Phase equilibrium engineering

    CERN Document Server

    Brignole, Esteban Alberto

    2013-01-01

    Traditionally, the teaching of phase equilibria emphasizes the relationships between the thermodynamic variables of each phase in equilibrium rather than its engineering applications. This book changes the focus from the use of thermodynamics relationships to compute phase equilibria to the design and control of the phase conditions that a process needs. Phase Equilibrium Engineering presents a systematic study and application of phase equilibrium tools to the development of chemical processes. The thermodynamic modeling of mixtures for process development, synthesis, simulation, design and

  4. Equilibrium and generators

    International Nuclear Information System (INIS)

    Balter, H.S.

    1994-01-01

    This work studies the behaviour of radionuclides when it produce a desintegration activity,decay and the isotopes stable creation. It gives definitions about the equilibrium between activity of parent and activity of the daughter, radioactive decay,isotope stable and transient equilibrium and maxim activity time. Some considerations had been given to generators that permit a disgregation of two radioisotopes in equilibrium and its good performance. Tabs

  5. Plasma-Column Equilibrium in Tokamak-5; L'Equilibre d'une Colonne de Plasma dans l'Installation Tokamak-5; Issledovanie ravnovesiya plazmennogo shnura na ustanovke Tokamak-5; El Equilibrio de una Columna de Plasma en la Instalacion 'Tokamak-5'

    Energy Technology Data Exchange (ETDEWEB)

    Muhovatov, V. S. [Institut Atomnoj Ehnergii, Im. I.V. Kurchatova, Moskva, SSSR (Russian Federation)

    1966-04-15

    This paper, which is a continuation of work done by Grigorovich and Mukhovatov, is devoted to an investigation of the conditions of equilibrium of the plasma column in Tokamak-5. This equipment has the following parameters: large radius of the copper casing R = 62. 5 cm, small radius b = 25 cm, small radius of the liner = 20 cm, radius of the opening in the diaphragm = 15 cm (the centre of the opening in the diaphragm and the centre of the cross-section of the casing coincide), intensity of the longitudinal magnetic field B{sub 0} = 6 to 12 kOe and current in the plasma J = 15 to 20 kA, The tests were carried out at an initial hydrogen pressure of (1.8 to 5.0) x 10{sup -4} Torr. Between the casing and the liner were placed conductors, used to set up within the chamber a transverse magnetic field B{sub z} varying synchronously with the discharge current. Grigorovich and Mukhovatov had demonstrated qualitative agreement of experimental results with the hypothesis that the column is maintained in equilibrium by the copper casing, and had shown that the average electrical conductivity of the plasma over the cross-section of the column reaches its maximum if by means of the transverse field B{sub z} the column is arranged concentrically with the opening in the diaphragm. The present paper shows that in most discharge regimes there is good quantitative agreement between the experimental data and the theory of column equilibrium within the conducting casing. However, in a number of discharge regimes (with low initial gas pressures and high values of displacement {Delta}{sub B} = b{sup 2}B{sub z}c/2J directed towards the inner wall of the torus) there is a certain discrepancy between theory and experiment. An attempt was made to assess to what extent the process of cutting off drift current by the conducting diaphragm contributes to maintaining equilibrium of the column in Tokamak. For this purpose the diaphragm was cut into six segments isolated from each other. During a

  6. ITER safety and operational scenario

    International Nuclear Information System (INIS)

    Shimomura, Y.; Saji, G.

    1998-01-01

    The safety and environmental characteristics of ITER and its operational scenario are described. Fusion has built-in safety characteristics without depending on layers of safety protection systems. Safety considerations are integrated in the design by making use of the intrinsic safety characteristics of fusion adequate to the moderate hazard inventories. In addition to this, a systematic nuclear safety approach has been applied to the design of ITER. The safety assessment of the design shows how ITER will safely accommodate uncertainties, flexibility of plasma operations, and experimental components, which is fundamental in ITER, the first experimental fusion reactor. The operation of ITER will progress step by step from hydrogen plasma operation with low plasma current, low magnetic field, short pulse and low duty factor without fusion power to deuterium-tritium plasma operation with full plasma current, full magnetic field, long pulse and high duty factor with full fusion power. In each step, characteristics of plasma and optimization of plasma operation will be studied which will significantly reduce uncertainties and frequency/severity of plasma transient events in the next step. This approach enhances reliability of ITER operation. (orig.)

  7. Averaged description of 3D MHD equilibrium

    International Nuclear Information System (INIS)

    Medvedev, S.Yu.; Drozdov, V.V.; Ivanov, A.A.; Martynov, A.A.; Pashekhonov, Yu.Yu.; Mikhailov, M.I.

    2001-01-01

    A general approach by S.A.Galkin et al. in 1991 to 2D description of MHD equilibrium and stability in 3D systems was proposed. The method requires a background 3D equilibrium with nested flux surfaces to generate the metric of a Riemannian space in which the background equilibrium is described by the 2D equation of Grad-Shafranov type. The equation can be solved then varying plasma profiles and shape to get approximate 3D equilibria. In the framework of the method both planar axis conventional stellarators and configurations with spatial magnetic axis can be studied. In the present report the formulation and numerical realization of the equilibrium problem for stellarators with planar axis is reviewed. The input background equilibria with nested flux surfaces are taken from vacuum magnetic field approximately described by analytic scalar potential

  8. Fall Back Equilibrium

    NARCIS (Netherlands)

    Kleppe, J.; Borm, P.E.M.; Hendrickx, R.L.P.

    2008-01-01

    Fall back equilibrium is a refinement of the Nash equilibrium concept. In the underly- ing thought experiment each player faces the possibility that, after all players decided on their action, his chosen action turns out to be blocked. Therefore, each player has to decide beforehand on a back-up

  9. Ideal MHD Stability Prediction and Required Power for EAST Advanced Scenario

    Science.gov (United States)

    Chen, Junjie; Li, Guoqiang; Qian, Jinping; Liu, Zixi

    2012-11-01

    The Experimental Advanced Superconducting Tokamak (EAST) is the first fully superconducting tokamak with a D-shaped cross-sectional plasma presently in operation. The ideal magnetohydrodynamic (MHD) stability and required power for the EAST advanced tokamak (AT) scenario with negative central shear and double transport barrier (DTB) are investigated. With the equilibrium code TOQ and stability code GATO, the ideal MHD stability is analyzed. It is shown that a moderate ratio of edge transport barriers' (ETB) height to internal transport barriers' (ITBs) height is beneficial to ideal MHD stability. The normalized beta βN limit is about 2.20 (without wall) and 3.70 (with ideal wall). With the scaling law of energy confinement time, the required heating power for EAST AT scenario is calculated. The total heating power Pt increases as the toroidal magnetic field BT or the normalized beta βN is increased.

  10. Exploring Chemical and Thermal Non-equilibrium in Nitrogen Arcs

    International Nuclear Information System (INIS)

    Ghorui, S; Das, A K

    2012-01-01

    Plasma torches operating with nitrogen are of special importance as they can operate with usual tungsten based refractory electrodes and offer radical rich non-oxidizing high temperature environment for plasma chemistry. Strong gradients in temperature as well as species densities and huge convective fluxes lead to varying degrees of chemical non-equilibrium in associated regions. An axi-symmetric two-temperature chemical non-equilibrium model of a nitrogen plasma torch has been developed to understand the effects of thermal and chemical non-equilibrium in arcs. A 2-D finite volume CFD code in association with a non-equilibrium property routine enabled extraction of steady state self-consistent distributions of various plasma quantities inside the torch under various thermal and chemical non-equilibrium conditions. Chemical non-equilibrium has been incorporated through computation of diffusive and convective fluxes in each finite volume cell in every iteration and associating corresponding thermodynamic and transport properties through the scheme of 'chemical non-equilibrium parameter' introduced by Ghorui et. al. Recombination coefficient data from Nahar et. al. and radiation data from Krey and Morris have been used in the simulation. Results are presented for distributions of temperature, pressure, velocity, current density, electric potential, species densities and chemical non-equilibrium effects. Obtained results are compared with similar results under LTE.

  11. MHD equilibrium and stability in heliotron plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ichiguchi, Katsuji [National Inst. for Fusion Science, Toki, Gifu (Japan)

    1999-09-01

    Recent topics in the theoretical magnetohydrodynamic (MHD) analysis in the heliotron configuration are overviewed. Particularly, properties of three-dimensional equilibria, stability boundary of the interchange mode, effects of the net toroidal current including the bootstrap current and the ballooning mode stability are focused. (author)

  12. Development of Integrated Real-Time Control of Internal Transport Barriers in Advanced Operation Scenarios on JET

    International Nuclear Information System (INIS)

    Moreau, D.; Crisanti, F.; Laborde, L.

    2005-01-01

    An important experimental programme is in progress on JET to investigate plasma control schemes which, with a limited number of actuators, could eventually enable ITER to sustain steady state burning plasmas in an 'advanced tokamak' operation scenario. A multi-variable model-based technique was recently developed for the simultaneous control of several plasma parameter profiles in discharges with internal transport barriers (ITB), using lower hybrid current drive (LHCD) together with neutral beam injection (NBI) and ion cyclotron resonance heating (ICRH). The proposed distributed-parameter control scheme relies on the experimental identification of an integral linear response model operator and retains the intrinsic couplings between the plasma parameter profiles. A first set of experiments was performed to control the current density profile in the low-density/low-power LH-driven phase of the JET advanced scenarios, using only one actuator (LHCD) and a simplified (lumped-parameter) version of the control scheme. Several requested steady state magnetic equilibria were thus obtained and sustained for about 7s, up to full relaxation of the ohmic current throughout the plasma. A second set of experiments was dedicated to the control of the q-profile with 3 actuators (LHCD, NBI and ICRH) during the intense heating phase of advanced scenarios. The safety factor profile was also shown to approach a requested profile within about 5s. The achieved plasma equilibrium was close to steady state. Finally, during the recent high power experimental campaign, experiments have been conducted in a 3T/1.7MA plasma, achieving the simultaneous control of the current density and electron temperature profiles in ITB plasmas. Here, the distributed-parameter version of the algorithm was used for the first time, again with 3 actuators. Real-time control was applied during 7s, and allowed to reach successfully different target q-profiles (monotonic and reversed-shear ones) and different ITB

  13. Development of integrated real-time control of internal transport barriers in advanced operation scenarios on Jet

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, D.; Laborde, L.; Litaudon, X.; Mazon, D.; Zabeo, L.; Joffrin, E.; Lennholm, M. [Association Euratom-CEA, Centre d' Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Moreau, D. [EFDA-JET CSU, Culham Science Centre, Abingdon, OX (United Kingdom); Crisanti, F.; Pericoli-Ridolfini, V.; Riva, M.; Tuccillo, A. [Euratom-ENEA Association, C.R. Frascati (Italy); Murari, A. [Euratom-ENEA Association, Consorzio RFX, Padova (Italy); Tala, T. [Euratom-TEKES Association, VTT Processes (Finland); Albanese, R.; Ariola, M.; Tommasi, G. de; Pironti, A. [Euratom-ENEA Association, CREATE, Napoli (Italy); Felton, R.; Zastrow, K.D. [Euratom-UKAEA Association, Culham Science Centre, Abingdon(United Kingdom); Baar, M. de; Vries, P. de [Euratom-FOM Association, TEC Cluster, Nieuwegein (Netherlands); La Luna, E. de [Euratom-CIEMAT Association, CIEMAT, Madrid (Spain)

    2004-07-01

    An important experimental programme is in progress on JET to investigate plasma control schemes which, with a limited number of actuators, could eventually enable ITER to sustain steady state burning plasmas in an 'advanced tokamak' operation scenario. A multi-variable model-based technique was recently developed for the simultaneous control of several plasma parameter profiles in discharges with internal transport barriers (ITB), using lower hybrid current drive (LHCD) together with neutral beam injection (NBI) and ion cyclotron resonance heating (ICRH). The proposed distributed-parameter control scheme relies on the experimental identification of an integral linear response model operator and retains the intrinsic couplings between the plasma parameter profiles. A first set of experiments was performed to control the current density profile in the low-density/low-power LH-driven phase of the JET advanced scenarios, using only one actuator (LHCD) and a simplified (lumped-parameter) version of the control scheme. Several requested steady state magnetic equilibria were thus obtained and sustained for about 7 s, up to full relaxation of the ohmic current throughout the plasma. A second set of experiments was dedicated to the control of the q-profile with 3 actuators (LHCD, NBI and ICRH) during the intense heating phase of advanced scenarios. The safety factor profile was also shown to approach a requested profile within about 5 s. The achieved plasma equilibrium was close to steady state. Finally, during the recent high power experimental campaign, experiments have been conducted in a 3 T / 1.7 MA plasma, achieving the simultaneous control of the current density and electron temperature profiles in ITB plasmas. Here, the distributed-parameter version of the algorithm was used for the first time, again with 3 actuators. Real-time control was applied during 7 s, and allowed to reach successfully different target q-profiles (monotonic and reversed-shear ones

  14. Development of integrated real-time control of internal transport barriers in advanced operation scenarios on Jet

    International Nuclear Information System (INIS)

    Moreau, D.; Laborde, L.; Litaudon, X.; Mazon, D.; Zabeo, L.; Joffrin, E.; Lennholm, M.; Crisanti, F.; Pericoli-Ridolfini, V.; Riva, M.; Tuccillo, A.; Murari, A.; Tala, T.; Albanese, R.; Ariola, M.; Tommasi, G. de; Pironti, A.; Felton, R.; Zastrow, K.D.; Baar, M. de; Vries, P. de; La Luna, E. de

    2004-01-01

    An important experimental programme is in progress on JET to investigate plasma control schemes which, with a limited number of actuators, could eventually enable ITER to sustain steady state burning plasmas in an 'advanced tokamak' operation scenario. A multi-variable model-based technique was recently developed for the simultaneous control of several plasma parameter profiles in discharges with internal transport barriers (ITB), using lower hybrid current drive (LHCD) together with neutral beam injection (NBI) and ion cyclotron resonance heating (ICRH). The proposed distributed-parameter control scheme relies on the experimental identification of an integral linear response model operator and retains the intrinsic couplings between the plasma parameter profiles. A first set of experiments was performed to control the current density profile in the low-density/low-power LH-driven phase of the JET advanced scenarios, using only one actuator (LHCD) and a simplified (lumped-parameter) version of the control scheme. Several requested steady state magnetic equilibria were thus obtained and sustained for about 7 s, up to full relaxation of the ohmic current throughout the plasma. A second set of experiments was dedicated to the control of the q-profile with 3 actuators (LHCD, NBI and ICRH) during the intense heating phase of advanced scenarios. The safety factor profile was also shown to approach a requested profile within about 5 s. The achieved plasma equilibrium was close to steady state. Finally, during the recent high power experimental campaign, experiments have been conducted in a 3 T / 1.7 MA plasma, achieving the simultaneous control of the current density and electron temperature profiles in ITB plasmas. Here, the distributed-parameter version of the algorithm was used for the first time, again with 3 actuators. Real-time control was applied during 7 s, and allowed to reach successfully different target q-profiles (monotonic and reversed-shear ones) and

  15. Equilibrium and non equilibrium in fragmentation

    International Nuclear Information System (INIS)

    Dorso, C.O.; Chernomoretz, A.; Lopez, J.A.

    2001-01-01

    Full text: In this communication we present recent results regarding the interplay of equilibrium and non equilibrium in the process of fragmentation of excited finite Lennard Jones drops. Because the general features of such a potential resemble the ones of the nuclear interaction (fact that is reinforced by the similarity between the EOS of both systems) these studies are not only relevant from a fundamental point of view but also shed light on the problem of nuclear multifragmentation. We focus on the microscopic analysis of the state of the fragmenting system at fragmentation time. We show that the Caloric Curve (i e. the functional relationship between the temperature of the system and the excitation energy) is of the type rise plateau with no vapor branch. The usual rise plateau rise pattern is only recovered when equilibrium is artificially imposed. This result puts a serious question on the validity of the freeze out hypothesis. This feature is independent of the dimensionality or excitation mechanism. Moreover we explore the behavior of magnitudes which can help us determine the degree of the assumed phase transition. It is found that no clear cut criteria is presently available. (Author)

  16. Chemical Principles Revisited: Chemical Equilibrium.

    Science.gov (United States)

    Mickey, Charles D.

    1980-01-01

    Describes: (1) Law of Mass Action; (2) equilibrium constant and ideal behavior; (3) general form of the equilibrium constant; (4) forward and reverse reactions; (5) factors influencing equilibrium; (6) Le Chatelier's principle; (7) effects of temperature, changing concentration, and pressure on equilibrium; and (8) catalysts and equilibrium. (JN)

  17. Effect of impurity radiation on tokamak equilibrium

    International Nuclear Information System (INIS)

    Rebut, P.H.; Green, B.J.

    1977-01-01

    The energy loss from a tokamak plasma due to the radiation from impurities is of great importance in the overall energy balance. Taking the temperature dependence of this loss for two impurities characteristic of those present in existing tokamak plasmas, the condition for radial power balance is derived. For the impurities considered (oxygen and iron) it is found that the radiation losses are concentrated in a thin outer layer of the plasma and the equilibrium condition places an upper limit on the plasma paraticle number density in this region. This limiting density scales with mean current density in the same manner as is experimentally observed for the peak number density of tokamak plasmas. The stability of such equilibria is also discussed. (author)

  18. Equilibrium distribution function in collisionless systems

    International Nuclear Information System (INIS)

    Pergamenshchik, V.M.

    1988-01-01

    Collisionless systems of a large number of N particles interacting by Coulomb forces are widely spread in cosmic and laboratory plasma. A statistical theory of equilibrium state of collisionless Coulomb systems which evolution obeys Vlasov equation is proposed. The developed formalism permits a sequential consideration of such distributed in one-particle six-dimensional phase space of a system and to obtain a simple result: equilibrium distribution function has the form of Fermi-Dirac distribution and doesn't depend on initial state factors

  19. Non-equilibrium Economics

    Directory of Open Access Journals (Sweden)

    Katalin Martinás

    2007-02-01

    Full Text Available A microeconomic, agent based framework to dynamic economics is formulated in a materialist approach. An axiomatic foundation of a non-equilibrium microeconomics is outlined. Economic activity is modelled as transformation and transport of commodities (materials owned by the agents. Rate of transformations (production intensity, and the rate of transport (trade are defined by the agents. Economic decision rules are derived from the observed economic behaviour. The non-linear equations are solved numerically for a model economy. Numerical solutions for simple model economies suggest that the some of the results of general equilibrium economics are consequences only of the equilibrium hypothesis. We show that perfect competition of selfish agents does not guarantee the stability of economic equilibrium, but cooperativity is needed, too.

  20. DIAGNOSIS OF FINANCIAL EQUILIBRIUM

    Directory of Open Access Journals (Sweden)

    SUCIU GHEORGHE

    2013-04-01

    Full Text Available The analysis based on the balance sheet tries to identify the state of equilibrium (disequilibrium that exists in a company. The easiest way to determine the state of equilibrium is by looking at the balance sheet and at the information it offers. Because in the balance sheet there are elements that do not reflect their real value, the one established on the market, they must be readjusted, and those elements which are not related to the ordinary operating activities must be eliminated. The diagnosis of financial equilibrium takes into account 2 components: financing sources (ownership equity, loaned, temporarily attracted. An efficient financial equilibrium must respect 2 fundamental requirements: permanent sources represented by ownership equity and loans for more than 1 year should finance permanent needs, and temporary resources should finance the operating cycle.

  1. Collisionless plasmas in astrophysics

    CERN Document Server

    Belmont, Gerard; Mottez, Fabrice; Pantellini, Filippo; Pelletier, Guy

    2013-01-01

    Collisionless Plasmas in Astrophysics examines the unique properties of media without collisions in plasma physics. Experts in this field, the authors present the first book to concentrate on collisionless conditions in plasmas, whether close or not to thermal equilibrium. Filling a void in scientific literature, Collisionless Plasmas in Astrophysics explains the possibilities of modeling such plasmas, using a fluid or a kinetic framework. It also addresses common misconceptions that even professionals may possess, on phenomena such as "collisionless (Landau) damping". Abundant illustrations

  2. Numerical study of spherical Torus MHD equilibrium configuration

    International Nuclear Information System (INIS)

    Cheng Faying; Dong Jiaqi; Wang Aike

    2003-01-01

    Tokamak equilibrium code SWEQU has been modified so that it can be used for the MHD equilibrium study of low aspect ratio device. Evolution of plasma configuration in start-up phase and double-null divertor configuration in steady-state phase has been simulated using the modified code. Results show that the new code can be used not only to obtain the equilibrium configuration of spherical Torus in steady-state phase, but also to simulate the evolution of plasma in the start-up phase

  3. Equilibrium statistical mechanics

    CERN Document Server

    Mayer, J E

    1968-01-01

    The International Encyclopedia of Physical Chemistry and Chemical Physics, Volume 1: Equilibrium Statistical Mechanics covers the fundamental principles and the development of theoretical aspects of equilibrium statistical mechanics. Statistical mechanical is the study of the connection between the macroscopic behavior of bulk matter and the microscopic properties of its constituent atoms and molecules. This book contains eight chapters, and begins with a presentation of the master equation used for the calculation of the fundamental thermodynamic functions. The succeeding chapters highlight t

  4. Computing Equilibrium Chemical Compositions

    Science.gov (United States)

    Mcbride, Bonnie J.; Gordon, Sanford

    1995-01-01

    Chemical Equilibrium With Transport Properties, 1993 (CET93) computer program provides data on chemical-equilibrium compositions. Aids calculation of thermodynamic properties of chemical systems. Information essential in design and analysis of such equipment as compressors, turbines, nozzles, engines, shock tubes, heat exchangers, and chemical-processing equipment. CET93/PC is version of CET93 specifically designed to run within 640K memory limit of MS-DOS operating system. CET93/PC written in FORTRAN.

  5. Assessing oral bioaccessibility of trace elements in soils under worst-case scenarios by automated in-line dynamic extraction as a front end to inductively coupled plasma atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Rosende, María [FI-TRACE group, Department of Chemistry, University of the Balearic Islands, Carretera de Valldemossa, km 7.5, Palma de Mallorca, Illes Balears E-07122 (Spain); Magalhães, Luis M.; Segundo, Marcela A. [REQUIMTE, Department of Chemistry, Faculty of Pharmacy, University of Porto, R. de Jorge Viterbo Ferreira, 228, Porto 4050-313 (Portugal); Miró, Manuel, E-mail: manuel.miro@uib.es [FI-TRACE group, Department of Chemistry, University of the Balearic Islands, Carretera de Valldemossa, km 7.5, Palma de Mallorca, Illes Balears E-07122 (Spain)

    2014-09-09

    Highlights: • Automatic oral bioaccessibility tests of trace metals under worst-case scenarios. • Use of intricate and realistic digestive fluids (UBM method). • Analysis of large amounts of soils (≥400 mg) in a flow-based configuration. • Smart interface to inductively coupled plasma atomic emission spectrometry. • Comparison of distinct flow systems mimicking physiological conditions. - Abstract: A novel biomimetic extraction procedure that allows for the in-line handing of ≥400 mg solid substrates is herein proposed for automatic ascertainment of trace element (TE) bioaccessibility in soils under worst-case conditions as per recommendations of ISO norms. A unified bioaccessibility/BARGE method (UBM)-like physiological-based extraction test is evaluated for the first time in a dynamic format for accurate assessment of in-vitro bioaccessibility of Cr, Cu, Ni, Pb and Zn in forest and residential-garden soils by on-line coupling of a hybrid flow set-up to inductively coupled plasma atomic emission spectrometry. Three biologically relevant operational extraction modes mimicking: (i) gastric juice extraction alone; (ii) saliva and gastric juice composite in unidirectional flow extraction format and (iii) saliva and gastric juice composite in a recirculation mode were thoroughly investigated. The extraction profiles of the three configurations using digestive fluids were proven to fit a first order reaction kinetic model for estimating the maximum TE bioaccessibility, that is, the actual worst-case scenario in human risk assessment protocols. A full factorial design, in which the sample amount (400–800 mg), the extractant flow rate (0.5–1.5 mL min{sup −1}) and the extraction temperature (27–37 °C) were selected as variables for the multivariate optimization studies in order to obtain the maximum TE extractability. Two soils of varied physicochemical properties were analysed and no significant differences were found at the 0.05 significance level

  6. Assessing oral bioaccessibility of trace elements in soils under worst-case scenarios by automated in-line dynamic extraction as a front end to inductively coupled plasma atomic emission spectrometry

    International Nuclear Information System (INIS)

    Rosende, María; Magalhães, Luis M.; Segundo, Marcela A.; Miró, Manuel

    2014-01-01

    Highlights: • Automatic oral bioaccessibility tests of trace metals under worst-case scenarios. • Use of intricate and realistic digestive fluids (UBM method). • Analysis of large amounts of soils (≥400 mg) in a flow-based configuration. • Smart interface to inductively coupled plasma atomic emission spectrometry. • Comparison of distinct flow systems mimicking physiological conditions. - Abstract: A novel biomimetic extraction procedure that allows for the in-line handing of ≥400 mg solid substrates is herein proposed for automatic ascertainment of trace element (TE) bioaccessibility in soils under worst-case conditions as per recommendations of ISO norms. A unified bioaccessibility/BARGE method (UBM)-like physiological-based extraction test is evaluated for the first time in a dynamic format for accurate assessment of in-vitro bioaccessibility of Cr, Cu, Ni, Pb and Zn in forest and residential-garden soils by on-line coupling of a hybrid flow set-up to inductively coupled plasma atomic emission spectrometry. Three biologically relevant operational extraction modes mimicking: (i) gastric juice extraction alone; (ii) saliva and gastric juice composite in unidirectional flow extraction format and (iii) saliva and gastric juice composite in a recirculation mode were thoroughly investigated. The extraction profiles of the three configurations using digestive fluids were proven to fit a first order reaction kinetic model for estimating the maximum TE bioaccessibility, that is, the actual worst-case scenario in human risk assessment protocols. A full factorial design, in which the sample amount (400–800 mg), the extractant flow rate (0.5–1.5 mL min −1 ) and the extraction temperature (27–37 °C) were selected as variables for the multivariate optimization studies in order to obtain the maximum TE extractability. Two soils of varied physicochemical properties were analysed and no significant differences were found at the 0.05 significance level

  7. Design of next step tokamak: Consistent analysis of plasma performance flux composition and poloidal field system

    International Nuclear Information System (INIS)

    Ane, J.M.; Grandgirard, V.; Albajar, F.; Johner, J.

    2001-01-01

    A consistent and simple approach to derive plasma scenarios for next step tokamak design is presented. It is based on successive plasma equilibria snapshots from plasma breakdown to end of ramp-down. Temperature and density profiles for each equilibrium are derived from a 2D plasma model. The time interval between two successive equilibria is then computed from the toroidal field magnetic energy balance, the resistive term of which depends on n, T profiles. This approach provides a consistent analysis of plasma performance, flux consumption and PF system, including average voltages waveforms across the PF coils. The plasma model and the Poynting theorem for the toroidal magnetic energy are presented. Application to ITER-FEAT and to M2, a Q=5 machine designed at CEA, are shown. (author)

  8. Real time equilibrium reconstruction for tokamak discharge control

    International Nuclear Information System (INIS)

    Ferron, J.R.; Walker, M.L.; Lao, L.L.; St John, H.E.; Humphreys, D.A.; Leuer, J.A.

    1998-01-01

    A practical method for performing a tokamak equilibrium reconstruction in real time for arbitrary time varying discharge shapes and current profiles is described. An approximate solution to the Grad-Shafranov equilibrium relation is found which best fits the diagnostic measurements. Thus, a solution for the spatial distribution of poloidal flux and toroidal current density is available in real time that is consistent with plasma force balance, allowing accurate evaluation of parameters such as discharge shape and safety factor profile. The equilibrium solutions are produced at a rate sufficient for discharge control. This equilibrium reconstruction algorithm has been implemented on the digital plasma control system for the DIII-D tokamak. The first application of real time equilibrium reconstruction to discharge shape control is described. (author)

  9. Study of impurity effects on CFETR steady-state scenario by self-consistent integrated modeling

    Science.gov (United States)

    Shi, Nan; Chan, Vincent S.; Jian, Xiang; Li, Guoqiang; Chen, Jiale; Gao, Xiang; Shi, Shengyu; Kong, Defeng; Liu, Xiaoju; Mao, Shifeng; Xu, Guoliang

    2017-12-01

    Impurity effects on fusion performance of China fusion engineering test reactor (CFETR) due to extrinsic seeding are investigated. An integrated 1.5D modeling workflow evolves plasma equilibrium and all transport channels to steady state. The one modeling framework for integrated tasks framework is used to couple the transport solver, MHD equilibrium solver, and source and sink calculations. A self-consistent impurity profile constructed using a steady-state background plasma, which satisfies quasi-neutrality and true steady state, is presented for the first time. Studies are performed based on an optimized fully non-inductive scenario with varying concentrations of Argon (Ar) seeding. It is found that fusion performance improves before dropping off with increasing {{Z}\\text{eff}} , while the confinement remains at high level. Further analysis of transport for these plasmas shows that low-k ion temperature gradient modes dominate the turbulence. The decrease in linear growth rate and resultant fluxes of all channels with increasing {{Z}\\text{eff}} can be traced to impurity profile change by transport. The improvement in confinement levels off at higher {{Z}\\text{eff}} . Over the regime of study there is a competition between the suppressed transport and increasing radiation that leads to a peak in the fusion performance at {{Z}\\text{eff}} (~2.78 for CFETR). Extrinsic impurity seeding to control divertor heat load will need to be optimized around this value for best fusion performance.

  10. Recent plasma control progress on EAST

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, B.J., E-mail: bjxiao@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Yuan, Q.P. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Humphreys, D.A.; Walker, M.L.; Hyatt, A.W.; Leuer, J.A.; Jackson, G.L. [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States); Mueller, D. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Penaflor, B.G.; Pigrowski, D.A.; Johnson, R.D.; Welander, A.S. [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States); Zhang, R.R.; Luo, Z.P.; Guo, Y.; Xing, Z.; Zhang, Y. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China)

    2012-12-15

    In recent 2 years, various algorithms to control plasma shape, current and density have been implemented or improved for EAST tokamak. These plasma control performances have been verified by either simulated or actual experimental operation, and thus plasma control basis has been established for the long pulse operation and high performance H-mode plasma operation with low hybrid wave (LHW) and ion cyclotron resonance frequency (ICRF) heating. Startup simulation has been done by using TOKSYS code for the plasma breakdown in either 3.1 Wb or 4.5 Wb initial poloidal flux state and the scenarios proved to be robust and used for routine operation. Various shape configurations have been well feedback controlled by using ISOFLUX limited, double-null or single null algorithms based on RTEFIT equilibrium reconstruction. For the long pulse operation, strike point control and magnetics drift compensation have been implemented in the plasma control system (PCS). To improve the operation safety and efficiency, the verification of magnetic diagnostics before plasma breakdown has been demonstrated adequate to prevent a discharge in case of key sensor failure.

  11. Equilibrium calculations and mode analysis

    International Nuclear Information System (INIS)

    Herrnegger, F.

    1987-01-01

    The STEP asymptotic stellarator expansion procedure was used to study the MHD equilibrium and stability properties of stellarator configurations without longitudinal net-current, which also apply to advanced stellarators. The effects of toroidal curvature and magnetic well, and the Shafranov shift were investigated. A classification of unstable modes in toroidal stellarators is given. For WVII-A coil-field configurations having a β value of 1% and a parabolic pressure profile, no free-boundary modes are found. This agrees with the experimental fact that unstable behavior of the plasma column is not observed for this parameter range. So a theoretical β-limit for stability against ideal MHD modes can be estimated by mode analysis for the WVII-A device

  12. Plasma physics

    International Nuclear Information System (INIS)

    1979-01-01

    This report contains the papers delivered at the AEB - Natal University summer school on plasma physics held in Durban during January 1979. The following topics were discussed: Tokamak devices; MHD stability; trapped particles in tori; Tokamak results and experiments; operating regime of the AEB Tokamak; Tokamak equilibrium; high beta Tokamak equilibria; ideal Tokamak stability; resistive MHD instabilities; Tokamak diagnostics; Tokamak control and data acquisition; feedback control of Tokamaks; heating and refuelling; neutral beam injection; radio frequency heating; nonlinear drift wave induced plasma transport; toroidal plasma boundary layers; microinstabilities and injected beams and quasilinear theory of the ion acoustic instability

  13. Non-equilibrium phase transition

    International Nuclear Information System (INIS)

    Mottola, E.; Cooper, F.M.; Bishop, A.R.; Habib, S.; Kluger, Y.; Jensen, N.G.

    1998-01-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Non-equilibrium phase transitions play a central role in a very broad range of scientific areas, ranging from nuclear, particle, and astrophysics to condensed matter physics and the material and biological sciences. The aim of this project was to explore the path to a deeper and more fundamental understanding of the common physical principles underlying the complex real time dynamics of phase transitions. The main emphasis was on the development of general theoretical tools to deal with non-equilibrium processes, and of numerical methods robust enough to capture the time-evolving structures that occur in actual experimental situations. Specific applications to Laboratory multidivisional efforts in relativistic heavy-ion physics (transition to a new phase of nuclear matter consisting of a quark-gluon plasma) and layered high-temperature superconductors (critical currents and flux flow at the National High Magnetic Field Laboratory) were undertaken

  14. Dusty plasmas

    International Nuclear Information System (INIS)

    Jones, M.E.; Winske, D.; Keinigs, R.; Lemons, D.

    1996-01-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project has been to develop a fundamental understanding of dusty plasmas at the Laboratory. While dusty plasmas are found in space in galactic clouds, planetary rings, and cometary tails, and as contaminants in plasma enhanced fabrication of microelectronics, many of their properties are only partially understood. Our work has involved both theoretical analysis and self-consistent plasma simulations to understand basic properties of dusty plasmas related to equilibrium, stability, and transport. Such an understanding can improve the control and elimination of plasma dust in industrial applications and may be important in the study of planetary rings and comet dust tails. We have applied our techniques to the study of charging, dynamics, and coagulation of contaminants in plasma processing reactors for industrial etching and deposition processes and to instabilities in planetary rings and other space plasma environments. The work performed in this project has application to plasma kinetics, transport, and other classical elementary processes in plasmas as well as to plasma waves, oscillations, and instabilities

  15. Scaling studies of spheromak formation and equilibrium

    International Nuclear Information System (INIS)

    Geddes, C.G.; Kornack, T.W.; Brown, M.R.

    1998-01-01

    Formation and equilibrium studies have been performed on the Swarthmore Spheromak Experiment (SSX). Spheromaks are formed with a magnetized coaxial plasma gun and equilibrium is established in both small (d small =0.16 m) and large (d large =3d small =0.50 m) copper flux conservers. Using magnetic probe arrays it has been verified that spheromak formation is governed solely by gun physics (in particular the ratio of gun current to flux, μ 0 I gun /Φ gun ) and is independent of the flux conserver dimensions. It has also been verified that equilibrium is well described by the force free condition ∇xB=λB (λ=constant), particularly early in decay. Departures from the force-free state are due to current profile effects described by a quadratic function λ=λ(ψ). Force-free SSX spheromaks will be merged to study magnetic reconnection in simple magnetofluid structures. copyright 1998 American Institute of Physics

  16. The DART general equilibrium model: A technical description

    OpenAIRE

    Springer, Katrin

    1998-01-01

    This paper provides a technical description of the Dynamic Applied Regional Trade (DART) General Equilibrium Model. The DART model is a recursive dynamic, multi-region, multi-sector computable general equilibrium model. All regions are fully specified and linked by bilateral trade flows. The DART model can be used to project economic activities, energy use and trade flows for each of the specified regions to simulate various trade policy as well as environmental policy scenarios, and to analy...

  17. Immunity by equilibrium.

    Science.gov (United States)

    Eberl, Gérard

    2016-08-01

    The classical model of immunity posits that the immune system reacts to pathogens and injury and restores homeostasis. Indeed, a century of research has uncovered the means and mechanisms by which the immune system recognizes danger and regulates its own activity. However, this classical model does not fully explain complex phenomena, such as tolerance, allergy, the increased prevalence of inflammatory pathologies in industrialized nations and immunity to multiple infections. In this Essay, I propose a model of immunity that is based on equilibrium, in which the healthy immune system is always active and in a state of dynamic equilibrium between antagonistic types of response. This equilibrium is regulated both by the internal milieu and by the microbial environment. As a result, alteration of the internal milieu or microbial environment leads to immune disequilibrium, which determines tolerance, protective immunity and inflammatory pathology.

  18. Equilibrium field coil concepts for INTOR

    International Nuclear Information System (INIS)

    Strickler, D.J.; Peng, Y.K.M.; Brown, T.G.

    1981-08-01

    Methods are presented for reducing ampere-turn requirements in the EF coil system. It is shown that coil currents in an EF coil system external to the toroidal field coils can be substantially reduced by relaxing the triangularity of a D-shaped plasma. Further reductions are realized through a hybrid EF coil system using both internal and external coils. Equilibrium field coils for a poloidally asymmetric, single-null INTOR configuration are presented. It is shown that the shape of field lines in the plasma scrapeoff region and divertor channel improves as triangularity is reduced, but it does so at the possible expense of achievable stable beta values

  19. Equilibrium double layers in extended Pierce diodes

    International Nuclear Information System (INIS)

    Ciubotariu-Jassy, C.I.

    1992-01-01

    The extended Pierce diode is similar to the standard (or classical) Pierce diode, but has passive circuit elements in place of the short circuit between the electrodes. This device is important as an approximation to real bounded plasma systems. It consists of two parallel plane electrodes (an emitter located at x=0 and a collector located at x=l) and a collisionless cold electron beam travelling between them. The electrons are neutralized by a background of comoving massive ions. This situation is analysed in this paper and new equilibrium double layer (DL) plasma structures are obtained. (author) 6 refs., 3 figs

  20. Structural Stability of Tokamak Equilibrium: Transport Barriers

    Energy Technology Data Exchange (ETDEWEB)

    Solano, E. R.

    2001-07-01

    A generalised theory of structural stability of differential equations is introduced and applied to the Grad-Shafranov equation. It is discussed how the formation and loss of transport barrier could be associated with the appearance/disappearance of equilibria. The equilibrium conjecture is presented: transport barriers are associated with locally diamagnetic regions in the plasma, and affected by the paramagnetism of the bootstrap current. (Author) 18 refs.

  1. Exposure scenarios for workers

    NARCIS (Netherlands)

    Marquart, H.; Northage, C.; Money, C.

    2007-01-01

    The new European chemicals legislation REACH (Registration, Evaluation, Authorisation and restriction of Chemicals) requires the development of Exposure Scenarios describing the conditions and risk management measures needed for the safe use of chemicals. Such Exposure Scenarios should integrate

  2. Numerical simulation and optimal control in plasma physics

    International Nuclear Information System (INIS)

    Blum, J.

    1989-01-01

    The topics covered in this book are: A free boundary problem: the axisymmetric equilibrium of the plasma in a Tokamak; Static control of the plasma boundary by external currents; Existence and control of a solution to the equilibrium problem in a simple case; Study of equilibrium solution branches and application to the stability of horizontal displacements; Identification of the plasma boundary and plasma current density from magnetic measurements; Evolution of the equilibrium at the diffusion time scale; Evolution of the equilibrium of a high aspect-ratio circular plasma; Stability and control of the horizontal displacement of the plasma

  3. Equilibrium shoreface profiles

    DEFF Research Database (Denmark)

    Aagaard, Troels; Hughes, Michael G

    2017-01-01

    Large-scale coastal behaviour models use the shoreface profile of equilibrium as a fundamental morphological unit that is translated in space to simulate coastal response to, for example, sea level oscillations and variability in sediment supply. Despite a longstanding focus on the shoreface...... profile and its relevance to predicting coastal response to changing environmental conditions, the processes and dynamics involved in shoreface equilibrium are still not fully understood. Here, we apply a process-based empirical sediment transport model, combined with morphodynamic principles to provide......; there is no tuning or calibration and computation times are short. It is therefore easily implemented with repeated iterations to manage uncertainty....

  4. Equilibrium 𝛽-limits in classical stellarators

    Science.gov (United States)

    Loizu, J.; Hudson, S. R.; Nührenberg, C.; Geiger, J.; Helander, P.

    2017-12-01

    A numerical investigation is carried out to understand the equilibrium -limit in a classical stellarator. The stepped-pressure equilibrium code (Hudson et al., Phys. Plasmas, vol. 19 (11), 2012) is used in order to assess whether or not magnetic islands and stochastic field-lines can emerge at high . Two modes of operation are considered: a zero-net-current stellarator and a fixed-iota stellarator. Despite the fact that relaxation is allowed (Taylor, Rev. Mod. Phys., vol. 58 (3), 1986, pp. 741-763), the former is shown to maintain good flux surfaces up to the equilibrium -limit predicted by ideal-magnetohydrodynamics (MHD), above which a separatrix forms. The latter, which has no ideal equilibrium -limit, is shown to develop regions of magnetic islands and chaos at sufficiently high , thereby providing a `non-ideal -limit'. Perhaps surprisingly, however, the value of at which the Shafranov shift of the axis reaches a fraction of the minor radius follows in all cases the scaling laws predicted by ideal-MHD. We compare our results to the High-Beta-Stellarator theory of Freidberg (Ideal MHD, 2014, Cambridge University Press) and derive a new prediction for the non-ideal equilibrium -limit above which chaos emerges.

  5. Interpreting energy scenarios

    Science.gov (United States)

    Iyer, Gokul; Edmonds, James

    2018-05-01

    Quantitative scenarios from energy-economic models inform decision-making about uncertain futures. Now, research shows the different ways these scenarios are subsequently used by users not involved in their initial development. In the absence of clear guidance from modellers, users may place too much or too little confidence in scenario assumptions and results.

  6. Equilibrium optimization code OPEQ and results of applying it to HT-7U

    International Nuclear Information System (INIS)

    Zha Xuejun; Zhu Sizheng; Yu Qingquan

    2003-01-01

    The plasma equilibrium configuration has a strong impact on the confinement and MHD stability in tokamaks. For designing a tokamak device, it is an important issue to determine the sites and currents of poloidal coils which have some constraint conditions from physics and engineering with a prescribed equilibrium shape of the plasma. In this paper, an effective method based on multi-variables equilibrium optimization is given. The method can optimize poloidal coils when the previously prescribed plasma parameters are treated as an object function. We apply it to HT-7U equilibrium calculation, and obtain good results

  7. Validation of equilibrium tools on the COMPASS tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Urban, J., E-mail: urban@ipp.cas.cz [Institute of Plasma Physics ASCR, Za Slovankou 3, 182 00 Praha 8 (Czech Republic); Appel, L.C. [CCFE, Culham Science Centre, Abingdon, Oxfordshire (United Kingdom); Artaud, J.F. [CEA, IRFM, F-13108 Saint Paul Lez Durance (France); Faugeras, B. [Laboratoire J.A. Dieudonné, UMR 7351, Université de Nice Sophia-Antipolis, Parc Valrose, 06108 Nice Cedex 02 (France); Havlicek, J. [Institute of Plasma Physics ASCR, Za Slovankou 3, 182 00 Praha 8 (Czech Republic); Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University in Prague, V Holešovičkách 2, 180 00 Praha 8 (Czech Republic); Komm, M. [Institute of Plasma Physics ASCR, Za Slovankou 3, 182 00 Praha 8 (Czech Republic); Lupelli, I. [CCFE, Culham Science Centre, Abingdon, Oxfordshire (United Kingdom); Peterka, M. [Institute of Plasma Physics ASCR, Za Slovankou 3, 182 00 Praha 8 (Czech Republic); Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University in Prague, V Holešovičkách 2, 180 00 Praha 8 (Czech Republic)

    2015-10-15

    Highlights: • Three equilibrium codes—EFIT++, FREEBIE and VacTH—have been successfully set up and validated on COMPASS. • FREEBIE can predictively calculate the equilibrium and corresponding poloidal field coil currents. • EFIT++ can reconstruct equilibria generated by FREEBIE from synthetic, optionally noisy diagnostic data. • VacTH is a promising tool for real time plasma shape reconstruction. • Optimized parameters are estimated for EFIT++ and VacTH by a statistical analysis. - Abstract: Various MHD (magnetohydrodynamic) equilibrium tools, some of which being recently developed or considerably updated, are used on the COMPASS tokamak at IPP Prague. MHD equilibrium is a fundamental property of the tokamak plasma, whose knowledge is required for many diagnostics and modelling tools. Proper benchmarking and validation of equilibrium tools is thus key for interpreting and planning tokamak experiments. We present here benchmarks and comparisons to experimental data of the EFIT++ reconstruction code (Appel et al., 2006), the free-boundary equilibrium code FREEBIE (Artaud and Kim, 2012), and a rapid plasma boundary reconstruction code VacTH (Faugeras et al., 2014). We demonstrate that FREEBIE can calculate the equilibrium and corresponding poloidal field (PF) coils currents consistently with EFIT++ reconstructions from experimental data. Both EFIT++ and VacTH can reconstruct equilibria generated by FREEBIE from synthetic, optionally noisy diagnostic data. Hence, VacTH is suitable for real-time control. Optimum reconstruction parameters are estimated.

  8. Equilibrium reconstruction in the TCA/Br tokamak

    International Nuclear Information System (INIS)

    Sa, Wanderley Pires de

    1996-01-01

    The accurate and rapid determination of the Magnetohydrodynamic (MHD) equilibrium configuration in tokamaks is a subject for the magnetic confinement of the plasma. With the knowledge of characteristic plasma MHD equilibrium parameters it is possible to control the plasma position during its formation using feed-back techniques. It is also necessary an on-line analysis between successive discharges to program external parameters for the subsequent discharges. In this work it is investigated the MHD equilibrium configuration reconstruction of the TCA/BR tokamak from external magnetic measurements, using a method that is able to fast determine the main parameters of discharge. The thesis has two parts. Firstly it is presented the development of an equilibrium code that solves de Grad-Shafranov equation for the TCA/BR tokamak geometry. Secondly it is presented the MHD equilibrium reconstruction process from external magnetic field and flux measurements using the Function Parametrization FP method. this method. This method is based on the statistical analysis of a database of simulated equilibrium configurations, with the goal of obtaining a simple relationship between the parameters that characterize the equilibrium and the measurements. The results from FP are compared with conventional methods. (author)

  9. Monte Carlo simulations for thermodynamical properties calculations of plasmas at thermodynamical equilibrium. Applications to opacity and equation of state calculations; Apport d'un code de simulation Monte Carlo pour l'etude des proprietes thermodynamiques d'un plasma a l'equilibre et application au calcul de l'elargissement des profils de raies ioniques emises dans les plasmas denses, aux opacites spectrales et aux equations d'etat de systemes fluides

    Energy Technology Data Exchange (ETDEWEB)

    Gilles, D

    2005-07-01

    This report is devoted to illustrate the power of a Monte Carlo (MC) simulation code to study the thermodynamical properties of a plasma, composed of classical point particles at thermodynamical equilibrium. Such simulations can help us to manage successfully the challenge of taking into account 'exactly' all classical correlations between particles due to density effects, unlike analytical or semi-analytical approaches, often restricted to low dense plasmas. MC simulations results allow to cover, for laser or astrophysical applications, a wide range of thermodynamical conditions from more dense (and correlated) to less dense ones (where potentials are long ranged type). Therefore Yukawa potentials, with a Thomas-Fermi temperature- and density-dependent screening length, are used to describe the effective ion-ion potentials. In this report we present two MC codes ('PDE' and 'PUCE') and applications performed with these codes in different fields (spectroscopy, opacity, equation of state). Some examples of them are discussed and illustrated at the end of the report. (author)

  10. Comment on 'Instability of the Shukla mode in a dusty plasma containing equilibrium density and magnetic field inhomogeneities' [Phys. Plasmas 11, 1732 (2004)] and 'New resonance and cut-off for low-frequency electromagnetic waves in dusty magnetoplasmas' [Phys. Plasmas 11, 2307 (2004)

    International Nuclear Information System (INIS)

    Rudakov, Leonid

    2004-01-01

    It is shown that the oscillation named by Shukla as the 'Shukla mode' is well known in the plasma physics literature as the magnetic drift wave. In addition, the instability of these modes in a cold plasma as claimed by Shukla et al. [Phys. Plasmas 11, 1732 (2004)] does not exist and is due to a mathematical error in their analysis. Also the 'new' resonance and new cutoff frequencies claimed by Shukla et al. and Mamum et al. [Phys Plasmas 11, 2307 (2004)] have been known in the published literature for decades

  11. Capability Assessment of the Equilibrium Field System in KTX

    International Nuclear Information System (INIS)

    Luo Bing; You Wei; Tan Mingsheng; Bai Wei; Mao Wenzhe; Li Hong; Liu Adi; Lan Tao; Xie Jinlin; Liu Wandong; Luo Zhengping; Xiao Bingjia; Guo Yong

    2016-01-01

    Radial equilibrium of the KTX plasma column is maintained by the vertical field which is produced by the equilibrium field coils. The equilibrium is also affected by the eddy current, which is generated by the coupling of copper shell, plasma and poloidal field coils. An equivalent circuit model is developed to analyze the dynamic performance of equilibrium field coils, without auxiliary power input to equilibrium field coils and passive conductors. Considering the coupling of poloidal field coils, copper shell and plasma, the evolution of spatial distribution of the eddy current density on the copper shell is estimated by finite element to analyze the effect of shell to balance. The simulation results show that the copper shell and equilibrium field coils can provide enough vertical field to balance 1 MA plasma current in phase 1 of a KTX discharge. Auxiliary power supply on the EQ coils is necessary to control the horizontal displacement of KTX due to the finite resistance effect of the shell. (paper)

  12. Microeconomics : Equilibrium and Efficiency

    NARCIS (Netherlands)

    Ten Raa, T.

    2013-01-01

    Microeconomics: Equilibrium and Efficiency teaches how to apply microeconomic theory in an innovative, intuitive and concise way. Using real-world, empirical examples, this book not only covers the building blocks of the subject, but helps gain a broad understanding of microeconomic theory and

  13. Differential Equation of Equilibrium

    African Journals Online (AJOL)

    user

    ABSTRACT. Analysis of underground circular cylindrical shell is carried out in this work. The forth order differential equation of equilibrium, comparable to that of beam on elastic foundation, was derived from static principles on the assumptions of P. L Pasternak. Laplace transformation was used to solve the governing ...

  14. Comments on equilibrium, transient equilibrium, and secular equilibrium in serial radioactive decay

    International Nuclear Information System (INIS)

    Prince, J.R.

    1979-01-01

    Equations describing serial radioactive decay are reviewed along with published descriptions or transient and secular equilibrium. It is shown that terms describing equilibrium are not used in the same way by various authors. Specific definitions are proposed; they suggest that secular equilibrium is a subset of transient equilibrium

  15. Thermal equilibrium during the electroweak phase transition

    International Nuclear Information System (INIS)

    Tetradis, N.

    1991-12-01

    The effective potential for the standard model develops a barrier, at temperatures around the electroweak scale, which separates the minimum at zero field and a deeper non-zero minimum. This could create out of equilibrium conditions by inducing the localization of the Higgs field in a metastable state around zero. In this picture vacuum decay would occur through bubble nucleation. I show that there is an upper bound on the Higgs mass for the above scenario to be realized. The barrier must be high enough to prevent thermal fluctuations of the Higgs expectation value from establishing thermal equilibrium between the two minima. The upper bound is estimated to be lower than the experimental lower limit. This is also imposes constraints on extensions of the standard model constructed in order to generate a strongly first order phase transition. (orig.)

  16. The world in scenarios

    International Nuclear Information System (INIS)

    De Jong, A.; Roodenburg, H.

    1992-01-01

    As an introduction to this special issue 'Worlds of difference: Scenarios's for the economy, energy and the environment 1990-2015', an outline is given of the future of the world and the Netherlands, based on four scenarios. These scenarios are published in 'Scanning the future' in May 1992 by the CPB, the Dutch Central Planning Bureau. The Global Shift (GS) scenario is characterized by a very dynamic technological development, the free market perspective, strong economic growth in the Asian economies, and a relative economic regression in Western Europe. In the European Renaissance (ER) scenario the technological development is less dynamic and more gradual than in the GS scenario. The Balanced Growth (BG) scenario is dominated by a sustainable economic development and a strong technological dynamic development. The Global Crisis (GC) scenario shows a downward spiral in many areas, stagnating developments and fragile economies as results of the trends in the eighties. The first three scenarios are elaborated for the Netherlands. Also attention is paid to the aims and meaning of long-term scenarios. 2 figs., 2 tabs., 3 refs

  17. Equilibrium and pre-equilibrium emissions in proton-induced ...

    Indian Academy of Sciences (India)

    necessary for the domain of fission-reactor technology for the calculation of nuclear transmutation ... tions occur in three stages: INC, pre-equilibrium and equilibrium (or compound. 344. Pramana ... In the evaporation phase of the reaction, the.

  18. Eliminating Islands in High-pressure Free-boundary Stellarator Magnetohydrodynamic Equilibrium Solutions

    International Nuclear Information System (INIS)

    Hudson, S.R.; Monticello, D.A.; Reiman, A.H.; Boozer, A.H.; Strickler, D.J.; Hirshman, S.P.; Zarnstorff, M.C.

    2002-01-01

    Magnetic islands in free-boundary stellarator equilibria are suppressed using a procedure that iterates the plasma equilibrium equations and, at each iteration, adjusts the coil geometry to cancel resonant fields produced by the plasma. The coils are constrained to satisfy certain measures of engineering acceptability and the plasma is constrained to ensure kink stability. As the iterations continue, the coil geometry and the plasma simultaneously converge to an equilibrium in which the island content is negligible. The method is applied with success to a candidate plasma and coil design for the National Compact Stellarator eXperiment [Physics of Plasma, 7 (2000) 1911

  19. Gated equilibrium bloodpool scintigraphy

    International Nuclear Information System (INIS)

    Reinders Folmer, S.C.C.

    1981-01-01

    This thesis deals with the clinical applications of gated equilibrium bloodpool scintigraphy, performed with either a gamma camera or a portable detector system, the nuclear stethoscope. The main goal has been to define the value and limitations of noninvasive measurements of left ventricular ejection fraction as a parameter of cardiac performance in various disease states, both for diagnostic purposes as well as during follow-up after medical or surgical intervention. Secondly, it was attempted to extend the use of the equilibrium bloodpool techniques beyond the calculation of ejection fraction alone by considering the feasibility to determine ventricular volumes and by including the possibility of quantifying valvular regurgitation. In both cases, it has been tried to broaden the perspective of the observations by comparing them with results of other, invasive and non-invasive, procedures, in particular cardiac catheterization, M-mode echocardiography and myocardial perfusion scintigraphy. (Auth.)

  20. Problems in equilibrium theory

    CERN Document Server

    Aliprantis, Charalambos D

    1996-01-01

    In studying General Equilibrium Theory the student must master first the theory and then apply it to solve problems. At the graduate level there is no book devoted exclusively to teaching problem solving. This book teaches for the first time the basic methods of proof and problem solving in General Equilibrium Theory. The problems cover the entire spectrum of difficulty; some are routine, some require a good grasp of the material involved, and some are exceptionally challenging. The book presents complete solutions to two hundred problems. In searching for the basic required techniques, the student will find a wealth of new material incorporated into the solutions. The student is challenged to produce solutions which are different from the ones presented in the book.

  1. Equilibrium statistical mechanics

    CERN Document Server

    Jackson, E Atlee

    2000-01-01

    Ideal as an elementary introduction to equilibrium statistical mechanics, this volume covers both classical and quantum methodology for open and closed systems. Introductory chapters familiarize readers with probability and microscopic models of systems, while additional chapters describe the general derivation of the fundamental statistical mechanics relationships. The final chapter contains 16 sections, each dealing with a different application, ordered according to complexity, from classical through degenerate quantum statistical mechanics. Key features include an elementary introduction t

  2. Volatility in Equilibrium

    DEFF Research Database (Denmark)

    Bollerslev, Tim; Sizova, Natalia; Tauchen, George

    Stock market volatility clusters in time, carries a risk premium, is fractionally inte- grated, and exhibits asymmetric leverage effects relative to returns. This paper develops a first internally consistent equilibrium based explanation for these longstanding empirical facts. The model is cast i......, and the dynamic cross-correlations of the volatility measures with the returns calculated from actual high-frequency intra-day data on the S&P 500 aggregate market and VIX volatility indexes....

  3. Molecular equilibrium with condensation

    International Nuclear Information System (INIS)

    Sharp, C.M.; Huebner, W.F.

    1990-01-01

    Minimization of the Gibbs energy of formation for species of chemical elements and compounds in their gas and condensed phases determines their relative abundances in a mixture in chemical equilibrium. The procedure is more general and more powerful than previous abundance determinations in multiphase astrophysical mixtures. Some results for astrophysical equations of state are presented, and the effects of condensation on opacity are briefly indicated. 18 refs

  4. Imploding to equilibrium of helically symmetric theta pinches

    International Nuclear Information System (INIS)

    Sharky, N.N.

    1978-01-01

    The time-dependent, single-fluid, dissipative magnetohydrodynamic equations are solved in helical coordinates (r,phi), where phi = THETA-kz, k = 2π/L and L is the periodicity length in the z-direction. The two-dimensional numerical calculations simulate theta pinches which have an l = 1 helical field added to them. Given the applied magnetic fields and the initial state of the plasma, we study the time evolution of the system. The plasma is found to experience two kinds of oscillations, occurring on different time scales. These are the radial compression oscillations, and the slower helical oscillations of the plasma column. The plasma motion is followed until these oscillations disappear and an equilibrium is nearly reached. Hence given the amplitude and the rise time of the applied magnetic fields, the calculations allow one to relate the initial state of a cold, homogeneous plasma to its final equilibrium state where it is heated and compressed

  5. Equilibrium calculations, ch. 6

    International Nuclear Information System (INIS)

    Deursen, A.P.J. van

    1976-01-01

    A calculation is presented of dimer intensities obtained in supersonic expansions. There are two possible limiting considerations; the dimers observed are already present in the source, in thermodynamic equilibrium, and are accelerated in the expansion. Destruction during acceleration is neglected, as are processes leading to newly formed dimers. On the other hand one can apply a kinetic approach, where formation and destruction processes are followed throughout the expansion. The difficulty of this approach stems from the fact that the density, temperature and rate constants have to be known at all distances from the nozzle. The simple point of view has been adopted and the measured dimer intensities are compared with the equilibrium concentration in the source. The comparison is performed under the assumption that the detection efficiency for dimers is twice the detection efficiency for monomers. The experimental evidence against the simple point of view that the dimers of the onset region are formed in the source already, under equilibrium conditions, is discussed. (Auth.)

  6. Analysis of JT-60SA operational scenarios

    Science.gov (United States)

    Garzotti, L.; Barbato, E.; Garcia, J.; Hayashi, N.; Voitsekhovitch, I.; Giruzzi, G.; Maget, P.; Romanelli, M.; Saarelma, S.; Stankiewitz, R.; Yoshida, M.; Zagórski, R.

    2018-02-01

    Reference scenarios for the JT-60SA tokamak have been simulated with one-dimensional transport codes to assess the stationary state of the flat-top phase and provide a profile database for further physics studies (e.g. MHD stability, gyrokinetic analysis) and diagnostics design. The types of scenario considered vary from pulsed standard H-mode to advanced non-inductive steady-state plasmas. In this paper we present the results obtained with the ASTRA, CRONOS, JINTRAC and TOPICS codes equipped with the Bohm/gyro-Bohm, CDBM and GLF23 transport models. The scenarios analysed here are: a standard ELMy H-mode, a hybrid scenario and a non-inductive steady state plasma, with operational parameters from the JT-60SA research plan. Several simulations of the scenarios under consideration have been performed with the above mentioned codes and transport models. The results from the different codes are in broad agreement and the main plasma parameters generally agree well with the zero dimensional estimates reported previously. The sensitivity of the results to different transport models and, in some cases, to the ELM/pedestal model has been investigated.

  7. Food scenarios 2025

    DEFF Research Database (Denmark)

    Sundbo, Jon

    2016-01-01

    This article presents the results of a future study of the food sector. Two scenarios have been developed using a combination of: 1) a summary of the relevant scientific knowledge, 2) systematic scenario writing, 3) an expert-based Delphi technique, and 4) an expert seminar assessment. The two...... scenarios present possible futures at global, national (Denmark) and regional (Zealand, Denmark) levels. The main scenario is called ‘Food for ordinary days and celebrations’ (a combination of ‘High-technological food production − The functional society’ and ‘High-gastronomic food − The experience society...

  8. Calculation code NIRVANA for free boundary MHD equilibrium

    International Nuclear Information System (INIS)

    Ninomiya, Hiromasa; Suzuki, Yasuo; Kameari, Akihisa

    1975-03-01

    The calculation method and code of solving the free boundary problem for MHD equilibrium has been developed. Usage of the code ''NIRVANA'' is described. The toroidal plasma current density determined as a function of the flux function PSI is substituted by a group of the ring currents, whereby the equation of MHD equilibrium is transformed into an integral equation. Either of the two iterative methods is chosen to solve the integral equation, depending on the assumptions made of the plasma surface points. Calculation of the magnetic field configurations is possible when the plasma surface coincides self-consistently with the magnetic flux including the separatrix points. The code is usable in calculation of the circular or non-circular shell-less Tokamak equilibrium. (auth.)

  9. Noncompact Equilibrium Points and Applications

    Directory of Open Access Journals (Sweden)

    Zahra Al-Rumaih

    2012-01-01

    Full Text Available We prove an equilibrium existence result for vector functions defined on noncompact domain and we give some applications in optimization and Nash equilibrium in noncooperative game.

  10. Equilibrium thermodynamics - Callen's postulational approach

    NARCIS (Netherlands)

    Jongschaap, R.J.J.; Öttinger, Hans Christian

    2001-01-01

    In order to provide the background for nonequilibrium thermodynamics, we outline the fundamentals of equilibrium thermodynamics. Equilibrium thermodynamics must not only be obtained as a special case of any acceptable nonequilibrium generalization but, through its shining example, it also elucidates

  11. Thermal equilibrium, stability and burn control

    International Nuclear Information System (INIS)

    Cohn, D.

    1982-01-01

    A number of aspects of the thermal stability and equilibrium control of ignited tokamak plasma have been investigated. Examined approaches were passive control (the effect of radial motion, the effect of radial motion and small additional transport loss), active control (the compression and decompression of plasma, subignited operation with small amount of variable external heating, and density control), and thermal equilibrium control (additional power loss from impurity radiation and enhanced transport from increased ripple). One-D calculation has been made on thermal instability eigen-modes. It was found that for electron thermal induction loss given by Alcator scaling and for neoclassical ion transport, there was at most one unstable mode with a temperature profile which maintains the temperature profile at thermal equilibrium. The effect of the coupling of temperature fluctuation and the fluctuation in major radius was investigated. Temperature driven radial motion combined with a small amount of ripple transport loss was found to be a very effective mechanism for passive thermal stability control. (Kato, T.)

  12. The Extended Generalized Cost Concept and its Application in Freight Transport and General Equilibrium Modeling

    NARCIS (Netherlands)

    Tavasszy, L.; Davydenko, I.; Ruijgrok, K.

    2009-01-01

    The integration of Spatial Equilibrium models and Freight transport network models is important to produce consistent scenarios for future freight transport demand. At various spatial scales, we see the changes in production, trade, logistics networking and transportation, being driven by

  13. Influence of the pressure and power on the non-equilibrium plasma chemistry of C{sub 2}, C{sub 2}H, C{sub 2}H{sub 2}, CH{sub 3} and CH{sub 4} affecting the synthesis of nanodiamond thin films from C{sub 2}H{sub 2} (1%)/H{sub 2}/Ar-rich plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Gordillo-Vazquez, F J [Instituto de Optica, C.S.I.C., Serrano 121, 28006 Madrid (Spain); Albella, J M [Instituto de Materiales de Madrid, C.S.I.C., Cantoblanco, 28049 Madrid (Spain)

    2004-02-01

    We have used a kinetic model to investigate the influence of changing the pressure (0.1-0.8 Torr) and power (100-300 W) on the non-equilibrium plasma chemistry of RF (13.56 MHz) produced C{sub 2}H{sub 2} (1%)/H{sub 2}/Ar plasmas of interest for the synthesis of nanodiamond thin films. We found that the concentrations of the species C{sub 2}(X{sup 1}SIGMA{sup +}{sub g}), C{sub 2}(a{sup 3}PI{sub u}) and C{sub 2}H are not sensitive to variations in the power but they exhibit a significant increase when the pressure decreases at high argon content in the plasma. In addition, the concentrations of C{sub 2}H{sub 2}, CH{sub 4} and CH{sub 3} exhibit a slight (case of C{sub 2}H{sub 2}) or negligible (case of CH{sub 3} and CH{sub 4}) power-dependence although they decrease (case of C{sub 2}H{sub 2} and CH{sub 4}) or remain almost constant (case of CH{sub 3}) as the pressure decreases. A reasonable agreement is found when comparing the model predictions with available experimental results. These findings provide a basic understanding of the plasma chemistry of hydrocarbon/Ar-rich plasma environments and, at the same time, can be of interest to optimize the processing conditions of nanodiamond films from medium pressure RF hydrocarbon/Ar-rich plasmas.

  14. Transition from gas to plasma kinetic equilibria in gravitating axisymmetric structures

    International Nuclear Information System (INIS)

    Cremaschini, Claudio; Stuchlík, Zdeněk

    2014-01-01

    The problem of the transition from gas to plasma in gravitating axisymmetric structures is addressed under the assumption of having initial and final states realized by kinetic Maxwellian-like equilibria. In astrophysics, the theory applies to accretion-disc scenarios around compact objects. A formulation based on non-relativistic kinetic theory for collisionless systems is adopted. Equilibrium solutions for the kinetic distribution functions describing the initial neutral matter and the resulting plasma state are constructed in terms of single-particle invariants and expressed by generalized Maxwellian distributions. The final plasma configuration is related to the initial gas distribution by the introduction of appropriate functional constraints. Qualitative aspects of the solution are investigated and physical properties of the system are pointed out. In particular, the admitted functional dependences of the fluid fields carried by the corresponding equilibrium distributions are determined. Then, the plasma is proved to violate the condition of quasi-neutrality, implying a net charge separation between ions and electrons. This result is shown to be independent of the precise realization of the plasma distribution function, while a physical mechanism able to support a non-neutral equilibrium state is proposed

  15. Transition from gas to plasma kinetic equilibria in gravitating axisymmetric structures

    Energy Technology Data Exchange (ETDEWEB)

    Cremaschini, Claudio; Stuchlík, Zdeněk [Institute of Physics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo nám.13, CZ-74601 Opava (Czech Republic)

    2014-04-15

    The problem of the transition from gas to plasma in gravitating axisymmetric structures is addressed under the assumption of having initial and final states realized by kinetic Maxwellian-like equilibria. In astrophysics, the theory applies to accretion-disc scenarios around compact objects. A formulation based on non-relativistic kinetic theory for collisionless systems is adopted. Equilibrium solutions for the kinetic distribution functions describing the initial neutral matter and the resulting plasma state are constructed in terms of single-particle invariants and expressed by generalized Maxwellian distributions. The final plasma configuration is related to the initial gas distribution by the introduction of appropriate functional constraints. Qualitative aspects of the solution are investigated and physical properties of the system are pointed out. In particular, the admitted functional dependences of the fluid fields carried by the corresponding equilibrium distributions are determined. Then, the plasma is proved to violate the condition of quasi-neutrality, implying a net charge separation between ions and electrons. This result is shown to be independent of the precise realization of the plasma distribution function, while a physical mechanism able to support a non-neutral equilibrium state is proposed.

  16. From scenarios to components

    NARCIS (Netherlands)

    Fahland, D.

    2010-01-01

    Scenario-based modeling has evolved as an accepted paradigm for developing complex systems of various kinds. Its main purpose is to ensure that a system provides desired behavior to its users. A scenario is generally understood as a behavioral requirement, denoting a course of actions that shall

  17. Nuclear Security Futures Scenarios

    International Nuclear Information System (INIS)

    Keller, Elizabeth James Kistin; Warren, Drake Edward; Hayden, Nancy Kay; Passell, Howard D.; Malczynski, Leonard A.; Backus, George A.

    2017-01-01

    This report provides an overview of the scenarios used in strategic futures workshops conducted at Sandia on September 21 and 29, 2016. The workshops, designed and facilitated by analysts in Center 100, used scenarios to enable thought leaders to think collectively about the changing aspects of global nuclear security and the potential implications for the US Government and Sandia National Laboratories.

  18. Scenario-based strategizing

    DEFF Research Database (Denmark)

    Lehr, Thomas; Lorenz, Ullrich; Willert, Markus

    2017-01-01

    For over 40 years, scenarios have been promoted as a key technique for forming strategies in uncertain en- vironments. However, many challenges remain. In this article, we discuss a novel approach designed to increase the applicability of scenario-based strategizing in top management teams. Drawi...... Ministry) and a firm affected by disruptive change (Bosch, leading global supplier of technology and solutions)....

  19. Nuclear Security Futures Scenarios.

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Elizabeth James Kistin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Warren, Drake Edward [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hayden, Nancy Kay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Passell, Howard D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Malczynski, Leonard A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Backus, George A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-01-01

    This report provides an overview of the scenarios used in strategic futures workshops conducted at Sandia on September 21 and 29, 2016. The workshops, designed and facilitated by analysts in Center 100, used scenarios to enable thought leaders to think collectively about the changing aspects of global nuclear security and the potential implications for the US Government and Sandia National Laboratories.

  20. Integrative Scenario Development

    Directory of Open Access Journals (Sweden)

    Joerg A. Priess

    2014-03-01

    Full Text Available Scenarios are employed to address a large number of future environmental and socioeconomic challenges. We present a conceptual framework for the development of scenarios to integrate the objectives of different stakeholder groups. Based on the framework, land-use scenarios were developed to provide a common base for further research. At the same time, these scenarios assisted regional stakeholders to bring forward their concerns and arrive at a shared understanding of challenges between scientific and regional stakeholders, which allowed them to eventually support regional decision making. The focus on the integration of views and knowledge domains of different stakeholder groups, such as scientists and practitioners, required rigorous and repeated measures of quality control. The application of the integrative concept provided products for both stakeholder groups, and the process of scenario development facilitated cooperation and learning within both the scientist and practitioner groups as well as between the two groups.

  1. Non-equilibrium thermodynamics

    CERN Document Server

    De Groot, Sybren Ruurds

    1984-01-01

    The study of thermodynamics is especially timely today, as its concepts are being applied to problems in biology, biochemistry, electrochemistry, and engineering. This book treats irreversible processes and phenomena - non-equilibrium thermodynamics.S. R. de Groot and P. Mazur, Professors of Theoretical Physics, present a comprehensive and insightful survey of the foundations of the field, providing the only complete discussion of the fluctuating linear theory of irreversible thermodynamics. The application covers a wide range of topics: the theory of diffusion and heat conduction, fluid dyn

  2. Analytic and numerical studies of Scyllac equilibrium

    International Nuclear Information System (INIS)

    Barnes, D.C.; Brackbill, J.U.; Dagazian, R.Y.; Freidberg, J.P.; Schneider, W.; Betancourt, O.; Garabedian, P.

    1976-01-01

    The results of both numerical and analytic studies of the Scyllac equilibria are presented. Analytic expansions are used to derive equilibrium equations appropriate to noncircular cross sections, and compute the stellarator fields which produce toroidal force balance. Numerical algorithms are used to solve both the equilibrium equations and the full system of dynamical equations in three dimensions. Numerical equilibria are found for both l = 1,0 and l= 1,2 systems. It is found that the stellarator fields which produce equilibria in the l = 1.0 system are larger for diffuse than for sharp boundary plasma profiles, and that the stability of the equilibria depends strongly on the harmonic content of the stellarator fields

  3. Equilibrium reconstruction in stellarators: V3FIT

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, J.D.; Knowlton, S.F. [Physics Department, Auburn University, Auburn, AL (United States); Hirshman, S.P.; Lazarus, E.A. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Lao, L.L. [General Atomics, San Diego, CA (United States)

    2003-07-01

    The first section describes a general response function formalism for computing stellarator magnetic diagnostic signals, which is the first step in developing a reconstruction capability. The approach parallels that used in the EFIT two-dimensional (2-D) equilibrium reconstruction code. The second section describes the two codes we have written, V3RFUN and V3POST. V3RFUN computes the response functions for a specified magnetic diagnostic coil, and V3POST uses the response functions calculated by V3RFUN, along with the plasma current information supplied by the equilibrium code VMEC, to compute the expected magnetic diagnostic signals. These two codes are currently being used to design magnetic diagnostic for the NCSX stellarator (at PPPL) and the CTH toroidal hybrid stellarator (at Auburn University). The last section of the paper describes plans for the V3FIT code. (orig.)

  4. Scenarios for waste management involving innovative systems (ADS)

    International Nuclear Information System (INIS)

    Tommasi, J.; Bottollier-Curtet, H.; Massara, S.; Varaine, F.; Delpech, M.

    2001-01-01

    The global performance of reactor park scenarios based on innovative systems (Accelerator-Driven Systems, ADS) for transmutation is studied, based either on equilibrium recycling states or on high burn-up systems. The results of these first studies are preliminary but allow to assess the main parameters of the fuel cycle (inventories, mass balances, mass flows...), to evaluate the specific contributions of ADS on the main scenario parameters, and to compare subcritical systems to critical ones. (author)

  5. Self-organization phenomena in plasma physics

    International Nuclear Information System (INIS)

    Sanduloviciu, M.; Popescu, S.

    2001-01-01

    The self-assembling in nature and laboratory of structures in systems away from thermodynamic equilibrium is one of the problems that mostly fascinates the scientists working in all branches of science. In this context a substantial progress has been obtained by investigating the appearance of spatial and spatiotemporal patterns in plasma. These experiments revealed the presence of a scenario of self-organization able to suggest an answer to the central problem of the 'Science of Complexity', why matter transits spontaneously from a disordered into an ordered state? Based on this scenario of self-organization we present arguments proving the possibility to explain the challenging problems of nonequilibrium physics in general. These problems refer to: (i) genuine origin of phase transitions observed in gaseous conductors and semiconductors; (ii) the elucidation of the role played by self-organization in the simulation of oscillations; (iii) the physical basis of anomalous transport of matter and energy with special reference to the possibilities of improving the economical performance of fusion devices; (iv) the possibility to use self-confined gaseous space charged configurations as an alternative to the magnetically confined plasma used at present in fusion devices. In other branches of sciences, as for instance in Biology, the self-organization scenario reveals a new insight into a mechanism able to explain the appearance of the simplest possible space charge configuration able to evolve, under suitable conditions, into prebiotic structures. Referring to phenomena observed in nature, the same self-organization scenario suggests plausible answers to the appearance of ball lightening but also to the origin of the flickering phenomena observed in the light emission of the Sun and stars. For theory the described self-organization scenario offers a new physical basis for many problems of nonlinear science not solved yet and also a new model for the so-called 'self

  6. Thermal equilibrium of goats.

    Science.gov (United States)

    Maia, Alex S C; Nascimento, Sheila T; Nascimento, Carolina C N; Gebremedhin, Kifle G

    2016-05-01

    The effects of air temperature and relative humidity on thermal equilibrium of goats in a tropical region was evaluated. Nine non-pregnant Anglo Nubian nanny goats were used in the study. An indirect calorimeter was designed and developed to measure oxygen consumption, carbon dioxide production, methane production and water vapour pressure of the air exhaled from goats. Physiological parameters: rectal temperature, skin temperature, hair-coat temperature, expired air temperature and respiratory rate and volume as well as environmental parameters: air temperature, relative humidity and mean radiant temperature were measured. The results show that respiratory and volume rates and latent heat loss did not change significantly for air temperature between 22 and 26°C. In this temperature range, metabolic heat was lost mainly by convection and long-wave radiation. For temperature greater than 30°C, the goats maintained thermal equilibrium mainly by evaporative heat loss. At the higher air temperature, the respiratory and ventilation rates as well as body temperatures were significantly elevated. It can be concluded that for Anglo Nubian goats, the upper limit of air temperature for comfort is around 26°C when the goats are protected from direct solar radiation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Transport barriers in plasmas

    International Nuclear Information System (INIS)

    Caldas, I L; Szezech, J D Jr; Kroetz, T; Marcus, F A; Roberto, M; Viana, R L; Lopes, S R

    2012-01-01

    We discuss the creation of transport barriers in magnetically confined plasmas with non monotonic equilibrium radial profiles. These barriers reduce the transport in the shearless region (i.e., where the twist condition does not hold). For the chaotic motion of particles in an equilibrium electric field with a nonmonotonic radial profile, perturbed by electrostatic waves, we show that a nontwist transport barrier can be created in the plasma by modifying the electric field radial profile. We also show non twist barriers in chaotic magnetic field line transport in the plasma near to the tokamak wall with resonant modes due to electric currents in external coils.

  8. Mars base buildup scenarios

    International Nuclear Information System (INIS)

    Blacic, J.D.

    1985-01-01

    Two surface base build-up scenarios are presented in order to help visualize the mission and to serve as a basis for trade studies. In the first scenario, direct manned landings on the Martian surface occur early in the missions and scientific investigation is the main driver and rationale. In the second scenario, early development of an infrastructure to exploite the volatile resources of the Martian moons for economic purposes is emphasized. Scientific exploration of the surface is delayed at first, but once begun develops rapidly aided by the presence of a permanently manned orbital station

  9. Fast Waves Mode Conversion and Energy Deposition in Simulated, Pre-Heated, Neoclassical, Tight Aspect Ratio Tokamak Plasmas

    International Nuclear Information System (INIS)

    Bruma, C.; Cuperman, S.; Komoshvili, K.

    1999-01-01

    Some basic aspects of wave-plasma interaction of interest for tight aspect ratio spherical tokamaks are investigated theoretically. The following scenario is considered: A. Fast magnetosonic waves are launched by an external antenna into a simulated spherical Tokamak plasma; these waves are converted to Alfven waves at points (layer) satisfying the Alfven resonance condition. B. The simulated spherical tokamaks-plasma has a circular cross-section and toroidicity effects are simulated by Grad-Shafranov type, radially dependent axial magnetic field and its shear. (J. Actual equilibrium profiles (magnetic field, pressure and current) observed in the low field side (LFS) of spherical tokamaks (viz., START at Culham, UK) are used. D. The study is based on the numerical solution of the full e.m. wave equation which includes a quite general resistive MHD dielectric tensor, with consideration of equilibrium current and neoclassical effects. Two kinds of results will be presented: I. Proofs validating the computational algorithm used and including convergence and energy conservation. II. Exact quantitative results concerning (i) the structure and space dependence of the mode-converted Alfven waves and (ii) the basic features of the deposited p over . The dependence of the results on the launched wave characteristics (wave numbers, frequency and intensity) as well as on those of the equilibrium plasma (equilibrium current, neoclassical resistivity and electron inertia) will be discussed

  10. Plasma Equilibrium in a Torus with High-Frequency Fields and Plasma Heating Resulting from the Development of a Powerful Beam of ''Escaping Electrons''; Plasma Torique: Stabilisation au Moyen de Champs de Haute Frequence et Chauffage par Formation d'un Flux Intense d'Electrons 'Emballes'; Ehksperimental'noe issledovanie ravnovesiya plazmy v tore pri nalichii vysokochastotnykh polej i nagreva plazmy za schet razvitiya moshchnogo puchka ''ubegayushchikh ehlektronov''; Equilibrio del Plasma en un Toro, en Presencia de Campos de Alta Frecuencia, y Calentamiento del Plasma por el Desarrollo de un Haz Potente de 'Electrones Desbocados '

    Energy Technology Data Exchange (ETDEWEB)

    Demirkhanov, R. A.; Kirov, A. G.; Stotland, M. A.; Malykh, N. I.; Horasanov, G. L.; Vishnevskij, N. K.; Gutkin, T. I.; Jampol' skij, I. R. [Fiziko-Tehnicheskij Institut Gosudarstvennogo Komiteta po Ispol' zovaniju Atomnoj Ehnergii SSSR, Sukhumi, SSSR (Russian Federation)

    1966-04-15

    The paper describes experiments conducted on the ''RT-0'' apparatus. It consists of a torus with large diameter 100 cm and with small diameter 10 cm. A toroidal magnetic field about 6 kOe is established along the chamber. The plasma is ignited at {>=}5 x 10{sup -4} Torr by means of a longitudinal rotating electric field of f = 8.3 Mc/s. Rotating around the small diameter is a high-frequency (540 kc/s) quadrupole field with H{phi} = 200 Oe at the chamber walls. When the low-induction capacitor bank is discharged on the loops located along the torus, a damped vortical electric field with maximum strength E{sub z} = 200 V cm{sup -1} and with half-period about 1 {mu}s may be generated within the chamber. The purposes of the experiments were: 1) To explain the equilibrium and stabilization of plasma in a quasi-constant toroidal magnetic field by using routing multipole high-frequency fields, on the assumption that the toroidal drift force, equal to Tilde-Operator (r/R)nkt, must be compensated by the electromagnetic wave pressure H{sup 2}/8{pi}; 2) To study the heating of plasma resulting from dissipation of the ''beam'' instability produced by a powerful beam of ''escaping electrons'' when the electric fields in the plasma are characterized by Ez >> Ec. The apparatus was used to carry out: a) Microwave measurements of plasma density, by using an interferometer of wave length {lambda} =2 mm, and observation of the plasma boundary by the reflected signal on the wave {lambda} = 17 mm; b) Recording of the behaviour of the H{sub {beta}} line in time and scanning of plasma luminescence in time, by using a photoelectric converter; c) measurement of the total intensity of the X-radiation in time, by using a scintillation counter; d) measurement of the current in the plasma and of the voltage in the bypass. The results show that a high-frequency igniting field of 8.3 Mc/s creates a plasma touching the walls with an average electron density 0.5 to 1 x 10{sup 13} cm{sup -3} and an

  11. Compact torus theory: MHD equilibrium and stability

    International Nuclear Information System (INIS)

    Barnes, D.C.; Seyler, C.E.; Anderson, D.V.

    1979-01-01

    Field reversed theta pinches have demonstrated the production and confinement of compact toroidal configurations with surprisingly good MHD stability. In these observations, the plasma is either lost by diffusion or by the loss of the applied field or is disrupted by an n = 2 (where n is the toroidal mode number) rotating instability only after 30 to 100 MHD times, when the configuration begins to rotate rigidly above a critical speed. These experiments have led one to investigate the equilibrium, stability, and rotation of a very elongated, toroidally axisymmetric configuration with no toroidal field. Many of the above observations are explained by recent results of these investigations which are summarized

  12. Equilibrium of the kink source experiment

    International Nuclear Information System (INIS)

    Marklin, G.

    1985-01-01

    The kink source experiment (KSX) was conceived of as a method of injecting helicity into a spheromak making special use of the m = 1 helical Taylor state. It has a Z pinch as a helicity generating source, connected to a flux conserver through an entrance region. Since the entrance region is a long (length > diameter) cyclinder, the magnetic field should be close to the helical Taylor state, which is the minimum energy configuration of a magnetized plasma in an infinite cylinder with no net flux. This paper will be concerned with modeling the actual fields in the entrance region of the KSX using zero-beta ideal MHD equilibrium theory

  13. JAXA's Space Exploration Scenario

    Science.gov (United States)

    Sato, N. S.

    2018-04-01

    Japan Aerospace Exploration Agency (JAXA) has been studying space exploration scenario, including human exploration for Japan since 2015, which encompasses goals, knowledge gap assessment, and architecture. assessment, and technology roadmap.

  14. Learning Through Scenario Planning

    DEFF Research Database (Denmark)

    Balarezo, Jose

    level variables, this research corrects this void by investigating the dynamics of organizational learning through the lenses of a corporate scenario planning process. This enhances our scientific understanding of the role that scenario planning might play in the context of organizational learning......This project investigates the uses and effects of scenario planning in companies operating in highly uncertain and dynamic environments. Whereas previous research on scenario planning has fallen short of providing sufficient evidence of its mechanisms and effects on individual or organizational...... and strategic renewal. Empirical evidence of the various difficulties that learning flows has to overcome as it journeys through organizational and hierarchical levels are presented. Despite various cognitive and social psychological barriers identified along the way, the results show the novel...

  15. Integrated transportation scenario planning.

    Science.gov (United States)

    2010-07-01

    Regional land usetransportation scenario planning emerged as a planning technique in U.S. : metropolitan areas in the 1990s. Building on prior work by this research team, this study continues : to track the development and expansion of regional sc...

  16. Equilibrium and stability studies for an iron-core tokamak with a poloidal divertor

    International Nuclear Information System (INIS)

    Solano, E.R.; Neilson, G.H.; Lao, L.L.

    1989-01-01

    A study of plasma equilibrium and stability in a tokamak with an unsaturated iron core is presented. A spool model is developed for the iron. Both, a simplified force balance code and a Grad-Shafranov solver are used to study the plasma equilibrium. It is observed that the iron can strongly modify the conditions for equilibrium and stability, and in some cases an infinite cylinder model for the iron core is not adequate. New criteria for plasma position stability in the presence of an iron core are introduced. 17 refs., 4 figs., 3 tabs

  17. Plasma automatic control in magnetic traps

    International Nuclear Information System (INIS)

    Samojlenko, Yu.I.; Chuyanov, V.A.

    1983-01-01

    Principles of constructing the systems providing a plasma equilibrium and stability in thermonuctear devices are laid down. Operation of the servo system to maintain a plasma equilibrium is described using the tokamak plasma filament as an example. Operation of the system to suppress a flute instability is also described. This system measures electric disturbances on the plasma body surface and controls charge distribution on external electrodes. It is pointed out that systems of automatic control of plasma equilibrium and stability become an essential element of a future thermonuclear reactor and the system potentialities would much determine the reactor economic efficiency

  18. Model of detached plasmas

    International Nuclear Information System (INIS)

    Yoshikawa, S.; Chance, M.

    1986-07-01

    Recently a tokamak plasma was observed in TFTR that was not limited by a limiter or a divertor. A model is proposed to explain this equilibrium, which is called a detached plasma. The model consists of (1) the core plasma where ohmic heating power is lost by anomalous heat conduction and (2) the shell plasma where the heat from the core plasma is radiated away by the atomic processes of impurity ions. A simple scaling law is proposed to test the validity of this model

  19. Cyclotron waves in plasma

    CERN Document Server

    Lominadze, D G

    2013-01-01

    Cyclotron Waves in Plasma is a four-chapter text that covers the basic physical concepts of the theory of cyclotron waves and cyclotron instabilities, brought about by the existence of steady or alternating plasma currents flowing perpendicular to the magnetic field.This book considers first a wide range of questions associated with the linear theory of cyclotron oscillations in equilibrium plasmas and in electron plasmas in metals and semiconductors. The next chapter deals with the parametric excitation of electron cyclotron oscillations in plasma in an alternating electric field. A chapter f

  20. Equilibrium models and variational inequalities

    CERN Document Server

    Konnov, Igor

    2007-01-01

    The concept of equilibrium plays a central role in various applied sciences, such as physics (especially, mechanics), economics, engineering, transportation, sociology, chemistry, biology and other fields. If one can formulate the equilibrium problem in the form of a mathematical model, solutions of the corresponding problem can be used for forecasting the future behavior of very complex systems and, also, for correcting the the current state of the system under control. This book presents a unifying look on different equilibrium concepts in economics, including several models from related sciences.- Presents a unifying look on different equilibrium concepts and also the present state of investigations in this field- Describes static and dynamic input-output models, Walras, Cassel-Wald, spatial price, auction market, oligopolistic equilibrium models, transportation and migration equilibrium models- Covers the basics of theory and solution methods both for the complementarity and variational inequality probl...

  1. Plasma properties

    International Nuclear Information System (INIS)

    Weitzner, H.

    1989-08-01

    A cursory examination of the research activities of the Magneto-Fluid Dynamics Division for the calendar year 1988 shows the effects of the gradual transformation of the group. Although our principal activity, fusion plasma physics research, is unchanged, the work shows closer ties to problems relevant to present experiments than previously. Most notable is the concentrated effort on tokamak equilibrium and transport. We are exploring the implication of turbulence induced transport, resistive MHD effects, neoclassical transport, and possible interpretations of transport based on classical phenomena. In addition, one of our members has chosen to focus on problems of enhanced statistical methods for interpretation of experiments. All of this activity preceded the Tokamak Transport Initiative and reflects our active involvement and concern with the world-wide tokamak program. Since equilibrium and transport are by no means the only theoretical plasma physics problems affecting fusion devices we continue substantial efforts in wave propagation and heating, particle simulation of plasmas, stability theory, enhancement of numerical algorithms, and general plasma physics. We are attempting to develop effective numerical schemes for the Boltzmann equation, adaptive grid methods for MHD, and particle simulation of boundary and antenna effects. Many of these topics reflect our continuing concern to maintain a modest effort in the development of theoretical models and tools for problems of real significance to fusion, but not necessarily of immediate highest priority. We select problems which we expect to become extremely important in the future. Our space plasma physics activities, funded by agencies other than DOE, transfers knowledge learned in fusion plasma physics to another area and conversely stimulates work also relevant to fusion problems

  2. Grinding kinetics and equilibrium states

    Science.gov (United States)

    Opoczky, L.; Farnady, F.

    1984-01-01

    The temporary and permanent equilibrium occurring during the initial stage of cement grinding does not indicate the end of comminution, but rather an increased energy consumption during grinding. The constant dynamic equilibrium occurs after a long grinding period indicating the end of comminution for a given particle size. Grinding equilibrium curves can be constructed to show the stages of comminution and agglomeration for certain particle sizes.

  3. Mental Equilibrium and Rational Emotions

    OpenAIRE

    Eyal Winter; Ignacio Garcia-Jurado; Jose Mendez-Naya; Luciano Mendez-Naya

    2009-01-01

    We introduce emotions into an equilibrium notion. In a mental equilibrium each player "selects" an emotional state which determines the player's preferences over the outcomes of the game. These preferences typically differ from the players' material preferences. The emotional states interact to play a Nash equilibrium and in addition each player's emotional state must be a best response (with respect to material preferences) to the emotional states of the others. We discuss the concept behind...

  4. Para-equilibrium phase diagrams

    International Nuclear Information System (INIS)

    Pelton, Arthur D.; Koukkari, Pertti; Pajarre, Risto; Eriksson, Gunnar

    2014-01-01

    Highlights: • A rapidly cooled system may attain a state of para-equilibrium. • In this state rapidly diffusing elements reach equilibrium but others are immobile. • Application of the Phase Rule to para-equilibrium phase diagrams is discussed. • A general algorithm to calculate para-equilibrium phase diagrams is described. - Abstract: If an initially homogeneous system at high temperature is rapidly cooled, a temporary para-equilibrium state may result in which rapidly diffusing elements have reached equilibrium but more slowly diffusing elements have remained essentially immobile. The best known example occurs when homogeneous austenite is quenched. A para-equilibrium phase assemblage may be calculated thermodynamically by Gibbs free energy minimization under the constraint that the ratios of the slowly diffusing elements are the same in all phases. Several examples of calculated para-equilibrium phase diagram sections are presented and the application of the Phase Rule is discussed. Although the rules governing the geometry of these diagrams may appear at first to be somewhat different from those for full equilibrium phase diagrams, it is shown that in fact they obey exactly the same rules with the following provision. Since the molar ratios of non-diffusing elements are the same in all phases at para-equilibrium, these ratios act, as far as the geometry of the diagram is concerned, like “potential” variables (such as T, pressure or chemical potentials) rather than like “normal” composition variables which need not be the same in all phases. A general algorithm to calculate para-equilibrium phase diagrams is presented. In the limit, if a para-equilibrium calculation is performed under the constraint that no elements diffuse, then the resultant phase diagram shows the single phase with the minimum Gibbs free energy at any point on the diagram; such calculations are of interest in physical vapor deposition when deposition is so rapid that phase

  5. A method for external measurement of toroidal equilibrium parameters

    International Nuclear Information System (INIS)

    Brunsell, P.; Hellblom, G.; Brynolf, J.

    1992-01-01

    A method has been developed for determining from external magnetic field measurements the horizontal shift, the vertical shift and the poloidal field asymmetry parameter (Λ) of a toroidal plasma in force equilibrium. The magnetic measurements consist of two toroidal differential flux loops, giving the average vertical magnetic field and the average radial magnetic field respectively, together with cosine-coils for obtaining the m=1 cosine harmonic of the external poloidal magnetic field component. The method is used to analyse the evolution of the toroidal equilibrium during reversed-field pinch discharges in the Extrap T1-U device. We find that good equilibrium control is needed for long plasma pulses. For non-optimized externally applied vertical fields, the diagnostic clearly shows a horizontal drift motion of the pinch resulting in earlier discharge termination. (au)

  6. Equilibrium and stability of the Los Alamos spheromak

    International Nuclear Information System (INIS)

    Marklin, G.

    1984-01-01

    The open mesh flux conserver (MFC) on the Los Alamos spheromak (CTX) has been equipped with a large number of Rogowski loops measuring the current in the individual segments of the MFC, providing a complete picture of the surface current pattern induced by the equilibrium and oscillations of the confined plasma. An analysis was made of the data from these Rogowski loops

  7. 3D equilibrium codes for mirror machines

    International Nuclear Information System (INIS)

    Kaiser, T.B.

    1983-01-01

    The codes developed for cumputing three-dimensional guiding center equilibria for quadrupole tandem mirrors are discussed. TEBASCO (Tandem equilibrium and ballooning stability code) is a code developed at LLNL that uses a further expansion of the paraxial equilibrium equation in powers of β (plasma pressure/magnetic pressure). It has been used to guide the design of the TMX-U and MFTF-B experiments at Livermore. Its principal weakness is its perturbative nature, which renders its validity for high-β calculation open to question. In order to compute high-β equilibria, the reduced MHD technique that has been proven useful for determining toroidal equilibria was adapted to the tandem mirror geometry. In this approach, the paraxial expansion of the MHD equations yields a set of coupled nonlinear equations of motion valid for arbitrary β, that are solved as an initial-value problem. Two particular formulations have been implemented in computer codes developed at NYU/Kyoto U and LLNL. They differ primarily in the type of grid, the location of the lateral boundary and the damping techniques employed, and in the method of calculating pressure-balance equilibrium. Discussions on these codes are presented in this paper. (Kato, T.)

  8. TIBER engineering test reactor (ETR) startup scenarios

    International Nuclear Information System (INIS)

    Blackfield, D.T.; Perkins, L.J.

    1987-01-01

    A time-dependent Tokamak Systems Code (TTSC) has been developed and used to examine various inductively driven startup scenarios for the TIBER reactor. Radially averaged particle and energy balance equations are solved. In addition, time varying currents in the PF and OH coils are determined from MHD equilibrium and volt-seconds considerations. Less than 20 MW of auxiliary power deposited in the electrons is required to obtain steady-state operations. For this scenario, less than 10% of the total volt-seconds capability is consumed during startup and the currents in the PF and OH coils do not appear to exceed stress limits. For every volt-second saved during startup, the burn time can be extended 14 seconds. 4 refs., 6 figs., 3 tabs

  9. SCENARIO PLANNING AS LEARNING

    Directory of Open Access Journals (Sweden)

    Antonio Lourenço Junior

    2010-10-01

    Full Text Available Scenario Planning has been increasingly used, from its introduction to the decision process as effective tools to test decisions, and improve performance in a dynamic environment (Chermack, 2005. The purpose of this article is to demonstrate the potential of an experimental Scenario Planning Model to mobilize, encourage and add more content to the organization’s decision making process – mainly with respect to Strategic Plans of two governmental institutions, a pharmaceutical company and a technology education foundation.  This study describes the application stages of a hybrid scenario-planning model – herein referred to as Planning as Learning – via action-research, showing the scenarios resulting from the experiment and describes the main results of an assessment of such practice. In order to do that, two well-established Scenario Planning models (Prospective school and Shell’s model were analyzed. They were used as a reference for the proposition and application of an experimental model in the two study objects. A questionnaire was used to assess the technique impact. It was possible to obtain high levels of reliability. In-depth interviews were also conducted with the participants. At the end, the results confirmed the model efficiency as a basis for decision making in the competitive environment in which the two institutions are inserted, also to encourage the learning process as a group, as observed throughout the work.

  10. Scenarios for Gluino Coannihilation

    CERN Document Server

    Ellis, John; Luo, Feng; Olive, Keith A

    2016-01-01

    We study supersymmetric scenarios in which the gluino is the next-to-lightest supersymmetric particle (NLSP), with a mass sufficiently close to that of the lightest supersymmetric particle (LSP) that gluino coannihilation becomes important. One of these scenarios is the MSSM with soft supersymmetry-breaking squark and slepton masses that are universal at an input GUT renormalization scale, but with non-universal gaugino masses. The other scenario is an extension of the MSSM to include vector-like supermultiplets. In both scenarios, we identify the regions of parameter space where gluino coannihilation is important, and discuss their relations to other regions of parameter space where other mechanisms bring the dark matter density into the range allowed by cosmology. In the case of the non-universal MSSM scenario, we find that the allowed range of parameter space is constrained by the requirement of electroweak symmetry breaking, the avoidance of a charged LSP and the measured mass of the Higgs boson, in parti...

  11. Scenarios for gluino coannihilation

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, John [Theoretical Particle Physics and Cosmology Group, Department of Physics, King’s College London, London, WC2R 2LS United Kingdom (United Kingdom); Theory Division, CERN,Geneva 23, CH-1211 (Switzerland); Evans, Jason L. [School of Physics and Astronomy, University of Minnesota,Minneapolis, MN, 55455 (United States); William I. Fine Theoretical Physics Institute, School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455 (United States); Luo, Feng [Theory Division, CERN,Geneva 23, CH-1211 (Switzerland); Olive, Keith A. [School of Physics and Astronomy, University of Minnesota,Minneapolis, MN, 55455 (United States); William I. Fine Theoretical Physics Institute, School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455 (United States)

    2016-02-11

    We study supersymmetric scenarios in which the gluino is the next-to-lightest supersymmetric particle (NLSP), with a mass sufficiently close to that of the lightest supersymmetric particle (LSP) that gluino coannihilation becomes important. One of these scenarios is the MSSM with soft supersymmetry-breaking squark and slepton masses that are universal at an input GUT renormalization scale, but with non-universal gaugino masses. The other scenario is an extension of the MSSM to include vector-like supermultiplets. In both scenarios, we identify the regions of parameter space where gluino coannihilation is important, and discuss their relations to other regions of parameter space where other mechanisms bring the dark matter density into the range allowed by cosmology. In the case of the non-universal MSSM scenario, we find that the allowed range of parameter space is constrained by the requirement of electroweak symmetry breaking, the avoidance of a charged LSP and the measured mass of the Higgs boson, in particular, as well as the appearance of other dark matter (co)annihilation processes. Nevertheless, LSP masses m{sub χ}≲8 TeV with the correct dark matter density are quite possible. In the case of pure gravity mediation with additional vector-like supermultiplets, changes to the anomaly-mediated gluino mass and the threshold effects associated with these states can make the gluino almost degenerate with the LSP, and we find a similar upper bound.

  12. Regional climate change scenarios

    International Nuclear Information System (INIS)

    Somot, S.

    2005-01-01

    Because studies of the regional impact of climate change need higher spatial resolution than that obtained in standard global climate change scenarios, developing regional scenarios from models is a crucial goal for the climate modelling community. The zoom capacity of ARPEGE-Climat, the Meteo-France climate model, allows use of scenarios with a horizontal resolution of about 50 km over France and the Mediterranean basin. An IPCC-A2 scenario for the end of the 21. century in France shows higher temperatures in each season and more winter and less summer precipitation than now. Tuning the modelled statistical distributions to observed temperature and precipitation allows us to study changes in the frequency of extreme events between today's climate and that at the end of century. The frequency of very hot days in summer will increase. In particular, the frequency of days with a maximum temperature above 35 deg C will be multiplied by a factor of 10, on average. In our scenario, the Toulouse area and Provence might see one quarter of their summer days with a maximum temperature above 35 deg C. (author)

  13. Transition from thermal to turbulent equilibrium with a resulting electromagnetic spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Ziebell, L. F., E-mail: luiz.ziebell@ufrgs.br [Instituto de Física, UFRGS, Porto Alegre, RS (Brazil); Yoon, P. H. [Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742 (United States); School of Space Research, Kyung Hee University, Yongin, Gyeonggi 446-701 (Korea, Republic of); Gaelzer, R. [Instituto de Física, UFRGS, Porto Alegre, RS (Brazil); Instituto de Física e Matemática, UFPel, Pelotas, RS (Brazil); Pavan, J. [Instituto de Física e Matemática, UFPel, Pelotas, RS (Brazil)

    2014-01-15

    A recent paper [Ziebell et al., Phys. Plasmas 21, 010701 (2014)] discusses a new type of radiation emission process for plasmas in a state of quasi-equilibrium between the particles and enhanced Langmuir turbulence. Such a system may be an example of the so-called “turbulent quasi-equilibrium.” In the present paper, it is shown on the basis of electromagnetic weak turbulence theory that an initial thermal equilibrium state (i.e., only electrostatic fluctuations and Maxwellian particle distributions) transitions toward the turbulent quasi-equilibrium state with enhanced electromagnetic radiation spectrum, thus demonstrating that the turbulent quasi-equilibrium discussed in the above paper correctly describes the weakly turbulent plasma dynamically interacting with electromagnetic fluctuations, while maintaining a dynamical steady-state in the average sense.

  14. Optimal neutral beam heating scenario for FED

    International Nuclear Information System (INIS)

    Hively, L.M.; Houlberg, W.A.; Attenberger, S.E.

    1981-01-01

    Optimal neutral beam heating scenarios are determined for FED based on a 1/one-half/-D transport analysis. Tradeoffs are examined between neutral beam energy, power, and species mix for positive ion systems. A ramped density startup is found to provide the most economical heating. The resulting plasma power requirements are reduced by 10-30% from a constant density startup. For beam energies between 100 and 200 keV, the power needed to heat the plasma does not decrease significantly as beam energy is increased. This is due to reduced ion heating, more power in the fractional energy components, and rising power supply requirements as beam energy increases

  15. Gyrokinetic statistical absolute equilibrium and turbulence

    International Nuclear Information System (INIS)

    Zhu Jianzhou; Hammett, Gregory W.

    2010-01-01

    A paradigm based on the absolute equilibrium of Galerkin-truncated inviscid systems to aid in understanding turbulence [T.-D. Lee, Q. Appl. Math. 10, 69 (1952)] is taken to study gyrokinetic plasma turbulence: a finite set of Fourier modes of the collisionless gyrokinetic equations are kept and the statistical equilibria are calculated; possible implications for plasma turbulence in various situations are discussed. For the case of two spatial and one velocity dimension, in the calculation with discretization also of velocity v with N grid points (where N+1 quantities are conserved, corresponding to an energy invariant and N entropy-related invariants), the negative temperature states, corresponding to the condensation of the generalized energy into the lowest modes, are found. This indicates a generic feature of inverse energy cascade. Comparisons are made with some classical results, such as those of Charney-Hasegawa-Mima in the cold-ion limit. There is a universal shape for statistical equilibrium of gyrokinetics in three spatial and two velocity dimensions with just one conserved quantity. Possible physical relevance to turbulence, such as ITG zonal flows, and to a critical balance hypothesis are also discussed.

  16. Gyrokinetic Statistical Absolute Equilibrium and Turbulence

    International Nuclear Information System (INIS)

    Zhu, Jian-Zhou; Hammett, Gregory W.

    2011-01-01

    A paradigm based on the absolute equilibrium of Galerkin-truncated inviscid systems to aid in understanding turbulence (T.-D. Lee, 'On some statistical properties of hydrodynamical and magnetohydrodynamical fields,' Q. Appl. Math. 10, 69 (1952)) is taken to study gyrokinetic plasma turbulence: A finite set of Fourier modes of the collisionless gyrokinetic equations are kept and the statistical equilibria are calculated; possible implications for plasma turbulence in various situations are discussed. For the case of two spatial and one velocity dimension, in the calculation with discretization also of velocity v with N grid points (where N + 1 quantities are conserved, corresponding to an energy invariant and N entropy-related invariants), the negative temperature states, corresponding to the condensation of the generalized energy into the lowest modes, are found. This indicates a generic feature of inverse energy cascade. Comparisons are made with some classical results, such as those of Charney-Hasegawa-Mima in the cold-ion limit. There is a universal shape for statistical equilibrium of gyrokinetics in three spatial and two velocity dimensions with just one conserved quantity. Possible physical relevance to turbulence, such as ITG zonal flows, and to a critical balance hypothesis are also discussed.

  17. Thermodynamic chemical energy transfer mechanisms of non-equilibrium, quasi-equilibrium, and equilibrium chemical reactions

    International Nuclear Information System (INIS)

    Roh, Heui-Seol

    2015-01-01

    Chemical energy transfer mechanisms at finite temperature are explored by a chemical energy transfer theory which is capable of investigating various chemical mechanisms of non-equilibrium, quasi-equilibrium, and equilibrium. Gibbs energy fluxes are obtained as a function of chemical potential, time, and displacement. Diffusion, convection, internal convection, and internal equilibrium chemical energy fluxes are demonstrated. The theory reveals that there are chemical energy flux gaps and broken discrete symmetries at the activation chemical potential, time, and displacement. The statistical, thermodynamic theory is the unification of diffusion and internal convection chemical reactions which reduces to the non-equilibrium generalization beyond the quasi-equilibrium theories of migration and diffusion processes. The relationship between kinetic theories of chemical and electrochemical reactions is also explored. The theory is applied to explore non-equilibrium chemical reactions as an illustration. Three variable separation constants indicate particle number constants and play key roles in describing the distinct chemical reaction mechanisms. The kinetics of chemical energy transfer accounts for the four control mechanisms of chemical reactions such as activation, concentration, transition, and film chemical reactions. - Highlights: • Chemical energy transfer theory is proposed for non-, quasi-, and equilibrium. • Gibbs energy fluxes are expressed by chemical potential, time, and displacement. • Relationship between chemical and electrochemical reactions is discussed. • Theory is applied to explore nonequilibrium energy transfer in chemical reactions. • Kinetics of non-equilibrium chemical reactions shows the four control mechanisms

  18. Direct transition from a stable equilibrium to quasiperiodicity in non-smooth systems

    DEFF Research Database (Denmark)

    Zhusubaliyev, Z.T.; Mosekilde, Erik

    2008-01-01

    The purpose of this Letter is to show how a border-collision bifurcation in a piecewise-smooth dynamical system can produce a direct transition from a stable equilibrium point to a two-dimensional invariant torus. Considering a system of nonautonomous differential equations describing the behavior...... of a power electronic DC/DC converter, we first determine the chart of dynamical modes and show that there is a region of parameter space in which the system has a single stable equilibrium point. Under variation of the parameters, this equilibrium may collide with a discontinuity boundary between two smooth...... regions in phase space. When this happens, one can observe a number of different bifurcation scenarios. One scenario is the continuous transformation of the stable equilibrium into a stable period-1 cycle. Another is the transformation of the stable equilibrium into an unstable period-1 cycle with complex...

  19. Thermal plasmas: fundamental aspects

    International Nuclear Information System (INIS)

    Fauchais, P.

    2005-01-01

    This article treats of thermal plasmas, i.e. mainly produced by electric arcs and RF discharges. Their main characteristic is that they are generated at a pressure close to the atmospheric pressure (between 10 4 and 10 6 Pa) and refer to the classical kinetics of the Boltzmann equation. Because of the pressure, the collisions between particles are numerous and ionization is mainly due to a thermal effect. They correspond to electron densities between 10 20 and 10 24 m -3 and temperatures between 6000 and 25000 K. In these plasmas, the electric fields and the average free trajectories are too weak to generate a ionization state by direct inelastic collision. Ionization is thus essentially a thermal phenomenon due to elastic collisions. This article presents: 1 - the particles present in a plasma: definition, energy states; 2 - characteristic data: collisions, average free path and collision cross-section, distribution function, ionization types, charged particles mobility inside an electric field, scattering, Debye length; 3 - plasmas at the thermodynamical equilibrium: conditions of equilibrium, calculation of composition, thermodynamic properties, transport properties, radiation; 4 - thermal plasmas away from equilibrium: conditions of non-equilibrium, calculation of plasma composition, calculation of transport properties, quenching phenomenon. (J.S.)

  20. MIV Project: Mission scenario

    DEFF Research Database (Denmark)

    Ravazzotti, Mariolina T.; Jørgensen, John Leif; Thuesen, Gøsta

    1997-01-01

    Under the ESA contract #11453/95/NL/JG(SC), aiming at assessing the feasibility of Rendez-vous and docking of unmanned spacecrafts, a msiision scenario was defined. This report describes the secquence of manouvres and task allocations for such missions.......Under the ESA contract #11453/95/NL/JG(SC), aiming at assessing the feasibility of Rendez-vous and docking of unmanned spacecrafts, a msiision scenario was defined. This report describes the secquence of manouvres and task allocations for such missions....