WorldWideScience

Sample records for plasma propulsion final

  1. The Potential for Ambient Plasma Wave Propulsion

    Science.gov (United States)

    Gilland, James H.; Williams, George J.

    2016-01-01

    A truly robust space exploration program will need to make use of in-situ resources as much as possible to make the endeavor affordable. Most space propulsion concepts are saddled with one fundamental burden; the propellant needed to produce momentum. The most advanced propulsion systems currently in use utilize electric and/or magnetic fields to accelerate ionized propellant. However, significant planetary exploration missions in the coming decades, such as the now canceled Jupiter Icy Moons Orbiter, are restricted by propellant mass and propulsion system lifetimes, using even the most optimistic projections of performance. These electric propulsion vehicles are inherently limited in flexibility at their final destination, due to propulsion system wear, propellant requirements, and the relatively low acceleration of the vehicle. A few concepts are able to utilize the environment around them to produce thrust: Solar or magnetic sails and, with certain restrictions, electrodynamic tethers. These concepts focus primarily on using the solar wind or ambient magnetic fields to generate thrust. Technically immature, quasi-propellantless alternatives lack either the sensitivity or the power to provide significant maneuvering. An additional resource to be considered is the ambient plasma and magnetic fields in solar and planetary magnetospheres. These environments, such as those around the Sun or Jupiter, have been shown to host a variety of plasma waves. Plasma wave propulsion takes advantage of an observed astrophysical and terrestrial phenomenon: Alfven waves. These are waves that propagate in the plasma and magnetic fields around and between planets and stars. The generation of Alfven waves in ambient magnetic and plasma fields to generate thrust is proposed as a truly propellantless propulsion system which may enable an entirely new matrix of exploration missions. Alfven waves are well known, transverse electromagnetic waves that propagate in magnetized plasmas at

  2. High Power Helicon Plasma Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed work seeks to develop and optimize an electrode-less plasma propulsion system that is based on a high power helicon (HPH) that is being developed...

  3. High Power Helicon Plasma Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A new thruster has been conceived and tested that is based on a high power helicon (HPH) plasma wave. In this new method of propulsion, an antenna generates and...

  4. Microdischarge plasma thrusters for small satellite propulsion

    Science.gov (United States)

    Raja, Laxminarayan

    2009-10-01

    Small satellites weighing less than 100 kg are gaining importance in the defense and commercial satellite community owing to advantages of low costs to build and operate, simplicity of design, rapid integration and testing, formation flying, and multi-vehicle operations. The principal challenge in the design and development of small satellite subsystems is the severe mass, volume, and power constraints posed by the overall size of the satellite. The propulsion system in particular is hard to down scale and as such poses a major stumbling block for small satellite technology. Microdischarge-based miniaturized plasma thrusters are potentially a novel solution to this problem. In its most basic form a microdischarge plasma thruster is a simple extension of a cold gas micronozzle propulsion device, where a direct or alternating current microdischarge is used to preheat the gas stream to improve to specific impulse of the device. We study a prototypical thruster device using a detailed, self-consistent coupled plasma and fluid flow computational model. The model describes the microdischarge power deposition, plasma dynamics, gas-phase chemical kinetics, coupling of the plasma phenomena with high-speed flow, and overall propulsion system performance. Unique computational challenges associated with microdischarge modeling in the presence of high-speed flows are addressed. Compared to a cold gas micronozzle, a significant increase in specific impulse (50 to 100 %) is obtained from the power deposition in the diverging supersonic section of the thruster nozzle. The microdischarge remains mostly confined inside the micronozzle and operates in an abnormal glow discharge regime. Gas heating, primarily due to ion Joule heating, is found to have a strong influence on the overall discharge behavior. The study provides a validation of the concept as simple and effective approach to realizing a relatively high-specific impulse thruster device at small geometric scales.

  5. Magnetized Target Fusion Propulsion: Plasma Injectors for MTF Guns

    Science.gov (United States)

    Griffin, Steven T.

    2003-01-01

    To achieve increased payload size and decreased trip time for interplanetary travel, a low mass, high specific impulse, high thrust propulsion system is required. This suggests the need for research into fusion as a source of power and high temperature plasma. The plasma would be deflected by magnetic fields to provide thrust. Magnetized Target Fusion (MTF) research consists of several related investigations into these topics. These include the orientation and timing of the plasma guns and the convergence and interface development of the "pusher" plasma. Computer simulations of the gun as it relates to plasma initiation and repeatability are under investigation. One of the items under development is the plasma injector. This is a surface breakdown driven plasma generator designed to function at very low pressures. The performance, operating conditions and limitations of these injectors need to be determined.

  6. Brief review on plasma propulsion with neutralizer-free systems

    Science.gov (United States)

    Rafalskyi, D.; Aanesland, A.

    2016-06-01

    Electric space propulsion is an intensively developing field addressing new demands and challenges for long-term spacecraft operation. Many novel plasma propulsion concepts aim to find new acceleration principles, use alternative propellants, upscale or downscale thrusters for large thrust or for very small spacecrafts etc. In this work we review the neutralizer-free concepts, where both positive and negative particles are extracted and accelerated from plasmas. We can divide these concepts into three main categories, defined by their acceleration principle: (i) neutral beam generation, (ii) plasma acceleration/expansion and (iii) bipolar beam acceleration. We describe the basic physical principles and evaluate the main advantages and drawbacks in view of general space applications. We also present here further detail on a recent concept where RF voltages are used to accelerate quasi-simultaneously positive ions and electrons from the same source.

  7. Plasma Detachment Mechanisms in Propulsive Magnetic Nozzles

    Science.gov (United States)

    2013-03-07

    this research was provided by the Gobierno de Espa~na (Project AYA-2010-61699). 1E. Ahedo and M. Merino, “Two-dimensional supersonic plasma accelera...must be emphasized that they have no direct influence on the forma - tion of the QDL itself nor the magnitude of the potential jump across it, which...reprints for Governmental purpose notwithstanding any copyright notation hereon. Additional support for this research was provided by the Gobierno de

  8. Experimental research on electrical propulsion. Note 2: Experimental research on a plasma jet with vortex type stabilization for propulsion

    Science.gov (United States)

    Robotti, A. C.; Oggero, M.

    1985-01-01

    Results of experimental electric propulsion research are presented. A plasma generator, with an arc stabilized by an air vortex is examined. The heat transfer efficiency between arc and fluid environment at a varying current and flow rate is discussed.

  9. Effects of Confined Laser Ablation on Laser Plasma Propulsion

    Institute of Scientific and Technical Information of China (English)

    ZHENG Zhi-Yuan; ZHANG Jie; LU Xin; HAO Zuo-Qiang; XU Miao-Hua; WANG Zhao-Hua; WEI Zhi-Yi

    2005-01-01

    @@ We investigate the effects of confined laser ablation on laser plasma propulsion. Compared with planar ablation,the cavity ablation provides an effective way to obtain a large target momentum and a high coupling coefficient.When laser pukes are focused into a cavity with 1 mm diameter and 2mm depth, a high coupling coefficient is obtained. By using a glass layer to cover the cavity, the coupling coefficient is enhanced by 10 times. Meanwhile,it is found that with the increase of the target surface size, the target momentum presents a linear increase.

  10. Plasma simulation in a hybrid ion electric propulsion system

    Science.gov (United States)

    Jugroot, Manish; Christou, Alex

    2015-04-01

    An exciting possibility for the next generation of satellite technology is the microsatellite. These satellites, ranging from 10-500 kg, can offer advantages in cost, reduced risk, and increased functionality for a variety of missions. For station keeping and control of these satellites, a suitable compact and high efficiency thruster is required. Electrostatic propulsion provides a promising solution for microsatellite thrust due to their high specific impulse. The rare gas propellant is ionized into plasma and generates a beam of high speed ions by electrostatic processes. A concept explored in this work is a hybrid combination of dc ion engines and hall thrusters to overcome space-charge and lifetime limitations of current ion thruster technologies. A multiphysics space and time-dependent formulation was used to investigate and understand the underlying physical phenomena. Several regions and time scales of the plasma have been observed and will be discussed.

  11. Nuclear electric propulsion mission engineering study. Volume 2: Final report

    Science.gov (United States)

    1973-01-01

    Results of a mission engineering analysis of nuclear-thermionic electric propulsion spacecraft for unmanned interplanetary and geocentric missions are summarized. Critical technologies associated with the development of nuclear electric propulsion (NEP) are assessed, along with the impact of its availability on future space programs. Outer planet and comet rendezvous mission analysis, NEP stage design for geocentric and interplanetary missions, NEP system development cost and unit costs, and technology requirements for NEP stage development are studied.

  12. Innovation in the development of plasma propulsion devices in Israel

    Science.gov (United States)

    Lev, Dan R.

    2017-04-01

    In this paper we review plasma propulsion development approach which focuses on innovation. We then bring the example of the state of Israel in general, and Rafael in particular, and show how it has adopted an innovative approach to develop a low power Hall thruster and a low current cathode. To present one special test-case of innovation we elaborate upon the development process of a heaterless hollow cathode that was developed at Rafael. In particular, by presenting the cathode characterization and wear test results we demonstrate that the heaterless cathode developed has a sufficiently wide operational range and may operate continuously for 1,500 hours without any measurable degradation in performance.

  13. Plasma Propulsion of a Metallic Micro-droplet and its Deformation upon Laser Impact

    CERN Document Server

    Kurilovich, Dmitry; Torretti, Francesco; Lassise, Adam; Hoekstra, Ronnie; Ubachs, Wim; Gelderblom, Hanneke; Versolato, Oscar O

    2016-01-01

    The propulsion of a liquid indium-tin micro-droplet by nanosecond-pulse laser impact is experimentally investigated. We capture the physics of the droplet propulsion in a scaling law that accurately describes the plasma-imparted momentum transfer, enabling the optimization of the laser-droplet coupling. The subsequent deformation of the droplet is described by an analytical model that accounts for the droplet's propulsion velocity and the liquid properties. Comparing our findings to those from vaporization-accelerated mm-sized water droplets, we demonstrate that the hydrodynamic response of laser-impacted droplets is scalable and independent of the propulsion mechanism.

  14. Effect of Ambipolar Potential on the Propulsive Performance of the GDM Plasma Thruster Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Gasdynamic Mirror (GDM) thruster is an electric propulsion device, without electrodes, that will magnetically confine a plasma with such density and temperature...

  15. Fundamental Study of Interactions Between High-Density Pulsed Plasmas and Materials for Space Propulsion

    Science.gov (United States)

    2012-09-01

    interactions studies (plasma too cold and too “dirty.”) We have built and tested a new, gas -fed, non- ablative, rep-rated capillary plasma source for our...those encountered in space propulsion devices including Pulsed Plasma Thrusters (PPT), Magneto-Plasma Dynamic (MPD) thrusters and capillary plasma...based thrusters . The ongoing research work brings together a team of researchers from the University of Texas at Austin (UT) and the University of

  16. COMPASS Final Report: Enceladus Solar Electric Propulsion Stage

    Science.gov (United States)

    Oleson, Steven R.; McGuire, Melissa L.

    2011-01-01

    The results of the NASA Glenn Research Center (GRC) COllaborative Modeling and Parametric Assessment of Space Systems (COMPASS) internal Solar Electric Propulsion (SEP) stage design are documented in this report (Figure 1.1). The SEP Stage was designed to deliver a science probe to Saturn (the probe design was performed separately by the NASA Goddard Space Flight Center s (GSFC) Integrated Mission Design Center (IMDC)). The SEP Stage delivers the 2444 kg probe on a Saturn trajectory with a hyperbolic arrival velocity of 5.4 km/s. The design carried 30 percent mass, 10 percent power, and 6 percent propellant margins. The SEP Stage relies on the probe for substantial guidance, navigation and control (GN&C), command and data handling (C&DH), and Communications functions. The stage is configured to carry the probe and to minimize the packaging interference between the probe and the stage. The propulsion system consisted of a 1+1 (one active, one spare) configuration of gimbaled 7 kW NASA Evolutionary Xenon Thruster (NEXT) ion propulsion thrusters with a throughput of 309 kg Xe propellant. Two 9350 W GaAs triple junction (at 1 Astronomical Unit (AU), includes 10 percent margin) ultra-flex solar arrays provided power to the stage, with Li-ion batteries for launch and contingency operations power. The base structure was an Al-Li hexagonal skin-stringer frame built to withstand launch loads. A passive thermal control system consisted of heat pipes to north and south radiator panels, multilayer insulation (MLI) and heaters for the Xe tank. All systems except tanks and solar arrays were designed to be single fault tolerant.

  17. LDRD final report on nanovehicle light-driven propulsion.

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Anup K.; van Swol, Frank B.; Shelnutt, John Allen; Medforth, Craig J.; Song, Yujiang

    2004-12-01

    Having demonstrated the possibility of constructing nanoscale metallic vehicular bodies as described in last year's proposal, our goals have been to make uniform preparations of the metallized lipid assemblies and to determine the feasibility of powering these nanostructures with biological motors that are activated and driven by visible light. We desired that the propulsion system be constructed entirely by self-assembly and powered by a photocatalytic process partially already built into the nanovehicle. The nanovehicle we desire to build is composed of both natural biological components (ATPase, kinesin-microtubules) and biomimetic components (platinized liposomes, photosynthetic membrane) as functional units. The vehicle's body was originally envisioned to be composed of a surfactant liposomal bilayer coated with platinum nanoparticles, but instead of the expected nanoparticles we were able to grow dendritic 2-nm thick platinum sheets on the liposomes. Now, we have shown that it is possible to completely enclose the liposomes with sheeting to form porous platinum spheres, which show good structural stability as evidenced by their ability to survive the stresses of electron-microscopy sample preparation. Our goals were to control the synthesis of the platinized liposomes well enough to make uniform preparations of the coated individual liposomes and to develop the propulsion system for these nanovehicles a hydrogen-evolving artificial photosynthetic system in the liposomal bilayer that generates the pH gradient across the membrane that is necessary to drive the synthesis of ATP by ATP-synthase incorporated in the membrane. ATP produced would fuel the molecular motor (kinesin) attached to the vehicle, needing only light, storable ADP, phosphate, and an electron donor to be produced by ATP-synthase in the membrane. These research goals appear to be attainable, but growing the uniform preparations of the liposomes coated with dendritic platinum sheeting

  18. Plasma Propulsion of a Metallic Microdroplet and its Deformation upon Laser Impact

    Science.gov (United States)

    Kurilovich, Dmitry; Klein, Alexander L.; Torretti, Francesco; Lassise, Adam; Hoekstra, Ronnie; Ubachs, Wim; Gelderblom, Hanneke; Versolato, Oscar O.

    2016-07-01

    The propulsion of a liquid indium-tin microdroplet by nanosecond-pulse laser impact is experimentally investigated. We capture the physics of the droplet propulsion in a scaling law that accurately describes the plasma-imparted momentum transfer over nearly three decades of pulse energy, enabling the optimization of the laser-droplet coupling. The subsequent deformation of the droplet is described by an analytical model that accounts for the droplet's propulsion velocity and the liquid properties. Comparing our findings to those from vaporization-accelerated millimeter-sized water droplets, we demonstrate that the fluid-dynamic response of laser-impacted droplets is scalable and decoupled from the propulsion mechanism. By contrast, the physics behind the propulsion of liquid-metal droplets differs from that of water. It is studied here in detail and under industrially relevant conditions as found in next-generation nanolithography machines.

  19. To Mars and beyond, fast! how plasma propulsion will revolutionize space exploration

    CERN Document Server

    Chang Díaz, Franklin

    2017-01-01

    As advanced space propulsion moves slowly from science fiction to achievable reality, the Variable Specific Impulse Magnetoplasma Rocket, or VASIMR, is a leading contender for making 'Mars in a month' a possibility. Developed by Ad Astra Rockets, which was founded by astronaut Franklin Chang-Diaz and backed by NASA, its first commercial tests are imminent. VASIMR heats plasma to extreme temperatures using radio waves. Strong magnetic fields then funnel this plasma out the back of the engine, creating thrust. The continuous propulsion may place long, fast interplanetary journeys within reach in the near future. While scientists dream of the possibilities of using fusion or well-controlled matter-antimatter interactions to propel spacecraft fast and far, that goal is still some way over the horizon. VASIMR provides a more attainable propulsion technology that is based on the matter-antimatter concept. The book describes a landmark technology grounded in plasma physics and offering a practical technological solu...

  20. Concept Study of Radio Frequency (RF Plasma Thruster for Space Propulsion

    Directory of Open Access Journals (Sweden)

    Anna-Maria Theodora ANDREESCU

    2016-12-01

    Full Text Available Electric thrusters are capable of accelerating ions to speeds that are impossible to reach using chemical reaction. Recent advances in plasma-based concepts have led to the identification of electromagnetic (RF generation and acceleration systems as able to provide not only continuous thrust, but also highly controllable and wide-range exhaust velocities. For Future Space Propulsion there is a pressing need for low pressure, high mass flow rate and controlled ion energies. This paper explores the potential of using RF heated plasmas for space propulsion in order to mitigate the electric propulsion problems caused by erosion and gain flexibility in plasma manipulation. The main key components of RF thruster architecture are: a feeding system able to provide the required neutral gas flow, plasma source chamber, antenna/electrodes wrapped around the discharge tube and optimized electromagnetic field coils for plasma confinement. A preliminary analysis of system performance (thrust, specific impulse, efficiency is performed along with future plans of Space Propulsion based on this new concept of plasma mechanism.

  1. Modeling of plasma in a hybrid electric propulsion for small satellites

    Science.gov (United States)

    Jugroot, Manish; Christou, Alex

    2016-09-01

    As space flight becomes more available and reliable, space-based technology is allowing for smaller and more cost-effective satellites to be produced. Working in large swarms, many small satellites can provide additional capabilities while reducing risk. These satellites require efficient, long term propulsion for manoeuvres, orbit maintenance and de-orbiting. The high exhaust velocity and propellant efficiency of electric propulsion makes it ideally suited for low thrust missions. The two dominant types of electric propulsion, namely ion thrusters and Hall thrusters, excel in different mission types. In this work, a novel electric hybrid propulsion design is modelled to enhance understanding of key phenomena and evaluate performance. Specifically, the modelled hybrid thruster seeks to overcome issues with existing Ion and Hall thruster designs. Scaling issues and optimization of the design will be discussed and will investigate a conceptual design of a hybrid spacecraft plasma engine.

  2. First Breakthrough for Future Air-Breathing Magneto-Plasma Propulsion Systems

    CERN Document Server

    Goksel, Berkant

    2016-01-01

    A new breakthrough in jet propulsion technology since the invention of the jet engine is achieved. The first critical tests for future air-breathing magneto-plasma propulsion systems have been successfully completed. In this regard, it is also the first time that a pinching dense plasma focus discharge could be ignited at one atmosphere and driven in pulse mode using very fast, nanosecond electrostatic excitations to induce self-organized plasma channels for ignition of the propulsive main discharge. Depending on the capacitor voltage (200-600 V) the energy input at one atmosphere varies from 52-320 J/pulse corresponding to impulse bits from 1.2-8.0 mNs. Such a new pulsed plasma propulsion system driven with one thousand pulses per second would already have thrust-to-area ratios (50-150 kN/m2) of modern jet engines. An array of thrusters could enable future aircrafts and airships to start from ground and reach altitudes up to 50km and beyond. The needed high power could be provided by future compact plasma fu...

  3. Results of the qualification test campaign of a Pulsed Plasma Thruster for Cubesat Propulsion (PPTCUP)

    Science.gov (United States)

    Ciaralli, S.; Coletti, M.; Gabriel, S. B.

    2016-04-01

    Pulsed Plasma Thruster for Cubesat Propulsion (PPTCUP) is an ablative pulsed plasma thruster designed with the aim of providing translational and orbital control to Cubesat platforms. The qualification model presented in this paper has been developed by Mars Space Ltd, Clyde Space Ltd and the University of Southampton to produce a versatile "stand-alone" module that can be bolted on the Cubesat structure, allowing the orbital control along the X or Y-axis of the satellite. An extensive and complete test campaign to qualify the unit for space flight, which includes electromagnetic compatibility (EMC) characterization, thermal cycling and mechanical tests, has been performed according to the NASA GEVS procedures. PPTCUP is characterized by an averaged specific impulse of 655±58 s and a deliverable total impulse of 48.2±4.2 Ns. Finally, it has been found that the unit is compliant with the EMC requirements and can successfully withstand the thermal and mechanical loads typical of a Cubesat space mission.

  4. Magnetic Dipole Inflation with Cascaded ARC and Applications to Mini-Magnetospheric Plasma Propulsion

    Science.gov (United States)

    Giersch, L.; Winglee, R.; Slough, J.; Ziemba, T.; Euripides, P.

    2003-01-01

    Mini-Magnetospheric Plasma Propulsion (M2P2) seeks to create a plasma-inflated magnetic bubble capable of intercepting significant thrust from the solar wind for the purposes of high speed, high efficiency spacecraft propulsion. Previous laboratory experiments into the M2P2 concept have primarily used helicon plasma sources to inflate the dipole magnetic field. The work presented here uses an alternative plasma source, the cascaded arc, in a geometry similar to that used in previous helicon experiments. Time resolved measurements of the equatorial plasma density have been conducted and the results are discussed. The equatorial plasma density transitions from an initially asymmetric configuration early in the shot to a quasisymmetric configuration during plasma production, and then returns to an asymmetric configuration when the source is shut off. The exact reasons for these changes in configuration are unknown, but convection of the loaded flux tube is suspected. The diffusion time was found to be an order of magnitude longer than the Bohm diffusion time for the period of time after the plasma source was shut off. The data collected indicate the plasma has an electron temperature of approximately 11 eV, an order of magnitude hotter than plasmas generated by cascaded arcs operating under different conditions. In addition, indirect evidence suggests that the plasma has a beta of order unity in the source region.

  5. Advanced space propulsion study - antiproton and beamed-power propulsion. Final report, 1 May 1986-30 June 1987

    Energy Technology Data Exchange (ETDEWEB)

    Forward, R.L.

    1987-10-01

    The contract objective was to monitor the research at the forefront of physics and engineering to discover new spacecraft-propulsion concepts. The major topics covered were antiproton-annihilation propulsion, laser thermal propulsion, laser-pushed lightsails, tether transportation systems, solar sails, and metallic hydrogen. Five papers were prepared and are included as appendices. They covered 1) pellet, microwave, and laser-beamed power systems for interstellar transport; 2) a design for a near-relativistic laser-pushed lightsail using near-term laser technology; 3) a survey of laser thermal propulsion, tether transportation systems, antiproton annihilation propulsion, exotic applications of solar sails, and laser-pushed interstellar lightsails; 4) the status of antiproton annihilation propulsion as of 1986, and 5) the prospects for obtaining antimatter ions heavier than antiprotons. Two additional appendices contain the first seven issues of the Mirror Matter Newsletter concerning the science and technology of antimatter, and an annotated bibliography of antiproton science and technology.

  6. Coaxial plasma thrusters for high specific impulse propulsion

    Science.gov (United States)

    Schoenberg, Kurt F.; Gerwin, Richard A.; Barnes, Cris W.; Henins, Ivars; Mayo, Robert; Moses, Ronald, Jr.; Scarberry, Richard; Wurden, Glen

    1991-01-01

    A fundamental basis for coaxial plasma thruster performance is presented and the steady-state, ideal MHD properties of a coaxial thruster using an annular magnetic nozzle are discussed. Formulas for power usage, thrust, mass flow rate, and specific impulse are acquired and employed to assess thruster performance. The performance estimates are compared with the observed properties of an unoptimized coaxial plasma gun. These comparisons support the hypothesis that ideal MHD has an important role in coaxial plasma thruster dynamics.

  7. Fundamental Processes in Plasmas. Final report

    Energy Technology Data Exchange (ETDEWEB)

    O' Neil, Thomas M.; Driscoll, C. Fred

    2009-11-30

    This research focuses on fundamental processes in plasmas, and emphasizes problems for which precise experimental tests of theory can be obtained. Experiments are performed on non-neutral plasmas, utilizing three electron traps and one ion trap with a broad range of operating regimes and diagnostics. Theory is focused on fundamental plasma and fluid processes underlying collisional transport and fluid turbulence, using both analytic techniques and medium-scale numerical simulations. The simplicity of these systems allows a depth of understanding and a precision of comparison between theory and experiment which is rarely possible for neutral plasmas in complex geometry. The recent work has focused on three areas in basic plasma physics. First, experiments and theory have probed fundamental characteristics of plasma waves: from the low-amplitude thermal regime, to inviscid damping and fluid echoes, to cold fluid waves in cryogenic ion plasmas. Second, the wide-ranging effects of dissipative separatrices have been studied experimentally and theoretically, finding novel wave damping and coupling effects and important plasma transport effects. Finally, correlated systems have been investigated experimentally and theoretically: UCSD experients have now measured the Salpeter correlation enhancement, and theory work has characterized the 'guiding center atoms of antihydrogen created at CERN.

  8. Magnetic Flux Compression Using Detonation Plasma Armatures and Superconductor Stators: Integrated Propulsion and Power Applications

    Science.gov (United States)

    Litchford, Ron; Robertson, Tony; Hawk, Clark; Turner, Matt; Koelfgen, Syri

    1999-01-01

    This presentation discusses the use of magnetic flux compression for space flight applications as a propulsion and other power applications. The qualities of this technology that make it suitable for spaceflight propulsion and power, are that it has high power density, it can give multimegawatt energy bursts, and terawatt power bursts, it can produce the pulse power for low impedance dense plasma devices (e.g., pulse fusion drivers), and it can produce direct thrust. The issues of a metal vs plasma armature are discussed, and the requirements for high energy output, and fast pulse rise time requires a high speed armature. The plasma armature enables repetitive firing capabilities. The issues concerning the high temperature superconductor stator are also discussed. The concept of the radial mode pulse power generator is described. The proposed research strategy combines the use of computational modeling (i.e., magnetohydrodynamic computations, and finite element modeling) and laboratory experiments to create a demonstration device.

  9. Experimental Research on Plasma Induced by TEA CO2 Laser Propulsion

    Institute of Scientific and Technical Information of China (English)

    LU Hong; CHENG Zuhai; ZUO Duluo; ZHAI Bingjie; YU Liangying; ZHU Haihong

    2008-01-01

    Results in the air-breathing propulsion experiments with a parabolic light craft and a self-made UV-preionized 100 J TEA CO2 laser device are presented. Air disturbance and the spectrum of the plasma after the interaction of pulsed laser radiation with the light craft were studied. It was found that the focal length of the parabolic light craft had a significant effect on the air-disturbance. Two shock waves were detected for the longer focal length, while only one shock wave detected for the short focal length. The spectrum of the laser-induced plasma, the distribution of the characteristic lines, and the temporal behaviors of the air plasma were studied in detail. The results showed that, the evolution of the laser-induced plasma lasted 20 μs, and the plasma spectrum would reach the maximum intensity at 7 μs.

  10. Plasma Thruster Development: Magnetoplasmadynamic Propulsion, Status and Basic Problems.

    Science.gov (United States)

    1986-02-01

    Closed Drift Hall-Ion Thruster Flown on the Russian Satellite Meteor I, 1971, from Reference 13 12 4 Flat Coil Induction Thruster Schematic from...the Russian Satellite Meteor 1, 1971. from Ref. 1-3. 13 COIL Br PLASMA SWITCH0 0 FZ jeBr 0 CAPACITOR 0 Fig.- 4:Fa olInuto huse ceai fromRef-22 40 14 is...minute crater (on the order of 10- 4 cm diameter). High pressures, on the order of 100 bar, and vaporization rates in these craters have been

  11. Simulation of Mini-Magnetospheric Plasma Propulsion (M2P2) Interacting with an External Plasma Wind

    Science.gov (United States)

    Winglee, R. M.; Euripides, P.; Ziemba, T.; Slough, J.; Giersch, L.

    2003-01-01

    Substantial progress has been made over the last year in the development of the laboratory Mini-Magnetospheric Plasma Propulsion (M2P2) prototype. The laboratory testing has shown that that the plasma can be produced at high neutral gas efficiency, at high temperatures (a few tens of eV) with excellent confinement up to the point where chamber wall interactions dominate the physics. This paper investigates the performance of the prototype as it is opposed by an external plasma acting as a surrogate for the solar wind. The experiments were performed in 5ft diameter by 6ft long vacuum chamber at the University of Washington. The solar wind source comprised of a 33 kWe arc jet attached to a 200 kWe inductively generated plasma source. The dual plasma sources allow the interaction to be studied for different power levels, shot duration and production method. It is shown that plasma from the solar wind source (SWS) is able to penetrate the field of the M2P2 magnetic when no plasma is present. With operation of the M2P2 plasma source at only 1.5 kWe, the penetration of the SWS even at the highest power of operation at 200 kWe is stopped. This deflection is shown to be greatly enhanced over that produced by the magnet alone. In addition it is shown that with the presence of the SWS, M2P2 is able to produce enhanced magnetized plasma production out to at least 10 magnet radii where the field strength is only marginally greater than the terrestrial field. The results are consistent with the initial predictions that kWe M2P2 systems would be able to deflect several hundred kWe plasma winds to produce enhanced propulsion for a spacecraft.

  12. Unified study of plasma-surface interactions for space power and propulsion

    Science.gov (United States)

    Turchi, P. J.; Davis, J. F., III; Norwood, J., Jr.; Boyer, C. N.

    1985-02-01

    The efficiency and lifetime of high specific power/high specific impulse space power and propulsion devices often depend on particle and energy transport at electrodes and insulators in low temperature plasma flows. Actual measurements of particle and field distributions near solid surfaces in controlled plasma flows were studied and used to develop models for particle and energy transport. A unique advantage in such model development is the ability to vary flow conditions, surface orientation, and material properties and to compare data within a unified experimental framework, thereby allowing complicated interactions to be delineated.

  13. Physics and potentials of fissioning plasmas for space power and propulsion

    Science.gov (United States)

    Thom, K.; Schwenk, F. C.; Schneider, R. T.

    1976-01-01

    Fissioning uranium plasmas are the nuclear fuel in conceptual high-temperature gaseous-core reactors for advanced rocket propulsion in space. A gaseous-core nuclear rocket would be a thermal reactor in which an enriched uranium plasma at about 10,000 K is confined in a reflector-moderator cavity where it is nuclear critical and transfers its fission power to a confining propellant flow for the production of thrust at a specific impulse up to 5000 sec. With a thrust-to-engine weight ratio approaching unity, the gaseous-core nuclear rocket could provide for propulsion capabilities needed for manned missions to the nearby planets and for economical cislunar ferry services. Fueled with enriched uranium hexafluoride and operated at temperatures lower than needed for propulsion, the gaseous-core reactor scheme also offers significant benefits in applications for space and terrestrial power. They include high-efficiency power generation at low specific mass, the burnup of certain fission products and actinides, the breeding of U-233 from thorium with short doubling times, and improved convenience of fuel handling and processing in the gaseous phase.

  14. Large-Scale Mini-Magnetosphere Plasma Propulsion (M2P2) Experiments

    Science.gov (United States)

    Winglee, R. M.; Slough, J.; Ziemba, T.; Euripides, P.; Adrian, M. L.; Gallagher, D.; Craven, P.; Tomlinson, W.; Cravens, J.; Burch, J.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Mini-Magnetosphere Plasma Propulsion (M2P2) is an innovative plasma propulsion system that has the potential to propel spacecraft at unprecedented speeds of 50 to 80 km per second with a low-power requirement of approx. 1 kW per 100 kg of payload and approx. 1 kg of neutral gas [fuel] consumption per day of acceleration. Acceleration periods from several days to a few months are envisioned. High specific impulse and efficiency are achieved through coupling of the spacecraft to the 400 km per second solar wind through an artificial magnetosphere. The mini-magnetosphere or inflated magnetic bubble is produced by the injection of cold dense plasma into a spacecraft-generated magnetic field envelope. Magnetic bubble inflation is driven by electromagnetic processes thereby avoiding the material and deployment problems faced by mechanical solar sail designs, Here, we present the theoretical design of M2P2 as well as initial results from experimental testing of an M2P2 prototype demonstrating: 1) inflation of the dipole magnetic field geometry through the internal injection of cold plasma; and 2) deflection of and artificial solar wind by the prototype M2P2 system. In addition, we present plans for direct laboratory measurement of thrust imparted to a prototype M2P2 by an artificial solar wind during the summer of 2001.

  15. Overview of the electric propulsion plasma diagnostics suite for the VASIMR VX-200 testbed

    Science.gov (United States)

    Olsen, Christopher; Longmier, Benjamin; Ballenger, Maxwell; Squire, Jared; Glover, Tim; Carter, Mark; Bering, Edgar; Giambusso, Matthew

    2012-10-01

    Descriptions of the various plasma diagnostics and data analysis methods are given for instruments used in high power (> 100 kW) electric propulsion testing. These include planar Langmuir probes, an articulating retarding potential analyzer, a double Langmuir probe, a multi-axis magnetometer, a high frequency electric field probe, microwave interferometer, and momentum flux targets. These diagnostics have been used to measure the efficiencies of the thruster, plasma source, ion cyclotron resonance booster, and magnetic nozzle as well as used to explore physical phenomena in the plume such as ion/electron detachment, plasma turbulence, and magnetic field line stretching. Typical plume parameters range up to 10^13 cm-3 electron density, 1 kG applied magnetic fields, ion energies in excess of 150 eV, and cold electrons (2 -- 5 eV) with a spatial measurement range over 2 m.

  16. Fundamental studies of fusion plasmas. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Aamodt, R.E.

    1998-01-30

    Lodestar has carried out a vigorous research program in the areas of rf, edge plasma and divertor physics, with emphasis largely geared towards improving the understanding and performance of ion-cyclotron heating and current drive (ICRF) systems. Additionally, a research program in the field of edge plasma and divertor modeling was initiated. Theoretical work on high power rf sheath formation for multi-strap rf arrays was developed and benchmarked against recent experimental data from the new JET A2 antennas. Sophisticated modeling tools were employed to understand the sheath formation taking into account realistic three-dimensional antenna geometry. A novel physics explanation of an observed anomaly in the low power loading of antennas was applied to qualitatively interpret data on DIII-D in terms of rf sheaths, and potential applications of the idea to develop a near-field sheath diagnostic were explored. Other rf-wave related topics were also investigated. Full wave ICRF modeling studies were carried out in support of ongoing and planned tokamaks experiments, including the investigation of low frequency plasma heating and current drive regimes for IGNITOR. In a cross-disciplinary study involving both MHD and ICRF physics, ponderomotive feedback stabilization by rf was investigated as a potential means of controlling external kink mode disruptions. In another study, the instability of the ion hybrid wave (IHW) in the presence of fusion alpha particles was studied. In the field of edge plasma and divertor modeling studies, Lodestar began the development of a theory of generalized ballooning and sheath instabilities in the scrape off layer (SOL) of divertor tokamaks. A detailed summary of the technical progress in these areas during the contract period is included, as well as where references to published work can be found. A separate listing of publications, meeting abstracts, and other presentations is also given at the end of this final report.

  17. Influence of Surface Radius Curvature on Laser Plasma Propulsion with Ablation Water Propellant

    Science.gov (United States)

    Liang, Tian; Zheng, Zhiyuan; Zhang, Siqi; Tang, Weichong; Xiao, Ke; Liang, Wenfei; Gao, Lu; Gao, Hua

    2016-10-01

    The surface shape of liquid water is well controlled during nanosecond pulse laser ablation plasma propulsion. In this study, we measured the effect of the shape on the coupling coefficient and the specific impulse. We found that the coupling coefficient and specific impulse could be optimized by varying the surface convexity. Based on the analysis of the surface radius curvature, we demonstrate that the convex surface changes the laser focal positions to achieve high efficiency. supported by National Natural Science Foundation of China (No. 10905049) and Fundamental Research Funds for the Central Universities of China (Nos. 53200859165, 2562010050)

  18. Theory and Numerical Simulation of Plasma-wall Interactions in Electric Propulsion

    Science.gov (United States)

    Mikellides, Ioannis

    2016-10-01

    Electric propulsion (EP) can be an enabling technology for many science missions considered by NASA because it can produce high exhaust velocities, which allow for less propellant mass compared to typical chemical systems. Over the last decade two EP technologies have emerged as primary candidates for several proposed science missions, mainly due to their superior performance and proven record in space flight: the Ion and Hall thrusters. As NASA looks ahead to increasingly ambitious science goals, missions demand higher endurance from the propulsion system. So, by contrast to the early years of development of these thrusters, when the focus was on performance, considerable focus today is shifting towards extending their service life. Considering all potentially life-limiting mechanisms in Ion and Hall thrusters two are of primary concern: (a) the erosion of the acceleration channel in Hall thrusters and (b) the erosion of the hollow cathode. The plasma physics leading to material wear in these devices are uniquely challenging. For example, soon after the propellant is introduced into the hollow cathode it becomes partially ionized as it traverses a region of electron emission. Electron emission involves highly non-linear boundary conditions. Also, the sheath size is typically many times smaller than the characteristic physical scale of the device, yet energy gained by ions through the sheath must be accounted for in the erosion calculations. The plasma-material interactions in Hall thruster channels pose similar challenges that are further exacerbated by the presence of a strong applied magnetic field. In this presentation several complexities associated with plasma-wall interactions in EP will be discussed and numerical simulation results of key plasma properties in two examples, Hall thrusters and hollow cathodes, will be presented.

  19. Wake-Mediated Propulsion of an Upstream Particle in Two-Dimensional Plasma Crystals

    Science.gov (United States)

    Laut, I.; Räth, C.; Zhdanov, S. K.; Nosenko, V.; Morfill, G. E.; Thomas, H. M.

    2017-02-01

    The wake-mediated propulsion of an "extra" particle in a channel of two neighboring rows of a two-dimensional plasma crystal, observed experimentally by Du et al. [Phys. Rev. E 89, 021101(R) (2014), 10.1103/PhysRevE.89.021101], is explained in simulations and theory. We use the simple model of a pointlike ion wake charge to reproduce this intriguing effect in simulations, allowing for a detailed investigation and a deeper understanding of the underlying dynamics. We show that the nonreciprocity of the particle interaction, owing to the wake charges, is responsible for a broken symmetry of the channel that enables a persistent self-propelled motion of the extra particle. We find good agreement of the terminal extra-particle velocity with our theoretical considerations and with experiments.

  20. Dynacore Final Report , Plasma Physics prototype

    NARCIS (Netherlands)

    Lourens, W.

    2001-01-01

    The generation and behaviour of plasma in a fusion device and its interaction with sur-rounding materials is studied by observing several phenomena that will accompany a plasma discharge. These phenomena are recorded by means of so called Diagnostics. These are instruments that comprise complex elec

  1. A tandem mirror plasma source for a hybrid plume plasma propulsion concept

    Science.gov (United States)

    Yang, T. F.; Miller, R. H.; Wenzel, K. W.; Krueger, W. A.; Chang, F. R.

    1985-01-01

    This paper describes a tandem mirror magnetic plasma confinement device to be considered as a hot plasma source for the hybrid plume rocket concept. The hot plasma from this device is injected into an exhaust duct, which will interact with an annular layer of hypersonic neutral gas. Such a device can be used to study the dynamics of the hybrid plume and to experimentally verify the numerical predictions obtained with computer codes. The basic system design is also geared toward being lightweight and compact, as well as having high power density (i.e., several kW/sq cm) at the exhaust. This feature is aimed toward the feasibility of 'space testing'. The plasma is heated by microwaves. A 50 percent heating efficiency can be obtained by using two half-circle antennas. The preliminary Monte Carlo modeling of test particles result reported here indicates that interaction does take place in the exhaust duct. Neutrals gain energy from the ion, which confirms the hybrid plume concept.

  2. Gliding arc plasma assisted N2O dissociation for monopropellant propulsion

    Science.gov (United States)

    Bosi, Franco J.; Dobrynin, Danil

    2017-01-01

    In this paper we address the capability of gliding arc (GA) discharges to promote plasma assisted combustion of nitrous oxide gas (N2O) for spacecraft monopropellant thruster applications. N2O is a ‘green’ propellant with interesting properties, but highly inert when used as monopropellant. Higher vibrational temperatures {{T}\\text{v}}>T , and hot spot localized dissociation, achieved within the GA reactor, are able to promote combustion of the gas. The vibrational temperature of the N2 second positive system is estimated by means of optical emission spectroscopy and reaches 5000 K, while the gas temperature reaches 1500 K the degree of N2O decomposition, estimated by FTIR measurements, ranged from 25 to 85%. A kinetic model for N2O dissociation is developed; the model shows that simply heating the gas in the same conditions is not enough to produce appreciable dissociation, providing further evidence of the catalytic action of the plasma. Results allow us to predict the propulsive efficiencies to be about 43%, with a thrust level of 37 mN; this result compares positively with the existing N2O resistojet technology.

  3. Propulsion options for the HI SPOT long endurance drone airship. Final report, November 1978-August 1979

    Energy Technology Data Exchange (ETDEWEB)

    Marcy, W.L.; Hookway, R.O.

    1979-09-15

    Airbreathing, monofueled, stored-energy, and solar-rechargeable propulsion systems have been studied for the HI SPOT Long Endurance Drone Airship, providing constant-level electrical power as well as variable aerodynamic thrust to maintain position in winds varying from 15 to 100 knots at high altitude. A hydrogen fueled airbreathing engine is optimum for mission lengths up to 30 days or more.

  4. Assessment of Capabilities for First-Principles Simulation of Spacecraft Electric Propulsion Systems and Plasma Spacecraft Environment

    Science.gov (United States)

    2016-04-29

    other provision of law , no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a...Briefing Charts 3. DATES COVERED (From - To) 05 April 2016 – 29 April 2016 4. TITLE AND SUBTITLE Assessment of Capabilities for First- Principles ...Simulation of Spacecraft Electric Propulsion Systems and Plasma Spacecraft Environment 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  5. Plasma-Surface Interactions in Hollow Cathode Discharges for Electric Propulsion

    Science.gov (United States)

    Capece, Angela Maria

    Electric thrusters generate high exhaust velocities and can achieve specific impulses in excess of 1000 s. The low thrust generation and high specific impulse make electric propulsion ideal for interplanetary missions, spacecraft station keeping, and orbit raising maneuvers. Consequently, these devices have been used on a variety of space missions including Deep Space 1, Dawn, and hundreds of commercial spacecraft in Earth orbit. In order to provide the required total impulses, thruster burn time can often exceed 10,000 hours, making thruster lifetime essential. One of the main life-limiting components on ion engines is the hollow cathode, which serves as the electron source for ionization of the xenon propellant gas. Reactive contaminants such as oxygen can modify the cathode surface morphology and degrade the electron emission properties. Hollow cathodes that operate with reactive impurities in the propellant will experience higher operating temperatures, which increase evaporation of the emission materials and reduce cathode life. A deeper understanding of the mechanisms initiating cathode failure will improve thruster operation, increase lifetime, and ultimately reduce cost. A significant amount of work has been done previously to understand the effects of oxygen poisoning on vacuum cathodes; however, the xenon plasma adds complexity, and its role during cathode poisoning is not completely understood. The work presented here represents the first attempt at understanding how oxygen impurities in the xenon discharge plasma alter the emitter surface and affect operation of a 4:1:1 BaO-CaO-Al2O3 hollow cathode. A combination of experimentation and modeling was used to investigate how oxygen impurities in the discharge plasma alter the emitter surface and reduce the electron emission capability. The experimental effort involved operating a 4:1:1 hollow cathode at various conditions with oxygen impurities in the xenon flow. Since direct measurements of the emitter

  6. Final Progress Report for Ionospheric Dusty Plasma In the Laboratory [Smokey Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Scott [Univ. of Colorado, Boulder, CO (United States)

    2010-07-31

    “Ionospheric Dusty Plasma in the Laboratory” is a research project with the purpose of finding and reproducing the characteristics of plasma in the polar mesosphere that is unusually cold (down to 140 K) and contains nanometer-sized dust particles. This final progress report summarizes results from four years of effort that include a final year with a no-cost extension.

  7. Stirling engine electric hybrid vehicle propulsion system conceptual design study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dochat, G; Artiles, A; Killough, J; Ray, A; Chen, H S

    1978-08-01

    Results of a six-month study to characterize a series Stirling engine electric hybrid vehicle propulsion system are presented. The Stirling engine was selected as the heat conversion element to exploit the high efficiency (> .36), low pollution, multi-fuel and quiet operation of this machine. A free-piston Stirling engine driving a linear alternator in a hermatically sealed enclosure was chosen to gain the reliability, long life, and maintenance free characteristics of a sealed unit. The study performs trade off evaluations, selection of engine, battery, motor and inverter size, optimization of components, and develops a conceptual design and characterization of the total propulsion system. The conclusion of the study is that a Stirling engine electric hybrid propulsion system can be used successfully to augment the battery storage of a passenger vehicle and will result in significant savings of petroleum energy over present passenger vehicles. The performance and range augmentation of the hybrid design results in significant improvements over an all electric vehicle. The hybrid will be capable of performing 99% of the passenger vehicle annual trip distribution requirements with extremely low fuel usage. (TFD)

  8. Apollo 12 mission report: Descent, propulsion system final flight evaluation (supplement 5)

    Science.gov (United States)

    Seto, R. K. M.; Barrows, R. L.

    1972-01-01

    The results are presented of the postflight analysis of the Descent propulsion system (DPS) performance during the Apollo 12 Mission. The primary objective of the analysis was to determine the steady-state performance of the DPS during the descent phase of the manned lunar landing. This is a supplement ot the Apollo 12 Mission Report. In addition to further analysis of the DPS, this report brings together information from other reports and memorandums analyzing specific anomalies and performance in order to present a comprehensive description of the DPS operation during the Apollo 12 Mission.

  9. Plasma lens experiments at the Final Focus Test Beam

    Energy Technology Data Exchange (ETDEWEB)

    Barletta, B. [California Univ., Los Angeles, CA (United States)]|[Lawrence Berkeley Lab., CA (United States); Chattopadhyay, S. [Lawrence Berkeley Lab., CA (United States); Chen, P. [Stanford Linear Accelerator Center, Menlo Park, CA (United States)] [and others

    1993-04-01

    We intend to carry out a series of plasma lens experiments at the Final Focus Test Beam facility at SLAC. These experiments will be the first to study the focusing of particle beams by plasma focusing devices in the parameter regime of interest for high energy colliders, and is expected to lead to plasma lens designs capable of unprecedented spot sizes. Plasma focusing of positron beams will be attempted for the first time. We will study the effects of lens aberrations due to various lens imperfections. Several approaches will be applied to create the plasma required including laser ionization and beam ionization of a working gas. At an increased bunch population of 2.5 {times} 10{sup 10}, tunneling ionization of a gas target by an electron beam -- an effect which has never been observed before -- should be significant. The compactness of our device should prove to be of interest for applications at the SLC and the next generation linear colliders.

  10. Space Propulsion and Power

    Science.gov (United States)

    2013-03-08

    uniform dense plasmas ? Distribution A: Approved for public release; distribution is unlimited Space Propulsion and Power - New Research Areas Non ...interactions of the Matters in Space Propulsion Systems Space Propulsion and Power Portfolio Coupled Materials and Plasma Processes Far From...primary electron  1 • Effective secondary electron emission * accounts for non - Maxwellian effects * > 1 * < 1 ~4 MHz Sheath Beams of SEE

  11. Final technical report on studies of plasma transport

    Energy Technology Data Exchange (ETDEWEB)

    O`Neil, T.M.; Driscoll, C.F.; Malmberg, J.H.

    1997-04-01

    This document gives an overview of the scientific results obtained under the DOE grant, and references the journal articles which give more complete descriptions of the various topics. Recently, the research has been focused on 2-dimensional vortices and turbulence: experiments using a new camera-diagnosed electron plasma apparatus have given surprising results which both clarify and challenge theories. Here, the crossfield E x B flow of the electron plasma is directly analogous to the 2-d flow of an ideal fluid such as water, and may also give insight into more complicated poloidal flows exhibited in toroidal plasmas. The shear-flow instabilities, turbulence, and vortices can be accurately observed, and the free relaxation of this turbulence has been characterized. The physical processes underlying the complicated turbulent evolution can also be studied in more controlled near-linear regimes. The original experimental focus of this program was on radial particle transport from applied external field asymmetries. Here, this research program clearly identified the importance of the collective response of the plasma, giving smaller fields from shielding, or enhanced fields from resonant modes. Experiments and theory work have also elucidated the flow of a plasma along the magnetic field. Finally, some theory was pursued for direct application to fusion plasmas, and to gravitating gas clouds in astrophysics. This program was highly successful in clarifying basic plasma transport processes.

  12. Heat pipe radiation cooling (HPRC) for high-speed aircraft propulsion. Phase 2 (feasibility) final report

    Energy Technology Data Exchange (ETDEWEB)

    Martin, R.A.; Merrigan, M.A.; Elder, M.G.; Sena, J.T.; Keddy, E.S. [Los Alamos National Lab., NM (United States); Silverstein, C.C. [CCS Associates, Bethel Park, PA (United States)

    1994-03-25

    The National Aeronautics and Space Administration (NASA), Los Alamos National Laboratory (Los Alamos), and CCS Associates are conducting the Heat Pipe Radiation Cooling (HPRC) for High-Speed Aircraft Propulsion program to determine the advantages and demonstrate the feasibility of using high-temperature heat pipes to cool hypersonic engine components. This innovative approach involves using heat pipes to transport heat away from the combustor, nozzle, or inlet regions, and to reject it to the environment by thermal radiation from adjacent external surfaces. HPRC is viewed as an alternative (or complementary) cooling technique to the use of pumped cryogenic or endothermic fuels to provide regenerative fuel or air cooling of the hot surfaces. The HPRC program has been conducted through two phases, an applications phase and a feasibility phase. The applications program (Phase 1) included concept and assessment analyses using hypersonic engine data obtained from US engine company contacts. The applications phase culminated with planning for experimental verification of the HPRC concept to be pursued in a feasibility program. The feasibility program (Phase 2), recently completed and summarized in this report, involved both analytical and experimental studies.

  13. The Human Powered Submarine Team of Virginia Tech Propulsion System Design Final Report

    Science.gov (United States)

    An, Eric; Bennett, Matt; Callis, Ron; Chen, Chester; Lee, John; Milan-Williams, Kristy

    1999-01-01

    The Human Powered Submarine Team has been in existence at Virginia Tech since its conception in 1993. Since then, it has served as a way for engineering students from many different disciplines to implement design conception and realization. The first submarine built was Phantom 1, a two-man submarine made of fiberglass. After construction was complete, Phantom 1 was ready for racing, but, unfortunately, suffered fatal problems come race time. The submarine team slowed down a bit after experiencing racing problems, but was revived in 1995 when design efforts for a new two-man submarine, the Phantom 2 commence. The propulsion system consisted of a chain and gear drive system using an ultra-light helicopter tail rotor for a propeller. Although the team learned valuable lessons as a result of Phantom 1's problems, Phantom 2 still experiences problems at races. After various parts of Phantom 2 are redesigned, it is once again ready for racing and proves that the redesign was well worth the time and effort. In 1997, Phantom 2 not only finishes its first race, held in San Diego, California, but comes in third. This success sparks yet another revival of the submarine team and design for the team's current project, the Phantom 3, a one-man submarine, is started. In 1998, the plug for Phantom 3 is built and the hull is constructed. With so many past problems from which to learn, Phantom 3 promises to be the fastest and best-designed submarine the team has developed thus far. The current speed world-record is 7 knots.

  14. Effect of Ambipolar Potential on the Propulsive Performance of the GDM Plasma Thruster Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The gasdynamic mirror (GDM) plasma thruster has the ability to confine high-density plasma for the length of time required to heat it to the temperatures...

  15. Fundamental Study of Interactions Between Pulsed High-Density Plasmas and Materials for Space Propulsion

    Science.gov (United States)

    2016-05-23

    thermal shock and allows for optical plasma diagnostics. The new capillary uses a flash lamp approach for triggering to eliminate the need for a...add silicon oxide to alumina processing to form relatively low- melting aluminosilicate phases to enhance densification/ sintering at temperatures well...pressure on the microstructure of spark plasma sintered silicon carbide,” Journal of Chemical Processing Research 16, 303 (2007). 5. O. Sharia

  16. Propulsion Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Propulsion Lab simulates field test conditions in a controlled environment, using standardized or customized test procedures. The Propulsion Lab's 11 cells can...

  17. Environmental friendly high efficient light source plasma lamp - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Courret, G.; Calame, L. [Haute Ecole d' ingenierie et de gestion du canton de Vaud, Institut de micro et nano techniques, Yverdon-les-Bains (Switzerland); Meyer, A. [Solaronix SA, Aubonne (Switzerland)

    2007-07-01

    This illustrated final report for the Swiss Federal Office of Energy (SFOE) takes a look at work done on the development of a sulphur-based plasma lamp. In 2007, the capability of a new modulator has been explored. The most important results are discussed. With the production of a 1.2 cm{sup 3} bulb, the way towards the production of a 100 W lamp has been opened. The authors comment that modulation by impulses increases the luminous efficiency in comparison to modulation using a continuous sinusoidal wave. The report deals with the history of the project, the development of the new modulator, the use of rotational effects and the optimisation of the amount of active substances - tellurium and selenium - in the bulb. The electromagnetic coupling system used is described and discussed.

  18. Working group report on beam plasmas, electronic propulsion, and active experiments using beams

    Science.gov (United States)

    Dawson, J. M.; Eastman, T.; Gabriel, S.; Hawkins, J.; Matossian, J.; Raitt, J.; Reeves, G.; Sasaki, S.; Szuszczewicz, E.; Winkler, J. R.

    1986-01-01

    The JPL Workshop addressed a number of plasma issues that bear on advanced spaceborne technology for the years 2000 and beyond. Primary interest was on the permanently manned space station with a focus on identifying environmentally related issues requiring early clarification by spaceborne plasma experimentation. The Beams Working Group focused on environmentally related threats that platform operations could have on the conduct and integrity of spaceborne beam experiments and vice versa. Considerations were to include particle beams and plumes. For purposes of definition it was agreed that the term particle beams described a directed flow of charged or neutral particles allowing single-particle trajectories to represent the characteristics of the beam and its propagation. On the other hand, the word plume was adopted to describe a multidimensional flow (or expansion) of a plasma or neutral gas cloud. Within the framework of these definitions, experiment categories included: (1) Neutral- and charged-particle beam propagation, with considerations extending to high powers and currents. (2) Evolution and dynamics of naturally occurring and man-made plasma and neutral gas clouds. In both categories, scientific interest focused on interactions with the ambient geoplasma and the evolution of particle densities, energy distribution functions, waves, and fields.

  19. Faraday Accelerator With Radio-Frequency Assisted Discharge (FARAD): A New Electrodeless Concept for Plasma Propulsion

    Science.gov (United States)

    2008-10-01

    use in our experiment. The second is that many of the assumptions made in Langmuir and triple probe theory (specifically that the plasma is non...original FARAD experiment. The circuit traces follow an Archimedes spiral with current flowing down one surface from the bus at the major radius to

  20. Space transfer concepts and analysis for exploration missions. Implementation plan and element description document (draft final). Volume 4: Solar electric propulsion vehicle

    Science.gov (United States)

    1991-03-01

    This document presents the solar electric propulsion (SEP) concept design developed as part of the Space Transfer Concepts and Analysis for Exploration Missions (STCAEM) study. The evolution of the SEP concept is described along with the requirements, guidelines and assumptions for the design. Operating modes and options are defined and a systems description of the vehicle is presented. Artificial gravity configuration options and space and ground support systems are discussed. Finally, an implementation plan is presented which addresses technology needs, schedules, facilities, and costs.

  1. Final Report on The Theory of Fusion Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Steven C. Cowley

    2008-06-17

    Report describes theoretical research in the theory of fusion plasmas funded under grant DE-FG02-04ER54737. This includes work on: explosive instabilities, plasma turbulence, Alfven wave cascades, high beta (pressure) tokamaks and magnetic reconnection. These studies have lead to abetter understanding of fusion plasmas and in particular the future behavior of ITER. More than ten young researchers were involved in this research -- some were funded under the grant.

  2. Linear and Nonlinear MHD Wave Processes in Plasmas. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Tataronis, J. A.

    2004-06-01

    This program treats theoretically low frequency linear and nonlinear wave processes in magnetized plasmas. A primary objective has been to evaluate the effectiveness of MHD waves to heat plasma and drive current in toroidal configurations. The research covers the following topics: (1) the existence and properties of the MHD continua in plasma equilibria without spatial symmetry; (2) low frequency nonresonant current drive and nonlinear Alfven wave effects; and (3) nonlinear electron acceleration by rf and random plasma waves. Results have contributed to the fundamental knowledge base of MHD activity in symmetric and asymmetric toroidal plasmas. Among the accomplishments of this research effort, the following are highlighted: Identification of the MHD continuum mode singularities in toroidal geometry. Derivation of a third order ordinary differential equation that governs nonlinear current drive in the singular layers of the Alfvkn continuum modes in axisymmetric toroidal geometry. Bounded solutions of this ODE implies a net average current parallel to the toroidal equilibrium magnetic field. Discovery of a new unstable continuum of the linearized MHD equation in axially periodic circular plasma cylinders with shear and incompressibility. This continuum, which we named “accumulation continuum” and which is related to ballooning modes, arises as discrete unstable eigenfrequency accumulate on the imaginary frequency axis in the limit of large mode numbers. Development of techniques to control nonlinear electron acceleration through the action of multiple coherent and random plasmas waves. Two important elements of this program aye student participation and student training in plasma theory.

  3. Plasma research. Final report, October 1, 1968--December 31, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Bekefi, G.; Coppi, B.; Parker, R.R.

    1976-01-01

    The research in plasma physics and controlled thermonuclear research at M.I.T. has evolved from a relatively long tradition of basic theoretical and experimental contributions, during the period covered by this contract. A major commitment to research in magnetically confined plasmas was undertaken with the Alcator program that began in 1969 and with the theoretical effort necessary to back this up. The Alcator A device was brought to successful operation and, after the identification of a sequence of plasma regimes that have been realized in it, let to attainment record values of plasma density, of the confinement parameter n tau, and of the degree of plasma purity. A second more advanced device, Alcator C, has been designed and is presently under construction. A line of toroidal experiments characterized by relatively low cost and extreme simplicity has been developed in order to study basic plasma physics problems related to magnetic confinement and relevant processes of plasma decontamination. The devices that have been operated are Versator I, now discontinued, Rector, with non-circular cross section, Erasmus, with small aspect ratio and Versator II. A number of theoretical contributions concerning the interpretation of the regimes found in Alcator, runaway phenomena, new trapped particle instabilities, internal resistive modes, etc. have been given and presented in publications or appropriate meetings. A special consideration, within the theoretical effort, has been devoted to the study of plasma regimes that are important in devising future experiments of thermonuclear interest.

  4. Design and development of an automotive propulsion system utilizing a Rankine cycle engine (water based fluid). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Demler, R.L.

    1977-09-01

    Under EPA and ERDA sponsorship, SES successfully designed, fabricated and tested the first federally sponsored steam powered automobile. The automobile - referred to as the simulator - is a 1975 Dodge Monaco standard size passenger car with the SES preprototype Rankine cycle automotive propulsion system mounted in the engine compartment. In the latter half of 1975, the simulator successfully underwent test operations at the facilities of SES in Watertown, Massachusetts and demonstrated emission levels below those of the stringent federally established automotive requirements originally set for implementation by 1976. The demonstration was accomplished during testing over the Federal Driving Cycle on a Clayton chassis dynamometer. The design and performance of the vehicle are described.

  5. Final Report: Experimental Investigation of Nonlinear Plasma Wake-Fields

    Energy Technology Data Exchange (ETDEWEB)

    Rosenzweig, J.

    1997-10-31

    We discuss the exploration of the newly proposed blowout regime of the plasma wakefield accelerator and advanced photoinjector technology for linear collider applications. The plasma wakefield experiment at ANL produced several ground-breaking results in the physics of the blowout regime. The photoinjector R and D effort produced breakthroughs in theoretical, computational, and experimental methods in high brightness beam physics. Results have been published.

  6. Final Report: Experimental Investigation of Nonlinear Plasma Wake-Fields

    Energy Technology Data Exchange (ETDEWEB)

    Rosenzweig, J.

    1997-10-31

    We discuss the exploration of the newly proposed blowout regime of the plasma wakefield accelerator and advanced photoinjector technology for linear collider applications. The plasma wakefield experiment at ANL produced several ground-breaking results in the physics of the blowout regime. The photoinjector R and D effort produced breakthroughs in theoretical, computational, and experimental methods in high brightness beam physics. Results have been published.

  7. Advanced Plasma Propulsion

    Science.gov (United States)

    2011-11-01

    field lines superimposed from Finite Element Method Magnetics ( FEMM ) simulations. a) b) Figure S2. a) DCF Thruster in operation on...simulated magnetic field lines calculated from Finite Element Method Magnetics ( FEMM ) software in Fig. S5. Measurements in both tests were taken at z...Figure S5. DCF thruster performance with varied cathode location, superimposed over the simulated magnetic field profile ( FEMM ). The cathode was scanned

  8. Plasma Transport at the Magnetospheric Flank Boundary. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Otto, Antonius

    2012-04-23

    Progress is highlighted in these areas: 1. Model of magnetic reconnection induced by three-dimensional Kelvin Helmholtz (KH) modes at the magnetospheric flank boundary; 2. Quantitative evaluation of mass transport from the magnetosheath onto closed geomagnetic field for northward IMF; 3. Comparison of mass transfer by cusp reconnection and Flank Kelvin Helmholtz modes; 4. Entropy constraint and plasma transport in the magnetotail - a new mechanism for current sheet thinning; 5. Test particle model for mass transport onto closed geomagnetic field for northward IMF; 6. Influence of density asymmetry and magnetic shear on (a) the linear and nonlinear growth of 3D Kelvin Helmholtz (KH) modes, and (b) three-dimensional KH mediated mass transport; 7. Examination of entropy and plasma transport in the magnetotail; 8. Entropy change and plasma transport by KH mediated reconnection - mixing and heating of plasma; 9. Entropy and plasma transport in the magnetotail - tail reconnection; and, 10. Wave coupling at the magnetospheric boundary and generation of kinetic Alfven waves.

  9. Microwave cavity diagnostics of microwave breakdown plasmas. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Eckstrom, D.J.; Williams, M.S. [SRI International, Menlo Park, CA (United States)

    1989-08-01

    We have performed microwave cavity perturbation measurements in the LLNL AIM facility using a 329-MHz cavity that allow us to examine in detail the plasma formation and decay processes for electron densities between approximately 10{sup 5} and 10{sup 7}/cm{sup 3}. We believe these to be the lowest density plasmas ever studied in microwave breakdown experiments, and as such they allow us to determine the power and energy required to produce plasmas suitable for HF radar reflection as well as the effective lifetimes of these plasmas before re-ionization is required. Analyses of these results leads to the following conclusions. (1) For microwave breakdown pulses varying from 0.6 to 2.4 {mu}s, the threshold power required to produce measurable plasmas is 30 to 12 MW/m{sup 2} at 0.01 torr, decreasing to 3.5 to 1.8 MW/m{sup 2} at 1 to 3 torr, and then increasing to 5 to 3.5 MW/m{sup 2} at 30 torr. The threshold power in each case decreases with increasing pulse length, but the required pulse energy increases with decreasing power or increasing pulse length. (2) The effective electron density decay rates are approximately 100/s for 0.1 to 1 torr, after which they increase linearly with pressure. Thus, the useful plasma lifetimes are in the range of 20 to 40 ms at the lower pressures and decrease to about 1 ms at 30 torr. These decay rates and lifetimes are comparable to those that would exist for artificially ionized regions in the upper atmosphere. (3) The collision frequencies measured at pressures of 1 torr and above correspond to electron temperatures of 800 K or less. In fact, the inferred temperatures for p > 3 torr are below room temperature. This may be due to a contribution to the measured conductivity by negative ions.

  10. University of Maryland component of the Center for Multiscale Plasma Dynamics: Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Dorland, William [University of Maryland

    2014-11-18

    The Center for Multiscale Plasma Dynamics (CMPD) was a five-year Fusion Science Center. The University of Maryland (UMD) and UCLA were the host universities. This final technical report describes the physics results from the UMD CMPD.

  11. Plasma energy recycle and conversion of polymeric (MSW) waste. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Knight, Richard; Grossman, Elihu D.

    2000-12-05

    Final report summarizing research project results of studies of the thermal plasma recycling of polymers, including polyethylene and polypropylene. High levels of recovery of monomers were obtained from the process developed under this study.

  12. Dynamics of electronegative plasmas for materials processing. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lichtenberg, A.J.; Lieberman, M.A.

    1996-12-31

    Purpose was to study equilibrium particle and energy balance and heating mechanisms in electronegative rf discharges. Attention is given to formation of non-Maxwellian electron distributions and their effect on macroscopic parameters. Research includes theory, particle- in-cell simulation, and experimental investigations. Sheath heating theory and simulation results for electropositive plasmas are used as guide. The investigation was centered on, but not limited to, study of oxygen feedstock gas in capacitively and inductively coupled rf discharges.

  13. Dynamics of electronegative plasmas for materials processing. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lichtenberg, A.J.; Lieberman, M.A.

    1996-12-31

    The purpose of this project is to study the equilibrium particle and energy balance and the heating mechanisms in electronegative r.f. discharges. Particular attention is given to the formation of non-Maxwellian electron distributions and their effect on the macroscopic parameters. The research includes theory, particle-in-cell simulation, and experimental investigations. The sheath heating theory and the simulation results developed for electropositive plasmas are used to guide the investigations. The investigation was centered on, but is not limited to, the study of oxygen feedstock gas in capacitively and inductively coupled r.f. discharges. 15 refs.

  14. Final treatment of spent batteries by thermal plasma.

    Science.gov (United States)

    Cubas, Anelise Leal Vieira; Machado, Marina de Medeiros; Machado, Marília de Medeiros; Dutra, Ana Regina de Aguiar; Moecke, Elisa Helena Siegel; Fiedler, Haidi D; Bueno, Priscila

    2015-08-15

    The growth in the use of wireless devices, notebooks and other electronic products has led to an ever increasing demand for batteries, leading to these products being commonly found in inappropriate locations, with adverse effects on the environment and human health. Due to political pressure and according to the environmental legislation which regulates the destination of spent batteries, in several countries the application of reverse logistics to hazardous waste is required. Thus, some processes have been developed with the aim of providing an appropriate destination for these products. In this context, a method for the treatment of spent batteries using thermal plasma technology is proposed herein. The efficiency of the method was tested through the determination of parameters, such as total organic carbon, moisture content and density, as well as analysis by atomic absorption spectrometry, scanning electron microscopy and X-ray fluorescence using samples before and after inertization. The value obtained for the density was 19.15%. The TOC results indicated 8.05% of C in the batteries prior to pyrolisis and according to the XRF analysis Fe, S, Mn and Zn were the most stable elements in the samples (highest peaks). The efficiency of the paste inertization was 97% for zinc and 99.74% for manganese. The results also showed that the most efficient reactor was that with the DC transferred arc plasma torch and quartzite sand positively influenced by the vitrification during the pyrolysis of the electrolyte paste obtain from batteries.

  15. Laser diagnostics and modeling of plasma assisted CVD. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    Plasma assisted chemical vapor deposition (PACVD) represents a novel approach for utilizing the nonequilibrium effects of reactive plasmas for depositing a wide range of protective hardface coatings that have both wear and erosion application. The nonequilibrium plasma is the heart of this complex system and has the function of generating the reactive molecular fragments (radicals) and atomic species at concentration levels unattainable by other competing processes. It is now widely accepted that such advanced protective hardface coatings materials will play a vital role in the energy technologies of the coming decades, with major applications in diverse areas ranging from aerospace and commercial propulsion systems (jet engines) to automotive components and internal combustion engines, (ceramic heat engines), cutting and machining tools, electronic packaging, thermal management, and possibly room-temperature superconductors. Wear and associated erosion aspects are responsible for an enormous expenditure of energy and fiscal resources in almost all DOE applications. Many of the results from this investigation arc also applicable to other materials processing reactors such as electron beam, PVD, CVD, laser ablation, microwave, high energy cathodic arc, thermal plasma (rf or dc) and combustion spray. These also include the various hybrid systems such as the rf/dc arc as used in Japan for diamond deposition and e-beam PVD deposition of advanced titanium alloy coatings as used at the Paton Institute in Kiev, Ukraine.

  16. The Center for Multiscale Plasma Dynamics, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Gombosi, Tamas I.

    2008-10-13

    The University of Michigan participated in the joint UCLA/Maryland fusion science center focused on plasma physics problems for which the traditional separation of the dynamics into microscale and macroscale processes breaks down. These processes involve large scale flows and magnetic fields tightly coupled to the small scale, kinetic dynamics of turbulence, particle acceleration and energy cascade. The interaction between these vastly disparate scales controls the evolution of the system. The enormous range of temporal and spatial scales associated with these problems renders direct simulation intractable even in computations that use the largest existing parallel computers. Our efforts focused on two main problems: the development of Hall MHD solvers on solution adaptive grids and the development of solution adaptive grids using generalized coordinates so that the proper geometry of inertial confinement can be taken into account and efficient refinement strategies can be obtained.

  17. Alternate Propulsion Energy Sources

    Science.gov (United States)

    1983-12-01

    certainly worth further intensive study as a high risk/high payoff concept. 2. Solar Heated Plasmas - An approach to a solar thermal rocket that can obtain...metal and hydrogen gas. This is a near-term advanced propulsion concept suitable for the follow-on phase of the existing AFRPL solar thermal rocket program...will discuss various versions of the solar thermal rocket , where sunlight is collected and used to directly heat a working fluid. This solar heated

  18. Electric Propulsion

    Science.gov (United States)

    Baggett, R.

    2004-11-01

    Next Generation Electric Propulsion (NGEP) technology development tasks are working towards advancing solar-powered electric propulsion systems and components to levels ready for transition to flight systems. Current tasks within NGEP include NASA's Evolutionary Xenon Thruster (NEXT), Carbon Based Ion Optics (CBIO), NSTAR Extended Life Test (ELT) and low-power Hall Effect thrusters. The growing number of solar electric propulsion options provides reduced cost and flexibility to capture a wide range of Solar System exploration missions. Benefits of electric propulsion systems over state-of-the-art chemical systems include increased launch windows, which reduce mission risk; increased deliverable payload mass for more science; and a reduction in launch vehicle size-- all of which increase the opportunities for New Frontiers and Discovery class missions. The Dawn Discovery mission makes use of electric propulsion for sequential rendezvous with two large asteroids (Vesta then Ceres), something not possible using chemical propulsion. NEXT components and thruster system under development have NSTAR heritage with significant increases in maximum power and Isp along with deep throttling capability to accommodate changes in input power over the mission trajectory. NEXT will produce engineering model system components that will be validated (through qualification-level and integrated system testing) and ready for transition to flight system development. NEXT offers Discovery, New Frontiers, Mars Exploration and outer-planet missions a larger deliverable payload mass and a smaller launch vehicle size. CBIO addresses the need to further extend ion thruster lifetime by using low erosion carbon-based materials. Testing of 30-cm Carbon-Carbon and Pyrolytic graphite grids using a lab model NSTAR thruster are complete. In addition, JPL completed a 1000 hr. life test on 30-cm Carbon-Carbon grids. The NSTAR ELT was a life time qualification test started in 1999 with a goal of 88 kg

  19. Final Technical Report: Magnetic Reconnection in High-Energy Laser-Produced Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Germaschewski, Kai [Univ. of New Hampshire, Durham, NH (United States); Fox, William [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Bhattacharjee, Amitava [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2017-04-06

    This report describes the final results from the DOE Grant DE-SC0007168, “Fast Magnetic Reconnection in HED Laser-Produced Plasmas.” The recent generation of laboratory high-energy-density physics facilities has opened significant physics opportunities for experimentally modeling astrophysical plasmas. The goal of this proposal is to use these new tools to study fundamental problems in plasma physics and plasma astrophysics. Fundamental topics in this area involve study of the generation, amplification, and fate of magnetic fields, which are observed to pervade the plasma universe and govern its evolution. This project combined experiments at DOE laser facilities with kinetic plasma simulation to study these processes. The primary original goal of the project was to study magnetic reconnection using a new experimental platform, colliding magnetized laser-produced plasmas. However through a series of fortuitous discoveries, the work broadened out to allow significant advancement on multiple topics in laboratory astrophysics, including magnetic reconnection, Weibel instability, and collisionless shocks.

  20. Electric Propulsion Test & Evaluation Methodologies for Plasma in the Environments of Space and Testing (EP TEMPEST) (Briefing Charts)

    Science.gov (United States)

    2015-04-01

    transitioned to FalconSat-6, NASA, industry, and academia • Correlated thruster plasma oscillations with transient ion flux impacting chamber...Research PAYOFF - Pervasive Space Capability for Increased Payload Transition Improved T&E Methods Cannot fully replicate space environment in ground

  1. Propulsion materials

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Edward J. [U.S. Dept. of Energy, Washington, D.C. (United States); Sullivan, Rogelio A. [U.S. Dept. of Energy, Washington, D.C. (United States); Gibbs, Jerry L. [U.S. Dept. of Energy, Washington, D.C. (United States)

    2008-01-01

    The Department of Energy’s (DOE’s) Office of Vehicle Technologies (OVT) is pleased to introduce the FY 2007 Annual Progress Report for the Propulsion Materials Research and Development Program. Together with DOE national laboratories and in partnership with private industry and universities across the United States, the program continues to engage in research and development (R&D) that provides enabling materials technology for fuel-efficient and environmentally friendly commercial and passenger vehicles.

  2. Advanced Space Fission Propulsion Systems

    Science.gov (United States)

    Houts, Michael G.; Borowski, Stanley K.

    2010-01-01

    -to-weight ratio. This presentation will discuss potential space fission propulsion options ranging from first generation systems to highly advanced systems. Ongoing research that shows promise for enabling second generation NTP systems with Isp greater than 1000 s will be discussed, as will the potential for liquid, gas, or plasma core systems. Space fission propulsion systems could also be used in conjunction with simple (water-based) propellant depots to enable routine, affordable missions to various destinations (e.g. moon, Mars, asteroids) once in-space infrastructure is sufficiently developed. As fuel and material technologies advance, very high performance Nuclear Electric Propulsion (NEP) systems may also become viable. These systems could enable sophisticated science missions, highly efficient cargo delivery, and human missions to numerous destinations. Commonalities between NTP, fission power systems, and NEP will be discussed.

  3. Electric vehicle propulsion alternatives

    Science.gov (United States)

    Secunde, R. R.; Schuh, R. M.; Beach, R. F.

    1983-01-01

    Propulsion technology development for electric vehicles is summarized. Analytical studies, technology evaluation, and the development of technology for motors, controllers, transmissions, and complete propulsion systems are included.

  4. Pulsed plasmoid electric propulsion

    Science.gov (United States)

    Bourque, Robert F.; Parks, Paul B.; Tamano, Teruo

    1990-01-01

    A method of electric propulsion is explored where plasmoids such as spheromaks and field reversed configurations (FRC) are formed and then allowed to expand down a diverging conducting shell. The plasmoids contain a toroidal electric current that provides both heating and a confining magnetic field. They are free to translate because there are no externally supplied magnetic fields that would restrict motion. Image currents in the diverging conducting shell keep the plasmoids from contacting the wall. Because these currents translate relative to the wall, losses due to magnetic flux diffusion into the wall are minimized. During the expansion of the plasma in the diverging cone, both the inductive and thermal plasma energy are converted to directed kinetic energy producing thrust. Specific impulses can be in the 4000 to 20000 sec range with thrusts from 0.1 to 1000 Newtons, depending on available power.

  5. Gasdynamic Mirror (GDM) Fusion Propulsion Engine Experiment

    Science.gov (United States)

    1999-01-01

    The Gasdynamic Mirror, or GDM, is an example of a magnetic mirror-based fusion propulsion system. Its design is primarily consisting of a long slender solenoid surrounding a vacuum chamber that contains plasma. The bulk of the fusion plasma is confined by magnetic field generated by a series of toroidal-shaped magnets in the center section of the device. the purpose of the GDM Fusion Propulsion Experiment is to confirm the feasibility of the concept and to demonstrate many of the operational characteristics of a full-size plasma can be confined within the desired physical configuration and still reman stable. This image shows an engineer from Propulsion Research Technologies Division at Marshall Space Flight Center inspecting solenoid magnets-A, an integrate part of the Gasdynamic Mirror Fusion Propulsion Engine Experiment.

  6. LISA propulsion module separation study

    Energy Technology Data Exchange (ETDEWEB)

    Merkowitz, S M [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Ahmad, A [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Hyde, T T [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Sweetser, T [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Ziemer, J [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Conkey, S [Swales Aerospace, 5050 Powder Mill Road, Beltsville, MD 20705 (United States); III, W Kelly [Swales Aerospace, 5050 Powder Mill Road, Beltsville, MD 20705 (United States); Shirgur, B [Swales Aerospace, 5050 Powder Mill Road, Beltsville, MD 20705 (United States)

    2005-05-21

    The Laser Interferometer Space Antenna (LISA) mission is a space-borne gravitational wave detector consisting of three sciencecraft in heliocentric orbit. Each sciencecraft is delivered to its operational orbit by a propulsion module. Because of the strict thermal and mass balancing requirements of LISA, the baseline mission concept requires that the propulsion module separate from the sciencecraft after delivery. The only propulsion system currently included in the sciencecraft design are micronewton level thrusters, such as field emission electric propulsion (FEEP) or colloid thrusters, that are used to balance the 30-40 {mu}N of solar radiation pressure and provide the drag-free and attitude control of the sciencecraft. Due to these thrusters' limited authority, the separation of the propulsion module from the sciencecraft must be well controlled to not induce a large tip-off rotation of the sciencecraft. We present here the results of a study of the propulsion module separation system requirements that are necessary to safely deliver the three LISA sciencecraft to their final operational orbits.

  7. DUAL-MODE PROPULSION SYSTEM ENABLING CUBESAT EXPLORATION OF THE SOLAR SYSTEM NASA Innovative Advanced Concepts (NIAC) Phase I Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Nathan Jerred; Troy Howe; Adarsh Rajguru; Dr. Steven Howe

    2014-06-01

    It is apparent the cost of planetary exploration is rising as mission budgets declining. Currently small scientific beds geared to performing limited tasks are being developed and launched into low earth orbit (LEO) in the form of small-scale satellite units, i.e., CubeSats. These micro- and nano-satellites are gaining popularity among the university and science communities due to their relatively low cost and design flexibility. To date these small units have been limited to performing tasks in LEO utilizing solar-based power. If a reasonable propulsion system could be developed, these CubeSat platforms could perform exploration of various extra-terrestrial bodies within the solar system engaging a broader range of researchers. Additionally, being mindful of mass, smaller cheaper launch vehicles (~1,000 kgs to LEO) can be targeted. This, in effect, allows for beneficial explora-tion to be conducted within limited budgets. Researchers at the Center for Space Nuclear Re-search (CSNR) are proposing a low mass, radioisotope-based, dual-mode propulsion system capable of extending the exploration realm of these CubeSats out of LEO. The proposed radioisotope-based system would leverage the high specific energies [J/kg] associated with radioisotope materials and enhance their inherent low specific powers [W/g]. This is accomplished by accumulating thermal energy from nuclear decay within a central core over time. This allows for significant amounts of power to be transferred to a flowing gas over short periods of time. In the proposed configuration the stored energy can be utilized in two ways: (1) with direct propellant injection to the core, the energy can be converted into thrust through the use of a converging-diverging nozzle and (2) by flowing a working fluid through the core and subsequent Brayton engine, energy within the core can be converted to electrical energy. The first scenario achieves moderate ranges of thrust, but at a higher Isp than traditional chemical

  8. Chemistry and propulsion; Chimie et propulsions

    Energy Technology Data Exchange (ETDEWEB)

    Potier, P. [Maison de la Chimie, 75 - Paris (France); Davenas, A. [societe Nationale des Poudres et des Explosifs - SNPE (France); Berman, M. [Air Force Office of Scientific Research, Arlington, VA (United States)] [and others

    2002-07-01

    During the colloquium on chemistry and propulsion, held in march 2002, ten papers have been presented. The proceedings are brought in this document: ramjet, scram-jet and Pulse Detonation Engine; researches and applications on energetic materials and propulsion; advances in poly-nitrogen chemistry; evolution of space propulsion; environmental and technological stakes of aeronautic propulsion; ramjet engines and pulse detonation engines, automobiles thermal engines for 2015, high temperature fuel cells for the propulsion domain, the hydrogen and the fuel cells in the future transports. (A.L.B.)

  9. Electric propulsion, circa 2000

    Science.gov (United States)

    Hudson, W. R.; Finke, R. C.

    1980-01-01

    This paper discusses the future of electric propulsion, circa 2000. Starting with the first generation Solar Electric Propulsion (SEP) technology as the first step toward the next century's advanced propulsion systems, the current status and future trends of other systems such as the magnetoplasmadynamic accelerator, the mass driver, the laser propulsion system, and the rail gun are described.

  10. Antiproton Annihilation Propulsion

    Science.gov (United States)

    1985-09-01

    propulsion system, a nuclear thermal hydrogen propulsion system, and an antiproton annihilation propulsion system. Since hauling chemical fuel into low...greater. Section 8.4 and Appendix B contain a comparative cost study of a storable chemical fuel propulsion system, a liquid oxygen/liquid hydrogen

  11. Solar-Powered Electric Propulsion Systems: Engineering and Applications

    Science.gov (United States)

    Stearns, J. W.; Kerrisk, D. J.

    1966-01-01

    Lightweight, multikilowatt solar power arrays in conjunction with electric propulsion offer potential improvements to space exploration, extending the usefulness of existing launch vehicles to higher-energy missions. Characteristics of solar-powered electric propulsion missions are outlined, and preliminary performance estimates are shown. Spacecraft system engineering is discussed with respect to parametric trade-offs in power and propulsion system design. Relationships between mission performance and propulsion system performance are illustrated. The present state of the art of electric propulsion systems is reviewed and related to the mission requirements identified earlier. The propulsion system design and test requirements for a mission spacecraft are identified and discussed. Although only ion engine systems are currently available, certain plasma propulsion systems offer some advantages in over-all system design. These are identified, and goals are set for plasma-thrustor systems to make them competitive with ion-engine systems for mission applications.

  12. Basic Processes of Plasma Propulsion

    Science.gov (United States)

    1991-04-01

    MARKINGS 2& SECURITY CLASSIFICATION AUTHORITY I DI ease.1O~ 2b DECLASSIFICATION I DOWNGRADING SCHEDULE ears onSO th1~e r ~ r 4PERFORMING ORGANIZATION ...REPORT NUMBER(S) S. MOO .IORING ORGANIZATION REPORT NUMBER(S) 6NAME OF PERFORMING ORGANIZATION 6b OFFIE SYMBOL 7a. NAME OF MONITORING ORGANIZATION ...Here, another explanation will be presented which also leads to exellent agreement with the experimentally found onset and which may have some merits

  13. Laser Ablation Propulsion A Study

    Science.gov (United States)

    Irfan, Sayed A.; Ugalatad, Akshata C.

    Laser Ablation Propulsion (LAP) will serve as an alternative propulsion system for development of microthrusters. The principle of LAP is that when a laser (pulsed or continuous wave) with sufficient energy (more than the vaporization threshold energy of material) is incident on material, ablation or vaporization takes place which leads to the generation of plasma. The generated plasma has the property to move away from the material hence pressure is generated which leads to the generation of thrust. Nowadays nano satellites are very common in different space and defence applications. It is important to build micro thruster which are useful for orienting and re-positioning small aircraft (like nano satellites) above the atmosphere. modelling of LAP using MATLAB and Mathematica. Schematic is made for the suitable optical configuration of LAP. Practical experiments with shadowgraphy and self emission techniques and the results obtained are analysed taking poly (vinyl-chloride) (PVC) as propellant to study the

  14. Internet and web projects for fusion plasma science and education. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Eastman, Timothy E. [Senior Research Associate, Silver Spring, MD (United States)

    1999-08-30

    The plasma web site at http://www.plasmas.org provides comprehensive coverage of all plasma science and technology with site links worldwide. Prepared to serve the general public, students, educators, researchers, and decision-makers, the site covers basic plasma physics, fusion energy, magnetic confinement fusion, high energy density physics include ICF, space physics and astrophysics, pulsed-power, lighting, waste treatment, plasma technology, plasma theory, simulations and modeling.

  15. Challenges and Opportunities in Propulsion Simulations

    Science.gov (United States)

    2015-09-24

    factor in range & time-to-target 40-60% of aircraft TOGW 20-40% of system life cycle cost Propulsion & Power are Important ! 50-70% of satellite...Distribution A – Approved for public release; Distribution Unlimited Types of Codes ! Commercial – Fluent, STAR-CCM ! Small Business – CRAFT, CFD...Distribution A: Approved for Public Release; Distribution Unlimited ‹#› Electric Propulsion Plasma propulsion increases Isp by 10x, reducing s/c

  16. Electric propulsion for satellites and spacecraft: established technologies and novel approaches

    Science.gov (United States)

    Mazouffre, Stéphane

    2016-06-01

    This contribution presents a short review of electric propulsion (EP) technologies for satellites and spacecraft. Electric thrusters, also termed ion or plasma thrusters, deliver a low thrust level compared to their chemical counterparts, but they offer significant advantages for in-space propulsion as energy is uncoupled to the propellant, therefore allowing for large energy densities. Although the development of EP goes back to the 1960s, the technology potential has just begun to be fully exploited because of the increase in the available power aboard spacecraft, as demonstrated by the very recent appearance of all-electric communication satellites. This article first describes the fundamentals of EP: momentum conservation and the ideal rocket equation, specific impulse and thrust, figures of merit and a comparison with chemical propulsion. Subsequently, the influence of the power source type and characteristics on the mission profile is discussed. Plasma thrusters are classically grouped into three categories according to the thrust generation process: electrothermal, electrostatic and electromagnetic devices. The three groups, along with the associated plasma discharge and energy transfer mechanisms, are presented via a discussion of long-standing technologies like arcjet thrusters, magnetoplasmadynamic thrusters, pulsed plasma thrusters and ion engines, as well as Hall thrusters and variants. More advanced concepts and new approaches for performance improvement are discussed afterwards: magnetic shielding and wall-less configurations, negative ion thrusters and plasma acceleration with a magnetic nozzle. Finally, various alternative propellant options are analyzed and possible research paths for the near future are examined.

  17. Additively Manufactured Propulsion System

    OpenAIRE

    Dushku, Matthew; Mueller, Paul

    2012-01-01

    New high-performance, carbon-fiber reinforced polymer material allows additive manufacturing to produce pressure vessels capable of high pressures (thousands of pounds per square inch). This advancement in turn allows integral hybrid propulsion which is revolutionary for both CubeSats and additively-manufactured spacecraft. Hybrid propulsion offers simplicity as compared to bipropellant liquid propulsion, significantly better safety compared to solid or monopropellant hydrazine propulsion, an...

  18. Exploration of Plasma Jets Approach to High Energy Density Physics. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chiping [Massachusetts Institute of Technology

    2013-08-26

    High-energy-density laboratory plasma (HEDLP) physics is an emerging, important area of research in plasma physics, nuclear physics, astrophysics, and particle acceleration. While the HEDLP regime occurs at extreme conditions which are often found naturally in space but not on the earth, it may be accessible by colliding high intensity plasmas such as high-energy-density plasma jets, plasmoids or compact toroids from plasma guns. The physics of plasma jets is investigated in the context of high energy density laboratory plasma research. This report summarizes results of theoretical and computational investigation of a plasma jet undergoing adiabatic compression and adiabatic expansion. A root-mean-squared (rms) envelope theory of plasma jets is developed. Comparison between theory and experiment is made. Good agreement between theory and experiment is found.

  19. The Center for Momentum Transport and Flow Organization in Plasmas - Final Scientific Report

    Energy Technology Data Exchange (ETDEWEB)

    Munsat, Tobin [Univ. of Colorado, Boulder, CO (United States)

    2015-12-14

    observed in ohmic H-mode plasmas as well, though significantly fewer events are seen in the ohmic cases and none were observed in the near-threshold NBI H-modes studied. Development of Velocimetry and Image Analysis Techniques: Along with the experiments listed above, the Colorado group has continued to explore various velocimetry techniques and their range of validity. We have developed a “linear optical flow” code, which calculates smooth velocity maps while accurately assessing local regions of high curl. This is critical for separating spatial scales of velocity behavior, and thus transport. This code has recently come on-line, and we are currently using it to revisit a number of older datasets. Additionally, we have worked on developing pattern-recognition techniques for imaging diagnostics, based on established digital image compression algorithms. This has the potential to open the analysis of turbulent plasma behavior beyond the well-trodden Fourier and wavelet approaches. Finally, we have extended several of these image-analysis routines to multiple other diagnostic sets, including GPI datasets in NSTX and ECEI imaging on DIII-D. In one study, correlation maps were used to measure the full 2-D mode structure of drift-wave level structures using ECEI for the first time. This enabled direct comparison to gyrokinetic simulations using the GEM code, from which is was determined that TEM modes were being measured in DIII-D.

  20. Final Report: Plasma Colloquium Travel Grant Program, September 15, 1997 - September 14, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Hazeltine, Richard D.

    1998-09-14

    The purpose of the Travel Grant Program is to increase the awareness of plasma research. The new results and techniques of plasma research in fusion plasmas, plasma processing space plasmas, basic plasma science, etc, have broad applicability throughout science. The benefits of these results are limited by the relatively low awareness and appreciation of plasma research in the larger scientific community. Whereas spontaneous interactions between plasma scientists and other scientists are useful, a focused effort in education and outreach to other scientists is efficient and is needed. The academic scientific community is the initial focus of this effort, since that permits access to a broad cross-section of scientists and future scientists including undergraduates, graduate students, faculty, and research staff.

  1. Anatomy of Nanoscale Propulsion.

    Science.gov (United States)

    Yadav, Vinita; Duan, Wentao; Butler, Peter J; Sen, Ayusman

    2015-01-01

    Nature supports multifaceted forms of life. Despite the variety and complexity of these forms, motility remains the epicenter of life. The applicable laws of physics change upon going from macroscales to microscales and nanoscales, which are characterized by low Reynolds number (Re). We discuss motion at low Re in natural and synthetic systems, along with various propulsion mechanisms, including electrophoresis, electrolyte diffusiophoresis, and nonelectrolyte diffusiophoresis. We also describe the newly uncovered phenomena of motility in non-ATP-driven self-powered enzymes and the directional movement of these enzymes in response to substrate gradients. These enzymes can also be immobilized to function as fluid pumps in response to the presence of their substrates. Finally, we review emergent collective behavior arising from interacting motile species, and we discuss the possible biomedical applications of the synthetic nanobots and microbots.

  2. Final Report LDRD 02-ERD-013 Dense Plasma Characterization by X-ray Thomson Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Landen, O L; Glenzer, S H; Gregori, G; Pollaine, S M; Hammer, J H; Rogers, F; Meezan, N B; Chung, H; Lee, R W

    2005-02-11

    We have successfully demonstrated spectrally-resolved x-ray scattering in a variety of dense plasmas as a powerful new technique for providing microscopic dense plasma parameters unattainable by other means. The results have also been used to distinguish between ionization balance models. This has led to 10 published or to be published papers, 8 invited talks and significant interest from both internal and external experimental plasma physicists and the international statistical plasma physics theory community.

  3. Rocket propulsion elements

    CERN Document Server

    Sutton, George P

    2011-01-01

    The definitive text on rocket propulsion-now revised to reflect advancements in the field For sixty years, Sutton's Rocket Propulsion Elements has been regarded as the single most authoritative sourcebook on rocket propulsion technology. As with the previous edition, coauthored with Oscar Biblarz, the Eighth Edition of Rocket Propulsion Elements offers a thorough introduction to basic principles of rocket propulsion for guided missiles, space flight, or satellite flight. It describes the physical mechanisms and designs for various types of rockets' and provides an unders

  4. Solar Thermal Propulsion

    Science.gov (United States)

    Gerrish, Harold P., Jr.

    2003-01-01

    This paper presents viewgraphs on Solar Thermal Propulsion (STP). Some of the topics include: 1) Ways to use Solar Energy for Propulsion; 2) Solar (fusion) Energy; 3) Operation in Orbit; 4) Propulsion Concepts; 5) Critical Equations; 6) Power Efficiency; 7) Major STP Projects; 8) Types of STP Engines; 9) Solar Thermal Propulsion Direct Gain Assembly; 10) Specific Impulse; 11) Thrust; 12) Temperature Distribution; 13) Pressure Loss; 14) Transient Startup; 15) Axial Heat Input; 16) Direct Gain Engine Design; 17) Direct Gain Engine Fabrication; 18) Solar Thermal Propulsion Direct Gain Components; 19) Solar Thermal Test Facility; and 20) Checkout Results.

  5. DIII-D Edge Plasma, Disruptions, and Radiative Processes. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Boedo, J. A.; Luckhardt, S.C.; Moyer, R. A.

    2001-01-01

    The scientific goal of the UCSD-DIII-D Collaboration during this period was to understand the coupling of the core plasma to the plasma-facing components through the plasma boundary (edge and scrape-off layer). To achieve this goal, UCSD scientists studied the transport of particles, momentum, energy, and radiation from the plasma core to the plasma-facing components under normal (e.g., L-mode, H-mode, and ELMs), and off-normal (e.g., disruptions) operating conditions.

  6. 激光等离子体微推进技术的研究进展%Research progress in micro-laser plasma propulsion

    Institute of Scientific and Technical Information of China (English)

    叶继飞; 洪延姬; 王广宇; 李南雷

    2011-01-01

    为了加快激光等离子体微推进技术(μLPP)在航天领域的应用,介绍了该项技术近10年的发展状况。讨论了激光等离子体微推进技术发展过程中衍生出的各种工作模式,并简略分析了不同工作模式的优缺点。着重介绍了靶特性对激光微推进性能的影响,包括靶材的选择、靶的结构、靶材掺杂,以及靶物相特性等。针对该项技术的最终发展目标是研制微小卫星姿轨控的激光等离子体微推力器(μLPT),介绍并分析了美国Phipps小组开展的激光微推力器的研制工作。最后,指出了激光等离子体微推进技术目前存在的一些问题,并展望了它的发展前景。%To achieve the applications of micro-Laser Plasma Propulsion(μLPP) to aerospace fields,the development of the μLPP technologies during 10 years was introduced.The different working modes for the μLPP were discussed and their advantages and disadvantages were analyzed briefly.The effects of laser micro ablation of a target on μLPP properties were also introduced,which involves the state of target,structure of target,doped target,and the liquid target.For the purpose of the micro satellite orbit and posture control,the micro-Laser Plasma Thrusters(μLPTs) developed by Phipps group in America were analyzed.Finally,the shortcomings in the research were pointed out and the further development of μLPP technology was given.

  7. Preliminary evaluation of a process using plasma reactions to desulfurize heavy oils. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Grimes, P.W.; Miknis, F.P.

    1997-09-01

    Western Research Institute (WRI) has conducted exploratory experiments on the use of microwave-induced plasmas to desulfurize heavy oils. Batch mode experiments were conducted in a quartz reactor system using various reactive and nonreactive plasmas. In these experiments a high-sulfur asphalt was exposed to various plasmas, and the degree of conversion to distillate, gas, and solids was recorded. Products from selected experiments were analyzed to determine if the plasma exposure had resulted in a significant reduction in sulfur content. Exploratory experiments were conducted using reactive plasmas generated from hydrogen and methane and nonreactive plasmas generated from nitrogen. The effects of varying exposure duration, sample temperature, and location of the sample with respect to the plasma discharge were investigated. For comparative purposes two experiments were conducted in which the sample was heated under nitrogen with no plasma exposure. Distillates containing approximately 28% less sulfur than the feedstock represented the maximum desulfurization attained in the plasma experiments. It does not appear that plasma reactions using the simple configurations employed in this study represent a viable method for the desulfurization of heavy oils.

  8. Space Propulsion Technology Program Overview

    Science.gov (United States)

    Escher, William J. D.

    1991-01-01

    The topics presented are covered in viewgraph form. Focused program elements are: (1) transportation systems, which include earth-to-orbit propulsion, commercial vehicle propulsion, auxiliary propulsion, advanced cryogenic engines, cryogenic fluid systems, nuclear thermal propulsion, and nuclear electric propulsion; (2) space platforms, which include spacecraft on-board propulsion, and station keeping propulsion; and (3) technology flight experiments, which include cryogenic orbital N2 experiment (CONE), SEPS flight experiment, and cryogenic orbital H2 experiment (COHE).

  9. Magnetic Nozzle Simulation Studies for Electric Propulsion

    Science.gov (United States)

    Tarditi, Alfonso

    2010-11-01

    Electric Propulsion has recently re-gained interest as one of the key technologies to enable NASA's long-range space missions. Options are being considered also in the field of aneutronic fusion propulsion for high-power electric thrusters. To support these goals the study of the exhaust jet in a plasma thruster acquires a critical importance because the need of high-efficiency generation of thrust. A model of the plasma exhaust has been developed with the 3D magneto-fluid NIMROD code [1] to study the physics of the plasma detachment in correlation with experimentally relevant configurations. The simulations show the role of the plasma diamagnetism and of the magnetic reconnection process in the formation of a detached plasma. Furthermore, in direct fusion-propulsion concepts high-energy (MeV range) fusion products have to be efficiently converted into a slower and denser plasma jet (with specific impulse down to few 1000's seconds, for realistic missions in the Solar System). For this purpose, a two-stage conversion process is being modeled where high-energy ions are non-adiabatically injected and confined into a magnetic duct leading to the magnetic nozzle, transferring most of their energy into their gyro-motion and drifting at slower speed along with the plasma propellant. The propellant acquires then thermal energy that gets converted into the direction of thrust by the magnetic nozzle. [1] C. R. Sovinec et al., J. Comput. Phys. 195, 355 (2004).

  10. Frequency of cell treatment with cold microwave argon plasma is important for the final outcome

    Science.gov (United States)

    Sysolyatina, E.; Vasiliev, M.; Kurnaeva, M.; Kornienko, I.; Petrov, O.; Fortov, V.; Gintsburg, A.; Petersen, E.; Ermolaeva, S.

    2016-07-01

    The purpose of this work was to establish the influence of a regime of cold microwave argon plasma treatments on the physiological characteristics of human fibroblasts and keratinocytes. We used three regimes of plasma application: a single treatment, double treatment with a 48 h interval, and daily treatments for 3 d. Cell proliferation after plasma application was quantified in real time, and immunohistochemistry was used to establish the viability of the cells and determine changes in their physiology. It was established that the frequency of cell treatments is important for the outcome. In the samples treated with single plasma application and double plasma applications with a 48 h interval, a 42.6% and 32.0% increase was observed in the number of cells, respectively. In addition, there were no signs of deoxyribonucleic acid breaks immediately after plasma application. In contrast, plasma application increased the accumulation of cells in the active phases of the cell cycle. The activation of proliferation correlated with a decrease in the level of β-galactosidase, a senescence marker. This could be due to cell renovation after plasma application. Daily treatment decreased cell proliferation up to 29.1% in comparison with the control after 3 d.

  11. Wheelchairs propulsion analysis: review

    OpenAIRE

    Sagawa Júnior,Yoshimasa; Haupenthal,Alessandro; Borges Junior,Noé Gomes; Santos,Daniela Pacheco dos; Watelain, Eric

    2012-01-01

    OBJECTIVES: To analyze aspects related with wheelchair propulsion. MATERIALS AND METHODS: In order to delineate this review the search for information was carried out within electronics databases, using the following descriptors: "wheelchair propulsion", "wheelchair biomechanics" e "wheelchair users". Full papers published in English and French were included in the study. RESULTS: The wheelchair propulsion is a complex movement that requires the execution of repeated bi manual forces applicat...

  12. Status of Propulsion Technology Development Under the NASA In-Space Propulsion Technology Program

    Science.gov (United States)

    Anderson, David; Kamhawi, Hani; Patterson, Mike; Pencil, Eric; Pinero, Luis; Falck, Robert; Dankanich, John

    2014-01-01

    Since 2001, the In-Space Propulsion Technology (ISPT) program has been developing and delivering in-space propulsion technologies for NASA's Science Mission Directorate (SMD). These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, Flagship and sample return missions currently under consideration. The ISPT program is currently developing technology in three areas that include Propulsion System Technologies, Entry Vehicle Technologies, and Systems/Mission Analysis. ISPT's propulsion technologies include: 1) the 0.6-7 kW NASA's Evolutionary Xenon Thruster (NEXT) gridded ion propulsion system; 2) a 0.3-3.9kW Halleffect electric propulsion (HEP) system for low cost and sample return missions; 3) the Xenon Flow Control Module (XFCM); 4) ultra-lightweight propellant tank technologies (ULTT); and 5) propulsion technologies for a Mars Ascent Vehicle (MAV). The NEXT Long Duration Test (LDT) recently exceeded 50,000 hours of operation and 900 kg throughput, corresponding to 34.8 MN-s of total impulse delivered. The HEP system is composed of the High Voltage Hall Accelerator (HIVHAC) thruster, a power processing unit (PPU), and the XFCM. NEXT and the HIVHAC are throttle-able electric propulsion systems for planetary science missions. The XFCM and ULTT are two component technologies which being developed with nearer-term flight infusion in mind. Several of the ISPT technologies are related to sample return missions needs: MAV propulsion and electric propulsion. And finally, one focus of the Systems/Mission Analysis area is developing tools that aid the application or operation of these technologies on wide variety of mission concepts. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness.

  13. Space Nuclear Thermal Propulsion Test Facilities Subpanel

    Science.gov (United States)

    Allen, George C.; Warren, John W.; Martinell, John; Clark, John S.; Perkins, David

    1993-04-01

    On 20 Jul. 1989, in commemoration of the 20th anniversary of the Apollo 11 lunar landing, President George Bush proclaimed his vision for manned space exploration. He stated, 'First for the coming decade, for the 1990's, Space Station Freedom, the next critical step in our space endeavors. And next, for the new century, back to the Moon. Back to the future. And this time, back to stay. And then, a journey into tomorrow, a journey to another planet, a manned mission to Mars.' On 2 Nov. 1989, the President approved a national space policy reaffirming the long range goal of the civil space program: to 'expand human presence and activity beyond Earth orbit into the solar system.' And on 11 May 1990, he specified the goal of landing Astronauts on Mars by 2019, the 50th anniversary of man's first steps on the Moon. To safely and ever permanently venture beyond near Earth environment as charged by the President, mankind must bring to bear extensive new technologies. These include heavy lift launch capability from Earth to low-Earth orbit, automated space rendezvous and docking of large masses, zero gravity countermeasures, and closed loop life support systems. One technology enhancing, and perhaps enabling, the piloted Mars missions is nuclear propulsion, with great benefits over chemical propulsion. Asserting the potential benefits of nuclear propulsion, NASA has sponsored workshops in Nuclear Electric Propulsion and Nuclear Thermal Propulsion and has initiated a tri-agency planning process to ensure that appropriate resources are engaged to meet this exciting technical challenge. At the core of this planning process, NASA, DOE, and DOD established six Nuclear Propulsion Technical Panels in 1991 to provide groundwork for a possible tri-agency Nuclear Propulsion Program and to address the President's vision by advocating an aggressive program in nuclear propulsion. To this end the Nuclear Electric Propulsion Technology Panel has focused it energies; this final report

  14. Space Nuclear Thermal Propulsion Test Facilities Subpanel

    Science.gov (United States)

    Allen, George C.; Warren, John W.; Martinell, John; Clark, John S.; Perkins, David

    1993-01-01

    On 20 Jul. 1989, in commemoration of the 20th anniversary of the Apollo 11 lunar landing, President George Bush proclaimed his vision for manned space exploration. He stated, 'First for the coming decade, for the 1990's, Space Station Freedom, the next critical step in our space endeavors. And next, for the new century, back to the Moon. Back to the future. And this time, back to stay. And then, a journey into tomorrow, a journey to another planet, a manned mission to Mars.' On 2 Nov. 1989, the President approved a national space policy reaffirming the long range goal of the civil space program: to 'expand human presence and activity beyond Earth orbit into the solar system.' And on 11 May 1990, he specified the goal of landing Astronauts on Mars by 2019, the 50th anniversary of man's first steps on the Moon. To safely and ever permanently venture beyond near Earth environment as charged by the President, mankind must bring to bear extensive new technologies. These include heavy lift launch capability from Earth to low-Earth orbit, automated space rendezvous and docking of large masses, zero gravity countermeasures, and closed loop life support systems. One technology enhancing, and perhaps enabling, the piloted Mars missions is nuclear propulsion, with great benefits over chemical propulsion. Asserting the potential benefits of nuclear propulsion, NASA has sponsored workshops in Nuclear Electric Propulsion and Nuclear Thermal Propulsion and has initiated a tri-agency planning process to ensure that appropriate resources are engaged to meet this exciting technical challenge. At the core of this planning process, NASA, DOE, and DOD established six Nuclear Propulsion Technical Panels in 1991 to provide groundwork for a possible tri-agency Nuclear Propulsion Program and to address the President's vision by advocating an aggressive program in nuclear propulsion. To this end the Nuclear Electric Propulsion Technology Panel has focused it energies; this final report

  15. Plasma stabilization experiment. Final report, 1 October 1979-30 April 1980

    Energy Technology Data Exchange (ETDEWEB)

    Sziklas, E. A.; Fader, W. J.; Jong, R. A.; Stufflebeam, J. H.

    1980-07-01

    The Plasma Stabilization Experiment is an effort to enhance stability in a mirror-confined plasma by trapping cold ions with rf fields applied near the mirror throats. Nagoya Type III antennas, coupled to a 60 kW rf power supply are mounted in the throats of the UTRC baseball magnet. An external washer gun provides a source of plasma for both streaming and confined plasma tests. Results show a strong stoppering effect on streaming plasmas and a marginal effect on confined plasmas. Theoretical calculations provide an explanation for the experimental observations. The field generates a ponderomotive force acting on the electrons. The resultant improvement in electron confinement changes the ambipolar potential and inhibits the flow of ions through the mirror throat. Criteria are derived for the validity of this trapping concept. The requisite field strengths are significantly lower than those required to trap ions directly. Scaling laws are developed for application of cold ion trapping to large mirror devices containing dense plasmas. The use of slow-wave antenna structures operated at frequencies above the lower hybrid frequency is recommended for these applications.

  16. Simulation Tool for Dielectric Barrier Discharge Plasma Actuators at Atmospheric and Sub-Atmospheric Pressures: SBIR Phase I Final Report

    Science.gov (United States)

    Likhanskii, Alexandre

    2012-01-01

    This report is the final report of a SBIR Phase I project. It is identical to the final report submitted, after some proprietary information of administrative nature has been removed. The development of a numerical simulation tool for dielectric barrier discharge (DBD) plasma actuator is reported. The objectives of the project were to analyze and predict DBD operation at wide range of ambient gas pressures. It overcomes the limitations of traditional DBD codes which are limited to low-speed applications and have weak prediction capabilities. The software tool allows DBD actuator analysis and prediction for subsonic to hypersonic flow regime. The simulation tool is based on the VORPAL code developed by Tech-X Corporation. VORPAL's capability of modeling DBD plasma actuator at low pressures (0.1 to 10 torr) using kinetic plasma modeling approach, and at moderate to atmospheric pressures (1 to 10 atm) using hydrodynamic plasma modeling approach, were demonstrated. In addition, results of experiments with pulsed+bias DBD configuration that were performed for validation purposes are reported.

  17. Cold Gas Micro Propulsion

    NARCIS (Netherlands)

    Louwerse, M.C.

    2009-01-01

    This thesis describes the development of a micro propulsion system. The trend of miniaturization of satellites requires small sized propulsion systems. For particular missions it is important to maintain an accurate distance between multiple satellites. Satellites drift apart due to differences in

  18. Advanced Propulsion Physics Lab: Eagleworks Investigations

    Science.gov (United States)

    Scogin, Tyler

    2014-01-01

    Eagleworks Laboratory is an advanced propulsions physics laboratory with two primary investigations currently underway. The first is a Quantum Vacuum Plasma Thruster (QVPT or Q-thrusters), an advanced electric propulsion technology in the development and demonstration phase. The second investigation is in Warp Field Interferometry (WFI). This is an investigation of Dr. Harold "Sonny" White's theoretical physics models for warp field equations using optical experiments in the Electro Optical laboratory (EOL) at Johnson Space Center. These investigations are pursuing technology necessary to enable human exploration of the solar system and beyond.

  19. Thermoelectric-Driven Liquid-Metal Plasma-Facing Structures (TELS) Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Ruzic, David [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2016-12-17

    The Thermoelectric-Driven Liquid-Metal Plasma-Facing Structures (TELS) project was able to establish the experimental conditions necessary for flowing liquid metal surfaces in order to be utilized as surfaces facing fusion relevant energetic plasma flux. The work has also addressed additional developments along with progressing along the timeline detailed in the proposal. A no-cost extension was requested to conduct other relevant experiment- specifically regarding the characterization droplet ejection during energetic plasma flux impact. A specially designed trench module, which could accommodate trenches with different aspect ratios was fabricated and installed in the TELS setup and plasma gun experiments were performed. Droplet ejection was characterized using high speed image acquisition and also surface mounted probes were used to characterize the plasma. The Gantt chart below had been provided with the original proposal, indicating the tasks to be performed in the third year of funding. These tasks are listed above in the progress report outline, and their progress status is detailed below.

  20. Plasma assisted NO{sub x} reduction in existing coal combustors. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Yao, S.C.; Russell, T.

    1991-12-31

    The feasibility of NO{sub x} reduction using plasma injection has been investigated. Both numerical and experimental methods were used in the development of this new NO{sub x}reduction technique. The numerical analysis was used to investigate various flow mechanisms in order to provide fundamental support in the development of this new NO{sub x} control technique. The calculations using this approach can give the information of the particle trajectories and distributions which are important for the design of the in-flame plasma injection configuration. The group model also established the necessary ground for further complete modeling of the whole process including the chemical kinetics. Numerical calculations were also performed for a turbulent gas flow field with variable properties. The results provided fundamental understanding of mixing effects encountered in the experiments at Pittsburgh Energy and Technology Center. A small scale experiment facility was designed and constructed at the heterogeneous combustion laboratory at Carnegie Mellon University. A series of tests were conducted in this setup to investigate the potential of the ammonia plasma injection for NO{sub x} reduction and parametric effects of this process. The experimental results are very promising. About 86% NO{sub x} reduction was achieved using ammonia radicals produced by argon plasma within the present test range. The total percentage of NO{sub x} reduction increases when ammonia flowrate, argon flow rate and initial NO concentration increase and when plasma power and the amount of excess air in the combustor decrease. A combined transport and reaction model was postulated for understanding the mechanism of NO{sub x} reduction using the plasma injection.

  1. Final Report: Spectral Analysis of L-shell Data in the Extreme Ultraviolet from Tokamak Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Lepson, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jernigan, J. Garrett [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Beiersdorfer, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-02-05

    We performed detailed analyses of extreme ultraviolet spectra taken by Lawrence Livermore National Laboratory on the National Spherical Torus Experiment at Princeton Plasma Physics Laboratory and on the Alcator CKmod tokamak at the M.I.T. Plasma Science and Fusion Center. We focused on the emission of iron, carbon, and other elements in several spectral band pass regions covered by the Atmospheric Imaging Assembly on the Solar Dynamics Observatory. We documented emission lines of carbon not found in currently used solar databases and demonstrated that this emission was due to charge exchange.

  2. Rf-plasma synthesis of nanosize silicon carbide and nitride. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Buss, R.J.

    1997-02-01

    A pulsed rf plasma technique is capable of generating ceramic particles of 10 manometer dimension. Experiments using silane/ammonia and trimethylchlorosilane/hydrogen gas mixtures show that both silicon nitride and silicon carbide powders can be synthesized with control of the average particle diameter from 7 to 200 nm. Large size dispersion and much agglomeration appear characteristic of the method, in contrast to results reported by another research group. The as produced powders have a high hydrogen content and are air and moisture sensitive. Post-plasma treatment in a controlled atmosphere at elevated temperature (800{degrees}C) eliminates the hydrogen and stabilizes the powder with respect to oxidation or hydrolysis.

  3. Research Equipment Purchased under DURIP Grant Number AFOSR-89-0098: Application for Laser Propulsion

    Science.gov (United States)

    1991-03-07

    Plasmas for Thermal Rocket Propulsion A. Mertogul, D. Zerkle, H. Krier, and J. Mazumder University of Illinois at Urbana-Champaign Urbana, Illinois AIAA... THERMAL ROCKET PROPULSIONt A. Mertogul. , D. Zerkle*, H. Kriert, J. Mazumder** University of Illinois at Urbana-Champaign Department of Mechanical and...Mazumder, J., "Laser-Sustained Argon Plasmas for Thermal Rocket Propulsion," Journal of Propulsion and Power, Vol. 6, No. 1, pp. 38-45, January-February

  4. Fatigue testing of plasma-sprayed thermal barrier coatings, Volume 2. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cruse, T.A.; Nagy, A.; Popelar, C.F.

    1990-07-01

    A plasma sprayed thermal barrier coating for diesel engines were fatigue tested. Candidate thermal barrier coating materials were fatigue screened and a data base was generated for the selected candidate material. Specimen configurations are given for the bend fatigue tests, along with test setup, specimen preparation, test matrix and procedure, and data analysis.

  5. Final Scientific/Technical Report for "Strongly-Coupled Dusty Plasmas"

    Energy Technology Data Exchange (ETDEWEB)

    John Goree

    2010-08-14

    The subject of the project is the basic-plasma physics topic of strongly-coupled plasmas, as studied experimentally using dusty plasmas. This topic is highly interdisciplinary, with significant overlap with astrophysics, space physics, and condensed matter physics. Among the successes of this project during the most recent four-year period are the 23 papers were produced for peer-reviewed scientific journals. These papers mostly report experiments, as well as some numerical simulations. Coauthors of the papers include collaborators in Germany, Hungary, and Russia, as well as the U.S. Research topics included traditional plasma physics themes such as transport, waves, instabilities, and experimental diagnostics. They also included interdisciplinary topics of melting (condensed matter physics) and rarefied gas dynamics (fluid mechanics). All of the research topics were chosen to have a high impact. Our success in achieving a high impact is demonstrated by the seven papers published in Physical Review Letters over a four-year period, and a significant number of invited talks. The project included a broader-impact element that included not only training of graduate students and public dissemination of research results, but also an outreach program. The outreach Included presentations motivated by the sound-wave experiments in this project for the 'Family Science Adventures' (for children and parents of Iowa City area) and hands-on experiments at a K12 school (3rd and 4th grades in 2007, and 5th and 6th grades in 2008).

  6. Distributed Propulsion Vehicles

    Science.gov (United States)

    Kim, Hyun Dae

    2010-01-01

    Since the introduction of large jet-powered transport aircraft, the majority of these vehicles have been designed by placing thrust-generating engines either under the wings or on the fuselage to minimize aerodynamic interactions on the vehicle operation. However, advances in computational and experimental tools along with new technologies in materials, structures, and aircraft controls, etc. are enabling a high degree of integration of the airframe and propulsion system in aircraft design. The National Aeronautics and Space Administration (NASA) has been investigating a number of revolutionary distributed propulsion vehicle concepts to increase aircraft performance. The concept of distributed propulsion is to fully integrate a propulsion system within an airframe such that the aircraft takes full synergistic benefits of coupling of airframe aerodynamics and the propulsion thrust stream by distributing thrust using many propulsors on the airframe. Some of the concepts are based on the use of distributed jet flaps, distributed small multiple engines, gas-driven multi-fans, mechanically driven multifans, cross-flow fans, and electric fans driven by turboelectric generators. This paper describes some early concepts of the distributed propulsion vehicles and the current turboelectric distributed propulsion (TeDP) vehicle concepts being studied under the NASA s Subsonic Fixed Wing (SFW) Project to drastically reduce aircraft-related fuel burn, emissions, and noise by the year 2030 to 2035.

  7. A Microwave Thruster for Spacecraft Propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Chiravalle, Vincent P [Los Alamos National Laboratory

    2012-07-23

    This presentation describes how a microwave thruster can be used for spacecraft propulsion. A microwave thruster is part of a larger class of electric propulsion devices that have higher specific impulse and lower thrust than conventional chemical rocket engines. Examples of electric propulsion devices are given in this presentation and it is shown how these devices have been used to accomplish two recent space missions. The microwave thruster is then described and it is explained how the thrust and specific impulse of the thruster can be measured. Calculations of the gas temperature and plasma properties in the microwave thruster are discussed. In addition a potential mission for the microwave thruster involving the orbit raising of a space station is explored.

  8. Laser propulsion: a review

    CSIR Research Space (South Africa)

    Michaelis, MM

    2006-07-01

    Full Text Available Ablation (HPLA) conferences, numbered I to VI, held in New Mexico, where laser propulsion is but one topic, under the auspices of the Society for Photographic Instrumentation Engineers (SPIE). There is also a specialist conference on beamed energy... route to space. 1. Myrabo L.N. (1987). Air-breathing laser propulsion for trans-atmospheric vehicles. In Proc. SDIO Workshop on Laser Propulsion, Los Alamos, New Mexico, ed. J.T. Kare, pp. 173–208. Los Alamos. 2. Phipps C.R., Luke J.R., McDuff G...

  9. Active probing of space plasmas. Final report, 25 October 1985-30 September 1989

    Energy Technology Data Exchange (ETDEWEB)

    Chan, C.; Silevitch, M.B.; Villalon, E.

    1989-09-01

    During the course of the research period our efforts were focused on the following areas: (1) An examination of stochastic acceleration mechanisms in the ionosphere; (2) A study of nonequilibrium dynamics of the coupled magnetosphere - ionosphere system; and (3) Laboratory studies of active space experiments. Reprints include: Dynamics of charged particles in the near wake of a very negatively charged body -- Laboratory experiment and numerical simulation; Laboratory study of the electron temperature in the near wake of a conducting body; New model for auroral breakup during substorms; Substorm breakup on closed field lines; New model for substorm on sets -- The pre-breakup and triggering regimes; Model of the westward traveling surge and the generation of Pi 2 pulsations; Ionospheric electron acceleration by electromagnetic waves near regions of plasma resonances; Relativistic particle acceleration by obliquely propagating electromagnetic fields; Some consequences of intense electromagnetic wave injection into space plasmas.

  10. Dynamics of space plasma. Final report, 6 March 1989-1 September 1992

    Energy Technology Data Exchange (ETDEWEB)

    Albert, J.; Chan, C.; Silevitch, M.; Villalon, E.

    1992-09-01

    The research was focused into three related areas. These were: (A) An examination of stochastic electron acceleration mechanisms in the ionosphere and the resulting dynamics of magnetospheric (i.e., Radiation Belt) particles and waves; (B) A study of nonadiabatic particle orbits and the electrodynamic structure of the coupled magnetosphere-ionosphere auroral arc system; (C) An experimental investigation of the wake signatures created by a solid body immersed in a flowing plasma.

  11. Alternative propulsion for automobiles

    CERN Document Server

    Stan, Cornel

    2017-01-01

    The book presents – based on the most recent research and development results worldwide - the perspectives of new propulsion concepts such as electric cars with batteries and fuel cells, and furthermore plug in hybrids with conventional and alternative fuels. The propulsion concepts are evaluated based on specific power, torque characteristic, acceleration behaviour, specific fuel consumption and pollutant emissions. The alternative fuels are discussed in terms of availability, production, technical complexity of the storage on board, costs, safety and infrastructure. The book presents summarized data about vehicles with electric and hybrid propulsion. The propulsion of future cars will be marked by diversity – from compact electric city cars and range extender vehicles for suburban and rural areas up to hybrid or plug in SUV´s, Pick up´s and luxury class automobiles.

  12. Solar Thermal Rocket Propulsion

    Science.gov (United States)

    Sercel, J. C.

    1986-01-01

    Paper analyzes potential of solar thermal rockets as means of propulsion for planetary spacecraft. Solar thermal rocket uses concentrated Sunlight to heat working fluid expelled through nozzle to produce thrust.

  13. Electric Vehicle Propulsion System

    OpenAIRE

    2014-01-01

    Electric vehicles are being considered as one of the pillar of eco-friendly solutions to overcome the problem of global pollution and radiations due to greenhouse gases. Present thesis work reports the improvement in overall performance of the propulsion system of an electric vehicle by improving autonomy and torque-speed characteristic. Electric vehicle propulsion system consists of supply and traction system, and are coordinated by the monitoring & control system. Case of light electric veh...

  14. Nuclear Pulse Propulsion

    OpenAIRE

    Atanas, Dilov; Hasan, Osman; Nickolai, Larsen; Tom, Edwards

    2015-01-01

    This project aims to provide the reader with a comprehensive insight into the potential of nuclear fuels to accelerate spacecraft propulsion, shorten journey times and broaden our exploration of space. The current methods of space propulsion offer little in the way of efficiency in terms of cost, time and henceforth investment and research. The dwindling resources of the planet plus the exponential rise of overpopulation will ultimately push us towards exploration of worlds further afield ...

  15. Fuel Effective Photonic Propulsion

    Science.gov (United States)

    Rajalakshmi, N.; Srivarshini, S.

    2017-09-01

    With the entry of miniaturization in electronics and ultra-small light-weight materials, energy efficient propulsion techniques for space travel can soon be possible. We need to go for such high speeds so that the generation’s time long interstellar missions can be done in incredibly short time. Also renewable energy like sunlight, nuclear energy can be used for propulsion instead of fuel. These propulsion techniques are being worked on currently. The recently proposed photon propulsion concepts are reviewed, that utilize momentum of photons generated by sunlight or onboard photon generators, such as blackbody radiation or lasers, powered by nuclear or solar power. With the understanding of nuclear photonic propulsion, in this paper, a rough estimate of nuclear fuel required to achieve the escape velocity of Earth is done. An overview of the IKAROS space mission for interplanetary travel by JAXA, that was successful in demonstrating that photonic propulsion works and also generated additional solar power on board, is provided; which can be used as a case study. An extension of this idea for interstellar travel, termed as ‘Star Shot’, aims to send a nanocraft to an exoplanet in the nearest star system, which could be potentially habitable. A brief overview of the idea is presented.

  16. Final Scientific Report: Experimental Investigation of Reconnection in a Line-tied Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Forest, Cary [Univ. of Wisconsin, Madison, WI (United States)

    2016-10-25

    This grant used funding from the NSF/DoE Partnership on Plasma Science to investigate magnetic reconnection phenomena in a line-tied pinch experiment. The experiment was upgraded from a previous device intended to study fusion plasma-related instabilities to a new configuration capable of studying a number of new, previously unstudied configurations. A high spatial and time resolution array of magnetic probes was constructed to measure time evolving structures present as instability and turbulence developed. The most important new equilibrium made possible by this grant was a Zero-Net-Current equilibrium that models the footpoint twisting of solar flux tubes that occurs prior to solar eruptions (flares and coronal mass ejections). This new equilibrium was successfully created in the lab, and it exhibited a host of instabilities. In particular, at low current when the equilibrium was not overly stressed, a saturated internal kink mode oscillation was observed. At high current, 2 D magnetic turbulence developed which we attribute to the lack of a equilibrium brought about by a subcritical transition to turbulence. A second set of experiments involved the turbulent interactions of a collection of flux tubes all being twisted independently, a problem known as the Parker Problem. Current profiles consisting of 2, 3 and 4 guns were used to impose a fine scale drive, and resulted in a new experimental platform in which the injection scale of the magnetic turbulence could be controlled. First experiments in this configuration support the conclusion that an inverse cascade of magnetic energy occurred which self-organized the plasma into a nearly axisymmetric current distribution.

  17. Final Report - Interaction of radiation and charged particles in miniature plasma structures

    Energy Technology Data Exchange (ETDEWEB)

    Antonsen, Thomas M. [Univ. of Maryland, College Park, MD (United States). Inst. for Electronics and Applied Physics

    2014-07-16

    The extension of our program to the development of theories and models capable of describing the interactions of intense laser pulses and charged particles in miniature plasma channels is reported. These channels, which have recently been created in the laboratory, have unique dispersion properties that make them interesting for a variety of applications including particle acceleration, high harmonic generation, and THz generation. Our program systematically explored the properties of these channels, including dispersion, losses, and coupling. A particular application that was pursued is the generation of intense pulses of THz radiation by short laser pulses propagating these channels. We also explored the nonlinear dynamics of laser pulses propagating in these channels.

  18. DOD-SBIR Structured Multi-Resolution PIC Code for Electromagnetic Plasma Simulations, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Vay, J L; Grote, D P; Friedman, A

    2010-04-22

    A novel electromagnetic solver with mesh refinement capability was implemented in Warp. The solver allows for calculations in 2-1/2 and 3 dimensions, includes the standard Yee stencil, and the Cole-Karkkainen stencil for lower numerical dispersion along the principal axes. Warp implementation of the Cole-Karkkainen stencil includes an extension to perfectly matched layers (PML) for absorption of waves, and is preserving the conservation property of charge conserving current deposition schemes, like the Buneman-Villanesor and Esirkepov methods. Warp's mesh refinement framework (originally developed for electrostatic calculations) was augmented to allow for electromagnetic capability, following the methodology presented in [1] extended to an arbitrary number of refinement levels. Other developments include a generalized particle injection method, internal conductors using stair-cased approximation, and subcycling of particle pushing. The solver runs in parallel using MPI message passing, with a choice at runtime of 1D, 2D and 3D domain decomposition, and is shown to scale linearly on a test problem up-to 32,768 CPUs. The novel solver was tested on the modeling of filamentation instability, fast ignition, ion beam induced plasma wake, and laser plasma acceleration.

  19. The Center for Momentum Transport and Flow Organization in Plasmas - Final Scientific Report

    Energy Technology Data Exchange (ETDEWEB)

    Munsat, Tobin [Univ. of Colorado, Boulder, CO (United States)

    2015-12-14

    Overview of University of Colorado Efforts: The University of Colorado group has focused on two primary fronts during the grant period: development of a variety of multi-point diagnostic and/or imaging analysis techniques, and momentum-transport related experiments on a variety of devices (NSTX at PPPL, CSDX at UCSD, LAPD at UCLA, DIII-D at GA). Experimental work has taken advantage of several diagnostic instruments, including fast-framing cameras for imaging of electron density fluctuations (either directly or using injected gas puffs), ECEI for imaging of electron temperature fluctuations, and multi-tipped Langmuir and magnetic probes for corroborating measurements of Reynolds and Maxwell stresses. Mode Characterization in CSDX: We have performed a series of experiments at the CSDX linear device at UCSD, in collaboration with Center PI G. Tynan's group. The experiments included a detailed study of velocity estimation techniques, including direct comparisons between Langmuir probes and image-based velocimetry from fast-framing camera data. We used the camera data in a second set of studies to identify the spatial and spectral structure of coherent modes, which illuminates wave behavior to a level of detail previously unavailable, and enables direct comparison of dispersion curves to theoretical estimates. In another CSDX study, similar techniques were used to demonstrate a controlled transition from nonlinearly coupled discrete eigenmodes to fully developed broadband turbulence. The axial magnetic field was varied from 40-240 mT, which drove the transition. At low magnetic fields, the plasma is dominated by drift waves. As the magnetic field is increased, a strong potential gradient at the edge introduces an ExB shear-driven instability. At the transition, another mode with signatures of a rotation-induced Rayleigh–Taylor instability appears at the central plasma region. Concurrently, large axial velocities were found in the plasma core. For larger magnetic

  20. Electric propulsion and its applications to space missions

    Science.gov (United States)

    Finke, R. C.

    1981-01-01

    Consideration is given the NASA, Air Force and European electric propulsion programs, the characteristics of primary electric propulsion systems, nuclear electric orbit transfer vehicles, and such topics in the fundamental processes of electrostatic thrusters as sputtering in mercury ion thrusters, the screen hole plasma sheath of an ion accelerator system, and the modelling of ion beam neutralization and nitrogen chemisorption. Also considered are electrostatic thruster components and systems, electromagnetic thrusters such as MPD and RIT systems, electric rail guns and mass drivers, power sources which include solar and nuclear alternatives, power conversion systems and their cooling apparatus, and the environmental interactions between spacecraft and their electric propulsion systems.

  1. Growth curve analysis for plasma profiles using smoothing splines. Final report, January 1993--January 1995

    Energy Technology Data Exchange (ETDEWEB)

    Imre, K.

    1995-07-01

    In this project, we parameterize the shape and magnitude of the temperature and density profiles on JET and the temperature profiles on TFTR. The key control variables for the profiles were tabulated and the response functions were estimated. A sophisticated statistical analysis code was developed to fit the plasma profiles. Our analysis indicate that the JET density shape depends primarily on {bar n}/B{sub t} for Ohmic heating, {bar n} for L-mode and I{sub p} for H-mode. The temperature profiles for JET are mainly determined by q{sub 95} for the case of Ohmic heating, and by B{sub t} and P/{bar n} for the L-mode. For the H-mode the shape depends on the type of auxiliary heating, Z{sub eff}, N{bar n}, q{sub 95}, and P.

  2. Final Report: Laboratory Studies of Spontaneous Reconnection and Intermittent Plasma Objects

    Energy Technology Data Exchange (ETDEWEB)

    Egedal-Pedersen, Jan [Massachusetts Institute of Technology; Porkolab, Miklos [Massachusetts Institute of Technology

    2011-05-31

    The study of the collisionless magnetic reconnection constituted the primary work carried out under this grant. The investigations utilized two magnetic configurations with distinct boundary conditions. Both configurations were based upon the Versatile Toroidal Facility (VTF) at the MIT Plasma Science and Fusion Center and the MIT Physics Department. The NSF/DOE award No. 0613734, supported two graduate students (now Drs. W. Fox and N. Katz) and material expenses. The grant enabled these students to operate the VTF basic plasma physics experiment on magnetic reconnection. The first configuration was characterized by open boundary conditions where the magnetic field lines interface directly with the vacuum vessel walls. The reconnection dynamics for this configuration has been methodically characterized and it has been shown that kinetic effects related to trapped electron trajectories are responsible for the high rates of reconnection observed. This type of reconnection has not been investigated before. Nevertheless, the results are directly relevant to observations by the Wind spacecraft of fast reconnection deep in the Earth magnetotail. The second configuration was developed to be relevant to specifically to numerical simulations of magnetic reconnection, allowing the magnetic field-lines to be contained inside the device. The configuration is compatible with the presence of large current sheets in the reconnection region and reconnection is observed in fast powerful bursts. These reconnection events facilitate the first experimental investigations of the physics governing the spontaneous onset of fast reconnection. In the Report we review the general motivation of this work and provide an overview of our experimental and theoretical results enabled by the support through the awards.

  3. Fusion programs in applied plasma physics. Final report, fiscal years 1989--1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    The objectives of the theoretical science program are: To support the interpretation of present experiments and predict the outcome of future planned experiments; to improve on existing models and codes and validate against experimental results; and to conduct theoretical physics development of advanced concepts with applications for DIII-D and future devices. Major accomplishments in FY91 include the corroboration between theory and experiment on MHD behavior in the second stable regime of operation on DIII-D, and the frequency and mode structure of toroidal Alfven eigenmodes in high beta, shaped plasmas. We have made significant advances in the development of the gyro-Landau fluid approach to turbulence simulation which more accurately models kinetic drive and damping mechanisms. Several theoretical models to explain the bifurcation phenomenon in L- to H-mode transition were proposed providing the theoretical basis for future experimental verification. The capabilities of new rf codes have been upgraded in response to the expanding needs of the rf experiments. Codes are being employed to plan for a fully non-inductive current drive experiment in a high beta, enhanced confinement regime. GA`s experimental effort in Applied Physics encompasses two advanced diagnostics essential for the operation of future fusion experiments: Alpha particle diagnostic, and current and density profile diagnostics. This paper discusses research in all these topics.

  4. Defect states in plasma-deposited a-Si:H. Final report, February 1979-January 1980

    Energy Technology Data Exchange (ETDEWEB)

    Knights, J C

    1980-02-15

    Studies of defects in plasma-deposited, hydrogenated amorphous silicon (a-Si:H), covering the period February 1979-January 1980 are described. Substantial progress has been made in understanding defect structures, their electronic properties and the influence of doping. The two most significant results are surprising, in one case for simplicity where complexity was expected, and in the other for complexity where simplicity had been presumed. In the first study we have clarified the nature of the defects by showing the connection between luminescence and light induced ESR experiments. The results indicate that dangling bonds having a positive electronic correlation energy are sufficient to explain most of the experimental information. The second study demonstrates the existence of microstructural inhomogeneities, arising from the nucleation and growth of the films. Thus the usual assumption of a uniform alloy with a random distribution of defects must be modified in considering processes such as electrical conduction, trapping, recombination, hydrogen effusion, etc. Of considerable technological and fundamental interest is the influence of doping on the defect behavior. Previous indications that doping introduces defect states have been confirmed. It remains to determine why this behavior occurs, and if there are any means of circumventing the problem.

  5. Revisions to labeling requirements for blood and blood components, including source plasma. Final rule.

    Science.gov (United States)

    2012-01-03

    The Food and Drug Administration (FDA) is revising the labeling requirements for blood and blood components intended for use in transfusion or for further manufacture by combining, simplifying, and updating specific regulations applicable to labeling and circulars of information. These requirements will facilitate the use of a labeling system using machine-readable information that would be acceptable as a replacement for the ``ABC Codabar'' system for the labeling of blood and blood components. FDA is taking this action as a part of its efforts to comprehensively review and, as necessary, revise its regulations, policies, guidances, and procedures related to the regulation of blood and blood components. This final rule is intended to help ensure the continued safety of the blood supply and facilitate consistency in labeling.

  6. Chemical rocket propulsion a comprehensive survey of energetic materials

    CERN Document Server

    Shimada, Toru; Sinditskii, Valery; Calabro, Max

    2017-01-01

    Developed and expanded from the work presented at the New Energetic Materials and Propulsion Techniques for Space Exploration workshop in June 2014, this book contains new scientific results, up-to-date reviews, and inspiring perspectives in a number of areas related to the energetic aspects of chemical rocket propulsion. This collection covers the entire life of energetic materials from their conceptual formulation to practical manufacturing; it includes coverage of theoretical and experimental ballistics, performance properties, as well as laboratory-scale and full system-scale, handling, hazards, environment, ageing, and disposal. Chemical Rocket Propulsion is a unique work, where a selection of accomplished experts from the pioneering era of space propulsion and current technologists from the most advanced international laboratories discuss the future of chemical rocket propulsion for access to, and exploration of, space. It will be of interest to both postgraduate and final-year undergraduate students in...

  7. Propulsion controlled aircraft computer

    Science.gov (United States)

    Cogan, Bruce R. (Inventor)

    2010-01-01

    A low-cost, easily retrofit Propulsion Controlled Aircraft (PCA) system for use on a wide range of commercial and military aircraft consists of an propulsion controlled aircraft computer that reads in aircraft data including aircraft state, pilot commands and other related data, calculates aircraft throttle position for a given maneuver commanded by the pilot, and then displays both current and calculated throttle position on a cockpit display to show the pilot where to move throttles to achieve the commanded maneuver, or is automatically sent digitally to command the engines directly.

  8. Focused technology: Nuclear propulsion

    Science.gov (United States)

    Miller, Thomas J.

    1991-01-01

    The topics presented are covered in viewgraph form and include: nuclear thermal propulsion (NTP), which challenges (1) high temperature fuel and materials, (2) hot hydrogen environment, (3) test facilities, (4) safety, (5) environmental impact compliance, and (6) concept development, and nuclear electric propulsion (NEP), which challenges (1) long operational lifetime, (2) high temperature reactors, turbines, and radiators, (3) high fuel burn-up reactor fuels, and designs, (4) efficient, high temperature power conditioning, (5) high efficiency, and long life thrusters, (6) safety, (7) environmental impact compliance, and (8) concept development.

  9. Airbreathing Propulsion An Introduction

    CERN Document Server

    Bose, Tarit

    2012-01-01

    Airbreathing Propulsion covers the physics of combustion, fluid and thermo-dynamics, and structural mechanics of airbreathing engines, including piston, turboprop, turbojet, turbofan, and ramjet engines. End-of-chapter exercises allow the reader to practice the fundamental concepts behind airbreathing propulsion, and the included PAGIC computer code will help the reader to examine the relationships between the performance parameters of different engines. Large amounts of data on many different piston, turbojet, and turboprop engines have been compiled for this book and are included as an appendix. This textbook is ideal for senior undergraduate and graduate students studying aeronautical engineering, aerospace engineering, and mechanical engineering.

  10. Natural gas conversion to higher hydrocarbons using plasma interactions with surfaces. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sackinger, W.M.; Kamath, V.A.; Morgan, B.L.; Airey, R.W.

    1993-12-01

    Experiments are reported in which a methane plasma is created, and the methyl ions and hydrogen ions are accelerated within a microchannel array so that they interact with neutral methane molecules on the inside surfaces of the microchannels. No catalysts are used, and the device operates at room temperature. Impact energies of the ions are in the range of 10 eV to greater than 100 eV, and the energy delivered in the interaction at the surfaces causes the production of larger hydrocarbon molecules, such as C{sub 2}H{sub 2}, C{sub 2}H{sub 4}, and C{sub 2}H{sub 6}, along with C{sub 3}, C{sub 4}, C{sub 5}m C{sub 6}, C{sub 7}m and C{sub 8} molecules. There is a decreasing percentage of larger molecules produced, in comparison with the C{sub 2} and C{sub 3} types. Conversion effectiveness is greater at higher pressure, due to the increased ionic activity. The yield of the higher hydrocarbons depends upon the external voltage used, and voltage can be used as a control parameter to adjust the output mixture proportions. A conversion energy of 2.59 kilowatt hours/killogram of output has been demonstrated, and a reduction of this by a factor of 10 is possible using known techniques. In batch experiments, the selectivity for C{sub 2} has varied from 47% to 88%, and selectivity for C{sub 6} has ranged from 0% to 12.8%. Other hydrocarbon selectivities also span a wide and useful range. The estimated costs for hydrocarbons produced with this technology are in the range of $200 per tonne, in production quantities, depending upon natural gas costs. Pilot production experiments are recommended to make these estimates more precise, and to address strategies for scaling the technology up to production levels. Applications are discussed.

  11. LDRD final report on confinement of cluster fusion plasmas with magnetic fields.

    Energy Technology Data Exchange (ETDEWEB)

    Argo, Jeffrey W.; Kellogg, Jeffrey W.; Headley, Daniel Ignacio; Stoltzfus, Brian Scott; Waugh, Caleb J.; Lewis, Sean M.; Porter, John Larry, Jr.; Wisher, Matthew; Struve, Kenneth William; Savage, Mark Edward; Quevedo, Hernan J.; Bengtson, Roger

    2011-11-01

    Two versions of a current driver for single-turn, single-use 1-cm diameter magnetic field coils have been built and tested at the Sandia National Laboratories for use with cluster fusion experiments at the University of Texas in Austin. These coils are used to provide axial magnetic fields to slow radial loss of electrons from laser-produced deuterium plasmas. Typical peak field strength achievable for the two-capacitor system is 50 T, and 200 T for the ten-capacitor system. Current rise time for both systems is about 1.7 {mu}s, with peak current of 500 kA and 2 MA, respectively. Because the coil must be brought to the laser, the driver needs to be portable and drive currents in vacuum. The drivers are complete but laser-plasma experiments are still in progress. Therefore, in this report, we focus on system design, initial tests, and performance characteristics of the two-capacitor and ten-capacitors systems. The questions of whether a 200 T magnetic field can retard the breakup of a cluster-fusion plasma, and whether this field can enhance neutron production have not yet been answered. However, tools have been developed that will enable producing the magnetic fields needed to answer these questions. These are a two-capacitor, 400-kA system that was delivered to the University of Texas in 2010, and a 2-MA ten-capacitor system delivered this year. The first system allowed initial testing, and the second system will be able to produce the 200 T magnetic fields needed for cluster fusion experiments with a petawatt laser. The prototype 400-kA magnetic field driver system was designed and built to test the design concept for the system, and to verify that a portable driver system could be built that delivers current to a magnetic field coil in vacuum. This system was built copying a design from a fixed-facility, high-field machine at LANL, but made to be portable and to use a Z-machine-like vacuum insulator and vacuum transmission line. This system was sent to the

  12. Space transportation propulsion USSR launcher technology, 1990

    Science.gov (United States)

    1991-01-01

    Space transportation propulsion U.S.S.R. launcher technology is discussed. The following subject areas are covered: Energia background (launch vehicle summary, Soviet launcher family) and Energia propulsion characteristics (booster propulsion, core propulsion, and growth capability).

  13. NASA Electric Propulsion System Studies

    Science.gov (United States)

    Felder, James L.

    2015-01-01

    An overview of NASA efforts in the area of hybrid electric and turboelectric propulsion in large transport. This overview includes a list of reasons why we are looking at transmitting some or all of the propulsive power for the aircraft electrically, a list of the different types of hybrid-turbo electric propulsion systems, and the results of 4 aircraft studies that examined different types of hybrid-turbo electric propulsion systems.

  14. Pilot test and optimization of plasma based DeNO{sub x}. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Stamate, E.; Chen, W.; Michelsen, P.K. (Risoe DTU. PLF, Roskilde (Denmark)); Joergensen, L.; Jensen, T.K.; Kristensen, P.G.; Tobiasen, L.; Simonsen, P. (Dansk Gasteknisk Center, Hoersholm (Denmark))

    2010-12-15

    A technique for NO{sub x} reduction for combustion processes was examined. The technique is based on injecting ozone into the NO{sub x} containing flue gas where it will react with NO{sub x}, forming an anhydride of nitric acid, N{sub 2}O{sub 5}. N{sub 2}O{sub 5} is easily removed later using a water scrubber. The technique was tested on a gas engine based CHP unit and a CHP unit based on a straw-fired boiler and a steam turbine. It was found that: 1) NO{sub x} emissions can be reduced by more than 95 % by adding ozone to the flue gas; 2) The technique is applicable on flue gas from biomass combustion despite the presence of compounds such as SO{sub 2} and HCl; 3) Reduction of NO{sub x} emissions requires approximately half as much O{sub 3} when it is applied to the natural gas fired engine unit compared to the straw-fired boiler unit; 4) The higher O{sub 3} consumption on straw-fired units is due both to higher flue gas temperature and to larger NO{sub x} fluctuations in the flue gas compared to the gas engine unit; 5) For the gas engine unit the formaldehyde emission was reduced by 60%; 6) SO{sub 2} emissions are eliminated by the deNO{sub x} unit. It can be concluded that at present the plasma deNO{sub x} process suffers from too high capital and operating costs and too low plant operating time to be an attractive alternative for gas engine CHP plants. Furthermore, there is only a small gap of approx. 25 % between the specific ozone consumption obtained at the pilot test in Ringsted and the theoretically achievable value. This difference is too small to have a major impact on process economy in case of an optimized deNO{sub x} process. At straw fired plants the technology tends to be more promising for several reasons: 1) Significant potential for optimizing specific ozone consumption. 2) Larger NO{sub x} reduction due to the fact that higher concentration levels in the flue gas generate higher income from e.g. fertilizer sales. 3) Reduced or zero SO{sub 2

  15. Laser enhanced microwave plasma isotope separation. Final report, September 30, 1992--September 29, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Brake, M.L.; Gilgenbach, R.M.

    1996-06-01

    The experimental research was to focus on laser excitation of a low abundance isotope and then ionize and separate the isotope of low abundance using a microwave/ECR discharge at 2.45 GHz. A small compact electron cyclotron resonance ion source, which uses permanent magnets, was constructed during this project. The dye laser was purchased and later an excimer laser had to also be purchased because it turned out that the dye laser could not be pumped by our copper laser. It was intended that the dye laser be tuned to a wavelength of 670.8 nm, which would excite {sup 6}Li which would then be preferentially ionized by the ECR source and collected with a charged grid. The degree of enrichment was to be determined using thermal ionization mass spectrometry. The final objective of this project was to assess the feasibility of this system to large-scale production of stable isotopes. However the funding of this project was interrupted and we were not able to achieve all of our goals.

  16. Modeling of Ship Propulsion Performance

    DEFF Research Database (Denmark)

    Pedersen, Benjamin Pjedsted; Larsen, Jan

    2009-01-01

    Full scale measurements of the propulsion power, ship speed, wind speed and direction, sea and air temperature, from four different loading conditions has been used to train a neural network for prediction of propulsion power. The network was able to predict the propulsion power with accuracy bet...

  17. Novel Ship Propulsion System

    Institute of Scientific and Technical Information of China (English)

    JI Yulong; SUN Yuqing; ZHANG Hongpeng; ZHANG Yindong; CHEN Haiquan

    2009-01-01

    As the development tends towards high-speed, large-scale and high-power, power of the ship main engine becomes larger and larger. This make the engine design and cabin arrangement become more and more difficult. Ship maneuverability becomes bad. A new ship propulsion system, integrated hydraulic propulsion (IHP), is put forward to meet the development of modem ship. Principle of IHP system is discussed. Working condition matching characteristic of IHP ship is studied based on its matching characteristic charts. According to their propulsion principle, dynamic mathematic models of IHP ship and direct propulsion (DP) ship are developed. These two models are verified by test sailing and test stand data. Based on the software Matlab/Simulink, comparison research between IHP ship and DP ship is conducted. The results show that cabin arrangement of IHP ship is very flexible, working condition matching characteristic of IHP ship is good, the ratio of power to weight of IHP ship is larger than DP ship, and maneuverability is excellent. IHP system is suitable for engineering ship, superpower ship and warship, etc.

  18. Cassini's Grand Finale

    Science.gov (United States)

    Spilker, L. J.; Edgington, S. G.; Altobelli, N.

    2016-12-01

    After more than 12 years in Saturn orbit, the Cassini-Huygens mission has entered its final year of data collection. Cassini will return its final bits of unique data on 15 September 2017 as it plunges into Saturn's atmosphere, vaporizing and satisfying planetary protection requirements. Since early 2016 Cassini's orbital inclination was slowly increased towards its final inclination. In November Cassini transitioned to a series of 20 orbits with peripases just outside Saturn's F ring that include some of the closest flybys of the tiny ring moons and excellent views of the F ring and outer A ring. Cassini's final close flyby of Titan will propel it across Saturn's main rings and into its final orbits. Cassini's Grand Finale begins in April 2017 and is comprised of 22 orbits at an inclination of 63 degrees. Cassini will repeatedly dive between the innermost ring and Saturn's upper atmosphere providing insights into fundamental questions unattainable during the rest of the mission. It will be the first spacecraft to explore this region. These close orbits provide the highest resolution observations of both the rings and Saturn, and direct in situ sampling of the ring particles' composition, plasma, Saturn's exosphere and the innermost radiation belts. Saturn's gravitational field will be measured to unprecedented accuracy, providing information on Saturn's interior structure and mass distribution in the rings. Probing the magnetic field will give insight into the nature of the magnetic dynamo and the true rotation rate of Saturn's interior. The ion and neutral mass spectrometer will sniff the exosphere and upper atmosphere and examine water-based molecules originating from the rings. The cosmic dust analyzer will sample particle composition from different parts of the main rings. Recent science highlights and science objectives from Cassini's final orbits will be discussed. This work was carried out in part at the Jet Propulsion Laboratory, California Institute of

  19. Conceptual designs for antiproton space propulsion systems

    Energy Technology Data Exchange (ETDEWEB)

    Cassenti, B.N.

    1989-01-01

    Five conceptual designs for antimatter space propulsion systems were compared in terms of their performance characteristics. The systems examined included solid-core liquid-propellant rockets; magnetically confined gaseous-core rockets using liquid or solid propellants; plasma-core rockets; pion rockets, which are driven directly by the mass annihilation products; and ram-augmented rockets, in which antiproton annihilation is used to heat hydrogen collected in interstellar space. It was found that, in general, as the specific impulse of the propulsion system increases, the thrust decreases. The comparison between designs showed that only fusion rockets have the capability to compete in performance with mass annihilation rockets. For very-high-speed interstellar missions, pion rockets, which can have a specific impulse of 20 million sec (although with a thrust-to-engine mass ratios of only 0.01 G) will offer best performance. 36 refs.

  20. Advanced propulsion system for hybrid vehicles

    Science.gov (United States)

    Norrup, L. V.; Lintz, A. T.

    1980-01-01

    A number of hybrid propulsion systems were evaluated for application in several different vehicle sizes. A conceptual design was prepared for the most promising configuration. Various system configurations were parametrically evaluated and compared, design tradeoffs performed, and a conceptual design produced. Fifteen vehicle/propulsion systems concepts were parametrically evaluated to select two systems and one vehicle for detailed design tradeoff studies. A single hybrid propulsion system concept and vehicle (five passenger family sedan)were selected for optimization based on the results of the tradeoff studies. The final propulsion system consists of a 65 kW spark-ignition heat engine, a mechanical continuously variable traction transmission, a 20 kW permanent magnet axial-gap traction motor, a variable frequency inverter, a 386 kg lead-acid improved state-of-the-art battery, and a transaxle. The system was configured with a parallel power path between the heat engine and battery. It has two automatic operational modes: electric mode and heat engine mode. Power is always shared between the heat engine and battery during acceleration periods. In both modes, regenerative braking energy is absorbed by the battery.

  1. Jet propulsion without inertia

    CERN Document Server

    Spagnolie, Saverio E

    2010-01-01

    A body immersed in a highly viscous fluid can locomote by drawing in and expelling fluid through pores at its surface. We consider this mechanism of jet propulsion without inertia in the case of spheroidal bodies, and derive both the swimming velocity and the hydrodynamic efficiency. Elementary examples are presented, and exact axisymmetric solutions for spherical, prolate spheroidal, and oblate spheroidal body shapes are provided. In each case, entirely and partially porous (i.e. jetting) surfaces are considered, and the optimal jetting flow profiles at the surface for maximizing the hydrodynamic efficiency are determined computationally. The maximal efficiency which may be achieved by a sphere using such jet propulsion is 12.5%, a significant improvement upon traditional flagella-based means of locomotion at zero Reynolds number. Unlike other swimming mechanisms which rely on the presentation of a small cross section in the direction of motion, the efficiency of a jetting body at low Reynolds number increas...

  2. Hybrid propulsion technology program

    Science.gov (United States)

    1990-01-01

    Technology was identified which will enable application of hybrid propulsion to manned and unmanned space launch vehicles. Two design concepts are proposed. The first is a hybrid propulsion system using the classical method of regression (classical hybrid) resulting from the flow of oxidizer across a fuel grain surface. The second system uses a self-sustaining gas generator (gas generator hybrid) to produce a fuel rich exhaust that was mixed with oxidizer in a separate combustor. Both systems offer cost and reliability improvement over the existing solid rocket booster and proposed liquid boosters. The designs were evaluated using life cycle cost and reliability. The program consisted of: (1) identification and evaluation of candidate oxidizers and fuels; (2) preliminary evaluation of booster design concepts; (3) preparation of a detailed point design including life cycle costs and reliability analyses; (4) identification of those hybrid specific technologies needing improvement; and (5) preperation of a technology acquisition plan and large scale demonstration plan.

  3. Numerical Propulsion System Simulation

    Science.gov (United States)

    Naiman, Cynthia

    2006-01-01

    The NASA Glenn Research Center, in partnership with the aerospace industry, other government agencies, and academia, is leading the effort to develop an advanced multidisciplinary analysis environment for aerospace propulsion systems called the Numerical Propulsion System Simulation (NPSS). NPSS is a framework for performing analysis of complex systems. The initial development of NPSS focused on the analysis and design of airbreathing aircraft engines, but the resulting NPSS framework may be applied to any system, for example: aerospace, rockets, hypersonics, power and propulsion, fuel cells, ground based power, and even human system modeling. NPSS provides increased flexibility for the user, which reduces the total development time and cost. It is currently being extended to support the NASA Aeronautics Research Mission Directorate Fundamental Aeronautics Program and the Advanced Virtual Engine Test Cell (AVETeC). NPSS focuses on the integration of multiple disciplines such as aerodynamics, structure, and heat transfer with numerical zooming on component codes. Zooming is the coupling of analyses at various levels of detail. NPSS development includes capabilities to facilitate collaborative engineering. The NPSS will provide improved tools to develop custom components and to use capability for zooming to higher fidelity codes, coupling to multidiscipline codes, transmitting secure data, and distributing simulations across different platforms. These powerful capabilities extend NPSS from a zero-dimensional simulation tool to a multi-fidelity, multidiscipline system-level simulation tool for the full development life cycle.

  4. Propulsion for CubeSats

    Science.gov (United States)

    Lemmer, Kristina

    2017-05-01

    At present, very few CubeSats have flown in space featuring propulsion systems. Of those that have, the literature is scattered, published in a variety of formats (conference proceedings, contractor websites, technical notes, and journal articles), and often not available for public release. This paper seeks to collect the relevant publically releasable information in one location. To date, only two missions have featured propulsion systems as part of the technology demonstration. The IMPACT mission from the Aerospace Corporation launched several electrospray thrusters from Massachusetts Institute of Technology, and BricSAT-P from the United States Naval Academy had four micro-Cathode Arc Thrusters from George Washington University. Other than these two missions, propulsion on CubeSats has been used only for attitude control and reaction wheel desaturation via cold gas propulsion systems. As the desired capability of CubeSats increases, and more complex missions are planned, propulsion is required to accomplish the science and engineering objectives. This survey includes propulsion systems that have been designed specifically for the CubeSat platform and systems that fit within CubeSat constraints but were developed for other platforms. Throughout the survey, discussion of flight heritage and results of the mission are included where publicly released information and data have been made available. Major categories of propulsion systems that are in this survey are solar sails, cold gas propulsion, electric propulsion, and chemical propulsion systems. Only systems that have been tested in a laboratory or with some flight history are included.

  5. A pulsed cathodic arc spacecraft propulsion system

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, P R C; Bilek, M M M; Tarrant, R N; McKenzie, D R [School of Physics, University of Sydney, NSW 2006 Australia (Australia)

    2009-11-15

    We investigate the use of a centre-triggered cathodic arc as a spacecraft propulsion system that uses an inert solid as a source of plasma. The cathodic vacuum arc produces almost fully ionized plasma with a high exhaust velocity (>10{sup 4} m s{sup -1}), giving a specific impulse competitive with other plasma or ion thrusters. A centre trigger design is employed that enables efficient use of cathode material and a high pulse-to-pulse repeatability. We compare three anode geometries, two pulse current profiles and two pulse durations for their effects on impulse generation, energy and cathode material usage efficiency. Impulse measurement is achieved through the use of a free-swinging pendulum target constructed from a polymer material. Measurements show that impulse is accurately controlled by varying cathode current. The cylindrical anode gave the highest energy efficiency. Cathode usage is optimized by choosing a sawtooth current profile. There is no requirement for an exhaust charge neutralization system.

  6. NASA's Nuclear Thermal Propulsion Project

    Science.gov (United States)

    Houts, Michael; Mitchell, Sonny; Kim, Tony; Borowski, Stanley; Power, Kevin; Scott, John; Belvin, Anthony; Clement, Steven

    2015-01-01

    Space fission power systems can provide a power rich environment anywhere in the solar system, independent of available sunlight. Space fission propulsion offers the potential for enabling rapid, affordable access to any point in the solar system. One type of space fission propulsion is Nuclear Thermal Propulsion (NTP). NTP systems operate by using a fission reactor to heat hydrogen to very high temperature (>2500 K) and expanding the hot hydrogen through a supersonic nozzle. First generation NTP systems are designed to have an Isp of approximately 900 s. The high Isp of NTP enables rapid crew transfer to destinations such as Mars, and can also help reduce mission cost, improve logistics (fewer launches), and provide other benefits. However, for NTP systems to be utilized they must be affordable and viable to develop. NASA's Advanced Exploration Systems (AES) NTP project is a technology development project that will help assess the affordability and viability of NTP. Early work has included fabrication of representative graphite composite fuel element segments, coating of representative graphite composite fuel element segments, fabrication of representative cermet fuel element segments, and testing of fuel element segments in the Compact Fuel Element Environmental Tester (CFEET). Near-term activities will include testing approximately 16" fuel element segments in the Nuclear Thermal Rocket Element Environmental Simulator (NTREES), and ongoing research into improving fuel microstructure and coatings. In addition to recapturing fuels technology, affordable development, qualification, and utilization strategies must be devised. Options such as using low-enriched uranium (LEU) instead of highly-enriched uranium (HEU) are being assessed, although that option requires development of a key technology before it can be applied to NTP in the thrust range of interest. Ground test facilities will be required, especially if NTP is to be used in conjunction with high value or

  7. The Nuclear Cryogenic Propulsion Stage

    Science.gov (United States)

    Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Borowski, Stanley K.; Scott, John

    2014-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP). Nuclear propulsion can be affordable and viable compared to other propulsion systems and must overcome a biased public fear due to hyper-environmentalism and a false perception of radiation and explosion risk.

  8. NASA Breakthrough Propulsion Physics Program

    Science.gov (United States)

    Millis, Marc G.

    1998-01-01

    In 1996, NASA established the Breakthrough Propulsion Physics program to seek the ultimate breakthroughs in space transportation: propulsion that requires no propellant mass, propulsion that attains the maximum transit speeds physically possible, and breakthrough methods of energy production to power such devices. Topics of interest include experiments and theories regarding the coupling of gravity and electromagnetism, vacuum fluctuation energy, warp drives and worm-holes, and superluminal quantum effects. Because these propulsion goals are presumably far from fruition, a special emphasis is to identify affordable, near-term, and credible research that could make measurable progress toward these propulsion goals. The methods of the program and the results of the 1997 workshop are presented. This Breakthrough Propulsion Physics program, managed by Lewis Research Center, is one part of a comprehensive, long range Advanced Space Transportation Plan managed by Marshall Space Flight Center.

  9. Future of Magnetohydrodynamic Ship Propulsion,

    Science.gov (United States)

    1983-08-16

    83 FOREIGN TECHNOLOGY DIVISION FUTURE OF MAGNETOHYDRODYNAMIC SHIP PROPULSION by A.P. Baranov DTIQ ~E tJ Approved for public release; 0.. distribution...MAGNETOHYDRODYNAMIC SHIP PROPULSION By: A.P. Baranov -,English pages: 10 Source: Sudostroyeniye, Nr. 12, December 1966, pp. 3-6 . Country of origin: USSR X...equations, etc. merged into this translation were extracted from the best quality copy available. FUTURE OF MAGNETOHYDRODYNAMIC SHIP PROPULSION A. P

  10. Electrolysis Propulsion for Spacecraft Applications

    Science.gov (United States)

    deGroot, Wim A.; Arrington, Lynn A.; McElroy, James F.; Mitlitsky, Fred; Weisberg, Andrew H.; Carter, Preston H., II; Myers, Blake; Reed, Brian D.

    1997-01-01

    Electrolysis propulsion has been recognized over the last several decades as a viable option to meet many satellite and spacecraft propulsion requirements. This technology, however, was never used for in-space missions. In the same time frame, water based fuel cells have flown in a number of missions. These systems have many components similar to electrolysis propulsion systems. Recent advances in component technology include: lightweight tankage, water vapor feed electrolysis, fuel cell technology, and thrust chamber materials for propulsion. Taken together, these developments make propulsion and/or power using electrolysis/fuel cell technology very attractive as separate or integrated systems. A water electrolysis propulsion testbed was constructed and tested in a joint NASA/Hamilton Standard/Lawrence Livermore National Laboratories program to demonstrate these technology developments for propulsion. The results from these testbed experiments using a I-N thruster are presented. A concept to integrate a propulsion system and a fuel cell system into a unitized spacecraft propulsion and power system is outlined.

  11. Electric Propulsion Research Building (EPRB)

    Data.gov (United States)

    Federal Laboratory Consortium — The Electric Propulsion Research Building (EPRB) capability centers on its suite of vacuum chambers, which are configured to meet the unique requirements related to...

  12. Reactors for nuclear electric propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Buden, D.; Angelo, J.A. Jr.

    1981-01-01

    Propulsion is the key to space exploitation and power is the key to propulsion. This paper examines the role of nuclear fission reactors as the primary power source for high specific impulse electric propulsion systems for space missions of the 1980s and 1990s. Particular mission applications include transfer to and a reusable orbital transfer vehicle from low-Earth orbit to geosynchronous orbit, outer planet exploration and reconnaissance missions, and as a versatile space tug supporting lunar resource development. Nuclear electric propulsion is examined as an indispensable component in space activities of the next two decades.

  13. A new marine propulsion system

    Institute of Scientific and Technical Information of China (English)

    HAN Wei-shi; LIU Tao

    2003-01-01

    A new marine propulsion system is proposed . A small liquid sodium cooled reactor acts as prime mover; alkali-metal thermal-to-electric conversion (AMTEC) cells are employed to convert the heat energy to electricity; superconducting magneto-hydrodynamic thruster combined with spray-water thruster works as propulsion. The configuration and characteristics of this system are described. Such a nuclear-powered propulsion system is not only free of noise, but also has high reliability and efficiency. It would be a preferable propulsion system for ships in the future.

  14. Cooling of Electric Motors Used for Propulsion on SCEPTOR

    Science.gov (United States)

    Christie, Robert J.; Dubois, Arthur; Derlaga, Joseph M.

    2017-01-01

    NASA is developing a suite of hybrid-electric propulsion technologies for aircraft. These technologies have the benefit of lower emissions, diminished noise, increased efficiency, and reduced fuel burn. These will provide lower operating costs for aircraft operators. Replacing internal combustion engines with distributed electric propulsion is a keystone of this technology suite, but presents many new problems to aircraft system designers. One of the problems is how to cool these electric motors without adding significant aerodynamic drag, cooling system weight or fan power. This paper discusses the options evaluated for cooling the motors on SCEPTOR (Scalable Convergent Electric Propulsion Technology and Operations Research): a project that will demonstrate Distributed Electric Propulsion technology in flight. Options for external and internal cooling, inlet and exhaust locations, ducting and adjustable cowling, and axial and centrifugal fans were evaluated. The final design was based on a trade between effectiveness, simplicity, robustness, mass and performance over a range of ground and flight operation environments.

  15. A Study of the Total Cost of Conventional Ship Propulsion Fuel.

    Science.gov (United States)

    1981-07-01

    OF THE TOTAL COST OF Final - FY 1980 CONVENTIONAL SHIP PROPULSION 6. PERFORMING ORG. REPORT NUMBER FUEL t. AUTHOR(s) S. CONTRACT OR GRANT NUMBER...L 014 6601 UNCLASSIFTun SCCURITY CLASSIFICATION or THIS PAGUfI D * .. .. A Study of the Total Cost of Conventional Ship Propulsion Fuel I/ COST...this study since it is the primary r source of conventional ship propulsion fuel. In February of 1980 the stabilized rate of distillate fuel was raised

  16. Cassini's Grand Finale: The Final Orbits

    Science.gov (United States)

    Spilker, Linda; Edgington, Scott

    2016-04-01

    The Cassini-Huygens mission, a joint collaboration between NASA, ESA and the Italian Space Agency, is approaching its last year of operations after nearly 12 years in orbit around Saturn. Cassini will send back its final bits of unique data on September 15th, 2017 as it plunges into Saturn's atmosphere, vaporizing and satisfying planetary protection requirements. Before that time Cassini will continue its legacy of exploration and discovery with 12 close flybys of Titan in 2016 and 2017 that will return new science data as well as sculpt the inclinations and periods of the final orbits. Even though all of our close icy satellite flybys, including those of Enceladus, are now completed, numerous Voyager-class flybys (summer solstice approaches. In November 2016 Cassini will transition to a series of orbits with peripases just outside Saturn's F ring. These 20 orbits will include close flybys of some tiny ring moons and excellent views of the F ring and outer A ring. The 126th and final close flyby of Titan will propel Cassini across Saturn's main rings and into its final orbits. Cassini's Grand Finale, starting in April 2017, is comprised of 22 orbits at an inclination of 63 degrees. Cassini will repeatedly dive between the innermost rings and the upper atmosphere of the planet providing insights into fundamental questions unattainable during the rest of the mission. Cassini will be the first spacecraft to explore this region. These close orbits provide the highest resolution observations of both the rings and Saturn, and direct in situ sampling of the ring particles, composition, plasma, Saturn's exosphere and the innermost radiation belts. Saturn's gravitational field will be measured to unprecedented accuracy, providing information on the interior structure of the planet, winds in the outer layers of Saturn's atmosphere, and the mass distribution in the rings. Probing the magnetic field will give insight into the nature of the magnetic dynamo, telling us: why the

  17. Additive Manufacturing of Aerospace Propulsion Components

    Science.gov (United States)

    Misra, Ajay K.; Grady, Joseph E.; Carter, Robert

    2015-01-01

    The presentation will provide an overview of ongoing activities on additive manufacturing of aerospace propulsion components, which included rocket propulsion and gas turbine engines. Future opportunities on additive manufacturing of hybrid electric propulsion components will be discussed.

  18. Overview on hybrid propulsion

    Science.gov (United States)

    Calabro, M.

    2011-10-01

    Aside of research works, this historical survey shows propulsion units used by students for small satellites and for gas generation, or those for the Space Ship One, even if LOx/HTPB was studied and tested in large motors for its potential very low cost; however, this combination highlights a series of technical problems without any performance advantage over the existing LOx/Kerosene family and never been operational for ETO applications. The particularity of hybrid propulsion is to use the state-of-the-art of both liquids and solids; the only show stopper is the propellant itself. The past work focused on LOx/HTPB (selected for its low cost) appears to be a dead-end (combustion problems and global low performances resulting from a high level of residuals). The solution that appears through the past experience is the addition of hydrides to a binder (HTPB or other) or to a binder and a homogeneous fuel or a mixture of both, with or without others additives; within these solutions some will not present any manufacturing problem and some may have a low cost. Nevertheless, the studies of the following phases have to demonstrate the compatibility of the potential regression rate range with a high-performance global design of a hybrid Motor and the manufacturing at a reasonable cost of a hydride giving a high level of performances.

  19. Z-Pinch fusion-based nuclear propulsion

    Science.gov (United States)

    Miernik, J.; Statham, G.; Fabisinski, L.; Maples, C. D.; Adams, R.; Polsgrove, T.; Fincher, S.; Cassibry, J.; Cortez, R.; Turner, M.; Percy, T.

    2013-02-01

    Fusion-based nuclear propulsion has the potential to enable fast interplanetary transportation. Due to the great distances between the planets of our solar system and the harmful radiation environment of interplanetary space, high specific impulse (Isp) propulsion in vehicles with high payload mass fractions must be developed to provide practical and safe vehicles for human space flight missions. The Z-Pinch dense plasma focus method is a Magneto-Inertial Fusion (MIF) approach that may potentially lead to a small, low cost fusion reactor/engine assembly [1]. Recent advancements in experimental and theoretical understanding of this concept suggest favorable scaling of fusion power output yield [2]. The magnetic field resulting from the large current compresses the plasma to fusion conditions, and this process can be pulsed over short timescales (10-6 s). This type of plasma formation is widely used in the field of Nuclear Weapons Effects testing in the defense industry, as well as in fusion energy research. A Z-Pinch propulsion concept was designed for a vehicle based on a previous fusion vehicle study called "Human Outer Planet Exploration" (HOPE), which used Magnetized Target Fusion (MTF) [3] propulsion. The reference mission is the transport of crew and cargo to Mars and back, with a reusable vehicle. The analysis of the Z-Pinch MIF propulsion system concludes that a 40-fold increase of Isp over chemical propulsion is predicted. An Isp of 19,436 s and thrust of 3812 N s/pulse, along with nearly doubling the predicted payload mass fraction, warrants further development of enabling technologies.

  20. In-Space Propulsion (346620) Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Technologies include, but are not limited to, electric and advanced chemical propulsion, propellantless propulsion such as aerocapture and solar sails, sample return...

  1. Magnetohydrodynamic Augmented Propulsion Experiment

    Science.gov (United States)

    Litchford, Ron J.; Cole, John; Lineberry, John; Chapman, Jim; Schmidt, Harold; Cook, Stephen (Technical Monitor)

    2002-01-01

    A fundamental obstacle to routine space access is the specific energy limitations associated with chemical fuels. In the case of vertical take-off, the high thrust needed for vertical liftoff and acceleration to orbit translates into power levels in the 10 GW range. Furthermore, useful payload mass fractions are possible only if the exhaust particle energy (i.e., exhaust velocity) is much greater than that available with traditional chemical propulsion. The electronic binding energy released by the best chemical reactions (e.g., LOX/LH2 for example, is less than 2 eV per product molecule (approx. 1.8 eV per H2O molecule), which translates into particle velocities less than 5 km/s. Useful payload fractions, however, will require exhaust velocities exceeding 15 km/s (i.e., particle energies greater than 20 eV). As an added challenge, the envisioned hypothetical RLV (reusable launch vehicle) should accomplish these amazing performance feats while providing relatively low acceleration levels to orbit (2-3g maximum). From such fundamental considerations, it is painfully obvious that planned and current RLV solutions based on chemical fuels alone represent only a temporary solution and can only result in minor gains, at best. What is truly needed is a revolutionary approach that will dramatically reduce the amount of fuel and size of the launch vehicle. This implies the need for new compact high-power energy sources as well as advanced accelerator technologies for increasing engine exhaust velocity. Electromagnetic acceleration techniques are of immense interest since they can be used to circumvent the thermal limits associated with conventional propulsion systems. This paper describes the Magnetohydrodynamic Augmented Propulsion Experiment (MAPX) being undertaken at NASA Marshall Space Flight Center (MSFC). In this experiment, a 1-MW arc heater is being used as a feeder for a 1-MW magnetohydrodynamic (MHD) accelerator. The purpose of the experiment is to demonstrate

  2. Simulation study of solar wind push on a charged wire: basis of solar wind electric sail propulsion

    Directory of Open Access Journals (Sweden)

    P. Janhunen

    2007-03-01

    Full Text Available One possibility for propellantless propulsion in space is to use the momentum flux of the solar wind. A way to set up a solar wind sail is to have a set of thin long wires which are kept at high positive potential by an onboard electron gun so that the wires repel and deflect incident solar wind protons. The efficiency of this so-called electric sail depends on how large force a given solar wind exerts on a wire segment and how large electron current the wire segment draws from the solar wind plasma when kept at a given potential. We use 1-D and 2-D electrostatic plasma simulations to calculate the force and present a semitheoretical formula which captures the simulation results. We find that under average solar wind conditions at 1 AU the force per unit length is (5±1×10−8 N/m for 15 kV potential and that the electron current is accurately given by the well-known orbital motion limited (OML theory cylindrical Langmuir probe formula. Although the force may appear small, an analysis shows that because of the very low weight of a thin wire per unit length, quite high final speeds (over 50 km/s could be achieved by an electric sailing spacecraft using today's flight-proved components. It is possible that artificial electron heating of the plasma in the interaction region could increase the propulsive effect even further.

  3. CubeSat testing of Coulomb drag propulsion

    CERN Document Server

    Janhunen, Pekka; Toivanen, Petri; Rauhala, Timo; Haeggström, Edward; Grönland, Tor-Arne

    2016-01-01

    In Coulomb drag propulsion, a long high voltage tether or system of tethers gathers momentum from a natural plasma stream such as solar wind or ionospheric plasma ram flow. A positively polarised tether in the solar wind can be used for efficient general-purpose interplanetary propellantless propulsion (the electric solar wind sail or E-sail), whereas a negatively polarised tether in LEO can be used for efficient deorbiting of satellites (the plasma brake). Aalto-1 is a 3-U cubesat to be launched in May 2016. The satellite carries three scientific experiments including 100 m long Coulomb drag tether experiment. The tether is made of four 25 and 50 micrometre diameter aluminium wires that are ultrasonically bonded together every few centimetre intervals. The tether can be charged by an onboard voltage source up to one kilovolt positive and negative. The Coulomb drag is measured by monitoring the spin rate.

  4. Mesoscopic model of actin-based propulsion.

    Directory of Open Access Journals (Sweden)

    Jie Zhu

    Full Text Available Two theoretical models dominate current understanding of actin-based propulsion: microscopic polymerization ratchet model predicts that growing and writhing actin filaments generate forces and movements, while macroscopic elastic propulsion model suggests that deformation and stress of growing actin gel are responsible for the propulsion. We examine both experimentally and computationally the 2D movement of ellipsoidal beads propelled by actin tails and show that neither of the two models can explain the observed bistability of the orientation of the beads. To explain the data, we develop a 2D hybrid mesoscopic model by reconciling these two models such that individual actin filaments undergoing nucleation, elongation, attachment, detachment and capping are embedded into the boundary of a node-spring viscoelastic network representing the macroscopic actin gel. Stochastic simulations of this 'in silico' actin network show that the combined effects of the macroscopic elastic deformation and microscopic ratchets can explain the observed bistable orientation of the actin-propelled ellipsoidal beads. To test the theory further, we analyze observed distribution of the curvatures of the trajectories and show that the hybrid model's predictions fit the data. Finally, we demonstrate that the model can explain both concave-up and concave-down force-velocity relations for growing actin networks depending on the characteristic time scale and network recoil. To summarize, we propose that both microscopic polymerization ratchets and macroscopic stresses of the deformable actin network are responsible for the force and movement generation.

  5. Pulse-on-bias rocket propulsion concept

    Science.gov (United States)

    Vulpetti, Giovanni

    1982-03-01

    An approach to maximise the terminal velocity of a powered spacecraft is investigated through a variable specific impulse programme from two specific-impulse-constant engines. One propulsion system works in a continuous mode. The other one does in a pulsed mode. The variable jet speed is obtained by allowing the time between two consecutive pulses to vary. Modeling the "bias" and pulsed engines together with S/C significant systems a nonlinear programming problem is stated. Propellant and P/L, effective power and propulsion time are fixed. Specialising the problem to a NEP S/C for distant targets in the solar system a comparison is made with same flights for which the S/C uses one propulsion system. There exist ranges of initial mass and propellant fraction where the final ship velocity augments considerably in the pulse-on-bias policy, especially at lower power levels. In such environments, a meaningful example is a gain of three targets—from Saturn to Pluto—for a 5-ton 150-kWe 75-day 32%-fuel acceleration flight.

  6. The future of cryogenic propulsion

    Science.gov (United States)

    Palerm, S.; Bonhomme, C.; Guelou, Y.; Chopinet, J. N.; Danous, P.

    2015-07-01

    As the French Space Agency, CNES is funding an ambitious program to identify, develop and evaluate the technologies and skills that will enable to design cost efficient future launchers. This program deals together with, researches for mastering complex physical phenomena, set ups of robust and efficient numerical tools for design and justification, and identification of innovative manufacturing processes and hardware. It starts from low Technical Readiness Level (TRL 2) up to a maturation of TRL 6 with the use of demonstrators, level that allows to be ready for a development. This paper focuses on cryogenic propulsion activities conducted with SNECMA and French laboratories to prepare next generation engines. The physics in that type of hardware addresses a large range of highly complex phenomena, among them subcritical and supercritical combustion and possible associated High Frequency oscillations in combustion devices, tribology in bearings and seals, cavitation and rotordynamics in turbopump. The research activities conducted to master those physical phenomena are presented. Moreover, the operating conditions of these engines are very challenging, both thermally and mechanically. The innovative manufacturing processes and designs developed to cope with these conditions while filling cost reduction requirements are described. Finally, the associated demonstrators put in place to prepare the implementation of these new technologies on future engines are presented.

  7. Propulsion Utilizing Laser-Driven Ponderomotive Fields for Deep-Space Missions

    Science.gov (United States)

    Williams, George J.; Gilland, James H.

    2009-03-01

    The generation of large amplitude electric fields in plasmas by high-power lasers has been studied for several years in the context of high-energy particle acceleration. Fields on the order of GeV/m are generated in the plasma wake of the laser by non-linear ponderomotive forces. The laser fields generate longitudinal and translational electron plasma waves with phase velocities close to the speed of light. These fields and velocities offer the potential to revolutionize spacecraft propulsion, leading to extended deep space robotic probes. Based on these initial calculations, plasma acceleration by means of laser-induced ponderomotive forces appears to offer significant potential for spacecraft propulsion. Relatively high-efficiencies appear possible with proper beam conditioning, resulting in an order of magnitude more thrust than alternative concepts for high ISP (>105 s) and elimination of the primary life-limiting erosion phenomena associated with conventional electric propulsion systems. Ponderomotive propulsion readily lends itself to beamed power which might overcome some of the constraints of power-limited propulsion concepts. A preliminary assessment of the impact of these propulsion systems for several promising configurations on mission architectures has been conducted. Emphasizing interstellar and interstellar-precursor applications, performance and technical requirements are identified for a number of missions. The use of in-situ plasma and gas for propellant is evaluated as well.

  8. Propulsion controlled aircraft research

    Science.gov (United States)

    Fullerton, C. Gordon

    1993-01-01

    The NASA Dryden Flight Research Facility has been conducting flight, ground simulator, and analytical studies to investigate the use of thrust modulation on multi-engine aircraft for emergency flight control. Two general methods of engine only control have been studied; manual manipulation of the throttles by the pilot, and augmented control where a computer commands thrust levels in response to pilot attitude inputs and aircraft motion feedbacks. This latter method is referred to as the Propulsion Controlled Aircraft (PCA) System. A wide variety of aircraft have been investigated. Simulation studies have included the B720, F-15, B727, B747 and MD-11. A look at manual control has been done in actual flight on the F15, T-38, B747, Lear 25, T-39, MD-11 and PA-30 Aircraft. The only inflight trial of the augmented (PCA) concept has been on an F15, the results of which will be presented below.

  9. Magnetohydrodynamic Augmented Propulsion Experiment

    Science.gov (United States)

    Litchford, Ron J.

    2008-01-01

    Over the past several years, efforts have been under way to design and develop an operationally flexible research facility for investigating the use of cross-field MHD accelerators as a potential thrust augmentation device for thermal propulsion systems. The baseline configuration for this high-power experimental facility utilizes a 1.5-MWe multi-gas arc-heater as a thermal driver for a 2-MWe MHD accelerator, which resides in a large-bore 2-tesla electromagnet. A preliminary design study using NaK seeded nitrogen as the working fluid led to an externally diagonalized segmented MHD channel configuration based on an expendable heat-sink design concept. The current status report includes a review of engineering/design work and performance optimization analyses and summarizes component hardware fabrication and development efforts, preliminary testing results, and recent progress toward full-up assembly and testing

  10. Simulations of the interaction of intense petawatt laser pulses with dense Z-pinch plasmas : final report LDRD 39670.

    Energy Technology Data Exchange (ETDEWEB)

    Welch, Dale Robert (Mission Research Corporation, Albuquerque, NM); MacFarlane, Joseph John (Prism Computational Sciences, Madison, WI); Mehlhorn, Thomas Alan; Campbell, Robert B.

    2004-11-01

    We have studied the feasibility of using the 3D fully electromagnetic implicit hybrid particle code LSP (Large Scale Plasma) to study laser plasma interactions with dense, compressed plasmas like those created with Z, and which might be created with the planned ZR. We have determined that with the proper additional physics and numerical algorithms developed during the LDRD period, LSP was transformed into a unique platform for studying such interactions. Its uniqueness stems from its ability to consider realistic compressed densities and low initial target temperatures (if required), an ability that conventional PIC codes do not possess. Through several test cases, validations, and applications to next generation machines described in this report, we have established the suitability of the code to look at fast ignition issues for ZR, as well as other high-density laser plasma interaction problems relevant to the HEDP program at Sandia (e.g. backlighting).

  11. Electric Propulsion for Low Earth Orbit Communication Satellites

    Science.gov (United States)

    Oleson, Steven R.

    1997-01-01

    Electric propulsion was evaluated for orbit insertion, satellite positioning and de-orbit applications on big (hundreds of kilograms) and little (tens of kilograms) low earth orbit communication satellite constellations. A simple, constant circumferential thrusting method was used. This technique eliminates the complex guidance and control required when shading of the solar arrays must be considered. Power for propulsion was assumed to come from the existing payload power. Since the low masses of these satellites enable multiple spacecraft per launch, the ability to add spacecraft to a given launch was used as a figure of merit. When compared to chemical propulsion ammonia resistojets, ion, Hall, and pulsed plasma thrusters allowed an additional spacecraft per launch Typical orbit insertion and de-orbit times were found to range from a few days to a few months.

  12. Experimental investigation of a unique airbreathing pulsed laser propulsion concept

    Science.gov (United States)

    Myrabo, L. N.; Nagamatsu, H. T.; Manka, C.; Lyons, P. W.; Jones, R. A.

    1991-01-01

    Investigations were conducted into unique methods of converting pulsed laser energy into propulsive thrust across a flat impulse surface under atmospheric conditions. The propulsion experiments were performed with a 1-micron neodymium-glass laser at the Space Plasma Branch of the Naval Research Laboratory. Laser-induced impulse was measured dynamically by ballistic pendulums and statically using piezoelectric pressure transducers on a stationary impulse surface. The principal goal was to explore methods for increasing the impulse coupling performance of airbreathing laser-propulsion engines. A magnetohydrodynamic thrust augmentation effect was discovered when a tesla-level magnetic field was applied perpendicular to the impulse surface. The impulse coupling coefficient performance doubled and continued to improve with increasing laser-pulse energies. The resultant performance of 180 to 200 N-s/MJ was found to be comparable to that of the earliest afterburning turbojets.

  13. Final Report for completed IPP Project:"Development of Plasma Ablation for Soft Tissue and Bone Surgery"

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Ian

    2009-09-01

    ArthroCare is a medical device company that develops, manufactures, and markets an advanced surgical tool, a plasma electro-surgical system for cutting and removing tissue. The hand-held electrical discharge device produces plasma in a biocompatible conductive fluid and tissue to which it is applied during surgery. Its products allow surgeons to operate with increased precision and accuracy, limiting damage to surrounding tissue thereby reducing pain and speeding recovery for the patient. In the past, the design of ArthfoCare's plasma wands has been an empirical undertaking. One goal of this R&D program was to put the phenomena involved on a sound scientific footing, allowing optimization of existing plasma based electro-surgery system technology, and the design and manufacture of new and improved kinds of scalpels, in particular for the surgical cutting of bone. Another important related goal of the program was to develop, through an experimental approach, new plasma wand approaches to the cutting ('shaving') of hard bone tissue. The goals of the CRADA were accomplished - computer models were used to predict important parameters of the plasma discharge and the bone environment, and several different approaches to bone-shaving were developed and demonstrated. The primary goal of the project was to develop and demonstrate an atmospheric-pressure plasma tool that is suitable for surgical use for shaving bone in humans. This goal was accomplished, in fact with several different alternative plasma approaches. High bone ablation speeds were measured. The use of probes ('plasma wand' - the surgical tool) with moving active electrodes was also explored, and there are advantages to this method. Another important feature is that the newly-exposed bone surface have only a very thin necrosis layer; this feature was demonstrated. This CRADA has greatly advanced our understanding of bone removal by atmospheric pressure plasmas in liquid, and puts Arthro

  14. Space vehicles propulsion; La propulsion des vehicules spatiaux

    Energy Technology Data Exchange (ETDEWEB)

    Cadiou, A. [Centre National d' Etudes Spatiales (CNES), 75 - Paris (France)

    2000-09-01

    Various types of propulsion systems are used depending on the mission characteristics, mono-propellant, bi-propellant and electric. Mono-propellant is mainly used for low Earth orbit applications such as earth observation (SPOT program) or for mini-satellites carrying scientific payloads (PROTEUS platform). Bi-propellant systems which are more efficient are used for geostationary telecommunications satellites (TELECOM2, STENTOR) and can be associated to electrical propulsion for the station keeping of these platforms (STENTOR). The use of electric propulsion allows an important launch mass reduction. The future developments are mainly dedicated to the use of electric propulsion for the orbit raising of telecommunication satellites which leads to the development of thrusters with higher thrust than those existing today, the study of new propellants safer than the existing propellants (hydrazine, mono-methyl-hydrazine,...) and the study of new systems to pressurize the propellants. (authors)

  15. NASA's Nuclear Thermal Propulsion Project

    Science.gov (United States)

    Houts, Michael G.; Mitchell, Doyce P.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Clement, Steven; Borowski, Stanley K.; Scott, John; Power, Kevin P.

    2015-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation NTP system could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of a first generation NTP in the development of advanced nuclear propulsion systems could be analogous to the role of the DC- 3 in the development of advanced aviation. Progress made under the NTP project could also help enable high performance fission power systems and Nuclear Electric Propulsion (NEP).

  16. MSFC Nuclear Propulsion Materials Development

    Science.gov (United States)

    Rogers, J. R.; Cook, B.

    2004-01-01

    Nuclear propulsion systems for spacecraft applications present numerous technical challenges for propulsion systems. They have been the focus of a recent NRA. Challenges inclue: a nuclear reactor subsystem to produce thermal energy; a power conversion subsystem to convert the thermal energy into electrical energy; a propulsion subsystem that utilizes Hall effect thrusters; thruster technologies and high temperature materials to support subsystems. The MSFC Electrostatic Levitation (ESL) Facility provides an ideal platform for the study of high temperature and reactive materials. An overview of the facility and its capabilities will be presented.

  17. Final Technical Report: Numerical and Experimental Investigation of Turbulent Transport Control via Shaping of Radial Plasma Flow Profiles

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, Eugenio

    2014-05-02

    The strong coupling between the different physical variables involved in the plasma transport phenomenon and the high complexity of its dynamics call for a model-based, multivariable approach to profile control where those predictive models could be exploited. The overall objective of this project has been to extend the existing body of work by investigating numerically and experimentally active control of unstable fluctuations, including fully developed turbulence and the associated cross-field particle transport, via manipulation of flow profiles in a magnetized laboratory plasma device. Fluctuations and particle transport can be monitored by an array of electrostatic probes, and Ex B flow profiles can be controlled via a set of biased concentric ring electrodes that terminate the plasma column. The goals of the proposed research have been threefold: i- to develop a predictive code to simulate plasma transport in the linear HELCAT (HELicon-CAThode) plasma device at the University of New Mexico (UNM), where the experimental component of the proposed research has been carried out; ii- to establish the feasibility of using advanced model-based control algorithms to control cross-field turbulence-driven particle transport through appropriate manipulation of radial plasma flow profiles, iii- to investigate the fundamental nonlinear dynamics of turbulence and transport physics. Lehigh University (LU), including Prof. Eugenio Schuster and one full-time graduate student, has been primarily responsible for control-oriented modeling and model-based control design. Undergraduate students have also participated in this project through the National Science Foundation Research Experience for Undergraduate (REU) program. The main goal of the LU Plasma Control Group has been to study the feasibility of controlling turbulence-driven transport by shaping the radial poloidal flow profile (i.e., by controlling flow shear) via biased concentric ring electrodes.

  18. Final Report: Safety of Plasma Components and Aerosol Transport During Hard Disruptions and Accidental Energy Release in Fusion Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bourham, Mohamed A.; Gilligan, John G.

    1999-08-14

    Safety considerations in large future fusion reactors like ITER are important before licensing the reactor. Several scenarios are considered hazardous, which include safety of plasma-facing components during hard disruptions, high heat fluxes and thermal stresses during normal operation, accidental energy release, and aerosol formation and transport. Disruption events, in large tokamaks like ITER, are expected to produce local heat fluxes on plasma-facing components, which may exceed 100 GW/m{sup 2} over a period of about 0.1 ms. As a result, the surface temperature dramatically increases, which results in surface melting and vaporization, and produces thermal stresses and surface erosion. Plasma-facing components safety issues extends to cover a wide range of possible scenarios, including disruption severity and the impact of plasma-facing components on disruption parameters, accidental energy release and short/long term LOCA's, and formation of airborne particles by convective current transport during a LOVA (water/air ingress disruption) accident scenario. Study, and evaluation of, disruption-induced aerosol generation and mobilization is essential to characterize database on particulate formation and distribution for large future fusion tokamak reactor like ITER. In order to provide database relevant to ITER, the SIRENS electrothermal plasma facility at NCSU has been modified to closely simulate heat fluxes expected in ITER.

  19. New approaches for the reduction of plasma arc drop in second-generation thermionic converters. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hatziprokopiou, M.E.; Shaw, D.T.

    1981-03-31

    Investigations of ion generation and recombination mechanisms in the cesium plasma as they pertain to the advanced mode thermionic energy converter are described. The changes in plasma density and temperature within the converter have been studied under the influence of several promising auxiliary ionization candidate sources. Three novel approaches of external cesium ion generation have been investigated in some detail, namely vibrationally excited N/sub 2/ as an energy source of ionization of Cs ions in a DC discharge, microwave power as a means of resonant sustenance of the cesium plasma, and ion generation in a pulse N/sub 2/-Cs mixture. The experimental data obtained and discussed show that all three techniques - i.e. the non-LTE high-voltage pulsing, the energy transfer from vibrationally excited diatomic gases, and the external pumping with a microwave power - have considerable promise as schemes in auxiliary ion generation applicable to the advanced thermionic energy converter.

  20. Propulsion IVHM Technology Experiment Overview

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA researchers recently demonstrated successful real-time fault detection and isolation of a virtual reusable launch vehicle main propulsion system. Using a...

  1. Superconducting Aero Propulsion Motor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Superconducting electric propulsion systems will yield improvements in total ownership costs due to the simplicity of electric drive when compared with gas turbine...

  2. Propulsion Systems Laboratory, Bldg. 125

    Data.gov (United States)

    Federal Laboratory Consortium — The Propulsion Systems Laboratory (PSL) is NASAs only ground test facility capable of providing true altitude and flight speed simulation for testing full scale gas...

  3. Nuclear Thermal Rocket Propulsion Systems

    Science.gov (United States)

    2007-11-02

    NUCLEAR THERMAL ROCKET PROPULSION SYSTEMS, IAA WHITE PAPER PARIS, FRANCE, MARCH 2005 Lt Col Timothy J. Lawrence U.S. Air Force Academy...YYYY) 18-03-2005 2. REPORT TYPE White Paper 3. DATES COVERED (From - To) 18 Mar 2005 4. TITLE AND SUBTITLE NUCLEAR THERMAL ROCKET PROPULSION...reduce radiation exposure, is to have a high energy system like a nuclear thermal rocket that can get the payload to the destination in the fastest

  4. Laser Diagnostics for Spacecraft Propulsion

    Science.gov (United States)

    2015-10-13

    AFTC/PA Clearance No. XXXX 8 Ion Engines & Hall Thrusters Operation Ion engines and Hall thrusters are electrostatic propulsion devices • Ion Engines... Hall thrusters are gridless electrostatic thrusters – Propellant ionized by electrons trapped in magnetic field – Ions accelerated by an electric field...Briefing Charts 3. DATES COVERED (From - To) 21 September 2015 – 13 October 2015 4. TITLE AND SUBTITLE Laser Diagnostics for Spacecraft Propulsion 5a

  5. Mars Rocket Propulsion System

    Science.gov (United States)

    Zubrin, Robert; Harber, Dan; Nabors, Sammy

    2008-01-01

    A report discusses the methane and carbon monoxide/LOX (McLOx) rocket for ascent from Mars as well as other critical space propulsion tasks. The system offers a specific impulse over 370 s roughly 50 s higher than existing space-storable bio-propellants. Current Mars in-situ propellant production (ISPP) technologies produce impure methane and carbon monoxide in various combinations. While separation and purification of methane fuel is possible, it adds complexity to the propellant production process and discards an otherwise useful fuel product. The McLOx makes such complex and wasteful processes unnecessary by burning the methane/CO mixtures produced by the Mars ISPP systems without the need for further refinement. Despite the decrease in rocket-specific impulse caused by the CO admixture, the improvement offered by concomitant increased propellant density can provide a net improvement in stage performance. One advantage is the increase of the total amount of propellant produced, but with a decrease in mass and complexity of the required ISPP plant. Methane/CO fuel mixtures also may be produced by reprocessing the organic wastes of a Moon base or a space station, making McLOx engines key for a human Lunar initiative or the International Space Station (ISS) program. Because McLOx propellant components store at a common temperature, very lightweight and compact common bulkhead tanks can be employed, improving overall stage performance further.

  6. Solar Thermal Propulsion Test Facility

    Science.gov (United States)

    1999-01-01

    Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propellant. This photograph shows a fully assembled solar thermal engine placed inside the vacuum chamber at the test facility prior to testing. The 20- by 24-ft heliostat mirror (not shown in this photograph) has a dual-axis control that keeps a reflection of the sunlight on the 18-ft diameter concentrator mirror, which then focuses the sunlight to a 4-in focal point inside the vacuum chamber. The focal point has 10 kilowatts of intense solar power. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move theNation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth orbit, rapid travel throughout the solar system, and exploration of interstellar space.

  7. Low-energy x-ray and electron physics and applications to diagnostics development for laser-produced plasma research. Final report, April 30, 1980-April 29, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Henke, B.L.

    1981-08-01

    This final report describes a collaborative extension of an ongoing research program in low-energy x-ray and electron physics into particular areas of immediate need for the diagnostics of plasmas as involved in laser-produced fusion research. It has been for the continued support for one year of a post-doctoral research associate and for three student research assistants who have been applied to the following specific efforts: (1) the continuation of our research on the absolute characterization of x-ray photocathode systems for the 0.1 to 10 keV photon energy region. The research results were applied collaboratively to the design, construction and calibration of photocathodes for time-resolved detection with the XRD and the streak and framing cameras; (2) the design, construction and absolute calibration of optimized, bolt-on spectrographs for the absolute measurement of laser-produced plasma spectra.

  8. Final Report for Statistical Nonlinear Optics of High Energy Density Plasmas: The Physics of Multiple Crossing Laser Beams

    Energy Technology Data Exchange (ETDEWEB)

    Afeyan, Bedros [Polymath Research Inc., Pleasanton, CA (United States); Hueller, Stefan [Centre de Physique Theorique de l' Ecole Polytechnique (France); Montgomery, David S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hammer, James H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Meezan, Nathan B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Heebner, John E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-24

    The various implementations of the STUD pulse program (spike trains of uneven duration and delay) for LPI (laser-plasma instability) control were studied in depth, and novel regimes were found. How to generate STUD pulses with large time-bandwidth products, how to measure their optical scattering signatures, and how to experimentally demonstrate their usefulness were explored. Theoretical and numerical studies were conducted on Stimulated Brillouin Scattering (SBS) and Crossed Beam Energy Transfer (CBET) including statistical models. We established how LPI can be tamed and gain democratized in space and time. Implementing STUD pulses on NIF was also studied. Future high rep rate lasers and fast diagnostics will aid in the adoption of the whole STUD pulse program for LPI control in High Energy Density Plasmas (HEDP).

  9. Magnetohydrodynamic sea water propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Petrick, M.; Thomas, A.; Genens, L.; Libera, J.; Nietert, R.; Bouillard, J.; Pierson, E.; Hill, D.; Picologlou, B.; Ohlsson, O.; Kasprzyk, T.; Berry, G.

    1991-01-01

    An experimental and theoretical investigation of a large scale MHD propulsor has been undertaken whose objectives are to (1) investigate the transient and steady state performance of the thruster over operating parameter ranges that are compatible with achievement of high efficiency, (2) to quantify the principal loss mechanisms within the thruster and (3) to obtain preliminary hydroacoustic data. The performance of the thruster was first investigated theoretically with a 3-D code to quantify the loss mechanisms and identify experimental parameter ranges of interest. The loss mechanisms of interest are ohmic losses within the channel and those resulting from electrical currents at the entrance and exit of the thruster, and enhanced frictional losses. The analysis indicated that the relative importance of the loss mechanisms was a function of the thruster design and operating parameters. The experimental investigation of the large scale propulsor is being conducted on a sea water test facility that was designed to match the capabilities of a large 6-T superconducting magnet. The facility design was such that {approximately}90{degrees} of all losses occurred within the propulsion test train (inlet nozzle, propulsor and diffuser) thus facilitating isolation of the loss mechanisms. The test thruster itself is heavily instrumented to provide local measurements of velocity, pressure, and electric fields. The predicted overall thruster performance and value of the loss mechanisms will be compared with measured values. Comparisons will also be presented of the voltage gradients between electrodes, overall thruster efficiency, axial pressure gradients across the propulsor, change in velocity profiles, axial and vertical current distributions and exit distribution of the electrolytic gases.

  10. Magnetohydrodynamic sea water propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Petrick, M.; Thomas, A.; Genens, L.; Libera, J.; Nietert, R.; Bouillard, J.; Pierson, E.; Hill, D.; Picologlou, B.; Ohlsson, O.; Kasprzyk, T.; Berry, G.

    1991-12-31

    An experimental and theoretical investigation of a large scale MHD propulsor has been undertaken whose objectives are to (1) investigate the transient and steady state performance of the thruster over operating parameter ranges that are compatible with achievement of high efficiency, (2) to quantify the principal loss mechanisms within the thruster and (3) to obtain preliminary hydroacoustic data. The performance of the thruster was first investigated theoretically with a 3-D code to quantify the loss mechanisms and identify experimental parameter ranges of interest. The loss mechanisms of interest are ohmic losses within the channel and those resulting from electrical currents at the entrance and exit of the thruster, and enhanced frictional losses. The analysis indicated that the relative importance of the loss mechanisms was a function of the thruster design and operating parameters. The experimental investigation of the large scale propulsor is being conducted on a sea water test facility that was designed to match the capabilities of a large 6-T superconducting magnet. The facility design was such that {approximately}90{degrees} of all losses occurred within the propulsion test train (inlet nozzle, propulsor and diffuser) thus facilitating isolation of the loss mechanisms. The test thruster itself is heavily instrumented to provide local measurements of velocity, pressure, and electric fields. The predicted overall thruster performance and value of the loss mechanisms will be compared with measured values. Comparisons will also be presented of the voltage gradients between electrodes, overall thruster efficiency, axial pressure gradients across the propulsor, change in velocity profiles, axial and vertical current distributions and exit distribution of the electrolytic gases.

  11. Plasma-chemical treatment of hydrogen sulfide in natural gas processing. Final report, May 1991--December 1992

    Energy Technology Data Exchange (ETDEWEB)

    Harkness, J.B.L.; Doctor, R.D. [Argonne National Lab., IL (United States)

    1993-05-01

    A new process for the treatment of hydrogen sulfide waste that uses microwave plasma-chemical technology has been under development in Russia and the United States. Whereas the present waste-treatment technology, at best, only recovers sulfur, this novel process recovers both hydrogen and sulfur by dissociating hydrogen sulfide in a plasma by means of a microwave or radio-frequency reactor. A research project has been undertaken to determine the suitability of the plasma process in natural gas processing applications. The experiments tested acid-gas compositions with 30--65% carbon dioxide, 0--7% water, and 0--0.2% of a standard mixture of pipeline gas. The balance gas in all cases was hydrogen sulfide. The reactor pressure for the experiments was 50 torr, and the microwave power was 1.0 kW. Conversions of hydrogen sulfide ranged from 80 to 100%, while 35--50% of the carbon dioxide was converted to carbon monoxide. This conversion of carbon dioxide resulted in a loss of hydrogen production and an energy loss from a hydrogen sulfide waste-treatment perspective. Tests of a direct natural gas treatment concept showed that hydrocarbon losses were unacceptably high; consequently, the concept would not be economically viable.

  12. DOE-HEP Final Report for 2013-2016: Studies of plasma wakefields for high repetition-rate plasma collider, and Theoretical study of laser-plasma proton and ion acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Katsouleas, Thomas C. [Duke Univ., Durham, NC (United States). Dept. of Electrical and Computer Engineering; Sahai, Aakash A. [Imperial College, London (United Kingdom). Dept. of Physics

    2016-08-08

    There were two goals for this funded project: 1. Studies of plasma wakefields for high repetition-rate plasma collider, and 2. Theoretical study of laser-plasma proton and ion acceleration. For goal 1, an analytical model was developed to determine the ion-motion resulting from the interaction of non-linear “blow-out” wakefields excited by beam-plasma and laser-plasma interactions. This is key to understanding the state of the plasma at timescales of 1 picosecond to a few 10s of picoseconds behind the driver-energy pulse. More information can be found in the document. For goal 2, we analytically and computationally analyzed the longitudinal instabilities of the laser-plasma interactions at the critical layer. Specifically, the process of “Doppler-shifted Ponderomotive bunching” is significant to eliminate the very high-energy spread and understand the importance of chirping the laser pulse frequency. We intend to publish the results of the mixing process in 2-D. We intend to publish Chirp-induced transparency. More information can be found in the document.

  13. Hypersonic propulsion - Breaking the thermal barrier

    Science.gov (United States)

    Weidner, J. P.

    1993-01-01

    The challenges of hypersonic propulsion impose unique features on the hypersonic vehicle - from large volume requirements to contain cryogenic fuel to airframe-integrated propulsion required to process sufficient quantities of air. Additional challenges exist in the design of the propulsion module that must be capable of efficiently processing air at very high enthalpies, adding and mixing fuel at supersonic speeds and expanding the exhaust products to generate thrust greater than drag. The paper explores the unique challenges of the integrated hypersonic propulsion system, addresses propulsion cycle selection to cope with the severe thermal environment and reviews the direction of propulsion research at hypervelocity speeds.

  14. Propulsion Challenges for Small Spacecraft: 2005

    Institute of Scientific and Technical Information of China (English)

    Vadim Zakirov; LI Luming

    2006-01-01

    Small (<100 kg) spacecrafts are being developed in many countries but their propulsion systems still have many challenges. Although there is demand for small spacecraft propulsion, the number of missions at present is small due to several commercial and technical reasons. Poor performance of existing small spacecraft propulsion systems is one of the main reasons for the small number of missions. Several reasons are given for the poor performance of existing small spacecraft propulsion. Suggested improvements focus on small spacecraft and propulsion hardware mass optimization rather than on specific impulse enhancement. Propellantless propulsion systems are also recommended for small spacecraft interplanetary missions.

  15. Fusion Propulsion Study

    Science.gov (United States)

    1989-07-01

    of propellant can be millions of times greater than the fuel, only a tiny fraction can completely push out the fuel. If the plasma is moving at a... push -plate for various explosive yields. It appears that the maximum specific impulse for such a system is -4000 to 5000 sec and increasing the base...Energy Agency, 1977, p. 507. Bourque, R.F., "OHTE as a Fusion Reactor," Proc. 4th Topl. Mt,. Tecnology of Controlled NV?4clear Fusion, King of Prussia

  16. Main Propulsion Test Article (MPTA)

    Science.gov (United States)

    Snoddy, Cynthia

    2010-01-01

    Scope: The Main Propulsion Test Article integrated the main propulsion subsystem with the clustered Space Shuttle Main Engines, the External Tank and associated GSE. The test program consisted of cryogenic tanking tests and short- and long duration static firings including gimbaling and throttling. The test program was conducted on the S1-C test stand (Position B-2) at the National Space Technology Laboratories (NSTL)/Stennis Space Center. 3 tanking tests and 20 hot fire tests conducted between December 21 1 1977 and December 17, 1980 Configuration: The main propulsion test article consisted of the three space shuttle main engines, flightweight external tank, flightweight aft fuselage, interface section and a boilerplate mid/fwd fuselage truss structure.

  17. A brief review of JPL's electric propulsion technology activities

    Science.gov (United States)

    Barnett, John W.; Chopra, Ann; Deininger, William D.; Garner, Charles E.; Pivirotto, Thomas J.; Sercel, Joel C.

    1989-01-01

    Near-term objectives and recent technological progress of JPL's electric propulsion program are discussed. Particular attention is given to accomplishments for ion, magnetoplasmadynamic (MPD), electron-cyclotron resonance (ECR), and arcjet thrusters. Xenon ion thruster erosion tests indicate a 15-fold reduction in tantalum baffle erosion when nitrogen is added to the xenon propellant and steady-state cylindrical MPD thruster tests at powers up to 72 kW show distinct self-constricted and diffuse discharge modes. An ECR thruster was operated at up to 7 kW with plasma acceleration at energies up to 7 kW; there was plasma acceleration at energies approaching 100 electron volts.

  18. Solar Electric Propulsion Module Concept for the BIFROST Architecture

    Science.gov (United States)

    Rohrschneider, R. R.; Olds, J. R.; Sakai, T.; Steffes, S.; Grillmayer, G.

    2002-01-01

    Humanity has dreamed of expanding their realm to include space, and other planetary bodies and to use space to improve our own planet. Space solar power is one methods of improving our own planet through the use of space. However, before this becomes practical the cost of access to space must be reduced drastically. Bifrost is one of many concepts designed to reduce the cost of access to space, and hence enable projects such as space solar power. The overall architecture consists of a magnetic-levitation launch track with one end elevated to approximately 20 kilometers. Logistics modules with attached propulsion modules and aerodynamic fairings are accelerated down the track at speeds varying according to the desired orbit. The propulsion module attached to each logistics module must then provide the velocity to achieve the desired final orbit. Bifrost is set up to launch a common hybrid logistics module size with a number of different propulsion modules suited for different in space applications. This paper concentrates on the low thrust propulsion module. After release from the magnetic-levitation track the propulsion module must be capable of circularizing the hybrid logistics module in geosynchronous orbit from geostationary transfer orbit.The initial transfer orbit would cause the spacecraft to re-enter on a subsequent periapsis pass if no velocity addition was provided by the propulsion module. This places a minimum thrust, and reliability constraint on the propulsion module. Volume constraints are imposed by the launch tube diameter and aerodynamic fairings on the vehicle. A solar electric propulsion system was chosen to provide thrust since the time of flight was not constrained, and the high specific impulse would allow a large payload to reach geosynchronous orbit. Several concepts exist for solar electric propulsion systems including the traditional rigid solar wings, thin film solar arrays, solar concentrators using lenses, and solar concentrators using

  19. Nuclear Propulsion Project Workshop summary

    Science.gov (United States)

    Miller, Thomas J.; Clark, John S.; Barnett, John W.

    1991-01-01

    NASA-Lewis has undertaken the planning and coordination of a joint NASA/DOE/DOD Nuclear Propulsion Project which will investigate both nuclear electric and nuclear thermal concepts. The three-agency team has been tasked with the development of an Interagency Agreement and Memorandum of Understanding, as well as the drafting of a statement as to astronaut crew guidelines and values, the assessment of human-rating requirements, the development of an interagency safety and environmental assessment plan, and the development of test facility requirements. Attention is to be given to the role of SP-100 for nuclear-electric propulsion applications.

  20. LASL nuclear rocket propulsion program

    Energy Technology Data Exchange (ETDEWEB)

    Schreiber, R.E.

    1956-04-01

    The immediate objective of the LASL nuclear propulsion (Rover) program is the development of a heat exchanger reactor system utilizing uranium-graphite fuel elements and ammonia propellant. This program is regarded as the first step in the development of nuclear propulsion systems for missiles. The major tasks of the program include the investigation of materials at high temperatures, development of fuel elements, investigation of basic reactor characteristics, investigation of engine control problems, detailed engine design and ground testing. The organization and scheduling of the initial development program have been worked out in some detail. Only rather general ideas exist concerning the projection of this work beyond 1958.

  1. Electrolysis Propulsion Provides High-Performance, Inexpensive, Clean Spacecraft Propulsion

    Science.gov (United States)

    deGroot, Wim A.

    1999-01-01

    An electrolysis propulsion system consumes electrical energy to decompose water into hydrogen and oxygen. These gases are stored in separate tanks and used when needed in gaseous bipropellant thrusters for spacecraft propulsion. The propellant and combustion products are clean and nontoxic. As a result, costs associated with testing, handling, and launching can be an order of magnitude lower than for conventional propulsion systems, making electrolysis a cost-effective alternative to state-of-the-art systems. The electrical conversion efficiency is high (>85 percent), and maximum thrust-to-power ratios of 0.2 newtons per kilowatt (N/kW), a 370-sec specific impulse, can be obtained. A further advantage of the water rocket is its dual-mode potential. For relatively high thrust applications, the system can be used as a bipropellant engine. For low thrust levels and/or small impulse bit requirements, cold gas oxygen can be used alone. An added innovation is that the same hardware, with modest modifications, can be converted into an energy-storage and power-generation fuel cell, reducing the spacecraft power and propulsion system weight by an order of magnitude.

  2. Electric propulsion - A high energy capability for solar system exploration

    Science.gov (United States)

    Atkins, K. L.

    1976-01-01

    The principles of spacecraft electric (ion thruster) propulsion are briefly reviewed. Attention is given to the inner and outer planet applications of electric (and solar electric) propulsion. Electric propulsion is considered as a stepping stone to nuclear electric propulsion.

  3. Aircraft propulsion systems technology and design

    National Research Council Canada - National Science Library

    Oates, Gordon C

    1989-01-01

    ... propulsion technology planned by Gordon C. Gates. Other titles: Aerothermodynamics of gas turbine and rocket propulsion (c!988); Aerothermodynamics of aircraft engine com.ponents (c!985). Includes b...

  4. Fusion in the Era of Burning Plasma Studies: Workforce Planning for 2004 to 2014. Final report to FESA C

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2004-03-29

    This report has been prepared in response to Dr. R. Orbach’s request of the Fusion Energy Sciences Advisory Committee (FESAC) to “address the issue of workforce development in the U.S. fusion program.” The report addresses three key questions: what is the current status of the fusion science, technology, and engineering workforce; what is the workforce that will be needed and when it will be needed to ensure that the U.S. is an effective partner in ITER and to enable the U.S. to successfully carry out the fusion program; and, what can be done to ensure a qualified, diversified, and sufficiently large workforce and a pipeline to maintain that workforce? In addressing the charge, the Panel considers a workforce that allows for a vigorous national program of fusion energy research that includes participation in magnetic fusion (ITER) and inertial fusion (NIF) burning plasma experiments.

  5. A New Propulsion System for Ships.

    Science.gov (United States)

    1980-01-31

    complex relationships involving ship propulsion , ship control and a host of independent problems related to hydrodynamics, structural mechanics, efficiency...namely ship configuration and ship con- trol in addition to ship propulsion . The transmission pump can 1be used for boundary layer control on the...possibly overcome the limitation and performance shortcomings of existing ship propulsion systems. Light weight propulsion systems for naval ship

  6. THE FUTURE OF SPACECRAFT NUCLEAR PROPULSION

    OpenAIRE

    Jansen, Frank

    2014-01-01

    This paper summarizes the advantages of space nuclear power and propulsion systems. It describes the actual status of international power level dependent spacecraft nuclear propulsion missions, especially the high power EU-Russian MEGAHIT study including the Russian Megawatt-Class Nuclear Power Propulsion System, the NASA GRC project and the low and medium power EU DiPoP study. Space nuclear propulsion based mission scenarios of these studies are sketched as well.

  7. The Future of Spacecraft Nuclear Propulsion

    Science.gov (United States)

    Jansen, F.

    2014-06-01

    This paper summarizes the advantages of space nuclear power and propulsion systems. It describes the actual status of international power level dependent spacecraft nuclear propulsion missions, especially the high power EU-Russian MEGAHIT study including the Russian Megawatt-Class Nuclear Power Propulsion System, the NASA GRC project and the low and medium power EU DiPoP study. Space nuclear propulsion based mission scenarios of these studies are sketched as well.

  8. Propulsion IVHM Extreme Environment Instrumentation Power IVHM

    Science.gov (United States)

    Zakrajsek, June

    2000-01-01

    This paper presents propulsion and instrumentation power for integrated vehicle health management technologies. The topics include: 1) Propulsion IVHM Capabilities Research; 2) Projects: X-33 Post-Test Diagnostic System; 3) X-34 NITEX; 4) Advanced Health Monitoring Systems; 5) Active Vibration Monitoring System; 6) Smart Self Healing Propulsion Systems; 7) Extreme Environment Sensors; and 8) Systems Engineering and Integration.

  9. CASC Consolidates Its Liquid Propulsion Sector

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ To consolidate its liquid rocket engine development ability, China Aerospace Science and Technology Corporation (CASC) integrated several of its subsidiaries, Beijing Aerospace Propulsion Institute, Beijing Institute of Aerospace Testing Technology, and Shanghai Institute of Space Propulsion (SISP) into the Academy of Aerospace Liquid Propulsion Technology (AALPT). The establishment of the new AALPT was announced on July 22 in Beijing.

  10. Drag and propulsive forces in electric sails with negative polarity

    Science.gov (United States)

    Sanchez-Torres, Antonio

    2016-02-01

    An electric solar sail (E-sail) is a recent propellantless propulsion concept for a direct exploration of the Solar System. An E-sail consists of a set of bare, conductive tethers at high positive/negative bias, prone to extract solar wind momentum by Coulomb deflection of protons. Additionally, a negatively biased E-sail has been proposed as a concept for de-orbiting space debris with drag forces produced in Low Earth Orbit (LEO). The present work focuses on the negative-bias case with a sheath that must be correctly modeled for a flowing plasma ambient. Ion scattering within the sheath and the resulting force are determined for several plasma conditions. Since the plasma flow does reduce the effective range for the ion scattering within the sheath, the resulting force is then reduced. Tethers at very high negative bias should be required for extremely high plasma flow.

  11. Magnetohydrodynamic Propulsion for the Classroom

    Science.gov (United States)

    Font, Gabriel I.; Dudley, Scott C.

    2004-10-01

    The cinema industry can sometimes prove to be an ally when searching for material with which to motivate students to learn physics. Consider, for example, the electromagnetic force on a current in the presence of a magnetic field. This phenomenon is at the heart of magnetohydrodynamic (MHD) propulsion systems. A submarine employing this type of propulsion was immortalized in the movie Hunt for Red October. While mentioning this to students certainly gets their attention, it often elicits comments that it is only fiction and not physically possible. Imagine their surprise when a working system is demonstrated! It is neither difficult nor expensive to construct a working system that can be demonstrated in the front of a classroom.2 In addition, all aspects of the engineering hurdles that must be surmounted and myths concerning this "silent propulsion" system are borne out in a simple apparatus. This paper details how to construct an inexpensive MHD propulsion boat that can be demonstrated for students in the classroom.

  12. In-space nuclear propulsion

    Science.gov (United States)

    Bruno, C.; Dujarric, C.

    2013-02-01

    The past and the recent status of nuclear propulsion (NP) for application to space mission is presented. The case for using NP in manned space missions is made based on fundamental physics and on the necessity to ensure safe radiation doses to future astronauts. In fact, the presence of solar and galactic-cosmic radiation poses substantial risks to crews traveling for months in a row to destinations such as asteroids and Mars. Since passive or active shields would be massive to protect against the more energetic part of the radiation energy spectrum, the only alternative is to reduce dose by traveling faster. Hence the importance of propulsion systems with much higher specific impulse than that of current chemical systems, and thus the use of nuclear propulsion. Nuclear-thermal and nuclear-electric propulsions are then discussed in view of their potential application to missions now in the preliminary planning stage by space agencies and industries and being considered by the ISECG international panel. In this context, recent ideas for future use of the ISS that may require NP are also presented.

  13. OMV--Propulsion Module Changeout

    Science.gov (United States)

    1986-01-01

    In this 1986 artist's concept, the Orbital Maneuvering Vehicle (OMV), undergoes changeout of the Propulsion Module outside the Space Shuttle Cargo Bay. As envisioned by Marshall Space Flight Center plarners, the OMV would be a remotely-controlled free-flying space tug which would place, rendezvous, dock, and retrieve orbital payloads.

  14. An improved neutral diffusion model and numerical solution of the two dimensional edge plasma fluid equations. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Prinja, A.K.

    1998-09-01

    In this work, it has been shown that, for the given sets of parameters (transport coefficients), the Tangent-Predictor (TP) continuation method, which was used in the coarsest grid, works remarkably well. The problems in finding an initial guess that resides well within Newton`s method radius of convergence are alleviated by correcting the initial guess by the predictor step of the TP method. The TP method works well also in neutral gas puffing and impurity simulations. The neutral gas puffing simulation is performed by systematically increasing the fraction of puffing rate according to the TP method until it reaches a desired condition. Similarly, the impurity simulation characterized by using the fraction of impurity density as the continuation parameter, is carried out in line with the TP method. Both methods show, as expected, a better performance than the classical embedding (CE) method. The convergence criteria {epsilon} is set to be 10{sup {minus}9} based on the fact that lower value of {epsilon} does not alter the solution significantly. Correspondingly, the number of Newton`s iterations in the corrector step of the TP method decrease substantially, an extra point in terms of code speed. The success of the TP method enlarges the possibility of including other sets of parameters (operations and physics). With the availability of the converged coarsest grid solution, the next forward step to the multigrid cycle becomes possible. The multigrid method shows that the memory storage problems that plagued the application of Newton`s method on fine grids, are of no concern. An important result that needs to be noted here is the performance of the FFCD model. The FFCD model is relatively simple and is based on the overall results the model has shown to predict different divertor plasma parameters. The FFCD model treats exactly the implementation of the deep penetration of energetic neutrals emerging from the divertor plate. The resulting ionization profiles are

  15. An advanced electric propulsion diagnostic (AEPD) platform for in-situ characterization of electric propulsion thrusters and ion beam sources

    Science.gov (United States)

    Bundesmann, Carsten; Eichhorn, Christoph; Scholze, Frank; Spemann, Daniel; Neumann, Horst; Pagano, Damiano; Scaranzin, Simone; Scortecci, Fabrizio; Leiter, Hans J.; Gauter, Sven; Wiese, Ruben; Kersten, Holger; Holste, Kristof; Köhler, Peter; Klar, Peter J.; Mazouffre, Stéphane; Blott, Richard; Bulit, Alexandra; Dannenmayer, Käthe

    2016-10-01

    Experimental characterization is an essential task in development, qualification and optimization process of electric propulsion thrusters or ion beam sources for material processing, because it can verify that the thruster or ion beam source fulfills the requested mission or application requirements, and it can provide parameters for thruster and plasma modeling. Moreover, there is a need for standardizing electric propulsion thruster diagnostics in order to make characterization results of different thrusters and also from measurements performed in different vacuum facilities reliable and comparable. Therefore, we have developed an advanced electric propulsion diagnostic (AEPD) platform, which allows a comprehensive in-situ characterization of electric propulsion thrusters (or ion beam sources) and could serve as a standard on-ground tool in the future. The AEPD platform uses a five-axis positioning system and provides the option to use diagnostic tools for beam characterization (Faraday probe, retarding potential analyzer, ExB probe, active thermal probe), for optical inspection (telemicroscope, triangular laser head), and for thermal characterization (pyrometer, thermocamera). Here we describe the capabilities of the diagnostic platform and provide first experimental results of the characterization of a gridded ion thruster RIT- μX.

  16. Fundamentals of aircraft and rocket propulsion

    CERN Document Server

    El-Sayed, Ahmed F

    2016-01-01

    This book provides a comprehensive basics-to-advanced course in an aero-thermal science vital to the design of engines for either type of craft. The text classifies engines powering aircraft and single/multi-stage rockets, and derives performance parameters for both from basic aerodynamics and thermodynamics laws. Each type of engine is analyzed for optimum performance goals, and mission-appropriate engines selection is explained. Fundamentals of Aircraft and Rocket Propulsion provides information about and analyses of: thermodynamic cycles of shaft engines (piston, turboprop, turboshaft and propfan); jet engines (pulsejet, pulse detonation engine, ramjet, scramjet, turbojet and turbofan); chemical and non-chemical rocket engines; conceptual design of modular rocket engines (combustor, nozzle and turbopumps); and conceptual design of different modules of aero-engines in their design and off-design state. Aimed at graduate and final-year undergraduate students, this textbook provides a thorough grounding in th...

  17. Software To Secure Distributed Propulsion Simulations

    Science.gov (United States)

    Blaser, Tammy M.

    2003-01-01

    Distributed-object computing systems are presented with many security threats, including network eavesdropping, message tampering, and communications middleware masquerading. NASA Glenn Research Center, and its industry partners, has taken an active role in mitigating the security threats associated with developing and operating their proprietary aerospace propulsion simulations. In particular, they are developing a collaborative Common Object Request Broker Architecture (CORBA) Security (CORBASec) test bed to secure their distributed aerospace propulsion simulations. Glenn has been working with its aerospace propulsion industry partners to deploy the Numerical Propulsion System Simulation (NPSS) object-based technology. NPSS is a program focused on reducing the cost and time in developing aerospace propulsion engines

  18. Laser-produced plasma sensor-probe system for in situ molten metal analysis. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y.W.

    1997-01-28

    The radically new methodology of in-situ laser-produced plasma (LPP) analysis of molten metals, as developed at Lehigh University, has been implemented into an LPP sensor-probe system, ready for deployment at steelmaking facilities. The system consists of an LPP sensor-probe head, which is immersed into the molten metal bath for the short duration of measurement, a control console, an umbilical cord connecting the above two units, and a support console providing coolants and pneumatic supports to the control console. The Department of Energy funding has supported Phase III-A and -B of the project in a joint sponsorship with AISI, CTU 5-2 Consortium, and Lehigh University. The objectives have been to: (1) implement the molten metal calibration protocol for the LPP analysis methodology; (2) implement the methodology in the form of a second-generation LPP sensor-probe system, which facilitates real-time process control by in-situ determination of elemental composition of molten steel alloys; (3) deploy such developmental systems in steelmaking facilities; (4) upgrade the systems to a third-generation design; and (5) effect technology transfer by selecting a manufacturer of commercial LPP sensor-probe systems. Four of the five objectives have been fully met. The deployment objective has been partially realized at present. The full LPP sensor-probe system has been put through trial immersion runs at a foundry, but its deployment at steelmaking facilities has progressed to a stage where various issues of financial and legal nature are being codified into a formal agreement between a host site and Lehigh University.

  19. Final Report for Project DE-SC0006958: "An Investigation of the Effects of magnetic Fields and Collisionality on Shock Formation in Radiatively Cooled Plasma Flows"

    Energy Technology Data Exchange (ETDEWEB)

    Bott-Suzuki, Simon

    2014-11-05

    We have developed a new experimental platform to study bow-shock formation in plasma flows generated using an inverse wire array z-pinch. We have made significant progress on the analysis of both hydrodynamic and magnetized shocks using this system. The hydrodynamic experiments show formation of a well-defined Mach cone, and highly localized shock strong associated with radiative losses and rapidly cooling over the shock. Magnetized shocks show that the balance of magnetic and ram pressures dominate the evolution of the shock region, generating a low plasma beta void around the target. Manuscripts are in preparation for publication on both these topics. We have also published the development of a novel diagnostic method which allow recovery of interferometry and self-emission data along the same line of sight. Finally, we have carried out work to integrate a kinetic routine with the 3D MHD code Gorgon, however it remains to complete this process. Both undergraduate and graduate students have been involved in both the experimental work and publications.

  20. Conceptual Design of a Z-Pinch Fusion Propulsion System

    Science.gov (United States)

    Adams, Robert; Polsgrove, Tara; Fincher, Sharon; Fabinski, Leo; Maples, Charlotte; Miernik, Janie; Stratham, Geoffrey; Cassibry, Jason; Cortez, Ross; Turner, Matthew; Santarius, John; Percy, Thomas

    2010-01-01

    This slide presentation reviews a project that aims to develop a conceptual design for a Z-pinch thruster, that could be applied to develop advanced thruster designs which promise high thrust/high specific impulse propulsion. Overviews shows the concept of the design, which use annular nozzles with deuterium-tritium (D-T) fuel and a Lithium mixture as a cathode, Charts show the engine performance as a function of linear mass, nozzle performance (i.e., plasma segment trajectories), and mission analysis for possible Mars and Jupiter missions using this concept for propulsion. Slides show views of the concepts for the vehicle configuration, thrust coil configuration, the power management system, the structural analysis of the magnetic nozzle, the thermal management system, and the avionics suite,

  1. Magnetic levitation and MHD propulsion

    Science.gov (United States)

    Tixador, P.

    1994-04-01

    Magnetic levitation and MHD propulsion are now attracting attention in several countries. Different superconducting MagLev and MHD systems will be described concentrating on, above all, the electromagnetic aspect. Some programmes occurring throughout the world will be described. Magnetic levitated trains could be the new high speed transportation system for the 21st century. Intensive studies involving MagLev trains using superconductivity have been carried out in Japan since 1970. The construction of a 43 km long track is to be the next step. In 1991 a six year programme was launched in the United States to evaluate the performances of MagLev systems for transportation. The MHD (MagnetoHydroDynamic) offers some interesting advantages (efficiency, stealth characteristics, ...) for naval propulsion and increasing attention is being paid towards it nowadays. Japan is also up at the top with the tests of Yamato I, a 260 ton MHD propulsed ship. Depuis quelques années nous assistons à un redémarrage de programmes concernant la lévitation et la propulsion supraconductrices. Différents systèmes supraconducteurs de lévitation et de propulsion seront décrits en examinant plus particulièrement l'aspect électromagnétique. Quelques programmes à travers le monde seront abordés. Les trains à sustentation magnétique pourraient constituer un nouveau mode de transport terrestre à vitesse élevée (500 km/h) pour le 21^e siècle. Les japonais n'ont cessé de s'intéresser à ce système avec bobine supraconductrice. Ils envisagent un stade préindustriel avec la construction d'une ligne de 43 km. En 1991 un programme américain pour une durée de six ans a été lancé pour évaluer les performances des systèmes à lévitation pour le transport aux Etats Unis. La MHD (Magnéto- Hydro-Dynamique) présente des avantages intéressants pour la propulsion navale et un regain d'intérêt apparaît à l'heure actuelle. Le japon se situe là encore à la pointe des d

  2. Numerical modeling of deflagration mode in coaxial plasma guns

    Science.gov (United States)

    Sitaraman, Hariswaran; Raja, Laxminarayan

    2012-10-01

    Pulsed coaxial plasma guns have been used in several applications in the field of space propulsion, nuclear fusion and materials processing. These devices operate in two modes based on the delay between gas injection and breakdown initiation. Larger delay led to the plasma detonation mode where a compression wave in the form of a luminous front propagates from the breech to the muzzle. Shorter delay led to the more efficient deflagration mode characterized by a relatively diffuse plasma with higher resistivity. The overall physics of the discharge in the two modes of operation and in particular the latter remain relatively unexplored. Here we perform a computational modeling study by solving the non-ideal Magneto-hydrodynamics equations for the quasi-neutral plasma in the coaxial plasma gun. A finite volume formulation on an unstructured mesh framework with an implicit scheme is used to do stable computations. The final work will present details of important species in the plasma, particle energies and Mach number at the muzzle. A comparison of the plasma parameters will be made with the experiments reported in ref. [1]. [4pt] [1] F. R. Poehlmann et al., Phys. Plasmas 17, 123508 (2010)

  3. Peroxide Propulsion at the Turn of the Century

    Science.gov (United States)

    Anderson, William E.; Butler, Kathy; Crocket, Dave; Lewis, Tim; McNeal, Curtis

    2000-01-01

    A resurgence of interest in peroxide propulsion has occurred in the last years of the 21st Century. This interest is driven by the need for lower cost propulsion systems and the need for storable reusable propulsion systems to meet future space transportation system architectures. NASA and the Air Force are jointly developing two propulsion systems for flight demonstration early in the 21st Century. One system will be a development of Boeing's AR2-3 engine, which was successfully fielded in the 1960s. The other is a new pressure-fed design by Orbital Sciences Corporation for expendable mission requirements. Concurrently NASA and industry are pursuing the key peroxide technologies needed to design, fabricate, and test advanced peroxide engines to meet the mission needs beyond 2005. This paper will present a description of the AR2-3, report the status of its current test program, and describe its intended flight demonstration. This paper will then describe the Orbital 10K engine, the status of its test program, and describe its planned flight demonstration. Finally the paper will present a plan, or technology roadmap, for the development of an advanced peroxide engine for the 21st Century.

  4. 'You can get there from here': Advanced low cost propulsion concepts for small satellites beyond LEO

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Adam M.; Silva Curiel, Alex da; Sweeting, Martin [Surrey Satellite Technology Ltd., Surrey (United Kingdom); Schaffner, Jake [California Polytechnic State Univ., San Luis Obispo, CA (United States)

    2005-10-15

    control. (2) Orbit transfer of an enhanced microsatellite from a typical 700 km sun-synchronous orbit to a lower or higher orbit using a low cost 40 N thrust concentrated hydrogen peroxide/kerosene bipropellant engine. A spin stabilized 'tug' concept capable of providing between 130 and 300 m/s of deltaV to the payload is described. (3) Transfer of an enhanced microsatellite from LEO to lunar orbit using a novel, storable propellant solar thermal propulsion system under development at the Surrey Space Centre. The solar thermal propulsion unit is designed for low cost small satellite support and will be compared with a more traditional approach using an industry standard storable bipropellant chemical engine. (4) Nanosatellite manoeuvring for formation flying using advanced low power electric propulsion. A colloid thruster system concept is planned for development jointly between SSTL, Queen Mary University London and Rutherford Appleton Laboratory, UK. The colloid thruster system is designed to complement an existing butane resistojet to give full 3-axis manoeuvrability to an upgraded SNAP nanosatellite platform which could be reflown in 2007 alongside ESA's Proba 2 technology demonstrator microsatellite. A comparison between low power resistojets, a colloid thruster system, and pulsed plasma thrusters for orbit manoeuvring of microsatellites will be made. This paper's final section will briefly describe some of the interplanetary missions which have been considered at the Surrey Space Centre, and will highlight the few as yet practical solutions for sending small spacecraft on high deltaV missions without the use of a costly upper stage. (Author)

  5. Propulsion Systems in Water Tunnel

    Directory of Open Access Journals (Sweden)

    Nobuyuki Fujisawa

    1995-01-01

    agreement with the field experiment with prototype craft. Measurements are also made for the losses in the intake and the nozzle. The optimization study of the water jet systems is conducted by simulating the change of the nozzle outlet diameter with the variable nozzle arrangement. It is suggested that the nozzle outlet diameter should be decreased as the craft velocity increases to obtain an optimum propulsive efficiency in a wide range of craft velocity.

  6. Impeller for Water Jet Propulsion

    Science.gov (United States)

    2004-01-01

    Marshall Space Flight Center engineers helped North American Marine Jet (NAMJ), Inc. improve the proposed design of a new impeller for jet propulsion system. With a three-dimensional computer model of the new marine jet engine blades, engineers were able to quickly create a solid ploycarbonate model of it. The rapid prototyping allowed the company to avoid many time-consuming and costly steps in creating the impeller.

  7. Nuclear Thermal Propulsion Development Risks

    Science.gov (United States)

    Kim, Tony

    2015-01-01

    There are clear advantages of development of a Nuclear Thermal Propulsion (NTP) for a crewed mission to Mars. NTP for in-space propulsion enables more ambitious space missions by providing high thrust at high specific impulse ((is) approximately 900 sec) that is 2 times the best theoretical performance possible for chemical rockets. Missions can be optimized for maximum payload capability to take more payload with reduced total mass to orbit; saving cost on reduction of the number of launch vehicles needed. Or missions can be optimized to minimize trip time significantly to reduce the deep space radiation exposure to the crew. NTR propulsion technology is a game changer for space exploration to Mars and beyond. However, 'NUCLEAR' is a word that is feared and vilified by some groups and the hostility towards development of any nuclear systems can meet great opposition by the public as well as from national leaders and people in authority. The public often associates the 'nuclear' word with weapons of mass destruction. The development NTP is at risk due to unwarranted public fears and clear honest communication of nuclear safety will be critical to the success of the development of the NTP technology. Reducing cost to NTP development is critical to its acceptance and funding. In the past, highly inflated cost estimates of a full-scale development nuclear engine due to Category I nuclear security requirements and costly regulatory requirements have put the NTP technology as a low priority. Innovative approaches utilizing low enriched uranium (LEU). Even though NTP can be a small source of radiation to the crew, NTP can facilitate significant reduction of crew exposure to solar and cosmic radiation by reducing trip times by 3-4 months. Current Human Mars Mission (HMM) trajectories with conventional propulsion systems and fuel-efficient transfer orbits exceed astronaut radiation exposure limits. Utilizing extra propellant from one additional SLS launch and available

  8. Development of Waterjet Propulsion Unit

    Science.gov (United States)

    1985-03-01

    Figure I shows the configuration of the proposed propulsion system in the aft end of an LVTP-7A1. A 20-inch diameter impeller is to be housed in a...16A the straamlne0 1 ig. 30Reato between vltys coff "scienw C+ andrust r atio o nd no l ocit in 09- 046 Anlyi to 12e e1Pople 16 is 20 s 24 262n3 Fig

  9. Pure Nuclear Fusion Bomb Propulsion

    OpenAIRE

    Winterberg, F.

    2008-01-01

    Recent progress towards the non-fission ignition of thermonuclear micro-explosions raises the prospect for a revival of the nuclear bomb propulsion idea, both for the fast transport of large payloads within the solar system and the launch into earth orbit without the release of fission products into the atmosphere. To reach this goal three areas of research are of importance: 1)Compact thermonuclear ignition drivers. 2)Fast ignition and deuterium burn. 3)Space-craft architecture involving mag...

  10. Laser ablation with applied magnetic field for electric propulsion

    Science.gov (United States)

    Batishcheva, Alla; Batishchev, Oleg; Cambier, Jean-Luc

    2012-10-01

    Using ultrafast lasers with tera-watt-level power allows efficient ablation and ionization of solid-density materials [1], creating dense and hot (˜100eV) plasma. We propose ablating small droplets in the magnetic nozzle configurations similar to mini-helicon plasma source [2]. Such approach may improve the momentum coupling compared to ablation of solid surfaces and facilitate plasma detachment. Results of 2D modeling of solid wire ablation in the applied magnetic field are presented and discussed. [4pt] [1] O. Batishchev et al, Ultrafast Laser Ablation for Space Propulsion, AIAA technical paper 2008-5294, -16p, 44th JPC, Hartford, 2008.[0pt] [2] O. Batishchev and J.L. Cambier, Experimental Study of the Mini-Helicon Thruster, Air Force Research Laboratory Report, AFRL-RZ-ED-TR-2009-0020, 2009.

  11. Nuclear modules for space electric propulsion

    Science.gov (United States)

    Difilippo, F. C.

    1998-01-01

    Analysis of interplanetary cargo and piloted missions requires calculations of the performances and masses of subsystems to be integrated in a final design. In a preliminary and scoping stage the designer needs to evaluate options iteratively by using fast computer simulations. The Oak Ridge National Laboratory (ORNL) has been involved in the development of models and calculational procedures for the analysis (neutronic and thermal hydraulic) of power sources for nuclear electric propulsion. The nuclear modules will be integrated into the whole simulation of the nuclear electric propulsion system. The vehicles use either a Brayton direct-conversion cycle, using the heated helium from a NERVA-type reactor, or a potassium Rankine cycle, with the working fluid heated on the secondary side of a heat exchanger and lithium on the primary side coming from a fast reactor. Given a set of input conditions, the codes calculate composition. dimensions, volumes, and masses of the core, reflector, control system, pressure vessel, neutron and gamma shields, as well as the thermal hydraulic conditions of the coolant, clad and fuel. Input conditions are power, core life, pressure and temperature of the coolant at the inlet of the core, either the temperature of the coolant at the outlet of the core or the coolant mass flow and the fluences and integrated doses at the cargo area. Using state-of-the-art neutron cross sections and transport codes, a database was created for the neutronic performance of both reactor designs. The free parameters of the models are the moderator/fuel mass ratio for the NERVA reactor and the enrichment and the pitch of the lattice for the fast reactor. Reactivity and energy balance equations are simultaneously solved to find the reactor design. Thermalhydraulic conditions are calculated by solving the one-dimensional versions of the equations of conservation of mass, energy, and momentum with compressible flow.

  12. Nuclear modules for space electric propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Difilippo, F.C.

    1998-12-31

    Analysis of interplanetary cargo and piloted missions requires calculations of the performances and masses of subsystems to be integrated in a final design. In a preliminary and scoping stage the designer needs to evaluate options iteratively by using fast computer simulations. The Oak Ridge National Laboratory (ORNL) has been involved in the development of models and calculational procedures for the analysis (neutronic and thermal hydraulic) of power sources for nuclear electric propulsion. The nuclear modules will be integrated into the whole simulation of the nuclear electric propulsion system. The vehicles use either a Brayton direct-conversion cycle, using the heated helium from a NERVA-type reactor, or a potassium Rankine cycle, with the working fluid heated on the secondary side of a heat exchanger and lithium on the primary side coming from a fast reactor. Given a set of input conditions, the codes calculate composition. dimensions, volumes, and masses of the core, reflector, control system, pressure vessel, neutron and gamma shields, as well as the thermal hydraulic conditions of the coolant, clad and fuel. Input conditions are power, core life, pressure and temperature of the coolant at the inlet of the core, either the temperature of the coolant at the outlet of the core or the coolant mass flow and the fluences and integrated doses at the cargo area. Using state-of-the-art neutron cross sections and transport codes, a database was created for the neutronic performance of both reactor designs. The free parameters of the models are the moderator/fuel mass ratio for the NERVA reactor and the enrichment and the pitch of the lattice for the fast reactor. Reactivity and energy balance equations are simultaneously solved to find the reactor design. Thermalhydraulic conditions are calculated by solving the one-dimensional versions of the equations of conservation of mass, energy, and momentum with compressible flow. 10 refs., 1 tab.

  13. Propulsion System Models for Rotorcraft Conceptual Design

    Science.gov (United States)

    Johnson, Wayne

    2014-01-01

    The conceptual design code NDARC (NASA Design and Analysis of Rotorcraft) was initially implemented to model conventional rotorcraft propulsion systems, consisting of turboshaft engines burning jet fuel, connected to one or more rotors through a mechanical transmission. The NDARC propulsion system representation has been extended to cover additional propulsion concepts, including electric motors and generators, rotor reaction drive, turbojet and turbofan engines, fuel cells and solar cells, batteries, and fuel (energy) used without weight change. The paper describes these propulsion system components, the architecture of their implementation in NDARC, and the form of the models for performance and weight. Requirements are defined for improved performance and weight models of the new propulsion system components. With these new propulsion models, NDARC can be used to develop environmentally-friendly rotorcraft designs.

  14. Powered Flight The Engineering of Aerospace Propulsion

    CERN Document Server

    Greatrix, David R

    2012-01-01

    Whilst most contemporary books in the aerospace propulsion field are dedicated primarily to gas turbine engines, there is often little or no coverage of other propulsion systems and devices such as propeller and helicopter rotors or detailed attention to rocket engines. By taking a wider viewpoint, Powered Flight - The Engineering of Aerospace Propulsion aims to provide a broader context, allowing observations and comparisons to be made across systems that are overlooked by focusing on a single aspect alone. The physics and history of aerospace propulsion are built on step-by-step, coupled with the development of an appreciation for the mathematics involved in the science and engineering of propulsion. Combining the author’s experience as a researcher, an industry professional and a lecturer in graduate and undergraduate aerospace engineering, Powered Flight - The Engineering of Aerospace Propulsion covers its subject matter both theoretically and with an awareness of the practicalities of the industry. To ...

  15. Propulsion in cubomedusae: mechanisms and utility.

    Science.gov (United States)

    Colin, Sean P; Costello, John H; Katija, Kakani; Seymour, Jamie; Kiefer, Kristen

    2013-01-01

    Evolutionary constraints which limit the forces produced during bell contractions of medusae affect the overall medusan morphospace such that jet propulsion is limited to only small medusae. Cubomedusae, which often possess large prolate bells and are thought to swim via jet propulsion, appear to violate the theoretical constraints which determine the medusan morphospace. To examine propulsion by cubomedusae, we quantified size related changes in wake dynamics, bell shape, swimming and turning kinematics of two species of cubomedusae, Chironex fleckeri and Chiropsella bronzie. During growth, these cubomedusae transitioned from using jet propulsion at smaller sizes to a rowing-jetting hybrid mode of propulsion at larger sizes. Simple modifications in the flexibility and kinematics of their velarium appeared to be sufficient to alter their propulsive mode. Turning occurs during both bell contraction and expansion and is achieved by generating asymmetric vortex structures during both stages of the swimming cycle. Swimming characteristics were considered in conjunction with the unique foraging strategy used by cubomedusae.

  16. Nuclear gas core propulsion research program

    Science.gov (United States)

    Diaz, Nils J.; Dugan, Edward T.; Anghaie, Samim

    1993-01-01

    Viewgraphs on the nuclear gas core propulsion research program are presented. The objectives of this research are to develop models and experiments, systems, and fuel elements for advanced nuclear thermal propulsion rockets. The fuel elements under investigation are suitable for gas/vapor and multiphase fuel reactors. Topics covered include advanced nuclear propulsion studies, nuclear vapor thermal rocket (NVTR) studies, and ultrahigh temperature nuclear fuels and materials studies.

  17. Convective Heat Transfer for Ship Propulsion.

    Science.gov (United States)

    1982-04-01

    RD-A124 Wi CONVECTIVE HEAT TRANSFER FOR SHIP PROPULSION (U) ARIZONA 112 UNIV TUCSON ENGINEERING EXPERIMENT STATION PARK ET AL. 01 APR 82 1248-9 N814...395 CONVECTIVE HEAT TRANSFER FOR SHIP PROPULSION Prepared for Office of Naval Research Code 431 Arlington, Virginia Prepared by J. S. Park, M. F...FOR SHIP PROPULSION By J. S. Park, M. F. Taylor and D. M. McEligot Aerospace and Mechanical Engineering Department University of Arizona Tucson

  18. Propulsion Design with Freeform Fabrication Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Propulsion Design with Freeform Fabrication (PDFF) will develop and implement a novel design methodology that leverages the rapidly evolving Solid Freeform...

  19. Pure Nuclear Fusion Bomb Propulsion

    CERN Document Server

    Winterberg, F

    2008-01-01

    Recent progress towards the non-fission ignition of thermonuclear micro-explosions raises the prospect for a revival of the nuclear bomb propulsion idea, both for the fast transport of large payloads within the solar system and the launch into earth orbit without the release of fission products into the atmosphere. To reach this goal three areas of research are of importance: 1)Compact thermonuclear ignition drivers. 2)Fast ignition and deuterium burn. 3)Space-craft architecture involving magnetic insulation and GeV electrostatic potentials

  20. Propulsion at low Reynolds number

    Energy Technology Data Exchange (ETDEWEB)

    Najafi, Ali [Institute for Advanced Studies in Basic Sciences, Zanjan 45195-159 (Iran, Islamic Republic of); Faculty of Science, Zanjan University, Zanjan 313 (Iran, Islamic Republic of); Golestanian, Ramin [Institute for Advanced Studies in Basic Sciences, Zanjan 45195-159 (Iran, Islamic Republic of)

    2005-04-13

    We study the propulsion of two model swimmers at low Reynolds number. Inspired by Purcell's model, we propose a very simple one-dimensional swimmer consisting of three spheres that are connected by two arms whose lengths can change between two values. The proposed swimmer can swim with a special type of motion, which breaks the time-reversal symmetry. We also show that an ellipsoidal membrane with tangential travelling wave on it can also propel itself in the direction preferred by the travelling wave. This system resembles the realistic biological animals like Paramecium.

  1. Understanding the conductivity in ion propulsion devices

    Energy Technology Data Exchange (ETDEWEB)

    Garrigues, L.; Boeuf, J.P.; Pitchford, L.C. [Univ. Paul Sabatier, Toulouse (France)

    1996-12-31

    A SPT (stationary plasma thruster) is a type of ion source developed primarily in Russian over the past 30 years and used as an electromagnetic propulsion device in applications requiring a low to moderate thrust with a high efficiency (satellite station keeping, for example). Although SPTs have been used in space, the principles of operation are far from clear. One of the outstanding issues is the identification of the mechanisms leading to the observed high conductivity in these devices. The neutral density is low and the plasma at the cathode end is fully ionized. Electron-neutral and electron-ion collisions are insufficient to account for the observed conductivity across the magnetic field lines. Bohm diffusion resulting from turbulence is a possible explanation for the observed high conductivity but other effects such as electron-wall interaction seem to play a very important role, due to the particular structure of this device where magnetic field lines are directed toward the walls. Electron collisions with the dielectric walls can enhance the conductivity in SPTs. Because the B field is perpendicular to the walls, the electron current is forced to the walls and secondary electron emission can occur for electron energies greater than about 30 eV on these surfaces. The authors have performed Monte Carlo calculations to study the effect of reflection and secondary emission on the calculated conductivity. Results from the Monte Carlo simulation are used to estimate the electron conductivity and energy loss in the device. These data are used as input in a self-consistent quasi-neutral hybrid model of the discharge where ions are described by a Vlasov equation, and the electric field distribution is deduced from the electron momentum equation, assuming quasi-neutrality.

  2. Preliminary Comparison Between Nuclear-Electric and Solar-Electric Propulsion Systems for Future Mars Missions

    Science.gov (United States)

    Koppel, Christophe R.; Valentian, Dominique; Latham, Paul; Fearn, David; Bruno, Claudio; Nicolini, David; Roux, Jean-Pierre; Paganucci, F.; Saverdi, Massimo

    2004-02-01

    Recent US and European initiatives in Nuclear Propulsion lend themselves naturally to raising the question of comparing various options and particularly Nuclear Electric Propulsion (NEP) with Solar Electric Propulsion (SEP). SEP is in fact mentioned in one of the latest versions of the NASA Mars Manned Mission as a possible candidate. The purpose of this paper is to compare NEP, for instance, using high power MPD, Ion or Plasma thrusters, with SEP systems. The same payload is assumed in both cases. The task remains to find the final mass ratios and cost estimates and to determine the particular features of each technology. Each technology has its own virtues and vices: NEP implies orbiting a sizeable nuclear reactor and a power generation system capable of converting thermal into electric power, with minimum mass and volumes compatible with Ariane 5 or the Space Shuttle bay. Issues of safety and launch risks are especially important to public opinion, which is a factor to be reckoned with. Power conversion in space, including thermal cycle efficiency and radiators, is a technical issue in need of attention if power is large, i.e., of order 0.1 MW and above, and so is power conditioning and other ancillary systems. Type of mission, Isp and thrust will ultimately determine a large fraction of the mass to be orbited, as they drive propellant mass. For manned missions, the trade-off also involves consumables and travel time because of exposure to Solar wind and cosmic radiation. Future manned NEP missions will probably need superconducting coils, entailing cryostat technology. The on-board presence of cryogenic propellant (e.g., LH2) may reassure the feasibility of this technology, implying, however, a trade-off between propellant volume to be orbited and reduced thruster mass. SEP is attractive right now in the mind of the public, but also of scientists involved in Solar system exploration. Some of the appeal derives from the hope of reducing propellant mass because

  3. What is a plasma?

    Energy Technology Data Exchange (ETDEWEB)

    Intrator, Thomas P. [Los Alamos National Laboratory

    2012-08-30

    This introduction will define the plasma fourth state of matter, where we find plasmas on earth and beyond, and why they are useful. There are applications to many consumer items, fusion energy, scientific devices, satellite communications, semiconductor processing, spacecraft propulsion, and more. Since 99% of our observable universe is ionized gas, plasma physics determines many important features of astrophysics, space physics, and magnetosphere physics in our solar system. We describe some plasma characteristics, examples in nature, some useful applications, how to create plasmas. A brief introduction to the theoretical framework includes the connection between kinetic and fluid descriptions, quasi neutrality, Debye shielding, ambipolar electric fields, some plasma waves. Hands-on demonstrations follow. More complete explanations will follow next week.

  4. Feasibility of MHD submarine propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Doss, E.D. (ed.) (Argonne National Lab., IL (United States)); Sikes, W.C. (ed.) (Newport News Shipbuilding and Dry Dock Co., VA (United States))

    1992-09-01

    This report describes the work performed during Phase 1 and Phase 2 of the collaborative research program established between Argonne National Laboratory (ANL) and Newport News Shipbuilding and Dry Dock Company (NNS). Phase I of the program focused on the development of computer models for Magnetohydrodynamic (MHD) propulsion. Phase 2 focused on the experimental validation of the thruster performance models and the identification, through testing, of any phenomena which may impact the attractiveness of this propulsion system for shipboard applications. The report discusses in detail the work performed in Phase 2 of the program. In Phase 2, a two Tesla test facility was designed, built, and operated. The facility test loop, its components, and their design are presented. The test matrix and its rationale are discussed. Representative experimental results of the test program are presented, and are compared to computer model predictions. In general, the results of the tests and their comparison with the predictions indicate that thephenomena affecting the performance of MHD seawater thrusters are well understood and can be accurately predicted with the developed thruster computer models.

  5. Advanced nuclear thermal propulsion concepts

    Science.gov (United States)

    Howe, Steven D.

    1993-11-01

    In 1989, a Presidential directive created the Space Exploration Initiative (SEI) which had a goal of placing mankind on Mars in the early 21st century. The SEI was effectively terminated in 1992 with the election of a new administration. Although the initiative did not exist long enough to allow substantial technology development, it did provide a venue, for the first time in 20 years, to comprehensively evaluate advanced propulsion concepts which could enable fast, manned transits to Mars. As part of the SEI based investigations, scientists from NASA, DoE National Laboratories, universities, and industry met regularly and proceeded to examine a variety of innovative ideas. Most of the effort was directed toward developing a solid-core, nuclear thermal rocket and examining a high-power nuclear electric propulsion system. In addition, however, an Innovative Concepts committee was formed and charged with evaluating concepts that offered a much higher performance but were less technologically mature. The committee considered several concepts and eventually recommended that further work be performed in the areas of gas core fission rockets, inertial confinement fusion systems, antimatter based rockets, and gas core fission electric systems. Following the committee's recommendations, some computational modeling work has been performed at Los Alamos in certain of these areas and critical issues have been identified.

  6. Advanced nuclear thermal propulsion concepts

    Science.gov (United States)

    Howe, Steven D.

    1993-01-01

    In 1989, a Presidential directive created the Space Exploration Initiative (SEI) which had a goal of placing mankind on Mars in the early 21st century. The SEI was effectively terminated in 1992 with the election of a new administration. Although the initiative did not exist long enough to allow substantial technology development, it did provide a venue, for the first time in 20 years, to comprehensively evaluate advanced propulsion concepts which could enable fast, manned transits to Mars. As part of the SEI based investigations, scientists from NASA, DoE National Laboratories, universities, and industry met regularly and proceeded to examine a variety of innovative ideas. Most of the effort was directed toward developing a solid-core, nuclear thermal rocket and examining a high-power nuclear electric propulsion system. In addition, however, an Innovative Concepts committee was formed and charged with evaluating concepts that offered a much higher performance but were less technologically mature. The committee considered several concepts and eventually recommended that further work be performed in the areas of gas core fission rockets, inertial confinement fusion systems, antimatter based rockets, and gas core fission electric systems. Following the committee's recommendations, some computational modeling work has been performed at Los Alamos in certain of these areas and critical issues have been identified.

  7. Numerical Propulsion System Simulation Architecture

    Science.gov (United States)

    Naiman, Cynthia G.

    2004-01-01

    The Numerical Propulsion System Simulation (NPSS) is a framework for performing analysis of complex systems. Because the NPSS was developed using the object-oriented paradigm, the resulting architecture is an extensible and flexible framework that is currently being used by a diverse set of participants in government, academia, and the aerospace industry. NPSS is being used by over 15 different institutions to support rockets, hypersonics, power and propulsion, fuel cells, ground based power, and aerospace. Full system-level simulations as well as subsystems may be modeled using NPSS. The NPSS architecture enables the coupling of analyses at various levels of detail, which is called numerical zooming. The middleware used to enable zooming and distributed simulations is the Common Object Request Broker Architecture (CORBA). The NPSS Developer's Kit offers tools for the developer to generate CORBA-based components and wrap codes. The Developer's Kit enables distributed multi-fidelity and multi-discipline simulations, preserves proprietary and legacy codes, and facilitates addition of customized codes. The platforms supported are PC, Linux, HP, Sun, and SGI.

  8. Propulsive efficiency and non- expert swimmers performance

    Directory of Open Access Journals (Sweden)

    T.M. Barbosa

    2009-01-01

    Full Text Available Propulsive efficiency is one of the most interesting issues for competitive swimming researchers, has it presents significant relationships with the swimmer’s biophysical behavior and his/her performance. Although propulsive efficiency is a variable that has been quite studied in elite swimmers, there is no research on this issue in young and non-expert swimmers. Thus, the aim of this study was to: (i estimate the propulsive efficiency on non-expert swimmers; (ii identify biomechanical and anthropometrical parameters that are associated with propulsive efficiency; (iii identify the association between the propulsive efficiency and swim performance. Twenty-eight non-expert swimmers participated on this study. It was assessed the propulsive efficiency, biomechanical and anthropometrical parameters, as well as, the swim performance. The propulsive efficiency of non-expert swimmers is lower than data reported in the literature to higher competitive levels swimmers and there are no significant differences between boys and girls. It was also noted that several biomechanical and anthropometrical parameters, as well as, the swim performance are associated with the propulsive efficiency.

  9. Propulsive efficiency and non- expert swimmers performance

    Directory of Open Access Journals (Sweden)

    Tiago Barbosa

    2009-12-01

    Full Text Available Propulsive efficiency is one of the most interesting issues for competitive swimming researchers, has it presents significant relationships with the swimmer’s biophysical behavior and his/her performance. Although propulsive efficiency is a variable that has been quite studied in elite swimmers, there is no research on this issue in young and non-expert swimmers. Thus, the aim of this study was to: (i estimate the propulsive efficiency on non-expert swimmers; (ii identify biomechanical and anthropometrical parameters that are associated with propulsive efficiency; (iii identify the association between the propulsive efficiency and swim performance. Twenty-eight non-expert swimmers participated on this study. It was assessed the propulsive efficiency, biomechanical and anthropometrical parameters, as well as, the swim performance. The propulsive efficiency of non-expert swimmers is lower than data reported in the literature to higher competitive levels swimmers and there are no significant differences between boys and girls. It was also noted that several biomechanical and anthropometrical parameters, as well as, the swim performance are associated with the propulsive efficiency.

  10. 46 CFR 109.555 - Propulsion boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Propulsion boilers. 109.555 Section 109.555 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.555 Propulsion boilers. The master or person in charge and the engineer in charge...

  11. 46 CFR 130.120 - Propulsion control.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Propulsion control. 130.120 Section 130.120 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS VESSEL CONTROL, AND MISCELLANEOUS EQUIPMENT AND SYSTEMS Vessel Control § 130.120 Propulsion control. (a) Each vessel must have—...

  12. Integrated Propulsion Data System Public Web Site

    Science.gov (United States)

    Hamilton, Kimberly

    2001-01-01

    The Integrated Propulsion Data System's (IPDS) focus is to provide technologically-advanced philosophies of doing business at SSC that will enhance the existing operations, engineering and management strategies and provide insight and metrics to assess their daily impacts, especially as related to the Propulsion Test Directorate testing scenarios for the 21st Century.

  13. Various challenging aspects of hybrid propulsion

    Science.gov (United States)

    Orlandi, O.; Theil, D.; Saramago, J.; Amand, P. G.; Dauch, F.; Gautier, P.

    2011-10-01

    The hybrid technology appears as an innovative, high performance, and promising propulsion technique in a number of space missions. By combining functions and advantages taken from both solid and liquid propulsion, this technology is expected to provide mainly high performance with throttleability and stop-restart capabilities. The safety conditions of engine operation and design reliability almost similar to solid propulsion increase the interest to this technology. However, the standard fuels (mainly based on a carbon polymer) exhibit low regression rates that require complex grain shapes and low loading ratio. Thanks to a dedicated study supported by the European Space Agency (ESA), SNPE in collaboration with Avio and University of Naples (DIAS department) performed an exhaustive state-of-the-art and a market survey of accomplishments in hybrid propulsion. Based on the resulting tradeoff study on potential future launchers and spacecraft applications, the most promising applications are selected to conduct preliminary designs. These applications can also be seen as the vector of hybrid propulsion development. This study concentrates on hybrid propulsion systems with advanced hybrid fuels for Lander platform and Upper Stage. High throttleability and high propulsive performance associated with stop and restart capability are needed to meet mission requirements for Lander and Upper Stage, respectively. Preliminary design shows the advantages provided by hybrid propulsion: a significant payload mass increase for the upper stage case and a soft landing for the Lander case.

  14. Space Nuclear Thermal Propulsion (SNTP) tests

    Science.gov (United States)

    Allen, George C.

    1993-01-01

    Viewgraphs on the space nuclear thermal propulsion (SNTP) program are presented. The objective of the research is to develop advanced nuclear thermal propulsion (NTP) technology based on the particle bed reactor concept. A strong philosophical commitment exists in the industry/national laboratory team to emphasize testing in development activities. Nuclear testing currently underway to support development of SNTP technology is addressed.

  15. Overview of DOE space nuclear propulsion programs

    Science.gov (United States)

    Newhouse, Alan R.

    1993-01-01

    An overview of Department of Energy space nuclear propulsion programs is presented in outline and graphic form. DOE's role in the development and safety assurance of space nuclear propulsion is addressed. Testing issues and facilities are discussed along with development needs and recent research activities.

  16. Two Temperature Modeling and Experimental Measurements of Laser Sustained Hydrogen Plasmas

    Science.gov (United States)

    1993-05-01

    Thermal Rocket Performance," AIAA Paper 88-2774, AIAA Thermophysics...Krier, H., and Mazumder, J. (1990). "Continuous Wave Laser Sustained Hydrogen Plasmas for Thermal Rocket Propulsion," AIAA Paper 90-2637, AIAA/DGLR...Schwartz, S., Mertogul, A.E., Chen, X., Krier, H., and Mazumder, J. (1990). "Laser-Sustained Argon Plasmas for Thermal Rocket Propulsion," Journal of Propulsion and Power, Vol. 6, No. 1, pp. 38-45, January-February 1990.

  17. Direct Energy Conversion for Nuclear Propulsion at Low Specific Mass

    Science.gov (United States)

    Scott, John H.

    2014-01-01

    The project will continue the FY13 JSC IR&D (October-2012 to September-2013) effort in Travelling Wave Direct Energy Conversion (TWDEC) in order to demonstrate its potential as the core of a high potential, game-changing, in-space propulsion technology. The TWDEC concept converts particle beam energy into radio frequency (RF) alternating current electrical power, such as can be used to heat the propellant in a plasma thruster. In a more advanced concept (explored in the Phase 1 NIAC project), the TWDEC could also be utilized to condition the particle beam such that it may transfer directed kinetic energy to a target propellant plasma for the purpose of increasing thrust and optimizing the specific impulse. The overall scope of the FY13 first-year effort was to build on both the 2012 Phase 1 NIAC research and the analysis and test results produced by Japanese researchers over the past twenty years to assess the potential for spacecraft propulsion applications. The primary objective of the FY13 effort was to create particle-in-cell computer simulations of a TWDEC. Other objectives included construction of a breadboard TWDEC test article, preliminary test calibration of the simulations, and construction of first order power system models to feed into mission architecture analyses with COPERNICUS tools. Due to funding cuts resulting from the FY13 sequestration, only the computer simulations and assembly of the breadboard test article were completed. The simulations, however, are of unprecedented flexibility and precision and were presented at the 2013 AIAA Joint Propulsion Conference. Also, the assembled test article will provide an ion current density two orders of magnitude above that available in previous Japanese experiments, thus enabling the first direct measurements of power generation from a TWDEC for FY14. The proposed FY14 effort will use the test article for experimental validation of the computer simulations and thus complete to a greater fidelity the

  18. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    R Paul Drake

    2004-01-12

    OAK-B135 This is the final report from the project Hydrodynamics by High-Energy-Density Plasma Flow and Hydrodynamics and Radiation Hydrodynamics with Astrophysical Applications. This project supported a group at the University of Michigan in the invention, design, performance, and analysis of experiments using high-energy-density research facilities. The experiments explored compressible nonlinear hydrodynamics, in particular at decelerating interfaces, and the radiation hydrodynamics of strong shock waves. It has application to supernovae, astrophysical jets, shock-cloud interactions, and radiative shock waves.

  19. Simulation Propulsion System and Trajectory Optimization

    Science.gov (United States)

    Hendricks, Eric S.; Falck, Robert D.; Gray, Justin S.

    2017-01-01

    A number of new aircraft concepts have recently been proposed which tightly couple the propulsion system design and operation with the overall vehicle design and performance characteristics. These concepts include propulsion technology such as boundary layer ingestion, hybrid electric propulsion systems, distributed propulsion systems and variable cycle engines. Initial studies examining these concepts have typically used a traditional decoupled approach to aircraft design where the aerodynamics and propulsion designs are done a-priori and tabular data is used to provide inexpensive look ups to the trajectory ana-ysis. However the cost of generating the tabular data begins to grow exponentially when newer aircraft concepts require consideration of additional operational parameters such as multiple throttle settings, angle-of-attack effects on the propulsion system, or propulsion throttle setting effects on aerodynamics. This paper proposes a new modeling approach that eliminated the need to generate tabular data, instead allowing an expensive propulsion or aerodynamic analysis to be directly integrated into the trajectory analysis model and the entire design problem optimized in a fully coupled manner. The new method is demonstrated by implementing a canonical optimal control problem, the F-4 minimum time-to-climb trajectory optimization using three relatively new analysis tools: Open M-DAO, PyCycle and Pointer. Pycycle and Pointer both provide analytic derivatives and Open MDAO enables the two tools to be combined into a coupled model that can be run in an efficient parallel manner that helps to cost the increased cost of the more expensive propulsion analysis. Results generated with this model serve as a validation of the tightly coupled design method and guide future studies to examine aircraft concepts with more complex operational dependencies for the aerodynamic and propulsion models.

  20. ARTEMIS orbit raising inflight experience with ion propulsion

    Science.gov (United States)

    Killinger, Rainer; Kukies, Ralf; Surauer, Michael; Tomasetto, Angeo; van Holtz, Leo

    2003-08-01

    To demonstrate and promote North/South station keeping (inclination control) using ion propulsion, ESA on July 12, 2001 onboard Ariane 510 launched its most advanced telecommunication satellite: ARTEMIS. Due to a launcher failure the satellite was injected into a useless too low elliptic orbit. The ARTEMIS mission was salvaged by an Alenia Spazio / Astrium / ESA team at Telespazio (Fucino) using in novel modes to operate the on-board chemical and ion propulsion systems provided by Astrium. Using the chemical propulsion_ system provided by Astrium GmbH - Lampoldshausen - the inital orbit, having an apogee of half the targeted altitude. was quickly upgraded to a safe circular parking orbit at 31000 km altitude. The Liquid Apogee Engine was fired in total 8 times to achieve apogee as well as perigee raising. The final orbit raising to geostationary altitude is being performed by means of the ion propulsion system (IPP) applied in a newly designed spacecraft attitude control mode. Alenia Spazio and Astrium, in close cooperation, quickly redesigned all control and data handling software modules affected since the original spacecraft configuration was designed for inclination control only and not to generate thrust with the ion engines in a direction tangential to the orbit. The flexibility of the IPP system consisting of 4 thruster assemblies, provided in its totality by Astrium including the 2 alignment mechanisms for precision thrust direction control, had proven invaluable. To demonstrate the technologies available in Europe and to enhanced reliability, Astrium implemented two different technologies: a Kaufmann type system (EITA) provided by Astrium Ltd. - Portsmouth; and a Radiofrequency Ion Thruster Assembly (RITA) provided by Astrium GmbH - Ottobrunn. Two ion engines of different technology were mounted side by side on one ITAM (Ion Thruster Alignment Mechanism) provided by Austrian Aerospace. Artemis, after EURECA launched on 31 July 1992 and retrieved on 1 July

  1. Options and Risk for Qualification of Electric Propulsion System

    Science.gov (United States)

    Bailey, Michelle; Daniel, Charles; Cook, Steve (Technical Monitor)

    2002-01-01

    Electric propulsion vehicle systems envelop a wide range of propulsion alternatives including solar and nuclear, which present unique circumstances for qualification. This paper will address the alternatives for qualification of electric propulsion spacecraft systems. The approach taken will be to address the considerations for qualification at the various levels of systems definition. Additionally, for each level of qualification the system level risk implications will be developed. Also, the paper will explore the implications of analysis verses test for various levels of systems definition, while retaining the objectives of a verification program. The limitations of terrestrial testing will be explored along with the risk and implications of orbital demonstration testing. The paper will seek to develop a template for structuring of a verification program based on cost, risk and value return. A successful verification program should establish controls and define objectives of the verification compliance program. Finally the paper will seek to address the political and programmatic factors, which may impact options for system verification.

  2. Viscous pumping inspired by flexible propulsion

    CERN Document Server

    Arco, Roger M; Lauga, Eric; Zenit, Roberto

    2014-01-01

    Fluid-suspended microorganisms have evolved different swimming and feeding strategies in order to cope with an environment dominated by viscous effects. For instance ciliated organisms rely on the collective motion of flexible appendices to move and feed. By performing a non-reciprocal motion, flexible filaments can produce a net propulsive force, or pump fluid, in the absence of inertia. Inspired by such fundamental concept, we propose a strategy to produce macroscopic pumping and mixing in creeping flow. We measure experimentally the net motion of a Newtonian viscous fluid induced by the reciprocal motion of a flapper. When the flapper is rigid no net motion is induced. In contrast, when the flapper is made of a flexible material, a net fluid pumping is measured. We quantify the effectiveness of this pumping strategy and show that optimal pumping is achieved when the length of the flapper is on the same order as the elasto-hydrodynamic penetration length. We finally discuss the possible applications of flex...

  3. Propulsive efficiency of frog swimming with different feet and swimming patterns

    Science.gov (United States)

    Jizhuang, Fan; Wei, Zhang; Bowen, Yuan; Gangfeng, Liu

    2017-01-01

    ABSTRACT Aquatic and terrestrial animals have different swimming performances and mechanical efficiencies based on their different swimming methods. To explore propulsion in swimming frogs, this study calculated mechanical efficiencies based on data describing aquatic and terrestrial webbed-foot shapes and swimming patterns. First, a simplified frog model and dynamic equation were established, and hydrodynamic forces on the foot were computed according to computational fluid dynamic calculations. Then, a two-link mechanism was used to stand in for the diverse and complicated hind legs found in different frog species, in order to simplify the input work calculation. Joint torques were derived based on the virtual work principle to compute the efficiency of foot propulsion. Finally, two feet and swimming patterns were combined to compute propulsive efficiency. The aquatic frog demonstrated a propulsive efficiency (43.11%) between those of drag-based and lift-based propulsions, while the terrestrial frog efficiency (29.58%) fell within the range of drag-based propulsion. The results illustrate the main factor of swimming patterns for swimming performance and efficiency. PMID:28302669

  4. Nuclear modules for space electric propulsion

    Science.gov (United States)

    Difilippo, F. C.

    1998-01-01

    The analysis of interplanetary cargo and piloted missions requires the calculations of the performances and masses of subsystems to be integrated in a final design. In a preliminary and scoping stage the designer needs to evaluate options in an iterative way by using simulations that run fast on a computer. As a consequence of a collaborative agreement between the National Aeronautic and Space Administration (NASA) and the Oak Ridge National Laboratory (ORNL), ORNL has been involved in the development of models and calculational procedures for the analysis (neutronic and thermal hydraulic) of power sources for nuclear electric propulsion. The nuclear modules will be integrated into the whole simulation of the nuclear electric propulsion system. The vehicles use either a Brayton direct-conversion cycle, using the heated helium from a NERVA-type reactor, or a potassium Rankine cycle, with the working fluid heated on the secondary side of a heat exchanger and lithium on the primary side coming from a fast reactor. Given a set of input conditions, the codes calculate composition, dimensions, volumes, and masses of the core, reflector, control system, pressure vessel, neutron and gamma shields, as well as the thermal hydraulic conditions of the coolant, clad and fuel. Input conditions are power, core life, pressure and temperature of the coolant at the inlet of the core, either the temperature of the coolant at the outlet of the core or the coolant mass flow and the fluences and integrated doses at the cargo area. Using state-of-the-art neutron cross sections and transport codes, a database was created for the neutronic performance of both reactor designs. The free parameters of the models are the moderator/fuel mass ratio for the NERVA reactor and the enrichment and the pitch of the lattice for the fast reactor. Reactivity and energy balance equations are simultaneously solved to find the reactor design. Thermalhydraulic conditions are calculated by solving the one

  5. Solar Thermal Propulsion Test Facility at MSFC

    Science.gov (United States)

    1999-01-01

    This photograph shows an overall view of the Solar Thermal Propulsion Test Facility at the Marshall Space Flight Center (MSFC). The 20-by 24-ft heliostat mirror, shown at the left, has dual-axis control that keeps a reflection of the sunlight on an 18-ft diameter concentrator mirror (right). The concentrator mirror then focuses the sunlight to a 4-in focal point inside the vacuum chamber, shown at the front of concentrator mirror. Researchers at MSFC have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than chemical a combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propell nt. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move the Nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth-orbit, rapid travel throughout the solar system, and exploration of interstellar space.

  6. The field of plasmas. L'univers des plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Bradu, P. (Direction des Recherches, Etudes et Techniques d' Armement (DRET), (France))

    1999-01-01

    Plasma is the fourth state of matter and it is the most spread at the scale of universe. Plasma is involved in natural phenomena such as Saint-Elmo's fires, aurora borealis or lightning discharges. Thanks to its particular properties plasma is used in many fields of technology. We find plasmas in light bulbs, television screens and in diverse industrial processes such as laser isotope separation, sterilization, surface coating, or waste treatment where a plasma torch is used to reduce waste into its elementary components trapped in the molten bulk. Spatial propulsion could soon benefit by the application of magnetohydrodynamics effects to plasmas. Thermonuclear reactors where fusion reactions take place in a very hot plasma could be the source of energy for the next century. This book deals with all the aspects of plasma in the technology of today. (A.C.) 21 refs.

  7. The field of plasmas; L`univers des plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Bradu, P. [Direction des Recherches, Etudes et Techniques d`Armement (DRET), (France)

    1999-12-01

    Plasma is the fourth state of matter and it is the most spread at the scale of universe. Plasma is involved in natural phenomena such as Saint-Elmo`s fires, aurora borealis or lightning discharges. Thanks to its particular properties plasma is used in many fields of technology. We find plasmas in light bulbs, television screens and in diverse industrial processes such as laser isotope separation, sterilization, surface coating, or waste treatment where a plasma torch is used to reduce waste into its elementary components trapped in the molten bulk. Spatial propulsion could soon benefit by the application of magnetohydrodynamics effects to plasmas. Thermonuclear reactors where fusion reactions take place in a very hot plasma could be the source of energy for the next century. This book deals with all the aspects of plasma in the technology of today. (A.C.) 21 refs.

  8. Recent progress in the NDE of cast ship propulsion components

    Science.gov (United States)

    Spies, Martin; Rieder, Hans; Dillhöfer, Alexander; Rauhut, Markus; Taeubner, Kai; Kreier, Peter

    2014-02-01

    The failure of propulsion components of ships and ferries can lead to serious environmental and economic damage or even the loss of lives. For ultrasonic inspection of such large components we employ mechanized scanning and defect reconstruction using the Synthetic Aperture Focusing Technique (SAFT). We report on results obtained in view of the detection of defects with different inspection techniques. Also, we address the issue of Probability of Detection by reporting results obtained in POD and MAPOD-studies (Model-Assisted POD) using experimental and simulated data. Finally, we show recent results of surface and sub-surface inspection using optical and eddy current techniques.

  9. Numerical Propulsion System Simulation: An Overview

    Science.gov (United States)

    Lytle, John K.

    2000-01-01

    The cost of implementing new technology in aerospace propulsion systems is becoming prohibitively expensive and time consuming. One of the main contributors to the high cost and lengthy time is the need to perform many large-scale hardware tests and the inability to integrate all appropriate subsystems early in the design process. The NASA Glenn Research Center is developing the technologies required to enable simulations of full aerospace propulsion systems in sufficient detail to resolve critical design issues early in the design process before hardware is built. This concept, called the Numerical Propulsion System Simulation (NPSS), is focused on the integration of multiple disciplines such as aerodynamics, structures and heat transfer with computing and communication technologies to capture complex physical processes in a timely and cost-effective manner. The vision for NPSS, as illustrated, is to be a "numerical test cell" that enables full engine simulation overnight on cost-effective computing platforms. There are several key elements within NPSS that are required to achieve this capability: 1) clear data interfaces through the development and/or use of data exchange standards, 2) modular and flexible program construction through the use of object-oriented programming, 3) integrated multiple fidelity analysis (zooming) techniques that capture the appropriate physics at the appropriate fidelity for the engine systems, 4) multidisciplinary coupling techniques and finally 5) high performance parallel and distributed computing. The current state of development in these five area focuses on air breathing gas turbine engines and is reported in this paper. However, many of the technologies are generic and can be readily applied to rocket based systems and combined cycles currently being considered for low-cost access-to-space applications. Recent accomplishments include: (1) the development of an industry-standard engine cycle analysis program and plug 'n play

  10. Uranium arc fission reactor for space propulsion

    Science.gov (United States)

    Watanabe, Yoichi; Maya, Isaac; Vitali, Juan; Appelbaum, Jacob; Schneider, Richard T.

    1991-01-01

    Combining the proven technology of solid core reactors with uranium arc confinement and non-equilibrium ionization by fission fragments can lead to an attractive propulsion system which has a higher specific impulse than a solid core propulsion system and higher thrust than an electric propulsion systems. A preliminary study indicates that a system with 300 MW of fission power can achieve a gas exhaust velocity of 18,000 m/sec and a thrust of 10,000 Newtons utilizing a magnetohydrodynamic generator and accelerator. An experimental program is underway to examine the major mass and energy transfer issues.

  11. Two generic concepts for space propulsion based on thermal nuclear fusion

    Science.gov (United States)

    Gabrielli, R. A.; Petkow, D.; Herdrich, G.; Laufer, R.; Röser, H.-P.

    2014-08-01

    In the present work, two different concepts for fusion based space propulsion are compared. While the first concept is based solely on propulsion by hypothetic ejection of fusion products and hence may be called ash drive, the second one uses an additional coolant for thrust enhancement. Since this coolant was initially assumed to be gaseous and since it is doing most of the propulsion work, the name of “working gas drive” has been proposed. Propulsive characteristics for both types are evaluated for four fusion reactant couples (D-T; D-3He; 3He-3He; 11B-p). In working gas drives, only hydrogen is considered as coolant due to its exceptionally good caloric and propulsive properties. The results of comparative studies show that while ash drives excel working gas drives in terms of specific impulse the latter yield considerably more thrust than ash drives. Another major drawback of the ash drives is relatively small thrust efficiencies. The plasma power has to be disposed of nearly entirely as waste heat leading to prohibitive radiator masses.

  12. Hydrogen , Hybrid and Electric Propulsion in a Strategy for Sustainable Transport

    DEFF Research Database (Denmark)

    Jørgensen, Kaj

    1998-01-01

    Analysis of the scope for application of hydrogen and electric propulsion for improvement of the fuel cycle efficiency and introduction of renewable energy in the transport sector. The paper compares these fuels with each other as well as with other fuels (especially bio fuels) and outlines...... their individual roles in a strategy for sustainable transport. Finally, the fuels are compared to the present fuels....

  13. Propulsion in the Chameleon Model

    Science.gov (United States)

    Robertson, Glen A.

    2008-01-01

    The Chameleon model-thin-shell mechanism-proposed by Khoury and Weltman presents a likeness to a stationary warp bubble about masses of significant size and interest to space propulsion. A difference being that the thin-shell mechanism masks the mass of an object from an external Chameleon field comparable to the gravitational field in warp-drive theory. However, the thin-shell mechanism couples to the gravitational field by causing small perturbations limited to an object's effective range, which in essence could act like a warp-bubble under some ``yet to be defined'' conditions where the coupling is made stronger. In this paper, the thin-shell mechanism is discussed and shown to be the underlying physics behind rocket propulsion through the concept of localized oscillating dark matter comprising an increase in the thin-shell localized to a region on one side of an object. This is accomplished by drawing a connection between the localized oscillation of dark matter in this thin-shell region and the rocket equations. As such, it appears that a new physics effect is applied to normal matter; indicating that the results should have been observed decades ago. We argue that the Chameleon Model's thin-shell mechanism is a dark matter/energy field, which has always been in all momentum systems at or above the atomic scale where the mass has some physical significance in respect to the Chameleon model. Therefore, its physical (momentum) effects have already been observed. Further, since the analysis indicates that any motion of an object implies a change to the distribution of dark matter about an object, one can speculate that ``inertia is the change in the dark energy distribution about a mass.'' This being the case, the Chameleon dark matter/energy field about a mass has effects in many aspects of physics, but the laws have not (yet) been formulated to take advantage of the vacuum field aspects, which may provide the connection needed to extend modern rocketry to

  14. Final Report of “Collaborative research: Fundamental science of low temperature plasma-biological material interactions” (Award# DE-SC0005105)

    Energy Technology Data Exchange (ETDEWEB)

    Oehrlein, Gottlieb S. [Univ. of Maryland, College Park, MD (United States); Seog, Joonil [Univ. of Maryland, College Park, MD (United States); Graves, David [Univ. of California, Berkeley, CA (United States); Chu, J. -W. [Univ. of California, Berkeley, CA (United States)

    2014-09-24

    Low temperature plasma (LTP) treatment of biological tissue is a promising path toward sterilization of bacteria due to its versatility and ability to operate under well-controlled and relatively mild conditions. The present collaborative research of an interdisciplinary team of investigators at University of Maryland, College Park (UMD), and University of California, Berkeley (UCB) focused on establishing our knowledge on low temperature plasma-induced chemical modifications in biomolecules that result in inactivation due to various plasma species, including ions, reactive radicals, and UV/VUV photons. The overall goals of the project were to identify the mechanisms by which low and atmospheric pressure plasma (APP) deactivates endotoxic biomolecules. Additionally, we wanted to understand how deactivation processes depend on the interaction of APP with the environment. Various low pressure plasma sources, a vacuum beam system and several atmospheric pressure plasma sources were used to accomplish these objectives. In our work we elucidated for the first time the role of ions, VUV photons and radicals in biological deactivation of model endotoxic biomolecules, both in a UHV beam system and an inductively coupled, low pressure plasma system, and established the associated atomistic modifications in biomolecules. While we showed that both ions and VUV photons can be very efficient in deactivation of biomolecules, significant etching and/or deep modification (~200 nm) were accompanied by these biological effects. One of the most important findings in this work is that the significant deactivation and surface modification can occur with minimal etching using radical species. However, if radical fluxes and corresponding etch rates are relatively high, for example, at atmospheric pressure, inactivation of endotoxic biomolecule film may require near-complete removal of the film. These findings motivated further work at atmospheric pressure using several types of low

  15. Propulsion Wheel Motor for an Electric Vehicle

    Science.gov (United States)

    Figuered, Joshua M. (Inventor); Herrera, Eduardo (Inventor); Waligora, Thomas M. (Inventor); Bluethmann, William J. (Inventor); Farrell, Logan Christopher (Inventor); Lee, Chunhao J. (Inventor); Vitale, Robert L. (Inventor); Winn, Ross Briant (Inventor); Eggleston, IV, Raymond Edward (Inventor); Guo, Raymond (Inventor); hide

    2016-01-01

    A wheel assembly for an electric vehicle includes a wheel rim that is concentrically disposed about a central axis. A propulsion-braking module is disposed within an interior region of the wheel rim. The propulsion-braking module rotatably supports the wheel rim for rotation about the central axis. The propulsion-braking module includes a liquid cooled electric motor having a rotor rotatable about the central axis, and a stator disposed radially inside the rotor relative to the central axis. A motor-wheel interface hub is fixedly attached to the wheel rim, and is directly attached to the rotor for rotation with the rotor. The motor-wheel interface hub directly transmits torque from the electric motor to the wheel rim at a 1:1 ratio. The propulsion-braking module includes a drum brake system having an electric motor that rotates a cam device, which actuates the brake shoes.

  16. Authentication for Propulsion Test Streaming Video Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An application was developed that could enforce two-factor authentication for NASA access to the Propulsion Test Streaming Video System.  To gain access to the...

  17. Reservoir Scandate Cathode for Electric Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to combine two revolutionary cathode technologies into a single device for use in electric space propulsion. This will overcome problems that both...

  18. Nuclear Thermal Propulsion for Advanced Space Exploration

    Science.gov (United States)

    Houts, M. G.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.

    2012-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP).

  19. Space Nuclear Thermal Propulsion (SNTP) program

    Science.gov (United States)

    Bleeker, Gary A.

    1993-01-01

    An overview of the Space Nuclear Thermal Propulsion program is presented in graphic form. A program organizational chart is presented that shows the government and industry participants. Enabling technologies and test facilities and approaches are also addressed.

  20. Review of Nuclear Thermal Propulsion Systems

    Science.gov (United States)

    Gabrielli, Roland Antonius; Herdrich, Georg

    2015-11-01

    This article offers a summary of past efforts in the development of Nuclear Thermal Propulsion systems for space transportation. First, the generic principle of thermal propulsion is outlined: a propellant is directly heated by a power source prior to being expanded which creates a thrusting force on the rocket. This enables deriving a motivation for the use of Nuclear Thermal Propulsion (NTP) relying on nuclear power sources. Then, a summary of major families of NTP systems is established on the basis of a literature survey. These families are distinguished by the nature of their power source, the most important being systems with radioisotope, fission, and fusion cores. Concepts proposing to harness the annihilation of matter and anti-matter are only touched briefly due to their limited maturity. For each family, an overview of physical fundamentals, technical concepts, and - if available - tested engines' propulsion parameters is given.

  1. Airvolt Aircraft Electric Propulsion Test Stand

    Science.gov (United States)

    Samuel, Aamod; Lin, Yohan

    2015-01-01

    Development of an electric propulsion test stand that collects high-fidelity data of motor, inverter, and battery system efficiencies; thermal dynamics; and acoustics independent of manufacturer reported values will improve understanding of electric propulsion systems to be used in future aircraft. A buildup approach to this development reveals new areas of research and best practices in testing, and attempts to establish a standard for testing these systems.

  2. Solar electric propulsion for Mars transport vehicles

    Science.gov (United States)

    Hickman, J. M.; Curtis, H. B.; Alexander, S. W.; Gilland, J. H.; Hack, K. J.; Lawrence, C.; Swartz, C. K.

    1990-01-01

    Solar electric propulsion (SEP) is an alternative to chemical and nuclear powered propulsion systems for both piloted and unpiloted Mars transport vehicles. Photovoltaic solar cell and array technologies were evaluated as components of SEP power systems. Of the systems considered, the SEP power system composed of multijunction solar cells in an ENTECH domed fresnel concentrator array had the least array mass and area. Trip times to Mars optimized for minimum propellant mass were calculated. Additionally, a preliminary vehicle concept was designed.

  3. Low Carbon Propulsion Strategic Thrust Overview

    Science.gov (United States)

    Dryer, Jay

    2014-01-01

    NASA is taking a leadership role with regard to developing new options for low-carbon propulsion. Work related to the characterization of alternative fuels is coordinated with our partners in government and industry, and NASA is close to concluding a TC in this area. Research on alternate propulsion concepts continues to grow and is an important aspect of the ARMD portfolio. Strong partnerships have been a key enabling factor for research on this strategic thrust.

  4. Superconducting Electric Machines for Ship Propulsion.

    Science.gov (United States)

    1977-02-14

    ship propulsion applications. These concepts evolved from previous work at MIT on superconducting AC machines. The superconducting machines considered were: (1) multipole, low-speed motors, (2) torque compensated motors, (3) high-speed generator, (4) rotating air-gap armature induction motor, (5) thyristor switched AC motors. The first four machine types were studied theoretically while experimental models were constructed of the last two. Preliminary designs were completed...of the five mahcines for an appropriate ship ... propulsion application. In

  5. MEGAHIT Roadmap: Applications for Nuclear Electric Propulsion

    OpenAIRE

    Jansen, Frank; Semenkin, Alexander; Bauer, Waldemar; WORMS, Jean-Claude; Detsis, Emmanouil; CLIQUET-MORENO, Elisa; Masson, Frederic; Ruault, Jean-Marc; Gaia, Enrico; Cristina, T.M.; Tinsley, Tim; Hodgson, Zara

    2014-01-01

    The paper introduces the three EC funded nuclear electric propulsion funded projects DiPoP, MEGAHIT and DEMOCRITOS. It describes in detail the European-Russian MEGAHIT project - the study outputs, the proposal for a key technology plan, a plan for a political and public supportable reference space mission. Moreover the content of the MEGAHIT global roadmap for international realization of the INPPS (International Nuclear Power and Propulsion System) is sketched.

  6. A High-power Electric Propulsion Test Platform in Space

    Science.gov (United States)

    Petro, Andrew J.; Reed, Brian; Chavers, D. Greg; Sarmiento, Charles; Cenci, Susanna; Lemmons, Neil

    2005-01-01

    This paper will describe the results of the preliminary phase of a NASA design study for a facility to test high-power electric propulsion systems in space. The results of this design study are intended to provide a firm foundation for subsequent detailed design and development activities leading to the deployment of a valuable space facility. The NASA Exploration Systems Mission Directorate is sponsoring this design project. A team from the NASA Johnson Space Center, Glenn Research Center, the Marshall Space Flight Center and the International Space Station Program Office is conducting the project. The test facility is intended for a broad range of users including government, industry and universities. International participation is encouraged. The objectives for human and robotic exploration of space can be accomplished affordably, safely and effectively with high-power electric propulsion systems. But, as thruster power levels rise to the hundreds of kilowatts and up to megawatts, their testing will pose stringent and expensive demands on existing Earth-based vacuum facilities. These considerations and the human access to near-Earth space provided by the International Space Station (ISS) have led to a renewed interest in space testing. The ISS could provide an excellent platform for a space-based test facility with the continuous vacuum conditions of the natural space environment and no chamber walls to modify the open boundary conditions of the propulsion system exhaust. The test platform could take advantage of the continuous vacuum conditions of the natural space environment. Space testing would provide open boundary conditions without walls, micro-gravity and a realistic thermal environment. Testing on the ISS would allow for direct observation of the test unit, exhaust plume and space-plasma interactions. When necessary, intervention by on-board personnel and post-test inspection would be possible. The ISS can provide electrical power, a location for

  7. Assessing Hypothetical Gravity Control Propulsion

    CERN Document Server

    Millis, M G

    2006-01-01

    Gauging the benefits of hypothetical gravity control propulsion is difficult, but addressable. The major challenge is that such breakthroughs are still only notional concepts rather than being specific methods from which performance can be rigorously quantified. A recent assessment by Tajmar and Bertolami used the rocket equation to correct naive misconceptions, but a more fundamental analysis requires the use of energy as the basis for comparison. The energy of a rocket is compared to an idealized space drive for the following cases: Earth-to-orbit, interstellar transit, and levitation. The space drive uses 3.6 times less energy for Earth to orbit. For deep space travel, space drive energy scales as the square of delta-v, while rocket energy scales exponentially. This has the effect of rendering a space drive 150-orders-of-magnitude better than a 17,000-sec Specific Impulse rocket for sending a modest 5000 kg probe to traverse 5 light-years in 50 years. Indefinite levitation, which is impossible for a rocket...

  8. Electric-bicycle propulsion power

    Energy Technology Data Exchange (ETDEWEB)

    Oman, H.; Morchin, W.C. [Electro-Bicycle, Inc., Auburn, WA (United States); Jamerson, F.E. [Electric Battery Bicycle Co., Naples, FL (United States)

    1995-12-31

    In a human-powered hybrid electric vehicle (HPHEV) the travel distance available from a single battery charge can be lengthened with power from another source, the cyclist`s leg muscles. In a battery-powered electric bicycle the propulsion power goes mostly into overcoming aerodynamic drag. For example, at 18 km per hour (11 miles per hour) this drag represents 200 watts at the tire-to-road interface for a typical cyclist`s shape and clothing. Today`s typical electrical bicycle is propelled by a high-speed dc motor which is powered from a lead-acid battery. The combined efficiency of the motor and its speed-reducing gears is 50 to 65 percent. In this paper we calculate available travel distances, as a function of speed, grade, and the battery energy-content as measured in watt-hours per kg. We show the effect of battery cost and charge/discharge cycle-life on travel cost in terms of cents per kilometer travelled. Designs used in today`s electric bicycles are illustrated.

  9. Unsteady propulsion in ground effects

    Science.gov (United States)

    Park, Sung Goon; Kim, Boyoung; Sung, Hyung Jin

    2016-11-01

    Many animals in nature experience hydrodynamic benefits by swimming or flying near the ground, and this phenomenon is commonly called 'ground effect'. A flexible fin flapping near the ground was modelled, inspired by animals swimming. A transverse heaving motion was prescribed at the leading edge, and the posterior parts of the fin were passively fluttering by the fin-fluid interaction. The fin moved freely horizontally in a quiescent flow, by which the swimming speed was dynamically determined. The fin-fluid interaction was considered by using the penalty immersed boundary method. The kinematics of the flexible fin was altered by flapping near the ground, and the vortex structures generated in the wake were deflected upward, which was qualitatively analyzed by using the vortex dipole model. The swimming speed and the thrust force of the fin increased by the ground effects. The hydrodynamic changes from flapping near the ground affected the required power input in two opposite ways; the increased and decreased hydrodynamic pressures beneath the fin hindered the flapping motion, increasing the power input, while the transversely reduced flapping motion induced the decreased power input. The Froude propulsive efficiency was increased by swimming in the ground effects Creative Research Initiatives (No. 2016-004749) program of the National Research Foundation of Korea (MSIP).

  10. Roadmap for In-Space Propulsion Technology

    Science.gov (United States)

    Meyer, Michael; Johnson, Les; Palaszewski, Bryan; Coote, David; Goebel, Dan; White, Harold

    2012-01-01

    NASA has created a roadmap for the development of advanced in-space propulsion technologies for the NASA Office of the Chief Technologist (OCT). This roadmap was drafted by a team of subject matter experts from within the Agency and then independently evaluated, integrated and prioritized by a National Research Council (NRC) panel. The roadmap describes a portfolio of in-space propulsion technologies that could meet future space science and exploration needs, and shows their traceability to potential future missions. Mission applications range from small satellites and robotic deep space exploration to space stations and human missions to Mars. Development of technologies within the area of in-space propulsion will result in technical solutions with improvements in thrust, specific impulse (Isp), power, specific mass (or specific power), volume, system mass, system complexity, operational complexity, commonality with other spacecraft systems, manufacturability, durability, and of course, cost. These types of improvements will yield decreased transit times, increased payload mass, safer spacecraft, and decreased costs. In some instances, development of technologies within this area will result in mission-enabling breakthroughs that will revolutionize space exploration. There is no single propulsion technology that will benefit all missions or mission types. The requirements for in-space propulsion vary widely according to their intended application. This paper provides an updated summary of the In-Space Propulsion Systems technology area roadmap incorporating the recommendations of the NRC.

  11. Propulsion in cubomedusae: mechanisms and utility.

    Directory of Open Access Journals (Sweden)

    Sean P Colin

    Full Text Available Evolutionary constraints which limit the forces produced during bell contractions of medusae affect the overall medusan morphospace such that jet propulsion is limited to only small medusae. Cubomedusae, which often possess large prolate bells and are thought to swim via jet propulsion, appear to violate the theoretical constraints which determine the medusan morphospace. To examine propulsion by cubomedusae, we quantified size related changes in wake dynamics, bell shape, swimming and turning kinematics of two species of cubomedusae, Chironex fleckeri and Chiropsella bronzie. During growth, these cubomedusae transitioned from using jet propulsion at smaller sizes to a rowing-jetting hybrid mode of propulsion at larger sizes. Simple modifications in the flexibility and kinematics of their velarium appeared to be sufficient to alter their propulsive mode. Turning occurs during both bell contraction and expansion and is achieved by generating asymmetric vortex structures during both stages of the swimming cycle. Swimming characteristics were considered in conjunction with the unique foraging strategy used by cubomedusae.

  12. NSTAR Ion Propulsion System Power Electronics

    Science.gov (United States)

    1996-01-01

    The NASA Solar Electric Propulsion Technology Application Readiness (NSTAR) program, managed by the Jet Propulsion Laboratory (JPL), is currently developing a high performance, simplified ion propulsion system. This propulsion system, which is throttleable from 0.5- to 2.3-kW output power to the thruster, targets primary propulsion applications for planetary and Earth-space missions and has been baselined as the primary propulsion system for the first New Millennium spacecraft. The NASA Lewis Research Center is responsible for the design and delivery of a breadboard power processing unit (PPU) and an engineering model thruster (EMT) for this system and will manage the contract for the delivery of the flight hardware to JPL. The PPU requirements, which dictate a mass of less than 12 kg with an efficiency of 0.9 or greater at a 2.3-kW output, forced a departure from the state-of-the-art ion thruster PPU design. Several innovations--including dual-use topologies, simplified thruster control, and the use of ferrite magnetic materials--were necessary to meet these requirements.

  13. Efficient energy storage and conversion using adiabatic compression of relativistic-electron plasmas. Final report for 15 May 1986-31 December 1988

    Energy Technology Data Exchange (ETDEWEB)

    Guest, G.E.; Dandl, R.A.; Miller, R.L.

    1989-01-17

    The Plasma Electron Microwave Source (PEMS) concept is a relativistic-electron plasma confined in a magnetic-mirror device. The stored energy is transformed into microwaves through amplification of whistler waves that can be launched externally for amplifier operation or generated spontaneously for oscillator operation. The anisotropy of the hot-electron temperature governs the maximum plasma energy density that can be stored, the amplification rates, and the saturated power level of the unstable whistler waves. This report summarizes the results of theoretical studies of (1) the critical aspects of hot-electron plasmas generated by ECH techniques, such as the Upper Off-Resonant Heating pioneered by Dandl in the ELMO series of experiments; and, (2) the spatial amplification rates of unstable whistler waves in these plasmas. It is shown that a substantial fraction of the energy stored in a hot-electron plasma can be transformed into repetitive pulses of microwave power by employing the PEMS approach, with typical values of gain, about 40db and bandwidth.

  14. Quantify Plasma Response to Non-Axisymmetric (3D) Magnetic Fields in Tokamaks, Final Report for FES (Fusion Energy Sciences) FY2014 Joint Research Target

    Energy Technology Data Exchange (ETDEWEB)

    Strait, E. J. [General Atomics, San Diego, CA (United States); Park, J. -K. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Marmar, E. S. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Ahn, J. -W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Berkery, J. W. [Columbia Univ., New York, NY (United States); Burrell, K. H. [General Atomics, San Diego, CA (United States); Canik, J. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Delgado-Aparicio, L. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Ferraro, N. M. [General Atomics, San Diego, CA (United States); Garofalo, A. M. [General Atomics, San Diego, CA (United States); Gates, D. A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Greenwald, M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Kim, K. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); King, J. D. [General Atomics, San Diego, CA (United States); Lanctot, M. J. [General Atomics, San Diego, CA (United States); Lazerson, S. A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Liu, Y. Q. [Culham Science Centre, Abingdon (United Kingdom). Euratom/CCFE Association; Logan, N. C. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Lore, J. D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Menard, J. E. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Nazikian, R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Shafer, M. W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Paz-Soldan, C. [General Atomics, San Diego, CA (United States); Reiman, A. H. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Rice, J. E. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Sabbagh, S. A. [Columbia Univ., New York, NY (United States); Sugiyama, L. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Turnbull, A. D. [General Atomics, San Diego, CA (United States); Volpe, F. [Columbia Univ., New York, NY (United States); Wang, Z. R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Wolfe, S. M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2014-09-30

    The goal of the 2014 Joint Research Target (JRT) has been to conduct experiments and analysis to investigate and quantify the response of tokamak plasmas to non-axisymmetric (3D) magnetic fields. Although tokamaks are conceptually axisymmetric devices, small asymmetries often result from inaccuracies in the manufacture and assembly of the magnet coils, or from nearby magnetized objects. In addition, non-axisymmetric fields may be deliberately applied for various purposes. Even at small amplitudes of order 10-4 of the main axisymmetric field, such “3D” fields can have profound impacts on the plasma performance. The effects are often detrimental (reduction of stabilizing plasma rotation, degradation of energy confinement, localized heat flux to the divertor, or excitation of instabilities) but may in some case be beneficial (maintenance of rotation, or suppression of instabilities). In general, the magnetic response of the plasma alters the 3D field, so that the magnetic field configuration within the plasma is not simply the sum of the external 3D field and the original axisymmetric field. Typically the plasma response consists of a mixture of local screening of the external field by currents induced at resonant surfaces in the plasma, and amplification of the external field by stable kink modes. Thus, validated magnetohydrodynamic (MHD) models of the plasma response to 3D fields are crucial to the interpretation of existing experiments and the prediction of plasma performance in future devices. The non-axisymmetric coil sets available at each facility allow well-controlled studies of the response to external 3D fields. The work performed in support of the 2014 Joint Research Target has included joint modeling and analysis of existing experimental data, and collaboration on new experiments designed to address the goals of the JRT. A major focus of the work was validation of numerical models through quantitative comparison to experimental data, in

  15. Quantify Plasma Response to Non-Axisymmetric (3D) Magnetic Fields in Tokamaks, Final Report for FES (Fusion Energy Sciences) FY2014 Joint Research Target

    Energy Technology Data Exchange (ETDEWEB)

    Strait, E. J. [General Atomics, San Diego, CA (United States); Park, J. -K. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Marmar, E. S. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Ahn, J. -W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Berkery, J. W. [Columbia Univ., New York, NY (United States); Burrell, K. H. [General Atomics, San Diego, CA (United States); Canik, J. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Delgado-Aparicio, L. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Ferraro, N. M. [General Atomics, San Diego, CA (United States); Garofalo, A. M. [General Atomics, San Diego, CA (United States); Gates, D. A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Greenwald, M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Kim, K. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); King, J. D. [General Atomics, San Diego, CA (United States); Lanctot, M. J. [General Atomics, San Diego, CA (United States); Lazerson, S. A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Liu, Y. Q. [Culham Science Centre, Abingdon (United Kingdom). Euratom/CCFE Association; Logan, N. C. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Lore, J. D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Menard, J. E. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Nazikian, R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Shafer, M. W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Paz-Soldan, C. [General Atomics, San Diego, CA (United States); Reiman, A. H. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Rice, J. E. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Sabbagh, S. A. [Columbia Univ., New York, NY (United States); Sugiyama, L. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Turnbull, A. D. [General Atomics, San Diego, CA (United States); Volpe, F. [Columbia Univ., New York, NY (United States); Wang, Z. R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Wolfe, S. M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2014-09-30

    The goal of the 2014 Joint Research Target (JRT) has been to conduct experiments and analysis to investigate and quantify the response of tokamak plasmas to non-axisymmetric (3D) magnetic fields. Although tokamaks are conceptually axisymmetric devices, small asymmetries often result from inaccuracies in the manufacture and assembly of the magnet coils, or from nearby magnetized objects. In addition, non-axisymmetric fields may be deliberately applied for various purposes. Even at small amplitudes of order 10-4 of the main axisymmetric field, such “3D” fields can have profound impacts on the plasma performance. The effects are often detrimental (reduction of stabilizing plasma rotation, degradation of energy confinement, localized heat flux to the divertor, or excitation of instabilities) but may in some case be beneficial (maintenance of rotation, or suppression of instabilities). In general, the magnetic response of the plasma alters the 3D field, so that the magnetic field configuration within the plasma is not simply the sum of the external 3D field and the original axisymmetric field. Typically the plasma response consists of a mixture of local screening of the external field by currents induced at resonant surfaces in the plasma, and amplification of the external field by stable kink modes. Thus, validated magnetohydrodynamic (MHD) models of the plasma response to 3D fields are crucial to the interpretation of existing experiments and the prediction of plasma performance in future devices. The non-axisymmetric coil sets available at each facility allow well-controlled studies of the response to external 3D fields. The work performed in support of the 2014 Joint Research Target has included joint modeling and analysis of existing experimental data, and collaboration on new experiments designed to address the goals of the JRT. A major focus of the work was validation of numerical models through quantitative comparison to experimental data, in

  16. Z-Pinch Magneto-Inertial Fusion Propulsion Engine Design Concept

    Science.gov (United States)

    Miernik, Janie H.; Statham, Geoffrey; Adams, Robert B.; Polsgrove, Tara; Fincher, Sharon; Fabisinski, Leo; Maples, C. Dauphne; Percy, Thomas K.; Cortez, Ross J.; Cassibry, Jason

    2011-01-01

    Fusion-based nuclear propulsion has the potential to enable fast interplanetary transportation. Due to the great distances between the planets of our solar system and the harmful radiation environment of interplanetary space, high specific impulse (Isp) propulsion in vehicles with high payload mass fractions must be developed to provide practical and safe vehicles for human spaceflight missions. Magneto-Inertial Fusion (MIF) is an approach which has been shown to potentially lead to a low cost, small fusion reactor/engine assembly (1). The Z-Pinch dense plasma focus method is an MIF concept in which a column of gas is compressed to thermonuclear conditions by an estimated axial current of approximately 100 MA. Recent advancements in experiments and the theoretical understanding of this concept suggest favorable scaling of fusion power output yield as I(sup 4) (2). The magnetic field resulting from the large current compresses the plasma to fusion conditions, and this is repeated over short timescales (10(exp -6) sec). This plasma formation is widely used in the field of Nuclear Weapons Effects (NWE) testing in the defense industry, as well as in fusion energy research. There is a wealth of literature characterizing Z-Pinch physics and existing models (3-5). In order to be useful in engineering analysis, a simplified Z-Pinch fusion thermodynamic model was developed to determine the quantity of plasma, plasma temperature, rate of expansion, energy production, etc. to calculate the parameters that characterize a propulsion system. The amount of nuclear fuel per pulse, mixture ratio of the D-T and nozzle liner propellant, and assumptions about the efficiency of the engine, enabled the sizing of the propulsion system and resulted in an estimate of the thrust and Isp of a Z-Pinch fusion propulsion system for the concept vehicle. MIF requires a magnetic nozzle to contain and direct the nuclear pulses, as well as a robust structure and radiation shielding. The structure

  17. Nuclear thermal propulsion transportation systems for lunar/Mars exploration

    Science.gov (United States)

    Clark, John S.; Borowski, Stanley K.; Mcilwain, Melvin C.; Pellaccio, Dennis G.

    1992-01-01

    Nuclear thermal propulsion technology development is underway at NASA and DoE for Space Exploration Initiative (SEI) missions to Mars, with initial near-earth flights to validate flight readiness. Several reactor concepts are being considered for these missions, and important selection criteria will be evaluated before final selection of a system. These criteria include: safety and reliability, technical risk, cost, and performance, in that order. Of the concepts evaluated to date, the Nuclear Engine for Rocket Vehicle Applications (NERVA) derivative (NDR) is the only concept that has demonstrated full power, life, and performance in actual reactor tests. Other concepts will require significant design work and must demonstrate proof-of-concept. Technical risk, and hence, development cost should therefore be lowest for the concept, and the NDR concept is currently being considered for the initial SEI missions. As lighter weight, higher performance systems are developed and validated, including appropriate safety and astronaut-rating requirements, they will be considered to support future SEI application. A space transportation system using a modular nuclear thermal rocket (NTR) system for lunar and Mars missions is expected to result in significant life cycle cost savings. Finally, several key issues remain for NTR's, including public acceptance and operational issues. Nonetheless, NTR's are believed to be the 'next generation' of space propulsion systems - the key to space exploration.

  18. 3D Modelling of a Vectored Water Jet-Based Multi-Propeller Propulsion System for a Spherical Underwater Robot

    Directory of Open Access Journals (Sweden)

    Xichuan Lin

    2013-01-01

    Full Text Available This paper presents an improved modelling method for a water jet-based multi-propeller propulsion system. In our previous work, the modelling experiments were only carried out in 2D planes, whose experimental results had poor agreement when we wanted to control the propulsive forces in 3D space directly. This research extends the 2D modelling described in the authors' previous work into 3D space. By doing this, the model could include 3D space information, which is more useful than that of 2D space. The effective propulsive forces and moments in 3D space can be obtained directly by synthesizing the propulsive vectors of propellers. For this purpose, a novel experimental mechanism was developed to achieve the proposed 3D modelling. This mechanism was designed with the mass distribution centred for the robot. By installing a six-axis load-cell sensor at the equivalent mass centre, we obtained the direct propulsive effect of the system for the robot. Also, in this paper, the orientation surface and propulsive surfaces are developed to provide the 3D information of the propulsive system. Experiments for each propeller were first carried out to establish the models. Then, further experiments were carried out with all of the propellers working together to validate the models. Finally, we compared the various experimental results with the simulation data. The utility of this modelling method is discussed at length.

  19. 3D Modelling of a Vectored Water Jet-Based Multi-Propeller Propulsion System for a Spherical Underwater Robot

    Directory of Open Access Journals (Sweden)

    Xichuan Lin

    2013-01-01

    Full Text Available This paper presents an improved modelling method for a water jet‐based multi‐propeller propulsion system. In our previous work, the modelling experiments were only carried out in 2D planes, whose experimental results had poor agreement when we wanted to control the propulsive forces in 3D space directly. This research extends the 2D modelling described in the authors’ previous work into 3D space. By doing this, the model could include 3D space information, which is more useful than that of 2D space. The effective propulsive forces and moments in 3D space can be obtained directly by synthesizing the propulsive vectors of propellers. For this purpose, a novel experimental mechanism was developed to achieve the proposed 3D modelling. This mechanism was designed with the mass distribution centred for the robot. By installing a six‐axis load‐cell sensor at the equivalent mass centre, we obtained the direct propulsive effect of the system for the robot. Also, in this paper, the orientation surface and propulsive surfaces are developed to provide the 3D information of the propulsive system. Experiments for each propeller were first carried out to establish the models. Then, further experiments were carried out with all of the propellers working together to validate the models. Finally, we compared the various experimental results with the simulation data. The utility of this modelling method is discussed at length.

  20. Coherent Structures in Plasmas Relevant to Electric Propulsion

    Science.gov (United States)

    2016-06-24

    with volume number and part number, if applicable. On classified documents, enter the title classification in parentheses. 5a. CONTRACT NUMBER...CLASSIFICATION. Enter security classification in accordance with security classification regulations, e.g. U, C, S, etc. If this form contains classified ...dispersion analysis confirms this strong coherence, with a resonant frequency at 250 kHz and a wavenumber (1/) of 200 m-1. A spectral power density

  1. Studies of Microdischarge Plasma Thrusters for Nanosatellite Propulsion

    Science.gov (United States)

    2009-09-30

    the ion current. E. Optical Imaging Setup Images of the plume were captured using a Cannon PowerShot A95 camera. Typical ISO value was 200, and F...walls, &~{w7. (9) where, r^ is the electron wall number flux. The potential on dielectric surfaces is determined using Gauss ’ law for the dielectric...each time step. The viscous terms in the flow equations require computation of the solution variable gradients at cell centers. We use a Green- Gauss

  2. Iodine Plasma (Electric Propulsion) Interaction with Spacecraft Materials

    Science.gov (United States)

    2016-12-28

    insert region are heated by charge exchange. The increase in temperature increases the viscosity. The temperature in equation 2 can be determined from...Scientific Research Dr. Mitat A. Birkan AFOSR/RTE E-mail: mitat.birkan@us.af.mil Phone : (703) 696-7234 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR...to disassociate and create a negative ion in some instances. Negatively charged ions hurt the performance and efficiency of the thruster as the

  3. The Potential for Ambient Plasma Wave Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This concept addresses the fact that space exploration is costly, primarily due to our current need to bring everything with us from the Earth’s surface....

  4. Jet Propulsion Laboratory: Annual Report 2003

    Science.gov (United States)

    2004-01-01

    If you stepped outdoors on the final evening of 2003 and looked up into the night sky, many celestial events were taking place. A hundred million miles away from Earth, a dust storm swirled across the terracotta peaks and gullies of Mars, as two six-wheeled robots bore down on the planet. They were soon to join two orbital sentries already stationed there. A few hops across the inner solar system, another spacecraft was closing in on a ball of ice and rock spewing forth a hailstorm of dust grains, heated as it swung in toward the Sun. Closer in, two newly lofted space telescopes scanned the skies, their mirrors gathering photons that had crossed the empty vastness of space for billions of years, recording ancient events in unimaginably distant galaxies. And streaking overhead every few minutes directly above our home planet, a handful of satellites was recording the unfolding events of a tropical cyclone off the east coast of Africa and a blizzard that carpeted the northwestern United States. As 2003 drew to a close, the Jet Propulsion Laboratory was on the cusp of an extraordinarily busy period, a time when JPL will execute more fly-bys, landings, sample returns and other milestones than at any other time in its history. The exploration we undertake is important for its own sake. And it serves other purposes, none more important than inspiring the next generation of explorers. If the United States wishes to retain its status as a world leader, it must maintain the technological edge of its workforce. What we do here is the stuff of dreams that will inspire a new generation to continue the American legacy of exploration.

  5. Numerical modeling of coanda effect in a novel propulsive system

    Directory of Open Access Journals (Sweden)

    S Das

    2016-09-01

    Full Text Available Coanda effect (adhesion of jet flow over curved surface is fundamental characteristics of jet flow. In the present paper, we carried out numerical simulations to investigate Coanda flow over a curved surface and its application in a newly proposed Propulsive system "A.C.H.E.O.N" (Aerial Coanda High Efficiency Orienting jet Nozzle which supports thrust vectoring. The ACHEON system is presently being proposed for propelling a new V/STOL airplane in European Union. This system is based on cumulative effects of three physical effects such as (1 High speed jet mixing speeds (2 Coanda effect control by electrostatic fields (3 Coanda effect adhesion of an high speed jet to a convex surface. The performance of this nozzle can be enhanced by increasing the jet deflection angle of synthetic jet over the Coanda surface. This newly proposed nozzle has wide range of applications. It can be used in industrial sector such as plasma spray gun and for direct injection in combustion chamber to enhance the efficiency of the combustion chamber. Also, we studied the effect of Dielectric barrier discharge (DBD plasma actuators on A.C.H.E.O.N system. Dielectric barrier discharge (DBD plasma actuators are active control devices for controlling boundary layer and to delay the flow separation over any convex surfaces. Computations were performed under subsonic condition. Two dimensional CFD calculations were carried out using Reynolds averaged Navier stokes equations (RANS. A numerical method based on finite volume formulation (FVM was used. SST k-ω model was considered to model turbulent flow inside nozzle. DBD model was used to model the plasma. Moreover, a body force treatment was devised to model the effect of plasma and its coupling with the fluid. This preliminary result shows that, the presence of plasma near Coanda surface accelerates the flow and delays the separation and enhances the efficiency of the nozzle.

  6. Final Report DOE Grant No. DE-FG03-01ER54617 Computer Modeling of Microturbulence and Macrostability Properties of Magnetically Confined Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Jean-Noel Leboeuf

    2004-03-04

    OAK-B135 We have made significant progress during the past grant period in several key areas of the UCLA and national Fusion Theory Program. This impressive body of work includes both fundamental and applied contributions to MHD and turbulence in DIII-D and Electric Tokamak plasmas, and also to Z-pinches, particularly with respect to the effect of flows on these phenomena. We have successfully carried out interpretive and predictive global gyrokinetic particle-in-cell calculations of DIII-D discharges. We have cemented our participation in the gyrokinetic PIC effort of the SciDAC Plasma Microturbulence Project through working membership in the Summit Gyrokinetic PIC Team. We have continued to teach advanced courses at UCLA pertaining to computational plasma physics and to foster interaction with students and junior researchers. We have in fact graduated 2 Ph. D. students during the past grant period. The research carried out during that time has resulted in many publications in the premier plasma physics and fusion energy sciences journals and in several invited oral communications at major conferences such as Sherwood, Transport Task Force (TTF), the annual meetings of the Division of Plasma Physics of the American Physical Society, of the European Physical Society, and the 2002 IAEA Fusion Energy Conference, FEC 2002. Many of these have been authored and co-authored with experimentalists at DIII-D.

  7. The Nuclear Cryogenic Propulsion Stage

    Science.gov (United States)

    Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Belvin, Anthony D.; Borowski, Stanley K.; Scott, John H.

    2014-01-01

    Nuclear Thermal Propulsion (NTP) development efforts in the United States have demonstrated the technical viability and performance potential of NTP systems. For example, Project Rover (1955 - 1973) completed 22 high power rocket reactor tests. Peak performances included operating at an average hydrogen exhaust temperature of 2550 K and a peak fuel power density of 5200 MW/m3 (Pewee test), operating at a thrust of 930 kN (Phoebus-2A test), and operating for 62.7 minutes in a single burn (NRX-A6 test). Results from Project Rover indicated that an NTP system with a high thrust-to-weight ratio and a specific impulse greater than 900 s would be feasible. Excellent results were also obtained by the former Soviet Union. Although historical programs had promising results, many factors would affect the development of a 21st century nuclear thermal rocket (NTR). Test facilities built in the US during Project Rover no longer exist. However, advances in analytical techniques, the ability to utilize or adapt existing facilities and infrastructure, and the ability to develop a limited number of new test facilities may enable affordable development, qualification, and utilization of a Nuclear Cryogenic Propulsion Stage (NCPS). Bead-loaded graphite fuel was utilized throughout the Rover/NERVA program, and coated graphite composite fuel (tested in the Nuclear Furnace) and cermet fuel both show potential for even higher performance than that demonstrated in the Rover/NERVA engine tests.. NASA's NCPS project was initiated in October, 2011, with the goal of assessing the affordability and viability of an NCPS. FY 2014 activities are focused on fabrication and test (non-nuclear) of both coated graphite composite fuel elements and cermet fuel elements. Additional activities include developing a pre-conceptual design of the NCPS stage and evaluating affordable strategies for NCPS development, qualification, and utilization. NCPS stage designs are focused on supporting human Mars

  8. Optimum cycle frequencies in hand-rim wheelchair propulsion. Wheelchair propulsion technique

    NARCIS (Netherlands)

    van der Woude, L H; Veeger, DirkJan (H. E. J.); Rozendal, R H; Sargeant, A J

    1989-01-01

    To study the effect of different cycle frequencies on cardio-respiratory responses and propulsion technique in hand-rim wheelchair propulsion, experienced wheelchair sportsmen (WS group; n = 6) and non-wheelchair users (NW group; n = 6) performed wheelchair exercise tests on a motor-driven

  9. The Ion Propulsion System for the Solar Electric Propulsion Technology Demonstration Mission

    Science.gov (United States)

    Herman, Daniel A.; Santiago, Walter; Kamhawi, Hani; Polk, James E.; Snyder, John Steven; Hofer, Richard R.; Parker, J. Morgan

    2015-01-01

    The Asteroid Redirect Robotic Mission is a candidate Solar Electric Propulsion Technology Demonstration Mission whose main objectives are to develop and demonstrate a high-power solar electric propulsion capability for the Agency and return an asteroidal mass for rendezvous and characterization in a companion human-crewed mission. The ion propulsion system must be capable of operating over an 8-year time period and processing up to 10,000 kg of xenon propellant. This high-power solar electric propulsion capability, or an extensible derivative of it, has been identified as a critical part of an affordable, beyond-low-Earth-orbit, manned-exploration architecture. Under the NASA Space Technology Mission Directorate the critical electric propulsion and solar array technologies are being developed. The ion propulsion system being co-developed by the NASA Glenn Research Center and the Jet Propulsion Laboratory for the Asteroid Redirect Vehicle is based on the NASA-developed 12.5 kW Hall Effect Rocket with Magnetic Shielding (HERMeS0 thruster and power processing technologies. This paper presents the conceptual design for the ion propulsion system, the status of the NASA in-house thruster and power processing activity, and an update on flight hardware.

  10. Effect of workload setting on propulsion technique in handrim wheelchair propulsion

    NARCIS (Netherlands)

    van Drongelen, Stefan; Arnet, Ursina; Veeger, DirkJan (H E. J); van der Woude, Lucas H. V.

    2013-01-01

    Objective: To investigate the influence of workload setting (speed at constant power, method to impose power) on the propulsion technique (i.e. force and timing characteristics) in handrim wheelchair propulsion. Method: Twelve able-bodied men participated in this study. External forces were measured

  11. Optimum cycle frequencies in hand-rim wheelchair propulsion. Wheelchair propulsion technique

    NARCIS (Netherlands)

    van der Woude, L H; Veeger, DirkJan (H. E. J.); Rozendal, R H; Sargeant, A J

    1989-01-01

    To study the effect of different cycle frequencies on cardio-respiratory responses and propulsion technique in hand-rim wheelchair propulsion, experienced wheelchair sportsmen (WS group; n = 6) and non-wheelchair users (NW group; n = 6) performed wheelchair exercise tests on a motor-driven treadmill

  12. Effect of workload setting on propulsion technique in handrim wheelchair propulsion

    NARCIS (Netherlands)

    van Drongelen, Stefan; Arnet, Ursina; Veeger, DirkJan (H E. J); van der Woude, Lucas H. V.

    Objective: To investigate the influence of workload setting (speed at constant power, method to impose power) on the propulsion technique (i.e. force and timing characteristics) in handrim wheelchair propulsion. Method: Twelve able-bodied men participated in this study. External forces were measured

  13. Relativistic propulsion using directed energy

    Science.gov (United States)

    Bible, Johanna; Johansson, Isabella; Hughes, Gary B.; Lubin, Philip M.

    2013-09-01

    We propose a directed energy orbital planetary defense system capable of heating the surface of potentially hazardous objects to the evaporation point as a futuristic but feasible approach to impact risk mitigation. The system is based on recent advances in high efficiency photonic systems. The system could also be used for propulsion of kinetic or nuclear tipped asteroid interceptors or other interplanetary spacecraft. A photon drive is possible using direct photon pressure on a spacecraft similar to a solar sail. Given a laser power of 70GW, a 100 kg craft can be propelled to 1AU in approximately 3 days achieving a speed of 0.4% the speed of light, and a 10,000 kg craft in approximately 30 days. We call the system DE-STAR for Directed Energy System for Targeting of Asteroids and exploRation. DE-STAR is a modular phased array of solid-state lasers, powered by photovoltaic conversion of sunlight. The system is scalable and completely modular so that sub elements can be built and tested as the technology matures. The sub elements can be immediately utilized for testing as well as other applications including space debris mitigation. The ultimate objective of DE-STAR would be to begin direct asteroid vaporization and orbital modification starting at distances beyond 1 AU. Using phased array technology to focus the beam, the surface spot temperature on the asteroid can be raised to more than 3000K, allowing evaporation of all known substances. Additional scientific uses of DE-STAR are also possible.

  14. NASA Propulsion Investments for Exploration and Science

    Science.gov (United States)

    Smith, Bryan K.; Free, James M.; Klem, Mark D.; Priskos, Alex S.; Kynard, Michael H.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) invests in chemical and electric propulsion systems to achieve future mission objectives for both human exploration and robotic science. Propulsion system requirements for human missions are derived from the exploration architecture being implemented in the Constellation Program. The Constellation Program first develops a system consisting of the Ares I launch vehicle and Orion spacecraft to access the Space Station, then builds on this initial system with the heavy-lift Ares V launch vehicle, Earth departure stage, and lunar module to enable missions to the lunar surface. A variety of chemical engines for all mission phases including primary propulsion, reaction control, abort, lunar ascent, and lunar descent are under development or are in early risk reduction to meet the specific requirements of the Ares I and V launch vehicles, Orion crew and service modules, and Altair lunar module. Exploration propulsion systems draw from Apollo, space shuttle, and commercial heritage and are applied across the Constellation architecture vehicles. Selection of these launch systems and engines is driven by numerous factors including development cost, existing infrastructure, operations cost, and reliability. Incorporation of green systems for sustained operations and extensibility into future systems is an additional consideration for system design. Science missions will directly benefit from the development of Constellation launch systems, and are making advancements in electric and chemical propulsion systems for challenging deep space, rendezvous, and sample return missions. Both Hall effect and ion electric propulsion systems are in development or qualification to address the range of NASA s Heliophysics, Planetary Science, and Astrophysics mission requirements. These address the spectrum of potential requirements from cost-capped missions to enabling challenging high delta-v, long-life missions. Additionally, a high

  15. Plasmasol, photovoltaic effect in a solar photo plasma. Final report of the project. Concerted action energy - 2003; Plasmasol, effet photovoltaique dans un photoplasma solaire. Rapport final du Projet. Action Concertee Energie - 2003 CNRS-MRNT

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The aim of this project was to study the feasibility of the solar energy photovoltaic conversion from the photo-ionization of a gaseous medium constituted of metallic vapors. After a bibliography and a recall of based physical data the report presents the absorption of the solar radiation by the cesium vapor, a simplified model of the photovoltaic effect in a photo-plasma, the experimental device and the results. (A.L.B.)

  16. Mission to Mars using integrated propulsion concepts: considerations, opportunities, and strategies

    Energy Technology Data Exchange (ETDEWEB)

    Accettura, A.G. [Space Propulsion Design Dept., Rome (Italy); Bruno, C. [University of Rome ' ' La Sapienza' ' , Rome (Italy); Casotto, S.; Marzari, F. [University of Padua (Italy). CISAS

    2004-04-01

    The aim of this paper is to evaluate the feasibility of a mission to Mars using the Integrated Propulsion Systems (EPS) which means to couple Nuclear-MPD-ISPU propulsion systems. In particular both mission analysis and propulsion aspects are analysed together with technological aspects. Identifying possible mission scenarios will lead to the study of possible strategies for Mars Exploration and also of methods for reducing cost. As regard to IPS, the coupling between Nuclear Propulsion (Rubbia's engine) and Superconductive MPD propulsion is considered for the Earth-Mars trajectories: major emphasis is given to the advantages of such a system. The In Situ Resource Utilization (ISRU) concerns on-Mars operations; In Situ Propellant Utilization (ISPU) is foreseen particularly for LOX-CH4 engines for Mars Ascent Vehicles and this possibility is analyzed from a technological point of view. Tether Systems are also considered during interplanetary trajectories and as space elevators on Mars orbit. Finally strategic considerations associated to this mission are considered also. (author)

  17. Mission to Mars using integrated propulsion concepts: considerations, opportunities, and strategies.

    Science.gov (United States)

    Accettura, Antonio G; Bruno, Claudio; Casotto, Stefano; Marzari, Francesco

    2004-04-01

    The aim of this paper is to evaluate the feasibility of a mission to Mars using the Integrated Propulsion Systems (IPS) which means to couple Nuclear-MPD-ISPU propulsion systems. In particular both mission analysis and propulsion aspects are analyzed together with technological aspects. Identifying possible mission scenarios will lead to the study of possible strategies for Mars Exploration and also of methods for reducing cost. As regard to IPS, the coupling between Nuclear Propulsion (Rubbia's engine) and Superconductive MPD propulsion is considered for the Earth-Mars trajectories: major emphasis is given to the advantages of such a system. The In Situ Resource Utilization (ISRU) concerns on-Mars operations; In Situ Propellant Utilization (ISPU) is foreseen particularly for LOX-CH4 engines for Mars Ascent Vehicles and this possibility is analyzed from a technological point of view. Tether Systems are also considered during interplanetary trajectories and as space elevators on Mars orbit. Finally strategic considerations associated to this mission are considered also.

  18. Plasma Jet Simulations Using a Generalized Ohm's Law

    Science.gov (United States)

    Ebersohn, Frans; Shebalin, John V.; Girimaji, Sharath S.

    2012-01-01

    Plasma jets are important physical phenomena in astrophysics and plasma propulsion devices. A currently proposed dual jet plasma propulsion device to be used for ISS experiments strongly resembles a coronal loop and further draws a parallel between these physical systems [1]. To study plasma jets we use numerical methods that solve the compressible MHD equations using the generalized Ohm s law [2]. Here, we will discuss the crucial underlying physics of these systems along with the numerical procedures we utilize to study them. Recent results from our numerical experiments will be presented and discussed.

  19. Propulsion System Development for the CanX-4 and CanX-5 Dual Nanosatellite Formation Flying Mission

    Science.gov (United States)

    Risi, Benjamin Walter

    The Canadian Nanosatellite Advanced Propulsion System is a liquefied cold-gas thruster system that provides propulsive capabilities to CanX-4/-5, the Canadian Advanced Nanospace eXperiment 4 and 5. With a launch date of early 2014, CanX-4/-5's primary mission objective is to demonstrate precise autonomous formation flight of nanosatellites in low Earth orbit. The high-level CanX-4/-5 mission and system architecture is described. The final design and assembly of the propulsion system is presented along with the lessons learned. A high-level test plan provides a roadmap of the testing required to qualify the propulsion system for flight. The setup and execution of these tests, as well as the analyses of the results found therein, are discussed in detail.

  20. Status and Perspectives of Electric Propulsion in Italy

    Science.gov (United States)

    Svelto, F.; Marcuccio, S.; Matticari, G.

    2002-01-01

    Electric Propulsion (EP) is recognized as one of today's enabling technologies for scientific and commercial missions. In consideration of EP's major strategic impact on the near and long term scenarios, an EP development programme has been established within the Italian Space Agency (ASI), aimed at the development of a variety of propulsion capabilities covering different fields of application. This paper presents an overview of Electric Propulsion (EP) activities underway in Italy and outlines the planned development lines, both in research institutions and in industry. Italian EP activities are essentially concentrated in Pisa, at Centrospazio and Alta, and in Florence, at LABEN - Proel Tecnologie Division (LABEN/Proel). Centrospazio/Alta and LABEN/Proel have established a collaboration program for joint advanced developments in the EP field. Established in 1989, Centrospazio is a private research center closely related to the Department of Aerospace Engineering of Pisa University. Along the years, Centrospazio lines of development have included arcjets, magneto- plasma-dynamic thrusters, FEEP and Hall thrusters, as well as computational plasma dynamics and low-thrust mission studies. Alta, a small enterprise, was founded in 1999 to exploit in an industrial setting the results of research previously carried out at Centrospazio. Alta's activities include the development of micronewton and millinewton FEEP thrusters, and testing of high power Hall and ion thrusters in specialised facilities. A full micronewton FEEP propulsion system is being developed for the Microscope spacecraft, a scientific mission by CNES aimed at verification of the Equivalence Principle. FEEP will also fly on ASI's HypSEO, a technological demonstrator for Earth Observation, and is being considered for ESA's GOCE (geodesy) and SMART-2 (formation flying), as well as for the intended scientific spacecraft GG by ASI. The ASI-funded STEPS facility will be placed on an external site on the

  1. MW-Class Electric Propulsion System Designs

    Science.gov (United States)

    LaPointe, Michael R.; Oleson, Steven; Pencil, Eric; Mercer, Carolyn; Distefano, Salvador

    2011-01-01

    Electric propulsion systems are well developed and have been in commercial use for several years. Ion and Hall thrusters have propelled robotic spacecraft to encounters with asteroids, the Moon, and minor planetary bodies within the solar system, while higher power systems are being considered to support even more demanding future space science and exploration missions. Such missions may include orbit raising and station-keeping for large platforms, robotic and human missions to near earth asteroids, cargo transport for sustained lunar or Mars exploration, and at very high-power, fast piloted missions to Mars and the outer planets. The Advanced In-Space Propulsion Project, High Efficiency Space Power Systems Project, and High Power Electric Propulsion Demonstration Project were established within the NASA Exploration Technology Development and Demonstration Program to develop and advance the fundamental technologies required for these long-range, future exploration missions. Under the auspices of the High Efficiency Space Power Systems Project, and supported by the Advanced In-Space Propulsion and High Power Electric Propulsion Projects, the COMPASS design team at the NASA Glenn Research Center performed multiple parametric design analyses to determine solar and nuclear electric power technology requirements for representative 300-kW class and pulsed and steady-state MW-class electric propulsion systems. This paper describes the results of the MW-class electric power and propulsion design analysis. Starting with the representative MW-class vehicle configurations, and using design reference missions bounded by launch dates, several power system technology improvements were introduced into the parametric COMPASS simulations to determine the potential system level benefits such technologies might provide. Those technologies providing quantitative system level benefits were then assessed for technical feasibility, cost, and time to develop. Key assumptions and primary

  2. Biologically-Inspired Water Propulsion System

    Institute of Scientific and Technical Information of China (English)

    Andrzej Sioma

    2013-01-01

    Most propulsion systems of vehicles travelling in the aquatic environment are equipped with propellers.Observations of nature,however,show that the absolute majority of organisms travel through water using wave motion,paddling or using water jet power.Inspired by these observations of nature,an innovative propulsion system working in aquatic environment was developed.This paper presents the design of the water propulsion system.Particular attention was paid to the use of paddling techniques and water jet power.A group of organisms that use those mechanisms to travel through water was selected and analysed.The results of research were used in the design of a propulsion system modelled simultaneously on two methods of movement in the aquatic environment.A method for modelling a propulsion system using a combination of the two solutions and the result were described.A conceptual design and a prototype constructed based on the solution were presented.With respect to the solution developed,studies and analyses of selected parameters of the prototype were described.

  3. Final Report DE-FG02-00ER54583: "Physics of Atmospheric Pressure Glow Discharges" and "Nanoparticle Nucleation and Dynamics in Low-Pressure Plasmas"

    Energy Technology Data Exchange (ETDEWEB)

    Uwe Kortshagen; Joachim Heberlein; Steven L. Girshick

    2009-06-01

    This project was funded over two periods of three years each, with an additional year of no-cost extension. Research in the first funding period focused on the physics of uniform atmospheric pressure glow discharges, the second funding period was devoted to the study of the dynamics of nanometer-sized particles in plasmas.

  4. Earth-moon Trajectory Optimization Using Solar Electric Propulsion

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The optimization of the Earth-moon trajectory using solar electric propulsion is presented. A feasible method is proposed to optimize the transfer trajectory starting from a low Earth circular orbit (500 km altitude) to a low lunar circular orbit (200 km altitude). Due to the use of low-thrust solar electric propulsion, the entire transfer trajectory consists of hundreds or even thousands of orbital revolutions around the Earth and the moon. The Earth-orbit ascending (from low Earth orbit to high Earth orbit) and lunar descending (from high lunar orbit to low lunar orbit) trajectories in the presence of J2 perturbations and shadowing effect are computed by an analytic orbital averaging technique. A direct/indirect method is used to optimize the control steering for the trans-lunar trajectory segment, a segment fiom a high Earth orbit to a high lunar orbit, with a fixed thrust-coast-thrust engine sequence. For the trans-lunar trajectory segment, the equations of motion are expressed in the inertial coordinates about the Earth and the moon using a set of nonsingular equinoctial elements inclusive of the gravitational forces of the sun, the Earth, and the moon. By way of the analytic orbital averaging technique and the direct/indirect method, the Earth-moon transfer problem is converted to a parameter optimization problem, and the entire transfer trajectory is formulated and optimized in the form of a single nonlinear optimization problem with a small number of variables and constraints. Finally, an example of an Earth-moon transfer trajectory using solar electric propulsion is demonstrated.

  5. Commercialization of an electric propulsion unit for ecological ice resurfacers

    Energy Technology Data Exchange (ETDEWEB)

    Giroux, M. [MG Service, L' Assomption, PQ (Canada); Sylvestre, P. [Environment Canada, Montreal, PQ (Canada)

    2000-03-01

    Community health departments (CHD) and the general public are greatly concerned about the air quality at indoor skating rinks. A solution now exists whereby municipalities can convert their internal combustion resurfacers to electricity, using a system proposed by MG Service. This electric propulsion unit was developed and designed by MG Service, in conjunction with the Centre d'experimentation des vehicules electriques du Quebec (CEVEQ) and TPR Inc., an engineering firm. The main advantage of this technology is the ease of integration into the chassis of conventional resurfacers currently in use throughout the various municipalities. The propulsion unit is battery-powered and designed to replace the internal combustion engine. As a result, it eliminates carbon monoxide and nitrogen dioxide emissions, and more than meets the requirements set by health boards with regard to air quality at indoor skating rinks. Recyclable, maintenance-free and manufactured according to the standards set by the Underwriters Laboratories of Canada (ULC), the gel-sealed batteries display great advantages. The cost effectiveness of the electric propulsion unit is more impressive when considering that electricity is clean and costs five times less than conventional fuels currently in use. Regular verifications and calibrations are not required and the maintenance is minimal. The ventilation requirements are also reduced, leading to savings in energy costs required for the aeration of the indoor skating rink. Finally, the elimination of tank rental and fuel costs represent an added benefit. A detailed description of the components is provided. Following a series of trials, the operators were impressed by the surface gripability, traction and manoeuvrability. The resurfacers also gave an impression of greater raw power and were very quiet and easy to use, resulting in better overall operation when compared to conventional resurfacers. 1 fig.

  6. Ion Acceleration by Beating Electrostatic Waves: Theory, Experiments and Relevance to Spacecraft Propulsion

    Science.gov (United States)

    Choueiri, Edgar

    2007-10-01

    After a brief overview of electrodeless plasma propulsion concepts, we will focus on a recently discovered ion acceleration mechanism, which appears to occur naturally in Earth's ionosphere, holds promise as an effective means to energize ions for applications in thermonuclear fusion and electrodeless space plasma propulsion. Unlike previously known mechanisms for energizing plasmas with electrostatic (ES) waves, and which accelerate only ions whose initial velocities are above a certain threshold (close to the wave's phase velocity), the new acceleration mechanism, involving pairs of beating ES waves, is non-resonant and can accelerate ions with arbitrarily small initial velocities, thus offering a more effective way to couple energy to plasmas. We will discuss the fundamentals of the nonlinear dynamics of a single magnetized ion interacting with a pair of beating ES waves and show that there exist necessary and sufficient conditions for the phenomenon to occur. We will see how these fundamental conditions are derived by analyzing the motion's Hamiltonian using a second-order perturbation technique in conjunction with Lie transformations. The analysis shows that when the Hamiltonian lies outside the energy barrier defined by the location of the elliptic and hyperbolic critical points of the motion, the electric field of the beating waves can accelerate ions regularly from low initial velocities, then stochastically, to high energies. We will then illustrate real plasma effects using Monte Carlo numerical simulation and discuss the recent results from a dedicated experiment in my lab in which laser-induced fluorescence (LIF) measurements of ion energies have provided the first laboratory observation of this acceleration mechanism. The talk will conclude with a few ideas on how the fundamental insight can be applied to develop novel plasma propulsion concepts.

  7. Dynamic simulator for PEFC propulsion plant

    Energy Technology Data Exchange (ETDEWEB)

    Hiraide, Masataka; Kaneda, Eiichi; Sato, Takao [Mitsui Engineering & Shipbuilding Co., Ltd., Tokyo (Japan)] [and others

    1996-12-31

    This report covers part of a joint study on a PEFC propulsion system for surface ships, summarized in a presentation to this Seminar, entitled {open_quote}Study on a Polymer Electrolyte Fuel Cell (PEFC) Propulsion System for Surface Ships{close_quotes}, and which envisages application to a 1,500 DWT cargo vessel. The work presented here focuses on a simulation study on PEFC propulsion plant performance, and particularly on the system response to changes in load. Using a dynamic simulator composed of system components including fuel cell, various simulations were executed, to examine the performance of the system as a whole and of the individual system components under quick and large load changes such as occasioned by maneuvering operations and by racing when the propeller emerges above water in heavy sea.

  8. Propulsion Induced Effects (PIE) Test Program

    Science.gov (United States)

    Cappuccio, Gelsomina; Won, Mark J.

    1999-01-01

    The Propulsion Induced Effects (PIE) test program is being lead by NASA Ames for Configuration Aerodynamics (CA). Representatives from CA, Technology Integration (TI), Inlet, and the Nozzle ITD's are working with Ames in defining and executing this test program. The objective of the CA 4-14 milestone is to assess the propulsion/airframe integration characteristics of the Technology Concept Airplane (TCA) and design variations using computational and experimental methods. The experimental aspect includes static calibrations, transonic and supersonic wind tunnel testing. The test program will generate a comprehensive database that will include all appropriate wind tunnel corrections, with emphasis placed on establishing the propulsion induced effects on the flight performance of the TCA.

  9. The electric rail gun for space propulsion

    Science.gov (United States)

    Bauer, D. P.; Barber, J. P.; Vahlberg, C. J.

    1981-01-01

    An analytic feasibility investigation of an electric propulsion concept for space application is described. In this concept, quasistatic thrust due to inertial reaction to repetitively accelerated pellets by an electric rail gun is used to propel a spacecraft. The study encompasses the major subsystems required in an electric rail gun propulsion system. The mass, performance, and configuration of each subsystem are described. Based on an analytic model of the system mass and performance, the electric rail gun mission performance as a reusable orbital transfer vehicle (OTV) is analyzed and compared to a 30 cm ion thruster system (BIMOD) and a chemical propulsion system (IUS) for payloads with masses of 1150 kg and 2300 kg. For system power levels in the range from 25 kW(e) to 100 kW(e) an electric rail gun OTV is more attractive than a BIMOD system for low Earth orbit to geosynchronous orbit transfer durations in the range from 20 to 120 days.

  10. ASPECTS RELATED TO THE PROPULSION HYDRAFOIL SHIPS

    Directory of Open Access Journals (Sweden)

    Levent ALI

    2016-12-01

    Full Text Available In this paper, we analyze some aspects related to the propulsion of hydrofoil ships. They are very important for the success of the mission if they are military ships and for cargo security, if they are civilian transport ships, especially when navigating at high speed on their hydrofoil wings in rough sea conditions. This paper presents an original procedure for estimating the propulsion of hydrofoil ships. This procedure has enabled the development of a computer program that can predict both those types of ship propulsion regime imposed at a quasi-stationary speed and the march regime on wings. The calculation software obtained may serve to design any type of hydrofoil ship.

  11. Research on plasma core reactors

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, G.A.; Barton, D.M.; Helmick, H.H.; Bernard, W.; White, R.H.

    1977-01-01

    Experiments and theoretical studies are being conducted for NASA on critical assemblies with 1-m-diam by 1-m-long low-density cores surrounded by a thick beryllium reflector. These assemblies make extensive use of existing nuclear propulsion reactor components, facilities, and instrumentation. Due to excessive porosity in the reflector, the initial critical mass was 19 kg U(93.2). Addition of a 17-cm-thick by 89-cm-diam beryllium flux trap in the cavity reduced the critical mass to 7 kg when all the uranium was in the zone just outside the flux trap. A mockup aluminum UF/sub 6/ container was placed inside the flux trap and fueled with uranium-graphite elements. Fission distributions and reactivity worths of fuel and structural materials were measured. Finally, an 85,000-cm/sup 3/ aluminum canister in the central region was fueled with UF/sub 6/ gas and fission density distributions determined. These results will be used to guide the design of a prototype plasma core reactor which will test energy removal by optical radiation.

  12. Propulsion System Choices and Their Implications

    Science.gov (United States)

    Joyner, Claude R., II; Levack, Daniel J. H.; Rhodes, Russell, E.; Robinson, John W.

    2010-01-01

    In defining a space vehicle architecture, the propulsion system and related subsystem choices will have a major influence on achieving the goals and objectives desired. There are many alternatives and the choices made must produce a system that meets the performance requirements, but at the same time also provide the greatest opportunity of reaching all of the required objectives. Recognizing the above, the SPST Functional Requirements subteam has drawn on the knowledge, expertise, and experience of its members, to develop insight that wiIJ effectively aid the architectural concept developer in making the appropriate choices consistent with the architecture goals. This data not only identifies many selected choices, but also, more importantly, presents the collective assessment of this subteam on the "pros" and the "cons" of these choices. The propulsion system choices with their pros and cons are presented in five major groups. A. System Integration Approach. Focused on the requirement for safety, reliability, dependability, maintainability, and low cost. B. Non-Chemical Propulsion. Focused on choice of propulsion type. C. Chemical Propulsion. Focused on propellant choice implications. D. Functional Integration. Focused on the degree of integration of the many propulsive and closely associated functions, and on the choice of the engine combustion power cycle. E. Thermal Management. Focused on propellant tank insulation and integration. Each of these groups is further broken down into subgroups, and at that level the consensus pros and cons are presented. The intended use of this paper is to provide a resource of focused material for architectural concept developers to use in designing new advanced systems including college design classes. It is also a possible source of input material for developing a model for designing and analyzing advanced concepts to help identify focused technology needs and their priorities.

  13. The New NASA-STD-4005 and NASA-HDBK-4006, Essentials for Direct-Drive Solar Electric Propulsion

    Science.gov (United States)

    Ferguson, Dale C.

    2007-01-01

    High voltage solar arrays are necessary for direct-drive solar electric propulsion, which has many advantages, including simplicity and high efficiency. Even when direct-drive is not used, the use of high voltage solar arrays leads to power transmission and conversion efficiencies in electric propulsion Power Management and Distribution. Nevertheless, high voltage solar arrays may lead to temporary power disruptions, through the so-called primary electrostatic discharges, and may permanently damage arrays, through the so-called permanent sustained discharges between array strings. Design guidance is needed to prevent these solar array discharges, and to prevent high power drains through coupling between the electric propulsion devices and the high voltage solar arrays. While most electric propulsion systems may operate outside of Low Earth Orbit, the plasmas produced by their thrusters may interact with the high voltage solar arrays in many ways similarly to Low Earth Orbit plasmas. A brief description of previous experiences with high voltage electric propulsion systems will be given in this paper. There are two new official NASA documents available free through the NASA Standards website to help in designing and testing high voltage solar arrays for electric propulsion. They are NASA-STD-4005, the Low Earth Orbit Spacecraft Charging Design Standard, and NASA-HDBK-4006, the Low Earth Orbit Spacecraft Charging Design Handbook. Taken together, they can both educate the high voltage array designer in the engineering and science of spacecraft charging in the presence of dense plasmas and provide techniques for designing and testing high voltage solar arrays to prevent electrical discharges and power drains.

  14. Superconducting DC homopolar motors for ship propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Heiberger, M.; Reed, M.R.; Creedon, W.P.; O' Hea, B.J. [General Atomic (United States)

    2000-07-01

    Superconducting DC homopolar motors have undergone recent advances in technology, warranting serious consideration of their use for ship propulsion. Homopolar motor propulsion is now practical because of two key technology developments: cryogen-free superconducting refrigeration and high performance motor fiber brushes. These compact motors are ideal for podded applications, where reduced drag and fuel consumption are predicted. In addition, the simple DC motor controller is more efficient and reliable compared with AC motor controllers. Military ships also benefit from increased stealth implicit in homopolar DC excitation, which also allows the option for direct hull or pod mounting. (authors)

  15. Mars Ascent Propulsion Trades with Trajectory Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Whitehead, J

    2004-04-22

    Optimized trajectories to a 500 km circular orbit are calculated for vehicles having a 100 kg Mars launch mass. Staging trades, thrust optimization, and the importance of vehicle shape for drag are all taken into consideration. The high acceleration of solid rockets requires a steep trajectory for drag avoidance, followed by a relatively large circularization burn, appropriate for a second stage. Liquid thrust reduces drag, resulting in less steep trajectories which have small circularization burns. Liquid propulsion requires less total {Delta}v, and offers options for multiple stages or just one. Graphs of payload mass versus stage propellant fractions are compared for liquid and solid propulsion.

  16. Micro turbine engines for drones propulsion

    Science.gov (United States)

    Dutczak, J.

    2016-09-01

    Development of micro turbine engines began from attempts of application of that propulsion source by group of enthusiasts of aviation model making. Nowadays, the domain of micro turbojet engines is treated on a par with “full size” aviation constructions. The dynamic development of these engines is caused not only by aviation modellers, but also by use of micro turbojet engines by army to propulsion of contemporary drones, i.e. Unmanned Aerial Vehicles (UAV) or Unmanned Aerial Systems (UAS). On the base of selected examples the state of art in the mentioned group of engines has been presented in the article.

  17. SEGMAG Machines for Marine Electrical Propulsion Systems

    Science.gov (United States)

    1978-09-13

    ship propulsion drives. It encompasses the conceptual design of a 40,000 horsepower per shaft, two shaft, drive system for a destroyer type vessel and a 20,000 horsepower per shaft, two shaft, drive system for a hydrofoil type vessel. It also includes a detail design and initiated construction of a 3,000 horsepower per shaft, two shaft, prototype drive system for a land based demonstration. All three drive systems utilize gas turbines for prime movers. In addition to the main propulsion machinery designs, the auxiliaries required for the systems are also

  18. Cassini's Grand Finale and Recent Science Highlights

    Science.gov (United States)

    Spilker, Linda J.

    2017-06-01

    After almost 13 years in Saturn orbit, the Cassini-Huygens mission has entered its final year of data collection. Cassini will return its final bits of unique data on 15 September 2017 as it plunges into Saturn’s atmosphere, vaporizing and satisfying planetary protection requirements.Since early 2016 Cassini’s orbital inclination was slowly increased towards its final inclination. In November Cassini transitioned to a series of 20 orbits with periapses just outside Saturn's F ring that included some of the closest flybys of the tiny ring moons and excellent views of the F ring and outer A ring.Cassini's final close flyby of Titan in April 2017 propelled it across Saturn’s main rings and into its final orbits. Cassini's Grand Finale began in April 2017 and is comprised of 22 orbits at an inclination of 63 degrees. Cassini is repeatedly diving between the innermost ring and Saturn's upper atmosphere providing insights into fundamental questions unattainable during the rest of the mission. It is the first spacecraft to explore this region.These close orbits provide the highest resolution observations of both the rings and Saturn, and direct in situ sampling of the ring particles' composition, plasma, Saturn's exosphere and the innermost radiation belts. Saturn's gravitational field will be measured to unprecedented accuracy, providing information on Saturn's interior structure and mass distribution in the rings. Probing the magnetic field will give insight into the nature of the magnetic dynamo and the true rotation rate of Saturn's interior. The ion and neutral mass spectrometer will sniff the exosphere and upper atmosphere and examine water-based molecules originating from the rings. The cosmic dust analyzer will sample particle composition from different parts of the main rings.Recent science highlights and science objectives from Cassini’s final orbits will be discussed.This work was carried out in part at the Jet Propulsion Laboratory, California

  19. Analysis of data from the plasma composition experiment on the International Sun-Earth Explorer (ISEE 1). Final report, 1 January 1990-31 May 1994

    Energy Technology Data Exchange (ETDEWEB)

    Lennartsson, O.W.

    1994-05-01

    The Lockheed plasma composition experiment on the ISEE 1 spacecraft has provided one of the largest and most varied sets of data on earth's energetic plasma environment, covering both the solar wind, well beyond the bow shock, and the near equatorial magnetosphere to a distance of almost 23 earth radii. This report is an overview of the last four years of data analysis and archiving. The archiving for NSSDC includes most data obtained during the initial 28-months of instrument operation, from early November 1977 through the end of February 1980. The data products are a combination of spectra (mass and energy angle) and velocity moments. A copy of the data user's guide and examples of the data products are attached as appendix A. The data analysis covers three major areas: solar wind ions upstream and downstream of the day side bowshock, especially He(++) ions; terrestrial ions flowing upward from the auroral regions, especially H(+), O(+), and He(+) ions; and ions of both solar and terrestrial origins in the tail plasma sheet and lobe regions. Copies of publications are attached.

  20. Nuclear rockets: High-performance propulsion for Mars

    Science.gov (United States)

    Watson, C. W.

    1994-05-01

    A new impetus to manned Mars exploration was introduced by President Bush in his Space Exploration Initiative. This has led, in turn, to a renewed interest in high-thrust nuclear thermal rocket propulsion (NTP). The purpose of this report is to give a brief tutorial introduction to NTP and provide a basic understanding of some of the technical issues in the realization of an operational NTP engine. Fundamental physical principles are outlined from which a variety of qualitative advantages of NTP over chemical propulsion systems derive, and quantitative performance comparisons are presented for illustrative Mars missions. Key technologies are described for a representative solid-core heat-exchanger class of engine, based on the extensive development work in the Rover and NERVA nuclear rocket programs (1955 to 1973). The most driving technology, fuel development, is discussed in some detail for these systems. Essential highlights are presented for the 19 full-scale reactor and engine tests performed in these programs. On the basis of these tests, the practicality of graphite-based nuclear rocket engines was established. Finally, several higher-performance advanced concepts are discussed. These have received considerable attention, but have not, as yet, developed enough credibility to receive large-scale development.

  1. Constraints influencing sports wheelchair propulsion performance and injury risk

    Science.gov (United States)

    2013-01-01

    The Paralympic Games are the pinnacle of sport for many athletes with a disability. A potential issue for many wheelchair athletes is how to train hard to maximise performance while also reducing the risk of injuries, particularly to the shoulder due to the accumulation of stress placed on this joint during activities of daily living, training and competition. The overall purpose of this narrative review was to use the constraints-led approach of dynamical systems theory to examine how various constraints acting upon the wheelchair-user interface may alter hand rim wheelchair performance during sporting activities, and to a lesser extent, their injury risk. As we found no studies involving Paralympic athletes that have directly utilised the dynamical systems approach to interpret their data, we have used this approach to select some potential constraints and discussed how they may alter wheelchair performance and/or injury risk. Organism constraints examined included player classifications, wheelchair setup, training and intrinsic injury risk factors. Task constraints examined the influence of velocity and types of locomotion (court sports vs racing) in wheelchair propulsion, while environmental constraints focused on forces that tend to oppose motion such as friction and surface inclination. Finally, the ecological validity of the research studies assessing wheelchair propulsion was critiqued prior to recommendations for practice and future research being given. PMID:23557065

  2. Hydrogen Wave Heater for Nuclear Thermal Propulsion Component Testing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has identified Nuclear Thermal Propulsion (NTP) as a propulsion concept which could provide the fastest trip times to Mars and as the preferred concept for...

  3. Green Liquid Monopropellant Thruster for In-space Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Physical Sciences Inc. and AMPAC In-space Propulsion propose to develop a unique chemical propulsion system for the next generation NASA science spacecraft and...

  4. Miniature Nontoxic Nitrous Oxide-Propane (MINNOP) Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop the Miniature Nontoxic Nitrous Oxide-Propane (MINNOP) propulsion system, a small bipropellant propulsion system which we offer as an...

  5. Fast Computation of High Energy Elastic Collision Scattering Angle for Electric Propulsion Plume Simulation (Conference Paper with Briefing Charts)

    Science.gov (United States)

    2016-07-10

    MA 1997. [2] I. Mikellides, I. Katz, R. Kuharski, and M. Mandell, Journal of Propulsion and Power 21, 111–118 (2005). [3] I. D. Boyd and R. A...Dressler, Journal of Applied Physics 92, 1764–1774 (2002). [4] S. J. Araki and R. E. Wirz, IEEE Transactions on Plasma Science 41 (2013). [5] M. K. Scharfe...J. W. Koo, and G. Azamia, “DSMC implementation of experimentally-based Xe+ + Xe differential cross sections for electric propulsion modeling,” in AIP

  6. High-Power Hall Propulsion Development at NASA Glenn Research Center

    Science.gov (United States)

    Kamhawi, Hani; Manzella, David H.; Smith, Timothy D.; Schmidt, George R.

    2014-01-01

    The NASA Office of the Chief Technologist Game Changing Division is sponsoring the development and testing of enabling technologies to achieve efficient and reliable human space exploration. High-power solar electric propulsion has been proposed by NASA's Human Exploration Framework Team as an option to achieve these ambitious missions to near Earth objects. NASA Glenn Research Center (NASA Glenn) is leading the development of mission concepts for a solar electric propulsion Technical Demonstration Mission. The mission concepts are highlighted in this paper but are detailed in a companion paper. There are also multiple projects that are developing technologies to support a demonstration mission and are also extensible to NASA's goals of human space exploration. Specifically, the In-Space Propulsion technology development project at NASA Glenn has a number of tasks related to high-power Hall thrusters including performance evaluation of existing Hall thrusters; performing detailed internal discharge chamber, near-field, and far-field plasma measurements; performing detailed physics-based modeling with the NASA Jet Propulsion Laboratory's Hall2De code; performing thermal and structural modeling; and developing high-power efficient discharge modules for power processing. This paper summarizes the various technology development tasks and progress made to date

  7. 深空探测磁动力技术研究进展%Research Progress on Magnetic Propulsion in Deep Space Exploration

    Institute of Scientific and Technical Information of China (English)

    王伟; 马彦涵; 周易倩; 方宝东

    2015-01-01

    Deep space exploration plays a significant role in answering some basic scientific questions puzzled human like universe origin and life evolution.However,many key technologies without un-mastered including advanced propulsion technology limit future exploration activities.In this paper,a new magnetic propulsion method without propellant consumption applying to the deep space exploration is described.It creates the thrust by the interaction between the plasma fluid of solar wind and the magnetic field created by the spacecraft itself with carrying a loop of superconducting cable electrifying. Firstly, the domestic and foreign development present situation of magnetic propulsion are summarized. Secondly, the basic principles of magnetic propulsion are explained.Finally,the technology characteristics and potential applications in deep space exploration are analyzed.%开展深空探测对人类研究宇宙起源与发展、生命存在与进化等重大科学问题具有重要的意义。深空探测有很多关键技术有待突破,先进推进技术是其中最为重要的一个。而可用于深空探测的无需携带推进剂的磁动力推进技术,是利用太阳系和宇宙中广泛存在的等离子体流,使探测器所携带的低密度超导材料制作的线圈通电,在探测器周围形成一个磁场区域,通过该磁场与太阳风等离子流相互作用产生推动力的一种先进技术。文章介绍了磁动力技术的国内外发展现状、磁帆与等离子体流增强型磁帆的基本原理、技术特点以及在未来深空探测中的潜在应用,为我国未来深空探测任务的工程实施提供一种新的方法。

  8. Simulation studies of direct-current microdischarges for electric propulsion

    Science.gov (United States)

    Deconinck, Thomas Dominique

    The structure of direct-current microdischarges is investigated using a detailed two-dimensional multi-species continuum model. Microdischarges are direct-current discharges that operate at a relatively high pressure of about 100 Torr and geometric dimensions in the 10-100 micrometer range. Our motivation for the study of microdischarges comes from a potential application of these devices in microthrusters for small satellite propulsion. The Micro Plasma Thruster (MPT) concept consists of a direct-current microdischarge in a geometry comprising a constant area flow section followed by a diverging exit nozzle. A detailed description of the plasma dynamics inside the MPT including power deposition, ionization, coupling of the plasma phenomena with high-speed flow, and propulsion system performance is reported in this study. A two-dimensional model is developed as part of this study. The model consists of a plasma module coupled to a flow module and is solved on a hybrid unstructured mesh framework. The plasma module provides a self-consistent, multi-species, multi-temperature description of the microdischarge phenomena while the flow module provides a description of the low Reynolds number compressible flow through the system. The plasma module solves conservation equations for plasma species continuity and electron energy, and Poisson's equation for the self-consistent electric field. The flow module solves mass, bulk gas momentum and energy equations. The coupling of energy from the electrostatic field to the plasma species is modeled by the Joule heating term which appears in the electron and heavy species energy equations. Discretization of the Joule heating term on unstructured meshes requires special attention. We propose a new robust method for the numerical discretization of the Joule heating term on such meshes using a cell-centered, finite volume approach. A prototypical microhollow cathode discharge (MHCD) is studied to guide and validate the modeling

  9. 46 CFR 58.01-35 - Main propulsion auxiliary machinery.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Main propulsion auxiliary machinery. 58.01-35 Section 58... AUXILIARY MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-35 Main propulsion auxiliary machinery. Auxiliary machinery vital to the main propulsion system must be provided in duplicate unless the...

  10. Large area plasma source

    Science.gov (United States)

    Foster, John (Inventor); Patterson, Michael (Inventor)

    2008-01-01

    An all permanent magnet Electron Cyclotron Resonance, large diameter (e.g., 40 cm) plasma source suitable for ion/plasma processing or electric propulsion, is capable of producing uniform ion current densities at its exit plane at very low power (e.g., below 200 W), and is electrodeless to avoid sputtering or contamination issues. Microwave input power is efficiently coupled with an ionizing gas without using a dielectric microwave window and without developing a throat plasma by providing a ferromagnetic cylindrical chamber wall with a conical end narrowing to an axial entrance hole for microwaves supplied on-axis from an open-ended waveguide. Permanent magnet rings are attached inside the wall with alternating polarities against the wall. An entrance magnet ring surrounding the entrance hole has a ferromagnetic pole piece that extends into the chamber from the entrance hole to a continuing second face that extends radially across an inner pole of the entrance magnet ring.

  11. Radioisotope Electric Propulsion (REP): A Near-Term Approach to Nuclear Propulsion

    Science.gov (United States)

    Schmidt, George R.; Manzella, David H.; Kamhawi, Hani; Kremic, Tibor; Oleson, Steven R.; Dankanich, John W.; Dudzinski, Leonard A.

    2009-01-01

    Studies over the last decade have shown radioisotope-based nuclear electric propulsion to be enhancing and, in some cases, enabling for many potential robotic science missions. Also known as radioisotope electric propulsion (REP), the technology offers the performance advantages of traditional reactor-powered electric propulsion (i.e., high specific impulse propulsion at large distances from the Sun), but with much smaller, affordable spacecraft. Future use of REP requires development of radioisotope power sources with system specific powers well above that of current systems. The US Department of Energy and NASA have developed an advanced Stirling radioisotope generator (ASRG) engineering unit, which was subjected to rigorous flight qualification-level tests in 2008, and began extended lifetime testing later that year. This advancement, along with recent work on small ion thrusters and life extension technology for Hall thrusters, could enable missions using REP sometime during the next decade.

  12. Advanced In-Space Propulsion (AISP): Micro Electrospray Propulsion (MEP) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Propulsion technology is often critical for space missions. High-value missions could be done with very small spacecraft, even CubeSats, but these...

  13. Ship propulsion reactors technology; La technologie des reacteurs de propulsion navale

    Energy Technology Data Exchange (ETDEWEB)

    Fribourg, Ch. [Technicatome, Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)

    2002-07-01

    This paper takes the state of the art on ship propulsion reactors technology. The french research programs with the corresponding technological stakes, the reactors specifications and advantages are detailed. (A.L.B.)

  14. Laser propulsion activity in South Africa

    CSIR Research Space (South Africa)

    Michaelis, MM

    2006-07-01

    Full Text Available Three sets of laser propulsion experiments have been conducted in South Africa. The first, on the MLIS kilowatt CO2 laser at Pelindaba, gave a surprisingly good result but could not be repeated after the laser chain was dismantled when South Africa...

  15. An Analysis of Rocket Propulsion Testing Costs

    Science.gov (United States)

    Ramirez, Carmen; Rahman, Shamim

    2010-01-01

    The primary mission at NASA Stennis Space Center (SSC) is rocket propulsion testing. Such testing is commonly characterized as one of two types: production testing for certification and acceptance of engine hardware, and developmental testing for prototype evaluation or research and development (R&D) purposes. For programmatic reasons there is a continuing need to assess and evaluate the test costs for the various types of test campaigns that involve liquid rocket propellant test articles. Presently, in fact, there is a critical need to provide guidance on what represents a best value for testing and provide some key economic insights for decision-makers within NASA and the test customers outside the Agency. Hence, selected rocket propulsion test databases and references have been evaluated and analyzed with the intent to discover correlations of technical information and test costs that could help produce more reliable and accurate cost projections in the future. The process of searching, collecting, and validating propulsion test cost information presented some unique obstacles which then led to a set of recommendations for improvement in order to facilitate future cost information gathering and analysis. In summary, this historical account and evaluation of rocket propulsion test cost information will enhance understanding of the various kinds of project cost information; identify certain trends of interest to the aerospace testing community.

  16. Heavy Ion Propulsion in the Megadalton Range

    Science.gov (United States)

    2006-11-01

    atomizacidn electrostdtica, Universidad Carlos III, Madrid, Spain (2006) 15. D. Garoz, "Sintesis, estudio y mezclas de nuevos combustibles basados en...propellants for electrical propulsion from Taylor cones in vacuo), Proyecto fin de carrera (Senior Thesis), Universidad Politecnica de Madrid, Marzo 2004

  17. Prospective of Photon Propulsion for Interstellar Flight

    Science.gov (United States)

    Bae, Young K.

    Mastering photon propulsion is proposed to be the key to overcoming the limit of the current propulsion technology based on conventional rocketry and potentially opening a new space era. A perspective on photon propulsion is presented here to elucidate that interstellar manned roundtrip flight could be achievable in a century within a frame of exiting scientific principles, once the required existing technologies are further developed. It is shown that the developmental pathway towards the interstellar flight demands not only technological breakthroughs, but consistent long-term world-scale economic interest and investment. Such interest and investment will result from positive financial returns from routine interstellar commutes that can transport highly valuable commodities in a profitable manner. The Photonic Railway, a permanent energy-efficient transportation structure based on the Beamed-Laser Propulsion (BLP) by Forward and the Photonic Laser Thruster (PLT) by the author, is proposed to enable such routine interstellar commutes via Spacetrains. A four-phased evolutionary developmental pathway towards the Interstellar Photonic Railway is proposed. Each phase poses evolutionary, yet daunting, technological and financial challenges that need to be overcome within each time frame of 20 _ 30 years, and is projected to generate multitudes of applications that would lead to sustainable reinvestment into its development. If successfully developed, the Photonic Railway would bring about a quantum leap in the human economic and social interests in space from explorations to terraforming, mining, colonization, and permanent habitation in exoplanets.

  18. Overview 1993: Chemical propulsion at CSTAR

    Science.gov (United States)

    Knuth, William H.

    1993-01-01

    Chemical Propulsion at CSTAR continues to expand its activities and areas of interest. Several new initiatives are being developed which are extensions of, or replacements for, earlier projects. One current focus is on reassessing promising engine cycles and the enabling technologies for implementing them. These engine cycles which include advanced hybrids, and staged combustion cycles have the use of oxygen as a working fluid and coolant in common. Oxygen is used as a turbine drive gas, tank pressurant and as a cooling medium for combustion devices. CSTAR has interest in the propellant feed systems for advanced rocket engines, including propellant conditioning and tank pressurization, gas generators, and turbomachinery. CSTAR's interests also include propellant injection into the main chamber. These aspects of rocket propulsion embody a diverse range of technical disciplines and technologies, critical to the pursuit of low cost space access. The chemical propulsion program at CSTAR includes active projects investigating hybrid rocket engine oxygen feed systems, hybrid rocket injectors, gas fed hybrid rocket combustion, elements of main injectors for staged combustion devices. CSTAR is actively seeking industrial partners interested in joint participation in one or more phases of the analyses, design, development and application of propulsion technologies and related technical disciplines.

  19. Green Mono Propulsion Activities at MSFC

    Science.gov (United States)

    Robinson, Joel W.

    2014-01-01

    In 2012, the National Aeronautics & Space Administration (NASA) Space Technology Mission Directorate (STMD) began the process of building an integrated technology roadmap, including both technology pull and technology push strategies. Technology Area 1 (TA-01) for Launch Propulsion Systems and TA-02 In-Space Propulsion are two of the fourteen TA's that provide recommendations for the overall technology investment strategy and prioritization of NASA's space technology activities. Identified within these documents are future needs of green propellant use. Green ionic liquid monopropellants and propulsion systems are beginning to be demonstrated in space flight environments. Starting in 2010 with the flight of PRISMA, a one Newton thruster system began on-orbit demonstrations operating on ammonium dinitramide based propellant. The NASA Green Propellant Infusion Mission (GPIM) plans to demonstrate both 1 N, and 22 N hydroxyl ammonium nitrate based thrusters in a 2015 flight demonstration. In addition, engineers at MSFC have been evaluating green propellant alternatives for both thrusters and auxiliary power units. This paper summarizes the status of these development/demonstration activities and investigates the potential for evolution of green propellants from small spacecraft and satellites to larger spacecraft systems, human exploration, and launch system auxiliary propulsion applications.

  20. MSFC Propulsion Systems Department Knowledge Management Project

    Science.gov (United States)

    Caraccioli, Paul A.

    2007-01-01

    This slide presentation reviews the Knowledge Management (KM) project of the Propulsion Systems Department at Marshall Space Flight Center. KM is needed to support knowledge capture, preservation and to support an information sharing culture. The presentation includes the strategic plan for the KM initiative, the system requirements, the technology description, the User Interface and custom features, and a search demonstration.

  1. Eagleworks Laboratories: Advanced Propulsion Physics Research

    Science.gov (United States)

    White, Harold; March, Paul; Williams, Nehemiah; ONeill, William

    2011-01-01

    NASA/JSC is implementing an advanced propulsion physics laboratory, informally known as "Eagleworks", to pursue propulsion technologies necessary to enable human exploration of the solar system over the next 50 years, and enabling interstellar spaceflight by the end of the century. This work directly supports the "Breakthrough Propulsion" objectives detailed in the NASA OCT TA02 In-space Propulsion Roadmap, and aligns with the #10 Top Technical Challenge identified in the report. Since the work being pursued by this laboratory is applied scientific research in the areas of the quantum vacuum, gravitation, nature of space-time, and other fundamental physical phenomenon, high fidelity testing facilities are needed. The lab will first implement a low-thrust torsion pendulum (physics and engineering models can be explored and understood in the lab to allow scaling to power levels pertinent for human spaceflight, 400kW SEP human missions to Mars may become a possibility, and at power levels of 2MW, 1-year transit to Neptune may also be possible. Additionally, the lab is implementing a warp field interferometer that will be able to measure spacetime disturbances down to 150nm. Recent work published by White [1] [2] [3] suggests that it may be possible to engineer spacetime creating conditions similar to what drives the expansion of the cosmos. Although the expected magnitude of the effect would be tiny, it may be a "Chicago pile" moment for this area of physics.

  2. Reconfigurable Control of a Ship Propulsion Plant

    DEFF Research Database (Denmark)

    Blanke, M.; Izadi-Zamanabadi, Roozbeh

    1998-01-01

    -tolerant control is a fairly new area. Thise paper presents a ship propulsion system as a benchmark that should be useful as a platform for the development of new ideas and a comparison of methods. The benchmark has two main elements. One is the development of efficient FDI algorithms, and the other...

  3. On-Orbit Propulsion OMS/RCS

    Science.gov (United States)

    Hurlbert, Eric A.

    2001-01-01

    This slide presentation reviews the Space Shuttle's On-Orbit Propulsion systems: the Orbital Maneuvering System (OMS) and the Reaction Control System (RCS). The functions of each of the systems is described, and the diagrams of the systems are presented. The OMS/RCS thruster is detailed and a trade study comparison of non-toxic propellants is presented.

  4. Statistical modelling for ship propulsion efficiency

    DEFF Research Database (Denmark)

    Petersen, Jóan Petur; Jacobsen, Daniel J.; Winther, Ole

    2012-01-01

    This paper presents a state-of-the-art systems approach to statistical modelling of fuel efficiency in ship propulsion, and also a novel and publicly available data set of high quality sensory data. Two statistical model approaches are investigated and compared: artificial neural networks...

  5. Radial-Gap Motor for Ship Propulsion

    Science.gov (United States)

    Yanamoto, Toshiyuki; Yokoyama, Minoru

    The KHI team has developed radial gap high-temperature superconducting (HTS) motors of three sizes, 1 MW-class, 3 MW, and 20 MW, to be used for electric propulsion systems for ships. The volumetric torque density of the assembled 3 MW HTS motor was recorded at 40 kNm/m3 in the load test; the world's highest in the class.

  6. Wheelchair propulsion technique at different speeds

    NARCIS (Netherlands)

    Veeger, DirkJan (H. E. J.); van der Woude, L H; Rozendal, R H

    1989-01-01

    To study wheelchair propulsion technique at different speeds, five well-trained subjects propelled a wheelchair on a treadmill. Measurements were made at four belt speeds of 0.56-1.39 m/s and against slopes of 2 and 3 degrees. Cardiorespiratory data were collected. Three consecutive strokes were fil

  7. New propulsion components for electric vehicles

    Science.gov (United States)

    Secunde, R. R.

    1983-01-01

    Improved component technology is described. This includes electronically commutated permanent magnet motors of both drum and disk configurations, an unconventional brush commutated motor, ac induction motors, various controllers, transmissions and complete systems. One or more of these approaches to electric vehicle propulsion may eventually displace presently used controllers and brush commutated dc motors. Previously announced in STAR as N83-25982

  8. The Numerical Propulsion System Simulation: An Overview

    Science.gov (United States)

    Lytle, John K.

    2000-01-01

    Advances in computational technology and in physics-based modeling are making large-scale, detailed simulations of complex systems possible within the design environment. For example, the integration of computing, communications, and aerodynamics has reduced the time required to analyze major propulsion system components from days and weeks to minutes and hours. This breakthrough has enabled the detailed simulation of major propulsion system components to become a routine part of designing systems, providing the designer with critical information about the components early in the design process. This paper describes the development of the numerical propulsion system simulation (NPSS), a modular and extensible framework for the integration of multicomponent and multidisciplinary analysis tools using geographically distributed resources such as computing platforms, data bases, and people. The analysis is currently focused on large-scale modeling of complete aircraft engines. This will provide the product developer with a "virtual wind tunnel" that will reduce the number of hardware builds and tests required during the development of advanced aerospace propulsion systems.

  9. New diesel-electric propulsion system topologies

    Energy Technology Data Exchange (ETDEWEB)

    Gondoin, D.; Menneron, F. [Alstom Power Conversion (France)

    2000-07-01

    The dual star winding synchronous motor (two 3 phases independent windings) supplied from a current source has now been used for numerous direct drive ship electric propulsion systems. The shaft Power of such systems ranges from a couple MW to 25 MW. Such variable speed drive technology is mature having it installed on many ships. ALSTOM has recently introduced a family of new large electric POD thrusters (functionally comparable to large out board propulsion motors driving directly the propeller) called MERMAID{sup TM}. The most powerful of such PODs were installed on the MILLENIUM cruise ships and is rated 20.1 MW. They include a dual star winding synchronous motor supplied by current source inverters operating without any motor rotor position sensor. In parallel, ALSTOM has provided a conventional electric propulsion still involving a dual star winding synchronous motor. This motor is powered from state of the art voltage source inverters: Taking advantage of the most recent Power electronic components development, the MISTRAL cruise ship (2.9 MW) is powered through inverters based on the Pulse Width Modulation (PWM) strategy. This paper intends presenting the above technology evolutions then to marry them for the benefits of enhanced future ship electric propulsion systems. (authors)

  10. Final report for the NSF/DOE partnership in basic plasma science grant DE-FG02-06ER54906 'Laser-driven collisionless shocks in the Large Plasma Device'

    Energy Technology Data Exchange (ETDEWEB)

    Niemann, Christoph [UCLA, CA (United States); Gekelman, W. [UCLA, CA (United States); Winske, D. [LANL, NM (United States); Larsen, D. [LLNL, CA (United States)

    2012-12-14

    We have performed several thousand high-energy laser shots in the LAPD to investigate the dynamics of an exploding laser-produced plasma in a large ambient magneto-plasma. Debris-ions expanding at super-Alfvenic velocity (up to MA=1.5) expel the ambient magnetic field, creating a large (> 20 cm) diamagnetic cavity. We observed field compressions of up to B/B{sub 0} = 1.5 at the edge of the bubble, consistent with the MHD jump conditions, as well as localized electron heating at the edge of the bubble. Two-dimensional hybrid simulations reproduce these measurements well and show that the majority of the ambient ions are energized by the magnetic piston to super-Alfvenic speeds and swept outside the bubble volume. Nonlinear shear-Alfven waves ({delta}B/B{sub 0} > 25%) are radiated from the cavity with a coupling efficiency of 70% from magnetic energy in the bubble to the wave. While the data is consistent with a weak magneto-sonic shock, the experiments were severely limited by the low ambient plasma densities (10{sup 12} cm{sup -3}). 2D hybrid simulations indicate that future experiments with the new LAPD plasma source and densities in excess of 10{sup 13} cm{sup -3} will drive full-blown collisionless shocks with MA>10 over several c/wpi and shocked Larmor radii. In a separate experiment at the LANL Trident laser facility we have performed a proof-of-principle experiment at higher densities to demonstrate key elements of collisionless shocks in laser-produced magnetized plasmas with important implications to NIF. Simultaneously we have upgraded the UCLA glass-laser system by adding two large amplitude disk amplifiers from the NOVA laser and boost the on-target energy from 30 J to up to 1 kJ, making this one of the world’s largest university-scale laser systems. We now have the infrastructure in place to perform novel and unique high-impact experiments on collision-less shocks at the LAPD.

  11. High Power Light Gas Helicon Plasma Source For VASMIR

    Science.gov (United States)

    Squire, J. P.; Chang-Diaz, F. R.; Glover, T. W.; Jacobson, V. T.; McCaskill, G. E.; Winter, D. S.; Baity, F. W.; Carter, M. D.; Goulding, R. H.

    2004-01-01

    The VASIMR space propulsion development effort relies on a high power (greater than 10kW) helicon source to produce a dense flowing plasma (H, D and He) target for ion cyclotron resonance (ICR) acceleration of the ions. Subsequent expansion in an expanding magnetic field (magnetic nozzle) converts ion lunetic energy to directed momentum. This plasma source must have critical features to enable an effective propulsion device. First, it must ionize most of the input neutral flux of gas, thus producing a plasma stream with a high degree of ionization for application of ICR power. This avoids propellant waste and potential power losses due to charge exchange. Next, the plasma stream must flow into a region of high magnetic field (approximately 0.5 T) for efficient ICR acceleration. Third, the ratio of input power to plasma flux must be low, providing an energy per ion-electron pair approaching 100 eV. Lastly, the source must be robust and capable of very long life-times (years). In our helicon experiment (VX-10) we have measured a ratio of input gas to plasma flux near 100%. The plasma flows from the helicon region (B approximately 0.1 T) into a region with a peak magnetic field of 0.8 T. The energy input per ion-electron pair has been measured at 300 plus or minus 100 eV. Recent results at Oak Ridge National Laboratory (ORNL) show an enhanced efficiency mode of operation with a high power density, over 5 kW in a 5 cm diameter tube. Our helicon is presently 9 cm in diameter and operates up to 3.5 kW of input power. An upgrade to a power level of 10 kW is underway. Much of our recent work has been with a Boswell double-saddle antenna design. We are also converting the antenna design to a helical type. With these modifications, we anticipate an improvement in the ionization efficiency. This paper presents the results from scaling the helicon in the VX-10 device from 3.5 to 10 kW. We also compare the operation with a double-saddle to a helical antenna design. Finally, we

  12. High Power Light Gas Helicon Plasma Source For VASMIR

    Science.gov (United States)

    Squire, J. P.; Chang-Diaz, F. R.; Glover, T. W.; Jacobson, V. T.; McCaskill, G. E.; Winter, D. S.; Baity, F. W.; Carter, M. D.; Goulding, R. H.

    2004-01-01

    The VASIMR space propulsion development effort relies on a high power (greater than 10kW) helicon source to produce a dense flowing plasma (H, D and He) target for ion cyclotron resonance (ICR) acceleration of the ions. Subsequent expansion in an expanding magnetic field (magnetic nozzle) converts ion lunetic energy to directed momentum. This plasma source must have critical features to enable an effective propulsion device. First, it must ionize most of the input neutral flux of gas, thus producing a plasma stream with a high degree of ionization for application of ICR power. This avoids propellant waste and potential power losses due to charge exchange. Next, the plasma stream must flow into a region of high magnetic field (approximately 0.5 T) for efficient ICR acceleration. Third, the ratio of input power to plasma flux must be low, providing an energy per ion-electron pair approaching 100 eV. Lastly, the source must be robust and capable of very long life-times (years). In our helicon experiment (VX-10) we have measured a ratio of input gas to plasma flux near 100%. The plasma flows from the helicon region (B approximately 0.1 T) into a region with a peak magnetic field of 0.8 T. The energy input per ion-electron pair has been measured at 300 plus or minus 100 eV. Recent results at Oak Ridge National Laboratory (ORNL) show an enhanced efficiency mode of operation with a high power density, over 5 kW in a 5 cm diameter tube. Our helicon is presently 9 cm in diameter and operates up to 3.5 kW of input power. An upgrade to a power level of 10 kW is underway. Much of our recent work has been with a Boswell double-saddle antenna design. We are also converting the antenna design to a helical type. With these modifications, we anticipate an improvement in the ionization efficiency. This paper presents the results from scaling the helicon in the VX-10 device from 3.5 to 10 kW. We also compare the operation with a double-saddle to a helical antenna design. Finally, we

  13. Beamed-Energy Propulsion (BEP) Study

    Science.gov (United States)

    George, Patrick; Beach, Raymond

    2012-01-01

    The scope of this study was to (1) review and analyze the state-of-art in beamed-energy propulsion (BEP) by identifying potential game-changing applications, (2) formulate a roadmap of technology development, and (3) identify key near-term technology demonstrations to rapidly advance elements of BEP technology to Technology Readiness Level (TRL) 6. The two major areas of interest were launching payloads and space propulsion. More generally, the study was requested and structured to address basic mission feasibility. The attraction of beamed-energy propulsion (BEP) is the potential for high specific impulse while removing the power-generation mass. The rapid advancements in high-energy beamed-power systems and optics over the past 20 years warranted a fresh look at the technology. For launching payloads, the study concluded that using BEP to propel vehicles into space is technically feasible if a commitment to develop new technologies and large investments can be made over long periods of time. From a commercial competitive standpoint, if an advantage of beamed energy for Earth-to-orbit (ETO) is to be found, it will rest with smaller, frequently launched payloads. For space propulsion, the study concluded that using beamed energy to propel vehicles from low Earth orbit to geosynchronous Earth orbit (LEO-GEO) and into deep space is definitely feasible and showed distinct advantages and greater potential over current propulsion technologies. However, this conclusion also assumes that upfront infrastructure investments and commitments to critical technologies will be made over long periods of time. The chief issue, similar to that for payloads, is high infrastructure costs.

  14. Thermal Propulsion Capture System Heat Exchanger Design

    Science.gov (United States)

    Richard, Evan M.

    2016-01-01

    One of the biggest challenges of manned spaceflight beyond low earth orbit and the moon is harmful radiation that astronauts would be exposed to on their long journey to Mars and further destinations. Using nuclear energy has the potential to be a more effective means of propulsion compared to traditional chemical engines (higher specific impulse). An upper stage nuclear engine would allow astronauts to reach their destination faster and more fuel efficiently. Testing these engines poses engineering challenges due to the need to totally capture the engine exhaust. The Thermal Propulsion Capture System is a concept for cost effectively and safely testing Nuclear Thermal Engines. Nominally, hydrogen exhausted from the engine is not radioactive, but is treated as such in case of fuel element failure. The Thermal Propulsion Capture System involves injecting liquid oxygen to convert the hydrogen exhaust into steam. The steam is then cooled and condensed into liquid water to allow for storage. The Thermal Propulsion Capture System concept for ground testing of a nuclear powered engine involves capturing the engine exhaust to be cooled and condensed before being stored. The hydrogen exhaust is injected with liquid oxygen and burned to form steam. That steam must be cooled to saturation temperatures before being condensed into liquid water. A crossflow heat exchanger using water as a working fluid will be designed to accomplish this goal. Design a cross flow heat exchanger for the Thermal Propulsion Capture System testing which: Eliminates the need for water injection cooling, Cools steam from 5800 F to saturation temperature, and Is efficient and minimizes water requirement.

  15. 2001 Numerical Propulsion System Simulation Review

    Science.gov (United States)

    Lytle, John; Follen, Gregory; Naiman, Cynthia; Veres, Joseph; Owen, Karl; Lopez, Isaac

    2002-01-01

    The technologies necessary to enable detailed numerical simulations of complete propulsion systems are being developed at the NASA Glenn Research Center in cooperation with industry, academia and other government agencies. Large scale, detailed simulations will be of great value to the nation because they eliminate some of the costly testing required to develop and certify advanced propulsion systems. In addition, time and cost savings will be achieved by enabling design details to be evaluated early in the development process before a commitment is made to a specific design. This concept is called the Numerical Propulsion System Simulation (NPSS). NPSS consists of three main elements: (1) engineering models that enable multidisciplinary analysis of large subsystems and systems at various levels of detail, (2) a simulation environment that maximizes designer productivity, and (3) a cost-effective, high-performance computing platform. A fundamental requirement of the concept is that the simulations must be capable of overnight execution on easily accessible computing platforms. This will greatly facilitate the use of large-scale simulations in a design environment. This paper describes the current status of the NPSS with specific emphasis on the progress made over the past year on air breathing propulsion applications. Major accomplishments include the first formal release of the NPSS object-oriented architecture (NPSS Version 1) and the demonstration of a one order of magnitude reduction in computing cost-to-performance ratio using a cluster of personal computers. The paper also describes the future NPSS milestones, which include the simulation of space transportation propulsion systems in response to increased emphasis on safe, low cost access to space within NASA's Aerospace Technology Enterprise. In addition, the paper contains a summary of the feedback received from industry partners on the fiscal year 2000 effort and the actions taken over the past year to

  16. 2000 Numerical Propulsion System Simulation Review

    Science.gov (United States)

    Lytle, John; Follen, Greg; Naiman, Cynthia; Veres, Joseph; Owen, Karl; Lopez, Isaac

    2001-01-01

    The technologies necessary to enable detailed numerical simulations of complete propulsion systems are being developed at the NASA Glenn Research Center in cooperation with industry, academia, and other government agencies. Large scale, detailed simulations will be of great value to the nation because they eliminate some of the costly testing required to develop and certify advanced propulsion systems. In addition, time and cost savings will be achieved by enabling design details to be evaluated early in the development process before a commitment is made to a specific design. This concept is called the Numerical Propulsion System Simulation (NPSS). NPSS consists of three main elements: (1) engineering models that enable multidisciplinary analysis of large subsystems and systems at various levels of detail, (2) a simulation environment that maximizes designer productivity, and (3) a cost-effective. high-performance computing platform. A fundamental requirement of the concept is that the simulations must be capable of overnight execution on easily accessible computing platforms. This will greatly facilitate the use of large-scale simulations in a design environment. This paper describes the current status of the NPSS with specific emphasis on the progress made over the past year on air breathing propulsion applications. Major accomplishments include the first formal release of the NPSS object-oriented architecture (NPSS Version 1) and the demonstration of a one order of magnitude reduction in computing cost-to-performance ratio using a cluster of personal computers. The paper also describes the future NPSS milestones, which include the simulation of space transportation propulsion systems in response to increased emphasis on safe, low cost access to space within NASA'S Aerospace Technology Enterprise. In addition, the paper contains a summary of the feedback received from industry partners on the fiscal year 1999 effort and the actions taken over the past year to

  17. Mirror fusion propulsion system: A performance comparison with alternate propulsion systems for the manned Mars Mission

    Science.gov (United States)

    Schulze, Norman R.; Carpenter, Scott A.; Deveny, Marc E.; Oconnell, T.

    1993-06-01

    The performance characteristics of several propulsion technologies applied to piloted Mars missions are compared. The characteristics that are compared are Initial Mass in Low Earth Orbit (IMLEO), mission flexibility, and flight times. The propulsion systems being compared are both demonstrated and envisioned: Chemical (or Cryogenic), Nuclear Thermal Rocket (NTR) solid core, NTR gas core, Nuclear Electric Propulsion (NEP), and a mirror fusion space propulsion system. The proposed magnetic mirror fusion reactor, known as the Mirror Fusion Propulsion System (MFPS), is described. The description is an overview of a design study that was conducted to convert a mirror reactor experiment at Lawrence Livermore National Lab (LLNL) into a viable space propulsion system. Design principles geared towards minimizing mass and maximizing power available for thrust are identified and applied to the LLNL reactor design, resulting in the MFPS. The MFPS' design evolution, reactor and fuel choices, and system configuration are described. Results of the performance comparison shows that the MFPS minimizes flight time to 60 to 90 days for flights to Mars while allowing continuous return-home capability while at Mars. Total MFPS IMLEO including propellant and payloads is kept to about 1,000 metric tons.

  18. Mirror fusion propulsion system - A performance comparison with alternate propulsion systems for the manned Mars mission

    Science.gov (United States)

    Deveny, M.; Carpenter, S.; O'Connell, T.; Schulze, N.

    1993-06-01

    The performance characteristics of several propulsion technologies applied to piloted Mars missions are compared. The characteristics that are compared are Initial Mass in Low Earth Orbit (IMLEO), mission flexibility, and flight times. The propulsion systems being compared are both demonstrated and envisioned: Chemical (or Cryogenic), Nuclear Thermal Rocket (NTR) solid core, NTR gas core, Nuclear Electric Propulsion (NEP), and a mirror fusion space propulsion system. The proposed magnetic mirror fusion reactor, known as the Mirror Fusion Propulsion System (MFPS), is described. The description is an overview of a design study that was conducted to convert a mirror reactor experiment at Lawrence Livermore National Lab (LLNL) into a viable space propulsion system. Design principles geared towards minimizing mass and maximizing power available for thrust are identified and applied to the LLNL reactor design, resulting in the MFPS. The MFPS' design evolution, reactor and fuel choices, and system configuration are described. Results of the performance comparison shows that the MFPS minimizes flight time to 60 to 90 days for flights to Mars while allowing continuous return-home capability while at Mars. Total MFPS IMLEO including propellant and payloads is kept to about 1,000 metric tons.

  19. Propulsion System and Orbit Maneuver Integration in CubeSats: Trajectory Control Strategies Using Micro Ion Propulsion

    Science.gov (United States)

    Hudson, Jennifer; Martinez, Andres; Petro, Andrew

    2015-01-01

    The Propulsion System and Orbit Maneuver Integration in CubeSats project aims to solve the challenges of integrating a micro electric propulsion system on a CubeSat in order to perform orbital maneuvers and control attitude. This represents a fundamentally new capability for CubeSats, which typically do not contain propulsion systems and cannot maneuver far beyond their initial orbits.

  20. Propulsion Aspects of Unmanned and Manned Lunar Landings

    Directory of Open Access Journals (Sweden)

    D. S. CARTON

    1963-06-01

    Full Text Available Direct vertical descent and descent from an intermediate
    lunar parking orbit are discussed. The difference in philosophy between
    langing a payload of instruments and of humans is considered in some
    detail. The " human return to eartli " problem is separated from the
    " mission success-failure " criteria.
    Some anticipated performances are given in terms of payload ratio
    for various propulsion-cehicle vcaling constants for botli forms of descent.
    Manned descent from parking orbit is discussed with respect to the
    general problem of maximising the probability of human return. .Minimum
    impulse, high safety and long low approaches are mentioned. In conclusion
    the problem of abort during the final powered descent is considered for
    fixed and variable geometry vehicles.

  1. Design Optimization of Gas Generator Hybrid Propulsion Boosters

    Science.gov (United States)

    Weldon, Vincent; Phillips, Dwight; Fink, Larry

    1990-01-01

    A methodology used in support of a study for NASA/MSFC to optimize the design of gas generator hybrid propulsion booster for uprating the National Space Transportation System (NSTS) is presented. The objective was to compare alternative configurations for this booster approach, optimizing each candidate concept on different bases, in order to develop data for a trade table on which a final decision was based. The methodology is capable of processing a large number of independent and dependent variables, adjusting the overall subsystems characteristics to arrive at a best compromise integrated design to meet various specific optimization criteria subject to selected constraints. For each system considered, a detailed weight statement was generated along with preliminary cost and reliability estimates.

  2. The NASA-Lewis program on fusion energy for space power and propulsion, 1958-1978

    Science.gov (United States)

    Schulze, Norman R.; Roth, J. Reece

    1990-01-01

    An historical synopsis is provided of the NASA-Lewis research program on fusion energy for space power and propulsion systems. It was initiated to explore the potential applications of fusion energy to space power and propulsion systems. Some fusion related accomplishments and program areas covered include: basic research on the Electric Field Bumpy Torus (EFBT) magnetoelectric fusion containment concept, including identification of its radial transport mechanism and confinement time scaling; operation of the Pilot Rig mirror machine, the first superconducting magnet facility to be used in plasma physics or fusion research; operation of the Superconducting Bumpy Torus magnet facility, first used to generate a toroidal magnetic field; steady state production of neutrons from DD reactions; studies of the direct conversion of plasma enthalpy to thrust by a direct fusion rocket via propellant addition and magnetic nozzles; power and propulsion system studies, including D(3)He power balance, neutron shielding, and refrigeration requirements; and development of large volume, high field superconducting and cryogenic magnet technology.

  3. Controlling the Eccentricity of Polar Lunar Orbits with Low-Thrust Propulsion

    Directory of Open Access Journals (Sweden)

    O. C. Winter

    2009-01-01

    Full Text Available It is well known that lunar satellites in polar orbits suffer a high increase on the eccentricity due to the gravitational perturbation of the Earth. That effect is a natural consequence of the Lidov-Kozai resonance. The final fate of such satellites is the collision with the Moon. Therefore, the control of the orbital eccentricity leads to the control of the satellite's lifetime. In the present work we study this problem and introduce an approach in order to keep the orbital eccentricity of the satellite at low values. The whole work was made considering two systems: the 3-body problem, Moon-Earth-satellite, and the 4-body problem, Moon-Earth-Sun-satellite. First, we simulated the systems considering a satellite with initial eccentricity equals to 0.0001 and a range of initial altitudes between 100 km and 5000 km. In such simulations we followed the evolution of the satellite's eccentricity. We also obtained an empirical expression for the length of time needed to occur the collision with the Moon as a function of the initial altitude. The results found for the 3-body model were not significantly different from those found for the 4-body model. Secondly, using low-thrust propulsion, we introduced a correction of the eccentricity every time it reached the value 0.05. These simulations were made considering a set of different thrust values, from 0.1 N up to 0.4 N which can be obtained by using Hall Plasma Thrusters. In each run we measured the length of time, needed to correct the eccentricity value (from e=0.04 to e=0.05. From these results we obtained empirical expressions of this time as a function of the initial altitude and as a function of the thrust value.

  4. The Plasma Chemistry of Polymer Surfaces

    CERN Document Server

    Friedrich, Jö

    2012-01-01

    This book illustrates plasma properties, polymer characteristics, surface specifics, and how to purposefully combine plasma and polymer chemistry. In so doing, it covers plasma polymerization, surface functionalization, etching, crosslinking, and deposition of monotype functional-group-bearing plasma polymers. It explains different techniques and plasma types, such as pressure-pulsed, remote, low-wattage plasmas and plasma polymerization in liquids. Finally, among the numerous applications discussed are plasmas for chemical synthesis, industrial processes or the modification of membranes and p

  5. Time-resolved imaging for the dynamic study of ablative laser propulsion

    Science.gov (United States)

    Lin, Jun

    Time-resolved imaging techniques have been developed and used for a study of plasma dynamics in Ablative Laser Propulsion (ALP), an advanced propulsion technique utilizing the momentum of laser-ablated solid propellants for rocket thrust. We used a gated Intensified Charge Coupled Device camera to record light emission from laser-induced plasma. The plasma was ignited by 100-ps wide laser pulses, of energy 35 mJ at 532 nm wavelength. The required algorithms for processing 2-D digital images of the plasma and deriving the plasma edge velocities were also developed. The 2-D angular distribution functions for both plasma velocity and emission intensity were deduced from these measurements for the first time. The fitting functions for observed angular distributions were derived for a wide range of elements, such as C (graphite), Al, Si, Cu, Fe, Zn, Sn and Pb. Results show that the specific impulses (I sp) vary between 2.6 x 103 s (carbon) and 1.2 x 103 s (zinc), which are in excellent agreement with previously conducted Force Measurements. We also developed a digital video imaging (DVI) technique to study the dynamics of a ballistic pendulum driven by TEA CO2 laser pulses. The pulses had 200 ns pulsewidth and 10.6 J energy at 10.6 mum wavelength. The experiment using the DVI technique in the range of pressures from 3.5 mTorr to 1 atmosphere has been developed for the first time. Coupling coefficients (Cm) and mass removal rates as functions of pressure were deduced from these measurements. The technique allowed the addressing of the partition of the energy and momentum between air breakdown and target ablation. The study was performed on Aluminum targets. The partition functions show a sharp transition region between 1.0 and 10 Torr, where the momentum and energy imparted to the target via ablation appear comparable to those due to air breakdown. Our observations show that currently developing air-breathing laser-propulsion schemes would hardly support launching

  6. Propulsive Small Expendable Deployer System (ProSEDS)

    Science.gov (United States)

    Curtis, Leslie; Johnson, Les; Brown, Norman S. (Technical Monitor)

    2002-01-01

    The Propulsive Small Expendable Deployer System (ProSEDS) space experiment will demonstrate the use of an electrodynamic tether propulsion system to generate thrust in space by decreasing the orbital altitude of a Delta 11 Expendable Launch Vehicle second stage. ProSEDS, which is planned on an Air Force GPS Satellite replacement mission in June 2002, will use the flight proven Small Expendable Deployer System (SEDS) to deploy a tether (5 km bare wire plus 10 km non-conducting Dyneema) from a Delta 11 second stage to achieve approx. 0.4N drag thrust. ProSEDS will utilize the tether-generated current to provide limited spacecraft power. The ProSEDS instrumentation includes Langmuir probes and Differential Ion Flux Probes, which will determine the characteristics of the ambient ionospheric plasma. Two Global Positioning System (GPS) receivers will be used (one on the Delta and one on the endmass) to help determine tether dynamics and to limit transmitter operations to occasions when the spacecraft is over selected ground stations. The flight experiment is a precursor to the more ambitious electrodynamic tether upper stage demonstration mission, which will be capable of orbit raising, lowering and inclination changes-all using electrodynamic thrust. An immediate application of ProSEDS technology is for the removal of spent satellites for orbital debris mitigation. In addition to the use of this technology to provide orbit transfer and debris mitigation it may also be an attractive option for future missions to Jupiter and any other planetary body with a magnetosphere.

  7. Advanced propulsion options for the Mars cargo mission

    Science.gov (United States)

    Frisbee, Robert H.; Blandino, John J.; Sercel, Joel C.; Sargent, Mark S.; Gowda, Nandini

    1990-01-01

    Several advanced propulsion options for a split-mission piloted Mars exploration scenario are presented. The primary study focus is on identifying concepts that can reduce total initial mass in low earth orbit (IMLEO) for the cargo delivery portion of the mission; in addition, concepts that can reduce the trip time of the piloted option are assessed. The propulsion options considered are nuclear thermal propulsion, solar sails, multimegawatt-class nuclear electric propulsion, solar electric propulsion, magnetic sails, mass drivers, rail guns, solar thermal rockets, beamed-energy propulsion systems, and tethers. For the cargo mission, solar sails are found to provide the greatest mass savings over the baseline chemical system, although they suffer from having very long trip times; a good performance compromise between a low IMLEO and a short trip time can be obtained using multimegawatt-class nuclear electric propulsion systems.

  8. Resource Prospector Propulsion System Cold Flow Testing

    Science.gov (United States)

    Williams, Hunter; Holt, Kim; Addona, Brad; Trinh, Huu

    2015-01-01

    Resource Prospector (RP) is a NASA mission being led by NASA Ames Research Center with current plans to deliver a scientific payload package aboard a rover to the lunar surface. As part of an early risk reduction activity, Marshall Space Flight Center (MSFC) and Johnson Space Flight Center (JSC) have jointly developed a government-version concept of a lunar lander for the mission. The spacecraft consists of two parts, the lander and the rover which carries the scientific instruments. The lander holds the rover during launch, cruise, and landing on the surface. Following terminal descent and landing the lander portion of the spacecraft become dormant after the rover embarks on the science mission. The lander will be equipped with a propulsion system for lunar descent and landing, as well as trajectory correction and attitude control maneuvers during transit to the moon. Hypergolic propellants monomethyl hydrazine and nitrogen tetroxide will be used to fuel sixteen 70-lbf descent thrusters and twelve 5-lbf attitude control thrusters. A total of four metal-diaphragm tanks, two per propellant, will be used along with a high-pressure composite-overwrapped pressure vessel for the helium pressurant gas. Many of the major propulsion system components are heritage missile hardware obtained by NASA from the Air Force. In parallel with the flight system design activities, a simulated propulsion system based on flight drawings was built for conducting a series of water flow tests to characterize the transient fluid flow of the propulsion system feed lines and to verify the critical operation modes such as system priming, waterhammer, and crucial mission duty cycles. The primary objective of the cold flow testing was to simulate the RP propulsion system fluid flow operation through water flow testing and to obtain data for anchoring analytical models. The models will be used to predict the transient and steady state flow behaviors in the actual flight operations. All design and

  9. Revisiting alpha decay-based near-light-speed particle propulsion.

    Science.gov (United States)

    Zhang, Wenwu; Liu, Zhen; Yang, Yang; Du, Shiyu

    2016-08-01

    Interplanet and interstellar travels require long-term propulsion of spacecrafts, whereas the conventional schemes of propulsion are limited by the velocity of the ejected mass. In this study, alpha particles released by nuclear decay are considered as a potential solution for long-time acceleration. The principle of near-light-speed particle propulsion (NcPP) was elucidated and the stopping and range of ions in matter (SRIM) was used to predict theoretical accelerations. The results show that NcPP by means of alpha decay is feasible for long-term spacecraft propulsion and posture adjustment in space. A practical NcPP sail can achieve a speed >150km/s and reach the brink of the solar system faster than a mass equivalent solar sail. Finally, to significantly improve the NcPP sail, the hypothesis of stimulated acceleration of nuclear decay (SAND) was proposed, which may shorten the travel time to Mars to within 20 days. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Nuclear-electric magnetohydrodynamic propulsion for submarine. Master's thesis

    Energy Technology Data Exchange (ETDEWEB)

    Bednarczyk, A.A.

    1989-05-01

    The thesis analyzes the superconducting technology for a shipboard magnetohydrodynamic propulsion system. Based on the the principles of magnetohydrodynamics (MHD), the concept of open-water efficiency was used to optimize the preliminary design of the MHD thruster. After the baseline submarine hull modeled after the Los Angeles class submarine was selected, propulsive efficiency and the top speed for four variant MHD submarines were evaluated. The design criteria were set at a 100-MWt nuclear reactor power upper limit and a requirement of 30 knots for the top speed. This required advanced reactor plants and advanced energy conversion systems. The selection of High Temperature Gas Reactor (HTGR) and Liquid-Metal Fast Breeder Reactor (LMFBR) was based on the combined merits of safety, environmental impact, high source temperature and maximum-volume power density (KW/L). With the reactor outlet temperatures of 2000 K, direct-cycle energy conversion-systems gave the best results in terms of thermal efficiency and propulsion plant power density. Two energy conversion systems selected were closed-cycle gas turbine geared to a superconducting generator, and closed-cycle liquid-metal MHD generator. Based on submarine reliability and safety, the option of using an intermediate heat exchanger was also considered. Finally, non-nuclear support systems affected by the advanced power plant and MHD propulsion, stressing submarine safety, are proposed.

  11. Nuclear Cryogenic Propulsion Stage Affordable Development Strategy

    Science.gov (United States)

    Doughty, Glen E.; Gerrish, H. P.; Kenny, R. J.

    2014-01-01

    The development of nuclear power for space use in nuclear thermal propulsion (NTP) systems will involve significant expenditures of funds and require major technology development efforts. The development effort must be economically viable yet sufficient to validate the systems designed. Efforts are underway within the National Aeronautics and Space Administration's (NASA) Nuclear Cryogenic Propulsion Stage Project (NCPS) to study what a viable program would entail. The study will produce an integrated schedule, cost estimate and technology development plan. This will include the evaluation of various options for test facilities, types of testing and use of the engine, components, and technology developed. A "Human Rating" approach will also be developed and factored into the schedule, budget and technology development approach.

  12. Spectrally resolved resonant propulsion of dielectric microspheres

    CERN Document Server

    Li, Yangcheng; Limberopoulos, Nicholaos I; Urbas, Augustine M; Astratov, Vasily N

    2015-01-01

    Use of resonant light forces opens up a unique approach to high-volume sorting of microspherical resonators with much higher uniformity of resonances compared to that in coupled-cavity structures obtained by the best semiconductor technologies. In this work, the spectral response of the propulsion forces exerted on polystyrene microspheres near tapered microfibers is directly observed. The measurements are based on the control of the detuning between the tunable laser and internal resonances in each sphere with accuracy higher than the width of the resonances. The measured spectral shape of the propulsion forces correlates well with the whispering-gallery mode resonances in the microspheres. The existence of a stable radial trap for the microspheres propelled along the taper is demonstrated. The giant force peaks observed for 20-{\\mu}m spheres are found to be in a good agreement with a model calculation demonstrating an efficient use of the light momentum for propelling the microspheres.

  13. Interplanetary space transport using inertial fusion propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Orth, C.D.

    1998-04-20

    In this paper, we indicate how the great advantages that ICF offers for interplanetary propulsion can be accomplished with the VISTA spacecraft concept. The performance of VISTA is expected to surpass that from other realistic technologies for Mars missions if the energy gain achievable for ICF targets is above several hundred. Based on the good performance expected from the U. S. National Ignition Facility (NIF), the requirements for VISTA should be well within the realm of possibility if creative target concepts such as the fast ignitor can be developed. We also indicate that a 6000-ton VISTA can visit any planet in the solar system and return to Earth in about 7 years or less without any significant physiological hazards to astronauts. In concept, VISTA provides such short-duration missions, especially to Mars, that the hazards from cosmic radiation and zero gravity can be reduced to insignificant levels. VISTA therefore represents a significant step forward for space-propulsion concepts.

  14. Nuclear power propulsion system for spacecraft

    Science.gov (United States)

    Koroteev, A. S.; Oshev, Yu. A.; Popov, S. A.; Karevsky, A. V.; Solodukhin, A. Ye.; Zakharenkov, L. E.; Semenkin, A. V.

    2015-12-01

    The proposed designs of high-power space tugs that utilize solar or nuclear energy to power an electric jet engine are reviewed. The conceptual design of a nuclear power propulsion system (NPPS) is described; its structural diagram, gas circuit, and electric diagram are discussed. The NPPS incorporates a nuclear reactor, a thermal-to-electric energy conversion system, a system for the conversion and distribution of electric energy, and an electric propulsion system. Two criterion parameters were chosen in the considered NPPS design: the temperature of gaseous working medium at the nuclear reactor outlet and the rotor speed of turboalternators. The maintenance of these parameters at a given level guarantees that the needed electric voltage is generated and allows for power mode control. The processes of startup/shutdown and increasing/reducing the power, the principles of distribution of electric energy over loads, and the probable emergencies for the proposed NPPS design are discussed.

  15. Propulsion Mechanism of Catalytic Microjet Engines

    Science.gov (United States)

    Fomin, Vladimir M.; Hippler, Markus; Magdanz, Veronika; Soler, Lluís; Sanchez, Samuel; Schmidt, Oliver G.

    2014-01-01

    We describe the propulsion mechanism of the catalytic microjet engines that are fabricated using rolled-up nanotech. Microjets have recently shown numerous potential applications in nanorobotics but currently there is a lack of an accurate theoretical model that describes the origin of the motion as well as the mechanism of self-propulsion. The geometric asymmetry of a tubular microjet leads to the development of a capillary force, which tends to propel a bubble toward the larger opening of the tube. Because of this motion in an asymmetric tube, there emerges a momentum transfer to the fluid. In order to compensate this momentum transfer, a jet force acting on the tube occurs. This force, which is counterbalanced by the linear drag force, enables tube velocities of the order of 100 μm/s. This mechanism provides a fundamental explanation for the development of driving forces that are acting on bubbles in tubular microjets. PMID:25177214

  16. Solar Thermal Propulsion Investigation Activities in NAL

    Science.gov (United States)

    Sahara, Hironori; Shimizu, Morio

    2004-03-01

    We successfully developed the ultra-light single shell paraboloidal concentrators made of a sheet of aluminized or silvered polymer membrane, formed via plastic deformation due to stress relaxation under high temperature condition by means of Straight Formation Method. Furthermore, we improved the precision of the concentrators by taking the elastic deformation of residual stress into consideration, and obtained the best concentration performance equivalent to a highly precise paraboloidal glass mirror. In solar concentration, the diameter of solar focal image via the single shell polymer concentrator is almost equal to that via the glass mirror and they are twice as large as that of the theoretical. The ultra-light single shell polymer concentrators are very useful for the concentrator in solar thermal propulsion system and solar power station in particular, and also promising item for beamed energy propulsion.

  17. Waves from Propulsion Systems of Fast Ferries

    DEFF Research Database (Denmark)

    Taatø, Søren Haugsted; Aage, Christian; Arnskov, Michael M.

    1998-01-01

    Waves from fast ferries have become an environmental problem of growing concern to the public. Fast ferries produce not only higher waves than conventional ships but also fundamentally different wave systems when they sail at supercritical speeds. Hitherto, ship waves have been considered as being...... generated by the ship hulls alone. Whereas this assumption may be reasonable for conventional ships with large hulls and limited propulsive power, the situation is different for fast ferries with their smaller hulls and very large installed power. A simple theoretical model and a series of model tests...... on a monohull fast ferry seem to indicate that a substantial part of the wave-making can be directly attributed to the propulsion system itself. Thus, two wave systems are created with different phases, but with similar frequency contents, which means that they merge into one system behind the ship, very...

  18. Solar Electric Propulsion for Future NASA Missions

    Science.gov (United States)

    Landis, Geoffrey A.; Oleson, Steven R.; Mercer, Carolyn R.

    2015-01-01

    Use of high-power solar arrays, at power levels ranging from approximately 500 KW to several megawatts, has been proposed for a solar-electric propulsion (SEP) demonstration mission, using a photovoltaic array to provide energy to a high-power xenon-fueled engine. One of the proposed applications of the high-power SEP technology is a mission to rendezvous with an asteroid and move it into lunar orbit for human exploration, the Asteroid Retrieval mission. The Solar Electric Propulsion project is dedicated to developing critical technologies to enable trips to further away destinations such as Mars or asteroids. NASA needs to reduce the cost of these ambitious exploration missions. High power and high efficiency SEP systems will require much less propellant to meet those requirements.

  19. Solar Thermal Propulsion for Microsatellite Manoeuvring

    Science.gov (United States)

    2004-09-01

    materials behaviour, orbital mechanics, and spacecraft attitude control. Nuclear propulsion necessitates an understanding of nuclear reactor design and...1997] and Kunii/ Levenspiel [Rhodes, 2001]. Most of these correlations provide regimes of applicability, in terms of the flow Reynolds’ number. This...1986] indicates the following reaction is responsible for erosion of graphite in certain “high”-temperature (950-1,200 K) nuclear reactor systems

  20. Viscous propulsion in active transversely isotropic media

    Science.gov (United States)

    Cupples, G.; Dyson, R. J.; Smith, D. J.

    2017-02-01

    Taylor's swimming sheet is a classical model of microscale propulsion and pumping. Many biological fluids and substances are fibrous, having a preferred direction in their microstructure; for example cervical mucus is formed of polymer molecules which create an oriented fibrous network. Moreover, suspensions of elongated motile cells produce a form of active oriented matter. To understand how these effects modify viscous propulsion, we extend Taylor's classical model of small-amplitude zero-Reynolds-number propulsion of a 'swimming sheet' via the transversely-isotropic fluid model of Ericksen, which is linear in strain rate and possesses a distinguished direction. The energetic costs of swimming are significantly altered by all rheological parameters and the initial fibre angle. Propulsion in a passive transversely-isotropic fluid produces an enhanced mean rate of working, independent of the initial fibre orientation, with an approximately linear dependence of energetic cost on the extensional and shear enhancements to the viscosity caused by fibres. In this regime the mean swimming velocity is unchanged from the Newtonian case. The effect of the constant term in Ericksen's model for the stress, which can be identified as a fibre tension or alternatively a stresslet characterising an active fluid, is also considered. This stress introduces an angular dependence and dramatically changes the streamlines and flow field; fibres aligned with the swimming direction increase the energetic demands of the sheet. The constant fibre stress may result in a reversal of the mean swimming velocity and a negative mean rate of working if sufficiently large relative to the other rheological parameters.

  1. Integrated modular propulsion for launch vehicles

    Science.gov (United States)

    Knuth, William; Crawford, Roger; Litchford, Ron

    1993-01-01

    The paper proposes a modular approach to rocket propulsion which offers a versatile method for realizing the goals of low cost, safety, reliability, and ease of operation. It is shown that, using practical modules made up of only 4-6 individual elements, it is possible to achieve thrust levels of 2-3 mln lbf and more, using turbomachinery, thrust chambers, lines, and valves about the size of SSME hardware. The approach is illustrated by a LOX/LH2 configuration.

  2. Isomer Energy Source for Space Propulsion Systems

    Science.gov (United States)

    2004-03-01

    Nuclear Thermal Rocket PBR Particle-Bed Reactor SNTP Space Nuclear Thermal Propulsion TIC Triggered Isomer Core TIHE Triggered Isomer Heat...energy in a nuclear thermal rocket (NTR) configuration. This includes study of the current state of triggered isomer research, an investigation of 4... thermal rocket this means that heat from the reactive core must be prevented from raising the temperature of the propellant prior to its release from

  3. Disruptive Propulsive Technologies for European Space Missions

    OpenAIRE

    2013-01-01

    Advanced space technologies have been reviewed and analysed in view of heavy interplanetary missions of interest for Europe and European industry capabilities. Among the missions of interest: o Heavy robotic missions to outer planets, o Asteroid deflection missions, o Interplanetary manned mission (at longer term). These missions involve high speed increments, generally beyond the capability of chemical propulsion (except if gravitational swing-by can be used). For missions bey...

  4. Twenty-First Century Space Propulsion Study

    Science.gov (United States)

    1990-10-01

    dependence of coherent radiation from crystals", Physical Review Letters 58, 1176-1179 (23 March 1987). 11 Y. Aharonov , F.T. Avignone, III, A. Casher , and...B-i C THE WEBER EFFECT ....................................... C-i D 2020 A.D. TECHNOLOGIES FOR AFAL...most energetic fuel known. The most effective particle of antimatter for propulsion is the antiproton rather than the antielectron. To make a compact

  5. Thermodynamics of Angular Propulsion in Fluids

    Science.gov (United States)

    Polihronov, Jeliazko G.; Straatman, Anthony G.

    2012-08-01

    The presented study examines the energetics of confined fluid flow in a rotating reference frame. Parallels are drawn to the corresponding scenario of rectilinear motion, where ejection of fluid results in linear propulsion of the frame. Absorption of flow energy into the frame motion leads to cooling of the ejected fluid. Relevance of the observed energetics to the temperature separation phenomenon in Ranque-Hilsch vortex tubes is discussed.

  6. SERAPHIM: A propulsion technology for fast trains

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, B.; Turman, B.; Marder, B.; Rohwein, G.; Aeschliman, D.; Cowan, B.

    1995-06-01

    The Segmented Rail Phased Induction Motor (SERAPHIM) is a compact, pulsed linear induction motor (LIM) offering a unique capability for very high speed train propulsion. It uses technology developed for the Sandia coilgun, an electromagnetic launcher designed to accelerate projectiles to several kilometers per second. Both aluminum cylinders and plates were accelerated to a kilometer per second (Mach 3) by passing through a sequence of coils which were energized at the appropriate time. Although this technology was developed for ultra-high velocity, it can be readily adapted to train propulsion for which, at sea level, the power required to overcome air resistance limits the operational speed to a more modest 300 mph. Here, the geometry is reversed. The coils are on the vehicle and the ``projectiles`` are fixed along the roadbed. SERAPHIM operates not by embedding flux in a conductor, but by excluding it. In this propulsion scheme, pairs of closely spaced coils on the vehicle straddle a segmented aluminum reaction rail. A high frequency current is switched on as a coil pair crosses an edge and remains off as they overtake the next segment. This induces surface currents which repel the coil. In essence, the pulsed coils push off segment edges because at the high frequency of operation, the flux has insufficient time to penetrate. In contrast to conventional LIMs, the performance actually improves with velocity, even for a minimal motor consisting of a single coil pair reacting with a single plate. This paper will present results of proof-of-principle tests, electromagnetic computer simulations, and systems analysis. It is concluded that this new linear induction motor can be implemented using existing technology and is a promising alternative propulsion method for very high speed rail transportation.

  7. Hydrogen Peroxide Propulsion for Smaller Satellites

    OpenAIRE

    Whitehead, John

    1998-01-01

    As satellite designs shrink, providing maneuvering and control capability falls outside the realm of available propulsion technology. While cold gas has been used on the smallest satellites, hydrogen peroxide propellant is suggested as the next step in performance and cost before hydrazine. Minimal toxicity and a small scale enable bench top propellant preparation and development testing. Progress toward low-cost thrusters and self-pressurizing tank systems is described.

  8. Propulsion Physics Using the Chameleon Density Model

    Science.gov (United States)

    Robertson, Glen A.

    2011-01-01

    To grow as a space faring race, future spaceflight systems will require a new theory of propulsion. Specifically one that does not require mass ejection without limiting the high thrust necessary to accelerate within or beyond our solar system and return within a normal work period or lifetime. The Chameleon Density Model (CDM) is one such model that could provide new paths in propulsion toward this end. The CDM is based on Chameleon Cosmology a dark matter theory; introduced by Khrouy and Weltman in 2004. Chameleon as it is hidden within known physics, where the Chameleon field represents a scalar field within and about an object; even in the vacuum. The CDM relates to density changes in the Chameleon field, where the density changes are related to matter accelerations within and about an object. These density changes in turn change how an object couples to its environment. Whereby, thrust is achieved by causing a differential in the environmental coupling about an object. As a demonstration to show that the CDM fits within known propulsion physics, this paper uses the model to estimate the thrust from a solid rocket motor. Under the CDM, a solid rocket constitutes a two body system, i.e., the changing density of the rocket and the changing density in the nozzle arising from the accelerated mass. Whereby, the interactions between these systems cause a differential coupling to the local gravity environment of the earth. It is shown that the resulting differential in coupling produces a calculated value for the thrust near equivalent to the conventional thrust model used in Sutton and Ross, Rocket Propulsion Elements. Even though imbedded in the equations are the Universe energy scale factor, the reduced Planck mass and the Planck length, which relates the large Universe scale to the subatomic scale.

  9. Application of SDI technology in space propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Klein, A.J.

    1992-01-01

    Numerous technologies developed by the DOD within the SDI program are now available for adaptation to the requirements of commercial spacecraft; SDI has accordingly organized the Technology Applications Information System data base, which contains nearly 2000 nonproprietary abstracts on SDI technology. Attention is here given to such illustrative systems as hydrogen arcjets, ammonia arcjets, ion engines, SSTO launch vehicles, gel propellants, lateral thrusters, pulsed electrothermal thrusters, laser-powered rockets, and nuclear propulsion.

  10. Sputtering and surface damage of TFTR protective plate materials (Mo, TZM, graphite) by energetic D/sup +/ ion irradiation. Final report for Princeton Plasma Physics Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kaminsky, M.; Das, S.K.; Dusza, P.

    1978-03-01

    Studies have been conducted in accordance with a service request from the Plasma Physics Laboratory (PPPL) of Princeton University to determine the total sputtering yields and the surface damage of molybdenum (a candidate material for the neutral beam injector protective plate for Princeton's Fusion Test Reactor (TFTR)) caused by the impact of D/sup +/ ions at 120-keV, 60-keV and 40-keV at fluxes and total doses agreed upon between PPPL and ANL. The irradiations have been conducted in a specified pulsed mode as well as in a dc mode. The material TZM (a molybdenum alloy) was included in some tests of surface damage, but not for the full complement of doses planned for molybdenum. According to a request by PPPL the target temperature was not to be controlled (targets were allowed to reach a temperature determined by the beam power deposition and the conductive and radiative heat losses), but the target temperature was to be monitored. The irradiations were conducted at pressures ranging from 4 x 10/sup -9/ torr to 2 x 10/sup -8/ torr.

  11. Final Report for the Demonstration of Plasma In-situ Vitrification at the 904-65G K-Reactor Seepage Basin

    Energy Technology Data Exchange (ETDEWEB)

    Blundy, R.F. [Westinghouse Savannah River Company, AIKEN, SC (United States); Zionkowki, P.G.

    1997-12-22

    The In-situ Vitrification (ISV) process potentially offers the most stable waste-form for containment of radiologically contaminated soils while minimizing personnel contamination. This is a problem that is extensive, and at the same time unique, to the US Department of Energy`s (DOE) Weapons Complex. An earlier ISV process utilized joule heating of the soil to generate the subsurface molten glass product. However previous test work has indicated that the Savannah river Site soils (SRS) may not be entirely suitable for vitrification by joule heating due to their highly refractory nature. The concept of utilizing a plasma torch for soil remediation by in-situ vitrification has recently been developed, and laboratory test work on a 100 kW unit has indicated a potentially successful application with SRS soils. The Environmental Restoration Division (ERD) of Westinghouse Savannah River Company (WSRC) conducted the first field scale demonstration of this process at the (904-65G) K-Reactor Seepage Basin in October 1996 with the intention of determining the applicability and economics of the process for remediation of a SRS radioactive seepage basin. The demonstration was successful in completing three vitrification runs, including two consecutive runs that fused together adjacent columns of glass to form a continuous monolith. This report describes the demonstration, documents the engineering data that was obtained, summarizes the process economics and makes recommendations for future development of the process and equipment.

  12. Overview of the Development of the Solar Electric Propulsion Technology Demonstration Mission 12.5-kW Hall Thruster

    Science.gov (United States)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Yim, John; Chang, Li; Clayman, Lauren; Herman, Daniel; Shastry, Rohit; Thomas, Robert; Verhey, Timothy; Griffith, Christopher; Myers, James; Williams, George; Mikellides, Ioannis; Hofer, Richard; Polk, James; Goebel, Dan

    2014-01-01

    NASA is developing mission concepts for a solar electric propulsion technology demonstration mission. A number of mission concepts are being evaluated including ambitious missions to near Earth objects. The demonstration of a high-power solar electric propulsion capability is one of the objectives of the candidate missions under consideration. In support of NASA's exploration goals, a number of projects are developing extensible technologies to support NASA's near and long term mission needs. Specifically, the Space Technology Mission Directorate Solar Electric Propulsion Technology Demonstration Mission project is funding the development of a 12.5-kilowatt magnetically shielded Hall thruster system to support future NASA missions. This paper presents the design attributes of the thruster that was collaboratively developed by the NASA Glenn Research Center and the Jet Propulsion Laboratory. The paper provides an overview of the magnetic, plasma, thermal, and structural modeling activities that were carried out in support of the thruster design. The paper also summarizes the results of the functional tests that have been carried out to date. The planned thruster performance, plasma diagnostics (internal and in the plume), thermal, wear, and mechanical tests are outlined.

  13. Comparison of Aero-Propulsive Performance Predictions for Distributed Propulsion Configurations

    Science.gov (United States)

    Borer, Nicholas K.; Derlaga, Joseph M.; Deere, Karen A.; Carter, Melissa B.; Viken, Sally A.; Patterson, Michael D.; Litherland, Brandon L.; Stoll, Alex M.

    2017-01-01

    NASA's X-57 "Maxwell" flight demonstrator incorporates distributed electric propulsion technologies in a design that will achieve a significant reduction in energy used in cruise flight. A substantial portion of these energy savings come from beneficial aerodynamic-propulsion interaction. Previous research has shown the benefits of particular instantiations of distributed propulsion, such as the use of wingtip-mounted cruise propellers and leading edge high-lift propellers. However, these benefits have not been reduced to a generalized design or analysis approach suitable for large-scale design exploration. This paper discusses the rapid, "design-order" toolchains developed to investigate the large, complex tradespace of candidate geometries for the X-57. Due to the lack of an appropriate, rigorous set of validation data, the results of these tools were compared to three different computational flow solvers for selected wing and propulsion geometries. The comparisons were conducted using a common input geometry, but otherwise different input grids and, when appropriate, different flow assumptions to bound the comparisons. The results of these studies showed that the X-57 distributed propulsion wing should be able to meet the as-designed performance in cruise flight, while also meeting or exceeding targets for high-lift generation in low-speed flight.

  14. Review Of Laser Lightcraft Propulsion System

    Science.gov (United States)

    Davis, Eric W.; Mead, Franklin B.

    2008-04-01

    Laser-powered "Lightcraft" systems that deliver nano-satellites to LEO have been studied for the Air Force Research Laboratory (AFRL). The study was built on the extensive Lightcraft laser propulsion technology already developed by theoretical and experimental work by the AFRL's Propulsion Directorate at Edwards AFB, CA. Here we review the history and engineering-physics of the laser Lightcraft system and its propulsive performance. We will also review the effectiveness and cost of a Lightcraft vehicle powered by a high-energy laser beam. One result of this study is the significant influence of laser wavelength on the power lost during laser beam propagation through Earth's atmosphere and in space. It was discovered that energy and power losses in the laser beam are extremely sensitive to wavelength for Earth-To-Orbit missions, and this significantly affects the amount of mass that can be placed into orbit for a given maximum amount of radiated power from a ground-based laser.

  15. The Chameleon Solid Rocket Propulsion Model

    Science.gov (United States)

    Robertson, Glen A.

    2010-01-01

    The Khoury and Weltman (2004a and 2004b) Chameleon Model presents an addition to the gravitation force and was shown by the author (Robertson, 2009a and 2009b) to present a new means by which one can view other forces in the Universe. The Chameleon Model is basically a density-dependent model and while the idea is not new, this model is novel in that densities in the Universe to include the vacuum of space are viewed as scalar fields. Such an analogy gives the Chameleon scalar field, dark energy/dark matter like characteristics; fitting well within cosmological expansion theories. In respect to this forum, in this paper, it is shown how the Chameleon Model can be used to derive the thrust of a solid rocket motor. This presents a first step toward the development of new propulsion models using density variations verse mass ejection as the mechanism for thrust. Further, through the Chameleon Model connection, these new propulsion models can be tied to dark energy/dark matter toward new space propulsion systems utilizing the vacuum scalar field in a way understandable by engineers, the key toward the development of such systems. This paper provides corrections to the Chameleon rocket model in Robertson (2009b).

  16. Closed cycle propulsion for small unmanned aircraft

    Science.gov (United States)

    Hays, Thomas Chadwick

    This study evaluates the merit of closed cycle propulsion systems for use in unmanned systems. The complexity and added weight of closed cycle engines is offset by benefits in high altitude performance, operation in polluted air environments, multi-fuel operation, and potential for flight in low oxygen environments using generic thermal heat sources. Although most closed thermal cycles cannot match the efficiency and power density potential of internal combustion engines (ICE) and turbomachines in aircraft propulsion applications, the addition of design requirements regarding noise output, and operation at high altitude results in IC and CC engine's performance becoming much more comparable. Muffling devices increase backpressure on internal combustion engines thereby reducing power output and efficiency. Multi stage turbo supercharging for operation at high altitude can in some cases increase efficiency of ICE's, but at the result of significant additional complexity and cost that also reduces practical reliability because of the often intricate mechanisms involved. It is in these scenarios that closed cycle engines offer a comparable performance alternative that may prove to be simpler, cheaper, and more reliable than high altitude or low noise internal combustion or turbomachine propulsion systems.

  17. Materials Requirements for Advanced Propulsion Systems

    Science.gov (United States)

    Whitaker, Ann F.; Cook, Mary Beth; Clinton, R. G., Jr.

    2005-01-01

    NASA's mission to "reach the Moon and Mars" will be obtained only if research begins now to develop materials with expanded capabilities to reduce mass, cost and risk to the program. Current materials cannot function satisfactorily in the deep space environments and do not meet the requirements of long term space propulsion concepts for manned missions. Directed research is needed to better understand materials behavior for optimizing their processing. This research, generating a deeper understanding of material behavior, can lead to enhanced implementation of materials for future exploration vehicles. materials providing new approaches for manufacture and new options for In response to this need for more robust materials, NASA's Exploration Systems Mission Directorate (ESMD) has established a strategic research initiative dedicated to materials development supporting NASA's space propulsion needs. The Advanced Materials for Exploration (AME) element directs basic and applied research to understand material behavior and develop improved materials allowing propulsion systems to operate beyond their current limitations. This paper will discuss the approach used to direct the path of strategic research for advanced materials to ensure that the research is indeed supportive of NASA's future missions to the moon, Mars, and beyond.

  18. Aperture effects in squid jet propulsion.

    Science.gov (United States)

    Staaf, Danna J; Gilly, William F; Denny, Mark W

    2014-05-01

    Squid are the largest jet propellers in nature as adults, but as paralarvae they are some of the smallest, faced with the inherent inefficiency of jet propulsion at a low Reynolds number. In this study we describe the behavior and kinematics of locomotion in 1 mm paralarvae of Dosidicus gigas, the smallest squid yet studied. They swim with hop-and-sink behavior and can engage in fast jets by reducing the size of the mantle aperture during the contraction phase of a jetting cycle. We go on to explore the general effects of a variable mantle and funnel aperture in a theoretical model of jet propulsion scaled from the smallest (1 mm mantle length) to the largest (3 m) squid. Aperture reduction during mantle contraction increases propulsive efficiency at all squid sizes, although 1 mm squid still suffer from low efficiency (20%) because of a limited speed of contraction. Efficiency increases to a peak of 40% for 1 cm squid, then slowly declines. Squid larger than 6 cm must either reduce contraction speed or increase aperture size to maintain stress within maximal muscle tolerance. Ecological pressure to maintain maximum velocity may lead them to increase aperture size, which reduces efficiency. This effect might be ameliorated by nonaxial flow during the refill phase of the cycle. Our model's predictions highlight areas for future empirical work, and emphasize the existence of complex behavioral options for maximizing efficiency at both very small and large sizes.

  19. Solar Sail Propulsion Technology at NASA

    Science.gov (United States)

    Johnson, Charles Les

    2007-01-01

    NASA's In-Space Propulsion Technology Program developed the first generation of solar sail propulsion systems sufficient to accomplish inner solar system science and exploration missions. These first generation solar sails, when operational, will range in size from 40 meters to well over 100 meters in diameter and have an area density of less than 13 grams per square meter. A rigorous, multi-year technology development effort culminated in 2005 with the testing of two different 20-m solar sail systems under thermal vacuum conditions. This effort provided a number of significant insights into the optimal design and expected performance of solar sails as well as an understanding of the methods and costs of building and using them. In addition, solar sail orbital analysis tools for mission design were developed and tested. Laboratory simulations of the effects of long-term space radiation exposure were also conducted on two candidate solar sail materials. Detailed radiation and charging environments were defined for mission trajectories outside the protection of the earth's magnetosphere, in the solar wind environment. These were used in other analytical tools to prove the adequacy of sail design features for accommodating the harsh space environment. The presentation will describe the status of solar sail propulsion within NASA, near-term solar sail mission applications, and near-term plans for further development.

  20. Ion Emissive Membranes for Propulsion Applications

    Science.gov (United States)

    Williams, John D.; Wilbur, Paul J.; Farnell, Cody C.; Farnell, Casey C.; Wilson, Merrill; Hutchings, Kent

    2009-03-01

    Experiments show electrostatic thrusters with components such as the discharge chamber or acceleration channel, solenoid or permanent magnets, hollow cathode, and keeper can be replaced by a simple, propellant-selective, solid-state, ion-conducting membrane (Wilbur et al., 2007; Wilbur, Wilson, and Williams, 2005). In addition, analyzes show these membranes can be shaped, structured, and assembled into integrated thruster systems that will operate at much greater thrust densities and thruster efficiencies than those for state-of-the-art, Hall and ion thrusters (Wilbur, Farnell, and Williams, 2005). The implications of these findings are revolutionary and promise an electrostatic propulsion system much less massive, more reliable, and less costly than ion and Hall thruster systems as they can be fabricated readily using traditional ceramic manufacturing techniques. The status of the Emissive Membrane Ion Thruster (EMIT) concept is described and recent measurements are used to estimate the performance of a propulsion system based on this concept. Estimates are also provided for the specific masses of various components required for it to perform typical satellite missions and comparisons are made to conventional electric propulsion systems currently in use. The emissive membrane thruster is shown to enable operation at 20% to 50% greater thrust-to-power ratios at specific impulses from 1000 s to 5000 s. Related performance advantages will also be discussed and analyses will be presented that show why an EMIT system is less expensive, more reliable, easily scalable, and simpler compared to existing electric thruster systems.

  1. Laser propulsion experiments in South Africa

    Science.gov (United States)

    Michaelis, Max M.; Moorgawa, Ashokabose; Forbes, Andrew; Klopper, Wouter; McKenzie, Edric; Boutchiama, David; Bencherif, Hassan

    2002-09-01

    Two sets of experiments indicate a renewal of interest in South Africa in the topic of laser propulsion. Both sets were conducted under the auspices of the new National Laser Center. In the first set, a 1 kW, CO2 laser (1 kHz, 1 J, 100 ns) was used to propel small (ca 1 gram) targets through a vertical tube-launcher and the momentum-coupling coefficient for a variety of conditions was estimated. The somewhat disappointing results were accounted for in terms of the poor beam quality from a single oscillator and premature break-down of the exhaust vapor in the tube. These experiments were conducted with one module of the now dismantled 'MLIS' uranium isotope separation system. The second set of experiments being conducted in Durban with a small but more energetic 'marking' laser (CO2 20 Hz., 4 J, 100 ns). The chief purpose of this, was to better understand the discrepancies between the recent vertical propulsion experiment at Pelindaba and earlier propulsion attempts with the original MLIS chain. Preliminary pendulum experiments were carried out. Burning targets exhibited enhanced coupling for single pulses.

  2. Characterization of advanced electric propulsion systems

    Science.gov (United States)

    Ray, P. K.

    1982-01-01

    Characteristics of several advanced electric propulsion systems are evaluated and compared. The propulsion systems studied are mass driver, rail gun, MPD thruster, hydrogen free radical thruster and mercury electron bombardment ion engine. These are characterized by specific impulse, overall efficiency, input power, average thrust, power to average thrust ratio and average thrust to dry weight ratio. Several important physical characteristics such as dry system mass, accelerator length, bore size and current pulse requirement are also evaluated in appropriate cases. Only the ion engine can operate at a specific impulse beyond 2000 sec. Rail gun, MPD thruster and free radical thruster are currently characterized by low efficiencies. Mass drivers have the best performance characteristics in terms of overall efficiency, power to average thrust ratio and average thrust to dry weight ratio. But, they can only operate at low specific impulses due to large power requirements and are extremely long due to limitations of driving current. Mercury ion engines have the next best performance characteristics while operating at higher specific impulses. It is concluded that, overall, ion engines have somewhat better characteristics as compared to the other electric propulsion systems.

  3. Materials Requirements for Advanced Propulsion Systems

    Science.gov (United States)

    Whitaker, Ann F.; Cook, Mary Beth; Clinton, R. G., Jr.

    2005-01-01

    NASA's mission to "reach the Moon and Mars" will be obtained only if research begins now to develop materials with expanded capabilities to reduce mass, cost and risk to the program. Current materials cannot function satisfactorily in the deep space environments and do not meet the requirements of long term space propulsion concepts for manned missions. Directed research is needed to better understand materials behavior for optimizing their processing. This research, generating a deeper understanding of material behavior, can lead to enhanced implementation of materials for future exploration vehicles. materials providing new approaches for manufacture and new options for In response to this need for more robust materials, NASA's Exploration Systems Mission Directorate (ESMD) has established a strategic research initiative dedicated to materials development supporting NASA's space propulsion needs. The Advanced Materials for Exploration (AME) element directs basic and applied research to understand material behavior and develop improved materials allowing propulsion systems to operate beyond their current limitations. This paper will discuss the approach used to direct the path of strategic research for advanced materials to ensure that the research is indeed supportive of NASA's future missions to the moon, Mars, and beyond.

  4. Propulsion System Testing for the Iodine Satellite (iSAT) Demonstration Mission

    Science.gov (United States)

    Polzin, Kurt A.; Kamhawi, Hani

    2015-01-01

    CUBESATS are relatively new spacecraft platforms that are typically deployed from a launch vehicle as a secondary payload, providing low-cost access to space for a wide range of end-users. These satellites are comprised of building blocks having dimensions of 10x10x10 cm cu and a mass of 1.33 kg (a 1-U size). While providing low-cost access to space, a major operational limitation is the lack of a propulsion system that can fit within a CubeSat and is capable of executing high delta v maneuvers. This makes it difficult to use CubeSats on missions requiring certain types of maneuvers (i.e. formation flying, spacecraft rendezvous). Recently, work has been performed investigating the use of iodine as a propellant for Hall-effect thrusters (HETs) 2 that could subsequently be used to provide a high specific impulse path to CubeSat propulsion. 3, 4 Iodine stores as a dense solid at very low pressures, making it acceptable as a propellant on a secondary payload. It has exceptionally high ?Isp (density times specific impulse), making it an enabling technology for small satellite near-term applications and providing the potential for systems-level advantages over mid-term high power electric propulsion options. Iodine flow can also be thermally regulated, subliming at relatively low temperature (less than 100 C) to yield I2 vapor at or below 50 torr. At low power, the measured performance of an iodine-fed HET is very similar to that of a state-of-the-art xenon-fed thruster. Just as importantly, the current-voltage discharge characteristics of low power iodine-fed and xenon-fed thrusters are remarkably similar, potentially reducing development and qualifications costs by making it possible to use an already-qualified xenon-HET PPU in an iodine-fed system. Finally, a cold surface can be installed in a vacuum test chamber on which expended iodine propellant can deposit. In addition, the temperature doesn't have to be extremely cold to maintain a low vapor pressure in the

  5. Liquid micro pulsed plasma thruster

    Directory of Open Access Journals (Sweden)

    Szelecka Agnieszka

    2015-06-01

    Full Text Available A new type of pulsed plasma thruster (PPT for small satellite propulsion is investigated, of which the most innovative aspect is the use of a non-volatile liquid propellant. The thruster is based on an open capillary design. The thruster achieved a thrust-to-power ratio above 45 μN/W, which constitutes a 5-fold improvement over the water-propelled pulsed plasma thruster, and which is also slightly above the performance of a similarly sized PPT with a solid propellant.

  6. International movement of plasma and plasma contracting.

    Science.gov (United States)

    Farrugia, A

    2005-01-01

    Plasma fractionation is a global business characterised by technological stability, increasing consolidation and a high level of regulatory oversight. All these factors affect the ease with which plasma derivatives can be accessed in the world market. As domestic regulatory measures in the first world blood economies become increasingly resonant to the precautionary approach, the availability of plasma as a raw material, as well as its cost, become an increasingly significant component in the cost of the final product. This decreases the amount of plasma which fractionators are able to allocate for export activities. Also, regulatory standards in the country of manufacture will reflect priorities in that country which may not be similar to those in export markets, but which will affect entry to those markets. While many countries possess a fractionation capacity, the limiting factor in supply worldwide is the amount of plasma available, and nationalistic drivers for each country to have its own plant are inimical to product safety and supply. Rather, the provision of sufficient supplies of domestic plasma should be the focus of resource allocation, with a choice of an appropriate contract fractionator. However, contract fractionation too may be affected by domestic considerations unrelated to the needs of the country of plasma origin. This chapter will review the global plasma market and the influences on plasma and plasma product movement across national borders. Problems in ensuring adequate safety and supply will be identified, and some tentative approaches to the amelioration of current barriers to the provision of plasma derivatives will be outlined.

  7. Plasma accelerator experiments in Yugoslavia

    Science.gov (United States)

    Purić, J.; Astashynski, V. M.; Kuraica, M. M.; Dojčinovié, I. P.

    2002-12-01

    An overview is given of the results obtained in the Plasma Accelerator Experiments in Belgrade, using quasi-stationary high current plasma accelerators constructed within the framework of the Yugoslavia-Belarus Joint Project. So far, the following plasma accelerators have been realized: Magnetoplasma Compressor type (MPC); MPC Yu type; one stage Erosive Plasma Dynamic System (EPDS) and, in final stage of construction two stage Quasi-Stationary High Current Plasma Accelerator (QHPA).

  8. Ship propulsion by Kites combining energy production by Laddermill principle and direct kite propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Ockels, W. J.; Ruiterkamp, R.; Lansdorp, B.

    2006-10-15

    The use of large kites in ship propulsion has been shown as both feasible and spectacular. Here we propose an even more exotic propulsion mechanism based on a Laddermill apparatus mounted on a ship combining production of electrical power from wind and the more traditional sailing by wind force. The feasibility of this concept is investigated. The results show that with this novel concept it is possible to sail a ship straight into the wind. Even more spectacular will be the method of propulsion when the overall efficiency from kite thrust times cable speed towards ship thrust times speed can be made around 50%. In that case, and technically 50% seems feasible, the ship can be propelled by wind energy with a resulting speed that is practically independent from the wind direction. Such a capability could well change the world's seafaring.

  9. Deployable Propulsion, Power and Communication Systems for Solar System Exploration

    Science.gov (United States)

    Johnson, Les; Carr, John A.; Boyd, Darren

    2017-01-01

    NASA is developing thin-film based, deployable propulsion, power, and communication systems for small spacecraft that could provide a revolutionary new capability allowing small spacecraft exploration of the solar system. By leveraging recent advancements in thin films, photovoltaics, and miniaturized electronics, new mission-level capabilities will be enabled aboard lower-cost small spacecraft instead of their more expensive, traditional counterparts, enabling a new generation of frequent, inexpensive deep space missions. Specifically, thin-film technologies are allowing the development and use of solar sails for propulsion, small, lightweight photovoltaics for power, and omnidirectional antennas for communication. Like their name implies, solar sails 'sail' by reflecting sunlight from a large, lightweight reflective material that resembles the sails of 17th and 18th century ships and modern sloops. Instead of wind, the sail and the ship derive their thrust by reflecting solar photons. Solar sail technology has been discussed in the literature for quite some time, but it is only since 2010 that sails have been proven to work in space. Thin-film photovoltaics are revolutionizing the terrestrial power generation market and have been found to be suitable for medium-term use in the space environment. When mounted on the thin-film substrate, these photovoltaics can be packaged into very small volumes and used to generate significant power for small spacecraft. Finally, embedded antennas are being developed that can be adhered to thin-film substrates to provide lightweight, omnidirectional UHF and X-band coverage, increasing bandwidth or effective communication ranges for small spacecraft. Taken together, they may enable a host of new deep space destinations to be reached by a generation of spacecraft smaller and more capable than ever before.

  10. A Crewed Mission to Apophis Using a Hybrid Bimodal Nuclear Thermal Electric Propulsion (BNTEP) System

    Science.gov (United States)

    Mccurdy, David R.; Borowski, Stanley K.; Burke, Laura M.; Packard, Thomas W.

    2014-01-01

    A BNTEP system is a dual propellant, hybrid propulsion concept that utilizes Bimodal Nuclear Thermal Rocket (BNTR) propulsion during high thrust operations, providing 10's of kilo-Newtons of thrust per engine at a high specific impulse (Isp) of 900 s, and an Electric Propulsion (EP) system during low thrust operations at even higher Isp of around 3000 s. Electrical power for the EP system is provided by the BNTR engines in combination with a Brayton Power Conversion (BPC) closed loop system, which can provide electrical power on the order of 100's of kWe. High thrust BNTR operation uses liquid hydrogen (LH2) as reactor coolant propellant expelled out a nozzle, while low thrust EP uses high pressure xenon expelled by an electric grid. By utilizing an optimized combination of low and high thrust propulsion, significant mass savings over a conventional NTR vehicle can be realized. Low thrust mission events, such as midcourse corrections (MCC), tank settling burns, some reaction control system (RCS) burns, and even a small portion at the end of the departure burn can be performed with EP. Crewed and robotic deep space missions to a near Earth asteroid (NEA) are best suited for this hybrid propulsion approach. For these mission scenarios, the Earth return V is typically small enough that EP alone is sufficient. A crewed mission to the NEA Apophis in the year 2028 with an expendable BNTEP transfer vehicle is presented. Assembly operations, launch element masses, and other key characteristics of the vehicle are described. A comparison with a conventional NTR vehicle performing the same mission is also provided. Finally, reusability of the BNTEP transfer vehicle is explored.

  11. Xenon Acquisition Strategies for High-Power Electric Propulsion NASA Missions

    Science.gov (United States)

    Herman, Daniel A.; Unfried, Kenneth G.

    2015-01-01

    Solar electric propulsion (SEP) has been used for station-keeping of geostationary communications satellites since the 1980s. Solar electric propulsion has also benefitted from success on NASA Science Missions such as Deep Space One and Dawn. The xenon propellant loads for these applications have been in the 100s of kilograms range. Recent studies performed for NASA's Human Exploration and Operations Mission Directorate (HEOMD) have demonstrated that SEP is critically enabling for both near-term and future exploration architectures. The high payoff for both human and science exploration missions and technology investment from NASA's Space Technology Mission Directorate (STMD) are providing the necessary convergence and impetus for a 30-kilowatt-class SEP mission. Multiple 30-50- kilowatt Solar Electric Propulsion Technology Demonstration Mission (SEP TDM) concepts have been developed based on the maturing electric propulsion and solar array technologies by STMD with recent efforts focusing on an Asteroid Redirect Robotic Mission (ARRM). Xenon is the optimal propellant for the existing state-of-the-art electric propulsion systems considering efficiency, storability, and contamination potential. NASA mission concepts developed and those proposed by contracted efforts for the 30-kilowatt-class demonstration have a range of xenon propellant loads from 100s of kilograms up to 10,000 kilograms. This paper examines the status of the xenon industry worldwide, including historical xenon supply and pricing. The paper will provide updated information on the xenon market relative to previous papers that discussed xenon production relative to NASA mission needs. The paper will discuss the various approaches for acquiring on the order of 10 metric tons of xenon propellant to support potential near-term NASA missions. Finally, the paper will discuss acquisitions strategies for larger NASA missions requiring 100s of metric tons of xenon will be discussed.

  12. Plasma Diagnostic and Performance of a Permanent Magnet Hall Thruster

    CERN Document Server

    Ferreira, J L; Rego, I D S; Ferreira, I S; Ferreira, Jose Leonardo; Souza, Joao Henrique Campos De; Rego, Israel Da Silveira; Ferreira, Ivan Soares

    2004-01-01

    Electric propulsion is now a sucessfull method for primary propulsion of deep space long duration missions and for geosyncronous satellite attitude control. Closed Drift Plasma Thruster, so called Hall Thruster or SPT (stationary plasma thruster) were primarily conceived in USSR (the ancient Soviet Union) and now it is been developed by space agencies, space research institutes and industries in several countries such as France, USA, Israel, Russian Federation and Brazil. In this work, we show plasma characteristics and performance of a Hall Thruster designed with an innovative concept which uses an array of permanent magnets, instead of an eletromagnet, to produce a radial magnetic field inside its cylindrical plasma drift channel. Within this new concept, we expect to develop a Hall Thruster within power consuption that will scale up to small and medium size satellites. A plasma density and temperature space profiles inside and outside the thruster channel will be shown. Space plasma potential, ion temperat...

  13. Standard Practices for Usage of Inductive Magnetic Field Probes with Application to Electric Propulsion Testing

    Science.gov (United States)

    Polzin, Kurt A.; Hill, Carrie S.

    2013-01-01

    Inductive magnetic field probes (also known as B-dot probes and sometimes as B-probes or magnetic probes) are useful for performing measurements in electric space thrusters and various plasma accelerator applications where a time-varying magnetic field is present. Magnetic field probes have proven to be a mainstay in diagnosing plasma thrusters where changes occur rapidly with respect to time, providing the means to measure the magnetic fields produced by time-varying currents and even an indirect measure of the plasma current density through the application of Ampère's law. Examples of applications where this measurement technique has been employed include pulsed plasma thrusters and quasi-steady magnetoplasmadynamic thrusters. The Electric Propulsion Technical Committee (EPTC) of the American Institute of Aeronautics and Astronautics (AIAA) was asked to assemble a Committee on Standards (CoS) for Electric Propulsion Testing. The assembled CoS was tasked with developing Standards and Recommended Practices for various diagnostic techniques used in the evaluation of plasma thrusters. These include measurements that can yield either global information related to a thruster and its performance or detailed, local data related to the specific physical processes occurring in the plasma. This paper presents a summary of the standard, describing the preferred methods for fabrication, calibration, and usage of inductive magnetic field probes for use in diagnosing plasma thrusters. Inductive magnetic field probes (also called B-dot probes throughout this document) are commonly used in electric propulsion (EP) research and testing to measure unsteady magnetic fields produced by time-varying currents. The B-dot probe is relatively simple in construction, and requires minimal cost, making it a low-cost technique that is readily accessible to most researchers. While relatively simple, the design of a B-dot probe is not trivial and there are many opportunities for errors in

  14. Experimental Identification and Characterization of Multirotor UAV Propulsion

    Science.gov (United States)

    Kotarski, Denis; Krznar, Matija; Piljek, Petar; Simunic, Nikola

    2017-07-01

    In this paper, an experimental procedure for the identification and characterization of multirotor Unmanned Aerial Vehicle (UAV) propulsion is presented. Propulsion configuration needs to be defined precisely in order to achieve required flight performance. Based on the accurate dynamic model and empirical measurements of multirotor propulsion physical parameters, it is possible to design diverse configurations with different characteristics for various purposes. As a case study, we investigated design considerations for a micro indoor multirotor which is suitable for control algorithm implementation in structured environment. It consists of open source autopilot, sensors for indoor flight, “take off the shelf” propulsion components and frame. The series of experiments were conducted to show the process of parameters identification and the procedure for analysis and propulsion characterization. Additionally, we explore battery performance in terms of mass and specific energy. Experimental results show identified and estimated propulsion parameters through which blade element theory is verified.

  15. Simplest AB-Thermonuclear Space Propulsion and Electric Generator

    CERN Document Server

    Bolonkin, A

    2007-01-01

    The author applies, develops and researches mini-sized Micro- AB Thermonuclear Reactors for space propulsion and space power systems. These small engines directly convert the high speed charged particles produced in the thermonuclear reactor into vehicle thrust or vehicle electricity with maximum efficiency. The simplest AB-thermonuclear propulsion offered allows spaceships to reach speeds of 20,000 50,000 km/s (1/6 of light speed) for fuel ratio 0.1 and produces a huge amount of useful electric energy. Offered propulsion system permits flight to any planet of our Solar system in short time and to the nearest non-Sun stars by E-being or intellectual robots during a single human life period. Key words: AB-propulsion, thermonuclear propulsion, space propulsion, thermonuclear power system.

  16. Coulomb drag devices: electric solar wind sail propulsion and ionospheric deorbiting

    CERN Document Server

    Janhunen, Pekka

    2014-01-01

    A charged tether or wire experiences Coulomb drag when inserted into flowing plasma. In the solar wind the Coulomb drag can be utilised as efficient propellantless interplanetary propulsion as the electric solar wind sail (electric sail, E-sail). In low Earth orbit (LEO) the same plasma physical effect can be utilised for efficient low-thrust deorbiting of space debris objects (the plasma brake). The E-sail is rotationally stabilised while the deorbiting Coulomb drag devices According to numerical estimates, Coulomb drag devices have very promising performance figures, both for interplanetary propulsion and for deorbiting in LEO. Much of the technology is common to both applications. E-sail technology development was carried out in ESAIL FP7 project (2011-2013) which achieved TRL 4-5 for key hardware components that can enable 1 N class interplanetary E-sail weighing less than 200 kg. The thrust of the E-sail scales as inverse solar distance and its power consumption (nominally 700 W/N at 1 au) scales as the ...

  17. Application of electrical propulsion for an active debris removal system: a system engineering approach

    Science.gov (United States)

    Covello, Fabio

    2012-10-01

    One of the main challenge in the design of an active removal system for space debris is the high ΔV required both to approach space debris lying in different orbits and to de-orbit/re-orbit them. Indeed if the system does not target a number of objects during its lifetime the cost of the removal will be far too high to be considered as the basis of an economically viable business case. Using a classical chemical propulsion (CP) system, the ΔV is limited by the mass of propellant that the system can carry. This limitation is greatly reduced if electrical propulsion is considered. Electrical propulsion (EP) systems are indeed characterized by low propellant mass requirements, however this comes at the cost of higher electrical power and, typically, higher complexity and mass of the power supply system. Because of this, the use of EP systems has been, therefore, primarily limited to station keeping maneuvers. However in the recent past, the success of missions using EP as primary propulsion (e.g. GOCE, SMART-1, Artemis, Deep Spcae1, Hayabusa) makes this technology a suitable candidate for providing propulsion for an active debris removal system. This study case will provide the analysis of the possible application of electrical propulsion systems in such a context, presenting a number of possible mission profiles. This paper will start with the description of possible mission concepts and the assessment of the EP technology, comparing near-term propulsion options, that best fits the mission. A more detailed analysis follows with the relevant trade-off to define the characteristics of the final system and its size in terms of mass and power required. A survey of available space qualified EP systems will be performed with the selection of the best candidates to be used and/or developed for an active debris removal system. The results of a similar analysis performed for a classical CP system are then presented and the two options are compared in terms of total cost of

  18. Magnetic Field Effects on Plasma Plumes

    Science.gov (United States)

    Ebersohn, F.; Shebalin, J.; Girimaji, S.; Staack, D.

    2012-01-01

    Here, we will discuss our numerical studies of plasma jets and loops, of basic interest for plasma propulsion and plasma astrophysics. Space plasma propulsion systems require strong guiding magnetic fields known as magnetic nozzles to control plasma flow and produce thrust. Propulsion methods currently being developed that require magnetic nozzles include the VAriable Specific Impulse Magnetoplasma Rocket (VASIMR) [1] and magnetoplasmadynamic thrusters. Magnetic nozzles are functionally similar to de Laval nozzles, but are inherently more complex due to electromagnetic field interactions. The two crucial physical phenomenon are thrust production and plasma detachment. Thrust production encompasses the energy conversion within the nozzle and momentum transfer to a spacecraft. Plasma detachment through magnetic reconnection addresses the problem of the fluid separating efficiently from the magnetic field lines to produce maximum thrust. Plasma jets similar to those of VASIMR will be studied with particular interest in dual jet configurations, which begin as a plasma loops between two nozzles. This research strives to fulfill a need for computational study of these systems and should culminate with a greater understanding of the crucial physics of magnetic nozzles with dual jet plasma thrusters, as well as astrophysics problems such as magnetic reconnection and dynamics of coronal loops.[2] To study this problem a novel, hybrid kinetic theory and single fluid magnetohydrodynamic (MHD) solver known as the Magneto-Gas Kinetic Method is used.[3] The solver is comprised of a "hydrodynamic" portion based on the Gas Kinetic Method and a "magnetic" portion that accounts for the electromagnetic behaviour of the fluid through source terms based on the resistive MHD equations. This method is being further developed to include additional physics such as the Hall effect. Here, we will discuss the current level of code development, as well as numerical simulation results

  19. An evaluation of electric motors for ship propulsion

    OpenAIRE

    Bassham, Bobby A.

    2003-01-01

    Approved for public release; distribution is unlimited An evaluation was conducted of the various propulsion motors being considered for electric ship propulsion. The benefit of such an evaluation is that all of the propulsion options being considered by the U.S. Navy have been described in one document. The AC induction motor, AC synchronous motor, High Temperature Superconducting (HTS) motor and Superconducting DC Homopolar Motor (SDCHM) are examined. The properties, advan...

  20. Integrated Electrical Power Supply System for Propulsion and Service Control.

    Science.gov (United States)

    1996-08-16

    propellers with hydraulically controlled pitch for ship propulsion . In such arrangement of equipment, two gas turbines customarily drive each of two...availability of commercial technology presently utilized on cruise ships having service equipment loads larger than their ship propulsion loads. However...accentuated on naval combat ships wherein a larger proportion of the power is utilized for ship propulsion purposes and operational efficiency is of

  1. The Development of Nuclear Propulsion in the Navy

    Science.gov (United States)

    1960-03-29

    nuclear power for ship propulsion . The man who approved this project on his own cognizance was Rear Admiral Harold G. Bowen, then Chief of the old...their basic objective, the development of nuclear power for ship propulsion . However, they faced a formidable obstacle. Because of severe security...officials on the possibility of the application of nuclear power to ship propulsion . General Groves stated that the chief handicap was the limited

  2. STATIC TESTS OF UNCONVENTIONAL PROPULSION UNITS FOR ULTRALIGHT AIRPLANES

    Directory of Open Access Journals (Sweden)

    Martin Helmich

    2014-06-01

    Full Text Available This paper presents static tests of a new unconventional propulsion unit for small aviation airplanes. Our laboratory stand – a fan drive demonstrator – enables us to compare various design options. We performed experiments to verify the propulsion functionality and a measurement procedure to determine the available thrust of the propulsion unit and its dependence on engine speed. The results used for subsequent optimization include the operating parameters of the propulsion unit, and the temperature and velocity fields in parts of the air duct.

  3. Plasmonic Force Propulsion Revolutionizes Nano/PicoSatellite Capability Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The full potential of small spacecraft remains untapped because they lack maneuverability. Plasmonic force propulsion provides attitude control capability for small...

  4. Algorithms for computing efficient, electric-propulsion, spiralling trajectories Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop techniques for rapidly designing many-revolution, electric-propulsion, spiralling trajectories, including the effects of shadowing, gravity harmonics, and...

  5. Nanostructured Tungsten Rhenium Components for Propulsion Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Revolutionizing the space propulsion industry through innovative, relatively low-cost, manufacturing techniques is extremely needed. Specifically, advancements are...

  6. Maglev for fast regional transportation. Optimization of long stator propulsion and energy supply; Magnetschnellbahn fuer den schnellen Regionalverkehr. Optimierung des Langstatorantriebs und der Energieversorgung

    Energy Technology Data Exchange (ETDEWEB)

    Fischperer, R.

    2006-07-01

    This work deals with linear propulsion systems of the Transrapid maglev system especially applicable to regional transportation tasks. In a first step the principle of the linear motor and its configurations and layout strategies for long distance applications are explained and analyzed with regard to their operational characteristics. Next, modified requirements for regional transportation are identified and strategies for optimization of the propulsion system are set up. Various optimization measures within the propulsion system and neighboring subsystems are worked out and explained. Finally, a quantitative analysis of different measures is shown using an exemplary regional line. Optimization potentials compared to a long distance propulsion layouts are shown. It has been found that given the relevant developments in the subsystems concerned savings of up to 40% both in investment and operation costs are feasible. (orig.)

  7. Flight Simulator Evaluation of Enhanced Propulsion Control Modes for Emergency Operation

    Science.gov (United States)

    Litt, Jonathan, S; Sowers, T.; Owen, A., Karl; Fulton, Christopher, E.; Chicatelli, Amy, K.

    2012-01-01

    This paper describes piloted evaluation of enhanced propulsion control modes for emergency operation of aircraft. Fast Response and Overthrust modes were implemented to assess their ability to help avoid or mitigate potentially catastrophic situations, both on the ground and in flight. Tests were conducted to determine the reduction in takeoff distance achievable using the Overthrust mode. Also, improvements in Dutch roll damping, enabled by using yaw rate feedback to the engines to replace the function of a stuck rudder, were investigated. Finally, pilot workload and ability to handle the impaired aircraft on approach and landing were studied. The results showed that improvement in all aspects is possible with these enhanced propulsion control modes, but the way in which they are initiated and incorporated is important for pilot comfort and perceived benefit.

  8. Robust Adaptive Attitude Control for Airbreathing Hypersonic Vehicle with Attitude Constraints and Propulsive Disturbance

    Directory of Open Access Journals (Sweden)

    Jian Fu

    2015-01-01

    Full Text Available A robust adaptive backstepping attitude control scheme, combined with invariant-set-based sliding mode control and fast-nonlinear disturbance observer, is proposed for the airbreathing hypersonic vehicle with attitude constraints and propulsive disturbance. Based on the positive invariant set and backstepping method, an innovative sliding surface is firstly developed for the attitude constraints. And the propulsive disturbance of airbreathing hypersonic vehicle is described as a differential equation which is motivated by attitude angles in this paper. Then, an adaptive fast-nonlinear disturbance observer for the proposed sliding surface is designed to estimate this kind of disturbance. The convergence of all closed-loop signals is rigorously proved via Lyapunov analysis method under the developed robust attitude control scheme. Finally, simulation results are given to illustrate the effectiveness of the proposed attitude control scheme.

  9. Recent Development in Hydrogen Peroxide Pumped Propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Ledebuhr, A G; Antelman, D R; Dobie, D W; Gorman, T S; Jones, M S; Kordas, J F; McMahon, D H; Ng, L C; Nielsen, D P; Ormsby, A E; Pittenger, L C; Robinson, J A; Skulina, K M; Taylor, W G; Urone, D A; Wilson, B A

    2004-03-22

    This paper describes the development of a lightweight high performance pump-fed divert and attitude control system (DACS). Increased kinetic Kill Vehicles (KV) capabilities (higher .v and acceleration capability) will especially be needed for boost phase engagements where a lower mass KV DACS enables smaller overall interceptors. To increase KV performance while reducing the total DACS dry mass (<10 kg), requires a design approach that more closely emulates those found in large launch vehicles, where pump-fed propulsion enables high propellant-mass-fraction systems. Miniaturized reciprocating pumps, on a scale compatible with KV applications, offer the potential of a lightweight DACS with both high {Delta}v and acceleration capability, while still enabling the rapid pulsing of the divert thrusters needed in the end-game fly-in. Pumped propulsion uses lightweight low-pressure propellant tanks, as the main vehicle structure and eliminates the need for high-pressure gas bottles, reducing mass and increasing the relative propellant load. Prior work used hydrazine and demonstrated a propellant mass fraction >0.8 and a vehicle propulsion dry mass of {approx}3 kg. Our current approach uses the non-toxic propellants 90% hydrogen peroxide and kerosene. This approach enables faster development at lower costs due to the ease of handling. In operational systems these non-toxic propellants can simplify the logistics for manned environments including shipboard applications. This DACS design configuration is expected to achieve sufficient mass flows to support divert thrusters in the 1200 N to 1330 N (270 lbf to 300 lbf) range. The DACS design incorporates two pairs of reciprocating differential piston pumps (oxidizer and fuel), a warm-gas drive system, compatible bi-propellant thrusters, lightweight valves, and lightweight low-pressure propellant tanks. This paper summarizes the current development status and plans.

  10. NASA Solar Sail Propulsion Technology Development

    Science.gov (United States)

    Johnson, Les; Montgomery, Edward E.; Young, Roy; Adams, Charles

    2007-01-01

    NASA's In-Space Propulsion Technology Program has developed the first generation of solar sail propulsion systems sufficient to accomplish inner solar system science and exploration missions. These first generation solar sails, when operational, will range in size from 40 meters to well over 100 meters in diameter and have an areal density of less than 13 grams per square meter. A rigorous, multi-year technology development effort culminated in 2005 with the testing of two different 20-m solar sail systems under thermal vacuum conditions. The first system, developed by ATK Space Systems of Goleta, California, uses rigid booms to deploy and stabilize the sail. In the second approach, L'Garde, Inc. of Tustin, California uses inflatable booms that rigidize in the coldness of space to accomplish sail deployment. This effort provided a number of significant insights into the optimal design and expected performance of solar sails as well as an understanding of the methods and costs of building and using them. In a separate effort, solar sail orbital analysis tools for mission design were developed and tested. Laboratory simulations of the effects of long-term space radiation exposure were also conducted on two candidate solar sail materials. Detailed radiation and charging environments were defined for mission trajectories outside the protection of the earth's magnetosphere, in the solar wind environment. These were used in other analytical tools to prove the adequacy of sail design features for accommodating the harsh space environment. Preceding and in conjunction with these technology efforts, NASA sponsored several mission application studies for solar sails. Potential missions include those that would be flown in the near term to study the sun and be used in space weather prediction to one that would use an evolved sail capability to support humanity's first mission into nearby interstellar space. This paper will describe the status of solar sail propulsion within

  11. Propulsion-unit and robot provided with such a propulsion-unit

    NARCIS (Netherlands)

    Breedveld, P.; Dodou, D.

    2010-01-01

    The invention relates to a propulsion-unit provided with a body and comprising at least one element having an external adhesive layer for providing frictional contact with an object's surface along which the unit in use moves, wherein the element is a supporting layer that supports said adhesive lay

  12. Future Propulsion Opportunities for Commuter Airplanes

    Science.gov (United States)

    Strack, W. C.

    1982-01-01

    Commuter airplane propulsion opportunities are summarized. Consideration is given to advanced technology conventional turboprop engines, advanced propellers, and several unconventional alternatives: regenerative turboprops, rotaries, and diesels. Advanced versions of conventional turboprops (including propellers) offer 15-20 percent savings in fuel and 10-15 percent in DOC compared to the new crop of 1500-2000 SHP engines currently in development. Unconventional engines could boost the fuel savings to 30-40 percent. The conclusion is that several important opportunities exist and, therefore, powerplant technology need not plateau.

  13. Primary electric propulsion for future space missions

    Science.gov (United States)

    Byers, D. C.; Terdan, F. F.; Myers, I. T.

    1979-01-01

    The paper presents data and a methodology to allow preliminary definition of electric propulsion systems. The elements comprising the thrust system are described parametrically. As an example, thruster performance is presented as a function of specific impulse and propellant type. Two power management and control (PMAC) approaches are considered to illustrate the use of the methodology. Power source characteristics are disregarded in the system description. One PMAC concept assumes a dc power input to the thrust system and all thruster power conditioned in a conventional manner; the other PMAC approach assumes an ac power source.

  14. Power, Propulsion, and Communications for Microspacecraft Missions

    Science.gov (United States)

    deGroot, W. A.; Maloney, T. M.; Vanderaar, M. J.

    1998-01-01

    The development of small sized, low weight spacecraft should lead to reduced scientific mission costs by lowering fabrication and launch costs. An order of magnitude reduction in spacecraft size can be obtained by miniaturizing components. Additional reductions in spacecraft weight, size, and cost can be obtained by utilizing the synergy that exists between different spacecraft systems. The state-of-the-art of three major systems, spacecraft power, propulsion, and communications is discussed. Potential strategies to exploit the synergy between these systems and/or the payload are identified. Benefits of several of these synergies are discussed.

  15. The Propulsive-Only Flight Control Problem

    Science.gov (United States)

    Blezad, Daniel J.

    1996-01-01

    Attitude control of aircraft using only the throttles is investigated. The long time constants of both the engines and of the aircraft dynamics, together with the coupling between longitudinal and lateral aircraft modes make piloted flight with failed control surfaces hazardous, especially when attempting to land. This research documents the results of in-flight operation using simulated failed flight controls and ground simulations of piloted propulsive-only control to touchdown. Augmentation control laws to assist the pilot are described using both optimal control and classical feedback methods. Piloted simulation using augmentation shows that simple and effective augmented control can be achieved in a wide variety of failed configurations.

  16. Reconfigurable Control of a Ship Propulsion Plant

    DEFF Research Database (Denmark)

    Blanke, M.; Izadi-Zamanabadi, Roozbeh

    1998-01-01

    Fault-tolerant control combines fault detection and isolation techniques with supervisory control, to achieve the autonomous accommodation of faults before they develop into failures. While fault detection and isolation (FDI) methods have matured during the past decade, the extension to fault......-tolerant control is a fairly new area. Thise paper presents a ship propulsion system as a benchmark that should be useful as a platform for the development of new ideas and a comparison of methods. The benchmark has two main elements. One is the development of efficient FDI algorithms, and the other...... is the analysis and implementation of autonomous fault accommodation. A benchmark kit can be obtained from the authors....

  17. The ubiquitous solar electric propulsion stage

    Science.gov (United States)

    Austin, R. E.; Dod, R. E.; Terwilliger, C. H.

    1976-01-01

    Mission analyses indicate there are several near-term interplanetary missions that cannot be performed with any degree of sophistication without electric propulsion. Cost and performance benefits are suggested when this same technology is included in the Shuttle-based earth-orbital transportation system. Specific earth-orbital payload programs gain from increased weight allowances, decreased costs through simplification, and reduced numbers of spacecraft due to on-orbit servicing. More ambitious mission planners looking toward space industrialization will find uses ranging from GSO debris clearance to a versatile support element for a multipurpose manned space station.

  18. Polymer Matrix Composites for Propulsion Systems

    Science.gov (United States)

    Nettles, Alan T.

    2003-01-01

    The Access-to-Space study identified the requirement for lightweight structures to achieve orbit with a single-stage vehicle. Thus a task was undertaken to examine the use of polymer matrix composites for propulsion components. It was determined that the effort of this task would be to extend previous efforts with polymer matrix composite feedlines and demonstrate the feasibility of manufacturing large diameter feedlines with a complex shape and integral flanges, (i.e. all one piece with a 90 deg bend), and assess their performance under a cryogenic atmosphere.

  19. Advanced propulsion system concept for hybrid vehicles

    Science.gov (United States)

    Bhate, S.; Chen, H.; Dochat, G.

    1980-01-01

    A series hybrid system, utilizing a free piston Stirling engine with a linear alternator, and a parallel hybrid system, incorporating a kinematic Stirling engine, are analyzed for various specified reference missions/vehicles ranging from a small two passenger commuter vehicle to a van. Parametric studies for each configuration, detail tradeoff studies to determine engine, battery and system definition, short term energy storage evaluation, and detail life cycle cost studies were performed. Results indicate that the selection of a parallel Stirling engine/electric, hybrid propulsion system can significantly reduce petroleum consumption by 70 percent over present conventional vehicles.

  20. Ares I First Stage Propulsion System Status

    Science.gov (United States)

    Priskos, Alex S.

    2010-01-01

    With the retirement of the Space Shuttle inevitable, the US is faced with the need to loft a reliable cost-effective, technologically viable solution to bring the nation s fleet of spacecraft back up to industry standard. It must not only support the International Space Station (ISS), it must also be capable of supporting human exploration beyond low Earth orbit (LEO). NASA created the Constellation Program to develop a new fleet including the launch vehicles, the spacecraft, and the mission architecture to meet those objectives. The Ares First Stage Team is tasked with developing a propulsion system capable of safely, dependably and repeatedly lofting that new fleet. To minimize technical risks and development costs, the Solid Rocket Boosters (SRBs) of Shuttle were used as a starting point in the design and production of a new first stage element. While the first stage will provide the foundation, the structural backbone, power, and control for launch, the new propulsive element will also provide a greater total impulse to loft a safer, more powerful, fleet of space flight vehicles. Substantial design and system upgrades were required to meet the mass and trajectory requisites of the new fleet. Noteworthy innovations and design features include new forward structures, new propellant grain geometry, a new internal insulation system, and a state-of-the art avionics system. Additional advances were in materials and composite structures development, case bond liners, and thermal protection systems. Significant progress has been made in the design, development and testing of the propulsion and avionics systems for the new first stage element. Challenges, such as those anticipated with thrust oscillation, have been better characterized, and are being effectively mitigated. The test firing of the first development motor (DM-1) was a success that validated much of the engineering development to date. Substantive data has been collected and analyzed, allowing the Ares

  1. Technology Area Roadmap for In-Space Propulsion Technologies

    Science.gov (United States)

    Johnson, Les; Meyer, Michael; Palaszewski, Bryan; Coote, David; Goebel, Dan; White, Harold

    2012-01-01

    The exponential increase of launch system size.and cost.with delta-V makes missions that require large total impulse cost prohibitive. Led by NASA fs Marshall Space Flight Center, a team from government, industry, and academia has developed a flight demonstration mission concept of an integrated electrodynamic (ED) tethered satellite system called PROPEL: \\Propulsion using Electrodynamics.. The PROPEL Mission is focused on demonstrating a versatile configuration of an ED tether to overcome the limitations of the rocket equation, enable new classes of missions currently unaffordable or infeasible, and significantly advance the Technology Readiness Level (TRL) to an operational level. We are also focused on establishing a far deeper understanding of critical processes and technologies to be able to scale and improve tether systems in the future. Here, we provide an overview of the proposed PROPEL mission. One of the critical processes for efficient ED tether operation is the ability to inject current to and collect current from the ionosphere. Because the PROPEL mission is planned to have both boost and deboost capability using a single tether, the tether current must be capable of flowing in both directions and at levels well over 1 A. Given the greater mobility of electrons over that of ions, this generally requires that both ends of the ED tether system can both collect and emit electrons. For example, hollow cathode plasma contactors (HCPCs) generally are viewed as state-of-the-art and high TRL devices; however, for ED tether applications important questions remain of how efficiently they can operate as both electron collectors and emitters. Other technologies will be highlighted that are being investigated as possible alternatives to the HCPC such as Solex that generates a plasma cloud from a solid material (Teflon) and electron emission (only) technologies such as cold-cathode electron field emission or photo-electron beam generation (PEBG) techniques

  2. Misconceptions of Electric Propulsion Aircraft and Their Emergent Aviation Markets

    Science.gov (United States)

    Moore, Mark D.; Fredericks, Bill

    2014-01-01

    Over the past several years there have been aircraft conceptual design and system studies that have reached conflicting conclusions relating to the feasibility of full and hybrid electric aircraft. Some studies and propulsion discipline experts have claimed that battery technologies will need to improve by 10 to 20 times before electric aircraft can effectively compete with reciprocating or turbine engines. However, such studies have approached comparative assessments without understanding the compelling differences that electric propulsion offers, how these technologies will fundamentally alter the way propulsion integration is approached, or how these new technologies can not only compete but far exceed existing propulsion solutions in many ways at battery specific energy densities of only 400 watt hours per kilogram. Electric propulsion characteristics offer the opportunity to achieve 4 to 8 time improvements in energy costs with dramatically lower total operating costs, while dramatically improving efficiency, community noise, propulsion system reliability and safety through redundancy, as well as life cycle Green House Gas emissions. Integration of electric propulsion will involve far greater degrees of distribution than existing propulsion solutions due to their compact and scale-free nature to achieve multi-disciplinary coupling and synergistic integration with the aerodynamics, highlift system, acoustics, vehicle control, balance, and aeroelasticity. Appropriate metrics of comparison and differences in analysis/design tools are discussed while comparing electric propulsion to other disruptive technologies. For several initial applications, battery energy density is already sufficient for competitive products, and for many additional markets energy densities will likely be adequate within the next 7 years for vibrant introduction. Market evolution and early adopter markets are discussed, along with the investment areas that will fill technology gaps and

  3. Linearized propulsion theory of flapping airfoils revisited

    Science.gov (United States)

    Fernandez-Feria, Ramon

    2016-11-01

    A vortical impulse theory is used to compute the thrust of a plunging and pitching airfoil in forward flight within the framework of linear potential flow theory. The result is significantly different from the classical one of Garrick that considered the leading-edge suction and the projection in the flight direction of the pressure force. By taking into account the complete vorticity distribution on the airfoil and the wake the mean thrust coefficient contains a new term that generalizes the leading-edge suction term and depends on Theodorsen function C (k) and on a new complex function C1 (k) of the reduced frequency k. The main qualitative difference with Garrick's theory is that the propulsive efficiency tends to zero as the reduced frequency increases to infinity (as 1 / k), in contrast to Garrick's efficiency that tends to a constant (1 / 2). Consequently, for pure pitching and combined pitching and plunging motions, the maximum of the propulsive efficiency is not reached as k -> ∞ like in Garrick's theory, but at a finite value of the reduced frequency that depends on the remaining non-dimensional parameters. The present analytical results are in good agreement with experimental data and numerical results for small amplitude oscillations. Supported by the Ministerio de Economia y Competitividad of Spain Grant No. DPI2013-40479-P.

  4. Electric Propulsion Induced Secondary Mass Spectroscopy

    Science.gov (United States)

    Amini, Rashied; Landis, Geoffrey

    2012-01-01

    A document highlights a means to complement remote spectroscopy while also providing in situ surface samples without a landed system. Historically, most compositional analysis of small body surfaces has been done remotely by analyzing reflection or nuclear spectra. However, neither provides direct measurement that can unambiguously constrain the global surface composition and most importantly, the nature of trace composition and second-phase impurities. Recently, missions such as Deep Space 1 and Dawn have utilized electric propulsion (EP) accelerated, high-energy collimated beam of Xe+ ions to propel deep space missions to their target bodies. The energies of the Xe+ are sufficient to cause sputtering interactions, which eject material from the top microns of a targeted surface. Using a mass spectrometer, the sputtered material can be determined. The sputtering properties of EP exhaust can be used to determine detailed surface composition of atmosphereless bodies by electric propulsion induced secondary mass spectroscopy (EPI-SMS). EPI-SMS operation has three high-level requirements: EP system, mass spectrometer, and altitude of about 10 km. Approximately 1 keV Xe+ has been studied and proven to generate high sputtering yields in metallic substrates. Using these yields, first-order calculations predict that EPI-SMS will yield high signal-to-noise at altitudes greater than 10 km with both electrostatic and Hall thrusters.

  5. High Temperature Materials for Chemical Propulsion Applications

    Science.gov (United States)

    Elam, Sandra; Hickman, Robert; O'Dell, Scott

    2007-01-01

    Radiation or passively cooled thrust chambers are used for a variety of chemical propulsion functions including apogee insertion, reaction control for launch vehicles, and primary propulsion for planetary spacecraft. The performance of these thrust chambers is limited by the operating temperature of available materials. Improved oxidation resistance and increased operating temperatures can be achieved with the use of thermal barrier coatings such as zirconium oxide (ZrO2) and hafnium oxide (HfO2). However, previous attempts to include these materials showed cracking and spalling of the oxide layer due to poor bonding. Current research at NASA's Marshall Space Flight Center (MSFC) has generated unique, high temperature material options for in-space thruster designs that are capable of up to 2500 C operating temperatures. The research is focused on fabrication technologies to form low cost Iridium,qF_.henium (Ir/Re) components with a ceramic hot wall created as an integral, functionally graded material (FGM). The goal of this effort is to further de?celop proven technologies for embedding a protective ceramic coating within the Ir/Re liner to form a robust functional gradient material. Current work includes the fabrication and testing of subscale samples to evaluate tensile, creep, thermal cyclic/oxidation, and thermophysical material properties. Larger test articles have also being fabricated and hot-fire tested to demonstrate the materials in prototype thrusters at 1O0 lbf thrust levels.

  6. Designing the Space Shuttle Propulsion System

    Science.gov (United States)

    Owen, James; Moore, Dennis; Wood, David; VanHooser, Kathrine; Wlzyn, Ken

    2011-01-01

    The major elements of the Space Shuttle Main Propulsion System include two reusable solid rocket motors integrated into recoverable solid rocket boosters, an expendable external fuel and oxidizer tank, and three reusable Space Shuttle Main Engines. Both the solid rocket motors and space shuttle main engines ignite prior to liftoff, with the solid rocket boosters separating about two minutes into flight. The external tank separates after main engine shutdown and is safely expended in the ocean. The SSME's, integrated into the Space Shuttle Orbiter aft structure, are reused after post landing inspections. Both the solid rocket motors and the space shuttle main engine throttle during early ascent flight to limit aerodynamic loads on the structure. The configuration is called a stage and a half as all the propulsion elements are active during the boost phase, and the SSME's continue operation to achieve orbital velocity approximately eight and a half minutes after liftoff. Design and performance challenges were numerous, beginning with development work in the 1970 s. The solid rocket motors were large, and this technology had never been used for human space flight. The SSME s were both reusable and very high performance staged combustion cycle engines, also unique to the Space Shuttle. The multi body side mount configuration was unique and posed numerous integration and interface challenges across the elements. Operation of the system was complex and time consuming. This paper discusses a number of the system level technical challenges including development and operations.

  7. Shuttle Propulsion Overview - The Design Challenges

    Science.gov (United States)

    Owen, James W.

    2011-01-01

    The major elements of the Space Shuttle Main Propulsion System include two reusable solid rocket motors integrated into recoverable solid rocket boosters, an expendable external fuel and oxidizer tank, and three reusable Space Shuttle Main Engines. Both the solid rocket motors and space shuttle main engines ignite prior to liftoff, with the solid rocket boosters separating about two minutes into flight. The external tank separates, about eight and a half minutes into the flight, after main engine shutdown and is safely expended in the ocean. The SSME's, integrated into the Space Shuttle Orbiter aft structure, are reused after post landing inspections. The configuration is called a stage and a half as all the propulsion elements are active during the boost phase, with only the SSME s continuing operation to achieve orbital velocity. Design and performance challenges were numerous, beginning with development work in the 1970's. The solid rocket motors were large, and this technology had never been used for human space flight. The SSME s were both reusable and very high performance staged combustion cycle engines, also unique to the Space Shuttle. The multi body side mount configuration was unique and posed numerous integration and interface challenges across the elements. Operation of the system was complex and time consuming. This paper describes the design challenges and key areas where the design evolved during the program.

  8. Green Propulsion Technologies for Advanced Air Transports

    Science.gov (United States)

    Del Rosario, Ruben

    2015-01-01

    Air transportation is critical to U.S. and Global economic vitality. However, energy and climate issues challenge aviations ability to be sustainable in the long term. Aviation must dramatically reduce fuel use and related emissions. Energy costs to U.S. airlines nearly tripled between 1995 and 2011, and continue to be the highest percentage of operating costs. The NASA Advanced Air Transports Technology Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. The presentation will highlight the NASA vision of revolutionary systems and propulsion technologies needed to achieve these challenging goals. Specifically, the primary focus is on the N+3 generation; that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe, which are envisioned as being powered by Hybrid Electric Propulsion Systems.

  9. Advanced hybrid vehicle propulsion system study

    Science.gov (United States)

    Schwarz, R.

    1982-01-01

    Results are presented of a study of an advanced heat engine/electric automotive hybrid propulsion system. The system uses a rotary stratified charge engine and ac motor/controller in a parallel hybrid configuration. The three tasks of the study were (1) parametric studies involving five different vehicle types, (2) design trade-off studies to determine the influence of various vehicle and propulsion system paramaters on system performance fuel economy and cost, and (3) a conceptual design establishing feasibility at the selected approach. Energy consumption for the selected system was .034 1/km (61.3 mpg) for the heat engine and .221 kWh/km (.356 kWh/mi) for the electric power system over a modified J227 a schedule D driving cycle. Life cycle costs were 7.13 cents/km (11.5 cents/mi) at $2/gal gasoline and 7 cents/kWh electricity for 160,000 km (100,000 mi) life.

  10. Integrated Neural Flight and Propulsion Control System

    Science.gov (United States)

    Kaneshige, John; Gundy-Burlet, Karen; Norvig, Peter (Technical Monitor)

    2001-01-01

    This paper describes an integrated neural flight and propulsion control system. which uses a neural network based approach for applying alternate sources of control power in the presence of damage or failures. Under normal operating conditions, the system utilizes conventional flight control surfaces. Neural networks are used to provide consistent handling qualities across flight conditions and for different aircraft configurations. Under damage or failure conditions, the system may utilize unconventional flight control surface allocations, along with integrated propulsion control, when additional control power is necessary for achieving desired flight control performance. In this case, neural networks are used to adapt to changes in aircraft dynamics and control allocation schemes. Of significant importance here is the fact that this system can operate without emergency or backup flight control mode operations. An additional advantage is that this system can utilize, but does not require, fault detection and isolation information or explicit parameter identification. Piloted simulation studies were performed on a commercial transport aircraft simulator. Subjects included both NASA test pilots and commercial airline crews. Results demonstrate the potential for improving handing qualities and significantly increasing survivability rates under various simulated failure conditions.

  11. Ultrahigh Specific Impulse Nuclear Thermal Propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Anne Charmeau; Brandon Cunningham; Samim Anghaie

    2009-02-09

    Research on nuclear thermal propulsion systems (NTP) have been in forefront of the space nuclear power and propulsion due to their design simplicity and their promise for providing very high thrust at reasonably high specific impulse. During NERVA-ROVER program in late 1950's till early 1970's, the United States developed and ground tested about 18 NTP systems without ever deploying them into space. The NERVA-ROVER program included development and testing of NTP systems with very high thrust (~250,000 lbf) and relatively high specific impulse (~850 s). High thrust to weight ratio in NTP systems is an indicator of high acceleration that could be achieved with these systems. The specific impulse in the lowest mass propellant, hydrogen, is a function of square root of absolute temperature in the NTP thrust chamber. Therefor optimizing design performance of NTP systems would require achieving the highest possible hydrogen temperature at reasonably high thrust to weight ratio. High hydrogen exit temperature produces high specific impulse that is a diret measure of propellant usage efficiency.

  12. 46 CFR 111.33-11 - Propulsion systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Propulsion systems. 111.33-11 Section 111.33-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-11 Propulsion systems. Each power...

  13. Compact Water Jet Propulsion System for a Marine Vehicle.

    Science.gov (United States)

    The invention is directed to an improved water jet propulsion system for a marine vehicle. The water jet propulsion system of the present invention...the vehicle hull and extending internally thereof, a water jet pump having an inlet end attached to the outlet end of the inlet duct, a motor for

  14. A highly versatile autonomous underwater vehicle with biomechanical propulsion

    NARCIS (Netherlands)

    Simons, D.G.; Bergers, M.M.C.; Henrion, S.; Hulzenga, J.I.J.; Jutte, R.W.; Pas, W.M.G.; Van Schravendijk, M.; Vercruyssen, T.G.A.; Wilken, A.P.

    2009-01-01

    An autonomous underwater vehicle with a biomechanical propulsion system is a possible answer to the demand for small, silent sensor platforms in many fields. The design of Galatea, a bio-mimetic AUV, involves four aspects: hydrodynamic shape, the propulsion, the motion control systems and payload. T

  15. A Future with Hybrid Electric Propulsion Systems: A NASA Perspective

    Science.gov (United States)

    DelRosario, Ruben

    2014-01-01

    The presentation highlights a NASA perspective on Hybrid Electric Propulsion Systems for aeronautical applications. Discussed are results from NASA Advance Concepts Study for Aircraft Entering service in 2030 and beyond and the potential use of hybrid electric propulsion systems as a potential solution to the requirements for energy efficiency and environmental compatibility. Current progress and notional potential NASA research plans are presented.

  16. FY2009 Annual Progress Report for Propulsion Materials

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2010-01-16

    The Propulsion Materials program focuses on enabling and innovative materials technologies that are critical in improving the efficiency of advanced engines. Projects within the Propulsion Materials Program address materials concerns that directly impact the critical technical barriers in each of these programs—barriers such as fuel efficiency, thermal management, emissions reduction, and reduced manufacturing costs.

  17. 46 CFR 184.620 - Propulsion engine control systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Propulsion engine control systems. 184.620 Section 184... 100 GROSS TONS) VESSEL CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Control and Internal Communications Systems § 184.620 Propulsion engine control systems. (a) A vessel must have two independent...

  18. 46 CFR 121.620 - Propulsion engine control systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Propulsion engine control systems. 121.620 Section 121... AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Control and Internal Communications Systems § 121.620 Propulsion engine control systems. (a) A vessel must have two independent means of controlling...

  19. A highly versatile autonomous underwater vehicle with biomechanical propulsion

    NARCIS (Netherlands)

    Simons, D.G.; Bergers, M.M.C.; Henrion, S.; Hulzenga, J.I.J.; Jutte, R.W.; Pas, W.M.G.; Van Schravendijk, M.; Vercruyssen, T.G.A.; Wilken, A.P.

    2009-01-01

    An autonomous underwater vehicle with a biomechanical propulsion system is a possible answer to the demand for small, silent sensor platforms in many fields. The design of Galatea, a bio-mimetic AUV, involves four aspects: hydrodynamic shape, the propulsion, the motion control systems and payload. T

  20. 40 CFR 87.62 - Test procedure (propulsion engines).

    Science.gov (United States)

    2010-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES Test Procedures for Engine Exhaust Gaseous Emissions (Aircraft and Aircraft Gas Turbine Engines) § 87.62 Test procedure (propulsion... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Test procedure (propulsion...