WorldWideScience

Sample records for plasma proteome response

  1. Plasma proteome response to severe burn injury revealed by 18O-labeled "universal" reference-based quantitative proteomics.

    Science.gov (United States)

    Qian, Wei-Jun; Petritis, Brianne O; Kaushal, Amit; Finnerty, Celeste C; Jeschke, Marc G; Monroe, Matthew E; Moore, Ronald J; Schepmoes, Athena A; Xiao, Wenzhong; Moldawer, Lyle L; Davis, Ronald W; Tompkins, Ronald G; Herndon, David N; Camp, David G; Smith, Richard D

    2010-09-01

    A burn injury represents one of the most severe forms of human trauma and is responsible for significant mortality worldwide. Here, we present the first quantitative proteomics investigation of the blood plasma proteome response to severe burn injury by comparing the plasma protein concentrations of 10 healthy control subjects with those of 15 severe burn patients at two time-points following the injury. The overall analytical strategy for this work integrated immunoaffinity depletion of the 12 most abundant plasma proteins with cysteinyl-peptide enrichment-based fractionation prior to LC-MS analyses of individual patient samples. Incorporation of an 18O-labeled "universal" reference among the sample sets enabled precise relative quantification across samples. In total, 313 plasma proteins confidently identified with two or more unique peptides were quantified. Following statistical analysis, 110 proteins exhibited significant abundance changes in response to the burn injury. The observed changes in protein concentrations suggest significant inflammatory and hypermetabolic response to the injury, which is supported by the fact that many of the identified proteins are associated with acute phase response signaling, the complement system, and coagulation system pathways. The regulation of approximately 35 proteins observed in this study is in agreement with previous results reported for inflammatory or burn response, but approximately 50 potentially novel proteins previously not known to be associated with burn response or inflammation are also found. Elucidating proteins involved in the response to severe burn injury may reveal novel targets for therapeutic interventions as well as potential predictive biomarkers for patient outcomes such as multiple organ failure.

  2. Proteomic Analysis of Rice Plasma Membrane-associated Proteins in Response to Chitooligosaccharide Elicitors

    Institute of Scientific and Technical Information of China (English)

    Fang Chen; Qun Li; Zuhua He

    2007-01-01

    Chitooligomers or chitooligosaccharides (COS) are elicitors that bind to the plasma membrane (PM) and elicit various defense responses. However, the PM-bound proteins involved in elicitor-mediated plant defense responses still remain widely unknown. In order to get more information about PM proteins involved in rice defense responses, we conducted PM proteomic analysis of the rice suspension cells elicited by COS. A total of 14 up- or down-regulated protein spots were observed on 2-D gels of PM fractions at 12 h and 24 h after COS incubation. Of them, eight protein spots were successfully identified by MS (mass spectrography) and predicted to be associated to the PM and function in plant defense, including a putative PKN/PRK1 protein kinase, a putative pyruvate kinase isozyme G, a putative zinc finger protein, a putative MAR-binding protein MFP1, and a putative calcium-dependent protein kinase. Interestingly, a COS-induced pM5-like protein was identified for the first time in plants, which is a trans-membrane nodal modulator in transforming growth factor-β(TGFβ) signaling in vertebrates. We also identified two members of a rice polyprotein family, which were up-regulated by COS. Our study would provide a starting point for functionality of PM proteins in the rice basal defense.

  3. Long-term heat stress induces the inflammatory response in dairy cows revealed by plasma proteome analysis.

    Science.gov (United States)

    Min, Li; Zheng, Nan; Zhao, Shengguo; Cheng, Jianbo; Yang, Yongxin; Zhang, Yangdong; Yang, Hongjian; Wang, Jiaqi

    2016-03-04

    In this work we employed a comparative proteomic approach to evaluate seasonal heat stress and investigate proteomic alterations in plasma of dairy cows. Twelve lactating Holstein dairy cows were used and the treatments were: heat stress (n = 6) in hot summer (at the beginning of the moderate heat stress) and no heat stress (n = 6) in spring natural ambient environment, respectively. Subsequently, heat stress treatment lasted 23 days (at the end of the moderate heat stress) to investigate the alterations of plasma proteins, which might be employed as long-term moderate heat stress response in dairy cows. Changes in plasma proteins were analyzed by two-dimensional electrophoresis (2-DE) combined with mass spectrometry. Analysis of the properties of the identified proteins revealed that the alterations of plasma proteins were related to inflammation in long-term moderate heat stress. Furthermore, the increase in plasma tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) directly demonstrated that long-term moderate heat stress caused an inflammatory response in dairy cows.

  4. Proteomics and the dynamic plasma membrane

    DEFF Research Database (Denmark)

    Sprenger, Richard R; Jensen, Ole Nørregaard

    2010-01-01

    plasma membrane is of particular interest, by not only serving as a barrier between the "cell interior" and the external environment, but moreover by organizing and clustering essential components to enable dynamic responses to internal and external stimuli. Defining and characterizing the dynamic plasma...... membrane proteome is crucial for understanding fundamental biological processes, disease mechanisms and for finding drug targets. Protein identification, characterization of dynamic PTMs and protein-ligand interactions, and determination of transient changes in protein expression and composition are among...... the challenges in functional proteomic studies of the plasma membrane. We review the recent progress in MS-based plasma membrane proteomics by presenting key examples from eukaryotic systems, including mammals, yeast and plants. We highlight the importance of enrichment and quantification technologies required...

  5. Human maternal plasma proteomic changes with parturition

    Directory of Open Access Journals (Sweden)

    Robert J. Phillips

    2014-12-01

    Significance: Proteomic technology is constantly advancing, and the latest techniques enable gel-free analysis of minimally preprocessed, complex biological samples, enabling simultaneous identification and quantification of many hundreds of proteins. The technique of TMT labelling and Orbitrap mass spectrometry is applicable to the analysis of serial maternal plasma samples in order to identify potential markers of the onset of labour.

  6. Proteomics reveals the effects of sustained weight loss on the human plasma proteome

    DEFF Research Database (Denmark)

    Geyer, Philipp E; Wewer Albrechtsen, Nicolai J; Tyanova, Stefka;

    2016-01-01

    Sustained weight loss is a preferred intervention in a wide range of metabolic conditions, but the effects on an individual's health state remain ill-defined. Here, we investigate the plasma proteomes of a cohort of 43 obese individuals that had undergone 8 weeks of 12% body weight loss followed ...... evaluates and monitors intervention in metabolic diseases....... in the plasma proteome, and eight plasma proteins correlated better with insulin resistance than the known marker adiponectin. Nearly all study participants benefited from weight loss regarding a ten-protein inflammation panel defined from the proteomics data. We conclude that plasma proteome profiling broadly...

  7. Proteomics reveals the effects of sustained weight loss on the human plasma proteome

    DEFF Research Database (Denmark)

    Geyer, Philipp E; Wewer Albrechtsen, Nicolai J; Tyanova, Stefka

    2016-01-01

    Sustained weight loss is a preferred intervention in a wide range of metabolic conditions, but the effects on an individual's health state remain ill-defined. Here, we investigate the plasma proteomes of a cohort of 43 obese individuals that had undergone 8 weeks of 12% body weight loss followed...... by a year of weight maintenance. Using mass spectrometry-based plasma proteome profiling, we measured 1,294 plasma proteomes. Longitudinal monitoring of the cohort revealed individual-specific protein levels with wide-ranging effects of losing weight on the plasma proteome reflected in 93 significantly...... evaluates and monitors intervention in metabolic diseases....

  8. Proteomics reveals the effects of sustained weight loss on the human plasma proteome.

    Science.gov (United States)

    Geyer, Philipp E; Wewer Albrechtsen, Nicolai J; Tyanova, Stefka; Grassl, Niklas; Iepsen, Eva W; Lundgren, Julie; Madsbad, Sten; Holst, Jens J; Torekov, Signe S; Mann, Matthias

    2016-12-22

    Sustained weight loss is a preferred intervention in a wide range of metabolic conditions, but the effects on an individual's health state remain ill-defined. Here, we investigate the plasma proteomes of a cohort of 43 obese individuals that had undergone 8 weeks of 12% body weight loss followed by a year of weight maintenance. Using mass spectrometry-based plasma proteome profiling, we measured 1,294 plasma proteomes. Longitudinal monitoring of the cohort revealed individual-specific protein levels with wide-ranging effects of losing weight on the plasma proteome reflected in 93 significantly affected proteins. The adipocyte-secreted SERPINF1 and apolipoprotein APOF1 were most significantly regulated with fold changes of -16% and +37%, respectively (P plasma proteome, and eight plasma proteins correlated better with insulin resistance than the known marker adiponectin. Nearly all study participants benefited from weight loss regarding a ten-protein inflammation panel defined from the proteomics data. We conclude that plasma proteome profiling broadly evaluates and monitors intervention in metabolic diseases. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  9. Proteomic analysis of seminal plasma from asthenozoospermia patients reveals proteins that affect oxidative stress responses and semen quality.

    Science.gov (United States)

    Wang, Jun; Wang, Jian; Zhang, Hua-Rong; Shi, Hui-Juan; Ma, Duan; Zhao, Hong-Xin; Lin, Biaoyang; Li, Run-Sheng

    2009-07-01

    Asthenozoospermia (AS) is a common cause of human male infertility. In one study, more than 80% of the samples from infertile men had reduced sperm motility. Seminal plasma is a mixture of secretions from the testis, epididymis and several male accessory glands, including the prostate, seminal vesicles and Cowper's gland. Studies have shown that seminal plasma contains proteins that are important for sperm motility. To further explore the pathophysiological character of AS, we separated the seminal plasma proteins from AS patients and healthy donors using sodium dodecyl sulfate polyacrylamide gel electrophoresis and in-gel digestion, and then subjected the proteins to liquid chromatography-mass spectrometry (LC-MS/MS) analysis. A total of 741 proteins were identified in the seminal plasma, with a false discovery rate of 3.3%. Using spectral counting, we found that 45 proteins were threefold upregulated and 56 proteins were threefold downregulated in the AS group when compared with the control. Most of these proteins originated from the epididymis and prostate. This study identified a rich source of biomarker candidates for male infertility and indicates that functional abnormalities of the epididymis and prostate can contribute to AS. We identified DJ-1-a protein that has been shown elsewhere to be involved in the control of oxidative stress (OS)-as a downregulated protein in AS seminal plasma. The levels of DJ-1 in AS seminal plasma were about half of those in the control samples. In addition, the levels of reactive oxygen species were 3.3-fold higher in the AS samples than in the controls. Taken together, these data suggest that downregulation of DJ-1 is involved in OS in semen, and therefore affects the quality of the semen.

  10. Site specific modification of the human plasma proteome by methylglyoxal.

    Science.gov (United States)

    Kimzey, Michael J; Kinsky, Owen R; Yassine, Hussein N; Tsaprailis, George; Stump, Craig S; Monks, Terrence J; Lau, Serrine S

    2015-12-01

    Increasing evidence identifies dicarbonyl stress from reactive glucose metabolites, such as methylglyoxal (MG), as a major pathogenic link between hyperglycemia and complications of diabetes. MG covalently modifies arginine residues, yet the site specificity of this modification has not been thoroughly investigated. Sites of MG adduction in the plasma proteome were identified using LC-MS/MS analysis in vitro following incubation of plasma proteins with MG. Treatment of plasma proteins with MG yielded 14 putative MG hotspots from five plasma proteins (albumin [nine hotspots], serotransferrin, haptoglobin [2 hotspots], hemopexin, and Ig lambda-2 chain C regions). The search results revealed two versions of MG-arginine modification, dihydroxyimidazolidine (R+72) and hydroimidazolone (R+54) adducts. One of the sites identified was R257 in human serum albumin, which is a critical residue located in drug binding site I. This site was validated as a target for MG modification by a fluorescent probe displacement assay, which revealed significant drug dissociation at 300 μM MG from a prodan-HSA complex (75 μM). Moreover, twelve human plasma samples (six male, six female, with two type 2 diabetic subjects from both genders) were analyzed using multiple reaction monitoring (MRM) tandem mass spectrometry and revealed the presence of the MG-modified albumin R257 peptide. These data provide insights into the nature of the site-specificity of MG modification of arginine, which may be useful for therapeutic treatments that aim to prevent MG-mediated adverse responses in patients.

  11. Site Specific Modification of the Human Plasma Proteome by Methylglyoxal

    Science.gov (United States)

    Kimzey, Michael J.; Kinsky, Owen R.; Yassine, Hussein N.; Tsaprailis, George; Stump, Craig; Monks, Terrence J.; Lau, Serrine S.

    2015-01-01

    Increasing evidence identifies dicarbonyl stress from reactive glucose metabolites, such as methylglyoxal (MG), as a major pathogenic link between hyperglycemia and complications of diabetes. MG covalently modifies arginine residues, yet the site specificity of this modification has not been thoroughly investigated. Sites of MG adduction in the plasma proteome were identified using LC-MS/MS analysis in vitro following incubation of plasma proteins with MG. Treatment of plasma proteins with MG yielded 14 putative MG hotspots from five plasma proteins (albumin [nine hotspots], serotransferrin, haptoglobin [2 hotspots], hemopexin, and Ig lambda-2 chain C regions). The search results revealed two versions of MG-arginine modification, dihydroxyimidazolidine (R+72) and hydroimidazolone (R+54) adducts. One of the sites identified was R257 in human serum albumin, which is a critical residue located in drug binding site I. This site was validated as a target for MG modification by a fluorescent probe displacement assay, which revealed significant drug dissociation at 300 μM MG from a prodan-HSA complex (75 μM). Moreover, twelve human plasma samples (six male, six female, with two type 2 diabetic subjects from both genders) were analyzed using multiple reaction monitoring (MRM) tandem mass spectrometry and revealed the presence of the MG-modified albumin R257 peptide. These data provide insights into the nature of the site-specificity of MG modification of arginine, which may be useful for therapeutic treatments that aim to prevent MG-mediated adverse responses in patients. PMID:26435215

  12. Low-molecular weight plasma proteome analysis using centrifugal ultrafiltration.

    Science.gov (United States)

    Greening, David W; Simpson, Richard J

    2011-01-01

    The low-molecular weight fraction (LMF) of the human plasma proteome is an invaluable source of biological information, especially in the context of identifying plasma-based biomarkers of disease. This protocol outlines a standardized procedure for the rapid/reproducible LMF profiling of human plasma samples using centrifugal ultrafiltration fractionation, followed by 1D-SDS-PAGE separation and nano-LC-MS/MS. Ultrafiltration is a convective process that uses anisotropic semipermeable membranes to separate macromolecular species on the basis of size. We have optimized centrifugal ultrafiltration for plasma fractionation with respect to buffer and solvent composition, centrifugal force, duration and temperature to facilitate >95% recovery, and enrichment of low-M (r) components from human plasma. Using this protocol, >260 unique peptides can be identified from a single plasma profiling experiment using 100 μL of plasma (Greening and Simpson, J Proteomics 73:637-648, 2010). The efficacy of this method is demonstrated by the identification, for the first time, of several plasma proteins (e.g., protein KIAA0649 (Q9Y4D3), rheumatoid factor D5, serine protease inhibitor A3, and transmembrane adapter protein PAG) previously not reported in extant high-confidence Human Proteome Organization Plasma Proteome Project datasets.

  13. Characterization of the porcine synovial fluid proteome and a comparison to the plasma proteome

    DEFF Research Database (Denmark)

    Bennike, Tue Bjerg; Barnaby, Omar; Steen, Hanno;

    2015-01-01

    Synovial fluid is present in all joint cavities, and protects the articular cartilage surfaces in large by lubricating the joint, thus reducing friction. Several studies have described changes in the protein composition of synovial fluid in patients with joint disease. However, the protein...... concentration, content, and synovial fluid volume change dramatically during active joint diseases and inflammation, and the proteome composition of healthy synovial fluid is incompletely characterized. We performed a normative proteomics analysis of porcine synovial fluid, and report data from optimizing...... data used in the method optimization, human plasma proteomics data, and search results, have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD000935....

  14. Statistical Analysis of Variation in the Human Plasma Proteome

    Directory of Open Access Journals (Sweden)

    Todd H. Corzett

    2010-01-01

    Full Text Available Quantifying the variation in the human plasma proteome is an essential prerequisite for disease-specific biomarker detection. We report here on the longitudinal and individual variation in human plasma characterized by two-dimensional difference gel electrophoresis (2-D DIGE using plasma samples from eleven healthy subjects collected three times over a two week period. Fixed-effects modeling was used to remove dye and gel variability. Mixed-effects modeling was then used to quantitate the sources of proteomic variation. The subject-to-subject variation represented the largest variance component, while the time-within-subject variation was comparable to the experimental variation found in a previous technical variability study where one human plasma sample was processed eight times in parallel and each was then analyzed by 2-D DIGE in triplicate. Here, 21 protein spots had larger than 50% CV, suggesting that these proteins may not be appropriate as biomarkers and should be carefully scrutinized in future studies. Seventy-eight protein spots showing differential protein levels between different individuals or individual collections were identified by mass spectrometry and further characterized using hierarchical clustering. The results present a first step toward understanding the complexity of longitudinal and individual variation in the human plasma proteome, and provide a baseline for improved biomarker discovery.

  15. The plasma membrane proteome of germinating barley embryos

    DEFF Research Database (Denmark)

    Hynek, Radovan; Svensson, Birte; Jensen, O.N.

    2009-01-01

    was used to reduce soluble protein contamination and enrich for hydrophobic proteins. Sixty-one proteins in 14 SDS-PAGE bands were identified by LC-MS/MS and database searches. The identifications provide new insight into the plasma membrane functions in seed germination.......Cereal seed germination involves a complex coordination between different seed tissues. Plasma membranes must play crucial roles in coordination and execution of germination; however, very little is known about seed plasma membrane proteomes due to limited tissue amounts combined...... with amphiphilicity and low abundance of membrane proteins. A fraction enriched in plasma membranes was prepared from embryos dissected from 18 h germinated barley seeds using aqueous two-phase partitioning. Reversed-phase chromatography on C-4 resin performed in micro-spin columns with stepwise elution by 2-propanol...

  16. Proteomic responses of fruits to environmental stresses

    Directory of Open Access Journals (Sweden)

    Zhulong eChan

    2013-01-01

    Full Text Available Fruits and vegetables are extremely susceptible to decay and easily lose commercial value after harvest. Different strategies have been developed to control postharvest decay and prevent quality deterioration during postharvest storage, including cold storage, controlled atmosphere, and application of biotic and abiotic stimulus. In this review, mechanisms related to protein level responses of host side and pathogen side were characterized. Protein extraction protocols have been successfully developed for recalcitrant, low protein content fruit tissues. Comparative proteome profiling and functional analysis revealed that defense related proteins, energy metabolism and antioxidant pathway played important roles in fruits in response to storage conditions and exogenous elicitor treatments. Secretome of pathogenic fungi has been well investigated and the results indicated that hydrolytic enzymes were the key virulent factors for the pathogen infection. These protein level changes shed new light on interaction among fruits, pathogens and environmental conditions. Potential postharvest strategies to reduce risk of fruit decay were further proposed based on currently available proteomic data.

  17. Novel effects of hormonal contraceptive use on the plasma proteome.

    Directory of Open Access Journals (Sweden)

    Andrea R Josse

    Full Text Available BACKGROUND: Hormonal contraceptive (HC use may increase cardiometabolic risk; however, the effect of HC on emerging cardiometabolic and other disease risk factors is not clear. OBJECTIVES: To determine the association between HC use and plasma proteins involved in established and emerging disease risk pathways. METHOD: Concentrations of 54 high-abundance plasma proteins were measured simultaneously by LC-MRM/MS in 783 women from the Toronto Nutrigenomics and Health Study. C-reactive protein (CRP was measured separately. ANCOVA was used to test differences in protein concentrations between users and non-users, and among HC users depending on total hormone dose. Linear regression was used to test the association between duration (years of HC use and plasma protein concentrations. Principal components analysis (PCA was used to identify plasma proteomic profiles in users and non-users. RESULTS: After Bonferroni correction, 19 proteins involved in inflammation, innate immunity, coagulation and blood pressure regulation were significantly different between users and non-users (P<0.0009. These differences were replicated across three distinct ethnocultural groups. Traditional markers of glucose and lipid metabolism were also significantly higher among HC users. Neither hormone dose nor duration of use affected protein concentrations. PCA identified 4 distinct proteomic profiles in users and 3 in non-users. CONCLUSION: HC use was associated with different concentrations of plasma proteins along various disease-related pathways, and these differences were present across different ethnicities. Aside from the known effect of HC on traditional biomarkers of cardiometabolic risk, HC use also affects numerous proteins that may be biomarkers of dysregulation in inflammation, coagulation and blood pressure.

  18. Integrated proteomic analysis of human cancer cells and plasma from tumor bearing mice for ovarian cancer biomarker discovery.

    Directory of Open Access Journals (Sweden)

    Sharon J Pitteri

    Full Text Available The complexity of the human plasma proteome represents a substantial challenge for biomarker discovery. Proteomic analysis of genetically engineered mouse models of cancer and isolated cancer cells and cell lines provide alternative methods for identification of potential cancer markers that would be detectable in human blood using sensitive assays. The goal of this work is to evaluate the utility of an integrative strategy using these two approaches for biomarker discovery.We investigated a strategy that combined quantitative plasma proteomics of an ovarian cancer mouse model with analysis of proteins secreted or shed by human ovarian cancer cells. Of 106 plasma proteins identified with increased levels in tumor bearing mice, 58 were also secreted or shed from ovarian cancer cells. The remainder consisted primarily of host-response proteins. Of 25 proteins identified in the study that were assayed, 8 mostly secreted proteins common to mouse plasma and human cancer cells were significantly upregulated in a set of plasmas from ovarian cancer patients. Five of the eight proteins were confirmed to be upregulated in a second independent set of ovarian cancer plasmas, including in early stage disease.Integrated proteomic analysis of cancer mouse models and human cancer cell populations provides an effective approach to identify potential circulating protein biomarkers.

  19. 2 D gel based analysis of biological variability of the human plasma proteome

    DEFF Research Database (Denmark)

    Rentsch, Maria Louise; Jessen, Flemming

    Human blood plasma is a valuable specimen for the biomarker discovery process, since it is easily accessible and contains proteins that are synthesised, secreted or lost from cells and tissue. In this way, changes in plasma proteome reflect the current state of the organism. The analysis of plasma...... by one-week interval. Blood samples were drawn before the meal intake and five times during 24 hours for proteome analysis. Plasma was fractionated by use of IgY-12 spin column depleting the 12 highly abundant proteins and further processed for two-dimensional gel electrophoresis. The plasma proteome...... proteome is yet challenging due to the huge dynamic range of protein abundance. When evaluating a potential biomarker, stable basal level of the protein is needed before it can be considered a functional biomarker. However, basal level differences of plasma proteins are naturally occurring between...

  20. Characterization of the seminal plasma proteome in men with prostatitis by mass spectrometry

    Directory of Open Access Journals (Sweden)

    Kagedan Daniel

    2012-02-01

    Full Text Available Abstract Background Prostatitis is an inflammation of the prostate gland which affects approximately 10% of men. Despite its frequency, diagnosing prostatitis and monitoring patient response to treatment remains frustrating. As the prostate contributes a substantial percentage of proteins to seminal plasma, we hypothesized that a protein biomarker of prostatitis might be found by comparing the seminal plasma proteome of patients with and without prostatitis. Results Using mass spectrometry, we identified 1708 proteins in the pooled seminal plasma of 5 prostatitis patients. Comparing this list to a previously published list of seminal plasma proteins in the pooled seminal plasma of 5 healthy, fertile controls yielded 1464 proteins in common, 413 found only in the control group, and 254 found only in the prostatitis group. Applying a set of criteria to this dataset, we generated a high-confidence list of 59 candidate prostatitis biomarkers, 33 of which were significantly increased in prostatitis as compared to control, and 26 of which were decreased. The candidates were analyzed using Gene Ontology and Ingenuity Pathway analysis to delineate their subcellular localizations and functions. Conclusions Thus, in this study, we identified 59 putative biomarkers in seminal plasma that need further validation for diagnosis and monitoring of prostatitis.

  1. Proteomic studies of drought stress response in Fabaceae

    Directory of Open Access Journals (Sweden)

    Tanja ZADRAŽNIK

    2015-11-01

    Full Text Available Drought stress is a serious threat to crop production that influences plant growth and development and subsequently causes reduced quantity and quality of the yield. Plant stress induces changes in cell metabolism, which includes differential expression of proteins. Proteomics offer a powerful approach to analyse proteins involved in drought stress response of plants. Analyses of changes in protein abundance of legumes under drought stress are very important, as legumes play an important role in human and animal diet and are often exposed to drought. The presented results of proteomic studies of selected legumes enable better understanding of molecular mechanisms of drought stress response. The study of drought stress response of plants with proteomic approach may contribute to the development of potential drought-response markers and to the development of drought-tolerant cultivars of different legume crop species.

  2. Proteomic identification of novel differentiation plasma protein markers in hypobaric hypoxia-induced rat model.

    Directory of Open Access Journals (Sweden)

    Yasmin Ahmad

    Full Text Available BACKGROUND: Hypobaric hypoxia causes complex changes in the expression of genes, including stress related genes and corresponding proteins that are necessary to maintain homeostasis. Whereas most prior studies focused on single proteins, newer methods allowing the simultaneous study of many proteins could lead to a better understanding of complex and dynamic changes that occur during the hypobaric hypoxia. METHODS: In this study we investigated the temporal plasma protein alterations of rat induced by hypobaric hypoxia at a simulated altitude of 7620 m (25,000 ft, 282 mm Hg in a hypobaric chamber. Total plasma proteins collected at different time points (0, 6, 12 and 24 h, separated by two-dimensional electrophoresis (2-DE and identified using matrix assisted laser desorption ionization time of flight (MALDI-TOF/TOF. Biological processes that were enriched in the plasma proteins during hypobaric hypoxia were identified using Gene Ontology (GO analysis. According to their properties and obvious alterations during hypobaric hypoxia, changes of plasma concentrations of Ttr, Prdx-2, Gpx -3, Apo A-I, Hp, Apo-E, Fetub and Nme were selected to be validated by Western blot analysis. RESULTS: Bioinformatics analysis of 25 differentially expressed proteins showed that 23 had corresponding candidates in the database. The expression patterns of the eight selected proteins observed by Western blot were in agreement with 2-DE results, thus confirming the reliability of the proteomic analysis. Most of the proteins identified are related to cellular defense mechanisms involving anti-inflammatory and antioxidant activity. Their presence reflects the consequence of serial cascades initiated by hypobaric hypoxia. CONCLUSION/SIGNIFICANCE: This study provides information about the plasma proteome changes induced in response to hypobaric hypoxia and thus identification of the candidate proteins which can act as novel biomarkers.

  3. iTRAQ quantitative analysis of plasma proteome changes of cow from pregnancy to lactation

    Institute of Scientific and Technical Information of China (English)

    MA Lu; BU Deng-pan; YANG Yong-xing; YAN Su-mei; WANG Jia-qi

    2015-01-01

    Dairy cows undergo tremendous changes in physiological, metabolism and the immune function from pregnancy to lac-tation that are associated with cows being susceptible to metabolic and infectious diseases. The objective of this study is to investigate the changes of plasma proteome on 21 d before expected calving and 1 d after calving from dairy cows using an integrated proteomic approach consisting of minor abundance protein enrichment by ProteoMiner beads, protein labeling by isobaric tags for relative and absolute quantiifcation, and protein identiifcation by liquid chromatography coupled with tandem mass spectrometry. Nineteen proteins were changed around the time of calving. These proteins were asso-ciated with response to stress, including acute-phase response and defense response, based on the proteins annotation. In particular, three up-regulated proteins after calving including factor V,α2-antiplasmin and prothrombin were assigned into the complement and coagulation pathway. These results may provide new information in elucidating host response to lactation and parturition stress, and inlfammatory-like conditions at the protein level. Differential proteins may serve as potential markers to regulate the lactation and parturition stress in periparturient dairy cows.

  4. Unraveling Plant Responses to Bacterial Pathogens through Proteomics

    Directory of Open Access Journals (Sweden)

    Tamara Zimaro

    2011-01-01

    Full Text Available Plant pathogenic bacteria cause diseases in important crops and seriously and negatively impact agricultural production. Therefore, an understanding of the mechanisms by which plants resist bacterial infection at the stage of the basal immune response or mount a successful specific R-dependent defense response is crucial since a better understanding of the biochemical and cellular mechanisms underlying these interactions will enable molecular and transgenic approaches to crops with increased biotic resistance. In recent years, proteomics has been used to gain in-depth understanding of many aspects of the host defense against pathogens and has allowed monitoring differences in abundance of proteins as well as posttranscriptional and posttranslational processes, protein activation/inactivation, and turnover. Proteomics also offers a window to study protein trafficking and routes of communication between organelles. Here, we summarize and discuss current progress in proteomics of the basal and specific host defense responses elicited by bacterial pathogens.

  5. Unraveling plant responses to bacterial pathogens through proteomics

    KAUST Repository

    Zimaro, Tamara

    2011-11-03

    Plant pathogenic bacteria cause diseases in important crops and seriously and negatively impact agricultural production. Therefore, an understanding of the mechanisms by which plants resist bacterial infection at the stage of the basal immune response or mount a successful specific R-dependent defense response is crucial since a better understanding of the biochemical and cellular mechanisms underlying these interactions will enable molecular and transgenic approaches to crops with increased biotic resistance. In recent years, proteomics has been used to gain in-depth understanding of many aspects of the host defense against pathogens and has allowed monitoring differences in abundance of proteins as well as posttranscriptional and posttranslational processes, protein activation/inactivation, and turnover. Proteomics also offers a window to study protein trafficking and routes of communication between organelles. Here, we summarize and discuss current progress in proteomics of the basal and specific host defense responses elicited by bacterial pathogens. Copyright 2011 Tamara Zimaro et al.

  6. A Microsomal Proteomics View of H2O2- and ABA-Dependent Responses

    KAUST Repository

    Alquraishi, May Majed

    2017-08-21

    The plant hormone abscisic acid (ABA) modulates a number of plant developmental processes and responses to stress. In planta, ABA has been shown to induce reactive oxygen species (ROS) production through the action of plasma membrane-associated nicotinamide adenine dinucleotide phosphate (NADPH)-oxidases. Although quantitative proteomics studies have been performed to identify ABA- or hydrogen peroxide (H₂O₂)-dependent proteins, little is known about the ABA- and H₂O₂-dependent microsomal proteome changes. Here, we examined the effect of 50 µM of either H₂O₂ or ABA on the Arabidopsis microsomal proteome using tandem mass spectrometry and identified 86 specifically H₂O₂-dependent, and 52 specifically ABA-dependent proteins that are differentially expressed. We observed differential accumulation of proteins involved in the tricarboxylic acid (TCA) cycle notably in response to H₂O₂. Of these, aconitase 3 responded to both H₂O₂ and ABA. Additionally, over 30 proteins linked to RNA biology responded significantly to both treatments. Gene ontology categories such as \\'response to stress\\' and \\'transport\\' were enriched, suggesting that H₂O₂ or ABA directly and/or indirectly cause complex and partly overlapping cellular responses. Data are available via ProteomeXchange with identifier PXD006513.

  7. IgY14 and SuperMix immunoaffinity separations coupled with liquid chromatography-mass spectrometry for human plasma proteomic biomarker discovery

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Tujin; Zhou, Jianying; Gritsenko, Marina A.; Hossain, Mahmud; Camp, David G.; Smith, Richard D.; Qian, Weijun

    2012-02-01

    Interest in the application of advanced proteomics technologies to human blood plasma- or serum-based clinical samples for the purpose of discovering disease biomarkers continues to grow; however, the enormous dynamic range of protein concentrations in these types of samples (often >10 orders of magnitude) represents a significant analytical challenge, particularly for detecting low-abundance candidate biomarkers. In response, immunoaffinity separation methods for depleting multiple high- and moderate-abundance proteins have become key tools for enriching low-abundance proteins and enhancing detection of these proteins in plasma proteomics. Herein, we describe IgY14 and tandem IgY14-Supermix separation methods for removing 14 high-abundance and up to 60 moderate-abundance proteins, respectively, from human blood plasma and highlight their utility when combined with liquid chromatography-tandem mass spectrometry for interrogating the human plasma proteome.

  8. IgY14 and SuperMix immunoaffinity separations coupled with liquid chromatography-mass spectrometry for human plasma proteomics biomarker discovery.

    Science.gov (United States)

    Shi, Tujin; Zhou, Jian-Ying; Gritsenko, Marina A; Hossain, Mahmud; Camp, David G; Smith, Richard D; Qian, Wei-Jun

    2012-02-01

    Interest in the application of advanced proteomics technologies to human blood plasma- or serum-based clinical samples for the purpose of discovering disease biomarkers continues to grow; however, the enormous dynamic range of protein concentrations in these types of samples (often >10 orders of magnitude) represents a significant analytical challenge, particularly for detecting low-abundance candidate biomarkers. In response, immunoaffinity separation methods for depleting multiple high- and moderate-abundance proteins have become key tools for enriching low-abundance proteins and enhancing detection of these proteins in plasma proteomics. Herein, we describe IgY14 and tandem IgY14-Supermix separation methods for removing 14 high-abundance and up to 60 moderate-abundance proteins, respectively, from human blood plasma and highlight their utility when combined with liquid chromatography-tandem mass spectrometry for interrogating the human plasma proteome.

  9. A Plasma Proteomic Approach in Rett Syndrome: Classical versus Preserved Speech Variant

    Directory of Open Access Journals (Sweden)

    Alessio Cortelazzo

    2013-01-01

    Full Text Available Rett syndrome (RTT is a progressive neurodevelopmental disorder mainly caused by mutations in the gene encoding the methyl-CpG-binding protein 2 (MeCP2. Although over 200 mutations types have been identified so far, nine of which the most frequent ones. A wide phenotypical heterogeneity is a well-known feature of the disease, with different clinical presentations, including the classical form and the preserved speech variant (PSV. Aim of the study was to unveil possible relationships between plasma proteome and phenotypic expression in two cases of familial RTT represented by two pairs of sisters, harbor the same MECP2 gene mutation while being dramatically discrepant in phenotype, that is, classical RTT versus PSV. Plasma proteome was analysed by 2-DE/MALDI-TOF MS. A significant overexpression of six proteins in the classical sisters was detected as compared to the PSV siblings. A total of five out of six (i.e., 83.3% of the overexpressed proteins were well-known acute phase response (APR proteins, including alpha-1-microglobulin, haptoglobin, fibrinogen beta chain, alpha-1-antitrypsin, and complement C3. Therefore, the examined RTT siblings pairs proved to be an important benchmark model to test the molecular basis of phenotypical expression variability and to identify potential therapeutic targets of the disease.

  10. Crop and medicinal plants proteomics in response to salt stress

    Directory of Open Access Journals (Sweden)

    Keyvan eAghaei

    2013-01-01

    Full Text Available Increasing of world population marks a serious need to create new crop cultivars and medicinal plants with high growth and production at any environmental situations. Among the environmental unfavorable conditions, salinity is the most widespread in the world. Crop production and growth severely decreases under salt stress; however, some crop cultivars show significant tolerance against the negative effects of salinity. Among salt stress responses of crops, proteomic responses play a pivotal role in their ability to cope with it and have become the main center of notification. Many physiological responses are detectable in terms of protein increase and decrease even before physiological responses take place. Thus proteomic approach makes a short cut in the way of inferring how crops response to salt stress. Nowadays many salt-responsive proteins such as heat shock proteins, pathogen related proteins, protein kinases, ascorbate peroxidase, osmotin, ornithine decarboxylase and some transcription factors, have been detected in some major crops which are thought to give them the ability of withstanding against salt stress. Proteomic analysis of medicinal plants also revealed that alkaloid biosynthesis related proteins such as tryptophan synthase, codeinone reductase, strictosidine synthase and 12-oxophytodienoate reductase might have major role in production of secondary metabolites. In this review we are comparing some different or similar proteomic responses of several crops and medicinal plants to salt stress and discuss about the future prospects.

  11. Integrated Cellular and Plasma Proteomics of Contrasting B-cell Cancers Reveals Common, Unique and Systemic Signatures.

    Science.gov (United States)

    Johnston, Harvey E; Carter, Matthew J; Cox, Kerry L; Dunscombe, Melanie; Manousopoulou, Antigoni; Townsend, Paul A; Garbis, Spiros D; Cragg, Mark S

    2017-03-01

    Approximately 800,000 leukemia and lymphoma cases are diagnosed worldwide each year. Burkitt's lymphoma (BL) and chronic lymphocytic leukemia (CLL) are examples of contrasting B-cell cancers; BL is a highly aggressive lymphoid tumor, frequently affecting children, whereas CLL typically presents as an indolent, slow-progressing leukemia affecting the elderly. The B-cell-specific overexpression of the myc and TCL1 oncogenes in mice induce spontaneous malignancies modeling BL and CLL, respectively. Quantitative mass spectrometry proteomics and isobaric labeling were employed to examine the biology underpinning contrasting Eμ-myc and Eμ-TCL1 B-cell tumors. Additionally, the plasma proteome was evaluated using subproteome enrichment to interrogate biomarker emergence and the systemic effects of tumor burden. Over 10,000 proteins were identified (qIL5) receptor. IL5 treatment promoted Eμ-TCL1 tumor proliferation, suggesting an amplification of IL5-induced AKT signaling by TCL1. Tumor plasma contained a substantial tumor lysis signature, most prominent in Eμ-myc plasma, whereas Eμ-TCL1 plasma contained signatures of immune-response, inflammation and microenvironment interactions, with putative biomarkers in early-stage cancer. These findings provide a detailed characterization of contrasting B-cell tumor models, identifying common and specific tumor mechanisms. Integrated plasma proteomics allowed the dissection of a systemic response and a tumor lysis signature present in early- and late-stage cancers, respectively. Overall, this study suggests common B-cell cancer signatures exist and illustrates the potential of the further evaluation of B-cell cancer subtypes by integrative proteomics.

  12. Proteomics analysis of alfalfa response to heat stress.

    Directory of Open Access Journals (Sweden)

    Weimin Li

    Full Text Available The proteome responses to heat stress have not been well understood. In this study, alfalfa (Medicago sativa L. cv. Huaiyin seedlings were exposed to 25 °C (control and 40 °C (heat stress in growth chambers, and leaves were collected at 24, 48 and 72 h after treatment, respectively. The morphological, physiological and proteomic processes were negatively affected under heat stress. Proteins were extracted and separated by two-dimensional polyacrylamide gel electrophoresis (2-DE, and differentially expressed protein spots were identified by mass spectrometry (MS. Totally, 81 differentially expressed proteins were identified successfully by MALDI-TOF/TOF. These proteins were categorized into nine classes: including metabolism, energy, protein synthesis, protein destination/storage, transporters, intracellular traffic, cell structure, signal transduction and disease/defence. Five proteins were further analyzed for mRNA levels. The results of the proteomics analyses provide a better understanding of the molecular basis of heat-stress responses in alfalfa.

  13. Proteomic analysis of plasma membrane and secretory vesicles from human neutrophils

    Directory of Open Access Journals (Sweden)

    Campbell Kevin P

    2007-08-01

    Full Text Available Abstract Background Polymorphonuclear neutrophils (PMN constitute an essential cellular component of innate host defense against microbial invasion and exhibit a wide array of responses both to particulate and soluble stimuli. As the cells recruited earliest during acute inflammation, PMN respond rapidly and release a variety of potent cytotoxic agents within minutes of exposure to microbes or their products. PMN rely on the redistribution of functionally important proteins, from intracellular compartments to the plasma membrane and phagosome, as the means by which to respond quickly. To determine the range of membrane proteins available for rapid recruitment during PMN activation, we analyzed the proteins in subcellular fractions enriched for plasma membrane and secretory vesicles recovered from the light membrane fraction of resting PMN after Percoll gradient centrifugation and free-flow electrophoresis purification using mass spectrometry-based proteomics methods. Results To identify the proteins light membrane fractions enriched for plasma membrane vesicles and secretory vesicles, we employed a proteomic approach, first using MALDI-TOF (peptide mass fingerprinting and then by HPLC-MS/MS using a 3D ion trap mass spectrometer to analyze the two vesicle populations from resting PMN. We identified several proteins that are functionally important but had not previously been recovered in PMN secretory vesicles. Two such proteins, 5-lipoxygenase-activating protein (FLAP and dysferlin were further validated by immunoblot analysis. Conclusion Our data demonstrate the broad array of proteins present in secretory vesicles that provides the PMN with the capacity for remarkable and rapid reorganization of its plasma membrane after exposure to proinflammatory agents or stimuli.

  14. Dietary zinc depletion and repletion affects plasma proteins: an analysis of the plasma proteome.

    Science.gov (United States)

    Grider, Arthur; Wickwire, Kathie; Ho, Emily; Chung, Carolyn S; King, Janet

    2013-02-01

    Zinc (Zn) deficiency is a problem world-wide. Current methods for assessing Zn status are limited to measuring plasma or serum Zn within populations suspected of deficiency. Despite the high prevalence of Zn deficiency in the human population there are no methods currently available for sensitively assessing Zn status among individuals. The purpose of this research was to utilize a proteomic approach using two-dimensional gel electrophoresis (2DE) and mass spectrometry to identify protein biomarkers that were sensitive to changes in dietary Zn levels in humans. Proteomic analysis was performed in human plasma samples (n = 6) obtained from healthy adult male subjects that completed a dietary Zn depletion/repletion protocol, current dietary zinc intake has a greater effect on fractional zinc absorption than does longer term zinc consumption in healthy adult men. Chung et al. (Am J Clin Nutr 87 (5):1224-1229, 2008). After a 13 day Zn acclimatization period where subjects consumed a Zn-adequate diet, the male subjects consumed a marginal Zn-depleted diet for 42 days followed by consumption of a Zn-repleted diet for 28 days. The samples at baseline, end of depletion and end of repletion were pre-fractionated through immuno-affinity columns to remove 14 highly abundant proteins, and each fraction separated by 2DE. Following staining by colloidal Coomassie blue and densitometric analysis, three proteins were identified by mass spectrometry as affected by changes in dietary Zn. Fibrin β and chain E, fragment double D were observed in the plasma protein fraction that remained bound to the immunoaffinity column. An unnamed protein that was related to immunoglobulins was observed in the immunodepleted plasma fraction. Fibrin β increased two-fold following the Zn depletion period and decreased to baseline values following the Zn repletion period; this protein may serve as a viable biomarker for Zn status in the future.

  15. The plasma membrane proteome of maize roots grown under low and high iron conditions.

    Science.gov (United States)

    Hopff, David; Wienkoop, Stefanie; Lüthje, Sabine

    2013-10-08

    Iron (Fe) homeostasis is essential for life and has been intensively investigated for dicots, while our knowledge for species in the Poaceae is fragmentary. This study presents the first proteome analysis (LC-MS/MS) of plasma membranes isolated from roots of 18-day old maize (Zea mays L.). Plants were grown under low and high Fe conditions in hydroponic culture. In total, 227 proteins were identified in control plants, whereas 204 proteins were identified in Fe deficient plants and 251 proteins in plants grown under high Fe conditions. Proteins were sorted by functional classes, and most of the identified proteins were classified as signaling proteins. A significant number of PM-bound redox proteins could be identified including quinone reductases, heme and copper-containing proteins. Most of these components were constitutive, and others could hint at an involvement of redox signaling and redox homeostasis by change in abundance. Energy metabolism and translation seem to be crucial in Fe homeostasis. The response to Fe deficiency includes proteins involved in development, whereas membrane remodeling and assembly and/or repair of Fe-S clusters is discussed for Fe toxicity. The general stress response appears to involve proteins related to oxidative stress, growth regulation, an increased rigidity and synthesis of cell walls and adaption of nutrient uptake and/or translocation. This article is part of a Special Issue entitled: Plant Proteomics in Europe.

  16. Plasma proteome analysis of patients with type 1 diabetes with diabetic nephropathy

    DEFF Research Database (Denmark)

    Overgaard, Anne Julie; Hansen, Henning Gram; Lajer, Maria

    2010-01-01

    -driven studies or urinary based investigations. To date only two studies have investigated the proteome of blood in search for new biomarkers, and these studies were conducted in sera from patients with type 2 diabetes. This is the first reported in depth proteomic study where plasma from type 1 diabetic......As part of a clinical proteomics program focused on diabetes and its complications we are looking for new and better protein biomarkers for diabetic nephropathy. The search for new and better biomarkers for diabetic nephropathy has, with a few exceptions, previously focused on either hypothesis...

  17. Additions to the Human Plasma Proteome via a Tandem MARS Depletion iTRAQ-Based Workflow

    Directory of Open Access Journals (Sweden)

    Zhiyun Cao

    2013-01-01

    Full Text Available Robust platforms for determining differentially expressed proteins in biomarker and discovery studies using human plasma are of great interest. While increased depth in proteome coverage is desirable, it is associated with costs of experimental time due to necessary sample fractionation. We evaluated a robust quantitative proteomics workflow for its ability (1 to provide increased depth in plasma proteome coverage and (2 to give statistical insight useful for establishing differentially expressed plasma proteins. The workflow involves dual-stage immunodepletion on a multiple affinity removal system (MARS column, iTRAQ tagging, offline strong-cation exchange chromatography, and liquid chromatography tandem mass spectrometry (LC-MS/MS. Independent workflow experiments were performed in triplicate on four plasma samples tagged with iTRAQ 4-plex reagents. After stringent criteria were applied to database searched results, 689 proteins with at least two spectral counts (SC were identified. Depth in proteome coverage was assessed by comparison to the 2010 Human Plasma Proteome Reference Database in which our studies reveal 399 additional proteins which have not been previously reported. Additionally, we report on the technical variation of this quantitative workflow which ranges from ±11 to 30%.

  18. Additions to the Human Plasma Proteome via a Tandem MARS Depletion iTRAQ-Based Workflow.

    Science.gov (United States)

    Cao, Zhiyun; Yende, Sachin; Kellum, John A; Robinson, Renã A S

    2013-01-01

    Robust platforms for determining differentially expressed proteins in biomarker and discovery studies using human plasma are of great interest. While increased depth in proteome coverage is desirable, it is associated with costs of experimental time due to necessary sample fractionation. We evaluated a robust quantitative proteomics workflow for its ability (1) to provide increased depth in plasma proteome coverage and (2) to give statistical insight useful for establishing differentially expressed plasma proteins. The workflow involves dual-stage immunodepletion on a multiple affinity removal system (MARS) column, iTRAQ tagging, offline strong-cation exchange chromatography, and liquid chromatography tandem mass spectrometry (LC-MS/MS). Independent workflow experiments were performed in triplicate on four plasma samples tagged with iTRAQ 4-plex reagents. After stringent criteria were applied to database searched results, 689 proteins with at least two spectral counts (SC) were identified. Depth in proteome coverage was assessed by comparison to the 2010 Human Plasma Proteome Reference Database in which our studies reveal 399 additional proteins which have not been previously reported. Additionally, we report on the technical variation of this quantitative workflow which ranges from ±11 to 30%.

  19. The Physcomitrella patens chloroplast proteome changes in response to protoplastation

    Directory of Open Access Journals (Sweden)

    Igor Fesenko

    2016-11-01

    Full Text Available Plant protoplasts are widely used for genetic manipulation and functional studies in transient expression systems. However, little is known about the molecular pathways involved in a cell response to the combined stress factors resulted from protoplast generation. Plants often face more than one type of stress at a time, and how plants respond to combined stress factors is therefore of great interest. Here, we used protoplasts of the moss Physcomitrella patens as a model to study the effects of short-term stress on the chloroplast proteome. Using label-free comparative quantitative proteomic analysis (SWATH-MS, we quantified 479 chloroplast proteins, 219 of which showed a more than 1.4-fold change in abundance in protoplasts. We additionally quantified 1451 chloroplast proteins using emPAI. We observed degradation of a significant portion of the chloroplast proteome following the first hour of stress imposed by the protoplast isolation process. Electron-transport chain (ETC components underwent the heaviest degradation, resulting in the decline of photosynthetic activity. We also compared the proteome changes to those in the transcriptional level of nuclear-encoded chloroplast genes. Globally, the levels of the quantified proteins and their corresponding mRNAs showed limited correlation. Genes involved in the biosynthesis of chlorophyll and components of the outer chloroplast membrane showed decreases in both transcript and protein abundance. However, proteins like dehydroascorbate reductase 1 and 2-cys peroxiredoxin B responsible for ROS detoxification increased in abundance. Further, genes such as thylakoid ascorbate peroxidase were induced at the transcriptional level but down-regulated at the proteomic level. Together, our results demonstrate that the initial chloroplast reaction to stress is due changes at the proteomic level.

  20. Plasma proteomics to identify biomarkers - Application to cardiovascular diseases

    DEFF Research Database (Denmark)

    Beck, Hans Christian; Overgaard, Martin; Melholt Rasmussen, Lars

    2015-01-01

    , this technology may therefore identify new biomarkers that previously have not been associated with cardiovascular diseases. In this review, we summarize the key challenges and considerations, including strategies, recent discoveries and clinical applications in cardiovascular proteomics that may lead...

  1. Proteomic signatures implicate cAMP in light and temperature responses in Arabidopsis thaliana

    KAUST Repository

    Thomas, Ludivine

    2013-05-01

    The second messenger 3\\'-5\\'-cyclic adenosine monophosphate (cAMP) and adenylyl cyclases (ACs), enzymes that catalyse the formation of cAMP from ATP, are increasingly recognized as important signaling molecules in a number of physiological responses in higher plants. Here we used proteomics to identify cAMP-dependent protein signatures in Arabidopsis thaliana and identify a number of differentially expressed proteins with a role in light- and temperature-dependent responses, notably photosystem II subunit P-1, plasma membrane associated cation-binding protein and chaperonin 60 β. Based on these proteomics results we conclude that, much like in cyanobacteria, algae and fungi, cAMP may have a role in light signaling and the regulation of photosynthesis as well as responses to temperature and we speculate that ACs could act as light and/or temperature sensors in higher plants. Biological significance: This current study is significant since it presents the first proteomic response to cAMP, a novel and key second messenger in plants. It will be relevant to researchers in plant physiology and in particular those with an interest in second messengers and their role in biotic and abiotic stress responses. © 2013 Elsevier B.V.

  2. Differential proteomics of human seminal plasma: A potential target for searching male infertility marker proteins.

    Science.gov (United States)

    Tomar, Anil Kumar; Sooch, Balwinder Singh; Singh, Sarman; Yadav, Savita

    2012-04-01

    The clinical fertility tests, available in the market, fail to define the exact cause of male infertility in almost half of the cases and point toward a crucial need of developing better ways of infertility investigations. The protein biomarkers may help us toward better understanding of unknown cases of male infertility that, in turn, can guide us to find better therapeutic solutions. Many clinical attempts have been made to identify biomarkers of male infertility in sperm proteome but only few studies have targeted seminal plasma. Human seminal plasma is a rich source of proteins that are essentially required for development of sperm and successful fertilization. This viewpoint article highlights the importance of human seminal plasma proteome in reproductive physiology and suggests that differential proteomics integrated with functional analysis may help us in searching potential biomarkers of male infertility.

  3. Environmental Proteomics: Changes in the Proteome of Marine Organisms in Response to Environmental Stress, Pollutants, Infection, Symbiosis, and Development

    Science.gov (United States)

    Tomanek, Lars

    2011-01-01

    Environmental proteomics, the study of changes in the abundance of proteins and their post-translational modifications, has become a powerful tool for generating hypotheses regarding how the environment affects the biology of marine organisms. Proteomics discovers hitherto unknown cellular effects of environmental stressors such as changes in thermal, osmotic, and anaerobic conditions. Proteomic analyses have advanced the characterization of the biological effects of pollutants and identified comprehensive and pollutant-specific sets of biomarkers, especially those highlighting post-translational modifications. Proteomic analyses of infected organisms have highlighted the broader changes occurring during immune responses and how the same pathways are attenuated during the maintenance of symbiotic relationships. Finally, proteomic changes occurring during the early life stages of marine organisms emphasize the importance of signaling events during development in a rapidly changing environment. Changes in proteins functioning in energy metabolism, cytoskeleton, protein stabilization and turnover, oxidative stress, and signaling are common responses to environmental change.

  4. Proteomic Characterization of Host Response to Yersinia pestis

    Energy Technology Data Exchange (ETDEWEB)

    Chromy, B; Perkins, J; Heidbrink, J; Gonzales, A; Murhpy, G; Fitch, J P; McCutchen-Maloney, S

    2004-05-11

    Host-pathogen interactions result in protein expression changes within both the host and the pathogen. Here, results from proteomic characterization of host response following exposure to Yersinia pestis, the causative agent of plague, and to two near neighbors, Y. pseudotuberculosis and Y. enterocolitica, are reported. Human monocyte-like cells were chosen as a model for macrophage immune response to pathogen exposure. Two-dimensional electrophoresis followed by mass spectrometry was used to identify host proteins with differential expression following exposure to these three closely related Yersinia species. This comparative proteomic characterization of host response clearly shows that host protein expression patterns are distinct for the different pathogen exposures, and contributes to further understanding of Y. pestis virulence and host defense mechanisms. This work also lays the foundation for future studies aimed at defining biomarkers for presymptomatic detection of plague.

  5. Proteomics

    DEFF Research Database (Denmark)

    Dam, Svend; Stougaard, Jens

    2014-01-01

    proteomics data. Two characteristics of legumes are the high seed protein level and the nitrogen fixing symbiosis. Thus, the majority of the proteomics studies in Lotus have been performed on seed/pod and nodule/root tissues in order to create proteome reference maps and to enable comparative analyses within...... Lotus tissues or toward similar tissues from other legume species. More recently, N-glycan structures and compositions have been determined from mature Lotus seeds using glycomics and glycoproteomics, and finally, phosphoproteomics has been employed...... and annotated Lotus japonicus (Lotus) genome has been essential for obtaining high-quality protein identifications from proteomics studies. Furthermore, additional genomics and transcriptomics studies from several Lotus species/ecotypes support putative gene structures and these can be further supported using...

  6. Proteome changes in the plasma of Pieris rapae parasitized by the endoparasitoid wasp Pteromalus puparum

    Institute of Scientific and Technical Information of China (English)

    Jia-ying ZHU; Qi FANG; Gong-yin YE; Cui HU

    2011-01-01

    Parasitism by the endoparasitoid wasp Pteromalus puparum causes alterations in the plasma proteins of Pieris rapae. Analysis of plasma proteins using a proteomic approach showed that seven proteins were differentially expressed in the host pupae after 24-h parasitism. They were masquerade-like serine proteinase homolog (MSPH),enolase (Eno), bilin-binding protein (BBP), imaginal disc growth factor (IDGF), ornithine decarboxylase (ODC), cellular retinoic acid binding protein (CRABP), and one unknown function protein. The full length cDNA sequences of MSPH,Eno, and BBP were successfully cloned using rapid amplification of cDNA ends-polymerase chain reaction (RACE-PCR). Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis indicated that the transcript levels of MSPH and BBP in the fat bodies of host pupae were inducible in response to the parasitism and their variations were consistent with translational changes of these genes after parasitism, while the transcript levels of Eno and IDGF were not affected by parasitism. This study will contribute to the better understanding of the molecular bases of parasitoid-induced host alterations associated with innate immune responses, detoxification, and energy metabolism.

  7. Large-scale inference of protein tissue origin in gram-positive sepsis plasma using quantitative targeted proteomics.

    Science.gov (United States)

    Malmström, Erik; Kilsgård, Ola; Hauri, Simon; Smeds, Emanuel; Herwald, Heiko; Malmström, Lars; Malmström, Johan

    2016-01-06

    The plasma proteome is highly dynamic and variable, composed of proteins derived from surrounding tissues and cells. To investigate the complex processes that control the composition of the plasma proteome, we developed a mass spectrometry-based proteomics strategy to infer the origin of proteins detected in murine plasma. The strategy relies on the construction of a comprehensive protein tissue atlas from cells and highly vascularized organs using shotgun mass spectrometry. The protein tissue atlas was transformed to a spectral library for highly reproducible quantification of tissue-specific proteins directly in plasma using SWATH-like data-independent mass spectrometry analysis. We show that the method can determine drastic changes of tissue-specific protein profiles in blood plasma from mouse animal models with sepsis. The strategy can be extended to several other species advancing our understanding of the complex processes that contribute to the plasma proteome dynamics.

  8. Plasma membrane proteomics and its application in clinical cancer biomarker discovery

    DEFF Research Database (Denmark)

    Leth-Larsen, Rikke; Lund, Rikke; Ditzel, Henrik J

    2010-01-01

    Plasma membrane proteins that are exposed on the cell surface have important biological functions, such as signaling into and out of the cells, ion transport, and cell-cell and cell-matrix interactions. The expression level of many of the plasma membrane proteins involved in these key functions...... targeted by protein drugs, such as human antibodies, that have enhanced survival of several groups of cancer patients. The combination of novel analytical approaches and subcellular fractionation procedures has made it possible to study the plasma membrane proteome in more detail, which will elucidate...... cancer biology, particularly metastasis, and guide future development of novel drug targets. The technical advances in plasma membrane proteomics and the consequent biological revelations will be discussed herein. Many of the advances have been made using cancer cell lines, but because the main goal...

  9. Proteomic analysis of liver plasma membrane from hepatitis B surface antigen transgenic mice

    Institute of Scientific and Technical Information of China (English)

    贾小芳

    2012-01-01

    Objective To explore the differential liver plasma membrane( PM) proteins that may be related to the occurrence,development and reversal process of hepatitis and to understand the pathogenesis of hepatitis and the new drug targets by performing a comparative proteomics research of liver PM between

  10. Plasma proteome changes in cardiovascular disease patients: novel isoforms of apolipoprotein A1

    Directory of Open Access Journals (Sweden)

    Oravec Milan

    2011-06-01

    Full Text Available Abstract Background The aim of this proteomic study was to look for changes taking place in plasma proteomes of patients with acute myocardial infarction (AMI, unstable angina pectoris (UAP, and stable angina pectoris (SAP. Methods Depleted plasma proteins were separated by 2D SDS-PAGE (pI 4-7, and proteomes were compared using Progenesis SameSpots statistical software. Proteins were identified by nanoLC-MS/MS. Proteins were quantified using commercial kits. Apolipoprotein A1 was studied using 1D and 2D SDS-PAGE, together with western blotting. Results Reciprocal comparison revealed 46 unique, significantly different spots; proteins in 34 spots were successfully identified and corresponded to 38 different proteins. Discrete comparisons of patient groups showed 45, 41, and 8 significantly different spots when AMI, UAP, and SAP were compared with the control group. On the basis of our proteomic data, plasma levels of two of them, alpha-1 microglobulin and vitamin D-binding protein, were determined. The data, however, failed to prove the proteins to be suitable markers or risk factors in the studied groups. The plasma level and isoform representation of apolipoprotein A1 were also estimated. Using 1D and 2D SDS-PAGE, together with western blotting, we observed extra high-molecular weight apolipoprotein A1 fractions presented only in the patient groups, indicating that the novel high-molecular weight isoforms of apolipoprotein A1 may be potential new markers or possible risk factors of cardiovascular disease. Conclusion The reported data show plasma proteome changes in patients with AMI, UAP, and SAP. We propose some apolipoprotein A1 fractions as a possible new disease-associated marker of cardiovascular disorders.

  11. Proteome Analysis of Borrelia burgdorferi Response to Environmental Change

    Energy Technology Data Exchange (ETDEWEB)

    Angel, Thomas E.; Luft, Benjamin J.; Yang, Xiaohua; Nicora, Carrie D.; Camp, David G.; Jacobs, Jon M.; Smith, Richard D.

    2010-11-02

    We examined global changes in protein expression in the B31 strain of Borrelia burgdorferi, in response to two environmental cues (pH and temperature) chosen for their reported similarity to those encountered at different stages of the organism’s life cycle. Multidimensional nano-liquid chromatographic separations coupled with tandem mass spectrometry were used to examine the array of proteins (i.e., the proteome) of B. burgdorferi for different pH and temperature culture conditions. Changes in pH and temperature elicited in vitro adaptations of this spirochete known to cause Lyme disease and led to alterations in protein expression that are associated with increased microbial pathogenesis. We identified 1031 proteins that represent 59% of the annotated genome of B. burgdorferi and elucidated a core proteome of 414 proteins that were present in all environmental conditions investigated. Observed changes in protein abundances indicated varied replicon usage, as well as proteome functional distributions between the in vitro cell culture conditions. Surprisingly, the pH and temperature conditions that mimicked B. burgdorferi residing in the gut of a fed tick showed a marked reduction in protein diversity. Additionally, the results provide us with leading candidates for exploring how B. burgdorferi adapts to and is able to survive in a wide variety of environmental conditions and lay a foundation for planned in situ studies of B. burgdorferi isolated from the tick midgut and infected animals.

  12. Plasma proteome coverage is increased by unique peptide recovery from sodium deoxycholate precipitate.

    Science.gov (United States)

    Serra, Aida; Zhu, Hongbin; Gallart-Palau, Xavier; Park, Jung Eun; Ho, Hee Haw; Tam, James P; Sze, Siu Kwan

    2016-03-01

    The ionic detergent sodium deoxycholate (SDC) is compatible with in-solution tryptic digestion and LC-MS/MS-based shotgun proteomics by virtue of being easy to separate from the peptide products via precipitation in acidic buffers. However, it remains unclear whether unique human peptides co-precipitate with SDC during acid treatment of complex biological samples. In this study, we demonstrate for the first time that a large quantity of unique peptides in human blood plasma can be co-precipitated with SDC using an optimized sample preparation method prior to shotgun proteomic analysis. We show that the plasma peptides co-precipitated with SDC can be successfully recovered using a sequential re-solubilization and precipitation procedure, and that this approach is particularly efficient at the extraction of long peptides. Recovery of peptides from the SDC pellet dramatically increased overall proteome coverage (>60 %), thereby improving the identification of low-abundance proteins and enhancing the identification of protein components of membrane-bound organelles. In addition, when we analyzed the physiochemical properties of the co-precipitated peptides, we observed that SDC-based sample preparation improved the identification of mildly hydrophilic/hydrophobic proteins that would otherwise be lost upon discarding the pellet. These data demonstrate that the optimized SDC protocol is superior to sodium dodecyl sulfate (SDS)/urea treatment for identifying plasma biomarkers by shotgun proteomics.

  13. Proteome responses to nitrate in bioethanol production contaminant Dekkera bruxellensis.

    Science.gov (United States)

    Neto, Adauto Gomes Barbosa; Pestana-Calsa, Maria Clara; de Morais, Marcos Antonio; Calsa, Tercilio

    2014-06-02

    Dekkera bruxellensis is an industrially relevant yeast, especially in bioethanol production. The capacity of D. bruxellensis to assimilate nitrate can confer advantages of this yeast over Saccharomyces cerevisiae at industrial conditions. In the present work we present the consequences of nitrate assimilation, using ammonium as reference, to the proteomics of D. bruxellensis. Thirty-four protein spots were overproduced in nitrate medium and were identified by MS-TOF/TOF analysis and were putatively identified by using local Mascot software. Apart from the overexpression of genes of nitrate metabolism, ATP synthesis and PPP and TCA pathways previously reported, cultivation on nitrate induced overproduction of glycolytic enzymes, which corroborate the high energy demand and NADH availability for nitrate assimilation. Overproduction of alcohol dehydrogenase (Adh) protein was also observed. Proteomic profile of D. bruxellensis cultivated in nitrate and described in the present work agrees with the hypothesis of metabolic flux regulation, making available the energy in the form of NADH to support nitrate assimilation. This work contributes with an initial picture of proteins presenting differential accumulation in industrial contaminant yeast, in strict association with possible metabolic responses to nitrate as sole nitrogen source in cultivation medium. The present study investigated the gene expression at translational level of yeast D. bruxellensis for nitrate assimilation. This study corroborated with biological models that consider the ability to assimilate this nitrogen source confers advantages on this yeast during the fermentation process industry. However, larger studies are needed in this way as our group is investigating new proteins under LC-MS/MS approach. Together, these studies will help in understanding the operation of networks and cellular regulation of the process of assimilation of nitrogen sources for the D. bruxellensis, unravelling new aspects of

  14. An update on medium- and low-abundant blood plasma proteome of horse.

    Science.gov (United States)

    Lepczyński, A; Ożgo, M; Dratwa-Chałupnik, A; Robak, P; Pyć, A; Zaborski, D; Herosimczyk, A

    2017-07-10

    The main objectives of the study were to: (1) deeply analyse the serum protein composition of Equus caballus, (2) assess the effectiveness of the high-abundant protein depletion and improve the concentration of medium- and low-abundant proteins. The analysis were performed on the blood plasma of three healthy part-Arabian mares. The implementation of two-dimensional electrophoresis and matrix-assisted laser desorption/ionisation - time of flight mass spectrometry allowed us to establish a horse plasma proteome map. Serum proteins were resolved at pH 4 to 7, followed by 12% SDS-PAGE. As a result 136 spots were successfully identified, representing the products of 46 unique genes. Of these, 22 gene products have not been previously identified in horse serum/plasma samples using proteomic tools. Gene ontology analysis showed that almost 30% of all identified gene products belong to the coagulation and complement cascades. These results can undoubtedly serve as a useful and prospective prerequisite for the future analysis of horse plasma proteome changes in different physiological and pathophysiological conditions. The use of the medium- and low-abundant protein enrichment tool increased their abundance and allowed us to identify a higher number of protein gene products. The highest depletion efficiency was observed for the most abundant plasma proteins, that is albumin, IgG heavy chains and serotransferrin.

  15. The proteome response to amyloid protein expression in vivo.

    Directory of Open Access Journals (Sweden)

    Ricardo A Gomes

    Full Text Available Protein misfolding disorders such as Alzheimer, Parkinson and transthyretin amyloidosis are characterized by the formation of protein amyloid deposits. Although the nature and location of the aggregated proteins varies between different diseases, they all share similar molecular pathways of protein unfolding, aggregation and amyloid deposition. Most effects of these proteins are likely to occur at the proteome level, a virtually unexplored reality. To investigate the effects of an amyloid protein expression on the cellular proteome, we created a yeast expression system using human transthyretin (TTR as a model amyloidogenic protein. We used Saccharomyces cerevisiae, a living test tube, to express native TTR (non-amyloidogenic and the amyloidogenic TTR variant L55P, the later forming aggregates when expressed in yeast. Differential proteome changes were quantitatively analyzed by 2D-differential in gel electrophoresis (2D-DIGE. We show that the expression of the amyloidogenic TTR-L55P causes a metabolic shift towards energy production, increased superoxide dismutase expression as well as of several molecular chaperones involved in protein refolding. Among these chaperones, members of the HSP70 family and the peptidyl-prolyl-cis-trans isomerase (PPIase were identified. The latter is highly relevant considering that it was previously found to be a TTR interacting partner in the plasma of ATTR patients but not in healthy or asymptomatic subjects. The small ubiquitin-like modifier (SUMO expression is also increased. Our findings suggest that refolding and degradation pathways are activated, causing an increased demand of energetic resources, thus the metabolic shift. Additionally, oxidative stress appears to be a consequence of the amyloidogenic process, posing an enhanced threat to cell survival.

  16. SUMO-Enriched Proteome for Drosophila Innate Immune Response

    Science.gov (United States)

    Handu, Mithila; Kaduskar, Bhagyashree; Ravindranathan, Ramya; Soory, Amarendranath; Giri, Ritika; Elango, Vijay Barathi; Gowda, Harsha; Ratnaparkhi, Girish S.

    2015-01-01

    Small ubiquitin-like modifier (SUMO) modification modulates the expression of defense genes in Drosophila, activated by the Toll/nuclear factor-κB and immune-deficient/nuclear factor-κB signaling networks. We have, however, limited understanding of the SUMO-modulated regulation of the immune response and lack information on SUMO targets in the immune system. In this study, we measured the changes to the SUMO proteome in S2 cells in response to a lipopolysaccharide challenge and identified 1619 unique proteins in SUMO-enriched lysates. A confident set of 710 proteins represents the immune-induced SUMO proteome and analysis suggests that specific protein domains, cellular pathways, and protein complexes respond to immune stress. A small subset of the confident set was validated by in-bacto SUMOylation and shown to be bona-fide SUMO targets. These include components of immune signaling pathways such as Caspar, Jra, Kay, cdc42, p38b, 14-3-3ε, as well as cellular proteins with diverse functions, many being components of protein complexes, such as prosß4, Rps10b, SmD3, Tango7, and Aats-arg. Caspar, a human FAF1 ortholog that negatively regulates immune-deficient signaling, is SUMOylated at K551 and responds to treatment with lipopolysaccharide in cultured cells. Our study is one of the first to describe SUMO proteome for the Drosophila immune response. Our data and analysis provide a global framework for the understanding of SUMO modification in the host response to pathogens. PMID:26290570

  17. Automated Sample Preparation Platform for Mass Spectrometry-Based Plasma Proteomics and Biomarker Discovery

    Directory of Open Access Journals (Sweden)

    Vilém Guryča

    2014-03-01

    Full Text Available The identification of novel biomarkers from human plasma remains a critical need in order to develop and monitor drug therapies for nearly all disease areas. The discovery of novel plasma biomarkers is, however, significantly hampered by the complexity and dynamic range of proteins within plasma, as well as the inherent variability in composition from patient to patient. In addition, it is widely accepted that most soluble plasma biomarkers for diseases such as cancer will be represented by tissue leakage products, circulating in plasma at low levels. It is therefore necessary to find approaches with the prerequisite level of sensitivity in such a complex biological matrix. Strategies for fractionating the plasma proteome have been suggested, but improvements in sensitivity are often negated by the resultant process variability. Here we describe an approach using multidimensional chromatography and on-line protein derivatization, which allows for higher sensitivity, whilst minimizing the process variability. In order to evaluate this automated process fully, we demonstrate three levels of processing and compare sensitivity, throughput and reproducibility. We demonstrate that high sensitivity analysis of the human plasma proteome is possible down to the low ng/mL or even high pg/mL level with a high degree of technical reproducibility.

  18. Plasma proteomic alterations in non-human primates and humans after chronic alcohol self-administration.

    Science.gov (United States)

    Freeman, Willard M; Vanguilder, Heather D; Guidone, Elizabeth; Krystal, John H; Grant, Kathleen A; Vrana, Kent E

    2011-08-01

    Objective diagnostics of excessive alcohol use are valuable tools in the identification and monitoring of subjects with alcohol use disorders. A number of potential biomarkers of alcohol intake have been proposed, but none have reached widespread clinical usage, often due to limited diagnostic sensitivity and specificity. In order to identify novel potential biomarkers, we performed proteomic biomarker target discovery in plasma samples from non-human primates that chronically self-administer high levels of ethanol. Two-dimensional difference in-gel electrophoresis (2D-DIGE) was used to quantify plasma proteins from within-subject samples collected before exposure to ethanol and after 3 months of excessive ethanol self-administration. Highly abundant plasma proteins were depleted from plasma samples to increase proteomic coverage. Altered plasma levels of serum amyloid A4 (SAA4), retinol-binding protein, inter-alpha inhibitor H4, clusterin, and fibronectin, identified by 2D-DIGE analysis, were confirmed in unmanipulated, whole plasma from these animals by immunoblotting. Examination of these target plasma proteins in human subjects with excessive alcohol consumption (and control subjects) revealed increased levels of SAA4 and clusterin and decreased levels of fibronectin compared to controls. These proteins not only serve as targets for further development as biomarker candidates or components of biomarker panels, but also add to the growing understanding of dysregulated immune function and lipoprotein metabolism with chronic, excessive alcohol consumption.

  19. Method and platform standardization in MRM-based quantitative plasma proteomics.

    Science.gov (United States)

    Percy, Andrew J; Chambers, Andrew G; Yang, Juncong; Jackson, Angela M; Domanski, Dominik; Burkhart, Julia; Sickmann, Albert; Borchers, Christoph H

    2013-12-16

    There exists a growing demand in the proteomics community to standardize experimental methods and liquid chromatography-mass spectrometry (LC/MS) platforms in order to enable the acquisition of more precise and accurate quantitative data. This necessity is heightened by the evolving trend of verifying and validating candidate disease biomarkers in complex biofluids, such as blood plasma, through targeted multiple reaction monitoring (MRM)-based approaches with stable isotope-labeled standards (SIS). Considering the lack of performance standards for quantitative plasma proteomics, we previously developed two reference kits to evaluate the MRM with SIS peptide approach using undepleted and non-enriched human plasma. The first kit tests the effectiveness of the LC/MRM-MS platform (kit #1), while the second evaluates the performance of an entire analytical workflow (kit #2). Here, these kits have been refined for practical use and then evaluated through intra- and inter-laboratory testing on 6 common LC/MS platforms. For an identical panel of 22 plasma proteins, similar concentrations were determined, regardless of the kit, instrument platform, and laboratory of analysis. These results demonstrate the value of the kit and reinforce the utility of standardized methods and protocols. The proteomics community needs standardized experimental protocols and quality control methods in order to improve the reproducibility of MS-based quantitative data. This need is heightened by the evolving trend for MRM-based validation of proposed disease biomarkers in complex biofluids such as blood plasma. We have developed two kits to assist in the inter- and intra-laboratory quality control of MRM experiments: the first kit tests the effectiveness of the LC/MRM-MS platform (kit #1), while the second evaluates the performance of an entire analytical workflow (kit #2). In this paper, we report the use of these kits in intra- and inter-laboratory testing on 6 common LC/MS platforms. This

  20. Proteomic methodological recommendations for studies involving human plasma, platelets, and peripheral blood mononuclear cells.

    Science.gov (United States)

    de Roos, Baukje; Duthie, Susan J; Polley, Abigael C J; Mulholland, Francis; Bouwman, Freek G; Heim, Carolin; Rucklidge, Garry J; Johnson, Ian T; Mariman, Edwin C; Daniel, Hannelore; Elliott, Ruan M

    2008-06-01

    This study was designed to develop, optimize and validate protocols for blood processing prior to proteomic analysis of plasma, platelets and peripheral blood mononuclear cells (PBMC) and to determine analytical variation of a single sample of depleted plasma, platelet and PBMC proteins within and between four laboratories each using their own standard operating protocols for 2D gel electrophoresis. Plasma depleted either using the Beckman Coulter IgY-12 proteome partitioning kit or the Amersham albumin and IgG depletion columns gave good quality gels, but reproducibility appeared better with the single-use immuno-affinity column. The use of the Millipore Filter Device for protein concentration gave a 16% ( p appears as a single abundant spot. The average within-laboratory coefficient of variation (CV) for each of the matched spots after automatic matching using either PDQuest or ProteomWeaver software ranged between 18 and 69% for depleted plasma proteins, between 21 and 55% for platelet proteins, and between 22 and 38% for PBMC proteins. Subsequent manual matching improved the CV with on average between 1 and 16%. The average between laboratory CV for each of the matched spots after automatic matching ranged between 4 and 54% for depleted plasma proteins, between 5 and 60% for platelet proteins, and between 18 and 70% for PBMC proteins. This variation must be considered when designing sufficiently powered studies that use proteomics tools for biomarker discovery. The use of tricine in the running buffer for the second dimension appears to enhance the resolution of proteins especially in the high molecular weight range.

  1. Plasma membrane proteomics in the maize primary root growth zone: novel insights into root growth adaptation to water stress.

    Science.gov (United States)

    Voothuluru, Priyamvada; Anderson, Jeffrey C; Sharp, Robert E; Peck, Scott C

    2016-09-01

    Previous work on maize (Zea mays L.) primary root growth under water stress showed that cell elongation is maintained in the apical region of the growth zone but progressively inhibited further from the apex. These responses involve spatially differential and coordinated regulation of osmotic adjustment, modification of cell wall extensibility, and other cellular growth processes that are required for root growth under water-stressed conditions. As the interface between the cytoplasm and the apoplast (including the cell wall), the plasma membrane likely plays critical roles in these responses. Using a simplified method for enrichment of plasma membrane proteins, the developmental distribution of plasma membrane proteins was analysed in the growth zone of well-watered and water-stressed maize primary roots. The results identified 432 proteins with differential abundances in well-watered and water-stressed roots. The majority of changes involved region-specific patterns of response, and the identities of the water stress-responsive proteins suggest involvement in diverse biological processes including modification of sugar and nutrient transport, ion homeostasis, lipid metabolism, and cell wall composition. Integration of the distinct, region-specific plasma membrane protein abundance patterns with results from previous physiological, transcriptomic and cell wall proteomic studies reveals novel insights into root growth adaptation to water stress.

  2. The Human Plasma Proteome Draft of 2017: Building on the Human Plasma PeptideAtlas from Mass Spectrometry and Complementary Assays.

    Science.gov (United States)

    Schwenk, Jochen M; Omenn, Gilbert S; Sun, Zhi; Campbell, David S; Baker, Mark S; Overall, Christopher M; Aebersold, Ruedi; Moritz, Robert L; Deutsch, Eric W

    2017-09-22

    Human blood plasma provides a highly accessible window to the proteome of any individual in health and disease. Since its inception in 2002, the Human Proteome Organization's Human Plasma Proteome Project (HPPP) has been promoting advances in the study and understanding of the full protein complement of human plasma and on determining the abundance and modifications of its components. In 2017, we review the history of the HPPP and the advances of human plasma proteomics in general, including several recent achievements. We then present the latest 2017-04 build of Human Plasma PeptideAtlas, which yields ~43 million peptide-spectrum matches and 122,730 distinct peptide sequences from 178 individual experiments at a 1% protein-level FDR globally across all experiments. Applying the latest Human Proteome Project Data Interpretation Guidelines, we catalog 3509 proteins that have at least two non-nested uniquely-mapping peptides of 9 amino acids or more and >1300 additional proteins with ambiguous evidence. We apply the same two-peptide guideline to historical PeptideAtlas builds going back to 2006 and examine the progress made in the past ten years in plasma proteome coverage. We also compare the distribution of proteins in historical PeptideAtlas builds in various RNA-abundance and cellular localization categories. We then discuss advances in plasma proteomics based on targeted mass spectrometry as well as affinity assays, which during early 2017 target ~2000 proteins. Finally we describe considerations about sample handling and study design, concluding with an outlook for future advances in deciphering the human plasma proteome.

  3. Plasma proteomic profiling in HIV-1 infected methamphetamine abusers.

    Directory of Open Access Journals (Sweden)

    Gwenael Pottiez

    Full Text Available We wanted to determine whether methamphetamine use affects a subset of plasma proteins in HIV-infected persons. Plasma samples from two visits were identified for subjects from four groups: HIV+, ongoing, persistent METH use; HIV+, short-term METH abstinent; HIV+, long term METH abstinence; HIV negative, no history of METH use. Among 390 proteins identified, 28 showed significant changes in expression in the HIV+/persistent METH+ group over the two visits, which were not attributable to HIV itself. These proteins were involved in complement, coagulation pathways and oxidative stress. Continuous METH use is an unstable condition, altering levels of a number of plasma proteins.

  4. Effects of ω-3 Polyunsaturated Fatty Acids on Plasma Proteome in Rett Syndrome

    Directory of Open Access Journals (Sweden)

    Claudio De Felice

    2013-01-01

    Full Text Available The mechanism of action of omega-3 polyunsaturated fatty acids (ω-3 PUFAs is only partially known. Prior reports suggest a partial rescue of clinical symptoms and oxidative stress (OS alterations following ω-3 PUFAs supplementation in patients with Rett syndrome (RTT, a devastating neurodevelopmental disorder with transient autistic features, affecting almost exclusively females and mainly caused by sporadic mutations in the gene encoding the methyl CpG binding protein 2 (MeCP2 protein. Here, we tested the hypothesis that ω-3 PUFAs may modify the plasma proteome profile in typical RTT patients with MECP2 mutations and classic phenotype. A total of 24 RTT girls at different clinical stages were supplemented with ω-3 PUFAs as fish oil for 12 months and compared to matched healthy controls. The expression of 16 proteins, mainly related to acute phase response (APR, was changed at the baseline in the untreated patients. Following ω-3 PUFAs supplementation, the detected APR was partially rescued, with the expression of 10 out of 16 (62% proteins being normalized. ω-3 PUFAs have a major impact on the modulation of the APR in RTT, thus providing new insights into the role of inflammation in autistic disorders and paving the way for novel therapeutic strategies.

  5. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Applications in Quantitative Proteomics.

    Science.gov (United States)

    Chahrour, Osama; Malone, John

    2017-01-01

    Recent advances in inductively coupled plasma mass spectrometry (ICP-MS) hyphenated to different separation techniques have promoted it as a valuable tool in protein/peptide quantification. These emerging ICP-MS applications allow absolute quantification by measuring specific elemental responses. One approach quantifies elements already present in the structure of the target peptide (e.g. phosphorus and sulphur) as natural tags. Quantification of these natural tags allows the elucidation of the degree of protein phosphorylation in addition to absolute protein quantification. A separate approach is based on utilising bi-functional labelling substances (those containing ICP-MS detectable elements), that form a covalent chemical bond with the protein thus creating analogs which are detectable by ICP-MS. Based on the previously established stoichiometries of the labelling reagents, quantification can be achieved. This technique is very useful for the design of precise multiplexed quantitation schemes to address the challenges of biomarker screening and discovery. This review discusses the capabilities and different strategies to implement ICP-MS in the field of quantitative proteomics. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Proteomic identification of plasma protein tyrosine phosphatase alpha and fibronectin associated with liver fluke, Opisthorchis viverrini, infection.

    Directory of Open Access Journals (Sweden)

    Jarinya Khoontawad

    Full Text Available Opisthorchiasis caused by Opisthorchis viverrini induces periductal fibrosis via host immune/inflammatory responses. Plasma protein alteration during host-parasite interaction-mediated inflammation may provide potential diagnostic and/or prognostic biomarkers. To search for target protein changes in O. viverrini-infected hamsters, a 1-D PAGE gel band was trypsin-digested and analyzed by a LC-MS/MS-based proteomics approach in the plasma profile of infected hamsters, and applied to humans. Sixty seven proteins were selected for further analysis based on at least two unique tryptic peptides with protein ID score >10 and increased expression at least two times across time points. These proteins have not been previously identified in O. viverrini-associated infection. Among those, proteins involved in structural (19%, immune response (13%, cell cycle (10% and transcription (10% were highly expressed. Western blots revealed an expression level of protein tyrosine phosphatase alpha (PTPα which reached a peak at 1 month and subsequently tended to decrease. Fibronectin significantly increased at 1 month and tended to increase with time, supporting proteomic analysis. PTPα was expressed in the cytoplasm of inflammatory cells, while fibronectin was observed mainly in the cytoplasm of fibroblasts and the extracellular matrix at periductal fibrosis areas. In addition, these protein levels significantly increased in the plasma of O. viverrini-infected patients compared to healthy individuals, and significantly decreased at 2-months post-treatment, indicating their potential as disease markers. In conclusion, our results suggest that plasma PTPα and fibronectin may be associated with opisthorchiasis and the hamster model provides the basis for development of novel diagnostic markers in the future.

  7. Proteomics

    DEFF Research Database (Denmark)

    Tølbøll, Trine Højgaard; Danscher, Anne Mette; Andersen, Pia Haubro;

    2012-01-01

    different proteins were identified, with 146 proteins available for identification in C, 279 proteins in D and 269 proteins in L. A functional annotation of the identified proteins was obtained using the on-line Blast2GO tool. Three hundred and sixteen of the identified proteins could be subsequently...... grouped manually to one or more of five major functional groups related to metabolism, cell structure, immunity, apoptosis and angiogenesis. These were chosen to represent basic cell functions and biological processes potentially involved in the pathogenesis of CHD. The LC–MS/MS-based proteomic analysis...

  8. Proteomic profile response of Paracoccidioides lutzii to the antifungal argentilactone

    Directory of Open Access Journals (Sweden)

    Renata Silva Do Prado

    2015-06-01

    Full Text Available The dimorphic fungi Paracoccidioides spp. are the etiological agents of paracoccidioidomycosis (PCM, a mycosis of high incidence in Brazil. The toxicity of drug treatment and the emergence of resistant organisms have led to research for new candidates for drugs. In this study, we demonstrate that the natural product argentilactone was not cytotoxic or genotoxic to MRC5 cells at the IC50 concentration to the fungus. We also verified the proteomic profile of Paracoccidioides lutzii after incubation with argentilactone using a label free quantitative proteome nanoUPLC-MSE. The results of this study indicated that the fungus has a global metabolic adaptation in the presence of argentilactone. Enzymes of important pathways, such as glycolysis, the Krebs cycle and the glyoxylate cycle, were repressed, which drove the metabolism to the methylcytrate cycle and beta-oxidation. Proteins involved in cell rescue, defense and stress response were induced. In this study, alternative metabolic pathways adopted by the fungi were elucidated, helping to elucidate the course of action of the compound studied.

  9. Proteomic Study for Responses to Cadmium Stress in Rice Seedlings

    Institute of Scientific and Technical Information of China (English)

    GE Cai-lin; WANG Ze-gang; WAN Ding-zhen; DING Yan; WANG Yu-long; SHANG Qi; LUO Shi-shi

    2009-01-01

    A proteomic approach including two-dimensional electrophoresis and mass spectrometric (MALDI-TOF MS) analyses was used to investigate the responses to cadmium (Cd) stress in seedlings of rice (Oryza sativa L.) varieties Shanyou 63 and Aizaizhan. Cd stress significantly inhibited root and shoot growth, and affected the global proteome in rice roots and leaves, which induced or upregulated the expression of corresponding proteins in rice roots and leaves when rice seedlings were exposed to 0.1 or 1.0 mmol/L Cd. The Cd-induced proteins are involved in chelation and compartmentation of Cd, elimination of active oxygen free radicals, detoxification of toxic substances, degradation of denatured proteins or inactivated enzymes, regulation of physiologic metabolism and induction of pathogenesis-related proteins. Comparing the Cd-induced proteins between the two varieties, the β-glucosidase and pathogenesis-related protein family 10 proteins were more drastically induced by Cd stress in roots and leaves of Aizaizhan, and the UDP-glucose protein transglucosylase and translational elongation factor Tu were induced by 0.1 mmol/L Cd stress in roots of Shanyou 63. This may be one of the important mechanisms for higher tolerance to Cd stress in Shanyou 63 than in Aizaizhan.

  10. Histoplasma capsulatum proteome response to decreased iron availability

    Directory of Open Access Journals (Sweden)

    Catron Brittany

    2008-12-01

    Full Text Available Abstract Background A fundamental pathogenic feature of the fungus Histoplasma capsulatum is its ability to evade innate and adaptive immune defenses. Once ingested by macrophages the organism is faced with several hostile environmental conditions including iron limitation. H. capsulatum can establish a persistent state within the macrophage. A gap in knowledge exists because the identities and number of proteins regulated by the organism under host conditions has yet to be defined. Lack of such knowledge is an important problem because until these proteins are identified it is unlikely that they can be targeted as new and innovative treatment for histoplasmosis. Results To investigate the proteomic response by H. capsulatum to decreasing iron availability we have created H. capsulatum protein/genomic databases compatible with current mass spectrometric (MS search engines. Databases were assembled from the H. capsulatum G217B strain genome using gene prediction programs and expressed sequence tag (EST libraries. Searching these databases with MS data generated from two dimensional (2D in-gel digestions of proteins resulted in over 50% more proteins identified compared to searching the publicly available fungal databases alone. Using 2D gel electrophoresis combined with statistical analysis we discovered 42 H. capsulatum proteins whose abundance was significantly modulated when iron concentrations were lowered. Altered proteins were identified by mass spectrometry and database searching to be involved in glycolysis, the tricarboxylic acid cycle, lysine metabolism, protein synthesis, and one protein sequence whose function was unknown. Conclusion We have created a bioinformatics platform for H. capsulatum and demonstrated the utility of a proteomic approach by identifying a shift in metabolism the organism utilizes to cope with the hostile conditions provided by the host. We have shown that enzyme transcripts regulated by other fungal pathogens in

  11. Proteomic analysis of Streptomyces coelicolor in response to Ciprofloxacin challenge.

    Science.gov (United States)

    Rao, Aishwarya Anand; Patkari, Minal; Reddy, Panga Jaipal; Srivastava, Rajneesh; Pendharkar, Namita; Rapole, Srikanth; Mehra, Sarika; Srivastava, Sanjeeva

    2014-01-31

    Multi-drug tolerance is an important phenotypic property that complicates treatment of infectious diseases and reshapes drug discovery. Hence a systematic study of the origins and mechanisms of resistance shown by microorganisms is imperative. Since soil-dwelling bacteria are constantly challenged with a myriad of antibiotics, they are potential reservoirs of resistance determinants that can be mobilized into pathogens over a period of time. Elucidating the resistance mechanisms in such bacteria could help future antibiotic discoveries. This research is a preliminary study conducted to determine the effects of ciprofloxacin (CIP) on the intrinsically resistant Gram-positive soil bacterium Streptomyces coelicolor. The effect was investigated by performing 2-DE on total protein extracts of cells exposed to sub-lethal concentrations of ciprofloxacin as compared to the controls. Protein identification by MALDI-TOF/TOF revealed 24 unique differentially expressed proteins, which were statistically significant. The down-regulation of proteins involved in carbohydrate metabolism indicated a shift in the cell physiology towards a state of metabolic shutdown. Furthermore, the observed decline in protein levels involved in transcription and translation machinery, along with depletion of enzymes involved in amino acid biosynthesis and protein folding could be a cellular response to DNA damage caused by CIP, thereby minimizing the effect of defective and energetically wasteful metabolic processes. This could be crucial for the initial survival of the cells before gene level changes could come into play to ensure survival under prolonged adverse conditions. These results are a first attempt towards profiling the proteome of S. coelicolor in response to antibiotic stress. This article is part of a Special Issue entitled: Trends in Microbial Proteomics. Soil-dwelling bacteria could serve as a reservoir of resistance determinants for clinically important bacteria. In this work, we

  12. Proteomic profiling of human plasma exosomes identifies PPARgamma as an exosome-associated protein.

    Science.gov (United States)

    Looze, Christopher; Yui, David; Leung, Lester; Ingham, Matthew; Kaler, Maryann; Yao, Xianglan; Wu, Wells W; Shen, Rong-Fong; Daniels, Mathew P; Levine, Stewart J

    2009-01-16

    Exosomes are nanovesicles that are released from cells as a mechanism of cell-free intercellular communication. Only a limited number of proteins have been identified from the plasma exosome proteome. Here, we developed a multi-step fractionation scheme incorporating gel exclusion chromatography, rate zonal centrifugation through continuous sucrose gradients, and high-speed centrifugation to purify exosomes from human plasma. Exosome-associated proteins were separated by SDS-PAGE and 66 proteins were identified by LC-MS/MS, which included both cellular and extracellular proteins. Furthermore, we identified and characterized peroxisome proliferator-activated receptor-gamma (PPARgamma), a nuclear receptor that regulates adipocyte differentiation and proliferation, as well as immune and inflammatory cell functions, as a novel component of plasma-derived exosomes. Given the important role of exosomes as intercellular messengers, the discovery of PPARgamma as a component of human plasma exosomes identifies a potential new pathway for the paracrine transfer of nuclear receptors.

  13. Analysis of the plasma proteome in COPD: Novel low abundance proteins reflect the severity of lung remodeling.

    Science.gov (United States)

    Merali, Salim; Barrero, Carlos A; Bowler, Russell P; Chen, Diane Er; Criner, Gerard; Braverman, Alan; Litwin, Samuel; Yeung, Anthony; Kelsen, Steven G

    2014-04-01

    The search for COPD biomarkers has largely employed a targeted approach that focuses on plasma proteins involved in the systemic inflammatory response and in lung injury and repair. This proof of concept study was designed to test the idea that an open, unbiased, in-depth proteomics approach could identify novel, low abundance plasma proteins i.e., ng/mL concentration, which could serve as potential biomarkers. Differentially expressed proteins were identified in a discovery group with severe COPD (FEV1 <45% predicted; n = 10). Subjects with normal lung function matched for age, sex, ethnicity and smoking history served as controls (n = 10). Pooled plasma from each group was exhaustively immunodepleted of abundant proteins, d separated by 1-D gel electrophoresis and extensively fractionated prior to LC-tandem mass spectroscopy (GeLC-MS). Thirty one differentially expressed proteins were identified in the discovery group including markers of lung defense against oxidant stress, alveolar macrophage activation, and lung tissue injury and repair. Four of the 31 proteins (i.e., GRP78, soluble CD163, IL1AP and MSPT9) were measured in a separate verification group of 80 subjects with varying COPD severity by immunoassay. All 4 were significantly altered in COPD and 2 (GRP78 and soluble CD163) correlated with both FEV1 and the extent of emphysema. In-depth, plasma proteomic analysis identified a group of novel, differentially expressed, low abundance proteins that reflect known pathogenic mechanisms and the severity of lung remodeling in COPD. These proteins may also prove useful as COPD biomarkers.

  14. Proteomic Mapping of the Immune Response to Gluten in Children with Autism

    Science.gov (United States)

    2015-10-01

    role of the identified proteins or the immune response to them in the pathogenesis of the disorder. 2. KEY WORDS: Autism , immune response...AWARD NUMBER: W81XWH-14-1-0293 TITLE: Proteomic Mapping of the Immune Response to Gluten in Children with Autism PRINCIPAL INVESTIGATOR...Sep 2014 – 29 Sep 2015 4. TITLE AND SUBTITLE Proteomic Mapping of the Immune Response to Gluten in Children with Autism 5a. CONTRACT NUMBER 5b. GRANT

  15. Plasma proteome analysis in HTLV-1-associated myelopathy/tropical spastic paraparesis

    Directory of Open Access Journals (Sweden)

    Stumpf Michael PH

    2011-10-01

    Full Text Available Abstract Background Human T lymphotropic virus Type 1 (HTLV-1 causes a chronic inflammatory disease of the central nervous system known as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM which resembles chronic spinal forms of multiple sclerosis (MS. The pathogenesis of HAM remains uncertain. To aid in the differential diagnosis of HAM and to identify pathogenetic mechanisms, we analysed the plasma proteome in asymptomatic HTLV-1 carriers (ACs, patients with HAM, uninfected controls, and patients with MS. We used surface-enhanced laser desorption-ionization (SELDI mass spectrometry to analyse the plasma proteome in 68 HTLV-1-infected individuals (in two non-overlapping sets, each comprising 17 patients with HAM and 17 ACs, 16 uninfected controls, and 11 patients with secondary progressive MS. Candidate biomarkers were identified by tandem Q-TOF mass spectrometry. Results The concentrations of three plasma proteins - high [β2-microglobulin], high [Calgranulin B], and low [apolipoprotein A2] - were specifically associated with HAM, independently of proviral load. The plasma [β2-microglobulin] was positively correlated with disease severity. Conclusions The results indicate that monocytes are activated by contact with activated endothelium in HAM. Using β2-microglobulin and Calgranulin B alone we derive a diagnostic algorithm that correctly classified the disease status (presence or absence of HAM in 81% of HTLV-1-infected subjects in the cohort.

  16. RNAi-mediated downregulation of poplar plasma membrane intrinsic proteins (PIPs) changes plasma membrane proteome composition and affects leaf physiology.

    Science.gov (United States)

    Bi, Zhen; Merl-Pham, Juliane; Uehlein, Norbert; Zimmer, Ina; Mühlhans, Stefanie; Aichler, Michaela; Walch, Axel Karl; Kaldenhoff, Ralf; Palme, Klaus; Schnitzler, Jörg-Peter; Block, Katja

    2015-10-14

    Plasma membrane intrinsic proteins (PIPs) are one subfamily of aquaporins that mediate the transmembrane transport of water. To reveal their function in poplar, we generated transgenic poplar plants in which the translation of PIP genes was downregulated by RNA interference investigated these plants with a comprehensive leaf plasma membrane proteome and physiome analysis. First, inhibition of PIP synthesis strongly altered the leaf plasma membrane protein composition. Strikingly, several signaling components and transporters involved in the regulation of stomatal movement were differentially regulated in transgenic poplars. Furthermore, hormonal crosstalk related to abscisic acid, auxin and brassinosteroids was altered, in addition to cell wall biosynthesis/cutinization, the organization of cellular structures and membrane trafficking. A physiological analysis confirmed the proteomic results. The leaves had wider opened stomata and higher net CO2 assimilation and transpiration rates as well as greater mesophyll conductance for CO2 (gm) and leaf hydraulic conductance (Kleaf). Based on these results, we conclude that PIP proteins not only play essential roles in whole leaf water and CO2 flux but have important roles in the regulation of stomatal movement.

  17. A workflow for peptide-based proteomics in a poorly sequenced plant: A case study on the plasma membrane proteome of banana

    DEFF Research Database (Denmark)

    Vertommen, A.; Laurell Blom Møller, Anders; Cordewener, J. H. G.

    2011-01-01

    Membrane proteins are an interesting class of proteins because of their functional importance. Unfortunately their analysis is hampered by low abundance and poor solubility in aqueous media. Since shotgun methods are high-throughput and partly overcome these problems, they are preferred......, integral plasma membrane proteins from banana leaves were successfully identified....... for membrane proteomics. However, their application in non-model plants demands special precautions to prevent false positive identification of proteins.In the current paper, a workflow for membrane proteomics in banana, a poorly sequenced plant, is proposed. The main steps of this workflow are (i...

  18. Plasma Proteomics Biomarkers in Alzheimer's Disease: Latest Advances and Challenges.

    Science.gov (United States)

    Perneczky, Robert; Guo, Liang-Hao

    2016-01-01

    The recent paradigm shift towards a more biologically oriented definition of Alzheimer's disease (AD) in clinical settings increases the need for sensitive biomarkers that can be applied in population-based settings. Blood plasma is easily accessible and contains a large number of proteins related to cerebral processes. It is therefore an ideal candidate for AD biomarker discovery. The present chapter provides an overview of the current research landscape in relation to blood-based AD biomarkers. Both clinical and methodological issues are covered. A brief summary is given on two relevant laboratory techniques to ascertain blood biomarker changes due to AD; methodological and clinical challenges in the field are also discussed.

  19. Stressor-induced proteome alterations in zebrafish: A meta-analysis of response patterns

    Energy Technology Data Exchange (ETDEWEB)

    Groh, Ksenia J., E-mail: ksenia.groh@eawag.ch [Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf (Switzerland); ETH Zürich, Swiss Federal Institute of Technology, Department of Chemistry and Applied Biosciences, 8093 Zürich (Switzerland); Suter, Marc J.-F. [Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf (Switzerland); ETH Zürich, Swiss Federal Institute of Technology, Department of Environmental Systems Science, 8092 Zürich (Switzerland)

    2015-02-15

    Highlights: • We compared reported proteome changes induced by various stressors in zebrafish. • Several proteins groups frequently responding to diverse stressors were identified. • These included energy metabolism enzymes, heat shock and cytoskeletal proteins. • Insufficient proteome coverage impedes identification of more specific responses. • Further research needs for proteomics in ecotoxicology are discussed. - Abstract: Proteomics approaches are being increasingly applied in ecotoxicology on the premise that the identification of specific protein expression changes in response to a particular chemical would allow elucidation of the underlying molecular pathways leading to an adverse effect. This in turn is expected to promote the development of focused testing strategies for specific groups of toxicants. Although both gel-based and gel-free global characterization techniques provide limited proteome coverage, the conclusions regarding the cellular processes affected are still being drawn based on the few changes detected. To investigate how specific the detected responses are, we analyzed a set of studies that characterized proteome alterations induced by various physiological, chemical and biological stressors in zebrafish, a popular model organism. Our analysis highlights several proteins and protein groups, including heat shock and oxidative stress defense proteins, energy metabolism enzymes and cytoskeletal proteins, to be most frequently identified as responding to diverse stressors. In contrast, other potentially more specifically responding protein groups are detected much less frequently. Thus, zebrafish proteome responses to stress reported by different studies appear to depend mostly on the level of stress rather than on the specific stressor itself. This suggests that the most broadly used current proteomics technologies do not provide sufficient proteome coverage to allow in-depth investigation of specific mechanisms of toxicant action

  20. The identification of proteomic markers of sperm freezing resilience in ram seminal plasma.

    Science.gov (United States)

    Rickard, J P; Leahy, T; Soleilhavoup, C; Tsikis, G; Labas, V; Harichaux, G; Lynch, G W; Druart, X; de Graaf, S P

    2015-08-03

    The source and composition of seminal plasma has previously been shown to alter the ability of spermatozoa to survive cryopreservation. In the present study, the ionic and proteomic composition of seminal plasma from rams with high (HSP; n = 3) or low (LSP; n = 3) freezing resilient spermatozoa was assessed. 75 proteins were identified to be more abundant in HSP and 48 proteins were identified to be more abundant in LSP. Individual seminal plasma proteomes were established for each of the six rams examined. For each ram, correlations were conducted between previously recorded freezing resilience [1] and individual spectral counts in order to identify markers of freezing resilience. 26S proteasome complex, acylamino acid releasing enzyme, alpha mannosidase class 2C, heat shock protein 90, tripeptidyl-peptidase 2, TCP-1 complex, sorbitol dehydrogenase and transitional endoplasmic reticulum ATPase were found to be positively correlated (r(2) > 0.7) with freezing resilience. Cystatin, zinc-2-alpha glycoprotein, angiogenin-2-like protein, cartilage acidic protein-1, cathepsin B and ribonuclease 4 isoform 1 were found to be negatively correlated (r(2) > 0.7) with freezing resilience. Several negative markers were found to originate from the accessory sex glands, whereas many positive markers originated from spermatozoa and were part of or associated with the 26S proteasome or CCT complex.

  1. Studying Different Clinical Syndromes Of Paediatric Severe Malaria Using Plasma Proteomics

    KAUST Repository

    Ramaprasad, Abhinay

    2012-08-01

    Background- Severe Plasmodium falciparum malaria remains one of the major causes of childhood morbidity and mortality in Africa. Severe malaria manifests itself as three main clinical syndromes-impaired consciousness (cerebral malaria), respiratory distress and severe malarial anaemia. Cerebral malaria and respiratory distress are major contributors to malaria mortality but their pathophysiology remains unclear. Motivation/Objectives- Most children with severe malaria die within the first 24 hours of admission to a hospital because of their pathophysiological conditions. Thus, along with anti-malarial drugs, various adjuvant therapies such as fluid bolus (for hypovolaemia) and anticonvulsants (for seizures) are given to alleviate the sick child’s condition. But these therapies can sometimes have adverse effects. Hence, a clear understanding of severe malaria pathophysiology is essential for making an informed decision regarding adjuvant therapies. Methodology- We used mass spectrometry-based shotgun proteomics to study plasma samples from Gambian children with severe malaria. We compared the proteomic profiles of different severe malaria syndromes and generated hypotheses regarding the underlying disease mechanisms. Results/Conclusions- The main challenges of studying the severe malaria syndromes using proteomics were the high complexity and variability among the samples. We hypothesized that hepatic injury and nitric oxide play roles in the pathophysiology of cerebral malaria and respiratory distress.

  2. Proteomic analysis of plasma from rats following total parenteral nutrition-induced liver injury.

    Science.gov (United States)

    Tsai, Jai-Jen; Kuo, Hsing-Chun; Lee, Kam-Fai; Tsai, Tung-Hu

    2015-11-01

    Total parenteral nutrition (TPN) is provided as the primary nitrogen source to manage patients with intestinal failure who were not able to sustain themselves on enteral feeds. The most common complication of long-term TPN use is hepatitis. A proteomic approach was used to identify proteins that are differentially expressed in the plasma of rats following TPN-related acute liver injury. Six male rats were randomly assigned to either the saline infusion control group or the TPN infusion group. Our results demonstrate that TPN infusion in rats resulted in hepatic dysfunction and hepatocyte apoptosis. Five proteins that were differentially expressed between TPN infusion and normal rats were determined and validated in vivo. Fascinatingly, the proteomic differential displays, downregulated proteins included peroxiredoxin 2 (PRDX2), alpha-1-antiproteinase (A1AT), and fibrinogen gamma chain (FIBG), which were involved in oxidative stress, inflammatory respondence and cells apoptosis. After TPN infusion, two protein spots showed increased expression, namely, the glucagon receptor (GLR) protein and apolipoprotein A-1 (APOA1), which may mediate the effects of TPN administration on glycogen and lipid metabolism. In this study, proteomic analysis suggested TPN-related acute liver injury could be involved in limiting cellular protection mechanisms against oxidative stress-induced apoptosis. On the basis of the results, we also give molecular evidences replying TPN-related hepatitis.

  3. Proteomic analysis of white and yellow seminal plasma in turkeys (Meleagris gallopavo).

    Science.gov (United States)

    Słowińska, M; Kozłowski, K; Jankowski, J; Ciereszko, A

    2015-06-01

    Yellow semen syndrome (YSS) is endemic within domestic turkey populations. Yellow semen is of lower quality and, when used for insemination, results in reduced fertility and hatchability. Little is known about the etiology of YSS. The aim of this study was to compare the proteome of white and yellow seminal plasma of turkeys using 1) 2-dimensional difference gel electrophoresis (2D-DIGE) to quantify seminal plasma proteins and 2) matrix-assisted laser desorption/ionization mass spectrometry to identify the proteins that are differentially abundant in white and yellow seminal plasma. A total of 49 protein spots (30 upregulated and 19 downregulated) were differentially expressed in yellow seminal plasma compared with white seminal plasma. Transthyretin and serum albumin-like showed a 3-fold increase in seminal plasma from males with YSS, and the latter was validated using Western blot analysis. A 3-fold increase was observed for hemopexin-like and immunoglobulin light chain V-J-C region. Pantetheinase-like showed a 1.3-fold increase. Ovotransferrin, hepatocyte growth factor activator, cysteine-rich secretory protein 3-like, and ferritin heavy chain-like showed a significant decrease (at least a 1.3-fold decrease) in yellow semen. Further studies are necessary to evaluate the precise function of the above-mentioned proteins in YSS and to establish quality markers of turkey semen to predict the reproductive potential of individual turkeys.

  4. Proteomic changes of the porcine small intestine in response to chronic heat stress.

    Science.gov (United States)

    Cui, Yanjun; Gu, Xianhong

    2015-12-01

    Acute heat stress (HS) negatively affects intestinal integrity and barrier function. In contrast, chronic mild HS poses a distinct challenge to animals. Therefore, this study integrates biochemical, histological and proteomic approaches to investigate the effects of chronic HS on the intestine in finishing pigs. Castrated male crossbreeds (79.00 ± 1.50 kg BW) were subjected to either thermal neutral (TN, 21 °C; 55% ± 5% humidity; n=8) or HS conditions (30 °C; 55% ± 5% humidity; n=8) for 3 weeks. The pigs were sacrificed after 3 weeks of high environmental exposure and the plasma hormones, the intestinal morphology, integrity, and protein profiles of the jejunum mucosa were determined. Chronic HS reduced the free triiodothyronine (FT3) and GH levels. HS damaged intestinal morphology, increased plasma d-lactate concentrations and decreased alkaline phosphatase activity of intestinal mucosa. Proteome analysis of the jejunum mucosa was conducted by 2D gel electrophoresis and mass spectrometry. Fifty-three intestinal proteins were found to be differentially abundant, 18 of which were related to cell structure and motility, and their changes in abundance could comprise intestinal integrity and function. The down-regulation of proteins involved in tricarboxylic acid cycle (TCA cycle), electron transport chain (ETC), and oxidative phosphorylation suggested that chronic HS impaired energy metabolism and thus induced oxidative stress. Moreover, the changes of ten proteins in abundance related to stress response and defense indicated pigs mediated long-term heat exposure and counteracted its negative effects of heat exposure. These findings have important implications for understanding the effect of chronic HS on intestines.

  5. Ion Plasma Responses to External Electromagnetic Fields

    NARCIS (Netherlands)

    Naus, H.W.L.

    2010-01-01

    The response of ion plasmas to external radiation fields is investigated in a quantum mechanical formalism.We focus on the total electric field within the plasma. For general bandpass signals three frequency regions can be distinguished in terms of the plasma frequency. For low frequencies, the exte

  6. Quantitative proteome changes in Arabidopsis thaliana suspension-cultured cells in response to plant natriuretic peptides

    KAUST Repository

    Turek, Ilona

    2015-06-30

    Proteome changes in the Arabidopsis thaliana suspension cells in response to the A. thaliana plant natriuretic peptide (PNP), AtPNP-A (At2g18660) were assessed using quantitative proteomics employing tandem mass tag (TMT) labeling and tandem mass spectrometry (LC–MS/MS). In this study, we characterized temporal responses of suspension-cultured cells to 1 nM and 10 pM AtPNP-A at 0, 10 and 30 min post-treatment. Both concentrations we found to yield a distinct differential proteome signature. The data shown in this article are associated with the article “Plant natriuretic peptides induce a specific set of proteins diagnostic for an adaptive response to abiotic stress” by Turek et al. (Front. Plant Sci. 5 (2014) 661) and have been deposited to the ProteomeXchange with identifier PXD001386.

  7. Proteomic profile of Aspergillus flavus in response to water activity.

    Science.gov (United States)

    Zhang, Feng; Zhong, Hong; Han, Xiaoyun; Guo, Zhenni; Yang, Weiqiang; Liu, Yongfeng; Yang, Kunlong; Zhuang, Zhenhong; Wang, Shihua

    2015-03-01

    Aspergillus flavus, a common contaminant of crops and stored grains, can produce aflatoxins that are harmful to humans and other animals. Water activity (aw) is one of the key factors influencing both fungal growth and mycotoxin production. In this study, we used the isobaric tagging for relative and absolute quantitation (iTRAQ) technique to investigate the effect of aw on the proteomic profile of A. flavus. A total of 3566 proteins were identified, of which 837 were differentially expressed in response to variations in aw. Among these 837 proteins, 403 were over-expressed at 0.99 aw, whereas 434 proteins were over-expressed at 0.93 aw. According to Gene Ontology (GO) analysis, the secretion of extracellular hydrolases increased as aw was raised, suggesting that extracellular hydrolases may play a critical role in induction of aflatoxin biosynthesis. On the basis of Clusters of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) categorizations, we identified an exportin protein, KapK, that may down-regulate aflatoxin biosynthesis by changing the location of NirA. Finally, we considered the role of two osmotic stress-related proteins (Sln1 and Glo1) in the Hog1 pathway and investigated the expression patterns of proteins related to aflatoxin biosynthesis. The data uncovered in this study are critical for understanding the effect of water stress on toxin production and for the development of strategies to control toxin contamination of agricultural products.

  8. Effects of increased CO2 on fish gill and plasma proteome.

    Directory of Open Access Journals (Sweden)

    Karine Bresolin de Souza

    Full Text Available Ocean acidification and warming are both primarily caused by increased levels of atmospheric CO2, and marine organisms are exposed to these two stressors simultaneously. Although the effects of temperature on fish have been investigated over the last century, the long-term effects of moderate CO2 exposure and the combination of both stressors are almost entirely unknown. A proteomics approach was used to assess the adverse physiological and biochemical changes that may occur from the exposure to these two environmental stressors. We analysed gills and blood plasma of Atlantic halibut (Hippoglossus hippoglossus exposed to temperatures of 12 °C (control and 18 °C (impaired growth in combination with control (400 µatm or high-CO2 water (1000 µatm for 14 weeks. The proteomic analysis was performed using two-dimensional gel electrophoresis (2DE followed by Nanoflow LC-MS/MS using a LTQ-Orbitrap. The high-CO2 treatment induced the up-regulation of immune system-related proteins, as indicated by the up-regulation of the plasma proteins complement component C3 and fibrinogen β chain precursor in both temperature treatments. Changes in gill proteome in the high-CO2 (18 °C group were mostly related to increased energy metabolism proteins (ATP synthase, malate dehydrogenase, malate dehydrogenase thermostable, and fructose-1,6-bisphosphate aldolase, possibly coupled to a higher energy demand. Gills from fish exposed to high-CO2 at both temperature treatments showed changes in proteins associated with increased cellular turnover and apoptosis signalling (annexin 5, eukaryotic translation elongation factor 1γ, receptor for protein kinase C, and putative ribosomal protein S27. This study indicates that moderate CO2-driven acidification, alone and combined with high temperature, can elicit biochemical changes that may affect fish health.

  9. Proteomic Profiling of Nonenzymatically Glycated Proteins in Human Plasma and Erythrocyte Membrane

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qibin; Tang, Ning; Schepmoes, Athena A.; Phillips, Lawrence S.; Smith, Richard D.; Metz, Thomas O.

    2008-05-01

    Non-enzymatic glycation of peptides and proteins by D-glucose has important implications in the pathogenesis of diabetes mellitus, particularly in the development of diabetic complications. In this report, a thorough proteomic profiling of glycated proteins was attempted by using phenylboronate affinity chromatography to enrich glycated proteins and glycated, tryptic peptides from human plasma and erythrocyte membranes. Enriched peptides were subsequently analyzed by liquid chromatography coupled with electron transfer dissociation tandem mass spectrometry, and 76 and 31 proteins were confidently identified as glycated from human plasma and erythrocyte membrane, respectively. It was observed that most of the glycated proteins can be identified in samples from individuals with normal glucose tolerance, although samples from individuals with impaired glucose tolerance and type 2 diabetes mellitus have slightly higher numbers of glycated proteins and more glycation sites identified.

  10. Effect of increased testicular temperature on seminal plasma proteome of the ram.

    Science.gov (United States)

    Rocha, David R; Martins, Jorge André M; van Tilburg, Mauricio F; Oliveira, Rodrigo V; Moreno, Frederico B; Monteiro-Moreira, Ana Cristina O; Moreira, Renato A; Araújo, Airton A; Moura, Arlindo A

    2015-11-01

    The present study evaluated the effects of heat stress on the ram seminal plasma proteome. Six Morada Nova rams were scrotal insulated for 8 days. Scrotal circumference, sperm parameters, and seminal fluid proteins were evaluated before (Day 0) and twice during scrotal insulation (Days 4 and 8), and weekly until semen parameters returned to preinsulation values (normal). Seminal proteins were analyzed by two-dimensional SDS-PAGE and mass spectrometry. Scrotal circumference decreased from 30 ± 0.4 cm on Day 0 to 22.6 ± 0.6 cm on Day 36 (P Rams were azoospermic between Days 29 and 64, and sperm concentration came back to normal on Day 92. The number of spots/two-dimensional gel reduced from 256 ± 31 on Day 0 to 104 ± 14 on Day 29 (when rams were azoospermic) and then increased to 183 ± 9 on Day 113 (P rams, indicating alterations in both spermatogenesis and sperm maturation. Changes of seminal plasma proteome were coincidental with variations in semen parameters. Proteins affected by heat challenge are potentially involved in sperm protection, maturation, and fertilization.

  11. Automated platform for fractionation of human plasma glycoproteome in clinical proteomics.

    Science.gov (United States)

    Kullolli, Majlinda; Hancock, William S; Hincapie, Marina

    2010-01-01

    This publication describes the development of an automated platform for the study of the plasma glycoproteome. The method consists of targeted depletion in-line with glycoprotein fractionation. A key element of this platform is the enabling of high throughput sample processing in a manner that minimizes analytical bias in a clinical sample set. The system, named High Performance Multi-Lectin Affinity Chromatography (HP-MLAC), is composed of a serial configuration of depletion columns containing anti-albumin antibody and protein A with in-line multilectin affinity chromatography (M-LAC) which consists of three mixtures of lectins concanavalin A (ConA), jacalin (JAC), and wheat germ agglutinin (WGA). We have demonstrated that this platform gives high recoveries for the fractionation of the plasma proteome (> or = 95%) and excellent stability (over 200 runs). In addition, glycoproteomes isolated using the HP-MLAC platform were shown to be highly reproducible and glycan specific as demonstrated by rechromatography of selected fractions and proteomic analysis of the unbound (glycoproteome 1) and bound (glycoproteome 2) fractions.

  12. Proteomic-Biostatistic Integrated Approach for Finding the Underlying Molecular Determinants of Hypertension in Human Plasma.

    Science.gov (United States)

    Gajjala, Prathibha R; Jankowski, Vera; Heinze, Georg; Bilo, Grzegorz; Zanchetti, Alberto; Noels, Heidi; Liehn, Elisa; Perco, Paul; Schulz, Anna; Delles, Christian; Kork, Felix; Biessen, Erik; Narkiewicz, Krzysztof; Kawecka-Jaszcz, Kalina; Floege, Juergen; Soranna, Davide; Zidek, Walter; Jankowski, Joachim

    2017-08-01

    Despite advancements in lowering blood pressure, the best approach to lower it remains controversial because of the lack of information on the molecular basis of hypertension. We, therefore, performed plasma proteomics of plasma from patients with hypertension to identify molecular determinants detectable in these subjects but not in controls and vice versa. Plasma samples from hypertensive subjects (cases; n=118) and controls (n=85) from the InGenious HyperCare cohort were used for this study and performed mass spectrometric analysis. Using biostatistical methods, plasma peptides specific for hypertension were identified, and a model was developed using least absolute shrinkage and selection operator logistic regression. The underlying peptides were identified and sequenced off-line using matrix-assisted laser desorption ionization orbitrap mass spectrometry. By comparison of the molecular composition of the plasma samples, 27 molecular determinants were identified differently expressed in cases from controls. Seventy percent of the molecular determinants selected were found to occur less likely in hypertensive patients. In cross-validation, the overall R(2) was 0.434, and the area under the curve was 0.891 with 95% confidence interval 0.8482 to 0.9349, Phypertensive patients were found to be -2.007±0.3568 and 3.383±0.2643, respectively, Phypertensives and normotensives. The identified molecular determinants may be the starting point for further studies to clarify the molecular causes of hypertension. © 2017 American Heart Association, Inc.

  13. Plasma proteomic study in patients with high altitude pulmonary edema (HAPE

    Directory of Open Access Journals (Sweden)

    Yong-jun LUO

    2012-01-01

    Full Text Available Objective  To investigate the differential expressions of protein in the plasma proteome in patients suffering from high altitude pulmonary edema (HAPE and their implications. Methods  The plasmas of six HAPE patients and six healthy controls were studied. The high-abundant proteins in the plasma were removed. The low-abundant proteins in the plasma/serum were segregated by 2-DE. MALDI-TOF/MS was adopted to measure the peptide fingerprints after the differential protein spots were digested by enzymes. Comparison and analysis were made in the GenBank. Results  The immunoglobulin K1 light chain, serum transferrin protein precursor, and α-trypsin inhibitor heavy chain-related protein expressions were upregulated in HAPE patients compared with the control group. However the human fibrin glue coagulation protein 3 was down-regulated. Conclusion  The differential expression of the above four proteins in the plasma of HAPE patients may be related to the occurrence of HAPE and can be used as the target point for the prediction of HAPE.

  14. Immunodepletion Plasma Proteomics by TripleTOF 5600 and Orbitrap Elite/LTQ-Orbitrap Velos/Q Exactive Mass Spectrometers

    Science.gov (United States)

    Patel, Bhavinkumar B.; Kelsen, Steven G.; Braverman, Alan; Swinton, Derrick J.; Gafken, Philip R.; Jones, Lisa A.; Lane, William S.; Neveu, John M.; Leung, Hon-Chiu E.; Shaffer, Scott A.; Leszyk, John D.; Stanley, Bruce A.; Fox, Todd E.; Stanley, Anne; Hall, Michael J.; Hampel, Heather; South, Christopher D.; de la Chapelle, Albert; Burt, Randall W.; Jones, David A.; Kopelovich, Levy; Yeung, Anthony T.

    2013-01-01

    Plasma proteomic experiments performed rapidly and economically using several of the latest high-resolution mass spectrometers were compared. Four quantitative hyperfractionated plasma proteomics experiments were analyzed in replicates by two AB SCIEX TripleTOF 5600 and three Thermo Scientific Orbitrap (Elite/LTQ-Orbitrap Velos/Q Exactive) instruments. Each experiment compared two iTRAQ isobaric-labeled immunodepleted plasma proteomes, provided as 30 labeled peptide fractions. 480 LC-MS/MS runs delivered >250 GB of data in two months. Several analysis algorithms were compared. At 1 % false discovery rate, the relative comparative findings concluded that the Thermo Scientific Q Exactive Mass Spectrometer resulted in the highest number of identified proteins and unique sequences with iTRAQ quantitation. The confidence of iTRAQ fold-change for each protein is dependent on the overall ion statistics (Mascot Protein Score) attainable by each instrument. The benchmarking also suggested how to further improve the mass spectrometry parameters and HPLC conditions. Our findings highlight the special challenges presented by the low abundance peptide ions of iTRAQ plasma proteome because the dynamic range of plasma protein abundance is uniquely high compared with cell lysates, necessitating high instrument sensitivity. PMID:24004147

  15. Shotgun proteomics and network analysis between plasma membrane and extracellular matrix proteins from rat olfactory ensheathing cells.

    Science.gov (United States)

    Liu, Yisong; Teng, Xiaohua; Yang, Xiaoxu; Song, Qing; Lu, Rong; Xiong, Jixian; Liu, Bo; Zeng, Nianju; Zeng, Yu; Long, Jia; Cao, Rui; Lin, Yong; He, Quanze; Chen, Ping; Lu, Ming; Liang, Songping

    2010-01-01

    Olfactory ensheathing cells (OECs) are a special type of glial cells that have characteristics of both astrocytes and Schwann cells. Evidence suggests that the regenerative capacity of OECs is induced by soluble, secreted factors that influence their microenvironment. These factors may regulate OECs self-renewal and/or induce their capacity to augment spinal cord regeneration. Profiling of plasma membrane and extracellular matrix through a high-throughput expression proteomics approach was undertaken to identify plasma membrane and extracellular matrix proteins of OECs under serum-free conditions. 1D-shotgun proteomics followed with gene ontology (GO) analysis was used to screen proteins from primary culture rat OECs. Four hundred and seventy nonredundant plasma membrane proteins and 168 extracellular matrix proteins were identified, the majority of which were never before reported to be produced by OECs. Furthermore, plasma membrane and extracellular proteins were classified based on their protein-protein interaction predicted by STRING quantitatively integrates interaction data. The proteomic profiling of the OECs plasma membrane proteins and their connection with the secretome in serum-free culture conditions provides new insights into the nature of their in vivo microenvironmental niche. Proteomic analysis for the discovery of clinical biomarkers of OECs mechanism warrants further study.

  16. Investigation of rice proteomic change in response to microgravity

    Science.gov (United States)

    Sun, Weining

    Gravity is one of the environmental factors that control development and growth of plants. Plant cells which are not part of specialized tissues such as the root columella can also sense gravity. Space environment, such as space shuttle missions, space labortories and space stations, etc. provide unique oppotunities to study the microgravity response of plant. During the Shenzhou 8 mission in November 2011, we cultured rice cali on the spaceship and the samples were fixed 4 days after launch. The flying samples in the static position (micro g, mug) and in the centrifuge which provide 1 g force to mimic the 1 g gravity in space, were recovered and the proteome changes were analyzed by iTRAQ. In total, 4840 proteins were identified, including 2085 proteins with function annotation by GO analysis. 431 proteins were changed >1.5 fold in space µg /ground group, including 179 up-regulated proteins and down-regulated 252 proteins. 321 proteins were changed >1.5 fold in space muµg / space 1 g group, among which 205 proteins were the same differentially expressed proteins responsive to microgravity. Enrichment of the differnetially expressed proteins by GO analysis showed that the ARF GTPase activity regulation proteins were enriched when compared the space µg with space 1 g sample, whereas the nucleic acid binding and DNA damage repairing proteins were enriched when compared the space µg and ground sample. Microscopic comparison of the rice cali showed that the space grown cells are more uniformed in size and proliferation, suggesting that cell proliferation pattern was changed in space microgravity conditions.

  17. Transcriptional and Proteomic Responses to Carbon Starvation in Paracoccidioides

    Science.gov (United States)

    Lima, Patrícia de Sousa; Casaletti, Luciana; Bailão, Alexandre Melo; de Vasconcelos, Ana Tereza Ribeiro; Fernandes, Gabriel da Rocha; Soares, Célia Maria de Almeida

    2014-01-01

    Background The genus Paracoccidioides comprises human thermal dimorphic fungi, which cause paracoccidioidomycosis (PCM), an important mycosis in Latin America. Adaptation to environmental conditions is key to fungal survival during human host infection. The adaptability of carbon metabolism is a vital fitness attribute during pathogenesis. Methodology/Principal Findings The fungal pathogen Paracoccidioides spp. is exposed to numerous adverse conditions, such as nutrient deprivation, in the human host. In this study, a comprehensive response of Paracoccidioides, Pb01, under carbon starvation was investigated using high-resolution transcriptomic (RNAseq) and proteomic (NanoUPLC-MSE) approaches. A total of 1,063 transcripts and 421 proteins were differentially regulated, providing a global view of metabolic reprogramming during carbon starvation. The main changes were those related to cells shifting to gluconeogenesis and ethanol production, supported by the degradation of amino acids and fatty acids and by the modulation of the glyoxylate and tricarboxylic cycles. This proposed carbon flow hypothesis was supported by gene and protein expression profiles assessed using qRT-PCR and western blot analysis, respectively, as well as using enzymatic, cell dry weight and fungus-macrophage interaction assays. The carbon source provides a survival advantage to Paracoccidioides inside macrophages. Conclusions/Significance For a complete understanding of the physiological processes in an organism, the integration of approaches addressing different levels of regulation is important. To the best of our knowledge, this report presents the first description of the responses of Paracoccidioides spp. to host-like conditions using large-scale expression approaches. The alternative metabolic pathways that could be adopted by the organism during carbon starvation can be important for a better understanding of the fungal adaptation to the host, because systems for detecting and responding

  18. Proteomic profile of the Bradysia odoriphaga in response to the microbial secondary metabolite benzothiazole

    OpenAIRE

    Yunhe Zhao; Kaidi Cui; Chunmei Xu; Qiuhong Wang; Yao Wang; Zhengqun Zhang; Feng Liu; Wei Mu

    2016-01-01

    Benzothiazole, a microbial secondary metabolite, has been demonstrated to possess fumigant activity against Sclerotinia sclerotiorum, Ditylenchus destructor and Bradysia odoriphaga. However, to facilitate the development of novel microbial pesticides, the mode of action of benzothiazole needs to be elucidated. Here, we employed iTRAQ-based quantitative proteomics analysis to investigate the effects of benzothiazole on the proteomic expression of B. odoriphaga. In response to benzothiazole, 92...

  19. Stressor-induced proteome alterations in zebrafish: a meta-analysis of response patterns.

    Science.gov (United States)

    Groh, Ksenia J; Suter, Marc J-F

    2015-02-01

    Proteomics approaches are being increasingly applied in ecotoxicology on the premise that the identification of specific protein expression changes in response to a particular chemical would allow elucidation of the underlying molecular pathways leading to an adverse effect. This in turn is expected to promote the development of focused testing strategies for specific groups of toxicants. Although both gel-based and gel-free global characterization techniques provide limited proteome coverage, the conclusions regarding the cellular processes affected are still being drawn based on the few changes detected. To investigate how specific the detected responses are, we analyzed a set of studies that characterized proteome alterations induced by various physiological, chemical and biological stressors in zebrafish, a popular model organism. Our analysis highlights several proteins and protein groups, including heat shock and oxidative stress defense proteins, energy metabolism enzymes and cytoskeletal proteins, to be most frequently identified as responding to diverse stressors. In contrast, other potentially more specifically responding protein groups are detected much less frequently. Thus, zebrafish proteome responses to stress reported by different studies appear to depend mostly on the level of stress rather than on the specific stressor itself. This suggests that the most broadly used current proteomics technologies do not provide sufficient proteome coverage to allow in-depth investigation of specific mechanisms of toxicant action. We suggest that the results of any differential proteomics experiment performed with zebrafish should be interpreted keeping in mind the list of the most frequent responders that we have identified. Similar reservations should apply to any other species where proteome responses are analyzed by global proteomics methods. Careful consideration of the reliability and significance of observed changes is necessary in order not to over

  20. Insights into immune responses in oral cancer through proteomic analysis of saliva and salivary extracellular vesicles

    Science.gov (United States)

    Winck, Flavia V.; Prado Ribeiro, Ana Carolina; Ramos Domingues, Romênia; Ling, Liu Yi; Riaño-Pachón, Diego Mauricio; Rivera, César; Brandão, Thaís Bianca; Gouvea, Adriele Ferreira; Santos-Silva, Alan Roger; Coletta, Ricardo D.; Paes Leme, Adriana F.

    2015-01-01

    The development and progression of oral cavity squamous cell carcinoma (OSCC) involves complex cellular mechanisms that contribute to the low five-year survival rate of approximately 20% among diagnosed patients. However, the biological processes essential to tumor progression are not completely understood. Therefore, detecting alterations in the salivary proteome may assist in elucidating the cellular mechanisms modulated in OSCC and improve the clinical prognosis of the disease. The proteome of whole saliva and salivary extracellular vesicles (EVs) from patients with OSCC and healthy individuals were analyzed by LC-MS/MS and label-free protein quantification. Proteome data analysis was performed using statistical, machine learning and feature selection methods with additional functional annotation. Biological processes related to immune responses, peptidase inhibitor activity, iron coordination and protease binding were overrepresented in the group of differentially expressed proteins. Proteins related to the inflammatory system, transport of metals and cellular growth and proliferation were identified in the proteome of salivary EVs. The proteomics data were robust and could classify OSCC with 90% accuracy. The saliva proteome analysis revealed that immune processes are related to the presence of OSCC and indicate that proteomics data can contribute to determining OSCC prognosis. PMID:26538482

  1. Comprehensive Analysis of Low-Molecular-Weight Human Plasma Proteome Using Top-Down Mass Spectrometry.

    Science.gov (United States)

    Cheon, Dong Huey; Nam, Eun Ji; Park, Kyu Hyung; Woo, Se Joon; Lee, Hye Jin; Kim, Hee Cheol; Yang, Eun Gyeong; Lee, Cheolju; Lee, Ji Eun

    2016-01-01

    While human plasma serves as a great source for disease diagnosis, low-molecular-weight (LMW) proteome (mass spectrometry to analyze the LMW proteoforms present in four types of human plasma samples pooled from three healthy controls (HCs) without immunoaffinity depletion and with depletion of the top two, six, and seven high-abundance proteins. The LMW proteoforms were first fractionated based on molecular weight using gel-eluted liquid fraction entrapment electrophoresis (GELFrEE). Then, the GELFrEE fractions containing up to 30 kDa were subjected to nanocapillary-LC-MS/MS, and the high-resolution MS and MS/MS data were processed using ProSightPC 3.0. As a result, a total of 442 LMW proteins and cleaved products, including those with post-translational modifications and single amino acid variations, were identified. From additional comparative analysis of plasma samples without immunoaffinity depletion between HCs and colorectal cancer (CRC) patients via top-down approach, tens of LMW proteoforms, including platelet factor 4, were found to show >1.5-fold changes between the plasma samples of HCs and CRC patients, and six of the LMW proteins were verified by Western blot analysis.

  2. Plasma proteomics classifiers improve risk prediction for renal disease in patients with hypertension or type 2 diabetes

    NARCIS (Netherlands)

    Pena, Michelle J.; Jankowski, Joachim; Heinze, Georg; Kohl, Maria; Heinzel, Andreas; Bakker, Stephan J. L.; Gansevoort, Ron T.; Rossing, Peter; de Zeeuw, Dick; Heerspink, Hiddo J. Lambers; Jankowski, Vera

    2015-01-01

    OBJECTIVE: Micro and macroalbuminuria are strong risk factors for progression of nephropathy in patients with hypertension or type 2 diabetes. Early detection of progression to micro and macroalbuminuria may facilitate prevention and treatment of renal diseases. We aimed to develop plasma proteomics

  3. Plasma proteomics classifiers improve risk prediction for renal disease in patients with hypertension or type 2 diabetes

    NARCIS (Netherlands)

    Pena, Michelle J.; Jankowski, Joachim; Heinze, Georg; Kohl, Maria; Heinzel, Andreas; Bakker, Stephan J. L.; Gansevoort, Ron T.; Rossing, Peter; de Zeeuw, Dick; Heerspink, Hiddo J. Lambers; Jankowski, Vera

    2015-01-01

    OBJECTIVE: Micro and macroalbuminuria are strong risk factors for progression of nephropathy in patients with hypertension or type 2 diabetes. Early detection of progression to micro and macroalbuminuria may facilitate prevention and treatment of renal diseases. We aimed to develop plasma proteomics

  4. Proteomic characterization of freeze-dried human plasma: providing treatment of bleeding disorders without the need for a cold chain.

    Science.gov (United States)

    Steil, Leif; Thiele, Thomas; Hammer, Elke; Bux, Jürgen; Kalus, Monika; Völker, Uwe; Greinacher, Andreas

    2008-11-01

    Transfusion of human plasma is a basic treatment for severe coagulopathies, especially in major bleeding. The required logistics to provide plasma is challenging because of the need to maintain a cold chain. This disadvantage could be overcome by lyophilized plasma. However, it is unknown to what extent lyophilization alters plasma proteins. Quantitative proteomic technologies were applied to monitor protein changes during production of lyophilized, solvent/detergent (S/D)-treated plasma. The impact of S/D treatment and lyophilization on the plasma proteome was evaluated by differential in-gel electrophoresis (2D-DIGE), and proteins were characterized by mass spectrometry. Clotting factor activities were determined in lyophilized S/D-treated plasma after 24 months of storage at room temperature. By 2D-DIGE, 600 individual protein spots were compared. Lyophilization did not change any of the 600 spots, whereas pathogen inactivation caused significant changes of 38 spots including alpha1-antitrypsin, alpha1-antichymotrypsin, and alpha2-antiplasmin. Clotting factor activities remained stable over 24 months of storage. Lyophilization of human plasma neither alters its protein composition nor impairs its clotting capacity. It does not require cost-intensive logistics for storage and transport and can be quickly reconstituted. It is suggested that lyophilized, pathogen-inactivated plasma is an attractive option to provide the most important basic treatment for severe coagulopathies in areas without cold chain and to provide plasma with reduced time delay in emergency situations.

  5. A high intake of industrial or ruminant trans fatty acids does not affect the plasma proteome in healthy men.

    Science.gov (United States)

    de Roos, Baukje; Wanders, Anne J; Wood, Sharon; Horgan, Graham; Rucklige, Garry; Reid, Martin; Siebelink, Els; Brouwer, Ingeborg A

    2011-10-01

    Consumption of industrial trans fat raises the risk of cardiovascular disease, but it is unclear whether cis9,trans11-conjugated linoleic acid (CLA)--a trans fatty acid in dairy products--modulates disease development. We investigated the effects of complete diets providing 7% of energy as industrial trans fat or cis9, trans11 CLA, compared with oleic acid, on regulation of plasma proteins in 12 healthy men. Diets were provided for 3 wk each, in random order. Plasma was collected at the end of each 3 wk intervention period, depleted of its 12 most abundant proteins and analyzed by 2-DE. Principal component analysis of protein spot intensity values revealed that the nature of the dietary intervention did not significantly affect the plasma proteome. The intervention provided in the 1st period produced a significant treatment effect compared with the interventions provided in the other two periods, and there was a significant subject effect. In conclusion, the nature of an extreme dietary intervention, i.e. 7% of energy provided by industrial trans fat or cis9,trans11 CLA, did not markedly affect the plasma proteome. Thus plasma proteomics using 2-DE appears, by and large, an unsuitable approach to detect regulation of plasma proteins due to changes in the diet.

  6. Differential proteomic analysis of virus-enriched fractions obtained from plasma pools of patients with dengue fever or severe dengue.

    Science.gov (United States)

    Fragnoud, Romain; Flamand, Marie; Reynier, Frederic; Buchy, Philippe; Duong, Vasna; Pachot, Alexandre; Paranhos-Baccala, Glaucia; Bedin, Frederic

    2015-11-14

    Dengue is the most widespread mosquito-borne viral disease of public health concern. In some patients, endothelial cell and platelet dysfunction lead to life-threatening hemorrhagic dengue fever or dengue shock syndrome. Prognostication of disease severity is urgently required to improve patient management. The pathogenesis of severe dengue has not been fully elucidated, and the role of host proteins associated with viral particles has received little exploration. The proteomes of virion-enriched fractions purified from plasma pools of patients with dengue fever or severe dengue were compared. Virions were purified by ultracentrifugation combined with a water-insoluble polyelectrolyte-based technique. Following in-gel hydrolysis, peptides were analyzed by nano-liquid chromatography coupled to ion trap mass spectrometry and identified using data libraries. Both dengue fever and severe dengue viral-enriched fractions contained identifiable viral envelope proteins and host cellular proteins. Canonical pathway analysis revealed the identified host proteins are mainly involved in the coagulation cascade, complement pathway or acute phase response signaling pathway. Some host proteins were over- or under-represented in plasma from patients with severe dengue compared to patients with dengue fever. ELISAs were used to validate differential expression of a selection of identified host proteins in individual plasma samples of patients with dengue fever compared to patients with severe dengue. Among 22 host proteins tested, two could differentiate between dengue fever and severe dengue in two independent cohorts (olfactomedin-4: area under the curve (AUC), 0.958; and platelet factor-4: AUC, 0.836). A novel technique of virion-enrichment from plasma has allowed to identify two host proteins that have prognostic value for classifying patients with acute dengue who are more likely to develop a severe dengue. The impact of these host proteins on pathogenicity and disease outcome

  7. Understanding the complex nature of salinity and drought-stress response in cereals using proteomics technologies.

    Science.gov (United States)

    Ngara, Rudo; Ndimba, Bongani K

    2014-03-01

    Worldwide, crop productivity is drastically reduced by drought and salinity stresses. In order to develop food crops with increased productivity in marginal areas, it is important to first understand the nature of plant stress response mechanisms. In the past decade, proteomics tools have been extensively used in the study of plants' proteome responses under experimental conditions mimicking drought and salinity stresses. A lot of proteomic data have been generated using different experimental designs. However, the precise roles of these proteins in stress tolerance are yet to be elucidated. This review summarises the applications of proteomics in understanding the complex nature of drought and salinity stress effects on plants, particularly cereals and also highlights the usefulness of sorghum as the next logical model crop for use in understanding drought and salinity tolerance in cereals. With the vast amount of proteomic data that have been generated to date, a call for integrated efforts across the agricultural, biotechnology, and molecular biology sectors is also highlighted in an effort to translate proteomics data into increased food productivity for the world's growing population.

  8. Proteomic analysis identifies interleukin 11 regulated plasma membrane proteins in human endometrial epithelial cells in vitro

    Directory of Open Access Journals (Sweden)

    Stanton Peter G

    2011-05-01

    Full Text Available Abstract Background During the peri-implantation period, the embryo adheres to an adequately prepared or receptive endometrial surface epithelium. Abnormal embryo adhesion to the endometrium results in embryo implantation failure and infertility. Endometrial epithelial cell plasma membrane proteins critical in regulating adhesion may potentially be infertility biomarkers or targets for treating infertility. Interleukin (IL 11 regulates human endometrial epithelial cells (hEEC adhesion. Its production is abnormal in women with infertility. The objective of the study was to identify IL11 regulated plasma membrane proteins in hEEC in vitro using a proteomic approach. Methods Using a 2D-differential in-gel electrophoresis (DIGE electrophoresis combined with LCMS/MS mass spectrometry approach, we identified 20 unique plasma membrane proteins differentially regulated by IL11 in ECC-1 cells, a hEEC derived cell line. Two IL11 regulated proteins with known roles in cell adhesion, annexin A2 (ANXA2 and flotillin-1 (FLOT1, were validated by Western blot and immunocytochemistry in hEEC lines (ECC-1 and an additional cell line, Ishikawa and primary hEEC. Flotilin-1 was further validated by immunohistochemistry in human endometrium throughout the menstrual cycle (n = 6-8/cycle. Results 2D-DIGE analysis identified 4 spots that were significantly different between control and IL11 treated group. Of these 4 spots, there were 20 proteins that were identified with LCMS/MS. Two proteins; ANXA2 and FLOT1 were chosen for further analyses and have found to be significantly up-regulated following IL11 treatment. Western blot analysis showed a 2-fold and a 2.5-fold increase of ANXA2 in hEEC membrane fraction of ECC-1 and Ishikawa cells respectively. Similarly, a 1.8-fold and a 2.3/2.4-fold increase was also observed for FLOT1 in hEEC membrane fraction of ECC-1 and Ishikawa cells respectively. In vitro, IL11 induced stronger ANXA2 expression on cell surface of primary h

  9. Proteomic analyses of the response of cyanobacteria to different stress conditions.

    Science.gov (United States)

    Castielli, Ornella; De la Cerda, Berta; Navarro, José A; Hervás, Manuel; De la Rosa, Miguel A

    2009-06-01

    Cyanobacteria are significant contributors to global photosynthetic productivity, thus making it relevant to study how the different environmental stresses can alter their physiological activities. Here, we review the current research work on the response of cyanobacteria to different kinds of stress, mainly focusing on their response to metal stress as studied by using the modern proteomic tools. We also report a proteomic analysis of plastocyanin and cytochrome c(6) deletion mutants of the cyanobacterium Synechocystis sp. PCC 6803 grown under copper or iron deprivation, as compared to wild-type cells, so as to get a further understanding of the metal homeostasis in cyanobacteria and their response to changing environmental conditions.

  10. Plasma proteome analysis of cervical intraepithelial neoplasia and cervical squamous cell carcinoma

    Indian Academy of Sciences (India)

    Mee Lee Looi; Saiful Anuar Karsani; Mariati Abdul Rahman; Ahmad Zailani Hatta Mohd Dali; Siti Aishah Md Ali; Wan Zurinah Wan Ngah; Yasmin Anum Mohd Yusof

    2009-12-01

    Although cervical cancer is preventable with early detection, it remains the second most common malignancy among women. An understanding of how proteins change in their expression during a particular diseased state such as cervical cancer will contribute to an understanding of how the disease develops and progresses. Potentially, it may also lead to the ability to predict the occurrence of the disease. With this in mind, we aimed to identify differentially expressed proteins in the plasma of cervical cancer patients. Plasma from control, cervical intraepithelial neoplasia (CIN) grade 3 and squamous cell carcinoma (SCC) stage IV subjects was resolved by two-dimensional gel electrophoresis and the resulting proteome profiles compared. Differentially expressed protein spots were then identified by mass spectrometry. Eighteen proteins were found to be differentially expressed in the plasma of CIN 3 and SCC stage IV samples when compared with that of controls. Competitive ELISA further validated the expression of cytokeratin 19 and tetranectin. Functional analyses of these differentially expressed proteins will provide further insight into their potential role(s) in cervical cancer-specific monitoring and therapeutics.

  11. Enrichment and proteomic analysis of plasma membrane from rat dorsal root ganglions

    Directory of Open Access Journals (Sweden)

    Lin Yong

    2009-11-01

    Full Text Available Abstract Background Dorsal root ganglion (DRG neurons are primary sensory neurons that conduct neuronal impulses related to pain, touch and temperature senses. Plasma membrane (PM of DRG cells plays important roles in their functions. PM proteins are main performers of the functions. However, mainly due to the very low amount of DRG that leads to the difficulties in PM sample collection, few proteomic analyses on the PM have been reported and it is a subject that demands further investigation. Results By using aqueous polymer two-phase partition in combination with high salt and high pH washing, PMs were efficiently enriched, demonstrated by western blot analysis. A total of 954 non-redundant proteins were identified from the plasma membrane-enriched preparation with CapLC-MS/MS analysis subsequent to protein separation by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE or shotgun digestion. 205 (21.5% of the identified proteins were unambiguously assigned as PM proteins, including a large number of signal proteins, receptors, ion channel and transporters. Conclusion The aqueous polymer two-phase partition is a simple, rapid and relatively inexpensive method. It is well suitable for the purification of PMs from small amount of tissues. Therefore, it is reasonable for the DRG PM to be enriched by using aqueous two-phase partition as a preferred method. Proteomic analysis showed that DRG PM was rich in proteins involved in the fundamental biological processes including material exchange, energy transformation and information transmission, etc. These data would help to our further understanding of the fundamental DRG functions.

  12. Assessment of Two Immunodepletion Methods: Off-Target Effects and Variations in Immunodepletion Efficiency May Confound Plasma Proteomics

    Science.gov (United States)

    Patel, Bhavinkumar B.; Barrero, Carlos A.; Braverman, Alan; Kim, Phillip D.; Jones, Kelly A.; Chen, Dian Er; Bowler, Russell P.; Merali, Salim; Kelsen, Steven G.; Yeung, Anthony T.

    2012-01-01

    Immunodepletion of abundant plasma proteins increases the depth of proteome penetration by mass spectrometry. However, the nature and extent of immunodepletion and the effect of off-target depletion on the quantitative comparison of the residual proteins have not been critically addressed. We performed mass spectrometry label-free quantitation to determine which proteins were immunodepleted and by how much. Two immunodepletion resins were compared: Qproteome (Qiagen) which removes albumin+immunoglobulins and Seppro IgY14+SuperMix (Sigma-Aldrich) which removes 14 target proteins plus a number of unidentified proteins. Plasma collected by P100 proteomic plasma collection tubes (BD) from 20 human subjects was individually immunodepleted to minimize potential variability, prior to pooling. The abundant proteins were quantified better when using only albumin+immunoglobulins removal (Qproteome) while lower abundance proteins were evaluated better using exhaustive immunodepletion (Seppro IgY14+SuperMix). The latter resin removed at least 155 proteins, 38% of the plasma proteome in protein number and 94% of plasma protein in mass. The depth of immunodepletion likely accounts for the effectiveness of this resin in revealing low abundance proteins. However, the more profound immunodepletion achieved with the IgY14+SuperMix may lead to false-positive fold-changes between comparison groups if the reproducibility and efficiency of the depletion of a given protein is not considered. PMID:23082855

  13. Proteomic response to acupuncture treatment in spontaneously hypertensive rats.

    Directory of Open Access Journals (Sweden)

    Xinsheng Lai

    Full Text Available Previous animal and clinical studies have shown that acupuncture is an effective alternative treatment in the management of hypertension, but the mechanism is unclear. This study investigated the proteomic response in the nervous system to treatment at the Taichong (LR3 acupoint in spontaneously hypertensive rats (SHRs. Unanesthetized rats were subject to 5-min daily acupuncture treatment for 7 days. Blood pressure was monitored over 7 days. After euthanasia on the 7(th day, rat medullas were dissected, homogenized, and subject to 2D gel electrophoresis and MALDI-TOF analysis. The results indicate that blood pressure stabilized after the 5th day of acupuncture, and compared with non-acupoint treatment, Taichong-acupunctured rat's systolic pressure was reduced significantly (P<0.01, though not enough to bring blood pressure down to normal levels. The different treatment groups also showed differential protein expression: the 2D images revealed 571 ± 15 proteins in normal SD rats' medulla, 576 ± 31 proteins in SHR's medulla, 597 ± 44 proteins in medulla of SHR after acupuncturing Taichong, and 616 ± 18 proteins in medulla of SHR after acupuncturing non-acupoint. In the medulla of Taichong group, compared with non-acupoint group, seven proteins were down-regulated: heat shock protein-90, synapsin-1, pyruvate kinase isozyme, NAD-dependent deacetylase sirtuin-2, protein kinase C inhibitor protein 1, ubiquitin hydrolase isozyme L1, and myelin basic protein. Six proteins were up-regulated: glutamate dehydrogenase 1, aldehyde dehydrogenase 2, glutathione S-transferase M5, Rho GDP dissociation inhibitor 1, DJ-1 protein and superoxide dismutase. The altered expression of several proteins by acupuncture has been confirmed by ELISA, Western blot and qRT-PCR assays. The results indicate an increase in antioxidant enzymes in the medulla of the SHRs subject to acupuncture, which may provide partial explanation for the antihypertensive effect of acupuncture

  14. Plasma response to transient high voltage pulses

    Indian Academy of Sciences (India)

    S Kar; S Mukherjee

    2013-07-01

    This review reports on plasma response to transient high voltage pulses in a low pressure unmagnetized plasma. Mainly, the experiments are reviewed, when a disc electrode (metallic and dielectric) is biased pulsed negative or positive. The main aim is to review the electron loss in plasmas and particle balance during the negative pulse electrode biasing, when the applied pulse width is less than the ion plasma period. Though the applied pulse width is less than the ion plasma period, ion rarefaction waves are excited. The solitary electron holes are reviewed for positive pulsed bias to the electrode. Also the excitation of waves (solitary electron and ion holes) is reviewed for a metallic electrode covered by a dielectric material. The wave excitation during and after the pulse withdrawal, excitation and propagation characteristics of various electrostatic plasma waves are reviewed here.

  15. Attached and planktonic Listeria monocytogenes global proteomic responses and associated influence of strain genetics and temperature.

    Science.gov (United States)

    Mata, Marcia M; da Silva, Wladimir P; Wilson, Richard; Lowe, Edwin; Bowman, John P

    2015-02-01

    Contamination of industrial and domestic food usage environments by the attachement of bacterial food-borne pathogen Listeria monocytogenes has public health and economic implications. Comprehensive proteomics experiments using label-free liquid chromatography/tandem mass spectrometry were used to compare the proteomes of two different L. monocytogenes strains (Siliken_1/2c and F2365_4b), which show very different capacities to attach to surfaces. Growth temperature and strain type were highly influential on the proteomes in both attached and planktonic cells. On the basis of the proteomic data, it is highly unlikely that specific surface proteins play a direct role in adherence to inanimate surfaces. Instead, strain-dependent responses related to cell envelope polymer biosynthesis and stress response regulation likely contribute to a different ability to attach and also to survive external stressors. Collectively, the divergent proteome-level responses observed define strain- and growth-temperature-dependent differences relevant to attachment efficacy, highlight relevant proteins involved in stress protection in attached cells, and suggest that strain differences and growth conditions are important in relation to environmental persistence.

  16. Dissecting the C. elegans response during infection using quantitative proteomics

    DEFF Research Database (Denmark)

    Simonsen, Karina Trankjær; Møller-Jensen, Jakob; Kristensen, Anders Riis;

    the infection process is followed using GFP-expressing bacteria and persistence assays. A quantitative proteomic approach was used to follow the C. elegans host response during the infection process. C. elegans were metabolic labeled with the stable isotope 15N and samples from three different time points...... process. By analyzing the changes in the C. elegans proteome throughout infection we will be able to identify and follow pathways and effector proteins in the early, mid and late phase of the innate immune response towards this pathogenic E. coli.  ...

  17. Contribution of Proteomic Studies Towards Understanding Plant Heavy Metal Stress Response

    Directory of Open Access Journals (Sweden)

    Zahed eHossain

    2013-01-01

    Full Text Available Modulation of plant proteome composition is an inevitable process to cope with the environmental challenges including heavy metal stress. Soil and water contaminated with hazardous metals not only cause permanent and irreversible health problems, but also result substantial reduction in crop yields. In course of time, plants have evolved complex mechanisms to regulate the uptake, mobilization and intracellular concentration of metal ions to alleviate the stress damages. Since, the functional translated portion of the genome plays an essential role in plant stress response, proteomic studies provide us a finer picture of protein networks and metabolic pathways primarily involved in cellular detoxification and tolerance mechanism. In the present review, an attempt is made to present the state of the art of recent development in proteomic techniques and significant contributions made so far for better understanding the complex mechanism of plant metal stress acclimation. Role of metal stress related proteins involved in antioxidant defense system and primary metabolism is critically reviewed to get a bird’s-eye view on the different strategies of plants to detoxify heavy metals. In addition to the advantages and disadvantages of different proteomic methodologies, future applications of proteome study of subcellular organelles are also discussed to get the new insights into the plant cell response to heavy metals.

  18. Global SUMO proteome responses guide gene regulation, mRNA biogenesis, and plant stress responses

    Directory of Open Access Journals (Sweden)

    Magdalena eMazur

    2012-09-01

    Full Text Available Small-ubiquitin-like MOdifier (SUMO is a key regulator of abiotic stress, disease resistance and development in plants. The identification of >350 plant SUMO targets has revealed many processes modulated by SUMO and potential consequences of SUMO on its targets. Importantly, highly related proteins are SUMO-modified in plants, yeast, and metazoans. Overlapping SUMO targets include heat-shock proteins, transcription regulators, histones, histone-modifying enzymes, proteins involved in DNA damage repair, but also proteins involved in mRNA biogenesis and nucleo-cytoplasmic transport. Proteomics studies indicate key roles for SUMO in gene repression by controlling histone (deacetylation activity at genomic loci. The responsible heavily sumoylated transcriptional repressor complexes are recruited by EAR (Ethylene-responsive element binding factor [ERF]-associated Amphiphilic Repression-motif containing transcription factors in plants. These transcription factors are not necessarily themselves a SUMO target. Conversely, SUMO acetylation prevents binding of downstream partners by preventing binding of SIMs (SUMO-interaction peptide motifs presents in these partners, while SUMO acetylation has emerged as mechanism to recruit specifically bromodomains; bromodomain are generally linked with gene activation. These findings strengthen the idea of a bidirectional sumo-/acetylation switch in gene regulation. Quantitative proteomics has highlighted that global sumoylation provides a dynamic response to protein damage involving SUMO chain-mediated protein degradation, but also SUMO E3 ligase-dependent transcription of HSP (Heat-shock protein genes. With these insights in SUMO function and novel technical advancements, we can now study SUMO dynamics in responses to (abiotic stress in plants.

  19. Identification of plasma biomarker candidates in glioblastoma using an antibody-array-based proteomic approach

    Directory of Open Access Journals (Sweden)

    Zupancic Klemen

    2014-09-01

    Full Text Available Background. Glioblastoma multiforme (GBM is a brain tumour with a very high patient mortality rate, with a median survival of 47 weeks. This might be improved by the identification of novel diagnostic, prognostic and predictive therapy-response biomarkers, preferentially through the monitoring of the patient blood. The aim of this study was to define the impact of GBM in terms of alterations of the plasma protein levels in these patients. Materials and methods. We used a commercially available antibody array that includes 656 antibodies to analyse blood plasma samples from 17 healthy volunteers in comparison with 17 blood plasma samples from patients with GBM.

  20. Mapping out starvation responses in yeast by proteomics

    DEFF Research Database (Denmark)

    Rødkær, Steven Vestergaard; Færgeman, Nils J.; Andersen, Jens S.;

    2011-01-01

    eukaryotes as well. Here we have used an unbiased mass spectrometry and a stable isotope labelling based approach in order to examine how cells respond to amino acid starvation. Furthermore, since most cellular pathways are regulated by reversible protein phosphorylation, we wish to combine quantitative mass...... spectrometry with site-specific proteomic approaches in order to monitor changes in post-translational modifications incl. phosphorylations in amino acid starved cells. We present results showing some of the novel pathways and proteins that might be of great importance during amino acid starvation....

  1. Quantitative iTRAQ-Based Proteomic Identification of Candidate Biomarkers for Diabetic Nephropathy in Plasma of Type 1 Diabetic Patients

    DEFF Research Database (Denmark)

    Overgaard, Anne Julie; Thingholm, Tine Engberg; Larsen, Martin R

    2010-01-01

    INTRODUCTION: As part of a clinical proteomics programme focused on diabetes and its complications, it was our goal to investigate the proteome of plasma in order to find improved candidate biomarkers to predict diabetic nephropathy. METHODS: Proteins derived from plasma from a cross...... immunoassay confirmed the overall protein expression patterns observed by the iTRAQ analysis. CONCLUSION: The candidate biomarkers discovered in this cross-sectional cohort may turn out to be progression biomarkers and might have several clinical applications in the treatment and monitoring of diabetic......-sectional cohort of 123 type 1 diabetic patients previously diagnosed as normoalbuminuric, microalbuminuric or macroalbuminuric were enriched with hexapeptide library beads and subsequently pooled within three groups. Proteins from the three groups were compared by online liquid chromatography and tandem mass...

  2. Proteomic profiling and pathway analysis of the response of rat renal proximal convoluted tubules to metabolic acidosis.

    Science.gov (United States)

    Schauer, Kevin L; Freund, Dana M; Prenni, Jessica E; Curthoys, Norman P

    2013-09-01

    Metabolic acidosis is a relatively common pathological condition that is defined as a decrease in blood pH and bicarbonate concentration. The renal proximal convoluted tubule responds to this condition by increasing the extraction of plasma glutamine and activating ammoniagenesis and gluconeogenesis. The combined processes increase the excretion of acid and produce bicarbonate ions that are added to the blood to partially restore acid-base homeostasis. Only a few cytosolic proteins, such as phosphoenolpyruvate carboxykinase, have been determined to play a role in the renal response to metabolic acidosis. Therefore, further analysis was performed to better characterize the response of the cytosolic proteome. Proximal convoluted tubule cells were isolated from rat kidney cortex at various times after onset of acidosis and fractionated to separate the soluble cytosolic proteins from the remainder of the cellular components. The cytosolic proteins were analyzed using two-dimensional liquid chromatography and tandem mass spectrometry (MS/MS). Spectral counting along with average MS/MS total ion current were used to quantify temporal changes in relative protein abundance. In all, 461 proteins were confidently identified, of which 24 exhibited statistically significant changes in abundance. To validate these techniques, several of the observed abundance changes were confirmed by Western blotting. Data from the cytosolic fractions were then combined with previous proteomic data, and pathway analyses were performed to identify the primary pathways that are activated or inhibited in the proximal convoluted tubule during the onset of metabolic acidosis.

  3. Proteomic profiling and pathway analysis of the response of rat renal proximal convoluted tubules to metabolic acidosis

    Science.gov (United States)

    Schauer, Kevin L.; Freund, Dana M.; Prenni, Jessica E.

    2013-01-01

    Metabolic acidosis is a relatively common pathological condition that is defined as a decrease in blood pH and bicarbonate concentration. The renal proximal convoluted tubule responds to this condition by increasing the extraction of plasma glutamine and activating ammoniagenesis and gluconeogenesis. The combined processes increase the excretion of acid and produce bicarbonate ions that are added to the blood to partially restore acid-base homeostasis. Only a few cytosolic proteins, such as phosphoenolpyruvate carboxykinase, have been determined to play a role in the renal response to metabolic acidosis. Therefore, further analysis was performed to better characterize the response of the cytosolic proteome. Proximal convoluted tubule cells were isolated from rat kidney cortex at various times after onset of acidosis and fractionated to separate the soluble cytosolic proteins from the remainder of the cellular components. The cytosolic proteins were analyzed using two-dimensional liquid chromatography and tandem mass spectrometry (MS/MS). Spectral counting along with average MS/MS total ion current were used to quantify temporal changes in relative protein abundance. In all, 461 proteins were confidently identified, of which 24 exhibited statistically significant changes in abundance. To validate these techniques, several of the observed abundance changes were confirmed by Western blotting. Data from the cytosolic fractions were then combined with previous proteomic data, and pathway analyses were performed to identify the primary pathways that are activated or inhibited in the proximal convoluted tubule during the onset of metabolic acidosis. PMID:23804448

  4. A proteomic study to identify soya allergens--the human response to transgenic versus non-transgenic soya samples.

    Science.gov (United States)

    Batista, Rita; Martins, Isabel; Jeno, Paul; Ricardo, Cândido Pinto; Oliveira, Maria Margarida

    2007-01-01

    In spite of being among the main foods responsible for allergic reactions worldwide, soybean (Glycine max)-derived products continue to be increasingly widespread in a variety of food products due to their well-documented health benefits. Soybean also continues to be one of the elected target crops for genetic modification. The aim of this study was to characterize the soya proteome and, specifically, IgE-reactive proteins as well as to compare the IgE response in soya-allergic individuals to genetically modified Roundup Ready soya versus its non-transgenic control. We performed two-dimensional gel electrophoresis of protein extracts from a 5% genetically modified Roundup Ready flour sample and its non-transgenic control followed by Western blotting with plasma from 5 soya-sensitive individuals. We used peptide tandem mass spectrometry to identify soya proteins (55 protein matches), specifically IgE-binding ones, and to evaluate differences between transgenic and non-transgenic samples. We identified 2 new potential soybean allergens--one is maturation associated and seems to be part of the late embryogenesis abundant proteins group and the other is a cysteine proteinase inhibitor. None of the individuals tested reacted differentially to the transgenic versus non-transgenic samples under study. Soybean endogenous allergen expression does not seem to be altered after genetic modification. Proteomics should be considered a powerful tool for functional characterization of plants and for food safety assessment. Copyright (c) 2007 S. Karger AG, Basel.

  5. Towards a membrane proteome in Drosophila: a method for the isolation of plasma membrane

    Directory of Open Access Journals (Sweden)

    Thomas Graham H

    2010-05-01

    Full Text Available Abstract Background The plasma membrane (PM is a compartment of significant interest because cell surface proteins influence the way in which a cell interacts with its neighbours and its extracellular environment. However, PM is hard to isolate because of its low abundance. Aqueous two-phase affinity purification (2PAP, based on PEG/Dextran two-phase fractionation and lectin affinity for PM-derived microsomes, is an emerging method for the isolation of high purity plasma membranes from several vertebrate sources. In contrast, PM isolation techniques in important invertebrate genetic model systems, such as Drosophila melanogaster, have relied upon enrichment by density gradient centrifugation. To facilitate genetic investigation of activities contributing to the content of the PM sub-proteome, we sought to adapt 2PAP to this invertebrate model to provide a robust PM isolation technique for Drosophila. Results We show that 2PAP alone does not completely remove contaminating endoplasmic reticulum and mitochondrial membrane. However, a novel combination of density gradient centrifugation plus 2PAP results in a robust PM preparation. To demonstrate the utility of this technique we isolated PM from fly heads and successfully identified 432 proteins using MudPIT, of which 37% are integral membrane proteins from all compartments. Of the 432 proteins, 22% have been previously assigned to the PM compartment, and a further 34% are currently unassigned to any compartment and represent candidates for assignment to the PM. The remainder have previous assignments to other compartments. Conclusion A combination of density gradient centrifugation and 2PAP results in a robust, high purity PM preparation from Drosophila, something neither technique can achieve on its own. This novel preparation should lay the groundwork for the proteomic investigation of the PM in different genetic backgrounds in Drosophila. Our results also identify two key steps in this

  6. Global Proteomics Analysis of the Response to Starvation in C. elegans.

    Science.gov (United States)

    Larance, Mark; Pourkarimi, Ehsan; Wang, Bin; Brenes Murillo, Alejandro; Kent, Robert; Lamond, Angus I; Gartner, Anton

    2015-07-01

    Periodic starvation of animals induces large shifts in metabolism but may also influence many other cellular systems and can lead to adaption to prolonged starvation conditions. To date, there is limited understanding of how starvation affects gene expression, particularly at the protein level. Here, we have used mass-spectrometry-based quantitative proteomics to identify global changes in the Caenorhabditis elegans proteome due to acute starvation of young adult animals. Measuring changes in the abundance of over 5,000 proteins, we show that acute starvation rapidly alters the levels of hundreds of proteins, many involved in central metabolic pathways, highlighting key regulatory responses. Surprisingly, we also detect changes in the abundance of chromatin-associated proteins, including specific linker histones, histone variants, and histone posttranslational modifications associated with the epigenetic control of gene expression. To maximize community access to these data, they are presented in an online searchable database, the Encyclopedia of Proteome Dynamics (http://www.peptracker.com/epd/).

  7. The effects of eating marine- or vegetable-fed farmed trout on the human plasma proteome profiles of healthy men.

    Science.gov (United States)

    Rentsch, Maria L; Lametsch, René; Bügel, Susanne; Jessen, Flemming; Lauritzen, Lotte

    2015-02-28

    Most human intervention studies have examined the effects on a subset of risk factors, some of which may require long-term exposure. The plasma proteome may reflect the underlying changes in protein expression and activation, and this could be used to identify early risk markers. The aim of the present study was to evaluate the impact of regular fish intake on the plasma proteome. We recruited thirty healthy men aged 40 to 70 years, who were randomly allocated to a daily meal of chicken or trout raised on vegetable or marine feeds. Blood samples were collected before and after 8 weeks of intervention, and after the removal of the twelve most abundant proteins, plasma proteins were separated by two-dimensional gel electrophoresis. Protein spots 4·3 visualised by silver staining were matched by two-dimensional imaging software. Within-subject changes in spots were compared between the treatment groups. Differentially affected spots were identified by matrix-assisted laser desorption ionisation-time of flight/time of flight MS and the human Swiss-Prot database. We found 23/681 abundant plasma protein spots, which were up- or down-regulated by the dietary treatment (P spots differed from those in subjects given the chicken meal, but only three of these were common, and only one spot differed between the two trout groups. In both groups, the affected plasma proteins were involved in biological processes such as regulation of vitamin A and haem transport, blood fibrinolysis and oxidative defence. Thus, regular fish intake affects the plasma proteome, and the changes may indicate novel mechanisms of effect.

  8. Identification of plasma biomarker candidates in glioblastoma using an antibody-array-based proteomic approach.

    Science.gov (United States)

    Zupancic, Klemen; Blejec, Andrej; Herman, Ana; Veber, Matija; Verbovsek, Urska; Korsic, Marjan; Knezevic, Miomir; Rozman, Primoz; Turnsek, Tamara Lah; Gruden, Kristina; Motaln, Helena

    2014-09-01

    Glioblastoma multiforme (GBM) is a brain tumour with a very high patient mortality rate, with a median survival of 47 weeks. This might be improved by the identification of novel diagnostic, prognostic and predictive therapy-response biomarkers, preferentially through the monitoring of the patient blood. The aim of this study was to define the impact of GBM in terms of alterations of the plasma protein levels in these patients. We used a commercially available antibody array that includes 656 antibodies to analyse blood plasma samples from 17 healthy volunteers in comparison with 17 blood plasma samples from patients with GBM. We identified 11 plasma proteins that are statistically most strongly associated with the presence of GBM. These proteins belong to three functional signalling pathways: T-cell signalling and immune responses; cell adhesion and migration; and cell-cycle control and apoptosis. Thus, we can consider this identified set of proteins as potential diagnostic biomarker candidates for GBM. In addition, a set of 16 plasma proteins were significantly associated with the overall survival of these patients with GBM. Guanine nucleotide binding protein alpha (GNAO1) was associated with both GBM presence and survival of patients with GBM. Antibody array analysis represents a useful tool for the screening of plasma samples for potential cancer biomarker candidates in small-scale exploratory experiments; however, clinical validation of these candidates requires their further evaluation in a larger study on an independent cohort of patients.

  9. Macaque Proteome Response to Highly Pathogenic Avian Influenza and 1918 Reassortant Influenza Virus Infections▿ †

    Science.gov (United States)

    Brown, Joseph N.; Palermo, Robert E.; Baskin, Carole R.; Gritsenko, Marina; Sabourin, Patrick J.; Long, James P.; Sabourin, Carol L.; Bielefeldt-Ohmann, Helle; García-Sastre, Adolfo; Albrecht, Randy; Tumpey, Terrence M.; Jacobs, Jon M.; Smith, Richard D.; Katze, Michael G.

    2010-01-01

    The host proteome response and molecular mechanisms that drive disease in vivo during infection by a human isolate of the highly pathogenic avian influenza virus (HPAI) and 1918 pandemic influenza virus remain poorly understood. This study presents a comprehensive characterization of the proteome response in cynomolgus macaque (Macaca fascicularis) lung tissue over 7 days of infection with HPAI (the most virulent), a reassortant virus containing 1918 hemagglutinin and neuraminidase surface proteins (intermediate virulence), or a human seasonal strain (least virulent). A high-sensitivity two-dimensional liquid chromatography-tandem mass spectroscopy strategy and functional network analysis were implemented to gain insight into response pathways activated in macaques during influenza virus infection. A macaque protein database was assembled and used in the identification of 35,239 unique peptide sequences corresponding to approximately 4,259 proteins. Quantitative analysis identified an increase in expression of 400 proteins during viral infection. The abundance levels of a subset of these 400 proteins produced strong correlations with disease progression observed in the macaques, distinguishing a “core” response to viral infection from a “high” response specific to severe disease. Proteome expression profiles revealed distinct temporal response kinetics between viral strains, with HPAI inducing the most rapid response. While proteins involved in the immune response, metabolism, and transport were increased rapidly in the lung by HPAI, the other viruses produced a delayed response, characterized by an increase in proteins involved in oxidative phosphorylation, RNA processing, and translation. Proteomic results were integrated with previous genomic and pathological analysis to characterize the dynamic nature of the influenza virus infection process. PMID:20844032

  10. Macaque proteome response to highly pathogenic avian influenza and 1918 reassortant influenza virus infections.

    Science.gov (United States)

    Brown, Joseph N; Palermo, Robert E; Baskin, Carole R; Gritsenko, Marina; Sabourin, Patrick J; Long, James P; Sabourin, Carol L; Bielefeldt-Ohmann, Helle; García-Sastre, Adolfo; Albrecht, Randy; Tumpey, Terrence M; Jacobs, Jon M; Smith, Richard D; Katze, Michael G

    2010-11-01

    The host proteome response and molecular mechanisms that drive disease in vivo during infection by a human isolate of the highly pathogenic avian influenza virus (HPAI) and 1918 pandemic influenza virus remain poorly understood. This study presents a comprehensive characterization of the proteome response in cynomolgus macaque (Macaca fascicularis) lung tissue over 7 days of infection with HPAI (the most virulent), a reassortant virus containing 1918 hemagglutinin and neuraminidase surface proteins (intermediate virulence), or a human seasonal strain (least virulent). A high-sensitivity two-dimensional liquid chromatography-tandem mass spectroscopy strategy and functional network analysis were implemented to gain insight into response pathways activated in macaques during influenza virus infection. A macaque protein database was assembled and used in the identification of 35,239 unique peptide sequences corresponding to approximately 4,259 proteins. Quantitative analysis identified an increase in expression of 400 proteins during viral infection. The abundance levels of a subset of these 400 proteins produced strong correlations with disease progression observed in the macaques, distinguishing a "core" response to viral infection from a "high" response specific to severe disease. Proteome expression profiles revealed distinct temporal response kinetics between viral strains, with HPAI inducing the most rapid response. While proteins involved in the immune response, metabolism, and transport were increased rapidly in the lung by HPAI, the other viruses produced a delayed response, characterized by an increase in proteins involved in oxidative phosphorylation, RNA processing, and translation. Proteomic results were integrated with previous genomic and pathological analysis to characterize the dynamic nature of the influenza virus infection process.

  11. Effects of Fuzheng Huayu Decoction on plasma proteome in cirrhosis: preliminary experimental study with rats

    Institute of Scientific and Technical Information of China (English)

    Jie LIU; Jiyao WANG; Liming WEI; Ye LU; Hong JIN

    2008-01-01

    The aim of this paper is to study the effects of Fuzheng Huayu Decoction on the plasma proteome in cirrhotic rats. Twenty-six male Sprague-Dawley (SD) rats were randomly divided into three groups: cirrhotic model group (n=10), treated with CCl4 (CCl4/olive oil: v/v=1:1); Fuzheng Huayu Decoction intervention group (n=10), treated with CCl4 + Fuzheng Huayu Decoction; and normal control group (n=6), treated with olive oil only. After 8 weeks, blood samples were collected from the inferior vena cava to undergo bi-dimensional electrophoresis (2DE) and analysis by PDQuest 7.3 software. Differential protein spots were cut, enzyme hydrolysis was conducted, and peptide fragments extracted from the mixture underwent mass spectrometry (MS) with MALDI-TOF-TOF-MS. The liver fibrogenesis was assessed using a digital image analysis instrument of Masson's trichrome stained sections. The fibrosis area of the Fuzheng Huayu Decoction was (8.9±3.7)%, significantly smaller than that of the cirrhotic model group [(12.4±4.7)%, P<0.05]. Ten markedly changed protein spots were identified by MALDI-TOF-TOF-MS. Eight of the 10 proteins, including plasma glutathione peroxidase, plasma glutathione peroxidase precursor, prealbumin, haptoglobin, apolipoprotein A-Ⅳ precursor, complement C4, inter-alpha-inhibitor H4 heavy chain, and serine/threonine-protein kinase microtubule-affinity regulating kinase 1 (MARK1) were expressed very lowly in the cirrhotic model group while they were expressed highly in the Fuzheng Huayu Decoction group. The expression of liver regeneration-related protein LRRG03 and vimentin increased in the cirrhotic model group, and reduced in the Fuzheng Huayu Decoction group. Some proteins related to oxidative stress, cell proliferation and transformation have changed in the plasma of cirrhosis induced by CCl4. Fuzheng Huayu Decoction promotes protein synthesis and plays an anti-fibrotic role by anti-oxidation and accommodation of cell proliferation and transformation.

  12. Plasma metabolomics and proteomics profiling after a postprandial challenge reveal subtle diet effects on human metabolic status

    NARCIS (Netherlands)

    Pellis, L.; Erk, M.J. van; Ommen, B. van; Bakker, G.C.M.; Hendriks, H.F.J.; Cnubben, N.H.P.; Kleemann, R.; Someren, E.P. van; Bobeldijk, I.; Rubingh, C.M.; Wopereis, S.

    2012-01-01

    We introduce the metabolomics and proteomics based Postprandial Challenge Test (PCT) to quantify the postprandial response of multiple metabolic processes in humans in a standardized manner. The PCT comprised consumption of a standardized 500 ml dairy shake containing respectively 59, 30 and 12 ener

  13. Shotgun proteomics reveals physiological response to ocean acidification in Crassostrea gigas.

    Science.gov (United States)

    Timmins-Schiffman, Emma; Coffey, William D; Hua, Wilber; Nunn, Brook L; Dickinson, Gary H; Roberts, Steven B

    2014-11-03

    Ocean acidification as a result of increased anthropogenic CO2 emissions is occurring in marine and estuarine environments worldwide. The coastal ocean experiences additional daily and seasonal fluctuations in pH that can be lower than projected end-of-century open ocean pH reductions. In order to assess the impact of ocean acidification on marine invertebrates, Pacific oysters (Crassostrea gigas) were exposed to one of four different p CO2 levels for four weeks: 400 μatm (pH 8.0), 800 μatm (pH 7.7), 1000 μatm (pH 7.6), or 2800 μatm (pH 7.3). At the end of the four week exposure period, oysters in all four p CO2 environments deposited new shell, but growth rate was not different among the treatments. However, micromechanical properties of the new shell were compromised by elevated p CO2. Elevated p CO2 affected neither whole body fatty acid composition, nor glycogen content, nor mortality rate associated with acute heat shock. Shotgun proteomics revealed that several physiological pathways were significantly affected by ocean acidification, including antioxidant response, carbohydrate metabolism, and transcription and translation. Additionally, the proteomic response to a second stress differed with p CO2, with numerous processes significantly affected by mechanical stimulation at high versus low p CO2 (all proteomics data are available in the ProteomeXchange under the identifier PXD000835). Oyster physiology is significantly altered by exposure to elevated p CO2, indicating changes in energy resource use. This is especially apparent in the assessment of the effects of p CO2 on the proteomic response to a second stress. The altered stress response illustrates that ocean acidification may impact how oysters respond to other changes in their environment. These data contribute to an integrative view of the effects of ocean acidification on oysters as well as physiological trade-offs during environmental stress.

  14. Role of DHA in aging-related changes in mouse brain synaptic plasma membrane proteome.

    Science.gov (United States)

    Sidhu, Vishaldeep K; Huang, Bill X; Desai, Abhishek; Kevala, Karl; Kim, Hee-Yong

    2016-05-01

    Aging has been related to diminished cognitive function, which could be a result of ineffective synaptic function. We have previously shown that synaptic plasma membrane proteins supporting synaptic integrity and neurotransmission were downregulated in docosahexaenoic acid (DHA)-deprived brains, suggesting an important role of DHA in synaptic function. In this study, we demonstrate aging-induced synaptic proteome changes and DHA-dependent mitigation of such changes using mass spectrometry-based protein quantitation combined with western blot or messenger RNA analysis. We found significant reduction of 15 synaptic plasma membrane proteins in aging brains including fodrin-α, synaptopodin, postsynaptic density protein 95, synaptic vesicle glycoprotein 2B, synaptosomal-associated protein 25, synaptosomal-associated protein-α, N-methyl-D-aspartate receptor subunit epsilon-2 precursor, AMPA2, AP2, VGluT1, munc18-1, dynamin-1, vesicle-associated membrane protein 2, rab3A, and EAAT1, most of which are involved in synaptic transmission. Notably, the first 9 proteins were further reduced when brain DHA was depleted by diet, indicating that DHA plays an important role in sustaining these synaptic proteins downregulated during aging. Reduction of 2 of these proteins was reversed by raising the brain DHA level by supplementing aged animals with an omega-3 fatty acid sufficient diet for 2 months. The recognition memory compromised in DHA-depleted animals was also improved. Our results suggest a potential role of DHA in alleviating aging-associated cognitive decline by offsetting the loss of neurotransmission-regulating synaptic proteins involved in synaptic function.

  15. Proteomic investigations reveal a role for RNA processing factor THRAP3 in the DNA damage response

    DEFF Research Database (Denmark)

    Beli, Petra; Lukashchuk, Natalia; Wagner, Sebastian A

    2012-01-01

    The regulatory networks of the DNA damage response (DDR) encompass many proteins and posttranslational modifications. Here, we use mass spectrometry-based proteomics to analyze the systems-wide response to DNA damage by parallel quantification of the DDR-regulated phosphoproteome, acetylome, and ...... cellular hypersensitivity to DNA-damaging agents. Collectively, these data broaden our knowledge of DNA damage signaling networks and highlight an important link between RNA metabolism and DNA repair....

  16. Activity-Based Proteomics Reveals Heterogeneous Kinome and ATP-Binding Proteome Responses to MEK Inhibition in KRAS Mutant Lung Cancer.

    Science.gov (United States)

    Kim, Jae-Young; Stewart, Paul A; Borne, Adam L; Fang, Bin; Welsh, Eric A; Chen, Yian Ann; Eschrich, Steven A; Koomen, John M; Haura, Eric B

    2016-06-01

    One way cancer cells can escape from targeted agents is through their ability to evade drug effects by rapidly rewiring signaling networks. Many protein classes, such as kinases and metabolic enzymes, are regulated by ATP binding and hydrolysis. We hypothesized that a system-level profiling of drug-induced alterations in ATP-binding proteomes could offer novel insights into adaptive responses. Here, we mapped global ATP-binding proteomes perturbed by two clinical MEK inhibitors, AZD6244 and MEK162, in KRAS mutant lung cancer cells as a model system harnessing a desthiobiotin-ATP probe coupled with LC-MS/MS. We observed strikingly unique ATP-binding proteome responses to MEK inhibition, which revealed heterogeneous drug-induced pathway signatures in each cell line. We also identified diverse kinome responses, indicating each cell adapts to MEK inhibition in unique ways. Despite the heterogeneity of kinome responses, decreased probe labeling of mitotic kinases and an increase of kinases linked to autophagy were identified to be common responses. Taken together, our study revealed a diversity of adaptive ATP-binding proteome and kinome responses to MEK inhibition in KRAS mutant lung cancer cells, and our study further demonstrated the utility of our approach to identify potential candidates of targetable ATP-binding enzymes involved in adaptive resistance and to develop rational drug combinations.

  17. Activity-Based Proteomics Reveals Heterogeneous Kinome and ATP-Binding Proteome Responses to MEK Inhibition in KRAS Mutant Lung Cancer

    Directory of Open Access Journals (Sweden)

    Jae-Young Kim

    2016-04-01

    Full Text Available One way cancer cells can escape from targeted agents is through their ability to evade drug effects by rapidly rewiring signaling networks. Many protein classes, such as kinases and metabolic enzymes, are regulated by ATP binding and hydrolysis. We hypothesized that a system-level profiling of drug-induced alterations in ATP-binding proteomes could offer novel insights into adaptive responses. Here, we mapped global ATP-binding proteomes perturbed by two clinical MEK inhibitors, AZD6244 and MEK162, in KRAS mutant lung cancer cells as a model system harnessing a desthiobiotin-ATP probe coupled with LC-MS/MS. We observed strikingly unique ATP-binding proteome responses to MEK inhibition, which revealed heterogeneous drug-induced pathway signatures in each cell line. We also identified diverse kinome responses, indicating each cell adapts to MEK inhibition in unique ways. Despite the heterogeneity of kinome responses, decreased probe labeling of mitotic kinases and an increase of kinases linked to autophagy were identified to be common responses. Taken together, our study revealed a diversity of adaptive ATP-binding proteome and kinome responses to MEK inhibition in KRAS mutant lung cancer cells, and our study further demonstrated the utility of our approach to identify potential candidates of targetable ATP-binding enzymes involved in adaptive resistance and to develop rational drug combinations.

  18. The differential plasma proteome of obese and overweight individuals undergoing a nutritional weight loss and maintenance intervention

    DEFF Research Database (Denmark)

    Oller Moreno, Sergio; Cominetti, Ornella; Núñez Galindo, Antonio

    2017-01-01

    PURPOSE: The nutritional intervention program "DiOGenes" focuses on how obesity can be prevented and treated from a dietary perspective. We generated differential plasma proteome profiles in the DiOGenes cohort to identify proteins associated with weight loss and maintenance and explore their rel......PURPOSE: The nutritional intervention program "DiOGenes" focuses on how obesity can be prevented and treated from a dietary perspective. We generated differential plasma proteome profiles in the DiOGenes cohort to identify proteins associated with weight loss and maintenance and explore...... intervention. Protein relationships with clinical variables were explored using univariate linear models, considering collection center, gender and age as confounding factors. RESULTS: 473 subjects were measured at baseline and end of the intervention; 39 proteins were longitudinally differential. Proteins......-rich acidic protein 1 (PRAP1) variation and Matsuda insulin sensitivity increment was showed. CONCLUSIONS AND CLINICAL RELEVANCE: MS-based proteomic analysis of a large cohort of non-diabetic overweight and obese individuals concomitantly identified known and novel proteins associated with weight loss...

  19. Proteomics and aging : studying the influence of aging on endothelial cells and human plasma

    NARCIS (Netherlands)

    Eman, M.R.

    2007-01-01

    In general, human aging is considered one of the most complex and less-well understood process in biology. In this thesis the possibilities of proteomics technology in the field of aging were explored. The complexity of the aging process was supposed to accompanied by relatively subtle proteome vari

  20. Transcriptional, proteomic, and metabolic responses to lithium in galactose-grown yeast cells

    DEFF Research Database (Denmark)

    Bro, Christoffer; Regenberg, Birgitte; Lagniel, G.

    2003-01-01

    of lithium. These results were related to physiological studies where both secreted and intracellular metabolites were determined. Microarray analysis showed that 664 open reading frames were down-regulated and 725 up-regulated in response to addition of lithium. Genes involved in transcription, translation......, and nucleotide metabolism were down-regulated at the transcriptional level, whereas genes responsive to different stresses as well as genes from energy reserve metabolism and monosaccharide metabolism were up-regulated. Compared with the proteomic data, 26% of the down-regulated and 48% of the up......-regulated proteins were also identified as being changed on the mRNA level. Functional clusters obtained from proteome data were coincident with transcriptional clusters. Physiological studies showed that acetate, glycerol, and glycogen accumulate in response to lithium, as reflected in expression data, whereas...

  1. Plasma proteome profiles of White Sucker (Catostomus commersonii) from the Athabasca River within the oil sands deposit.

    Science.gov (United States)

    Simmons, Denina B D; Sherry, James P

    2016-09-01

    There are questions about the potential for oil sands related chemicals to enter the Athabasca River, whether from tailing ponds, atmospheric deposition, precipitation, or transport of mining dust, at concentrations sufficient to negatively impact the health of biota. We applied shotgun proteomics to generate protein profiles of mature male and female White Sucker (Catostomus commersonii) that were collected from various sites along the main stem of the Athabasca River in 2011 and 2012. On average, 399±131 (standard deviation) proteins were identified in fish plasma from each location in both years. Ingenuity Pathway Analysis software was used to determine the proteins' core functions and to compare the datasets by location, year, and sex. Principal component analysis (PCA) was used to determine if variation in the number of proteins related to a core function among all male and female individuals from both sampling years was affected by location. The core biological functions of plasma proteins that were common to both sampling years for males and females from each location were also estimated separately (based on Ingenuity's Knowledge Base). PCA revealed site-specific differences in the functional characteristics of the plasma proteome from white sucker sampled from downstream of oil sands extraction facilities compared with fish from upstream. Plasma proteins that were unique to fish downstream of oil sands extraction were related to lipid metabolism, small molecule biochemistry, vitamin and mineral metabolism, endocrine system disorders, skeletal and muscular development and function, neoplasia, carcinomas, and gastrointestinal disease.

  2. Characterizing bovine host responses to mastitis pathogens by targeted proteomics

    DEFF Research Database (Denmark)

    Bislev, Stine Lønnerup

    mælkeproteiner såsom kasein er dog med til at komplicere analyserne af følsomme biomarkører i mælk. De seneste år er målrettet kvantitativ proteomics ved hjælp af metoden ’selected reaction monitoring’ (SRM) blevet udbredt. Ved SRM metoden bliver peptider fra et udvalgt protein detekteret og kvantificeret i en...... beskriver dette Bovine PeptideAtlas og dets indbyggede værktøjer til at understøtte SRM metoder. Ved hjælp af Bovine PeptideAtlas blev der udvalgt kvantificerbare og observerbare peptider, der er velegnede til udvikling af SRM metoden. To peptider per protein blev herefter genetisk udtrykt i et QconCAT...... protein som tungt isotop mærkede peptider. I manuskript II præsenteres udviklingen og valideringen af SRM metoden i yvervæv ved brug af QconCAT peptider rettet mod 20 proteiner. Resultaterne af dette forsøg var en solid bestemmelse af 17 kandidatproteiner og en pålidelig kvantificering af 12 af disse. I...

  3. Free-flow electrophoresis of plasma membrane vesicles enriched by two-phase partitioning enhances the quality of the proteome from Arabidopsis seedlings

    DEFF Research Database (Denmark)

    de Michele, Roberto; McFarlane, Heather E; Parsons, Harriet Tempé

    2016-01-01

    The plant plasma membrane is the interface between the cell and its environment undertaking a range of important functions related to transport, signaling, cell wall biosynthesis, and secretion. Multiple proteomic studies have attempted to capture the diversity of proteins in the plasma membrane ...

  4. Elucidation of Zymomonas mobilis physiology and stress responses by quantitative proteomics and transcriptomics

    Science.gov (United States)

    Yang, Shihui; Pan, Chongle; Hurst, Gregory B.; Dice, Lezlee; Davison, Brian H.; Brown, Steven D.

    2014-01-01

    Zymomonas mobilis is an excellent ethanologenic bacterium. Biomass pretreatment and saccharification provides access to simple sugars, but also produces inhibitors such as acetate and furfural. Our previous work has identified and confirmed the genetic change of a 1.5-kb deletion in the sodium acetate tolerant Z. mobilis mutant (AcR) leading to constitutively elevated expression of a sodium proton antiporter encoding gene nhaA, which contributes to the sodium acetate tolerance of AcR mutant. In this study, we further investigated the responses of AcR and wild-type ZM4 to sodium acetate stress in minimum media using both transcriptomics and a metabolic labeling approach for quantitative proteomics the first time. Proteomic measurements at two time points identified about eight hundreds proteins, or about half of the predicted proteome. Extracellular metabolite analysis indicated AcR overcame the acetate stress quicker than ZM4 with a concomitant earlier ethanol production in AcR mutant, although the final ethanol yields and cell densities were similar between two strains. Transcriptomic samples were analyzed for four time points and revealed that the response of Z. mobilis to sodium acetate stress is dynamic, complex, and involved about one-fifth of the total predicted genes from all different functional categories. The modest correlations between proteomic and transcriptomic data may suggest the involvement of posttranscriptional control. In addition, the transcriptomic data of forty-four microarrays from four experiments for ZM4 and AcR under different conditions were combined to identify strain-specific, media-responsive, growth phase-dependent, and treatment-responsive gene expression profiles. Together this study indicates that minimal medium has the most dramatic effect on gene expression compared to rich medium followed by growth phase, inhibitor, and strain background. Genes involved in protein biosynthesis, glycolysis and fermentation as well as ATP

  5. Investigation of the Gracilaria gracilis (Gracilariales, Rhodophyta) proteome response to nitrogen limitation.

    Science.gov (United States)

    Naidoo, Rene K; Rafudeen, Muhammad S; Coyne, Vernon E

    2016-06-01

    Inorganic nitrogen has been identified as the major growth-limiting nutritional factor affecting Gracilaria gracilis populations in South Africa. Although the physiological mechanisms implemented by G. gracilis for adaption to low nitrogen environments have been investigated, little is known about the molecular mechanisms of these adaptions. This study provides the first investigation of G. gracilis proteome changes in response to nitrogen limitation and subsequent recovery. A differential proteomics approach employing two-dimensional gel electrophoresis and liquid chromatography-tandem mass spectrometry was used to investigate G. gracilis proteome changes in response to nitrogen limitation and recovery. The putative identity of 22 proteins that changed significantly (P < 0.05) in abundance in response to nitrogen limitation and recovery was determined. The identified proteins function in a range of biological processes including glycolysis, photosynthesis, ATP synthesis, galactose metabolism, protein-refolding and biosynthesis, nitrogen metabolism and cytoskeleton remodeling. The identity of fructose 1,6 biphosphate (FBP) aldolase was confirmed by western blot analysis and the decreased abundance of FBP aldolase observed with two-dimensional gel electrophoresis was validated by enzyme assays and western blots. The identification of key proteins and pathways involved in the G. gracilis nitrogen stress response provide a better understanding of G. gracilis proteome responses to varying degrees of nitrogen limitation and is the first step in the identification of biomarkers for monitoring the nitrogen status of cultivated G. gracilis populations.

  6. Comparative proteomic analysis of the short-term responses of rice roots and leaves to cadmium.

    Science.gov (United States)

    Lee, Kyunghee; Bae, Dong Won; Kim, Sun Ho; Han, Hay Ju; Liu, Xiaomin; Park, Hyeong Cheol; Lim, Chae Oh; Lee, Sang Yeol; Chung, Woo Sik

    2010-02-15

    Cadmium (Cd) is a non-essential heavy metal that is recognized as a major environmental pollutant. While Cd responses and toxicities in some plant species have been well established, there are few reports about the effects of short-term exposure to Cd on rice, a model monocotyledonous plant, at the proteome level. To investigate the effect of Cd in rice, we monitored the influence of Cd exposure on root and leaf proteomes. After Cd treatment, root and leaf tissues were separately collected and leaf proteins were fractionated with polyethylene glycol. Differentially regulated proteins were selected after image analysis and identified using MALDI-TOF MS. A total of 36 proteins were up- or down-regulated following Cd treatment. As expected, total glutathione levels were significantly decreased in Cd-treated roots, and approximately half of the up-regulated proteins in roots were involved in responses to oxidative stress. These results suggested that prompt antioxidative responses might be necessary for the reduction of Cd-induced oxidative stress in roots but not in leaves. In addition, RNA gel blot analysis showed that the proteins identified in the proteomic analysis were also differentially regulated at the transcriptional level. Collectively, our study provides insights into the integrated molecular mechanisms of early responses to Cd in rice.

  7. Comparative proteomic analysis of Bactrocera dorsalis (Hendel) in response to thermal stress.

    Science.gov (United States)

    Wei, Dong; Jia, Fu-Xian; Tian, Chuan-Bei; Tian, Yi; Smagghe, Guy; Dou, Wei; Wang, Jin-Jun

    2015-03-01

    Temperature is one of the most important environmental variables affecting growth, reproduction and distribution of insects. The rise of comparative proteomics provides a powerful tool to explore the response in proteins to thermal stress. As an important worldwide pest, the oriental fruit fly Bactrocera dorsalis causes severe economic losses to crops. To understand the response of B. dorsalis to thermal stress, we performed a comparative proteome analysis of this insect after exposure to extreme low and high temperatures using two-dimensional electrophoresis. Among the separated proteins, 51 diverse protein spots were present differently in response to extreme temperatures. Using tandem mass spectrometry sequencing analysis 39 proteins were successfully identified, which included 13 oxidoreductases, 10 binding proteins, 5 transferases, and 2 each of lyases, isomerases, ligases, and developmental proteins. Subsequently, the expression of these protein transcripts was studied by RT-qPCR to validate the proteomic results. In conclusion, this study provides a first look into the thermal stress response of B. dorsalis at the protein level, and thus it paves the way for further functional studies in the physiological mechanism related to thermal stress. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Seasonal heat stress affects adipose tissue proteome toward enrichment of the Nrf2-mediated oxidative stress response in late-pregnant dairy cows.

    Science.gov (United States)

    Zachut, M; Kra, G; Livshitz, L; Portnick, Y; Yakoby, S; Friedlander, G; Levin, Y

    2017-03-31

    Environmental heat stress and metabolic stress during transition from late gestation to lactation are main factors limiting production in dairy cattle, and there is a complex interaction between them. Many proteins expressed in adipose tissue are involved in metabolic responses to stress. We aimed to investigate the effects of seasonal heat stress on adipose proteome in late-pregnant cows, and to identify biomarkers of heat stress. Late pregnant cows during summer heat stress (S, n=18), or during the winter season (W, n=12) were used. Subcutaneous adipose tissue biopsies sampled 14days prepartum from S (n=10) and W (n=8) were analyzed by intensity-based, label-free, quantitative shotgun proteomics (nano-LC-MS/MS). Plasma concentrations of malondialdehyde and cortisol were higher in S than in W cows. Proteomic analysis revealed that 107/1495 proteins were differentially abundant in S compared to W (Padipose were Nrf2-mediated oxidative stress response, acute-phase response, and FXR/RXR and LXR/RXR activation. Novel biomarkers of heat stress in adipose tissue were found. These findings indicate that seasonal heat stress has a unique effect on adipose tissue in late-pregnant cows. This work shows that seasonal heat stress increases plasma concentrations of the oxidative stress marker malondialdehyde and cortisol in transition dairy cows. As many proteins expressed in the adipose tissue are involved in metabolic responses to stress, we investigated the effects of heat stress on the proteome of adipose tissue from late-pregnant cows during summer or winter seasons. We demonstrated that heat stress enriches several stress-related pathways, such as the Nrf2-mediated oxidative stress response and the acute-phase response in adipose tissues. Thus, environmental heat stress has a unique effect on adipose tissue in late-pregnant cows, as part of the regulatory adaptations to chronic heat load during the summer season. In addition, this study presents the widest available

  9. Comprehensive proteome analysis of the response of Pseudomonas putida KT2440 to the flavor compound vanillin.

    Science.gov (United States)

    Simon, Oliver; Klaiber, Iris; Huber, Armin; Pfannstiel, Jens

    2014-09-23

    Understanding of the molecular response of bacteria to precursors, products and environmental conditions applied in bioconversions is essential for optimizing whole-cell biocatalysis. To investigate the molecular response of the potential biocatalyst Pseudomonas putida KT2440 to the flavor compound vanillin we applied complementary gel- and LC-MS-based quantitative proteomics approaches. Our comprehensive proteomics survey included cytoplasmic and membrane proteins and led to the identification and quantification of 1614 proteins, corresponding to 30% of the total KT2440 proteome. 662 proteins were altered in abundance during growth on vanillin as sole carbon source as compared to growth on glucose. The proteome response entailed an increased abundance of enzymes involved in vanillin degradation, significant changes in central energy metabolism and an activation of solvent tolerance mechanisms. With respect to vanillin metabolism, particularly enzymes belonging to the β-ketoadipate pathway including a transcriptional regulator and porins specific for vanillin uptake increased in abundance. However, catabolism of vanillin was not dependent on vanillin dehydrogenase (Vdh), as shown by quantitative proteome analysis of a Vdh-deficient KT2440 mutant (GN235). Other aldehyde dehydrogenases that were significantly increased in abundance in response to vanillin may replace Vdh and thus may represent interesting targets for improving vanillin production in P. putida KT2440. The high demand for the flavor compound vanillin by the food and fragrance industry makes natural vanillin from vanilla pods a scarce and expensive resource rendering its biotechnological production economically attractive. Pseudomonas bacteria are metabolically very versatile and accept a broad range of hydrocarbons as carbon source making them suitable candidates for bioconversion processes. This work describes the impact of vanillin on the metabolism of the reference strain P. putida KT2440 on a

  10. Elucidation of Zymomonas mobilis physiology and stress responses by quantitative proteomics and transcriptomics

    Directory of Open Access Journals (Sweden)

    Shihui eYANG

    2014-05-01

    Full Text Available Zymomonas mobilis is an excellent ethanologenic bacterium. Biomass pretreatment and saccharification provides access to simple sugars, but also produces inhibitors such as acetate and furfural. Our previous work has identified and confirmed the genetic change of a 1.5-kb deletion in the sodium acetate tolerant Z. mobilis mutant (AcR leading to constitutively elevated expression of a sodium proton antiporter encoding gene nhaA, which contributes to the sodium acetate tolerance of AcR mutant. In this study, we further investigated the responses of AcR and wild-type ZM4 to sodium acetate stress in minimum media using both transcriptomics and a metabolic labeling approach for quantitative proteomics the first time. Proteomic measurements at two time points identified about eight hundreds proteins, or about half of the predicted proteome. Extracellular metabolite analysis indicated AcR overcame the acetate stress quicker than ZM4 with a concomitant earlier ethanol production in AcR mutant, although the final ethanol yields and cell densities were similar between two strains. Transcriptomic samples were analyzed for four time points and revealed that the response of Z. mobilis to sodium acetate stress is dynamic, complex and involved about one-fifth of the total predicted genes from all different functional categories. The modest correlations between proteomic and transcriptomic data may suggest the involvement of posttranscriptional control. In addition, the transcriptomic data of forty-four microarrays from four experiments for ZM4 and AcR under different conditions were combined to identify strain-specific, media-responsive, growth phase-dependent, and treatment-responsive gene expression profiles. Together this study indicates that minimal medium has the most dramatic effect on gene expression compared to rich medium followed by growth phase, inhibitor, and strain background. Genes involved in protein biosynthesis, glycolysis and fermentation as

  11. Proteomics reveals a core molecular response of Pseudomonas putida F1 to acute chromate challenge

    Directory of Open Access Journals (Sweden)

    McCarthy Andrea T

    2010-05-01

    Full Text Available Abstract Background Pseudomonas putida is a model organism for bioremediation because of its remarkable metabolic versatility, extensive biodegradative functions, and ubiquity in contaminated soil environments. To further the understanding of molecular pathways responding to the heavy metal chromium(VI [Cr(VI], the proteome of aerobically grown, Cr(VI-stressed P. putida strain F1 was characterized within the context of two disparate nutritional environments: rich (LB media and minimal (M9L media containing lactate as the sole carbon source. Results Growth studies demonstrated that F1 sensitivity to Cr(VI was impacted substantially by nutrient conditions, with a carbon-source-dependent hierarchy (lactate > glucose >> acetate observed in minimal media. Two-dimensional HPLC-MS/MS was employed to identify differential proteome profiles generated in response to 1 mM chromate under LB and M9L growth conditions. The immediate response to Cr(VI in LB-grown cells was up-regulation of proteins involved in inorganic ion transport, secondary metabolite biosynthesis and catabolism, and amino acid metabolism. By contrast, the chromate-responsive proteome derived under defined minimal growth conditions was characterized predominantly by up-regulated proteins related to cell envelope biogenesis, inorganic ion transport, and motility. TonB-dependent siderophore receptors involved in ferric iron acquisition and amino acid adenylation domains characterized up-regulated systems under LB-Cr(VI conditions, while DNA repair proteins and systems scavenging sulfur from alternative sources (e.g., aliphatic sulfonates tended to predominate the up-regulated proteome profile obtained under M9L-Cr(VI conditions. Conclusions Comparative analysis indicated that the core molecular response to chromate, irrespective of the nutritional conditions tested, comprised seven up-regulated proteins belonging to six different functional categories including transcription, inorganic ion

  12. The Rice Mitochondria Proteome and its Response During Development and to the Environment

    Directory of Open Access Journals (Sweden)

    Shaobai eHuang

    2013-02-01

    Full Text Available Rice (Oryza sativa L. is both a major crop species and the key model grass for molecular and physiological research. Mitochondria are important in rice, as in all crops, as the main source of ATP for cell maintenance and growth. However, the practical significance of understanding the function of mitochondria in rice is increased by the widespread farming practice of using hybrids to boost rice production. This relies on cytoplasmic male-sterile (CMS lines with abortive pollen caused by dysfunctional mitochondria. We provide an overview of what is known about the mitochondrial proteome of rice seedlings. To date, more than 320 proteins have been identified in purified rice mitochondria using mass spectrometry. The insights from this work include a broad understanding of the major subunits of mitochondrial respiratory complexes and TCA cycle enzymes, carbon and nitrogen metabolism enzymes as well as details of the supporting machinery for biogenesis and the subset of stress-responsive mitochondrial proteins. Many proteins with unknown functions have also been found in rice mitochondria. Proteomic analysis has also revealed the features of rice mitochondrial protein presequences required for mitochondrial targeting, as well as cleavage site features for processing of precursors after import. Changes in the abundance of rice mitochondrial proteins in response to different stresses, especially anoxia and light, are summarized. Future research on quantitative analysis of the rice mitochondrial proteomes at the spatial and developmental level, its response to environmental stresses and recent advances in understanding of basis of rice CMS systems are highlighted.

  13. Redox Stimulation of Human THP-1 Monocytes in Response to Cold Physical Plasma

    Directory of Open Access Journals (Sweden)

    Sander Bekeschus

    2016-01-01

    Full Text Available In plasma medicine, cold physical plasma delivers a delicate mixture of reactive components to cells and tissues. Recent studies suggested a beneficial role of cold plasma in wound healing. Yet, the biological processes related to the redox modulation via plasma are not fully understood. We here used the monocytic cell line THP-1 as a model to test their response to cold plasma in vitro. Intriguingly, short term plasma treatment stimulated cell growth. Longer exposure only modestly compromised cell viability but apparently supported the growth of cells that were enlarged in size and that showed enhanced metabolic activity. A significantly increased mitochondrial content in plasma treated cells supported this notion. On THP-1 cell proteome level, we identified an increase of protein translation with key regulatory proteins being involved in redox regulation (hypoxia inducible factor 2α, differentiation (retinoic acid signaling and interferon inducible factors, and cell growth (Yin Yang 1. Regulation of inflammation is a key element in many chronic diseases, and we found a significantly increased expression of the anti-inflammatory heme oxygenase 1 (HMOX1 and of the neutrophil attractant chemokine interleukin-8 (IL-8. Together, these results foster the view that cold physical plasma modulates the redox balance and inflammatory processes in wound related cells.

  14. Functional and proteomic alterations of plasma high density lipoproteins in type 1 diabetes mellitus.

    Science.gov (United States)

    Manjunatha, Shankarappa; Distelmaier, Klaus; Dasari, Surendra; Carter, Rickey E; Kudva, Yogish C; Nair, K Sreekumaran

    2016-09-01

    Higher HDL-cholesterol (HDL-C) is linked to lower cardiovascular risk but individuals with type 1 diabetes mellitus (T1DM) with normal or high HDL-C have higher cardiovascular events compared to age matched non-diabetic controls (ND). We determined whether altered HDL functions despite having normal HDL-C concentration may explain increased cardiovascular risk in T1DM individuals. We also determined whether irreversible posttranslational modifications (PTMs) of HDL bound proteins occur in T1DM individuals with altered HDL functions. T1DM with poor glycemic control (T1D-PC, HbA1c≥8.5%, n=15) and T1DM with good glycemic control (T1D-GC, HbA1c≤6.6%, n=15) were compared with equal numbers of NDs, ND-PC and ND-GC respectively, matched for age, sex and body mass index (BMI). We measured cholesterol efflux capacity (CEC) of HDL in the serum using J774 macrophages, antioxidant function of HDL as the ability to reverse the oxidative damage of LDL and PON1 activity using commercially available kit. For proteomic analysis, HDL was isolated by density gradient ultracentrifugation and was analyzed by mass spectrometry and shotgun proteomics method. Plasma HDL-C concentrations in both T1DM groups were similar to their ND. However, CEC (%) of T1D-PC (16.9±0.8) and T1D-GC (17.1±1) were lower than their respective ND (17.9±1, p=0.01 and 18.2±1.4, p=0.02). HDL antioxidative function also was lower (p<0.05). The abundance of oxidative PTMs of apolipoproteins involved in CEC and antioxidative functions of HDL were higher in T1D-PC (ApoA4, p=0.041) and T1D-GC (ApoA4, p=0.025 and ApoE, p=0.041) in comparison with ND. Both T1D-PC and T1D-GC groups had higher abundance of amadori modification of ApoD (p=0.002 and p=0.041 respectively) and deamidation modification of ApoA4 was higher in T1D-PC (p=0.025). Compromised functions of HDL particles in T1DM individuals, irrespective of glycemic control, could be explained by higher abundance of irreversible PTMs of HDL proteins. These

  15. Proteomic responses of oceanic Synechococcus WH8102 to phosphate and zinc scarcity and cadmium additions

    Directory of Open Access Journals (Sweden)

    Alysia eCox

    2013-12-01

    Full Text Available Synechococcus sp. WH 8102 is a motile marine cyanobacterium isolated originally from the Sargasso Sea. To test the response of this organism to cadmium (Cd -generally considered a toxin- cultures were grown in a matrix of high and low zinc (Zn and phosphate (PO43- and were then exposed to an addition of 4.4 pM free Cd2+ at mid-log phase and harvested after 24 h. Whereas Zn and PO43- had little effect on overall growth rates, in the final 24 h of the experiment three growth effects were noticed: i low PO43- treatments showed increased growth rates relative to high PO43- treatments, ii the Zn/high PO43- treatment appeared to enter stationary phase, and iii Cd increased growth rates further in both the low PO43- and Zn treatments. Global proteomic analysis revealed that: i Zn appeared to be critical to the PO43- response in this organism, ii bacterial metallothionein (SmtA appears correlated with PO43- stress-associated proteins, iii Cd has the greatest influence on the proteome at low PO43- and Zn, iv Zn buffered the effects of Cd, and v in the presence of both replete PO43- and added Cd the proteome showed little response to the presence of Zn. Similar trends in alkaline phosphate (ALP and SmtA suggest the possibility of a Zn supply system to provide Zn to ALP that involves SmtA. In addition, proteome results were consistent with a previous transcriptome study of PO43- stress (with replete Zn in this organism, including the greater relative abundance of ALP (PhoA, ABC phosphate binding protein (PstS and other proteins. Yet with no Zn in this proteome experiment the PO43- response was quite different including the greater relative abundance of five hypothetical proteins with no increase in PhoA or PstS, suggesting that Zn nutritional levels are connected to the PO43- response in this cyanobacterium. Alternate ALP PhoX (Ca was found to be a low abundance protein, suggesting that PhoA (Zn, Mg may be more environmentally relevant than PhoX.

  16. Proteomic responses of oceanic Synechococcus WH8102 to phosphate and zinc scarcity and cadmium additions

    Science.gov (United States)

    Cox, Alysia D.; Saito, Mak A.

    2013-01-01

    Synechococcus sp. WH 8102 is a motile marine cyanobacterium isolated originally from the Sargasso Sea. To test the response of this organism to cadmium (Cd), generally considered a toxin, cultures were grown in a matrix of high and low zinc (Zn) and phosphate (PO43−) and were then exposed to an addition of 4.4 pM free Cd2+ at mid-log phase and harvested after 24 h. Whereas Zn and PO43− had little effect on overall growth rates, in the final 24 h of the experiment three growth effects were noticed: (i) low PO43− treatments showed increased growth rates relative to high PO43− treatments, (ii) the Zn/high PO43− treatment appeared to enter stationary phase, and (iii) Cd increased growth rates further in both the low PO43− and Zn treatments. Global proteomic analysis revealed that: (i) Zn appeared to be critical to the PO43− response in this organism, (ii) bacterial metallothionein (SmtA) appears correlated with PO43− stress-associated proteins, (iii) Cd has the greatest influence on the proteome at low PO43− and Zn, (iv) Zn buffered the effects of Cd, and (v) in the presence of both replete PO43− and added Cd the proteome showed little response to the presence of Zn. Similar trends in alkaline phosphate (ALP) and SmtA suggest the possibility of a Zn supply system to provide Zn to ALP that involves SmtA. In addition, proteome results were consistent with a previous transcriptome study of PO43− stress (with replete Zn) in this organism, including the greater relative abundance of ALP (PhoA), ABC phosphate binding protein (PstS) and other proteins. Yet with no Zn in this proteome experiment the PO43− response was quite different including the greater relative abundance of five hypothetical proteins with no increase in PhoA or PstS, suggesting that Zn nutritional levels are connected to the PO43− response in this cyanobacterium. Alternate ALP PhoX (Ca) was found to be a low abundance protein, suggesting that PhoA (Zn, Mg) may be more

  17. Molecular responses of mouse macrophages to copper and copper oxide nanoparticles inferred from proteomic analyses.

    Science.gov (United States)

    Triboulet, Sarah; Aude-Garcia, Catherine; Carrière, Marie; Diemer, Hélène; Proamer, Fabienne; Habert, Aurélie; Chevallet, Mireille; Collin-Faure, Véronique; Strub, Jean-Marc; Hanau, Daniel; Van Dorsselaer, Alain; Herlin-Boime, Nathalie; Rabilloud, Thierry

    2013-11-01

    The molecular responses of macrophages to copper-based nanoparticles have been investigated via a combination of proteomic and biochemical approaches, using the RAW264.7 cell line as a model. Both metallic copper and copper oxide nanoparticles have been tested, with copper ion and zirconium oxide nanoparticles used as controls. Proteomic analysis highlighted changes in proteins implicated in oxidative stress responses (superoxide dismutases and peroxiredoxins), glutathione biosynthesis, the actomyosin cytoskeleton, and mitochondrial proteins (especially oxidative phosphorylation complex subunits). Validation studies employing functional analyses showed that the increases in glutathione biosynthesis and in mitochondrial complexes observed in the proteomic screen were critical to cell survival upon stress with copper-based nanoparticles; pharmacological inhibition of these two pathways enhanced cell vulnerability to copper-based nanoparticles, but not to copper ions. Furthermore, functional analyses using primary macrophages derived from bone marrow showed a decrease in reduced glutathione levels, a decrease in the mitochondrial transmembrane potential, and inhibition of phagocytosis and of lipopolysaccharide-induced nitric oxide production. However, only a fraction of these effects could be obtained with copper ions. In conclusion, this study showed that macrophage functions are significantly altered by copper-based nanoparticles. Also highlighted are the cellular pathways modulated by cells for survival and the exemplified cross-toxicities that can occur between copper-based nanoparticles and pharmacological agents.

  18. Proteomic response of β-lactamases-producing Enterobacter cloacae complex strain to cefotaxime-induced stress.

    Science.gov (United States)

    Maravić, Ana; Cvjetan, Svjetlana; Konta, Marina; Ladouce, Romain; Martín, Fernando A

    2016-07-01

    Bacteria of the Enterobacter cloacae complex are among the ten most common pathogens causing nosocomial infections in the USA. Consequently, increased resistance to β-lactam antibiotics, particularly expanded-spectrum cephalosporins like cefotaxime (CTX), poses a serious threat. Differential In-Gel Electrophoresis (DIGE), followed by LC-MS/MS analysis and bioinformatics tools, was employed to investigate the survival mechanisms of a multidrug-resistant E. hormaechei subsp. steigerwaltii 51 carrying several β-lactamase-encoding genes, including the 'pandemic' blaCTX-M-15 After exposing the strain with sub-minimal inhibitory concentration (MIC) of CTX, a total of 1072 spots from the whole-cell proteome were detected, out of which 35 were differentially expressed (P ≤ 0.05, fold change ≥1.5). Almost 50% of these proteins were involved in cell metabolism and energy production, and then cell wall organization/virulence, stress response and transport. This is the first study investigating the whole-cell proteomic response related to the survival of β-lactamases-producing strain, belonging to the E. cloacae complex when exposed to β-lactam antibiotic. Our data support the theory of a multifactorial synergistic effect of diverse proteomic changes occurring in bacterial cells during antibiotic exposure, depicting the complexity of β-lactam resistance and giving us an insight in the key pathways mediating the antibiotic resistance in this emerging opportunistic pathogen.

  19. Molecular Responses of Mouse Macrophages to Copper and Copper Oxide Nanoparticles Inferred from Proteomic Analyses*

    Science.gov (United States)

    Triboulet, Sarah; Aude-Garcia, Catherine; Carrière, Marie; Diemer, Hélène; Proamer, Fabienne; Habert, Aurélie; Chevallet, Mireille; Collin-Faure, Véronique; Strub, Jean-Marc; Hanau, Daniel; Van Dorsselaer, Alain; Herlin-Boime, Nathalie; Rabilloud, Thierry

    2013-01-01

    The molecular responses of macrophages to copper-based nanoparticles have been investigated via a combination of proteomic and biochemical approaches, using the RAW264.7 cell line as a model. Both metallic copper and copper oxide nanoparticles have been tested, with copper ion and zirconium oxide nanoparticles used as controls. Proteomic analysis highlighted changes in proteins implicated in oxidative stress responses (superoxide dismutases and peroxiredoxins), glutathione biosynthesis, the actomyosin cytoskeleton, and mitochondrial proteins (especially oxidative phosphorylation complex subunits). Validation studies employing functional analyses showed that the increases in glutathione biosynthesis and in mitochondrial complexes observed in the proteomic screen were critical to cell survival upon stress with copper-based nanoparticles; pharmacological inhibition of these two pathways enhanced cell vulnerability to copper-based nanoparticles, but not to copper ions. Furthermore, functional analyses using primary macrophages derived from bone marrow showed a decrease in reduced glutathione levels, a decrease in the mitochondrial transmembrane potential, and inhibition of phagocytosis and of lipopolysaccharide-induced nitric oxide production. However, only a fraction of these effects could be obtained with copper ions. In conclusion, this study showed that macrophage functions are significantly altered by copper-based nanoparticles. Also highlighted are the cellular pathways modulated by cells for survival and the exemplified cross-toxicities that can occur between copper-based nanoparticles and pharmacological agents. PMID:23882024

  20. Proteomics insights into DNA damage response and translating this knowledge to clinical strategies

    DEFF Research Database (Denmark)

    von Stechow, Louise; Olsen, Jesper V

    2017-01-01

    Spectrometry (MS)-based proteomics emerged as method of choice for global studies of proteins and their posttranslational modifications (PTMs). MS-based studies of the DDR have aided in delineating DNA damage-induced signalling responses. Those studies identified changes in abundance, interactions...... and modification of proteins in the context of genotoxic stress. Here we review ground-breaking MS-based proteomics studies, which analysed changes in protein abundance, protein-protein and protein-DNA interactions, phosphorylation, acetylation, ubiquitylation, SUMOylation and Poly(ADP-ribose)ylation (PARylation......Genomic instability is a critical driver in the process of cancer formation. At the same time, inducing DNA damage by irradiation or genotoxic compounds constitutes a key therapeutic strategy to kill fast-dividing cancer cells. Sensing of DNA lesions initiates a complex set of signalling pathways...

  1. Proteomics and Metabolomics of Arabidopsis Responses to Perturbation of Glucosinolate Biosynthesis

    Institute of Scientific and Technical Information of China (English)

    Ya-zhou Chen; Qiu-Ying Pang; Yan He; Ning Zhu; Isabel Branstrom; Xiu-Feng Yan; Sixue Chen

    2012-01-01

    To understand plant molecular networks of glucosinolate metabolism,perturbation of aliphatic glucosinolate biosynthesis was established using inducible RNA interference (RNAi) in Arabidopsis.Two RNAi lines were chosen for examining global protein and metabolite changes using complementary proteomics and metabolomics approaches.Proteins involved in metabolism including photosynthesis and hormone metabolism,protein binding,energy,stress,and defense showed marked responses to glucosinolate perturbation.In parallel,metabolomics revealed major changes in the levels of amino acids,carbohydrates,peptides,and hormones.The metabolomics data were correlated with the proteomics results and revealed intimate molecular connections between cellular pathways/processes and glucosinolate metabolism.This study has provided an unprecedented view of the molecular networks of glucosinolate metabolism and laid a foundation towards rationale glucosinolate engineering for enhanced defense and quality.

  2. Cytokinin modulates proteomic, transcriptomic and growth responses to temperature shocks in Arabidopsis.

    Science.gov (United States)

    Cerný, Martin; Jedelský, Petr L; Novák, Jan; Schlosser, Andreas; Brzobohatý, Břetislav

    2014-07-01

    As sessile organisms, plants must sense environmental conditions and adjust their growth and development processes accordingly, through adaptive responses regulated by various internal factors, including hormones. A key environmental factor is temperature, but temperature-sensing mechanisms are not fully understood despite intense research. We investigated proteomic responses to temperature shocks (15 min cold or heat treatments) with and without exogenous applications of cytokinin in Arabidopsis. Image and mass spectrometric analysis of the two-dimensionally separated proteins detected 139 differentially regulated spots, in which 148 proteins were identified, most of which have not been previously linked to temperature perception. More than 70% of the temperature-shock response proteins were modulated by cytokinin, mostly in a similar manner as heat shock. Data mining of previous transcriptomic datasets supported extensive interactions between temperature and cytokinin signalling. The biological significance of this finding was tested by assaying an independent growth response of Arabidopsis seedlings to heat stress: hypocotyl elongation. This response was strongly inhibited in mutants with deficiencies in cytokinin signalling or endogenous cytokinin levels. Thus, cytokinins may directly participate in heat signalling in plants. Finally, large proportions of both temperature-shock and cytokinin responsive proteomes co-localize to the chloroplast, which might therefore host a substantial proportion of the temperature response machinery.

  3. Proteomic responses of drought-tolerant and drought-sensitive cotton varieties to drought stress.

    Science.gov (United States)

    Zhang, Haiyan; Ni, Zhiyong; Chen, Quanjia; Guo, Zhongjun; Gao, Wenwei; Su, Xiujuan; Qu, Yanying

    2016-06-01

    Drought, one of the most widespread factors reducing agricultural crop productivity, affects biological processes such as development, architecture, flowering and senescence. Although protein analysis techniques and genome sequencing have made facilitated the proteomic study of cotton, information on genetic differences associated with proteomic changes in response to drought between different cotton genotypes is lacking. To determine the effects of drought stress on cotton seedlings, we used two-dimensional polyacrylamide gel electrophoresis (2-DE) and matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry to comparatively analyze proteome of drought-responsive proteins during the seedling stage in two cotton (Gossypium hirsutum L.) cultivars, drought-tolerant KK1543 and drought-sensitive Xinluzao26. A total of 110 protein spots were detected on 2-DE maps, of which 56 were identified by MALDI-TOF and MALDI-TOF/TOF mass spectrometry. The identified proteins were mainly associated with metabolism (46.4 %), antioxidants (14.2 %), and transport and cellular structure (23.2 %). Some key proteins had significantly different expression patterns between the two genotypes. In particular, 5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase, UDP-D-glucose pyrophosphorylase and ascorbate peroxidase were up-regulated in KK1543 compared with Xinluzao26. Under drought stress conditions, the vacuolar H(+)-ATPase catalytic subunit, a 14-3-3g protein, translation initiation factor 5A and pathogenesis-related protein 10 were up-regulated in KK1543, whereas ribosomal protein S12, actin, cytosolic copper/zinc superoxide dismutase, protein disulfide isomerase, S-adenosylmethionine synthase and cysteine synthase were down-regulated in Xinluzao26. This work represents the first characterization of proteomic changes that occur in response to drought in roots of cotton plants. These differentially expressed proteins may be related to

  4. Proteomic Responses in Arabidopsis thaliana Seedlings Treated with Ethylene

    Science.gov (United States)

    Ethylene (ET) is a volatile plant growth hormone that most famously modulates fruit ripening, but it also controls plant growth, development and stress responses. In Arabidopsis thaliana, ET is perceived by receptors in the endoplasmic reticulum, and a signal is transduced through a protein kinase,...

  5. Overlap of proteome changes in Medicago truncatula in response to auxin and Sinorhizobium meliloti.

    Science.gov (United States)

    van Noorden, Giel E; Kerim, Tursun; Goffard, Nicolas; Wiblin, Robert; Pellerone, Flavia I; Rolfe, Barry G; Mathesius, Ulrike

    2007-06-01

    We used proteome analysis to identify proteins induced during nodule initiation and in response to auxin in Medicago truncatula. From previous experiments, which found a positive correlation between auxin levels and nodule numbers in the M. truncatula supernodulation mutant sunn (supernumerary nodules), we hypothesized (1) that auxin mediates protein changes during nodulation and (2) that auxin responses might differ between the wild type and the supernodulating sunn mutant during nodule initiation. Increased expression of the auxin response gene GH3:beta-glucuronidase was found during nodule initiation in M. truncatula, similar to treatment of roots with auxin. We then used difference gel electrophoresis and tandem mass spectrometry to compare proteomes of wild-type and sunn mutant roots after 24 h of treatment with Sinorhizobium meliloti, auxin, or a control. We identified 131 of 270 proteins responding to treatment with S. meliloti and/or auxin, and 39 of 89 proteins differentially displayed between the wild type and sunn. The majority of proteins changed similarly in response to auxin and S. meliloti after 24 h in both genotypes, supporting hypothesis 1. Proteins differentially accumulated between untreated wild-type and sunn roots also showed changes in auxin response, consistent with altered auxin levels in sunn. However, differences between the genotypes after S. meliloti inoculation were largely not due to differential auxin responses. The role of the identified candidate proteins in nodule initiation and the requirement for their induction by auxin could be tested in future functional studies.

  6. Plant organellar proteomics in response to dehydration: turning protein repertoire into insights

    Directory of Open Access Journals (Sweden)

    DEEPTI Bhushan GUPTA

    2016-04-01

    Full Text Available Stress adaptation or tolerance in plants is a complex phenomenon involving changes in physiological and metabolic processes. Plants must develop elaborate networks of defense mechanisms, and adapt to and survive for sustainable agriculture. Water-deficit or dehydration is the most critical environmental factor that plants are exposed to during their life cycle, which influences geographical distribution and productivity of many crop species. The cellular responses to dehydration are orchestrated by a series of multidirectional relays of biochemical events at organelle level. The new challenge is to dissect the underlying mechanisms controlling the perception of stress signals and their transmission to cellular machinery for activation of adaptive responses. The completeness of current descriptions of spatial distribution of proteins, the relevance of subcellular locations in diverse functional processes, and the changes of protein abundance in response to dehydration hold the key to understanding how plants cope with such stress conditions. During past decades, organellar proteomics has proved to be useful not only for deciphering reprograming of plant responses to dehydration, but also to dissect stress-responsive pathways. This review summarizes a range of organellar proteomics investigations under dehydration to gain a holistic view of plant responses to water-deficit conditions, which may facilitate future efforts to develop genetically engineered crops for better adaptation.

  7. Plant Organellar Proteomics in Response to Dehydration: Turning Protein Repertoire into Insights.

    Science.gov (United States)

    Gupta, Deepti B; Rai, Yogita; Gayali, Saurabh; Chakraborty, Subhra; Chakraborty, Niranjan

    2016-01-01

    Stress adaptation or tolerance in plants is a complex phenomenon involving changes in physiological and metabolic processes. Plants must develop elaborate networks of defense mechanisms, and adapt to and survive for sustainable agriculture. Water-deficit or dehydration is the most critical environmental factor that plants are exposed to during their life cycle, which influences geographical distribution and productivity of many crop species. The cellular responses to dehydration are orchestrated by a series of multidirectional relays of biochemical events at organelle level. The new challenge is to dissect the underlying mechanisms controlling the perception of stress signals and their transmission to cellular machinery for activation of adaptive responses. The completeness of current descriptions of spatial distribution of proteins, the relevance of subcellular locations in diverse functional processes, and the changes of protein abundance in response to dehydration hold the key to understanding how plants cope with such stress conditions. During past decades, organellar proteomics has proved to be useful not only for deciphering reprograming of plant responses to dehydration, but also to dissect stress-responsive pathways. This review summarizes a range of organellar proteomics investigations under dehydration to gain a holistic view of plant responses to water-deficit conditions, which may facilitate future efforts to develop genetically engineered crops for better adaptation.

  8. Proteomic Analysis of Tomato Seedlings Response to Salt Stress

    Institute of Scientific and Technical Information of China (English)

    Xue Zhao; Feng Han; Shihua Shen

    2012-01-01

    The two species (Solanum pimpinellifolium-PI and S.lycopersicum-MM) of tomato showed marked differences in their responses to NaCI stress.PI appeared to be more tolerant to salt than MM.Comparative two-dimensional electrophoresis revealed that 187 and 110 protein spots were differentially expressed in the roots of PI and MM,respectively,in response to salt stress.Out of these spots,a total of 96 and 61 proteins were identified by MALDI-TOF MS analysis.The proteins identified included many previously characterized stress-responsive proteins and others related to processes including scavenging for reactive species; metabolism of energy,signal transduction; protein synthesis,cell growth and differentiation et al.The role of some of the proteins involved in the antioxidant defense mechanism,ion transport and compartmentalization of ions,and cell signaling pathways were discussed.Collectively,this work suggest that PI has more efficient antioxidant and defense machinery than MM,and that this is important for adapting to salt stress and for withstanding the oxidative stress imposed by high salt levels.

  9. Transcriptional and Proteomic Profiling of Aspergillus flavipes in Response to Sulfur Starvation.

    Directory of Open Access Journals (Sweden)

    Ashraf S A El-Sayed

    Full Text Available Aspergillus flavipes has received considerable interest due to its potential to produce therapeutic enzymes involved in sulfur amino acid metabolism. In natural habitats, A. flavipes survives under sulfur limitations by mobilizing endogenous and exogenous sulfur to operate diverse cellular processes. Sulfur limitation affects virulence and pathogenicity, and modulates proteome of sulfur assimilating enzymes of several fungi. However, there are no previous reports aimed at exploring effects of sulfur limitation on the regulation of A. flavipes sulfur metabolism enzymes at the transcriptional, post-transcriptional and proteomic levels. In this report, we show that sulfur limitation affects morphological and physiological responses of A. flavipes. Transcription and enzymatic activities of several key sulfur metabolism genes, ATP-sulfurylase, sulfite reductase, methionine permease, cysteine synthase, cystathionine β- and γ-lyase, glutathione reductase and glutathione peroxidase were increased under sulfur starvation conditions. A 50 kDa protein band was strongly induced by sulfur starvation, and the proteomic analyses of this protein band using LC-MS/MS revealed similarity to many proteins involved in the sulfur metabolism pathway.

  10. [Heat-responsive mechanisms in plants revealed by proteomic analysis: A review].

    Science.gov (United States)

    Liu, Jun-ming; Zhao, Qi; Yin, Ze-peng; Xu, Chen-xi; Wang, Quan-hua; Dai, Shao-jun

    2015-08-01

    Heat stress is a major abiotic stress that limits plant growth and productivity. In recent years, proteomic investigations provide more information for understanding the sophisticated heat-responsive molecular mechanism in plants at systematic biological level. The heat-responsive proteomic patterns in several plants, i. e., model plants (Arabidopsis thaliana), staple food crops (soybean, rice and wheat), heat-tolerant plants (Agrostis stolonifera, Portulaca oleracea, and Carissa spinarum), grapevine, Populus euphratica, Medicago sativa, and Pinellia ternate, were reported. A total of 838 heat-responsive proteins have been identified in these studies. Among them, 534 proteins were induced and the expression of 304 proteins was reduced in plants under heat stress. In this paper, the diverse protein patterns in plants under various heat stress conditions (30-45 °C for 0-10 d) were analyzed integratively. This provided new evidences and clues for further interpreting the signaling and metabolic pathways, e.g., signaling, stress and defense, carbohydrate and energy metabolism, photosynthesis, transcription, protein synthesis and fate, membrane and transport, in heat-responsive networks, and laid a foundation for a holistic understanding of the molecular regulatory mechanism in plants in response to heat stress.

  11. Proteomic profile of the Bradysia odoriphaga in response to the microbial secondary metabolite benzothiazole.

    Science.gov (United States)

    Zhao, Yunhe; Cui, Kaidi; Xu, Chunmei; Wang, Qiuhong; Wang, Yao; Zhang, Zhengqun; Liu, Feng; Mu, Wei

    2016-11-24

    Benzothiazole, a microbial secondary metabolite, has been demonstrated to possess fumigant activity against Sclerotinia sclerotiorum, Ditylenchus destructor and Bradysia odoriphaga. However, to facilitate the development of novel microbial pesticides, the mode of action of benzothiazole needs to be elucidated. Here, we employed iTRAQ-based quantitative proteomics analysis to investigate the effects of benzothiazole on the proteomic expression of B. odoriphaga. In response to benzothiazole, 92 of 863 identified proteins in B. odoriphaga exhibited altered levels of expression, among which 14 proteins were related to the action mechanism of benzothiazole, 11 proteins were involved in stress responses, and 67 proteins were associated with the adaptation of B. odoriphaga to benzothiazole. Further bioinformatics analysis indicated that the reduction in energy metabolism, inhibition of the detoxification process and interference with DNA and RNA synthesis were potentially associated with the mode of action of benzothiazole. The myosin heavy chain, succinyl-CoA synthetase and Ca(+)-transporting ATPase proteins may be related to the stress response. Increased expression of proteins involved in carbohydrate metabolism, energy production and conversion pathways was responsible for the adaptive response of B. odoriphaga. The results of this study provide novel insight into the molecular mechanisms of benzothiazole at a large-scale translation level and will facilitate the elucidation of the mechanism of action of benzothiazole.

  12. Proteomics of Arabidopsis redox proteins in response to methyl jasmonate.

    Science.gov (United States)

    Alvarez, Sophie; Zhu, Mengmeng; Chen, Sixue

    2009-11-02

    Protein redox regulation is increasingly recognized as an important switch of protein activity in yeast, bacteria, mammals and plants. In this study, we identified proteins with potential thiol switches involved in jasmonate signaling, which is essential for plant defense. Methyl jasmonate (MeJA) treatment led to enhanced production of hydrogen peroxide in Arabidopsis leaves and roots, indicating in vivo oxidative stress. With monobromobimane (mBBr) labeling to capture oxidized sulfhydryl groups and 2D gel separation, a total of 35 protein spots that displayed significant redox and/or total protein expression changes were isolated. Using LC-MS/MS, the proteins in 33 spots were identified in both control and MeJA-treated samples. By comparative analysis of mBBr and SyproRuby gel images, we were able to determine many proteins that were redox responsive and proteins that displayed abundance changes in response to MeJA. Interestingly, stress and defense proteins constitute a large group that responded to MeJA. In addition, many cysteine residues involved in the disulfide dynamics were mapped based on tandem MS data. Identification of redox proteins and their cysteine residues involved in the redox regulation allows for a deeper understanding of the jasmonate signaling networks.

  13. Interclonal proteomic responses to predator exposure in Daphnia magna may depend on predator composition of habitats.

    Science.gov (United States)

    Otte, Kathrin A; Schrank, Isabella; Fröhlich, Thomas; Arnold, Georg J; Laforsch, Christian

    2015-08-01

    Phenotypic plasticity, the ability of one genotype to express different phenotypes in response to changing environmental conditions, is one of the most common phenomena characterizing the living world and is not only relevant for the ecology but also for the evolution of species. Daphnia, the water flea, is a textbook example for predator-induced phenotypic plastic defences; however, the analysis of molecular mechanisms underlying these inducible defences is still in its early stages. We exposed Daphnia magna to chemical cues of the predator Triops cancriformis to identify key processes underlying plastic defensive trait formation. To get a more comprehensive idea of this phenomenon, we studied four genotypes with five biological replicates each, originating from habitats characterized by different predator composition, ranging from predator-free habitats to habitats containing T. cancriformis. We analysed the morphologies as well as proteomes of predator-exposed and control animals. Three genotypes showed morphological changes when the predator was present. Using a high-throughput proteomics approach, we found 294 proteins which were significantly altered in their abundance after predator exposure in a general or genotype-dependent manner. Proteins connected to genotype-dependent responses were related to the cuticle, protein synthesis and calcium binding, whereas the yolk protein vitellogenin increased in abundance in all genotypes, indicating their involvement in a more general response. Furthermore, genotype-dependent responses at the proteome level were most distinct for the only genotype that shares its habitat with Triops. Altogether, our study provides new insights concerning genotype-dependent and general molecular processes involved in predator-induced phenotypic plasticity in D. magna. © 2015 John Wiley & Sons Ltd.

  14. Comparative proteomic analysis provides insight into cadmium stress responses in brown algae Sargassum fusiforme

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Aiqin; Xu, Tao [Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Key Laboratory of Saline–alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin 150040 (China); Zou, Huixi [Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035 (China); Pang, Qiuying, E-mail: qiuying@nefu.edu.cn [Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Key Laboratory of Saline–alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin 150040 (China)

    2015-06-15

    Highlights: • Proteomic analysis of brown algae response different level Cd stress was performed. • Proteins involved in carbohydrate metabolism were reduced under 1 day Cd stress. • 5 days Cd stress induced glycolysis and citrate cycle related proteins. • Graphic depiction of different metabolic pathways response to Cd stress was framed. - Abstract: Sargassum fusiforme is one of the most widely consumed seaweeds in China, Korea and Japan. In this work, we performed growth analysis and comparative proteomics to investigate the molecular mechanisms of the response to 1 day and 5 days Cd stress in S. fusiforme. Our results showed a significant decrease in growth rate and an increase in Cd ion content in S. fusiforme in response to Cd treatment. Comparative proteomic analysis revealed 25 and 51 differentially expressed protein spots in S. fusiforme under 1 day and 5 days Cd stress, respectively. A great number of these proteins was metabolic enzymes involved in carbohydrate metabolism and energy metabolism. Many proteins involved in the processing of genetic information showed a decrease in abundance under 1 day Cd stress. In contrast, 9 of the identified protein spots primarily involved in genetic information processing and carbohydrate metabolism were greatly enriched under 5 days Cd stress. Overall, our investigation indicated that Cd stress negatively affects the metabolic activity of S. fusiforme through the down-regulation of key metabolic enzymes. In addition, S. fusiforme may adapt to 5 days Cd stress by promoting consumption of photoassimilates through the up-regulation of glycolysis and the citrate cycle to supply energy for survival.

  15. Tumor Necrosis Factor-α -and Interleukin-1-Induced Cellular Responses: Coupling Proteomic and Genomic Information

    Science.gov (United States)

    Ott, Lee W.; Resing, Katheryn A.; Sizemore, Alecia W.; Heyen, Joshua W.; Cocklin, Ross R.; Pedrick, Nathan M.; Woods, H. Cary; Chen, Jake Y.; Goebl, Mark G.; Witzmann, Frank A.; Harrington, Maureen A.

    2010-01-01

    The pro-inflammatory cytokines, Tumor Necrosis Factor-alpha (TNFα) and Interleukin-1 (IL-1) mediate the innate immune response. Dysregulation of the innate immune response contributes to the pathogenesis of cancer, arthritis, and congestive heart failure. TNFα- and IL-1-induced changes in gene expression are mediated by similar transcription factors; however, TNFα and IL-1 receptor knock-out mice differ in their sensitivities to a known initiator (lipopolysaccharide, LPS) of the innate immune response. The contrasting responses to LPS indicate that TNFα and IL-1 regulate different processes. A large-scale proteomic analysis of TNFα- and IL-1-induced responses was undertaken to identify processes uniquely regulated by TNFα and IL-1. When combined with genomic studies, our results indicate that TNFα, but not IL-1, mediates cell cycle arrest. PMID:17503796

  16. Tumor Necrosis Factor-alpha- and interleukin-1-induced cellular responses: coupling proteomic and genomic information.

    Science.gov (United States)

    Ott, Lee W; Resing, Katheryn A; Sizemore, Alecia W; Heyen, Joshua W; Cocklin, Ross R; Pedrick, Nathan M; Woods, H Cary; Chen, Jake Y; Goebl, Mark G; Witzmann, Frank A; Harrington, Maureen A

    2007-06-01

    The pro-inflammatory cytokines, Tumor Necrosis Factor-alpha (TNFalpha) and Interleukin-1 (IL-1) mediate the innate immune response. Dysregulation of the innate immune response contributes to the pathogenesis of cancer, arthritis, and congestive heart failure. TNFalpha- and IL-1-induced changes in gene expression are mediated by similar transcription factors; however, TNFalpha and IL-1 receptor knock-out mice differ in their sensitivities to a known initiator (lipopolysaccharide, LPS) of the innate immune response. The contrasting responses to LPS indicate that TNFalpha and IL-1 regulate different processes. A large-scale proteomic analysis of TNFalpha- and IL-1-induced responses was undertaken to identify processes uniquely regulated by TNFalpha and IL-1. When combined with genomic studies, our results indicate that TNFalpha, but not IL-1, mediates cell cycle arrest.

  17. Identification of altered plasma proteins by proteomic study in valvular heart diseases and the potential clinical significance.

    Directory of Open Access Journals (Sweden)

    Ge Gao

    Full Text Available BACKGROUND: Little is known about genetic basis and proteomics in valvular heart disease (VHD including rheumatic (RVD and degenerative (DVD valvular disease. The present proteomic study examined the hypothesis that certain proteins may be associated with the pathological changes in the plasma of VHD patients. METHODS AND RESULTS: Differential protein analysis in the plasma identified 18 differentially expressed protein spots and 14 corresponding proteins or polypeptides by two-dimensional electrophoresis and mass spectrometry in 120 subjects. Two up-regulated (complement C4A and carbonic anhydrase 1 and three down-regulated proteins (serotransferrin, alpha-1-antichymotrypsin, and vitronectin were validated by ELISA in enlarging samples. The plasma levels (n = 40 for each of complement C4A in RVD (715.8±35.6 vs. 594.7±28.2 ng/ml, P = 0.009 and carbonic anhydrase 1 (237.70±15.7 vs. 184.7±10.8 U/L, P = 0.007 in DVD patients were significantly higher and that of serotransferrin (2.36±0.20 vs. 2.93±0.16 mg/ml, P = 0.025 and alpha-1-antichymotrypsin (370.0±13.7 vs. 413.0±11.6 µg/ml, P = 0.019 in RVD patients were significantly lower than those in controls. The plasma vitronectin level in both RVD (281.3±11.0 vs. 323.2±10.0 µg/ml, P = 0.006 and DVD (283.6±11.4 vs. 323.2±10.0 µg/ml, P = 0.011 was significantly lower than those in normal controls. CONCLUSIONS: We have for the first time identified alterations of 14 differential proteins or polypeptides in the plasma of patients with various VHD. The elevation of plasma complement C4A in RVD and carbonic anhydrase 1 in DVD and the decrease of serotransferrin and alpha-1-antichymotrypsin in RVD patients may be useful biomarkers for these valvular diseases. The decreased plasma level of vitronectin - a protein related to the formation of valvular structure - in both RVD and DVD patients might indicate the possible genetic deficiency in these patients.

  18. Responses of the Emiliania huxleyi proteome to ocean acidification.

    Science.gov (United States)

    Jones, Bethan M; Iglesias-Rodriguez, M Debora; Skipp, Paul J; Edwards, Richard J; Greaves, Mervyn J; Young, Jeremy R; Elderfield, Henry; O'Connor, C David

    2013-01-01

    Ocean acidification due to rising atmospheric CO2 is expected to affect the physiology of important calcifying marine organisms, but the nature and magnitude of change is yet to be established. In coccolithophores, different species and strains display varying calcification responses to ocean acidification, but the underlying biochemical properties remain unknown. We employed an approach combining tandem mass-spectrometry with isobaric tagging (iTRAQ) and multiple database searching to identify proteins that were differentially expressed in cells of the marine coccolithophore species Emiliania huxleyi (strain NZEH) between two CO2 conditions: 395 (∼current day) and ∼1340 p.p.m.v. CO2. Cells exposed to the higher CO2 condition contained more cellular particulate inorganic carbon (CaCO3) and particulate organic nitrogen and carbon than those maintained in present-day conditions. These results are linked with the observation that cells grew slower under elevated CO2, indicating cell cycle disruption. Under high CO2 conditions, coccospheres were larger and cells possessed bigger coccoliths that did not show any signs of malformation compared to those from cells grown under present-day CO2 levels. No differences in calcification rate, particulate organic carbon production or cellular organic carbon: nitrogen ratios were observed. Results were not related to nutrient limitation or acclimation status of cells. At least 46 homologous protein groups from a variety of functional processes were quantified in these experiments, of which four (histones H2A, H3, H4 and a chloroplastic 30S ribosomal protein S7) showed down-regulation in all replicates exposed to high CO2, perhaps reflecting the decrease in growth rate. We present evidence of cellular stress responses but proteins associated with many key metabolic processes remained unaltered. Our results therefore suggest that this E. huxleyi strain possesses some acclimation mechanisms to tolerate future CO2 scenarios

  19. Deciphering the iron response in Acinetobacter baumannii: A proteomics approach.

    Science.gov (United States)

    Nwugo, Chika C; Gaddy, Jennifer A; Zimbler, Daniel L; Actis, Luis A

    2011-01-01

    Iron is an essential nutrient that plays a role in bacterial differential gene expression and protein production. Accordingly, the comparative analysis of total lysate and outer membrane fractions isolated from A. baumannii ATCC 19606(T) cells cultured under iron-rich and -chelated conditions using 2-D gel electrophoresis-mass spectrometry resulted in the identification of 58 protein spots differentially produced. While 19 and 35 of them represent iron-repressed and iron-induced protein spots, respectively, four other spots represent a metal chelation response unrelated to iron. Most of the iron-repressed protein spots represent outer membrane siderophore receptors, some of which could be involved in the utilization of siderophores produced by other bacteria. The iron-induced protein spots represent a wide range of proteins including those involved in iron storage, such as Bfr, metabolic and energy processes, such as AcnA, AcnB, GlyA, SdhA, and SodB, as well as lipid biosynthesis. The detection of an iron-regulated Hfq ortholog indicates that iron regulation in this bacterium could be mediated by Fur and small RNAs as described in other bacteria. The iron-induced production of OmpA suggests this protein plays a role in iron metabolism as shown by the diminished ability of an isogenic OmpA deficient derivative to grow under iron-chelated conditions.

  20. Toxicological proteomic responses of halophyte Suaeda salsa to lead and zinc.

    Science.gov (United States)

    Liu, Xiaoli; Shen, Xuejiao; Lai, Yongkai; Ji, Kang; Sun, Hushan; Wang, Yiyan; Hou, Chengzong; Zou, Ning; Wan, Junli; Yu, Junbao

    2016-12-01

    The long term (30 days) toxicological effects of environmentally relevant concentrations of Pb(2+) (20μg/L) and Zn(2+) (100μg/L) were characterized in Suaeda salsa using proteomics techniques. The responsive proteins were related to metabolism (Krebs cycle and Calvin cycle), protein biosynthesis, stress and defense, energy, signaling pathway and photosynthesis in Pb(2+), Zn(2+) and Pb(2+)+ Zn(2+) exposed groups in S. salsa after exposures for 30 days. The proteomic profiles also showed differential responses in S. salsa to metal exposures. In Pb(2+)-treated group, the proteins were categorized into cystein metabolism and pentose phosphate pathway. The responsive proteins were basically involved in glutathione metabolism, glycolysis, cystein and methane metabolism, and voltage-dependent anion channel in Zn(2+)-treated group. In Pb(2+)+ Zn(2+)-treated group, the proecular mechanism at protein level remtein responses were devided into tyrosine metabolism and glycolysis. Our results showed that the two typical heavy metals, lead and zinc, could induce toxicological effects in halophyte S. salsa at protein level.

  1. Morphological and proteomic responses of Eruca sativa exposed to silver nanoparticles or silver nitrate.

    Science.gov (United States)

    Vannini, Candida; Domingo, Guido; Onelli, Elisabetta; Prinsi, Bhakti; Marsoni, Milena; Espen, Luca; Bracale, Marcella

    2013-01-01

    Silver nanoparticles (AgNPs) are widely used in commercial products, and there are growing concerns about their impact on the environment. Information about the molecular interaction of AgNPs with plants is lacking. To increase our understanding of the mechanisms involved in plant responses to AgNPs and to differentiate between particle specific and ionic silver effects we determined the morphological and proteomic changes induced in Eruca sativa (commonly called rocket) in response to AgNPs or AgNO3. Seedlings were treated for 5 days with different concentrations of AgNPs or AgNO3. A similar increase in root elongation was observed when seedlings were exposed to 10 mg Ag L(1) of either PVP-AgNPs or AgNO3. At this concentration we performed electron microscopy investigations and 2-dimensional electrophoresis (2DE) proteomic profiling. The low level of overlap of differentially expressed proteins indicates that AgNPs and AgNO3 cause different plant responses. Both Ag treatments cause changes in proteins involved in the redox regulation and in the sulfur metabolism. These responses could play an important role to maintain cellular homeostasis. Only the AgNP exposure cause the alteration of some proteins related to the endoplasmic reticulum and vacuole indicating these two organelles as targets of the AgNPs action. These data add further evidences that the effects of AgNPs are not simply due to the release of Ag ions.

  2. Morphological and proteomic responses of Eruca sativa exposed to silver nanoparticles or silver nitrate.

    Directory of Open Access Journals (Sweden)

    Candida Vannini

    Full Text Available Silver nanoparticles (AgNPs are widely used in commercial products, and there are growing concerns about their impact on the environment. Information about the molecular interaction of AgNPs with plants is lacking. To increase our understanding of the mechanisms involved in plant responses to AgNPs and to differentiate between particle specific and ionic silver effects we determined the morphological and proteomic changes induced in Eruca sativa (commonly called rocket in response to AgNPs or AgNO3. Seedlings were treated for 5 days with different concentrations of AgNPs or AgNO3. A similar increase in root elongation was observed when seedlings were exposed to 10 mg Ag L(1 of either PVP-AgNPs or AgNO3. At this concentration we performed electron microscopy investigations and 2-dimensional electrophoresis (2DE proteomic profiling. The low level of overlap of differentially expressed proteins indicates that AgNPs and AgNO3 cause different plant responses. Both Ag treatments cause changes in proteins involved in the redox regulation and in the sulfur metabolism. These responses could play an important role to maintain cellular homeostasis. Only the AgNP exposure cause the alteration of some proteins related to the endoplasmic reticulum and vacuole indicating these two organelles as targets of the AgNPs action. These data add further evidences that the effects of AgNPs are not simply due to the release of Ag ions.

  3. Proteomic analysis of date palm (Phoenix dactylifera L.) responses to endophytic colonization by entomopathogenic fungi.

    Science.gov (United States)

    Gómez-Vidal, Sonia; Salinas, Jesús; Tena, Manuel; Lopez-Llorca, Luis Vicente

    2009-09-01

    The entomopathogenic fungi Beauveria bassiana, Lecanicillium dimorphum and L. cf. psalliotae can survive and colonize living palm tissue as endophytes. The molecular interaction between these biocontrol agent fungi and the date palm Phoenix dactylifera L. was investigated using proteomic techniques. Field date palms inoculated with these fungi were analyzed 15 and 30 days after inoculation in two independent bioassays. In vitro date palms were also inoculated with B. bassiana or L. cf. psalliotae. Qualitative and quantitative differences in protein accumulation between controls (not inoculated) and inoculated palms were found using 2-DE analysis, and some of these responsive proteins could be identified using MALDI/TOF-TOF. Proteins involved in plant defence or stress response were induced in P. dactylifera leaves as a response to endophytic colonization by entomopathogenic fungi in field date palms. Proteins related with photosynthesis and energy metabolism were also affected by entomopathogenic fungi colonization. A myosin heavy chain-like protein was accumulated in in vitro palms inoculated with these fungi. This suggests that endophytic colonization by these entomopathogenic fungi modulates plant defence responses and energy metabolism in field date palms and possibly modulates the expression of cell division-related proteins in in vitro palms at proteomic level.

  4. The proteomic response of Arabidopsis thaliana to cadmium sulfide quantum dots, and its correlation with the transcriptomic response

    Directory of Open Access Journals (Sweden)

    Marta eMarmiroli

    2015-12-01

    Full Text Available A fuller understanding of the interaction between plants and engineered nanomaterials is of topical relevance because the latter are beginning to find applications in agriculture and the food industry. There is a growing need to establish objective safety criteria for their use. The recognition of two independent Arabidopsis thaliana mutants displaying a greater level of tolerance than the wild type plant to exposure to cadmium sulfide quantum dots (CdS QDs has offered the opportunity to characterize the tolerance response at the physiological, transcriptomic and proteomic levels. Here, a proteomics-based comparison confirmed the conclusions drawn from an earlier transcriptomic analysis that the two mutants responded to CdS QD exposure differently both to the wild type and to each other. Just over half of the proteomic changes mirrored documented changes at the level of gene transcription, but a substantial number of transcript/gene product pairs were altered in the opposite direction. An interpretation of the discrepancies is given, along with some considerations regarding the use and significance of -omics when monitoring the potential toxicity of ENMs for health and environment.

  5. Proteomic profile of the plant-pathogenic oomycete Phytophthora capsici in response to the fungicide pyrimorph.

    Science.gov (United States)

    Pang, Zhili; Chen, Lei; Miao, Jianqiang; Wang, Zhiwen; Bulone, Vincent; Liu, Xili

    2015-09-01

    Pyrimorph is a novel fungicide from the carboxylic acid amide (CAA) family used to control plant-pathogenic oomycetes such as Phytophthora capsici. The proteomic response of P. capsici to pyrimorph was investigated using the iTRAQ technology to determine the target site of the fungicide and potential biomarker candidates of drug efficacy. A total of 1336 unique proteins were identified from the mycelium of wild-type P. capsici isolate (Hd3) and two pyrimorph-resistant mutants (R3-1 and R3-2) grown in the presence or absence of pyrimorph. Comparative analysis revealed that the three P. capsici isolates Hd3, R3-1, and R3-2 produced 163, 77, and 13 unique proteins, respectively, which exhibited altered levels of abundance in response to the pyrimorph treatment. Further investigations, using Cluster of Orthologous Groups of Proteins (COG) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis identified 35 proteins related to the mode of action of pyrimorph against P. capsici and 62 proteins involved in the stress response of P. capsici to pyrimorph. Many of the proteins with altered expression were associated with glucose and energy metabolism. Biochemical analysis using d-[U-(14) C]glucose verified the proteomics data, suggesting that the major mode of action of pyrimorph in P. capsici is the inhibition of cell wall biosynthesis. These results also illustrate that proteomics approaches are useful tools for determining the pathways targeted by novel fungicides as well as for evaluating the tolerance of plant pathogens to environmental challenges, such as the presence of fungicides.

  6. Proteomic analysis of S-nitrosylated proteins in Arabidopsis thaliana undergoing hypersensitive response

    DEFF Research Database (Denmark)

    Romero-Puertas, Maria C; Campostrini, Natascia; Mattè, Alessandro

    2008-01-01

    metabolism, signaling and antioxidant defense. The study of the effects of S-nitrosylation on the activity of the identified proteins and its role during the execution of the disease resistance response will help to understand S-nitrosylation function and significance in plants....... is the identification of the proteins that are subjected to this PTM. By using a proteomic approach involving 2-DE and MS we characterized, for the first time, changes in S-nitrosylated proteins in Arabidopsis thaliana undergoing HR. The 16 S-nitrosylated proteins identified are mostly enzymes serving intermediary...

  7. Novel aspects of grapevine response to phytoplasma infection investigated by a proteomic and phospho-proteomic approach with data integration into functional networks

    Directory of Open Access Journals (Sweden)

    Margaria Paolo

    2013-01-01

    Full Text Available Abstract Background Translational and post-translational protein modifications play a key role in the response of plants to pathogen infection. Among the latter, phosphorylation is critical in modulating protein structure, localization and interaction with other partners. In this work, we used a multiplex staining approach with 2D gels to study quantitative changes in the proteome and phosphoproteome of Flavescence dorée-affected and recovered ‘Barbera’ grapevines, compared to healthy plants. Results We identified 48 proteins that differentially changed in abundance, phosphorylation, or both in response to Flavescence dorée phytoplasma infection. Most of them did not show any significant difference in recovered plants, which, by contrast, were characterized by changes in abundance, phosphorylation, or both for 17 proteins not detected in infected plants. Some enzymes involved in the antioxidant response that were up-regulated in infected plants, such as isocitrate dehydrogenase and glutathione S-transferase, returned to healthy-state levels in recovered plants. Others belonging to the same functional category were even down-regulated in recovered plants (oxidoreductase GLYR1 and ascorbate peroxidase. Our proteomic approach thus agreed with previously published biochemical and RT-qPCR data which reported down-regulation of scavenging enzymes and accumulation of H2O2 in recovered plants, possibly suggesting a role for this molecule in remission from infection. Fifteen differentially phosphorylated proteins (| ratio | > 2, p  Conclusions Proteomic data were integrated into biological networks and their interactions were represented through a hypothetical model, showing the effects of protein modulation on primary metabolic ways and related secondary pathways. By following a multiplex-staining approach, we obtained new data on grapevine proteome pathways that specifically change at the phosphorylation level during phytoplasma infection

  8. Comparative Proteomics Provides Insights into Metabolic Responses in Rat Liver to Isolated Soy and Meat Proteins.

    Science.gov (United States)

    Song, Shangxin; Hooiveld, Guido J; Zhang, Wei; Li, Mengjie; Zhao, Fan; Zhu, Jing; Xu, Xinglian; Muller, Michael; Li, Chunbao; Zhou, Guanghong

    2016-04-01

    It has been reported that isolated dietary soy and meat proteins have distinct effects on physiology and liver gene expression, but the impact on protein expression responses are unknown. Because these may differ from gene expression responses, we investigated dietary protein-induced changes in liver proteome. Rats were fed for 1 week semisynthetic diets that differed only regarding protein source; casein (reference) was fully replaced by isolated soy, chicken, fish, or pork protein. Changes in liver proteome were measured by iTRAQ labeling and LC-ESI-MS/MS. A robust set totaling 1437 unique proteins was identified and subjected to differential protein analysis and biological interpretation. Compared with casein, all other protein sources reduced the abundance of proteins involved in fatty acid metabolism and Pparα signaling pathway. All dietary proteins, except chicken, increased oxidoreductive transformation reactions but reduced energy and essential amino acid metabolic pathways. Only soy protein increased the metabolism of sulfur-containing and nonessential amino acids. Soy and fish proteins increased translation and mRNA processing, whereas only chicken protein increased TCA cycle but reduced immune responses. These findings were partially in line with previously reported transcriptome results. This study further shows the distinct effects of soy and meat proteins on liver metabolism in rats.

  9. Proteomic analysis of the Mexican lime tree response to "Candidatus Phytoplasma aurantifolia" infection.

    Science.gov (United States)

    Taheri, Farzan; Nematzadeh, Ghorbanali; Zamharir, Maryam Ghayeb; Nekouei, Mojtaba Khayam; Naghavi, Mohammadreza; Mardi, Mohsen; Salekdeh, Ghasem Hosseini

    2011-11-01

    "Candidatus Phytoplasma aurantifolia" is the causative agent of witches' broom disease in the Mexican lime tree (Citrus aurantifolia L.), and is responsible for major tree losses in Southern Iran and Oman. The pathogen is strictly biotrophic, and, therefore, completely dependent on living host cells for its survival. The molecular basis of compatibility and disease development in this system is poorly understood. We applied a proteomics approach to analyse gene expression in Mexican limes infected with "Ca. Phytoplasma aurantifolia". Leaf samples were collected from healthy and infected plants and were analysed using 2-DE coupled with MS. Among 800 leaf proteins that were detected reproducibly in eight biological replicates of healthy and eight biological replicates of infected plants, 55 showed a significant response to the disease. MS resulted in identification of 39 regulated proteins, which included proteins that were involved in oxidative stress defence, photosynthesis, metabolism, and the stress response. Our results provide the first proteomic view of the molecular basis of the infection process and identify genes that could help inhibit the effects of the pathogen. This journal is © The Royal Society of Chemistry 2011

  10. Medicago truncatula root nodule proteome analysis reveals differential plant and bacteroid responses to drought stress.

    Science.gov (United States)

    Larrainzar, Estíbaliz; Wienkoop, Stefanie; Weckwerth, Wolfram; Ladrera, Rubén; Arrese-Igor, Cesar; González, Esther M

    2007-07-01

    Drought is one of the environmental factors most affecting crop production. Under drought, symbiotic nitrogen fixation is one of the physiological processes to first show stress responses in nodulated legumes. This inhibition process involves a number of factors whose interactions are not yet understood. This work aims to further understand changes occurring in nodules under drought stress from a proteomic perspective. Drought was imposed on Medicago truncatula 'Jemalong A17' plants grown in symbiosis with Sinorhizobium meliloti strain 2011. Changes at the protein level were analyzed using a nongel approach based on liquid chromatography coupled to tandem mass spectrometry. Due to the complexity of nodule tissue, the separation of plant and bacteroid fractions in M. truncatula root nodules was first checked with the aim of minimizing cross contamination between the fractions. Second, the protein plant fraction of M. truncatula nodules was profiled, leading to the identification of 377 plant proteins, the largest description of the plant nodule proteome so far. Third, both symbiotic partners were independently analyzed for quantitative differences at the protein level during drought stress. Multivariate data mining allowed for the classification of proteins sets that were involved in drought stress responses. The isolation of the nodule plant and bacteroid protein fractions enabled the independent analysis of the response of both counterparts, gaining further understanding of how each symbiotic member is distinctly affected at the protein level under a water-deficit situation.

  11. Comparative Proteomic Analysis of Paulownia fortunei Response to Phytoplasma Infection with Dimethyl Sulfate Treatment

    Directory of Open Access Journals (Sweden)

    Zhen Wei

    2017-01-01

    Full Text Available Paulownia fortunei is a widely cultivated economic forest tree species that is susceptible to infection with phytoplasma, resulting in Paulownia witches’ broom (PaWB disease. Diseased P. fortunei is characterized by stunted growth, witches’ broom, shortened internodes, and etiolated and smaller leaves. To understand the molecular mechanism of its pathogenesis, we applied isobaric tags for relative and absolute quantitation (iTRAQ and liquid chromatography coupled with tandem mass spectrometry approaches to study changes in the proteomes of healthy P. fortunei, PaWB-infected P. fortunei, and PaWB-infected P. fortunei treated with 15 mg·L−1 or 75 mg·L−1 dimethyl sulfate. We identified 2969 proteins and 104 and 32 differentially abundant proteins that were phytoplasma infection responsive and dimethyl sulfate responsive, respectively. Based on our analysis of the different proteomes, 27 PaWB-related proteins were identified. The protein-protein interactions of these 27 proteins were analyzed and classified into four groups (photosynthesis-related, energy-related, ribosome-related, and individual proteins. These PaWB-related proteins may help in developing a deeper understanding of how PaWB affects the morphological characteristics of P. fortunei and further establish the mechanisms involved in the response of P. fortunei to phytoplasma.

  12. Proteomic analysis of Arabidopsis thaliana (L.) Heynh responses to a generalist sucking pest (Myzus persicae Sulzer).

    Science.gov (United States)

    Truong, D-H; Bauwens, J; Delaplace, P; Mazzucchelli, G; Lognay, G; Francis, F

    2015-11-01

    Herbivorous insects can cause severe cellular changes to plant foliage following infestations, depending on feeding behaviour. Here, a proteomic study was conducted to investigate the influence of green peach aphid (Myzus persicae Sulzer) as a polyphagous pest on the defence response of Arabidopsis thaliana (L.) Heynh after aphid colony establishment on the host plant (3 days). Analysis of about 574 protein spots on 2-DE gels revealed 31 differentially expressed protein spots. Twenty out of these 31 differential proteins were selected for analysis by mass spectrometry. In 12 of the 20 analysed spots, we identified seven and nine proteins using MALDI-TOF-MS and LC-ESI-MS/MS, respectively. Of the analysed spots, 25% contain two proteins. Different metabolic pathways were modulated in Arabidopsis leaves according to aphid feeding: most corresponded to carbohydrate, amino acid and energy metabolism, photosynthesis, defence response and translation. This paper has established a survey of early alterations induced in the proteome of Arabidopsis by M. persicae aphids. It provides valuable insights into the complex responses of plants to biological stress, particularly for herbivorous insects with sucking feeding behaviour.

  13. iTRAQ-Based Quantitative Proteomic Analysis of Spirulina platensis in Response to Low Temperature Stress.

    Science.gov (United States)

    Li, Qingye; Chang, Rong; Sun, Yijun; Li, Bosheng

    2016-01-01

    Low temperature (LT) is one of the most important abiotic stresses that can significantly reduce crop yield. To gain insight into how Spirulina responds to LT stress, comprehensive physiological and proteomic analyses were conducted in this study. Significant decreases in growth and pigment levels as well as excessive accumulation of compatible osmolytes were observed in response to LT stress. An isobaric tag for relative and absolute quantitation (iTRAQ)-based quantitative proteomics approach was used to identify changes in protein abundance in Spirulina under LT. A total of 3,782 proteins were identified, of which 1,062 showed differential expression. Bioinformatics analysis indicated that differentially expressed proteins that were enriched in photosynthesis, carbohydrate metabolism, amino acid biosynthesis, and translation are important for the maintenance of cellular homeostasis and metabolic balance in Spirulina when subjected to LT stress. The up-regulation of proteins involved in gluconeogenesis, starch and sucrose metabolism, and amino acid biosynthesis served as coping mechanisms of Spirulina in response to LT stress. Moreover, the down-regulated expression of proteins involved in glycolysis, TCA cycle, pentose phosphate pathway, photosynthesis, and translation were associated with reduced energy consumption. The findings of the present study allow a better understanding of the response of Spirulina to LT stress and may facilitate in the elucidation of mechanisms underlying LT tolerance.

  14. Transcriptomic and proteomic analysis of Oenococcus oeni PSU-1 response to ethanol shock.

    Science.gov (United States)

    Olguín, Nair; Champomier-Vergès, Marie; Anglade, Patricia; Baraige, Fabienne; Cordero-Otero, Ricardo; Bordons, Albert; Zagorec, Monique; Reguant, Cristina

    2015-10-01

    The correct development of malolactic fermentation depends on the capacity of Oenococcus oeni to survive under harsh wine conditions. The presence of ethanol is one of the most stressful factors affecting O. oeni performance. In this study, the effect of ethanol addition (12% vol/vol) on O. oeni PSU-1 has been evaluated using a transcriptomic and proteomic approach. Transcriptomic analysis revealed that the main functional categories of the genes affected by ethanol were metabolite transport and cell wall and membrane biogenesis. It was also observed that some genes were over-expressed in response to ethanol stress (for example, the heat shock protein Hsp20 and a dipeptidase). Proteomic analysis showed that several proteins are affected by the presence of ethanol. Functions related to protein synthesis and stability are the main target of ethanol damage. In some cases the decrease in protein concentration could be due to the relocation of cytosolic proteins in the membrane, as a protective mechanism. The omic approach used to study the response of O. oeni to ethanol highlights the importance of the cell membrane in the global stress response and opens the door to future studies on this issue.

  15. Proteomic and histopathological response in the gills of Poecilia reticulata exposed to glyphosate-based herbicide.

    Science.gov (United States)

    Rocha, Thiago Lopes; Santos, Ana Paula Rezende Dos; Yamada, Áureo Tatsumi; Soares, Célia Maria de Almeida; Borges, Clayton Luiz; Bailão, Alexandre Melo; Sabóia-Morais, Simone Maria Teixeira

    2015-07-01

    Glyphosate-based herbicides (GBH) are one of the most used herbicide nowadays, whilst there is growing concern over their impact on aquatic environment. Since data about the early proteomic response and toxic mechanisms of GBH in fish is very limited, the aim of this study was to investigate the early toxicity of GBH in the gills of guppies Poecilia reticulata using a proteomic approach associated with histopathological index. Median lethal concentration (LC50,96 h) was determined and LC50,96h values of guppies exposed to GBH were 3.6 ± 0.4 mg GLIL(-1). Using two-dimensional gel electrophoresis associated with mass spectrometry, 14 proteins regulated by GBH were identified, which are involved in different cell processes, as energy metabolism, regulation and maintenance of cytoskeleton, nucleic acid metabolism and stress response. Guppies exposed to GBH at 1.82 mg GLIL(-1) showed time-dependent histopathological response in different epithelial and muscle cell types. The histopathological indexes indicate that GBH cause regressive, vascular and progressive disorders in the gills of guppies. This study helped to unravel the molecular and tissue mechanisms associated with GBH toxicity, which are potential biomarkers for biomonitoring water pollution by herbicides.

  16. Serum Proteome Signature of Radiation Response: Upregulation of Inflammation-Related Factors and Downregulation of Apolipoproteins and Coagulation Factors in Cancer Patients Treated With Radiation Therapy—A Pilot Study

    Energy Technology Data Exchange (ETDEWEB)

    Widlak, Piotr, E-mail: widlak@io.gliwice.pl [Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice (Poland); Jelonek, Karol; Wojakowska, Anna; Pietrowska, Monika [Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice (Poland); Polanska, Joanna [Institute of Automatics Control, Silesian University of Technology, Gliwice (Poland); Marczak, Łukasz [Institute of Bioorganic Chemistry of the Polish Academy of Sciences, Poznan (Poland); Miszczyk, Leszek; Składowski, Krzysztof [Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice (Poland)

    2015-08-01

    Purpose: Ionizing radiation affects the proteome of irradiated cells and tissue, yet data concerning changes induced during radiation therapy (RT) in human blood are fragmentary and inconclusive. We aimed to identify features of serum proteome and associated processes involved in response to partial body irradiation during cancer treatment. Methods and Materials: Twenty patients with head and neck squamous cell cancer (HNSCC) and 20 patients with prostate cancer received definitive intensity modulated RT. Blood samples were collected before RT, just after RT, and 1 month after the end of RT. Complete serum proteome was analyzed in individual samples, using a shotgun liquid chromatography-tandem mass spectrometry approach which allowed identification of approximately 450 proteins. Approximately 100 unique proteins were quantified in all samples after exclusion of immunoglobulins, and statistical significance of differences among consecutive samples was assessed. Processes associated with quantified proteins and their functional interactions were predicted using gene ontology tools. Results: RT-induced changes were marked in the HNSCC patient group: 22 upregulated and 33 downregulated proteins were detected in post-RT sera. Most of the changes reversed during follow-up, yet levels of some proteins remained affected 1 month after the end of RT. RT-upregulated proteins were associated with acute phase, inflammatory response, and complement activation. RT-downregulated proteins were associated with transport and metabolism of lipids (plasma apolipoproteins) and blood coagulation. RT-induced changes were much weaker in prostate cancer patients, which corresponded to differences in acute radiation toxicity observed in both groups. Nevertheless, general patterns of RT-induced sera proteome changes were similar in both of the groups of cancer patients. Conclusions: In this pilot study, we proposed to identify a molecular signature of radiation response, based on specific

  17. Time course proteomic profiling of cellular responses to immunological challenge in the sea urchin, Heliocidaris erythrogramma.

    Science.gov (United States)

    Dheilly, Nolwenn M; Haynes, Paul A; Raftos, David A; Nair, Sham V

    2012-06-01

    Genome sequences and high diversity cDNA arrays have provided a detailed molecular understanding of immune responses in a number of invertebrates, including sea urchins. However, complementary analyses have not been undertaken at the level of proteins. Here, we use shotgun proteomics to describe changes in the abundance of proteins from coelomocytes of sea urchins after immunological challenge and wounding. The relative abundance of 345 reproducibly identified proteins were measured 6, 24 and 48 h after injection. Significant changes in the relative abundance of 188 proteins were detected. These included pathogen-binding proteins, such as the complement component C3 and scavenger receptor cysteine rich proteins, as well as proteins responsible for cytoskeletal remodeling, endocytosis and intracellular signaling. An initial systemic reaction to wounding was followed by a more specific response to immunological challenge involving proteins such as apolipophorin, dual oxidase, fibrocystin L, aminopeptidase N and α-2-macroglobulin.

  18. Proteomic response of wheat embryos to fosthiazate stress in a protected vegetable soil

    Institute of Scientific and Technical Information of China (English)

    Chunyan Yin; Ying Teng; Yongming Luo; Peter Christie

    2012-01-01

    A proteomic analysis of wheat defense response induced by the widely used organophosphorus nematicide fosthiazate is reported.Seed germination and two-dimensional gel electrophoresis (2-DE) experiments were performed using a Chinese wheat cultivar,Zhenmai No.5.Root and shoot elongation decreased but thiobarbituric acid reactive substances (TBARS) content in embryos increased with increasing pesticide concentration.More than 1000 protein spots were reproducibly detected in each silver-stained gel.Thirty-seven protein spots with at least 2-fold changes were identified using MALDI-TOF MS/MS analysis.Of these,24 spots were up-regulated and 13 were down-regulated.Proteins identified included some well-known classical stress responsive proteins under abiotic or biotic stresses as well as some unusual responsive proteins.Ten responsive proteins were reported for the first time at the proteomic level,including fatty acyl CoA reductase,dihydrodipicolinate synthase,DEAD-box ATPase-RNA-helicase,fimbriata-like protein,waxy B1,rust resistance kinase Lrl0,putative In2.1 protein,retinoblastoma-related protein 1,pollen allergen-like protein and S-adenosyl-Lmethionine:phosphoethanolamine N-methyltransferase.The proteins identified were involved in several processes such as metabolism,defense/detoxification,cell structure/cell growth,signal transduction/transcription,photosynthesis and energy.Seven candidate proteins were further analyzed at the mRNA level by RT-PCR to compare transcript and protein accumulation patterns,revealing that not all the genes were correlated well with the protein level.Identification of these responsive proteins may provide new insight into the molecular basis of the fosthiazate-stress response in the early developmental stages of plants and may be useful in stress monitoring or stress-tolerant crop breeding for environmentally friendly agricultural production.

  19. Quantitative proteomic analysis provides novel insights into cold stress responses in petunia seedlings

    Directory of Open Access Journals (Sweden)

    Wei eZhang

    2016-02-01

    Full Text Available Low temperature is a major adverse environmental factor that impairs petunia growth and development. To better understand the molecular mechanisms of cold stress adaptation of petunia plants, a quantitative proteomic analysis using iTRAQ technology was performed to detect the effects of cold stress on protein expression profiles in petunia seedlings which had been subjected to 2°C for 5d. Of the 2,430 proteins whose levels were quantitated, a total of 117 proteins were discovered to be differentially expressed under low temperature stress in comparison to unstressed controls. As an initial study, 44 proteins including well known and novel cold-responsive proteins were successfully annotated. By integrating the results of two independent Gene Ontology (GO enrichment analyses, seven common GO terms were found of which oxidation-reduction process was the most notable for the cold-responsive proteins. By using the subcellular localization tool Plant-mPLoc predictor, as much as 40.2% of the cold-responsive protein group was found to be located within chloroplasts, suggesting that the chloroplast proteome is particularly affected by cold stress. Gene expression analyses of 11 cold-responsive proteins by real time PCR demonstrated that the mRNA levels were not strongly correlated with the respective protein levels. Further activity assay of anti-oxidative enzymes showed different alterations in cold treated petunia seedlings. Our investigation has highlighted the role of antioxidation mechanisms and also epigenetic factors in the regulation of cold stress responses. Our work has provided novel insights into the plant response to cold stress and should facilitate further studies regarding the molecular mechanisms which determine how plant cells cope with environmental perturbation.

  20. Plasma proteomics classifiers improve risk prediction for renal disease in patients with hypertension or type 2 diabetes

    DEFF Research Database (Denmark)

    Pena, Michelle J; Jankowski, Joachim; Heinze, Georg

    2015-01-01

    OBJECTIVE: Micro and macroalbuminuria are strong risk factors for progression of nephropathy in patients with hypertension or type 2 diabetes. Early detection of progression to micro and macroalbuminuria may facilitate prevention and treatment of renal diseases. We aimed to develop plasma...... proteomics classifiers to predict the development of micro or macroalbuminuria in hypertension or type 2 diabetes. METHODS: Patients with hypertension (n = 125) and type 2 diabetes (n = 82) were selected for this case-control study from the Prevention of REnal and Vascular ENd-stage Disease cohort....... RESULTS: In hypertensive patients, the classifier improved risk prediction for transition in albuminuria stage on top of the reference model (C-index from 0.69 to 0.78; P diabetes, the classifier improved risk prediction for transition from micro to macroalbuminuria (C-index from 0...

  1. Proteomic Analysis of Metabolic Responses to Biofuels and Chemicals in Photosynthetic Cyanobacteria.

    Science.gov (United States)

    Sun, T; Chen, L; Zhang, W

    2017-01-01

    Recent progresses in various "omics" technologies have enabled quantitative measurements of biological molecules in a high-throughput manner. Among them, high-throughput proteomics is a rapidly advancing field that offers a new means to quantify metabolic changes at protein level, which has significantly facilitated our understanding of cellular process, such as protein synthesis, posttranslational modifications, and degradation in responding to environmental perturbations. Cyanobacteria are autotrophic prokaryotes that can perform oxygenic photosynthesis and have recently attracted significant attentions as one promising alternative to traditionally biomass-based "microbial cell factories" to produce green fuels and chemicals. However, early studies have shown that the low tolerance to toxic biofuels and chemicals represented one major hurdle for further improving productivity of the cyanobacterial production systems. To address the issue, metabolic responses and their regulation of cyanobacterial cells to toxic end-products need to be defined. In this chapter, we discuss recent progresses in interpreting cyanobacterial responses to biofuels and chemicals using high-throughput proteomics approach, aiming to provide insights and guidelines on how to enhance tolerance and productivity of biofuels or chemicals in the renewable cyanobacteria systems in the future.

  2. Changes in leaf proteome profile of Arabidopsis thaliana in response to salicylic acid

    Indian Academy of Sciences (India)

    Riddhi Datta; Ragini Sinha; Sharmila Chattopadhyay

    2013-06-01

    Salicylic acid (SA) has been implicated in determining the outcome of interactions between many plants and their pathogens. Global changes in response to this phytohormone have been observed at the transcript level, but little is known of how it induces changes in protein abundance. To this end we have investigated the effect of 1 mM SA on soluble proteins of Arabidopsis thaliana leaves by proteomic analysis. An initial study at transcript level has been performed on temporal landscape, which revealed that induction of most of the SA-responsive genes occurs within 3 to 6 h post treatment (HPT) and the expression peaked within 24 HPT. Two-dimensional gel electrophoresis (2-DE) coupled with MALDI-TOF MS/MS analysis has been used to identify differentially expressed proteins and 63 spots have been identified successfully. This comparative proteomic profiling of SA treated leaves versus control leaves demonstrated the changes of many defence related proteins like pathogenesis related protein 10a (PR10a), disease-resistance-like protein, putative late blight-resistance protein, WRKY4, MYB4, etc. along with gross increase in the rate of energy production, while other general metabolism rate is slightly toned down, presumably signifying a transition from ‘normal mode’ to ‘defence mode’.

  3. Transchromosomic cell model of Down syndrome shows aberrant migration, adhesion and proteome response to extracellular matrix

    Directory of Open Access Journals (Sweden)

    Cotter Finbarr E

    2009-08-01

    Full Text Available Abstract Background Down syndrome (DS, caused by trisomy of human chromosome 21 (HSA21, is the most common genetic birth defect. Congenital heart defects (CHD are seen in 40% of DS children, and >50% of all atrioventricular canal defects in infancy are caused by trisomy 21, but the causative genes remain unknown. Results Here we show that aberrant adhesion and proliferation of DS cells can be reproduced using a transchromosomic model of DS (mouse fibroblasts bearing supernumerary HSA21. We also demonstrate a deacrease of cell migration in transchromosomic cells independently of their adhesion properties. We show that cell-autonomous proteome response to the presence of Collagen VI in extracellular matrix is strongly affected by trisomy 21. Conclusion This set of experiments establishes a new model system for genetic dissection of the specific HSA21 gene-overdose contributions to aberrant cell migration, adhesion, proliferation and specific proteome response to collagen VI, cellular phenotypes linked to the pathogenesis of CHD.

  4. The proteome and phosphoproteome of Neurospora crassa in response to cellulose, sucrose and carbon starvation.

    Science.gov (United States)

    Xiong, Yi; Coradetti, Samuel T; Li, Xin; Gritsenko, Marina A; Clauss, Therese; Petyuk, Vlad; Camp, David; Smith, Richard; Cate, Jamie H D; Yang, Feng; Glass, N Louise

    2014-11-01

    Improving cellulolytic enzyme production by plant biomass degrading fungi holds great potential in reducing costs associated with production of next-generation biofuels generated from lignocellulose. How fungi sense cellulosic materials and respond by secreting enzymes has mainly been examined by assessing function of transcriptional regulators and via transcriptional profiling. Here, we obtained global proteomic and phosphoproteomic profiles of the plant biomass degrading filamentous fungus Neurospora crassa grown on different carbon sources, i.e. sucrose, no carbon, and cellulose, by performing isobaric tags for relative and absolute quantification (iTRAQ)-based LC-MS/MS analyses. A comparison between proteomes and transcriptomes under identical carbon conditions suggests that extensive post-transcriptional regulation occurs in N. crassa in response to exposure to cellulosic material. Several hundred amino acid residues with differential phosphorylation levels on crystalline cellulose (Avicel) or carbon-free medium vs sucrose medium were identified, including phosphorylation sites in a major transcriptional activator for cellulase genes, CLR1, as well as a cellobionic acid transporter, CBT1. Mutation of phosphorylation sites on CLR1 did not have a major effect on transactivation of cellulase production, while mutation of phosphorylation sites in CBT1 increased its transporting capacity. Our data provides rich information at both the protein and phosphorylation levels of the early cellular responses to carbon starvation and cellulosic induction and aids in a greater understanding of the underlying post-transcriptional regulatory mechanisms in filamentous fungi.

  5. A proteomics study of the response of North Ronaldsay sheep to copper challenge

    Directory of Open Access Journals (Sweden)

    Haywood Susan

    2006-12-01

    Full Text Available Abstract Background The objective of this proteomics study was to identify proteins that changed expression as a result of copper challenge in the uniquely copper sensitive North Ronaldsay sheep and further, to compare those changes in expression with the more copper tolerant Cambridge breed. Such data gives us a proteome-centered perspective of the pathogenesis of copper-induced oxidative stress in this breed. Results Many proteins respond to copper challenge, but this study focuses on those exhibiting a differential response between the two breeds, related to liver copper content. As copper accumulated in the tissue, the pattern of expression of several proteins was markedly different, in North Ronaldsay sheep as compared to the Cambridge breed. Conclusion The pattern of changes was consistent with the greatly enhanced susceptibility of North Ronaldsay sheep to copper-induced oxidative stress, focused on mitochondrial disturbance with consequent activation of hepatic stellate cells. The expression profiles were sufficiently complex that the response could not simply be explained as a hypersensitivity to copper in North Ronaldsay sheep.

  6. Proteomic and metabolomic profiles of marine Vibrio sp. 010 in response to an antifoulant challenge

    KAUST Repository

    Chandramouli, Kondethimmanahalli

    2013-08-01

    Vibrio spp. have the ability to form biofilms, which may contribute to the subsequent successful colonization by microfouling and macrofouling organisms. The effects of an antifouling compound, poly-ether B, on Vibrio sp. 010 were investigated using flow cytometry, proteomics, and metabolomics. A 2-D gel-based proteomic analysis was used to identify proteins responsive to poly-ether B treatment. The profiles of biofilm metabolites were analyzed by ultra-performance liquid chromatography-mass spectrometry. Poly-ether B caused a significant reduction in viability. The proteins affected by the treatment were related to nucleotide metabolism, the glyoxylate cycle, and stress responses. Metabolites such as tripeptides, fatty acids, and quorum-sensing molecules were regulated differentially. Down-regulation of proteins and metabolites potentially led to a loss in colonisation ability, thereby affecting the structure of the biofilm. These results suggest that the proteins and metabolites identified may serve as target molecules for potent antifouling compounds. © 2013 Copyright Taylor and Francis Group, LLC.

  7. Comparative analysis of boar seminal plasma proteome from different freezability ejaculates and identification of Fibronectin 1 as sperm freezability marker.

    Science.gov (United States)

    Vilagran, I; Yeste, M; Sancho, S; Castillo, J; Oliva, R; Bonet, S

    2015-03-01

    Variation in boar sperm freezability (i.e. capacity to withstand cryopreservation) between ejaculates is a limitation largely reported in the literature. Prediction of sperm freezability and classification of boar ejaculates into good (GFEs) and poor freezability ejaculates (PFEs) before cryopreservation takes place may increase the use of frozen-thawed spermatozoa. While markers of boar sperm freezability have been found from sperm cell extracts, little attention has been paid to seminal plasma. On this basis, the present study compared the fresh seminal plasma proteome of 9 GFEs and 9 PFEs through two-dimensional difference gel electrophoresis (2D-DIGE) and liquid chromatography mass spectrometry (LC-MS/MS). The ejaculates were previously classified as GFE or PFE upon their sperm viability and progressive motility assessments at 30 and 240 min post thawing. From a total of 51 spots, four were found to significantly (p sperm quality parameters. Results confirmed that FN1 is a reliable marker of boar sperm freezability, because GFEs presented significantly (p boar sperm freezability marker. We can thus conclude that levels of FN1 in fresh seminal plasma from boar semen may be used as a sperm freezability marker, thereby facilitating the use of frozen-thawed boar spermatozoa.

  8. Proteome Changes in the Plasma of Myelodysplastic Syndrome Patients with Refractory Anemia with Excess Blasts Subtype 2

    Directory of Open Access Journals (Sweden)

    Pavel Majek

    2014-01-01

    Full Text Available The goal of this study was to explore the plasma proteome of myelodysplastic syndrome (MDS patients with refractory anemia with excess blasts subtype 2 (RAEB-2 in comparison to healthy controls. 20 plasma samples were separated with 2D electrophoresis and statistically processed with Progenesis SameSpots software. 47 significantly differing (P<0.05 spots were observed, and 27 different proteins were identified by nano-LC-MS/MS. Mass spectrometry-based relative label-free quantification showed a 2-fold increase of the leucine-rich alpha-2-glycoprotein (LRAG peptide levels in the RAEB-2 group. Changes in the fragments of the inter-alpha-trypsin inhibitor heavy chain H4 (ITIH4 protein were observed. Western blot analysis showed no differences in albumin and ITIH4 levels, while increased expression was observed for LRAG in the RAEB-2 group. Quantification using ELISA showed decreased plasma level of alpha-2-HS glycoprotein in the RAEB-2 group. In conclusion, this is the first time that alpha-2-HS glycoprotein and LRAG were proposed as new biomarkers of RAEB-2 and advanced MDS, respectively. Alpha-2-HS glycoprotein, a protein involved in the bone marrow development and previously proposed as a MDS biomarker candidate, was significantly decreased in RAEB-2. Increased expression and changes in modification(s were observed for LRAG, a protein involved in granulocytic and neutrophil differentiation, and angiogenesis.

  9. Label-Free Proteome Analysis of Plasma from Patients with Breast Cancer: Stage-Specific Protein Expression

    Science.gov (United States)

    Lobo, Marina Duarte Pinto; Moreno, Frederico Bruno Mendes Batista; Souza, Gustavo Henrique Martins Ferreira; Verde, Sara Maria Moreira Lima; Moreira, Renato de Azevedo; Monteiro-Moreira, Ana Cristina de Oliveira

    2017-01-01

    Breast cancer is one of the most commonly diagnosed types of cancer among women. Breast cancer mortality rates remain high probably because its diagnosis is hampered by inaccurate detection methods. Since changes in protein expression as well as modifications in protein glycosylation have been frequently reported in cancer development, the aim of this work was to study the differential expression as well as modifications of glycosylation of proteins from plasma of women with breast cancer at different stages of disease (n = 30) compared to healthy women (n = 10). A proteomics approach was used that depleted albumin and IgG from plasma followed by glycoprotein enrichment using immobilized Moraceae lectin (frutalin)-affinity chromatography and data-independent label-free mass spectrometric analysis. Data are available via ProteomeXchange with identifier PXD003106. As result, 57,016 peptides and 4,175 proteins among all samples were identified. From this, 40 proteins present in unbound (PI—proteins that did not interact with lectin) and bound (PII—proteins that interacted with lectin) fractions were differentially expressed. High levels of apolipoprotein A-II were detected here that were elevated significantly in the early and advanced stages of the disease. Apolipoprotein C-III was detected in both fractions, and its level was increased slightly in the PI fraction of patients with early-stage breast cancer and expressed at higher levels in the PII fraction of patients with early and intermediate stages. Clusterin was present at higher levels in both fractions of patients with early and intermediate stages of breast cancer. Our findings reveal a correlation between alterations in protein glycosylation, lipid metabolism, and the progression of breast cancer. PMID:28210565

  10. Proteomic responses of human intestinal Caco-2 cells exposed to silver nanoparticles and ionic silver.

    Science.gov (United States)

    Oberemm, Axel; Hansen, Ulf; Böhmert, Linda; Meckert, Christine; Braeuning, Albert; Thünemann, Andreas F; Lampen, Alfonso

    2016-03-01

    Even although quite a number of studies have been performed so far to demonstrate nanoparticle-specific effects of substances in living systems, clear evidence of these effects is still under debate. The present study was designed as a comparative proteomic analysis of human intestinal cells exposed to a commercial silver nanoparticle reference material and ions from AgNO3. A two-dimensional gel electrophoresis/MALDI mass spectrometry (MS)-based proteomic analysis was conducted after 24-h incubation of differentiated Caco-2 cells with non-cytotoxic and low cytotoxic silver concentrations (2.5 and 25 µg ml(-1) nanosilver, 0.5 and 5 µg ml(-1) AgNO3). Out of an overall number of 316 protein spots differentially expressed at a fold change of ≥ 1.4 or ≤ -1.4 in all treatments, 169 proteins could be identified. In total, 231 spots were specifically deregulated in particle-treated groups compared with 41 spots, which were limited to AgNO3-treatments. Forty-four spots (14 %) were commonly deregulated by both types of treatment. A considerable fraction of the proteins differentially expressed after treatment with nanoparticles is related to protein folding, synthesis or modification of proteins as well as cellular assembly and organization. Overlays of networks obtained for particulate and ionic treatments showed matches, indicating common mechanisms of combined particle and ionic silver exposure and exclusive ionic silver treatment. However, proteomic responses of Caco-2 cells treated with higher concentrations of silver species also showed some differences, for example regarding proteins related to fatty acid and energy metabolism, suggesting an induction of also some different molecular mechanisms for particle exposure and ionic treatment.

  11. Global Transcriptomic and Proteomic Responses of Dehalococcoides ethenogenes Strain 195 to Fixed Nitrogen Limitation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Patrick K. H. [University of California, Berkeley; Dill, Brian [ORNL; Louie, Tiffany S. [University of California, Berkeley; Shah, Manesh B [ORNL; Verberkmoes, Nathan C [ORNL; Andersen, Gary L. [Lawrence Berkeley National Laboratory (LBNL); Zinder, Stephen H. [Cornell University; Alvarez-Cohen, Lisa [Lawrence Berkeley National Laboratory (LBNL)

    2012-01-01

    Bacteria of the genus Dehalococcoides play an important role in the reductive dechlorination of chlorinated ethenes. A systems level approach was taken in this study to examine the global transcriptomic and proteomic responses of exponentially growing D. ethenogenes strain 195 to fixed nitrogen limitation (FNL) as dechlorination activity and cell yield both decrease during FNL. As expected, the nitrogen-fixing (nif) genes were differentially up-regulated in the transcriptome and proteome of strain 195 during FNL. Aside from the nif operon, a putative methylglyoxal synthase-encoding gene (DET1576), the product of which is predicted to catalyze the formation of the toxic electrophile methylglyoxal and implicated in the uncoupling of anabolism from catabolism in bacteria, was strongly up-regulated in the transcriptome and could potentially play a role in the observed growth inhibition during FNL. Carbon catabolism genes were generally down regulated in response to FNL and a number of transporters were differentially regulated in response to nitrogen limitation, with some playing apparent roles in nitrogen acquisition while others were associated with general stress responses. A number of genes related to the functions of nucleotide synthesis, replication, transcription, translation, and post-translational modifications were also differentially expressed. One gene coding for a putative reductive dehalogenase (DET1545) and a number coding for oxidoreductases, which have implications in energy generation and redox reactions, were also differentially regulated. Interestingly, most of the genes within the multiple integrated elements were not differentially expressed. Overall, this study elucidates the molecular responses of strain 195 to FNL and identifies differentially expressed genes that are potential biomarkers to evaluate environmental cellular nitrogen status.

  12. Global Transcriptomic and Proteomic Responses of Dehalococcoides ethenogenes Strain 195 to Fixed Nitrogen Limitation

    Science.gov (United States)

    Lee, Patrick K. H.; Dill, Brian D.; Louie, Tiffany S.; Shah, Manesh; VerBerkmoes, Nathan C.; Andersen, Gary L.; Zinder, Stephen H.

    2012-01-01

    Bacteria of the genus Dehalococcoides play an important role in the reductive dechlorination of chlorinated ethenes. A systems-level approach was taken in this study to examine the global transcriptomic and proteomic responses of exponentially growing cells of Dehalococcoides ethenogenes strain 195 to fixed nitrogen limitation (FNL), as dechlorination activity and cell yield both decrease during FNL. As expected, the nitrogen-fixing (nif) genes were differentially upregulated in the transcriptome and proteome of strain 195 during FNL. Aside from the nif operon, a putative methylglyoxal synthase-encoding gene (DET1576), the product of which is predicted to catalyze the formation of the toxic electrophile methylglyoxal and is implicated in the uncoupling of anabolism from catabolism in bacteria, was strongly upregulated in the transcriptome and could potentially play a role in the observed growth inhibition during FNL. Carbon catabolism genes were generally downregulated in response to FNL, and a number of transporters were differentially regulated in response to nitrogen limitation, with some playing apparent roles in nitrogen acquisition, while others were associated with general stress responses. A number of genes related to the functions of nucleotide synthesis, replication, transcription, translation, and posttranslational modifications were also differentially expressed. One gene coding for a putative reductive dehalogenase (DET1545) and a number of genes coding for oxidoreductases, which have implications in energy generation and redox reactions, were also differentially regulated. Interestingly, most of the genes within the multiple integrated elements were not differentially expressed. Overall, this study elucidates the molecular responses of strain 195 to FNL and identifies differentially expressed genes that are potential biomarkers to evaluate environmental cellular nitrogen status. PMID:22179257

  13. Data for transcriptomic and iTRAQ proteomic analysis of Anguilla japonica gills in response to osmotic stress.

    Science.gov (United States)

    Tse, William Ka Fai; Sun, Jin; Zhang, Huoming; Lai, Keng Po; Gu, Jie; Sheung Law, Alice Yu; Yee Yeung, Bonnie Ho; Ching Chow, Sheung; Qiu, Jian-Wen; Wong, Chris Kong Chu

    2015-06-01

    This article contains data related to the two research articles titled Transcriptomic and iTRAQ proteomic approaches reveal novel short-term hyperosmotic stress responsive proteins in the gill of the Japanese eel (Anguilla japonica) (Tse et al. [1]) and iTRAQ-based quantitative proteomic analysis reveals acute hypo-osmotic responsive proteins in the gills of the Japanese eel (Anguilla japonica) (Tse et al. [2]). The two research articles show the usefulness of combining transcriptomic and proteomic approaches to provide molecular insights of osmoregulation mechanism in a non-model organism, the Japanese eel. The information presented here combines the raw data from the two studies and provides an overview on the physiological functions of fish gills.

  14. Integrating Transcriptomic and Proteomic Data Using Predictive Regulatory Network Models of Host Response to Pathogens.

    Directory of Open Access Journals (Sweden)

    Deborah Chasman

    2016-07-01

    Full Text Available Mammalian host response to pathogenic infections is controlled by a complex regulatory network connecting regulatory proteins such as transcription factors and signaling proteins to target genes. An important challenge in infectious disease research is to understand molecular similarities and differences in mammalian host response to diverse sets of pathogens. Recently, systems biology studies have produced rich collections of omic profiles measuring host response to infectious agents such as influenza viruses at multiple levels. To gain a comprehensive understanding of the regulatory network driving host response to multiple infectious agents, we integrated host transcriptomes and proteomes using a network-based approach. Our approach combines expression-based regulatory network inference, structured-sparsity based regression, and network information flow to infer putative physical regulatory programs for expression modules. We applied our approach to identify regulatory networks, modules and subnetworks that drive host response to multiple influenza infections. The inferred regulatory network and modules are significantly enriched for known pathways of immune response and implicate apoptosis, splicing, and interferon signaling processes in the differential response of viral infections of different pathogenicities. We used the learned network to prioritize regulators and study virus and time-point specific networks. RNAi-based knockdown of predicted regulators had significant impact on viral replication and include several previously unknown regulators. Taken together, our integrated analysis identified novel module level patterns that capture strain and pathogenicity-specific patterns of expression and helped identify important regulators of host response to influenza infection.

  15. Integrating Transcriptomic and Proteomic Data Using Predictive Regulatory Network Models of Host Response to Pathogens.

    Science.gov (United States)

    Chasman, Deborah; Walters, Kevin B; Lopes, Tiago J S; Eisfeld, Amie J; Kawaoka, Yoshihiro; Roy, Sushmita

    2016-07-01

    Mammalian host response to pathogenic infections is controlled by a complex regulatory network connecting regulatory proteins such as transcription factors and signaling proteins to target genes. An important challenge in infectious disease research is to understand molecular similarities and differences in mammalian host response to diverse sets of pathogens. Recently, systems biology studies have produced rich collections of omic profiles measuring host response to infectious agents such as influenza viruses at multiple levels. To gain a comprehensive understanding of the regulatory network driving host response to multiple infectious agents, we integrated host transcriptomes and proteomes using a network-based approach. Our approach combines expression-based regulatory network inference, structured-sparsity based regression, and network information flow to infer putative physical regulatory programs for expression modules. We applied our approach to identify regulatory networks, modules and subnetworks that drive host response to multiple influenza infections. The inferred regulatory network and modules are significantly enriched for known pathways of immune response and implicate apoptosis, splicing, and interferon signaling processes in the differential response of viral infections of different pathogenicities. We used the learned network to prioritize regulators and study virus and time-point specific networks. RNAi-based knockdown of predicted regulators had significant impact on viral replication and include several previously unknown regulators. Taken together, our integrated analysis identified novel module level patterns that capture strain and pathogenicity-specific patterns of expression and helped identify important regulators of host response to influenza infection.

  16. SILAC-based quantitative proteomic analysis of human lung cell response to copper oxide nanoparticles.

    Science.gov (United States)

    Edelmann, Mariola J; Shack, Leslie A; Naske, Caitlin D; Walters, Keisha B; Nanduri, Bindu

    2014-01-01

    Copper (II) oxide (CuO) nanoparticles (NP) are widely used in industry and medicine. In our study we evaluated the response of BEAS-2B human lung cells to CuO NP, using Stable isotope labeling by amino acids in cell culture (SILAC)-based proteomics and phosphoproteomics. Pathway modeling of the protein differential expression showed that CuO NP affect proteins relevant in cellular function and maintenance, protein synthesis, cell death and survival, cell cycle and cell morphology. Some of the signaling pathways represented by BEAS-2B proteins responsive to the NP included mTOR signaling, protein ubiquitination pathway, actin cytoskeleton signaling and epithelial adherens junction signaling. Follow-up experiments showed that CuO NP altered actin cytoskeleton, protein phosphorylation and protein ubiquitination level.

  17. SILAC-based quantitative proteomic analysis of human lung cell response to copper oxide nanoparticles.

    Directory of Open Access Journals (Sweden)

    Mariola J Edelmann

    Full Text Available Copper (II oxide (CuO nanoparticles (NP are widely used in industry and medicine. In our study we evaluated the response of BEAS-2B human lung cells to CuO NP, using Stable isotope labeling by amino acids in cell culture (SILAC-based proteomics and phosphoproteomics. Pathway modeling of the protein differential expression showed that CuO NP affect proteins relevant in cellular function and maintenance, protein synthesis, cell death and survival, cell cycle and cell morphology. Some of the signaling pathways represented by BEAS-2B proteins responsive to the NP included mTOR signaling, protein ubiquitination pathway, actin cytoskeleton signaling and epithelial adherens junction signaling. Follow-up experiments showed that CuO NP altered actin cytoskeleton, protein phosphorylation and protein ubiquitination level.

  18. Changes in Liver Proteome Expression of Senegalese Sole (Solea senegalensis) in Response to Repeated Handling Stress

    DEFF Research Database (Denmark)

    Cordeiro, O. D.; Silva, Tomé Santos; Alves, R. N.

    2012-01-01

    the detection of 287 spots significantly affected by repeated handling stress (Wilcoxon–Mann–Whitney U test, p stress seems to have affected protein synthesis, folding and turnover (40S ribosomal protein S12...... hormone metabolism (3-oxo-5-β-steroid 4-dehydrogenase), and purine salvage (hypoxanthine phosphoribosyltransferase). Further characterization is required to fully assess the potential of these markers for the monitoring of fish stress response to chronic stressors of aquaculture environment.......The Senegalese sole, a high-value flatfish, is a good candidate for aquaculture production. Nevertheless, there are still issues regarding this species’ sensitivity to stress in captivity. We aimed to characterize the hepatic proteome expression for this species in response to repeated handling...

  19. Differential Peripheral Proteomic Biosignature of Fluoxetine Response in a Mouse Model of Anxiety/Depression

    Science.gov (United States)

    Mendez-David, Indira; Boursier, Céline; Domergue, Valérie; Colle, Romain; Falissard, Bruno; Corruble, Emmanuelle; Gardier, Alain M.; Guilloux, Jean-Philippe; David, Denis J.

    2017-01-01

    The incorporation of peripheral biomarkers in the treatment of major depressive disorders (MDD) could improve the efficiency of treatments and increase remission rate. Peripheral blood mononuclear cells (PBMCs) represent an attractive biological substrate allowing the identification of a drug response signature. Using a proteomic approach with high-resolution mass spectrometry, the present study aimed to identify a biosignature of antidepressant response (fluoxetine, a Selective Serotonin Reuptake Inhibitor) in PBMCs in a mouse model of anxiety/depression. Following determination of an emotionality score, using complementary behavioral analysis of anxiety/depression across three different tests (Elevated Plus Maze, Novelty Suppressed Feeding, Splash Test), we showed that a 4-week corticosterone treatment (35 μg/ml, CORT model) in C57BL/6NTac male mice induced an anxiety/depressive-like behavior. Then, chronic fluoxetine treatment (18 mg/kg/day for 28 days in the drinking water) reduced corticosterone-induced increase in emotional behavior. However, among 46 fluoxetine-treated mice, only 30 of them presented a 50% decrease in emotionality score, defining fluoxetine responders (CORT/Flx-R). To determine a peripheral biological signature of fluoxetine response, proteomic analysis was performed from PBMCs isolated from the “most” affected corticosterone/vehicle (CORT/V), corticosterone/fluoxetine responders and non-responders (CORT/Flx-NR) animals. In comparison to CORT/V, a total of 263 proteins were differently expressed after fluoxetine exposure. Expression profile of these proteins showed a strong similarity between CORT/Flx-R and CORT/Flx-NR (R = 0.827, p < 1e-7). Direct comparison of CORT/Flx-R and CORT/Flx-NR groups revealed 100 differently expressed proteins, representing a combination of markers associated either with the maintenance of animals in a refractory state, or associated with behavioral improvement. Finally, 19 proteins showed a differential

  20. Differential Peripheral Proteomic Biosignature of Fluoxetine Response in a Mouse Model of Anxiety/Depression

    Directory of Open Access Journals (Sweden)

    Indira Mendez-David

    2017-08-01

    Full Text Available The incorporation of peripheral biomarkers in the treatment of major depressive disorders (MDD could improve the efficiency of treatments and increase remission rate. Peripheral blood mononuclear cells (PBMCs represent an attractive biological substrate allowing the identification of a drug response signature. Using a proteomic approach with high-resolution mass spectrometry, the present study aimed to identify a biosignature of antidepressant response (fluoxetine, a Selective Serotonin Reuptake Inhibitor in PBMCs in a mouse model of anxiety/depression. Following determination of an emotionality score, using complementary behavioral analysis of anxiety/depression across three different tests (Elevated Plus Maze, Novelty Suppressed Feeding, Splash Test, we showed that a 4-week corticosterone treatment (35 μg/ml, CORT model in C57BL/6NTac male mice induced an anxiety/depressive-like behavior. Then, chronic fluoxetine treatment (18 mg/kg/day for 28 days in the drinking water reduced corticosterone-induced increase in emotional behavior. However, among 46 fluoxetine-treated mice, only 30 of them presented a 50% decrease in emotionality score, defining fluoxetine responders (CORT/Flx-R. To determine a peripheral biological signature of fluoxetine response, proteomic analysis was performed from PBMCs isolated from the “most” affected corticosterone/vehicle (CORT/V, corticosterone/fluoxetine responders and non-responders (CORT/Flx-NR animals. In comparison to CORT/V, a total of 263 proteins were differently expressed after fluoxetine exposure. Expression profile of these proteins showed a strong similarity between CORT/Flx-R and CORT/Flx-NR (R = 0.827, p < 1e-7. Direct comparison of CORT/Flx-R and CORT/Flx-NR groups revealed 100 differently expressed proteins, representing a combination of markers associated either with the maintenance of animals in a refractory state, or associated with behavioral improvement. Finally, 19 proteins showed a

  1. S-nitroso-proteome in poplar leaves in response to acute ozone stress.

    Directory of Open Access Journals (Sweden)

    Elisa Vanzo

    Full Text Available Protein S-nitrosylation, the covalent binding of nitric oxide (NO to protein cysteine residues, is one of the main mechanisms of NO signaling in plant and animal cells. Using a combination of the biotin switch assay and label-free LC-MS/MS analysis, we revealed the S-nitroso-proteome of the woody model plant Populus x canescens. Under normal conditions, constitutively S-nitrosylated proteins in poplar leaves and calli comprise all aspects of primary and secondary metabolism. Acute ozone fumigation was applied to elicit ROS-mediated changes of the S-nitroso-proteome. This treatment changed the total nitrite and nitrosothiol contents of poplar leaves and affected the homeostasis of 32 S-nitrosylated proteins. Multivariate data analysis revealed that ozone exposure negatively affected the S-nitrosylation status of leaf proteins: 23 proteins were de-nitrosylated and 9 proteins had increased S-nitrosylation content compared to the control. Phenylalanine ammonia-lyase 2 (log2[ozone/control] = -3.6 and caffeic acid O-methyltransferase (-3.4, key enzymes catalyzing important steps in the phenylpropanoid and subsequent lignin biosynthetic pathways, respectively, were de-nitrosylated upon ozone stress. Measuring the in vivo and in vitro phenylalanine ammonia-lyase activity indicated that the increase of the phenylalanine ammonia-lyase activity in response to acute ozone is partly regulated by de-nitrosylation, which might favor a higher metabolic flux through the phenylpropanoid pathway within minutes after ozone exposure.

  2. Proteomic response of Rhizoctonia solani GD118 suppressed by Paenibacillus kribbensis PS04.

    Science.gov (United States)

    Wang, Liuqing; Liu, Mei; Liao, Meide

    2014-12-01

    Rice sheath blight, caused by Rhizoctonia solani, is considered a worldwide destructive rice disease and leads to considerable yield losses. A bio-control agent, Paenibacillus kribbensis PS04, was screened to resist against the pathogen. The inhibitory effects were investigated (>80 %) by the growth of the hyphae. Microscopic observation of the hypha structure manifested that the morphology of the pathogenic mycelium was strongly affected by P. kribbensis PS04. To explore essentially inhibitory mechanisms, proteomic approach was adopted to identify differentially expressed proteins from R. solani GD118 in response to P. kribbensis PS04 using two-dimensional gel electrophoresis. Protein profiling was used to identify 13 differential proteins: 10 proteins were found to be down-regulated while 3 proteins were up-regulated. These proteins were involved in material and energy metabolism, antioxidant activity, protein folding and degradation, and cytoskeleton regulation. Among them, material and energy metabolism was differentially regulated by P. kribbensis PS04. Protein expression was separately inhibited by the bio-control agent in oxidation resistance, protein folding and degradation, and cytoskeleton regulation. Proteome changes of the mycelium assist in understanding how the pathogen was directly suppressed by P. kribbensis PS04.

  3. Leaf Proteome Analysis Reveals Prospective Drought and Heat Stress Response Mechanisms in Soybean

    Directory of Open Access Journals (Sweden)

    Aayudh Das

    2016-01-01

    Full Text Available Drought and heat are among the major abiotic stresses that affect soybean crops worldwide. During the current investigation, the effect of drought, heat, and drought plus heat stresses was compared in the leaves of two soybean varieties, Surge and Davison, combining 2D-DIGE proteomic data with physiology and biochemical analyses. We demonstrated how 25 differentially expressed photosynthesis-related proteins affect RuBisCO regulation, electron transport, Calvin cycle, and carbon fixation during drought and heat stress. We also observed higher abundance of heat stress-induced EF-Tu protein in Surge. It is possible that EF-Tu might have activated heat tolerance mechanisms in the soybean. Higher level expressions of heat shock-related protein seem to be regulating the heat tolerance mechanisms. This study identifies the differential expression of various abiotic stress-responsive proteins that regulate various molecular processes and signaling cascades. One inevitable outcome from the biochemical and proteomics assays of this study is that increase of ROS levels during drought stress does not show significant changes at the phenotypic level in Davison and this seems to be due to a higher amount of carbonic anhydrase accumulation in the cell which aids the cell to become more resistant to cytotoxic concentrations of H2O2.

  4. Proteomics Core

    Data.gov (United States)

    Federal Laboratory Consortium — Proteomics Core is the central resource for mass spectrometry based proteomics within the NHLBI. The Core staff help collaborators design proteomics experiments in a...

  5. Proteomics Core

    Data.gov (United States)

    Federal Laboratory Consortium — Proteomics Core is the central resource for mass spectrometry based proteomics within the NHLBI. The Core staff help collaborators design proteomics experiments in...

  6. Proteome changes in banana fruit peel tissue in response to ethylene and high-temperature treatments.

    Science.gov (United States)

    Du, Lina; Song, Jun; Forney, Charles; Palmer, Leslie Campbell; Fillmore, Sherry; Zhang, ZhaoQi

    2016-01-01

    Banana (Musa AAA group) is one of the most consumed fruits in the world due to its flavor and nutritional value. As a typical climacteric fruit, banana responds to ethylene treatment, which induces rapid changes of color, flavor (aroma and taste), sweetness and nutritional composition. It has also been reported that ripening bananas at temperatures above 24 °C inhibits chlorophyll breakdown and color formation but increases the rate of senescence. To gain fundamental knowledge about the effects of high temperature and ethylene on banana ripening, a quantitative proteomic study employing multiplex peptide stable isotope dimethyl labeling was conducted. In this study, green (immature) untreated banana fruit were subjected to treatment with 10 μL L(-1) of ethylene for 24 h. After ethylene treatment, treated and untreated fruit were stored at 20 or 30 °C for 24 h. Fruit peel tissues were then sampled after 0 and 1 day of storage, and peel color and chlorophyll fluorescence were evaluated. Quantitative proteomic analysis was conducted on the fruit peels after 1 day of storage. In total, 413 common proteins were identified and quantified from two biological replicates. Among these proteins, 91 changed significantly in response to ethylene and high-temperature treatments. Cluster analysis on these 91 proteins identified 7 groups of changed proteins. Ethylene treatment and storage at 20 °C induced 40 proteins that are correlated with pathogen resistance, cell wall metabolism, ethylene biosynthesis, allergens and ribosomal proteins, and it repressed 36 proteins that are associated with fatty acid and lipid metabolism, redox-oxidative responses, and protein biosynthesis and modification. Ethylene treatment and storage at 30 °C induced 32 proteins, which were mainly similar to those in group 1 but also included 8 proteins in group 3 (identified as chitinase, cinnamyl alcohol dehydrogenase 1, cysteine synthase, villin-2, leucine-transfer RNA ligase, CP47

  7. Transcriptome and Proteome Dynamics of the Cellular Response of Shewanella oneidensis to Chromium Stress

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, D.K.

    2005-04-18

    The overall goal of this DOE NABIR project is to characterize the molecular basis and regulation of hexavalent chromium [Cr(VI)] stress response and reduction by Shewanella oneidensis strain MR-1. Temporal genomic profiling and mass spectrometry-based proteomic analysis were employed to characterize the dynamic molecular response of S. oneidensis MR-1 to both acute and chronic Cr(VI) exposure. The acute stress response of aerobic, mid-exponential phase cells shocked to a final concentration of 1 mM potassium chromate (K2CrO4) was examined at post-exposure time intervals of 5, 30, 60, and 90 min relative to untreated cells. The transcriptome of mid-exponential cultures was also analyzed 30 min after shock doses of 0.3, 0.5, or 1 mM K{sub 2}CrO{sub 4}. The tonB1-exbB1-exbD1 genes comprising the TonB1 iron transport system were some of the most highly induced coding sequences (CDSs) after 90 min (up to {approx}240 fold), followed by other genes involved in heme transport, sulfate transport, and sulfur assimilation pathways. In addition, transcript levels for CDSs with annotated functions in DNA repair (dinP, recX, recA, recN) and detoxification processes (so3585, so3586) were substantially increased in Cr(VI)-exposed cells compared to untreated cells. By contrast, genes predicted to encode hydrogenases (HydA, HydB), oxidoreductases (SO0902-03-04, SO1911), iron-sulfur cluster binding proteins (SO4404), decaheme cytochrome c proteins (MtrA, OmcA, OmcB), and a number of LysR or TetR family transcriptional regulators were some of the most highly repressed CDSs following the 90-min shock period. Transcriptome profiles generated from MR-1 cells adapted to 0.3 mM Cr(VI) differed significantly from those characterizing cells exposed to acute Cr(VI) stress without adaptation. Parallel proteomic characterization of soluble protein and membrane protein fractions extracted from Cr(VI)-shocked and Cr(VI)-adapted MR-1 cells was performed using multidimensional HPLC-ESI-MS/MS (both

  8. Connecting genetic risk to disease end points through the human blood plasma proteome

    Science.gov (United States)

    Suhre, Karsten; Arnold, Matthias; Bhagwat, Aditya Mukund; Cotton, Richard J.; Engelke, Rudolf; Raffler, Johannes; Sarwath, Hina; Thareja, Gaurav; Wahl, Annika; DeLisle, Robert Kirk; Gold, Larry; Pezer, Marija; Lauc, Gordan; El-Din Selim, Mohammed A.; Mook-Kanamori, Dennis O.; Al-Dous, Eman K.; Mohamoud, Yasmin A.; Malek, Joel; Strauch, Konstantin; Grallert, Harald; Peters, Annette; Kastenmüller, Gabi; Gieger, Christian; Graumann, Johannes

    2017-01-01

    Genome-wide association studies (GWAS) with intermediate phenotypes, like changes in metabolite and protein levels, provide functional evidence to map disease associations and translate them into clinical applications. However, although hundreds of genetic variants have been associated with complex disorders, the underlying molecular pathways often remain elusive. Associations with intermediate traits are key in establishing functional links between GWAS-identified risk-variants and disease end points. Here we describe a GWAS using a highly multiplexed aptamer-based affinity proteomics platform. We quantify 539 associations between protein levels and gene variants (pQTLs) in a German cohort and replicate over half of them in an Arab and Asian cohort. Fifty-five of the replicated pQTLs are located in trans. Our associations overlap with 57 genetic risk loci for 42 unique disease end points. We integrate this information into a genome-proteome network and provide an interactive web-tool for interrogations. Our results provide a basis for novel approaches to pharmaceutical and diagnostic applications. PMID:28240269

  9. Understanding pea resistance mechanisms in response to Fusarium oxysporum through proteomic analysis.

    Science.gov (United States)

    Castillejo, María Ángeles; Bani, Moustafa; Rubiales, Diego

    2015-07-01

    Fusarium oxysporum f. sp. pisi (Fop) is an important and destructive pathogen affecting pea crop (Pisum sativum) throughout the world. Control of this disease is achieved mainly by integration of different disease management procedures. However, the constant evolution of the pathogen drives the necessity to broaden the molecular basis of resistance to Fop. Our proteomic study was performed on pea with the aim of identifying proteins involved in different resistance mechanisms operating during F. oxysporum infection. For such purpose, we used a two-dimensional electrophoresis (2-DE) coupled to mass spectrometry (MALDI-TOF/TOF) analysis to study the root proteome of three pea genotypes showing different resistance response to Fop race 2. Multivariate statistical analysis identified 132 differential protein spots under the experimental conditions (genotypes/treatments). All of these protein spots were subjected to mass spectrometry analysis to deduce their possible functions. A total of 53 proteins were identified using a combination of peptide mass fingerprinting (PMF) and MSMS fragmentation. The following main functional categories were assigned to the identified proteins: carbohydrate and energy metabolism, nucleotides and aminoacid metabolism, signal transduction and cellular process, folding and degradation, redox and homeostasis, defense, biosynthetic process and transcription/translation. Results obtained in this work suggest that the most susceptible genotypes have increased levels of enzymes involved in the production of reducing power which could then be used as cofactor for enzymes of the redox reactions. This is in concordance with the fact that a ROS burst occurred in the same genotypes, as well as an increase of PR proteins. Conversely, in the resistant genotype proteins responsible to induce changes in the membrane and cell wall composition related to reinforcement were identified. Results are discussed in terms of the differential response to Fop

  10. Morpho-Physiological and Proteome Level Responses to Cadmium Stress in Sorghum

    Science.gov (United States)

    Kamal, Abu Hena Mostafa; Kim, Sang-Woo; Oh, Myeong-Won; Lee, Moon-Soon; Chung, Keun-Yook; Xin, Zhanguo; Woo, Sun-Hee

    2016-01-01

    Cadmium (Cd) stress may cause serious morphological and physiological abnormalities in addition to altering the proteome in plants. The present study was performed to explore Cd-induced morpho-physiological alterations and their potential associated mechanisms in Sorghum bicolor leaves at the protein level. Ten-day-old sorghum seedlings were exposed to different concentrations (0, 100, and 150 μM) of CdCl2, and different morpho-physiological responses were recorded. The effects of Cd exposure on protein expression patterns in S. bicolor were investigated using two-dimensional gel electrophoresis (2-DE) in samples derived from the leaves of both control and Cd-treated seedlings. The observed morphological changes revealed that the plants treated with Cd displayed dramatically altered shoot lengths, fresh weights and relative water content. In addition, the concentration of Cd was markedly increased by treatment with Cd, and the amount of Cd taken up by the shoots was significantly and directly correlated with the applied concentration of Cd. Using the 2-DE method, a total of 33 differentially expressed protein spots were analyzed using MALDI-TOF/TOF MS. Of these, treatment with Cd resulted in significant increases in 15 proteins and decreases in 18 proteins. Major changes were absorbed in the levels of proteins known to be involved in carbohydrate metabolism, transcriptional regulation, translation and stress responses. Proteomic results revealed that Cd stress had an inhibitory effect on carbon fixation, ATP production and the regulation of protein synthesis. Our study provides insights into the integrated molecular mechanisms involved in responses to Cd and the effects of Cd on the growth and physiological characteristics of sorghum seedlings. We have aimed to provide a reference describing the mechanisms involved in heavy metal damage to plants. PMID:26919231

  11. Proteomic and Physiological Analyses Reveal Putrescine Responses in Roots of Cucumber Stressed by NaCl

    Directory of Open Access Journals (Sweden)

    Yinghui Yuan

    2016-07-01

    Full Text Available Soil salinity is a major environmental constraint that threatens agricultural productivity. Different strategies have been developed to improve crop salt tolerance, among which the effects of polyamines have been well reported. To gain a better understanding of the cucumber (Cucumis sativus L. responses to NaCl and unravel the underlying mechanism of exogenous putrescine (Put alleviating salt-induced damage, comparative proteomic analysis was conducted on cucumber roots treated with NaCl and/or Put for 7 days. The results showed that exogenous Put restored the root growth inhibited by NaCl. 62 differentially expressed proteins implicated in various biological processes were successfully identified by MALDI-TOF/TOF MS. The four largest categories included proteins involved in defense response (24.2%, protein metabolism (24.2%, carbohydrate metabolism (19.4% and amino acid metabolism (14.5%. Exogenous Put up-regulated most identified proteins involved in carbohydrate metabolism, implying an enhancement in energy generation. Proteins involved in defense response and protein metabolism were differently regulated by Put, which indicated the roles of Put in stress resistance and proteome rearrangement. Put also increased the abundance of proteins involved in amino acid metabolism. Meanwhile, physiological analysis showed that Put could further up-regulated the levels of free amino acids in salt stressed-roots. In addition, Put also improved endogenous polyamines contents by regulating the transcription levels of key enzymes in polyamine metabolism. Taken together, these results suggest that Put may alleviate NaCl-induced growth inhibition through degradation of misfolded/damaged proteins, activation of stress defense, and the promotion of carbohydrate metabolism to generate more energy.

  12. Cigarette smoke induces an unfolded protein response in the human lung: a proteomic approach.

    Science.gov (United States)

    Kelsen, Steven G; Duan, Xunbao; Ji, Rong; Perez, Oscar; Liu, Chunli; Merali, Salim

    2008-05-01

    Cigarette smoking, which exposes the lung to high concentrations of reactive oxidant species (ROS) is the major risk factor for chronic obstructive pulmonary disease (COPD). Recent studies indicate that ROS interfere with protein folding in the endoplasmic reticulum and elicit a compensatory response termed the "unfolded protein response" (UPR). The importance of the UPR lies in its ability to alter expression of a variety of genes involved in antioxidant defense, inflammation, energy metabolism, protein synthesis, apoptosis, and cell cycle regulation. The present study used comparative proteomic technology to test the hypothesis that chronic cigarette smoking induces a UPR in the human lung. Studies were performed on lung tissue samples obtained from three groups of human subjects: nonsmokers, chronic cigarette smokers, and ex-smokers. Proteomes of lung samples from chronic cigarette smokers demonstrated 26 differentially expressed proteins (20 were up-regulated, 5 were down-regulated, and 1 was detected only in the smoking group) compared with nonsmokers. Several UPR proteins were up-regulated in smokers compared with nonsmokers and ex-smokers, including the chaperones, glucose-regulated protein 78 (GRP78) and calreticulin; a foldase, protein disulfide isomerase (PDI); and enzymes involved in antioxidant defense. In cultured human airway epithelial cells, GRP78 and the UPR-regulated basic leucine zipper, transcription factors, ATF4 and Nrf2, which enhance expression of important anti-oxidant genes, increased rapidly (< 24 h) with cigarette smoke extract. These data indicate that cigarette smoke induces a UPR response in the human lung that is rapid in onset, concentration dependent, and at least partially reversible with smoking cessation. We speculate that activation of a UPR by cigarette smoke may protect the lung from oxidant injury and the development of COPD.

  13. Proteomic characterization of iron deficiency responses in Cucumis sativus L. roots

    Directory of Open Access Journals (Sweden)

    Espen Luca

    2010-12-01

    Full Text Available Abstract Background Iron deficiency induces in Strategy I plants physiological, biochemical and molecular modifications capable to increase iron uptake from the rhizosphere. This effort needs a reorganization of metabolic pathways to efficiently sustain activities linked to the acquisition of iron; in fact, carbohydrates and the energetic metabolism has been shown to be involved in these responses. The aim of this work was to find both a confirmation of the already expected change in the enzyme concentrations induced in cucumber root tissue in response to iron deficiency as well as to find new insights on the involvement of other pathways. Results The proteome pattern of soluble cytosolic proteins extracted from roots was obtained by 2-DE. Of about two thousand spots found, only those showing at least a two-fold increase or decrease in the concentration were considered for subsequent identification by mass spectrometry. Fifty-seven proteins showed significant changes, and 44 of them were identified. Twenty-one of them were increased in quantity, whereas 23 were decreased in quantity. Most of the increased proteins belong to glycolysis and nitrogen metabolism in agreement with the biochemical evidence. On the other hand, the proteins being decreased belong to the metabolism of sucrose and complex structural carbohydrates and to structural proteins. Conclusions The new available techniques allow to cast new light on the mechanisms involved in the changes occurring in plants under iron deficiency. The data obtained from this proteomic study confirm the metabolic changes occurring in cucumber as a response to Fe deficiency. Two main conclusions may be drawn. The first one is the confirmation of the increase in the glycolytic flux and in the anaerobic metabolism to sustain the energetic effort the Fe-deficient plants must undertake. The second conclusion is, on one hand, the decrease in the amount of enzymes linked to the biosynthesis of complex

  14. Comparison between Proteome and Transcriptome Response in Potato (Solanum tuberosum L.) Leaves Following Potato Virus Y (PVY) Infection.

    Science.gov (United States)

    Stare, Tjaša; Stare, Katja; Weckwerth, Wolfram; Wienkoop, Stefanie; Gruden, Kristina

    2017-07-06

    Plant diseases caused by viral infection are affecting all major crops. Being an obligate intracellular organisms, chemical control of these pathogens is so far not applied in the field except to control the insect vectors of the viruses. Understanding of molecular responses of plant immunity is therefore economically important, guiding the enforcement of crop resistance. To disentangle complex regulatory mechanisms of the plant immune responses, understanding system as a whole is a must. However, integrating data from different molecular analysis (transcriptomics, proteomics, metabolomics, smallRNA regulation etc.) is not straightforward. We evaluated the response of potato (Solanum tuberosum L.) following the infection with potato virus Y (PVY). The response has been analyzed on two molecular levels, with microarray transcriptome analysis and mass spectroscopy-based proteomics. Within this report, we performed detailed analysis of the results on both levels and compared two different approaches for analysis of proteomic data (spectral count versus MaxQuant). To link the data on different molecular levels, each protein was mapped to the corresponding potato transcript according to StNIB paralogue grouping. Only 33% of the proteins mapped to microarray probes in a one-to-one relation and additionally many showed discordance in detected levels of proteins with corresponding transcripts. We discussed functional importance of true biological differences between both levels and showed that the reason for the discordance between transcript and protein abundance lies partly in complexity and structure of biological regulation of proteome and transcriptome and partly in technical issues contributing to it.

  15. Quantitative Proteomic Analysis of the Response to Zinc, Magnesium, and Calcium Deficiency in Specific Cell Types of Arabidopsis Roots

    Directory of Open Access Journals (Sweden)

    Yoichiro Fukao

    2016-01-01

    Full Text Available The proteome profiles of specific cell types have recently been investigated using techniques such as fluorescence activated cell sorting and laser capture microdissection. However, quantitative proteomic analysis of specific cell types has not yet been performed. In this study, to investigate the response of the proteome to zinc, magnesium, and calcium deficiency in specific cell types of Arabidopsis thaliana roots, we performed isobaric tags for relative and absolute quantification (iTRAQ-based quantitative proteomics using GFP-expressing protoplasts collected by fluorescence-activated cell sorting. Protoplasts were collected from the pGL2-GFPer and pMGP-GFPer marker lines for epidermis or inner cell lines (pericycle, endodermis, and cortex, respectively. To increase the number of proteins identified, iTRAQ-labeled peptides were separated into 24 fractions by OFFGFEL electrophoresis prior to high-performance liquid chromatography coupled with mass spectrometry analysis. Overall, 1039 and 737 proteins were identified and quantified in the epidermal and inner cell lines, respectively. Interestingly, the expression of many proteins was decreased in the epidermis by mineral deficiency, although a weaker effect was observed in inner cell lines such as the pericycle, endodermis, and cortex. Here, we report for the first time the quantitative proteomics of specific cell types in Arabidopsis roots.

  16. Comparative proteomics evaluation of plasma exosome isolation techniques and assessment of the stability of exosomes in normal human blood plasma.

    Science.gov (United States)

    Kalra, Hina; Adda, Christopher G; Liem, Michael; Ang, Ching-Seng; Mechler, Adam; Simpson, Richard J; Hulett, Mark D; Mathivanan, Suresh

    2013-11-01

    Exosomes are nanovesicles released by a variety of cells and are detected in body fluids including blood. Recent studies have highlighted the critical application of exosomes as personalized targeted drug delivery vehicles and as reservoirs of disease biomarkers. While these research applications have created significant interest and can be translated into practice, the stability of exosomes needs to be assessed and exosome isolation protocols from blood plasma need to be optimized. To optimize methods to isolate exosomes from blood plasma, we performed a comparative evaluation of three exosome isolation techniques (differential centrifugation coupled with ultracentrifugation, epithelial cell adhesion molecule immunoaffinity pull-down, and OptiPrep(TM) density gradient separation) using normal human plasma. Based on MS, Western blotting and microscopy results, we found that the OptiPrep(TM) density gradient method was superior in isolating pure exosomal populations, devoid of highly abundant plasma proteins. In addition, we assessed the stability of exosomes in plasma over 90 days under various storage conditions. Western blotting analysis using the exosomal marker, TSG101, revealed that exosomes are stable for 90 days. Interestingly, in the context of cellular uptake, the isolated exosomes were able to fuse with target cells revealing that they were indeed biologically active.

  17. Plasma membrane proteome analysis of the early effect of alcohol on liver:implications for alcoholic liver disease

    Institute of Scientific and Technical Information of China (English)

    Lijun Zhang; Ye Zheng; Pengyuan Yang; Zhenghong Yuan; Xiaofang Jia; Yanling Feng; Xia Peng; Zhiyong Zhang; Wenjiang Zhou; Zhanqing Zhang; Fang Ma; Xiaohui Liu

    2011-01-01

    In humans, the over-consumption of alcohol can lead to serious liver disease. To examine the early effects of alcohol on liver disease, rats were given sufficient ethanol to develop liver cirrhosis. Rats before the onset of fibrosis were studied in this work. Plasma membranes (PM) of liver were extracted by twice sucrose density gradient centrifugation. The proteome profiles of PM from ethanol-treated rats and the controls were analyzed using two-dimensional gel electrophoresis (2-DE) and isobaric tag for relative and absolute quantitation (iTRAQ) tech-nology. Ethanol treatment altered the amount of 15 differ-ent liver proteins: 10 of them were detected by 2-DE and 5 by iTRAQ. Keratin 8 was detected by both methods.Gene ontology analysis of these differentially detected proteins indicated that most of them were involved in important cell functions such as binding activity (includ-ing ion, DNA, ATP binding, etc.), cell structure, or enzyme activity. Among these, annexin A2, keratin 8, and keratin 18 were further verified using western blot analy-sis and annexin A2 was verified by immunohistochemis-try. Our results suggested that alcohol has the potential to affect cell structure, adhesion and enzyme activity by altering expression levels of several relevant proteins in the PM. To the best of our knowledge, this is the first time to study the effect of alcohol on the liver PM pro-teome and it might be helpful for understanding the poss-ible mechanisms of alcohol-induced liver disease.

  18. Randomized trial of glucosamine and chondroitin supplementation on inflammation and oxidative stress biomarkers and plasma proteomics profiles in healthy humans.

    Directory of Open Access Journals (Sweden)

    Sandi L Navarro

    Full Text Available Glucosamine and chondroitin are popular non-vitamin dietary supplements used for osteoarthritis. Long-term use is associated with lower incidence of colorectal and lung cancers and with lower mortality; however, the mechanism underlying these observations is unknown. In vitro and animal studies show that glucosamine and chondroitin inhibit NF-kB, a central mediator of inflammation, but no definitive trials have been done in healthy humans.We conducted a randomized, double-blind, placebo-controlled, cross-over study to assess the effects of glucosamine hydrochloride (1500 mg/d plus chondroitin sulfate (1200 mg/d for 28 days compared to placebo in 18 (9 men, 9 women healthy, overweight (body mass index 25.0-32.5 kg/m2 adults, aged 20-55 y. We examined 4 serum inflammatory biomarkers: C-reactive protein (CRP, interleukin 6, and soluble tumor necrosis factor receptors I and II; a urinary inflammation biomarker: prostaglandin E2-metabolite; and a urinary oxidative stress biomarker: F2-isoprostane. Plasma proteomics on an antibody array was performed to explore other pathways modulated by glucosamine and chondroitin.Serum CRP concentrations were 23% lower after glucosamine and chondroitin compared to placebo (P = 0.048. There were no significant differences in other biomarkers. In the proteomics analyses, several pathways were significantly different between the interventions after Bonferroni correction, the most significant being a reduction in the "cytokine activity" pathway (P = 2.6 x 10-16, after glucosamine and chondroitin compared to placebo.Glucosamine and chondroitin supplementation may lower systemic inflammation and alter other pathways in healthy, overweight individuals. This study adds evidence for potential mechanisms supporting epidemiologic findings that glucosamine and chondroitin are associated with reduced risk of lung and colorectal cancer.ClinicalTrials.gov NCT01682694.

  19. Physiological and proteome studies of responses to heat stress during grain filling in contrasting wheat cultivars

    DEFF Research Database (Denmark)

    Wang, Xiao; Dinler, Burcu Seckin; Vignjevic, Marija;

    2015-01-01

    Experiments to explore physiological and biochemical differences of the effects of heat stress in ten wheat (Triticum aestivum L) cultivars have been performed. Based on the response of photosynthesis rates, cell membrane lipid peroxide concentrations and grain yield to heat, six cultivars were...... compared to sensitive cultivars under heat stress. The tolerant cv. '810' and the sensitive cv. '1039' were selected for further proteome analysis of leaves. Proteins related to photosynthesis, glycolysis, stress defence, heat shock and ATP production were differently expressed in leaves of the tolerant...... and sensitive cultivar under heat stress in relation to the corresponding control. The abundance of proteins related to signal transduction, heat shock, photosynthesis, and antioxidants increased, while the abundance of proteins related to nitrogen metabolism decreased in the tolerant cv. '810' under heat...

  20. Methyl viologen responsive proteome dynamics of Anabaena sp. strain PCC7120.

    Science.gov (United States)

    Panda, Bandita; Basu, Bhakti; Rajaram, Hema; Kumar Apte, Shree

    2014-08-01

    A proteomic approach was employed to elucidate the response of an agriculturally important microbe, Anabaena sp. strain PCC7120, to methyl viologen (MV). Exposure to 2 μM MV caused 50% lethality (LD50 ) within 6 h and modified the cellular levels of several proteins. About 31 proteins increased in abundance and 24 proteins decreased in abundance, while 55 proteins showed only a minor change in abundance. Of these, 103 proteins were identified by MS. Levels of proteins involved in ROS detoxification and chaperoning activities were enhanced but that of crucial proteins involved in light and dark reactions of photosynthesis declined or constitutive. The abundance of proteins involved in carbon and energy biogenesis were altered. The study elaborated the oxidative stress defense mechanism deployed by Anabaena, identified carbon metabolism and energy biogenesis as possible major targets of MV sensitivity, and suggested potential biotechnological interventions for improved stress tolerance in Anabaena 7120.

  1. Inverse Thermal-Responsive Glyco-Polypeptide Polymer for One-Pot Glyco-Affinity Proteomic

    Institute of Scientific and Technical Information of China (English)

    Xue-Long Sun

    2005-01-01

    @@ 1Introduction Proteins are ultimately responsible for the biological processes in cells, body fluids, and tissue specimens.This presents enormous challenges to the field of proteomics, which aims to identify, characterize and assign biological functions of all proteins. Determining individual protein in complex biological samples often requires some type of separation as a prerequisite for its measurement. The complexities of chemical structure and in the physiological function of every protein contribute to the problems encountered when trying to separate these biomolecules. A number of techniques exist for the separation of proteins, however, a separation technique that satisfies speed of analysis, selectivity, sensitivity, adequate throughput capacity, and affordable cost of analysis is unavailable yet.

  2. Proteomic identification of early salicylate- and flg22-responsive redox-sensitive proteins in Arabidopsis

    KAUST Repository

    Liu, Pei

    2015-02-27

    Accumulation of reactive oxygen species (ROS) is one of the early defense responses against pathogen infection in plants. The mechanism about the initial and direct regulation of the defense signaling pathway by ROS remains elusive. Perturbation of cellular redox homeostasis by ROS is believed to alter functions of redox-sensitive proteins through their oxidative modifications. Here we report an OxiTRAQ-based proteomic study in identifying proteins whose cysteines underwent oxidative modifications in Arabidopsis cells during the early response to salicylate or flg22, two defense pathway elicitors that are known to disturb cellular redox homeostasis. Among the salicylate- and/or flg22-responsive redox-sensitive proteins are those involved in transcriptional regulation, chromatin remodeling, RNA processing, post-translational modifications, and nucleocytoplasmic shuttling. The identification of the salicylate-/flg22-responsive redox-sensitive proteins provides a foundation from which further study can be conducted toward understanding biological significance of their oxidative modifications during the plant defense response.

  3. Differential expression proteomics to investigate responses and resistance to Orobanche crenata in Medicago truncatula

    Directory of Open Access Journals (Sweden)

    Diego Rubiales

    2009-07-01

    Full Text Available Abstract Background Parasitic angiosperm Orobanche crenata infection represents a major constraint for the cultivation of legumes worldwide. The level of protection achieved to date is either incomplete or ephemeral. Hence, an efficient control of the parasite requires a better understanding of its interaction and associated resistance mechanisms at molecular levels. Results In order to study the plant response to this parasitic plant and the molecular basis of the resistance we have used a proteomic approach. The root proteome of two accessions of the model legume Medicago truncatula displaying differences in their resistance phenotype, in control as well as in inoculated plants, over two time points (21 and 25 days post infection, has been compared. We report quantitative as well as qualitative differences in the 2-DE maps between early- (SA 27774 and late-resistant (SA 4087 genotypes after Coomassie and silver-staining: 69 differential spots were observed between non-inoculated genotypes, and 42 and 25 spots for SA 4087 and SA 27774 non-inoculated and inoculated plants, respectively. In all, 49 differential spots were identified by peptide mass fingerprinting (PMF following MALDI-TOF/TOF mass spectrometry. Many of the proteins showing significant differences between genotypes and after parasitic infection belong to the functional category of defense and stress-related proteins. A number of spots correspond to proteins with the same function, and might represent members of a multigenic family or post-transcriptional forms of the same protein. Conclusion The results obtained suggest the existence of a generic defense mechanism operating during the early stages of infection and differing in both genotypes. The faster response to the infection observed in the SA 27774 genotype might be due to the action of proteins targeted against key elements needed for the parasite's successful infection, such as protease inhibitors. Our data are discussed and

  4. Comparison of Proteome Response to Saline and Zinc Stress in Lettuce

    Directory of Open Access Journals (Sweden)

    Luigi eLucini

    2015-04-01

    Full Text Available Zinc salts occurring in soils can exert an osmotic stress toward plants. However, being zinc a heavy metal, some more specific effects on plant metabolisms can be forecast. In this work, lettuce has been used as a model to investigate salt and zinc stresses at proteome level through a shotgun tandem MS proteomic approach. The effect of zinc stress in lettuce, in comparison with NaCl stress, was evaluated to dissect between osmotic/oxidative stress-related effects, from those changes specifically related to zinc.The analysis of proteins exhibiting a fold change of 3 as minimum (on log 2 normalized abundances, revealed the involvement of photosynthesis (via stimulation of chlorophyll synthesis and enhanced role of photosystem I as well as stimulation of photophosphorylation. Increased glycolytic supply of energy substrates and ammonium assimilation (through formation of glutamine synthetase were also induced by zinc in soil. Similarly, protein metabolism (at both transcriptional and ribosomal level, heat shock proteins and proteolysis were affected. According to their biosynthetic enzymes, hormones appear to be altered by both the treatment and the time point considered: ethylene biosynthesis was enhanced, while production of abscisic acid was up-regulated at the earlier time point to decrease markedly and gibberellins were decreased at the later one.Besides aquaporin PIP2 synthesis, other osmotic/oxidative stress related compounds were enhanced under zinc stress, i.e. proline, hydroxycinnamic acids, ascorbate, sesquiterpene lactones and terpenoids biosynthesis.Although the proteins involved in the response to zinc stress and to salinity were substantially the same, their abundance changed between the two treatments. Lettuce response to zinc was more prominent at the first sampling point, yet showing a faster adaptation than under NaCl stress. Indeed, lettuce plants showed an adaptation after 30 days of stress, in a more pronounced way in the case

  5. Cadmium stress responses in Brassica juncea: hints from proteomics and metabolomics.

    Science.gov (United States)

    D'Alessandro, Angelo; Taamalli, Manel; Gevi, Federica; Timperio, Anna Maria; Zolla, Lello; Ghnaya, Tahar

    2013-11-01

    Among heavy metal stressors, cadmium (Cd) pollution is one leading threat to the environment. In this view, research efforts have been increasingly put forward to promote the individuation of phytoextractor plants that are capable of accumulating and withstanding the toxic metals, including Cd, in the aerial parts. We hereby adopted the hyperaccumulator B. juncea (Indian mustard) as a model to investigate plant responses to Cd stress at low (25 μM) and high (100 μM) doses. Analytical strategies included mass-spectrometry-based determination of Cd and the assessment of its effect on the leaf proteome and metabolome. Results were thus integrated with routine physiological data. Taken together, physiology results highlighted the deregulation of photosynthesis efficiency, ATP synthesis, reduced transpiration, and the impairment of light-independent carbon fixation reactions. These results were supported at the proteomics level by the observed Cd-dependent alteration of photosystem components and the alteration of metabolic enzymes, including ATP synthase subunits, carbonic anhydrase, and enzymes involved in antioxidant responses (especially glutathione and phytochelatin homeostasis) and the Calvin cycle. Metabolomics results confirmed the alterations of energy-generating metabolic pathways, sulfur-compound metabolism (GSH and PCs), and Calvin cycle. Besides, metabolomics results highlighted the up-regulation of phosphoglycolate, a byproduct of the photorespiration metabolism. This was suggestive of the likely increased photorespiration rate as a means to cope with Cd-induced unbalance in stomatal conductance and deregulation of CO2 homeostasis, which would, in turn, promote CO2 depletion and O2 (and thus oxidative stress) accumulation under prolonged photosynthesis in the leaves from plants exposed to high doses of CdCl2. Overall, it emerges that Cd-stressed B. juncea might rely on photorespiration, an adaptation that would prevent the over-reduction of the

  6. NSTX Plasma Response to Lithium Coated Divertor

    Energy Technology Data Exchange (ETDEWEB)

    H.W. Kugel, M.G. Bell, J.P. Allain, R.E. Bell, S. Ding, S.P. Gerhardt, M.A. Jaworski, R. Kaita, J. Kallman, S.M. Kaye, B.P. LeBlanc, R. Maingi, R. Majeski, R. Maqueda, D.K. Mansfield, D. Mueller, R. Nygren, S.F. Paul, R. Raman, A.L. Roquemore, S.A. Sabbagh, H. Schneider, C.H. Skinner, V.A. Soukhanovskii, C.N. Taylor, J.R. Timberlak, W.R. Wampler, L.E. Zakharov, S.J. Zweben, and the NSTX Research Team

    2011-01-21

    NSTX experiments have explored lithium evaporated on a graphite divertor and other plasma facing components in both L- and H- mode confinement regimes heated by high-power neutral beams. Improvements in plasma performance have followed these lithium depositions, including a reduction and eventual elimination of the HeGDC time between discharges, reduced edge neutral density, reduced plasma density, particularly in the edge and the SOL, increased pedestal electron and ion temperature, improved energy confinement and the suppression of ELMs in the H-mode. However, with improvements in confinement and suppression of ELMs, there was a significant secular increase in the effective ion charge Zeff and the radiated power in H-mode plasmas as a result of increases in the carbon and medium-Z metallic impurities. Lithium itself remained at a very low level in the plasma core, <0.1%. Initial results are reported from operation with a Liquid Lithium Divertor (LLD) recently installed.

  7. Data set of Aspergillus flavus induced alterations in tear proteome: Understanding the pathogen-induced host response to fungal infection

    Directory of Open Access Journals (Sweden)

    Jeyalakshmi Kandhavelu

    2016-12-01

    Full Text Available Fungal keratitis is one of the leading causes of blindness in the tropical countries affecting individuals in their most productive age. The host immune response during this infection is poorly understood. We carried out comparative tear proteome analysis of Aspergillus flavus keratitis patients and uninfected controls. Proteome was separated into glycosylated and non-glycosylated fractions using lectin column chromatography before mass spectrometry. The data revealed the major processes activated in the human host in response to fungal infection and reflected in the tear. Extended analysis of this dataset presented here complements the research article entitled “Aspergillus flavus induced alterations in tear protein profile reveal pathogen-induced host response to fungal infection [1]” (Jeyalakhsmi Kandhavelu, Naveen Luke Demonte, Venkatesh Prajna Namperumalsamy, Lalitha Prajna, Chitra Thangavel, Jeya Maheshwari Jayapal, Dharmalingam Kuppamuthu, 2016. The mass spectrometry proteomics data have been deposited in the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PRIDE:PXD003825.

  8. Medicago truncatula and Glycine max: Different Drought Tolerance and Similar Local Response of the Root Nodule Proteome.

    Science.gov (United States)

    Gil-Quintana, Erena; Lyon, David; Staudinger, Christiana; Wienkoop, Stefanie; González, Esther M

    2015-12-04

    Legume crops present important agronomical and environmental advantages mainly due to their capacity to reduce atmospheric N2 to ammonium via symbiotic nitrogen fixation (SNF). This process is very sensitive to abiotic stresses such as drought, but the mechanism underlying this response is not fully understood. The goal of the current work is to compare the drought response of two legumes with high economic impact and research importance, Medicago truncatula and Glycine max, by characterizing their root nodule proteomes. Our results show that, although M. truncatula exhibits lower water potential values under drought conditions compared to G. max, SNF declined analogously in the two legumes. Both of their nodule proteomes are very similar, and comparable down-regulation responses in the diverse protein functional groups were identified (mainly proteins related to the metabolism of carbon, nitrogen, and sulfur). We suggest lipoxygenases and protein turnover as newly recognized players in SNF regulation. Partial drought conditions applied to a split-root system resulted in the local down-regulation of the entire proteome of drought-stressed nodules in both legumes. The high degree of similarity between both legume proteomes suggests that the vast amount of research conducted on M. truncatula could be applied to economically important legume crops, such as soybean.

  9. Proteomic biomarker discovery in 1000 human plasma samples with mass spectrometry

    DEFF Research Database (Denmark)

    Cominetti, Ornella; Núñez Galindo, Antonio; Corthésy, John

    2016-01-01

    the quality of the MS data and provided descriptive statistics. The data set was interrogated for proteins with most stable expression levels in that set of plasma samples. We evaluated standard clinical variables that typically impact forthcoming results and assessed body mass index-associated and gender......-specific proteins at two time points. We demonstrate that analyzing a large number of human plasma samples for biomarker discovery with MS using isobaric tagging is feasible, providing robust and consistent biological results....

  10. Proteome analysis of alfalfa roots in response to water deifcit stress

    Institute of Scientific and Technical Information of China (English)

    Rahman Md Atikur; Kim Yong-Goo; AlamIftekhar; LIU Gong-she; Lee Hyoshin; Lee Jeung Joo; Lee Byung-Hyun

    2016-01-01

    To evaluate the response of alfalfa to water deifcit (WD) stress, WD-induced candidates were investigated through a proteomic approach. Alfalfa seedlings were exposed to WD stress for 12 and 15 days respectively, folowed by 3 days re-watering. Water deifcit increased H2O2content, lipid peroxidation, DPPH (1,1-diphenyl-2-picrylhydrazyl)-radical scavenging activity, and the free proline level in alfalfa roots. Root proteins were extracted and separated by two-dimentional polyacrylamide gel electrophoresis (2-DE). A total of 49 WD-responsive proteins were identiifed in alfalfa roots; 25 proteins were reproducibly found to be up-regulated and 24 were down-regulated. Two proteins, namely cytosolic ascorbate peroxidase (APx2) and putative F-box protein were newly detected on 2-DE maps of WD-treated plants. We identiifed several proteins including agamous-like 65, albumin b-32, inward rectifying potassium channel, and auxin-independent growth promoter. The identiifed proteins are involved in a variety of celular functions including calcium signaling, abacisic acid (ABA) biosynthesis, reactive oxygen species (ROS) regulation, transcription/ translation, antioxidant/detoxiifcation/stress defense, energy metabolism, signal transduction, and storage. These results indicate the potential candidates were responsible for adaptive response in alfalfa roots.

  11. Oocyte proteomics: localisation of mouse zona pellucida protein 3 to the plasma membrane of ovulated mouse eggs.

    Science.gov (United States)

    Coonrod, S A; Calvert, M E; Reddi, P P; Kasper, E N; Digilio, L C; Herr, J C

    2004-01-01

    In order to gain a deeper understanding of the molecular underpinnings of sperm-egg interaction and early development, we have used two-dimensional (2D) electrophoresis, avidin blotting and tandem mass spectrometry to identify, clone and characterise abundant molecules from the mouse egg proteome. Two-dimensional avidin blots of biotinylated zona-free eggs revealed an abundant approximately 75-kDa surface-labelled heterogeneous protein possessing a staining pattern similar to that of the zona pellucida glycoprotein, mouse ZP3 (mZP3). In light of this observation, we investigated whether mZP3 specifically localises to the plasma membrane of mature eggs. Zona pellucidae of immature mouse oocytes and mature eggs were removed using acid Tyrode's solution, chymotrypsin or mechanical shearing. Indirect immunofluorescence using the mZP3 monoclonal antibody (mAb) IE-10 demonstrated strong continuous staining over the entire surface of immature oocytes and weak microvillar staining on ovulated eggs, regardless of the method of zona removal. Interestingly, in mature eggs, increased fluorescence intensity was observed following artificial activation and fertilisation, whereas little to no fluorescence was observed in degenerated eggs. The surface localisation of ZP3 on mature eggs was supported by the finding that the IE-10 mAb immunoprecipitated an approximate 75-kDa protein from lysates of biotinylated zona-free eggs. To further investigate the specificity of the localisation of mZP3 to the oolemma, indirect immunofluorescence was performed using the IE-10 mAb on both CV-1 and CHO cells transfected with full-length recombinant mZP3 (re-mZP3). Plasma membrane targeting of the expressed re-mZP3 protein was observed in both cell lines. The membrane association of re-mZP3 was confirmed by the finding that biotinylated re-mZP3 (approximately 75 kDa) is immunoprecipitated from the hydrophobic phase of Triton X-114 extracts of transfected cells following phase partitioning

  12. The Arabidopsis thaliana Cyclic-Nucleotide-Dependent Response – a Quantitative Proteomic and Phosphoproteomic Analysis

    KAUST Repository

    Alqurashi, May M.

    2013-11-01

    Protein phosphorylation governs many regulatory pathways and an increasing number of kinases, proteins that transfer phosphate groups, are in turn activated by cyclic nucleotides. One of the cyclic nucleotides, cyclic adenosine monophosphate (cAMP), has been shown to be a second messenger in abiotic and biotic stress responses. However, little is known about the precise role of cAMP in plants and in the down-stream activation of kinases, and hence cAMP-dependent phosphorylation. To increase our understanding of the role of cAMP, proteomic and phosphoproteomic profiles of Arabidopsis thaliana suspension culture cells were analyzed before and after treatment of cells with two different concentrations of 8-Bromo-cAMP (1 µM and 100 nM) and over a time-course of one hour. A comparative quantitative analysis was undertaken using two- dimensional gel electrophoresis and the Delta 2D software (DECODON) followed by protein spot identification by tandem mass spectrometry combined with Mascot and Scaffold. Differentially expressed proteins and regulated phosphoproteins were categorized according to their biological function using bioinformatics tools. The results revealed that the treatment with 1 µM and 100 nM 8-Bromo-cAMP was sufficient to induce specific concentration- and time-dependent changes at the proteome and phosphoproteome levels. In particular, different phosphorylation patterns were observed overtime preferentially affecting proteins in a number of functional categories, notably phosphatases, proteins that remove phosphate groups. This suggests that cAMP both transiently activates and deactivates proteins through specific phosphorylation events and provides new insight into biological mechanisms and functions at the systems level.

  13. Evaluating the Hypoxia Response of Ruffe and Flounder Gills by a Combined Proteome and Transcriptome Approach.

    Directory of Open Access Journals (Sweden)

    Jessica Tiedke

    Full Text Available Hypoxia has gained ecological importance during the last decades, and it is the most dramatically increasing environmental factor in coastal areas and estuaries. The gills of fish are the prime target of hypoxia and other stresses. Here we have studied the impact of the exposure to hypoxia (1.5 mg O2/l for 48 h on the protein expression of the gills of two estuarine fish species, the ruffe (Gymnocephalus cernua and the European flounder (Platichthys flesus. First, we obtained the transcriptomes of mixed tissues (gills, heart and brain from both species by Illumina next-generation sequencing. Then, the gill proteomes were investigated using two-dimensional gel electrophoresis and mass spectrometry. Quantification of the normalized proteome maps resulted in a total of 148 spots in the ruffe, of which 28 (18.8% were significantly regulated (> 1.5-fold. In the flounder, 121 spots were found, of which 27 (22.3% proteins were significantly regulated. The transcriptomes were used for the identification of these proteins, which was successful for 15 proteins of the ruffe and 14 of the flounder. The ruffe transcriptome dataset comprised 87,169,850 reads, resulting in an assembly of 72,108 contigs (N50 = 1,828 bp. 20,860 contigs (26.93% had blastx hits with E < 1e-5 in the human sequences in the RefSeq database, representing 14,771 unique accession numbers. The flounder transcriptome with 78,943,030 reads assembled into 49,241 contigs (N50 = 2,106 bp. 20,127 contigs (40.87% had a hit with human proteins, corresponding to 14,455 unique accession numbers. The regulation of selected genes was confirmed by quantitative real-time RT-PCR. Most of the regulated proteins that were identified by this approach function in the energy metabolism, while others are involved in the immune response, cell signalling and the cytoskeleton.

  14. A quantitative proteomic analysis of cellular responses to high glucose media in Chinese hamster ovary cells.

    Science.gov (United States)

    Liu, Zhenke; Dai, Shujia; Bones, Jonathan; Ray, Somak; Cha, Sangwon; Karger, Barry L; Li, Jingyi Jessica; Wilson, Lee; Hinckle, Greg; Rossomando, Anthony

    2015-01-01

    A goal in recombinant protein production using Chinese hamster ovary (CHO) cells is to achieve both high specific productivity and high cell density. Addition of glucose to the culture media is necessary to maintain both cell growth and viability. We varied the glucose concentration in the media from 5 to 16 g/L and found that although specific productivity of CHO-DG44 cells increased with the glucose level, the integrated viable cell density decreased. To examine the biological basis of these results, we conducted a discovery proteomic study of CHO-DG44 cells grown under batch conditions in normal (5 g/L) or high (15 g/L) glucose over 3, 6, and 9 days. Approximately 5,000 proteins were confidently identified against an mRNA-based CHO-DG44 specific proteome database, with 2,800 proteins quantified with at least two peptides. A self-organizing map algorithm was used to deconvolute temporal expression profiles of quantitated proteins. Functional analysis of altered proteins suggested that differences in growth between the two glucose levels resulted from changes in crosstalk between glucose metabolism, recombinant protein expression, and cell death, providing an overall picture of the responses to high glucose environment. The high glucose environment may enhance recombinant dihydrofolate reductase in CHO cells by up-regulating NCK1 and down-regulating PRKRA, and may lower integrated viable cell density by activating mitochondrial- and endoplasmic reticulum-mediated cell death pathways by up-regulating HtrA2 and calpains. These proteins are suggested as potential targets for bioengineering to enhance recombinant protein production.

  15. Unraveling the Root Proteome Changes and Its Relationship to Molecular Mechanism Underlying Salt Stress Response in Radish (Raphanus sativus L.

    Directory of Open Access Journals (Sweden)

    Xiaochuan Sun

    2017-07-01

    Full Text Available To understand the molecular mechanism underlying salt stress response in radish, iTRAQ-based proteomic analysis was conducted to investigate the differences in protein species abundance under different salt treatments. In total, 851, 706, and 685 differential abundance protein species (DAPS were identified between CK vs. Na100, CK vs. Na200, and Na100 vs. Na200, respectively. Functional annotation analysis revealed that salt stress elicited complex proteomic alterations in radish roots involved in carbohydrate and energy metabolism, protein metabolism, signal transduction, transcription regulation, stress and defense and transport. Additionally, the expression levels of nine genes encoding DAPS were further verified using RT-qPCR. The integrative analysis of transcriptomic and proteomic data in conjunction with miRNAs was further performed to strengthen the understanding of radish response to salinity. The genes responsible for signal transduction, ROS scavenging and transport activities as well as several key miRNAs including miR171, miR395, and miR398 played crucial roles in salt stress response in radish. Based on these findings, a schematic genetic regulatory network of salt stress response was proposed. This study provided valuable insights into the molecular mechanism underlying salt stress response in radish roots and would facilitate developing effective strategies toward genetically engineered salt-tolerant radish and other root vegetable crops.

  16. Unraveling the Root Proteome Changes and Its Relationship to Molecular Mechanism Underlying Salt Stress Response in Radish (Raphanus sativus L.).

    Science.gov (United States)

    Sun, Xiaochuan; Wang, Yan; Xu, Liang; Li, Chao; Zhang, Wei; Luo, Xiaobo; Jiang, Haiyan; Liu, Liwang

    2017-01-01

    To understand the molecular mechanism underlying salt stress response in radish, iTRAQ-based proteomic analysis was conducted to investigate the differences in protein species abundance under different salt treatments. In total, 851, 706, and 685 differential abundance protein species (DAPS) were identified between CK vs. Na100, CK vs. Na200, and Na100 vs. Na200, respectively. Functional annotation analysis revealed that salt stress elicited complex proteomic alterations in radish roots involved in carbohydrate and energy metabolism, protein metabolism, signal transduction, transcription regulation, stress and defense and transport. Additionally, the expression levels of nine genes encoding DAPS were further verified using RT-qPCR. The integrative analysis of transcriptomic and proteomic data in conjunction with miRNAs was further performed to strengthen the understanding of radish response to salinity. The genes responsible for signal transduction, ROS scavenging and transport activities as well as several key miRNAs including miR171, miR395, and miR398 played crucial roles in salt stress response in radish. Based on these findings, a schematic genetic regulatory network of salt stress response was proposed. This study provided valuable insights into the molecular mechanism underlying salt stress response in radish roots and would facilitate developing effective strategies toward genetically engineered salt-tolerant radish and other root vegetable crops.

  17. Proteomics tools reveal startlingly high amounts of oxytocin in plasma and serum

    Science.gov (United States)

    Brandtzaeg, Ole Kristian; Johnsen, Elin; Roberg-Larsen, Hanne; Seip, Knut Fredrik; Maclean, Evan L.; Gesquiere, Laurence R.; Leknes, Siri; Lundanes, Elsa; Wilson, Steven Ray

    2016-08-01

    The neuropeptide oxytocin (OT) is associated with a plethora of social behaviors, and is a key topic at the intersection of psychology and biology. However, tools for measuring OT are still not fully developed. We describe a robust nano liquid chromatography-mass spectrometry (nanoLC-MS) platform for measuring the total amount of OT in human plasma/serum. OT binds strongly to plasma proteins, but a reduction/alkylation (R/A) procedure breaks this bond, enabling ample detection of total OT. The method (R/A + robust nanoLC-MS) was used to determine total OT plasma/serum levels to startlingly high concentrations (high pg/mL-ng/mL). Similar results were obtained when combining R/A and ELISA. Compared to measuring free OT, measuring total OT can have advantages in e.g. biomarker studies.

  18. Proteomic Characterization of Zinc-Binding Proteins of Canine Seminal Plasma.

    Science.gov (United States)

    Mogielnicka-Brzozowska, M; Kowalska, N; Fraser, L; Kordan, W

    2015-12-01

    The zinc-binding proteins (ZnBPs) of the seminal plasma are implicated in different processes related to sperm-egg fusion. The aim of this study was to characterize the ZnBPs of canine seminal plasma using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and mass spectrometry. The ZnBPs were isolated from the ejaculates of five dogs by affinity chromatography and subjected to 2D-PAGE analysis. The acquired spots, detected across the gels, were analysed by mass spectrometry. Using 2D-PAGE analysis, it was shown that canine seminal plasma comprised about 46-57 zinc-binding polypeptides, with molecular mass ranging from 9.3 to 138.7 kDa and pI at pH 5.2-10.0. It was found that zinc-binding polypeptides of low molecular masses (9.3-19.0 kDa and pI at pH 6.1-10.0) were predominant in the seminal plasma, and seven polypeptides, with molecular masses ranging from 11.7 to 15.4 kDa and pI at pH 6.8-8.7, were characterized by high optical density values. In addition, analysis with mass spectrometry (LC-MS-MS/MS) revealed that the identified seven polypeptides are canine prostate-specific esterase (CPSE), which is the main proteolytic enzyme of the seminal plasma. The findings of this study indicate an important regulatory role of seminal plasma zinc ions in the functional activity of CPSE, which is of great significance for maintaining the normal function of canine prostate and the spermatozoa functions.

  19. Proteomic-Based Biosignatures in Breast Cancer Classification and Prediction of Therapeutic Response

    Science.gov (United States)

    He, Jianbo; Whelan, Stephen A.; Lu, Ming; Shen, Dejun; Chung, Debra U.; Saxton, Romaine E.; Faull, Kym F.; Whitelegge, Julian P.; Chang, Helena R.

    2011-01-01

    Protein-based markers that classify tumor subtypes and predict therapeutic response would be clinically useful in guiding patient treatment. We investigated the LC-MS/MS-identified protein biosignatures in 39 baseline breast cancer specimens including 28 HER2-positive and 11 triple-negative (TNBC) tumors. Twenty proteins were found to correctly classify all HER2 positive and 7 of the 11 TNBC tumors. Among them, galectin-3-binding protein and ALDH1A1 were found preferentially elevated in TNBC, whereas CK19, transferrin, transketolase, and thymosin β4 and β10 were elevated in HER2-positive cancers. In addition, several proteins such as enolase, vimentin, peroxiredoxin 5, Hsp 70, periostin precursor, RhoA, cathepsin D preproprotein, and annexin 1 were found to be associated with the tumor responses to treatment within each subtype. The MS-based proteomic findings appear promising in guiding tumor classification and predicting response. When sufficiently validated, some of these candidate protein markers could have great potential in improving breast cancer treatment. PMID:22110952

  20. Proteomic investigation of male Gammarus fossarum, a freshwater crustacean, in response to endocrine disruptors.

    Science.gov (United States)

    Trapp, Judith; Armengaud, Jean; Pible, Olivier; Gaillard, Jean-Charles; Abbaci, Khedidja; Habtoul, Yassine; Chaumot, Arnaud; Geffard, Olivier

    2015-01-02

    While the decrease in human sperm count in response to pollutants is a worldwide concern, little attention is being devoted to its causes and occurrence in the biodiversity of the animal kingdom. Arthropoda is the most species-rich phyla, inhabiting all aquatic and terrestrial ecosystems. During evolution, key molecular players of the arthropod endocrine system have diverged from the vertebrate counterparts. Consequently, arthropods may have different sensitivities toward endocrine disrupting chemicals (EDCs). Here alteration of sperm quality in a crustacean, Gammarus fossarum, a popular organism in freshwater risk assessment, was investigated after laboratory exposure to various concentrations of three different xenobiotics: cadmium, methoxyfenozide, and pyriproxyfen. The integrity of the reproductive process was assessed by means of sperm-quality markers. For each substance, semiquantitative/relative proteomics based on spectral counting procedure was carried out on male gonads to observe the biological impact. The changes in a total of 871 proteins were monitored in response to toxic pressure. A drastic effect was observed on spermatozoon production, with a dose-response relationship. While exposure to EDCs leads to strong modulations of male-specific proteins in testis, no induction of female-specific proteins was noted. Also, a significant portion of orphans proved to be sensitive to toxic stress.

  1. Proteomic-Based Biosignatures in Breast Cancer Classification and Prediction of Therapeutic Response

    Directory of Open Access Journals (Sweden)

    Jianbo He

    2011-01-01

    Full Text Available Protein-based markers that classify tumor subtypes and predict therapeutic response would be clinically useful in guiding patient treatment. We investigated the LC-MS/MS-identified protein biosignatures in 39 baseline breast cancer specimens including 28 HER2-positive and 11 triple-negative (TNBC tumors. Twenty proteins were found to correctly classify all HER2 positive and 7 of the 11 TNBC tumors. Among them, galectin-3-binding protein and ALDH1A1 were found preferentially elevated in TNBC, whereas CK19, transferrin, transketolase, and thymosin 4 and 10 were elevated in HER2-positive cancers. In addition, several proteins such as enolase, vimentin, peroxiredoxin 5, Hsp 70, periostin precursor, RhoA, cathepsin D preproprotein, and annexin 1 were found to be associated with the tumor responses to treatment within each subtype. The MS-based proteomic findings appear promising in guiding tumor classification and predicting response. When sufficiently validated, some of these candidate protein markers could have great potential in improving breast cancer treatment.

  2. Distinct changes in soybean xylem sap proteome in response to pathogenic and symbiotic microbe interactions

    Directory of Open Access Journals (Sweden)

    Cho Un-Haing

    2009-09-01

    Full Text Available Abstract Background Plant systemic signaling characterized by the long distance transport of molecules across plant organs involves the xylem and phloem conduits. Root-microbe interactions generate systemic signals that are transported to aerial organs via the xylem sap. We analyzed the xylem sap proteome of soybean seedlings in response to pathogenic and symbiotic interactions to identify systemic signaling proteins and other differentially expressed proteins. Results We observed the increase of a serine protease and peroxidase in the xylem sap in response to Phytophthora sojae elicitor treatment. The high molecular weight fraction of soybean xylem sap was found to promote the growth of Neurospora crassa in vitro at lower concentrations and inhibit growth at higher concentrations. Sap from soybean plants treated with a P. sojae elicitor had a significantly higher inhibitory effect than sap from control soybean plants. When soybean seedlings were inoculated with the symbiont Bradyrhizobium japonicum, the abundance of a xyloglucan transendoglycosyl transferase protein increased in the xylem sap. However, RNAi-mediated silencing of the corresponding gene did not significantly affect nodulation in soybean hairy root composite plants. Conclusion Our study identified a number of sap proteins from soybean that are differentially induced in response to B. japonicum and P. sojae elicitor treatments and a majority of them were secreted proteins.

  3. Proteomics for prediction of disease progression and response to therapy in diabetic kidney disease

    NARCIS (Netherlands)

    Pena, Michelle J.; Mischak, Harald; Heerspink, Hiddo J. L.

    The past decade has resulted in multiple new findings of potential proteomic biomarkers of diabetic kidney disease (DKD). Many of these biomarkers reflect an important role in the (patho)physiology and biological processes of DKD. Situations in which proteomics could be applied in clinical practice

  4. Differential mass spectrometry of rat plasma reveals proteins that are responsive to 17beta-estradiol and a selective estrogen receptor modulator PPT.

    Science.gov (United States)

    Zhao, Xuemei; Deyanova, Ekaterina G; Lubbers, Laura S; Zafian, Pete; Li, Jenny J; Liaw, Andy; Song, Qinghua; Du, Yi; Settlage, Robert E; Hickey, Gerry J; Yates, Nathan A; Hendrickson, Ronald C

    2008-10-01

    Estrogens are a class of steroid hormones that interact with two related but distinct nuclear receptors, estrogen receptor (ER) alpha and beta. To identify potential ER biomarkers, we profiled the rat plasma glycoproteome after treatment with vehicle or 17beta-estradiol (E2) or an ERalpha-selective agonist PPT by differential mass spectrometry. Our comparative proteomic experiment identifies novel E2- and PPT-responsive proteins, such as serine protease inhibitor family members.

  5. Rootstock-scion interaction affecting citrus response to CTV infection: a proteomic view.

    Science.gov (United States)

    Laino, Paolo; Russo, Maria P; Guardo, Maria; Reforgiato-Recupero, Giuseppe; Valè, Giampiero; Cattivelli, Luigi; Moliterni, Vita M C

    2016-04-01

    Citrus tristeza virus (CTV) is the causal agent of various diseases with dramatic effects on citrus crops worldwide. Most Citrus species, grown on their own roots, are symptomless hosts for many CTV isolates. However, depending on different scion-rootstock combination, CTV infection should result in distinct syndromes, being 'tristeza' the more severe one, leading to a complete decline of the susceptible plants in a few weeks. Transcriptomic analyses revealed several genes involved either in defense response, or systemic acquired resistance, as well as transcription factors and components of the phosphorylation cascades, to be differentially regulated during CTV infection in Citrus aurantifolia species. To date little is known about the molecular mechanism of this host-pathogen interaction, and about the rootstock effect on citrus response to CTV infection. In this work, the response to CTV infection has been investigated in tolerant and susceptible scion-rootstock combinations by two-dimensional gel electrophoresis (2DE). A total of 125 protein spots have been found to be differently accumulated and/or phosphorylated between the two rootstock combinations. Downregulation in tolerant plants upon CTV infection was detected for proteins involved in reactive oxygen species (ROS) scavenging and defense response, suggesting a probable acclimation response able to minimize the systemic effects of virus infection. Some of these proteins resulted to be modulated also in absence of virus infection, revealing a rootstock effect on scion proteome modulation. Moreover, the phospho-modulation of proteins involved in ROS scavenging and defense response, further supports their involvement either in scion-rootstock crosstalk or in the establishment of tolerance/susceptibility to CTV infection. © 2015 Scandinavian Plant Physiology Society.

  6. Proteomic Profiling of Plasma and Serum in Elderly Patients With Delirium

    NARCIS (Netherlands)

    B.C. van Munster; M.J. van Breemen; P.D. Moerland; D. Speijer; S.E. de Rooij; C.J. Pfrommer; M. Levi; M.W. Hollmann; J.M. Aerts; A.H. Zwinderman; J.C. Korevaar

    2009-01-01

    The aim of this study was to compare plasma and serum protein profiles in elderly acute hip fracture patients with and without delirium. The spectra from surface-enhanced laser desorption ionization (SELDI) using time-of-flight (TOF) mass spectrometry of 16 patients without and 16 patients with deli

  7. High-throughput proteomic characterization of plasma rich in growth factors (PRGF-Endoret)-derived fibrin clot interactome.

    Science.gov (United States)

    Anitua, Eduardo; Prado, Roberto; Azkargorta, Mikel; Rodriguez-Suárez, Eva; Iloro, Ibon; Casado-Vela, Juan; Elortza, Felix; Orive, Gorka

    2015-11-01

    Plasma rich in growth factors (PRGF®-Endoret®) is an autologous technology that contains a set of proteins specifically addressed to wound healing and tissue regeneration. The scaffold formed by using this technology is a clot mainly composed of fibrin protein, forming a three-dimensional (3D) macroscopic network. This biomaterial is easily obtained by biotechnological means from blood and can be used in a range of situations to help wound healing and tissue regeneration. Although the main constituent of this clot is the fibrin scaffold, little is known about other proteins interacting in this clot that may act as adjuvants in the healing process. The aim of this study was to characterize the proteins enclosed by PRGF-Endoret scaffold, using a double-proteomic approach that combines 1D-SDS-PAGE approach followed by LC-MS/MS, and 2-DE followed by MALDI-TOF/TOF. The results presented here provide a description of the catalogue of key proteins in close contact with the fibrin scaffold. The obtained lists of proteins were grouped into families and networks according to gene ontology. Taken together, an enrichment of both proteins and protein families specifically involved in tissue regeneration and wound healing has been found.

  8. Plasma proteomics shows an elevation of the anti-inflammatory protein APOA-IV in chronic equine laminitis

    Directory of Open Access Journals (Sweden)

    Steelman Samantha M

    2012-09-01

    Full Text Available Abstract Background Equine laminitis is a devastating disease that causes severe pain in afflicted horses and places a major economic burden on the horse industry. In acute laminitis, the disintegration of the dermal-epidermal junction can cause the third phalanx to detach from the hoof wall, leaving the horse unable to bear weight on the affected limbs. Horses that survive the acute phase transition into a chronic form of laminitis, which is often termed “founder”. Some evidence suggests that chronic laminar inflammation might be associated with alterations in the endocrine and immune systems. We investigated this broad hypothesis by using DIGE to assess global differences in the plasma proteome between horses with chronic laminitis and controls. Results We identified 16 differentially expressed proteins; the majority of these were involved in the interrelated coagulation, clotting, and kininogen cascades. Clinical testing of functional coagulation parameters in foundered horses revealed a slight delay in prothrombin (PT clotting time, although most other indices were within normal ranges. Upregulation of the intestinal apolipoprotein APOA-IV in horses with chronic laminitis was confirmed by western blot. Conclusions Our results support the hypothesis that localized laminar inflammation may be linked to systemic alterations in immune regulation, particularly in the gastrointestinal system. Gastrointestinal inflammation has been implicated in the development of acute laminitis but has not previously been associated with chronic laminitis.

  9. Responses of cells in plasma-activated medium

    Science.gov (United States)

    Tanaka, Hiromasa; Mizuno, Masaaki; Ishikawa, Kenji; Takeda, Keigo; Hashizume, Hiroshi; Nakamura, Kae; Kajiyama, Hiroaki; Kano, Hiroyuki; Okazaki, Yasumasa; Toyokuni, Shinya; Maruyama, Shoichi; Kodera, Yasuhiro; Terasaki, Hiroko; Adachi, Tetsuo; Kato, Masashi; Kikkawa, Fumitaka; Hori, Masaru

    2015-09-01

    Plasma consists of electrons, ions, radicals, and lights, and produces various reactive species in gas and liquid phase. Cells receive various inputs from their circumstances, and induce several physiological outputs. Our goal is to clarify the relationships between plasma inputs and physiological outputs. Plasma-activated medium (PAM) is a circumstance that plasma provides cells and our previous studies suggest that PAM is a promising tool for cancer therapy. However, the mode of actions remains to be elucidated. We propose survival and proliferation signaling networks as well as redox signaling networks are key factors to understand cellular responses of PAM-treated glioblastoma cells.

  10. Transcriptional and proteomic analyses of two-component response regulators in multidrug-resistant Mycobacterium tuberculosis.

    Science.gov (United States)

    Zhou, Lei; Yang, Liu; Zeng, Xianfei; Danzheng, Jiacuo; Zheng, Qing; Liu, Jiayun; Liu, Feng; Xin, Yijuan; Cheng, Xiaodong; Su, Mingquan; Ma, Yueyun; Hao, Xiaoke

    2015-07-01

    Two-component systems (TCSs) have been reported to exhibit a sensing and responding role under drug stress that induces drug resistance in several bacterial species. However, the relationship between TCSs and multidrug resistance in Mycobacterium tuberculosis has not been comprehensively analysed to date. In this study, 90 M. tuberculosis clinical isolates were analysed using 15-loci mycobacterial interspersed repetitive unit (MIRU)-variable number tandem repeat (VNTR) typing and repetitive extragenic palindromic (rep)-PCR-based DNA fingerprinting. The results showed that all of the isolates were of the Beijing lineage, and strains with a drug-susceptible phenotype had not diverged into similar genotype clusters. Expression analysis of 13 response regulators of TCSs using real-time PCR and tandem mass spectrometry (MS/MS) proteomic analysis demonstrated that four response regulator genes (devR, mtrA, regX3 and Rv3143) were significantly upregulated in multidrug-resistant (MDR) strains compared with the laboratory strain H37Rv as well as drug-susceptible and isoniazid-monoresistant strains (PMycobacterium bovis BCG did not alter its sensitivity to the four antitubercular drugs. This suggests that upregulation of devR, which is common in MDR-TB strains, might be induced by drug stress and hypoxic adaptation following the acquisition of multidrug resistance.

  11. Quantitative Proteomics Analysis of Herbaceous Peony in Response to Paclobutrazol Inhibition of Lateral Branching

    Directory of Open Access Journals (Sweden)

    Daqiu Zhao

    2015-10-01

    Full Text Available Herbaceous peony (Paeonia lactiflora Pall. is an emerging high-grade cut flower worldwide, which is usually used in wedding bouquets and known as the “wedding flower”. However, abundant lateral branches appear frequently in some excellent cultivars, and a lack of a method to remove Paeonia lactiflora lateral branches other than inefficient artificial methods is an obstacle for improving the quality of its cut flowers. In this study, paclobutrazol (PBZ application was found to inhibit the growth of lateral branches in Paeonia lactiflora for the first time, including 96.82% decreased lateral bud number per branch, 77.79% and 42.31% decreased length and diameter of lateral branches, respectively, declined cell wall materials and changed microstructures. Subsequently, isobaric tag for relative and absolute quantitation (iTRAQ technology was used for quantitative proteomics analysis of lateral branches under PBZ application and control. The results indicated that 178 differentially expressed proteins (DEPs successfully obtained, 98 DEPs were up-regulated and 80 DEPs were down-regulated. Thereafter, 34 candidate DEPs associated with the inhibited growth of lateral branches were screened according to their function and classification. These PBZ-stress responsive candidate DEPs were involved in eight biological processes, which played a very important role in the growth and development of lateral branches together with the response to PBZ stress. These results provide a better understanding of the molecular theoretical basis for removing Paeonia lactiflora lateral branches using PBZ application.

  12. Quantitative proteomics reveals dynamic responses of Synechocystis sp. PCC 6803 to next-generation biofuel butanol.

    Science.gov (United States)

    Tian, Xiaoxu; Chen, Lei; Wang, Jiangxin; Qiao, Jianjun; Zhang, Weiwen

    2013-01-14

    Butanol is a promising biofuel, and recent metabolic engineering efforts have demonstrated the use of photosynthetic cyanobacterial hosts for its production. However, cyanobacteria have very low tolerance to butanol, limiting the economic viability of butanol production from these renewable producing systems. The existing knowledge of molecular mechanism involved in butanol tolerance in cyanobacteria is very limited. To build a foundation necessary to engineer robust butanol-producing cyanobacterial hosts, in this study, the responses of Synechocystis PCC 6803 to butanol were investigated using a quantitative proteomics approach with iTRAQ - LC-MS/MS technologies. The resulting high-quality dataset consisted of 25,347 peptides corresponding to 1452 unique proteins, a coverage of approximately 40% of the predicted proteins in Synechocystis. Comparative quantification of protein abundances led to the identification of 303 differentially regulated proteins by butanol. Annotation and GO term enrichment analysis showed that multiple biological processes were regulated, suggesting that Synechocystis probably employed multiple and synergistic resistance mechanisms in dealing with butanol stress. Notably, the analysis revealed the induction of heat-shock protein and transporters, along with modification of cell membrane and envelope were the major protection mechanisms against butanol. A conceptual cellular model of Synechocystis PCC 6803 responses to butanol stress was constructed to illustrate the putative molecular mechanisms employed to defend against butanol stress. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Quantitative transcriptome, proteome, and sulfur metabolite profiling of the Saccharomyces cerevisiae response to arsenite.

    Science.gov (United States)

    Thorsen, Michael; Lagniel, Gilles; Kristiansson, Erik; Junot, Christophe; Nerman, Olle; Labarre, Jean; Tamás, Markus J

    2007-06-19

    Arsenic is ubiquitously present in nature, and various mechanisms have evolved enabling cells to evade toxicity and acquire tolerance. Herein, we explored how Saccharomyces cerevisiae (budding yeast) respond to trivalent arsenic (arsenite) by quantitative transcriptome, proteome, and sulfur metabolite profiling. Arsenite exposure affected transcription of genes encoding functions related to protein biosynthesis, arsenic detoxification, oxidative stress defense, redox maintenance, and proteolytic activity. Importantly, we observed that nearly all components of the sulfate assimilation and glutathione biosynthesis pathways were induced at both gene and protein levels. Kinetic metabolic profiling evidenced a significant increase in the pools of sulfur metabolites as well as elevated cellular glutathione levels. Moreover, the flux in the sulfur assimilation pathway as well as the glutathione synthesis rate strongly increased with a concomitant reduction of sulfur incorporation into proteins. By combining comparative genomics and molecular analyses, we pinpointed transcription factors that mediate the core of the transcriptional response to arsenite. Taken together, our data reveal that arsenite-exposed cells channel a large part of assimilated sulfur into glutathione biosynthesis, and we provide evidence that the transcriptional regulators Yap1p and Met4p control this response in concert.

  14. A proteomic analysis of salt stress response in seedlings of two African rice cultivars.

    Science.gov (United States)

    Damaris, Rebecca Njeri; Li, Ming; Liu, Yanli; Chen, Xi; Murage, Hunja; Yang, Pingfang

    2016-11-01

    Salt stress is one of the key abiotic stresses threatening future agricultural production and natural ecosystems. This study investigates the salt stress response of two rice seedlings, which were screened from 28 Kenya rice cultivars. A proteomic analysis was carried out and Mapman bin codes employed in protein function categorization. Proteins in the redox, stress, and signaling categories were identified, and whose expression differed between the salt tolerant and the salt sensitive samples employed in the present study. 104 and 102 root proteins were observed as significantly altered during salt stress in the tolerant and sensitive samples, respectively and 13 proteins were commonly expressed. Among the 13 proteins, ketol-acid reductoisomerase protein was upregulated in both 1 and 3days of salt treatment in the tolerant sample, while it was down-regulated in both 1 and 3days of salt treatment in the sensitive sample. Actin-7, tubulin alpha, V-type proton ATPase, SOD (Cu-Zn), SOD (Mn), and pyruvate decarboxylase were among the observed salt-induced proteins. In general, this study improves our understanding about salt stress response mechanisms in rice.

  15. Proteomic response of rice seedling leaves to elevated CO2 levels.

    Science.gov (United States)

    Bokhari, Saleem A; Wan, Xiang-Yuan; Yang, Yi-Wei; Zhou, Lu; Tang, Wan-Li; Liu, Jin-Yuan

    2007-12-01

    Previous investigations of plant responses to higher CO 2 levels were mostly based on physiological measurements and biochemical assays. In this study, a proteomic approach was employed to investigate plant response to higher CO 2 levels using rice as a model. Ten-day-old seedlings were progressively exposed to 760 ppm, 1140 ppm, and 1520 ppm CO 2 concentrations for 24 h each. The net photosynthesis rate ( P n), stomatal conductance ( G s), transpiration rate ( E), and intercellular to ambient CO 2 concentration ratio ( C i/ C a) were measured. P n, G s, and E showed a maximum increase at 1140 ppm CO 2, but further exposure to 1520 ppm for 24 h resulted in down regulation of these. Proteins extracted from leaves were subjected to 2-DE analysis, and 57 spots showing differential expression patterns, as detected by profile analysis, were identified by MALDI-TOF/TOF-MS. Most of the proteins belonged to photosynthesis, carbon metabolism, and energy pathways. Several molecular chaperones and ascorbate peroxidase were also found to respond to higher CO 2 levels. Concomitant with the down regulation of P n and G s, the levels of enzymes of the regeneration phase of the Calvin cycle were decreased. Correlations between the protein profiles and the photosynthetic measurements at the three CO 2 levels were explored.

  16. Proteomic analysis of the immune response of the silkworm infected by Escherichia coli and Bacillus bombyseptieus

    Institute of Scientific and Technical Information of China (English)

    Xiao-Wu Zhong; Ping Zhao; Yong Zou; Hong-Yi Nie; Qi-Ying Yi; Qing-You Xia; Zhong-Huai Xiang

    2012-01-01

    The silkworm,Bombyx mori,is an economically important insect with a 5 000-year history of domestication.During evolution,the silkworm has developed highly effective defenses against invasion and parasitization by microorganisms.In this study,two microorganisms Escherichia coli and Bacillus bombyseptieus were orally infected to silkworm larvae.After infection with E.coli and B.bombyseptieus for 24 h,we investigated the polypeptide changes in the hemolymph,midgut and integument using two-dimensional gel electrophoresis and matrix-assisted laser desorption ionization time of flight mass spectrometry.Forty-seven differentially expressed proteins were identified in these tissues.They belonged to a variety of functional classes,including immune proteins,metabolic proteins and structural proteins.Compared with controls,E.coli-infected silkworms showed 21 upregulated proteius,25 down-regulated proteins and lost one protein.After infection with B.bombyseptieus,silkworms showed 15 up-regulated proteins,27 down-regulated proteins,lost three proteins and retained two proteins unchanged.We speculate that all these proteins may play a role in the silkworm immune response,although it is unclear why and how the two kinds of bacteria can so markedly alter expression of these proteins.These resuits offer valuable insights for measuring the proteomic responses of the silkworm innate immune mechanism.

  17. Proteome characterization of copper stress responses in the roots of sorghum.

    Science.gov (United States)

    Roy, Swapan Kumar; Cho, Seong-Woo; Kwon, Soo Jeong; Kamal, Abu Hena Mostafa; Lee, Dong-Gi; Sarker, Kabita; Lee, Moon-Soon; Xin, Zhanguo; Woo, Sun-Hee

    2017-09-21

    Copper (Cu) is a important micronutrient for plants, but it is extremely toxic to plants at high concentration and can inactivate and disturb protein structures. To explore the Cu stress-induced tolerance mechanism, the present study was conducted on the roots of sorghum seedlings exposed to 50 and 100 µM CuSO4 for 5 days. Accumulation of Cu increased in roots when the seedlings were treated with the highest concentration of Cu(2+) ions (100 μM). Elevated Cu concentration provoked notable reduction of Fe, Zn, Ca, and Mn uptake in the roots of sorghum seedlings. In the proteome analysis, high-throughput two-dimensional polyacrylamide gel electrophoresis combined with MALDI-TOF-TOF MS was performed to explore the molecular responses of Cu-induced sorghum seedling roots. In two-dimensional silver-stained gels, 422 protein spots were identified in the 2-D gel whereas twenty-one protein spots (≥1.5-fold) were used to analyze mass spectrometry from Cu-induced sorghum roots. Among the 21 differentially expressed proteins, 10 proteins were increased, while 11 proteins were decreased due to the intake of Cu ions by roots of sorghum. Abundance of most of the identified proteins from the roots that function in stress response and metabolism was remarkably enhanced, while proteins involved in transcription and regulation were severely reduced. Taken together, these results imply insights into a potential molecular mechanism towards Cu stress in C4 plant, sorghum.

  18. Comparative Proteomic Analysis of Plasma from Clinical Healthy Cows and Mastitic Cows

    Institute of Scientific and Technical Information of China (English)

    YANG Yong-xin; ZHAO Xing-xu; ZHANG Yong

    2009-01-01

    The current research presents the protein changes in plasma from healthy dairy cows and clinical mastitic cows using two-dimensional gel electrophoresis (2-DE). After staining with silver nitrate and Coomassie Blue, differential expression proteins were detected by PDQuest 7.4 software, and then subjected to ion trap mass spectrometer equipped with a Surveyor HPLC System, differential spots of protein were identified. Three protein spots that originated from preparation gels were identified to be two proteins. Overall, haptoglobin precursor was up-regulated in cows infected with clinical mastitis and could be a mastitis-associated diagnostic marker, whereas SCGB 2A1 (secretoglobin, family 2A, member 1) was down-regulated protein. Plasma protein expression patterns were changed when cows were infected with mammary gland inflammation; it suggests that analysis of differential expression protein might be useful to clarify the mechanisms involved in the pathophysiology, and find new diagnostic markers of mastitis and potential protein targets for treatment.

  19. Statistical considerations of optimal study design for human plasma proteomics and biomarker discovery.

    Science.gov (United States)

    Zhou, Cong; Simpson, Kathryn L; Lancashire, Lee J; Walker, Michael J; Dawson, Martin J; Unwin, Richard D; Rembielak, Agata; Price, Patricia; West, Catharine; Dive, Caroline; Whetton, Anthony D

    2012-04-01

    A mass spectrometry-based plasma biomarker discovery workflow was developed to facilitate biomarker discovery. Plasma from either healthy volunteers or patients with pancreatic cancer was 8-plex iTRAQ labeled, fractionated by 2-dimensional reversed phase chromatography and subjected to MALDI ToF/ToF mass spectrometry. Data were processed using a q-value based statistical approach to maximize protein quantification and identification. Technical (between duplicate samples) and biological variance (between and within individuals) were calculated and power analysis was thereby enabled. An a priori power analysis was carried out using samples from healthy volunteers to define sample sizes required for robust biomarker identification. The result was subsequently validated with a post hoc power analysis using a real clinical setting involving pancreatic cancer patients. This demonstrated that six samples per group (e.g., pre- vs post-treatment) may provide sufficient statistical power for most proteins with changes>2 fold. A reference standard allowed direct comparison of protein expression changes between multiple experiments. Analysis of patient plasma prior to treatment identified 29 proteins with significant changes within individual patient. Changes in Peroxiredoxin II levels were confirmed by Western blot. This q-value based statistical approach in combination with reference standard samples can be applied with confidence in the design and execution of clinical studies for predictive, prognostic, and/or pharmacodynamic biomarker discovery. The power analysis provides information required prior to study initiation.

  20. Plasma proteome profiles associated with diet-induced metabolic syndrome and the early onset of metabolic syndrome in a pig model.

    Science.gov (United States)

    te Pas, Marinus F W; Koopmans, Sietse-Jan; Kruijt, Leo; Calus, Mario P L; Smits, Mari A

    2013-01-01

    Obesity and related diabetes are important health threatening multifactorial metabolic diseases and it has been suggested that 25% of all diabetic patients are unaware of their patho-physiological condition. Biomarkers for monitoring and control are available, but early stage predictive biomarkers enabling prevention of these diseases are still lacking. We used the pig as a model to study metabolic disease because humans and pigs share a multitude of metabolic similarities. Diabetes was chemically induced and control and diabetic pigs were either fed a high unsaturated fat (Mediterranean) diet or a high saturated fat/cholesterol/sugar (cafeteria) diet. Physiological parameters related to fat metabolism and diabetes were measured. Diabetic pigs' plasma proteome profiles differed more between the two diets than control pigs plasma proteome profiles. The expression levels of several proteins correlated well with (patho)physiological parameters related to the fat metabolism (cholesterol, VLDL, LDL, NEFA) and diabetes (Glucose) and to the diet fed to the animals. Studying only the control pigs as a model for metabolic syndrome when fed the two diets showed correlations to the same parameters but now more focused on insulin, glucose and abdominal fat depot parameters. We conclude that proteomic profiles can be used as a biomarker to identify pigs with developing metabolic syndrome (prediabetes) and diabetes when fed a cafeteria diet. It could be developed into a potential biomarkers for the early recognition of metabolic diseases.

  1. Plasma proteome profiles associated with diet-induced metabolic syndrome and the early onset of metabolic syndrome in a pig model.

    Directory of Open Access Journals (Sweden)

    Marinus F W te Pas

    Full Text Available Obesity and related diabetes are important health threatening multifactorial metabolic diseases and it has been suggested that 25% of all diabetic patients are unaware of their patho-physiological condition. Biomarkers for monitoring and control are available, but early stage predictive biomarkers enabling prevention of these diseases are still lacking. We used the pig as a model to study metabolic disease because humans and pigs share a multitude of metabolic similarities. Diabetes was chemically induced and control and diabetic pigs were either fed a high unsaturated fat (Mediterranean diet or a high saturated fat/cholesterol/sugar (cafeteria diet. Physiological parameters related to fat metabolism and diabetes were measured. Diabetic pigs' plasma proteome profiles differed more between the two diets than control pigs plasma proteome profiles. The expression levels of several proteins correlated well with (pathophysiological parameters related to the fat metabolism (cholesterol, VLDL, LDL, NEFA and diabetes (Glucose and to the diet fed to the animals. Studying only the control pigs as a model for metabolic syndrome when fed the two diets showed correlations to the same parameters but now more focused on insulin, glucose and abdominal fat depot parameters. We conclude that proteomic profiles can be used as a biomarker to identify pigs with developing metabolic syndrome (prediabetes and diabetes when fed a cafeteria diet. It could be developed into a potential biomarkers for the early recognition of metabolic diseases.

  2. Screening of plasma biomarkers in patients with unstable angina pectoris with proteomics analysis

    Directory of Open Access Journals (Sweden)

    Shui-wang HU

    2017-08-01

    Full Text Available Objective To analyze and compare the differentially expressed plasma proteins between patients with stable angina pectoris (SAP and unstable angina pectoris (UAP, and search for the biomarkers that maybe used for early diagnosis of UAP. Methods Sixty plasma samples were collected respectively from normal controls group (N group, SAP group and UAP group during Jun. 2014 to Apr. 2015 from the Third Affiliated Hospital of Southern Medical University. Ten samples (100μl of each group were selected randomly to pool into 3 groups severally. After removing high-abundance proteins from plasma, two- dimensional difference gel electrophoresis (DIGE was used to isolate the total proteins, and then the protein spots with more than 2-fold changes between UAP and SAP were picked up after the differential software analysis. Afterward, the varied proteins were identified by matrix assisted laser desorption ionization-time of flight/time of flight (MALDI-TOF/TOF mass spectrometry (MS. Finally, 40 plasma samples were collected respectively from N, SAP and UAP group, and the UAP specific differential proteins were selected to be verified by ELISA. Results A total of 10 varied protein spots with more than 2-fold changes in UAP and SAP were found including 9 up-regulated proteins and 1 down-regulated one. MS identification indicated that the up-regulated proteins included fibrinogen gamma chain (FGG, complement C4-B (C4B, immunoglobulin (Ig kappa chain C region (IGKC and hemoglobin subunit alpha (HBA1, whereas the down-regulated one was haptoglobin (HP. After comparing the varied proteins with that in N group, 2 specifically UAP-related proteins, IGKC and HP, were detected totally. IGKC was selected to validate by ELISA, and the corresponding results showed that IGKC was increased specifically in UAP plasma (P<0.05 when compared with N and SAP group, which was consistent with DIGE. Conclusion IGKC and HP have been detected as specifically related proteins to UAP

  3. Comparative proteomics of oxidative stress response of Lactobacillus acidophilus NCFM reveals effects on DNA repair and cysteine de novo synthesis

    DEFF Research Database (Denmark)

    Calderini, Elia; Celebioglu, Hasan Ufuk; Villarroel, Julia

    2017-01-01

    acidophilus NCFM to H2O2, simulating an oxidative environment. Bacterial growth was monitored by BioScreen and batch cultures were harvested at exponential phase for protein profiling of stress responses by 2D gel-based comparative proteomics. Proteins identified in 19 of 21 spots changing in abundance due...... to H2O2 were typically related to carbohydrate and energy metabolism, cysteine biosynthesis, and stress. In particular, increased cysteine synthase activity may accumulate a cysteine pool relevant for protein stability, enzyme catalysis and the disulfide-reducing pathway. The stress response further...... by refolding. The proteome analysis provides novel insight into resistance mechanisms in lactic acid bacteria against reactive oxygen species and constitutes a valuable starting point for improving industrial processes, food design or strain engineering preserving microorganism viability....

  4. Predicting albuminuria response to spironolactone treatment with urinary proteomics in patients with type 2 diabetes and hypertension

    DEFF Research Database (Denmark)

    Lindhardt, Morten; Persson, Frederik; Oxlund, Christina

    2017-01-01

    to either spironolactone 12.5-50 mg/day (n = 57) or placebo (n = 54) for 16 weeks. Patients were diagnosed with type 2 diabetes and resistant hypertension. Treatment was an adjunct to renin-angiotensin system inhibition. Primary endpoint was the percentage change in urine albumin to creatinine ratio (UACR......BACKGROUND: The mineralocorticoid receptor antagonist spironolactone significantly reduces albuminuria in patients with diabetes. Prior studies have shown large between-patient variability in albuminuria treatment response. We previously developed and validated a urinary proteomic classifier...... be used to identify individuals with type 2 diabetes who are more likely to show an albuminuria-lowering response to spironolactone treatment. These results suggest that urinary proteomics may be a valuable tool to tailor therapy, but confirmation in a larger clinical trial is required....

  5. Proteomic analysis of cellular response induced by boron neutron capture reaction in human squamous cell carcinoma SAS cells.

    Science.gov (United States)

    Sato, Akira; Itoh, Tasuku; Imamichi, Shoji; Kikuhara, Sota; Fujimori, Hiroaki; Hirai, Takahisa; Saito, Soichiro; Sakurai, Yoshinori; Tanaka, Hiroki; Nakamura, Hiroyuki; Suzuki, Minoru; Murakami, Yasufumi; Baiseitov, Diaz; Berikkhanova, Kulzhan; Zhumadilov, Zhaxybay; Imahori, Yoshio; Itami, Jun; Ono, Koji; Masunaga, Shinichiro; Masutani, Mitsuko

    2015-12-01

    To understand the mechanism of cell death induced by boron neutron capture reaction (BNCR), we performed proteome analyses of human squamous tumor SAS cells after BNCR. Cells were irradiated with thermal neutron beam at KUR after incubation under boronophenylalanine (BPA)(+) and BPA(-) conditions. BNCR mainly induced typical apoptosis in SAS cells 24h post-irradiation. Proteomic analysis in SAS cells suggested that proteins functioning in endoplasmic reticulum, DNA repair, and RNA processing showed dynamic changes at early phase after BNCR and could be involved in the regulation of cellular response to BNCR. We found that the BNCR induces fragments of endoplasmic reticulum-localized lymphoid-restricted protein (LRMP). The fragmentation of LRMP was also observed in the rat tumor graft model 20 hours after BNCT treatment carried out at the National Nuclear Center of the Republic of Kazakhstan. These data suggest that dynamic changes of LRMP could be involved during cellular response to BNCR.

  6. Single Cell Functional Proteomics for Monitoring Immune Response in Cancer Therapy: Technology, Methods and Applications

    Directory of Open Access Journals (Sweden)

    Chao eMa

    2013-05-01

    Full Text Available In the past decade, significant progresses have taken place in the field of cancer immunotherapeutics, which are being developed for most human cancers. New immunotherapeutics, such as Ipilimumab (anti-CTLA-4, have been approved for clinical treatment; cell-based immunotherapies such as adoptive cell transfer (ACT have either passed the final stage of human studies (i.e., sipuleucel-T for the treatment of selected neoplastic malignancies or reached the stage of phase II/III clinical trials. Immunotherapetics has become a sophisticated field. Multimodal therapeutic regimens comprising several functional modules (up to 5 in the case of ACT have been developed to provide focused therapeutic responses with improved efficacy and reduced side-effects. However, a major challenge remains: the lack of effective and clinically-applicable immune assessment methods. Due to the complexity of antitumor immune responses within patients, it is difficult to provide comprehensive assessment of therapeutic efficacy and mechanism. To address this challenge, new technologies have been developed to directly profile the cellular immune functions and the functional heterogeneity. With the goal to measure the functional proteomics of single immune cells, these technologies are informative, sensitive, high-throughput and highly-multiplex. They have been used to uncover new knowledge of cellular immune functions and have be utilized for rapid, informative, and longitudinal monitoring of immune response in clinical anti-cancer treatment. In addition, new computational tools are required to integrate high dimensional data sets generated from the comprehensive, single-cell level measurements of patient’s immune responses to guide accurate and definitive diagnostic decision. These single-cell immune function assessment tools will likely contribute to new understanding of therapy mechanism, pre-treatment stratification of patients and ongoing therapeutic monitoring and

  7. Proteomic analysis to identify biomarkers in the primary tumour that predict response to neoadjuvant chemotherapy in liver metastases.

    Science.gov (United States)

    Sutton, Paul; Evans, Jonathan; Jones, Robert; Malik, Hassan; Vimalachandran, Dale; Palmer, Daniel; Goldring, Chris; Kitteringham, Neil

    2015-02-26

    Colorectal cancer is the fourth commonest cancer in the UK, and the second commonest cause of cancer-related death. A knowledge of the biological phenotype of colorectal liver metastases would be invaluable to inform clinical decision making; however, deriving this information from the metastatic lesions is not feasible until after resection. We aimed to use proteomic analysis to identify biomarkers in the primary tumour that predict response to neoadjuvant chemotherapy in liver metastases. Fresh tissue from both primary colorectal tumour and liver metastases from 17 patients was subjected to proteomic analysis using isobaric tagging for relative quantification. Data were analysed with Protein Pilot (Ab Sciex, Framingham, MA, USA), with stratification of patients into those showing low or high response to chemotherapy permitting the identification of potential predictive biomarkers. These markers were subsequently validated by immunohistochemistry on a tissue microarray of 63 patients. We identified 5768 discrete proteins. Five of them predicted histopathological response to fluorouracil-based chemotherapy regimens, of which the FAD binding protein NQO1 was subsequently validated by immunohistochemistry. When compared with the chemotherapeutic agent alone, knockdown of the corresponding gene with small interfering RNA decreased cell viability when co-incubated with fluorouracil (77·1% vs 46·6%, p=0·037) and irinotecan (41·7% vs 24·4%, p=0·006). Similar results were also seen after inhibition of protein activity by pretreating cells with dicoumarol. These results show that proteomic sequencing of matched metastatic colorectal cancer samples is feasible, with high protein coverage. The high degree of similarity between the primary and secondary proteomes suggests that primary tissue is predictive of the metastatic phenotype. NQO1 expression in the primary tumour predicts response to neoadjuvant chemotherapy in the liver metastases, and inhibition of this

  8. Isobaric Tags for Relative and Absolute Quantification-based Comparative Proteomics Reveals the Features of Plasma Membrane-Associated Proteomes of Pollen Grains and Pollen Tubes from Lilium davidii

    Institute of Scientific and Technical Information of China (English)

    Bing Han; Sixue Chen; Shaojun Dai; Ning Yang; Tai Wang

    2010-01-01

    Mature pollen grains (PGs) from most plant species are metabolically quiescent. However, once pollinated onto stigma, they quickly hydrate and germinate. APG can give rise to a vegetative cell-derived polarized pollen tube (PT), which represents a specialized polar cell. The polarized PT grows by the tip and requires interaction of different signaling molecules localized in the apical plasma membrane and active membrane trafficking. The mechanisms underlying the interaction and membrane trafficking are not well understood. In this work, we purified PG and PT plasma-membrane vesicles from Lilium davidii Duch. using the aqueous two-phase partition technique, then enriched plasma membrane proteins by using Brij58 and KCl to remove loosely bound contaminants. We identified 223 integral and membrane-associated proteins in the plasma membrane of PGs and PTs by using isobaric tags for relative and absolute quantification (iTRAQ) and 2-D high-performance liquid chromatography-tandem mass spectrometry. More than 68% of the proteins have putative transmembrane domains and/or lipid-modified motifs. Proteins involved in signal transduction, membrane trafficking and transport are predominant in the plasma-membrane proteome. We revealed most components of the clathrin-dependent endocytosis pathway. Statistical analysis revealed 14 proteins differentially expressed in the two development stages: in PTs, six upregulated and eight downregulated are mainly involved in signaling, transport and membrane trafficking. These results provide novel insights into polarized PT growth.

  9. Proteomic analysis of rice endosperm cells in response to expression of hGM-CSF.

    Science.gov (United States)

    Luo, Junling; Ning, Tingting; Sun, Yunfang; Zhu, Jinghua; Zhu, Yingguo; Lin, Qishan; Yang, Daichang

    2009-02-01

    The accumulation of significant levels of transgenic products in plant cells is required not only for crop improvement, but also for molecular pharming. However, knowledge about the fate of transgenic products and endogenous proteins in grain cells is lacking. Here, we utilized a quantitative mass spectrometry-based proteomic approach for comparative analysis of expression profiles of transgenic rice endosperm cells in response to expression of a recombinant pharmaceutical protein, human granulocyte-macrophage colony stimulation factor (hGM-CSF). This study provided the first available evidence concerning the fate of exogenous and endogenous proteins in grain cells. Among 1883 identified proteins with a false positive rate of 5%, 103 displayed significant changes (p-value < 0.05) between the transgenic and the wild-type endosperm cells. Notably, endogenous storage proteins and most carbohydrate metabolism-related proteins were down-regulated, while 26S proteasome-related proteins and chaperones were up-regulated in the transgenic rice endosperm. Furthermore, it was observed that expression of hGM-CSF induced endoplasmic reticulum stress and activated the ubiquitin/26S-proteasome pathway, which led to ubiquitination of this foreign gene product in the transgenic rice endosperm.

  10. Identification of flooding stress responsible cascades in root and hypocotyl of soybean using proteome analysis.

    Science.gov (United States)

    Komatsu, Setsuko; Sugimoto, Tetsuya; Hoshino, Tomoki; Nanjo, Yohei; Furukawa, Kiyoshi

    2010-03-01

    Flooding inducible proteins were analyzed using a proteomic technique to understand the mechanism of soybean response to immersion in water. Soybeans were germinated for 2 days, and then subjected to flooding for 2 days. Proteins were extracted from root and hypocotyl, separated by two-dimensional polyacrylamide gel electrophoresis, stained by Coomassie brilliant blue, and analyzed by protein sequencing and mass spectrometry. Out of 803 proteins, 21 proteins were significantly up-regulated, and seven proteins were down-regulated by flooding stress. Of the total, 11 up-regulated proteins were classified as related to protein destination/storage and three proteins to energy, while four down-regulated proteins were related to protein destination/storage and three proteins to disease/defense. The expression of 22 proteins significantly changed within 1 day after flooding stress. The effects of flooding, nitrogen substitution without flooding, or flooding with aeration were analyzed for 1-4 days. The expression of alcohol dehydrogenase increased remarkably by nitrogen substitution compared to flooding. The expression of many proteins that changed due to flooding showed the same tendencies observed for nitrogen substitution; however, the expression of proteins classified into protein destination/storage did not.

  11. The response of Populus spp. to cadmium stress: chemical, morphological and proteomics study.

    Science.gov (United States)

    Marmiroli, Marta; Imperiale, Davide; Maestri, Elena; Marmiroli, Nelson

    2013-10-01

    Poplar (Populus) species are seen as candidates for removing heavy metal contamination from polluted soil. A bottom-up multidisciplinary approach was utilized to compare the performances of clones 58-861 and Poli (Populus nigra) and A4A, a Populus nigra × Populus deltoides hybrid to Cd toxicity. Qualitative and quantitative differences in their tolerance to Cd exposure and the uptake, accumulation and translocation of Cd were noted following the hydroponic exposure of rooted cuttings to 20 μM CdSO₄ for either 48 h or 14 d. Cadmium was less toxic for the hybrid clone A4A as compared to Poli and 58-861. Cd uptake and root to shoot translocation were determined by AAS, and its compartmentation was analyzed using SEM/EDX. A comparative proteomic approach was utilized to identify changes in proteins expression according to dose and time of exposure. Toxicity to Cd mainly influenced proteins related to general defense, stress response and carbohydrate metabolism.

  12. Proteomics Identification of Differentially Expressed Leaf Proteins in Response to Setosphaeria turcica Infection in Resistant Maize

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiao-li; SI Bing-wen; FAN Cheng-ming; LI Hong-jie; WANG Xiao-ming

    2014-01-01

    Northern corn leaf blight (NCLB), caused by the heterothallic ascomycete fungus Setosphaeria turcica, is a destructive foliar disease of maize and represents a serious threat to maize production worldwide. A comparative proteomic study was conducted to explore the molecular mechanisms underlying the defense responses of the maize resistant line A619 Ht2 to S. turcica race 13. Leaf proteins were extracted from mock and S. turcica-infected leaves after inoculated for 72 h and analyzed for differentially expressed proteins using two-dimensional electrophoresis and mass spectrometry identiifcation. 137 proteins showed reproducible differences in abundance by more than 2-fold at least, including 50 up-regulated proteins and 87 down-regulated proteins. 48 protein spots were successfully identiifed by MS analysis, which included 10 unique, 6 up-regulated, 20 down-regulated and 12 disappeared protein spots. These identiifed proteins were classiifed into 9 functional groups and involved in multiple functions, particularly in energy metabolism (46%), protein destination and storage (12%), and disease defense (18%). Some defense-related proteins were upregulated such asβ-glucosidase, SOD, polyamines oxidase, HSC 70 and PPIases; while the expressions of photosynthesis- and metabolism-related proteins were down-regulated, by inoculation with S. turcica. The results indicated that a complex regulatory network was functioned in interaction between the resistant line A619 Ht2 and S. turcica. The resistance processes of A619 Ht2 mainly resided on directly releasing defense proteins, modulation of primary metabolism, affecting photosyntesis and carbohydrate metabolism.

  13. Profiling of Host Cell Response to Successive Canine Parvovirus Infection Based on Kinetic Proteomic Change Identification

    Science.gov (United States)

    Zhao, Hang; Cheng, Yuening; Wang, Jianke; Lin, Peng; Yi, Li; Sun, Yaru; Ren, Jingqiang; Tong, Mingwei; Cao, Zhigang; Li, Jiawei; Deng, Jinliang; Cheng, Shipeng

    2016-01-01

    Canine parvovirus (CPV) reproduces by co-opting the resources of host cells, inevitably causing cytotoxic effects to the host cells. Feline kidney F81 cells are sensitive to CPV infection and show disparate growing statuses at different time points post-infection. This study analysed the response of F81 cells to CPV infection at successive infection time points by iTRAQ-based quantitative proteomics. Differentially expressed proteins (DEPs) during 60 h of infection and at selected time points post-infection were identified by an analysis of variance test and a two-tailed unpaired t test, respectively. DEPs with similar quantitative changes were clustered by hierarchical clustering and analysed by gene ontology enrichment, revealing that 12 h and 60 h post-infection were the optimal times to analyse the autonomous parvovirus replication and apoptosis processes, respectively. Using the MetacoreTM database, 29 DEPs were enriched in a network involved in p53 regulation. Besides, a significantly enriched pathway suggests that the CPV-induced cytopathic effect was probably due to the deficiency of functional CFTR caused by CPV infection. This study uncovered the systemic changes in key cellular factors involved in CPV infection and help to understand the molecular mechanisms of the anti-cancer activity of CPV and the cytopathic effects induced by CPV infection. PMID:27406444

  14. Quantitative proteomic analysis of the rice (Oryza sativa L. salt response.

    Directory of Open Access Journals (Sweden)

    Jianwen Xu

    Full Text Available Salt stress is one of most serious limiting factors for crop growth and production. An isobaric Tags for Relative and Absolute Quantitation (iTRAQ approach was used to analyze proteomic changes in rice shoots under salt stress in this study. A total of 56 proteins were significantly altered and 16 of them were enriched in the pathways of photosynthesis, antioxidant and oxidative phosphorylation. Among these 16 proteins, peroxiredoxin Q and photosystem I subunit D were up-regulated, while thioredoxin M-like, thioredoxin x, thioredoxin peroxidase, glutathione S-transferase F3, PSI subunit H, light-harvesting antenna complex I subunits, chloroplast chaperonin, vacuolar ATP synthase subunit H, and ATP synthase delta chain were down-regulated. Moreover, physiological data including total antioxidant capacity, peroxiredoxin activity, chlorophyll a/b content, glutathione S-transferase activity, reduced glutathione content and ATPase activity were consistent with changes in the levels of these proteins. The levels of the mRNAs encoding these proteins were also analyzed by real-time quantitative reverse transcription PCR, and approximately 86% of the results were consistent with the iTRAQ data. Importantly, our data suggest the important role of PSI in balancing energy supply and ROS generation under salt stress. This study provides information for an improved understanding of the function of photosynthesis and PSI in the salt-stress response of rice.

  15. Proteome Analysis for Defense Response of Apple Leaves Induced by Alternaria Blotch ,Alternaria alternata Apple Pathotype

    Institute of Scientific and Technical Information of China (English)

    Caixia Zhang; Zhuang Li; Liyi Zhang; Yi Tian; Guodong Kang; Ying Chen; Peihua Cong

    2012-01-01

    Apple (Ma/us domestica) is considered a model fruit plant owing to its world-wide economic importance,and a large number of cultivars dominate world fruit production.To date,the cultivation of apple has been limited by many kinds of fungal diseases,and among the many fungal diseases affecting apple trees,Alternaria blotch,the disease caused by Alternaria alternata apple pathotype,is spreading worldwide and results in severe negative effect on apple production.Currently,management of a fungal disease such as Alternaria blotch mainly through traditional chemical control agents instead of using resistant cultivars.As in apple,the molecular mechanism of disease resistance against A.altemata apple pathotype has not been illustrated clearly,although most of the genes have been identified in apple,little is known about the biological roles for each protein in that plant.Considering that apple Altemaria blotch is the usual diseases influencing apple production,further studies about the interaction mechanism between the pathogen and its host,particularly some host self-defense response mechanisms which closely related to the anti-disease properties of apple should be performed.In this work we aimed to generate fundamental insights into the plant' s defense responses to infection with Altemaria blotch using a proteomics approach,to aid in the development and breeding of high-quality disease-resistant apple varieties.One seedlings which derived from the cross of ‘Huacui’ and ‘Golden Delicious’,with highly resistant,were chosen to be hosts for this study.The sample leaves were inoculated with spore suspension of A.altemata apple pathotype,and the control samples were treated with water instead of inoculums.Following inoculation,the samples were harvested 48 h after inoculation.The whole experiment was repeated three times in order to get a reliable result.The total soluble protein extracts prepared using modified phenol-precipitation procedures.Total protein extracts

  16. Physiological, proteomic and transcriptional responses of wheat to combination of drought or waterlogging with late spring low temperature

    DEFF Research Database (Denmark)

    Li, Xiangnan; Cai, Jian; Liu, Fulai;

    2014-01-01

    impacts of combined low temperature and water stress, including drought and waterlogging. The responses of potted wheat plants cultivated in climatic chambers to these environmental perturbations were investigated at physiological, proteomic and transcriptional levels. At the physiological level......Spring low temperature events affect winter wheat (Triticum aestivum L.) during late vegetative or reproductive development, exposing plants to a subzero low temperature stress when winter hardening is lost. The increased climatic variability results in wheat being exposed to more frequent adverse...... in chloroplasts and mitochondria of leaf under low temperature. Further proteomic analysis revealed that the oxidative stress defence, C metabolism and photosynthesis related proteins were modulated by the combined low temperature and water stress. Collectively, the results indicate that impairment...

  17. Proteome Analysis of Response Mechanism in Different Growing Stages of Soybean under Flooding

    Institute of Scientific and Technical Information of China (English)

    Amana Khatoon; Shafiq Rehman; Muhammad Jamil; Iftekhar Ahmad; Setsuko Komatsu

    2012-01-01

    Flooding is one of the severe environmental factors which impair growth and yield in soybean plant.To investigate the response mechanism in different growing stages of soybean under flooding stress,changes in protein expression were analyzed using a proteomics approach.Two-day-old soybeans were subjected to flooding for 2 and 5 days.Proteins were extracted from root and cotyledon of soybean with 2 days of flooding stress,and from root,hypocotyl and leaf of soybean with 5 day of flooding stress.Proteins were separated by two-dimensional polyacrylamide gel electrophoresis and were identified using MS.In root and cotyledon,57 and 20 proteins were significantly changed under flooding stress of 2 days.In root,hypocotyl and leaf,51,66 and 51 proteins were significantly changed under flooding stress of 5 days.Heat shock 70 kDa protein was changed commonly in root and cotyledon of soybean with 2 days of flooding stress; while,isoflavone reductase was commonly changed in root,hypocotyl and leaf of soybean with 5 day of flooding stress.Biophoton emission was increased from all the organs of soybean with 2 and 5 days of flooding stress.The changes in Heat shock 70 kDa protein and isoflavone reductase indicated that flooding stress affected the stress responsive proteins which might lead to increased biophoton emission.These results suggest that imbalance in expression of Heat shock 70 kDa protein and isoflavone reductase along with other disease/defense and metabolism related proteins can impair the growth of root,cotyledon,hypocotyl and leaf of soybean seedlings under flooding stress.

  18. Transcriptomic and proteomic responses of sweetpotato whitefly, Bemisia tabaci, to thiamethoxam.

    Directory of Open Access Journals (Sweden)

    Nina Yang

    Full Text Available BACKGROUND: The sweetpotato whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae, is one of the most widely distributed agricultural pests. Although it has developed resistance to many registered insecticides including the neonicotinoid insecticide thiamethoxam, the mechanisms that regulate the resistance are poorly understood. To understand the molecular basis of thiamethoxam resistance, "omics" analyses were carried out to examine differences between resistant and susceptible B. tabaci at both transcriptional and translational levels. RESULTS: A total of 1,338 mRNAs and 52 proteins were differentially expressed between resistant and susceptible B. tabaci. Among them, 11 transcripts had concurrent transcription and translation profiles. KEGG analysis mapped 318 and 35 differentially expressed genes and proteins, respectively, to 160 and 59 pathways (p<0.05. Thiamethoxam treatment activated metabolic pathways (e.g., drug metabolism, in which 118 transcripts were putatively linked to insecticide resistance, including up-regulated glutathione-S-transferase, UDP glucuronosyltransferase, glucosyl/glucuronosyl transferase, and cytochrome P450. Gene Ontology analysis placed these genes and proteins into protein complex, metabolic process, cellular process, signaling, and response to stimulus categories. Quantitative real-time PCR analysis validated "omics" response, and suggested a highly overexpressed P450, CYP6CX1, as a candidate molecular basis for the mechanistic study of thiamethoxam resistance in whiteflies. Finally, enzymatic activity assays showed elevated detoxification activities in the resistant B. tabaci. CONCLUSIONS: This study demonstrates the applicability of high-throughput omics tools for identifying molecular candidates related to thiamethoxam resistance in an agricultural important insect pest. In addition, transcriptomic and proteomic analyses provide a solid foundation for future functional investigations into the complex molecular

  19. Proteomic changes in rat spermatogenesis in response to in vivo androgen manipulation; impact on meiotic cells.

    Directory of Open Access Journals (Sweden)

    Peter G Stanton

    Full Text Available The production of mature sperm is reliant on androgen action within the testis, and it is well established that androgens act on receptors within the somatic Sertoli cells to stimulate male germ cell development. Mice lacking Sertoli cell androgen receptors (AR show late meiotic germ cell arrest, suggesting Sertoli cells transduce the androgenic stimulus co-ordinating this essential step in spermatogenesis. This study aimed to identify germ cell proteins responsive to changes in testicular androgen levels and thereby elucidate mechanisms by which androgens regulate meiosis. Testicular androgen levels were suppressed for 9 weeks using testosterone and estradiol-filled silastic implants, followed by a short period of either further androgen suppression (via an AR antagonist or the restoration of intratesticular testosterone levels. Comparative proteomics were performed on protein extracts from enriched meiotic cell preparations from adult rats undergoing androgen deprivation and replacement in vivo. Loss of androgenic stimulus caused changes in proteins with known roles in meiosis (including Nasp and Hsp70-2, apoptosis (including Diablo, cell signalling (including 14-3-3 isoforms, oxidative stress, DNA repair, and RNA processing. Immunostaining for oxidised DNA adducts confirmed spermatocytes undergo oxidative stress-induced DNA damage during androgen suppression. An increase in PCNA and an associated ubiquitin-conjugating enzyme (Ubc13 suggested a role for PCNA-mediated regulation of DNA repair pathways in spermatocytes. Changes in cytoplasmic SUMO1 localisation in spermatocytes were paralleled by changes in the levels of free SUMO1 and of a subunit of its activating complex, suggesting sumoylation in spermatocytes is modified by androgen action on Sertoli cells. We conclude that Sertoli cells, in response to androgens, modulate protein translation and post-translational events in spermatocytes that impact on their metabolism, survival, and

  20. Apoplast proteome reveals that extracellular matrix contributes to multistress response in poplar

    Directory of Open Access Journals (Sweden)

    Lawrence Amanda M

    2010-11-01

    Full Text Available Abstract Background Riverine ecosystems, highly sensitive to climate change and human activities, are characterized by rapid environmental change to fluctuating water levels and siltation, causing stress on their biological components. We have little understanding of mechanisms by which riverine plant species have developed adaptive strategies to cope with stress in dynamic environments while maintaining growth and development. Results We report that poplar (Populus spp. has evolved a systems level "stress proteome" in the leaf-stem-root apoplast continuum to counter biotic and abiotic factors. To obtain apoplast proteins from P. deltoides, we developed pressure-chamber and water-displacement methods for leaves and stems, respectively. Analyses of 303 proteins and corresponding transcripts coupled with controlled experiments and bioinformatics demonstrate that poplar depends on constitutive and inducible factors to deal with water, pathogen, and oxidative stress. However, each apoplast possessed a unique set of proteins, indicating that response to stress is partly compartmentalized. Apoplast proteins that are involved in glycolysis, fermentation, and catabolism of sucrose and starch appear to enable poplar to grow normally under water stress. Pathogenesis-related proteins mediating water and pathogen stress in apoplast were particularly abundant and effective in suppressing growth of the most prevalent poplar pathogen Melampsora. Unexpectedly, we found diverse peroxidases that appear to be involved in stress-induced cell wall modification in apoplast, particularly during the growing season. Poplar developed a robust antioxidative system to buffer oxidation in stem apoplast. Conclusion These findings suggest that multistress response in the apoplast constitutes an important adaptive trait for poplar to inhabit dynamic environments and is also a potential mechanism in other riverine plant species.

  1. Proteomic identification of protein targets for 15-deoxy-Δ(12,14-prostaglandin J2 in neuronal plasma membrane.

    Directory of Open Access Journals (Sweden)

    Yasuhiro Yamamoto

    Full Text Available 15-deoxy-Δ(12,14-prostaglandin J(2 (15d-PGJ(2 is one of factors contributed to the neurotoxicity of amyloid β (Aβ, a causative protein of Alzheimer's disease. Type 2 receptor for prostaglandin D(2 (DP2 and peroxysome-proliferator activated receptorγ (PPARγ are identified as the membrane receptor and the nuclear receptor for 15d-PGJ(2, respectively. Previously, we reported that the cytotoxicity of 15d-PGJ(2 was independent of DP2 and PPARγ, and suggested that 15d-PGJ(2 induced apoptosis through the novel specific binding sites of 15d-PGJ(2 different from DP2 and PPARγ. To relate the cytotoxicity of 15d-PGJ(2 to amyloidoses, we performed binding assay [(3H]15d-PGJ(2 and specified targets for 15d-PGJ(2 associated with cytotoxicity. In the various cell lines, there was a close correlation between the susceptibilities to 15d-PGJ(2 and fibrillar Aβ. Specific binding sites of [(3H]15d-PGJ(2 were detected in rat cortical neurons and human bronchial smooth muscle cells. When the binding assay was performed in subcellular fractions of neurons, the specific binding sites of [(3H]15d-PGJ(2 were detected in plasma membrane, nuclear and cytosol, but not in microsome. A proteomic approach was used to identify protein targets for 15d-PGJ(2 in the plasma membrane. By using biotinylated 15d-PGJ(2, eleven proteins were identified as biotin-positive spots and classified into three different functional proteins: glycolytic enzymes (Enolase2, pyruvate kinase M1 (PKM1 and glyceraldehyde 3-phosphate dehydrogenase (GAPDH, molecular chaperones (heat shock protein 8 and T-complex protein 1 subunit α, cytoskeletal proteins (Actin β, F-actin-capping protein, Tubulin β and Internexin α. GAPDH, PKM1 and Tubulin β are Aβ-interacting proteins. Thus, the present study suggested that 15d-PGJ(2 plays an important role in amyloidoses not only in the central nervous system but also in the peripheral tissues.

  2. System-wide survey of proteomic responses of human bone marrow stromal cells (hBMSCs to in vitro cultivation

    Directory of Open Access Journals (Sweden)

    Samuel T. Mindaye

    2015-11-01

    Full Text Available Human bone marrow stromal cells (hBMSCs, also loosely called bone marrow-derived mesenchymal stem cells are the subject of increasing numbers of clinical trials and laboratory research. Our group recently reported on the optimization of a workflow for a sensitive proteomic study of hBMSCs. Here, we couple this workflow with a label-free protein quantitation method to investigate the molecular responses of hBMSCs to long-term in vitro passaging. We explored the proteomic responses of hBMSCs by assessing the expression levels of proteins at early passage (passage 3, P3 and late passage (P7. We used multiple biological as well as technical replicates to ensure that the detected proteomic changes are repeatable between cultures and thus likely to be biologically relevant. Over 1700 proteins were quantified at three passages and a list of differentially expressed proteins was compiled. Bioinformatics-based network analysis and term enrichment revealed that metabolic pathways are largely altered, where many proteins in the glycolytic, pentose phosphate, and TCA pathways were shown to be largely upregulated in late passages. We also observed significant proteomic alterations in functional categories including apoptosis, and ER-based protein processing and sorting following in vitro cell aging. We posit that the comprehensive map outlined in this report of affected phenotypes as well as the underpinning molecular factors tremendously benefit the effort to uncovering targets that are not just used only to monitor cell fitness but can be employed to slowdown the in vitro aging process in hBMSCs and hence ensure manufacturing of cells with known quality, efficacy and stability.

  3. Quantitative proteomic analyses of the response of acidophilic microbial communities to different pH conditions.

    Science.gov (United States)

    Belnap, Christopher P; Pan, Chongle; Denef, Vincent J; Samatova, Nagiza F; Hettich, Robert L; Banfield, Jillian F

    2011-07-01

    Extensive genomic characterization of multi-species acid mine drainage microbial consortia combined with laboratory cultivation has enabled the application of quantitative proteomic analyses at the community level. In this study, quantitative proteomic comparisons were used to functionally characterize laboratory-cultivated acidophilic communities sustained in pH 1.45 or 0.85 conditions. The distributions of all proteins identified for individual organisms indicated biases for either high or low pH, and suggests pH-specific niche partitioning for low abundance bacteria and archaea. Although the proteome of the dominant bacterium, Leptospirillum group II, was largely unaffected by pH treatments, analysis of functional categories indicated proteins involved in amino acid and nucleotide metabolism, as well as cell membrane/envelope biogenesis were overrepresented at high pH. Comparison of specific protein abundances indicates higher pH conditions favor Leptospirillum group III, whereas low pH conditions promote the growth of certain archaea. Thus, quantitative proteomic comparisons revealed distinct differences in community composition and metabolic function of individual organisms during different pH treatments. Proteomic analysis revealed other aspects of community function. Different numbers of phage proteins were identified across biological replicates, indicating stochastic spatial heterogeneity of phage outbreaks. Additionally, proteomic data were used to identify a previously unknown genotypic variant of Leptospirillum group II, an indication of selection for a specific Leptospirillum group II population in laboratory communities. Our results confirm the importance of pH and related geochemical factors in fine-tuning acidophilic microbial community structure and function at the species and strain level, and demonstrate the broad utility of proteomics in laboratory community studies.

  4. Inductively-coupled plasma mass spectrometry in proteomics, metabolomics and metallomics studies.

    Science.gov (United States)

    Mounicou, Sandra; Szpunar, Joanna; Lobinski, Ryszard

    2010-01-01

    The potential of inductively-coupled plasma mass spectrometry (ICP-MS) and its complementarity to soft- ionization MS techniques are discussed in the context of the analysis for biomolecules. ICP-MS offers detection limits in the attomolar range, regardless of the molecular environment of the target element. The sensitivity is hardly affected by the sample matrix, chromatographic mobile phase, or co-eluted compounds. The abundance sensitivity over six decades and the linear dynamic range over nine decades make simultaneous multi-isotopic analysis routinely possible. The manuscript discusses the state-of-the-art of ICP-MS for the detection of proteins in gel electrophoresis and of peptides in 2D high-performance liquid chromatography. The possibilities of quantification to the degree of some post-translational modifications are highlighted. Attention is also paid to the role of ICP-MS in protein quantification via metal-coded labeling and to the use of differentially-labeled antibodies for the multiplexed biomarker analysis. The key role of ICP-MS in the emerging area of metallomics is briefly discussed.

  5. Analysis of cellular responses of macrophages to zinc ions and zinc oxide nanoparticles: a combined targeted and proteomic approach

    Science.gov (United States)

    Triboulet, Sarah; Aude-Garcia, Catherine; Armand, Lucie; Gerdil, Adèle; Diemer, Hélène; Proamer, Fabienne; Collin-Faure, Véronique; Habert, Aurélie; Strub, Jean-Marc; Hanau, Daniel; Herlin, Nathalie; Carrière, Marie; van Dorsselaer, Alain; Rabilloud, Thierry

    2014-05-01

    Two different zinc oxide nanoparticles, as well as zinc ions, are used to study the cellular responses of the RAW 264 macrophage cell line. A proteomic screen is used to provide a wide view of the molecular effects of zinc, and the most prominent results are cross-validated by targeted studies. Furthermore, the alteration of important macrophage functions (e.g. phagocytosis) by zinc is also investigated. The intracellular dissolution/uptake of zinc is also studied to further characterize zinc toxicity. Zinc oxide nanoparticles dissolve readily in the cells, leading to high intracellular zinc concentrations, mostly as protein-bound zinc. The proteomic screen reveals a rather weak response in the oxidative stress response pathway, but a strong response both in the central metabolism and in the proteasomal protein degradation pathway. Targeted experiments confirm that carbohydrate catabolism and proteasome are critical determinants of sensitivity to zinc, which also induces DNA damage. Conversely, glutathione levels and phagocytosis appear unaffected at moderately toxic zinc concentrations.Two different zinc oxide nanoparticles, as well as zinc ions, are used to study the cellular responses of the RAW 264 macrophage cell line. A proteomic screen is used to provide a wide view of the molecular effects of zinc, and the most prominent results are cross-validated by targeted studies. Furthermore, the alteration of important macrophage functions (e.g. phagocytosis) by zinc is also investigated. The intracellular dissolution/uptake of zinc is also studied to further characterize zinc toxicity. Zinc oxide nanoparticles dissolve readily in the cells, leading to high intracellular zinc concentrations, mostly as protein-bound zinc. The proteomic screen reveals a rather weak response in the oxidative stress response pathway, but a strong response both in the central metabolism and in the proteasomal protein degradation pathway. Targeted experiments confirm that carbohydrate

  6. Comparative proteomic and physiological analyses reveal the protective effect of exogenous calcium on the germinating soybean response to salt stress.

    Science.gov (United States)

    Yin, Yongqi; Yang, Runqiang; Han, Yongbin; Gu, Zhenxin

    2015-01-15

    Calcium enhances salt stress tolerance of soybeans. Nevertheless, the molecular mechanism of calcium's involvement in resistance to salt stress is unclear. A comparative proteomic approach was used to investigate protein profiles in germinating soybeans under NaCl-CaCl2 and NaCl-LaCl3 treatments. A total of 80 proteins affected by calcium in 4-day-old germinating soybean cotyledons and 71 in embryos were confidently identified. The clustering analysis showed proteins were subdivided into 5 and 6 clusters in cotyledon and embryo, respectively. Among them, proteins involved in signal transduction and energy pathways, in transportation, and in protein biosynthesis were largely enriched while those involved in proteolysis were decreased. Abundance of nucleoside diphosphate kinase and three antioxidant enzymes were visibly increased by calcium. Accumulation of gamma-aminobutyric acid and polyamines was also detected after application of exogenous calcium. This was consistent with proteomic results, which showed that proteins involved in the glutamate and methionine metabolism were mediated by calcium. Calcium could increase the salt stress tolerance of germinating soybeans via enriching signal transduction, energy pathway and transportation, promoting protein biosynthesis, inhibiting proteolysis, redistributing storage proteins, regulating protein processing in endoplasmic reticulum, enriching antioxidant enzymes and activating their activities, accumulating secondary metabolites and osmolytes, and other adaptive responses. Biological significance Soybean (Glycine max L.), as a traditional edible legume, is being targeted for designing functional foods. During soybean germination under stressful conditions especially salt stress, newly discovered functional components such as gamma-aminobutyric acid (GABA) are rapidly accumulated. However, soybean plants are relatively salt-sensitive and the growth, development and biomass of germinating soybeans are significantly

  7. Changes in the proteome of xylem sap in Brassica oleracea in response to Fusarium oxysporum stress

    Directory of Open Access Journals (Sweden)

    Zijing ePu

    2016-02-01

    Full Text Available Fusarium oxysporum f. sp. conlutinans (Foc is a serious root-invading and xylem-colonizing fungus that causes yellowing in Brassica oleracea. To comprehensively understand the interaction between F. oxysporum and B. oleracea, composition of the xylem sap proteome of the non-infected and Foc-infected plants was investigated in both resistant and susceptible cultivars using liquid chromatography-tandem mass spectrometry (LC-MS/MS after in-solution digestion of xylem sap proteins. Whole genome sequencing of Foc was carried out and generated a predicted Foc protein database. The predicted Foc protein database was then combined with the public B. oleracea and B. rapa protein databases downloaded from Uniprot and used for protein identification. About 200 plant proteins were identified in the xylem sap of susceptible and resistant plants. Comparison between the non-infected and Foc-infected samples revealed that Foc infection causes changes to the protein composition in B. oleracea xylem sap where repressed proteins accounted for a greater proportion than those of induced in both the susceptible and resistant reactions. The analysis on the proteins with concentration change >=2 fold indicated a large portion of up- and down-regulated proteins were those acting on carbohydrates. Proteins with leucine-rich repeats and legume lectin domains were mainly induced in both resistant and susceptible system, so was the case of thaumatins. Twenty-five Foc proteins were identified in the infected xylem sap and ten of them were cysteine-containing secreted small proteins that are good candidates for virulence and/or avirulence effectors. The findings of differential response of protein contents in the xylem sap between the non-infected and Foc-infected samples as well as the Foc candidate effectors secreted in xylem provide valuable insights into B. oleracea-Foc interactions.

  8. Changes in the Proteome of Xylem Sap in Brassica oleracea in Response to Fusarium oxysporum Stress

    Science.gov (United States)

    Pu, Zijing; Ino, Yoko; Kimura, Yayoi; Tago, Asumi; Shimizu, Motoki; Natsume, Satoshi; Sano, Yoshitaka; Fujimoto, Ryo; Kaneko, Kentaro; Shea, Daniel J.; Fukai, Eigo; Fuji, Shin-Ichi; Hirano, Hisashi; Okazaki, Keiichi

    2016-01-01

    Fusarium oxysporum f.sp. conlutinans (Foc) is a serious root-invading and xylem-colonizing fungus that causes yellowing in Brassica oleracea. To comprehensively understand the interaction between F. oxysporum and B. oleracea, composition of the xylem sap proteome of the non-infected and Foc-infected plants was investigated in both resistant and susceptible cultivars using liquid chromatography-tandem mass spectrometry (LC-MS/MS) after in-solution digestion of xylem sap proteins. Whole genome sequencing of Foc was carried out and generated a predicted Foc protein database. The predicted Foc protein database was then combined with the public B. oleracea and B. rapa protein databases downloaded from Uniprot and used for protein identification. About 200 plant proteins were identified in the xylem sap of susceptible and resistant plants. Comparison between the non-infected and Foc-infected samples revealed that Foc infection causes changes to the protein composition in B. oleracea xylem sap where repressed proteins accounted for a greater proportion than those of induced in both the susceptible and resistant reactions. The analysis on the proteins with concentration change > = 2-fold indicated a large portion of up- and down-regulated proteins were those acting on carbohydrates. Proteins with leucine-rich repeats and legume lectin domains were mainly induced in both resistant and susceptible system, so was the case of thaumatins. Twenty-five Foc proteins were identified in the infected xylem sap and 10 of them were cysteine-containing secreted small proteins that are good candidates for virulence and/or avirulence effectors. The findings of differential response of protein contents in the xylem sap between the non-infected and Foc-infected samples as well as the Foc candidate effectors secreted in xylem provide valuable insights into B. oleracea-Foc interactions. PMID:26870056

  9. Changes in the Proteome of Xylem Sap in Brassica oleracea in Response to Fusarium oxysporum Stress.

    Science.gov (United States)

    Pu, Zijing; Ino, Yoko; Kimura, Yayoi; Tago, Asumi; Shimizu, Motoki; Natsume, Satoshi; Sano, Yoshitaka; Fujimoto, Ryo; Kaneko, Kentaro; Shea, Daniel J; Fukai, Eigo; Fuji, Shin-Ichi; Hirano, Hisashi; Okazaki, Keiichi

    2016-01-01

    Fusarium oxysporum f.sp. conlutinans (Foc) is a serious root-invading and xylem-colonizing fungus that causes yellowing in Brassica oleracea. To comprehensively understand the interaction between F. oxysporum and B. oleracea, composition of the xylem sap proteome of the non-infected and Foc-infected plants was investigated in both resistant and susceptible cultivars using liquid chromatography-tandem mass spectrometry (LC-MS/MS) after in-solution digestion of xylem sap proteins. Whole genome sequencing of Foc was carried out and generated a predicted Foc protein database. The predicted Foc protein database was then combined with the public B. oleracea and B. rapa protein databases downloaded from Uniprot and used for protein identification. About 200 plant proteins were identified in the xylem sap of susceptible and resistant plants. Comparison between the non-infected and Foc-infected samples revealed that Foc infection causes changes to the protein composition in B. oleracea xylem sap where repressed proteins accounted for a greater proportion than those of induced in both the susceptible and resistant reactions. The analysis on the proteins with concentration change > = 2-fold indicated a large portion of up- and down-regulated proteins were those acting on carbohydrates. Proteins with leucine-rich repeats and legume lectin domains were mainly induced in both resistant and susceptible system, so was the case of thaumatins. Twenty-five Foc proteins were identified in the infected xylem sap and 10 of them were cysteine-containing secreted small proteins that are good candidates for virulence and/or avirulence effectors. The findings of differential response of protein contents in the xylem sap between the non-infected and Foc-infected samples as well as the Foc candidate effectors secreted in xylem provide valuable insights into B. oleracea-Foc interactions.

  10. Differential proteomic responses of selectively bred and wild-type Sydney rock oyster populations exposed to elevated CO2.

    Science.gov (United States)

    Thompson, E L; O'Connor, W; Parker, L; Ross, P; Raftos, D A

    2015-03-01

    Previous work suggests that larvae from Sydney rock oysters that have been selectively bred for fast growth and disease resistance are more resilient to the impacts of ocean acidification than nonselected, wild-type oysters. In this study, we used proteomics to investigate the molecular differences between oyster populations in adult Sydney rock oysters and to identify whether these form the basis for observations seen in larvae. Adult oysters from a selective breeding line (B2) and nonselected wild types (WT) were exposed for 4 weeks to elevated pCO2 (856 μatm) before their proteomes were compared to those of oysters held under ambient conditions (375 μatm pCO2 ). Exposure to elevated pCO2 resulted in substantial changes in the proteomes of oysters from both the selectively bred and wild-type populations. When biological functions were assigned, these differential proteins fell into five broad, potentially interrelated categories of subcellular functions, in both oyster populations. These functional categories were energy production, cellular stress responses, the cytoskeleton, protein synthesis and cell signalling. In the wild-type population, proteins were predominantly upregulated. However, unexpectedly, these cellular systems were downregulated in the selectively bred oyster population, indicating cellular dysfunction. We argue that this reflects a trade-off, whereby an adaptive capacity for enhanced mitochondrial energy production in the selectively bred population may help to protect larvae from the effects of elevated CO2 , whilst being deleterious to adult oysters. © 2015 John Wiley & Sons Ltd.

  11. Histopathological effect and stress response of mantle proteome following TBT exposure in the Hooded oyster Saccostrea cucullata.

    Science.gov (United States)

    Khondee, Phattirapa; Srisomsap, Chantragan; Chokchaichamnankit, Daranee; Svasti, Jisnuson; Simpson, Richard J; Kingtong, Sutin

    2016-11-01

    Tributyltin (TBT), an environmental pollutant in marine ecosystems, is toxic to organisms. Although contamination by and bioaccumulation and toxicity of this compound have been widely reported, its underlying molecular mechanisms remain unclear. In the present study, we exposed the Hooded oyster Saccostrea cucullata to TBT to investigate histopathological effects and proteome stress response. Animals were exposed to three TBT sub-lethal concentrations, 10, 50 and 150 μg/l for 48 h. TBT produced stress leading to histopathological changes in oyster tissues including mantle, gill, stomach and digestive diverticula. TBT induced mucocyte production in epithelia and hemocyte aggregation in connective tissue. Cell necrosis occurred when exposure dosages were high. Comparative proteome analyses of mantle protein of oysters exposed to 10 μg/l and control animals were analyzed by a 2-DE based proteomic approach. In total, 32 protein spots were found to differ (p TBT induced the expression of proteins involved in defensive mechanisms (HSP-78, HSP-70, aldehyde dehydrogenase and catalase), calcium homeostasis (VDAC-3), cytoskeleton and cytoskeleton-associated proteins, energy metabolism and amino acid metabolism. Our study revealed that TBT disturbs calcium homeostasis via VDAC-3 protein in mantle and this probably is the key molecular mechanism of TBT acting to distort shell calcification. Moreover, proteins involved in cell structure (tubulin-alpha and tubulin-beta) and protein synthesis were reduced after TBT exposure. Additionally, differential proteins obtained from this work will be useful as potential TBT biomarkers.

  12. Insights into the proteomic response of soybean towards Al₂O₃, ZnO, and Ag nanoparticles stress.

    Science.gov (United States)

    Hossain, Zahed; Mustafa, Ghazala; Sakata, Katsumi; Komatsu, Setsuko

    2016-03-05

    Understanding the complex mechanisms involved in plant response to nanoparticles is indispensable in assessing the impact of nano-pollutants on environment. The present study compares the phytotoxicity of three different metal-based nanoparticles (Al2O3, ZnO, and Ag) in soybean seedling at proteome level. Plant growth, rigidity of roots, and root cell viability were markedly affected by ZnO- and Ag-NPs stress; while, Al2O3-NPs challenged soybean maintained normal seedling growth like control. Moreover, severe oxidative burst was evident in ZnO-NPs and Ag-NPs treatments. Gel-free proteomic analysis of NPs stressed soybean roots revealed 104 commonly changed proteins primarily associated with secondary metabolism, cell organization, and hormone metabolism. Oxidation-reduction cascade related genes, such as GDSL motif lipase 5, SKU5 similar 4, galactose oxidase, and quinone reductase were up-regulated in Al2O3-NPs challenged roots and down-regulated in ZnO- and Ag-NPs treatments. In comparison to root, 16 common proteins were found to be significantly changed in leaves of NPs exposed soybean that were predominantly associated to photosystem and protein degradation. The proteomic findings suggest that high abundance of proteins involved in oxidation-reduction, stress signaling, hormonal pathways related to growth and development might be the principal key for optimum growth of soybean under Al2O3-NPs stress.

  13. Differential Proteomic Profiles of Pleurotus ostreatus in Response to Lignocellulosic Components Provide Insights into Divergent Adaptive Mechanisms.

    Science.gov (United States)

    Xiao, Qiuyun; Ma, Fuying; Li, Yan; Yu, Hongbo; Li, Chengyun; Zhang, Xiaoyu

    2017-01-01

    Pleurotus ostreatus is a white rot fungus that grows on lignocellulosic biomass by metabolizing the main constituents. Extracellular enzymes play a key role in this process. During the hydrolysis of lignocellulose, potentially toxic molecules are released from lignin, and the molecules are derived from hemicellulose or cellulose that trigger various responses in fungus, thereby influencing mycelial growth. In order to characterize the mechanism underlying the response of P. ostreatus to lignin, we conducted a comparative proteomic analysis of P. ostreatus grown on different lignocellulose substrates. In this work, the mycelium proteome of P. ostreatus grown in liquid minimal medium with lignin, xylan, and carboxymethyl cellulose (CMC) was analyzed using the complementary two-dimensional gel electrophoresis (2-DE) approach; 115 proteins were identified, most of which were classified into five types according to their function. Proteins with an antioxidant function that play a role in the stress response were upregulated in response to lignin. Most proteins involving in carbohydrate and energy metabolism were less abundant in lignin. Xylan and CMC may enhanced the process of carbohydrate metabolism by regulating the level of expression of various carbohydrate metabolism-related proteins. The change of protein expression level was related to the adaptability of P. ostreatus to lignocellulose. These findings provide novel insights into the mechanisms underlying the response of white-rot fungus to lignocellulose.

  14. The Escherichia coli O157:H7 bovine rumen fluid proteome reflects adaptive bacterial responses

    OpenAIRE

    Kudva, Indira T.; Stanton, Thaddeus B; John D Lippolis

    2014-01-01

    Background To obtain insights into Escherichia coli O157:H7 (O157) survival mechanisms in the bovine rumen, we defined the growth characteristics and proteome of O157 cultured in rumen fluid (RF; pH 6.0-7.2 and low volatile fatty acid content) obtained from rumen-fistulated cattle fed low protein content “maintenance diet” under diverse in vitro conditions. Results Bottom-up proteomics (LC-MS/MS) of whole cell-lysates of O157 cultured under anaerobic conditions in filter-sterilized RF (fRF; d...

  15. Differential profiling of breast cancer plasma proteome by isotope-coded affinity tagging method reveals biotinidase as a breast cancer biomarker

    Directory of Open Access Journals (Sweden)

    Yu Myeong-Hee

    2010-03-01

    Full Text Available Abstract Background Breast cancer is one of the leading causes of women's death worldwide. It is important to discover a reliable biomarker for the detection of breast cancer. Plasma is the most ideal source for cancer biomarker discovery since many cells cross-communicate through the secretion of soluble proteins into blood. Methods Plasma proteomes obtained from 6 breast cancer patients and 6 normal healthy women were analyzed by using the isotope-coded affinity tag (ICAT labeling approach and tandem mass spectrometry. All the plasma samples used were depleted of highly abundant 6 plasma proteins by immune-affinity column chromatography before ICAT labeling. Several proteins showing differential abundance level were selected based on literature searches and their specificity to the commercially available antibodies, and then verified by immunoblot assays. Results A total of 155 proteins were identified and quantified by ICAT method. Among them, 33 proteins showed abundance changes by more than 1.5-fold between the plasmas of breast cancer patients and healthy women. We chose 5 proteins for the follow-up confirmation in the individual plasma samples using immunoblot assay. Four proteins, α1-acid glycoprotein 2, monocyte differentiation antigen CD14, biotinidase (BTD, and glutathione peroxidase 3, showed similar abundance ratio to ICAT result. Using a blind set of plasmas obtained from 21 breast cancer patients and 21 normal healthy controls, we confirmed that BTD was significantly down-regulated in breast cancer plasma (Wilcoxon rank-sum test, p = 0.002. BTD levels were lowered in all cancer grades (I-IV except cancer grade zero. The area under the receiver operating characteristic curve of BTD was 0.78. Estrogen receptor status (p = 0.940 and progesterone receptor status (p = 0.440 were not associated with the plasma BTD levels. Conclusions Our study suggests that BTD is a potential serological biomarker for the detection of breast cancer.

  16. Human Spermatozoa Quantitative Proteomic Signature Classifies Normo- and Asthenozoospermia.

    Science.gov (United States)

    Saraswat, Mayank; Joenväärä, Sakari; Jain, Tushar; Tomar, Anil Kumar; Sinha, Ashima; Singh, Sarman; Yadav, Savita; Renkonen, Risto

    2017-01-01

    Scarcely understood defects lead to asthenozoospermia, which results in poor fertility outcomes. Incomplete knowledge of these defects hinders the development of new therapies and reliance on interventional therapies, such as in vitro fertilization, increases. Sperm cells, being transcriptionally and translationally silent, necessitate the proteomic approach to study the sperm function. We have performed a differential proteomics analysis of human sperm and seminal plasma and identified and quantified 667 proteins in sperm and 429 proteins in seminal plasma data set, which were used for further analysis. Statistical and mathematical analysis combined with pathway analysis and self-organizing maps clustering and correlation was performed on the data set.It was found that sperm proteomic signature combined with statistical analysis as opposed to the seminal plasma proteomic signature can differentiate the normozoospermic versus the asthenozoospermic sperm samples. This is despite the results that some of the seminal plasma proteins have big fold changes among classes but they fall short of statistical significance. S-Plot of the sperm proteomic data set generated some high confidence targets, which might be implicated in sperm motility pathways. These proteins also had the area under the curve value of 0.9 or 1 in ROC curve analysis.Various pathways were either enriched in these proteomic data sets by pathway analysis or they were searched by their constituent proteins. Some of these pathways were axoneme activation and focal adhesion assembly, glycolysis, gluconeogenesis, cellular response to stress and nucleosome assembly among others. The mass spectrometric data is available via ProteomeXchange with identifier PXD004098.

  17. Analysis of cellular responses of macrophages to zinc ions and zinc oxide nanoparticles: a combined targeted and proteomic approach.

    Science.gov (United States)

    Triboulet, Sarah; Aude-Garcia, Catherine; Armand, Lucie; Gerdil, Adèle; Diemer, Hélène; Proamer, Fabienne; Collin-Faure, Véronique; Habert, Aurélie; Strub, Jean-Marc; Hanau, Daniel; Herlin, Nathalie; Carrière, Marie; Van Dorsselaer, Alain; Rabilloud, Thierry

    2014-06-07

    Two different zinc oxide nanoparticles, as well as zinc ions, are used to study the cellular responses of the RAW 264 macrophage cell line. A proteomic screen is used to provide a wide view of the molecular effects of zinc, and the most prominent results are cross-validated by targeted studies. Furthermore, the alteration of important macrophage functions (e.g. phagocytosis) by zinc is also investigated. The intracellular dissolution/uptake of zinc is also studied to further characterize zinc toxicity. Zinc oxide nanoparticles dissolve readily in the cells, leading to high intracellular zinc concentrations, mostly as protein-bound zinc. The proteomic screen reveals a rather weak response in the oxidative stress response pathway, but a strong response both in the central metabolism and in the proteasomal protein degradation pathway. Targeted experiments confirm that carbohydrate catabolism and proteasome are critical determinants of sensitivity to zinc, which also induces DNA damage. Conversely, glutathione levels and phagocytosis appear unaffected at moderately toxic zinc concentrations.

  18. Assessment of violations of the proteomic profile in blood plasma in children being under inhalation exposure to fine dust containing vanadium

    Directory of Open Access Journals (Sweden)

    N.V. Zaitseva

    2016-03-01

    Full Text Available The results of research and evaluation of the protein profile in blood plasma in children, that have been exposed to long-term effect of fine dust containing vanadium in the zone of influence of metallurgical production sources, are demonstrated. It was established that under conditions of poor air quality in the residential area due to vanadium pentoxide dust content at the level up to 1.2 mean daily MAC (34 RfC chr , by the suspended solids – up to 0.6 mean daily MAC (1.2 RfC chr , there is vanadium concentration in blood of the exposed 4–7 aged children, that exceeds up to 6 times the reference level. The technology of the proteomic analysis showed that children with high content of vanadium in blood have changes in proteomic profile in blood plasma in the type of increase of the relative volume of acid glycoprotein alpha-1; reduction of clusterin, apolipoprotein A-IV, alpha-2-HS-glycoprotein, that are associated with vanadium concentration in blood. In the absence of timely primary and secondary prevention and the preservation of vanadium sustained exposure the revealed cell-molecular abnormalities allow us to predict further development of functional disturbances on tissue and organ levels as the early development of osteoporosis and osteoarticular pathology, atherosclerotic vascular changes, autoimmune allergic processes on the background of disorders of immune regulation, oncology diseases.

  19. Proteome-wide Identification of Poly(ADP-Ribosyl)ation Targets in Different Genotoxic Stress Responses

    DEFF Research Database (Denmark)

    Jungmichel, S.; Rosenthal, F.; Altmeyer, M.;

    2013-01-01

    Poly(ADP-ribos)ylation (PARylation) is a reversible posttranslational modification found in higher eukaryotes. However, little is known about PARylation acceptor proteins. Here, we describe a sensitive proteomics approach based on high-accuracy quantitative mass spectrometry for the identificatio...

  20. Comparative leaf proteomics of drought-tolerant and -susceptible peanut in response to water stress

    DEFF Research Database (Denmark)

    Katam, Ramesh; Sakata, Katsumi; Suravajhala, Prashanth;

    2016-01-01

    drought tolerance characteristics were subjected to WS, and their leaf proteome was compared using two-dimensional electrophoresis complemented with MALDI-TOF/TOF mass spectrometry. Ninety-six protein spots were differentially abundant to water stress in both cultivars that corresponded to 60 non...

  1. The response of Asterochloris erici (Ahmadjian) Skaloud et Peksa to desiccation: a proteomic approach

    Science.gov (United States)

    The study of desiccation tolerance of lichens, and of their photobionts in particular, has frequently focused on the antioxidant system that protects the cell against photo-oxidative stress during dehydration/rehydration cycles. Thus, in this work we carried out proteomic and transcript analyses of ...

  2. Proteomic pattern alterations of the cyanobacterium Synechocystis sp. PCC 6803 in response to cadmium, nickel and cobalt.

    Science.gov (United States)

    Mehta, Angela; López-Maury, Luis; Florencio, Francisco J

    2014-05-06

    Cyanobacteria represent the largest and most diverse group of prokaryotes capable of performing oxygenic photosynthesis and are frequently found in environments contaminated with heavy metals. Several studies have been performed in these organisms in order to better understand the effects of metals such as Zn, Cd, Cu, Ni and Co. In Synechocystis sp. PCC 6803, genes involved in Ni, Co, Cu and Zn resistance have been reported. However, proteomic studies for the identification of proteins modulated by heavy metals have not been carried out. In the present work, we have analyzed the proteomic pattern alterations of the cyanobacterium Synechocystis sp. PCC 6803 in response to Ni, Co and Cd in order to identify the metabolic processes affected by these metals. We show that some proteins are commonly regulated in response to the different metal ions, including ribulose1,5-bisphosphate carboxylase and the periplasmic iron-binding protein FutA2, while others, such as chaperones, were specifically induced by each metal. We also show that the main processes affected by the metals are carbon metabolism and photosynthesis, since heavy metals affect proteins required for the correct functioning of these activities. This is the first report on the proteomic profile of Synechocystis sp. PCC 6803 wild type and mutant strains for the identification of proteins affected by the heavy metals Ni, Co and Cd. We have identified proteins commonly responsive to all three metals and also chaperones specifically modulated by each metal. Our data also supports previous studies that suggest the existence of additional sensor systems for Co. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Peroxiredoxin 2: a potential biomarker for early diagnosis of Hepatitis B Virus related liver fibrosis identified by proteomic analysis of the plasma

    Directory of Open Access Journals (Sweden)

    Wang Haijian

    2010-10-01

    Full Text Available Abstract Background Liver fibrosis is a middle stage in the course of chronic Hepatitis B virus (HBV infection, which will develop into cirrhosis and eventually hepatocellular carcinoma (HCC if not treated at the early stage. Considering the limitations and patients' reluctance to undergo liver biopsy, a reliable, noninvasive diagnostic system to predict and assess treatment and prognosis of liver fibrosis is needed. The aim of this study was to identify biomarkers for early diagnosis of HBV related liver fibrosis. Method Plasma samples from 7 healthy volunteers and 27 HBV infected patients with different stages of fibrosis were selected for 2-DIGE proteomic screening. One-way ANOVA analysis was used to assess differences in protein expression among all groups. The alteration was further confirmed by western blotting. Plasma levels of 25 serological variables in 42 healthy volunteers and 68 patients were measured to establish a decision tree for the detection of various stages fibrosis. Result The up-regulated proteins along with fibrosis progress included fibrinogen, collagen, macroglobulin, hemopexin, antitrypsin, prealbumin and thioredoxin peroxidase. The down-regulated proteins included haptoglobin, serotransferrin, CD5 antigen like protein, clusterin, apolipoprotein and leucine-rich alpha-2-glycoprotein. For the discrimination of milder stage fibrosis, the area under curve for Prx II was the highest. Four variables (PT, Pre, HA and Prx II were selected from the 25 variables to construct the decision tree. In a training group, the correct prediction percentage for normal control, milder fibrosis, significant fibrosis and early cirrhosis was 100%, 88.9%, 95.2% and 100%, respectively, with an overall correct percent of 95.9%. Conclusion This study showed that 2-D DIGE-based proteomic analysis of the plasma was helpful in screening for new plasma biomarkers for liver disease. The significant up-expression of Prx II could be used in the early

  4. PLASMA MODEL-ONE MODEL OF ELECTROMAGNETIC RESPONSE OF MATTER

    Institute of Scientific and Technical Information of China (English)

    H. Du; J. Gong; C. Sun; A.L. Ji; R.F. Huang; L.S. Wen

    2001-01-01

    The prerequisite and mode of electromagnetic response of nano metal/dielectric filmsto electromagnetic wave field were suggested. With the carrier density and the re-flectance, transmittance of the film, the plasma frequency and the dependence of ab-sorptance on the frequency of electromagnetic wave field were calculated respectively.The calculated results accorded with the experimental ones, which proved the plasmaresonance is one mode of electromagnetic response.

  5. Proteomic analysis of acute responses to copper sulfate stress in larvae of the brine shrimp,Artemia sinica

    Institute of Scientific and Technical Information of China (English)

    周茜; 吴长功; 董波; 李富花; 刘凤岐; 相建海

    2010-01-01

    Proteomics was used to reveal the differential protein expression profiles of acute responses to copper sulfate exposure in larvae of Artemia sinica.Fourteen differentially displayed protein spots were detected and seven of them were identified.Three spots were up-expressed and identified:actin, heat shock protein 70,and chaperone subunit 1;three down-regulated proteins were identified:arginine kinase,elongation factor-2,and glycine-rich protein;and a newly expressed protein was identified as peroxiredoxin....

  6. Stem cell responses to plasma surface modified electrospun polyurethane scaffolds.

    Science.gov (United States)

    Zandén, Carl; Hellström Erkenstam, Nina; Padel, Thomas; Wittgenstein, Julia; Liu, Johan; Kuhn, H Georg

    2014-07-01

    The topographical effects from functional materials on stem cell behavior are currently of interest in tissue engineering and regenerative medicine. Here we investigate the influence of argon, oxygen, and hydrogen plasma surface modification of electrospun polyurethane fibers on human embryonic stem cell (hESC) and rat postnatal neural stem cell (NSC) responses. The plasma gases were found to induce three combinations of fiber surface functionalities and roughness textures. On randomly oriented fibers, plasma treatments lead to substantially increased hESC attachment and proliferation as compared to native fibers. Argon plasma was found to induce the most optimal combination of surface functionality and roughness for cell expansion. Contact guided migration of cells and alignment of cell processes were observed on aligned fibers. Neuronal differentiation around 5% was found for all samples and was not significantly affected by the induced variations of surface functional group distribution or individual fiber topography. In this study the influence of argon, oxygen, and hydrogen plasma surface modification of electrospun polyurethane fibers on human embryonic stem cell and rat postnatal neural stem cell (NSC) responses is studied with the goal of clarifying the potential effects of functional materials on stem cell behavior, a topic of substantial interest in tissue engineering and regenerative medicine. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Toroidal modeling of plasma response to RMP fields in ITER

    Science.gov (United States)

    Li, L.; Liu, Y. Q.; Wang, N.; Kirk, A.; Koslowski, H. R.; Liang, Y.; Loarte, A.; Ryan, D.; Zhong, F. C.

    2017-04-01

    A systematic numerical study is carried out, computing the resistive plasma response to the resonant magnetic perturbation (RMP) fields for ITER plasmas, utilizing the toroidal code MARS-F (Liu et al 2000 Phys. Plasmas 7 3681). A number of factors are taken into account, including the variation of the plasma scenarios (from 15 MA Q = 10 inductive scenario to the 9 MA Q = 5 steady state scenario), the variation of the toroidal spectrum of the applied fields (n = 1, 2, 3, 4, with n being the toroidal mode number), the amplitude and phase variation of the currents in three rows of the RMP coils as designed for ITER, and finally a special case of mixed toroidal spectrum between the n = 3 and n = 4 RMP fields. Two-dimensional parameter scans, for the edge safety factor and the coil phasing between the upper and lower rows of coils, yield ‘optimal’ curves that maximize a set of figures of merit, that are defined in this work to measure the plasma response. Other two-dimensional scans of the relative coil current phasing among three rows of coils, at fixed coil currents amplitude, reveal a single optimum for each coil configuration with a given n number, for the 15 MA ITER inductive plasma. On the other hand, scanning of the coil current amplitude, at fixed coil phasing, shows either synergy or cancellation effect, for the field contributions between the off-middle rows and the middle row of the RMP coils. Finally, the mixed toroidal spectrum, by combining the n = 3 and the n = 4 RMP field, results in a substantial local reduction of the amplitude of the plasma surface displacement.

  8. Plasma response based RMP coil geometry optimization for an ITER plasma

    Science.gov (United States)

    Zhou, Lina; Liu, Yueqiang; Liu, Yue; Yang, Xu

    2016-11-01

    Based on an ITER 15MA Q  =  10 inductive scenario, a systematic numerical investigation is carried out in order to understand the effect of varying the geometry of the magnetic coils, used for controlling the edge localized modes in tokamaks, on the plasma response to the resonant magnetic perturbation (RMP) fields produced by these coils. Toroidal computations show that both of the plasma response based figures of merit—one is the pitch resonant radial field component near the plasma edge and the other is the plasma displacement near the X-point of the separatrix—consistently yield the same prediction for the optimal coil geometry. With a couple of exceptions, the presently designed poloidal location of the ITER upper and lower rows of RMP coils is close to the optimum, according to the plasma response based criteria. This holds for different coil current configurations with n  =  2, 3, 4, as well as different coil phasing between the upper and lower rows. The coils poloidal width from the present design, on the other hand, is sub-optimal for the upper and lower rows. Modelling also finds that the plasma response amplitude sharply decreases by moving the middle row RMP coils of ITER from the designed radial location (just inside the inner vacuum vessel) outwards (outside the outer vacuum vessel). The decay rate is sensitively affected by the middle row coils’ poloidal coverage for low-n (n  =  1, 2) RMP fields, but not for high-n (n  =  4) fields.

  9. Elucidation of complex nature of PEG induced drought-stress response in rice root using comparative proteomics approach

    Directory of Open Access Journals (Sweden)

    Lalit Agrawal

    2016-09-01

    Full Text Available Along with many adaptive strategies, dynamic changes in protein abundance seem to be the common strategy to cope up with abiotic stresses which can be best explored through proteomics. Understanding of drought response is the key to decipher regulatory mechanism of better adaptation. Rice (Oryza sativa L. proteome represents a phenomenal source of proteins that govern traits of agronomic importance, such as drought tolerance. In this study, a comparison of root cytoplasmic proteome was done for a drought tolerant rice (Heena cultivar in PEG induced drought conditions. A total of 510 protein spots were observed by PDQuest analysis and 125 differentially regulated spots were subjected for MALDI-TOF MS-MS analysis out of which 102 protein spots identified which further led to identification of 78 proteins with a significant score. These 78 differentially expressed proteins appeared to be involved in different biological pathways. The largest percentage of identified proteins was involved in bioenergy and metabolism (29% and mainly consists of malate dehydrogenase, succinyl-CoA, putative acetyl-CoA synthetase and pyruvate dehydrogenase etc. This was followed by proteins related to cell defense and rescue (22% such as monodehydroascorbate reductase and stress-induced protein sti1, then by protein biogenesis and storage class (21% e.g. putative thiamine biosynthesis protein, putative beta-alanine synthase and cysteine synthase. Further, cell signaling (9% proteins like actin and prolyl endopeptidase and proteins with miscellaneous function (19% like Sgt1 and some hypothetical protein were also represented a large contribution towards drought regulatory mechanism in rice. We propose that protein biogenesis, cell defense and superior homeostasis may render better drought-adaptation. These findings might expedite the functional determination of the drought-responsive proteins and their prioritisation as potential molecular targets for perfect adaptation.

  10. Elucidation of Complex Nature of PEG Induced Drought-Stress Response in Rice Root Using Comparative Proteomics Approach

    Science.gov (United States)

    Agrawal, Lalit; Gupta, Swati; Mishra, Shashank K.; Pandey, Garima; Kumar, Susheel; Chauhan, Puneet S.; Chakrabarty, Debasis; Nautiyal, Chandra S.

    2016-01-01

    Along with many adaptive strategies, dynamic changes in protein abundance seem to be the common strategy to cope up with abiotic stresses which can be best explored through proteomics. Understanding of drought response is the key to decipher regulatory mechanism of better adaptation. Rice (Oryza sativa L.) proteome represents a phenomenal source of proteins that govern traits of agronomic importance, such as drought tolerance. In this study, a comparison of root cytoplasmic proteome was done for a drought tolerant rice (Heena) cultivar in PEG induced drought conditions. A total of 510 protein spots were observed by PDQuest analysis and 125 differentially regulated spots were subjected for MALDI-TOF MS-MS analysis out of which 102 protein spots identified which further led to identification of 78 proteins with a significant score. These 78 differentially expressed proteins appeared to be involved in different biological pathways. The largest percentage of identified proteins was involved in bioenergy and metabolism (29%) and mainly consists of malate dehydrogenase, succinyl-CoA, putative acetyl-CoA synthetase, and pyruvate dehydrogenase etc. This was followed by proteins related to cell defense and rescue (22%) such as monodehydroascorbate reductase and stress-induced protein sti1, then by protein biogenesis and storage class (21%) e.g. putative thiamine biosynthesis protein, putative beta-alanine synthase, and cysteine synthase. Further, cell signaling (9%) proteins like actin and prolyl endopeptidase, and proteins with miscellaneous function (19%) like Sgt1 and some hypothetical proteins were also represented a large contribution toward drought regulatory mechanism in rice. We propose that protein biogenesis, cell defense, and superior homeostasis may render better drought-adaptation. These findings might expedite the functional determination of the drought-responsive proteins and their prioritization as potential molecular targets for perfect adaptation.

  11. A photoperiod-responsive protein compendium and conceptual proteome roadmap outline in maize grown in growth chambers with controlled conditions.

    Science.gov (United States)

    Li, You-Zhi; Fan, Xian-Wei; Chen, Qiang; Zhong, Hao

    2017-01-01

    Maize (Zea mays L.) is one of the major staple food crops of the world. However, high photoperiod sensitivity, especially for tropical germplasms, impedes attempts to improve maize agronomical traits by integration of tropical and temperate maize germplasms. Physiological and phenotypic responses of maize to photoperiod have widely been investigated based on multi-site field observations; however, proteome-based responsive mechanisms under controlled photoperiod regimes, nutrient and moisture soils are not yet well understood. In the present study, we sequenced and analyzed six proteomes of tropically-adapted and photoperiod-sensitive M9 inbred line at the vegetative 3 stage and proteomes from tropically-adapted and photoperiod-sensitive Shuang M9 (SM9) inbred line at the vegetative-tasseling stage. All plants were grown in growth chambers with controlled soil and temperature and three photoperiod regimes, a short photoperiod (SP) of 10 h light/14 h dark, a control neutral photoperiod (NP) of 12 h light/12 h dark, and a long photoperiod (LP) of 16 h light/8 h dark for a daily cycle. We identified 4,395 proteins of which 401 and 425 differentially-expressed proteins (DPs) were found in abundance in M9 leaves and in SM9 leaves as per SP/LP vs. NP, respectively. Some DPs showed responses to both SP and LP while some only responded to either SP or LP, depending on M9 or SM9. Our study showed that the photoperiodic response pathway, circadian clock rhythm, and high light density/intensity crosstalk with each other, but apparently differ from dark signaling routes. Photoperiod response involves light-responsive or dark-responsive proteins or both. The DPs positioned on the signaling routes from photoperiod changes to RNA/DNA responses involve the mago nashi homolog and glycine-rich RNA-binding proteins. Moreover, the cell-to-cell movement of ZCN14 through plasmodesmata is likely blocked under a 16-h-light LP. Here, we propose a photoperiodic model based on our findings

  12. Subcellular Proteomics of Soybean under Flooding Stress

    Institute of Scientific and Technical Information of China (English)

    Setsuko Komatsu

    2012-01-01

    Flooding is an environmental stress found worldwide and may increase in frequency due to changes in global climate,and causes significant reductions in the growth and yield of several crops.The application of proteomics techniques to clarify the molecular mechanisms underlying crop responses to flooding stress may facilitate the development of flood tolerant crops.To understand the response mechanism of soybean under flooding stress,proteomics analysis was carried out.Especially,subcellular proteomics studies have led to a better understanding of the mechanism of flooding stress tolerance in soybean.The effects of flooding stress on root plasma membrane were analyzed using an aqueous two-phase partitioning method in combination with gel-based and gel-free proteomics techniques.The results led to the following conclusions:proteins located in the cell wall were increased in the plasma membrane of flooded plants,indicating the contribution of plasma membrane to modification of the cell wall; superoxide dismutase was increased,indicating that the antioxidative system may play a crucial role in protecting cells from oxidative damage following exposure to flooding stress; heat shock cognate 70 kDa protein likely plays a significant role in protecting other proteins from denaturation and degradation during flooding stress; and signaling proteins might work cooperatively to regulate plasma membrane H +-ATPase and maintain ion homeostasis.Cell wall proteins were isolated from root of flooding stressed plants via sucrose gradient centrifugation and analyzed using gel-based proteomics technique.Cell wall proteins identified were related to lignification,and these results indicated that a decrease of lignification-related proteins is related to flooding decreased ROS and jasmonate biosynthesis.And also,lignin staining confirmed that lignification was suppressed in the roots of flooding stressed soybeans.Mitochondrial fractions were purified from root of flooding stressed

  13. Proteomic analysis of Citrus sinensis roots and leaves in response to long-term magnesium-deficiency.

    Science.gov (United States)

    Peng, Hao-Yang; Qi, Yi-Ping; Lee, Jinwook; Yang, Lin-Tong; Guo, Peng; Jiang, Huan-Xin; Chen, Li-Song

    2015-03-31

    Magnesium (Mg)-deficiency is frequently observed in Citrus plantations and is responsible for the loss of productivity and poor fruit quality. Knowledge on the effects of Mg-deficiency on upstream targets is scarce. Seedlings of 'Xuegan' [Citrus sinensis (L.) Osbeck] were irrigated with Mg-deficient (0 mM MgSO4) or Mg-sufficient (1 mM MgSO4) nutrient solution for 16 weeks. Thereafter, we first investigated the proteomic responses of C. sinensis roots and leaves to Mg-deficiency using two-dimensional electrophoresis (2-DE) in order to (a) enrich our understanding of the molecular mechanisms of plants to deal with Mg-deficiency and (b) understand the molecular mechanisms by which Mg-deficiency lead to a decrease in photosynthesis. Fifty-nine upregulated and 31 downregulated protein spots were isolated in Mg-deficient leaves, while only 19 upregulated and 12 downregulated protein spots in Mg-deficient roots. Many Mg-deficiency-responsive proteins were involved in carbohydrate and energy metabolism, followed by protein metabolism, stress responses, nucleic acid metabolism, cell wall and cytoskeleton metabolism, lipid metabolism and cell transport. The larger changes in leaf proteome versus root one in response to Mg-deficiency was further supported by our observation that total soluble protein concentration was decreased by Mg-deficiency in leaves, but unaffected in roots. Mg-deficiency had decreased levels of proteins [i.e. ribulose-1,5-bisphosphate carboxylase (Rubisco), rubisco activase, oxygen evolving enhancer protein 1, photosynthetic electron transfer-like protein, ferredoxin-NADP reductase (FNR), aldolase] involved in photosynthesis, thus decreasing leaf photosynthesis. To cope with Mg-deficiency, C. sinensis leaves and roots might respond adaptively to Mg-deficiency through: improving leaf respiration and lowering root respiration, but increasing (decreasing) the levels of proteins related to ATP synthase in roots (leaves); enhancing the levels of proteins

  14. Proteomic analysis of acute responses to copper sulfate stress in larvae of the brine shrimp, Artemia sinica

    Science.gov (United States)

    Zhou, Qian; Wu, Changgong; Dong, Bo; Li, Fuhua; Liu, Fengqi; Xiang, Jianhai

    2010-03-01

    Proteomics was used to reveal the differential protein expression profiles of acute responses to copper sulfate exposure in larvae of Artemia sinica. Fourteen differentially displayed protein spots were detected and seven of them were identified. Three spots were up-expressed and identified: actin, heat shock protein 70, and chaperone subunit 1; three down-regulated proteins were identified: arginine kinase, elongation factor-2, and glycine-rich protein; and a newly expressed protein was identified as peroxiredoxin. The study indicates the involvement of all the differentially expressed proteins in the early responses of protein expression, and in the survival of A. sinica in the presence of copper and other heavy metals; the findings improve understanding of the organism’s adaptive responses and resistance.

  15. Temporal profiling of the chromatin proteome reveals system-wide responses to replication inhibition

    DEFF Research Database (Denmark)

    Khoudoli, Guennadi A; Gillespie, Peter J; Stewart, Graeme

    2008-01-01

    Although the replication, expression, and maintenance of DNA are well-studied processes, the way that they are coordinated is poorly understood. Here, we report an analysis of the changing association of proteins with chromatin (the chromatin proteome) during progression through interphase...... of the cell cycle. Sperm nuclei were incubated in Xenopus egg extracts, and chromatin-associated proteins were analyzed by mass spectrometry at different times. Approximately 75% of the proteins varied in abundance on chromatin by more than 15%, suggesting that the chromatin proteome is highly dynamic...... to replication inhibition (including nuclear pore proteins) coprecipitated with the Mcm2-7 licensing complex on chromatin, suggesting that Mcm2-7 play a central role in coordinating nuclear structure with DNA replication....

  16. Proteomic profiling of Mycobacterium tuberculosis identifies nutrient-starvation-responsive toxin-antitoxin systems

    DEFF Research Database (Denmark)

    Albrethsen, Jakob; Agner, Jeppe; Piersma, Sander R

    2013-01-01

    In order to successfully enter the latent stage, Mycobacterium tuberculosis must adapt to conditions such as nutrient limitation and hypoxia. In vitro models that mimic latent infection are valuable tools for describing the changes in metabolism that occur when the bacterium exists in a non......-growing form. We used two complementary proteomic approaches, label-free LC-MS/MS analysis and two-dimensional difference gel electrophoresis, to determine the proteome profile of extracellular proteins from M. tuberculosis cultured under nutrient starvation. Through the label-free LC-MS/MS analysis......, significant differences in the overall metabolism during nutrient starvation were detected. Notably, members of the toxin-antitoxin systems were present in larger quantities in nutrient-starved cultures, supporting a role for these global modules as M. tuberculosis switches its metabolism into dormancy...

  17. Proteomics profile of cellular response to chiral drugs: prospects for pharmaceutical applications.

    Science.gov (United States)

    Bun Ching, Chi; Zhang, Jianhua; Sui, Jianjun; Ning Chen, Wei

    2010-02-01

    Chiral drugs account for a large proportion of drugs available in the market. There is increasing awareness of the importance of drug chirality and the role it plays in explaining the oftentimes dramatic differences in biological activities in the current drug development portfolio. Using recently developed chiral drugs-cell interaction system, several examples of protein profiles induced by chiral drugs were illustrated in detail on the platform of 2-D LC interfaced with MS/MS system. In addition, the background of chiral drug investigation from which contemporary drug chirality research has emerged, the techniques involved in proteomics technology, the application of proteomics in this exciting area, and the perspectives in future applications are also discussed.

  18. Analysis of Pacific oyster larval proteome and its response to high-CO2

    KAUST Repository

    Dineshram, R.

    2012-10-01

    Most calcifying organisms show depressed metabolic, growth and calcification rates as symptoms to high-CO2 due to ocean acidification (OA) process. Analysis of the global expression pattern of proteins (proteome analysis) represents a powerful tool to examine these physiological symptoms at molecular level, but its applications are inadequate. To address this knowledge gap, 2-DE coupled with mass spectrophotometer was used to compare the global protein expression pattern of oyster larvae exposed to ambient and to high-CO2. Exposure to OA resulted in marked reduction of global protein expression with a decrease or loss of 71 proteins (18% of the expressed proteins in control), indicating a wide-spread depression of metabolic genes expression in larvae reared under OA. This is, to our knowledge, the first proteome analysis that provides insights into the link between physiological suppression and protein down-regulation under OA in oyster larvae. © 2012 Elsevier Ltd.

  19. Toluene Dose-Response and Preliminary Study of Proteomics for Neuronal Cell Lines

    Science.gov (United States)

    2015-07-01

    Index, 1989). It is widely used in commercial products for paints and paints thinner, nail polish, lacquers, and rust inhibitors. It is also a...fluorocarbon film bottom; this film is vapor permeable and allows toluene vapor to pass, thereby exposing the cells. For control exposures, the...use of vapor permeable Lumox® microplates as suitable culture vessels for toluene in the glass chamber. The quantitative proteomics identified

  20. Proteomics: a tool for the study of plant response to abiotic stress

    OpenAIRE

    Hoyos Roveda, Gabriel; Fonseca Moreno, Liz Patricia

    2011-01-01

    Due in part to human activity, changes in global climate behavior have manifested in an increase in extreme temperature related events such as drought, salinization, contamination and flooding of vast areas of the planet. Regarding agricultural activity, these uncertain climatic scenarios are likely to cause biotic and abiotic stress increases, which must be dealt with through science and technology. Holistic approaches, also known as “omics”: proteomics, genomics, transcriptomics, and metabo...

  1. Quantitative Proteomics Identifies Vasopressin-Responsive Nuclear Proteins in Collecting Duct Cells

    OpenAIRE

    Schenk, Laura K.; Bolger, Steven J.; Luginbuhl, Kelli; Gonzales, Patricia A.; Rinschen, Markus M.; Yu, Ming-Jiun; Hoffert, Jason D.; Pisitkun, Trairak; Knepper, Mark A.

    2012-01-01

    Vasopressin controls transport in the renal collecting duct, in part, by regulating transcription. This complex process, which can involve translocation and/or modification of transcriptional regulators, is not completely understood. Here, we applied a method for large-scale profiling of nuclear proteins to quantify vasopressin-induced changes in the nuclear proteome of cortical collecting duct (mpkCCD) cells. Using stable isotope labeling and tandem mass spectrometry, we quantified 3987 nucl...

  2. Physiological and proteomic responses of different willow clones (Salix fragilis x alba) exposed to dredged sediment contaminated by heavy metals.

    Science.gov (United States)

    Evlard, Aricia; Sergeant, Kjell; Ferrandis, Salvador; Printz, Bruno; Renaut, Jenny; Guignard, Cedric; Paul, Roger; Hausman, Jean-Francois; Campanella, Bruno

    2014-01-01

    High biomass producing species are considered as tools for remediation of contaminated soils. Willows (Salix spp.) are prominent study subjects in this regard. In this study, different willow clones (Salix fragilis x alba) were planted on heavy-metal polluted dredging sludge. A first objective was assessment of the biomass production for these clones. Using a Gupta statistic, four clones were identified as high biomass producers (HBP). For comparison, a group of four clones with lowest biomass production were selected (LBP). A second objective was to compare metal uptake as well as the physiological and proteomic responses of these two groups. All these complementary data's allow us to have a better picture of the health of the clones that would be used in phytoremediation programs. Cd, Zn, and Ni total uptake was higher in the HBPs but Pb total uptake was higher in LBPs. Our proteomic and physiological results showed that the LBPs were able to maintain cellular activity as much as the HBPs although the oxidative stress response was more pronounced in the LBPs. This could be due to the high Pb content found in this group although a combined effect of the other metals cannot be excluded.

  3. Proteomic responses reveal the differential effects induced by cadmium in mussels Mytilus galloprovincialis at early life stages.

    Science.gov (United States)

    Xu, Lanlan; Peng, Xiao; Yu, Deliang; Ji, Chenglong; Zhao, Jianmin; Wu, Huifeng

    2016-08-01

    Cadmium (Cd) has become an important metal contaminant and posed severe risk on the organisms in the coastal environments of the Bohai Sea. Marine mussel Mytilus galloprovincialis is widely distributed along the Bohai coast and consumed as seafood by local residents. Evidences indicate that the early stages of marine organisms are more sensitive to metal contaminants. In this study, we applied two-dimensional electrophoresis-based proteomics to characterize the biological effects of Cd (50 μg L(-1)) in the early life stages (D-shape larval and juvenile) of mussels. The different proteomic responses demonstrated the differential responsive mechanisms to Cd exposure in these two early life stages of mussels. In details, results indicated that Cd mainly induced immune and oxidative stresses in both D-shape larval and juvenile mussels via different pathways. In addition, the significant up-regulation of triosephosphate isomerase and metallothionein confirmed the enhanced energy demand and mobilized detoxification mechanism in D-shape larval mussels exposed to Cd. In juvenile mussels, Cd exposure also induced clear apoptosis. Overall, this work suggests that Cd is a potential immune toxicant to mussel M. galloprovincialis at early life stages.

  4. SWATH-MS Quantitative Proteomic Investigation Reveals a Role of Jasmonic Acid during Lead Response in Arabidopsis.

    Science.gov (United States)

    Zhu, Fu-Yuan; Chan, Wai-Lung; Chen, Mo-Xian; Kong, Ricky P W; Cai, Congxi; Wang, Qiaomei; Zhang, Jian-Hua; Lo, Clive

    2016-10-07

    Lead (Pb) pollution is a growing environment problem that continuously threatens the productivity of crops. To understand the molecular mechanisms of plant adaptation to Pb toxicity, we examined proteome changes in Arabidopsis seedlings following Pb treatment by SWATH-MS, a label-free quantitative proteomic platform. We identified and quantified the expression of 1719 proteins in water- and Pb-treated plants. Among them, 231 proteins showed significant abundance changes (151 elevated and 80 reduced) upon Pb exposure. Functional categorization revealed that most of the Pb-responsive proteins are involved in different metabolic processes. For example, down-regulation of photosynthesis and biosynthesis of isoprenoids and tetrapyrroles in chloroplasts were observed. On the contrary, pathways leading to glutathione, jasmonic acid (JA), glucosinolate (GSL), and phenylpropanoid production are up-regulated. Experimental characterizations demonstrated a rapid elevation of endogenic JA production in Pb-treated Arabidopsis seedlings, while a JA-deficient mutant and a JA-insensitive mutant showed hypersensitivity to root inhibition by Pb, implicating an essential role of JA during Pb responses. Consistently, methyl jasmonate supplementation alleviated Pb toxicity in the wild-type and JA-deficient mutant. Furthermore, GSL levels were substantially enhanced following Pb treatment, while such induction was not detected in the JA mutant, suggesting that the Pb-induced GSL accumulation is JA-dependent. Overall, our work represents the first SWATH-MS analysis in Arabidopsis and highlights a potential mediating role of JA during Pb stress.

  5. Proteomic study of low-temperature responses in strawberry cultivars (Fragaria x ananassa) that differ in cold tolerance.

    Science.gov (United States)

    Koehler, Gage; Wilson, Robert C; Goodpaster, John V; Sønsteby, Anita; Lai, Xianyin; Witzmann, Frank A; You, Jin-Sam; Rohloff, Jens; Randall, Stephen K; Alsheikh, Muath

    2012-08-01

    To gain insight into the molecular basis contributing to overwintering hardiness, a comprehensive proteomic analysis comparing crowns of octoploid strawberry (Fragaria × ananassa) cultivars that differ in freezing tolerance was conducted. Four cultivars were examined for freeze tolerance and the most cold-tolerant cultivar ('Jonsok') and least-tolerant cultivar ('Frida') were compared with a goal to reveal how freezing tolerance is achieved in this distinctive overwintering structure and to identify potential cold-tolerance-associated biomarkers. Supported by univariate and multivariate analysis, a total of 63 spots from two-dimensional electrophoresis analysis and 135 proteins from label-free quantitative proteomics were identified as significantly differentially expressed in crown tissue from the two strawberry cultivars exposed to 0-, 2-, and 42-d cold treatment. Proteins identified as cold-tolerance-associated included molecular chaperones, antioxidants/detoxifying enzymes, metabolic enzymes, pathogenesis-related proteins, and flavonoid pathway proteins. A number of proteins were newly identified as associated with cold tolerance. Distinctive mechanisms for cold tolerance were characterized for two cultivars. In particular, the 'Frida' cold response emphasized proteins specific to flavonoid biosynthesis, while the more freezing-tolerant 'Jonsok' had a more comprehensive suite of known stress-responsive proteins including those involved in antioxidation, detoxification, and disease resistance. The molecular basis for 'Jonsok'-enhanced cold tolerance can be explained by the constitutive level of a number of proteins that provide a physiological stress-tolerant poise.

  6. Physiological and proteomic analyses of leaves from the halophyte Tangut Nitraria reveals diverse response pathways critical for high salinity tolerance

    Directory of Open Access Journals (Sweden)

    Tielong eCheng

    2015-02-01

    Full Text Available Soil salinization poses a serious threat to the environment and agricultural productivity worldwide. Studies on the physiological and molecular mechanisms of salinity tolerance in halophytic plants provide valuable information to enhance their salt tolerance. Tangut Nitraria is a widely distributed halophyte in saline–alkali soil in the northern areas of China. In this study, we used a proteomic approach to investigate the molecular pathways of the high salt tolerance of T. Nitraria. We analyzed the changes in biomass, photosynthesis, and redox-related enzyme activities in T. Nitraria leaves from plant seedlings treated with high salt concentration. Comparative proteomic analysis of the leaves revealed that the expression of 71 proteins was significantly altered after salinity treatments of T. Nitraria. These salinity-responsive proteins were mainly involved in photosynthesis, redox homeostasis, stress/defense, carbohydrate and energy metabolism, protein metabolism, signal transduction, and membrane transport. Results showed that the reduction of photosynthesis under salt stress was attributed to the down-regulation of the enzymes and proteins involved in the light reaction and Calvin cycle. Protein–protein interaction analysis revealed that the proteins involved in redox homeostasis, photosynthesis, and energy metabolism constructed two types of response networks to high salt stress. T. Nitraria plants developed diverse mechanisms for scavenging reactive oxygen species in their leaves to cope with stress induced by high salinity. This study provides important information regarding the salt tolerance of the halophyte T. Nitraria.

  7. An integrated proteomic and metabolomic study on the gender-specific responses of mussels Mytilus galloprovincialis to tetrabromobisphenol A (TBBPA).

    Science.gov (United States)

    Ji, Chenglong; Li, Fei; Wang, Qing; Zhao, Jianmin; Sun, Zuodeng; Wu, Huifeng

    2016-02-01

    Tetrabromobisphenol A (TBBPA), accounting for the largest production of brominated flame-retardants (BFRs) along the Laizhou Bay in China, is of great concern due to its diverse toxicities. In this study, we focused on the gender-specific responses of TBBPA in mussel Mytilus galloprovincialis using an integrated proteomic and metabolomic approach. After exposure of TBBPA (10 µg L(-1)) for one month, a total of 9 metabolites and 67 proteins were altered in mussel gills from exposed group. The significant changes of metabolites in female mussel gills from exposed group exhibited the disturbances in energy metabolism and osmotic regulation, while in male samples only be found the variation of metabolites related to osmotic regulation. iTRAQ-based proteomic analysis showed biological differences between male and female mussel gills from solvent control group. The higher levels of proteins related to primary and energy metabolism and defense mechanisms in male mussel gills meant a greater anti-stress capability of male mussels. Further analysis revealed that TBBPA exposure affected multiple biological processes consisting of production and development, material and energy metabolism, signal transduction, gene expression, defense mechanisms and apoptosis in both male and female mussels with different mechanisms. Specially, the responsive proteins of TBBPA in male mussels signified higher tolerance limits than those in female individuals, which was consistent with the biological differences between male and female mussel gills from solvent control group. This work suggested that the gender differences should be considered in ecotoxicology.

  8. Quantitative proteomic profiling reveals photosynthesis responsible for inoculum size dependent variation in Chlorella sorokiniana.

    Science.gov (United States)

    Ma, Qian; Wang, Jiangxin; Lu, Shuhuan; Lv, Yajin; Yuan, Yingjin

    2013-03-01

    High density cultivation is essential to industrial production of biodiesel from microalgae, which involves in variations of micro-environment around individual cells, including light intensity, nutrition distribution, other abiotic stress and so on. To figure out the main limit factor in high inoculum cultivation, a quantitative proteomic analysis (iTRAQ-on-line 2-D nano-LC/MS) in a non-model green microalga, Chlorella sorokiniana, under different inoculum sizes was conducted. The resulting high-quality proteomic dataset consisted of 695 proteins. Using a cutoff of P photosynthesis (light reaction) and Calvin cycle (carbon reaction pathway) had highest expression levels under inoculum size of 1 × 10(6) cells mL(-1), and lowest levels under 1 × 10(7) cells mL(-1). Canonical correlation analysis of the photosynthesis related proteins and metabolites biomarkers showed that a good correlation existed between them (canonical coefficient was 0.987), suggesting photosynthesis process greatly affected microalgae biodiesel productivity and quality. Proteomic study of C. sorokiniana under different illuminations was also conducted to confirm light intensity as a potential limit factor of high inoculum size. Nearly two thirds of proteins showed up-regulation under the illumination of 70-110 µmol m(-2) s(-1), compared to those of 40 µmol m(-2) s(-1). This result suggested that by elegantly adjusting light conditions, high cell density cultivation and high biodiesel production might be achieved. Copyright © 2012 Wiley Periodicals, Inc.

  9. Bone tissue response to plasma-nitrided titanium implant surfaces

    Directory of Open Access Journals (Sweden)

    Emanuela Prado FERRAZ

    2015-02-01

    Full Text Available A current goal of dental implant research is the development of titanium (Ti surfaces to improve osseointegration. Plasma nitriding treatments generate surfaces that favor osteoblast differentiation, a key event to the process of osteogenesis. Based on this, it is possible to hypothesize that plasma-nitrided Ti implants may positively impact osseointegration. Objective The aim of this study was to evaluate the in vivo bone response to Ti surfaces modified by plasma-nitriding treatments. Material and Methods Surface treatments consisted of 20% N2 and 80% H2, 450°C and 1.5 mbar during 1 h for planar and 3 h for hollow cathode. Untreated surface was used as control. Ten implants of each surface were placed into rabbit tibiae and 6 weeks post-implantation they were harvested for histological and histomorphometric analyses. Results Bone formation was observed in contact with all implants without statistically significant differences among the evaluated surfaces in terms of bone-to-implant contact, bone area between threads, and bone area within the mirror area. Conclusion Our results indicate that plasma nitriding treatments generate Ti implants that induce similar bone response to the untreated ones. Thus, as these treatments improve the physico-chemical properties of Ti without affecting its biocompatibility, they could be combined with modifications that favor bone formation in order to develop new implant surfaces.

  10. Bone tissue response to plasma-nitrided titanium implant surfaces.

    Science.gov (United States)

    Ferraz, Emanuela Prado; Sverzut, Alexander Tadeu; Freitas, Gileade Pereira; Sá, Juliana Carvalho; Alves, Clodomiro; Beloti, Marcio Mateus; Rosa, Adalberto Luiz

    2015-01-01

    A current goal of dental implant research is the development of titanium (Ti) surfaces to improve osseointegration. Plasma nitriding treatments generate surfaces that favor osteoblast differentiation, a key event to the process of osteogenesis. Based on this, it is possible to hypothesize that plasma-nitrided Ti implants may positively impact osseointegration. Objective The aim of this study was to evaluate the in vivo bone response to Ti surfaces modified by plasma-nitriding treatments. Material and Methods Surface treatments consisted of 20% N2 and 80% H2, 450°C and 1.5 mbar during 1 h for planar and 3 h for hollow cathode. Untreated surface was used as control. Ten implants of each surface were placed into rabbit tibiae and 6 weeks post-implantation they were harvested for histological and histomorphometric analyses. Results Bone formation was observed in contact with all implants without statistically significant differences among the evaluated surfaces in terms of bone-to-implant contact, bone area between threads, and bone area within the mirror area. Conclusion Our results indicate that plasma nitriding treatments generate Ti implants that induce similar bone response to the untreated ones. Thus, as these treatments improve the physico-chemical properties of Ti without affecting its biocompatibility, they could be combined with modifications that favor bone formation in order to develop new implant surfaces.

  11. The early asthmatic response is associated with glycolysis, calcium binding and mitochondria activity as revealed by proteomic analysis in rats

    Directory of Open Access Journals (Sweden)

    Xu Yu-Dong

    2010-08-01

    Full Text Available Abstract Background The inhalation of allergens by allergic asthmatics results in the early asthmatic response (EAR, which is characterized by acute airway obstruction beginning within a few minutes. The EAR is the earliest indicator of the pathological progression of allergic asthma. Because the molecular mechanism underlying the EAR is not fully defined, this study will contribute to a better understanding of asthma. Methods In order to gain insight into the molecular basis of the EAR, we examined changes in protein expression patterns in the lung tissue of asthmatic rats during the EAR using 2-DE/MS-based proteomic techniques. Bioinformatic analysis of the proteomic data was then performed using PPI Spider and KEGG Spider to investigate the underlying molecular mechanism. Results In total, 44 differentially expressed protein spots were detected in the 2-DE gels. Of these 44 protein spots, 42 corresponded to 36 unique proteins successfully identified using mass spectrometry. During subsequent bioinformatic analysis, the gene ontology classification, the protein-protein interaction networking and the biological pathway exploration demonstrated that the identified proteins were mainly involved in glycolysis, calcium binding and mitochondrial activity. Using western blot and semi-quantitative RT-PCR, we confirmed the changes in expression of five selected proteins, which further supports our proteomic and bioinformatic analyses. Conclusions Our results reveal that the allergen-induced EAR in asthmatic rats is associated with glycolysis, calcium binding and mitochondrial activity, which could establish a functional network in which calcium binding may play a central role in promoting the progression of asthma.

  12. Retrospective Proteomic Analysis of Cellular Immune Responses and Protective Correlates of p24 Vaccination in an HIV Elite Controller Using Antibody Arrays

    Directory of Open Access Journals (Sweden)

    Suneth S. Perera

    2016-06-01

    Full Text Available Background: HIV p24 is an extracellular HIV antigen involved in viral replication. Falling p24 antibody responses are associated with clinical disease progression and their preservation with non-progressive disease. Stimulation of p24 antibody production by immunization to delay progression was the basis of discontinued p24 vaccine. We studied a therapy-naive HIV+ man from Sydney, Australia, infected in 1988. He received the HIV-p24-virus like particle (VLP vaccine in 1993, and continues to show vigorous p24 antigen responses (>4% p24-specific CD4+ T cells, coupled with undetectable plasma viremia. We defined immune-protective correlates of p24 vaccination at the proteomic level through parallel retrospective analysis of cellular immune responses to p24 antigen in CD4+ and CD8+ T cells and CD14+ monocytes at viremic and aviremic phases using antibody-array. We found statistically significant coordinated up-regulation by all three cell-types with high fold-changes in fractalkine, ITAC, IGFBP-2, and MIP-1α in the aviremic phase. TECK and TRAIL-R4 were down-regulated in the viremic phase and up-regulated in the aviremic phase. The up-regulation of fractalkine in all three cell-types coincided with protective effect, whereas the dysfunction in anti-apoptotic chemokines with the loss of immune function. This study highlights the fact that induction of HIV-1-specific helper cells together with coordinated cellular immune response (p < 0.001 might be important in immunotherapeutic interventions and HIV vaccine development.

  13. Use of Differential Scanning Calorimetry and Immunoaffinity Chromatography to Identify Disease Induced Changes in Human Blood Plasma Proteome.

    Science.gov (United States)

    Brudar, Sandi; Černigoj, Urh; Podgornik, Helena; Kržan, Mojca; Prislan, Iztok

    2017-09-01

    Differential scanning calorimetry provides unique signatures of blood plasma samples. Plasma samples from diseased individuals yield specific thermograms, which differ from each other and from plasma samples of healthy individuals. Thermograms from individuals suffering from chronic lymphocytic leukemia, multiple myeloma and acute myeloid leukemia were measured with DSC. To obtain additional information about thermal behaviour of plasma proteins immunoaffinity chromatography was introduced. An immunoextraction of HSA using a chromatographic column with immobilized anti-HSA was carried out in order to enrich less abundant plasma proteins, which could provide a further insight into disease development. Efficiency of HSA depletion and protein composition of fractionated plasma was validated by SDS-PAGE.

  14. MALDI-MS-Based Profiling of Serum Proteome: Detection of Changes Related to Progression of Cancer and Response to Anticancer Treatment

    Directory of Open Access Journals (Sweden)

    Monika Pietrowska

    2012-01-01

    Full Text Available Mass spectrometry-based analyses of the low-molecular-weight fraction of serum proteome allow identifying proteome profiles (signatures that are potentially useful in detection and classification of cancer. Several published studies have shown that multipeptide signatures selected in numerical tests have potential values for diagnostics of different types of cancer. However due to apparent problems with standardization of methodological details, both experimental and computational, none of the proposed peptide signatures analyzed directly by MALDI/SELDI-ToF spectrometry has been approved for routine diagnostics. Noteworthy, several components of proposed cancer signatures, especially those characteristic for advanced cancer, were identified as fragments of blood proteins involved in the acute phase and inflammatory response. This indicated that among cancer biomarker candidates to be possibly identified by serum proteome profiling were rather those reflecting overall influence of a disease (and the therapy upon the human organism, than products of cancer-specific genes. Current paper focuses on changes in serum proteome that are related to response of patient’s organism to progressing malignancy and toxicity of anticancer treatment. In addition, several methodological issues that affect robustness and interlaboratory reproducibility of MS-based serum proteome profiling are discussed.

  15. Identification of a Novel Function of Adipocyte Plasma Membrane-Associated Protein (APMAP) in Gestational Diabetes Mellitus by Proteomic Analysis of Omental Adipose Tissue.

    Science.gov (United States)

    Ma, Yuhang; Gao, Jing; Yin, Jiajing; Gu, Liping; Liu, Xing; Chen, Su; Huang, Qianfang; Lu, Huifang; Yang, Yuemin; Zhou, Hu; Wang, Yufan; Peng, Yongde

    2016-02-05

    Gestational diabetes mellitus (GDM) is considered as an early stage of type 2 diabetes mellitus. In this study, we compared demographic and clinical data between six GDM subjects and six normal glucose tolerance (NGT; healthy controls) subjects and found that homeostasis model of assessment for insulin resistance index (HOMA-IR) increased in GDM. Many previous studies demonstrated that omental adipose tissue dysfunction could induce insulin resistance. Thus, to investigate the cause of insulin resistance in GDM, we used label-free proteomics to identify differentially expressed proteins in omental adipose tissues from GDM and NGT subjects (data are available via ProteomeXchange with identifier PXD003095). A total of 3528 proteins were identified, including 66 significantly changed proteins. Adipocyte plasma membrane-associated protein (APMAP, a.k.a. C20orf3), one of the differentially expressed proteins, was down-regulated in GDM omental adipose tissues. Furthermore, mature 3T3-L1 adipocytes were used to simulate omental adipocytes. The inhibition of APMAP expression by RNAi impaired insulin signaling and activated NFκB signaling in these adipocytes. Our study revealed that the down-regulation of APMAP in omental adipose tissue may play an important role in insulin resistance in the pathophysiology of GDM.

  16. Kissing reduces allergic skin wheal responses and plasma neurotrophin levels.

    Science.gov (United States)

    Kimata, Hajime

    2003-11-01

    The effect of kissing on allergen-induced skin wheal responses and plasma neurotrophin levels were studied in 30 normal subjects, 30 patients with allergic rhinitis (AR), and 30 patients with atopic dermatitis (AD). All of the patients with AR or AD are allergic to house dust mite (HDM) and Japanese cedar pollen (JCP). They are all Japanese and they do not kiss habitually. The subject kissed freely during 30 min with their lover or spouse alone in a room with closed doors while listening to soft music. Before and after kissing, skin prick tests were performed using commercial HDM allergen, JCP allergen, as well as histamine and control solution, and wheal responses were measured. Simultaneously, plasma levels of neurotrophin, including nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and -4 (NT-4) were measured. Kissing significantly reduced wheal responses induced by HDM and JCP, but not by histamine, and decreased plasma levels of NGF, BDNF, NT-3, and NT-4 in patients with AR or AD, while it failed to do so in normal subjects. These finding indicate that kissing have some implication in the study of neuroimmunology in allergic patients.

  17. Proteome-wide analysis of SUMO2 targets in response to pathological DNA replication stress in human cells

    DEFF Research Database (Denmark)

    Bursomanno, Sara; Beli, Petra; Khan, Asif M;

    2015-01-01

    SUMOylation is a form of post-translational modification involving covalent attachment of SUMO (Small Ubiquitin-like Modifier) polypeptides to specific lysine residues in the target protein. In human cells, there are four SUMO proteins, SUMO1-4, with SUMO2 and SUMO3 forming a closely related...... subfamily. SUMO2/3, in contrast to SUMO1, are predominantly involved in the cellular response to certain stresses, including heat shock. Substantial evidence from studies in yeast has shown that SUMOylation plays an important role in the regulation of DNA replication and repair. Here, we report a proteomic...... repair. We have also shown that deficiency of POLD3 leads to an increase in RPA-bound ssDNA when cells are under replication stress, suggesting that POLD3 plays a role in the cellular response to DNA replication stress. Considering that DNA replication stress is a source of genome instability...

  18. Proteomic profile of hemolymph and detection of induced antimicrobial peptides in response to microbial challenge in Diatraea saccharalis (Lepidoptera: Crambidae).

    Science.gov (United States)

    Rocha, Iara Fernanda; Maller, Alexandre; de Cássia Garcia Simão, Rita; Kadowaki, Marina Kimiko; Angeli Alves, Luis Francisco; Huergo, Luciano Fernandes; da Conceição Silva, José Luis

    2016-04-29

    Insects are organisms extremely well adapted to diverse habitats, primarily due to their innate immune system, which provides them with a range of cellular and humoral responses against microorganisms. Lepidoptera hemolymph proteins involved in humoral responses are well known; however, there is a lack of knowledge about the sugarcane borer Diatraea saccharalis. In this present work, the hemolymph proteins of this pest insect were studied by applying proteomic methodologies. Two-dimensional electrophoresis (2-DE) gels of proteins extracted from naive larvae and larvae challenged with Escherichia coli (ATCC 11224) and Bacillus subtilis (ATCC 6623) showed an average of 300 spots, and 92 of these spots corresponded in all three 2-DE gels. Forty-one spots were excised and digested with trypsin and analyzed using mass spectrometry. After analysis, 10 proteins were identified, including some proteins of the immune system: β-defensin-like protein, Turandot A-like protein, attacin-like protein, peptidoglycan recognition protein and cyclophilin-like protein. Nine proteins were present in both experimental conditions; however, β-defensin-like protein was present only in hemolymph challenged by B. subtilis. Notably, attacin-like protein was strongly induced by challenge with E. coli, suggesting an immune response against the infection. However, antimicrobial activity was observed in the test zone of microbial growth inhibition of B. subtilis solely with the hemolymph extract of the larvae challenged with B. subtilis. We made for the first time a proteomic profile of the hemolymph of D. saccharalis in which it was possible to identify the presence of important proteins involved in the immune response.

  19. Characterization of host response to Cryptococcus neoformans through quantitative proteomic analysis of cryptococcal meningitis co-infected with HIV.

    Science.gov (United States)

    Selvan, Lakshmi Dhevi N; Sreenivasamurthy, Sreelakshmi K; Kumar, Satwant; Yelamanchi, Soujanya D; Madugundu, Anil K; Anil, Abhijith K; Renuse, Santosh; Nair, Bipin G; Gowda, Harsha; Mathur, Premendu P; Satishchandra, Parthasarathy; Shankar, S K; Mahadevan, Anita; Keshava Prasad, T S

    2015-09-01

    Cryptococcal meningitis is the most common opportunistic fungal infection causing morbidity and mortality (>60%) in HIV-associated immunocompromised individuals caused by Cryptococcus neoformans. Molecular mechanisms of cryptococcal infection in brain have been studied using experimental animal models and cell lines. There are limited studies for the molecular understanding of cryptococcal meningitis in human brain. The proteins involved in the process of invasion and infection in human brain still remains obscure. To this end we carried out mass spectrometry-based quantitative proteomics of frontal lobe brain tissues from cryptococcal meningitis patients and controls to identify host proteins that are associated with the pathogenesis of cryptococcal meningitis. We identified 317 proteins to be differentially expressed (≥2-fold) from a total of 3423 human proteins. We found proteins involved in immune response and signal transduction to be differentially expressed in response to cryptococcal infection in human brain. Immune response proteins including complement factors, major histocompatibility proteins, proteins previously known to be involved in fungal invasion to brain such as caveolin 1 and actin were identified to be differentially expressed in cryptococcal meningitis brain tissues co-infected with HIV. We also validated the expression status of 5 proteins using immunohistochemistry. Overexpression of major histocompatibility complexes, class I, B (HLA-B), actin alpha 2 smooth muscle aorta (ACTA2) and caveolin 1 (CAV1) and downregulation of peripheral myelin protein 2 (PMP2) and alpha crystallin B chain (CRYAB) in cryptococcal meningitis were confirmed by IHC-based validation experiments. This study provides the brain proteome profile of cryptococcal meningitis co-infected with HIV for a better understanding of the host response associated with the disease.

  20. Transcriptomic and proteomic responses of Serratia marcescens to spaceflight conditions involve large-scale changes in metabolic pathways

    Science.gov (United States)

    Wang, Yajuan; Yuan, Yanting; Liu, Jinwen; Su, Longxiang; Chang, De; Guo, Yinghua; Chen, Zhenhong; Fang, Xiangqun; Wang, Junfeng; Li, Tianzhi; Zhou, Lisha; Fang, Chengxiang; Yang, Ruifu; Liu, Changting

    2014-04-01

    The microgravity environment of spaceflight expeditions has been associated with altered microbial responses. This study explores the characterization of Serratia marcescensis grown in a spaceflight environment at the phenotypic, transcriptomic and proteomic levels. From November 1, 2011 to November 17, 2011, a strain of S. marcescensis was sent into space for 398 h on the Shenzhou VIII spacecraft, and ground simulation was performed as a control (LCT-SM213). After the flight, two mutant strains (LCT-SM166 and LCT-SM262) were selected for further analysis. Although no changes in the morphology, post-culture growth kinetics, hemolysis or antibiotic sensitivity were observed, the two mutant strains exhibited significant changes in their metabolic profiles after exposure to spaceflight. Enrichment analysis of the transcriptome showed that the differentially expressed genes of the two spaceflight strains and the ground control strain mainly included those involved in metabolism and degradation. The proteome revealed that changes at the protein level were also associated with metabolic functions, such as glycolysis/gluconeogenesis, pyruvate metabolism, arginine and proline metabolism and the degradation of valine, leucine and isoleucine. In summary S. marcescens showed alterations primarily in genes and proteins that were associated with metabolism under spaceflight conditions, which gave us valuable clues for future research.

  1. Quantitative Proteomics Identifies Serum Response Factor Binding Protein 1 as a Host Factor for Hepatitis C Virus Entry

    Directory of Open Access Journals (Sweden)

    Gisa Gerold

    2015-08-01

    Full Text Available Hepatitis C virus (HCV enters human hepatocytes through a multistep mechanism involving, among other host proteins, the virus receptor CD81. How CD81 governs HCV entry is poorly characterized, and CD81 protein interactions after virus binding remain elusive. We have developed a quantitative proteomics protocol to identify HCV-triggered CD81 interactions and found 26 dynamic binding partners. At least six of these proteins promote HCV infection, as indicated by RNAi. We further characterized serum response factor binding protein 1 (SRFBP1, which is recruited to CD81 during HCV uptake and supports HCV infection in hepatoma cells and primary human hepatocytes. SRFBP1 facilitates host cell penetration by all seven HCV genotypes, but not of vesicular stomatitis virus and human coronavirus. Thus, SRFBP1 is an HCV-specific, pan-genotypic host entry factor. These results demonstrate the use of quantitative proteomics to elucidate pathogen entry and underscore the importance of host protein-protein interactions during HCV invasion.

  2. Nonlinear Simulation of Plasma Response to the NSTX Error Field

    Science.gov (United States)

    Breslau, J. A.; Park, J. K.; Boozer, A. H.; Park, W.

    2008-11-01

    In order to better understand the effects of the time-varying error field in NSTX on rotation braking, which impedes RWM stabilization, we model the plasma response to an applied low-n external field perturbation using the resistive MHD model in the M3D code. As an initial benchmark, we apply an m=2, n=1 perturbation to the flux at the boundary of a non-rotating model equilibrium and compare the resulting steady-state island sizes with those predicted by the ideal linear code IPEC. For sufficiently small perturbations, the codes agree; for larger perturbations, the nonlinear correction yields an upper limit on the island width beyond which stochasticity sets in. We also present results of scaling studies showing the effects of finite resistivity on island size in NSTX, and of time-dependent studies of the interaction between these islands and plasma rotation. The M3D-C1 code is also being evaluated as a tool for this analysis; first results will be shown. J.E. Menard, et al., Nucl. Fus. 47, S645 (2007). W. Park, et al., Phys. Plasmas 6, 1796 (1999). J.K. Park, et al., Phys. Plasmas 14, 052110 (2007). S.C. Jardin, et al., J. Comp. Phys. 226, 2146 (2007).

  3. Proteomics Approach Identifies Factors Associated With the Response to Low-Density Lipoprotein Apheresis Therapy in Patients With Steroid-Resistant Nephrotic Syndrome.

    Science.gov (United States)

    Kuribayashi-Okuma, Emiko; Shibata, Shigeru; Arai, Shigeyuki; Ota, Tatsuru; Watanabe, Sumiyo; Hisaki, Harumi; Okazaki, Tomoki; Toda, Tosifusa; Uchida, Shunya

    2016-04-01

    Low-density lipoprotein apheresis (LDL-A) has been shown to reduce proteinuria in a subgroup of nephrotic syndrome patients refractory to immunosuppressive therapy. Factors influencing the efficacy of LDL-A in nephrotic syndrome are completely unknown. Using a proteomics approach, we aimed to identify biological markers that predict the response to LDL-A in patients with steroid-resistant nephrotic syndrome (SRNS). Identification of plasma proteins bound to the dextran-sulfate column at the first session of LDL-A was determined by mass spectrometry. To investigate biological factors associated with the response to LDL-A, we compared profiles of column-bound proteins between responders (defined by more than 50% reduction of proteinuria after the treatment) and non-responders by 2-dimensional gel electrophoresis (2-DE) coupled to mass spectrometry in seven patients with SRNS. Evaluation of proteins adsorbed to LDL-A column in patients with SRNS revealed the identity of 62 proteins, which included apolipoproteins, complement components, and serum amyloid P-component (SAP). Comparative analysis of the column-bound proteins between responders and non-responders by 2-DE demonstrated that apolipoprotein E (APOE) and SAP levels were increased in non-responders as compared with responders. These results were confirmed by western blotting. Moreover, serum levels of APOE and SAP were significantly higher in the non-responder group than in the responder group by ELISA. Our data provide comprehensive analysis of proteins adsorbed by LDL-A in SRNS, and demonstrate that the serum levels of APOE and SAP may be used to predict the response to LDL-A in these patients.

  4. Sex differences in the response of the alveolar macrophage proteome to treatment with exogenous surfactant protein-A

    Directory of Open Access Journals (Sweden)

    Phelps David S

    2012-07-01

    Full Text Available Abstract Background Male wild type (WT C57BL/6 mice are less capable of clearing bacteria and surviving from bacterial pneumonia than females. However, if an oxidative stress (acute ozone exposure occurs before infection, the advantage shifts to males who then survive at higher rates than females. We have previously demonstrated that survival in surfactant protein-A (SP-A knockout (KO mice compared to WT was significantly reduced. Because the alveolar macrophage (AM is pivotal in host defense we hypothesized that SP-A and circulating sex hormones are responsible for these sex differences. We used 2D-DIGE to examine the relationship of sex and SP-A on the AM proteome. The role of SP-A was investigated by treating SP-A KO mice with exogenous SP-A for 6 and 18 hr and studying its effects on the AM proteome. Results We found: 1 less variance between KO males and females than between the WT counterparts by principal component analysis, indicating that SP-A plays a role in sex differences; 2 fewer changes in females when the total numbers of significantly changing protein spots or identified whole proteins in WT or 18 hr SP-A-treated males or females were compared to their respective KO groups; 3 more proteins with functions related to chaperones or protease balance and Nrf2-regulated proteins changed in response to SP-A in females than in males; and 4 the overall pattern of SP-A induced changes in actin-related proteins were similar in both sexes, although males had more significant changes. Conclusions Although there seems to be an interaction between sex and the effect of SP-A, it is unclear what the responsible mechanisms are. However, we found that several of the proteins that were expressed at significantly higher levels in females than in males in WT and/or in KO mice are known to interact with the estrogen receptor and may thus play a role in the SP-A/sex interaction. These include major vault protein, chaperonin subunit 2 (beta (CCT2, and Rho

  5. Spinach (Spinacia oleracea L.) modulates its proteome differentially in response to salinity, cadmium and their combination stress.

    Science.gov (United States)

    Bagheri, Rita; Bashir, Humayra; Ahmad, Javed; Iqbal, Muhammad; Qureshi, M Irfan

    2015-12-01

    Cadmium (Cd) contamination and salinity are common stressors in agricultural soils all over the globe. Sensitivity and modulation of plant proteome lead to proper signal execution and adaptation to abiotic stress via molecular responses, which strengthen plant defence system. A comparative proteomic study, employing 2DE-MALDI TOF/TOF MS, of Spinacia oleracea plants exposed to cadmium (50 μg CdCl2 g(-1) soil), salinity (10 mg NaCl g(-1) soil) and their combination (NaCl + Cd) was conducted to understand the minimum common adaptation to multiple stress. Analysis of 2D gel maps showed significant increase and decrease in relative abundance of 14 and 39 proteins by Cd; 11 and 46 by salinity and 22 and 37 by combined stress of Cd and salinity, respectively. Peptide mass fingerprinting (PMF) helped in the identification of maturase K and PPD4 with increased relative abundance under all stresses; whereas salinity stress and combination stress silenced the presence of one protein (polycomb protein EZ2) and two proteins (cellulose synthase-like protein and ubiquitin conjugation factor E4), respectively. The identified proteins were functionally associated with signal transduction (15%), protein synthesis (16%), stress response and defence (33%), photosynthesis (13%), plant growth/cell division (9%), energy generation (4%), transport (4%), secondary metabolism (3%), and cell death (3%); clearly indicating the importance and necessity of keeping a higher ratio of defence and disease-responsive proteins. The results suggest that plant may increase the abundance of defence proteins and may also lower the abundance of catabolic proteins. Proteins with altered ratios of abundance belonged to different functional categories, suggesting that plants have differential mechanisms to respond to Cd, salinity, and their combined stress, but with unique sets of proteins.

  6. Dynamic changes in the leaf proteome of a C3 xerophyte, Citrullus lanatus (wild watermelon), in response to water deficit.

    Science.gov (United States)

    Akashi, Kinya; Yoshida, Kazuo; Kuwano, Masayoshi; Kajikawa, Masataka; Yoshimura, Kazuya; Hoshiyasu, Saki; Inagaki, Naoyuki; Yokota, Akiho

    2011-05-01

    Wild watermelon (Citrullus lanatus) is a xerophyte native to the Kalahari Desert, Africa. To better understand the molecular mechanisms of drought resistance in this plant, we examined changes in the proteome in response to water deficit. Wild watermelon leaves showed decreased transpiration and a concomitant increase in leaf temperature under water deficit conditions. Comparison of the proteome of stressed plants with that of unstressed plants by two-dimensional gel electrophoresis revealed that the intensity of 40 spots increased in response to the stress, and the intensity of 11 spots decreased. We positively identified 23 stress-induced and 6 stress-repressed proteins by mass spectrometry and database analyses. Interestingly, 15 out of the 23 up-regulated proteins (65% of annotated up-regulated proteins) were heat shock proteins (HSPs). Especially, 10 out of the 15 up-regulated HSPs belonged to the small heat shock protein (sHSP) family. Other stress-induced proteins included those related to antioxidative defense and carbohydrate metabolism. Fifteen distinct cDNA sequences encoding the sHSP were characterized from wild watermelon. Quantitative real-time PCR analysis of the representative sHSP genes revealed strong transcriptional up-regulation in the leaves under water deficit. Moreover, immunoblot analysis confirmed that protein abundance of sHSPs was massively increased under water deficit. Overall, these observations suggest that the defense response of wild watermelon may involve orchestrated regulation of a diverse array of functional proteins related to cellular defense and metabolism, of which HSPs may play a pivotal role on the protection of the plant under water deficit in the presence of strong light.

  7. Proteome responses of Citrobacter werkmanii BF-6 planktonic cells and biofilms to calcium chloride.

    Science.gov (United States)

    Zhou, Gang; Shi, Qing-shan; Huang, Xiao-mo; Xie, Xiao-bao

    2016-02-05

    Calcium ions are well-known as intracellular second messengers that also have an important extracellular structural role for bacteria. Recently, we found that denser biofilms were formed by Citrobacter werkmanii BF-6 in the presence of 400 mM Ca(2+) than that of 12.5mM Ca(2+). Therefore, we employed two-dimensional (2-D) electrophoresis methods to investigate the proteome profiles of planktonic cells and biofilms in BF-6 under different concentrations of Ca(2+). Meanwhile, BF-6 biofilm architecture was also visualized with confocal laser scanning microscopy (CLSM). The results demonstrated that BF-6 biofilms formed at the bottom of microtiter plates when grown in the presence of 400 mM Ca(2+). A total of 151 proteins from planktonic cells and biofilms after exposure of BF-6 cells to 12.5 and 400 mM Ca(2+) were successfully identified. Different gene ontology (GO) and KEGG pathways were categorized and enriched for the above proteins. Growth in the presence of 400 mM Ca(2+) induced more complex signal pathways in BF-6 than 12.5mM Ca(2+). In addition, the biofilm architectures were also affected by Ca(2+). Our results show two different modes of biofilm enhancement for C. werkmanii in the presence of excess Ca(2+) and provide a preliminary expression of these differences based on proteomic assays.

  8. Identification of phosphorylated MYL12B as a potential plasma biomarker for septic acute kidney injury using a quantitative proteomic approach

    Science.gov (United States)

    Wu, Fan; Dong, Xiu-Juan; Li, Yan-Yan; Zhao, Yan; Xu, Qiu-Lin; Su, Lei

    2015-01-01

    Acute kidney injury (AKI) is a common and increasingly encountered complication in hospitalized patients with critical illness in intensive care units (ICU). According to the etiology, Sepsis-induced AKI (SAKI) is a leading contributor to AKI and significantly has very poor prognosis, which might be related to the late detection when the elevation of BUN and serum creatinine (SCr) is used. Many genes are up-regulated in the damaged kidney with the corresponding protein products appearing in plasma and urine. Some of these are candidate biomarkers for more timely diagnosis of SAKI. Therefore, extensive research efforts over this past decade have been directed at the discovery and validation of novel SAKI biomarkers to detect injury prior to changes in kidney function, a number of serum and urinary proteins, including NGAL, KIM-1, cystatin-C, IL-18, and L-FABP, have been identified for predicting SAKI before a rise in BUN and serum creatinine in several experimental and clinical trainings. Unfortunately, an ideal biomarker of SAKI with highly sensitivity and specificity has not been identified yet. Recent progresses in quantitative proteomics have offered opportunities to discover biomarkers for SAKI. In the present study, kidney tissue samples from SAKI mice were analyzed by two-dimensional differential gel electrophoresis (2D-DIGE), and 4 up-regulated proteins, which were actin (ACTB), myosin regulatory light chain 12B (MYL12B), myosin regulatory light polypeptide 9 (MYL9), and myosin regulatory light chain 12A (MYL12A) were identified by matrix assisted laser desorption ionization-time of flight/time of flight mass spectrometry (MALDI-TOF/TOF MS). Among all the varied proteins, MYL12B was validated by western blot. Interestingly, there was no change between the SAKI and control kidney tissues, however, phosphorylated MYL12B was detected to be consistent with the proteomics data. Furthermore, phosphorylated MYL12B was found similarly to be increased in SAKI plasma

  9. Biomedical Applications of the Cold Atmospheric Plasma: Cell Responses

    Science.gov (United States)

    Volotskova, Olga

    Current breakthrough research on cold atmospheric plasma (CAP) demonstrates that CAP has great potential in various areas, including medicine and biology, thus providing a new tool for living tissue treatment. Depending on the configuration the cold plasma sources can be used in the following areas: wound healing, skin diseases, hospital hygiene, sterilization, antifungal treatments, dental care, cosmetics targeted cell/tissue removal, and cancer treatments. This dissertation is focused on the studies of biomedical applications of cold atmospheric plasma jet based on helium flow and resultant cell responses to the cold plasma treatment. The studies were carried out on extra-cellular and intra-cellular levels in vitro. The main practical applications are wound healing and alternative to existing cancer therapy methods, areas of great interest and significant challenges. The CAP jet was built in the Micropropulsion and Nanotechnology Laboratory of Dr. Michael Keidar, as a part of multidisciplinary collaboration with the GW Medical School (Dr. M.A. Stepp) concerned with plasma medicine and bioengineering studies. Normal and cancer cells have two fundamental behavioral properties, proliferation and motility, which can be evaluated through cell migration rates and cell cycle progression. Various microscopic, spectroscopic and flow cytometry techniques were used to characterize cell responses to the cold plasma treatment. It was found that CAP effect on the cells is localized within the area of the treatment (of around ˜ 5mm in diameter). The migration rates of the normal skin cells can be reduced up to ˜ 40%. However, depending on the cell type the required treatment time is different, thus differential treatment of various cells presented in tissue is possible. The CAP effect on the migration was explained through the changes of the cell surface proteins/integrins. It was also found that normal and cancer cells respond differently to the CAP treatment under the same

  10. Proteomic analysis reveals contrasting stress response to uranium in two nitrogen-fixing Anabaena strains, differentially tolerant to uranium.

    Science.gov (United States)

    Panda, Bandita; Basu, Bhakti; Acharya, Celin; Rajaram, Hema; Apte, Shree Kumar

    2017-01-01

    Two strains of the nitrogen-fixing cyanobacterium Anabaena, native to Indian paddy fields, displayed differential sensitivity to exposure to uranyl carbonate at neutral pH. Anabaena sp. strain PCC 7120 and Anabaena sp. strain L-31 displayed 50% reduction in survival (LD50 dose), following 3h exposure to 75μM and 200μM uranyl carbonate, respectively. Uranium responsive proteome alterations were visualized by 2D gel electrophoresis, followed by protein identification by MALDI-ToF mass spectrometry. The two strains displayed significant differences in levels of proteins associated with photosynthesis, carbon metabolism, and oxidative stress alleviation, commensurate with their uranium tolerance. Higher uranium tolerance of Anabaena sp. strain L-31 could be attributed to sustained photosynthesis and carbon metabolism and superior oxidative stress defense, as compared to the uranium sensitive Anabaena sp. strain PCC 7120.

  11. Comparative proteomic analysis of a sea urchin (Heliocidaris erythrogramma) antibacterial response revealed the involvement of apextrin and calreticulin.

    Science.gov (United States)

    Dheilly, Nolwenn M; Haynes, Paul A; Bove, Ulysse; Nair, Sham V; Raftos, David A

    2011-02-01

    Echinoderms evolved early in the deuterostome lineage, and as such constitute model organisms for comparative physiology and immunology. The sea urchin genome sequence (Strongylocentrotus purpuratus) revealed a complex repertoire of genes with similarities to the immune response genes of other species. To complement these genomic data, we investigated the responses of sea urchins to the injection of bacteria using a comparative proteomics approach on a closely related species. In the sea urchin, Heliocidaris erythrogramma, the relative abundance of many proteins was altered in response to the injection of both bacteria and saline, suggesting their involvement in wounding responses, while others were differentially altered in response to bacteria only. The identities of 15 proteins that differed in relative abundance were determined by mass spectrometry. These proteins revealed a significant modification in energy metabolism in coelomocytes towards the consumption of glutamate and the production of NADPH after injection, as well as an increased concentration of cell signalling molecules, such as heterotrimeric guanine nucleotide-binding protein. The injection of bacteria specifically increased the abundance of apextrin and calreticulin, suggesting that these two proteins are involved in the sequestration or inactivation of bacteria.

  12. Dissecting the proteome dynamics of the early heat stress response leading to plant survival or death in Arabidopsis.

    Science.gov (United States)

    Echevarría-Zomeño, Sira; Fernández-Calvino, Lourdes; Castro-Sanz, Ana B; López, Juan Antonio; Vázquez, Jesús; Castellano, M Mar

    2016-06-01

    In many plant species, an exposure to a sublethal temperature triggers an adaptative response called acclimation. This response involves an extensive molecular reprogramming that allows the plant to further survive to an otherwise lethal increase of temperature. A related response is also launched under an abrupt and lethal heat stress that, in this case, is unable to successfully promote thermotolerance and therefore ends up in plant death. Although these molecular programmes are expected to have common players, the overlapping degree and the specific regulators of each process are currently unknown. We have carried out a high-throughput comparative proteomics analysis during acclimation and during the early stages of the plant response to a severe heat stress that lead Arabidopsis seedlings either to survival or death. This analysis dissects these responses, unravels the common players and identifies the specific proteins associated with these different fates. Thermotolerance assays of mutants in genes with an uncharacterized role in heat stress demonstrate the relevance of this study to uncover both positive and negative heat regulators and pinpoint a pivotal role of JR1 and BAG6 in heat tolerance.

  13. iTRAQ-Based Proteomic Profiling of the Barnacle Balanus amphitrite in Response to the Antifouling Compound Meleagrin

    KAUST Repository

    Han, Zhuang

    2013-05-03

    Marine biofouling refers to the unwanted accumulation of fouling organisms, such as barnacles, on artificial surfaces, resulting in severe consequences for marine industries. Meleagrin is a potential nontoxic antifoulant that is isolated from the fungus Penicillium sp.; however, its mechanistic effect mode of action on larval settlement remains unknown. Here, we applied iTRAQ coupled with 2D LC-MS/MS proteomic analysis to investigate the effect of meleagrin on the proteomic expression profile of cyprid development and aging in the barnacle Balanus amphitrite. Fifty proteins were differentially expressed in response to treatment with meleagrin, among which 26 proteins were associated with cyprid development/aging and 24 were specifically associated with the meleagrin treatment. The 66 proteins that were associated with aging only remained unaltered during exposure to meleagrin. Using KEGG analysis, those proteins were assigned to several groups, including metabolic pathways, ECM-receptor interactions, and the regulation of the actin cytoskeleton. Among the 24 proteins that were not related to the development/aging process, expression of the cyprid major protein (CMP), a vitellogenin-like protein, increased after the meleagrin treatment, which suggested that meleagrin might affect the endocrine system and prevent the larval molting cycle. With the exception of the chitin binding protein that mediates the molting process and ATPase-mediated energy processes, the majority of proteins with significant effects in previous studies in response to cyprid treatment with butenolide and polyether B remained unchanged in the present study, suggesting that meleagrin may exhibit a different mechanism. © 2013 American Chemical Society.

  14. "Topological significance" analysis of gene expression and proteomic profiles from prostate cancer cells reveals key mechanisms of androgen response.

    Directory of Open Access Journals (Sweden)

    Adaikkalam Vellaichamy

    Full Text Available BACKGROUND: The problem of prostate cancer progression to androgen independence has been extensively studied. Several studies systematically analyzed gene expression profiles in the context of biological networks and pathways, uncovering novel aspects of prostate cancer. Despite significant research efforts, the mechanisms underlying tumor progression are poorly understood. We applied a novel approach to reconstruct system-wide molecular events following stimulation of LNCaP prostate cancer cells with synthetic androgen and to identify potential mechanisms of androgen-independent progression of prostate cancer. METHODOLOGY/PRINCIPAL FINDINGS: We have performed concurrent measurements of gene expression and protein levels following the treatment using microarrays and iTRAQ proteomics. Sets of up-regulated genes and proteins were analyzed using our novel concept of "topological significance". This method combines high-throughput molecular data with the global network of protein interactions to identify nodes which occupy significant network positions with respect to differentially expressed genes or proteins. Our analysis identified the network of growth factor regulation of cell cycle as the main response module for androgen treatment in LNCap cells. We show that the majority of signaling nodes in this network occupy significant positions with respect to the observed gene expression and proteomic profiles elicited by androgen stimulus. Our results further indicate that growth factor signaling probably represents a "second phase" response, not directly dependent on the initial androgen stimulus. CONCLUSIONS/SIGNIFICANCE: We conclude that in prostate cancer cells the proliferative signals are likely to be transmitted from multiple growth factor receptors by a multitude of signaling pathways converging on several key regulators of cell proliferation such as c-Myc, Cyclin D and CREB1. Moreover, these pathways are not isolated but constitute an

  15. Quest for novel cardiovascular biomarkers by proteomic analysis.

    Science.gov (United States)

    Vivanco, Fernando; Martín-Ventura, Jose L; Duran, Mari Carmen; Barderas, Maria G; Blanco-Colio, Luis; Dardé, Verónica M; Mas, Sebastián; Meilhac, Olivier; Michel, Jean B; Tuñón, Jose; Egido, Jesús

    2005-01-01

    Atherosclerosis, and the resulting coronary heart disease and stroke, is the most common cause of death in developed countries. Atherosclerosis is an inflammatory process that results in the development of complex lesions or plaques that protrude into the arterial lumen. Plaque rupture and thrombosis result in the acute clinical complications of myocardial infarction (MI) and stroke. Although certain risk factors (dyslipidemias, diabetes, hypertension) and humoral markers of plaque vulnerability (C-reactive protein, interleukin-6, 10 and 18, CD40L) have been identified, a highly sensitive and specific biomarker or protein profile, which could provide information on the stability/vulnerability of atherosclerotic lesions, remains to be identified. In this review, we report several proteomic approaches which have been applied to circulating or resident cells, atherosclerotic plaques or plasma, in the search for new proteins that could be used as cardiovascular biomarkers. First, an example using a differential proteomic approach (2-DE and MS) comparing the secretome from control mammary arteries and atherosclerotic plaques is displayed. Among the different proteins identified, we showed that low levels of HSP-27 could be a potential marker of atherosclerosis. Second, we have revised several studies performed in cells involved in the pathogenesis of atherosclerosis (foam cells and smooth muscle cells). Another approach consists of performing proteomic analysis on circulating cells or plasma, which will provide a global view of the whole body response to atherosclerotic aggression. Circulating cells can bear information reflecting directly an inflammatory or pro-coagulant state related to the pathology. As an illustration, we report that circulating monocytes and plasma in patients with acute coronary syndromes has disclosed that mature Cathepsin D is increased both in the plasma and monocytes of these patients. Finally, the problems of applying proteomic approach

  16. Characterization of anti-Salmonella enterica serotype Typhi antibody responses in bacteremic Bangladeshi patients by an immunoaffinity proteomics-based technology.

    Science.gov (United States)

    Charles, Richelle C; Sheikh, Alaullah; Krastins, Bryan; Harris, Jason B; Bhuiyan, M Saruar; LaRocque, Regina C; Logvinenko, Tanya; Sarracino, David A; Kudva, Indira T; Eisenstein, Jana; Podolsky, Michael J; Kalsy, Anuj; Brooks, W Abdullah; Ludwig, Albrecht; John, Manohar; Calderwood, Stephen B; Qadri, Firdausi; Ryan, Edward T

    2010-08-01

    Salmonella enterica serotype Typhi is the cause of typhoid fever and a human-restricted pathogen. Currently available typhoid vaccines provide 50 to 90% protection for 2 to 5 years, and available practical diagnostic assays to identify individuals with typhoid fever lack sensitivity and/or specificity. Identifying immunogenic S. Typhi antigens expressed during human infection could lead to improved diagnostic assays and vaccines. Here we describe a platform immunoaffinity proteomics-based technology (IPT) that involves the use of columns charged with IgG, IgM, or IgA antibody fractions recovered from humans bacteremic with S. Typhi to capture S. Typhi proteins that were subsequently identified by mass spectrometry. This screening tool identifies immunogenic proteins recognized by antibodies from infected hosts. Using this technology and the plasma of patients with S. Typhi bacteremia in Bangladesh, we identified 57 proteins of S. Typhi, including proteins known to be immunogenic (PagC, HlyE, OmpA, and GroEL) and a number of proteins present in the human-restricted serotypes S. Typhi and S. Paratyphi A but rarely found in broader-host-range Salmonella spp. (HlyE, CdtB, PltA, and STY1364). We categorized identified proteins into a number of major groupings, including those involved in energy metabolism, protein synthesis, iron homeostasis, and biosynthetic and metabolic functions and those predicted to localize to the outer membrane. We assessed systemic and mucosal anti-HlyE responses in S. Typhi-infected patients and detected anti-HlyE responses at the time of clinical presentation in patients but not in controls. These findings could assist in the development of improved diagnostic assays.

  17. Differential Proteomic Analysis of Neonatal Cardiomyocytes in Response to β-Adrenergic Receptor Stimulation

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    β-Adrenoceptors(β-ARs) play a critical role in regulating cardiac functions under both physiological and pathological conditions. To further explore the mechanisms through whichβ-ARs perform its actions, proteomic approaches were adopted to study the global protein patterns in cultured neonatal rat cardiomyocytes exposed to isoproterenol(ISO). A modified method, "Mirror Images in One Gel", was used to improve the reproducibility and resolution power of two-dimensional electrophoresis. A 2-DE map with a good reproducibility was obtained in which 1281 ± 70spots were detected and about 1191 e 54 spots were matched, with an average matching rate of 92. 9%. Nine proteins with significant changes were identified by using peptide mass fingerprinting(PMF) data obtained via MALDI-MS.

  18. Quantitative proteomics identifies vasopressin-responsive nuclear proteins in collecting duct cells.

    Science.gov (United States)

    Schenk, Laura K; Bolger, Steven J; Luginbuhl, Kelli; Gonzales, Patricia A; Rinschen, Markus M; Yu, Ming-Jiun; Hoffert, Jason D; Pisitkun, Trairak; Knepper, Mark A

    2012-06-01

    Vasopressin controls transport in the renal collecting duct, in part, by regulating transcription. This complex process, which can involve translocation and/or modification of transcriptional regulators, is not completely understood. Here, we applied a method for large-scale profiling of nuclear proteins to quantify vasopressin-induced changes in the nuclear proteome of cortical collecting duct (mpkCCD) cells. Using stable isotope labeling and tandem mass spectrometry, we quantified 3987 nuclear proteins and identified significant changes in the abundance of 65, including previously established targets of vasopressin signaling in the collecting duct. Vasopressin-induced changes in the abundance of the transcription factors JunB, Elf3, Gatad2b, and Hmbox1; transcriptional co-regulators Ctnnb1 (β-catenin) and Crebbp; subunits of the Mediator complex; E3 ubiquitin ligase Nedd4; nuclear transport regulator RanGap1; and several proteins associated with tight junctions and adherens junctions. Bioinformatic analysis showed that many of the quantified transcription factors have putative binding sites in the 5'-flanking regions of genes coding for the channel proteins Aqp2, Aqp3, Scnn1b (ENaCβ), and Scnn1g (ENaCγ), which are known targets of vasopressin. Immunoblotting demonstrated that the increase in β-catenin in nuclear fractions was accompanied by an even larger increase in its phosphorylated form (pSer552). The findings provide a new online database resource for nuclear proteomics (http://helixweb.nih.gov/ESBL/Database/mNPD/) and generate new hypotheses regarding vasopressin-mediated transcriptional regulation in the collecting duct.

  19. Proteomic basis of the antibody response to monkeypox virus infection examined in cynomolgus macaques and a comparison to human smallpox vaccination.

    Directory of Open Access Journals (Sweden)

    Sarah Keasey

    Full Text Available Monkeypox is a zoonotic viral disease that occurs primarily in Central and West Africa. A recent outbreak in the United States heightened public health concerns for susceptible human populations. Vaccinating with vaccinia virus to prevent smallpox is also effective for monkeypox due to a high degree of sequence conservation. Yet, the identity of antigens within the monkeypox virus proteome contributing to immune responses has not been described in detail. We compared antibody responses to monkeypox virus infection and human smallpox vaccination by using a protein microarray covering 92-95% (166-192 proteins of representative proteomes from monkeypox viral clades of Central and West Africa, including 92% coverage (250 proteins of the vaccinia virus proteome as a reference orthopox vaccine. All viral gene clones were verified by sequencing and purified recombinant proteins were used to construct the microarray. Serum IgG of cynomolgus macaques that recovered from monkeypox recognized at least 23 separate proteins within the orthopox proteome, while only 14 of these proteins were recognized by IgG from vaccinated humans. There were 12 of 14 antigens detected by sera of human vaccinees that were also recognized by IgG from convalescent macaques. The greatest level of IgG binding for macaques occurred with the structural proteins F13L and A33R, and the membrane scaffold protein D13L. Significant IgM responses directed towards A44R, F13L and A33R of monkeypox virus were detected before onset of clinical symptoms in macaques. Thus, antibodies from vaccination recognized a small number of proteins shared with pathogenic virus strains, while recovery from infection also involved humoral responses to antigens uniquely recognized within the monkeypox virus proteome.

  20. Time-course analysis of the Shewanella amazonensis SB2B proteome in response to sodium chloride shock

    Energy Technology Data Exchange (ETDEWEB)

    Parnell, John J.; Callister, Stephen J.; Rompato, Giovanni; Nicora, Carrie D.; Pasa-Tolic, Ljiljana; Williamson, Ashley; Pfrender, Michael E.

    2011-06-29

    Organisms in the genus Shewanella have become models for response to environmental stress. One of the most important environmental stresses is change in osmolarity. In this study, we experimentally determine the response mechanisms of Shewanella amazonensis SB2B during osmotic stress. Osmotic stress in SB2B was induced through exposure to NaCl, and the time-course proteomics response was measured using liquid chromatography mass spectrometry. Protein trends were qualitatively compared to gene expression trends and to phenotypic characterization. Osmotic stress affects motility, and has also been associated with a change in the membrane fatty acid composition (due to induction of branched chain amino acid degradation pathways); however, we show this is not the case for SB2B. Although proteins and genes involved with branched chain amino acid degradation are induced, fatty acid degradation pathways are not induced and no change in the fatty acid profile occurs in SB2B as a result of osmotic shock. The most extensive response of SB2B over the time course of acclimation to high salt involves an orchestrated sequence of events comprising increased expression of signal transduction associated with motility and restricted cell division and DNA replication. After SB2B has switched to increased branched chain amino acid degradation, motility, and cellular replication proteins return to pre-perturbed levels.

  1. Proteomic Response and Quality Maintenance in Postharvest Fruit of Strawberry (Fragaria × ananassa) to Exogenous Cytokinin

    Science.gov (United States)

    Li, Li; Li, Dongdong; Luo, Zisheng; Huang, Xinhong; Li, Xihong

    2016-01-01

    The limitations in current understanding of the molecular mechanisms underlying fruit response to the application of plant growth regulators have increasingly become major challenges in improvement of crop quality. This study aimed to evaluate the response of strawberry to the preharvest application of exogenous cytokinin known as forchlorfenuron (CPPU). Postharvest internal and physiological quality attributes were characterized following storage under different conditions. Hierarchical clustering analysis via a label-free proteomic quantitative approach identified a total of 124 proteins in strawberries across all treatments. The expression profiles of both proteins and genes spanned the ranged role of cytokinin involved in primary and secondary metabolism, stress response, and so on. Eighty-eight proteins and fifty-six proteins were significantly regulated immediately at harvest and after storage, respectively. In general, the glycolysis in strawberry was only regulated by CPPU before storage; in addition to the accelerated photosynthesis and acid metabolism, CPPU application maintained higher capacity of resistance in strawberry to stress stimuli after storage, in comparison to control. Nevertheless, the volatile biosynthesis in strawberry has been suppressed by exogenous CPPU. Novel cytokinin response proteins and processes were identified in addition to the main transcriptomic expression to gain insights into the phytohormone control of fruit postharvest quality. PMID:27250251

  2. Integrative proteome analysis of Brachypodium distachyon roots and leaves reveals a synergetic responsive network under H2O2 stress.

    Science.gov (United States)

    Bian, Yan-Wei; Lv, Dong-Wen; Cheng, Zhi-Wei; Gu, Ai-Qin; Cao, Hui; Yan, Yue-Ming

    2015-10-14

    The plant oxidative stress response is vital for defense against various abiotic and biotic stresses. In this study, ultrastructural changes and the proteomic response to H2O2 stress in roots and leaves of the model plant Brachypodium distachyon were studied. Transmission electron microscopy (TEM) showed that the ultrastructural damage in roots was more serious than in leaves. Particularly, the ultrastructures of organelles and the nucleus in root tip cells were damaged, leading to the inhibition of normal biological activities of roots, which then spread throughout the plant. Based on two-dimensional electrophoresis (2-DE) and MALDI-TOF/TOF-MS, 84 and 53 differentially accumulated protein (DAP) spots representing 75 and 45 unique proteins responsive to H2O2 stress in roots and leaves, respectively, were identified. These protein species were mainly involved in signal transduction, energy metabolism, redox homeostasis/stress defense, protein folding/degradation, and cell wall/cell structure. Interestingly, two 14-3-3 proteins (GF14-B and GF14-D) were identified as DAPs in both roots and leaves. Protein-protein interaction (PPI) analysis revealed a synergetic H2O2-responsive network.

  3. iTRAQ-based proteomic analysis of plasma reveals abnormalities in lipid metabolism proteins in chronic kidney disease-related atherosclerosis

    Science.gov (United States)

    Luczak, Magdalena; Formanowicz, Dorota; Marczak, Łukasz; Suszyńska-Zajczyk, Joanna; Pawliczak, Elżbieta; Wanic-Kossowska, Maria; Stobiecki, Maciej

    2016-09-01

    Patients with chronic kidney disease (CKD) have a considerably higher risk of death due to cardiovascular causes. Using an iTRAQ MS/MS approach, we investigated the alterations in plasma protein accumulation in patients with CKD and classical cardiovascular disease (CVD) without CKD. The proteomic analysis led to the identification of 130 differentially expressed proteins among CVD and CKD patients and healthy volunteers. Bioinformatics analysis revealed that 29 differentially expressed proteins were involved in lipid metabolism and atherosclerosis, 20 of which were apolipoproteins and constituents of high-density lipoprotein (HDL) and low-density lipoprotein (LDL). Although dyslipidemia is common in CKD patients, we found that significant changes in apolipoproteins were not strictly associated with changes in plasma lipid levels. A lack of correlation between apoB and LDL concentration and an inverse relationship of some proteins with the HDL level were revealed. An increased level of apolipoprotein AIV, adiponectin, or apolipoprotein C, despite their anti-atherogenic properties, was not associated with a decrease in cardiovascular event risk in CKD patients. The presence of the distinctive pattern of apolipoproteins demonstrated in this study may suggest that lipid abnormalities in CKD are characterized by more qualitative abnormalities and may be related to HDL function rather than HDL deficiency.

  4. Proteomic Analysis of Plasma-Purified VLDL, LDL, and HDL Fractions from Atherosclerotic Patients Undergoing Carotid Endarterectomy: Identification of Serum Amyloid A as a Potential Marker

    Directory of Open Access Journals (Sweden)

    Antonio J. Lepedda

    2013-01-01

    Full Text Available Apolipoproteins are very heterogeneous protein family, implicated in plasma lipoprotein structural stabilization, lipid metabolism, inflammation, or immunity. Obtaining detailed information on apolipoprotein composition and structure may contribute to elucidating lipoprotein roles in atherogenesis and to developing new therapeutic strategies for the treatment of lipoprotein-associated disorders. This study aimed at developing a comprehensive method for characterizing the apolipoprotein component of plasma VLDL, LDL, and HDL fractions from patients undergoing carotid endarterectomy, by means of two-dimensional electrophoresis (2-DE coupled with Mass Spectrometry analysis, useful for identifying potential markers of plaque presence and vulnerability. The adopted method allowed obtaining reproducible 2-DE maps of exchangeable apolipoproteins from VLDL, LDL, and HDL. Twenty-three protein isoforms were identified by peptide mass fingerprinting analysis. Differential proteomic analysis allowed for identifying increased levels of acute-phase serum amyloid A protein (AP SAA in all lipoprotein fractions, especially in LDL from atherosclerotic patients. Results have been confirmed by western blotting analysis on each lipoprotein fraction using apo AI levels for data normalization. The higher levels of AP SAA found in patients suggest a role of LDL as AP SAA carrier into the subendothelial space of artery wall, where AP SAA accumulates and may exert noxious effects.

  5. Quantitative proteomics and bioinformatic analysis provide new insight into the dynamic response of porcine intestine to Salmonella Typhimurium.

    Directory of Open Access Journals (Sweden)

    Melania eCollado-Romero

    2015-09-01

    Full Text Available The enteropathogen Salmonella Typhimurium (S. Typhimurium is the most commonly nontyphoideal serotype isolated in pig worldwide. Currently, one of the main sources of human infection is by consumption of pork meat. Therefore, prevention and control of salmonellosis in pigs is crucial for minimizing risks to public health. The aim of the present study was to use isobaric tags for relative and absolute quantification (iTRAQ to explore differences in the response to Salmonella in two segment of the porcine gut (ileum and colon along a time course of 1, 2 and 6 days post infection (dpi with S. Typhimurium. A total of 298 proteins were identified in the infected ileum samples of which, 112 displayed significant expression differences due to Salmonella infection. In colon, 184 proteins were detected in the infected samples of which 46 resulted differentially expressed with respect to the controls. The higher number of changes in protein expression was quantified in ileum at 2 dpi. Further biological interpretation of proteomics data using bioinformatics tools demonstrated that the expression changes in colon were found in proteins involved in cell death and survival, tissue morphology or molecular transport at the early stages and tissue regeneration at 6 dpi. In ileum, however, changes in protein expression were mainly related to immunological and infection diseases, inflammatory response or connective tissue disorders at 1 and 2 dpi. iTRAQ has proved to be a proteomic robust approach allowing us to identify ileum as the earliest response focus upon S. Typhimurium in the porcine gut. In addition, new functions involved in the response to bacteria such as eIF2 signalling, free radical scavengers or antimicrobial peptides expression have been identified. Finally, the impairment at of the enterohepatic circulation of bile acids and lipid metabolism by means the under regulation of FABP6 protein and FXR/RXR and LXR/RXR signalling pathway in ileum has

  6. A SILAC-Based Approach Elicits the Proteomic Responses to Vancomycin-Associated Nephrotoxicity in Human Proximal Tubule Epithelial HK-2 Cells.

    Science.gov (United States)

    Li, Zhi-Ling; Zhou, Shu-Feng

    2016-01-29

    Vancomycin, a widely used antibiotic, often induces nephrotoxicity, however, the molecular targets and underlying mechanisms of this side effect remain unclear. The present study aimed to examine molecular interactome and analyze the signaling pathways related to the vancomycin-induced nephrotoxicity in human proximal tubule epithelial HK-2 cells using the stable isotope labeling by amino acids in cell culture (SILAC) approach. The quantitative proteomic study revealed that there were at least 492 proteins interacting with vancomycin and there were 290 signaling pathways and cellular functions potentially regulated by vancomycin in HK-2 cells. These proteins and pathways played a critical role in the regulation of cell cycle, apoptosis, autophagy, EMT, and ROS generation. These findings suggest that vancomycin-induced proteomic responses in HK-2 cells involvefunctional proteins and pathways that regulate cell cycle, apoptosis, autophagy, and redox homeostasis. This is the first systemic study revealed the networks of signaling pathways and proteomic responses to vancomycin treatment in HK-2 cells, and the data may be used to discriminate the molecular and clinical subtypes and to identify new targets and biomarkers for vancomycin-induced nephrotoxic effect. Further studies are warranted to explore the potential of quantitative proteomic analysis in the identification of new targets and biomarkers for drug-induced renal toxicity.

  7. Plasma-Sprayed Titanium Patterns for Enhancing Early Cell Responses

    Science.gov (United States)

    Shi, Yunqi; Xie, Youtao; Pan, Houhua; Zheng, Xuebin; Huang, Liping; Ji, Fang; Li, Kai

    2016-06-01

    Titanium coating has been widely used as a biocompatible metal in biomedical applications. However, the early cell responses and long-term fixation of titanium implants are not satisfied. To obviate these defects, in this paper, micro-post arrays with various widths (150-1000 μm) and intervals (100-300 μm) were fabricated on the titanium substrate by template-assisted plasma spraying technology. In vitro cell culture experiments showed that MC3T3-E1 cells exhibited significantly higher osteogenic differentiation as well as slightly improved adhesion and proliferation on the micro-patterned coatings compared with the traditional one. The cell number on the pattern with 1000 µm width reached 130% after 6 days of incubation, and the expressions of osteopontin (OPN) as well as osteocalcin (OC) were doubled. No obvious difference was found in cell adhesion on various size patterns. The present micro-patterned coatings proposed a new modification method for the traditional plasma spraying technology to enhance the early cell responses and convenience for the bone in-growth.

  8. AHR-dependent changes in the mitochondrial proteome in response to 2,3,7,8-tetrachlorodibenzo-p-dioxin

    Directory of Open Access Journals (Sweden)

    Hye Jin Hwang

    2016-09-01

    Full Text Available The aryl hydrocarbon receptor (AHR is a ligand-activated transcription factor that is the principal regulator of a cell׳s response to many polyaromatic hydrocarbons, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD. To gain a better understanding of the impact of TCDD on the mitochondrial proteome, a stable isotope labeling by amino acids in cell culture (SILAC-based proteomic analysis was performed. We used two mouse hepatoma cell lines that differ in AHR expression levels, hepa1c1c7 (AHR-expressing and hepac12 (AHR-deficient. The cell lines were exposed to TCDD (10 nM for 72 h; each treatment was assayed in triplicate and were analyzed as separate runs on the mass-spectrometer. Mitochondria were then isolated and mitochondrial proteins were separated by SDS-PAGE and subject to mass spectrometry. The data presented were collected from four independent SILAC experiments. Within each experiment, three isotopes were employed to compare protein ratios via mass-spectrometry: (1 light l-arginine/l-lysine HCl (Arg0, Lys0, (2 medium 15N4-l-arginin/13C6l-lysine HCl (Arg4, Lys6, and (3 heavy 13C615N4l-arginine/13C615N2l-lysine HCl (Arg10, Lys8. The raw data includes approximately 2500 annotated proteins. The datasets provided by this study can be a reference to other toxicologists investigating TCDD-induced mitochondrial dysfunction. The data presented here are associated with the research article, “Mitochondrial-targeted Aryl Hydrocarbon Receptor and the Impact of 2,3,7,8-Tetrachlorodibenzo-p-Dioxin on Cellular Respiration and the Mitochondrial Proteome” (Hwang et al. (2016 [1].

  9. Proteomic Investigation of the Time Course Responses of RAW 264.7 Macrophages to Infection with Salmonella enterica

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Liang; Chowdhury, Saiful M.; Smallwood, Heather S.; Yoon, Hyunjin; Mottaz-Brewer, Heather M.; Norbeck, Angela D.; McDermott, Jason E.; Clauss, Therese RW; Heffron, Fred; Smith, Richard D.; Adkins, Joshua N.

    2009-08-01

    Macrophages plan important roles in controlling Salmonella-mediated systemic infection. To investigate the responses of macrophages to Salmonella infection, we infected RAW 264.7 macrophages with Salmonella enterica serovar Typhimurium (STM) and then performed a comparative liquid chromatography-tandem mass spectrometry [LC-MS(/MS)]-based proteomics analysis of the infected macrophages. A total of 1006 macrophage and 115 STM proteins were indentified from this study. Most of STM proteins were found at late stage of the time course of infection, consistent with the fact that STM proliferates inside RAW 264.7 macrophages. Majority of the identified macrophage proteins were house keeping-related, including cytoplasmic superoxide dismutase 1 (SOD1), whose peptide abundances were relatively constant during the time course of infection. Compared to those in no infection control, the peptide abundances of 244 macrophage proteins (or 24% of total indentified macrophage proteins) changed considerably after STM infection. The functions of these STM infection-affected macrophage proteins were diverse and ranged from production of antibacterial nitric oxide (i.e., inducible nitric oxide synthase or iNOS) or production of prostaglandin H2 (i.e., prostaglandin-endoperoxide synthase 2, also know as cyclooxygenase-2 or COX-2) to regulation of intracellular traffic (e.g., sorting nexin or SNX 5, 6 and 9), demonstrating a global impact of STM infection on macrophage proteome. Western-blot analysis not only confirmed the LC-MS(/MS) results of SOD1, COX-2 and iNOS, but also revealed that the protein abundances of mitochondrial SOD2 increased after STM infection, indicating an infection-induced oxidative stress in mitochondria.

  10. Proteomic analysis of the secretory response of Aspergillus niger to D-maltose and D-xylose.

    Directory of Open Access Journals (Sweden)

    José Miguel P Ferreira de Oliveira

    Full Text Available Fungi utilize polysaccharide substrates through extracellular digestion catalyzed by secreted enzymes. Thus far, protein secretion by the filamentous fungus Aspergillus niger has mainly been studied at the level of individual proteins and by genome and transcriptome analyses. To extend these studies, a complementary proteomics approach was applied with the aim to investigate the changes in secretome and microsomal protein composition resulting from a shift to a high level secretion condition. During growth of A. niger on D-sorbitol, small amounts of D-maltose or D-xylose were used as inducers of the extracellular amylolytic and xylanolytic enzymes. Upon induction, protein compositions in the extracellular broth as well as in enriched secretory organelle (microsomal fractions were analyzed using a shotgun proteomics approach. In total 102 secreted proteins and 1,126 microsomal proteins were identified in this study. Induction by D-maltose or D-xylose resulted in the increase in specific extracellular enzymes, such as glucoamylase A on D-maltose and β-xylosidase D on D-xylose, as well as of microsomal proteins. This reflects the differential expression of selected genes coding for dedicated extracellular enzymes. As expected, the addition of extra D-sorbitol had no effect on the expression of carbohydrate-active enzymes, compared to addition of D-xylose or D-maltose. Furthermore, D-maltose induction caused an increase in microsomal proteins related to translation (e.g., Rpl15 and vesicular transport (e.g., the endosomal-cargo receptor Erv14. Millimolar amounts of the inducers D-maltose and D-xylose are sufficient to cause a direct response in specific protein expression levels. Also, after induction by D-maltose or D-xylose, the induced enzymes were found in microsomes and extracellular. In agreement with our previous findings for D-xylose induction, D-maltose induction leads to recruitment of proteins involved in proteasome-mediated degradation.

  11. Gibberellin-Stimulation of Rhizome Elongation and Differential GA-Responsive Proteomic Changes in Two Grass Species

    Science.gov (United States)

    Ma, Xiqing; Huang, Bingru

    2016-01-01

    Rapid and extensive rhizome development is a desirable trait for perennial grass growth and adaptation to environmental stresses. The objective of this study was to determine proteomic changes and associated metabolic pathways of gibberellin (GA) -regulation of rhizome elongation in two perennial grass species differing in rhizome development. Plants of a short-rhizome bunch-type tall fescue (TF; Festuca arundinacea; ‘BR’) and an extensive rhizomatous Kentucky bluegrass (KB; Poa pratensis; ‘Baron’) were treated with 10 μM GA3 in hydroponic culture in growth chambers. The average rhizome length in KB was significantly longer than that in TF regardless of GA3 treatment, and increased significantly with GA3 treatment, to a greater extent than that in TF. Comparative proteomic analysis using two-dimensional electrophoresis and mass spectrometry was performed to further investigate proteins and associated metabolic pathways imparting increased rhizome elongation by GA. A total of 37 and 38 differentially expressed proteins in response to GA3 treatment were identified in TF and KB plants, respectively, which were mainly involved in photosynthesis, energy and amino acid metabolism, protein synthesis, defense and cell development processes. Accelerated rhizome elongation in KB by GA could be mainly associated with the increased abundance of proteins involved in energy metabolism (glyceraldehyde-3-phosphate dehydrogenase, fructose-bisphosphate aldolase, and ATP synthase), amino acid metabolism (S-adenosylmethionine and adenosylhomocysteinase), protein synthesis (HSP90, elongation factor Tu and eukaryotic translation initiation factor 5A), cell-wall development (cell dividion cycle protein, alpha tubulin-2A and actin), and signal transduction (calreticulin). These proteins could be used as candidate proteins for further analysis of molecular mechanisms controlling rhizome growth. PMID:27446135

  12. Proteomic and phytohormone analysis of the response of maize (Zea mays L.) seedlings to sugarcane mosaic virus.

    Science.gov (United States)

    Wu, Liuji; Wang, Shunxi; Chen, Xiao; Wang, Xintao; Wu, Liancheng; Zu, Xiaofeng; Chen, Yanhui

    2013-01-01

    Sugarcane mosaic virus (SCMV) is an important virus pathogen in crop production, causing serious losses in grain and forage yields in susceptible cultivars. Control strategies have been developed, but only marginal successes have been achieved. For the efficient control of this virus, a better understanding of its interactions and associated resistance mechanisms at the molecular level is required. The responses of resistant and susceptible genotypes of maize to SCMV and the molecular basis of the resistance were studied using a proteomic approach based on two-dimensional polyacrylamide gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS/MS) analysis. Ninety-six protein spots showed statistically significant differences in intensity after SCMV inoculation. The classification of differentially expressed proteins showed that SCMV-responsive proteins were mainly involved in energy and metabolism, stress and defense responses, and photosynthesis. Most of the proteins identified were located in chloroplasts, chloroplast membranes, and the cytoplasm. Analysis of changes in phytohormone levels after virus inoculation suggested that salicylic acid, abscisic acid, jasmonic acid, and azelaic acid may played important roles in the maize response to SCMV infection. Among these identified proteins, 19 have not been identified previously as virus-responsive proteins, and seven were new and did not have assigned functions. These proteins may be candidate proteins for future investigation, and they may present new biological functions and play important roles in plant-virus interactions. The behavioural patterns of the identified proteins suggest the existence of defense mechanisms operating during the early stages of infection that differed in two genotypes. In addition, there are overlapping and specific phytohormone responses to SCMV infection between resistant and susceptible maize genotypes. This study may

  13. Proteomic and phytohormone analysis of the response of maize (Zea mays L. seedlings to sugarcane mosaic virus.

    Directory of Open Access Journals (Sweden)

    Liuji Wu

    Full Text Available BACKGROUND: Sugarcane mosaic virus (SCMV is an important virus pathogen in crop production, causing serious losses in grain and forage yields in susceptible cultivars. Control strategies have been developed, but only marginal successes have been achieved. For the efficient control of this virus, a better understanding of its interactions and associated resistance mechanisms at the molecular level is required. METHODOLOGY/PRINCIPAL FINDINGS: The responses of resistant and susceptible genotypes of maize to SCMV and the molecular basis of the resistance were studied using a proteomic approach based on two-dimensional polyacrylamide gel electrophoresis (2-DE and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS/MS analysis. Ninety-six protein spots showed statistically significant differences in intensity after SCMV inoculation. The classification of differentially expressed proteins showed that SCMV-responsive proteins were mainly involved in energy and metabolism, stress and defense responses, and photosynthesis. Most of the proteins identified were located in chloroplasts, chloroplast membranes, and the cytoplasm. Analysis of changes in phytohormone levels after virus inoculation suggested that salicylic acid, abscisic acid, jasmonic acid, and azelaic acid may played important roles in the maize response to SCMV infection. CONCLUSIONS/SIGNIFICANCE: Among these identified proteins, 19 have not been identified previously as virus-responsive proteins, and seven were new and did not have assigned functions. These proteins may be candidate proteins for future investigation, and they may present new biological functions and play important roles in plant-virus interactions. The behavioural patterns of the identified proteins suggest the existence of defense mechanisms operating during the early stages of infection that differed in two genotypes. In addition, there are overlapping and specific phytohormone

  14. Toxic responses of Perna viridis hepatopancreas exposed to DDT, benzo(a)pyrene and their mixture uncovered by iTRAQ-based proteomics and NMR-based metabolomics.

    Science.gov (United States)

    Song, Qinqin; Zhou, Hailong; Han, Qian; Diao, Xiaoping

    2017-09-11

    Dichlorodiphenyltrichloroethane (DDT) and benzo(a)pyrene (BaP) are environmental estrogens (EEs) that are ubiquitous in the marine environment. In the present study, we integrated isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic and nuclear magnetic resonance (NMR)-based metabolomic approaches to explore the toxic responses of green mussel hepatopancreas exposed to DDT (10μg/L), BaP (10μg/L) and their mixture. The metabolic responses indicated that BaP primarily disturbed energy metabolism and osmotic regulation in the hepatopancreas of the male green mussel P. viridis. Both DDT and the mixture of DDT and BaP perturbed the energy metabolism and osmotic regulation in P. viridis. The proteomic responses revealed that BaP affected the proteins involved in energy metabolism, material transformation, cytoskeleton, stress responses, reproduction and development in green mussels. DDT exposure could change the proteins involved in primary metabolism, stress responses, cytoskeleton and signal transduction. However, the mixture of DDT and BaP altered proteins associated with material and energy metabolism, stress responses, signal transduction, reproduction and development, cytoskeleton and apoptosis. This study showed that iTRAQ-based proteomic and NMR-based metabolomic approaches could effectively elucidate the essential molecular mechanism of disturbances in hepatopancreas function of green mussels exposed to environmental estrogens. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Effects of lead and mercury on the blood proteome of children

    OpenAIRE

    Birdsall, Robert E.; Kiley, Michael P.; Segu, Zaneer M.; Christopher D. Palmer; Madera, Milan; Gump, Brooks B.; MacKenzie, James A.; Parsons,Patrick J.; Mechref, Yehia; Novotny, Milos V.; Bendinskas, Kestutis G.

    2010-01-01

    Heavy metal exposure in children has been associated with a variety of physiological and neurological problems. The goal of this study was to utilize proteomics to enhance the understanding of biochemical interactions responsible for the health problems related to lead and mercury exposure at concentrations well below CDC guidelines. Blood plasma and serum samples from 34 children were ...

  16. Insights into salicylic acid responses in cucumber (Cucumis sativus L.) cotyledons based on a comparative proteomic analysis.

    Science.gov (United States)

    Hao, J H; Dong, C J; Zhang, Z G; Wang, X L; Shang, Q M

    2012-05-01

    To investigate the response of cucumber seedlings to exogenous salicylic acid (SA) and gain a better understanding of SA action mechanism, we generated a proteomic profile of cucumber (Cucumis sativus L.) cotyledons treated with exogenous SA. Analysis of 1500 protein spots from each gel revealed 63 differentially expressed proteins, 59 of which were identified successfully. Of the identified proteins, 97% matched cucumber proteins using a whole cucumber protein database based on the newly completed genome established by our laboratory. The identified proteins were involved in various cellular responses and metabolic processes, including antioxidative reactions, cell defense, photosynthesis, carbohydrate metabolism, respiration and energy homeostasis, protein folding and biosynthesis. The two largest functional categories included proteins involved in antioxidative reactions (23.7%) and photosynthesis (18.6%). Furthermore, the SA-responsive protein interaction network revealed 13 key proteins, suggesting that the expression changes of these proteins could be critical for SA-induced resistance. An analysis of these changes suggested that SA-induced resistance and seedling growth might be regulated in part through pathways involving antioxidative reactions and photosynthesis.

  17. Comparative Physiological and Proteomic Analysis Reveals the Leaf Response to Cadmium-Induced Stress in Poplar (Populus yunnanensis.

    Directory of Open Access Journals (Sweden)

    Yunqiang Yang

    Full Text Available Excess amounts of heavy metals are important environmental pollutants with significant ecological and nutritional effects. Cdmium (Cd is of particular concern because of its widespread occurrence and high toxicity. We conducted physiological and proteomic analyses to improve our understanding of the responses of Populus yunnanensis to Cd stress. The plantlets experienced two apparent stages in their response to Cd stress. During the first stage, transiently induced defense-response molecules, photosynthesis- and energy-associated proteins, antioxidant enzymes and heat shock proteins (HSPs accumulated to enhance protein stability and establish a new cellular homeostasis. This activity explains why plant photosynthetic capability during this period barely changed. During the second stage, a decline of ribulose-1, 5-bisphosphate carboxylase (RuBisCO and HSP levels led to imbalance of the plant photosynthetic system. Additionally, the expression of Mitogen-activated protein kinase 3 (MPK3, Mitogen-activated protein kinase 6 (MPK6 and a homeobox-leucine zipper protein was higher in the second stage. Higher expression of caffeoyl-CoA O-methyltransferase (CCoAOMT may regulate plant cell wall synthesis for greater Cd storage. These genes may be candidates for further research and use in genetic manipulation of poplar tolerance to Cd stress.

  18. Proteomic analysis of seedling roots of two maize inbred lines that differ significantly in the salt stress response.

    Directory of Open Access Journals (Sweden)

    Dezhou Cui

    Full Text Available Salinity is a major abiotic stress that limits plant productivity and quality throughout the world. Roots are the sites of salt uptake. To better understand salt stress responses in maize, we performed a comparative proteomic analysis of seedling roots from the salt-tolerant genotype F63 and the salt-sensitive genotype F35 under 160 mM NaCl treatment for 2 days. Under salinity conditions, the shoot fresh weight and relative water content were significantly higher in F63 than in F35, while the osmotic potential was significantly lower and the reduction of the K+/Na+ ratio was significantly less pronounced in F63 than in F35. Using an iTRAQ approach, twenty-eight proteins showed more than 2.0- fold changes in abundance and were regarded as salt-responsive proteins. Among them, twenty-two were specifically regulated in F63 but remained constant in F35. These proteins were mainly involved in signal processing, water conservation, protein synthesis and biotic cross-tolerance, and could be the major contributors to the tolerant genotype of F63. Functional analysis of a salt-responsive protein was performed in yeast as a case study to confirm the salt-related functions of detected proteins. Taken together, the results of this study may be helpful for further elucidating salt tolerance mechanisms in maize.

  19. iTRAQ-based quantitative proteomic analyses on the gender-specific responses in mussel Mytilus galloprovincialis to tetrabromobisphenol A.

    Science.gov (United States)

    Ji, Chenglong; Wu, Huifeng; Wei, Lei; Zhao, Jianmin

    2014-12-01

    Tetrabromobisphenol A (TBBPA) accounts for the largest production of brominated flame-retardants (BFRs) along the Laizhou Bay in China and is the most widely used BFR in industrial products. It can induce diverse toxicities including hepatotoxicity, nephrotoxicity, neurotoxicity and endocrine disrupting effects in mammalian and fish models. In this work, we applied iTRAQ-based proteomics to investigate the gender-specific responses in mussel Mytilus galloprovincialis to TBBPA. Thirty-one proteins were differentially expressed in hepatopancreas between male and female mussels, which clearly indicated the biological differences between male and female mussels at the protein level. After exposure of TBBPA (18.4 nmol/L) for one month, a total of 60 proteins were differentially expressed in response to the TBBPA treatment in mussel hepatopancreas, among which 33 and 29 proteins were significantly altered in TBBPA-treated male and female mussel samples, respectively. Only two of the 60 proteins were commonly altered in both male and female mussel samples exposed to TBBPA. Based on KEGG analysis, these differentially expressed proteins of TBBPA-induced effects were assigned to several groups, including cytoskeleton, reproduction and development, metabolism, signal transduction, gene expression, stress response and apoptosis. Overall, results indicated that TBBPA exposure could induce apoptosis, oxidative and immune stresses and disruption in energy, protein and lipid metabolisms in both male and female mussels with different mechanisms. This work suggested that the gender differences should be considered in ecotoxicoproteomics.

  20. Proteomic analysis of iron acquisition, metabolic and regulatory responses of Yersinia pestis to iron starvation

    Directory of Open Access Journals (Sweden)

    Fleischmann Robert D

    2010-01-01

    Full Text Available Abstract Background The Gram-negative bacterium Yersinia pestis is the causative agent of the bubonic plague. Efficient iron acquisition systems are critical to the ability of Y. pestis to infect, spread and grow in mammalian hosts, because iron is sequestered and is considered part of the innate host immune defence against invading pathogens. We used a proteomic approach to determine expression changes of iron uptake systems and intracellular consequences of iron deficiency in the Y. pestis strain KIM6+ at two physiologically relevant temperatures (26°C and 37°C. Results Differential protein display was performed for three Y. pestis subcellular fractions. Five characterized Y. pestis iron/siderophore acquisition systems (Ybt, Yfe, Yfu, Yiu and Hmu and a putative iron/chelate outer membrane receptor (Y0850 were increased in abundance in iron-starved cells. The iron-sulfur (Fe-S cluster assembly system Suf, adapted to oxidative stress and iron starvation in E. coli, was also more abundant, suggesting functional activity of Suf in Y. pestis under iron-limiting conditions. Metabolic and reactive oxygen-deactivating enzymes dependent on Fe-S clusters or other iron cofactors were decreased in abundance in iron-depleted cells. This data was consistent with lower activities of aconitase and catalase in iron-starved vs. iron-rich cells. In contrast, pyruvate oxidase B which metabolizes pyruvate via electron transfer to ubiquinone-8 for direct utilization in the respiratory chain was strongly increased in abundance and activity in iron-depleted cells. Conclusions Many protein abundance differences were indicative of the important regulatory role of the ferric uptake regulator Fur. Iron deficiency seems to result in a coordinated shift from iron-utilizing to iron-independent biochemical pathways in the cytoplasm of Y. pestis. With growth temperature as an additional variable in proteomic comparisons of the Y. pestis fractions (26°C and 37°C, there was

  1. Study on the plasma proteomic profiling by using surface enhanced laser desorption ionization time of flight mass spectrometry for setting up a diagnostic model of endometriosis

    Institute of Scientific and Technical Information of China (English)

    Liu Hai-yuan; Liu Chun-yan; Leng Jin-hua; Liu Zhu-feng; Sun Da-wei; Zhu Lan; Lang Jing-he; Zheng Yan-hua; Zhang Jian-zhong

    2007-01-01

    Objective: To determine the plasma proteomic profiling by using surface enhanced laser desorption ionization time of flight mass spectrometry (SELDI-TOF-MS) combined with bioinformatics for screening biomarkers of endometriosis and primarily setting up a diagnostic model of endometriosis.Method.Thirty-six patients with endometriosis diagnosed laparoscopically and thirty-five healthy controls were included in the study.Their serum were analyzed by SELDI and protein chip to generate protein profiling spectra.Student t test was used to compare the peak intensifies of the protein profiling results from the different groups.Biomarker Pattern Software was used to analyze the data between two groups and set up a diagnostic model for endometriosis.Protein profiling spectra from sixteen endometriosis patients and fifteen healthy controls were used double-blindedly to test the efficiency of the diagnostic model and generate the sensitivity and specificity of the model.Result: Fourteen abnormally expressed protein peaks were detected in the plasma of patients with endometriosis (P<0.01).The endometriosis diagnostic model was composed of three protein peaks.It correctly identified 33 of 36 patients with endometriosis and 29 of 35 controls in the training test.In the masked set 14 of 16 patients with endometriosis and 12 of 15 normal controls were correctly identified with sensitivity of 87.5% and specificity of 8o%.Conclusion: Patients with endometriosis have a unique cluster of proteins in plasma detected by SELDI.SELDI provides a new approach for screening novel biomarkers of endometriosis.Its utility in clinical practice need further study.

  2. ELM control with RMP: plasma response models and the role of edge peeling response

    CERN Document Server

    Liu, Yueqiang; Kirk, A; Li, Li; Loarte, A; Ryan, D A; Sun, Youwen; Suttrop, W; Yang, Xu; Zhou, Lina

    2016-01-01

    Resonant magnetic perturbations (RMP) have extensively been demonstrated as a plausible technique for mitigating or suppressing large edge localized modes (ELMs). Associated with this is a substantial amount of theory and modelling efforts during recent years. Various models describing the plasma response to the RMP fields have been proposed in the literature, and are briefly reviewed in this work. Despite their simplicity, linear response models can provide alternative criteria, than the vacuum field based criteria, for guiding the choice of the coil configurations to achieve the best control of ELMs. The role of the edge peeling response to the RMP fields is illustrated as a key indicator for the ELM mitigation in low collisionality plasmas, in various tokamak devices.

  3. ELM control with RMP: plasma response models and the role of edge peeling response

    Science.gov (United States)

    Liu, Yueqiang; Ham, C. J.; Kirk, A.; Li, Li; Loarte, A.; Ryan, D. A.; Sun, Youwen; Suttrop, W.; Yang, Xu; Zhou, Lina

    2016-11-01

    Resonant magnetic perturbations (RMP) have extensively been demonstrated as a plausible technique for mitigating or suppressing large edge localized modes (ELMs). Associated with this is a substantial amount of theory and modelling efforts during recent years. Various models describing the plasma response to the RMP fields have been proposed in the literature, and are briefly reviewed in this work. Despite their simplicity, linear response models can provide alternative criteria, than the vacuum field based criteria, for guiding the choice of the coil configurations to achieve the best control of ELMs. The role of the edge peeling response to the RMP fields is illustrated as a key indicator for the ELM mitigation in low collisionality plasmas, in various tokamak devices.

  4. Proteomic response of Trichoderma aggressivum f. europaeum to Agaricus bisporus tissue and mushroom compost.

    Science.gov (United States)

    O'Brien, Matt; Grogan, Helen; Kavanagh, Kevin

    2014-01-01

    A cellular proteomic analysis was performed on Trichoderma aggressivum f. europaeum. Thirty-four individual protein spots were excised from 2-D electropherograms and analysed by ESI-Trap Liquid Chromatography Mass Spectrometry (LC/MS). Searches of the NCBInr and SwissProt protein databases identified functions for 31 of these proteins based on sequence homology. A differential expression study was performed on the intracellular fraction of T. aggressivum f. europaeum grown in media containing Agaricus bisporus tissue and Phase 3 mushroom compost compared to a control medium. Differential expression was observed for seven proteins, three of which were upregulated in both treatments, two were down regulated in both treatments and two showed qualitatively different regulation under the two treatments. No proteins directly relating to fungal cell wall degradation or other mycoparasitic activity were observed. Functions of differentially produced intracellular proteins included oxidative stress tolerance, cytoskeletal structure, and cell longevity. Differential production of these proteins may contribute to the growth of T. aggressivum in mushroom compost and its virulence toward A. bisporus.

  5. Comparative proteomic analysis of early salt stress responsive proteins in roots and leaves of rice.

    Science.gov (United States)

    Liu, Chih-Wei; Chang, Tao-Shan; Hsu, Yu-Kai; Wang, Arthur Z; Yen, Hung-Chen; Wu, Yung-Pei; Wang, Chang-Sheng; Lai, Chien-Chen

    2014-08-01

    Growth and productivity of rice (Oryza sativa L.) are severely affected by salinity. Understanding the mechanisms that protect rice and other important cereal crops from salt stress will help in the development of salt-stress-tolerant strains. In this study, rice seedlings of the same genetic species with various salt tolerances were studied. We first used 2DE to resolve the expressed proteome in rice roots and leaves and then used nanospray liquid chromatography/tandem mass spectrometry to identify the differentially expressed proteins in rice seedlings after salt treatment. The 2DE assays revealed that there were 104 differentially expressed protein spots in rice roots and 59 in leaves. Then, we identified 83 proteins in rice roots and 61 proteins in rice leaves by MS analysis. Functional classification analysis revealed that the differentially expressed proteins from roots could be classified into 18 functional categories while those from leaves could be classified into 11 functional categories. The proteins from rice seedlings that most significantly contributed to a protective effect against increased salinity were cysteine synthase, adenosine triphosphate synthase, quercetin 3-O-methyltransferase 1, and lipoxygenase 2. Further analysis demonstrated that the primary mechanisms underlying the ability of rice seedlings to tolerate salt stress were glycolysis, purine metabolism, and photosynthesis. Thus, we suggest that differentially expressed proteins may serve as marker group for the salt tolerance of rice.

  6. Proteomic analysis of Daphnia magna hints at molecular pathways involved in defensive plastic responses

    Science.gov (United States)

    2014-01-01

    Background Phenotypic plasticity in defensive traits occurs in many species when facing heterogeneous predator regimes. The waterflea Daphnia is well-known for showing a variety of these so called inducible defences. However, molecular mechanisms underlying this plasticity are poorly understood so far. We performed proteomic analysis on Daphnia magna exposed to chemical cues of the predator Triops cancriformis. D. magna develops an array of morphological changes in the presence of Triops including changes of carapace morphology and cuticle hardening. Results Using the 2D-DIGE technique, 1500 protein spots could be matched and quantified. We discovered 179 protein spots with altered intensity when comparing Triops exposed animals to a control group, and 69 spots were identified using nano-LC MS/MS. Kairomone exposure increased the intensity of spots containing muscle proteins, cuticle proteins and chitin-modifying enzymes as well as enzymes of carbohydrate and energy metabolism. The yolk precursor protein vitellogenin decreased in abundance in 41 of 43 spots. Conclusion Identified proteins may be either directly involved in carapace stability or reflect changes in energy demand and allocation costs in animals exposed to predator kairomones. Our results present promising candidate proteins involved in the expression of inducible defences in Daphnia and enable further in depth analysis of this phenomenon. PMID:24762235

  7. Analysis of the Salmonella typhimurium Proteome through Environmental Response toward Infectious Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Adkins, Joshua N.; Mottaz, Heather M.; Norbeck, Angela D.; Gustin, Jean K.; Rue, Joanne; Clauss, Therese RW; Purvine, Samuel O.; Rodland, Karin D.; Heffron, Fred; Smith, Richard D.

    2006-08-01

    Salmonella enterica serovar Typhimurium (aka, S. typhimurium) is a facultative intracellular pathogen that causes ~40,000 reported cases of acute gastroenteritis and diarrhea a year in the United States. To develop a deeper understanding of the infectious state of S. typhimurium, liquid chromatography-mass spectrometry-based “bottom-up” proteomics was used to globally analyze the proteins present under specific growth conditions. Salmonella typhimurium LT2 strain cells were grown in contrasting culture conditions that mimicked both natural free-living conditions and an infectious state, i.e., logarithm phase, stationary phase and Mg-depleted medium growth. Initial comparisons of the LT2 strain protein abundances among cell culture conditions indicate that the majority of proteins do not change significantly. Not unexpectedly, cells grown in Mg-depleted medium conditions had a higher abundance of Mg2+ transport proteins than found in other growth conditions. A second more virulent Salmonella typhimurium strain (14028) was also studied with these growth conditions and used to directly compare to the LT2 strain. The strain comparison offers a unique opportunity to compare and contrast observations in these closely related bacteria. One particular protein family, propanediol utilization proteins, was drastically more abundant in the 14028 strain than in the LT2 strain, and may be a contributor to increased pathogenicity in the 14028 strain.

  8. Comparative proteomic analyses provide new insights into low phosphorus stress responses in maize leaves.

    Directory of Open Access Journals (Sweden)

    Kewei Zhang

    Full Text Available Phosphorus deficiency limits plant growth and development. To better understand the mechanisms behind how maize responds to phosphate stress, we compared the proteome analysis results of two groups of maize leaves that were treated separately with 1,000 µM (control, +P and 5 µM of KH2PO4 (intervention group, -P for 25 days. In total, 1,342 protein spots were detected on 2-DE maps and 15.43% had changed (P<0.05; ≥1.5-fold significantly in quantity between the +P and -P groups. These proteins are involved in several major metabolic pathways, including photosynthesis, carbohydrate metabolism, energy metabolism, secondary metabolism, signal transduction, protein synthesis, cell rescue and cell defense and virulence. The results showed that the reduction in photosynthesis under low phosphorus treatment was due to the down-regulation of the proteins involved in CO2 enrichment, the Calvin cycle and the electron transport system. Electron transport and photosynthesis restrictions resulted in a large accumulation of peroxides. Maize has developed many different reactive oxygen species (ROS scavenging mechanisms to cope with low phosphorus stress, including up-regulating its antioxidant content and antioxidase activity. After being subjected to phosphorus stress over a long period, maize may increase its internal phosphorus utilization efficiency by altering photorespiration, starch synthesis and lipid composition. These results provide important information about how maize responds to low phosphorus stress.

  9. Genomic and proteomic responses to environmentally relevant exposures to dieldrin: indicators of neurodegeneration?

    Science.gov (United States)

    Martyniuk, Christopher J; Kroll, Kevin J; Doperalski, Nicholas J; Barber, David S; Denslow, Nancy D

    2010-09-01

    Dieldrin is a persistent organochlorine pesticide that induces neurotoxicity in the vertebrate central nervous system and impairs reproductive processes in fish. This study examined the molecular events produced by subchronic dietary exposures to 2.95 mg dieldrin/kg feed in the neuroendocrine brain of largemouth bass, an apex predator. Microarrays, proteomics, and pathway analysis were performed to identify genes, proteins, and cell processes altered in the male hypothalamus. Fifty-four genes were induced, and 220 genes were reduced in steady-state levels (p dieldrin. Using isobaric tagging for relative and absolute quantitation, 90 proteins in the male hypothalamus were statistically evaluated for changes in protein abundance. Several proteins altered by dieldrin are known to be associated with human neurodegenerative diseases, including apolipoprotein E, microtubule-associated tau protein, enolase 1, stathmin 1a, myelin basic protein, and parvalbumin. Proteins altered by dieldrin were involved in oxidative phosphorylation, differentiation, proliferation, and cell survival. This study demonstrates that a subchronic exposure to dieldrin alters the abundance of messenger RNAs and proteins in the hypothalamus that are associated with cell metabolism, cell stability and integrity, stress, and DNA repair.

  10. Plumbagin elicits differential proteomic responses mainly involving cell cycle, apoptosis, autophagy, and epithelial-to-mesenchymal transition pathways in human prostate cancer PC-3 and DU145 cells

    Directory of Open Access Journals (Sweden)

    Qui JX

    2015-01-01

    Full Text Available Jia-Xuan Qiu,1,2 Zhi-Wei Zhou, 3,4 Zhi-Xu He,4 Ruan Jin Zhao,5 Xueji Zhang,6 Lun Yang,7 Shu-Feng Zhou,3,4 Zong-Fu Mao11School of Public Health, Wuhan University, Wuhan, Hubei, People’s Republic of China; 2Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China; 3Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA; 4Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, Guizhou, People’s Republic of China; 5Center for Traditional Chinese Medicine, Sarasota, FL, USA; 6Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing, People’s Republic of China; 7Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education, Shanghai Jiao Tong University, Shanghai, People’s Republic of ChinaAbstract: Plumbagin (PLB has exhibited a potent anticancer effect in preclinical studies, but the molecular interactome remains elusive. This study aimed to compare the quantitative proteomic responses to PLB treatment in human prostate cancer PC-3 and DU145 cells using the approach of stable-isotope labeling by amino acids in cell culture (SILAC. The data were finally validated using Western blot assay. First, the bioinformatic analysis predicted that PLB could interact with 78 proteins that were involved in cell proliferation and apoptosis, immunity, and signal transduction. Our quantitative proteomic study using SILAC revealed that there were at least 1,225 and 267 proteins interacting with PLB and there were 341 and 107 signaling pathways and cellular functions potentially regulated by PLB in PC-3 and DU145 cells, respectively. These proteins and pathways played a

  11. Protein expression profiles of human lymph and plasma mapped by 2D-DIGE and 1D SDS–PAGE coupled with nanoLC–ESI–MS/MS bottom-up proteomics

    OpenAIRE

    Clement, Cristina C.; Aphkhazava, David; Nieves, Edward; Callaway, Myrasol; Olszewski, Waldemar; Rotzschke, Olaf; Santambrogio, Laura

    2012-01-01

    In this study a proteomic approach was used to define the protein content of matched samples of afferent prenodal lymph and plasma derived from healthy volunteers. The analysis was performed using two analytical methodologies coupled with nanoliquid chromatography-tandem mass spectrometry: one-dimensional gel electrophoresis (1DEF nanoLC Orbitrap–ESI–MS/MS), and two-dimensional fluorescence difference-in-gel electrophoresis (2D-DIGE nanoLC–ESI–MS/MS). The 253 significantly identified proteins...

  12. Plasma matrix metalloproteinase-9 response to downhill running in humans.

    Science.gov (United States)

    Welsh, M C; Allen, D L; Byrnes, W C

    2014-05-01

    Matrix metalloproteinase-9 is a proteolytic enzyme capable of degrading proteins of the muscle extracellular matrix. Systemic levels of MMP-9 or its inhibitor, tissue inhibitor of metalloproteinase-1 (TIMP-1), have the potential to serve as blood markers of exercise-induced muscle damage. The purpose of this study was to determine if an eccentrically-dominated task, downhill running (DHR), produces changes in plasma MMP-9 or TIMP-1 and examine the relationship between MMP-9/TIMP-1 levels and indirect indicators of muscle damage. Subjects were sedentary (SED, n=12) or had a history of concentrically-biased training (CON, n=9). MMP-9 and TIMP-1 were measured before (Pre-Ex), immediately after (Post-Ex), and 1-, 2-, 4-, and 7-days post-DHR (-10°), and compared to discomfort ratings, creatine kinase activity and strength loss. At 1-day Post-Ex, discomfort increased (5.6 ± 7.8 to 45.5 ± 19.9 mm; 0-100 mm scale), strength decreased (-6.9 ± 1.6%) and CK increased (162.9 ± 177.2%). MMP-9 was modestly but significantly increased at Post-Ex in both CONC and SED (32.7 ± 33.6%) and at 4-days in SED (66.9 ± 88.1%), Individual responses were variable, however. There were no correlations between MMPs and discomfort ratings, plasma CK or strength. While plasma MMP-9 changes may be detectable in the systemic circulation after DHR, they are small and do not correspond to other markers of damage. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Proteome-wide analysis of SUMO2 targets in response to pathological DNA replication stress in human cells.

    Science.gov (United States)

    Bursomanno, Sara; Beli, Petra; Khan, Asif M; Minocherhomji, Sheroy; Wagner, Sebastian A; Bekker-Jensen, Simon; Mailand, Niels; Choudhary, Chunaram; Hickson, Ian D; Liu, Ying

    2015-01-01

    SUMOylation is a form of post-translational modification involving covalent attachment of SUMO (Small Ubiquitin-like Modifier) polypeptides to specific lysine residues in the target protein. In human cells, there are four SUMO proteins, SUMO1-4, with SUMO2 and SUMO3 forming a closely related subfamily. SUMO2/3, in contrast to SUMO1, are predominantly involved in the cellular response to certain stresses, including heat shock. Substantial evidence from studies in yeast has shown that SUMOylation plays an important role in the regulation of DNA replication and repair. Here, we report a proteomic analysis of proteins modified by SUMO2 in response to DNA replication stress in S phase in human cells. We have identified a panel of 22 SUMO2 targets with increased SUMOylation during DNA replication stress, many of which play key functions within the DNA replication machinery and/or in the cellular response to DNA damage. Interestingly, POLD3 was found modified most significantly in response to a low dose aphidicolin treatment protocol that promotes common fragile site (CFS) breakage. POLD3 is the human ortholog of POL32 in budding yeast, and has been shown to act during break-induced recombinational repair. We have also shown that deficiency of POLD3 leads to an increase in RPA-bound ssDNA when cells are under replication stress, suggesting that POLD3 plays a role in the cellular response to DNA replication stress. Considering that DNA replication stress is a source of genome instability, and that excessive replication stress is a hallmark of pre-neoplastic and tumor cells, our characterization of SUMO2 targets during a perturbed S-phase should provide a valuable resource for future functional studies in the fields of DNA metabolism and cancer biology.

  14. Characterization of protein complexes using targeted proteomics.

    Science.gov (United States)

    Gomez, Yassel Ramos; Gallien, Sebastien; Huerta, Vivian; van Oostrum, Jan; Domon, Bruno; Gonzalez, Luis Javier

    2014-01-01

    Biological systems are not only controlled by the abundance of individual proteins, but also by the formation of complexes and the dynamics of protein-protein interactions. The identification of the components of protein complexes can be obtained by shotgun proteomics using affinity purification coupled to mass spectrometry. Such studies include the analyses of several samples and experimental controls in order to discriminate true specific interactions from unspecific interactions and contaminants. However, shotgun proteomics have limited quantification capabilities for low abundant proteins on large sample sets due to the undersampling and the stochastic precursor ion selection. In this context, targeted proteomics constitutes a powerful analytical tool to systematically detect and quantify peptides in multiple samples, for instance those obtained from affinity purification experiments. Hypothesis-driven strategies have mainly relied on the selected reaction monitoring (SRM) technique performed on triple quadrupole instruments, which enables highly selective and sensitive measurements of peptides, acting as surrogates of the pre-selected proteins, over a wide range of concentrations. More recently, novel quantitative methods based on high resolution instruments, such as the parallel reaction monitoring (PRM) technique implemented on the quadrupole-orbitrap instrument, have arisen and provided alternatives to perform quantitative analyses with enhanced selectivity.The application of targeted proteomics to protein-protein interaction experiments from plasma and other physiological fluid samples and the inclusion of parallel reaction monitoring (PRM), combined with other recent technology developments opens a vast area for clinical application of proteomics. It is anticipated that it will reveal valuable information about specific, individual, responses against drugs, exogenous proteins or pathogens.

  15. Phloem sap proteome studied by iTRAQ provides integrated insight into salinity response mechanisms in cucumber plants.

    Science.gov (United States)

    Fan, Huaifu; Xu, Yanli; Du, Changxia; Wu, Xue

    2015-07-01

    Cucumber is an economically important crop as well as a model system for plant vascular biology. Salinity is one of the major environmental factors limiting plant growth. Here, we used an iTRAQ-based quantitative proteomics approach for comparative analysis of protein abundances in cucumber phloem sap in response to salt. A total of 745 distinct proteins were identified and 111 proteins were differentially expressed upon salinity in sensitive and tolerant cultivars, of which 69 and 65 proteins changed significantly in sensitive and tolerant cultivars, respectively. A bioinformatics analysis indicated that cucumber phloem employed a combination of induced metabolism, protein turnover, common stress response, energy and transport, signal transduction and regulation of transcription, and development proteins as protection mechanisms against salinity. The proteins that were mapped to the carbon fixation pathway decreased in abundance in sensitive cultivars and had no change in tolerant cultivars under salt stress, suggesting that this pathway may promote salt tolerance by stabilizing carbon fixation and maintaining the essential energy and carbohydrates in tolerant cultivars. This study leads to a better understanding of the salinity mechanism in cucumber phloem and provides a list of potential gene targets for the further engineering of salt tolerance in plants.

  16. Cadmium Toxicity Induced Alterations in the Root Proteome of Green Gram in Contrasting Response towards Iron Supplement

    Directory of Open Access Journals (Sweden)

    Sowbiya Muneer

    2014-04-01

    Full Text Available Cadmium signifies a severe threat to crop productivity and green gram is a notably iron sensitive plant which shows considerable variation towards cadmium stress. A gel-based proteomics analysis was performed with the roots of green gram exposed to iron and cadmium combined treatments. The resulting data show that twenty three proteins were down-regulated in iron-deprived roots either in the absence (−Fe/−Cd or presence (−Fe/+Cd of cadmium. These down-regulated proteins were however well expressed in roots under iron sufficient conditions, even in the presence of cadmium (+Fe/+Cd. The functional classification of these proteins determined that 21% of the proteins are associated with nutrient metabolism. The other proteins in higher quantities are involved in either transcription or translation regulation, and the rest are involved in biosynthesis metabolism, antioxidant pathways, molecular chaperones and stress response. On the other hand, several protein spots were also absent in roots in response to iron deprivation either in absence (−Fe/−Cd or presence (−Fe/+Cd of cadmium but were well expressed in the presence of iron (+Fe/+Cd. Results suggest that green gram plants exposed to cadmium stress are able to change the nutrient metabolic balance in roots, but in the mean time regulate cadmium toxicity through iron supplements.

  17. Stathmin reduction and cytoskeleton rearrangement in rat nucleus accumbens in response to clozapine and risperidone treatment - Comparative proteomic study.

    Science.gov (United States)

    Kedracka-Krok, S; Swiderska, B; Jankowska, U; Skupien-Rabian, B; Solich, J; Dziedzicka-Wasylewska, M

    2016-03-01

    The complex network of anatomical connections of the nucleus accumbens (NAc) makes it an interface responsible for the selection and integration of cognitive and affective information to modulate appetitive or aversively motivated behaviour. There is evidence for NAc dysfunction in schizophrenia. NAc also seems to be important for antipsychotic drug action, but the biochemical characteristics of drug-induced alterations within NAc remain incompletely characterized. In this study, a comprehensive proteomic analysis was performed to describe the differences in the mechanisms of action of clozapine (CLO) and risperidone (RIS) in the rat NAc. Both antipsychotics influenced the level of microtubule-regulating proteins, i.e., stathmin, and proteins of the collapsin response mediator protein family (CRMPs), and only CLO affected NAD-dependent protein deacetylase sirtuin-2 and septin 6. Both antipsychotics induced changes in levels of other cytoskeleton-related proteins. CLO exclusively up-regulated proteins involved in neuroprotection, such as glutathione synthetase, heat-shock 70-kDa protein 8 and mitochondrial heat-shock protein 75. RIS tuned cell function by changing the pattern of post-translational modifications of some proteins: it down-regulated the phosphorylated forms of stathmin and dopamine and the cyclic AMP-regulated phosphoprotein (DARPP-32) isoform but up-regulated cyclin-dependent kinase 5 (Cdk5). RIS modulated the level and phosphorylation state of synaptic proteins: synapsin-2, synaptotagmin-1 and adaptor-related protein-2 (AP-2) complex.

  18. Environmental proteomics reveals early microbial community responses to biostimulation at a uranium- and nitrate-contaminated site

    Energy Technology Data Exchange (ETDEWEB)

    Chourey, Karuna [ORNL; Nissen, Silke [ORNL; Vishnivetskaya, T. [University of Tennessee, Knoxville (UTK); Shah, Manesh B [ORNL; Pffifner, Susan [University of Tennessee, Knoxville (UTK); Hettich, Robert {Bob} L [ORNL; Loeffler, Frank E [ORNL

    2013-01-01

    High performance mass spectrometry instrumentation coupled with improved protein extraction techniques enable metaproteomics to identify active members of soil and groundwater microbial communities. Metaproteomics workflows were applied to study the initial responses (i.e., 4 days post treatment) of the indigenous aquifer microbiota to biostimulation with emulsified vegetable oil (EVO) at a uranium-contaminated site. Members of the Betaproteobacteria (i.e., Dechloromonas, Ralstonia, Rhodoferax, Polaromonas, Delftia, Chromobacterium) and Firmicutes dominated the biostimulated aquifer community. Proteome characterization revealed distinct differences in protein expression between the microbial biomass collected from groundwater influenced by biostimulation and groundwater collected up-gradient of the EVO injection points. In particular, proteins involved in ammonium assimilation, EVO degradation, and polyhydroxybutyrate (PHB) granule formation were prominent following biostimulation. Interestingly, the atypical NosZ of a Dechloromonas sp. was highly expressed suggesting active nitrous oxide (N2O) respiration. c-type cytochromes were barely detected, as was citrate synthase, a biomarker for hexavalent uranium reduction activity, suggesting that metal reduction has not commenced 4 days post EVO delivery. Environmental metaproteomics identified microbial community responses to biostimulation and elucidated active pathways demonstrating the value of this technique for complementing nucleic acid-based approaches.

  19. Quantitative proteomic analysis of the response of the wood-rot fungus, Schizophyllum commune, to the biocontrol fungus, Trichoderma viride.

    Science.gov (United States)

    Ujor, V C; Peiris, D G; Monti, M; Kang, A S; Clements, M O; Hedger, J N

    2012-04-01

    Investigation of changes in the protein profile of the wood-rot fungus, Schizophyllum commune, when paired against the biocontrol fungus, Trichoderma viride, for 48 h. Variations in protein profile resulting from contact with T. viride were assessed by spot separation using 2 dimensional protein gel electrophoresis followed by MALDI-TOF-TOF MS/MS protein identification. Contact with T. viride elicited a systematic response in S. commune, characterized by marked increases in proteins involved for transcription and translation (61%) and cell wall/hyphal biogenesis and stabilization (17%), whereas metabolism-associated proteins decreased in amounts (64%). Trichoderma viride, however, exhibited typical mycoparasitic behaviour with increases in the amounts of proteins involved in proteolysis and carbohydrate metabolism. The protein profile of S. commune confronted by T. viride indicates the up-regulation of mechanisms specifically targeted at the mycoparasitic machinery of T. viride, particularly cell wall lysis and antibiosis. The proteomic responses observed in S. commune may occur in natural environments, providing an insight to the mechanism involved in conferring resistance to mycoparasitic attack. This study, therefore, warrants further investigation for the targeted design of more robust biocontrol agents. © 2012 The Authors. Letters in Applied Microbiology © 2012 The Society for Applied Microbiology.

  20. Comparative proteomic analysis reveals molecular mechanism of seedling roots of different salt tolerant soybean genotypes in responses to salinity stress

    Directory of Open Access Journals (Sweden)

    Hongyu Ma

    2014-09-01

    Full Text Available Salinity stress is one of the major abiotic stresses that limit agricultural yield. To understand salt-responsive protein networks in soybean seedling, the extracted proteins from seedling roots of two different genotypes (Lee 68 and Jackson were analyzed under salt stress by two-dimensional polyacrylamide gel electrophoresis. Sixty-eight differentially expressed proteins were detected and identified. The identified proteins were involved in 13 metabolic pathways and cellular processes. Proteins correlated to brassinosteroid and gilbberellin signalings were significantly increased only in the genotype Lee 68 under salt stress; abscisic acid content was positively correlated with this genotype; proteins that can be correlated to Ca2+ signaling were more strongly enhanced by salt stress in the seedling roots of genotype Lee 68 than in those of genotype Jackson; moreover, genotype Lee 68 had stronger capability of reactive oxygen species scavenging and cell K+/Na+ homeostasis maintaining in seedling roots than genotype Jackson under salt stress. Since the genotype Lee 68 has been described in literature as being tolerant and Jackson as sensitive, we hypothesize that these major differences in the genotype Lee 68 might contribute to salt tolerance. Combined with our previous comparative proteomics analysis on seedling leaves, the similarities and differences between the salt-responsive protein networks found in the seedling leaves and roots of both the genotypes were discussed. Such a result will be helpful in breeding of salt-tolerant soybean cultivars.

  1. Cadmium toxicity induced alterations in the root proteome of green gram in contrasting response towards iron supplement.

    Science.gov (United States)

    Muneer, Sowbiya; Hakeem, Khalid Rehman; Mohamed, Rozi; Lee, Jeong Hyun

    2014-04-15

    Cadmium signifies a severe threat to crop productivity and green gram is a notably iron sensitive plant which shows considerable variation towards cadmium stress. A gel-based proteomics analysis was performed with the roots of green gram exposed to iron and cadmium combined treatments. The resulting data show that twenty three proteins were down-regulated in iron-deprived roots either in the absence (-Fe/-Cd) or presence (-Fe/+Cd) of cadmium. These down-regulated proteins were however well expressed in roots under iron sufficient conditions, even in the presence of cadmium (+Fe/+Cd). The functional classification of these proteins determined that 21% of the proteins are associated with nutrient metabolism. The other proteins in higher quantities are involved in either transcription or translation regulation, and the rest are involved in biosynthesis metabolism, antioxidant pathways, molecular chaperones and stress response. On the other hand, several protein spots were also absent in roots in response to iron deprivation either in absence (-Fe/-Cd) or presence (-Fe/+Cd) of cadmium but were well expressed in the presence of iron (+Fe/+Cd). Results suggest that green gram plants exposed to cadmium stress are able to change the nutrient metabolic balance in roots, but in the mean time regulate cadmium toxicity through iron supplements.

  2. iTRAQ-based quantitative proteomic analysis reveals proteomic changes in leaves of cultivated tobacco (Nicotiana tabacum) in response to drought stress.

    Science.gov (United States)

    Xie, He; Yang, Da-Hai; Yao, Heng; Bai, Ge; Zhang, Yi-Han; Xiao, Bing-Guang

    2016-01-15

    Drought is one of the most severe forms of abiotic stresses that threaten the survival of plants, including crops. In turn, plants dramatically change their physiology to increase drought tolerance, including reconfiguration of proteomes. Here, we studied drought-induced proteomic changes in leaves of cultivated tobacco (Nicotiana tabacum), a solanaceous plant, using the isobaric tags for relative and absolute quantitation (iTRAQ)-based protein labeling technology. Of identified 5570 proteins totally, drought treatment increased and decreased abundance of 260 and 206 proteins, respectively, compared with control condition. Most of these differentially regulated proteins are involved in photosynthesis, metabolism, and stress and defense. Although abscisic acid (ABA) levels greatly increased in drought-treated tobacco leaves, abundance of detected ABA biosynthetic enzymes showed no obvious changes. In contrast, heat shock proteins (HSPs), thioredoxins, ascorbate-, glutathione-, and hydrogen peroxide (H2O2)-related proteins were up- or down-regulated in drought-treated tobacco leaves, suggesting that chaperones and redox signaling are important for tobacco tolerance to drought, and it is likely that redox-induced posttranslational modifications play an important role in modulating protein activity. This study not only provides a comprehensive dataset on overall protein changes in drought-treated tobacco leaves, but also shed light on the mechanism by which solanaceous plants adapt to drought stress.

  3. Proteomic Profiling of Mesenchymal Stem Cell Responses to Mechanical Strain and TGF-B1

    Energy Technology Data Exchange (ETDEWEB)

    Kurpinski, Kyle; Chu, Julia; Wang, Daojing; Li, Song

    2009-10-12

    Mesenchymal stem cells (MSCs) are a potential source of smooth muscle cells (SMCs) for constructing tissue-engineered vascular grafts. However, the details of how specific combinations of vascular microenvironmental factors regulate MSCs are not well understood. Previous studies have suggested that both mechanical stimulation with uniaxial cyclic strain and chemical stimulation with transforming growth factor {beta}1 (TGF-{beta}1) can induce smooth muscle markers in MSCs. In this study, we investigated the combined effects of uniaxial cyclic strain and TGF-{beta}1 stimulation on MSCs. By using a proteomic analysis, we found differential regulation of several proteins and genes, such as the up-regulation of TGF-{beta}1-induced protein ig-h3 (BGH3) protein levels by TGF-{beta}1 and up-regulation of calponin 3 protein level by cyclic strain. At the gene expression level, BGH3 was induced by TGF-{beta}1, but calponin 3 was not significantly regulated by mechanical strain or TGF-{beta}1, which was in contrast to the synergistic up-regulation of calponin 1 gene expression by cyclic strain and TGF-{beta}1. Further experiments with cycloheximide treatment suggested that the up-regulation of calponin 3 by cyclic strain was at post-transcriptional level. The results in this study suggest that both mechanical stimulation and TGF-{beta}1 signaling play unique and important roles in the regulation of MSCs at both transcriptional and post-transcriptional levels, and that a precise combination of microenvironmental cues may promote MSC differentiation.

  4. The effects of eating marine- or vegetable-fed farmed trout on the human plasma proteome profiles of healthy men

    DEFF Research Database (Denmark)

    Rentsch, Maria Louise; Lametsch, René; Bügel, Susanne;

    2015-01-01

    of intervention, and after the removal of the twelve most abundant proteins, plasma proteins were separated by two-dimensional gel electrophoresis. Protein spots 4·3 visualised by silver staining were matched by two-dimensional imaging software. Within-subject changes in spots were compared...... between the treatment groups. Differentially affected spots were identified by matrix-assisted laser desorption ionisation-time of flight/time of flight MS and the human Swiss-Prot database. We found 23/681 abundant plasma protein spots, which were up- or down-regulated by the dietary treatment (P...spots differed from those in subjects given the chicken meal, but only three of these were common, and only one spot differed between the two trout groups. In both groups, the affected plasma proteins were involved in biological...

  5. Impact of benzo(a)pyrene, Cu and their mixture on the proteomic response of Mytilus galloprovincialis

    Energy Technology Data Exchange (ETDEWEB)

    Maria, V.L., E-mail: vmaria@ualg.pt [CIMA, Faculty of Sciences and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Gomes, T., E-mail: tcgomes@ualg.pt [CIMA, Faculty of Sciences and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Barreira, L., E-mail: lbarreir@ualg.pt [CCMAR, Faculty of Sciences and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Bebianno, M.J., E-mail: mbebian@ualg.pt [CIMA, Faculty of Sciences and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro (Portugal)

    2013-11-15

    Highlights: •Distinct protein expression profiles dependent of BaP and Cu accumulation, metabolism and chemical interactions in mussels, Mytilus galloprovincialis. •Processes that involve adhesion and motility, cytoskeleton and cell structure, stress response, transcription regulation and energy metabolism are common mechanisms. •Traditional (ATP synthase, GST, HSP and actin) and novel biomarkers for BaP (ZFP), Cu (chitin synthase) and mixture (MVP) exposures identified in mussels. -- Abstract: In natural waters, chemical interactions between mixtures of contaminants can result in potential synergistic and/or antagonic effects in aquatic animals. Benzo(a)pyrene (BaP) and copper (Cu) are two widespread environmental contaminants with known toxicity towards mussels Mytilus spp. The effects of the individual and the interaction of BaP and Cu exposures were assessed in mussels Mytilus galloprovincialis using proteomic analysis. Mussels were exposed to BaP [10 μg L{sup −1} (0.396 μM)], and Cu [10 μg L{sup −1} (0.16 μM)], as well as to their binary mixture (mixture) for a period of 7 days. Proteomic analysis showed different protein expression profiles associated to each selected contaminant condition. A non-additive combined effect was observed in mixture in terms of new and suppressed proteins. Proteins more drastically altered (new, suppressed and 2-fold differentially expressed) were excised and analyzed by mass spectrometry, and eighteen putatively identified. Protein identification demonstrated the different accumulation, metabolism and chemical interactions of BaP, Cu and their mixture, resulting in different modes of action. Proteins associated with adhesion and motility (catchin, twitchin and twitchin-like protein), cytoskeleton and cell structure (α-tubulin and actin), stress response (heat shock cognate 71, heat shock protein 70, putative C1q domain containing protein), transcription regulation (zinc-finger BED domain-containing and nuclear

  6. Outsmarting cancer: the power of hybrid genomic/proteomic biomarkers to predict drug response.

    Science.gov (United States)

    Rexer, Brent N; Arteaga, Carlos L

    2014-01-01

    A recent study by Niepel and colleagues describes a novel approach to predicting response to targeted anti-cancer therapies. The authors used biochemical profiling of signaling activity in basal and ligand-stimulated states for a panel of receptor and intracellular kinases to develop predictive models of drug sensitivity. In some cases, the response to ligand stimulation predicted drug response better than did target abundance or genomic alterations in the targeted pathway. Furthermore, combining biochemical profiles with genomic information was better at predicting drug response. This work suggests that incorporating biochemical signaling profiles with genomic alterations should provide powerful predictors of response to molecularly targeted therapies.

  7. Top-down proteomics reveals a unique protein S-thiolation switch in Salmonella Typimurium in response to infection-like conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ansong, Charles; Wu, Si; Meng, Da; Liu, Xiaowen; Brewer, Heather M.; Kaiser, Brooke LD; Nakayasu, Ernesto S.; Cort, John R.; Pevzner, Pavel A.; Smith, Richard D.; Heffron, Fred; Adkins, Joshua N.; Pasa-Tolic, Ljiljana

    2013-06-18

    Characterization of the mature protein complement in cells is crucial for a better understanding of cellular processes on a systems-wide scale. Bottom-up proteomic approaches often lead to loss of critical information about an endogenous protein’s actual state due to post translational modifications (PTMs) and other processes. Top-down approaches that involve analysis of the intact protein can address this concern but present significant analytical challenges related to the separation quality needed, measurement sensitivity, and speed that result in low throughput and limited coverage. Here we used single-dimension ultra high pressure liquid chromatography mass spectrometry to investigate the comprehensive ‘intact’ proteome of the Gram negative bacterial pathogen Salmonella Typhimurium. Top-down proteomics analysis revealed 563 unique proteins including 1665 proteoforms generated by PTMs, representing the largest microbial top-down dataset reported to date. Our analysis not only confirmed several previously recognized aspects of Salmonella biology and bacterial PTMs in general, but also revealed several novel biological insights. Of particular interest was differential utilization of the protein S-thiolation forms S-glutathionylation and S-cysteinylation in response to infection-like conditions versus basal conditions, which was corroborated by changes in corresponding biosynthetic pathways. This differential utilization highlights underlying metabolic mechanisms that modulate changes in cellular signaling, and represents to our knowledge the first report of S-cysteinylation in Gram negative bacteria. The demonstrated utility of our simple proteome-wide intact protein level measurement strategy for gaining biological insight should promote broader adoption and applications of top-down proteomics approaches.

  8. Comparative proteomic analysis of a membrane-enriched fraction from flag leaves reveals responses to chemical hybridization agent SQ-1 in wheat

    Directory of Open Access Journals (Sweden)

    Qilu eSong

    2015-08-01

    Full Text Available The induction of wheat male fertile lines by using the chemical hybridizing agent SQ-1 (CHA-SQ-1 is an effective approach in the utilization of heterosis; however, the molecular basis of male fertility remains unknown. Wheat flag leaves are the initial receptors of CHA-SQ-1 and their membrane structure plays a vital role in response to CHA-SQ-1 stress. To investigate the response of wheat flag leaves to CHA-SQ-1 stress, we compared their quantitative proteomic profiles in the absence and presence of CHA-SQ-1. Our results indicated that wheat flag leaves suffered oxidative stress during CHA-SQ-1 treatments. Leaf O2-, H2O2, and malonaldehyde levels were significantly increased within 10 h after CHA-SQ-1 treatment, while the activities of major antioxidant enzymes such as superoxide dismutase, catalase, and guaiacol peroxidase were significantly reduced. Proteome profiles of membrane-enriched fraction showed a change in the abundance of a battery of membrane proteins involved in multiple biological processes. These variable proteins mainly impaired photosynthesis, ATP synthesis protein mechanisms and were involved in the response to stress. These results provide an explanation of the relationships between membrane proteomes and anther abortion and the practical application of CHA for hybrid breeding.

  9. Unraveling the Root Proteome Changes and Its Relationship to Molecular Mechanism Underlying Salt Stress Response in Radish (Raphanus sativus L.)

    National Research Council Canada - National Science Library

    Xiaochuan Sun; Yan Wang; Liang Xu; Chao Li; Wei Zhang; Xiaobo Luo; Haiyan Jiang; Liwang Liu

    2017-01-01

    .... Na200, and Na100 vs. Na200, respectively. Functional annotation analysis revealed that salt stress elicited complex proteomic alterations in radish roots involved in carbohydrate and energy metabolism, protein metabolism, signal transduction...

  10. Plasma arginine vasopressin response to water load during labour

    Energy Technology Data Exchange (ETDEWEB)

    Singhi, S. (West Indies Univ., Mona (Jamaica). Dept. of Child Health); Parshad, O. (West Indies Univ., Mona (Jamaica). Dept. of Physiology)

    1985-02-01

    To find out whether plasma vasopressin (Psub(AVP)) response to a water load during pregnancy is inappropriately high, as had been speculated, we measured Psub(AVP)by radioimmunoassay in 30 women at the time of delivery. Ten women had received infusion of aqueous glucose solution during labour for hydration (GW group); another ten received infusion of glucose solution as a vehicle for oxytocin (IOT group), and ten women did not receive any intrapartum intravenous fluid therapy (controls). Serum sodium and osmolality were also determined in all the subjects. Psub(AVP) levels were significantly lower in GW (0.70 +- 0.4 pg/ml) and OT groups (0.7 +- 0.6 pg/ml) (P < 0.05). Significant negative correlation was seen between the amount of glucose solution infused and levels of Psub(AVP) (r = -0.66; P < 0.01), while a significant positive correlation was seen between Psub(AVP) and serum sodium (r = 0.61; P < 0.01). These findings suggest that during labour, the physiological relationship between serum osmolality and Psub(AVP) in intact, and the infusion of a water load in the form of aqueous glucose solution is attended by an expected lowering of Psub(AVP). We infer that inappropriate ADH response is not the cause of water retention and hyponatremia often seen in women receiving aqueous glucose solution during labor.

  11. A comparative proteomic analysis of the early response to compatible symbiotic bacteria in the roots of a supernodulating soybean variety.

    Science.gov (United States)

    Salavati, Afshin; Bushehri, Ali Akbar Shahnejat; Taleei, Alireza; Hiraga, Susumu; Komatsu, Setsuko

    2012-01-04

    To reveal the processes involved in the early stages of symbiosis between soybean plants and root nodule bacteria, we conducted a proteomic analysis of the response to bacterial inoculation in the roots of supernodulating (En-b0-1) and non-nodulating (En1282) varieties, and their parental normal-nodulating variety (Enrei). A total of 56 proteins were identified from 48 differentially expressed protein spots in normal-nodulating variety after bacterial inoculation. Among 56 proteins, metabolism- and energy production-related proteins were upregulated in supernodulating and downregulated in non-nodulating varieties compared to normal-nodulating variety. The supernodulating and non-nodulating varieties responded oppositely to bacterial inoculation with respect to the expression of 11 proteins. Seven proteins of these proteins was downregulated in supernodulating varieties compared to non-nodulating variety, but expression of proteasome subunit alpha type 6, gamma glutamyl hydrolase, glucan endo-1,3-beta glucosidase, and nodulin 35 was upregulated. The expression of seven proteins mirrored the degree of nodule formation. At the transcript level, expression of stem 31kDa glycoprotein, leucine aminopeptidase, phosphoglucomutase, and peroxidase was downregulated in the supernodulating variety compared to the non-nodulating variety, and their expression in the normal-nodulating variety was intermediate. These results suggest that suppression of the autoregulatory mechanism in the supernodulating variety might be due to negative regulation of defense and signal transduction-related processes. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Proteomic analysis of estrogen response of premalignant human breast cells using a 2-D liquid separation/mass mapping technique.

    Science.gov (United States)

    Zhao, Jia; Zhu, Kan; Lubman, David M; Miller, Fred R; Shekhar, Malthy P V; Gerard, Brigitte; Barder, Timothy J

    2006-07-01

    A 2-D liquid-phase separation method based on chromatofocusing and nonporous silica RP-HPLC followed by ESI-TOF-MS was used to analyze proteins in whole cell lysates from estrogen-treated and untreated premalignant, estrogen-responsive cell line MCF10AT1 cells. 2-D mass maps in the pH range 4.6-6.0 were generated with good correlation to theoretical M(r) values for intact proteins. Proteins were identified based on intact M(r), pI and PMF, or MS/MS sequencing. About 300 unique proteins were identified and 120 proteins in mass range 5-75 kDa were quantified upon treatment of estrogen. Around 40 proteins were found to be more highly expressed (>four-fold) and 17 were down-regulated (>four-fold) in treated cells. In our study, we found that many altered proteins have characteristics consistent with the development of a malignant phenotype. Some of them have a role in the ras pathway or play an important role in signal pathways. These changed proteins might be essential in the estrogen regulation mechanism. Our study highlights the use of the MCF10AT1 cell line to examine estrogen-induced changes in premalignant breast cells and the ability of the 2-D mass mapping technique to quantitatively study protein expression changes on a proteomic scale.

  13. Liver proteome response of largemouth bass (Micropterus salmoides) exposed to several environmental contaminants: Potential insights into biomarker development

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Brian C., E-mail: bcsanche@purdue.edu [Department of Forestry and Natural Resources, Purdue University, 195 Marsteller Street, West Lafayette, IN 47907 (United States); Ralston-Hooper, Kimberly J., E-mail: ralstonk@purdue.edu [Department of Forestry and Natural Resources, Purdue University, 195 Marsteller Street, West Lafayette, IN 47907 (United States); Kowalski, Kevin A., E-mail: kowalski@purdue.edu [Bindley Bioscience Center, Purdue Proteomics Facility, Purdue University, 1203 West State Street, West Lafayette, IN 47907 (United States); Dorota Inerowicz, H., E-mail: inerowic@purdue.edu [Bindley Bioscience Center, Purdue Proteomics Facility, Purdue University, 1203 West State Street, West Lafayette, IN 47907 (United States); Adamec, Jiri, E-mail: jadamec@purdue.edu [Bindley Bioscience Center, Purdue Proteomics Facility, Purdue University, 1203 West State Street, West Lafayette, IN 47907 (United States); Sepulveda, Maria S., E-mail: mssepulv@purdue.edu [Department of Forestry and Natural Resources, Purdue University, 195 Marsteller Street, West Lafayette, IN 47907 (United States)

    2009-10-19

    Liver proteome response of largemouth bass (Micropterus salmoides) exposed to environmental contaminants was analyzed to identify novel biomarkers of exposure. Adult male bass were exposed to cadmium chloride (CdCl{sub 2}), atrazine, PCB 126, phenanthrene, or toxaphene via intraperitoneal injection with target body burdens of 0.00067, 3.0, 2.5, 50, and 100 {mu}g/g, respectively. After a 96 h exposure, hepatic proteins were separated with two-dimensional gel electrophoresis and differentially expressed proteins (vs. controls) recognized and identified with MALDI-TOF/TOF mass spectrometry. We identified, 30, 18, eight, 19, and five proteins as differentially expressed within the CdCl{sub 2}, atrazine, PCB 126, phenanthrene, and toxaphene treatments, respectively. Alterations were observed in the expression of proteins associated with cellular ion homeostasis (toxaphene), oxidative stress (phenanthrene, PCB 126), and energy production including glycolysis (CdCl{sub 2}, atrazine) and ATP synthesis (atrazine). This work supports the further evaluation of several of these proteins as biomarkers of contaminant exposure in fish.

  14. Wheat Drought-Responsive Grain Proteome Analysis by Linear and Nonlinear 2-DE and MALDI-TOF Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Wu-Jun Ma

    2012-11-01

    Full Text Available A comparative proteomic analysis of drought-responsive proteins during grain development of two wheat varieties Kauz (strong resistance to drought stress and Janz (sensitive to drought stress was performed by using linear and nonlinear 2-DE and MALDI-TOF mass spectrometry technologies. Results revealed that the nonlinear 2-DE had much higher resolution than the linear 2-DE. A total of 153 differentially expressed protein spots were detected by both 2-DE maps, of which 122 protein spots were identified by MALDI-TOF and MALDI-TOF/TOF mass spectrometry. The identified differential proteins were mainly involved in carbohydrate metabolism (26%, detoxification and defense (23%, and storage proteins (17%. Some key proteins demonstrated significantly different expression patterns between the two varieties. In particular, catalase isozyme 1, WD40 repeat protein, LEA and alpha-amylase inhibitors displayed an upregulated expression pattern in Kauz, whereas they were downregulated or unchanged in Janz. Small and large subunit ADP glucose pyrophosphorylase, ascorbate peroxidase and G beta-like protein were all downregulated under drought stress in Janz, but had no expression changes in Kauz. Sucrose synthase and triticin precursor showed an upregulated expression pattern under water deficits in both varieties, but their upregulation levels were much higher in Kauz than in Janz. These differentially expressed proteins could be related to the biochemical pathways for stronger drought resistance of Kauz.

  15. Proteomic analysis of cellular response induced by multi-walled carbon nanotubes exposure in A549 cells.

    Directory of Open Access Journals (Sweden)

    Li Ju

    Full Text Available The wide application of multi-walled carbon nanotubes (MWCNT has raised serious concerns about their safety on human health and the environment. However, the potential harmful effects of MWCNT remain unclear and contradictory. To clarify the potentially toxic effects of MWCNT and to elucidate the associated underlying mechanisms, the effects of MWCNT on human lung adenocarcinoma A549 cells were examined at both the cellular and the protein level. Cytotoxicity and genotoxicity were examined, followed by a proteomic analysis (2-DE coupled with LC-MS/MS of the cellular response to MWCNT. Our results demonstrate that MWCNT induces cytotoxicity in A549 cells only at relatively high concentrations and longer exposure time. Within a relatively low dosage range (30 µg/ml and short time period (24 h, MWCNT treatment does not induce significant cytotoxicity, cell cycle changes, apoptosis, or DNA damage. However, at these low doses and times, MWCNT treatment causes significant changes in protein expression. A total of 106 proteins show altered expression at various time points and dosages, and of these, 52 proteins were further identified by MS. Identified proteins are involved in several cellular processes including proliferation, stress, and cellular skeleton organization. In particular, MWCNT treatment causes increases in actin expression. This increase has the potential to contribute to increased migration capacity and may be mediated by reactive oxygen species (ROS.

  16. Comparative proteomic analysis of differential responses of Pinus massoniana and Taxus wallichiana var. mairei to simulated acid rain.

    Science.gov (United States)

    Hu, Wen-Jun; Chen, Juan; Liu, Ting-Wu; Simon, Martin; Wang, Wen-Hua; Chen, Juan; Wu, Fei-Hua; Liu, Xiang; Shen, Zhi-Jun; Zheng, Hai-Lei

    2014-03-12

    Acid rain (AR), a serious environmental issue, severely affects plant growth and development. As the gymnosperms of conifer woody plants, Pinus massoniana (AR-sensitive) and Taxus wallichiana var. mairei (AR-resistant) are widely distributed in southern China. Under AR stress, significant necrosis and collapsed lesions were found in P. massoniana needles with remarkable yellowing and wilting tips, whereas T. wallichiana var. mairei did not exhibit chlorosis and visible damage. Due to the activation of a large number of stress-related genes and the synthesis of various functional proteins to counteract AR stress, it is important to study the differences in AR-tolerance mechanisms by comparative proteomic analysis of tolerant and sensitive species. This study revealed a total of 65 and 26 differentially expressed proteins that were identified in P. massoniana and T. wallichiana var. mairei, respectively. Among them, proteins involved in metabolism, photosynthesis, signal transduction and transcription were drastically down-regulated in P. massoniana, whereas most of the proteins participating in metabolism, cell structure, photosynthesis and transcription were increased in T. wallichiana var. mairei. These results suggest the distinct patterns of protein expression in the two woody species in response to AR, allowing a deeper understanding of diversity on AR tolerance in forest tree species.

  17. Comparative Proteomic Analysis of the Graft Unions in Hickory (Carya cathayensis Provides Insights into Response Mechanisms to Grafting Process

    Directory of Open Access Journals (Sweden)

    Daoliang Yan

    2017-04-01

    Full Text Available Hickory (Carya cathayensis, a tree with high nutritional and economic value, is widely cultivated in China. Grafting greatly reduces the juvenile phase length and makes the large scale cultivation of hickory possible. To reveal the response mechanisms of this species to grafting, we employed a proteomics-based approach to identify differentially expressed proteins in the graft unions during the grafting process. Our study identified 3723 proteins, of which 2518 were quantified. A total of 710 differentially expressed proteins (DEPs were quantified and these were involved in various molecular functional and biological processes. Among these DEPs, 341 were up-regulated and 369 were down-regulated at 7 days after grafting compared with the control. Four auxin-related proteins were down-regulated, which was in agreement with the transcription levels of their encoding genes. The Kyoto Encyclopedia of Genes and Genomes (KEGG analysis showed that the ‘Flavonoid biosynthesis’ pathway and ‘starch and sucrose metabolism’ were both significantly up-regulated. Interestingly, five flavonoid biosynthesis-related proteins, a flavanone 3-hyfroxylase, a cinnamate 4-hydroxylase, a dihydroflavonol-4-reductase, a chalcone synthase, and a chalcone isomerase, were significantly up-regulated. Further experiments verified a significant increase in the total flavonoid contents in scions, which suggests that graft union formation may activate flavonoid biosynthesis to increase the content of a series of downstream secondary metabolites. This comprehensive analysis provides fundamental information on the candidate proteins and secondary metabolism pathways involved in the grafting process for hickory.

  18. Identification of phosphorus deficiency responsive proteins in a high phosphorus acquisition soybean (Glycine max) cultivar through proteomic analysis.

    Science.gov (United States)

    Sha, Aihua; Li, Ming; Yang, Pingfang

    2016-05-01

    As one of the major oil crops, soybean might be seriously affected by phosphorus deficiency on both yield and quality. Understanding the molecular basis of phosphorus uptake and utilization in soybean may help to develop phosphorus (P) efficient cultivars. On this purpose, we conducted a comparative proteomic analysis on a high P acquisition soybean cultivar BX10 under low and high P conditions. A total of 61 unique proteins were identified as putative P deficiency responsive proteins. These proteins were involved in carbohydrate metabolism, protein biosynthesis/processing, energy metabolism, cellular processes, environmental defense/interaction, nucleotide metabolism, signal transduction, secondary metabolism and other metabolism related processes. Several proteins involved in energy metabolism, cellular processes, and protein biosynthesis and processing were found to be up-regulated in both shoots and roots, whereas, proteins involved in carbohydrate metabolism appeared to be down-regulated. These proteins are potential candidates for improving P acquisition. These findings provide a useful starting point for further research that will provide a more comprehensive understanding of molecular mechanisms through which soybeans adapt to P deficiency condition.

  19. Comparative Proteomic Analysis of Differential Responses of Pinus massoniana and Taxus wallichiana var. mairei to Simulated Acid Rain

    Directory of Open Access Journals (Sweden)

    Wen-Jun Hu

    2014-03-01

    Full Text Available Acid rain (AR, a serious environmental issue, severely affects plant growth and development. As the gymnosperms of conifer woody plants, Pinus massoniana (AR-sensitive and Taxus wallichiana var. mairei (AR-resistant are widely distributed in southern China. Under AR stress, significant necrosis and collapsed lesions were found in P. massoniana needles with remarkable yellowing and wilting tips, whereas T. wallichiana var. mairei did not exhibit chlorosis and visible damage. Due to the activation of a large number of stress-related genes and the synthesis of various functional proteins to counteract AR stress, it is important to study the differences in AR-tolerance mechanisms by comparative proteomic analysis of tolerant and sensitive species. This study revealed a total of 65 and 26 differentially expressed proteins that were identified in P. massoniana and T. wallichiana var. mairei, respectively. Among them, proteins involved in metabolism, photosynthesis, signal transduction and transcription were drastically down-regulated in P. massoniana, whereas most of the proteins participating in metabolism, cell structure, photosynthesis and transcription were increased in T. wallichiana var. mairei. These results suggest the distinct patterns of protein expression in the two woody species in response to AR, allowing a deeper understanding of diversity on AR tolerance in forest tree species.

  20. Rescue of F508del-CFTR by RXR motif inactivation triggers proteome modulation associated with the unfolded protein response.

    Science.gov (United States)

    Gomes-Alves, Patrícia; Couto, Francisco; Pesquita, Cátia; Coelho, Ana V; Penque, Deborah

    2010-04-01

    F508del-CFTR, the most common mutation of the cystic fibrosis transmembrane conductance regulator (CFTR) protein, disrupts intracellular trafficking leading to cystic fibrosis (CF). The trafficking defect of F508del-CFTR can be rescued by simultaneous inactivation of its four RXR motifs (4RK). Proteins involved in the F508del-CFTR trafficking defect and/or rescue are therefore potential CF therapeutic targets. We sought to identify these proteins by investigating differential proteome modulation in BHK cells over-expressing wt-CFTR, F508del-CFTR or the revertant F508del/4RK-CFTR. By 2-dimensional electrophoresis-based proteomics and western blot approaches we demonstrated that over-expression of F508del/4RK-CFTR modulates the expression of a large number of proteins, many of which are reported interactors of CFTR and/or 14-3-3 with potential roles in CFTR trafficking. GRP78/BiP, a marker of ER stress and unfolded protein response (UPR), is up-regulated in cells over-expressing either F508del-CFTR or F598del/4RK-CFTR. However, over-expression of F508del/4RK-CFTR induces the up-regulation of many other UPR-associated proteins (e.g. GRP94, PDI, GRP75/mortalin) and, interestingly, the down-regulation of proteasome components associated with CFTR degradation, such as the proteasome activator PA28 (PSME2) and COP9 signalosome (COPS5/CSN5). Moreover, the F508del-CFTR-induced proteostasis imbalance, which involves some heat shock chaperones (e.g. HSP72/Hpa2), ER-EF-hand Ca(2+)-binding proteins (calumenin) and the proteasome activator PA28 (PSME2), tends to be 'restored', i.e., in BHK cells over-expressing F508del/4RK-CFTR those proteins tend to have expression levels similar to the wild-type ones. These findings indicate that a particular cellular environment orchestrated by the UPR contributes to and/or is compatible with F508del/4RK-CFTR rescue.

  1. Changes in the proteomic and metabolic profiles of Beta vulgaris root tips in response to iron deficiency and resupply

    Directory of Open Access Journals (Sweden)

    Álvarez-Fernández Ana

    2010-06-01

    Full Text Available Abstract Background Plants grown under iron deficiency show different morphological, biochemical and physiological changes. These changes include, among others, the elicitation of different strategies to improve the acquisition of Fe from the rhizosphere, the adjustment of Fe homeostasis processes and a reorganization of carbohydrate metabolism. The application of modern techniques that allow the simultaneous and untargeted analysis of multiple proteins and metabolites can provide insight into multiple processes taking place in plants under Fe deficiency. The objective of this study was to characterize the changes induced in the root tip proteome and metabolome of sugar beet plants in response to Fe deficiency and resupply. Results Root tip extract proteome maps were obtained by 2-D isoelectric focusing polyacrylamide gel electrophoresis, and approximately 140 spots were detected. Iron deficiency resulted in changes in the relative amounts of 61 polypeptides, and 22 of them were identified by mass spectrometry (MS. Metabolites in root tip extracts were analyzed by gas chromatography-MS, and more than 300 metabolites were resolved. Out