WorldWideScience

Sample records for plasma properties experimental

  1. Experimental plasma research project summaries

    Energy Technology Data Exchange (ETDEWEB)

    1978-08-01

    This report contans descriptions of the activities supported by the Experimental Plasma Research Branch of APP. The individual project summaries were prepared by the principal investigators and include objectives and milestones for each project. The projects are arranged in six research categories: Plasma Properties; Plasma Heating; Plasma Measurements and Instrumentation; Atomic, Molecular and Nuclear Physics; Advanced Superconducting Materials; and the Fusion Plasma Research Facility (FPRF). Each category is introduced with a statement of objectives and recent progress and followed by descriptions of individual projects. An overall budget summary is provided at the beginning of the report.

  2. Experimental Plasma Research project summaries

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-01

    This report contains descriptions of the activities supported by the Experimental Plasma Research Branch of APP. The individual project summaries were prepared by the principal investigators and include objectives and milestones for each project. The projects are arranged in six research categories: Plasma Properties; Plasma Heating; Plasma Diagnostics; Atomic, Molecular and Nuclear Physics; Advanced Superconducting Materials; and the Fusion Plasma Research Facility (FPRF). Each category is introduced with a statement of objectives and recent progress and followed by descriptions of individual projects. An overall budget summary is provided at the beginning of the report.

  3. Experimental analysis of DBD plasma jet properties using different gases and two kinds of transfer plate

    CERN Document Server

    Nascimento, Fellype do; Machida, Munemasa

    2015-01-01

    Dielectric Barrier Discharge (DBD) plasma jets has been studied extensively in recent years because of its wide range of applications. DBD plasmas can be produced using many different gases and can be applied to a broad variety of surfaces and substrates. In this work, we provide a comparison of DBD plasmas generated using argon (Ar), helium (He) and nitrogen (N2), as well as their mixtures with water vapor in order to know how some plasma properties are affected by the use of different gases. All plasmas were studied in two different conditions, using a transfer plate made of a conductive material and using a transfer plate made of an insulating one. We observed that the processes of excitation and ionization of nitrogen molecules by direct collisions with Ar or He are more evident and significant in He plasmas, which means that He atoms in metastable states have greater ability to transfer energy to molecules of nitrogen in the plasma. The collisions of He atoms in metastable states with N2 molecules determ...

  4. A simplified analytical model for dc plasma spray torch: influence of gas properties and experimental conditions

    Science.gov (United States)

    Rat, V.; Coudert, J. F.

    2006-11-01

    A simplified analytical model is proposed to evaluate some characteristics of the arc jet generated with a dc plasma torch, in the restricted area of atmospheric plasma spraying conditions. The plasma inside the anode nozzle is considered as stationary and is divided into the arc column and a surrounding cold layer which electrically insulates the plasma from the nozzle wall. Radiation and processes related to the arc attachment at the electrodes are not explicitly taken into account. Heat conduction is evaluated by using Kirchoff's potential, which is described, as it is done also for the electrical conductivity, as a function of the gas specific enthalpy instead of temperature. The model is used to calculate the specific enthalpy radial distribution. From that, and by introducing a mean isentropic coefficient, it is possible to calculate the axial velocity of the plasma jet at the nozzle exit and to evaluate the different pressure contributions. The comparison between predicted and previously measured plasma jet velocities shows good agreement for various experimental conditions.

  5. Comparison of Numerical and Experimental Time-Resolved Near-Field Hall Thruster Plasma Properties

    Science.gov (United States)

    2014-03-06

    RESOLVED NEAR-FIELD HALL THRUSTER PLASMA PROPERTIES 807 TABLE I BHT -600 HALL THRUSTER AT NOMINAL XENON OPERATING CONDITIONS AND PERFORMANCE [21] 1.2-m...is a 600 W BHT -600 with a 3.2-mm hollow cathode manufactured by the Busek Company (Natick, MA). This thruster has been studied previously using both...electrostatic probes and various opti- cal diagnostics [17]–[20]. The BHT -600 has an acceleration channel outer radius of 32 mm, inner radius of 24 mm

  6. Experimental determination of the correlation properties of plasma turbulence using 2D BES systems

    Science.gov (United States)

    Fox, M. F. J.; Field, A. R.; van Wyk, F.; Ghim, Y.-c.; Schekochihin, A. A.; the MAST Team

    2017-04-01

    A procedure is presented to map from the spatial correlation parameters of a turbulent density field (the radial and binormal correlation lengths and wavenumbers, and the fluctuation amplitude) to correlation parameters that would be measured by a beam emission spectroscopy (BES) diagnostic. The inverse mapping is also derived, which results in resolution criteria for recovering correct correlation parameters, depending on the spatial response of the instrument quantified in terms of point-spread functions (PSFs). Thus, a procedure is presented that allows for a systematic comparison between theoretical predictions and experimental observations. This procedure is illustrated using the Mega-Ampere Spherical Tokamak BES system and the validity of the underlying assumptions is tested on fluctuating density fields generated by direct numerical simulations using the gyrokinetic code GS2. The measurement of the correlation time, by means of the cross-correlation time-delay method, is also investigated and is shown to be sensitive to the fluctuating radial component of velocity, as well as to small variations in the spatial properties of the PSFs.

  7. Experimental determination of the correlation properties of plasma turbulence using 2D BES systems

    CERN Document Server

    Fox, M F J; van Wyk, F; Ghim, Y -c; Schekochihin, A A

    2016-01-01

    A procedure is presented to map from the spatial correlation parameters of a turbulent density field (the radial and binormal correlation lengths and wavenumbers, and the fluctuation amplitude) to correlation parameters that would be measured by a Beam Emission Spectroscopy (BES) diagnostic. The inverse mapping is also derived, which results in resolution criteria for recovering correct correlation parameters, depending on the spatial response of the instrument quantified in terms of Point-Spread Functions (PSFs). Thus, a procedure is presented that allows for a systematic comparison between theoretical predictions and experimental observations. This procedure is illustrated using the MAST BES system and the validity of the underlying assumptions is tested on fluctuating density fields generated by direct numerical simulations using the gyrokinetic code GS2. The measurement of the correlation time, by means of the cross-correlation time-delay (CCTD) method, is also investigated and is shown to be sensitive to...

  8. Electrostatic Properties of PE and PTFE Subjected to Atmospheric Pressure Plasma Treatment; Correlation of Experimental Results with Atomistic Modeling

    Science.gov (United States)

    Trigwell, Steve; Boucher, Derrick; Calle, Carlos

    2006-01-01

    The use of an atmospheric pressure glow discharge (APGD) plasma was used at KSC to increase the hydrophilicity of spaceport materials to enhance their surface charge dissipation and prevent possible ESD in spaceport operations. Significant decreases in charge decay times were observed after tribocharging the materials using the standard KSC tribocharging test. The polarity and amount of charge transferred was dependent upon the effective work function differences between the respective materials. In this study, polyethylene (PE) and polytetrafluoroethylene (PTFE) were exposed to a He+O2 APGD. The pre and post treatment surface chemistry was analyzed by X-ray photoelectron spectroscopy and contact angle measurements. Semi-empirical and ab initio calculations were performed to correlate the experimental results with some plausible molecular and electronic structure features of the oxidation process. For the PE, significant surface oxidation was observed, as indicated by XPS showing C-O, C=O, and O-C=O bonding, and a decrease in the surface contact angle from 98.9 deg to 61.2 deg. For the PTFE, no C-O bonding appeared and the surface contact angle increased indicating the APGD only succeeded in cleaning the PTFE surface without affecting the surface structure. The calculations using the PM3 and DFT methods were performed on single and multiple oligomers to simulate a wide variety of oxidation scenarios. Calculated work function results suggest that regardless of oxidation mechanism, e.g. -OH, =0 or a combination thereof, the experimentally observed levels of surface oxidation are unlikely to lead to a significant change in the electronic structure of PE and that its increased hydrophilic properties are the primary reason for the observed changes in its electrostatic behavior. The calculations for PTFE argue strongly against significant oxidation of that material, as confirmed by the XPS results.

  9. Experimental investigation of magnetically confined plasma loops

    Energy Technology Data Exchange (ETDEWEB)

    Tenfelde, Jan

    2012-12-11

    Arch-shaped magnetic flux tubes generated in a pulsed-power plasma experiment were investigated with a variety of diagnostics concerning their expansion properties. Specifically, the expansion velocity was of interest, which is observed as constant for a wide range of experimental parameters. An MHD transport mechanism is investigated as possible cause of a uniform arch cross section: Axial transport of poloidal magnetic flux along the plasma may cause a pinch force leading to a uniform diameter along the arch. Despite numerous experimental findings at a very similar experimental setup, no indication for the relevance of this process could be found. Instead, magnetic probe data showed that the plasma current in the apex region is constant. A constant expansion velocity was observed for considerably different experimental conditions. This included different plasma source designs with fundamentally different toroidal magnetic field topology and variation of the working gas, which lead to plasma densities lower by an order of magnitude. Inside the current channel of the arch, Alfven velocities were estimated. To this end, plasma density profiles obtained from interferometry were inverted to obtain local densities, which were in turn verified by means of Stark broadening of hydrogen Balmer lines. Furthermore, measurements of multiple components of the magnetic field of the plasma arch were performed. An estimate for the conductivity was obtained from Spitzer's formula for fully ionized plasma using electron temperatures obtained from elementary optical emission spectroscopy. From the presented data of ccd imaging, magnetic field probes, and to lesser extent, interferometry, the underlying assumption of residual plasma (and considerable plasma currents through it) below the actual arch structure is very plausible. Rough estimates of the electric field strength along the arch and results of the magnetic field measurements showed, that the detected expansion

  10. Experimental investigations of plasma bullets

    Energy Technology Data Exchange (ETDEWEB)

    Mericam-Bourdet, N; Laroussi, M; Begum, A; Karakas, E, E-mail: mlarouss@odu.ed [Laser and Plasma Engineering Institute, Old Dominion University, Norfolk, VA 23529 (United States)

    2009-03-07

    Recently several investigators reported on various means of generating cold plasma jets at atmospheric pressure. More interestingly, these jets turned out to be not continuous plasmas but trains of small high velocity plasma packets/bullets. However, until now little is known of the nature of these 'bullets'. Here we present experimental insights into the physical and chemical characteristics of bullets. We show that their time of initiation, their velocity and the distance they travel are directly dependent on the value of the applied voltage. We also show that these bullets can be controlled by the application of an external electric field. Using an intensified charge coupled device camera we report on their geometrical shape, which was revealed to be 'donut' shaped, therefore giving an indication that solitary surface ionization waves may be responsible for the creation of these bullets. In addition, using emission spectroscopy, we follow the evolution of various species along the trajectory of the bullets, in this way correlating the bullet propagation with the evolution of their chemical activity.

  11. Electrostatic Properties of Polymers Subjected to Atmospheric Pressure Plasma Treatment; Correlation of Experimental Results with Atomistic Modeling

    Science.gov (United States)

    Trigwell, S.; Boucher, D.; Calle, C. I.

    2007-01-01

    this study, PE, PTFE, PS and PMMA were exposed to a He+O2, APGD and pre and post treatment surface chemistries were analyzed by X-ray photoelectron spectroscopy and contact angle measurements. Semi-empirical and ab-initio calculations were performed to correlate the experimental results with sonic plausible molecular and electronic structure features of the oxidation process. For the PE and PS, significant surface oxidation showing C-O, C=O, and O-C=O bonding, and a decrease in the surface contact angles was observed. For the PTFE and PM MA, little change in the surface composition was observed. The molecular modeling calculations were performed on single and multiple oligomers and showed regardless of oxidation mechanism, e.g. -OH, =O or a combination thereof, experimentally observed levels of surface oxidation were unlikely to lead to a significant change in the electronic structure of PE and PS, and that the increased hydrophilic properties are the primary reason for the observed changes in its electrostatic behavior. Calculations for PTFE and PMMA argue strongly against significant oxidation of those materials, as confirmed by the XPS results.

  12. Optical Properties of Relativistic Plasma Mirrors

    CERN Document Server

    Vincenti, H; Kahaly, S; Martin, Ph; Quéré, F

    2013-01-01

    The advent of ultrahigh-power femtosecond lasers creates a need for optical components suitable to handle ultrahigh light intensities. Due to the unavoidable laser-induced ionization of matter, these components will have to be based on a plasma medium. An archetype of such optical elements is a plasma mirror, created when an intense femtosecond laser pulse impinges on a solid target. It consists of a dense plasma, formed by the laser field itself, which specularly reflects the main part of the pulse. Plasma mirrors have major potential applications as active optical elements to manipulate the temporal and spatial properties of intense laser beams, in particular for the generation of intense attosecond pulses of light. We investigate the basic physics involved in the deformation of a plasma mirror resulting from the light pressure exerted by the ultraintense laser during reflection, by deriving a simple model of this fundamental process, which we validate both numerically and experimentally. The understanding ...

  13. Experimental study of plasma window

    CERN Document Server

    Ben-Liang, Shi; Kun, Zhu; Yuan-Rong, Lu

    2013-01-01

    Plasma window is an advanced apparatus which can work as the interface between vacuum and high pressure region. It can be used in many applications which need atmosphere-vacuum interface, such as gas target, electron beam welding, synchrotron radiation and spallation neutron source. A test bench of plasma window is constructed in Peking University. A series of experiments and corresponding parameter measurements have been presented in this article. The experiment result indicates the feasibility of such a facility acting as an interface between vacuum and high pressure region.

  14. Properties of plasmas generated in microdischarges

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-Serrano, E; Hagelaar, G; Callegari, Th; Boeuf, J P; Pitchford, L C [Centre de Physique des Plasmas et Applications de Toulouse (CPAT) Universite Paul Sabatier, Toulouse III, and CNRS UMR 5002 118 route de Narbonne, 31062 Toulouse (France)

    2006-12-15

    We present in this paper a discussion of the properties of plasmas generated in microhollow cathode geometries and in microcathode sustained discharge geometries. The results presented here are derived from models. This work is part of a joint modelling/experimental programme whose objective is the evaluation of the potential of the high-pressure, non-thermal plasmas created in microdischarges (e.g. discharges in small, 100s of micrometre sized geometries) for the production of large quantities of radical species, and in particular oxygen singlet delta (metastable) molecules, O{sub 2}({sup 1}{delta})

  15. Modelling of dusty plasma properties by computer simulation methods

    Energy Technology Data Exchange (ETDEWEB)

    Baimbetov, F B [IETP, Al Farabi Kazakh National University, 96a, Tole bi St, Almaty 050012 (Kazakhstan); Ramazanov, T S [IETP, Al Farabi Kazakh National University, 96a, Tole bi St, Almaty 050012 (Kazakhstan); Dzhumagulova, K N [IETP, Al Farabi Kazakh National University, 96a, Tole bi St, Almaty 050012 (Kazakhstan); Kadyrsizov, E R [Institute for High Energy Densities of RAS, Izhorskaya 13/19, Moscow 125412 (Russian Federation); Petrov, O F [IETP, Al Farabi Kazakh National University, 96a, Tole bi St, Almaty 050012 (Kazakhstan); Gavrikov, A V [IETP, Al Farabi Kazakh National University, 96a, Tole bi St, Almaty 050012 (Kazakhstan)

    2006-04-28

    Computer simulation of dusty plasma properties is performed. The radial distribution functions, the diffusion coefficient are calculated on the basis of the Langevin dynamics. A comparison with the experimental data is made.

  16. [Plasma properties research: Task 3

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    The principal research activities of the Magneto-Fluid Dynamics Division relate to magnetic fusion plasma physics. In addition, there is a modest amount of work in closely related areas, including space plasma physics, fluid dynamics, and dynamical systems. Members of the Magneto-Fluid Dynamics Division maintain close contacts with fusion researchers in the US and abroad. Some of the work of the Division is clearly directed towards ITER and TPX, while other problems relate to the broader development of fusion plasma physics and to the support of other issues arising in the many experimental programs. Topics of some note in the last year that are discussed in this report are: Application of sophisticated statistical techniques to tokamak data reduction, including time series analysis of TFTR fluctuation data and spline analysis of profile data. Continuing development of edge plasma and divertor modelling, including initial ergodic divertor studies. Analysis of energetic fusion products losses from TFTR plasmas. Examination of anomalous transport in dynamical systems induced by chaotic-like Hamiltonian motion. Numerical simulation of the development of singular MHD equilibria. Exploration of the validity of moment expansions of kinetic equations for weakly collisional systems. Studies of RF- and ripple-induced helium ash removal. Ballooning mode studies in fluids and rotating stars. Studies in dynamical systems, including explosive instabilities, development of chaos, and motion of collisionless particles in a domain with overlapping islands.

  17. [Plasma properties research: Task 3

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    The principal research activities of the Magneto-Fluid Dynamics Division relate to magnetic fusion plasma physics. In addition, there is a modest amount of work in closely related areas, including space plasma physics, fluid dynamics, and dynamical systems. Members of the Magneto-Fluid Dynamics Division maintain close contacts with fusion researchers in the US and abroad. Some of the work of the Division is clearly directed towards ITER and TPX, while other problems relate to the broader development of fusion plasma physics and to the support of other issues arising in the many experimental programs. Topics of some note in the last year that are discussed in this report are: Application of sophisticated statistical techniques to tokamak data reduction, including time series analysis of TFTR fluctuation data and spline analysis of profile data. Continuing development of edge plasma and divertor modelling, including initial ergodic divertor studies. Analysis of energetic fusion products losses from TFTR plasmas. Examination of anomalous transport in dynamical systems induced by chaotic-like Hamiltonian motion. Numerical simulation of the development of singular MHD equilibria. Exploration of the validity of moment expansions of kinetic equations for weakly collisional systems. Studies of RF- and ripple-induced helium ash removal. Ballooning mode studies in fluids and rotating stars. Studies in dynamical systems, including explosive instabilities, development of chaos, and motion of collisionless particles in a domain with overlapping islands.

  18. Nonequilibrium plasma generator (NPG) project - experimental program

    Energy Technology Data Exchange (ETDEWEB)

    Lineberry, J.T.; Wu, Y.C.L.; Lin, B.C. [and others

    1995-12-31

    This paper summarizes research conducted under a DOE MHD SBIR entitled: {open_quotes}A Light Metal Fueled Non-equilibrium Plasma Generator (NPG){close_quotes}. It is a summary paper presenting the idea of the NPG and activities of the NPG SBIR research program along with experimental results from NPG Proof-of-Principle tests. The NPG is an innovative concept for a combustion device that can produce a nonequilibrium plasma. This device bums powdered metal fuel, and it can be used to drive an MHD disk generator pulse power unit or a similar nonequilibrium MHD device or system. The NPG research program was concluded over the past two years under sponsorship of a DOE Phase II SBIR grant. This program focused on addressing fundamental and practical aspects of the NPG concept and its system design. The research included investigation of the physics of the NPG concept through theoretical and experimental studies on the quality of the plasma that it can produce, theoretical evaluations of the nonequilibrium ionization processes in an MHD disk generator driven by an NPG, and experimental validation of the NPG concept in Proof-of-Principle tests. At the conclusion of this research it was determined that the NPG is indeed a viable concept. Results from combustion tests using powdered aluminum fuel reveal that the NPG can produce an extremely hot argon plasma clean enough to support nonequilibrium ionization in an MHD device.

  19. Theoretical and Experimental Beam Plasma Physics (TEBPP)

    Science.gov (United States)

    Roberts, B.

    1986-01-01

    The theoretical and experimental beam plasma physics (TEBPP) consists of a package of five instruments to measure electric and magnetic fields, plasma density and temperature, neutral density, photometric emissions, and energetic particle spectra during firings of the particle injector (SEPAC) electron beam. The package is developed on a maneuverable boom (or RMS) and is used to measure beam characteristics and induced perturbations field ( 10 m) and mid field ( 10 m to 100 m) along the electron beam. The TEBPP package will be designed to investigate induced oscillations and induced electromagnetic mode waves, neutral and ion density and temperature effects, and beam characteristics as a function of axial distance.

  20. Optical properties of cluster plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kishimoto, Yasuaki; Tajima, Toshiki [Japan Atomic Energy Research Inst., Neyagawa, Osaka (Japan). Kansai Research Establishment; Downer, M.C.

    1998-03-01

    It is shown that unlike a gas plasma or an electron plasma in a metal, an ionized clustered material (`cluster plasma`) permits propagation below the plasma cut-off of electromagnetic (EM) waves whose phase velocity is close to but below the speed of light. This results from the excitation of a plasma oscillation mode (and/or polarization mode) through the cluster surface which does not exist in usual gaseous plasma. The existence of this new optical mode, cluster mode, is confirmed via numerical simulation. (author)

  1. On plasma radiative properties in stellar conditions

    CERN Document Server

    Turck-Chièze, S; Gilles, D; Loisel, G; Piau, L; 10.1016/j.hedp.2009.06.007

    2012-01-01

    The knowledge of stellar evolution is evolving quickly thanks to an increased number of opportunities to scrutinize the stellar internal plasma properties by stellar seismology and by 1D and 3D simulations. These new tools help us to introduce the internal dynamical phenomena in stellar modeling. A proper inclusion of these processes supposes a real confidence in the microscopic physics used, partly checked by solar or stellar acoustic modes. In the present paper we first recall which fundamental physics has been recently verified by helioseismology. Then we recall that opacity is an important ingredient of the secular evolution of stars and we point out why it is necessary to measure absorption coefficients and degrees of ionization in the laboratory for some well identified astrophysical conditions. We examine two specific experimental conditions which are accessible to large laser facilities and are suitable to solve some interesting questions of the stellar community: are the solar internal radiative inte...

  2. Experimental investigation of plasma relaxation using a compact coaxial magnetized plasma gun in a background plasma

    Science.gov (United States)

    Zhang, Yue; Lynn, Alan; Gilmore, Mark; Hsu, Scott; University of New Mexico Collaboration; Los Alamos National Laboratory Collaboration

    2013-10-01

    A compact coaxial plasma gun is employed for experimental studies of plasma relaxation in a low density background plasma. Experiments are being conducted in the linear HelCat device at UNM. These studies will advance the knowledge of basic plasma physics in the areas of magnetic relaxation and space and astrophysical plasmas, including the evolution of active galactic jets/radio lobes within the intergalactic medium. The gun is powered by a 120pF ignitron-switched capacitor bank which is operated in a range of 5-10 kV and ~100 kA. Multiple diagnostics are employed to investigate plasma relaxation process. Magnetized Argon plasma bubbles with velocities ~1.2Cs and densities ~1020 m-3 have been achieved. Different distinct regimes of operation with qualitatively different dynamics are identified by fast CCD camera images, with the parameter determining the operation regime. Additionally, a B-dot probe array is employed to measure the spatial toroidal and poloidal magnetic flux evolution to identify detached plasma bubble configurations. Experimental data and analysis will be presented.

  3. Transport properties of inertial confinement fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Issanova, M.K.; Kodanova, S.K.; Ramazanov, T.S. [IETP, Al-Farabi Kazakh National University, Almaty (Kazakhstan); Hoffmann, D.H.H. [Institut fuer Kernphysik, Technische Universitaet Darmstadt (Germany)

    2016-06-15

    In this paper the transport properties of non-isothermal dense deuterium-tritium plasmas were studied. Based on the effective interaction potentials between particles, the Coulomb logarithm for a two-temperature nonisothermal dense plasma was obtained. These potentials take into consideration long-range multi-particle screening effects and short-range quantum-mechanical effects in two-temperature plasmas. Transport processes in such plasmas were studied using the Coulomb logarithm. The obtained results were compared with the theoretical works of other authors and with the results of molecular dynamics simulations. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Characteristics of plasma properties in an ablative pulsed plasma thruster

    Energy Technology Data Exchange (ETDEWEB)

    Schoenherr, Tony; Nees, Frank; Arakawa, Yoshihiro [Department of Aeronautics and Astronautics, University of Tokyo, Bunkyo, Tokyo 113-8656 (Japan); Komurasaki, Kimiya [Department of Advanced Energy, University of Tokyo, Kashiwa, Chiba 277-8561 (Japan); Herdrich, Georg [Institute of Space Systems (IRS), University of Stuttgart, 70569 Stuttgart, Baden-Wuerttemberg (Germany)

    2013-03-15

    Pulsed plasma thrusters are electric space propulsion devices which create a highly transient plasma bulk in a short-time arc discharge that is expelled to create thrust. The transitional character and the dependency on the discharge properties are yet to be elucidated. In this study, optical emission spectroscopy and Mach-Zehnder interferometry are applied to investigate the plasma properties in variation of time, space, and discharge energy. Electron temperature, electron density, and Knudsen numbers are derived for the plasma bulk and discussed. Temperatures were found to be in the order of 1.7 to 3.1 eV, whereas electron densities showed maximum values of more than 10{sup 17} cm{sup -3}. Both values showed strong dependency on the discharge voltage and were typically higher closer to the electrodes. Capacitance and time showed less influence. Knudsen numbers were derived to be in the order of 10{sup -3}-10{sup -2}, thus, indicating a continuum flow behavior in the main plasma bulk.

  5. Experimental measurement of ablation effects in plasma armature railguns

    Energy Technology Data Exchange (ETDEWEB)

    Parker, J.V.; Parsons, W.M.

    1986-01-01

    Experimental evidence supporting the importance of ablation in plasma armature railguns is presented. Experiments conducted using the HYVAX and MIDI-2 railguns are described. Several indirect effects of ablation are identified from the experimental results. An improved ablation model of plasma armature dynamics is proposed which incorporates the restrike process.

  6. Experimental studies of collisional plasma shocks and plasma interpenetration via merging supersonic plasma jets

    Science.gov (United States)

    Hsu, S. C.; Moser, A. L.; Merritt, E. C.; Adams, C. S.

    2015-11-01

    Over the past 4 years on the Plasma Liner Experiment (PLX) at LANL, we have studied obliquely and head-on-merging supersonic plasma jets of an argon/impurity or hydrogen/impurity mixture. The jets are formed/launched by pulsed-power-driven railguns. In successive experimental campaigns, we characterized the (a) evolution of plasma parameters of a single plasma jet as it propagated up to ~ 1 m away from the railgun nozzle, (b) density profiles and 2D morphology of the stagnation layer and oblique shocks that formed between obliquely merging jets, and (c) collisionless interpenetration transitioning to collisional stagnation between head-on-merging jets. Key plasma diagnostics included a fast-framing CCD camera, an 8-chord visible interferometer, a survey spectrometer, and a photodiode array. This talk summarizes the primary results mentioned above, and highlights analyses of inferred post-shock temperatures based on observations of density gradients that we attribute to shock-layer thickness. We also briefly describe more recent PLX experiments on Rayleigh-Taylor-instability evolution with magnetic and viscous effects, and potential future collisionless shock experiments enabled by low-impurity, higher-velocity plasma jets formed by contoured-gap coaxial guns. Supported by DOE Fusion Energy Sciences and LANL LDRD.

  7. Properties of Plasma and HVOF Sprayed Coatings

    Directory of Open Access Journals (Sweden)

    Wojciech Żórawski

    2012-11-01

    Full Text Available The work compares the properties of plasma and HVOF thermally sprayed coatings obtained by blending the NiCrBSi and Fe2O3 powders. The deposition was performed by means of the Plancer PN-120 and the Diamond Jet guns for plasma spraying and HVOF spraying respectively. The SEM (EDS method was employed to study the microstructure of the produced coatings. Although the blended powders differ in particle size, shape, and distribution, it is possible to obtain composite coatings with an NiCrBSi matrix containing iron oxides. Except for a different microstructure, plasma and HVOF coatings have a different phase composition, which was examined using the Bruker D-8 Advance diffractometer. Studies of the coatings wear and scuffing resistance showed that an optimal content of Fe2O3 is about 26 % for plasma sprayed coatings and 22.5 % for HVOF deposited coatings.

  8. Statistical properties of transport in plasma turbulence

    DEFF Research Database (Denmark)

    Naulin, V.; Garcia, O.E.; Nielsen, A.H.;

    2004-01-01

    The statistical properties of the particle flux in different types of plasma turbulence models are numerically investigated using probability distribution functions (PDFs). The physics included in the models range from two-dimensional drift wave turbulence to three-dimensional MHD dynamics...

  9. Experimental study of the plasma window

    Science.gov (United States)

    Shi, Ben-Liang; Huang, Sheng; Zhu, Kun; Lu, Yuan-Rong

    2014-01-01

    The plasma window is an advanced apparatus that can work as the interface between a vacuum and a high pressure region. It can be used in many applications that need atmosphere-vacuum interface, such as a gas target, electron beam welding, synchrotron radiation and a spallation neutron source. A test bench of the plasma window is constructed in Peking University. A series of experiments and the corresponding parameter measurements have been presented in this article. The experiment result indicates the feasibility of such a facility acting as an interface between a vacuum and a high pressure region.

  10. The quark gluon plasma: Lattice computations put to experimental test

    Indian Academy of Sciences (India)

    Sourendu Gupta

    2003-11-01

    I describe how lattice computations are being used to extract experimentally relevant features of the quark gluon plasma. I deal specifically with relaxation times, photon emissivity, strangeness yields, event-by-event fluctuations of conserved quantities and hydrodynamic flow. Finally I give evidence that the plasma is rather liquid-like in some ways.

  11. Experimental Study of Plasma/Propellant Interactions

    Science.gov (United States)

    2007-11-02

    silica windows from ESCO Products (one is 1/16” thick, whereas the other is 3/16” thick); this window material is very pure and allows transmission...0.92 at 200 nm to 0.94 at 700 nm (data from ESCO Products). Hence, the effect of the direction of the radiant energy emitted by the plasma on the

  12. Plasma source mass spectrometry in experimental nutrition.

    Science.gov (United States)

    Barnes, R M

    1998-01-01

    The development and commercial availability of plasma ion source, specifically inductively coupled plasma, mass spectrometers (ICP-MS) have significantly extended the potential application of stable isotopes for nutritional modeling. The status of research and commercial ICP-MS instruments, and their applications and limitations for stable isotopic studies are reviewed. The consequences of mass spectroscopic resolution and measurement sensitivity obtainable with quadrupole, sector, time-of-flight, and trap instruments on stable isotope analysis are examined. Requirements for reliable isotope measurements with practical biological samples including tissues and fluids are considered. The possibility for stable isotope analysis in chemically separated compounds (speciation) also is explored. On-line compound separations by chromatography or electrophoresis, for example, have been combined instrumentally with ICP-MS. Som possibilities and requirements are described for stable isotope speciation analysis.

  13. Experimental approaches for studying non-equilibrium atmospheric plasma jets

    Energy Technology Data Exchange (ETDEWEB)

    Shashurin, A., E-mail: ashashur@purdue.edu [School of Aeronautics & Astronautics, Purdue University, West Lafayette, Indiana 47907 (United States); Keidar, M. [Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, District of Columbia 20052 (United States)

    2015-12-15

    This work reviews recent research efforts undertaken in the area non-equilibrium atmospheric plasma jets with special focus on experimental approaches. Physics of small non-equilibrium atmospheric plasma jets operating in kHz frequency range at powers around few Watts will be analyzed, including mechanism of breakdown, process of ionization front propagation, electrical coupling of the ionization front with the discharge electrodes, distributions of excited and ionized species, discharge current spreading, transient dynamics of various plasma parameters, etc. Experimental diagnostic approaches utilized in the field will be considered, including Rayleigh microwave scattering, Thomson laser scattering, electrostatic streamer scatterers, optical emission spectroscopy, fast photographing, etc.

  14. Experimental Study on the Relation between the Thermal Radiative Properties and Plasma Wavelength of ITO Films for Heat Mirror Applications%ITO的热辐射性质与等离子波长关系的实验研究

    Institute of Scientific and Technical Information of China (English)

    陈颉; 葛新石; 胡行方

    2000-01-01

    热镜膜具有广泛的应用背景,特别是将其沉积在柔性的黑色底衬上,就能获得不同于通常的、必须用发射率很低的金属做衬底的太阳能选择性吸收表面. 采用衬底不加温的普通RF溅射技术制备单层ITO热镜膜,并对它们的热辐射性质与等离子波长之间的关系进行了实验研究. 研究表明,对于单层ITO热镜膜,同时具有最小的发射率和最小的对太阳辐射的反射率是困难的. 但是,等离子波长可以作为预测太阳能热利用领域使用的单层ITO热镜膜热辐射性质的一个判据.%There is an increasing interest for the heat mirror films, especially, deposited on rigid or flexible black substrates used as a spectral selective absorbing coating which differs from the common selective absorber needing a metal substrate with low emissivity. The single layer indium tin oxides heat mirror films (HMF) were deposited onto unheated glass and rigid or flexible plastic substrates by conventional RF sputtering technique. The relation between the thermal radiative properties and the plasma wavelength of indium tin oxides heat mirror films were obtained based on experimental studies. The results show that it is impossible to get ITO HMF simultaneously with maximum reflectance in thermal long wavelength region and minimum reflectance in the solar spectral region. However, the plasma wavelength can be take as a criterion to predict the thermal radiative properties of ITO HMF, approximately.

  15. Coronal Jet Plasma Properties and Acceleration Mechanisms

    Science.gov (United States)

    Farid, Samaiyah; Reeves, Kathy; Savcheva, Antonia; Soto, Natalia

    2017-08-01

    Coronal jets are transient eruptions of plasma typically characterized by aprominent long spire and a bright base, and sometimes accompanied by a small filament. Jets are thought to be produced by magnetic reconnection when small-scale bipolar magnetic fields emerge into an overlying coronal field or move into a locally unipolar region. Coronal jets are commonly divided into two categories: standard jets and blowout jets, and are found in both quiet and active regions. The plasma properties of jets vary across type and location, therefore understanding the underlying acceleration mechanisms are difficult to pin down. In this work, we examine both blow-out and standard jets using high resolution multi-wavelength data. Although reconnection is commonly accepted as the primary acceleration mechanism, we also consider the contribution chromospheric evaporation to jet formation. We use seven coronal channels from SDO/AIA , Hinode/XRT Be-thin and IRIS slit-jaw data. In addition, we separate the Fe-XVIII line from the SDO/94Å channel. We calculate plasma properties including velocity, Alfven speed, and density as a function of wavelength and Differential Emission Measure (DEM). Finally, we explore the magnetic topology of the jets using Coronal Modeling System (CMS) to construct potential and non-linear force free models based on the flux rope insertion method.

  16. Properties of Trapped Electron Bunches in a Plasma Wakefield Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, Neil; /SLAC

    2009-10-30

    Plasma-based accelerators use the propagation of a drive bunch through plasma to create large electric fields. Recent plasma wakefield accelerator (PWFA) experiments, carried out at the Stanford Linear Accelerator Center (SLAC), successfully doubled the energy for some of the 42 GeV drive bunch electrons in less than a meter; this feat would have required 3 km in the SLAC linac. This dissertation covers one phenomenon associated with the PWFA, electron trapping. Recently it was shown that PWFAs, operated in the nonlinear bubble regime, can trap electrons that are released by ionization inside the plasma wake and accelerate them to high energies. These trapped electrons occupy and can degrade the accelerating portion of the plasma wake, so it is important to understand their origins and how to remove them. Here, the onset of electron trapping is connected to the drive bunch properties. Additionally, the trapped electron bunches are observed with normalized transverse emittance divided by peak current, {epsilon}{sub N,x}/I{sub t}, below the level of 0.2 {micro}m/kA. A theoretical model of the trapped electron emittance, developed here, indicates that the emittance scales inversely with the square root of the plasma density in the non-linear 'bubble' regime of the PWFA. This model and simulations indicate that the observed values of {epsilon}{sub N,x}/I{sub t} result from multi-GeV trapped electron bunches with emittances of a few {micro}m and multi-kA peak currents. These properties make the trapped electrons a possible particle source for next generation light sources. This dissertation is organized as follows. The first chapter is an overview of the PWFA, which includes a review of the accelerating and focusing fields and a survey of the remaining issues for a plasma-based particle collider. Then, the second chapter examines the physics of electron trapping in the PWFA. The third chapter uses theory and simulations to analyze the properties of the trapped

  17. Final Report: Experimental Investigation of Nonlinear Plasma Wake-Fields

    Energy Technology Data Exchange (ETDEWEB)

    Rosenzweig, J.

    1997-10-31

    We discuss the exploration of the newly proposed blowout regime of the plasma wakefield accelerator and advanced photoinjector technology for linear collider applications. The plasma wakefield experiment at ANL produced several ground-breaking results in the physics of the blowout regime. The photoinjector R and D effort produced breakthroughs in theoretical, computational, and experimental methods in high brightness beam physics. Results have been published.

  18. Final Report: Experimental Investigation of Nonlinear Plasma Wake-Fields

    Energy Technology Data Exchange (ETDEWEB)

    Rosenzweig, J.

    1997-10-31

    We discuss the exploration of the newly proposed blowout regime of the plasma wakefield accelerator and advanced photoinjector technology for linear collider applications. The plasma wakefield experiment at ANL produced several ground-breaking results in the physics of the blowout regime. The photoinjector R and D effort produced breakthroughs in theoretical, computational, and experimental methods in high brightness beam physics. Results have been published.

  19. Numerical simulation and experimental progress on plasma window

    Science.gov (United States)

    Wang, S. Z.; Zhu, K.; Huang, S.; Lu, Y. R.; Shi, B. L.

    2016-11-01

    In this paper, a numerical 2D FLUENT-based magneto-hydrodynamic simulation on 3mm plasma window using argon, taken as a windowless vacuum device, was developed. The gas inlet, arc creation and developing and plasma expansion segments are all contained in this model. In the axis-symmetry cathode structure, a set of parameters including pressure, temperature, velocity and current distribution were obtained and discussed. The fluid dynamics of plasma in cavities with different shapes was researched. Corresponding experiments was carried out and the result agrees well to the numerical simulation. The validity of sealing ability of plasma window has been verified. Relevant further research upon deuteron gas as neutron production target is to be continued, considering larger diameter plasma window experimentally and numerically.

  20. Experimental observation of strong coupling effects on the dispersion of dust acoustic waves in a plasma

    CERN Document Server

    Bandyopadhyay, P; Sen, A; Kaw, P K

    2016-01-01

    The dispersion properties of low frequency dust acoustic waves in the strong coupling regime are investigated experimentally in an argon plasma embedded with a mixture of kaolin and $MnO_2$ dust particles. The neutral pressure is varied over a wide range to change the collisional properties of the dusty plasma. In the low collisional regime the turnover of the dispersion curve at higher wave numbers and the resultant region of $\\partial\\omega/\\partial k < 0$ are identified as signatures of dust-dust correlations. In the high collisional regime dust neutral collisions produce a similar effect and prevent an unambiguous identification of strong coupling effects.

  1. Experimental study of a very high frequency, 162 MHz, segmented electrode, capacitively coupled plasma discharge

    Science.gov (United States)

    Sirse, Nishant; Harvey, Cleo; Gaman, Cezar; Ellingboe, Bert

    2016-09-01

    Radio-frequency capacitively coupled plasma (CCP) discharge operating at a very high frequency, 30-300 MHz, offers many advantages over standard 13.56 MHz CCP. However, there is a limited flexibility on the choice of driving frequency and substrate size due to plasma non-uniformity caused by the standing wave effect and edge effect. To overcome this issue segmented electrode CCP's are proposed and researched. Despite its numerous advantages the power coupling mechanism and plasma chemistry in this type of discharge are not fully understood due to lack of experimental data. In this paper, we present the experimental study of a segmented electrode, 3x4 tile array (10x10 cm square tile with 1 cm tile-to-tile separation), CCP discharge driven at 162 MHz. We measured plasma uniformity and gas temperature using hairpin probe and optical emission spectroscopy respectively. A homemade RF compensated Langmuir probe is employed to measure the Electron Energy Distribution Function (EEDF) by second harmonic technique. Energy resolved quadrupole mass spectrometer is utilized to measure the ion energy distribution. Discharge/plasma properties are investigated for several operating conditions and for power coupling mode in both washer board and checker board configuration. The experimental results show that the uniform plasma density can be maintained over a large area along with highly non-equilibrium condition to produce unique gas phase plasma chemistry.

  2. Experimental tests for carbon nanomaterial synthesis using DC plasma jet

    Science.gov (United States)

    Lange, H.; Łabȩdź, O.; Tylska, I.; Huczko, A.; Bystrzejewski, M.

    2014-11-01

    In the frame of this work some experimental tests were performed in the plasma jet. Pure ethanol vapour alone or with the addition of fine iron powder were used to synthesize few-layer graphene or carbon-encapsulated iron nanoparticles, respectively.

  3. Theoretical and experimental investigation on magneto-hydrodynamics of plasma window

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S. Z.; Zhu, K., E-mail: zhukun@pku.edu.cn; Huang, S.; Lu, Y. R.; Yuan, Z. X.; Shi, B. L.; Gan, P. P. [State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Hershcovitch, A. [Brookhaven National Laboratory, Upton, New York 11973-5000 (United States)

    2016-01-15

    As a new device, plasma window has been designed to use plasma discharge to separate atmosphere from vacuum with high difference of pressure. It has many excellent properties, being able to be used as available passage for ion beam with negligible energy loss, also impervious to radiation damage and thermal damage. Normally beam focusing by accelerators is not that easy to achieve within channel of small cross section. 10 mm diameter plasma window's experimental realization could contribute to its further application in accelerator system. In this paper, 10 mm diameter 60 mm long plasma window has first been designed and managed to generate arc discharge with argon gas experimentally. The result proves that it has the ability to separate at least 28.8 kPa (not the upper limit) from 360 Pa with 50 A direct current and 2.5 kW power supplied. Current increase leads to linear inlet pressure increase obviously, while it has less impact on outlet pressure and voltage, coming to the conclusion that the higher current of plasma discharge, the larger pressure difference it creates. Theoretical analysis of 10 mm diameter plasma window in axis symmetrical configuration using argon also has been provided, in which a numerical 2D FLUENT-based magneto-hydrodynamic simulation model is settled. It has a good agreement with experimental result on voltage and mass flow rate when inlet pressure is increased.

  4. Experimental observation of precursor solitons in a flowing complex plasma

    Science.gov (United States)

    Jaiswal, Surabhi; Bandyopadhyay, P.; Sen, A.

    2016-04-01

    The excitation of precursor solitons ahead of a rapidly moving object in a fluid, a spectacular phenomenon in hydrodynamics that has often been observed ahead of moving ships, has surprisingly not been investigated in plasmas where the fluid model holds good for low frequency excitations such as ion acoustic waves. In this Rapid Communication we report an experimental observation of precursor solitons in a flowing dusty plasma. The nonlinear solitary dust acoustic waves (DAWs) are excited by a supersonic mass flow of the dust particles over an electrostatic potential hill. In a frame where the fluid is stationary and the hill is moving the solitons propagate in the upstream direction as precursors while wake structures consisting of linear DAWs are seen to propagate in the downstream region. A theoretical explanation of these excitations based on the forced Korteweg-deVries model equation is provided and their practical implications in situations involving a charged object moving in a plasma are discussed.

  5. Experimental investigation in plasma relaxation by using a compact coaxial magnetized plasma gun in a background plasma

    Science.gov (United States)

    Zhang, Yue; Lynn, Alan; Gilmore, Mark; Hsu, Scott

    2012-10-01

    A compact coaxial plasma gun is employed for experimental studies of plasma relaxation process being conducted in the HELCAT device at UNM. These studies will advance the knowledge of basic plasma physics in the areas of magnetic relaxation and space and astrophysical plasmas, including the evolution of active galactic jets/radio lobes. The gun is powered by a 120pF ignitron-switched capacitor bank which is operated in a range of 5 - 10kV. Multiple diagnostics are employed to investigate plasma relaxation process. Magnetized Argon plasma bubbles with velocities 1.2Cs and densities 10e20 m-3 have been achieved. Different distinct regimes of operation with qualitatively different dynamics are identified by fast CCD camera images, with the parameter lambda determining the operation regime. Additionally, a B-dot probe array is employed to measure the spatial toroidal and poloidal magnetic flux evolution to identify detached plasma bubble configurations. Experimental data and analysis will be presented.

  6. Experimental Study on Plasma Surface Treatment of Capacitors Film

    Science.gov (United States)

    Ling, Dai; Ting, Yin; Fuchang, Lin; Fei, Yan

    Plasma surface treatment is an optional way to change the electrical performance of the film capacitors used widely in pulse power application. This paper presents the experimental study of glow discharge plasma treatment to polyphenylene sulfide (PPS) film. By using infrared spectra and scanning electron microscope (SEM), the chemical component and microstructure of material surface has detected to be changed with different treatment strength and various discharge gas. After treatment, the film surface tends to be rougher and some sorts of polar radicals or groups found to be introduced. But there is no obvious change of the electrical strength of the film. At last, theoretical analysis has been carried out with polypropylene film experimental treatment results in author's former work.

  7. Dusty Plasma Experimental (DPEx) device for complex plasma experiments with flow

    CERN Document Server

    Jaiswal, S; Sen, A

    2015-01-01

    A versatile table-top dusty plasma experimental device (DPEx) to study flow induced excitations of linear and nonlinear waves/structures in a complex plasma is presented. In this $\\Pi$-shaped apparatus a DC glow discharge plasma is produced between a disc shaped anode and a grounded long cathode tray by applying a high voltage DC in the background of a neutral gas and subsequently a dusty plasma is created by introducing micron sized dust particles that get charged and levitated in the sheath region. A flow of the dust particles is induced in a controlled manner by adjusting the pumping speed and the gas flow rate into the device. A full characterisation of the plasma, using Langmuir and emissive probe data, and that of the dusty plasma using particle tracking data with the help of an idl based (super) Particle Identification and Tracking (sPIT) code is reported. Experimental results on the variation of the dust flow velocity as a function of the neutral pressure and the gas flow rate are given. The potential...

  8. An Experimental Study of Microwave Transmission through a Decaying Plasma

    Science.gov (United States)

    1989-05-01

    pulse capable of plasma reionization is applied across the plasma column at varying times in the plasma’s decay phase (the plasma after- glow). We have...lorf) An rf pulse capable of plasma reionization is applied across the plasma column at varying times in the plasma’s decay phase (the plasma...CHAPTER 1. THEORETICAL DISCUSSION ................................ 9 1.1 PLASMA IONIZATION ................................. 9 1.2 PLASMA REIONIZATION

  9. Theoretical and Experimental Study of Scattering of a Plane Wave by an Inhomogeneous Plasma Sphere

    Institute of Scientific and Technical Information of China (English)

    SONG Fa-Lun; CAO Jin-Xiang; WANG Ge; WANG Yan; ZHU Ying; ZHU Jian; WANG Liang; NIU Tian-Ye

    2006-01-01

    @@ Scattering of electromagnetic waves by an inhomogeneous plasma sphere has been studied theoretically and experimentally. The offset angles of electromagnetic waves caused by the plasma sphere have been observed experimentally. The effects of the electromagnetic wave frequency and plasma density on the offset angle are discussed. The plasma density is estimated with the offset angle.

  10. EXPERIMENTAL MEASUREMENT OF NANOFLUIDS THERMAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    Adnan M. Hussein

    2013-07-01

    Full Text Available Solid particles dispersed in a liquid with sizes no larger than 100nm, known as nanofluids, are used to enhance Thermophysical properties compared to the base fluid. Preparations of alumina (Al2O3, titania (TiO2 and silica (SiO2 in water have been experimentally conducted in volume concentrations ranging between 1 and 2.5%. Thermal conductivity is measured by the hot wire method and viscosity with viscometer equipment. The results of thermal conductivity and viscosity showed an enhancement (0.5–20% and 0.5–60% respectively compared with the base fluid. The data measured agreed with experimental data of other researchers with deviation of less than 5%. The study showed that alumina has the highest thermal conductivity, followed silica and titania, on the other hand silica has the highest viscosity followed alumina and titania.

  11. Experimental Characterization of the Plasma Synthetic Jet Actuator

    Science.gov (United States)

    Jin, Di; Li, Yinghong; Jia, Min; Song, Huimin; Cui, Wei; Sun, Quan; Li, Fanyu

    2013-10-01

    The plasma synthetic jet is a novel active flow control method because of advantages such as fast response, high frequency and non-moving parts, and it has received more attention recently, especially regarding its application to high-speed flow control. In this paper, the experimental characterization of the plasma synthetic jet actuator is investigated. The actuator consists of a copper anode, a tungsten cathode and a ceramic shell, and with these three parts a cavity can be formed inside the actuator. A pulsed-DC power supply was adopted to generate the arc plasma between the electrodes, through which the gas inside was heated and expanded from the orifice. Discharge parameters such as voltage and current were recorded, respectively, by voltage and current probes. The schlieren system was used for flow visualization, and jet velocities with different discharge parameters were measured. The schlieren images showed that the strength of plasma jets in a series of pulses varies from each other. Through velocity measurement, it is found that at a fixed frequency, the jet velocity hardly increases when the discharge voltage ranges from 16 kV to 20 kV. However, with the discharge voltage fixed, the jet velocity suddenly decreases when the pulse frequency rises above 500 Hz, whereas at other testing frequencies no such decrease was observed. The maximum jet velocity measured in the experiment was up to 110 m/s, which is believed to be effective for high-speed flow control.

  12. Texas Experimental Tokamak, a plasma research facility: Technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Wootton, A.J.

    1995-08-01

    In the year just past, the authors made major progress in understanding turbulence and transport in both core and edge. Development of the capability for turbulence measurements throughout the poloidal cross section and intelligent consideration of the observed asymmetries, played a critical role in this work. In their confinement studies, a limited plasma with strong, H-mode-like characteristics serendipitously appeared and received extensive study though a diverted H-mode remains elusive. In the plasma edge, they appear to be close to isolating a turbulence drive mechanism. These are major advances of benefit to the community at large, and they followed from incremental improvements in diagnostics, in the interpretation of the diagnostics, and in TEXT itself. Their general philosophy is that the understanding of plasma physics must be part of any intelligent fusion program, and that basic experimental research is the most important part of any such program. The work here demonstrates a continuing dedication to the problems of plasma transport which continue to plague the community and are an impediment to the design of future devices. They expect to show here that they approach this problem consistently, systematically, and effectively.

  13. Experimental results of an iodine plasma in PEGASES gridded thruster

    Science.gov (United States)

    Grondein, Pascaline; Aanesland, Ane

    2015-09-01

    In the electric gridded thruster PEGASES, both positive and negative ions are expelled after extraction from an ion-ion plasma. This ion-ion plasma is formed downstream a localized magnetic field placed a few centimeters from the ionization region, trapping and cooling down the electron to allow a better attachment to an electronegative gas. For this thruster concept, iodine has emerged as the most attractive option. Heavy, under diatomic form and therefore good for high thrust, its low ionization threshold and high electronegativity lead to high ion-ion densities and low RF power. After the proof-of-concept of PEGASES using SF6 as propellant, we present here experimental results of an iodine plasma studied inside PEGASES thruster. At solid state at standard temperature and pressure, iodine is heated to sublimate, then injected inside the chamber where the neutral gas is heated and ionized. The whole injection system is heated to avoid deposition on surfaces and a mass flow controller allows a fine control on the neutral gas mass flow. A 3D translation stage inside the vacuum chamber allows volumetric plasma studies using electrostatic probes. The results are also compared with the global model dedicated to iodine as propellant for electric gridded thrusters. This work has been done within the LABEX Plas@par project, and received financial state aid managed by the Agence Nationale de la Recherche, as part of the programme ``Investissements d'avenir.''

  14. Radiation properties and hydrodynamics evolution of highly charged ions in laser-produced silicon plasma.

    Science.gov (United States)

    Min, Qi; Su, Maogen; Cao, Shiquan; Sun, Duixiong; O'Sullivan, Gerry; Dong, Chenzhong

    2016-11-15

    We present a simplified radiation hydrodynamic model based on the fluid dynamic equations and the radiative transfer equation, which can be used to investigate the radiation properties and dynamics evolution of highly charged ions in a laser-produced plasma in vacuum. The outputs of the model consist of the evolution of the electron temperature, atom, and ion density, and the temporal and spatial evolution of various transient particles in plasma, as well as the simulated spectrum related to certain experimental conditions in a specified spectral window. In order to test the model and provide valuable experimental feedback, a series of EUV emission spectra of silicon plasmas have been measured using the spatio-temporally resolved laser produced plasma technique. The temporal and spatial evolution of the plasma is reliably reconstructed by using this model.

  15. Probing properties of cold radiofrequency plasma with polymer probe

    Science.gov (United States)

    Bormashenko, E.; Chaniel, G.; Multanen, V.

    2015-01-01

    The probe intended for the characterization of cold plasma is introduced. The probe allows the estimation of Debye length of cold plasma. The probe is based on the pronounced modification of surface properties (wettability) of polymer films by cold plasmas. The probe was tested with the cold radiofrequency inductive air plasma discharge. The Debye length and the concentration of charge carriers were estimated for various gas pressures. The reported results coincide reasonably with the corresponding values established by other methods. The probe makes possible measurement of characteristics of cold plasmas in closed chambers.

  16. Probing Properties of Cold Radiofrequency Plasma with Polymer Probe

    CERN Document Server

    Bormashenko, Edward; Multanen, Victor

    2014-01-01

    The probe intended for the characterization of cold plasma is introduced. The probe allows estimation of the Debye length of the cold plasma. The probe is based on the pronounced modification of surface properties (wettability) of polymer films by cold plasmas. The probe was tested with the cold radiofrequency inductive air plasma discharge. The Debye length and the concentration of charge carriers were estimated for various gas pressures. The reported results coincide reasonably with the corresponding values established by other methods. The probe makes possible measurement of characteristics of cold plasmas in closed chambers.

  17. Calculation of tin atomic data and plasma properties.

    Energy Technology Data Exchange (ETDEWEB)

    Morozov, V.; Tolkach, V.; Hassanein, A.

    2005-08-26

    This report reviews the major methods and techniques we use in generating basic atomic and plasma properties relevant to extreme ultraviolet (EUV) lithography applications. The basis of the work is the calculation of the atomic energy levels, transitions probabilities, and other atomic data by various methods, which differ in accuracy, completeness, and complication. Later on, we calculate the populations of atomic levels and ion states in plasmas by means of the collision-radiation equilibrium (CRE) model. The results of the CRE model are used as input to the thermodynamic functions, such as pressure and temperature from the internal energy and density (equation of state), electric resistance, thermal conduction, and other plasma properties. In addition, optical coefficients, such as emission and absorption coefficients, are generated to resolve a radiation transport equation (RTE). The capabilities of our approach are demonstrated by generating the required atomic and plasma properties for tin ions and plasma within the EUV region near 13.5 nm.

  18. Experimental Characterization of a Plasma Deflagration Accelerator for Simulating Fusion Wall Response to Disruption Events

    Science.gov (United States)

    Underwood, Thomas; Loebner, Keith; Cappelli, Mark

    2016-10-01

    In this work, the suitability of a pulsed deflagration accelerator to simulate the interaction of edge-localized modes with plasma first wall materials is investigated. Experimental measurements derived from a suite of diagnostics are presented that focus on the both the properties of the plasma jet and the manner in which such jets couple with material interfaces. Detailed measurements of the thermodynamic plasma state variables within the jet are presented using a quadruple Langmuir probe operating in current-saturation mode. This data in conjunction with spectroscopic measurements of H α Stark broadening via a fast-framing, intensified CCD camera provide spatial and temporal measurements of how the plasma density and temperature scale as a function of input energy. Using these measurements, estimates for the energy flux associated with the deflagration accelerator are found to be completely tunable over a range spanning 150 MW m-2 - 30 GW m-2. The plasma-material interface is investigated using tungsten tokens exposed to the plasma plume under variable conditions. Visualizations of resulting shock structures are achieved through Schlieren cinematography and energy transfer dynamics are discussed by presenting temperature measurements of exposed materials. This work is supported by the U.S. Department of Energy Stewardship Science Academic Program in addition to the National Defense Science Engineering Graduate Fellowship.

  19. Properties and evolution of anisotropic structures in collisionless plasmas

    CERN Document Server

    Karimov, A R; Stenflo, L

    2016-01-01

    A new class of exact electrostatic solutions of the Vlasov-Maxwell equations based on the Jeans's theorem is proposed for studying the evolution and properties of two-dimensional anisotropic plasmas that are far from thermodynamic equilibrium. In particular, the free expansion of a slab of electron-ion plasma into vacuum is investigated.

  20. Properties of magnetically attractive experimental resin composites.

    Science.gov (United States)

    Hirano, S; Yasukawa, H; Nomoto, R; Moriyama, K; Hirasawa, T

    1996-12-01

    SUS444 stainless steel filled chemically cured resin composites that can attract magnet were fabricated. The filler was treated with various concentrations of silane. The experimental composite was easy to handle and showed a good shelf life. The maximal properties obtained are as follows; The attraction force to a magnetic attachment was 1/3-1/4 lower than the commercially available magnet-keeper system for dental magnetic attachment. Flexural strength and Knoop hardness of the composite were 76MPa (7.7 kgf/mm2) and 64 KHN. These values were lower than the commercially available chemically cured composite used as a reference. Eluted metal from the composite in 1% lactic acid solution for 7 days showed 0.7 mg/cm2, but in 0.9% NaCl solution for 7 days, it could not be detected.

  1. Enhancement of electrical properties of polyimide films by plasma treatment

    Science.gov (United States)

    Meddeb, A. Barhoumi; Ounaies, Z.; Lanagan, M.

    2016-04-01

    In this study, the effect of oxygen plasma treatment on the electrical and surface properties of polyimide, Kapton HN, film is investigated. The plasma treatment led to an increase in the oxygen presence on the polyimide surface and a marked surface hydrophilicity. The plasma treatment led to an increase in the dielectric breakdown and Weibull modulus as well as a remarkable reduction in the scatter of all electrical measurements. There is a significant reduction in the high field/high temperature leakage current after plasma treatment. These findings have important implications in the development and improvement of dielectric polymer capacitors.

  2. Physical properties of erupting plasma associated with coronal mass ejections

    Science.gov (United States)

    Lee, J.; Raymond, J. C.; Reeves, K. K.; Moon, Y.; Kim, K.

    2013-12-01

    We investigate the physical properties (temperature, density, and mass) of erupting plasma observed in X-rays and EUV, which are all associated with coronal mass ejections observed by SOHO/LASCO. The erupting plasmas are observed as absorption or emission features in the low corona. The absorption feature provides a lower limit to the cold mass while the emission feature provides an upper limit to the mass of observed plasma in X-ray and EUV. We compare the mass constraints for each temperature response and find that the mass estimates in EUV and XRT are smaller than the total mass in the coronagraph. Several events were observed by a few passbands in the X-rays, which allows us to determine the temperature of the eruptive plasma using a filter ratio method. The temperature of one event is estimated at about 8.6 MK near the top of the erupting plasma. This measurement is possibly an average temperature for higher temperature plasma because the XRT is more sensitive at higher temperatures. In addition, a few events show that the absorption features of a prominence or a loop change to emission features with the beginning of their eruptions in all EUV wavelengths of SDO/AIA, which indicates the heating of the plasma. By estimating the physical properties of the erupting plasmas, we discuss the heating of the plasmas associated with coronal mass ejections in the low corona.

  3. Investigation of Vortex Structures in Gas-Discharge Nonneutral Electron Plasma: I. Experimental Technique

    CERN Document Server

    Kervalishvili, N A

    2015-01-01

    The nonperturbing experimental methods have been described, by means of which the solitary vortex structures in gas-discharge nonneutral electron plasma were detected and investigated. The comparison with the experimental methods used in devices with pure electron plasma was made. The problems of shielding the electrostatic perturbations in nonneutral plasmas were considered.

  4. Properties of plasma near the moon in the magnetotail

    Science.gov (United States)

    Kallio, Esa; Facskó, Gábor

    2015-09-01

    Plasma physical processes near the lunar surface depend on the properties of the ambient plasma. However, the Moon spends almost half of its time downstream of the Earth's bow shock where the plasma near the Moon is anticipated to differ from the undisturbed solar wind. We have made statistical analysis of plasma parameters and the magnetic field near the orbit of Moon by using a global magnetohydrodynamic simulation made for a time period which covers a full year. The study shows that the velocity and the magnetic field downstream of the bow shock near the lunar orbit are much alike in the solar wind. This suggests that these plasma parameters near the Moon is controlled and driven by the solar wind. Density and temperature of the plasma are, however, strongly modified by the Earth. Consequently, the characteristic length scale of the plasma layer above the lunar surface, the Debye length, is controlled by plasma physical processes in the Earth's magnetosphere. The derived plasma and field parameters make it possible to analyse in detail the direct plasma-surface interaction at the Moon when it is in the magnetotail.

  5. Spectral properties of electromagnetic turbulence in plasmas

    Directory of Open Access Journals (Sweden)

    D. Shaikh

    2009-03-01

    Full Text Available We report on the nonlinear turbulent processes associated with electromagnetic waves in plasmas. We focus on low-frequency (in comparison with the electron gyrofrequency nonlinearly interacting electron whistlers and nonlinearly interacting Hall-magnetohydrodynamic (H-MHD fluctuations in a magnetized plasma. Nonlinear whistler mode turbulence study in a magnetized plasma involves incompressible electrons and immobile ions. Two-dimensional turbulent interactions and subsequent energy cascades are critically influenced by the electron whisters that behave distinctly for scales smaller and larger than the electron skin depth. It is found that in whistler mode turbulence there results a dual cascade primarily due to the forward spectral migration of energy that coexists with a backward spectral transfer of mean squared magnetic potential. Finally, inclusion of the ion dynamics, resulting from a two fluid description of the H-MHD plasma, leads to several interesting results that are typically observed in the solar wind plasma. Particularly in the solar wind, the high-time-resolution databases identify a spectral break at the end of the MHD inertial range spectrum that corresponds to a high-frequency regime. In the latter, turbulent cascades cannot be explained by the usual MHD model and a finite frequency effect (in comparison with the ion gyrofrequency arising from the ion inertia is essentially included to discern the dynamics of the smaller length scales (in comparison with the ion skin depth. This leads to a nonlinear H-MHD model, which is presented in this paper. With the help of our 3-D H-MHD code, we find that the characteristic turbulent interactions in the high-frequency regime evolve typically on kinetic-Alfvén time-scales. The turbulent fluctuation associated with kinetic-Alfvén interactions are compressive and anisotropic and possess equipartition of the kinetic and magnetic energies.

  6. Research on EM pulse protection property of plasma-microwave absorptive material-plasma sandwich structure

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A plasma-microwave absorptive material (MAM)-plasma sandwich structure is presented to protect the electronic device against high power electromagnetic pulse. The model of electromagnetic wave reflected by and transmitting through the structure is established. Based on the characteristic parameters of plasma generated by discharge and usual MAM, the electromagnetic transmissive properties of the sandwich structure are investigated by the method of finite difference in time domain. The results indicate that in a rather broad frequency range, the electromagnetic attenuations by the structure are obviously better than the sum of attenuations resulted from plasma and MAM respectively. The models and results presented are instructive for electromagnetic pulse protection.

  7. Experimental observations of driven and intrinsic rotation in tokamak plasmas

    Science.gov (United States)

    Rice, J. E.

    2016-08-01

    Experimental observations of driven and intrinsic rotation in tokamak plasmas are reviewed. For momentum sources, there is direct drive from neutral beam injection, lower hybrid and ion cyclotron range of frequencies waves (including mode conversion flow drive), as well as indirect \\mathbf{j}× \\mathbf{B} forces from fast ion and electron orbit shifts, and toroidal magnetic field ripple loss. Counteracting rotation drive are sinks, such as from neutral drag and toroidal viscosity. Many of these observations are in agreement with the predictions of neo-classical theory while others are not, and some cases of intrinsic rotation remain puzzling. In contrast to particle and heat fluxes which depend on the relevant diffusivity and convection, there is an additional term in the momentum flux, the residual stress, which can act as the momentum source for intrinsic rotation. This term is independent of the velocity or its gradient, and its divergence constitutes an intrinsic torque. The residual stress, which ultimately responds to the underlying turbulence, depends on the confinement regime and is a complicated function of collisionality, plasma shape, and profiles of density, temperature, pressure and current density. This leads to the rich intrinsic rotation phenomenology. Future areas of study include integration of these many effects, advancement of quantitative explanations for intrinsic rotation and development of strategies for velocity profile control.

  8. Plasma penetration depth and mechanical properties of atmospheric plasma-treated 3D aramid woven composites

    Energy Technology Data Exchange (ETDEWEB)

    Chen, X.; Yao, L.; Xue, J.; Zhao, D.; Lan, Y.; Qian, X. [Key Laboratory of Textile Science and Technology, Donghua University, Ministry of Education (China); Department of Textile Materials Science and Product Design, College of Textiles, Donghua University, Shanghai 201620 (China); Wang, C.X. [Key Laboratory of Textile Science and Technology, Donghua University, Ministry of Education (China); Department of Textile Materials Science and Product Design, College of Textiles, Donghua University, Shanghai 201620 (China); College of Textiles and Clothing, Yancheng Institute of Technology, Jiangsu 224003 (China); Qiu, Y. [Key Laboratory of Textile Science and Technology, Donghua University, Ministry of Education (China); Department of Textile Materials Science and Product Design, College of Textiles, Donghua University, Shanghai 201620 (China)], E-mail: ypqiu@dhu.edu.cn

    2008-12-30

    Three-dimensional aramid woven fabrics were treated with atmospheric pressure plasmas, on one side or both sides to determine the plasma penetration depth in the 3D fabrics and the influences on final composite mechanical properties. The properties of the fibers from different layers of the single side treated fabrics, including surface morphology, chemical composition, wettability and adhesion properties were investigated using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), contact angle measurement and microbond tests. Meanwhile, flexural properties of the composites reinforced with the fabrics untreated and treated on both sides were compared using three-point bending tests. The results showed that the fibers from the outer most surface layer of the fabric had a significant improvement in their surface roughness, chemical bonding, wettability and adhesion properties after plasma treatment; the treatment effect gradually diminished for the fibers in the inner layers. In the third layer, the fiber properties remained approximately the same to those of the control. In addition, three-point bending tests indicated that the 3D aramid composite had an increase of 11% in flexural strength and 12% in flexural modulus after the plasma treatment. These results indicate that composite mechanical properties can be improved by the direct fabric treatment instead of fiber treatment with plasmas if the fabric is less than four layers thick.

  9. Transport properties of partially ionized hydrogen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ramazanov, T S [IETP, Al Farabi Kazakh National University, Tole bi, 96a, 480012, Almaty (Kazakhstan); Galiyev, K Zh [IETP, Al Farabi Kazakh National University, Tole bi, 96a, 480012, Almaty (Kazakhstan); Dzhumagulova, K N [IETP, Al Farabi Kazakh National University, Tole bi, 96a, 480012, Almaty (Kazakhstan); Roepke, G [Fachbereich Physik, Universitaet Rostock, D-18051 Rostock (Germany); Redmer, R [Fachbereich Physik, Universitaet Rostock, D-18051 Rostock (Germany)

    2003-06-06

    We have considered partially ionized hydrogen plasma for the density region n{sub e} = (10{sup 18}-10{sup 22}) cm{sup -3}. Charged particles in the system (electrons, protons) interact via an effective potential taking into account three-particle correlations. We use the Buckingham polarization potential to describe electron-atom and proton-atom interactions. The electrical and thermal conductivity is determined using the Chapman-Enskog method. We compare the obtained results with other available data.

  10. Thermodynamic and dynamical properties of dense ICF plasma

    Directory of Open Access Journals (Sweden)

    Gabdullin Maratbek T.

    2016-06-01

    Full Text Available In present work, thermodynamic expressions were obtained through potentials that took into consideration long-range many-particle screening effects as well as short-range quantum-mechanical effects and radial distribution functions (RDFs. Stopping power of the projectile ions in dense, non-isothermal plasma was considered. One of the important values that describe the stopping power of the ions in plasma is the Coulomb logarithm. We investigated the stopping power of ions in inertial confinement fusion (ICF plasma and other energetic characteristics of fuel. Calculations of ions energy losses in the plasma for different values of the temperature and plasma density were carried out. A comparison of the calculated data of ion stopping power and energy deposition with experimental and theoretical results of other authors was also performed.

  11. Effects of driving frequency on properties of inductively coupled plasmas

    Science.gov (United States)

    Godyak, Valery; Kolobov, Vladimir

    2016-10-01

    Inductively coupled plasma (ICP) can be maintained over a wide range of driving frequencies from 50 Hz up to GHz. In this paper, we analyze how the properties of ICP depend on driving frequency ω. With respect to the time of ion transport to the walls, τd and the electron energy relaxation time τɛ three operating regimes are distinguished. The quasi-static regime, ωτd > 1 and the intermediate dynamic regime, 1 /τd helical coil with the plasma current flowing outside the coil, Bc = 0 , while when the plasma current flows inside the coil, Bc ≠ 0 . We show that in the latter case, in the quasi-static regimes, electrons become magnetized over a significant part of the period that may strongly affect the plasma properties. Examples of ICP simulations in different frequency regimes will be demonstrated in this paper.

  12. Improvement of durable properties of surgical textiles using plasma treatment

    OpenAIRE

    Alay, S.; Goktepe, F.; Souto, A. Pedro; Carneiro, Noémia; F Fernandes; Dias, Paula

    2007-01-01

    Nowadays one of the important plasmas used in textile industry is Corona discharge, which is applied in air at atmospheric pressure. Corona offers many advantages such as low production costs mainly due to effective energy utilization and minimum waste materials. In this study, the main focus is to use Corona plasma to produce reusable surgical fabrics with durable properties and using chemical agents at low concentrations. Therefore a new more economic production process of surgical fabri...

  13. Shaping thin film growth and microstructure pathways via plasma and deposition energy: a detailed theoretical, computational and experimental analysis.

    Science.gov (United States)

    Sahu, Bibhuti Bhusan; Han, Jeon Geon; Kersten, Holger

    2017-02-15

    Understanding the science and engineering of thin films using plasma assisted deposition methods with controlled growth and microstructure is a key issue in modern nanotechnology, impacting both fundamental research and technological applications. Different plasma parameters like electrons, ions, radical species and neutrals play a critical role in nucleation and growth and the corresponding film microstructure as well as plasma-induced surface chemistry. The film microstructure is also closely associated with deposition energy which is controlled by electrons, ions, radical species and activated neutrals. The integrated studies on the fundamental physical properties that govern the plasmas seek to determine their structure and modification capabilities under specific experimental conditions. There is a requirement for identification, determination, and quantification of the surface activity of the species in the plasma. Here, we report a detailed study of hydrogenated amorphous and crystalline silicon (c-Si:H) processes to investigate the evolution of plasma parameters using a theoretical model. The deposition processes undertaken using a plasma enhanced chemical vapor deposition method are characterized by a reactive mixture of hydrogen and silane. Later, various contributions of energy fluxes on the substrate are considered and modeled to investigate their role in the growth of the microstructure of the deposited film. Numerous plasma diagnostic tools are used to compare the experimental data with the theoretical results. The film growth and microstructure are evaluated in light of deposition energy flux under different operating conditions.

  14. Nanodispersed Oxides-Plasma-Chemical Synthesis and Properties

    Institute of Scientific and Technical Information of China (English)

    Gheorghi VISSOKOV; Katerina ZAHARIEVA

    2007-01-01

    We discuss the plasma-chemical synthesis and the properties of transition metals oxides, Al2O3, SiO2, rare-earth oxides, oxides for ceramics and metal-ceramics, and oxides used as catalysts. Bearing in mind the indisputable advantages of using plasma-chemically synthesized nanodispersed oxides for the needs of various industrial fields, we set out to review the articles published in the past few years devoted to the problems of plasma-chemical synthesis and characterization of nanodispersed oxides.

  15. Experimental characterization of an argon laminar plasma jet at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Langlois-Bertrand, Emilie; De Izarra, Charles, E-mail: charles.de_izarra@univ-orleans.fr [Groupe de Recherche sur l' Energetique des Milieux Ionises, UMR6606 Universite d' Orleans - CNRS, Faculte des Sciences, Site de Bourges, rue Gaston Berger, BP 4043, 18028 BOURGES Cedex (France)

    2011-10-19

    This paper deals with a dc laminar pure argon plasma jet operating at atmospheric pressure in ambient air that was experimentally studied in order to obtain temperature and velocity. Plasma jet temperature was evaluated by optical emission spectroscopy and the plasma jet velocity was determined by various methods using a pressure sensor. It is shown that the maximum plasma jet temperature is 15 000 K and the maximum plasma jet velocity is 250 m s{sup -1} at the plasma jet centre. Finally, a study of the ambient air amount entrained into the plasma jet is presented.

  16. Dusty plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Fortov, Vladimir E; Khrapak, Aleksei G; Molotkov, Vladimir I; Petrov, Oleg F [Institute for High Energy Densities, Associated Institute for High Temperatures, Russian Academy of Sciences, Moscow (Russian Federation); Khrapak, Sergei A [Max-Planck-Institut fur Extraterrestrische Physik, Garching (Germany)

    2004-05-31

    The properties of dusty plasmas - low-temperature plasmas containing charged macroparticles - are considered. The most important elementary processes in dusty plasmas and the forces acting on dust particles are investigated. The results of experimental and theoretical investigations of different states of strongly nonideal dusty plasmas - crystal-like, liquid-like, gas-like - are summarized. Waves and oscillations in dusty plasmas, as well as their damping and instability mechanisms, are studied. Some results on dusty plasma investigated under microgravity conditions are presented. New directions of experimental research and potential applications of dusty plasmas are discussed. (reviews of topical problems)

  17. Experimental investigation of vapor shielding effects induced by ELM-like pulsed plasma loads using the double plasma gun device

    Science.gov (United States)

    Sakuma, I.; Kikuchi, Y.; Kitagawa, Y.; Asai, Y.; Onishi, K.; Fukumoto, N.; Nagata, M.

    2015-08-01

    We have developed a unique experimental device of so-called double plasma gun, which consists of two magnetized coaxial plasma gun (MCPG) devices, in order to clarify effects of vapor shielding on material erosion due to transient events in magnetically confined fusion devices. Two ELM-like pulsed plasmas produced by the two MCPG devices were injected into a target chamber with a variable time difference. For generating ablated plasmas in front of a target material, an aluminum foil sample in the target chamber was exposed to a pulsed plasma produced by the 1st MCPG device. The 2nd pulsed plasma was produced with a time delay of 70 μs. It was found that a surface absorbed energy measured by a calorimeter was reduced to ∼66% of that without the Al foil sample. Thus, the reduction of the incoming plasma energy by the vapor shielding effect was successfully demonstrated in the present experiment.

  18. Experimental investigation of vapor shielding effects induced by ELM-like pulsed plasma loads using the double plasma gun device

    Energy Technology Data Exchange (ETDEWEB)

    Sakuma, I., E-mail: eu13z002@steng.u-hyogo.ac.jp; Kikuchi, Y.; Kitagawa, Y.; Asai, Y.; Onishi, K.; Fukumoto, N.; Nagata, M.

    2015-08-15

    We have developed a unique experimental device of so-called double plasma gun, which consists of two magnetized coaxial plasma gun (MCPG) devices, in order to clarify effects of vapor shielding on material erosion due to transient events in magnetically confined fusion devices. Two ELM-like pulsed plasmas produced by the two MCPG devices were injected into a target chamber with a variable time difference. For generating ablated plasmas in front of a target material, an aluminum foil sample in the target chamber was exposed to a pulsed plasma produced by the 1st MCPG device. The 2nd pulsed plasma was produced with a time delay of 70 μs. It was found that a surface absorbed energy measured by a calorimeter was reduced to ∼66% of that without the Al foil sample. Thus, the reduction of the incoming plasma energy by the vapor shielding effect was successfully demonstrated in the present experiment.

  19. Metallurgy and properties of plasma spray formed materials

    Science.gov (United States)

    Mckechnie, T. N.; Liaw, Y. K.; Zimmerman, F. R.; Poorman, R. M.

    1992-01-01

    Understanding the fundamental metallurgy of vacuum plasma spray formed materials is the key to enhancing and developing full material properties. Investigations have shown that the microstructure of plasma sprayed materials must evolve from a powder splat morphology to a recrystallized grain structure to assure high strength and ductility. A fully, or near fully, dense material that exhibits a powder splat morphology will perform as a brittle material compared to a recrystallized grain structure for the same amount of porosity. Metallurgy and material properties of nickel, iron, and copper base alloys will be presented and correlated to microstructure.

  20. Experimental and theoretical research in applied plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    Porkolab, M.

    1992-01-01

    This report discusses research in the following areas: fusion theory and computations; theory of thermonuclear plasmas; user service center; high poloidal beta studies on PBX-M; fast ECE fluctuation diagnostic for balloning mode studies; x-ray imaging diagnostic; millimeter/submillimeter-wave fusion ion diagnostics; small scale turbulence and nonlinear dynamics in plasmas; plasma turbulence and transport; phase contrast interferometer diagnostic for long wavelength fluctuations in DIII-D; and charged and neutral fusion production for fusio plasmas.

  1. Experimental research on electrical propulsion. Note 2: Experimental research on a plasma jet with vortex type stabilization for propulsion

    Science.gov (United States)

    Robotti, A. C.; Oggero, M.

    1985-01-01

    Results of experimental electric propulsion research are presented. A plasma generator, with an arc stabilized by an air vortex is examined. The heat transfer efficiency between arc and fluid environment at a varying current and flow rate is discussed.

  2. Surface modification of cellulosic substrates via atmospheric pressure plasma polymerization of acrylic acid: Structure and properties

    Science.gov (United States)

    Garcia-Torres, Jose; Sylla, Dioulde; Molina, Laura; Crespo, Eulalia; Mota, Jordi; Bautista, Llorenç

    2014-06-01

    Surface chemical modification of cellulose-based substrates has been carried out by atmospheric pressure plasma enhanced chemical vapor deposition (AP-PECVD) of acrylic acid. The structure/properties relationship of the samples was studied as a function of the plasma experimental conditions. Acrylic acid monomer/helium ratio and treatment speed clearly influences the wettability properties of the paper substrate: advancing contact angle values were reduced to the half if compare to non-treated paper. Surface morphology of the films did not greatly vary at short polymerization times but fibers were covered by a poly(acrylic acid) film at longer times. FTIR and XPS techniques allowed detecting the retention of carboxylic acid groups/moieties. The possibility to quickly design architectures with tunable carboxylic functions by modifying the plasma processing parameters is shown.

  3. Plasma synthesis of nanostructures for improved thermoelectric properties

    Energy Technology Data Exchange (ETDEWEB)

    Petermann, Nils; Hecht, Christian; Schulz, Christof; Wiggers, Hartmut [Institut fuer Verbrennung und Gasdynamik, Universitaet Duisburg-Essen, 47058 Duisburg (Germany); Stein, Niklas; Schierning, Gabi; Theissmann, Ralf [Nanostrukturtechnik, Universitaet Duisburg-Essen, 47058 Duisburg (Germany); Stoib, Benedikt; Brandt, Martin S, E-mail: hartmut.wiggers@uni-due.de [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall 3, 85748 Garching (Germany)

    2011-05-04

    The utilization of silicon-based materials for thermoelectrics is studied with respect to the synthesis and processing of doped silicon nanoparticles from gas phase plasma synthesis. It is found that plasma synthesis enables the formation of spherical, highly crystalline and soft-agglomerated materials. We discuss the requirements for the formation of dense sintered bodies, while keeping the crystallite size small. Small particles a few tens of nanometres and below that are easily achievable from plasma synthesis, and a weak surface oxidation, both lead to a pronounced sinter activity about 350 K below the temperature usually needed for the successful densification of silicon. The thermoelectric properties of our sintered materials are comparable to the best results found for nanocrystalline silicon prepared by methods other than plasma synthesis.

  4. Measurements and modeling of the impact of weak magnetic fields on the plasma properties of a planar slot antenna driven plasma source

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Jun, E-mail: jun.yoshikawa@tel.com; Susa, Yoshio; Ventzek, Peter L. G. [Tokyo Electron Ltd., Akasaka Biz Tower, 3-1 Akasaka 5-chome, Minato-ku, Tokyo 107-6325 (Japan)

    2015-05-15

    The radial line slot antenna plasma source is a type of surface wave plasma source driven by a planar slot antenna. Microwave power is transmitted through a slot antenna structure and dielectric window to a plasma characterized by a generation zone adjacent to the window and a diffusion zone that contacts a substrate. The diffusion zone is characterized by a very low electron temperature. This renders the source useful for soft etch applications and thin film deposition processes requiring low ion energy. Another property of the diffusion zone is that the plasma density tends to decrease from the axis to the walls under the action of ambipolar diffusion at distances far from where the plasma is generated. A previous simulation study [Yoshikawa and. Ventzek, J. Vac. Sci. Technol. A 31, 031306 (2013)] predicted that the anisotropy in transport parameters due to weak static magnetic fields less than 50 G could be leveraged to manipulate the plasma profile in the radial direction. These simulations motivated experimental tests in which weak magnetic fields were applied to a radial line slot antenna source. Plasma absorption probe measurements of electron density and etch rate showed that the magnetic fields remote from the wafer were able to manipulate both parameters. A summary of these results is presented in this paper. Argon plasma simulation trends are compared with experimental plasma and etch rate measurements. A test of the impact of magnetic fields on charge up damage showed no perceptible negative effect.

  5. Experimental Research of Spontaneous Evolution from Ultracold Rydberg Atoms to Plasma

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lin-Jie; FENG Zhi-Gang; LI An-Ling; ZHAO Jian-Ming; LI Chang-Yong; JIA Suo-Tang

    2008-01-01

    @@ The spontaneous evolution from ultracold Rydberg atoms to plasma is investigated in a caesium MOT by using the method of field ionization. The plasma transferred from atoms in different Rydberg states (n = 22-32) are obtained experimentally. Dependence of the threshold time of evolving to plasma and the threshold number of initial Rydberg atoms on the principal quantum number of initial Rydberg states is studied. The experimental results are in agreement with hot-cold Rydberg-Rydberg atom collision ionization theory.

  6. Experimental and numerical study on plasma nitriding of AISI P20 mold steel

    Science.gov (United States)

    Nayebpashaee, N.; Vafaeenezhad, H.; Kheirandish, Sh.; Soltanieh, M.

    2016-09-01

    In this study, plasma nitriding was used to fabricate a hard protective layer on AISI P20 steel, at three process temperatures (450°C, 500°C, and 550°C) and over a range of time periods (2.5, 5, 7.5, and 10 h), and at a fixed gas N2:H2 ratio of 75vol%:25vol%. The morphology of samples was studied using optical microscopy and scanning electron microscopy, and the formed phase of each sample was determined by X-ray diffraction. The elemental depth profile was measured by energy dispersive X-ray spectroscopy, wavelength dispersive spectroscopy, and glow dispersive spectroscopy. The hardness profile of the samples was identified, and the microhardness profile from the surface to the sample center was recorded. The results show that ɛ-nitride is the dominant species after carrying out plasma nitriding in all strategies and that the plasma nitriding process improves the hardness up to more than three times. It is found that as the time and temperature of the process increase, the hardness and hardness depth of the diffusion zone considerably increase. Furthermore, artificial neural networks were used to predict the effects of operational parameters on the mechanical properties of plastic mold steel. The plasma temperature, running time of imposition, and target distance to the sample surface were all used as network inputs; Vickers hardness measurements were given as the output of the model. The model accurately reproduced the experimental outcomes under different operational conditions; therefore, it can be used in the effective simulation of the plasma nitriding process in AISI P20 steel.

  7. Plasma properties of RF magnetron sputtering system using Zn target

    Energy Technology Data Exchange (ETDEWEB)

    Nafarizal, N.; Andreas Albert, A. R.; Sharifah Amirah, A. S.; Salwa, O.; Riyaz Ahmad, M. A. [Microelectronic and Nanotechnology - Shamsuddin Research Centre (MiNT-SRC), Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia 86400 Parit Raja, Batu Pahat, Johor (Malaysia)

    2012-06-29

    In the present work, we investigate the fundamental properties of magnetron sputtering plasma using Zn target and its deposited Zn thin film. The magnetron sputtering plasma was produced using radio frequency (RF) power supply and Argon (Ar) as ambient gas. A Langmuir probe was used to collect the current from the plasma and from the current intensity, we calculate the electron density and electron temperature. The properties of Zn sputtering plasma at various discharge conditions were studied. At the RF power ranging from 20 to 100 W and gas pressure 5 mTorr, we found that the electron temperature was almost unchanged between 2-2.5 eV. On the other hand, the electron temperature increased drastically from 6 Multiplication-Sign 10{sup 9} to 1 Multiplication-Sign 10{sup 10}cm{sup -3} when the discharge gas pressure increased from 5 to 10 mTorr. The electron microscope images show that the grain size of Zn thin film increase when the discharge power is increased. This may be due to the enhancement of plasma density and sputtered Zn density.

  8. An Experimental Study of the Quantum Efficiency and Topology of Copper Photocathode Due to Plasma Cleaning and Etching

    CERN Document Server

    Palmer, Denni T; Kirby, Robert

    2005-01-01

    We have developed an experimental research program to the study of the photoemission properties of copper photocathodes as a function of various plasma cleaning/etching parameters. The quantum efficiency, QE, and topology, Ra and Rpp, of Copper Photocathodes, , will be monitored while undergoing plasma cleaning/etching process. We will monitor the QE as a function of time for the various test coupons while we optimize the various plasma processing parameters. In addition, surface topology, will be studied to determine the suitability of the cleaning/etching process to produce an acceptable photoemitter. We propose to use two metrics in the evaluation of the plasma cleaning process as an acceptable cleaning method for metallic photocathodes, Quantum Efficiency versus Wavelength and Surface roughness: Ra and Rpp represent the Average Roughness and Peak to Peak Roughness parameters, respectively.

  9. Physical properties of dense, low-temperature plasmas

    Science.gov (United States)

    Redmer, Ronald

    1997-04-01

    Plasmas occur in a wide range of the density-temperature plane. The physical quantities can be expressed by Green's functions which are evaluated by means of standard quantum statistical methods. The influences of many-particle effects such as dynamic screening and self-energy, structure factor and local-field corrections, formation and decay of bound states, degeneracy and Pauli exclusion principle are studied. As a basic concept for partially ionized plasmas, a cluster decomposition is performed for the self-energy as well as for the polarization function. The general model of a partially ionized plasma interpolates between low-density, nonmetallic systems such as atomic vapors and high-density, conducting systems such as metals or fully ionized plasmas. The equations of state, including the location of the critical point and the shape of the coexistence curve, are determined for expanded alkali-atom and mercury fluids. The occurrence of a metal-nonmetal transition near the critical point of the liquid-vapor phase transition leads in these materials to characteristic deviations from the behavior of nonconducting fluids such as the inert gases. Therefore, a unified approach is needed to describe the drastic changes of the electronic properties as well as the variation of the physical properties with the density. Similar results are obtained for the hypothetical plasma phase transition in hydrogen plasma. The transport coefficients (electrical and thermal conductivity, thermopower) are studied within linear response theory given here in the formulation of Zubarev which is valid for arbitrary degeneracy and yields the transport coefficients for the limiting cases of nondegenerate, weakly coupled plasmas (Spitzer theory) as well as degenerate, strongly coupled plasmas (Ziman theory). This linear response method is applied to partially ionized systems such as dense, low-temperature plasmas. Here, the conductivity changes from nonmetallic values up to those typical for

  10. Comprehensive microstructural characterization and predictive property modeling of plasma-sprayed zirconia coatings

    Energy Technology Data Exchange (ETDEWEB)

    Kulkarni, A.; Wang, Z.; Nakamura, T.; Sampath, S.; Goland, A.; Herman, H.; Allen, J.; Ilavsky, J.; Long, G.; Frahm, J.; Steinbrech, R.W

    2003-05-23

    Quantitative microstructure characterization to better understand processing-microstructure-property correlations is of considerable interest in plasma sprayed coating research. This paper quantifies, by means of small-angle neutron scattering (SANS) data, microstructure (porosity, opening dimensions, orientation and morphologies) in plasma sprayed partially-stabilized zirconia (PSZ) coatings, primarily used as thermal barrier coatings. We report on the investigation of the influence of feedstock characteristics on microstructure and establish its influence on the resultant thermal and mechanical properties. The microstructural parameters determined by SANS studies are then assembled into a preliminary model to develop a predictive capability for estimating the properties of these coatings. Thermal conductivity and elastic modulus were predicted using finite element analysis and ultimately compared to experimental values.

  11. Microstructure and Properties of Plasma Spraying Boron Carbide Coating

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Microstructure of plasma spray boron carbide coating was studied by SEM and TEM. Its physical,mechanical and electrical properties were measured. The results showed that high microhardness,modulus and Iow porosity of B4C coating were manufactured by plasma spray. It was lamellar packing and dense. The B4C coating examined here contained two principal structures and two impurity phase besides major phase. The relatively small value of Young′s modulus, comparing with that of the bulk materials, is explained by porosity. The Fe impurity phase could account for the relatively high electrical conductivity of boron carbide coating by comparing with the general boron carbide materials.

  12. Interaction potentials and thermodynamic properties of two component semiclassical plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ramazanov, T. S.; Moldabekov, Zh. A.; Ismagambetova, T. N. [Al-Farabi Kazakh National University, IETP, 71 al-Farabi Av., Almaty 050040 (Kazakhstan); Gabdullin, M. T. [Al-Farabi Kazakh National University, NNLOT, 71 al-Farabi Av., Almaty 050040 (Kazakhstan)

    2014-01-15

    In this paper, the effective interaction potential in two component semiclassical plasma, taking into account the long-range screening and the quantum-mechanical diffraction effects at short distances, is obtained on the basis of dielectric response function method. The structural properties of the semiclassical plasma are considered. The thermodynamic characteristics (the internal energy and the equation of state) are calculated using two methods: the method of effective potentials and the method of micropotentials with screening effect taken into account by the Ornstein-Zernike equation in the HNC approximation.

  13. An Experimental Study of the Drag Force on a Cylinder Exposed to an Argon Thermal Plasma Cross Flow

    Institute of Scientific and Technical Information of China (English)

    XinTao; XiChen; 等

    1992-01-01

    Experimental data are presented concerning the drag force on a cylinder exposed to an argon plasma cross flow with temperatures about 104 K and velocities about 102 m/s.Using a method of sweeping a cylindrical probe across an argon plasma jet,the total drag force on the cylinder can be measured as a function of the lateral distance of cylindrical probe with respect to the plasma-jet axis.Through the Abel inversion,the drag force for per unit of cylinderlength and thus the drag coefflcient of cylinder have been measured under plasma conditions and compared with the values obtained from the standard drag curve of the cylinder in an isothermal flow.Experimental results show that the measured grag forces are always less than their counterparts read from the standard drag curve with the smae Reynolds numbers based on the oncoming plasma properties.Thew drag force on the cylinder exoposed to a thermal plasma flow is shown to be approximately proportional to the square root of cylinder diameter in the present experiment and it increases slightly proportional to the square root of cylinder diameter in the present experiment and if increases slightly with increasing surface temperature of the cylinder,.It is also shown that applying a voltage between the drag prode and the anode of the plasma jet generator has little effect on the drag force of cylinder under the experimental conditions.The drag force on a cylinder with finite length exposed to an argon plasma with the axis parallel to the plams jet is independent of ration of cylinder length to its dismeter L/d for the cases when L/d≤1.

  14. Experimental investigation of flow induced dust acoustic shock waves in a complex plasma

    Energy Technology Data Exchange (ETDEWEB)

    Jaiswal, S., E-mail: surabhijaiswal73@gmail.com; Bandyopadhyay, P.; Sen, A. [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 (India)

    2016-08-15

    We report on experimental observations of flow induced large amplitude dust-acoustic shock waves in a complex plasma. The experiments have been carried out in a Π shaped direct current glow discharge experimental device using kaolin particles as the dust component in a background of Argon plasma. A strong supersonic flow of the dust fluid is induced by adjusting the pumping speed and neutral gas flow into the device. An isolated copper wire mounted on the cathode acts as a potential barrier to the flow of dust particles. A sudden change in the gas flow rate is used to trigger the onset of high velocity dust acoustic shocks whose dynamics are captured by fast video pictures of the evolving structures. The physical characteristics of these shocks are delineated through a parametric scan of their dynamical properties over a range of flow speeds and potential hill heights. The observed evolution of the shock waves and their propagation characteristics are found to compare well with model numerical results based on a modified Korteweg-de-Vries-Burgers type equation.

  15. Experimental investigation of flow induced dust acoustic shock waves in a complex plasma

    CERN Document Server

    Jaiswal, S; Sen, A

    2016-01-01

    We report on experimental observations of flow induced large amplitude dust-acoustic shock waves (DASW) in a complex plasma. The experiments have been carried out in a $\\Pi$ shaped DC glow discharge experimental device using kaolin particles as the dust component in a background of Argon plasma. A strong supersonic flow of the dust fluid is induced by adjusting the pumping speed and neutral gas flow into the device. An isolated copper wire mounted on the cathode acts as a potential barrier to the flow of dust particles. A sudden change of gas flow rate is used to trigger the onset of high velocity dust acoustic shocks whose dynamics are captured by fast video pictures of the evolving structures. The physical characteristics of these shocks are delineated through a parametric scan of their dynamical properties over a range of flow speeds and potential hill heights. The observed evolution of the shock waves and their propagation characteristics are found to compare well with model numerical results based on a m...

  16. Altered plasma fibrin clot properties in essential thrombocythemia.

    Science.gov (United States)

    Małecki, Rafał; Gacka, Małgorzata; Kuliszkiewicz-Janus, Małgorzata; Jakobsche-Policht, Urszula; Kwiatkowski, Jacek; Adamiec, Rajmund; Undas, Anetta

    2016-01-01

    Patients with increased thromboembolic risk tend to form denser fibrin clots which are relatively resistant to lysis. We sought to investigate whether essential thrombocythemia (ET) is associated with altered fibrin clot properties in plasma. Ex vivo plasma fibrin clot permeability coefficient (Ks), turbidimetry and clot lysis time (CLT) were measured in 43 consecutive patients with ET (platelet count from 245 to 991 × 10(3)/µL) and 50 control subjects matched for age, sex and comorbidities. Fibrinolysis proteins and inhibitors together with platelet activation markers were determined. Reduced Ks (-38%, p Ks inversely correlated with fibrinogen, PF4 and C-reactive protein. CLT positively correlated only with PAI-1. Patients with ET display prothrombotic plasma fibrin clot phenotype including impaired fibrinolysis, which represents a new prothrombotic mechanism in this disease.

  17. Numerical Analysis of Powder Properties in Low Power Plasma Torch

    Institute of Scientific and Technical Information of China (English)

    YAN Zhi-jun; GAO Yang; HEI Zhu-kun; AN Lian-tong

    2004-01-01

    A mathematical model was presented to describe the particle trajectory, velocity and temperature properties in the low power plasma spraying torch (3.6 kW)in which powder particles were directly injected into the region between the cathode and anode. The results show that the characteristics of the particles by low power plasma spraying are similar to that by traditional APS( Atmosphere plasma spraying) in 40 kW. The velocities of the particles increase with the increase of inlet gas flow rate, current and percentage of nitrogen and hydrogen, while the temperature of the powder increase with the decrease of the gas flow rate and with the increase of current and percentage of nitrogen and hydrogen.

  18. Experimental research on plasma destruction of bone tissue

    Directory of Open Access Journals (Sweden)

    Vdovin O.V.

    2012-06-01

    Full Text Available The main condition in achieving a favorable outcome is surgical treatment of patients with tumor-like diseases and benign bone tumors erosion of neoplasm within the healthy tissues. To reduce the number of recurrences the various chemical and physical methods on resection areas have been performed. The authors have proposed a new method of low temperature plasma treatment of bone tissue with the temperature of 20000°C. Exposing the plasma flow on bone tissue leads to loss of all cellular elements including neoplastic elements with preservation of the mineral bone structure. The direct correlation between the capacity of the plasma flow and intensity of bone destruction has been defined. This allows a differentiated use of plasma destruction in skeletal bones according to anatomy, size and type of bone tissue (spongy or cortical as well as patient's individual condition of the tissue

  19. Experimental Investigation of the Plasma Bullet and Its Applications

    Science.gov (United States)

    2012-08-01

    as well as fast photography diagnostic results that shed new light on the mechanisms of creation and propagation of the plasma bullets. We then...generates the plasma bullets. Then we presented spectroscopic as well as fast photography diagnostic results that shed new light on the mechanisms of...The fact that amyloid fibrils are the cause behind such debilitating disease as Parkinson and probably also Alzheimer’s makes these results of even

  20. An experimental study of icing control using DBD plasma actuator

    Science.gov (United States)

    Cai, Jinsheng; Tian, Yongqiang; Meng, Xuanshi; Han, Xuzhao; Zhang, Duo; Hu, Haiyang

    2017-08-01

    Ice accretion on aircraft or wind turbine has been widely recognized as a big safety threat in the past decades. This study aims to develop a new approach for icing control using an AC-DBD plasma actuator. The experiments of icing control (i.e., anti-/de-icing) on a cylinder model were conducted in an icing wind tunnel with controlled wind speed (i.e., 15 m/s) and temperature (i.e., -10°C). A digital camera was used to record the dynamic processes of plasma anti-icing and de-icing whilst an infrared imaging system was utilized to map the surface temperature variations during the anti-/de-icing processes. It was found that the AC-DBD plasma actuator is very effective in both anti-icing and de-icing operations. While no ice formation was observed when the plasma actuator served as an anti-icing device, a complete removal of the ice layer with a thickness of 5 mm was achieved by activating the plasma actuator for ˜150 s. Such information demonstrated the feasibility of plasma anti-/de-icing, which could potentially provide more effective and safer icing mitigation strategies.

  1. Research of partition function on optical properties and temperature diagnosis of air plasma

    Science.gov (United States)

    Qiu, Dechuan; Gao, Guoqiang; Wei, Wenfu; Hu, Haixing; Li, Chunmao; Wu, Guangning

    2017-08-01

    The relationship between partition function, particle density, refractive index, and temperature for atmospheric plasma is calculated based on thermodynamics and chemical equilibrium. Taking into account the contribution of hydrogen-like levels to the atomic partition function, a compact method to calculate the atomic partition function is first used with the Eindhoven model to deduce the plasma's refractive index. Results calculated by the new approach and two other traditional simplified methods are compared and analyzed. For a better understanding on the temperature measurement accuracy deduced by different partition function disposal approaches, moiré deflectometry is employed as the experimental scheme to acquire the refractive index-position curve. Finally, applicability of different partition function disposal approaches are discussed, and results indicate that the optical properties deduced in this paper are well suited for the refractive index-based plasma diagnosis.

  2. Composition and thermodynamic properties of dense alkali metal plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Gabdullin, M.T. [NNLOT, al-Farabi Kazakh National University, 71 al-Farabi Str., Almaty 050035 (Kazakhstan); Ramazanov, T.S.; Dzhumagulova, K.N. [IETP, al-Farabi Kazakh National University, 71 al-Farabi Str., Almaty 050035 (Kazakhstan)

    2012-04-15

    In this work composition and thermodynamic properties of dense alkali metal plasmas (Li, Na) were investigated. Composition was derived by solving the Saha equations with corrections due to nonideality. The lowering of the ionization potentials was calculated on the basis of pseudopotentials by taking screening and quantum effects into account (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Microstructure and Properties of Plasma Source Nitrided AISI 316 Austenitic Stainless Steel

    Science.gov (United States)

    Li, G. Y.; Lei, M. K.

    2016-11-01

    Plasma source nitriding is a relatively new nitriding technology which can overcome those inherent shortcomings associated with conventional direct current plasma nitriding technology such as the arcing surface damage, the edging effect and the hollow cathode effect. There is considerable study on the properties of nitrided samples for laboratorial scale plasma source nitriding system; however, little information has been reported on the industrial-scale plasma source nitriding system. In this work, AISI 316 austenitic stainless steel samples were nitrided by an industrial-scale plasma source nitriding system at various nitriding temperatures (350, 400, 450 and 500 °C) with a floating potential. A high-nitrogen face-centered-cubic phase (γN) formed on the surface of nitrided sample surface. As the nitriding temperature was increased, the γN phase layer thickness increased, varying from 1.5 μm for the lowest nitriding temperature of 350 °C, to 30 μm for the highest nitriding temperature of 500 °C. The maximum Vickers microhardness of the γN phase layer with a peak nitrogen concentration of 20 at.% is about HV 0.1 N 15.1 GPa at the nitriding temperature of 450 °C. The wear and corrosion experimental results demonstrated that the γN phase was formed on the surface of AISI 316 austenitic stainless steel by plasma source nitriding, which exhibits not only high wear resistance, but also good pitting corrosion resistance.

  4. Influence of the focal point position on the properties of a laser-produced plasma

    Science.gov (United States)

    Kasperczuk, A.; Pisarczyk, T.; Badziak, J.; Miklaszewski, R.; Parys, P.; Rosinski, M.; Wolowski, J.; Stenz, CH.; Ullschmied, J.; Krousky, E.; Masek, K.; Pfeifer, M.; Rohlena, K.; Skala, J.; Pisarczyk, P.

    2007-10-01

    This paper deals with investigations of the influence of the focusing lens focal point position on the properties of a plasma produced by a defocused laser beam. The experiment was carried out at the Prague Asterix Laser System iodine laser [K. Jungwirth, A. Cejnarova, L. Juha, B. Kralikova, J. Krasa, E. Krousky, P. Krupickova, L. Laska, K. Masek, T. Mocek, M. Pfeifer, A. Prag, O. Renner, K. Rohlena, B. Rus, J. Skala, P. Straka, and J. Ullschmied, Phys. Plasmas 8, 2495 (2001)] by using the third harmonic of laser radiation (λ=0.438μm), laser energy of 70J, pulse duration of 250ps (full width at half-maximum), and beam spot radii of 250 and 400μm. Cu and Ta were chosen as target materials. The experimental data were obtained by means of a three-frame interferometric system, ion collectors, and crater replica techniques. The reported results allow formulating an important hypothesis that the laser-produced plasma modifies strongly the laser intensity distribution. It is shown how such a modification depends on the relative position and distance of the focal point to the target surface. Of particular importance is whether the focal point is located inside or in front of the target. The irradiation geometry is crucial for the possibility of generating plasma jets by laser radiation. Well-formed jet-like plasma structures can be created if an initially homogeneous laser intensity distribution is transformed in the plasma to an annular one.

  5. Dynamic properties of ionospheric plasma turbulence driven by high-power high-frequency radiowaves

    Science.gov (United States)

    Grach, S. M.; Sergeev, E. N.; Mishin, E. V.; Shindin, A. V.

    2017-02-01

    A review is given of the current state-of-the-art of experimental studies and the theoretical understanding of nonlinear phenomena that occur in the ionospheric F-layer irradiated by high-power high-frequency ground-based transmitters. The main focus is on the dynamic features of high-frequency turbulence (plasma waves) and low-frequency turbulence (density irregularities of various scales) that have been studied in experiments at the Sura and HAARP heating facilities operated in temporal and frequency regimes specially designed with consideration of the characteristic properties of nonlinear processes in the perturbed ionosphere using modern radio receivers and optical instruments. Experimental results are compared with theoretical turbulence models for a magnetized collisional plasma in a high-frequency electromagnetic field, allowing the identification of the processes responsible for the observed features of artificial ionospheric turbulence.

  6. Theoretical and experimental studies of space-related plasma wave propagation and resonance phenomena

    Science.gov (United States)

    Crawford, F. W.

    1975-01-01

    A ten year summary was given of university research on the nature and characteristics of space related plasma resonance phenomena, whistler propagation in laboratory plasmas, and theoretical and experimental studies of plasma wave propagation. Data are also given on long delayed echoes, low frequency instabilities, ionospheric heating, and backscatter, and pulse propagation. A list is included of all conference papers, publications, and reports resulting from the study.

  7. TEBPP: Theoretical and Experimental study of Beam-Plasma-Physics

    Science.gov (United States)

    Anderson, H. R.; Bernstein, W.; Linson, L. M.; Papadopoulos, K.; Kellogg, P. J.; Szuszczewicz, E. P.; Hallinan, T. J.; Leinbach, H.

    1980-01-01

    The interaction of an electron beam (0 to 10 keV, 0 to 1.5 Amp) with the plasma and neutral atmospheres at 200 to 400 km altitude is studied with emphasis on applications to near Earth and cosmical plasmas. The interaction occurs in four space time regions: (1) near electron gun, beam coming into equilibrium with medium; (2) equilibrium propagation in ionosphere; (3) ahead of beam pulse, temporal and spatial precursors; (4) behind a beam pulse. While region 2 is of the greatest interest, it is essential to study Region 1 because it determines the characteristics of the beam as it enters 2 through 4.

  8. Experimental investigation on the changes in bed properties of a ...

    African Journals Online (AJOL)

    Experimental investigation on the changes in bed properties of a downdraft biomass gasifier. ... pressure measurements, physical observation, sampling of bed particles, ... char properties viz., weight, volume, density and volatile matter content along ... Specific gasification rate for wood pieces was found to be 75 kg h-1 m-2 ...

  9. Experimental Results on Current-Driven Turbulence in Plasmas - a Survey

    NARCIS (Netherlands)

    Dekluiver, H.; Perepelkin, N. F.; Hirose, A.

    1991-01-01

    The experimental consequences of plasma turbulence driven by a current parallel to a magnetic field and concurrent anomalous plasma heating are reviewed, with an attempt to deduce universalities in key parameters such as the anomalous electrical conductivities observed in diverse devices. It has

  10. Experimental Investigation of Flow Separation Control Using Dielectric Barrier Discharge Plasma Actuators

    Institute of Scientific and Technical Information of China (English)

    LI Gang; NIE Chaoqun; LI Yiming; ZHU Junqiang; XU Yanji

    2008-01-01

    Influence of plasma actuators as a flow separation control device was investigated experimentally.Hump model was used to demonstrate the effect of plasma actuators on external flow separation,while for internal flow separation a set of compressor cascade was adopted.In order to investigate the modification of the flow structure by the plasma actuator,the flow field was examined non-intrusively by particle image velocimetry measurements in the hump model experiment and by a hot film probe in the compressor cascade experiment.The results showed that the plasma actuator could be effective in controlling the flow separation both over the hump and in the compressor cascade when the incoming velocity was low.As the incoming velocity increased,the plasma actuator was less effective. It is urgent to enhance the intensity of the plasma actuator for its better application.Methods to increase the intensity of plasma actuator were also studied.

  11. Experimental breakdown of selected anodized aluminum samples in dilute plasmas

    Science.gov (United States)

    Grier, Norman T.; Domitz, Stanley

    1992-01-01

    Anodized aluminum samples representative of Space Station Freedom structural material were tested for electrical breakdown under space plasma conditions. In space, this potential arises across the insulating anodized coating when the spacecraft structure is driven to a negative bias relative to the external plasma potential due to plasma-surface interaction phenomena. For anodized materials used in the tests, it was found that breakdown voltage varied from 100 to 2000 volts depending on the sample. The current in the arcs depended on the sample, the capacitor, and the voltage. The level of the arc currents varied from 60 to 1000 amperes. The plasma number density varied from 3 x 10 exp 6 to 10 exp 3 ions per cc. The time between arcs increased as the number density was lowered. Corona testing of anodized samples revealed that samples with higher corona inception voltage had higher arcing inception voltages. From this it is concluded that corona testing may provide a method of screening the samples.

  12. Atomic properties in hot plasmas from levels to superconfigurations

    CERN Document Server

    Bauche, Jacques; Peyrusse, Olivier

    2015-01-01

    This book is devoted to the calculation of hot-plasma properties which generally requires a huge number of atomic data. It is the first book that combines information on the details of the basic atomic physics and its application to atomic spectroscopy with the use of the relevant statistical approaches. Information like energy levels, radiative rates, collisional and radiative cross-sections, etc., must be included in equilibrium or non-equilibrium models in order to describe both the atomic-population kinetics and the radiative properties. From the very large number of levels and transitions involved in complex ions, some statistical (global) properties emerge. The book presents a coherent set of concepts and compact formulas suitable for tractable and accurate calculations. The topics addressed are: radiative emission and absorption, and a dozen of other collisional and radiative processes; transition arrays between level ensembles (configurations, superconfigurations); effective temperatures of configurat...

  13. Experimental results of breakdown in "Dena" plasma focus device

    Science.gov (United States)

    Goudarzi, Shervin; Hoseinian, S. M.; Raeisdana, A.

    2014-06-01

    In spite of the intense research activities on Plasma Focus devices, the physics of the initial breakdown and surface discharge phase has not been realized completely. In this paper we have analyzed the surface discharge and initial breakdown phase in Filippov-type Plasma Focus Facility "Dena" (90 kJ, 25 kV) on the base of the current and current derivative measured signals by using Argon, Neon and Krypton as working gases at different discharge voltages and gas pressures, and the effects of working conditions (atomic weight, discharge voltage and gas pressure) on the breakdown and surface discharge phase have expressed. Also, on the base of these results, we have investigated about the relation of this phase with final pinch phase.

  14. Experimental investigation of current free double layers in helicon plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, B. B. [Department of Applied Sciences and Humanities, Dronacharya College of Engineering, Gurgaon 123506 (India); Tarey, R. D. [Department of Physics, Indian Institute of Technology, New Delhi 110016 (India); Ganguli, A. [Centre for Energy Studies, Indian Institute of Technology, New Delhi 110016 (India)

    2014-02-15

    The paper presents investigations of current free double layer (CFDL) that forms in helicon plasmas. In contrast to the other work reporting on the same subject, in the present investigations the double layer (DL) forms in a mirror-like magnetic field topology. The RF compensated Langmuir probe measurements show multiple DLs, which are in connection with, the abrupt fall of densities along with potential drop of about 24 V and 18 V. The DLs strengths (e ΔV{sub p})/(k T{sub e}) are about 9.5 and 6, and the corresponding widths are about 6 and 5 D lengths. The potential drop is nearly equal to the thermal anisotropies between the two plasma regions forming the DL, which is present in the plateau region of mirror, unlike the earlier studies on the DL formation in the region of strong gradients in the magnetic field. Also, it presents a qualitative discussion on the mechanism of DL formation.

  15. Properties of surface modes in one dimensional plasma photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, S.; Prasad, S., E-mail: prasad.surendra@gmail.com; Singh, V. [Department of Physics, Faculty of Science, Banaras Hindu University, Varanasi 221005 (India)

    2015-02-15

    Properties of surface modes supported at the interface of air and a semi-infinite one dimensional plasma photonic crystal are analyzed. The surface mode equation is obtained by using transfer matrix method and applying continuity conditions of electric fields and its derivatives at the interface. It is observed that with increase in the width of cap layer, frequencies of surface modes are shifted towards lower frequency side, whereas increase in tangential component of wave-vector increases the mode frequency and total energy carried by the surface modes. With increase in plasma frequency, surface modes are found to shift towards higher frequency side. The group velocity along interface is found to control by cap layer thickness.

  16. Identification of Desirable Precursor Properties for Solution Precursor Plasma Spray

    Science.gov (United States)

    Muoto, Chigozie K.; Jordan, Eric H.; Gell, Maurice; Aindow, Mark

    2011-06-01

    In solution precursor plasma spray chemical precursor solutions are injected into a standard plasma torch and the final material is formed and deposited in a single step. This process has several attractive features, including the ability to rapidly explore new compositions and to form amorphous and metastable phases from molecularly mixed precursors. Challenges include: (a) moderate deposition rates due to the need to evaporate the precursor solvent, (b) dealing on a case by case basis with precursor characteristics that influence the spray process (viscosity, endothermic and exothermic reactions, the sequence of physical states through which the precursor passes before attaining the final state, etc.). Desirable precursor properties were identified by comparing an effective precursor for yttria-stabilized zirconia with four less effective candidate precursors for MgO:Y2O3. The critical parameters identified were a lack of major endothermic events during precursor decomposition and highly dense resultant particles.

  17. Magnetic Bubble Expansion Experimental Investigation Using a Compact Coaxial Magnetized Plasma Gun

    Science.gov (United States)

    Zhang, Yue; Lynn, Alan; Hsu, Scott; Li, Hui; Liu, Wei; Gilmore, Mark; Watts, Christopher

    2009-11-01

    The poster will first discuss the construction and improved design of a compact coaxial magnetized plasma gun. The plasma gun is used for experimental studies of magnetic bubble expansion into a lower pressure background plasma, which as a model for extragalactic radio lobes and solar coronal mass ejections. In this experiment, the plasma bubble's density, electron temperature, and propagation speed are measured by using a multiple-tipped langmuir probe. Also a three axis B-dot probe array is used to measure the magnetic field in three dimensions during the expansion process. In this poster experiment setup and data will be provided. Finally the comparison with the simulation result will be made.

  18. Experimental investigation of double layers in expanding plasmas

    CERN Document Server

    Plihon, N; Corr, C S

    2015-01-01

    Double layers (DLs) have been observed in a plasma reactor composed of a source chamber attached to a larger expanding chamber. Positive ion beams generated across the DL were characterized in the low plasma potential region using retarding field energy analyzers. In electropositive gases, DLs were formed at very low pressures between 0.1 and 1 mTorr with the plasma expansion forced by a strongly diverging magnetic field. The DL remains static, robust to changes in boundary conditions, and its position is related to the magnetic field lines. The voltage drop across the DL increases with decreasing pressure, i.e., with increasing electron temperature around 20 V at 0.17 mTorr. DLs were also observed in electronegative gases without a magnetic field over a greater range of pressure 0.5 to 10 mTorr. The actual profile of the electronegative DL is very sensitive to external parameters and intrusive elements, and they propagate at high negative ion fraction. Electrostatic probes measurements and laser-induced phot...

  19. Dielectric Properties of Collagen on Plasma Modified Polyvinylidene Fluoride

    Directory of Open Access Journals (Sweden)

    R. M. Dahan

    2012-01-01

    Full Text Available Problem statement: The attachment of biopolymers such as collagen on inert polymeric template created great challenge due to hydrophobic nature of polymeric material. The modification of PVDF for improved adhesion and introduction of specific functionalities have been widely recognized in various industrial applications. Typical methods for modifying polymer surface such as chemical etching and UV irradiation are not favorable as it requires high temperature and the use of chemical solvents. However plasma modification is suitable as it utilizes low heat and a clean environment, thus preventing contamination on the deposited collagen. Approach: Free standing orientated Poly (Vinylidene Fluoride (PVDF films were fabricated by solution casting method and dried in a convention oven. The dried PVDF films were orientated in a tensile machine at temperature 70°C enclosed in a custom made environmental chamber. The pulling rates of 5 mm min-1 were utilized with a draw ratio of 2 (R = Lfinal/Linitial. The PVDF film was plasma treated for 60 sec to enhance the hydrophilic property of PVDF and utilized as template for collagen deposition. The deposited collagen on surface of PVDF was left in desiccators at temperature of 24°C for complete drying. Results: The untreated and plasma-treated PVDF template were observed for water contact angle measurement, the functional group and dielectric properties of collagen were observed and measured by FTIR and SOLARTRON respectively. Conclusion: The orientated PVDF films were produced at pulling speed of 5 mm min-1 and temperature of 70°C. The hydrophobic PVDF surface was transformed to a hydrophilic surface by plasma treatment for collagen deposition. The FTIR result shows the overlapping peaks of C-H and C-F in range 1500-1000 cm-1 which indicates the C-C bonding of collagen and PVDF. The significant increase in dielectric constant is a result from the favorable bonding between collagen and PVDF template.

  20. Numerical and experimental study on a pulsed-dc plasma jet

    Science.gov (United States)

    Liu, X. Y.; Pei, X. K.; Lu, X. P.; Liu, D. W.

    2014-06-01

    A numerical and experimental study of plasma jet propagation in a low-temperature, atmospheric-pressure, helium jet in ambient air is presented. A self-consistent, multi-species, two-dimensional axially symmetric plasma model with detailed finite-rate chemistry of helium-air mixture composition is used to provide insights into the propagation of the plasma jet. The obtained simulation results suggest that the sheath forms near the dielectric tube inner surface and shields the plasma channel from the tube surface. The strong electric field at the edge of the dielectric field enhances the ionization in the air mixing layer; therefore, the streamer head becomes ring-shaped when the streamer runs out of the tube. The avalanche-to-streamer transition is the main mechanism of streamer advancement. Penning ionization dominates the ionization reactions and increases the electrical conductivity of the plasma channel. The simulation results are supported by experimental observations under similar discharge conditions.

  1. Experimental studies of lithium-based surface chemistry for fusion plasma-facing materials applications

    Energy Technology Data Exchange (ETDEWEB)

    Allain, J.P., E-mail: allain@purdue.ed [Purdue University, West Lafayette, 400 Central Drive, IN 47907 (United States); Rokusek, D.L.; Harilal, S.S. [Purdue University, West Lafayette, 400 Central Drive, IN 47907 (United States); Nieto-Perez, M. [CICATA-IPN, Cerro Blanco 141 Cimatario, Queretaro, QRO 76090 (Mexico); Skinner, C.H.; Kugel, H.W. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Heim, B. [Purdue University, West Lafayette, 400 Central Drive, IN 47907 (United States); Kaita, R.; Majeski, R. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States)

    2009-06-15

    Lithium has enhanced the operational performance of fusion devices such as: TFTR, CDX-U, FTU, T-11 M, and NSTX. Lithium in the solid and liquid state has been studied extensively in laboratory experiments including its erosion and hydrogen-retaining properties. Reductions in physical sputtering up to 40-60% have been measured for deuterated solid and liquid lithium surfaces. Computational modeling indicates that up to a 1:1 deuterium volumetric retention in lithium is possible. This paper presents the results of systematic in situ laboratory experimental studies on the surface chemistry evolution of ATJ graphite under lithium deposition. Results are compared to post-mortem analysis of similar lithium surface coatings on graphite exposed to deuterium discharge plasmas in NSTX. Lithium coatings on plasma-facing components in NSTX have shown substantial reduction of hydrogenic recycling. Questions remain on the role lithium surface chemistry on a graphite substrate has on particle sputtering (physical and chemical) as well as hydrogen isotope recycling. This is particularly due to the lack of in situ measurements of plasma-surface interactions in tokamaks such as NSTX. Results suggest that the lithium bonding state on ATJ graphite is lithium peroxide and with sufficient exposure to ambient air conditions, lithium carbonate is generated. Correlation between both results is used to assess the role of lithium chemistry on the state of lithium bonding and implications on hydrogen pumping and lithium sputtering. In addition, reduction of factors between 10 and 30 reduction in physical sputtering from lithiated graphite compared to pure lithium or carbon is also measured.

  2. An experimentally constrained MHD model for a collisional, rotating plasma column

    Science.gov (United States)

    Wright, A. M.; Qu, Z. S.; Caneses, J. F.; Hole, M. J.

    2017-02-01

    A steady-state single fluid MHD model which describes the equilibrium of plasma parameters in a collisional, rotating plasma column with temperature gradients and a non-uniform externally applied magnetic field is developed. Two novel methods of simplifying the governing equations are introduced. Specifically, a ‘radial transport constraint’ and an ordering argument are applied. The reduced system is subsequently solved to yield the equilibrium of macroscopic plasma parameters in the bulk region of the plasma. The model is benchmarked by comparing these solutions to experimental measurements of axial velocity and density for a hydrogen plasma in the converging-field experiment MAGPIE and overall a good agreement is observed. The plasma equilibrium is determined by the interaction of a density gradient, due to a temperature gradient, with an electric field. The magnetic field and temperature gradient are identified as key parameters in determining the flow profile, which may be important considerations in other applications.

  3. Experimental and numerical studies of neutral gas depletion in an inductively coupled plasma

    Science.gov (United States)

    Shimada, Masashi

    The central theme of this dissertation is to explore the impact of neutral depletion and coupling between plasma and neutral gas in weakly ionized unmagnetized plasma. Since there have been few systematic studies of the mechanism which leads to non-uniform neutral distribution in processing plasmas, this work investigated the spatial profiles of neutral temperature and pressure experimentally, and the mechanism of resulting neutral depletion by simulation. The experimental work is comprised of neutral temperature measurements using high resolution atomic spectroscopy and molecular spectroscopy, and neutral pressure measurements considering thermal transpiration. When thermal transpiration effects are used to correct the gas pressure measurements, the total pressure remains constant regardless of the plasma condition. Since the neutral gas follows the ideal gas law, the neutral gas density profile is also obtained from the measured neutral gas temperature and the corrected pressure measurements. The results show that neutral gas temperature rises close to ˜ 900 [K], and the neutral gas density at the center of plasma chamber has a significant (factor of 2-4x) decrease in the presence of a plasma discharge. In numerical work, neutral and ion transport phenomena were simulated by a hybrid-type direct simulation Monte Carlo (DSMC) method of one dimensional (1D) electrostatic plasma to identify the mechanism of the neutral gas density depletion in Ar/N2 mixtures. The simulation reveals that the neutral depletion is the result of the interplay between plasma and neutral gas, and a parametric study indicates that neutral depletion occurs mainly due to gas heating and pressure balance for the typical condition of plasma processing. In high density plasma sources (Te ≈ 2-5 eV, ne ≈ 1011-1012 cm-3) where the plasma pressure becomes comparable to neutral pressure, total pressure (neutral pressure and plasma pressure) is conserved before and after the discharge. Therefore

  4. Experimental Results from Initial Operation of Plasma Injector 1

    Science.gov (United States)

    Howard, Stephen

    2010-11-01

    General Fusion has begun operation of its first full-scale plasma injector, designed to accelerate high density spheromak plasmas into the compression chamber of a proposed MTF reactor. The geometry of Plasma Injector 1 (PI-1) is that of a two stage coaxial Marshal gun with a conical converging accelerator electrodes, similar in shape to the MARAUDER device, while pulsed power is applied in the same configuration as the RACE device. PI-1 is 5 meters in length and 1.9 m in diameter at the expansion region where a high aspect ratio (4.4) spheromak is formed with a minimum lambda of 9 m-1. The acceleration/compression stage is 4 m long and tapers to a final outer diameter of 40 cm. PI-1 is now operating at 1 MJ of total capacitor power, which will be doubled again before it reaches its design parameters. Diagnostics include 3 interferometer chords, 21 magnetic probes (2 axis poloidal/toroidal), 13 fast photodiode chords, as well as one Thomson scattering chord, a visible light survey spectrometer, and a Langmuir triple probe. Electrode voltage and current are also monitored. So far spheromaks of poloidal flux exceeding 100 mWb have been formed in the expansion region, and spheromaks of 40-50 mWb have been formed and accelerated out the end of the accelerator into a flux conserving target chamber. Expansion region densities are typically ˜5 x10^14cm-3, while conditions in the target chamber have reached ne˜10^16cm-3, and lifetimes of 300 μs.

  5. Experimental beam system studies of plasma-polymer interactions

    Science.gov (United States)

    Nest, Dustin George

    Since the invention of the integrated circuit, the semiconductor industry has relied on the shrinking of device dimensions to increase device performance and decrease manufacturing costs. However, the high degree of roughening observed during plasma etching of current generation photoresist (PR) polymers can result in poor pattern transfer and ultimately decreased device performance or failure. Plasma-surface interactions are inherently difficult to study due to the highly coupled nature of the plasma enviroment. To better understand these interactions, a beam system approach is employed where polymers are exposed to beams of ions and vacuum ultraviolet (VUV) photons. Through the use of the beam system approach, simultaneous VUV radiation, ion bombardment, and moderate substrate heating have been identified as key elements, acting synergistically, as being responsible for roughening of current generation 193 nm PR during plasma processing. Sequential exposure is not adequate for the development of surface roughness, as observed through AFM and SEM. Ion bombardment results in the formation of a graphitized near-surface region with a depth of a few nanometers, the expected ion penetration depth of 150 eV argon ions. In contrast, VUV radiation results in the loss of carbon-oxygen bonds in the bulk PR as observed through Transmission FTIR. Based on the differing penetration depth of either ions or photons, their resulting chemical modifications, and the temperature dependence of the observed roughening, a mechanism is proposed based on stress relaxation resulting in surface buckling. The surface roughness of poly(4-methyl styrene) (P4MS) and poly(alpha-methyl styrene) (PalphaMS) have also been investigated under exposure to ions and VUV photons. PaMS degrades during VUV radiation above its ceiling temperature of ˜60°C. Despite having the same chemical composition as PalphaMS, P4MS does not degrade during VUV exposure at 70°C due to its relatively high ceiling

  6. Experimental Validation of Plasma Metasurfaces as Tunable THz Reflectors

    Science.gov (United States)

    Colon Quinones, Roberto; Underwood, Thomas; Cappelli, Mark

    2016-10-01

    Measurements are presented which validate the use of plasma metasurfaces (PMs) as potential tunable THz reflectors. The PM considered here is an n x n array of laser produced plasma kernels generated by focusing the fundamental output from a 2 J/p Q-switched Nd:YAG laser through a multi-lens array (MLA) and into a gas of varying pressure. An M Squared Firefly-THz laser is used to generate a collimated pulse of THz light, which is then directed to the PM at varying angles of incidence. The reflected energy is measured using a Gentec-EO SDX-1187 joulemeter probe to characterize the surface impedance or reflectivity. In this presentation, we will compare the measured reflectance to values obtained from theoretical predictions and 3D finite-difference time-domain (FDTD) simulations. Work supported by the Air Force Office of Scientific Research (AFOSR). R. Colon Quinones and T. Underwood acknowledge the support of the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  7. Plasma-cortisol levels in experimental heatstroke in dogs

    Science.gov (United States)

    Assia, Ehud; Epstein, Yoram; Magazanik, Avraham; Shapiro, Yair; Sohar, Ezra

    1989-06-01

    The effect of external heat-load, exercise and dehydration on dynamic changes in plasma cortisol during the development of heatstroke was investigated. Thirty-three unanesthetized dogs were tested under two sets of climatic conditions: comfort conditions and hot-dry climatic conditions, half of them while exercising. Half of the dogs in each group were rehydrated. None of the dogs that were investigated at room temperature suffered heatstroke. Of the dogs exposed to high ambient temperature, all of the exercising, as well as five out of six non-hydrated dogs and one rehydrated non-exercising dog suffered heatstroke. Significant dehydration (6% 7% of body weight), occurred only under hgh ambient temperature. Plasma cortisol levels of all dogs that suffered heatstroke rose conspicuously for at least 5 h and returned to normal levels 24 h later. Cortisol levels of dogs who did not experience heatstroke remained within the normal range. Cortisol levels correlated with the severity of the stress leading to heatstroke. High and rising levels of cortisol, several hours after body temperature returns to normal, may support the diagnosis of heatstroke.

  8. Development of a new experimental device for long-duration magnetic reconnection in weakly ionized plasma

    Science.gov (United States)

    Yanai, Ryoma; Kaminou, Yasuhiro; Nishida, Kento; Inomoto, Michiaki

    2016-10-01

    Magnetic reconnection is a universal phenomenon which determines global structure and energy conversion in magnetized plasmas. Many experimental studies have been carried out to explore the physics of magnetic reconnection in fully ionized condition. However, it is predicted that the behavior of magnetic reconnection in weakly ionized plasmas such as solar chromosphere plasma will show different behavior such as ambipolar diffusion caused by interaction with neutral particles. In this research, we are developing a new experimental device to uncover the importance of ambipolar diffusion during magnetic reconnection in weakly ionized plasmas. We employ an inverter-driven rotating magnetic fields technique, which is used for generating steady azimuthal plasma current, to establish long-duration ( 1 ms) anti-parallel reconnection with magnetic field of 5 mT in weakly ionized plasma. We will present development status and initial results from the new experimental setup. This work was supported by JSPS A3 Foresight Program ``Innovative Tokamak Plasma Startup and Current Drive in Spherical Torus'', Giant-in Aid for Scientific Research (KAKENHI) 15H05750, 15K14279, 26287143 and the NIFS Collaboration Research program (NIFS14KNWP004).

  9. Boltzmann equation analysis of electrons swarm parameters and properties of excited particle number densities in Xe/Ne plasmas. Laser absorption effect; Xe/Ne plasma chudenshi yuso keisu narabi ni reiki ryushisu mitsudo tokusei no Boltzmann hoteishiki kaiseki. Laser ko kyushu koka

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, S.; Sugawara, H.; Ventzek, P.; Sakai, Y. [Hokkaido University, Sapporo (Japan)

    1998-06-01

    Xe/Ne plasmas are important for plasma display panels and VUV light sources. However, reactions between electrons and excited particles in the mixtures are so complicated that influence of the reactions on the plasma properties is not understood well. In this work, taking account of reactions through which electrons are produced, such as cumulative and Penning ionization, and of transition between excited levels, the electron and excited particle properties in Xe/Ne plasmas are calculated using the Boltzmann equation. The ionization coefficient and electron drift velocity agreed with experimental data. The influence of laser absorption in Xe/Ne plasmas on the plasma properties is also discussed. 25 refs., 15 figs.

  10. What RHIC experiments and theory tell us about properties of quark-gluon plasma?

    Science.gov (United States)

    Shuryak, Edward

    2005-03-01

    This brief review summarizes the main experimental discoveries made at RHIC and then discusses their implications. The robust collective flow phenomena are well described by ideal hydrodynamics, with the equation of state (EoS) predicted by lattice simulations. However the transport properties turned out to be unexpected, with rescattering cross section one-to-two orders of magnitude larger than expected from perturbative QCD. These and other theoretical developments indicate that quark-gluon plasma (QGP) produced at RHIC, and probably in a wider temperature region TEoS, viscosity and jet quenching.

  11. Experimental and numerical studies of microwave-plasma interaction in a MWPECVD reactor

    Science.gov (United States)

    Massaro, A.; Velardi, L.; Taccogna, F.; Cicala, G.

    2016-12-01

    This work deals with and proposes a simple and compact diagnostic method able to characterize the interaction between microwave and plasma without the necessity of using an external diagnostic tool. The interaction between 2.45 GHz microwave and plasma, in a typical ASTeX-type reactor, is investigated from experimental and numerical view points. The experiments are performed by considering plasmas of three different gas mixtures: H2, CH4-H2 and CH4-H2-N2. The two latter are used to deposit synthetic undoped and n-doped diamond films. The experimental setup equipped with a matching network enables the measurements of very low reflected power. The reflected powers show ripples due to the mismatching between wave and plasma impedance. Specifically, the three types of plasma exhibit reflected power values related to the variation of electron-neutral collision frequency among the species by changing the gas mixture. The different gas mixtures studied are also useful to test the sensitivity of the reflected power measurements to the change of plasma composition. By means of a numerical model, only the interaction of microwave and H2 plasma is examined allowing the estimation of plasma and matching network impedances and of reflected power that is found about eighteen times higher than that measured.

  12. Experimental and numerical studies of microwave-plasma interaction in a MWPECVD reactor

    Directory of Open Access Journals (Sweden)

    A. Massaro

    2016-12-01

    Full Text Available This work deals with and proposes a simple and compact diagnostic method able to characterize the interaction between microwave and plasma without the necessity of using an external diagnostic tool. The interaction between 2.45 GHz microwave and plasma, in a typical ASTeX-type reactor, is investigated from experimental and numerical view points. The experiments are performed by considering plasmas of three different gas mixtures: H2, CH4-H2 and CH4-H2-N2. The two latter are used to deposit synthetic undoped and n-doped diamond films. The experimental setup equipped with a matching network enables the measurements of very low reflected power. The reflected powers show ripples due to the mismatching between wave and plasma impedance. Specifically, the three types of plasma exhibit reflected power values related to the variation of electron-neutral collision frequency among the species by changing the gas mixture. The different gas mixtures studied are also useful to test the sensitivity of the reflected power measurements to the change of plasma composition. By means of a numerical model, only the interaction of microwave and H2 plasma is examined allowing the estimation of plasma and matching network impedances and of reflected power that is found about eighteen times higher than that measured.

  13. Properties of the Plasma Mantle in the Earth's Magnetotail

    Science.gov (United States)

    Shodhan-Shah, Sheela

    1998-04-01

    The plasma mantle is the site where the solar wind enters the Earth's magnetosphere. As yet, the mantle in the magnetotail (downstream part of the magnetosphere) has remained an enigma, for this region is remote and inaccessible. However, new results from the GEOTAIL spacecraft have yielded data on the mantle, making its study possible. The research reported in this dissertation uses the measurements made by the GEOTAIL spacecraft when it was beyond 100 Re (1 Re = Earth radius) in the magnetotail to determine the global geometrical and dynamical properties of the mantle. The model and the data together provide a cross-sectional picture of the mantle, as well as its extent into the tail and along the circumference of the tail. The model assesses the mass and momentum flux flowing through the mantle and merging with the plasma sheet (a relatively dense region that separates the oppositely directed fields of the tail lobes). In this way, the thesis examines the importance of the mantle as a source that replenishes and moves the plasma sheet. Moreover, it addresses the relative importance of the global dynamical modes of the tail. The analysis finds that the tail's 'breathing' mode, of shape change, occurs on a timescale of tens of minutes while a windsock-type motion, responding to changes in the solar wind direction, occurs on a scale of hours. The mantle extends about 140o around the circumference of the tail rather than 90o as previously thought and is about 20 ± 9 Re thick. It is capable of feeding the plasma sheet with sufficient particles to make up for those lost and can drag it away with a force that compares with the Earthward force on it. The rate at which the energy flows through the tail at 100 Re is about 10% of that in the solar wind and is a factor of 10 higher than the energy dissipated.

  14. Orbital-free molecular dynamics simulations of transport properties in dense-plasma uranium

    Science.gov (United States)

    Kress, J. D.; Cohen, James S.; Kilcrease, D. P.; Horner, D. A.; Collins, L. A.

    2011-09-01

    We have calculated the self-diffusion coefficients and shear viscosity of dense-plasma uranium using orbital-free molecular dynamics (OFMD) at the Thomas-Fermi-Dirac level. The transport properties of uranium in this regime have not previously been investigated experimentally or theoretically. The OFMD calculations were performed for temperatures from 50 to 5000 eV and densities from ambient to 10 times compressed. The results are compared with the one-component-plasma (OCP) model, using effective charges given by the average-atom code INFERNO and by the regularization procedure from the OFMD method. The latter generally showed better agreement with the OFMD for viscosity and the former for diffusion. A Stokes-Einstein relationship of the OFMD viscosities and diffusion coefficients is found to hold fairly well with a constant of 0.075 ± 0.10, while the OCP/INFERNO model yields 0.13 ± 0.10.

  15. Mechanical and corrosion resistant properties of martensitic stainless steel plasma nitrocarburized with rare earths addition

    Institute of Scientific and Technical Information of China (English)

    LIU Ruiliang; QIAO Yingjie; YAN Mufu; FU Yudong

    2012-01-01

    In order to improve surface hardness and corrosion resistant property of 17-4PH martensitic stainless steel,the steel was plasma nitrocarburized at 560 ℃ for 2-24 h in a gas mixture of nitrogen,hydrogen and ethanol with rare earths (RE) addition.The experimental results showed that the modified layer was characterized by a compound layer containing two distinct zones (i.e.out ‘dark zone’ and inner ‘white zone’).The inner ‘white zone’ was almost a precipitation free zone and had high hardness as well as good corrosion resistance.Anodic polarization test results showed that the specimens plasma nitrocarburized with RE addition had good corrosion resistance resulted mainly from their higher corrosion potentials,lower corrosion current densities and larger passive regions as compared with those of the untreated one.

  16. Structural, Mechanical and Tribological Properties of Spark Plasma Sintered Ti6Al4V Alloy

    Directory of Open Access Journals (Sweden)

    Mróz A.

    2016-06-01

    Full Text Available The influence of spark plasma sintering parameters on the structural, mechanical and tribological characteristics of the Ti6Al4V alloy, which is used as implant material in biomedical engineering, was investigated. The experimental data confirm that full density and attractive mechanical properties can be obtained using the spark plasma sintering method. Tribological tests, performed in dry conditions, allowed the authors to indicate the most suitable sintering parameters. The material characterized by the highest wear resistance was selected for further tribological testing in articulation with UHMWPE in simulated body fluids. Although the weight of the polymeric material articulating against the sintered Ti6Al4V was slightly higher compared to the UHMWPE articulating against the reference material (Ti6Al4V rod, the friction coefficient was lower.

  17. Experimental Study of the Plasma Fluorination of Y-Ba-Cu-O Thin Films

    Institute of Scientific and Technical Information of China (English)

    李琴; 傅泽禄; 吉争鸣; 冯一军; 康琳; 杨森祖; 吴培亨; 王晓书; 叶宇达

    2002-01-01

    We have experimentally studied the surface modifications of Y-Ba-Cu-O (YBCO) thin films using CF4plasma. The intensity of the plasma fluorination was controlled by changing the liasing voltage and the time of the plasma treatment. Microstructural analyses reveal that the oxygen content of the YBCO thin films was changed. Transport measurements of sufficient fluorinated YBCO films imply that the films changed totally into an oxygen-deficient semi-conducting state. From these experimental results, we believe that plasma fluorination is quite a useful method to form controllable a thin barrier layer in fabricating interface engineered junctions and to form a stable narrow weak-link region in fabricating planar superconductor-normal-superconductor junctions.

  18. Experimental study of the plasma fluorination of Y-Ba-Cu-O thin films

    CERN Document Server

    Li Qi; Ji Zheng Ming; Feng Yi Jun; Kang Lin; Yang Sen Zu; Wu Pei Heng; Wang Xiao Shu; Ye Yuda

    2002-01-01

    The authors have experimentally studied the surface modifications of Y-Ba-Cu-O (YBCO) thin films using CF sub 4 plasma. The intensity of the plasma fluorination was controlled by changing the biasing voltage and the time of the plasma treatment. Microstructural analyses reveal that the oxygen content of the YBCO thin films was changed. Transport measurements of sufficient fluorinated YBCO films imply that the films changed totally into an oxygen-deficient semi-conducting state. From these experimental results, the authors believe that plasma fluorination is quite a useful method to form controllable a thin barrier layer in fabricating interface engineered junctions and to form a stable narrow weak-link region in fabricating planar superconductor-normal-superconductor junctions

  19. Experimental study of TJ-1 plasma using scattering and radiation emission techniques; Analisis experimental del plasma TJ-1 con tecnicas de scattering y emision de radiacion

    Energy Technology Data Exchange (ETDEWEB)

    Pardo, C.; Zurro, B.

    1987-07-01

    The Thomson scattering system of TJ-1 is described in detail. The radial profiles of Te and ne obtained in TJ-1 discharges are presented. This data make possible to deduce characteristic parameters of the plasma confinement in this machine, as energy confinement times, Zeff B. Using also radiation measurements (global and in the visible range) we obtained the particle confinement time and Zeff without non experimental assumptions. (Author) 52 refs.

  20. Experimental determination of thermal properties of alluvial soil

    Science.gov (United States)

    Kulkarni, N. G.; Bhandarkar, U. V.; Puranik, B. P.; Rao, A. B.

    2016-12-01

    In the present work, thermal conductivity and specific heat of a particular type of alluvial soil used in brick making in a certain region of India (Karad, Maharashtra State) are experimentally determined for later use in the estimation of ground heat loss in clamp type kilns. These properties are determined simultaneously using the steady-state and the transient temperature data measured in the setup constructed for this purpose. Additionally, physical properties of the soil are experimentally determined for use with six models for the prediction of the thermal conductivity of soil. The predictions from the models are compared with the experimental data. A separate data fitting exercise revealed a small temperature dependence of the soil thermal conductivity on the soil mean temperature.

  1. Plasma nitriding and plasma nitrocarburizing of electroplated hard chromium to increase the wear and the corrosion properties

    Energy Technology Data Exchange (ETDEWEB)

    Menthe, E.; Rie, K.-T. (Technische Univ. Braunschweig (Germany). Inst. fuer Oberflaechentechnik und Plasmatechnische Werkstoffentwicklung)

    1999-02-01

    We have investigated the effect of plasma nitriding and plasma nitrocarburizing on the microstructure and properties of electroplated chromium. Plasma nitriding and plasma nitrocarburizing are applied to 15-100 [mu]m thick electroplated hard chromium coatings to increase both the wear and the corrosion resistance. The properties of the plasma-modified hard chromium layers are characterized by measuring the wear resistance with a Taber wear tester and the corrosion resistance with a salt spray fog test. Cyclic voltammetry is performed in a standard electrochemical cell using a 0.5 M H[sub 2]SO[sub 4] solution acidified to pH 0.3. The compound layer after plasma nitriding consists of CrN and Cr[sub 2]N with a maximum hardness of about 1100 HK[sub 0.01]. After plasma nitrocarburizing, Cr[sub 3]C[sub 2] and Cr[sub 7]C[sub 3] are formed. After plasma nitrocarburizing, the maximum hardness is increased up to 2200 HK[sub 0.01]. The wear rate is reduced as compared to an untreated chromium layer. The exposure time in the salt spray fog, before corrosion products are visible can be increased by a factor of 5. The improvement in wear and corrosion resistance after plasma nitriding and plasma nitrocarburizing is discussed considering microstructural changes of the treated layer. (orig.) 10 refs.

  2. Experimental and theoretical investigation for the suppression of the plasma arc drop in the thermionic converter

    Science.gov (United States)

    Shaw, D. T.; Manikopoulos, C. N.; Chang, T.; Lee, C. H.; Chiu, N.

    1977-01-01

    Ion generation and recombination mechanisms in the cesium plasma as they pertain to the advanced mode thermionic energy converter were studied. The decay of highly ionized cesium plasma was studied in the near afterglow to examine the recombination processes. Very low recombination in such a plasma may prove to be of considerable importance in practical converters. The approaches of external cesium generation were vibrationally excited nitrogen as an energy source of ionization of cesium ion, and microwave power as a means of resonant sustenance of the cesium plasma. Experimental data obtained so far show that all three techniques - i.e., the non-LTE high-voltage pulsing, the energy transfer from vibrationally excited diatomic gases, and the external pumping with a microwave resonant cavity - can produce plasmas with their densities significantly higher than the Richardson density. The implication of these findings as related to Lam's theory is discussed.

  3. Experimental identification of an azimuthal current in a magnetic nozzle of a radiofrequency plasma thruster

    Science.gov (United States)

    Takahashi, Kazunori; Chiba, Aiki; Komuro, Atsushi; Ando, Akira

    2016-10-01

    The azimuthal plasma current in a magnetic nozzle of a radiofrequency plasma thruster is experimentally identified by measuring the plasma-induced magnetic field. The axial plasma momentum increases over about 20 cm downstream of the thruster exit due to the Lorentz force arising from the azimuthal current. The measured current shows that the azimuthal current is given by the sum of the electron diamagnetic drift and \\mathbf{E}× \\mathbf{B} drift currents, where the latter component decreases with an increase in the magnetic field strength; hence the azimuthal current approaches the electron diamagnetic drift one for the strong magnetic field. The Lorentz force calculated from the measured azimuthal plasma current and the radial magnetic field is smaller than the directly measured force exerted to the magnetic field, which indicates the existence of a non-negligible Lorentz force in the source tube.

  4. Experimental Electron Heat Diffusion in TJ-II ECRH Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, V.I.; Lopez-Bruna, D.; Herranz, J.; Castejon, F.

    2006-07-01

    Interpretative transport has been used to revisit the global scalings of TJ-II ECRH plasmas from a local perspective. Density, rotational transform and ERCH power scans were analysed based upon Thomson Scattering data (electron density and temperature) in steady state discharges. A simple formula to obtain the thermal conductivity, assuming pure diffusion and negligible convective heat fluxes was used in a set of 161 discharges. All the analysis was performed with the ASTRA transport shell. The density scan indicates that inside n=0,4 there is no significant change of e with density in the range studied (0.4 (1019m-3) 1.0), while in 0,5 <0,8 approximately, e decreases with density. In the rotational transform scan it is found that the values of e when a low order rational of the rotational transform is present locally seem to be smaller for the corresponding range, although it is apparent a general beneficial effect of the corresponding change in magnetic structure. Finally, in the ECRH power scan, e is found to have an overall increment in 0,2

  5. Experimental Study of the Microdischarge Plasma Thruster (MDPT)

    Science.gov (United States)

    Kc, Utsav; Varghese, Philip; Raja, Laxminarayan

    2008-10-01

    Small satellite propulsion requirements dictate the need for a scaled down propulsion device capable of providing low thrust with small impulse bits. We have designed and studied a simple miniaturized thruster called Microdischarge Plasma Thruster (MDPT). It comprises a tri-layer sandwich structure with a dielectric layer sandwiched between two electrode layers, and a contoured through hollow drilled into the structure. Each layer is 100's microns in thickness and the hole diameter of the same order. Argon is used as the propellant gas with flow rates of ˜ 1 SCCM. The pressure is adequate to produce a stable microdischarge between the electrodes even with modest voltages (˜1000 V). The microdischarge adds heat to the supersonic portion of the flowing gas which is shown to produce additional thrust over the baseline cold gas flow. The studies have also demonstrated that the MDPT exhaust plume is composed of ions albeit at low concentrations, suggesting possibility of MDPT to be operated in a mixed electrothermal/electrostatic mode. We present discussion of multiple discharge operating modes and electrical characteristics of the MDPT. Spectral measurements of the plume are used to determine its composition and calculate its temperature. The momentum thrust of the MDPT is measured with a torsion balance.

  6. Experimental determination of gap scaling in a plasma opening switch

    Science.gov (United States)

    Black, D. C.; Commisso, R. J.; Ottinger, P. F.; Swanekamp, S. B.; Weber, B. V.

    2000-09-01

    Experiments were performed to investigate the coupling between a ˜0.5 μs conduction-time, ˜0.5 MA conduction-current plasma opening switch (POS), and an electron-beam (e-beam) diode. Electrical diagnostics provided measurements of the voltage at the oil-vacuum insulator and at the diode as well as anode and cathode currents on the generator and load sides of the POS. These measurements were combined with a flow impedance model to determine the POS gap over a range of conduction times and e-beam diode impedances, and for two POS-to-load distances. A comparison of the inferred POS gap at peak power with the critical gap for magnetic insulation indicates that the POS gap is always saturated in both switch-limited and load-limited regimes. This POS gap-size scaling with load impedance is consistent with an opening mechanism dominated by erosion and not J×B forces.

  7. Plasma properties. Annual report, January 1, 1991--December 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Weitzner, H

    1992-06-01

    This report discusses the following topics: MHD equilibrium and stability; MHD transport; statistical analysis; edge physics studies; wave propagation; basic plasma physics; and, space plasma physics.

  8. Derivation of stochastic differential equations for scrape-off layer plasma fluctuations from experimentally measured statistics

    Energy Technology Data Exchange (ETDEWEB)

    Mekkaoui, A. [Institute for Energy and Climate Research-Plasma Physics, Research Center Juelich GmbH, Association FZJ-Euratom, D-52425 Juelich (Germany)

    2013-01-15

    A stochastic differential equation for intermittent plasma density dynamics in magnetic fusion edge plasma is derived, which is consistent with the experimentally measured gamma distribution and the theoretically expected quadratic nonlinearity. The plasma density is driven by a multiplicative Wiener process and evolves on the turbulence correlation time scale, while the linear growth is quadratically damped by the fluctuation level. The sensitivity of intermittency to the nonlinear dynamics is investigated by analyzing the nonlinear Langevin representation of the beta process, which leads to a root-square nonlinearity.

  9. Experimental Study on Indoor Air Cleaning Technique of Nano-Titania Catalysis Under Plasma Discharge

    Institute of Scientific and Technical Information of China (English)

    GAO Deli; YANG Xuechang; ZHOU Fei; WU Yuhuang

    2008-01-01

    In this study, a new technique of air cleaning by plasma combined with catalyst was proposed, which consisted of electrostatic precipitation, volatile organic compounds (VOCs) decomposition and sterilization. A novel indoor air purifier based on this technique was adopted. The experimental results showed that formaldehyde decomposition by the plasma-catalyst hybrid system was more efficient than that by plasma only. Positive discharge was better than negative discharge in formaldehyde removal. Meanwhile, the outlet concentration of ozone byproduct was effectively reduced by the nano-titania catalyst.

  10. Numerical and experimental studies of the carbon etching in EUV-induced plasma

    CERN Document Server

    Astakhov, D I; Lee, C J; Ivanov, V V; Krivtsun, V M; Yakushev, O; Koshelev, K N; Lopaev, D V; Bijkerk, F

    2015-01-01

    We have used a combination of numerical modeling and experiments to study carbon etching in the presence of a hydrogen plasma. We model the evolution of a low density EUV-induced plasma during and after the EUV pulse to obtain the energy resolved ion fluxes from the plasma to the surface. By relating the computed ion fluxes to the experimentally observed etching rate at various pressures and ion energies, we show that at low pressure and energy, carbon etching is due to chemical sputtering, while at high pressure and energy a reactive ion etching process is likely to dominate.

  11. Experimental and numerical studies of microwave-plasma interaction in a MWPECVD reactor

    OpenAIRE

    A. Massaro; L. Velardi; Taccogna, F.; Cicala, G.

    2016-01-01

    This work deals with and proposes a simple and compact diagnostic method able to characterize the interaction between microwave and plasma without the necessity of using an external diagnostic tool. The interaction between 2.45 GHz microwave and plasma, in a typical ASTeX-type reactor, is investigated from experimental and numerical view points. The experiments are performed by considering plasmas of three different gas mixtures: H2, CH4-H2 and CH4-H2-N2. The two latter are used to deposit sy...

  12. Experimental observation and computational analysis of striations in electronegative capacitively coupled radio-frequency plasmas

    CERN Document Server

    Liu, Yong-Xin; Korolov, Ihor; Donko, Zoltan; Wang, You-Nian; Schulze, Julian

    2016-01-01

    Self-organized spatial structures in the light emission from the ion-ion capacitive RF plasma of a strongly electronegative gas (CF4) are observed experimentally for the first time. Their formation is analyzed and understood based on particle-based kinetic simulations. These "striations" are found to be generated by the resonance between the driving radio-frequency and the eigenfrequency of the ion-ion plasma (derived from an analytical model) that establishes a modulation of the electric field, the ion densities, as well as the energy gain and loss processes of electrons in the plasma. The growth of the instability is followed by the numerical simulations.

  13. Emission spectra of photoionized plasmas induced by intense EUV pulses: Experimental and theoretical investigations

    Science.gov (United States)

    Saber, Ismail; Bartnik, Andrzej; Skrzeczanowski, Wojciech; Wachulak, Przemysław; Jarocki, Roman; Fiedorowicz, Henryk

    2017-03-01

    Experimental measurements and numerical modeling of emission spectra in photoionized plasma in the ultraviolet and visible light (UV/Vis) range for noble gases have been investigated. The photoionized plasmas were created using laser-produced plasma (LPP) extreme ultraviolet (EUV) source. The source was based on a gas puff target; irradiated with 10ns/10J/10Hz Nd:YAG laser. The EUV radiation pulses were collected and focused using grazing incidence multifoil EUV collector. The laser pulses were focused on a gas stream, injected into a vacuum chamber synchronously with the EUV pulses. Irradiation of gases resulted in a formation of low temperature photoionized plasmas emitting radiation in the UV/Vis spectral range. Atomic photoionized plasmas produced this way consisted of atomic and ionic with various ionization states. The most dominated observed spectral lines originated from radiative transitions in singly charged ions. To assist in a theoretical interpretation of the measured spectra, an atomic code based on Cowan's programs and a collisional-radiative PrismSPECT code have been used to calculate the theoretical spectra. A comparison of the calculated spectral lines with experimentally obtained results is presented. Electron temperature in plasma is estimated using the Boltzmann plot method, by an assumption that a local thermodynamic equilibrium (LTE) condition in the plasma is validated in the first few ionization states. A brief discussion for the measured and computed spectra is given.

  14. Experimental investigation of a non-thermal atmospheric pressure plasma jet

    Science.gov (United States)

    Begum, Asma

    The main objective of this dissertation is to understand the formation of the plasma jet from the plasma pencil, and the propagation of the plasma jet in the ambient atmosphere where the effect of the external electric field is almost zero. Before investigating the formation and propagation phenomenon of the plasma jet, common physical properties of plasma jets are determined by using the imaging technique and optical emission spectroscopy. The first goal of this dissertation is to establish the laminar helium gas flow channel through a plasma pencil. The formation position, formation time, and the criterion of the plasma jet formation from the discharge chamber of a plasma pencil are investigated by imaging technique, optical emission spectroscopy, and electrical measurement technique. It shows that the plasma jet forms at the surface of the grounded dielectric as a positive plasma front. The formation time of the plasma jet decreases with applied voltage. The maximum power, total power, and average energy to the system and to the discharge are calculated from the total current, discharge current, input potential, and gap potential of the plasma pencil. The calculated average input power with applied voltage to the discharge shows that 56% of the input power is used in the discharge. The total charge in the discharge chamber is calculated by integrating the discharge current waveform. The critical charge in the discharge chamber required to generate a plasma jet is also determined. The propagation phenomenon of the plasma bullet in the ambient atmosphere has been investigated from the velocity curves of the plasma bullet along the jet axis for different applied voltages, pulse widths, and feed gas flow rates. The plasma bullet's velocity is measured by using two different techniques: (i) imaging technique and (ii) electrical technique. In imaging technique, ultra-fast ICCD images of the plasma jet have been taken at different times and positions, and from the

  15. Spatiotemporal properties of microsaccades: Model predictions and experimental tests

    Science.gov (United States)

    Zhou, Jian-Fang; Yuan, Wu-Jie; Zhou, Zhao

    2016-10-01

    Microsaccades are involuntary and very small eye movements during fixation. Recently, the microsaccade-related neural dynamics have been extensively investigated both in experiments and by constructing neural network models. Experimentally, microsaccades also exhibit many behavioral properties. It’s well known that the behavior properties imply the underlying neural dynamical mechanisms, and so are determined by neural dynamics. The behavioral properties resulted from neural responses to microsaccades, however, are not yet understood and are rarely studied theoretically. Linking neural dynamics to behavior is one of the central goals of neuroscience. In this paper, we provide behavior predictions on spatiotemporal properties of microsaccades according to microsaccade-induced neural dynamics in a cascading network model, which includes both retinal adaptation and short-term depression (STD) at thalamocortical synapses. We also successfully give experimental tests in the statistical sense. Our results provide the first behavior description of microsaccades based on neural dynamics induced by behaving activity, and so firstly link neural dynamics to behavior of microsaccades. These results indicate strongly that the cascading adaptations play an important role in the study of microsaccades. Our work may be useful for further investigations of the microsaccadic behavioral properties and of the underlying neural dynamical mechanisms responsible for the behavioral properties.

  16. Properties Influencing Plasma Discharges in Packed Bed Reactors

    Science.gov (United States)

    Kruszelnicki, Juliusz; Engeling, Kenneth W.; Foster, John E.; Kushner, Mark J.

    2016-09-01

    Atmospheric pressure dielectric barrier discharges (DBDs) sustained in packed bed reactors (PBRs) are being investigated for CO2 removal and conversion of waste gases into higher value compounds. We report on results of a computational investigation of PBR-DBD properties using the plasma hydrodynamics simulator nonPDPSIM with a comparison to experiments. Dielectric beads (rods in 2D) were inserted between two coplanar electrodes, 1 cm apart filled by humid air. A step-pulse of -30 kV was applied to the top electrode. Material properties of the beads (dielectric constant, secondary emission coefficient) and gas properties (photoionization and photo-absorption cross-sections, temperature) were varied. We found that photoionization plays a critical role in the propagation of the discharge through the PBR, as it serves to seed charges in regions of high electric field. Increasing rates of photo-ionization enable increases in the discharge propagation velocity, ionization rates and production of radicals. A transition between DBD-like and arc-like discharges occurs as the radiation mean free path decreases. Increasing the dielectric constant of the beads increased electric fields in the gas, which translated to increased discharge propagation velocity and charge density until ɛ/ɛ0 100. Secondary electron emission coefficient and gas temperature have minimal impacts on the discharge propagation though the latter did affect the production of reactive species. Work supported by US DOE Office of Fusion Energy Science and the National Science Foundation.

  17. Experimental investigations of the plasma radial uniformity in single and dual frequency capacitively coupled argon discharges

    Science.gov (United States)

    Zhao, Kai; Liu, Yong-Xin; Gao, Fei; Liu, Gang-Hu; Han, Dao-Man; Wang, You-Nian

    2016-12-01

    In the current work, the radial plasma density has been measured by utilizing a floating double probe in single and dual frequency capacitively coupled argon discharges operated in a cylindrical reactor, aiming at a better understanding of electromagnetic effects and exploring a method of improving the radial uniformity. The experimental results indicate that for single-frequency plasma sustained at low pressure, the plasma density radial profile exhibits a parabolic distribution at 90 MHz, whereas at 180 MHz, the profile evolves into a bimodal distribution, and both cases indicate poor uniformities. With increasing the pressure, the plasma radial uniformity becomes better for both driving frequency cases. By contrast, when discharges are excited by two frequencies (i.e., 90 + 180 MHz), the plasma radial profile is simultaneously influenced by both sources. It is found that by adjusting the low-frequency to high-frequency voltage amplitude ratio β, the radial profile of plasma density could be controlled and optimized for a wide pressure range. To gain a better plasma uniformity, it is necessary to consider the balance between the standing wave effect, which leads to a maximum plasma density at the reactor center, and the edge field effect, which is responsible for a maximum density near the radial electrode edge. This balance can be controlled either by selecting a proper gas pressure or by adjusting the ratio β.

  18. Dynamic properties of small-scale solar wind plasma fluctuations.

    Science.gov (United States)

    Riazantseva, M O; Budaev, V P; Zelenyi, L M; Zastenker, G N; Pavlos, G P; Safrankova, J; Nemecek, Z; Prech, L; Nemec, F

    2015-05-13

    The paper presents the latest results of the studies of small-scale fluctuations in a turbulent flow of solar wind (SW) using measurements with extremely high temporal resolution (up to 0.03 s) of the bright monitor of SW (BMSW) plasma spectrometer operating on astrophysical SPECTR-R spacecraft at distances up to 350,000 km from the Earth. The spectra of SW ion flux fluctuations in the range of scales between 0.03 and 100 s are systematically analysed. The difference of slopes in low- and high-frequency parts of spectra and the frequency of the break point between these two characteristic slopes was analysed for different conditions in the SW. The statistical properties of the SW ion flux fluctuations were thoroughly analysed on scales less than 10 s. A high level of intermittency is demonstrated. The extended self-similarity of SW ion flux turbulent flow is constantly observed. The approximation of non-Gaussian probability distribution function of ion flux fluctuations by the Tsallis statistics shows the non-extensive character of SW fluctuations. Statistical characteristics of ion flux fluctuations are compared with the predictions of a log-Poisson model. The log-Poisson parametrization of the structure function scaling has shown that well-defined filament-like plasma structures are, as a rule, observed in the turbulent SW flows.

  19. Oxygen plasma treatments of jute fibers in improving the mechanical properties of jute/HDPE composites

    Energy Technology Data Exchange (ETDEWEB)

    Sever, K. [Department of Mechanical Engineering, Dokuz Eylul University, 35100, Izmir (Turkey); Erden, S. [Department of Mechanical Engineering, Ege University, 35100, Izmir (Turkey); Guelec, H.A. [Department of Food Engineering, Yuzuncu Yil University, 65250, Van (Turkey); Seki, Y., E-mail: yoldas.seki@deu.edu.tr [Department of Chemistry, Dokuz Eylul University, 35160, Buca, Izmir (Turkey); Sarikanat, M. [Department of Mechanical Engineering, Ege University, 35100, Izmir (Turkey)

    2011-09-15

    Highlights: {yields} To improve mechanical properties of jute/HDPE composites, jute fabric was subjected to oxygen plasma treatment. {yields} LF and RF plasma systems at different plasma powers were used for treatment. {yields} In LF system, interlaminar shear strength, tensile and flexure strengths showed a tendency to increase at plasma powers of 30 and 60 W. - Abstract: The surfaces of jute fabrics have been oxygen plasma treated using low frequency (LF) and radio frequency (RF) plasma systems at different plasma powers (30, 60, and 90 W) for 15 min to improve the mechanical properties of jute fiber/HDPE (high density polyethylene) composites. The effect of oxygen plasma treatment on the functional groups of jute fibers was examined by X-ray photoelectron spectroscopy (XPS) analysis. Effects of oxygen plasma treatments on the mechanical properties of jute fiber/HDPE composites were investigated by means of tensile, flexure, and short-beam shear tests. Surface morphology of the fractured surfaces of composites was observed by using scanning electron microscopy (SEM). When RF plasma system was used, the interlaminar shear strength (ILSS) values of the composites increased with increasing plasma power. Similarly, in LF plasma system, ILSS values showed a tendency to increase at plasma powers of 30 and 60 W. However, increasing of plasma power to 90 W decreased the ILSS value of jute/HDPE composite. Also, tensile and flexure strengths of the composites showed similar trends.

  20. Plasma properties of a new-type surface wave-sustained plasma source under the conditions of depositing DLC films

    Science.gov (United States)

    Xu, Junqi; Kousaka, Hiroyuki; Umehara, Noritsugu; Diao, Dongfeng

    2006-01-01

    Surface wave-sustained plasma (SWP) is one of the low-pressure, high- density plasma. Applying this technique, diamond-like carbon (DLC) films with excellent characteristics can be prepared by physical vapor deposition (PVD) method. However, the films' application is restricted in some degree, because it is difficult to control the film properties. In this paper, SWP was excited along a conductive rod at a frequency of 2.45 GHz without magnetic fields around the chamber wall. The fundamental theories of plasma diagnostic were presented and plasma properties were studied with a Langmuir probe under the conditions of depositing DLC films by PVD method with a graphite target. Plasma density, electron temperature, plasma potential and target current were measured at difference technique parameters such as gas pressure, microwave power, and so on. As a result, it was proved that plasma properties are greatly affected by microwave power, target voltage and argon gas pressure in chamber. The gas mass flow rate had almost no effect on plasma characters. At the same time, the results indicated that electron density is up to 10 11-10 12cm -3 even at the low pressure of 1 Pa.

  1. Examining the Effects of Oxygen Plasma on Physical and Dyeing Properties of Some Cellulose Fibers

    Directory of Open Access Journals (Sweden)

    Dilara KOCAK

    2016-09-01

    Full Text Available Cotton, Agava Americana and artichoke fibers were treated with plasma with oxygen gas in Diener Vacuum Plasma for 1, 3 and 5 minutes, with 40 kHz low frequency and at 0.3 mbar pressure. After the plasma treatment, fibers' weight loss %, tensile strength, elongation, fiber diameter, surface topography (SEM, colour changes, and light and washing fastness properties were investigated. A positive increase was observed for mechanical and fastness properties after 5 min plasma treatment. The effects of plasma treatments on dyeing properties of fibers were studied. Dyeing properties of plasma treated fibers were improved after 3 min. treatment. SEM results were also proved the improved physical properties and colour changes due to the rough surface structure.DOI: http://dx.doi.org/10.5755/j01.ms.22.3.9368

  2. Numerical and Experimental Investigation on Electromagnetic Attenuation by Semi-Ellipsoidal Shaped Plasma

    Science.gov (United States)

    He, Xiang; Chen, Jianping; Zhang, Yachun; Chen, Yudong; Zeng, Xiaojun; Tang, Chunmei

    2015-10-01

    Some reports presented that the radar cross section (RCS) from the radar antenna of military airplanes can be reduced by using a low-temperature plasma screen. This paper gives a numerical and experimental analysis of this RCS-reduction method. The shape of the plasma screen was designed as a semi-ellipsoid in order to make full use of the space in the radar dome. In simulations, we discussed the scattering of the electromagnetic (EM) wave by a perfect electric conductor (PEC) covered with this plasma screen using the finite-difference-time-domain (FDTD) method. The variations of their return loss as a function of wave frequency, plasma density profile, and collision frequency were presented. In the experiments, a semi-ellipsoidal shaped plasma screen was produced. Electromagnetic attenuation of 1.5 GHz EM wave was measured for a radio frequency (RF) power of 5 kW at an argon pressure of 200-1150 Pa. A good agreement is found between simulated and experimental results. It can be confirmed that the plasma screen is useful in applications for stealth of radar antenna. supported by National Natural Science Foundation of China (No. 51107033) and the Fundamental Research Funds for the Central Universities, China (No. 2013B33614)

  3. Experimental Studies on Thermal and Electrical Properties of Platinum Nanofilms

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xing; ZHANG Qing-Guang; CAO Bing-Yang; FUJII Motoo; TAKAHASHI Koji; IKUTA Tatsuya

    2006-01-01

    @@ We experimentally studied the in-plane thermal and electrical properties of a suspended platinum nanofilm in thickness of 15 nm. The measured results show that the in-plane thermal conductivity, the electrical conductivity and the resistance-temperature coefficient of the studied nanofilm are much less than those of the bulk material,while the Lorenz number is greater than the bulk value.

  4. Carbon dioxide splitting in a dielectric barrier discharge plasma: a combined experimental and computational study.

    Science.gov (United States)

    Aerts, Robby; Somers, Wesley; Bogaerts, Annemie

    2015-02-01

    Plasma technology is gaining increasing interest for the splitting of CO2 into CO and O2 . We have performed experiments to study this process in a dielectric barrier discharge (DBD) plasma with a wide range of parameters. The frequency and dielectric material did not affect the CO2 conversion and energy efficiency, but the discharge gap can have a considerable effect. The specific energy input has the most important effect on the CO2 conversion and energy efficiency. We have also presented a plasma chemistry model for CO2 splitting, which shows reasonable agreement with the experimental conversion and energy efficiency. This model is used to elucidate the critical reactions that are mostly responsible for the CO2 conversion. Finally, we have compared our results with other CO2 splitting techniques and we identified the limitations as well as the benefits and future possibilities in terms of modifications of DBD plasmas for greenhouse gas conversion in general.

  5. Complex plasma experimental device – A test bed for studying dust vortices and other collective phenomena

    Indian Academy of Sciences (India)

    MANJIT KAUR; SAYAK BOSE; P K CHATTOPADHYAY; J GHOSH; Y C SAXENA

    2016-12-01

    A typical device for carrying out sophisticated and complex dusty plasma experiments is designed, fabricated and made operational at the Institute for Plasma Research, India. The device is named as complex plasma experimental device (CPED). The main aim of this multipurpose machine is to study the formation and behaviour of dust vortices in the absence of external magnetic field under the effect of various plasma parameters. Further, the device is equipped with advanced imaging diagnostics for studying many other interesting phenomena such as dust oscillations, three-dimensional crystalline structures, dust rotation, etc. The device is quite flexible to accommodate many innovative experiments. Detailed design of the device, its diagnostics capabilities and theadvanced image analysis techniques are presented in this paper.

  6. Experimental investigation on parametric excitation of plasma oscillations in Josephson tunnel junctions

    DEFF Research Database (Denmark)

    Bak, Christen Kjeldahl; Kofoed, Bent; Pedersen, Niels Falsig;

    1975-01-01

    Experimental evidence for subharmonic, parametric excitation of plasma oscillations in Josephson tunnel junctions is presented. The experiments described are performed by measuring the microwave power necessary to switch a Josephson tunnel junction biased in the zero voltage state to a finite...

  7. Experimental setup for temporally and spatially resolved ICCD imaging of (sub)nanosecond streamer plasma

    Science.gov (United States)

    Huiskamp, T.; Sengers, W.; Pemen, A. J. M.

    2016-12-01

    Streamer discharges are efficient non-thermal plasmas for air purification and can be generated in wire-cylinder electrode structures (the plasma reactor). When (sub)nanosecond high-voltage pulses are used to generate the plasma, components like a plasma reactor behave as transmission lines, where transmission times and reflections become important. We want to visually study the influence of these transmission-line effects on the streamer development in the reactor. Therefore, we need a unique experimental setup, which allows us to image the streamers with nanosecond time resolution over the entire length of the plasma reactor. This paper describes the setup we developed for this purpose. The setup consists of a large frame in which a specially designed plasma reactor can be mounted and imaged from below by an intensified charge-coupled device (ICCD) camera. This camera is mounted on a platform which can be moved by a stepper motor. A computer automates all the experiments and controls the camera movement, camera settings, and the nanosecond high-voltage pulse source we use for the experiments. With the automated setup, we can make ICCD images of the entire plasma reactor at different instances of time with nanosecond resolution (with a jitter of less than several hundreds of picoseconds). Consequently, parameters such as the streamer length and width can be calculated automatically.

  8. Numerical and Experimental Investigation of Turbulent Transport Control via Shaping of Radial Plasma Flow Profiles

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, Mark Allen [Univ. of New Mexico, Albuquerque, NM (United States)

    2017-02-05

    Turbulence, and turbulence-driven transport are ubiquitous in magnetically confined plasmas, where there is an intimate relationship between turbulence, transport, instability driving mechanisms (such as gradients), plasma flows, and flow shear. Though many of the detailed physics of the interrelationship between turbulence, transport, drive mechanisms, and flow remain unclear, there have been many demonstrations that transport and/or turbulence can be suppressed or reduced via manipulations of plasma flow profiles. This is well known in magnetic fusion plasmas [e.g., high confinement mode (H-mode) and internal transport barriers (ITB’s)], and has also been demonstrated in laboratory plasmas. However, it may be that the levels of particle transport obtained in such cases [e.g. H-mode, ITB’s] are actually lower than is desirable for a practical fusion device. Ideally, one would be able to actively feedback control the turbulent transport, via manipulation of the flow profiles. The purpose of this research was to investigate the feasibility of using both advanced model-based control algorithms, as well as non-model-based algorithms, to control cross-field turbulence-driven particle transport through appropriate manipulation of radial plasma flow profiles. The University of New Mexico was responsible for the experimental portion of the project, while our collaborators at the University of Montana provided plasma transport modeling, and collaborators at Lehigh University developed and explored control methods.

  9. Experimental evidence of beam-foil plasma creation during ion-solid interaction

    Science.gov (United States)

    Sharma, Prashant; Nandi, Tapan

    2016-08-01

    Charge state evolution of the energetic projectile ions during the passage through thin carbon foils has been revisited using the X-ray spectroscopy technique. Contributions from the bulk and the solid surface in the charge changing processes have been segregated by measuring the charge state distribution of the projectile ions in the bulk of the target during the ion-solid interaction. Interestingly, the charge state distribution measured in the bulk exhibits Lorentzian profile in contrast to the well-known Gaussian structure observed using the electromagnetic methods and the theoretical predictions. The occurrence of such behavior is a direct consequence of the imbalance between charge changing processes, which has been seen in various cases of the laboratory plasma. It suggests that the ion-solid collisions constitute high-density, localized plasma in the bulk of the solid target, called the beam-foil plasma. This condensed beam-foil plasma is similar to the high-density solar and stellar plasma which may have practical implementations in various fields, in particular, plasma physics and nuclear astrophysics. The present work suggests further modification in the theoretical charge state distribution calculations by incorporating the plasma coupling effects during the ion-solid interactions. Moreover, the multi-electron capture from the target exit surface has been confirmed through comparison between experimentally measured and theoretically predicted values of the mean charge state of the projectile ions.

  10. Experimental investigation of plasma flows in open trap with toroidal diverter under ECR discharge

    Energy Technology Data Exchange (ETDEWEB)

    Berezkin, A. V., E-mail: Berezkin-AV@nrcki.ru; Bragin, E. Yu., E-mail: Bragin-EY@nrcki.ru; Zhil’tsov, V. A., E-mail: Zhiltsov-VA@nrcki.ru; Kulygin, V. M., E-mail: Kulygin-VM@nrcki.ru; Yanchenkov, S. V., E-mail: Yanchenkov-SV@nrcki.ru [National Research Center Kurchatov Institute (Russian Federation)

    2015-12-15

    The results of experimental investigations of plasma flows from an open trap with a toroidal diverter are presented. Cold plasma is generated when introducing microwave power under conditions of electron cyclotron resonance (ECR). The radiation is introduced by a waveguide through a vacuum-tight ceramic window across the axis of the device. By means of the Langmuir probes, the spatial distributions of plasma parameters are measured. The highest density is limited to a critical value n{sub c} (∼10{sup 12} cm{sup –3}) for the generator frequency under use. It is found that the temperature and density of the plasma in the trap and in escaping flows are almost independent of the radius when the ECR zone is located near the open-trap confinement region and the density is close to n{sub c}. At the density n < n{sub c}, ring plasma structures, which collapse under the action of a low-frequency instability, are observed near the separatrix. The possible mechanisms of the occurrence of plasma structures and the nature of the plasma streams are discussed.

  11. Properties of the quark gluon plasma from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Mages, Simon Wolfgang

    2015-03-02

    Quantum Chromodynamics (QCD) is the theory of the strong interaction, the theory of the interaction between the constituents of composite elementary particles (hadrons). In the low energy regime of the theory, standard methods of theoretical physics like perturbative approaches break down due to a large value of the coupling constant. However, this is the region of most interest, where the degrees of freedom of QCD, the color charges, form color-neutral composite elementary particles, like protons and neutrons. Also the transition to more energetic states of matter like the quark gluon plasma (QGP), is difficult to investigate with perturbative approaches. A QGP is a state of strongly interacting matter, which existed shortly after the Big Bang and can be created with heavy ion collisions for example at the LHC at CERN. In a QGP the color charges of QCD are deconfined. This thesis explores ways how to use the non-perturbative approach of lattice QCD to determine properties of the QGP. It focuses mostly on observables which are derived from the energy momentum tensor, like two point correlation functions. In principle these contain information on low energy properties of the QGP like the shear and bulk viscosity and other transport coefficients. The thesis describes the lattice QCD simulations which are necessary to measure the correlation functions and proposes new methods to extract these low energy properties. The thesis also tries to make contact to another non-perturbative approach which is Improved Holographic QCD. The aim of this approach is to use the Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence to make statements about QCD with calculations of a five dimensional theory of gravity. This thesis contributes to that work by constraining the parameters of the model action by comparing the predictions with those of measurements with lattice QCD.

  12. Correlation of mechanical properties with the acoustic properties in case of an experimental white cast iron

    Science.gov (United States)

    Gȋrneţ, A.; Stanciu, S.; Chicet, D.; Axinte, M.; Goanţă, V.

    2016-08-01

    The general and traditional opinion regarding the materials used to build bells, musical instruments or sound transmitters is that those materials must be only from the bronze alloyed with tin category. In order to approach this idea from a scientific point of view, the materials with acoustic properties must be analyzed starting from the physical theory and experimental determination that sound travels only through bodies with elastic properties. It has been developed an experimental white cast iron, medium alloyed with Cr and Ni, in order to obtain a material with special acoustic properties. There were determined on specific samples: the vibration damping capacity, the unit energy, the tensile strength and elasticity modulus. These properties were correlated with the properties of other known acoustic materials.

  13. Properties of Atmospheric Pressure Ar Plasma Jet Depending on Treated Dielectric Material

    Science.gov (United States)

    Prysiazhnyi, Vadym; Ricci Castro, Alonso H.; Kostov, Konstantin G.

    2017-02-01

    Atmospheric pressure plasma jet operated in argon was utilized to modify surfaces of glass, acrylic, and PTFE dielectrics. This paper describes the influence of the dielectric substrate on operation and properties of plasma. Two modes of operation (each of those have two patterns) were described. The transition from one mode to another, values of the dissipated power, and spreading of plasma over the dielectric surfaces strongly depended on the substrate material. Additionally, three methods of plasma spreading estimation were presented and discussed.

  14. Central Plasma Sheet Ion Properties as Inferred from Ionospheric Observations

    Science.gov (United States)

    Wing, Simon; Newell, Patrick T.

    1998-01-01

    A method of inferring central plasma sheet (CPS) temperature, density, and pressure from ionospheric observations is developed. The advantage of this method over in situ measurements is that the CPS can be studied in its entirely, rather than only in fragments. As a result, for the first time, comprehensive two-dimensional equatorial maps of CPS pressure, density, and temperature within the isotropic plasma sheet are produced. These particle properties are calculated from data taken by the Special Sensor for Precipitating Particles, version 4 (SSJ4) particle instruments onboard DMSP F8, F9, F10, and F11 satellites during the entire year of 1992. Ion spectra occurring in conjunction with electron acceleration events are specifically excluded. Because of the variability of magnetotail stretching, the mapping to the plasma sheet is done using a modified Tsyganenko [1989] magnetic field model (T89) adjusted to agree with the actual magnetotail stretch at observation time. The latter is inferred with a high degree of accuracy (correlation coefficient -0.9) from the latitude of the DMSP b2i boundary (equivalent to the ion isotropy boundary). The results show that temperature, pressure, and density all exhibit dawn-dusk asymmetries unresolved with previous measurements. The ion temperature peaks near the midnight meridian. This peak, which has been associated with bursty bulk flow events, widens in the Y direction with increased activity. The temperature is higher at dusk than at dawn, and this asymmetry increases with decreasing distance from the Earth. In contrast, the density is higher at dawn than at dusk, and there appears to be a density enhancement in the low-latitude boundary layer regions which increases with decreasing magnetic activity. In the near-Earth regions, the pressure is higher at dusk than at dawn, but this asymmetry weakens with increasing distance from the Earth and may even reverse so that at distances X less than approx. 10 to -12 R(sub E

  15. Effect of sterilization procedures on properties of plasma polymers relevant to biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Artemenko, A. [Charles University in Prague, Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holesovickach 2, 180 00 Prague (Czech Republic); Kylian, O., E-mail: ondrej.kylian@gmail.com [Charles University in Prague, Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holesovickach 2, 180 00 Prague (Czech Republic); Choukourov, A.; Gordeev, I.; Petr, M. [Charles University in Prague, Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holesovickach 2, 180 00 Prague (Czech Republic); Vandrovcova, M. [Institute of Physiology, Academy of Sciences of the Czech Republic, Department of Growth and Differentiation of Cell Populations, Videnska 1083, 142 20, Prague 4 (Czech Republic); Polonskyi, O. [Charles University in Prague, Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holesovickach 2, 180 00 Prague (Czech Republic); Bacakova, L. [Institute of Physiology, Academy of Sciences of the Czech Republic, Department of Growth and Differentiation of Cell Populations, Videnska 1083, 142 20, Prague 4 (Czech Republic); Slavinska, D.; Biederman, H. [Charles University in Prague, Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holesovickach 2, 180 00 Prague (Czech Republic)

    2012-10-01

    This study is focused on the evaluation of resistance of plasma polymers toward common sterilization techniques, i.e. property important for possible use of such materials in biomedical applications. Three kinds of plasma polymers having different bioadhesive natures were studied: plasma polymerized poly(ethylene oxide), fluorocarbon plasma polymers, and nitrogen-rich plasma polymers. These plasma polymers were subjected to dry heat, autoclave and UV radiation treatment. Their physical, chemical and bioresponsive properties were determined by means of different techniques (ellipsometry, atomic force microscopy, wettability measurements, X-ray photoelectron spectroscopy and biological tests with osteoblast-like cells MG63). The results clearly show that properties of thin films of plasma polymers may be significantly altered by a sterilization process. Moreover, observed changes induced by selected sterilization methods were found to depend strongly on the sterilized plasma polymer. - Highlights: Black-Right-Pointing-Pointer Effect of common sterilization methods on three kinds of plasma polymers is studied. Black-Right-Pointing-Pointer Physical, chemical and bioresponsive properties of plasma polymers are analyzed. Black-Right-Pointing-Pointer Changes induced by sterilization depend strongly on type of the plasma polymer.

  16. Experimental and Computational Investigation of a RF Plasma Micro-Thruster

    Science.gov (United States)

    Olliges, J. D.; Ketsdever, A. D.; Stein, W. B.; Alexeenko, A. A.; Hrbud, I.

    2008-12-01

    A prototype RF plasma micro-thruster has been investigated numerically and experimentally. The experimental results were obtained on a thrust stand capable of micro-Newton resolution. Thrust and mass flow (hence specific impulse) were measured for an argon propellant at mass flows ranging from 0.4 to 5.5 mg/s. An increase over the cold gas thrust of up to 20% was observed for a discharge frequency of 100 MHz and an input power of 77 W. Propulsive efficiency was seen to increase both experimentally and numerically for increasing mass flow and decreasing discharge frequency.

  17. Green-Kubo relation for viscosity tested using experimental data for a 2D dusty plasma

    CERN Document Server

    Feng, Yan; Liu, Bin; Cohen, E G D

    2011-01-01

    The theoretical Green-Kubo relation for viscosity is tested using experimentally obtained data. In a dusty plasma experiment, micron-size dust particles are introduced into a partially-ionized argon plasma, where they become negatively charged. They are electrically levitated to form a single-layer Wigner crystal, which is subsequently melted using laser heating. In the liquid phase, these dust particles experience interparticle electric repulsion, laser heating, and friction from the ambient neutral argon gas, and they can be considered to be in a nonequilibrium steady state. Direct measurements of the positions and velocities of individual dust particles are then used to obtain a time series for an off-diagonal element of the stress tensor and its time autocorrelation function. This calculation also requires the interparticle potential, which was not measured experimentally, but was obtained using a Debye-H\\"{u}ckel-type model with experimentally determined parameters. Integrating the autocorrelation functi...

  18. Experimental and computational characterization of a modified GEC cell for dusty plasma experiments

    CERN Document Server

    Land, Victor; Smith, Bernard; Matthews, Lorin; Hyde, Truell

    2009-01-01

    A self-consistent fluid model developed for simulations of micro- gravity dusty plasma experiments has for the first time been used to model asymmetric dusty plasma experiments in a modified GEC reference cell with gravity. The numerical results are directly compared with experimental data and the experimentally determined dependence of global discharge parameters on the applied driving potential and neutral gas pressure is found to be well matched by the model. The local profiles important for dust particle transport are studied and compared with experimentally determined profiles. The radial forces in the midplane are presented for the different discharge settings. The differences between the results obtained in the modified GEC cell and the results first reported for the original GEC reference cell are pointed out.

  19. Theoretical and experimental studies of the radiative properties of matter at high energy densities and their application to the problems of inertial confinement fusion

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, O. B.; Orlov, N. Yu. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2011-09-15

    The paper presents the results of theoretical and experimental studies of the radiative properties of plasmas produced by heating and compression of various materials to high energy densities. The specific features of the theoretical plasma model known as the ion model, which is used to calculate the radiative characteristics of plasmas of complex chemical composition, are discussed. The theoretical approach based on this model is applied to the plasma produced during the explosion of the X-pinch wires. The theoretical estimate of the radiation efficiency is compared with the experimental data on the total energy yield from an X-pinch made of two different wires (NiCr and Alloy 188). The radiative characteristics of (C12 H16 O8) and (C8 H12 O6) plasmas are calculated for the temperature diagnostics of plasmas produced from porous targets employed in inertial confinement fusion experiments with the use of laser radiation and heavy-ion beams.

  20. Chaos and simple determinism in reversed field pinch plasmas: Nonlinear analysis of numerical simulation and experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Watts, Christopher A. [Univ. of Wisconsin, Madison, WI (United States)

    1993-09-01

    In this dissertation the possibility that chaos and simple determinism are governing the dynamics of reversed field pinch (RFP) plasmas is investigated. To properly assess this possibility, data from both numerical simulations and experiment are analyzed. A large repertoire of nonlinear analysis techniques is used to identify low dimensional chaos in the data. These tools include phase portraits and Poincare sections, correlation dimension, the spectrum of Lyapunov exponents and short term predictability. In addition, nonlinear noise reduction techniques are applied to the experimental data in an attempt to extract any underlying deterministic dynamics. Two model systems are used to simulate the plasma dynamics. These are the DEBS code, which models global RFP dynamics, and the dissipative trapped electron mode (DTEM) model, which models drift wave turbulence. Data from both simulations show strong indications of low dimensional chaos and simple determinism. Experimental date were obtained from the Madison Symmetric Torus RFP and consist of a wide array of both global and local diagnostic signals. None of the signals shows any indication of low dimensional chaos or low simple determinism. Moreover, most of the analysis tools indicate the experimental system is very high dimensional with properties similar to noise. Nonlinear noise reduction is unsuccessful at extracting an underlying deterministic system.

  1. Probing Quark-Gluon-Plasma properties with a Bayesian model-to-data comparison

    Science.gov (United States)

    Cai, Tianji; Bernhard, Jonah; Ke, Weiyao; Bass, Steffen; Duke QCD Group Team

    2016-09-01

    Experiments at RHIC and LHC study a special state of matter called the Quark Gluon Plasma (QGP), where quarks and gluons roam freely, by colliding relativistic heavy-ions. Given the transitory nature of the QGP, its properties can only be explored by comparing computational models of its formation and evolution to experimental data. The models fall, roughly speaking, under two categories-those solely using relativistic viscous hydrodynamics (pure hydro model) and those that in addition couple to a microscopic Boltzmann transport for the later evolution of the hadronic decay products (hybrid model). Each of these models has multiple parameters that encode the physical properties we want to probe and that need to be calibrated to experimental data, a task which is computationally expensive, but necessary for the knowledge extraction and determination of the models' quality. Our group has developed an analysis technique based on Bayesian Statistics to perform the model calibration and to extract probability distributions for each model parameter. Following the previous work that applies the technique to the hybrid model, we now perform a similar analysis on a pure-hydro model and display the posterior distributions for the same set of model parameters. We also develop a set of criteria to assess the quality of the two models with respect to their ability to describe current experimental data. Funded by Duke University Goldman Sachs Research Fellowship.

  2. Experimental studies and modelling of high radiation and high density plasmas in the ASDEX upgrade tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Casali, Livia

    2015-11-24

    establish an the radiation increases in this region. To account for these effects, an empirical non-coronal model was developed which takes the impurity residence time at the pedestal into account. The validity of this assumption was verified by modelling the evolution of the impurities and radiation for ASDEX Upgrade H-modes with nitrogen seeding by coupling the ASTRA transport code with STRAHL. The time-dependent simulations include impurity radiation due to nitrogen and tungsten and the transport effects induced at the edge by the ELMs. The modelling results have been validated against the experimental data. The modelled radiation profiles show a very good agreement with the measured ones over both radius and time. In particular, the strong enhancement of the nitrogen radiation caused by non-coronal effects through the ELM-induced transport is well reproduced. The radiation properties of tungsten are very weakly influenced by non-coronal effects due to the faster equilibration. W radiation, which is highly dependent on the f{sub ELM}, strongly increases when f{sub ELM} is decreased, due to the lack of sufficiently strong flush out of this impurity. This is in agreement with the experimental observations and indicates that maintaining high ELM frequency is essential for the stability and performance of the discharges. Analyses of the high density scenario with pellets indicate that several processes take place when pellets are injected into the plasma. In particular, due to their cooling effect, the temperature drops as soon as pellets are injected. This is compensated by an increase in density. These processes occur mainly at the edge and are propagated to the core via stiffness. This explains why the confinement stays approximately constant during the whole discharge. Both experiments and transport calculations reveal that the energy confinement time is independent of the density indicating that the currently used scaling is not valid in this regime. The results of this

  3. Experimental studies and modelling of high radiation and high density plasmas in the ASDEX upgrade tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Casali, Livia

    2015-11-24

    establish an the radiation increases in this region. To account for these effects, an empirical non-coronal model was developed which takes the impurity residence time at the pedestal into account. The validity of this assumption was verified by modelling the evolution of the impurities and radiation for ASDEX Upgrade H-modes with nitrogen seeding by coupling the ASTRA transport code with STRAHL. The time-dependent simulations include impurity radiation due to nitrogen and tungsten and the transport effects induced at the edge by the ELMs. The modelling results have been validated against the experimental data. The modelled radiation profiles show a very good agreement with the measured ones over both radius and time. In particular, the strong enhancement of the nitrogen radiation caused by non-coronal effects through the ELM-induced transport is well reproduced. The radiation properties of tungsten are very weakly influenced by non-coronal effects due to the faster equilibration. W radiation, which is highly dependent on the f{sub ELM}, strongly increases when f{sub ELM} is decreased, due to the lack of sufficiently strong flush out of this impurity. This is in agreement with the experimental observations and indicates that maintaining high ELM frequency is essential for the stability and performance of the discharges. Analyses of the high density scenario with pellets indicate that several processes take place when pellets are injected into the plasma. In particular, due to their cooling effect, the temperature drops as soon as pellets are injected. This is compensated by an increase in density. These processes occur mainly at the edge and are propagated to the core via stiffness. This explains why the confinement stays approximately constant during the whole discharge. Both experiments and transport calculations reveal that the energy confinement time is independent of the density indicating that the currently used scaling is not valid in this regime. The results of this

  4. Experimental measurements of surface damage and residual stresses in micro-engineered plasma facing materials

    Science.gov (United States)

    Rivera, David; Wirz, Richard E.; Ghoniem, Nasr M.

    2017-04-01

    The thermomechanical damage and residual stresses in plasma-facing materials operating at high heat flux are experimentally investigated. Materials with micro-surfaces are found to be more resilient, when exposed to cyclic high heat flux generated by an arc-jet plasma. An experimental facility, dedicated to High Energy Flux Testing (HEFTY), is developed for testing cyclic heat flux in excess of 10 MW/m2. We show that plastic deformation and subsequent fracture of the surface can be controlled by sample cooling. We demonstrate that W surfaces with micro-pillar type surface architecture have significantly reduced residual thermal stresses after plasma exposure, as compared to those with flat surfaces. X-ray diffraction (XRD) spectra of the W-(110) peak reveal that broadening of the Full Width at Half Maximum (FWHM) for micro-engineered samples is substantially smaller than corresponding flat surfaces. Spectral shifts of XRD signals indicate that residual stresses due to plasma exposure of micro-engineered surfaces build up in the first few cycles of exposure. Subsequent cyclic plasma heat loading is shown to anneal out most of the built-up residual stresses in micro-engineered surfaces. These findings are consistent with relaxation of residual thermal stresses in surfaces with micro-engineered features. The initial residual stress state of highly polished flat W samples is compressive (≈ -1.3 GPa). After exposure to 50 plasma cycles, the surface stress relaxes to -1.0 GPa. Micro-engineered samples exposed to the same thermal cycling show that the initial residual stress state is compressive at (- 250 MPa), and remains largely unchanged after plasma exposure.

  5. Two-dimensional simulation of inductively coupled plasma based on COMSOL and comparison with experimental data

    Institute of Scientific and Technical Information of China (English)

    Cheng Jia; Ji Linhong; Wang Kesheng; Han Chuankun; Shi Yixiang

    2013-01-01

    A two-dimensional axisymmetric inductively coupled plasma (ICP) model,and its implementation in the COMSOL multiphysical software,is described.The simulations are compared with the experimental results of argon discharge from the gaseous electronics conference RF reference cell in the inductively coupled plasma mode.The general trends of the number density and temperature of electrons with radial scanning are approximately correct.Finally,we discuss the reasons why the comparisons are not in agreement,and then propose an improvement in the assumptions of the Maxwellian electron energy distribution function and reaction rate.

  6. Experimental Measurement of Self-Diffusion in a Strongly Coupled Plasma

    Science.gov (United States)

    2016-08-04

    Kubo relation D ¼ Z ∞ 0 ZðtÞdt; which describes the long-time mean -square displacement of a given particle through D ¼ limt→∞hjrðtÞ − rð0Þj2i=6t [25...Experimental Measurement of Self-Diffusion in a Strongly Coupled Plasma T. S. Strickler,1 T. K. Langin,1 P. McQuillen,1 J. Daligault,2 and T. C...collisional relaxation of ion velocities in a strongly coupled , ultracold neutral plasma on short time scales compared to the inverse collision rate. The

  7. Anisotropic Mechanical Properties of Plasma-Sprayed Thermal Barrier Coatings at High Temperature Determined by Ultrasonic Method

    Science.gov (United States)

    Wei, Qin; Zhu, Jianguo; Chen, Wei

    2016-02-01

    The mechanical properties of plasma-sprayed thermal barrier coatings (TBC) are of great scientific and technological significance for the design and fabrication of TBC systems. The ultrasonic method combined with a sing-around method for mechanical properties measurement of TBC is deduced and the elastic modulus can be determined in the spray, or longitudinal, direction, and the transverse direction. Tested specimens of plasma-sprayed TBC are detached from the substrate and treated with thermal exposure at 1400 °C. The elastic moduli along the longitudinal and transverse directions of the TBCs are measured by different types of ultrasonic waves combined with a sing-around method, while the Poisson's ratio is also obtained simultaneously. The experimental results indicate that the magnitude of longitudinal elastic modulus is larger than that of the transverse one, and thus the plasma-sprayed TBC has an anisotropic mechanical property. Moreover, the elastic moduli along both longitudinal and transverse directions change with high-temperature exposure time, which consists of a rapid increasing stage followed by a slow decreasing stage. In addition, the magnitude of Poisson's ratio increases slightly from 0.05 to 0.2 with the high-temperature exposure time. Generally, the microstructures in the plasma-sprayed coatings and their evolution in a high-temperature environment are the main causes of the varying anisotropic mechanical properties.

  8. Transmission properties of one-dimensional ternary plasma photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Shiveshwari, Laxmi [Department of Physics, K. B. Womens' s College, Hazaribagh 825 301 (India); Awasthi, S. K. [Department of Physics and Material Science and Engineering, Jaypee Institute of Information Technology, Noida 201 304 (India)

    2015-09-15

    Omnidirectional photonic band gaps (PBGs) are found in one-dimensional ternary plasma photonic crystals (PPC) composed of single negative metamaterials. The band characteristics and transmission properties are investigated through the transfer matrix method. We show that the proposed structure can trap light in three-dimensional space due to the elimination of Brewster's angle transmission resonance allowing the existence of complete PBG. The results are discussed in terms of incident angle, layer thickness, dielectric constant of the dielectric material, and number of unit cells (N) for TE and TM polarizations. It is seen that PBG characteristics is apparent even in an N ≥ 2 system, which is weakly sensitive to the incident angle and completely insensitive to the polarization. Finite PPC could be used for multichannel transmission filter without introducing any defect in the geometry. We show that the locations of the multichannel transmission peaks are in the allowed band of the infinite structure. The structure can work as a single or multichannel filter by varying the number of unit cells. Binary PPC can also work as a polarization sensitive tunable filter.

  9. Surface modification of polyester fabric with plasma pretreatment and carbon nanotube coating for antistatic property improvement

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.X., E-mail: cxwang@mail.dhu.edu.cn [College of Textiles and Clothing, Yancheng Institute of Technology, Jiangsu 224051 (China); Collaborative Innovation Center for Ecological Building Materials and Environmental Protection Equipments, Jiangsu 224051 (China); Key Laboratory for Advanced Technology in Environmental Protection, Jiangsu 224051 (China); Lv, J.C. [College of Textiles and Clothing, Yancheng Institute of Technology, Jiangsu 224051 (China); Ren, Y. [School of Textile and Clothing, Nantong University, Jiangsu 226019 (China); Zhi, T.; Chen, J.Y.; Zhou, Q.Q. [College of Textiles and Clothing, Yancheng Institute of Technology, Jiangsu 224051 (China); Lu, Z.Q.; Gao, D.W. [College of Textiles and Clothing, Yancheng Institute of Technology, Jiangsu 224051 (China); Collaborative Innovation Center for Ecological Building Materials and Environmental Protection Equipments, Jiangsu 224051 (China); Key Laboratory for Advanced Technology in Environmental Protection, Jiangsu 224051 (China); Jin, L.M. [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204 (China)

    2015-12-30

    Graphical abstract: - Highlights: • PET was finished by plasma treatment and SWCNT coating to improve antistatic property. • Plasma modification had a positive effect on SWCNT coating on PET fiber surface. • O{sub 2} plasma was more effective in SWCNT coating than Ar plasma in the shorter time. • Antistatic enhanced and then declined with enhancing treatment time and output power. • Antistatic increased with increasing concentration, curing time, curing temperature. - Abstract: This study introduced a green method to prepare antistatic polyester (PET) fabrics by plasma pretreatment and single-walled carbon nanotube (SWCNT) coating. The influences of plasma conditions and SWCNT coating parameters on antistatic property of PET fabrics were investigated. PET fabrics were pretreated under various plasma conditions such as different treatment times, output powers and working gases, and then SWCNT coating on the plasma treated PET fabrics was carried out by coating-dry-cure using various coating parameters including different SWCNT concentrations, curing times and curing temperatures. PET fabrics were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and volume resistivity. SEM and XPS analysis of the plasma treated PET fabrics revealed the increase in surface roughness and oxygen/nitrogen containing groups on the PET fiber surface. SEM and XPS analysis of the plasma treated and SWCNT coated PET fabrics indicated the SWCNT coating on PET fiber surface. The plasma treated and SWCNT coated PET fabrics exhibited a good antistatic property, which increased and then decreased with the increasing plasma treatment time and output power. The antistatic property of the O{sub 2} plasma treated and SWCNT coated PET fabric was better and worse than that of N{sub 2} or Ar plasma treated and SWCNT coated PET fabric in the shorter treatment time and the longer treatment time, respectively. In addition, the antistatic property of the

  10. Investigating the effect of an arterial hypertension drug on the structural properties of plasma protein.

    Science.gov (United States)

    Hassan, Natalia; Maldonado-Valderrama, Julia; Gunning, A Patrick; Morris, V J; Ruso, Juan M

    2011-10-15

    Propanolol is a betablocker drug used in the treatment of arterial hypertension related diseases. In order to achieve an optimal performance of this drug it is important to consider the possible interactions of propanolol with plasma proteins. In this work, we have used several experimental techniques to characterise the effect of addition of the betablocker propanolol on the properties of bovine plasma fibrinogen (FB). Differential scanning calorimeter (DSC), circular dichroism (CD), dynamic light scattering (DLS), surface tension techniques and atomic force microscopy (AFM) measurements have been combined to carry out a detailed physicochemical and surface characterization of the mixed system. As a result, DSC measurements show that propranolol can play two opposite roles, either acting as a structure stabilizer at low molar concentrations or as a structure destabilizer at higher concentrations, in different domains of fibrinogen. CD measurements have revealed that the effect of propanolol on the secondary structure of fibrinogen depends on the temperature and the drug concentration and the DLS analysis showed evidence for protein aggregation. Interestingly, surface tension measurements provided further evidence of the conformational change induced by propanolol on the secondary structure of FB by importantly increasing the surface tension of the system. Finally, AFM imaging of the fibrinogen system provided direct visualization of the protein structure in the presence of propanolol. Combination of these techniques has produced complementary information on the behavior of the mixed system, providing new insights into the structural properties of proteins with potential medical interest.

  11. Plasma and tissue pharmacokinetics of marbofloxacin in experimentally infected chickens with Mycoplasma gallisepticum and Escherichia coli.

    Science.gov (United States)

    Ding, H; Wang, L; Shen, X; Gu, X; Zeng, D; Zeng, Z

    2013-10-01

    The plasma and tissue pharmacokinetics of marbofloxacin in chickens experimentally infected with Mycoplasma gallisepticum and Escherichia coli were studied. Marbofloxacin was given to 66 infected chickens by oral administration at a dosage of 5 mg/kg b.w., once a day for three days. Plasma, brain, kidney, liver, lung, muscle and trachea were collected and marbofloxacin concentrations were analyzed by a high performance liquid chromatography method. In the infected chickens, maximal marbofloxacin concentrations in plasma, brain, kidney, liver, lung, muscle and trachea were 1.84, 1.33, 7.35, 5.61, 3.12, 2.98, and 4.51 g/mL (g); the elimination half-lives of marbofloxacin were 6.8, 2.74, 9.31, 8.45, 9.55, 11.53 and 5.46 h for plasma, brain, kidney, liver, lung, muscle and trachea, respectively. AUC were calculated to be 9.68, 8.04, 45.1, 27.03, 20.56, 19.47, and 32.68 μg/mL (g) for plasma, brain, kidney, liver, lung, muscle and trachea, respectively. Marbofloxacin concentration in tissues except for brain exceeded marbofloxacin concentration in plasma, with AUC(tissue) /AUC(plasma) ranging from 2.01 to 4.66 and Peak(tissue) /Peak(plasma) ranging from 1.62 to 3.99. The results showed that a marbofloxacin dosage of 5 mg/kg administered orally at 24 h intervals may provide successful treatment of chicken with MG and E. coli infection.

  12. [Pharmacological properties of phosphorylacetohydrazides in experimental myocardial ischemia].

    Science.gov (United States)

    Balashov, V P; Al'miasheva, M I; Tarasova, R I; Rusina, I F; Kul'kova, N P; Kurmysheva, T V; Voskresenskaia, O V

    2007-01-01

    It is shown that 2-chloroethoxy-para-N-dimethylphosphorylacetohydrazide and N-acethylhydrazide-para-dimethylaminophenyl-2-chloroethoxyphosphorylacetic acid reliably reduce ischemia-induced depression of inotropic functions of the left ventricle in cats with experimental myocardial infarction model. The effect of both compounds can be explained by the maintenance of viability of the injured myocardium via a delay of the development of acidosis and the support of oxygen recycling in the ischemized zone. Both compounds show pronounced antiradical properties with a non-standard mechanism of action.

  13. Experimental econophysics: Complexity, self-organization, and emergent properties

    Science.gov (United States)

    Huang, J. P.

    2015-03-01

    Experimental econophysics is concerned with statistical physics of humans in the laboratory, and it is based on controlled human experiments developed by physicists to study some problems related to economics or finance. It relies on controlled human experiments in the laboratory together with agent-based modeling (for computer simulations and/or analytical theory), with an attempt to reveal the general cause-effect relationship between specific conditions and emergent properties of real economic/financial markets (a kind of complex adaptive systems). Here I review the latest progress in the field, namely, stylized facts, herd behavior, contrarian behavior, spontaneous cooperation, partial information, and risk management. Also, I highlight the connections between such progress and other topics of traditional statistical physics. The main theme of the review is to show diverse emergent properties of the laboratory markets, originating from self-organization due to the nonlinear interactions among heterogeneous humans or agents (complexity).

  14. An Investigation of the Nature Properties of Plasma

    Directory of Open Access Journals (Sweden)

    Peter Evans

    2004-01-01

    Full Text Available This study presents the characteristics of the plasma and the effect of the laser beam to best suit the plasma model behavior. Special attention is paid to the “Genuine” Two Fluid Model and the ponder-motive and transient forces. These models are translated into a numerical study of the parameters, such as the electric field density and temperature distributions once electromagnetic energy is supplied to the plasma. The parameters are presented graphically against time and distance into a small plasma fuel pellet. It is noted how field density and ions form undulations through the plasma. Types of plasma fuels are discussed with regards to their key parameters, such as density, volume and temperature. These characteristics were initially used in computations that were performed using the laser driven inertial fusion energy option based on volume ignition with the natural adiabatic self-similarity compression and expansion hydrodynamics[1].

  15. Advances in experimental spectroscopy of Z-pinch plasmas and applications

    Science.gov (United States)

    Kantsyrev, V. L.; Safronova, A. S.; Safronova, U. I.; Shrestha, I.; Weller, M. E.; Osborne, G. C.; Shlyaptseva, V. V.; Wilcox, P. G.; Stafford, A.

    2012-06-01

    Recent advances in experimental work on plasma spectroscopy of Z-pinches are presented. The results of experiments on the 1.7 MA Z-pinch Zebra generator at UNR with wire arrays of various configurations and X-pinches are overviewed. A full x-ray and EUV diagnostic set for detailed spatial and temporal monitoring of such plasmas together with theoretical support from relativistic atomic structure and non-LTE kinetic codes used in the analysis are discussed. The use of a variety of wire materials in a broad range from Al to W provided an excellent opportunity to observe and study specific atomic and plasma spectroscopy features. In addition, the applications of such features to fusion and astrophysics will be considered.

  16. Experimental study on dipole motion of an ion plasma confined in a linear Paul trap

    Energy Technology Data Exchange (ETDEWEB)

    Ito, K., E-mail: kzito@hiroshima-u.ac.jp; Okano, T.; Moriya, K.; Fukushima, K.; Higaki, H.; Okamoto, H. [Hiroshima University, Graduate School of Advanced Sciences of Matter (Japan)

    2015-11-15

    The compact non-neutral plasma trap systems named “S-POD” have been developed at Hiroshima University as an experimental simulator of beam dynamics. S-POD is based either on a linear Paul trap or on a Penning trap and can approximately reproduce the collective motion of a relativistic charged-particle beam observed in the center-of-mass frame. We here employ the Paul trap system to investigate the behavior of an ion plasma near a dipole resonance. A simple method is proposed to calibrate the data of secular frequency measurements by using the dipole instability condition. We also show that the transverse density profile of an ion plasma in the trap can be estimated from the time evolution of ion losses caused by the resonance.

  17. AN EXPERIMENTAL STUDY ON REMOVAL OF NOX IN FLUE GAS AT THE NONEQUILIBRIUM PLASMA

    Institute of Scientific and Technical Information of China (English)

    张强; 许世森; 顾璠

    2004-01-01

    Removal of nitrogen oxides (NOX) in flue gas by means of nonequilibrium plasma technology is a very prospect and attractive method. As the nonequilibrium plasma micro discharges can generate a powerful energy flux, imparted to the flue gas, the molecules and atoms of pollutants are motivated and decomposed, and then NOX in the flue gas are decomposed and conversed in the particular conditions. Based on nonequilibrium plasma in combination with catalytic principle, an experimental investigation on NOX decomposition and conversion with Al2O3 catalysts was carried out and the NOX removal rate up to 95% was obtained. The NOX decomposition and conversion principle with Al2O3 catalysts was also discussed.

  18. Experimental measurement of non-Markovian dynamics and self-diffusion in a strongly coupled plasma

    CERN Document Server

    Strickler, T S; McQuillen, P; Daligault, J; Killian, T C

    2015-01-01

    We present a study of the collisional relaxation of ion velocities in a strongly coupled, ultracold neutral plasma on short timescales compared to the inverse collision rate. Non-exponential decay towards equilibrium for the average velocity of a tagged population of ions heralds non-Markovian dynamics and a breakdown of assumptions underlying standard kinetic theory. We prove the equivalence of the average-velocity curve to the velocity autocorrelation function, a fundamental statistical quantity that provides access to equilibrium transport coefficients and aspects of individual particle trajectories in a regime where experimental measurements have been lacking. From our data, we calculate the ion self-diffusion constant. This demonstrates the utility of ultracold neutral plasmas for isolating the effects of strong coupling on collisional processes, which is of interest for dense laboratory and astrophysical plasmas.

  19. Surface insulating properties of titanium implanted alumina ceramics by plasma immersion ion implantation

    Science.gov (United States)

    Zhu, Mingdong; Song, Falun; Li, Fei; Jin, Xiao; Wang, Xiaofeng; Wang, Langping

    2017-09-01

    The insulating property of the alumina ceramic in vacuum under high voltage is mainly limited by its surface properties. Plasma immersion ion implantation (PIII) is an effective method to modify the surface chemical and physical properties of the alumina ceramic. In order to improve the surface flashover voltage of the alumina ceramic in vacuum, titanium ions with an energy of about 20 keV were implanted into the surface of the alumina ceramic using the PIII method. The surface properties of the as-implanted samples, such as the chemical states of the titanium, morphology and surface resistivity, were characterized by X-ray photoelectron spectroscopy, scanning electron microscope and electrometer, respectively. The surface flashover voltages of the as-implanted alumina samples were measured by a vacuum surface flashover experimental system. The XPS spectra revealed that a compound of Ti, TiO2 and Al2O3 was formed in the inner surface of the alumina sample. The electrometer results showed that the surface resistivity of the implanted alumina decreased with increased implantation time. In addition, after the titanium ion implantation, the maximum hold-off voltage of alumina was increased to 38.4 kV, which was 21.5% higher than that of the unimplanted alumina ceramic.

  20. Influence of atomic kinetics in the simulation of plasma microscopic properties and thermal instabilities for radiative bow shock experiments

    Science.gov (United States)

    Espinosa, G.; Rodríguez, R.; Gil, J. M.; Suzuki-Vidal, F.; Lebedev, S. V.; Ciardi, A.; Rubiano, J. G.; Martel, P.

    2017-03-01

    Numerical simulations of laboratory astrophysics experiments on plasma flows require plasma microscopic properties that are obtained by means of an atomic kinetic model. This fact implies a careful choice of the most suitable model for the experiment under analysis. Otherwise, the calculations could lead to inaccurate results and inappropriate conclusions. First, a study of the validity of the local thermodynamic equilibrium in the calculation of the average ionization, mean radiative properties, and cooling times of argon plasmas in a range of plasma conditions of interest in laboratory astrophysics experiments on radiative shocks is performed in this work. In the second part, we have made an analysis of the influence of the atomic kinetic model used to calculate plasma microscopic properties of experiments carried out on magpie on radiative bow shocks propagating in argon. The models considered were developed assuming both local and nonlocal thermodynamic equilibrium and, for the latter situation, we have considered in the kinetic model different effects such as external radiation field and plasma mixture. The microscopic properties studied were the average ionization, the charge state distributions, the monochromatic opacities and emissivities, the Planck mean opacity, and the radiative power loss. The microscopic study was made as a postprocess of a radiative-hydrodynamic simulation of the experiment. We have also performed a theoretical analysis of the influence of these atomic kinetic models in the criteria for the onset possibility of thermal instabilities due to radiative cooling in those experiments in which small structures were experimentally observed in the bow shock that could be due to this kind of instability.

  1. Engineering solutions for components facing the plasma in experimental fusion power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Casini, G.; Farfaletti-Casali, F.

    1986-07-01

    An analysis is made of the engineering problems related to the structures facing the plasma in experimental tokamak-type reactors. Attention is focused on the so-called ''current first wall'', i.e. the wall side of the blanket segments facing the plasma, and on the collector plates of the impurity control system. The design of a first wall, developed at the JRC-Ispra for INTOR/NET and based on the idea of conceiving it as one of the sides, of a box which envelopes a blanket segment, is described. The progress in the structural analysis of the first wall box under operating and abnormal (plasma disruption) conditions is presented and discussed. The design of the collector plates of the single-null divertor of INTOR/NET, as developed at the JRC-Ispra, is described. This design is based on a W-Re protective layer and a water-cooled heat sink, including cooling channels iun Cu-alloys and a Cu-matrix for bonding. The results of the elastic and elasto-plastic evaluations are discussed, together with a layout of the experimental activity in progress. It is concluded that, even if the uncertainties related to the plasma-wall interaction are still relevant, the engineering solutions identified look manageable, although they require a large research and development effort.

  2. Characteristics of Turbulence-driven Plasma Flow and Origin of Experimental Empirical Scalings of Intrinsic Rotation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W. X.; Hahm, T. S.; Ethier, S.; Rewoldt, G.; Tang, W. M.; Lee, W. W.; Diamond, P. H.

    2011-03-20

    Toroidal plasma flow driven by turbulent torque associated with nonlinear residual stress generation is shown to recover the observed key features of intrinsic rotation in experiments. Specifically, the turbulence-driven intrinsic rotation scales close to linearly with plasma gradients and the inverse of the plasma current, qualitatively reproducing empirical scalings obtained from a large experimental data base. The effect of magnetic shear on the symmetry breaking in the parallel wavenumber spectrum is identified. The origin of the current scaling is found to be the enhanced kll symmetry breaking induced by increased radial variation of the safety factor as the current decreases. The physics origin for the linear dependence of intrinsic rotation on the pressure gradient comes from the fact that both turbulence intensity and the zonal flow shear, which are two key ingredients for driving the residual stress, are increased with the strength of the turbulence drives, which are R/LTe and R/Lne for the collisionless trapped electron mode (CTEM). Highlighted results also include robust radial pinches in toroidal flow, heat and particle transport driven by CTEM turbulence, which emerge "in phase", and are shown to play important roles in determining plasma profiles. Also discussed are experimental tests proposed to validate findings from these gyrokinetic simulations.

  3. Experimental and theoretical study of an atmospheric air plasma-jet

    Science.gov (United States)

    Xaubet, M.; Giuliani, L.; Grondona, D.; Minotti, F.

    2017-01-01

    In this work, we present an experimental and theoretical study of a low frequency, atmospheric plasma-jet discharge in air. Voltage-current characteristics and spectroscopic data were experimentally obtained, and a theoretical model developed to gain information of different aspects of the discharge. The discharge is modeled as a cathode layer with different mechanisms of electron emission and a main discharge channel that includes the most important kinetic reactions and species. From the electric measurements, it is determined that high electric field magnitudes are attained in the main channel, depending on the gas flow rate. Using the voltage-current characteristics as an input, the model allows to determine the plasma state in the discharge, including electron, gas, and molecular nitrogen vibrational temperatures. The model also allows to infer the mechanisms of secondary electron emission that sustain the discharge.

  4. Electromechanical properties of smart aggregate: theoretical modeling and experimental validation

    Science.gov (United States)

    Wang, Jianjun; Kong, Qingzhao; Shi, Zhifei; Song, Gangbing

    2016-09-01

    Smart aggregate (SA), as a piezoceramic-based multi-functional device, is formed by sandwiching two lead zirconate titanate (PZT) patches with copper shielding between a pair of solid-machined cylindrical marble blocks with epoxy. Previous researches have successfully demonstrated the capability and reliability of versatile SAs to monitor the structural health of concrete structures. However, the previous works concentrated mainly on the applications of SAs in structural health monitoring; no reasonable theoretical model of SAs was proposed. In this paper, electromechanical properties of SAs were investigated using a proposed theoretical model. Based on one dimensional linear theory of piezo-elasticity, the dynamic solutions of a SA subjected to an external harmonic voltage were solved. Further, the electric impedance of the SA was computed, and the resonance and anti-resonance frequencies were calculated based on derived equations. Numerical analysis was conducted to discuss the effects of the thickness of epoxy layer and the dimension of PZT patch on the fundamental resonance and anti-resonance frequencies as well as the corresponding electromechanical coupling factor. The dynamic solutions based on the proposed theoretical model were further experimentally verified with two SA samples. The fundamental resonance and anti-resonance frequencies of SAs show good agreements in both theoretical and experimental results. The presented analysis and results contribute to the overall understanding of SA properties and help to optimize the working frequencies of SAs in structural health monitoring of civil structures.

  5. Titanium carbonitride thick coating prepared by plasma spray synthesis and its tribological properties

    Institute of Scientific and Technical Information of China (English)

    ZHU Lin; HE JiNing; YAN DianRan; XIAO LiSong; DONG YanChun; XUE DingChuan; MENG DeLiang

    2007-01-01

    TiCN coating,owing to its superior wear-resistance,has been frequently applied in many fields. TiCN thick coating was first prepared by reactive plasma spraying. The phase composition,microstructure and tribological properties of the TiCN coating were investigated in this research. Experimental results show that the microstructure of the TiCN coating was quite dense,and there was also a little amount of titanium oxides within the coating. By XPS analysis,Ti-C and Ti-N bonds were detected in the coating. The TiCN coating exhibited superior wear-resistance. The failure mechanism was attributed to the adhesive wear,the grinding of TiCN hard-grain,as well as the coating failure by oxidation. There were more Fe,Cr,O,etc. in the failure zone,suggesting that the corrosion propagated gradually from surface to interior.

  6. The influence of repetitively pulsed plasma immersion low energy ion implantation on TiN coating formation and properties

    Science.gov (United States)

    Sivin, D. O.; Ananin, P. S.; Dektyarev, S. V.; Ryabchikov, A. I.; Shevelev, A. E.

    2017-05-01

    Application of high frequency short pulse plasma immersion low energy ion implantation for titanium nitride coating deposition using vacuum arc metal plasma and hot-cathode gas-discharge plasma on R6M5 alloy was investigated. Implementation of negative repetitively pulsed bias with bias amplitude 2 kV, pulse duration 5 μs and pulse frequency 105 Hz leads to 6.2-fold decrease of vacuum arc macroparticle surface density for macroparticles with diameter less than 0.5 μm. Ion sputtering due coating deposition reduces the production rate approximately by 30%. It was found that with bias amplitude range from 1.1 to 1.4 kV and pulse duration 5 μs yields to formation of coatings with local hardness up to 40 GPa. This paper presents the results of experimental studies of adhesion strength, tribological properties and surface morphology of deposited TiN coatings.

  7. The effect of N-stearoylethanolamine on plasma lipid composition in rats with experimental insulin resistance

    Directory of Open Access Journals (Sweden)

    O. V. Onopchenko

    2015-02-01

    Full Text Available A model of insulin resistance (IR, induced by prolonged high fat diet with high content of saturated fats was used to investigate the effect of N-stearoylethanolamine (NSE on the composition of free fatty acids (FFA, plasma lipoprotein spectrum and content of proinflammatory cytokine TNFα in rats. The results of this work showed a rise in the content of monounsaturated fatty acids (18:1 n-9 and a reduction in the level of polyunsaturated fatty acids (20:4 n-6 in plasma of rats with experimental IR. These findings are accompanied by the increased TNFα production and significant changes in plasma lipoprotein profile of rats with the fat overload. Particularly, a decreased high-density lipoprotein (HDL cholesterol level and increased low-density (LDL and very low-density lipoprotein (VLDL cholesterol level were detected. The NSE administration to obese rats with IR restored the content of mono- and polyunsaturated FFA, increased HDL cholesterol content and reduced LDL cholesterol level. In addition, the IR rats treated with NSE showed normalization in the serum TNFα level. Our results showed the restoration of plasma lipid profile under NSE administration in rats with obesity-induced IR. Considering the fact that plasma lipid composition displays the lipid metabolism in general, the NSE actions may play a significant role in the prevention of IR-associated complications.

  8. Experimental and Computational Studies of High Energy Density Plasma Streams Ablated from Fine Wires

    Energy Technology Data Exchange (ETDEWEB)

    Greenly, John B. [Cornell University; Seyler, Charles [Cornell University

    2014-03-30

    Experimental and computational studies of high energy density plasma streams ablated from fine wires. Laboratory of Plasma Studies, School of Electrical and Computer Engineering, Cornell University. Principal Investigators: Dr. John B. Greenly and Dr. Charles E. Seyler. This report summarizes progress during the final year of this project to study the physics of high energy density (HED) plasma streams of 10^17-10^20/cm3 density and high velocity (~100-500 km/s). Such streams are produced from 5-250 micrometer diameter wires heated and ionized by a 1 MA, 250 ns current pulse on the COBRA pulsed power facility at Cornell University. Plasma is ablated from the wires and is driven away to high velocity by unbalanced JxB force. A wire, or an array of wires, can persist as an essentially stationary, continuous source of this streaming plasma for >200 ns, even with driving magnetic fields of many Tesla and peak current densities in the plasma of many MA/cm2. At the heart of the ablation stream generation is the continuous transport of mass from the relatively cold, near-solid-density wire "core" into current-carrying plasma within 1 mm of the wire, followed by the magnetic acceleration of that plasma and its trapped flux to form a directed stream. In the first two years of this program, an advancing understanding of ablation physics led to the discovery of several novel wire ablation experimental regimes. In the final year, one of these new HED plasma regimes has been studied in quantitative detail. This regime studies highly reproducible magnetic reconnection in strongly radiating plasma with supersonic and superalfvenic flow, and shock structures in the outflow. The key discovery is that very heavy wires, e.g. 250 micrometer diameter Al or 150 micrometer Cu, behave in a qualitatively different way than the lighter wires typically used in wire-array Z-pinches. Such wires can be configured to produce a static magnetic X-point null geometry that stores magnetic and

  9. Modeling and experimental validation of TCE abatement and ozone formation with non thermal plasma

    OpenAIRE

    Vandenbroucke, Arne; Aerts, Robby; Morent, Rino; De Geyter, Nathalie; Bogaerts, Annemie; Leys, Christophe

    2012-01-01

    In this study, the formation of ozone and the abatement of trichloroethylene (TCE) with non thermal plasma was experimentally and theoretically investigated. The model predicts that the ozone formation increases with the energy deposition and decreases with the relative humidity (RH) of the air, which is qualitatively in agreement with experimental data. For an energy deposition of 0.136 J/cm³, the abatement of 1000 ppm TCE in air with 5 % RH is dominated by atomic oxygen and to a lesser exte...

  10. Modeling and experimental validation of TCE abatement and ozone formation with non thermal plasma

    OpenAIRE

    Vandenbroucke, Arne; Aerts, Robby; Morent, Rino; De Geyter, Nathalie; Bogaerts, Annemie; Leys, Christophe

    2012-01-01

    In this study, the formation of ozone and the abatement of trichloroethylene (TCE) with non thermal plasma was experimentally and theoretically investigated. The model predicts that the ozone formation increases with the energy deposition and decreases with the relative humidity (RH) of the air, which is qualitatively in agreement with experimental data. For an energy deposition of 0.136 J/cm³, the abatement of 1000 ppm TCE in air with 5 % RH is dominated by atomic oxygen and to a lesser exte...

  11. Plasma properties of laser—ablated Si target in air

    Institute of Scientific and Technical Information of China (English)

    王象泰; 许炳璋; 等

    1996-01-01

    In plasma emission spectra produced by pulsed laser ablation of Si target in air under the assumption of local thermodynamic equilibrium(LTE),the electron temperature and the electron number density are calculated.respectively,It seems that LTE is valid in early stage of the laser induced plasma evolution.

  12. Experimental Method to Determine Some Physical Properties in Physics Classes

    Directory of Open Access Journals (Sweden)

    Luiz Fernando Pires

    2015-10-01

    Full Text Available ABSTRACT Particle density, gravimetric and volumetric water contents and porosity are important basic concepts to characterize porous systems such as soils. This paper presents a proposal of an experimental method to measure these physical properties, applicable in experimental physics classes, in porous media samples consisting of spheres with the same diameter (monodisperse medium and with different diameters (polydisperse medium. Soil samples are not used given the difficulty of working with this porous medium in laboratories dedicated to teaching basic experimental physics. The paper describes the method to be followed and results of two case studies, one in monodisperse medium and the other in polydisperse medium. The particle density results were very close to theoretical values for lead spheres, whose relative deviation (RD was -2.9 % and +0.1 % RD for the iron spheres. The RD of porosity was also low: -3.6 % for lead spheres and -1.2 % for iron spheres, in the comparison of procedures – using particle and porous medium densities and saturated volumetric water content – and monodisperse and polydisperse media.

  13. Optical properties of hydroxyethyl cellulose film treated with nitrogen plasma

    Science.gov (United States)

    Mahmoud, K. H.

    2016-03-01

    Hydroxyethyl cellulose (HEC) film has been prepared by casting technique. The prepared sample has been treated with nitrogen plasma at different exposure times. The optical absorption was recorded at room temperature in the wavelength range of 200-800 nm. Absorbance fitting procedure curves revealed a direct allowed transition with optical band gap, Eopt, of 4.9 eV for pristine film, and this value decreases to 4.30 eV for 20 min plasma treatment time. The band tail values (Ee) were found to be increased under plasma time treatment from 1.74 eV in case of the pristine film to 2.20 eV for 20 min. The dispersion of refractive index and complex dielectric constants under plasma treatment was also studied. Variation of color parameters under effect of the plasma treatment is analyzed in the framework of CIE L*U*V* color space.

  14. The incomplete plasma dispersion function: properties and application to waves in bounded plasmas

    OpenAIRE

    Baalrud, Scott D.

    2013-01-01

    The incomplete plasma dispersion function is a generalization of the plasma dispersion function in which the defining integral spans a semi-infinite, rather than infinite, domain. It is useful for describing the linear dielectric response and wave dispersion in non-Maxwellian plasmas when the distribution functions can be approximated as Maxwellian over finite, or semi-infinite, intervals in velocity phase-space. A ubiquitous example is the depleted Maxwellian electron distribution found near...

  15. Experimental study on electromagnetic interactions between plasmas and a vacuum vessel during disruptions in the Hitachi tokamak HT-2

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Mitsushi; Takeuchi, Kazuhiro; Fukumoto, Hideshi; Shimizu, Masashi; Otsuka, Michio (Hitachi Ltd., Ibaraki (Japan). Energy Research Lab.)

    1990-02-01

    Electromagnetic interactions between plasmas and a vacuum vessel during disruptions are examined experimentally in the Hitachi tokamak HT-2. Eddy currents which flow in the toroidal direction and poloidal coil currents are determined from the measured magnetic data. The currents enable calculation of the electromagnetic force on the vacuum vessel and resistively dissipated magnetic energy. Eddy currents and electromagnetic forces are mainly due to the plasma displacement (shell effect), not decay of the plasma current. Large plasma current quench rate -dI{sub p}/dt is associated with scraping of the plasma by the inner limiter through the rapid plasma radial movement, and the decay rate in circular plasma is twice as large as that in elongated plasma. The magnetic energy dissipation is mainly due to the eddy current of the net toroidal current mode which is induced by large current quench rate. (author).

  16. Experimental Study on Electromagnetic Interactions between Plasmas and a Vacuum Vessel during Disruptions in the Hitachi Tokamak HT-2

    Science.gov (United States)

    Abe, Mitsushi; Takeuchi, Kazuhiro; Fukumoto, Hideshi; Shimizu, Masashi; Otsuka, Michio

    1990-02-01

    Electromagnetic interactions between plasmas and a vacuum vessel during disruptions are examined experimentally in the Hitachi tokamak HT-2. Eddy currents which flow in the toroidal direction and poloidal coil currents are determined from the measured magnetic data. The currents enable calculation of the electromagnetic force on the vacuum vessel and resistively dissipated magnetic energy. Eddy currents and electromagnetic forces are mainly due to the plasma displacement (shell effect), not decay of the plasma current. Large plasma current quench rate -dIP/dt is associated with scraping of the plasma by the inner limiter through the rapid plasma radial movement, and the decay rate in circular plasma is twice as large as that in elongated plasma. The magnetic energy dissipation is mainly due to the eddy current of the net toroidal current mode which is induced by large current quench rate.

  17. Surface modification by plasma polymerization: film deposition, tailoring of surface properties and biocompatibility

    OpenAIRE

    Os, van, J.

    2000-01-01

    The work described in this thesis concerns the surface modification of materials by thin film deposition in a plasma reactor. In particular, thin polymeric films bearing amine functionalities were synthesized by plasma polymerization of amino group containing monomers. In addition to the synthesis, attention was directed towards the characterization of these films, and the tailoring of their surface properties on a molecular level. Finally, the amino groups introduced by plasma polymerization...

  18. Change in Properties of Wool Fabrics by Low Temperature Plasma Treatment

    OpenAIRE

    奥野, 温子; 江川, 文; 浅野, 昌美; 吉田, 恭子; 安田, 武

    1999-01-01

    The effect of plasma treatment using various gases on the end use properties of wool fabrics was investigated. The results are summarized as follows: The etching by air plasma generated remarkable irregularities on the surface of the wool fabrics, and the static friction coefficient tended to increase. However, the treatment softened the fabric handling. On the other hand, the plasma treatment using CF_4 and N_2 gas hardly changed the fabric handling in spite of a large weight loss of the sam...

  19. Properties and Commercial Application of Manual Plasma Hardening

    Science.gov (United States)

    Korotkov, V. A.

    2016-11-01

    A new method and a device for plasma hardening of various parts are considered. Installation of the new device does not require too much investment (the active mechanical productions are appropriate for its accommodation) and special choice of personnel (welders train to use it without difficulty). Plasma hardening does not deform and worsen the smoothness of the surface, which makes it possible to employ many hardened parts without finishing mechanical treatment required after bulk or induction hardening. The hardened layer (about 1 mm) produced by plasma hardening exhibits better wear resistance than after bulk hardening with tempering, which prolongs the service life of the parts.

  20. Preparation and properties of HA coating hydrothermally synthesized from plasma sprayed CaHPO4 coating

    Institute of Scientific and Technical Information of China (English)

    FU Tao; HAN Yong; ZHANG Yu-mei; XU Ke-wei

    2001-01-01

    @@ INTRODUCTION Hydroxyapatite (HA) biocoatings can form osseointegration at a shorter time than metallic implants, and plasma sprayed (PS) HA coating has received the widest studies and is now used clinically. However, due to the high temperature of plasma flame, soluble impurity phases and amorphous calcium phosphate were contained which declined the bonding strength of the coating, and spoiled the excellent biological properties of HA.

  1. Experimental investigation of the mechanical properties of Alfas stone

    Directory of Open Access Journals (Sweden)

    Konstas N. Kaklis

    2017-04-01

    Full Text Available This paper focuses on the experimental investigation of the mechanical properties of the Alfas natural building stone. Two series of uniaxial compression tests and indirect tensile tests (Brazilian tests were performed in order to determine the uniaxial compressive strength and the indirect tensile strength respectively. Different sets of cylindrical specimens and circular discs were prepared by varying their geometry in order to examine the size effect on the respective strength values. Also, the size effect was investigated with respect to the calculated intact rock modulus and Poisson’s ratio. All specimens were prepared by following the ISRM suggested methods and the load was applied using a stiff 1600 kN MTS hydraulic testing machine and a 500 kN load cell. Strain was measured using biaxial 0/90 stacked rosettes appropriately attached on each specimen.

  2. Experimental study on the dielectric properties of polyacrylate dielectric elastomer

    Science.gov (United States)

    Qiang, Junhua; Chen, Hualing; Li, Bo

    2012-02-01

    The dielectric constant of elastomeric dielectric material is an essential physical parameter, whose value may affect the electromechanical deformation of a dielectric elastomer actuator. Since the dielectric constant is influenced by several external factors as reported before, and no certain value has been confirmed to our knowledge, in the present paper, on the basis of systematical comparison of recent past literature, we conducted extensive works on the measurement of dielectric properties of VHB films, involving five influencing factors: prestretch (both equal and unequal biaxial), electrical frequency, electrode material, stress relaxation time and temperature. Experimental results directly show that the dielectric response changes according to these factors, based on which we investigate the significance of each factor, especially the interaction of two external conditions on the dielectric constant of deformable dielectric, by presenting a physical picture of the mechanism of polarization.

  3. Dielectric properties in microwave remote plasma sustained in argon: Expanding plasma conditions

    Energy Technology Data Exchange (ETDEWEB)

    Jauberteau, J. L.; Jauberteau, I. [UMR 7315 CNRS, SPCTS, 12 rue Atlantis, 87068 Limoges (France)

    2012-11-15

    This work is devoted to the study of the relative permittivity in argon expanding plasma produced below a microwave discharge sustained in a quartz tube and working at 2.45 GHz. We discuss results and explain the microwave propagation within the reactor, outside the quartz tube. It is shown that at low pressures (133 Pa) and at powers ranging from 100 W to 400 W, the wave frequency remains lower than the plasma frequency anywhere in the expanding plasma. Under these conditions, the real part of the relative permittivity is negative and the wave is reflected. Surprisingly, in these conditions, the plasma is produced inside and outside the quartz tube, below the wave launcher. This effect can be explained considering a surface wave propagating at the surface of the quartz tube then into the reactor, on the external surface of the expanding plasma below the quartz tube.

  4. Effect of low-temperature plasma treatment on tailorability and thermal properties of wool fabrics

    Indian Academy of Sciences (India)

    V S Goud; J S Udakhe

    2011-10-01

    Dielectric barrier discharge type of plasma reactor was used for the low-temperature plasma (LTP) treatment of the wool fabrics. Air was used as the non-polymerizing gas for the plasma treatment at different time intervals. Low-stress mechanical properties of the treated and untreated wool fabrics were evaluated using Siro-fast technique which revealed that the tensile, bending, compression, shear, dimensional stability and surface properties were altered after the LTP treatment. Other properties such as thermal conductivity, thermal resistance and pilling propensity were also evaluated. The surface topographical changes of the wool fibres after LTP treatment were analysed by scanning electron microscopy. The changes in these properties are supposed to be related closely to the interfibre and interyarn frictional force and increased surface area of the fibres induced by the etching effect of plasma.

  5. Controllable surface morphology and properties via mist polymerization on a plasma-treated polymethyl methacrylate surface.

    Science.gov (United States)

    Wan, S J; Wang, L; Xu, X J; Zhao, C H; Liu, X D

    2014-02-14

    Surface modification by grafting polymers on solid materials is an important strategy used to improve surface properties. This article reports that under appropriate conditions, very thin layers with desired morphologies may be constructed on a plasma-treated substrate by feeding a small quantity of a monomer with a mist stream carrying droplets produced from monomer solutions. We investigate the effects of process parameters that affect layer morphology, including exposure time to the mist stream, concentration of the monomer solution, and solvent selectivity. For a methyl methacrylate solution in ethanol, nanoparticles are uniformly grown with increasing monomer concentration or exposure time and finally form a porous layer at 3.65 mol L(-1) for 30 min. Decreasing solvent polarity not only affects surface morphology, but also increases hydrophobicity of the resulting surface. With 2,2,3,4,4,4-hexafluorobutyl methacrylate as the monomer, SEM and AFM micrographs indicated that mist polymerization results in numerous microspheres on the activated surface. These experimental results were interpreted by a mechanism in terms of an in situ polymerization accompanied by a phase transformation of the resulting polymer. Specifically, plasma treatment provides highly active cations and radicals to initiate very rapid polymerization, and the resulting polymers are consequently deposited from the liquid onto the surface under phase transition mechanisms.

  6. Effect of Cold Plasma Treatment on the Mechanical Properties of RTM Composites

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Cold plasma technology was used to treat the surface of carbon fibers braided by PET in this paper and SEM wasused to analyze the fracture microstructure of composite interlaminar shear stress (ILSS). The result shows that thesurface polarity of carbon fibers was modified by cold plasma treatment, which increases the impregnation of PETbraided carbon fibers during the process of resin flowing, improves the interfacial properties of RTM composites, andtherefore enhances the mechanical properties of the KTM composites.

  7. Transport properties of multicomponent thermal plasmas: Grad method versus Chapman-Enskog method

    Energy Technology Data Exchange (ETDEWEB)

    Porytsky, P. [Institute for Nuclear Research, 03680 Kyiv (Ukraine); Krivtsun, I.; Demchenko, V. [Paton Welding Institute, 03680 Kyiv (Ukraine); Reisgen, U.; Mokrov, O.; Zabirov, A. [RWTH Aachen University, ISF-Welding and Joining Institute, 52062 Aachen (Germany); Gorchakov, S.; Timofeev, A.; Uhrlandt, D. [Leibniz Institute for Plasma Science and Technology (INP Greifswald), 17489 Greifswald (Germany)

    2013-02-15

    Transport properties (thermal conductivity, viscosity, and electrical conductivity) for multicomponent Ar-Fe thermal plasmas at atmospheric pressure have been determined by means of two different methods. The transport coefficients set based on Grad's method is compared with the data obtained when using the Chapman-Enskog's method. Results from both applied methods are in good agreement. It is shown that the Grad method is suitable for the determination of transport properties of the thermal plasmas.

  8. Derivation of stochastic differential equations for scrape-off layer plasma fluctuations from experimentally measured statistics

    Energy Technology Data Exchange (ETDEWEB)

    Mekkaoui, Abdessamad [IEK-4 Forschungszentrum Juelich 52428 (Germany)

    2013-07-01

    A method to derive stochastic differential equations for intermittent plasma density dynamics in magnetic fusion edge plasma is presented. It uses a measured first four moments (mean, variance, Skewness and Kurtosis) and the correlation time of turbulence to write a Pearson equation for the probability distribution function of fluctuations. The Fokker-Planck equation is then used to derive a Langevin equation for the plasma density fluctuations. A theoretical expectations are used as a constraints to fix the nonlinearity structure of the stochastic differential equation. In particular when the quadratically nonlinear dynamics is assumed, then it is shown that the plasma density is driven by a multiplicative Wiener process and evolves on the turbulence correlation time scale, while the linear growth is quadratically damped by the fluctuation level. Strong criteria for statistical discrimination of experimental time series are proposed as an alternative to the Kurtosis-Skewness scaling. This scaling is broadly used in contemporary literature to characterize edge turbulence, but it is inappropriate because a large family of distributions could share this scaling. Strong criteria allow us to focus on the relevant candidate distribution and approach a nonlinear structure of edge turbulence model.

  9. Experimental characterization of railgun-driven supersonic plasma jets motivated by high energy density physics applications

    CERN Document Server

    Hsu, S C; Moser, A L; Awe, T J; Brockington, S J E; Davis, J S; Adams, C S; Case, A; Cassibry, J T; Dunn, J P; Gilmore, M A; Lynn, A G; Messer, S J; Witherspoon, F D

    2012-01-01

    We report experimental results on the parameters, structure, and evolution of high-Mach-number (M) argon plasma jets formed and launched by a pulsed-power-driven railgun. The nominal initial average jet parameters in the data set analyzed are density \\approx 2 x 10^(16) cm^(-3), electron temperature \\approx 1.4 eV, velocity \\approx 30 km/s, M \\approx 14, ionization fraction \\approx 0.96, diameter \\approx 5 cm, and length \\approx 20 cm. These values approach the range needed by the Plasma Liner Experiment (PLX), which is designed to use merging plasma jets to form imploding spherical plasma liners that can reach peak pressures of 0.1-1 Mbar at stagnation. As these jets propagate a distance of approximately 40 cm, the average density drops by one order of magnitude, which is up to an order of magnitude less than the drop predicted by the ideal hydrodynamic theory of a constant-M jet.

  10. Experimental characterization of railgun-driven supersonic plasma jets motivated by high energy density physics applications

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, S. C.; Moser, A. L.; Awe, T. J.; Davis, J. S.; Dunn, J. P. [Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Merritt, E. C.; Adams, C. S. [Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); University of New Mexico, Albuquerque, New Mexico 87131 (United States); Brockington, S. J. E.; Case, A.; Messer, S. J.; Witherspoon, F. D. [HyperV Technologies Corp., Chantilly, Virginia 20151 (United States); Cassibry, J. T. [Propulsion Research Center, University of Alabama in Huntsville, Huntsville, Alabama 35899 (United States); Gilmore, M. A.; Lynn, A. G. [University of New Mexico, Albuquerque, New Mexico 87131 (United States)

    2012-12-15

    We report experimental results on the parameters, structure, and evolution of high-Mach-number (M) argon plasma jets formed and launched by a pulsed-power-driven railgun. The nominal initial average jet parameters in the data set analyzed are density Almost-Equal-To 2 Multiplication-Sign 10{sup 16} cm{sup -3}, electron temperature Almost-Equal-To 1.4 eV, velocity Almost-Equal-To 30 km/s, M Almost-Equal-To 14, ionization fraction Almost-Equal-To 0.96, diameter Almost-Equal-To 5 cm, and length Almost-Equal-To 20 cm. These values approach the range needed by the Plasma Liner Experiment, which is designed to use merging plasma jets to form imploding spherical plasma liners that can reach peak pressures of 0.1-1 Mbar at stagnation. As these jets propagate a distance of approximately 40 cm, the average density drops by one order of magnitude, which is at the very low end of the 8-160 times drop predicted by ideal hydrodynamic theory of a constant-M jet.

  11. Experimental, Theoretical and Computational Studies of Plasma-Based Concepts for Future High Energy Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Chan [Univ. of California, Los Angeles, CA (United States); Mori, W. [Univ. of California, Los Angeles, CA (United States)

    2013-10-21

    This is the final report on the DOE grant number DE-FG02-92ER40727 titled, “Experimental, Theoretical and Computational Studies of Plasma-Based Concepts for Future High Energy Accelerators.” During this grant period the UCLA program on Advanced Plasma Based Accelerators, headed by Professor C. Joshi has made many key scientific advances and trained a generation of students, many of whom have stayed in this research field and even started research programs of their own. In this final report however, we will focus on the last three years of the grant and report on the scientific progress made in each of the four tasks listed under this grant. Four tasks are focused on: Plasma Wakefield Accelerator Research at FACET, SLAC National Accelerator Laboratory, In House Research at UCLA’s Neptune and 20 TW Laser Laboratories, Laser-Wakefield Acceleration (LWFA) in Self Guided Regime: Experiments at the Callisto Laser at LLNL, and Theory and Simulations. Major scientific results have been obtained in each of the four tasks described in this report. These have led to publications in the prestigious scientific journals, graduation and continued training of high quality Ph.D. level students and have kept the U.S. at the forefront of plasma-based accelerators research field.

  12. Comparisons of dense-plasma-focus kinetic simulations with experimental measurements

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Link, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Welch, D. [Voss Scientific, Inc., Albuquerque, NM (United States); Ellsworth, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Falabella, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tang, V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-06-01

    Dense-plasma-focus (DPF) Z-pinch devices are sources of copious high-energy electrons and ions, x rays, and neutrons. The mechanisms through which these physically simple devices generate such high-energy beams in a relatively short distance are not fully understood and past optimization efforts of these devices have been largely empirical. Previously we reported on fully kinetic simulations of a DPF and compared them with hybrid and fluid simulations of the same device. Here we present detailed comparisons between fully kinetic simulations and experimental data on a 1.2 kJ DPF with two electrode geometries, including neutron yield and ion beam energy distributions. A more intensive third calculation is presented which examines the effects of a fully detailed pulsed power driver model. We also compare simulated electromagnetic fluctuations with direct measurement of radiofrequency electromagnetic fluctuations in a DPF plasma. These comparisons indicate that the fully kinetic model captures the essential physics of these plasmas with high fidelity, and provide further evidence that anomalous resistivity in the plasma arises due to a kinetic instability near the lower hybrid frequency.

  13. Plasma properties during magnetron sputtering of lithium phosphorous oxynitride thin films

    DEFF Research Database (Denmark)

    Christiansen, Ane Sælland; Stamate, Eugen; Thydén, Karl Tor Sune

    2015-01-01

    properties and microstructure of the films. Low pressure and moderate power are associated with lower plasma density, higher electron temperature, higher plasma potential and larger diffusion length for sputtered particles. This combination of parameters favors the presence of more atomic nitrogen, a fact...... that correlates with a higher ionic conductivity. Despite of lower plasma density the film grows faster at lower pressure where the higher plasma potential, translated into higher energy for impinging ions on the substrate, resulted in a compact and smooth film structure. Higher pressures showed much less...

  14. Experimental and computational study of the injection of antiprotons into a positron plasma for antihydrogen production

    Science.gov (United States)

    Amole, C.; Ashkezari, M. D.; Baquero-Ruiz, M.; Bertsche, W.; Butler, E.; Capra, A.; Cesar, C. L.; Charlton, M.; Deller, A.; Eriksson, S.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayden, M. E.; Isaac, C. A.; Jonsell, S.; Kurchaninov, L.; Little, A.; Madsen, N.; McKenna, J. T. K.; Menary, S.; Napoli, S. C.; Olchanski, K.; Olin, A.; Pusa, P.; Rasmussen, C. Ø.; Robicheaux, F.; Sarid, E.; Shields, C. R.; Silveira, D. M.; So, C.; Stracka, S.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.; Zhmoginov, A.; Friedland, L.

    2013-04-01

    One of the goals of synthesizing and trapping antihydrogen is to study the validity of charge-parity-time symmetry through precision spectroscopy on the anti-atoms, but the trapping yield achieved in recent experiments must be significantly improved before this can be realized. Antihydrogen atoms are commonly produced by mixing antiprotons and positrons stored in a nested Penning-Malmberg trap, which was achieved in ALPHA by an autoresonant excitation of the antiprotons, injecting them into the positron plasma. In this work, a hybrid numerical model is developed to simulate antiproton and positron dynamics during the mixing process. The simulation is benchmarked against other numerical and analytic models, as well as experimental measurements. The autoresonant injection scheme and an alternative scheme are compared numerically over a range of plasma parameters which can be reached in current and upcoming antihydrogen experiments, and the latter scheme is seen to offer significant improvement in trapping yield as the number of available antiprotons increases.

  15. Experimental and computational study of the injection of antiprotons into a positron plasma for antihydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Amole, C.; Capra, A.; Menary, S. [Department of Physics and Astronomy, York University, Toronto, M3J 1P3 Ontario (Canada); Ashkezari, M. D.; Hayden, M. E. [Department of Physics, Simon Fraser University, Burnaby, V5A 1S6 British Columbia (Canada); Baquero-Ruiz, M.; Little, A.; So, C.; Zhmoginov, A. [Department of Physics, University of California, Berkeley, California 94720 (United States); Bertsche, W. [Department of Physics, College of Science, Swansea University, SA2 8PP Swansea (United Kingdom); School of Physics and Astronomy, University of Manchester, M13 9PL Manchester (United Kingdom); Daresbury Laboratory, Cockcroft Institute, WA4 4AD Warrington (United Kingdom); Butler, E. [Physics Department, CERN, CH-1211 Geneva 23 (Switzerland); Cesar, C. L.; Silveira, D. M. [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941 (Brazil); Charlton, M.; Deller, A.; Eriksson, S.; Isaac, C. A.; Madsen, N.; Napoli, S. C.; Shields, C. R. [Department of Physics, College of Science, Swansea University, SA2 8PP Swansea (United Kingdom); Collaboration: ALPHA Collaboration; and others

    2013-04-15

    One of the goals of synthesizing and trapping antihydrogen is to study the validity of charge-parity-time symmetry through precision spectroscopy on the anti-atoms, but the trapping yield achieved in recent experiments must be significantly improved before this can be realized. Antihydrogen atoms are commonly produced by mixing antiprotons and positrons stored in a nested Penning-Malmberg trap, which was achieved in ALPHA by an autoresonant excitation of the antiprotons, injecting them into the positron plasma. In this work, a hybrid numerical model is developed to simulate antiproton and positron dynamics during the mixing process. The simulation is benchmarked against other numerical and analytic models, as well as experimental measurements. The autoresonant injection scheme and an alternative scheme are compared numerically over a range of plasma parameters which can be reached in current and upcoming antihydrogen experiments, and the latter scheme is seen to offer significant improvement in trapping yield as the number of available antiprotons increases.

  16. Experimental validation of a filament transport model in turbulent magnetized plasmas

    CERN Document Server

    Carralero, D; Aho-Mantila, L; Birkenmeier, G; Brix, M; Groth, M; Müller, H W; Stroth, U; Vianello, N; Wolfrum, E; Contributors, JET

    2015-01-01

    In a wide variety of natural and laboratory magnetized plasmas, filaments appear as a result of interchange instability. These convective structures substantially enhance transport in the direction perpendicular to the magnetic field. According to filament models, their propagation may follow different regimes depending on the parallel closure of charge conservation. This is of paramount importance in magnetic fusion plasmas, as high collisionality in the scrape-off layer may trigger a regime transition leading to strongly enhanced perpendicular particle fluxes. This work reports for the first time on an experimental verification of this process, linking enhanced transport with a regime transition as predicted by models. Based on these results, a novel scaling for global perpendicular particle transport in reactor relevant tokamaks such as ASDEX-Upgrade and JET is found, leading to important implications for next generation fusion devices.

  17. Characterization and properties of plasma polymerized 2-vinylpyridine

    Energy Technology Data Exchange (ETDEWEB)

    Bieg, K.W.; Ottesen, D.K.; Brower, K.L.

    1979-11-01

    The chemical structure, aging, thermal, and adhesive behavior of plasma-deposited 2-vinylpyridine has been investigated. The molecular structure of the plasma polymer is significantly different from the conventional, linear polymer and is strongly dependent on plasma reactor variables. Additional cyano, methyl, and olefinic groups were identified in the plasma polymer, and aromaticity retention was reduced at the more severe (low pressure, high rf power) reactor conditions studied. Post-deposition oxidation occurred, which followed approximately first order kinetics initially (..delta..E approx. 11.6 Kcal/mole, with approx. 25% conversion of aromatic rings to an aromatic ketone in 4.5 months at 23/sup 0/C). Oxidation was significantly reduced in vacuum, inert gas, and hydrogen atmospheres. Thermal weight loss began at relatively low temperatures and appeared to accompany an exothermic, irreversible cross-linking reaction which began at about 100/sup 0/C. Principle low temperature decomposition products were low molecular weight gases (primarily, CO/sub 2/) and 2-methylpyridine. A quantitative tensile-pull adhesion test was developed. Using this technique, the plasma polymer-aluminum cohesive bond strength was found to be 480 psi and was degraded at high humidity levels.

  18. Study of the Mechanical Properties of Ti-3Al-2.5V after Surface Plasma Gas Treatment with Indirect Plasma Torch

    Directory of Open Access Journals (Sweden)

    Rosen Vasilev

    2015-11-01

    Full Text Available Commercial titanium alloy Ti-3Al-2.5V became one of the most widely used titanium alloys after its introduction in the early seventies. It has a very attractive combination of tensile strength, creep strength, toughness and high-temperature stability for long-term applications up to 425ºC. It is used for gas turbine components and in other applications where this good combination of properties is required [1]. At the same time it has poor tribological properties that are typical of most of the titanium alloys. It has low surface hardness and wear resistance. These disadvantages of the material limit its application [1], [2]. Ti-3Al-2.5V was chosen for this experimental work because it showed a good plasma gas nitriding performance in comparison with the other alloys during the tests.

  19. Development and experimental evaluation of theoretical models for ion cyclotron resonance frequency heating of tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Mantsinen, M. [Helsinki Univ. of Technology, Espoo (Finland). Dept. of Technical Physics

    1999-06-01

    Heating with electromagnetic waves in the ion cyclotron range of frequencies (ICRF) is a well-established method for auxiliary heating of present-day tokamak plasmas and is envisaged as one of the main heating techniques for the International Thermonuclear Experimental Reactor (ITER) and future reactor plasmas. In order to predict the performance of ICRF heating in future machines, it is important to benchmark present theoretical modelling with experimental results on present tokamaks. This thesis reports on development and experimental evaluation of theoretical models for ICRF heating at the Joint European Torus (JET). Several ICRF physics effects and scenarios have been studied. Direct importance to the ITER is the theoretical analysis of ICRF heating experiments with deuterium-tritium (D-T) plasmas. These experiments clearly demonstrate the potential of ICRF heating for auxiliary heating of reactor plasmas. In particular, scenarios with potential for good bulk ion heating and enhanced D-T fusion reactivity have been identified. Good bulk ion heating is essential for reactor plasmas in order to obtain a high ion temperature and a high fusion reactivity. In JET good bulk ion heating with ICRF waves has been achieved in high-performance discharges by adding ICRF heating to neutral beam injection. In these experiments, as in other JET discharges where damping at higher harmonics of the ion cyclotron frequency takes place, so-called finite Larmor radius (FLR) effects play an important role. Due to FLR effects, the resonating ion velocity distribution function can have a strong influence on the power deposition. Evidence for this effect has been obtained from the third harmonic deuterium heating experiments. Because of FLR effects, the wave-particle interaction can also become weak at certain ion energies, which prevents resonating ions from reaching higher energies. When interacting with the wave, an ion receives not only a change in energy but also a change in

  20. The incomplete plasma dispersion function: properties and application to waves in bounded plasmas

    CERN Document Server

    Baalrud, Scott D

    2013-01-01

    The incomplete plasma dispersion function is a generalization of the plasma dispersion function in which the defining integral spans a semi-infinite, rather than infinite, domain. It is useful for describing the linear dielectric response and wave dispersion in non-Maxwellian plasmas when the distribution functions can be approximated as Maxwellian over finite, or semi-infinite, intervals in velocity phase-space. A ubiquitous example is the depleted Maxwellian electron distribution found near boundary sheaths or double layers, where the passing interval can be modeled as Maxwellian with a lower temperature than the trapped interval. The depleted Maxwellian is used as an example to demonstrate the utility of using the incomplete plasma dispersion function for calculating modifications to wave dispersion relations.

  1. Microwave air plasmas in capillaries at low pressure II. Experimental investigation

    Science.gov (United States)

    Stancu, G. D.; Leroy, O.; Coche, P.; Gadonna, K.; Guerra, V.; Minea, T.; Alves, L. L.

    2016-11-01

    This work presents an experimental study of microwave (2.45 GHz excitation frequency) micro-plasmas, generated in dry air (N2 80%: O2 20%) within a small radius silica capillary (345 µm inner radius) at low pressure (300 Pa) and low powers (80-130 W). Experimental diagnostics are performed using optical emission spectroscopy calibrated in absolute intensity. Axial-resolved measurements (50 µm spatial resolution) of atomic transitions N(3p4S)  →  N(3s4P) O(3p5P)  →  O(3s5S) and molecular transitions N2(C,v‧)  →  N2(B,v″) \\text{N}2+ (B,v‧)  →  \\text{N}2+ (X,v″) allow us to obtain, as a function of the coupled power, the absolute densities of N(3p4S), O(3p5P), N2(C), N2(B) and \\text{N}2+ (B), as well as the gas (rotational) temperature (700-1000 K), the vibrational temperature of N2(C,v) (7000-10 000 K) and the excitation temperatures of N2(C) and N2(B) (11 000 K). The analysis of the H β line-width gives an upper limiting value of 1013 cm-3 for the electron density; its axial variation (4  ×  1011-6  ×  1012 cm-3) being estimated by solving the wave electrodynamics equations for the present geometry, plasma length and electron-neutral collision frequency. The experimental results were compared with the results from a 0D model, presented in companion paper I [1], which couples the system of rate balance equations for the dominant neutral and charged plasma species to the homogeneous two-term electron Boltzmann equation, taking the measured gas temperature and the estimated electron density as input parameters. Good qualitative agreement is found between the measurements and calculations of the local species densities for various powers and axial positions. The dissociation degree of oxygen is found above 10%. Moreover, both the measurements and calculations show evidence of the non-equilibrium behavior of low-temperature plasmas, with vibrational and excitation temperatures at least

  2. Influence of bias on properties of carbon films deposited by MCECR plasma sputtering method

    Institute of Scientific and Technical Information of China (English)

    CAI Chang-long; DIAO Dong-feng; S.Miyake; T.Matsumoto

    2004-01-01

    The mirror-confinement-type electron cyclotron resonance(MCECR) plasma source has high plasma density and high electron temperature. It is quite useful in many plasma processing, and has been used for etching and thin-film deposition. The carbon films with 40 nm thickness were deposited by MCECR plasma sputtering method on Si, and the influence of substrate bias on the properties of carbon films was studied. The bonding structure of the film was analyzed by the X-ray photoelectron spectroscopy(XPS), the tribological properties were measured by the pin-on-disk(POD) tribometer, the nanohardness of the films was measured by the nanoindenter, and the deposition speed and the refractive index were measured by the ellipse meter. The better substrate bias was obtained, and the better properties of carbon films were obtained.

  3. Modification of optical and electrical properties of chemical bath deposited CdS using plasma treatments

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, G. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon, C.P 66450 (Mexico); Krishnan, B. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon, C.P 66450 (Mexico); CIIDIT, Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico); Avellaneda, D.; Castillo, G. Alan; Das Roy, T.K. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon, C.P 66450 (Mexico); Shaji, S., E-mail: sshajis@yahoo.com [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon, C.P 66450 (Mexico); CIIDIT, Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico)

    2011-08-31

    Cadmium sulphide (CdS) is a well known n-type semiconductor that is widely used in solar cells. Here we report preparation and characterization of chemical bath deposited CdS thin films and modification of their optical and electrical properties using plasma treatments. CdS thin films were prepared from a chemical bath containing Cadmium chloride, Triethanolamine and Thiourea under various deposition conditions. Good quality thin films were obtained during deposition times of 5, 10 and 15 min. CdS thin films prepared for 10 min. were treated using a glow discharge plasma having nitrogen and argon carrier gases. The changes in morphology, optical and electrical properties of these plasma treated CdS thin films were analyzed in detail. The results obtained show that plasma treatment is an effective technique in modification of the optical and electrical properties of chemical bath deposited CdS thin films.

  4. Effect of low temperature plasma on the functional properties of basmati rice flour.

    Science.gov (United States)

    Thirumdas, Rohit; Deshmukh, R R; Annapure, U S

    2016-06-01

    The present study deals with the application of low temperature plasma on basmati rice flour and its effect on functional properties such as gel hydrations properties, flour hydration properties, gelatinization temperatures and antioxidant properties. The water holding capacity and water binding capacity were observed to be increased with increase in plasma power and time of treatment as the air plasma is known to make the surface more hydrophilic. XRD analysis revealed there is no significance difference in the crystalline structure after the plasma treatment. DSC shows a decrease in peak temperatures (Tp) after the treatment. Hot paste viscosities were observed to be decease from 692 to 591 BU was corresponded to decrease in peak temperature. The total polyphenolic content and reducing power was observed to be increased. The effects of plasma treatment on functional groups of polyphenols were observed by changes in absorption intensities using FTIR. This study demonstrates that the low temperature plasma treatmentis capable of improving the functional properties of basmati rice.

  5. Changes in plasma catecholamines levels as preclinical biomarkers in experimental models of Parkinson's disease.

    Science.gov (United States)

    Kim, A R; Ugryumov, M V

    2015-01-01

    The goal of this study was to investigate the changes in the concentrations of blood plasma catecholamines as possible biomarkers of Parkinson's disease (PD) in the mouse experimental model of PD induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). A significant decrease was detected in the levels of dopamine and L-DOPA in the PD preclinical stage model as a result of the catecholamines systemic metabolism disfunction. In the PD early clinical stage models, the level of L-DOPA and dihydroxyphenylacetic acid decreased, which is consistent with the results of blood tests in untreated patients.

  6. Experimental study of nonlinear dust acoustic solitary waves in a dusty plasma

    CERN Document Server

    Bandyopadhyay, P; Sen, A; Kaw, P K

    2008-01-01

    The excitation and propagation of finite amplitude low frequency solitary waves are investigated in an Argon plasma impregnated with kaolin dust particles. A nonlinear longitudinal dust acoustic solitary wave is excited by pulse modulating the discharge voltage with a negative potential. It is found that the velocity of the solitary wave increases and the width decreases with the increase of the modulating voltage, but the product of the solitary wave amplitude and the square of the width remains nearly constant. The experimental findings are compared with analytic soliton solutions of a model Kortweg-de Vries equation.

  7. Thermoelectric properties of a plasma at megabar pressures

    Science.gov (United States)

    Starostin, A. N.; Gryaznov, V. K.; Filippov, A. V.

    2016-11-01

    A nonideal hydrogen plasma is theoretically studied for the first time as the working medium of a thermoelectric generator. A method is proposed for the calculation of the electrical conductivity, Seebeck coefficient, and thermal conductivity of the nonideal plasma in a wide range of densities and temperatures, including the region of strong degeneracy of electrons, which is achieved in experiments on the quasi-isentropic compression of deuterium and where a "plasma phase transition" (transition with a sharp change in the component composition) is possibly implemented. In this method, the kinetic coefficients are calculated together with the equation of states of the nonideal plasma. It is shown for the first time that the Seebeck coefficient in such a medium reaches 5500 μV/(K cm), which is an order of magnitude larger than that in currently available semiconductor materials used in thermoelectric generators. It is found that the figure of merit in hydrogen, which has a high thermal conductivity, at megabar pressures reaches 0.4, which is only slightly below that in currently available semiconductor materials.

  8. Influence of the initial transient state of plasma and hydrogen pre-treatment on the interface properties of a silicon heterojunction fabricated by PECVD

    Institute of Scientific and Technical Information of China (English)

    Wu Chunbo; Zhou Yuqin; Li Guorong; Liu Fengzhen

    2011-01-01

    Amorphous/crystalline silicon heterojunctions (a-Si:H/c-Si SHJ) were prepared by plasma-enhanced chemical vapor deposition (PECVD).The influence of the initial transient state of the plasma and the hydrogen pre-treatment on the interfacial properties of the heterojunctions was studied.Experimental results indicate that:(1) The instability of plasma in the initial stage will damage the surface ofc-Si.Using a shutter to shield the substrate for 100 s from the starting discharge can prevent the influence of the instable plasma process on the Si surface and also the interface between a-Si and c-Si.(2) The effect of hydrogen pre-treatment on interfacial passivation is constrained by the extent of hydrogen plasma bombardment and the optimal time for hydrogen pre-treatment is about 60 s.

  9. The evaluation of surface and adhesive bonding properties for cold rolled steel sheet for automotive treated by Ar/O{sub 2} atmospheric pressure plasma

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chan Joo; Lee, Sang Kon; Kim Byung Min [Pusan National University, Busan (Korea, Republic of); Park, Keun Whan [Sungwoo Hitech Technical Institute, Busan (Korea, Republic of)

    2008-04-15

    Cold rolled steel sheet for automotive was treated by Ar/O{sub 2} atmospheric pressure plasma to improve the adhesive bonding strength. Through the contact angle test and calculation of surface free energy for cold rolled steel sheet, the changes of surface properties were investigated before and after plasma treatment. The contact angle was decreased and surface free energy was increased after plasma treatment. And the change of surface roughness and morphology were observed by AFM(Atomic Force Microscope). The surface roughness of steel sheet was slightly changed. Based on Taguchi method, single lap shear test was performed to investigate the effect of experimental parameter such as plasma power, treatment time and flow rate of O{sub 2} gas. Results shows that the bonding strength of steel sheet treated in Ar/O{sub 2} atmospheric pressure plasma was improved about 20% compared with untreated sheet.

  10. Properties of stable nonstoichiometric nanoceria produced by thermal plasma

    Science.gov (United States)

    Lan, Yuan-Pei; Sohn, Hong Yong; Mohassab, Yousef; Liu, Qingcai; Xu, Baoqiang

    2017-08-01

    Thermally stable blue nonstoichiometric nanoceria was produced by feeding nanoceria with an average size of 50 nm into a DC thermal plasma reactor. The effects of different plasma power levels and atmospheres were investigated. XRD results showed the ceria lattice parameter increased with plasma power. SEM and TEM results showed that the shape of nanoparticles changed after plasma treatment; the blue nonstoichiometric nanoceria had highly regular shapes such as triangular pyramids and polyhedral in contrast to the irregular shape of the raw nanoceria. Significant downshift was found in the Raman spectra of the plasma products, with a 7.9-cm-1 shift compared with raw nanoceria, which was explained by the reduction of Ce4+. X-ray photoelectron spectroscopy results showed that the Ce3+ fraction increased from 14% in the raw nanoceria to 38-39% for the product CeO2- x , indicating the high reduction state on the ceria surface. It was determined that this blue nonstoichiometric nanoceria was stable up to 400 °C in air, but the color changed to pale yellow after 4 h at 500 °C in air indicating oxidation to CeO2. Additionally, this novel stable nano-CeO2- x caused a red shift in the UV-visible absorption results; a 48-nm red shift occurred for the nonstoichiometric nanoceria produced at 15 kW compared with the raw nanoceria. The band gap was calculated to be 2.5 eV while it was 3.2 eV for the raw nanoceria, indicating that this novel stable blue nonstoichiometric nanoceria should be a promising material for optical application.

  11. Alternating current electrical properties of Argon plasma treated jute

    Directory of Open Access Journals (Sweden)

    Md. Masroor Anwer

    2012-09-01

    Full Text Available Low temperature plasma (LTP treatment, a kind of environment friendly surface modification technique, was applied to biodegradable and environment friendly jute fibre with the use of nonpolymerizing gas, namely argon, at various discharge power levels and exposure times with a definite flow rate. Scanning electron microscopy (SEM microphotographs reveal that the roughness of the fibre surfaces increases with the increase of discharge power and exposure time. This is caused due to the bombardment of high energetic ions on the fibre surface and the fibres become sputtered. The capacitance and the electrical conductance of raw and LTP treated jute fibre were measured as a function of frequency at room temperature. The dielectric constant, conductivity, dielectric loss-tangent and the surface morphology of raw and LTP treated jute as a function of frequency were studied at room temperature. It was observed that for all the samples the dielectric constant almost constant at lower frequencies and then decreases gradually in the high frequency region. In addition, dielectric constant increases with the increase of plasma treatment time as well as discharge power. It is also observed for all the samples that the conductivity increases as the frequency increases with a lower slope in the low frequency region and with a higher slope in the higher frequency region. In addition, the conductivity decreases with the increase of plasma exposure time as well as discharge power. The conductivity increases with frequency due to the hopping mechanism of electrons. The dependence of the dielectric loss-tangent with frequency at different treatment times and discharge powers for all the jute samples show small relaxation peaks in the very low frequency region. The dielectric loss-tangent decreases with the increase of both plasma treatment time and discharge power. In addition, the relaxation peaks are shifted to the higher frequency region as the plasma treatment

  12. Antibacterial Property of Cu Modified Stainless Steel by Plasma Surface Alloying

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiang-yu; HUANG Xiao-bo; JIANG Li; MA Yong; FAN Ai-lan; TANG Bin

    2012-01-01

    Stainless steel(SS) is not recommended to be used in hospital environments for work surfaces and door furniture due to the lack of antibacterial properties.To this end,a novel SS surface modified layer with both a quick bacterial killing rate and relatively thick has been obtained by plasma surface alloying with Cu.The microstructure,elements distribution and phase identification were analyzed by SEM,GDS,XRD and XPS.A spread plate method was adopted for evaluation of antibacterial property of specimens against Escherichia coli(E.coli) and Staphylococcus aureus(S.aureus).The experimental results demonstrate that the surface modified layer with the thickness of about 26 μm is uniform and dense.The layer is mainly composed of a mixture of pure Cu,expanded austenite phase and a few Fe3O4 phase.The Cu modified layer exhibits excellent antibacterial effects against E.coli and S.aureus within 1 h.No viable E.coli and S.aureus was found after 3 h(100% killed).The modified layer is relatively thick,hence it is expected that the Cu modified SS will have a durable antibacterial function

  13. Structure and properties of nitrided surface layer produced on NiTi shape memory alloy by low temperature plasma nitriding

    Energy Technology Data Exchange (ETDEWEB)

    Czarnowska, Elżbieta [Children' s Memorial Health Institute, Pathology Department, Al. Dzieci Polskich 20, 04-730 Warsaw (Poland); Borowski, Tomasz [Warsaw University of Technology, Faculty of Materials Science and Engineering, Wołoska 141, 02-507 Warsaw (Poland); Sowińska, Agnieszka [Children' s Memorial Health Institute, Pathology Department, Al. Dzieci Polskich 20, 04-730 Warsaw (Poland); Lelątko, Józef [Silesia University, Faculty of Computer Science and Materials Science, 75 Pułku Piechoty 1A, 41-500 Chorzów (Poland); Oleksiak, Justyna; Kamiński, Janusz; Tarnowski, Michał [Warsaw University of Technology, Faculty of Materials Science and Engineering, Wołoska 141, 02-507 Warsaw (Poland); Wierzchoń, Tadeusz, E-mail: twierz@inmat.pw.edu.pl [Warsaw University of Technology, Faculty of Materials Science and Engineering, Wołoska 141, 02-507 Warsaw (Poland)

    2015-04-15

    Highlights: • Low temperature plasma nitriding process of NiTi shape memory alloy is presented. • The possibility of treatment details of sophisticated shape. • TiN surface layer has diffusive character. • TiN surface layer increases corrosion resistance of NiTi alloy. • Produced TiN layer modify the biological properties of NiTi alloy. - Abstract: NiTi shape memory alloys are used for bone and cardiological implants. However, on account of the metallosis effect, i.e. the release of the alloy elements into surrounding tissues, they are subjected to various surface treatment processes in order to improve their corrosion resistance and biocompatibility without influencing the required shape memory properties. In this paper, the microstructure, topography and morphology of TiN surface layer on NiTi alloy, and corrosion resistance, both before and after nitriding in low-temperature plasma at 290 °C, are presented. Examinations with the use of the potentiodynamic and electrochemical impedance spectroscopy methods were carried out and show an increase of corrosion resistance in Ringer's solution after glow-discharge nitriding. This surface titanium nitride layer also improved the adhesion of platelets and the proliferation of osteoblasts, which was investigated in in vitro experiments with human cells. Experimental data revealed that nitriding NiTi shape memory alloy under low-temperature plasma improves its properties for bone implant applications.

  14. Calculation of 2-temperature plasma thermo-physical properties considering condensed phases: application to CO2-CH4 plasma: part 1. Composition and thermodynamic properties

    Science.gov (United States)

    Wu, Yi; Chen, Zhexin; Rong, Mingzhe; Cressault, Yann; Yang, Fei; Niu, Chunping; Sun, Hao

    2016-10-01

    As the first part of this series of papers, a new calculation method for composition and thermodynamic properties of 2-temperature plasma considering condensed species under local chemical equilibrium (LCE) and local phase equilibrium assumption is presented. The 2-T mass action law and chemical potential are used to determine the composition of multiphase system. The thermo-physical properties of CO2-CH4 mixture, which may be a possible substitution for SF6, are calculated by this method as an example. The influence of condensed graphite, non-LTE effect, mixture ratio and pressure on the thermo-physical properties has been discussed. The results will serve as reliable reference data for computational simulation of CO2-CH4 plasmas.

  15. Definition of acceptance criteria for the ITER divertor plasma-facing components through systematic experimental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Escourbiac, F; Richou, M; Guigon, R; Durocher, A; Schlosser, J; Grosman, A [CEA/IRFM, F-13108, Saint-Paul-lez-Durance (France); Constans, S [AREVA-NP, Le Creusot (France); Merola, M [ITER Organization, Cadarache (France); Riccardi, B [Fusion For Energy, Barcelona (Spain)], E-mail: frederic.escourbiac@cea.fr

    2009-12-15

    Experience has shown that a critical part of the high-heat flux (HHF) plasma-facing component (PFC) is the armour to heat sink bond. An experimental study was performed in order to define acceptance criteria with regards to thermal hydraulics and fatigue performance of the International Thermonuclear Experimental Reactor (ITER) divertor PFCs. This study, which includes the manufacturing of samples with calibrated artificial defects relevant to the divertor design, is reported in this paper. In particular, it was concluded that defects detectable with non-destructive examination (NDE) techniques appeared to be acceptable during HHF experiments relevant to heat fluxes expected in the ITER divertor. On the basis of these results, a set of acceptance criteria was proposed and applied to the European vertical target medium-size qualification prototype: 98% of the inspected carbon fibre composite (CFC) monoblocks and 100% of tungsten (W) monoblock and flat tiles elements (i.e. 80% of the full units) were declared acceptable.

  16. Criticality in conserved dynamical systems: Experimental observation vs. exact properties

    Science.gov (United States)

    Marković, Dimitrije; Gros, Claudius; Schuelein, André

    2013-03-01

    Conserved dynamical systems are generally considered to be critical. We study a class of critical routing models, equivalent to random maps, which can be solved rigorously in the thermodynamic limit. The information flow is conserved for these routing models and governed by cyclic attractors. We consider two classes of information flow, Markovian routing without memory and vertex routing involving a one-step routing memory. Investigating the respective cycle length distributions for complete graphs, we find log corrections to power-law scaling for the mean cycle length, as a function of the number of vertices, and a sub-polynomial growth for the overall number of cycles. When observing experimentally a real-world dynamical system one normally samples stochastically its phase space. The number and the length of the attractors are then weighted by the size of their respective basins of attraction. This situation is equivalent, for theory studies, to "on the fly" generation of the dynamical transition probabilities. For the case of vertex routing models, we find in this case power law scaling for the weighted average length of attractors, for both conserved routing models. These results show that the critical dynamical systems are generically not scale-invariant but may show power-law scaling when sampled stochastically. It is hence important to distinguish between intrinsic properties of a critical dynamical system and its behavior that one would observe when randomly probing its phase space.

  17. Furniture wood wastes: experimental property characterisation and burning tests.

    Science.gov (United States)

    Tatàno, Fabio; Barbadoro, Luca; Mangani, Giovanna; Pretelli, Silvia; Tombari, Lucia; Mangani, Filippo

    2009-10-01

    Referring to the industrial wood waste category (as dominant in the provincial district of Pesaro-Urbino, Marche Region, Italy), this paper deals with the experimental characterisation and the carrying out of non-controlled burning tests (at lab- and pilot-scale) for selected "raw" and primarily "engineered" ("composite") wood wastes. The property characterisation has primarily revealed the following aspects: potential influence on moisture content of local weather conditions at outdoor wood waste storage sites; generally, higher ash contents in "engineered" wood wastes as compared with "raw" wood wastes; and relatively high energy content values of "engineered" wood wastes (ranging on the whole from 3675 to 5105 kcal kg(-1) for HHV, and from 3304 to 4634 kcal kg(-1) for LHV). The smoke qualitative analysis of non-controlled lab-scale burning tests has primarily revealed: the presence of specific organic compounds indicative of incomplete wood combustion; the presence exclusively in "engineered" wood burning tests of pyrroles and amines, as well as the additional presence (as compared with "raw" wood burning) of further phenolic and containing nitrogen compounds; and the potential environmental impact of incomplete industrial wood burning on the photochemical smog phenomenon. Finally, non-controlled pilot-scale burning tests have primarily given the following findings: emission presence of carbon monoxide indicative of incomplete wood combustion; higher nitrogen oxide emission values detected in "engineered" wood burning tests as compared with "raw" wood burning test; and considerable generation of the respirable PM(1) fraction during incomplete industrial wood burning.

  18. Experimental study on mechanical properties of aircraft honeycomb sandwich structures

    Directory of Open Access Journals (Sweden)

    Talebi Mazraehshahi H.

    2010-06-01

    Full Text Available Mechanical behaviour of sandwich panels under different conditions have been exprimentally studied in this research to increase the knowledge of aircraft sandwich panel structures and facilitate design criteria for aircraft structures. Tests were concentrated on the honeycomb sandwich structures under different loads including flexural, insert shear, flat wise tension and compression loads. Furthermore, effect of core density and face material on mechanical behavior of different samples were investigated and compared with analytical and FEM method. Effects of skin thickness on strength of honycomb sandwhich panels under shear pull out and moments have also been considerd in this study. According to this investigation, insert strength and flexural test under different load conditions is strongly affected by face thickness, but compression and tearoff (falt wise tensile properties of a sandwich panel depends on core material. The study concludes that the correlation between experimental results and the analytical predictions will enable the designer to predict the mechanical behaviour and strength of a sandwich beam; however, applied formula may lead engineers to unreliable results for shear modulus.

  19. Criticality in conserved dynamical systems: experimental observation vs. exact properties.

    Science.gov (United States)

    Marković, Dimitrije; Gros, Claudius; Schuelein, André

    2013-03-01

    Conserved dynamical systems are generally considered to be critical. We study a class of critical routing models, equivalent to random maps, which can be solved rigorously in the thermodynamic limit. The information flow is conserved for these routing models and governed by cyclic attractors. We consider two classes of information flow, Markovian routing without memory and vertex routing involving a one-step routing memory. Investigating the respective cycle length distributions for complete graphs, we find log corrections to power-law scaling for the mean cycle length, as a function of the number of vertices, and a sub-polynomial growth for the overall number of cycles. When observing experimentally a real-world dynamical system one normally samples stochastically its phase space. The number and the length of the attractors are then weighted by the size of their respective basins of attraction. This situation is equivalent, for theory studies, to "on the fly" generation of the dynamical transition probabilities. For the case of vertex routing models, we find in this case power law scaling for the weighted average length of attractors, for both conserved routing models. These results show that the critical dynamical systems are generically not scale-invariant but may show power-law scaling when sampled stochastically. It is hence important to distinguish between intrinsic properties of a critical dynamical system and its behavior that one would observe when randomly probing its phase space.

  20. Physical and chemical properties of dust produced in a N2-CH4 RF plasma discharge

    Science.gov (United States)

    Ouni, F.; Adande, G.; Thissen, R.; Alcouffe, G.; Szopa, C.; Schmitz-Afonso, I.; Laprévote, O.; Quirico, E.; Brissaud, O.; Carrasco, N.; Cernogora, G.

    2008-09-01

    Titan's atmospheric chemistry is simulated using a Capacitively Coupled Plasma discharge produced in a N2-CH4 mixture. The produced solid particles are analysed ex-situ. Chemical properties are deduced from: elemental composition, FTIR and LTQ-Orbitrap mass spectrometer. Optical properties are deduced from reflectivity in visible and IR range.

  1. Design of the plasma grid for a short pulse negative ion source experimental setup at HUST

    Science.gov (United States)

    Zuo, C.; Li, D.; Chen, D.; Zhao, P.; Xu, Q.; Liao, Z.

    2017-08-01

    An experimental setup of a radio frequency (RF) driven negative hydrogen ion source has been developed at Huazhong University of Science and Technology (HUST). The setup without cesium oven and an extraction system had been completed and the plasma was ignited in the driver successfully in 2014. An extraction system with small area (5540 mm2) for short pulse (˜ 4 s) was designed to extract the negative hydrogen ions. Generally, the plasma grid temperature is controlled to reach 150 °C by the cooling channels inside the grid. But another method that we could use the PG current to raise the temperature is being considered only for the short pulse condition. An experiment was introduced to prove the feasibility of this method. A magnetic field produced by current flowing through the plasma grid is required to reduce the electron temperature and suppress the co-extraction electrons. The filter field homogeneity has been studied in detail by finite element method. There have been significant improvements regarding the field homogeneity by means of the grid geometry optimization.

  2. Bulk-bronzied graphites for plasma-facing components in ITER (International Thermonuclear Experimental Reactor)

    Energy Technology Data Exchange (ETDEWEB)

    Hirooka, Y.; Conn, R.W.; Doerner, R.; Khandagle, M. (California Univ., Los Angeles, CA (USA). Inst. of Plasma and Fusion Research); Causey, R.; Wilson, K. (Sandia National Labs., Livermore, CA (USA)); Croessmann, D.; Whitley, J. (Sandia National Labs., Albuquerque, NM (USA)); Holland, D.; Smolik, G. (Idaho National Engineering Lab., Idaho Falls, ID (USA)); Matsuda, T.; Sogabe, T. (Toyo Tanso Co. Ltd., O

    1990-06-01

    Newly developed bulk-boronized graphites and boronized C-C composites with a total boron concentration ranging from 1 wt % to 30 wt % have been evaluated as plasma-facing component materials for the International Thermonuclear Experimental Reactor (ITER). Bulk-boronized graphites have been bombarded with high-flux deuterium plasmas at temperatures between 200 and 1600{degree}C. Plasma interaction induced erosion of bulk-boronized graphites is observed to be a factor of 2--3 smaller than that of pyrolytic graphite, in regimes of physical sputtering, chemical sputtering and radiation enhanced sublimation. Postbombardment thermal desorption spectroscopy indicates that bulk-boronized graphites enhance recombinative desorption of deuterium, which leads to a suppression of the formation of deuterocarbon due to chemical sputtering. The tritium inventory in graphite has been found to decrease by an order of magnitude due to 10 wt % bulk-boronization at temperatures above 1000{degree}C. The critical heat flux to induce cracking for bulk-boronized graphites has been found to be essentially the same as that for non-boronized graphites. Also, 10 wt % bulk-boronization of graphite hinders air oxidation nearly completely at 800{degree}C and reduces the steam oxidation rate by a factor of 2--3 at around 1100 and 1350{degree}C. 38 refs., 5 figs.

  3. Fishbone activity in experimental advanced superconducting tokamak neutral beam injection plasma

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Liqing; Zhang, Jizong; Chen, Kaiyun, E-mail: Kychen@ipp.cas.cn, E-mail: lqhu@ipp.cas.cn; Hu, Liqun, E-mail: Kychen@ipp.cas.cn, E-mail: lqhu@ipp.cas.cn; Li, Erzhong; Lin, Shiyao; Shi, Tonghui; Duan, Yanmin [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Zhu, Yubao [Department of Physics and Astronomy, University of California, Irvine, California 92697-4575 (United States)

    2015-12-15

    Repetitive fishbones near the trapped ion procession frequency were observed for the first time in the neutral beam injection high confinement plasmas in Experimental Advanced Superconducting Tokamak (EAST) tokamak, and diagnosed using a solid-state neutral particle analyzer based on a compact silicon photodiode together with an upgraded high spatial-temporal-resolution multi-arrays soft X-ray (SX) system. This 1/1 typical internal kink mode propagates in the ion-diamagnetism direction with a rotation speed faster than the bulk plasma in the plasma frame. From the SX measurements, this mode frequency is typical of chirping down and the energetic particle effect related to the twisting mode structure. This ion fishbone was found able to trigger a multiple core sawtooth crashes with edge-2/1 sideband modes, as well as to lead to a transition from fishbone to long lived saturated kink mode to fishbone. Furthermore, using SX tomography, a correlation between mode amplitude and mode frequency was found. Finally, a phenomenological prey–predator model was found to reproduce the fishbone nonlinear process well.

  4. Formation of annular plasma downstream by magnetic aperture in the helicon experimental device

    Science.gov (United States)

    Ghosh, Soumen; Yadav, S.; Barada, K. K.; Chattopadhyay, P. K.; Ghosh, J.; Pal, R.; Bora, D.

    2017-02-01

    In the Helicon eXperimental (HeX) device, the geometric aperture is fixed, but the position of the magnetic aperture can be varied. Working with Argon gas in the pressure range of 1 - 10 × 10 - 4 mbar, an annular plasma (density ˜ 10 16 m - 3 ) is formed downstream, always in front of the magnetic aperture. This occurs irrespective of the relative position of the geometric aperture or the presence of a radial electric field. This is in contrary to the earlier proposition made by others that a radial electric field is necessary to produce a hollow plasma profile. Instead, the ionization of neutrals in the radially outer region by the tail electrons, rotating fast due to gradient-B drift in the azimuthal direction, seems to account for the observed off-axis density peaking in the present experiment. This also explains the variation of the plasma annulus diameter seen here by changing the input radio frequency power ( 100 - 800 W ) .

  5. Experimental Investigation on Electromagnetic Attenuation by Low Pressure Radio-Frequency Plasma for Cavity Structure

    Science.gov (United States)

    He, Xiang; Zhang, Yachun; Chen, Jianping; Chen, Yudong; Zeng, Xiaojun; Yao, Hong; Tang, Chunmei

    2016-01-01

    This paper reports on an experiment designed to test electromagnetic (EM) attenuation by radio-frequency (RF) plasma for cavity structures. A plasma reactor, in the shape of a hollow cylinder, filled with argon gas at low pressure, driven by a RF power source, was produced by wave-transmitting material. The detailed attenuations of EM waves were investigated under different conditions: the incident frequency is 1-4 GHz, the RF power supply is 13.56 MHz and 1.6-3 kW, and the argon pressure is 75-200 Pa. The experimental results indicate that 5-15 dB return loss can be obtained. From a first estimation, the electron density in the experiment is approximately (1.5-2.2) × 1016 m-3 and the collision frequency is about 11-30 GHz. The return loss of EM waves was calculated using a finite-difference time-domain (FDTD) method and it was found that it has a similar development with measurement. It can be confirmed that RF plasma is useful in the stealth of cavity structures such as jet-engine inlet. supported by National Natural Science Foundation of China (No. 51107033) and the Fundamental Research Funds for the Central Universities of China (No. 2013B33614)

  6. An experimental study of a plasma actuator in absence of free airflow: Ionic wind velocity profile

    Science.gov (United States)

    Mestiri, R.; Hadaji, R.; Ben Nasrallah, S.

    2010-08-01

    In this study, we are interested in the direct current electrical corona discharge created between two wire electrodes. The experimental results are related to some electroaerodynamic actuators based on the direct current corona discharge at the surface of a dielectric material. Several geometrical forms are selected for the dielectric surface, such as a plate, a cylinder, and a NACA 0015 aircraft wing. The current density-electric field characteristics are presented for different cases in order to determine the discharge regimes. The corona discharge produces nonthermal plasma, so it is called plasma discharge. Plasma discharge creates a tangential ionic wind above the surface at the vicinity of the wall. The ionic wind induced by the corona discharge is measured in absence of free external airflow. The ionic wind velocity profiles and the maximum induced tangential force are given for different surface forms, so it is possible to compare the actuators effect based on the span of the ionic wind velocity and thrust values. The higher ionic wind velocity is obtained with the NACA profile, which shows the effectiveness of this actuator for the airflow control.

  7. Experimental, Numerical and Analytical Studies of the MHD-driven plasma jet, instabilities and waves

    Science.gov (United States)

    Zhai, Xiang

    This thesis describes a series of experimental, numerical, and analytical studies involving the Caltech magnetohydrodynamically (MHD)-driven plasma jet experiment. The plasma jet is created via a capacitor discharge that powers a magnetized coaxial planar electrodes system. The jet is collimated and accelerated by the MHD forces. We present three-dimensional ideal MHD finite-volume simulations of the plasma jet experiment using an astrophysical magnetic tower as the baseline model. A compact magnetic energy/helicity injection is exploited in the simulation analogous to both the experiment and to astrophysical situations. Detailed analysis provides a comprehensive description of the interplay of magnetic force, pressure, and flow effects. We delineate both the jet structure and the transition process that converts the injected magnetic energy to other forms. When the experimental jet is sufficiently long, it undergoes a global kink instability and then a secondary local Rayleigh-Taylor instability caused by lateral acceleration of the kink instability. We present an MHD theory of the Rayleigh-Taylor instability on the cylindrical surface of a plasma flux rope in the presence of a lateral external gravity. The Rayleigh-Taylor instability is found to couple to the classic current-driven instability, resulting in a new type of hybrid instability. The coupled instability, produced by combination of helical magnetic field, curvature of the cylindrical geometry, and lateral gravity, is fundamentally different from the classic magnetic Rayleigh-Taylor instability occurring at a two-dimensional planar interface. In the experiment, this instability cascade from macro-scale to micro-scale eventually leads to the failure of MHD. When the Rayleigh-Taylor instability becomes nonlinear, it compresses and pinches the plasma jet to a scale smaller than the ion skin depth and triggers a fast magnetic reconnection. We built a specially designed high-speed 3D magnetic probe and

  8. Thermodynamic properties and transport coefficients of two-temperature helium thermal plasmas

    Science.gov (United States)

    Guo, Xiaoxue; Murphy, Anthony B.; Li, Xingwen

    2017-03-01

    Helium thermal plasmas are in widespread use in arc welding and many other industrial applications. Simulation of these processes relies on accurate plasma property data, such as plasma composition, thermodynamic properties and transport coefficients. Departures from LTE (local thermodynamic equilibrium) generally occur in some regions of helium plasmas. In this paper, properties are calculated allowing for different values of the electron temperature, T e, and heavy-species temperature, T h, at atmospheric pressure from 300 K to 30 000 K. The plasma composition is first calculated using the mass action law, and the two-temperature thermodynamic properties are then derived. The viscosity, diffusion coefficients, electrical conductivity and thermal conductivity of the two-temperature helium thermal plasma are obtained using a recently-developed method that retains coupling between electrons and heavy species by including the electron–heavy-species collision term in the heavy-species Boltzmann equation. It is shown that the viscosity and the diffusion coefficients strongly depend on non-equilibrium ratio θ (θ ={{T}\\text{e}}/{{T}\\text{h}} ), through the plasma composition and the collision integrals. The electrical conductivity, which depends on the electron number density and ordinary diffusion coefficients, and the thermal conductivity have similar dependencies. The choice of definition of the Debye length is shown to affect the electrical conductivity significantly for θ  >  1. By comparing with literature data, it is shown that the coupling between electrons and heavy species has a significant influence on the electrical conductivity, but not on the viscosity. Plasma properties are tabulated in the supplementary data.

  9. Relativistic heat conduction and thermoelectric properties of nonuniform plasmas

    CERN Document Server

    Honda, M

    2003-01-01

    Relativistic heat transport in electron-two-temperature plasmas with density gradients has been investigated. The Legendre expansion analysis of relativistically modified kinetic equations shows that strong inhibition of heat flux appears in relativistic temperature regimes, suppressing the classical Spitzer-H{\\"a}rm conduction. The Seebeck coefficient, the Wiedemann-Franz law, and the thermoelectric figure of merit are derived in the relativistic regimes.

  10. Parkinson's disease plasma biomarkers: an automated literature analysis followed by experimental validation.

    Science.gov (United States)

    Alberio, Tiziana; Bucci, Enrico M; Natale, Massimo; Bonino, Dario; Di Giovanni, Marco; Bottacchi, Edo; Fasano, Mauro

    2013-09-02

    Diagnosis of Parkinson's disease (PD) is currently assessed by the clinical evaluation of extrapyramidal signs. The identification of specific biomarkers would be advisable, however most studies stop at the discovery phase, with no biomarkers reaching clinical exploitation. To this purpose, we developed an automated literature analysis procedure to retrieve all the background knowledge available in public databases. The bioinformatic platform allowed us to analyze more than 51,000 scientific papers dealing with PD, containing information on 4121 proteins. Out of these, we could track back 35 PD-related proteins as present in at least two published 2-DE maps of human plasma. Then, 9 different proteins (haptoglobin, transthyretin, apolipoprotein A-1, serum amyloid P component, apolipoprotein E, complement factor H, fibrinogen γ, thrombin, complement C3) split into 32 spots were identified as a potential diagnostic pattern. Eventually, we compared the collected literature data to experimental gels from 90 subjects (45 PD patients, 45 non-neurodegenerative control subjects) to experimentally verify their potential as plasma biomarkers of PD.

  11. Experimental Identification of Electric Field Excitation Mechanisms in a Structural Transition of Tokamak Plasmas

    Science.gov (United States)

    Kobayashi, T.; Itoh, K.; Ido, T.; Kamiya, K.; Itoh, S.-I.; Miura, Y.; Nagashima, Y.; Fujisawa, A.; Inagaki, S.; Ida, K.; Hoshino, K.

    2016-01-01

    Self-regulation between structure and turbulence, which is a fundamental process in the complex system, has been widely regarded as one of the central issues in modern physics. A typical example of that in magnetically confined plasmas is the Low confinement mode to High confinement mode (L-H) transition, which is intensely studied for more than thirty years since it provides a confinement improvement necessary for the realization of the fusion reactor. An essential issue in the L-H transition physics is the mechanism of the abrupt “radial” electric field generation in toroidal plasmas. To date, several models for the L-H transition have been proposed but the systematic experimental validation is still challenging. Here we report the systematic and quantitative model validations of the radial electric field excitation mechanism for the first time, using a data set of the turbulence and the radial electric field having a high spatiotemporal resolution. Examining time derivative of Poisson’s equation, the sum of the loss-cone loss current and the neoclassical bulk viscosity current is found to behave as the experimentally observed radial current that excites the radial electric field within a few factors of magnitude. PMID:27489128

  12. Experimental Measurement of Asymmetric Fluctuations of Poloidal Magnetic Field in Damavand Tokomak at Different Plasma Currents

    Science.gov (United States)

    Moslehi-Fard, Mahmoud; Alinejad, Naser; Rasouli, Chapar; Sadigzadeh, Asghar

    2012-08-01

    Toroidal and Poloidal magnetic fields have an important effect on the tokomak topology. Damavand Tokomak is a small size tokomak characterized with k = 1.2, B t = 1T, R 0 = 36 cm, maximum plasma current is about 35 KA with a discharge time of 21 ms. In this experimental work, the variation of poloidal magnetic field on the torodial cross section is measured and analyzed. In order to measure the polodial magnetic field, 18 probes were installed on the edge of tokomak plasma with ∆θ = 18°, while a limiter was installed inside the torus. Plasma current, I p, induces a polodial magnetic field, B p, smaller than the torodial magnetic field B t. Magnetic lines B produced as a combination of B t and B p, are localized on the nested toroidal magnetic surfaces. The presence of polodial magnetic field is necessary for particles confinement. Mirnov oscillations are the fluctuations of polodial magnetic field, detected by magnetic probes. Disrupted instability in Tokomak typically starts with mirnov oscillations which appear as fluctuations of polodial magnetic field and is detected by magnetic probes. Minor disruptions inside the plasma can contain principal magnetic islands and their satellites can cause the annihilation of plasma confinement. Production of thin layer of turbulent magnetic field lines cause minor disruption. Magnetic limiter may cause the deformation of symmetric equilibrium configuration and chaotic magnetic islands reveal in plasma occurring in thin region of chaotic field lines close to their separatrix. The width of this chaotic layer in the right side of poloidal profile of Damavand Tokomak is smaller than the width in the left side profile because of Shafranov displacement. Ergodic region in the left side of profile develops a perturbation on the magnetic polodial field lines, B p, that are greater in magnitude than that in the right side, although the values of B p on the left side are smaller than that on the right side of the profile. The Left

  13. Comparative study of structural and optical properties of pulsed and RF plasma polymerized aniline films

    Energy Technology Data Exchange (ETDEWEB)

    Barman, Tapan; Pal, Arup R., E-mail: arpal@iasst.gov.in; Chutia, Joyanti

    2014-09-15

    Graphical abstract: - Highlights: • Pulse DC and RF plasma is used for synthesis of conducting polymer films. • Conjugated structure retention is better at optimum powers in both the processes. • Conjugated structure retention is better in case of RF plasma prepared films. • Band gap is lower in case of RF plasma prepared films at higher power. • Defect in pulse plasma prepared film is less than RF plasma prepared thin films. - Abstract: Plasma polymerization of aniline is carried out by means of continuous RF and pulsed DC glow discharge plasma in a common reactor at different applied powers. The discharge control variables are optimized for good quality film growth and the role of fragmentation of the molecular structure on the structural, optical, morphological and optophysical properties of the deposited plasma polymerized aniline (PPAni) layers is investigated. Retention of the conjugated structure is found to be prominent at optimum applied power to the plasma in both the continuous RF and pulsed DC polymerization techniques. Improvement in conjugated structure and chain length have been observed in both the continuous RF and pulse DC PPAni thin films with the increase in applied power to the plasma up to a certain limit of applied power when working pressure is fixed at 0.15 mbar. A decrease in optical bandgap with the increase in applied power to the plasma is observed in both the pulsed DC and RF PPAni thin films, but it is more significant in case of RF PPAni films. The plasma polymerized aniline thin films are found to emit photoluminescence due to band to band transition and defects generated in the structure.

  14. Influence of magnetic field on microstructure and properties of Ni60 plasma surfacing layer

    Institute of Scientific and Technical Information of China (English)

    Liu Zhengjun; Sun Jinggang; Liu Duo; Wang Jibing; Zhang Guiqing

    2005-01-01

    In order to control the shape and distribution of hardening phase in plasma surfacing deposit, a longitudinal DC magnetic field was applied during plasma surfacing of nickel-based alloy Ni60. Hardness, wearing resistance, microstructure and phase constituent of the plasma surfacing layer were investigated. It was revealed that the hardness and wearing resistance of the Ni60 plasma surfacing layer could gotten significantly enhanced through introducing magnetic field. The mechanical properties of the surfacing deposit were optimal when magnetic field current is 1 A. The metallurgical analysis showed that the microstructure of the Ni60 plasma surfacing layer was mainly composed of γ solid solution and some hardening phase particles such as Cr7 C3 with an application of the magnetic field.

  15. Experimental control of the beam properties of laser-accelerated protons and carbon ions

    Energy Technology Data Exchange (ETDEWEB)

    Amin, Munib

    2008-12-15

    The laser generation of energetic high quality beams of protons and heavier ions has opened up the door to a plethora of applications. These beams are usually generated by the interaction of a short pulse high power laser with a thin metal foil target. They could already be applied to probe transient phenomena in plasmas and to produce warm dense matter by isochoric heating. Other applications such as the production of radioisotopes and tumour radiotherapy need further research to be put into practice. To meet the requirements of each application, the properties of the laser-accelerated particle beams have to be controlled precisely. In this thesis, experimental means to control the beam properties of laser-accelerated protons and carbon ions are investigated. The production and control of proton and carbon ion beams is studied using advanced ion source designs: Experiments concerning mass-limited (i.e. small and isolated) targets are conducted. These targets have the potential to increase both the number and the energy of laser-accelerated protons. Therefore, the influence of the size of a plane foil target on proton beam properties is measured. Furthermore, carbon ion sources are investigated. Carbon ions are of particular interest in the production of warm dense matter and in cancer radiotherapy. The possibility to focus carbon ion beams is investigated and a simple method for the production of quasi-monoenergetic carbon ion beams is presented. This thesis also provides an insight into the physical processes connected to the production and the control of laser-accelerated ions. For this purpose, laser-accelerated protons are employed to probe plasma phenomena on laser-irradiated targets. Electric fields evolving on the surface of laser-irradiated metal foils and hollow metal foil cylinders are investigated. Since these fields can be used to displace, collimate or focus proton beams, understanding their temporal and spatial evolution is crucial for the design of

  16. Experimental investigation of SDBD plasma actuator driven by AC high voltage with a superimposed positive pulse bias voltage

    Science.gov (United States)

    Qi, Xiao-Hua; Yan, Hui-Jie; Yang, Liang; Hua, Yue; Ren, Chun-Sheng

    2017-08-01

    In this work, a driven voltage consisting of AC high voltage with a superimposed positive pulse bias voltage ("AC+ Positive pulse bias" voltage) is adopted to study the performance of a surface dielectric barrier discharge plasma actuator under atmospheric conditions. To compare the performance of the actuator driven by single-AC voltage and "AC+ Positive pulse bias" voltage, the actuator-induced thrust force and power consumption are measured as a function of the applied AC voltage, and the measured results indicate that the thrust force can be promoted significantly after superimposing the positive pulse bias voltage. The physical mechanism behind the thrust force changes is analyzed by measuring the optical properties, electrical characteristics, and surface potential distribution. Experimental results indicate that the glow-like discharge in the AC voltage half-cycle, next to the cycle where a bias voltage pulse has been applied, is enhanced after applying the positive pulse bias voltage, and this perhaps is the main reason for the thrust force increase. Moreover, surface potential measurement results reveal that the spatial electric field formed by the surface charge accumulation after positive pulse discharge can significantly affect the applied external electric field, and this perhaps can be responsible for the experimental phenomenon that the decrease of thrust force is delayed by pulse bias voltage action after the filament discharge occurs in the glow-like discharge region. The schlieren images further verify that the actuator-induced airflow velocity increases with the positive pulse voltage.

  17. In Vitro and in Vivo Wound Healing Properties of Plasma and Serum from Crocodylus siamensis Blood.

    Science.gov (United States)

    Jangpromma, Nisachon; Preecharram, Sutthidech; Srilert, Thanawan; Maijaroen, Surachai; Mahakunakorn, Pramote; Nualkaew, Natsajee; Daduang, Sakda; Klaynongsruang, Sompong

    2016-06-28

    The plasma and serum of Crocodylus siamensis have previously been reported to exhibit potent antimicrobial, antioxidant, and anti-inflammatory activities. During wound healing, these biological properties play a crucial role for supporting the formation of new tissue around the injured skin in the recovery process. Thus, this study aimed to evaluate the wound healing properties of C. siamensis plasma and serum. The collected data demonstrate that crocodile plasma and serum were able to activate in vitro proliferation and migration of HaCaT, a human keratinocyte cell line, which represents an essential phase in the wound healing process. With respect to investigating cell migration, a scratch wound experiment was performed which revealed the ability of plasma and serum to decrease the gap of wounds in a dose-dependent manner. Consistent with the in vitro results, remarkably enhanced wound repair was also observed in a mouse excisional skin wound model after treatment with plasma or serum. The effects of C. siamensis plasma and serum on wound healing were further elucidated by treating wound infections by Staphylococcus aureus ATCC 25923 on mice skin coupled with a histological method. The results indicate that crocodile plasma and serum promote the prevention of wound infection and boost the re-epithelialization necessary for the formation of new skin. Therefore, this work represents the first study to demonstrate the efficiency of C. siamensis plasma and serum with respect to their wound healing properties and strongly supports the utilization of C. siamensis plasma and serum as therapeutic products for injured skin treatment.

  18. Structural properties of complex plasmas in a homogeneous dc discharge.

    Science.gov (United States)

    Mitic, S; Klumov, B A; Konopka, U; Thoma, M H; Morfill, G E

    2008-09-19

    We report on the first three-dimensional (3D) complex plasma structure analysis for an experiment that was performed in an elongated discharge tube in the absence of striations. The low frequency discharge was established with 1 kHz alternating dc current through a cylindrical glass tube filled with neon at 30 Pa. The injected particle cloud consisted of monodisperse microparticles. A scanning laser sheet and a camera were used to determine the particle position in 3D. The observed cylindrical-shaped particle cloud showed an ordered structure with a distinct outer particle shell. The observations are in agreement with performed molecular dynamics simulations.

  19. Experimental studies on the psychology of property rights

    NARCIS (Netherlands)

    El Haji, A.

    2017-01-01

    Property rights determine who owns what. Trade is very difficult if it is unclear who owns what or if property rights are not enforced. For this reason, many scholars argue that property rights and their enforcement are essential to economic prosperity. A distinction can be made between a legal and

  20. Experimental methods of determining thermal properties of granite

    Science.gov (United States)

    Determination of thermal properties of granite using the block method is discussed and compared with other methods. Problems that limit the accuracy of contact method in determining thermal properties of porous media are evaluated. Thermal properties of granite is determined in the laboratory with a...

  1. Estimation of dynamic properties of attractors observed in hollow copper electrode atmospheric pressure arc plasma system

    Indian Academy of Sciences (India)

    S Ghorul; S N Sahasrabudhe; P S S Murthy; A K Das; N Venkatramani

    2002-07-01

    Understanding of the basic nature of arc root fluctuation is still one of the unsolved problems in thermal arc plasma physics. It has direct impact on myriads of thermal plasma applications being implemented at present. Recently, chaotic nature of arc root behavior has been reported through the analysis of voltages, acoustic and optical signals which are generated from a hollow copper electrode arc plasma torch. In this paper we present details of computations involved in the estimation process of various dynamic properties and show how they reflect chaotic behavior of arc root in the system.

  2. Modification of surface properties of bell metal by radiofrequency plasma polymerization

    Science.gov (United States)

    Chutia, Joyanti; Choudhury, Arup Jyoti; Pal, Arup Ratan; Gogoi, Dolly

    2012-11-01

    Radiofrequency (RF) plasma polymerization is a convenient thin film deposition process as it facilitates the synthesis of polymer films with stable physico-chemical properties suitable for various applications in microelectronic, optical, and biomedical fields. The unique properties of these plasma polymerized films as compared to the conventional ones are strongly related to the proper adjustment of the external plasma discharge parameters and selection of suitable monomer. It is also important to study the fundamental chemistry of RF plasma polymerization process, so that one can successfully correlate the internal features of the discharge with the film properties and explore their possible technological applications. The possibility of using styrene-based plasma polymer (SPP) films on bell metal as protective coatings is explored in this work. Depositions of the films are carried out in RF Ar/styrene discharge at working pressure of 1.2 × 10-1 mbar and at the RF power range of 20 to 110 W. Optical emission spectroscopy (OES) is used to study the active species generated during plasma polymerization, while Fourier transform infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS) are used to analyze the internal chemical structures of the films. The protective performances of the SPP films are attempted to correlate with the results obtained from OES, FT-IR, and XPS analyses.

  3. Sporicidal properties from surface micro-discharge plasma under different plasma conditions at different humidities

    Science.gov (United States)

    Jeon, J.; Klaempfl, T. G.; Zimmermann, J. L.; Morfill, G. E.; Shimizu, T.

    2014-10-01

    In the current study, bacterial endospores of Geobacillus stearothermophilus are exposed to the surface micro-discharge plasma for 5 min and the humidity and power consumption are varied. At the low humidity of 5.5 ± 0.5 g m-3, almost no sporicidal effect (<0.5 log) is observed. At the high humidity of 17.9 ± 0.6 g m-3, the spore reduction increases monotonically up to 3.5 log with increasing power consumption. At a humidity of 10.4 ± 0.6 g m-3, the spores are inactivated in a limited range of power consumption with a maximum reduction of ˜2.5 log. The survival curves show a single-slope decrease of the spores. The contribution of heat and UV to the sporicidal effect as well as the inactivation of spores by the short-lived species from the plasma are ruled out. The concentration of ozone, one indicator for the long-lived species, is measured and no correlation with the sporicidal effect is found. In conclusion, water-related reactive species, e.g. hydrogen peroxide, appear to be responsible for the sporicidal effect under the investigated conditions. Furthermore, condensation of water at high humidity enables the plasma-activated water containing both long-lived and short-lived reactive species to contribute to the sporicidal effect.

  4. Effect of the thickness on properties of Al{sub 2}O{sub 3} coatings deposited by plasma spraying

    Energy Technology Data Exchange (ETDEWEB)

    Yin Zhijian [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Tao Shunyan, E-mail: shunyantao@mail.sic.ac.cn [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Zhou Xiaming [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China)

    2011-01-15

    Al{sub 2}O{sub 3} coatings with different thicknesses (160, 320, 480 and 640 {mu}m) were deposited on stainless steel substrate by plasma spraying. The variation in microstructural characteristics and properties of coatings with various thicknesses was investigated. Powders morphology and the microstructure of as-sprayed coatings were characterized by scanning electron microscopy and optical microscopy. The microhardness was measured using a Vickers' indentor. The corrosion behaviour of plasma-sprayed Al{sub 2}O{sub 3} coatings in 1 N H{sub 2}SO{sub 4} solution at a temperature of 25 deg. C was evaluated by electrochemistry method. Experimental results indicated that surface roughness showed no obvious dependence on the coating thickness. However, the porosity of Al{sub 2}O{sub 3} coating was increased with increased thickness. The enhanced coating thickness also resulted in decreasing microhardness and reduced corrosion resistance. In this study, the Al{sub 2}O{sub 3} coating with thickness of 160 {mu}m possesses the lowest porosity, the highest hardness and superior corrosion resistance. Research Highlights: {yields} Increase of coating thickness shows no obvious effect on phase composition and surface roughness of plasma sprayed Al{sub 2}O{sub 3} coatings. {yields} Variation of porosity and microhardness presents dependence on coating thickness parameter. {yields} Increasing coating thickness leads to reduced corrosion resistance of plasma sprayed Al{sub 2}O{sub 3} coating.

  5. Antibacterial Properties of Silver-Loaded Plasma Polymer Coatings

    Directory of Open Access Journals (Sweden)

    Lydie Ploux

    2012-01-01

    Full Text Available In a previous paper, we proposed new silver nanoparticles (SNPs based antibacterial coatings able to protect eukaryotic cells from SNPs related toxic effects, while preserving antibacterial efficiency. A SNPs containing n-heptylamine (HA polymer matrix was deposited by plasma polymerization and coated by a second HA layer. In this paper, we elucidate the antibacterial action of these new coatings. We demonstrated that SNPs-loaded material can be covered by thin HA polymer layer without losing the antibacterial activity to planktonic bacteria living in the near surroundings of the material. SNPs-containing materials also revealed antibacterial effect on adhered bacteria. Adhered bacteria number was significantly reduced compared to pure HA plasma polymer and the physiology of the bacteria was affected. The number of adhered bacteria directly decreased with thickness of the second HA layer. Surprisingly, the quantity of cultivable bacteria harvested by transfer to nutritive agar decreased not only with the presence of SNPs, but also in relation to the covering HA layer thickness, that is, oppositely to the increase in adhered bacteria number. Two hypotheses are proposed for this surprising result (stronger attachment or weaker vitality, which raises the question of the diverse potential ways of action of SNPs entrapped in a polymer matrix.

  6. Structural and optical properties of chlorinated plasma polymers

    Energy Technology Data Exchange (ETDEWEB)

    Turri, Rafael [Laboratorio de Plasmas Tecnologicos, Campus Experimental de Sorocaba, Universidade Estadual Paulista (UNESP), Avenida Tres de Marco 511, Alto de Boa Vista, 18087-180, Sorocaba, SP (Brazil); Davanzo, Celso U. [Instituto de Quimica, Universidade Estadual de Campinas, Campinas, SP (Brazil); Schreiner, Wido [Departamento de Fisica, Universidade Federal de Parana, PR (Brazil); Dias da Silva, Jose Humberto [Faculdade de Ciencias, Universidade Estadual Paulista (UNESP), Bauru, SP (Brazil); Appolinario, Marcelo Borgatto [Laboratorio de Plasmas Tecnologicos, Campus Experimental de Sorocaba, Universidade Estadual Paulista (UNESP), Avenida Tres de Marco 511, Alto de Boa Vista, 18087-180, Sorocaba, SP (Brazil); Durrant, Steven F., E-mail: steve@sorocaba.unesp.br [Laboratorio de Plasmas Tecnologicos, Campus Experimental de Sorocaba, Universidade Estadual Paulista (UNESP), Avenida Tres de Marco 511, Alto de Boa Vista, 18087-180, Sorocaba, SP (Brazil)

    2011-12-30

    Amorphous hydrogenated chlorinated carbon (a-C:H:Cl) films were produced by the plasma polymerization of chloroform-acetylene-argon mixtures in a radiofrequency plasma enhanced chemical vapor deposition system. The main parameter of interest was the proportion of chloroform in the feed, R{sub C}, which was varied from 0 to 80%. Deposition rates of 80 nm min{sup -1} were typical for the chlorinated films. Infrared reflection-absorption spectroscopy revealed the presence of C-Cl groups in all the films produced with chloroform in the feed. X-ray photoelectron spectroscopy confirmed this finding, and revealed a saturation of the chlorine content at {approx} 47 at.% for R{sub C} {>=} 40%. The refractive index and optical gap, E{sub 04}, of the films were roughly in the 1.6 to 1.7, and the 2.8 to 3.7 eV range. These values were calculated from transmission ultraviolet-visible-near infrared spectra. Chlorination leads to an increase in the water surface contact angle from {approx} 40 Degree-Sign to {approx} 77 Degree-Sign .

  7. Physicochemical properties of bactericidal plasma-treated water

    Science.gov (United States)

    Ikawa, Satoshi; Tani, Atsushi; Nakashima, Yoichi; Kitano, Katsuhisa

    2016-10-01

    Plasma-treated water (PTW), i.e. distilled water (DW) exposed to low-temperature atmospheric pressure helium plasma, exhibited strong bactericidal activity against Escherichia coli in suspension even within a few minutes of preparation. This effect was enhanced under acidic conditions. The bactericidal activity of PTW was attenuated according to first-order kinetics and the half-life was highly temperature dependent. The electron spin resonance (ESR) signal of an adduct of the superoxide anion radical (\\text{O}2-\\bullet ) was detected in an aqueous solution using a spin-trapping reagent mixed with PTW, and adding superoxide dismutase to the PTW resulted in a loss of the bactericidal activity and weakening of the ESR adduct signal of \\text{O}2-\\bullet in the spin-trapping. These results suggest that \\text{O}2-\\bullet plays an important role in imparting bactericidal activity to PTW. Moreover, molecular nitrogen was required both in the ambient gas and in the DW used to prepare the PTW. We, therefore, suggest that the reactive molecule in PTW with bactericidal effects is not a free reactive oxygen species but nitrogen atom(s)-containing molecules that release \\text{O}2-\\bullet , such as peroxynitrous acid (ONOOH) or peroxynitric acid (O2NOOH). Considering the activation energy for degradation of these species, we conclude that peroxynitric acid stored in PTW induces the bactericidal effect.

  8. Origins and properties of kappa distributions in space plasmas

    Science.gov (United States)

    Livadiotis, George

    2016-07-01

    Classical particle systems reside at thermal equilibrium with their velocity distribution function stabilized into a Maxwell distribution. On the contrary, collisionless and correlated particle systems, such as the space and astrophysical plasmas, are characterized by a non-Maxwellian behavior, typically described by the so-called kappa distributions. Empirical kappa distributions have become increasingly widespread across space and plasma physics. However, a breakthrough in the field came with the connection of kappa distributions to the solid statistical framework of Tsallis non-extensive statistical mechanics. Understanding the statistical origin of kappa distributions was the cornerstone of further theoretical developments and applications, some of which will be presented in this talk: (i) The physical meaning of thermal parameters, e.g., temperature and kappa index; (ii) the multi-particle description of kappa distributions; (iii) the phase-space kappa distribution of a Hamiltonian with non-zero potential; (iv) the Sackur-Tetrode entropy for kappa distributions, and (v) the new quantization constant, h _{*}˜10 ^{-22} Js.

  9. The effects of low-temperature plasma treatment on the capillary properties of inorganic fibers

    Science.gov (United States)

    Garifullin, A. R.; Abdullin, I. Sh; Skidchenko, E. A.; Krasina, I. V.; Shaekhov, M. F.

    2016-01-01

    Solving the problem of achieving high adhesion between the components in the polymeric composite material (PCM) based on carbon fibers (CF) and basalt fibers (BF) is proposed to use the radio-frequency (RF) plasma under lower pressure by virtue of efficiency, environmental friendliness and rationality of the method. The paper gives the results of studies of the properties of CF and BF after RF capacitive discharge plasma treatment. The plasma modification modes of carbon and basalt fiber were investigated. The efficiency of treatment tool in surface properties modification of carbon and basalt fibers was found, namely capillary properties of CF and BF were researched. The optimal treatment modes were selected. It was found that the method of plasma modification in the radio-frequency capacitive discharge under the lower pressure contributes enhancing the capillary properties of inorganic fibers, in particular carbon and basalt ones. It shows the tendency to increase of the adhesive properties in PCM, and, consequently, the increase of the physical and mechanical properties of the products.

  10. Influence of metallic vapours on the properties of air thermal plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Cressault, Y; Hannachi, R; Teulet, Ph; Gleizes, A [LAPLACE - UMR CNRS 5213, Universite de Toulouse 3, 118 route de Narbonne, 31062 Toulouse Cedex 9 (France); Gonnet, J-P; Battandier, J-Y [Schneider Electric, Innovation Division, 38TEC/T3 Plant, 37 Quai Paul-Louis Merlin F38000 Grenoble (France)], E-mail: yann.cressault@laplace.univ-tlse.fr

    2008-08-01

    This paper deals with properties of air thermal plasmas containing vapours of iron, silver or copper. The plasma is supposed to be in local thermodynamic equilibrium, for temperatures ranging from 2000 to 30 000 K. First, the equilibrium composition and thermodynamic properties are presented. Then, the radiative properties are calculated using the method of the net emission coefficient. Finally, the viscosity, electrical and thermal conductivities are calculated using the method of Chapman-Enskog. For all mixtures, mole fractions have been used. The results are computed for various values of pressure, plasma size and proportions of vapours. The influence of metallic vapour is important on the electrical conductivity and on the radiation, even at low concentration. All the metallic vapours present a similar behaviour except iron, which has a stronger radiation emission than the other components.

  11. Correlation between discharging property and coatings microstructure during plasma electrolytic oxidation

    Institute of Scientific and Technical Information of China (English)

    GUAN Yong-jun; XIA Yuan

    2006-01-01

    The voltage-current properties during plasma electrolytic discharge were determined by measuring the current density and cell voltage as functions of processing time and then by mathematical transformation. Correlation between discharge I-V property and the coatings microstructure on aluminum alloy during plasma electrolytic oxidation was determined by comparing the voltage-current properties at different process stages with SEM results of the corresponding coatings. The results show that the uniform passive film corresponds to a I-V property with one critical voltage, and a compound of porous layer and sintered ceramic particles corresponds to a I-V property with two critical voltages. The growth regularity of PEO cermet coatings was also studied.

  12. Effect of shape of scatterers and plasma frequency on the complete photonic band gap properties of two-dimensional dielectric-plasma photonic crystals

    Science.gov (United States)

    Fathollahi Khalkhali, T.; Bananej, A.

    2016-12-01

    In this study, we analyze complete photonic band gap properties of two-dimensional dielectric-plasma photonic crystals with triangular and square lattices, composed of plasma rods with different geometrical shapes in the anisotropic tellurium background. Using the finite-difference time-domain method we discuss the maximization of the complete photonic band gap width as a function of plasma frequency and plasma rods parameters with different shapes and orientations. The numerical results demonstrate that our proposed structures represent significantly wide complete photonic band gaps in comparison to previously studied dielectric-plasma photonic crystals.

  13. Effects of oxygen plasma treatment power on surface properties of poly(p-phenylene benzobisoxazole) fibers

    Energy Technology Data Exchange (ETDEWEB)

    Chen Ping [State Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, School of Chemical Engineering, Dalian University of Technology, Dalian 116012 (China) and Liaoning Key Laboratory of Advanced Polymer Matrix Composites Manufacturing Technology, Shenyang Institute of Aeronautical Engineering, Shenyang 110034 (China)], E-mail: chenping_898@126.com; Zhang Chengshuang; Zhang Xiangyi [State Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, School of Chemical Engineering, Dalian University of Technology, Dalian 116012 (China); Wang Baichen; Li Wei [Liaoning Key Laboratory of Advanced Polymer Matrix Composites Manufacturing Technology, Shenyang Institute of Aeronautical Engineering, Shenyang 110034 (China); Lei Qingquan [State Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, School of Chemical Engineering, Dalian University of Technology, Dalian 116012 (China)

    2008-12-30

    The effects of oxygen plasma treatment power on surface properties of poly(p-phenylene benzobisoxazole) (PBO) fibers were investigated. Surface chemical composition, surface roughness and surface morphologies of PBO fibers were analyzed by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and scanning electron microscopy (SEM), respectively. Surface free energy of the fibers was characterized by dynamic contact angle analysis (DCAA). The results indicated that the oxygen plasma treatment introduced some polar groups to PBO fiber surfaces, enhanced surface roughness and changed surface morphologies of PBO fibers by plasma etching and oxidative reactions. The polar groups and surface free energy of PBO fibers were significantly improved by the oxygen plasma treatment when the plasma treatment power was lower than 200 W. However, these two parameters degraded as the plasma treatment power went up to 300 and 400 W. PBO fibers were notably roughened by the oxygen plasma treatment. Surface morphologies of the fibers became more complicated, and surface roughness of the fibers enhanced almost linearly with the plasma treatment power increasing.

  14. A computational model for He{sup +} ions in a magnetized sheet plasma: comparative analysis between model and experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Blantocas, Gene Q. [West Visayas State Univ., Lapaz, Iloilo City (Philippines); Ramos, Henry J. [Univ. of the Phillippines, College of Science, National Inst. of Physics, Deliman Quezon City (Philippines); Wada, Motoi [Doshisha Univ., Dept. of Engineering, Kyoto (Japan)

    2003-07-01

    An E x B probe was used to extract He{sup +} ions from a magnetized steady sheet plasma. Plasma parameters T{sub e}, n{sub e} and extracted He{sup +} ion current were analyzed vis-a-vis a modified Saha population density equation of the collisional-radiative model. Numerical calculations show that at low discharge currents and in the hot electron region of the sheet plasma, relative densities of He{sup +} ions show some degree of correlation with ion current profiles established experimentally using the E x B probe. Both experimental and computational results indicate a division of the plasma into two distinct regions each with different formation mechanisms of He{sup +} ions. (author)

  15. Final Scientific Report: Experimental Investigation of Reconnection in a Line-tied Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Forest, Cary [Univ. of Wisconsin, Madison, WI (United States)

    2016-10-25

    This grant used funding from the NSF/DoE Partnership on Plasma Science to investigate magnetic reconnection phenomena in a line-tied pinch experiment. The experiment was upgraded from a previous device intended to study fusion plasma-related instabilities to a new configuration capable of studying a number of new, previously unstudied configurations. A high spatial and time resolution array of magnetic probes was constructed to measure time evolving structures present as instability and turbulence developed. The most important new equilibrium made possible by this grant was a Zero-Net-Current equilibrium that models the footpoint twisting of solar flux tubes that occurs prior to solar eruptions (flares and coronal mass ejections). This new equilibrium was successfully created in the lab, and it exhibited a host of instabilities. In particular, at low current when the equilibrium was not overly stressed, a saturated internal kink mode oscillation was observed. At high current, 2 D magnetic turbulence developed which we attribute to the lack of a equilibrium brought about by a subcritical transition to turbulence. A second set of experiments involved the turbulent interactions of a collection of flux tubes all being twisted independently, a problem known as the Parker Problem. Current profiles consisting of 2, 3 and 4 guns were used to impose a fine scale drive, and resulted in a new experimental platform in which the injection scale of the magnetic turbulence could be controlled. First experiments in this configuration support the conclusion that an inverse cascade of magnetic energy occurred which self-organized the plasma into a nearly axisymmetric current distribution.

  16. Experimental Analysis of Tensile Mechanical Properties of Sprayed FRP

    Directory of Open Access Journals (Sweden)

    Zhao Yang

    2016-01-01

    Full Text Available To study the tensile mechanical properties of sprayed FRP, 13 groups of specimens were tested through uniaxial tensile experiments, being analyzed about stress-strain curve, tensile strength, elastic modulus, breaking elongation, and other mechanical properties. Influencing factors on tensile mechanical properties of sprayed FRP such as fiber type, resin type, fiber volume ratio, fiber length, and composite thickness were studied in the paper too. The results show that both fiber type and resin type have an obvious influence on tensile mechanical properties of sprayed FRP. There will be a specific fiber volume ratio for sprayed FRP to obtain the best tensile mechanical property. The increase of fiber length can lead to better tensile performance, while that of composite thickness results in property degradation. The study can provide reference to popularization and application of sprayed FRP material used in structure reinforcement.

  17. Experimental evidence for collisional shock formation via two obliquely merging supersonic plasma jets

    CERN Document Server

    Merritt, Elizabeth C; Hsu, Scott C; Adams, Colin S; Gilmore, Mark A

    2013-01-01

    We report spatially resolved experimental measurements of the oblique merging of two supersonic laboratory plasma jets. The jets are formed and launched by pulsed-power-driven railguns using injected argon, and have electron density $\\sim 10^{14}$ cm$^{-3}$, electron temperature $\\approx 1.4$ eV, ionization fraction near unity, and velocity $\\approx 40$ km/s just prior to merging. The jet merging produces a few-cm-thick stagnation layer, as observed in both fast-framing camera images and multi-chord interferometer data, consistent with collisional shock formation [E. C. Merritt et al., Phys. Rev. Lett. 111, 085003 (2013)]. The observed stagnation layer emission morphology is consistent with hydrodynamic oblique shock theory at early times, and then undergoes an evolution at later times that is coincident with the theoretically predicted transition to detached shock formation.

  18. Spark Plasma Sintering of Commercial Zirconium Carbide Powders: Densification Behavior and Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Xialu Wei

    2015-09-01

    Full Text Available Commercial zirconium carbide (ZrC powder is consolidated by Spark Plasma Sintering (SPS. Processing temperatures range from 1650 to 2100 °C. Specimens with various density levels are obtained when performing single-die SPS at different temperatures. Besides the single-die tooling setup, a double-die tooling setup is employed to largely increase the actual applied pressure to achieve higher densification in a shorter processing time. In order to describe the densification mechanism of ZrC powder under SPS conditions, a power-law creep constitutive equation is utilized, whose coefficients are determined by the inverse regression of the obtained experimental data. The densification of the selected ZrC powder is shown to be likely associated with grain boundary sliding and dislocation glide controlled creep. Transverse rupture strength and microhardness of sintered specimens are measured to be up to 380 MPa and 24 GPa, respectively. Mechanical properties are correlated with specimens’ average grain size and relative density to elucidate the co-factor dependencies.

  19. What RHIC Experiments and Theory tell us about Properties of Quark-Gluon Plasma ?

    CERN Document Server

    Shuryak, E V

    2004-01-01

    This brief review summarizes the main experimental discoveries made at RHIC and then discusses their implications. The robust collective flow phenomena are well described by ideal hydrodynamics, with the Equation of State (EoS) predicted by lattice simulations. However the transport properties turned out to be unexpected, with rescattering cross section one-to-two orders of magnitude larger than expected from perturbative QCD. These and other theoretical developments indicate that Quark-Gluon Plasma (QGP) produced at RHIC, and probably in a wider temperature region $T_c

  20. Investigation of mechanical properties of thermal coatings obtained during plasma spraying of powder zirconium dioxide

    Science.gov (United States)

    Ibragimov, A. R.; Ilinkova, T. A.; Shafigullin, L. N.; Saifutdinov, A. I.

    2017-01-01

    Thermal coatings of zirconia partially stabilized with yttrium, deposited by low-temperature plasma, are the basis for the thermal protection of aircraft engine. At the same time there is an actual problem of selection of coating systems “ceramic layer - underlayer” of great thickness, providing better thermal protection, but having low strength characteristics due to the accumulation of internal stresses. To determine the optimal thickness of the test method used in the 4-point bending to allow the surface coating to explore in the elastic-plastic behavior of the field of coatings and strength. Based on the experimental results established the role of underlayer in the formation of the complex mechanical properties of thermal barrier coatings. With a well formed underlayer (PVNH16U6) system becomes sensitive to a change in thickness of the coating, to optimize the response on the strength and deformation criteria. According to the results the optimum ratio of the thickness of the ceramic layer and the underlayer should be regarded as the ratio of 3-5 for which the highest strength values were obtained for all the test coating systems.

  1. Experimental evidence of E × B plasma rotation in a 2.45 GHz hydrogen discharge

    Energy Technology Data Exchange (ETDEWEB)

    Cortázar, O. D., E-mail: daniel.cortazar@uclm.es [Institute for Energy Research-INEI, University of Castilla-La Mancha, C.J. Cela s/n, 13170 Ciudad Real (Spain); Megía-Macías, A. [CERN, BE-ABP-HSL Department, CH1211 Geneva (Switzerland); E.S.S. Bilbao, Polígono Ugaldeguren III, A-7B, 48170 Zamudio (Spain); Tarvainen, O.; Koivisto, H. [Department of Physics, Accelerator Laboratory, University of Jyväskylä, PO Box 35 (YFL), 40500 Jyväskylä (Finland)

    2015-12-15

    An experimental observation of a rotating plasma structure in a 2.45 GHz microwave-driven hydrogen discharge is reported. The rotation is presumably produced by E × B drift. The formation of the rotating plasma structure is sensitive to the strength of the off-resonance static magnetic field. The rotation frequency is on the order of 10 kHz and is affected by the neutral gas pressure and applied microwave power.

  2. Experimental characterization of a transition from collisionless to collisional interaction between head-on-merging supersonic plasma jets

    CERN Document Server

    Moser, A L

    2014-01-01

    We present results from experiments on the head-on merging of two supersonic plasma jets in an initially collisionless regime for the counter-streaming ions [A. L. Moser & S. C. Hsu, Phys. Plasmas, submitted (2014)]. The plasma jets are of either an argon/impurity or hydrogen/impurity mixture and are produced by pulsed-power-driven railguns. Based on time- and space-resolved fast-imaging, multi-chord interferometry, and survey-spectroscopy measurements of the overlapping region between the merging jets, we observe that the jets initially interpenetrate, consistent with calculated inter-jet ion collision lengths, which are long. As the jets interpenetrate, a rising mean-charge state causes a rapid decrease in the inter-jet ion collision length. Finally, the interaction becomes collisional and the jets stagnate, eventually producing structures consistent with collisional shocks. These experimental observations can aid in the validation of plasma collisionality and ionization models for plasmas with complex ...

  3. Experimental investigations on the synthesis of W–Cu nanocomposite through spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Elsayed, Ayman, E-mail: aymanhamada@cmrdi.sci.eg [Central Metallurgical R& D Institute, Department of Powder Technology, P.O. Box 87, Helwan, Cairo 11421 (Egypt); Li, Wei [San Diego State University, College of Engineering, Department of Mechanical Engineering, 5500 Campanile Drive, San Diego, CA 92128-1326 (United States); El Kady, Omayma A. [Central Metallurgical R& D Institute, Department of Powder Technology, P.O. Box 87, Helwan, Cairo 11421 (Egypt); Daoush, Walid M. [Helwan University, Faculty of Industrial Education, Department of Production Technology, Cairo (Egypt); Olevsky, Eugene A.; German, Randall M. [San Diego State University, College of Engineering, Department of Mechanical Engineering, 5500 Campanile Drive, San Diego, CA 92128-1326 (United States)

    2015-08-05

    Highlights: • Tungsten–copper composites have been synthesized using SPS of nano powders. • Various preparation methods, namely mixing, milling and coating have been used. • Conventional compaction and sintering has also been used for comparison. • The composites by SPS have shown finer microstructure and better hardness. • Mixing has proven best preparation method with best physical/mechanical properties. - Abstract: Elemental powders of nanosized tungsten and chemically deposited nanosized copper were used for preparing tungsten/copper composites, which are used as electric contact components. A composite of 70 wt.%W/30 wt.%Cu (52 vol%W/48 vol%Cu) composition was prepared by three powder metallurgy techniques. Elemental mixing, mechanical milling and electroless Cu coating on tungsten particles were used for the synthesis. The obtained powder blends underwent consolidation by rapid hot pressing using the spark plasma sintering (SPS) route at 950 °C under vacuum and by conventional vacuum pressureless sintering for comparison. The elemental powders and the sintered composites were investigated by optical microscopy and SEM. Electrical conductivity, hardness, transverse rupture strength, and wear properties were measured. Results show that the synthesis of the composite by the investigated route yields good performance. Samples prepared by SPS have shown better mechanical properties than those prepared by compaction and sintering due to their fine microstructure.

  4. Optoelectronic and structural properties of InGaN nanostructures grown by plasma-assisted MOCVD

    Science.gov (United States)

    Seidlitz, Daniel; Senevirathna, M. K. I.; Abate, Y.; Hoffmann, A.; Dietz, N.

    2015-09-01

    This paper presents optoelectronic and structural layer properties of InN and InGaN epilayers grown on sapphire templates by Migration-Enhanced Plasma Assisted Metal Organic Chemical Vapor Deposition (MEPA-MOCVD). Real-time characterization techniques have been applied during the growth process to gain insight of the plasma-assisted decomposition of the nitrogen precursor and associated growth surface processes. Analyzed Plasma Emission Spectroscopy (PES) and UV Absorption Spectroscopy (UVAS) provide detection and concentrations of plasma generated active species (N*/NH*/NHx*). Various precursors have been used to assess the nitrogen-active fragments that are directed from the hollow cathode plasma tube to the growth surface. The in-situ diagnostics results are supplemented with ex-situ materials structures investigation results of nanoscale structures using Scanning Near-field Optical Microscopy (SNOM). The structural properties have been analyzed by Raman spectroscopy and Fourier transform infrared (FTIR) reflectance. The Optoelectronic and optical properties were extracted by modeling the FTIR reflectance (e.g. free carrier concentration, high frequency dielectric constant, mobility) and optical absorption spectroscopy. The correlation and comparison between the in-situ metrology results with the ex-situ nano-structural and optoelectronic layer properties provides insides into the growth mechanism on how plasma-activated nitrogen-fragments can be utilized as nitrogen precursor for group III-nitride growth. The here assessed growth process parameter focus on the temporal precursor exposure of the growth surface, the reactor pressure, substrate temperature and their effects of the properties of the InN and InGaN epilayers.

  5. Experimental study of the synthesis of supramolecular complexes in hybrid dusty plasma

    NARCIS (Netherlands)

    Vasil'eva, T. M.

    2011-01-01

    The processes that form the reaction volume as plasma-dust entities during the injection of protein drug powders into RF-discharge plasma (plasma trap) have been investigated. Using albumin and acetylsalicylic acid as an example, plasma-assisted vapor deposition of sublimable organic compounds onto

  6. Experimental study of the synthesis of supramolecular complexes in hybrid dusty plasma

    NARCIS (Netherlands)

    Vasil'eva, T. M.

    The processes that form the reaction volume as plasma-dust entities during the injection of protein drug powders into RF-discharge plasma (plasma trap) have been investigated. Using albumin and acetylsalicylic acid as an example, plasma-assisted vapor deposition of sublimable organic compounds onto

  7. Transmission Properties of Radar Wave through Reentry Plasma Sheath

    Institute of Scientific and Technical Information of China (English)

    GAO Zheng-ping; MA Zhao-guo; LIU Jing; LI Zhong-ping; ZHANG Da-hai

    2007-01-01

    In this paper, by taking into account the coupling of the ionization of ablation gas and atmosphere, an electrons density distribution model is built. Using this model, the transmission properties of different polarization radar wave through sheath are evaluated on the basis of the transmission matrix theory. Then, we discuss the effects of the electrons density, the added magnetic field, and the radar wave frequency on the transmission properties. As a result of this investigation,greater transmission power could be gained in order to efficiently shorten communication blackout,by reducing the electrons density or choosing proper added magnetic field and the frequency of the radar wave according to the different polarization form of the radar wave.

  8. Mechanical properties and biocompatibility of plasma-nitrided laser-cut 316L cardiovascular stents.

    Science.gov (United States)

    Arslan, Erdem; Iğdil, Mustafa C; Yazici, Hilal; Tamerler, Candan; Bermek, Hakan; Trabzon, Levent

    2008-05-01

    The effect of surface modification of laser-cut 316L cardiovascular stents by low-T plasma nitriding was evaluated in terms of mechanical properties and biocompatibility of the stents. The plasma nitriding was performed at 400, 450 or 500 degrees C using various ratios of nitrogen-hydrogen gas mixtures. The flexibility and radial strength were measured in crimped and expanded state of the stents, respectively. The mechanical properties could be adjusted and improved by plasma nitriding conducted at temperatures lower than 450 degrees C and/or nitrogen content less than 10% in the treatment gas. An osteoblast cell culture model system was utilized to investigate the effect of plasma nitriding of the stents on the biological response towards the stents, using biological criteria such as cell viability, alkaline phosphatase and nitric oxide production. In terms of cell viability and alkaline phosphatase production, the plasma nitriding procedure did not appear to negatively affect the biocompatibility of the 316L steel stents. However, in terms of nitric oxide production that was slightly increased in the presence of the plasma-nitrided stents, an indirect improvement in the biocompatibility could possibly be expected.

  9. Microstructure evolution and tribological properties of acrylonitrile-butadiene rubber surface modified by atmospheric plasma treatment

    Science.gov (United States)

    Shen, Ming-xue; Zhang, Zhao-xiang; Peng, Xu-dong; Lin, Xiu-zhou

    2017-09-01

    For the purpose of prolonging the service life for rubber sealing elements, the frictional behavior of acrylonitrile-butadiene rubber (NBR) surface by dielectric barrier discharge plasma treatments was investigated in this paper. Surface microstructure and chemical composition were measured by atomic force microscopy, field-emission scanning electron microscopy, and X-ray photoelectron spectroscopy, respectively. Water contact angles of the modified rubber surface were also measured to evaluate the correlation between surface wettability and tribological properties. The results show that plasma treatments can improve the properties of the NBR against friction and wear effectively, the surface microstructure and roughness of plasma-modified NBR surface had an important influence on the surface tribological behavior, and the wear depth first decreased and then increased along with the change of plasma treatment time. It was found that the wettability of the modified surface was gradually improved, which was mainly due to the change of the chemical composition after the treatment. This study suggests that the plasma treatment could effectively improve the tribological properties of the NBR surface, and also provides information for developing wear-resistant NBR for industrial applications.

  10. Effect of plasma nitriding treatment on structural, tribological and electrochemical properties of commercially pure titanium.

    Science.gov (United States)

    Çelik, İlhan; Karakan, Mehmet

    2016-02-01

    In this study, plasma nitriding treatment was applied to commercially pure titanium (Grade 2). Structural properties, electrochemical and tribological behaviours of the nitrided pure titanium specimens were comparatively investigated. Microstructure and morphology of the plasma nitrided specimens were analysed by X-ray diffraction and scanning electron microscopy. Furthermore, corrosion tests were conducted in Ringer's solution, which represents a human body environment, to determine electrochemical properties. Then, tribological and frictional properties were investigated using pin-on-disc tribometer, and a micro-hardness tester was used to measure the hardness of the coatings. The results showed that plasma nitrided specimens exhibited higher surface hardness than the untreated specimens did. In addition, the plasma nitrided specimens at 700 °C presented significantly better performance than the other plasma nitrided specimens (at 500 °C and 600 °C) under dry wear conditions. Moreover, corrosion test results showed that corrosion behaviours of untreated and nitrided samples had similar characteristic. © IMechE 2015.

  11. Experimental econophysics properties and mechanisms of laboratory markets

    CERN Document Server

    Huang, Ji-Ping

    2015-01-01

    Experimental Econophysics describes the method of controlled human experiments, which is developed by physicists to study some problems in economics or finance, namely, stylized facts, fluctuation phenomena, herd behavior, contrarian behavior, hedge behavior, cooperation, business cycles, partial information, risk management, and stock prediction. Experimental econophysics together with empirical econophysics are two branches of the field of econophysics. The latter one has been extensively discussed in the existing books, while the former one has been seldom touched. In this book, the author will focus on the branch of experimental econophysics. Empirical econophysics is based on the analysis of data in real markets by using some statistical tools borrowed from traditional statistical physics. Differently, inspired by the role of controlled experiments and system modelling (for computer simulations and/or analytical theory) in developing modern physics, experimental econophysics specially relies on controlle...

  12. Experimental investigation on the changes in bed properties of a ...

    African Journals Online (AJOL)

    user

    pressure measurements, physical observation, sampling of bed particles, bed ... air and producer gas flow rates, etc. were observed and analyzed during the ... The experimental system consists of centrifugal blower, downdraft gasifier, flare ...

  13. Magnetic shield for turbomolecular pump of the Magnetized Plasma Linear Experimental device at Saha Institute of Nuclear Physics.

    Science.gov (United States)

    Biswas, Subir; Chattopadhyay, Monobir; Pal, Rabindranath

    2011-01-01

    The turbo molecular pump of the Magnetized Plasma Linear Experimental device is protected from damage by a magnetic shield. As the pump runs continuously in a magnetic field environment during a plasma physics experiment, it may get damaged owing to eddy current effect. For design and testing of the shield, first we simulate in details various aspects of magnetic shield layouts using a readily available field design code. The performance of the shield made from two half cylinders of soft iron material, is experimentally observed to agree very well with the simulation results.

  14. Effects of Reentry Plasma Sheath on GPS Patch Antenna Polarization Property

    Directory of Open Access Journals (Sweden)

    L. Zhao

    2013-01-01

    Full Text Available A plasma sheath enveloping a reentry vehicle would affect performances of on-board antenna greatly, especially the navigation antennas. This paper studies the effects of reentry plasma sheath on a GPS right-hand circularly polarized (RHCP patch antenna polarization property during a typical reentry process. Utilizing the algorithm of finite integration technique, the polarization characteristic of a GPS antenna coated by a plasma sheath is obtained. Results show that the GPS RHCP patch antenna radiation pattern distortions as well as polarization deteriorations exist during the entire reentry process, and the worst polarization mismatch loss between a GPS antenna and RHCP GPS signal is nearly 3 dB. This paper also indicates that measures should be taken to alleviate the plasma sheath for maintaining the GPS communication during the reentry process.

  15. H2+ embedded in a Debye plasma: Electronic and vibrational properties

    CERN Document Server

    Angel, M L

    2010-01-01

    The effect of plasma screening on the electronic and vibrational properties of the H2+ molecular ion was analyzed within the Born-Oppenheimer approximation. When a molecule is embedded in a plasma, the plasma screens the electrostatic interactions. This screening is accounted for in the Schr\\"odinger equation by replacing the Coulomb potentials with Yukawa potentials that incorporate the Debye length as a screening parameter. Variational expansions in confocal elliptical coordinates were used to calculate energies of the 1ssg and the 2psu states over a range of Debye lengths and bond distances. When the Debye length is comparable to the equilibrium bond distance, the plasma screening reshapes the potential energy curve. Expectation values, dipole polarizabilities and spectroscopic constants were calculated for the 1ssg state.

  16. [Improvement of PVC bio-carrier surface property by remote plasma].

    Science.gov (United States)

    Li, Ru; Chen, Jie-Rong; Chen, Jun; Yao, Xin

    2006-01-01

    The effects of various remote plasma, such as Ar, He, O2 and N2 on PVC bio-carrier surface modification were studied. The surface properties were characterized by the contact angle measurement and X-ray photoelectron spectroscopy (XPS). The role of all kinds of active species such as electrons, ions and free radicals involved in plasma surface modification were evaluated. Results show that the remote plasma treatments modify the PVC surface in both wettability and composition, the (O + N)/C of PVC surface increases from 7% to 22%, and the water contact angle decreases from 97 degrees to 15 degrees. The optimal results was achieved when plasma treatment parameters were set, that is treatment time 3 min, Ar flux at 20 cm3/s, power at 60W, sample position of 40 cm. The results show that the modified PVC Bio-carrier adhesion rate and capacity on the modified surface are greatly increased.

  17. Properties of Laser Produced TMAE Plasma Admixed with Air Constituents, Nitrogen and Noble Gases

    Science.gov (United States)

    Ding, Guowen; Scharer, John; Kelly, Kurt

    1999-10-01

    A high initial density (> 10^13 cm-3) and a large volume (hundreds of cm^3) plasma is created by a 193 nm laser ionization of an organic molecule, tetrakis(dimethyl-amino)ethylene(TMAE). The properties of this plasma mixed with nitrogen and noble gases are studied. Fast probe measurements which include a detailed considerations of probe structure, probe surface cleaning, shielding, probe perturbation, frequency response, temporal and spatial resolutions, dummy probe corrections and noise analysis will be described. Electron densities obtained by this method are independent on the ion species mixture. A plasma emission diagnostic is used to estimate plasma densities for the higher admixture pressures. Electron density and temperature vs. time for various TMAE, nitrogen and noble gas pressures and laser power will be presented. The role of super-excited and metastable states in the decay process will also be discussed.

  18. Tuning the Electrical Properties of Graphene via Nitrogen Plasma-Assisted Chemical Modification.

    Science.gov (United States)

    Jung, Min Wook; Song, Wooseok; Jung, Dae Sung; Lee, Sun Sook; Park, Chong-Yun; An, Ki-Seok

    2016-03-01

    The control in electrical properties of graphene is essentially required in order to realize graphenebased nanoelectronics. In this study, N-doped graphene was successfully obtained via nitrogen plasma treatment. Graphene was synthesized on copper foil using thermal chemical vapor deposition. After N2 plasma treatment, the G-band of the graphene was blueshifted and the intensity ratio of 2D- to G-bands decreased with increasing the plasma power. Pyrrolic-N bonding configuration induced by N2 plasma treatment was studied by X-ray photoelectron spectroscopy. Remarkably, electrical characterization including Hall measurement and I-V characteristics of the N-doped graphene exhibit semiconducting behavior as well as the n-type doping effect.

  19. IMPROVEMENT OF MECHANICAL PROPERTIES OF MARTENSITIC STAINLESS STEEL BY PLASMA NITRIDING AT LOW TEMPERATURE

    Institute of Scientific and Technical Information of China (English)

    Y.T. Xi; D.X. Liu; D. Han; Z.F. Han

    2008-01-01

    A series of experiments were carried out to study the influence of low temperature plasma nitriding on the mechanical properties of AISI 420 martensitic stainless steel. Plasma nitriding ezperiments were carried out for 15 h at 350℃ by means of DC-pulsed plasma in 25%N2+ 75%H2 atmosphere. The microstructure, phase composition, and residual stresses profiles of the nitrided layers were determined by optical microscopy and X-ray diffraction. The microhardness profiles of the nitridied surfaces were also studied. The fatigue life, sliding wear, and erosion wear loss of the untreated specimens and plasma nitriding specimens were determined on the basks of a rotating bending fatigue tester, a ball-on-disc wear tester, and a solid particle erosion tester. The results show that the 350℃ nitrided surface is dominated by ε-Fe3N and αN, which is supersaturated nitrogen solid solution. They have high hardness and chemical stabilities. So the low temperature plasma nitriding not only increases the surface hardness values but also improves the wear and erosion resistance. In addition, the fatigue limit of AISI 420 steel can also be improved by plasma nitriding at 350℃ because plasma nitriding produces residual compressive stress inside the modified layer.

  20. Effects of plasma treatment on surface properties of ultrathin layered MoS2

    Science.gov (United States)

    Kim, Suhhyun; Choi, Min Sup; Qu, Deshun; Ra, Chang Ho; Liu, Xiaochi; Kim, Minwoo; Song, Young Jae; Jong Yoo, Won

    2016-09-01

    This work investigates the use of oxygen plasma (O2) treatment, applied as an inductively coupled plasma, to control the thickness and work function of a MoS2 layer. Plasma-etched MoS2 exhibited a surface roughness similar to that of the pristine MoS2. The MoS2 field effect transistors fabricated using the plasma-etched MoS2 displayed a higher n-type doping concentration than that of pristine MoS2. The x-ray photoelectron spectroscopy was performed to analyze chemical composition to demonstrate the minimum level of chemical reactions occurred upon plasma treatment. Moreover, Kelvin probe force microscopy measurements were conducted to probe the changes in the work function that could be attributed to the changes in the surface potential. The measured work functions suggest the modification of a band structure and n-doping effect after plasma treatments that depended on the number of MoS2 layers. This study suggests that the O2 plasma can control the layer number of the MoS2 as well as the electronic properties of a MoS2 film.

  1. Improving electrical properties of sol-gel derived zinc oxide thin films by plasma treatment

    Science.gov (United States)

    Talukder, Al-Ahsan; Pokharel, Jyotshna; Shrestha, Maheshwar; Fan, Qi H.

    2016-10-01

    Being a direct and wide bandgap semiconductor, zinc oxide is a suitable material for various optoelectronic applications. These applications require tuning and controlling over the electrical and optical properties of zinc oxide films. In this work, zinc oxide thin films were prepared by a solution method that led to oriented crystal growth along (002) plane. The zinc oxide thin films were treated with oxygen, hydrogen, and nitrogen plasmas. The films were characterized to reveal the effects of plasma treatments on transmittance, crystallinity, carrier density, carrier mobility, and electrical resistivity. Oxygen plasma treatment improved the crystallinity of the zinc oxide thin film without affecting the film's transmittance. Hydrogen plasma treatments were found very effective in improving the electrical conductivity sacrificing the film's transmittance. Nitrogen plasma treatment led to improved electrical conductivity without compromising the crystallinity and optical transmittance. Sequential oxygen, hydrogen, and nitrogen plasma treatments significantly reduced the resistivity of zinc oxide thin films by over two orders and maintained the transmittance close to the as-deposited films of ˜80% in visible wavelength range. This is the first work on the improvement of conductivity of solution-based zinc oxide films using the plasma treatment.

  2. Experimental Determination of DT Yield in High Current DD Dense Plasma Focii

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, D. R. [National Security Technologies, LLC; Hagen, E. C. [National Security Technologies, LLC; Meehan, B. T. [National Security Technologies, LLC; Springs, R. K. [University of Nevada, Las Vegas; O' Brien, R. J. [University of Nevada, Las Vegas

    2013-06-18

    Dense Plasma Focii (DPF), which utilize deuterium gas to produce 2.45 MeV neutrons, may in fact also produce DT fusion neutrons at 14.1 MeV due to the triton production in the DD reaction. If beam-target fusion is the primary producer of fusion neutrons in DPFs, it is possible that ejected tritons from the first pinch will interact with the second pinch, and so forth. The 2 MJ DPF at National Security Technologies’ Losee Road Facility is able to, and has produced, over 1E12 DD neutrons per pulse, allowing an accurate measurement of the DT/DD ratio. The DT/DD ratio was experimentally verified by using the (n,2n) reaction in a large piece of praseodymium metal, which has a threshold reaction of 8 MeV, and is widely used as a DT yield measurement system1. The DT/DD ratio was experimentally determined for over 100 shots, and then compared to independent variables such as tube pressure, number of pinches per shot, total current, pinch current and charge voltage.

  3. Histological evaluation of platelet rich plasma and hydroxiapatite in apexogenesis: Study on experimental animals

    Directory of Open Access Journals (Sweden)

    Danilović Vesna

    2008-01-01

    Full Text Available Background/Aim. There are very few data about the effects of endogenous growth factors in vital pulp therapy, and still they are often controversial. The aim of the study was to evaluate the effects of platelet rich plasma (PRP in conjugation with hydroxyapatite (HAP, as pulp capping materials, to root and periodontium formation. Methods. Eight young monkeys (Cercopithecus Aethiops with permanent dentition and incomplete root formation were involved in this study. After pulpotomy, the pulp lesion was capped with calcium hydroxide (control, hydroxyapatite (experimental group I or hydroxyapatite in conjugation with PRP (experimental group II. Six months later, the animals were sacrificed, the tissue was removed en block, and prepared for the histological analysis in a routine way. Results. The results of the histological analysis revealed that healing process was characterised by dentin bridge formation, maintained morphological and functional integrity of dental pulp and complete formation of dental root and surrounding periodontium. The inflammatory reaction was scored as mild to moderate, in almost all the samples in all groups, suggesting the biocompatibility of the used materials. Conclusion. Materials used in this study are convenient as capping agents, contributing maintaining the integrity of the pulp tissue and facilitating root and periodontium formation. According to histological data it could be suggested that hydroxyapatite in conjugation with endogenous growth factors, represents superior alternative to other materials used in this study.

  4. INTROMISSION OF WATER-REPELLENT AND HYDROSCOPIC PROPERTIES SIMULTANEOUSLY TO PP BY PLASMA DISCHARGE METHOD

    Institute of Scientific and Technical Information of China (English)

    Jie Liang; Bi-qian Liu

    2005-01-01

    Plasma-induced surface graft copolymerization of acrylic acid on polypropylene non-woven fabric (PP-g-AA) and polypropylene membrane were reported. The extents of grafting were controlled by the plasma and polymerization condition. Hexadecyltrimethyl ammonium bromide was then coupled with the carboxyl group of PP-g-AA to obtain a polyion complex (PIC). At last, CF4 plasma was used to give PICs hydrophobic property. The moisture regain and waterrepellency of the processed PICs was investigated. The surfaces were characterized using ATR FT-IR and XPS. The result indicates that the products have very high ability to adsorb moisture, even better than cotton fiber. At the same time, the products show excellent hydrophobic property, which can't be wetted by those reagents whose surface tensions were higher than 327 mN/m.

  5. Transport properties of partially ionized and unmagnetized plasmas

    Science.gov (United States)

    Magin, Thierry E.; Degrez, Gérard

    2004-10-01

    This work is a comprehensive and theoretical study of transport phenomena in partially ionized and unmagnetized plasmas by means of kinetic theory. The pros and cons of different models encountered in the literature are presented. A dimensional analysis of the Boltzmann equation deals with the disparity of mass between electrons and heavy particles and yields the epochal relaxation concept. First, electrons and heavy particles exhibit distinct kinetic time scales and may have different translational temperatures. The hydrodynamic velocity is assumed to be identical for both types of species. Second, at the hydrodynamic time scale the energy exchanged between electrons and heavy particles tends to equalize both temperatures. Global and species macroscopic fluid conservation equations are given. New constrained integral equations are derived from a modified Chapman-Enskog perturbative method. Adequate bracket integrals are introduced to treat thermal nonequilibrium. A symmetric mathematical formalism is preferred for physical and numerical standpoints. A Laguerre-Sonine polynomial expansion allows for systems of transport to be derived. Momentum, mass, and energy fluxes are associated to shear viscosity, diffusion coefficients, thermal diffusion coefficients, and thermal conductivities. A Goldstein expansion of the perturbation function provides explicit expressions of the thermal diffusion ratios and measurable thermal conductivities. Thermal diffusion terms already found in the Russian literature ensure the exact mass conservation. A generalized Stefan-Maxwell equation is derived following the method of Kolesnikov and Tirskiy. The bracket integral reduction in terms of transport collision integrals is presented in Appendix for the thermal nonequilibrium case. A simple Eucken correction is proposed to deal with the internal degrees of freedom of atoms and polyatomic molecules, neglecting inelastic collisions. The authors believe that the final expressions are

  6. Investigations into the Anti-Felting Properties of Sputtered Wool Using Plasma Treatment

    Science.gov (United States)

    M. Borghei, S.; Shahidi, S.; Ghoranneviss, M.; Abdolahi, Z.

    2013-01-01

    In this research the effects of mordant and plasma sputtering treatments on the crystallinity and morphological properties of wool fabrics were investigated. The felting behavior of the treated samples was also studied. We used madder as a natural dye and copper sulfate as a metal mordant. We also used copper as the electrode material in a DC magnetron plasma sputtering device. The anti-felting properties of the wool samples before and after dying was studied, and it was shown that the shrink resistance and anti-felting behavior of the wool had been significantly improved by the plasma sputtering treatment. In addition, the percentage of crystallinity and the size of the crystals were investigated using an X-ray diffractometer, and a scanning electron microscope was used for morphological analysis. The amount of copper particles on the surface of the mordanted and sputtered fabrics was studied using the energy dispersive X-ray (EDX) method, and the hydrophobic properties of the samples were examined using the water drop test. The results show that with plasma sputtering treatment, the hydrophobic properties of the surface of wool become super hydrophobic.

  7. The dispersive properties of a dielectricrod loaded waveguide immersed in a magnetized annular plasma

    Institute of Scientific and Technical Information of China (English)

    Li Wei; Gong Ma-Li; Wei Yan-Yu; Xie Hong-Quan

    2004-01-01

    @@ Propagation properties of electromagnetic waves in a dielectric-rod waveguide immersed in a magnetized annular plasma are presented in this paper. The dispersion relations are derived and calculated. The results show that the dielectric-rod loading can make the structure less dispersive and the transmission frequency-band broadened.

  8. Microscopic and thermodynamic properties of dense semiclassical partially ionized hydrogen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ramazanov, T S; Dzhumagulova, K N; Gabdullin, M T [IETP, Al-Farabi Kazakh National University, 96a, Tole Bi St, Almaty, 050012 (Kazakhstan)

    2006-04-28

    Microscopic and thermodynamic properties of dense semiclassical partially ionized hydrogen plasma were investigated on the basis of pseudopotential models. Radial distribution functions (RDF) of particles were obtained using a system of the Ornstein-Zernike integral equations. The corrections to internal energy and the equation of state were calculated using RDF.

  9. Modifications in Structural, Electrical, Electronic and Mechanical Properties of Titanium Thin Films under different Gas Plasmas

    Science.gov (United States)

    Singh, Omveer; Dahiya, Raj P.; Malik, Hitendra K.

    2015-09-01

    In the recent past, Titanium thin films can be grown over different substrates such as silicon, glass and quartz by using versatile deposition techniques DC, RF sputtering, electronic beam and thermal evaporation etc. The grown films are then exposed in different gas environments for individual application. It has been found that Titanium nitride exhibits good chemical stability, mechanical and electrical properties. To investigate these properties in titanium nitride thin films, we have developed a new approach hot cathode arc discharge plasma system. By using this technique, we can measure plasma and nitriding parameters independently. In the present work, we have investigated gases mixture (Nitrogen, Argon and Hydrogen) effect on the structural, mechanical, electrical and electronic properties in plasma system. We have used 100% N2, 50% N2 + 50% Ar and 50% N2 + 50% H2 gases ratio for plasma nitriding. Structural and electronic structure properties are measured from X-ray diffractions (XRD) and X-ray photoelectron spectroscopy (XPS) respectively. The surface morphology of these films were measured using Atomic Force Microscopy (AFM) and the nano-indentation mode is used to find out the hardness of the samples. Government of India.

  10. Elements of plasma technology

    CERN Document Server

    Wong, Chiow San

    2016-01-01

    This book presents some fundamental aspects of plasma technology that are important for beginners interested to start research in the area of plasma technology . These include the properties of plasma, methods of plasma generation and basic plasma diagnostic techniques. It also discusses several low cost plasma devices, including pulsed plasma sources such as plasma focus, pulsed capillary discharge, vacuum spark and exploding wire; as well as low temperature plasmas such as glow discharge and dielectric barrier discharge which the authors believe may have potential applications in industry. The treatments are experimental rather than theoretical, although some theoretical background is provided where appropriate. The principles of operation of these devices are also reviewed and discussed.

  11. Restructured graphene sheets embedded carbon film by oxygen plasma etching and its tribological properties

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Meiling [Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Diao, Dongfeng, E-mail: dfdiao@szu.edu.cn [Institute of Nanosurface Science and Engineering (INSE), Shenzhen University, Shenzhen 518060 (China); Yang, Lei [Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Fan, Xue [Institute of Nanosurface Science and Engineering (INSE), Shenzhen University, Shenzhen 518060 (China)

    2015-12-01

    Highlights: • Oxygen plasma etching was developed to improve tribological properties of GSEC film. • Etching restructured 3 nm top layer with smaller crystallite size and higher sp{sup 3} fraction. • The etched film had smoother surface, enhanced mechanical properties, longer wear life. • High electrical conductivity and strong magnetism were retained after etching. - Abstract: An oxygen plasma etching technique was introduced for improving the tribological properties of the graphene sheets embedded carbon (GSEC) film in electron cyclotron resonance plasma processing system. The nanostructural changing in the film caused by oxygen plasma etching was examined by transmission electron microscope, Raman spectroscopy and X-ray photoelectron spectroscopy, showing that the 3 nm thick top surface layer was restructured with smaller graphene nanocrystallite size as well as higher sp{sup 3} bond fraction. The surface roughness, mechanical behavior and tribological properties of the original GSEC and oxygen plasma treated GSEC films were compared. The results indicated that after the oxygen plasma treatment, the average roughness decreased from 20.8 ± 1.1 nm to 1.9 ± 0.1 nm, the hardness increased from 2.3 ± 0.1 GPa to 2.9 ± 0.1 GPa, the nanoscratch depth decreased from 64.5 ± 5.4 nm to 9.9 ± 0.9 nm, and the wear life increased from 930 ± 390 cycles to more than 15,000 frictional cycles. The origin of the improved tribological behavior was ascribed to the 3 nm thick graphene nanocrystallite film. This finding can be expected for wide applications in nanoscale surface engineering.

  12. Global plasma simulation of charge state distribution inside a 2.45 GHz ECR plasma with experimental verification

    Energy Technology Data Exchange (ETDEWEB)

    Bodendorfer, M; Wurz, P; Hohl, M, E-mail: bodendorfer@ep.isas.jaxa.j [Space Research and Planetary Sciences, University of Bern, 3012 Bern (Switzerland)

    2010-08-15

    For the first time, the charge state distribution inside the MEsskammer fuer FlugzeitInStrumente und Time-Of-Flight (MEFISTO) electron cyclotron resonance (ECR) plasma and in the extracted ion beam was successfully simulated. A self-consistent ECR plasma ionization model (Hohl M 2002 MEFISTO II: Design, setup, characterization and operation of an improved calibration facility for solar plasma instrumentation PhD Thesis University of Bern) was further developed, recomputing the ion confinement time for every ion species and in every time step based on the actual plasma potential rather than using a prescribed constant ion confinement time. The simulation starts with a user defined set of initial conditions and develops the problem in time space by an adaptive step length fourth order Runge-Kutta (RK4) solver, considering particle densities based on ionization rates, recombination rates, ion confinement times and plasma potential. At the simulation end, a steady-state ion charge state distribution is reached, which is in excellent agreement with the measured ion beam charge state distribution of the MEFISTO ion source for Ar{sup 1+} to Ar{sup 5+} and in good agreement for Ar{sup 6+}.

  13. Global plasma simulation of charge state distribution inside a 2.45 GHz ECR plasma with experimental verification

    Science.gov (United States)

    Bodendorfer, M.; Wurz, P.; Hohl, M.

    2010-08-01

    For the first time, the charge state distribution inside the MEsskammer für FlugzeitInStrumente und Time-Of-Flight (MEFISTO) electron cyclotron resonance (ECR) plasma and in the extracted ion beam was successfully simulated. A self-consistent ECR plasma ionization model (Hohl M 2002 MEFISTO II: Design, setup, characterization and operation of an improved calibration facility for solar plasma instrumentation PhD Thesis University of Bern) was further developed, recomputing the ion confinement time for every ion species and in every time step based on the actual plasma potential rather than using a prescribed constant ion confinement time. The simulation starts with a user defined set of initial conditions and develops the problem in time space by an adaptive step length fourth order Runge-Kutta (RK4) solver, considering particle densities based on ionization rates, recombination rates, ion confinement times and plasma potential. At the simulation end, a steady-state ion charge state distribution is reached, which is in excellent agreement with the measured ion beam charge state distribution of the MEFISTO ion source for Ar1+ to Ar5+ and in good agreement for Ar6+.

  14. SPECTRAL PROPERTIES OF QUARKS IN THE QUARK-GLUON PLASMA.

    Energy Technology Data Exchange (ETDEWEB)

    KARSCH,F.; KITAZAWA, M.

    2007-07-30

    We analyze the spectral properties of the quark propagator above the critical temperature for the deconfinement phase transition in quenched lattice QCD using clover improved Wilson fermions. The bare quark mass dependence of the quark spectral function is analyzed by varying the hopping parameter {kappa} in Landau gauge. We assume a two-pole structure for the quark spectral function, which is numerically found to work quite well for any value of {kappa}. It is shown that in the chiral limit the quark spectral function has two collective modes that correspond to the normal and plasmino excitations, while it is dominated by a single-pole structure when the bare quark mass becomes large.

  15. Spectral Properties of Quarks in the Quark-Gluon Plasma

    CERN Document Server

    Karsch, F

    2007-01-01

    We analyze the spectral properties of the quark propagator above the critical temperature for the deconfinement phase transition in quenched lattice QCD using clover improved Wilson fermions. The bare quark mass dependence of the quark spectral function is analyzed by varying the hopping parameter \\kappa in Landau gauge. We assume a two-pole structure for the quark spectral function, which is numerically found to work quite well for any value of \\kappa. It is shown that in the chiral limit the quark spectral function has two collective modes that correspond to the normal and plasmino excitations, while it is dominated by a single-pole structure when the bare quark mass becomes large.

  16. Coupled plasma filtration adsorption in experimental peritonitis-induced septic shock.

    Science.gov (United States)

    Sykora, Roman; Chvojka, Jiri; Krouzecky, Ales; Radej, Jaroslav; Kuncova, Jitka; Varnerova, Veronika; Karvunidis, Thomas; Novak, Ivan; Matejovic, Martin

    2009-05-01

    The coupled plasma filtration adsorption (CPFA) was developed as an adsorptive hemopurification method aimed at nonselective removal of circulating soluble mediators potentially involved in the pathogenesis of sepsis. We hypothesized that this nonselective hemopurification could protect from detrimental consequences of long-term, volume-resuscitated porcine septic shock. In 16 anesthetized, mechanically ventilated, and instrumented pigs, the hyperdynamic septic shock secondary to peritonitis was induced by intraperitoneally inoculating feces and maintained for 22 h with fluid resuscitation and norepinephrine infusion as needed to maintain MAP above 65 mmHg. After 12 h of peritonitis, animals were randomized to receive either supportive treatment (control, n = 8) or CPFA treatment (CPFA, n = 8). Systemic, hepatosplanchnic, and renal hemodynamics; oxygen exchange; energy metabolism (lactate/pyruvate and ketone body ratios); ileal mucosal and renal cortex microcirculation; systemic inflammation (TNF-alpha, IL-6); nitrosative/oxidative stress (thiobarbituric acid reactive species, nitrates + nitrites); and endothelial/coagulation dysfunction (asymmetric dimethylarginine, von Willebrand factor, thrombin-antithrombin complexes, platelet count) were assessed before and 12, 18, and 22 h of peritonitis. Coupled plasma filtration adsorption neither delayed the development of hypotension nor reduced the dose of norepinephrine. The treatment failed to attenuate sepsis-induced alterations in microcirculation, surrogate markers of cellular energetics, endothelial injury, and systemic inflammation. Similarly, CPFA did not protect from lung and liver dysfunction and even aggravated sepsis-induced disturbances in coagulation and oxidative/nitrosative stress. In this porcine model of septic shock, the early treatment with CPFA was not capable of reversing the sepsis-induced disturbances in various biological pathways and organ systems. Both the efficacy and safety of this method

  17. Experimental research on unloading properties of clay under high stress

    Institute of Scientific and Technical Information of China (English)

    MA Jin-rong; CUI Guang-xin; QIN Yong; ZHOU Guo-qing

    2008-01-01

    Mechanical properties of clay under high stress are quite different from those under low stress. It is necessary to investi-gate unloading properties of clay under high stress for the design and construction of deep underground engineering projects. A series of experiments were conducted to investigate the unloading properties of clay under high confining pressures by using a SKA-1 high pressure consolidation instrument designed by us. The stress versus strain relationship and the way that K0 values of clay change during the loading-unloading process were discovered. The results show that there are clear differences in the state of stress and deformation behavior of the clay along different unloading paths.

  18. Critical properties of aqueous solutions. Part 1: Experimental data

    Science.gov (United States)

    Abdulagatov, A. I.; Stepanov, G. V.; Abdulagatov, I. M.

    2008-08-01

    All data available in the literature on the critical properties of binary aqueous solutions like H2O + common salt, H2O + hydrocarbon, H2O + alcohol, H2O + gas, and others are gathered. Methods for determining them are presented together with errors and concentration measurement intervals for each source of data. The format in which the data are presented will allow the readers to quickly find the necessary information on the critical properties of aqueous solutions from the original sources and use them for solving scientific and engineering tasks. Certain general features of the critical lines and phase diagrams of aqueous solutions with volatile and nonvolatile components are discussed.

  19. Kinetic theory of transport processes in partially ionized reactive plasma, II: Electron transport properties

    Science.gov (United States)

    Zhdanov, V. M.; Stepanenko, A. A.

    2016-11-01

    The previously obtained in (Zhdanov and Stepanenko, 2016) general transport equations for partially ionized reactive plasma are employed for analysis of electron transport properties in molecular and atomic plasmas. We account for both elastic and inelastic interaction channels of electrons with atoms and molecules of plasma and also the processes of electron impact ionization of neutral particles and three-body ion-electron recombination. The system of scalar transport equations for electrons is discussed and the expressions for non-equilibrium corrections to electron ionization and recombination rates and the diagonal part of the electron pressure tensor are derived. Special attention is paid to analysis of electron energy relaxation during collisions with plasma particles having internal degrees of freedom and the expression for the electron coefficient of inelastic energy losses is deduced. We also derive the expressions for electron vector and tensorial transport fluxes and the corresponding transport coefficients for partially ionized reactive plasma, which represent a generalization of the well-known results obtained by Devoto (1967). The results of numerical evaluation of contribution from electron inelastic collisions with neutral particles to electron transport properties are presented for a series of molecular and atomic gases.

  20. Inductive Pulsed Plasma Thruster Model with Time-Evolution of Energy and State Properties

    Science.gov (United States)

    Polzin, Kurt A.; Sankaran, Kamesh

    2012-01-01

    A model for pulsed inductive plasma acceleration is presented that consists of a set of circuit equations coupled to both a one-dimensional equation of motion and an equation governing the partitioning of energy. The latter two equations are obtained for the plasma current sheet by treating it as a single element of finite volume and integrating the governing equations over that volume. The integrated terms are replaced where necessary by physically-equivalent quantities that are calculated through the solution of other parts of the governing equation set. The model improves upon previous one-dimensional performance models by permitting the time-evolution of the energy and state properties of the plasma, the latter allowing for the tailoring of the model to different gases that may be chosen as propellants. The time evolution of the various energy modes in the system and the associated plasma properties, calculated for argon propellant, are presented to demonstrate the efficacy of the model. The model produces a result where efficiency is maximized at a given value of the electrodynamic scaling term known as the dynamic impedance parameter. Qualitatively and quantitatively, the model compares favorably with performance measured for two separate inductive pulsed plasma thrusters, with disagreements attributable to simplifying assumptions employed in the generation of the model solution.

  1. Plasma treatment of polyester fabric to impart the water repellency property

    Indian Academy of Sciences (India)

    C J Jahagirdar; L B Tiwari

    2007-04-01

    Polyester fabric is treated with DCDMS solution by two methods: dipping the fabric directly in DCDMS solution for different intervals and dipping the fabric in DCDMS solution after its exposure into RF plasma chamber for different durations at optimized exposure power conditions. The physical properties of polyester fabric treated with DCDMS in the presence or absence of air plasma have been compared with control fabric. Different characterization techniques like scanning electron microscope, attenuated total reflectance-IR and Dataflash 100 colour measurement spectrophotometer are used to assess the surface morphology, composition and change in colour parameters. Water repellency property of both untreated and modified polyester fabric is studied using AATCC test method 39 (1971). The effectiveness of the water repellency property of modified polyester fabric is checked by repeated washing up to ten cycles.

  2. A New Experimental Approach to Evaluate Plasma-induced Damage in Microcantilever

    Directory of Open Access Journals (Sweden)

    Yuki Nishimori

    2013-09-01

    Full Text Available Plasma  etching,  during  micro-fabrication  processing  is  indispensable  for  fabricating  MEMS  structures.  During  the plasma  processes,  two  major matters,  charged  ions  and  vacuum–ultraviolet  (VUV  irradiation  damage,  take  charge  of reliability  degradation.  The  charged  ions  induce  unwanted  sidewall  etching,  generally  called  as  “notching”,  which causes  degradation  in  brittle  strength.  Furthermore,  the  VUV  irradiation  gives  rise  to  crystal  defects  on  the  etching surface.  To overcome  the  problem,  neutral  beam  etching  (NBE,  which  use  neutral  particles  without  the  VUV irradiation,  has  been  developed.  In  order  to  evaluate  the  effect  of  the  NBE  quantitatively,  we  measured  the  resonance property of a micro-cantilever before and after NBE treatment. The thickness of damage layer (δ times the imaginary part  of  the  complex Young's  modulus  (Eds  were  then  compared,  which  is  a  parameter  of  surface  damage.  Although plasma processes  make the initial surface of cantilevers damaged during their fabrication, the removal of that damage by NBE was confirmed as the reduction in δEds. NBE will realize a damage-free surface for microstructures.

  3. Experimental and theoretical determination of the efficiency of a sub-atmospheric flowing high power cascaded arc hydrogen plasma source

    NARCIS (Netherlands)

    Vijvers, W. A. J.; D.C. Schram,; Shumack, A. E.; Cardozo, N. J. L.; Rapp, J.; van Rooij, G. J.

    2010-01-01

    Cascaded arc plasma sources with channel diameters between 4 and 8mm were experimentally investigated at discharge currents up to 900A and hydrogen (H-2) flow rates up to 10 slm. Pressure measurements at the arc exit showed that the heavy particle temperature in the discharge channel was about 0.8 e

  4. Experimental study of a very high frequency (162MHz) capacitively coupled multi-tile electrode plasma source

    Science.gov (United States)

    Sirse, Nishant; Ellingboe, Bert

    2015-09-01

    In the recent years, plasma discharges excited at very high frequency (30-500MHz) has attracted much attention due to its ability to perform etching and deposition of large area substrates. VHF discharges yield high plasma density and low electron temperature and enable enhanced plasma dissociation. However, the plasma chemistry and power coupling mechanism in VHF discharges is not fully understood. In this article, we present an experimental study on nitrogen plasma produced by a VHF (162 MHz) multi-tile electrode. Electron density profile and gas temperature (rotational and vibrational) are measured as a function of rf power (100-1500W) and gas pressure (50mTorr-1Torr). Tile centre and Tile edge data are presented to realize the power coupling mechanism at different position in the multi-tile electrode discharge. It is observed that the plasma density increases monotonically with a rise in VHF power level at both positions while decreasing with an increase in the operating gas pressure. At a low gas pressure (50mTorr), plasma density profile shows a maximum at the tile centre and minimum at the tile edge position, whereas, at high gas pressures (500mTorr - 1 Torr) edge effects are observed. Measured rotational temperature (~ 350-450 K) is slightly above room temperature. Vibrational temperature, measured from 6500-8000 K, is increasing initially with a rise in rf power (profile, high vibrational temperature is measured at the tile edge compared to the tile centre.

  5. Effect of Non-Uniform Divertor Target Properties on Scrape-off Layer Plasma Equilibrium

    Science.gov (United States)

    Subba, Fabio; Tskhakaya, David; Holzmueller-Steinacker, Ulrike; Schupfer, Nikolaus; Stanojevic, Mladen; Kuhn, Siegbert

    2000-10-01

    It is well known that plasma in contact with a solid wall develops a boundary layer, which typically consists of a thin Debye sheath adjacent to the wall and a more extended presheath providing the transition to the unperturbed plasma [1,2]. As the physical interaction of the plasma with the surrounding universe is mainly localized in this region, it may be expected that this boundary layer, which sensitively controls particle and energy fluxes to and from the plasma, plays an important role in determining the properties of the overall plasma equilibrium. On the other hand, it is generally assumed that the details of the adopted boundary-layer models do not influence dramatically the overall SOL behavior. However, little quantitative literature is actually available on the subject [3]. The purpose of this paper is to make a contribution towards clarifying this issue. In particular, we will use the B2.5 code [4] for studying the influence of non-uniformity of the effective secondary-electron emission coefficient (ESEEC) on the plasma parameters in the SOL.

  6. Properties of Plasma Membrane from Pea Root Seedlings under Altered Gravity

    Science.gov (United States)

    Klymchuk, D.; Baranenko, V.; Vorobyova, T. V.; Kurylenko, I.; Chyzhykova, O.; Dubovoy, V.

    In this study, the properties of pea (Pisum sativum L.) plasma membrane were examined to determine how the membrane structure and functions are regulated in response to clinorotation (2 rev/min) conditions. Membrane preparations enriched by plasma membrane vesicles were obtained by aqueous two-phase partitioning from 6-day seedling roots. The specific characteristics of H^+-ATPase, lípid composition and peroxidation intensity as well as fluidity of lipid bilayer were analysed. ATP hydrolytic activity was inhibited by ortovanadate and was insensitive to aside and nitrate in sealed plasma membrane vesicles isolated from both clinorotated and control seedlings. Plasma membrane vesicles from clinorotated seedlings in comparison to controls were characterised by increase in the total lipid/protein ratio, ATP hydrolytic activity and intensifying of lipid peroxidation. Sitosterol and campesterol were the predominant free sterol species. Clinorotated seedlings contained a slightly higher level of unsaturated fatty acid than controls. Plasma membrane vesicles were labelled with pyrene and fluorescence originating from monomeric (I_M) molecules and excimeric (I_E) aggregates were measured. The calculated I_E/I_M values were higher in clinorotated seedlings compared with controls reflecting the reduction in membrane microviscosity. The involvement of the changes in plasma membrane lipid content and composition, fluidity and H^+-ATPase activity in response of pea seedlings to altered gravity is discussed.

  7. Experimental study into plasma-assisted PM removal for diesel engines

    NARCIS (Netherlands)

    Willems, F.P.T.; Creyghton, Y.; Gulijk, C. van; Oonk, H; Maisuls, S.

    2003-01-01

    Plasma-assisted PM removal is examined in a packed-bed plasma system. This study focuses on the effect of plasma power, space velocity and exhaust gas composition on PM filtration. Experiments are done on an engine dynamometer with a VW 1.2l TDI engine. During these experiments, the airflow is throt

  8. Numerical and experimental studies of the carbon etching in EUV-induced plasma

    NARCIS (Netherlands)

    Astakhov, Dmitry; Goedheer, W.J.; Lee, Christopher James; Ivanov, V.V.; Krivtsun, V.M.; Yakushev, O.; Koshelev, K.N.; Lopaev, D.V.; Bijkerk, Frederik

    2016-01-01

    We have used a combination of numerical modeling and experiments to study carbon etching in the presence of a hydrogen plasma. We model the evolution of a low density EUV-induced plasma during and after the EUV pulse to obtain the energy resolved ion fluxes from the plasma to the surface. By

  9. Exploring the electron density in plasma induced by EUV radiation: I. Experimental study in hydrogen

    NARCIS (Netherlands)

    van der Horst, R. M.; Beckers, J.; Osorio, E. A.; Astakhov, D. I.; Goedheer, W. J.; Lee, C. J.; Ivanov, V. V.; Krivtsun, V. M.; Koshelev, K. N.; Lopaev, D. V.; Bijkerk, F.; Banine, V.

    2016-01-01

    Plasmas induced by EUV radiation are unique since they are created without the need of any discharge. Moreover, it is essential to characterize these plasmas to understand and predict their long term impact on highly delicate optics in EUV lithography tools. In this paper we study plasmas induced by

  10. Experimental study into plasma-assisted PM removal for diesel engines

    NARCIS (Netherlands)

    Willems, F.P.T.; Creyghton, Y.; Gulijk, C. van; Oonk, H; Maisuls, S.

    2003-01-01

    Plasma-assisted PM removal is examined in a packed-bed plasma system. This study focuses on the effect of plasma power, space velocity and exhaust gas composition on PM filtration. Experiments are done on an engine dynamometer with a VW 1.2l TDI engine. During these experiments, the airflow is

  11. Experimental Characterization of Nonlinear Viscoelastic and Adhesive Properties of Elastomers

    Science.gov (United States)

    2006-07-27

    constant strain rate " = 7rn,, / L was imposed over the entire rod. The material was modeled as a hypoelastic material derived from Storen and Rice (1975...constitutive models that are based on free volume or enthalpy for their nonlinear contribution. The confined compression experiment provides an appropriate...the need to test the evolving constitutive model on physically well described and experimentally well documented situations that are not overshadowed

  12. Effects of temperature and plasma treatment on mechanical properties of ceramic fibres

    OpenAIRE

    N.T. Xiem*, D. Kroisová, P. Louda, T.D. Hung, Z. Rozek; D. Kroisová; P. Louda; T.D. Hung; Z. Rozek

    2009-01-01

    Purpose: The aim of this study is an investigation and comparison of mechanical properties of ceramic fibres after they were influenced by temperature and plasma treatment.Design/methodology/approach: Single filament after being processed at different temperatures (200oC, 400oC, 700oC and 1000oC) and methane plasma treatment was separated with a magnifier, prepared on a punched mounting tab, and was evaluated in accordance with Japanese Industrial Standard.Findings: Preliminary results of the...

  13. Argon/Hexamethyldisiloxane Plasma Effects on Poly Propylene Film Surface Properties

    Science.gov (United States)

    Mortazavi, S. H.; Ghoranneviss, M.; Sari, A. H.

    2010-10-01

    In this work a DC plasma reactor was used for deposition of plasma polymerized coating from hexamethyldisiloxane-Ar (35/65%) mixture on polypropylene films. Surface energy parameter have been calculated using Owens-Wendt approaches with the sessile drop method are used to obtain the dispersive γD and polar γP component of surface free energy. The surface morphology of samples were investigated using scanning electron microscope. Also the chemical properties and wetability of prepared samples were tested using Fourier transform infrared spectroscopy and contact angle measurement, respectively.

  14. Spatial properties of a terahertz beam generated from a two-color air plasma

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Wang, Tianwu; Buron, Jonas Christian Due

    2013-01-01

    We present a spatial characterization of terahertz (THz) beams generated from a two-color air plasma under different conditions by measuring full 3D beam profiles using a commercial THz camera. We compare two THz beam profiles emitted from plasmas generated by 35 fs and 100 fs laser pulses......, and show that the spatial properties of the two THz beams do not change significantly. For the THz beam profile generated by the 35 fs pulse, the spatial effect of eliminating the lower frequencies is investigated by implementing two crossed polarizers working as a high-pass filter. We show...

  15. ANTIHYPERGLYCEMIC, ANTIOXIDANT AND ANTIDYSLIPIDEMIC PROPERTIES OF HEMIDESMUS INDICUS ROOT EXTRACT STUDIED IN ALLOXAN-INDUCED EXPERIMENTAL DIABETES IN RATS

    Directory of Open Access Journals (Sweden)

    S. Subramanian et al.

    2012-01-01

    Full Text Available Diabetes mellitus is a chronic metabolic disorder associated with hyperglycemia, oxidative stress and dyslipidemia. Hemidesmus indicus is employed as an indigenous medicine for a variety of ailments from earlier days. The present study was aimed to evaluate the role of Hemidesmus indicus in alloxan-induced experimental diabetic rats. The effect of oral administration of Hemidesmus indicus root extract (400 mg/kg b.w. on glucose tolerance, the levels of blood glucose, hemoglobin, glycosylated hemoglobin, plasma insulin, protein, lipid peroxides, enzymatic and non-enzymatic antioxidants, lipid profile, muscle glycogen content were determined in control and experimental groups of rats. The altered levels of blood glucose, hemoglobin, glycosylated hemoglobin, plasma insulin, and protein in the diabetic rats were significantly reverted back to near basal values by the administration of ethanol extract of Hemidesmus indicus root to diabetic rats for 30 days. The levels of lipid peroxides in the plasma and pancreatic tissues of diabetic rats were elevated significantly and were normalized by the administration of Hemidesmus indicus root extract. The activities of pancreatic enzymic antioxidants and the levels of plasma non-enzymic antioxidants were markedly declined in the diabetic rats. Upon treatment with Hemidesmus indicus root extract to diabetic rats, these decreased levels were elevated to near normal values. The reduced level of glycogen content in muscle tissues of diabetic rats was significantly improved upon treatment with Hemidesmus indicus root extract. The altered levels of lipid profile were reverted back to near normalcy upon the extract treatment. The results of the study indicate that Hemidesmus indicus root extract possesses antihyperglycemic, antioxidant and antidyslipidemic activity. The results are comparable with glyclazide, an oral standard hypoglycemic drug. The phytochemicals present in the Hemidesmus indicus root extract may

  16. Experimental study of collisionless super-Alfvénic interaction of interpenetrating plasma flows

    Science.gov (United States)

    Shaikhislamov, I. F.; Zakharov, Yu. P.; Posukh, V. G.; Melekhov, A. V.; Boyarintsev, E. L.; Ponomarenko, A. G.; Terekhin, V. A.

    2015-05-01

    An experiment on the interaction between an expanding super-Alfvénic laser-produced plasma flow and a magnetized background plasma under conditions in which the ion gyroradius is comparable with the characteristic scale length of magnetic field displacement is described. The depletion of the background plasma in a substantial volume and the formation of a large-amplitude compression pulse propagating with a super-Alfvénic velocity are revealed. The efficiency of energy conversion into perturbations of the background plasma was found to be 25%. Combined data from magnetic, electric, and plasma measurements indicate that the interaction occurs via the magnetic laminar mechanism.

  17. An Experimental Evaluation of Mechanical Properties of Hybrid Reinforcements

    Science.gov (United States)

    Sai Kumar, A.; Ganesan, G.; Karthikeyan, K.

    2017-07-01

    This paper presents the mechanical properties of unidirectional hybrid reinforcements formed from continuous fibres impregnated with a fibre binding material which are used for reinforcing the concrete. Recently FRP (Fibre Reinforced Polymer) manufacturers and suppliers have been increased all over the world because of the superior performance of FRP products in the construction industry. Its non-corrosive nature has turned the attention of many researchers to make several studies on different type of FRP products. Through a vast research, several standards also have been formulated. In this regard a new combination of FRP materials is tried in this paper and its properties have been derived. Carbon fibre and glass fibres fuse in this study to form a new hybrid rebar. The design properties such as tensile strength, tensile modulus, and compressive strength have been studied as per ASTM standards and it has been identified that the Hybrid rebar show a superior performance in comparison with GFRP (Glass FRP) and Steel rebars. This extraordinary performance of hybrid composite material increases the extensive engineering applications such as transport industry, aeronautics, naval, automotive industries.

  18. Experimental analysis of electrical properties of composite materials

    Science.gov (United States)

    Fiala, L.; Rovnaník, P.; Černý, R.

    2017-02-01

    Dry cement-based composites are electrically non-conductive materials that behave in electric field like dielectrics. However, a relatively low amount of electrically conductive admixture significantly increases the electrical conductivity which extends applicability of such materials in practice. Therefore, they can be used as self-monitoring sensors controlling development of cracks; as sensors monitoring moisture content or when treated by an external electrical voltage as heat sources used for deicing of material's surface layer. Alkali-activated aluminosilicates (AAA), as competing materials to cement-based materials, are intensively investigated in the present due to their superior durability and environmental impact. Whereas the electrical properties of AAA are similar to those cement-based, they can be enhanced in the same way. In both cases, it is crucial to find a reasonable amount of electrically conductive phase to design composites with a sufficient electrical conductivity at an affordable price. In this paper, electrical properties of composites based on AAA binder and electrically conductive admixture represented by carbon nanotubes (CNT) are investigated. Measurements of electrical properties are carried out by means of 2-probes DC technique on nine types of samples; reference sample without the conductive phase and samples with CNT admixture in amount of 0.1 % - 2.5 % by vol. A significant increase of the electrical conductivity starts from the amount of 0.5 % CNT admixture and in case of 2.5 % CNT is about three orders of magnitude higher compared to the reference sample.

  19. A Computational-Experimental Study of Plasma Processing of Carbides at High Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Bronson, Arturo [Univ. of Texas, El Paso, TX (United States); Kumar, Vinod [Univ. of Texas, El Paso, TX (United States)

    2016-02-01

    The effects of plasma on carbides were computationally investigated for the ultimate development of adherent, dense scales such as Al2O3-TiO2 systems toward oxidation resistance at 1873 K. An alumina scale forms on the carbide because of the significant stability of Al2O3 as the outer scale adjacent to the gas phase compared to rutile, though TiO and Ti2O3 may form as components of an inner layer of a complicated scale. A sequence of surface reactions starting with the adsorption of oxygen on the surface was applied to experimental data from Donnelly’s research group who reported the adsorption of O2 in a plasma atmosphere as a function of power. In addition to the adsorbed oxygen (Oad) as the rate determining step, it controlled the cascading reaction sequence of the adsorbed species of AlO, AlO2 and AlO3, as indicated in the present study. The rate of oxygen adsorption also depends on the ratio of the final to initial adsorbed oxygen as a function the oxygen potential. In a secondary research thrust, Ti3AlC was synthesized and subsequently oxidized. A 39Ti-14Al-47TiC (in wt%) mixture was equilibrated by using a pseudo-isopiestic technique to form ultimately an aggregate of Ti3AlC, Ti2AlC and TiC phases. The aggregate was primarily composed of Ti3AlC with minor amounts of Ti2AlC and TiC, as determined by an X-ray diffraction analysis. The Ti3AlC/Ti2AlC/TiC aggregate was subsequently oxidized at 1873 K to form a scale composed of an outer layer of Al2O3-TiO2-Al2TiO5 with an inner layer consisting of TiO-Al2O3- Al4CO3. The measured scale thickness grew according to Wagner’s parabolic growth rate, which estimates an effective diffusion coefficient of 6 (10)-8 cm2/s. The scale

  20. Experimental Investigation on the Ignition Delay Time of Plasma-Assisted Ignition

    Science.gov (United States)

    Xiao, Yang; Yu, Jin-Lu; He, Li-Ming; Jiang, Yong-Jian; Wu, Yong

    2016-09-01

    This paper investigates the ignition performances of plasma-assisted ignition in propane/air mixture. The results show that a shorter ignition delay time is obtained for the plasma ignition than the spark ignition and the average ignition delay time of plasma-assisted ignition can be reduced at least by 50%. The influence of air flow rate of combustor, the arc current and argon flow rate of plasma igniter on ignition delay time are also investigated. The ignition delay time of plasma-assisted ignition increases with increasing air flow rate in the combustor. By increasing the arc current, the plasma ignition will gain more ignition energy to ignite the mixture more easily. The influence of plasma ignition argon flow rates on the ignition delay time is quite minor.

  1. Experimental Validation of an Electromagnet Thermal Design Methodology for Magnetized Dusty Plasma Research

    Science.gov (United States)

    Birmingham, W. J.; Bates, E. M.; Romero-Talamás, C. A.; Rivera, W. F.

    2016-10-01

    An analytic thermal design method developed to aid in the engineering design of Bitter-type magnets, as well as finite element calculations of heat transfer, are compared against experimental measurements of temperature evolution in a prototype magnet designed to operate continuously at 1 T fields while dissipating 9 kW of heat. The analytic thermal design method is used to explore a variety of configurations of cooling holes in the Bitter plates, including their geometry and radial placement. The prototype has diagnostic ports that can accommodate thermocouples, pressure sensors, and optical access to measure the water flow. We present temperature and pressure sensor data from the prototype compared to the analytic thermal model and finite element calculations. The data is being used to guide the design of a 10 T Bitter magnet capable of sustained fields of up to 10 T for at least 10 seconds, which will be used in dusty plasma experiments at the University of Maryland Baltimore County. Preliminary design plans and progress towards the construction of the 10 T electromagnet are also presented.

  2. Development and experimental study of oil-free capacitor module for plasma focus device

    Science.gov (United States)

    Sharma, Ravindra Kumar; Sharma, Archana

    2017-03-01

    This development is concerned with the compact capacitor module for a plasma focus device. Oil-free, non-standard geometry capacitors are designed and developed for high current delivery in sub-microseconds time. Metalized dielectric film based pulse capacitor becomes progressively less viable at currents above 10 kA. It is due to reliability and energy scaling difficulties, based on effects such as vaporization, high resistivity, and end connection. Bipolar electrolytic capacitors are also not preferred due to their limited life and comparatively low peak current delivery. Bi-axially oriented polypropylene (BOPP) film with extended aluminum foil is a combination to deliver moderately high power. But, electrically weak points, relative permittivity, and the edge gap margins have made its adoption difficult. A concept has been developed in lab for implementing the above combination in a less complex and costly manner. This paper concerns the development and testing process techniques for quite different hollow cylindrical, oil-free capacitors (4 μ F , 10 kV, 20 nH). Shot life of 1000 has been experimentally performed on the test bed at its rated energy density level. The technological methods and engineering techniques are now available and utilized for manufacturing and testing of BOPP film based oil-free capacitors.

  3. Laser ablation inductively coupled plasma mass spectrometry imaging of metals in experimental and clinical Wilson's disease.

    Science.gov (United States)

    Boaru, Sorina Georgiana; Merle, Uta; Uerlings, Ricarda; Zimmermann, Astrid; Flechtenmacher, Christa; Willheim, Claudia; Eder, Elisabeth; Ferenci, Peter; Stremmel, Wolfgang; Weiskirchen, Ralf

    2015-04-01

    Wilson's disease is an autosomal recessive disorder in which the liver does not properly release copper into bile, resulting in prominent copper accumulation in various tissues. Affected patients suffer from hepatic disorders and severe neurological defects. Experimental studies in mutant mice in which the copper-transporting ATPase gene (Atp7b) is disrupted revealed a drastic, time-dependent accumulation of hepatic copper that is accompanied by formation of regenerative nodes resembling cirrhosis. Therefore, these mice represent an excellent exploratory model for Wilson's disease. However, the precise time course in hepatic copper accumulation and its impact on other trace metals within the liver is yet poorly understood. We have recently established novel laser ablation inductively coupled plasma mass spectrometry protocols allowing quantitative metal imaging in human and murine liver tissue with high sensitivity, spatial resolution, specificity and quantification ability. By use of these techniques, we here aimed to comparatively analyse hepatic metal content in wild-type and Atp7b deficient mice during ageing. We demonstrate that the age-dependent accumulation of hepatic copper is strictly associated with a simultaneous increase in iron and zinc, while the intrahepatic concentration and distribution of other metals or metalloids is not affected. The same findings were obtained in well-defined human liver samples that were obtained from patients suffering from Wilson's disease. We conclude that in Wilson's disease the imbalances of hepatic copper during ageing are closely correlated with alterations in intrahepatic iron and zinc content.

  4. Commissioning of the catalytic plasma exhaust clean-up facility caprice and first experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Glugla, M.; Kraemer, R.; Penzhorn, R.D.; Le, T.L.; Simon, K.H.; Guenther, K.; Besserer, U.; Schaefer, P.; Hellriegel, W. [Research Center Karlsruhe (Germany); Geissler, H. [Kraftanlagen Heidelberg (Germany)

    1995-10-01

    A fuel clean-up process for all plasma exhaust gases from DT fusion machines, based on catalytic conversion reactions combined with permeation of hydrogen isotopes through palladium/silver, has been developed. The complete process has already been proven with relevant concentrations of tritium at laboratory scale. On the basis of the results obtained the technical facility `CAPRICE` was designed, and is now under tritium operation at the Tritium Laboratory Karlsruhe (TLK). The facility is being used to demonstrate the process on a target throughput of 10 mol/h DT and 1 mol/h tritiated and non-tritiated impurities. Full scale experiments with hydrogen and deuterium have been completed to verify the design parameters of the facility and to gain detailed knowledge on the performance of the different subsystems under a variety of experimental conditions. Decontamination factors were obtained from these experiments as well as from first tritium runs employing about 350 Ci (0.5%) tritium in deuterium. 4 refs., 6 figs., 1 tab.

  5. A CONNECTION BETWEEN PLASMA CONDITIONS NEAR BLACK HOLE EVENT HORIZONS AND OUTFLOW PROPERTIES

    Energy Technology Data Exchange (ETDEWEB)

    Koljonen, K. I. I.; Russell, D. M.; Bernardini, F. [New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi (United Arab Emirates); Fernández-Ontiveros, J. A. [Istituto di Astrofisica e Planetologia Spaziali (INAF-IAPS), Via Fosso del Cavaliere 100, I-00133 Roma (Italy); Markoff, Sera [Astronomical Institute “Anton Pannekoek”, University of Amsterdam, P.O. Box 94249, 1090 GE Amsterdam (Netherlands); Russell, T. D.; Miller-Jones, J. C. A.; Curran, P. A.; Soria, R. [International Centre for Radio Astronomy Research—Curtin University, GPO Box U1987, Perth, WA 6845 (Australia); Van der Horst, A. J. [Department of Physics, The George Washington University, 725 21st Street NW, Washington, DC 20052 (United States); Casella, P. [INAF, Osservatorio Astronomico di Roma, Via Frascati 33, I-00040 Monteporzio Catone (Italy); Gandhi, P., E-mail: karri.koljonen@nyu.edu [School of Physics and Astronomy, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom)

    2015-12-01

    Accreting black holes are responsible for producing the fastest, most powerful outflows of matter in the universe. The formation process of powerful jets close to black holes is poorly understood, and the conditions leading to jet formation are currently hotly debated. In this paper, we report an unambiguous empirical correlation between the properties of the plasma close to the black hole and the particle acceleration properties within jets launched from the central regions of accreting stellar-mass and supermassive black holes. In these sources the emission of the plasma near the black hole is characterized by a power law at X-ray energies during times when the jets are produced. We find that the photon index of this power law, which gives information on the underlying particle distribution, correlates with the characteristic break frequency in the jet spectrum, which is dependent on magnetohydrodynamical processes in the outflow. The observed range in break frequencies varies by five orders of magnitude in sources that span nine orders of magnitude in black hole mass, revealing a similarity of jet properties over a large range of black hole masses powering these jets. This correlation demonstrates that the internal properties of the jet rely most critically on the conditions of the plasma close to the black hole, rather than other parameters such as the black hole mass or spin, and will provide a benchmark that should be reproduced by the jet formation models.

  6. Experimental investigation on erosive wear behaviour of plasma spray coated stainless steel

    Science.gov (United States)

    Girisha, K. G.; Sreenivas Rao, K. V.; Anil, K. C.; Sanman, S.

    2017-04-01

    Slurry erosion is an implicit problem in many engineering industrial components such as ore carrying pipelines, slurry pumps and extruders. Even the water turbine blades are subjected to erosive wear when the water contains considerable amount of silt. In the present study, Al2O3-40%TiO2 powder particles of average particle size of 50 micrometer were deposited on EN56B martenistic stainless steel by atmospheric plasma spray technique. Ni/Cr was pre coated to work as bond coat for good adhesion between coating and the substrate material. A coating thickness of 200 micrometer was achieved. Coated and un-coated substrates were subjected to slurry erosion test as per ASTM G-119 standard. Slurry erosion test rig was used to evaluate the erosion properties at room temperature condition by varying the spindle speed. Scanning electron microphotographs were taken before and after the slurry erosion test. Microstructures reveal uniform distribution of coating materials. Eroded surface shows lip, groove, and crater formation and dense coating resulting in less porosity. Micro hardness test was evaluated and reported. EDX analysis confirms the presence of Al, Ti and O2 particles. It was observed that, Al2O3-40%TiO2 coated substrates exhibit superior erosion resistance as compared to un-coated substrates due to higher hardness and less coating porosity.

  7. Low-dose plasmid DNA treatment increases plasma vasopressin and regulates blood pressure in experimental endotoxemia

    Directory of Open Access Journals (Sweden)

    Malardo Thiago

    2012-11-01

    Full Text Available Abstract Background Although plasmid DNA encoding an antigen from pathogens or tumor cells has been widely studied as vaccine, the use of plasmid vector (without insert as therapeutic agent requires further investigation. Results Here, we showed that plasmid DNA (pcDNA3 at low doses inhibits the production of IL-6 and TNF-α by lipopolysaccharide (LPS-stimulated macrophage cell line J774. These findings led us to evaluate whether plasmid DNA could act as an anti-inflammatory agent in a Wistar rat endotoxemia model. Rats injected simultaneously with 1.5 mg/kg of LPS and 10 or 20 μg of plasmid DNA had a remarkable attenuation of mean arterial blood pressure (MAP drop at 2 hours after treatment when compared with rats injected with LPS only. The beneficial effect of the plasmid DNA on MAP was associated with decreased expression of IL-6 in liver and increased concentration of plasma vasopressin (AVP, a known vasoconstrictor that has been investigated in hemorrhagic shock management. No difference was observed in relation to nitric oxide (NO production. Conclusion Our results demonstrate for the first time that plasmid DNA vector at low doses presents anti-inflammatory property and constitutes a novel approach with therapeutic potential in inflammatory diseases.

  8. Plasma surface alloying of titanium alloy for enhancing burn-resistant property

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ping-ze; XU Zhong; ZHANG Gao-hui; HE Zhi-yong; YAO Zheng-jun

    2006-01-01

    Conventional titanium alloy may be ignited and burnt under high temperature, high pressure and high gas flow velocity condition. In order to avoid this problem, burn-resistant alloying layers were made on the surface of Ti-6Al-4V and Ti-6.5Al-0.3Mo-1.5Zr-0.25Si titanium alloys by using double glow plasma surface alloying technology (DG Technology). Two typical burn-resistant layers Ti-Cr and Ti-Mo were made by DG plasma chromizing and DG plasma molybdenizing, respectively. Burn-resistant properties were tested by layer ignition method using 2 kW laser machine. Ignition experiments result reveals that the ignition temperature of alloyed layer with Mo and Cr concentration above 10% is about 200℃ higher than ignition temperature of Ti-6Al-4V substrate.

  9. Surface adhesive properties of continuous PBO fiber after air-plasma-grafting-epoxy treatment

    Institute of Scientific and Technical Information of China (English)

    贾彩霞; 王乾; 陈平; 蒲永伟

    2016-01-01

    It was found that air dielectric barrier discharge (DBD) plasma contributed to the grafting of epoxy resin onto continuous PBO fiber surface. This air-plasma-grafting-epoxy method yielded a noticeable enhancement in the interfacial adhesion between PBO fiber and thermoplastic matrix resin, with the interlaminar shear strength of the resulting composites increased by 66.7%. DSC and FTIR analyses were then used to study the curing behavior of epoxy coating on PBO fiber surface, deduce the possible grafting reactions and investigate the grafting mechanism. More importantly, TGA measurement showed that the grafting of epoxy onto PBO fiber had almost no effect on the composite heat resistance, and there was more thermoplastic matrix resin adhering to the fiber surface; the latter could also be clearly found in the SEM photos. Thereby, the air-plasma-grafting-epoxy treatment was proved to be an effective method for the improvement of continuous PBO fiber surface adhesive properties.

  10. Transmittance properties in a magnetized cold plasma-superconductor periodic multilayer.

    Science.gov (United States)

    Aghajamali, Alireza

    2016-08-10

    This study theoretically investigates the transmittance properties of a one-dimensional photonic crystal containing magnetized cold plasma and high-temperature superconductor materials. The cutoff frequency, as a function of the magnetic field, electron density of the plasma layer, and temperature, will be investigated. The results illustrate that the temperature, electron density, and variations of the magnetic field affect the cutoff frequency. In addition, the shift trend in the cutoff frequency proves to be dependent on the polarization due to the presence of polarization-dependent magnetized cold plasma. Moreover, in temperature-dependent transmittance, weak oscillation and intensity can be seen at higher temperatures, which is in sharp contrast to low-temperature superconductor-dielectric structures. The proposed structure could certainly provide helpful information for the design of new types of antennas, reflectors, and high-pass filters at microwave frequency.

  11. Properties of Hermean plasma belt: Numerical simulations and comparison with MESSENGER data

    Science.gov (United States)

    Herčík, David; Trávníček, Pavel M.; Å tverák, Å. těpán.; Hellinger, Petr

    2016-01-01

    Using a global hybrid model and test particle simulations we present a detailed analysis of the Hermean plasma belt structure. We investigate characteristic properties of quasi-trapped particle population characteristics and its behavior under different orientations of the interplanetary magnetic field. The plasma belt region is constantly supplied with solar wind protons via magnetospheric flanks and tail current sheet region. Protons inside the plasma belt region are quasi-trapped in the magnetic field of Mercury and perform westward drift along the planet. This region is well separated by a magnetic shell and has higher average temperatures and lower bulk proton current densities than the surrounding area. On the dayside the population exhibits loss cone distribution function matching the theoretical loss cone angle. The simulation results are in good agreement with in situ observations of MESSENGER's (MErcury Surface Space ENvironment GEochemistry, and Ranging) MAG and FIPS instruments.

  12. Hydrogenation Properties of Zr Films Under Various Conditions of Hydrogen Plasma

    Institute of Scientific and Technical Information of China (English)

    晏国强; 施立群; 周筑颖; 赵国庆; 胡佩钢; 罗顺忠; 彭述明; 丁伟; 龙兴贵

    2002-01-01

    The hydrogenation properties of Zr samples with and without an Ni overlayer under various plasma conditionswere investigated by means of non-Rutherford backscattering and elastic recoil detection analysis. The theoretical maximum hydrogen capacity, 66.7at%, could be achieved at a hydrogen absolute pressure of2 Pa and a substrate temperature of ~393 K for a plasma irradiation of only 10 min; this was significantly greater than that for gas hydrogenation under the same hydrogen pressure and substrate temperature. It was also found that the C and O contamination on the sample surface strongly influences the hydrogenation, and that the maximum equilibrium hydrogen content drops dramatically with the increasing total contamination. In addition, the influence of the Ni overlayer on the plasma hydrogenation is discussed.

  13. Electrical and optical properties of Ar/NH3 atmospheric pressure plasma jet

    Science.gov (United States)

    Chang, Zheng-Shi; Yao, Cong-Wei; Chen, Si-Le; Zhang, Guan-Jun

    2016-09-01

    Inspired by the Penning effect, we obtain a glow-like plasma jet by mixing ammonia (NH3) into argon (Ar) gas under atmospheric pressure. The basic electrical and optical properties of an atmospheric pressure plasma jet (APPJ) are investigated. It can be seen that the discharge mode transforms from filamentary to glow-like when a little ammonia is added into the pure argon. The electrical and optical analyses contribute to the explanation of this phenomenon. The discharge mode, power, and current density are analyzed to understand the electrical behavior of the APPJ. Meanwhile, the discharge images, APPJ's length, and the components of plasma are also obtained to express its optical characteristics. Finally, we diagnose several parameters, such as gas temperature, electron temperature, and density, as well as the density number of metastable argon atoms of Ar/NH3 APPJ to help judge the usability in its applications.

  14. Fast Identification of Recycling Properties of Wall-Released Hydrogenic Neutrals in Divertor Plasma

    Institute of Scientific and Technical Information of China (English)

    LI Chengyue; DENG Baiquan; YAN Jiancheng; G. A. EMMERT

    2007-01-01

    A new bipartition neutral transport model was developed for quick identification of the recycling properties of the wall-released hydrogenic neutral particles in the vicinity of the divertor target plate. Based on this model, the numerical calculation results are fairly consistent with the results obtained with the 'multi-generation method'. This model can not only be utilized to provide a source term from neutral transport calculations for the B2 edge plasma transport code, which has been used to simulate edge plasma transport of an HL-2A divertor configuration, but can also be specifically applied for fast classification of the divertor plasma as high recycling or low recycling. Our results also show that the transmissivity is lower in the high-recycling regime.

  15. The structure, properties and performance of plasma-sprayed beryllium for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Castro, R.G.; Stanek, P.W.; Elliott, K.E. [and others

    1995-09-01

    Plasma-spray technology is under investigation as a method for producing high thermal conductivity beryllium coatings for use in magnetic fusion applications. Recent investigations have focused on optimizing the plasma-spray process for depositing beryllium coatings on damaged beryllium surfaces. Of particular interest has been optimizing the processing parameters to maximize the through-thickness thermal conductivity of the beryllium coatings. Experimental results will be reported on the use of secondary H{sub 2} gas additions to improve the melting of the beryllium powder and transferred-arc cleaning to improve the bonding between the beryllium coatings and the underlying surface. Information will also be presented on thermal fatigue tests which were done on beryllium coated ISX-B beryllium limiter tiles using 10 sec cycle times with 60 sec cooldowns and an International Thermonuclear Experimental Reactor (ITER) relevant divertor heat flux slightly in excess of 5 MW/m{sup 2}.

  16. Experimental Assessment of Plasma Transport in a 16-cm Multicusp Device

    Science.gov (United States)

    Hubble, Aimee; Foster, John

    2012-10-01

    The physics of plasma transport from the bulk plasma through the magnetic cusp to the anode remains poorly understood. A proper accounting of plasma losses to the anode is critical to accurate modeling of multicusp device performance. In this work, plasma transport in a 16-cm multicusp discharge chamber was studied. Each ring was covered with an electrically isolated electrode, which enables the direct measurement of current to each individual ring as well as the discharge chamber wall. A translatable Langmuir probe was used to obtain maps of spatially resolved plasma parameters in bulk plasma region. These maps of spatially resolved plasma density, electron temperature, and plasma potential were compared to current collection at the cusps as well as the magnetic circuit and device performance. Ring electrode measurements coupled with spatially resolved plasma parameter measurements throughout the discharge chamber allow for an assessment of plasma losses to each ring in terms of an ``effective loss area'' which, multiplied by electron current density incident on the bulk/cusp boundary, gives the correct collected current to each ring. A relationship between effective loss area and the physical loss area was determined that can be applied to a 0-D particle and energy balance model.

  17. Alteration of Lysophosphatidylcholine-Related Metabolic Parameters in the Plasma of Mice with Experimental Sepsis.

    Science.gov (United States)

    Ahn, Won-Gyun; Jung, Jun-Sub; Kwon, Hyeok Yil; Song, Dong-Keun

    2017-04-01

    Plasma concentration of lysophosphatidylcholine (LPC) was reported to decrease in patients with sepsis. However, the mechanisms of sepsis-induced decrease in plasma LPC levels are not currently well known. In mice subjected to cecal ligation and puncture (CLP), a model of polymicrobial peritoneal sepsis, we examined alterations in LPC-related metabolic parameters in plasma, i.e., the plasma concentration of LPC-related substances (i.e., phosphatidylcholine (PC) and lysophosphatidic acid (LPA)), and activities or levels in the plasma of some enzymes that can be involved in the regulation of plasma LPC concentration (i.e., secretory phospholipase A2 (sPLA2), lecithin:cholesterol acyltransferase (LCAT), acyl-CoA:lysophosphatidylcholine acyltransferase (LPCAT), and autotaxin (ATX)), as well as plasma albumin concentration. We found that levels of LPC and albumin and enzyme activities of LCAT, ATX, and sPLA2 were decreased, whereas levels of PC, LPA, and LPCAT1-3 were increased in the plasma of mice subjected to CLP. Bacterial peritonitis led to alterations in all the measured LPC-related metabolic parameters in the plasma, which could potentially contribute to sepsis-induced decrease in plasma LPC levels. These findings could lead to the novel biomarkers of sepsis.

  18. Experimental benchmark of non-local-thermodynamic-equilibrium plasma atomic physics codes; Validation experimentale des codes de physique atomique des plasmas hors equilibre thermodynamique local

    Energy Technology Data Exchange (ETDEWEB)

    Nagels-Silvert, V

    2004-09-15

    The main purpose of this thesis is to get experimental data for the testing and validation of atomic physics codes dealing with non-local-thermodynamical-equilibrium plasmas. The first part is dedicated to the spectroscopic study of xenon and krypton plasmas that have been produced by a nanosecond laser pulse interacting with a gas jet. A Thomson scattering diagnostic has allowed us to measure independently plasma parameters such as electron temperature, electron density and the average ionisation state. We have obtained time integrated spectra in the range between 5 and 10 angstroms. We have identified about one hundred xenon rays between 8.6 and 9.6 angstroms via the use of the Relac code. We have discovered unknown rays for the krypton between 5.2 and 7.5 angstroms. In a second experiment we have extended the wavelength range to the X UV domain. The Averroes/Transpec code has been tested in the ranges from 9 to 15 angstroms and from 10 to 130 angstroms, the first range has been well reproduced while the second range requires a more complex data analysis. The second part is dedicated to the spectroscopic study of aluminium, selenium and samarium plasmas in femtosecond operating rate. We have designed an interferometry diagnostic in the frequency domain that has allowed us to measure the expanding speed of the target's backside. Via the use of an adequate isothermal model this parameter has led us to know the plasma electron temperature. Spectra and emission times of various rays from the aluminium and selenium plasmas have been computed satisfactorily with the Averroes/Transpec code coupled with Film and Multif hydrodynamical codes. (A.C.)

  19. Study of the operational properties of the Capillary Plasma Electrode (CPE) discharges

    Science.gov (United States)

    Lopez, Jose; Jacome, David; Zhu, Wei-Dong; Figus, Margaret; Becker, Kurt H.

    2009-03-01

    Various approaches have been pursued to create stable atmospheric pressure discharges by extending the lifetime of the diffuse phase of the discharge to hundreds of microseconds. Previous research showed that the stability of the diffuse mode is dependent on the frequency (in the kHz range), gas type power, mode of the excitation, and geometrical confinement. Some of the most promising approaches are based on the recognition of the arc formation in high-pressure plasmas can be avoided and stable high-pressure plasma can be generated and maintained when the plasma are spatially constricted to the dimensions of tens to hundreds of microns. The Capillary Plasma Electrode (CPE) discharge is stable to produce stable atmospheric pressure nonequilibrium plasma. The CPE is similar in design to the Barrier Electrode Discharge, but has perforated dielectrics. The configuration, aside from exhibiting a diffuse mode of operation, also exhibits the so-called ``capillary jet'' mode, in which the capillaries “turn on” and a bright plasma jet emerges from the capillaries. The capillary jets from adjacent capillaries overlap so that the discharge appears uniform when the electrode contains an array of holes. There appears to be a threshold frequency for the capillary jet formation, which is strongly dependent on the L/D ratio of the capillaries, where D is diameter of the capillary and L its length. However, the operating principles and basic properties of this behavior are not well understood. The current work explores these modes of operations of the CPE by characterizing the electrical and optical emission properties of this discharge by examining a multi-hole discharge as well as a single capillary discharge reactor.

  20. Final Technical Report: Numerical and Experimental Investigation of Turbulent Transport Control via Shaping of Radial Plasma Flow Profiles

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, Eugenio

    2014-05-02

    The strong coupling between the different physical variables involved in the plasma transport phenomenon and the high complexity of its dynamics call for a model-based, multivariable approach to profile control where those predictive models could be exploited. The overall objective of this project has been to extend the existing body of work by investigating numerically and experimentally active control of unstable fluctuations, including fully developed turbulence and the associated cross-field particle transport, via manipulation of flow profiles in a magnetized laboratory plasma device. Fluctuations and particle transport can be monitored by an array of electrostatic probes, and Ex B flow profiles can be controlled via a set of biased concentric ring electrodes that terminate the plasma column. The goals of the proposed research have been threefold: i- to develop a predictive code to simulate plasma transport in the linear HELCAT (HELicon-CAThode) plasma device at the University of New Mexico (UNM), where the experimental component of the proposed research has been carried out; ii- to establish the feasibility of using advanced model-based control algorithms to control cross-field turbulence-driven particle transport through appropriate manipulation of radial plasma flow profiles, iii- to investigate the fundamental nonlinear dynamics of turbulence and transport physics. Lehigh University (LU), including Prof. Eugenio Schuster and one full-time graduate student, has been primarily responsible for control-oriented modeling and model-based control design. Undergraduate students have also participated in this project through the National Science Foundation Research Experience for Undergraduate (REU) program. The main goal of the LU Plasma Control Group has been to study the feasibility of controlling turbulence-driven transport by shaping the radial poloidal flow profile (i.e., by controlling flow shear) via biased concentric ring electrodes.

  1. Thermodynamic properties of cyclohexanamines: Experimental and theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Verevkin, Sergey P., E-mail: sergey.verevkin@uni-rostock.de [Department of Physical Chemistry and Department “Science and Technology of Life, Light and Matter”, University of Rostock, Dr-Lorenz-Weg 1, Rostock D-18059 (Germany); Department of Physical Chemistry, Kazan Federal University, Kremlevskaya str. 18, 420008 Kazan (Russian Federation); Emeĺyanenko, Vladimir N. [Department of Physical Chemistry, Kazan Federal University, Kremlevskaya str. 18, 420008 Kazan (Russian Federation)

    2015-05-20

    Highlights: • Vapor pressures of four cyclohexanamine derivatives were measured. • Vaporization enthalpies were derived and compared with the literature. • Thermochemical data tested for consistency using additivity rules and computations. • Contradiction between available liquid phase enthalpies of formation was resolved. • Strength of intra-molecular hydrogen bonding in cyclohexyl-1,2-diamines assessed. - Abstract: Vapor pressures of cyclohexanamine, N-methyl-cyclohexanamine, N,N-dimethyl-cyclohexanamine, and N-cyclohexyl-cyclohexanamine were measured using the transpiration method. Molar enthalpies of vaporization of cyclohexanamine derivatives were derived from vapor pressure temperature dependences. Thermodynamic data on cyclohexanamine derivatives available in the literature were collected and treated uniformly. Consistency of the experimental data was proved with a group- contribution method and quantum-chemical calculations. Evaluated vaporization and formation enthalpies of cyclohexanamine derivatives were recommended for practical thermochemical calculations.

  2. A hybrid model of radio frequency biased inductively coupled plasma discharges: description of model and experimental validation in argon

    Science.gov (United States)

    Wen, De-Qi; Liu, Wei; Gao, Fei; Lieberman, M. A.; Wang, You-Nian

    2016-08-01

    A hybrid model, i.e. a global model coupled bidirectionally with a parallel Monte-Carlo collision (MCC) sheath model, is developed to investigate an inductively coupled discharge with a bias source. This hybrid model can self-consistently reveal the interaction between the bulk plasma and the radio frequency (rf) bias sheath. More specifically, the plasma parameters affecting characteristics of rf bias sheath (sheath length and self-bias) are calculated by a global model and the effect of the rf bias sheath on the bulk plasma is determined by the voltage drop of the rf bias sheath. Moreover, specific numbers of ions are tracked in the rf bias sheath and ultimately the ion energy distribution function (IEDF) incident on the bias electrode is obtained. To validate this model, both bulk plasma density and IEDF on the bias electrode in an argon discharge are compared with experimental measurements, and a good agreement is obtained. The advantage of this model is that it can quickly calculate the bulk plasma density and IEDF on the bias electrode, which are of practical interest in industrial plasma processing, and the model could be easily extended to serve for industrial gases.

  3. Changes in the electro-physical properties of MCT epitaxial films affected by a plasma volume discharge induced by an avalanche beam in atmospheric-pressure air

    Science.gov (United States)

    Grigoryev, D. V.; Voitsekhovskii, A. V.; Lozovoy, K. A.; Tarasenko, V. F.; Shulepov, M. A.

    2015-11-01

    In this paper the influence of the plasma volume discharge of nanosecond duration formed in a non-uniform electric field at atmospheric pressure on samples of epitaxial films HgCdTe (MCT) films are discussed. The experimental data show that the action of pulses of nanosecond volume discharge in air at atmospheric pressure leads to changes in the electrophysical properties of MCT epitaxial films due to formation of a near-surface high- conductivity layer of the n-type conduction. The preliminary results show that it is possible to use such actions in the development of technologies for the controlled change of the properties of MCT.

  4. Effects O{sub 2} plasma surface treatment on the electrical properties of the ITO substrate

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jin-Woong; Oh, Dong-Hoon; Shim, Sang-Min; Lee, Young-Sang; Kang, Yong-Gil [Kwangwoon University, Seoul (Korea, Republic of); Shin, Jong-Yeol [Sahmyook University, Seoul (Korea, Republic of)

    2012-05-15

    The indium-tin-oxide (ITO) substrate is used as a transparent electrode in organic light-emitting diodes (OLEDs) and organic photovoltaic cells. The effect of an O{sub 2} plasma surface treatment on the electrical properties of the ITO substrate was examined. The four-point probe method, an atomic force microscope (AFM), a LCR meter, a Cole-Cole plot, and a conductive mechanism analysis were used to assess the properties of the treated ITO substrates. The four-point probe method and the AFM study revealed a lower ITO surface resistance of 17.6 Ω/sq and an average roughness of 2 nm, respectively, for a substrate treated by a plasma at 250 W for 40 s. The lower surface resistance of the ITO substrate treated at 250 W for 40 s was confirmed by using a LCR meter. An amorphous fluoropolymer (AF) was deposited on an ITO substrate treated under the optimal conditions and on a non-plasma treated ITO substrate as well. The potential barriers for charge injection in these devices were 0.25 eV and 0.15 eV, respectively, indicating a 0.1-eV decrease due to the plasma treatment.

  5. Experimental Investigation of Active Feedback Control of Turbulent Transport in a Magnetized Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, Mark Allen [University of New Mexico

    2013-07-07

    A new and unique basic plasma science laboratory device - the HelCat device (HELicon-CAThode) - has been constructed and is operating at the University of New Mexico. HelCat is a 4 m long, 0.5 m diameter device, with magnetic field up to 2.2 kG, that has two independent plasmas sources - an RF helicon source, and a thermionic cathode. These two sources, which can operate independently or simultaneously, are capable of producing plasmas with a wide range of parameters and turbulence characteristics, well suited to a variety of basic plasma physics experiments. An extensive set of plasma diagnostics is also operating. Experiments investigating the active feedback control of turbulent transport of particles and heat via electrode biasing to affect plasma ExB flows are underway, and ongoing.

  6. Effect of Electric Discharge on Properties of Nano-Particulate Catalyst for Plasma-Catalysis.

    Science.gov (United States)

    Lee, Chung Jun; Kim, Jip; Kim, Taegyu

    2016-02-01

    Heterogeneous catalytic processes have been used to produce hydrogen from hydrocarbons. However, high reforming temperature caused serious catalyst deteriorations and low energy efficiency. Recently, a plasma-catalyst hybrid process was used to reduce the reforming temperature and to improve the stability and durability of reforming catalysts. Effect of electric discharges on properties of nanoparticulate catalysts for plasma-catalysis was investigated in the present study. Catalyst-bed porosity was varied by packing catalyst beads with the different size in a reactor. Discharge power and onset voltage of the plasma were measured as the catalyst-bed porosity was varied. The effect of discharge voltage, frequency and voltage waveforms such as the sine, pulse and square was investigated. We found that the optimal porosity of the catalyst-bed exists to maximize the electric discharge. At a low porosity, the electric discharge was unstable to be sustained because the space between catalysts got narrow nearly close to the sheath region. On the other hand, at a high porosity, the electric discharge became weak because the plasma was not sufficient to interact with the surface of catalysts. The discharge power increased as the discharge voltage and frequency increased. The square waveform was more efficient than the sine and pulse one. At a high porosity, however, the effect of the voltage waveform was not considerable because the space between catalysts was too large for plasma to interact with the surface of catalysts.

  7. Effect of curing with a plasma light on the properties of polymerizable dental restorative materials.

    Science.gov (United States)

    Millar, B J; Nicholson, J W

    2001-06-01

    Specimens of light-curable dental restoratives have been prepared using either a conventional dental curing lamp (for 20 or 30 s) or a plasma light (for 1 or 2 s). The specimens were then stored in water until their mass equilibrated, then dried to constant mass. Most specimens lost material in this process but the losses in all specimens cured with the plasma light were significantly greater than those cured with the conventional lights (P cure times gave slightly reduced losses in water in most cases. The specimens were then returned to water and allowed to re-equilibrate and their equilibrium water uptake determined. There was no simple trend in this latter property because elution of loosely bound hydrophilic species may have resulted in a less hydrophilic specimen, whose equilibrium water content was therefore correspondingly lower. Overall, the losses through dissolution in water suggest that plasma curing is less effective for these materials than conventional light curing, as it probably results in material with lower molar mass. The losses for the resin-modified glass-ionomer were much greater than for other materials, and it was concluded that the more rapid polymerization with plasma light caused a significant inhibitation of the acid-base part of the setting process. These findings suggest that long-term durability of materials may be compromised by employing plasma light cure rather than a conventional cure system and further studies of this point are recommended.

  8. Effect of resveratrol on hemostatic properties of human fibrinogen and plasma during model of hyperhomocysteinemia.

    Science.gov (United States)

    Malinowska, Joanna; Olas, Beata

    2010-11-01

    Resveratrol (3,4', 5 - trihydroxystilben), a phenolic antioxidant synthesized in grapes and vegetables and presents in wine, has been supposed to be beneficial for the prevention of cardiovascular events. In this study the influence of resveratrol on the clot formation (using human plasma and purified fibrinogen) and the fibrin lysis during model of hyperhomocysteinemia was investigated. We induced this process using a reduced form of Hcys (at final dose of 0.1mM) and the most reactive form of Hcys - its cyclic thioester, homocysteine thiolactone (HTL, 0.5μM). The aim of our study in vitro was to investigate the modifications of human plasma total proteins after incubation with Hcys, HTL and resveratrol. We observed that HTL, like its precursor, Hcys stimulated polymerization of fibrinogen. Our present results also demonstrated that Hcys (0.1mM) and HLT at lower doses than Hcys (0.5μM) reduced the fibrin lysis in human plasma. Moreover, Hcys and HTL change the level of thiol and amino groups in plasma total proteins. Our results indicate that resveratrol reduced the toxicity action of Hcys and HTL on hemostatic properties of fibrinogen or plasma, suggesting its possible protector role in hyperhomocysteinemia - induced cardiovascular diseases.

  9. Wettability, optical properties and molecular structure of plasma polymerized diethylene glycol dimethyl ether

    Energy Technology Data Exchange (ETDEWEB)

    Azevedo, T C A M; Algatti, M A; Mota, R P; Honda, R Y; Kayama, M E; Kostov, K G; Fernandes, R S [FEG-DFQ-UNESP, Av. Ariberto Pereira da Cunha 333, 12516-410 - Guaratingueta, SP (Brazil); Cruz, N C; Rangel, E C, E-mail: algatti@feg.unesp.b [UNESP, Avenida Tres de Marco, 511, 18087-180 Sorocaba, SP (Brazil)

    2009-05-01

    Modern industry has frequently employed ethylene glycol ethers as monomers in plasma polymerization process to produce different types of coatings. In this work we used a stainless steel plasma reactor to grow thin polymeric films from low pressure RF excited plasma of diethylene glycol dimethyl ether. Plasmas were generated at 5W RF power in the range of 16 Pa to 60 Pa. The molecular structure of plasma polymerized films and their optical properties were analyzed by Fourier Transform Infrared Spectroscopy (FTIR) and Ultraviolet-Visible Spectroscopy, respectively. The IR spectra show C-H stretching at 3000-2900 cm{sup -1}, C=O stretching at 1730-1650 cm{sup -1}, C-H bending at 1440-1380 cm{sup -1}, C-O and C-O-C stretching at 1200-1000 cm{sup -1}. The refraction index was around 1.5 and the optical gap calculated from absorption coefficient presented value near 3.8 eV. Water contact angle of the films ranged from 40 deg. to 35 deg. with corresponding surface energy from 66 to 73x10{sup -7} J. Because of its favorable optical and hydrophilic characteristics these films can be used in ophthalmic industries as glass lenses coatings.

  10. Experimental Study on Electric Properties of Carbon Fiber Reinforced Concrete

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    According to the phenomenon that the physical properties have a great effect on the electric capability of carbon fiber reinforced concrete, the author researched the relationship between DC resistance of carbon fiber reinforced concrete and curing age using the two-probe method. Then the effect of insulative area,location and quantity on DC resistance of carbon fiber reinforced concrete was investigated at different curing age with analysis of hydration. The results suggest that DC resistance increases greatly with its curing age, which illustrates the relationship like Gaussian curve. In every curing ages the electric capability of carbon fiber reinforced concrete weakenes with the increase of insulative area. In same curing ages, section and insulative area, the more the quantity of insulation, the stronger the conductibility. The insulative location in optimal position can only result in optimal conductibility.

  11. Experimental study on fracture properties of Waste fiber recycled concrete

    Directory of Open Access Journals (Sweden)

    Zhou Jing Hai

    2016-01-01

    Full Text Available In order to study the influence of the replacement ratio of recycled aggregate and the volume of waste fiber on the fracture performance of concrete, the three-point bending test is carried out on the waste fiber recycled concrete precast beams. Calculate the waste recycled fiber concrete fracture parameters according to the double-K fracture model. The results show that the fracture indexes of recycled fiber are related to the recycled aggregate replacement ratio and the volume content of waste fiber. The larger the replacement rate of recycled aggregate is, the smaller the fracture indexes of the specimens are. The volume content of waste fiber is 0.12%, which has the most significant effect on the fracture performance. The study shows that waste fiber can improve the fracture properties of recycled aggregate concrete.

  12. The effects of liquid environments on the optical properties of linear carbon chains prepared by laser ablation generated plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Forte, G. [Dipartimento di Scienze del Farmaco, Università di Catania, Viale A. Doria 6, 95125 Catania (Italy); D’Urso, L., E-mail: ldurso@unict.it [Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria 6, 95125 Catania (Italy); Fazio, E.; Patanè, S.; Neri, F. [Dipartimento di Fisica della Materia e Ingegneria Elettronica, Università di Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina (Italy); Puglisi, O.; Compagnini, G. [Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria 6, 95125 Catania (Italy)

    2013-05-01

    Linear carbon chains (LCCs) were successfully produced by laser generated plasmas in different solvents starting from graphite rods. An identification of the prepared carbon structures was carried out from the analysis of the UV–vis spectra. Moreover, a systematic analysis of the DFT computed structural and electronic response of both polyynic and cumulenic model molecules, as a function of the solvents with different polarity, was carried out. The comparison between the calculated UV–vis spectra of polyynes series with the experimental ones clearly indicates that polyynes are the dominant species produced by the ablation process. The optical limiting properties were investigated by the Z-scan method, using a nanosecond pulsed laser. Both the different solvents and the carbon chain length distribution have a driving role in the nonlinear optical response. Hence, the effect of the solvent polarity and acidity was taken into account to explain the nature of the optical limiting behaviour.

  13. A connection between plasma conditions near black hole event horizons and outflow properties

    CERN Document Server

    Koljonen, K I I; Ontiveros, J A Fernández; Markoff, S; Russell, T D; Miller-Jones, J C A; van der Horst, A J; Bernardini, F; Casella, P; Curran, P A; Gandhi, P; Soria, R

    2015-01-01

    Accreting black holes are responsible for producing the fastest, most powerful outflows of matter in the Universe. The formation process of powerful jets close to black holes is poorly understood, and the conditions leading to jet formation are currently hotly debated. In this paper, we report an unambiguous empirical correlation between the properties of the plasma close to the black hole and the particle acceleration properties within jets launched from the central regions of accreting stellar-mass and supermassive black holes. In these sources the emission of the plasma near the black hole is characterized by a power law at X-ray energies during times when the jets are produced. We find that the photon index of this power law, which gives information on the underlying particle distribution, correlates with the characteristic break frequency in the jet spectrum, which is dependent on magnetohydrodynamical processes in the outflow. The observed range in break frequencies varies by five orders of magnitude, i...

  14. Experimental Study on the Porosity Creep Properties of Broken Limestone

    Directory of Open Access Journals (Sweden)

    Li Shun-cai

    2016-01-01

    Full Text Available In the underground engineering, the long-term stability of the surrounding rocks (especially the broken rocks containing water and the ground settlement resulted from the seepage-creep coupling above goaf have been the important research subjects concerning the deep mining. For the broken rock, its porosity is an important structural parameter determining its creep properties, and the porosity change rate is more superior to describe the creep characteristics compared with the strain change rate at a certain direction. In this paper, MTS815.02 Rock Mechanics Test System is used to carry out the creep experiments on water-saturated broken limestone, and then the time curves of porosity and of the porosity change rate are obtained. By regression, we have got the relation equation between the porosity change rate with the instant porosity and the stress level during the creep. The study indicates that when the stress retains a constant level, the relation between the porosity change rate and the instant porosity can be fitted with a cubical polynomial. The obtained creep relation equation between the porosity change rate and the instant porosity and the instant stress provides a necessary state equation for studying the coupling between the seepage and the creep of the broken rock. Furthermore, the seepage in the broken rock has been verified to satisfy the Forchheimer’s non-Darcy flow according to our previous studies, and its seepage properties, k, β and ca can all be expressed respectively as the polynomial of the porosity, so, by combining with these three state equations we have obtained the four essential state equations for solving the coupling problems of the seepage and the creep for the broken rocks.

  15. Experimental Studies of Low-Pressure Plasma Jet by Means of Langmuir Probes and Emission Spectra

    Institute of Scientific and Technical Information of China (English)

    LIU Lei; CAO Jinxiang; NIU Tianye; WANG Liang; MENG Gang; LIU Xin; YUAN Lei; WU Runhui; ZHANG Shengjun; REN Aimin

    2009-01-01

    An investigation was made into the argon plasma jet that expanded in a low-pressure vacuum chamber. The spatial distributions of the parameters of the plasma jet with different supplied powers were measured using a ten-channel Langmuir probe array. The chemical species in the plasma jet were identified by emission spectroscopy. The electron excitation temperatures at two positions, 10 cm and 50 cm downstream from the nozzle exit were calculated, respectively, by the Boltzmann plot method.

  16. Experimental demonstration of plasma-drag acceleration of a dust cloud to hypervelocities.

    Science.gov (United States)

    Ticoş, C M; Wang, Zhehui; Wurden, G A; Kline, J L; Montgomery, D S; Dorf, L A; Shukla, P K

    2008-04-18

    Simultaneous acceleration of hundreds of dust particles to hypervelocities by collimated plasma flows ejected from a coaxial gun is demonstrated. Graphite and diamond grains with radii between 5 and 30 microm, and flying at speeds up to 3.7 km/s, have been recorded with a high-speed camera. The observations agree well with a model for plasma-drag acceleration of microparticles much larger than the plasma screening length.

  17. Experimental determination of the weld penetration evolution in keyhole plasma arc welding

    Institute of Scientific and Technical Information of China (English)

    Hu Qingxian; Wu Chuansong; Zhang Yuming

    2007-01-01

    Keyhole plasma arc welding experiments are conducted to measure the weld geometry and penetration at different moments during the initial phase from igniting arc to quasi-steady state. Indirect information on keyhole formation and evolution in plasma arc welding can be extracted based on the weld macrophotograph at cross section. It has laid foundation to verify the mathematical models of keyhole plasma arc welding.

  18. Impact of low-pressure glow-discharge-pulsed plasma polymerization on properties of polyaniline thin films

    Science.gov (United States)

    Jatratkar, Aviraj A.; Yadav, Jyotiprakash B.; Deshmukh, R. R.; Barshilia, Harish C.; Puri, Vijaya; Puri, R. K.

    2016-12-01

    This study reports on polyaniline thin films deposited on a glass substrate using a low-pressure glow-discharge-pulsed plasma polymerization method. The polyaniline thin film obtained by pulsed plasma polymerization has been successfully demonstrated as an optical waveguide with a transmission loss of 3.93 dB cm-1, and has the potential to be employed in integrated optics. An attempt has been made to investigate the effect of plasma OFF-time on the structural, optical as well as surface properties of polyaniline thin film. The plasma ON-time has been kept constant and the plasma OFF-time has been varied throughout the work. The plasma OFF-time strongly influenced the properties of the polyaniline thin film, and a nanostructured and compact surface was revealed in the morphological studies. The plasma OFF-time was found to enhance film thickness, roughness, refractive index and optical transmission loss, whereas it reduced the optical band gap of the polyaniline thin films. Retention in the aromatic structure was confirmed by FTIR results. Optical studies revealed a π-π* electronic transition at about 317 nm as well as the formation of a branched structure. As compared with continuous wave plasma, pulsed plasma polymerization shows better properties. Pulsed plasma polymerization reduced the roughness of the film from 1.2 nm to 0.42 nm and the optical transmission loss from 6.56 dB cm-1 to 3.39 dB cm-1.

  19. An Experimental Study of Curved Rectangular Microstrip Antenna in Simulated Plasma Medium

    Directory of Open Access Journals (Sweden)

    Prem Bhushan Mital

    1996-01-01

    Full Text Available The effect of plasma on the radiation characteristics of curved rectangular microstrip antenna is studied by means of a new plasma simulation technique. Unlike previous techniques [1,2], a relative index of refraction less than unity is obtained by representing free space with a high dielectric constant sodium chloride powder and plasma by a medium of lower dielectric constant (air. A wide range of dielectric constants of simulated plasma could be possible with this technique using solid dielectrics instead of liquids. It is observed that the resonance frequency is not affected by the curvature of the antenna. However radiation patterns are significantly affected.

  20. Structure and properties of nanocrystalline rare earth bulks prepared by spark plasma sintering

    Institute of Scientific and Technical Information of China (English)

    卢年端; 宋晓艳; 刘雪梅; 张久兴

    2009-01-01

    A series of rare earth bulks with the ultrafine nanocrystalline structure were prepared by applying an "oxygen-free" (an environmental oxygen concentration less than 0.5 ppm) in-situ synthesis system, where the inert-gas condensation was combined with the spark plasma sintering technology into an entirely closed system. The thermal and mechanical properties of the prepared ultrafine nanocrystalline bulks were characterized and compared with those of the raw polycrystalline bulks. It was found that the speci...

  1. Preparation and Adsorption Properties of PAM Based Adsorbents for Plasma Lipoproteins

    Institute of Scientific and Technical Information of China (English)

    Hai Tao LI; Zhi YUAN; Xin Fu CHEN; Bin LIU; Bin SHEN; Bing Lin HE

    2004-01-01

    Crosslinked macroporous polyacrylamide(PAM)was prepared with inverse phase suspension polymerization technique.After treatment with hydrazine,the polymer was functionalized with chloroacetic acid,trifluoroacetic acid diethylenetriaminepentaacetic acid (DEPAA), and maleic acid, respectively,and PAM based adsorbents bearing carboxyl functional groups for low density lipoprotein(LDL)apheresis use were obtained.The blood compatibility and the adsorption properties for plasma lipoproteins of PAM based adsorbents were investigated.

  2. Non-Gaussian properties of global momentum and particle fluxes in a cylindrical laboratory plasma

    Energy Technology Data Exchange (ETDEWEB)

    Nagashima, Yoshihiko; Yamada, Takuma [Graduate School of Frontier Sciences, University of Tokyo, Kashiwa 277-8561 (Japan); Itoh Research Center for Plasma Turbulence, Kyushu University, Kasuga 816-8580 (Japan); Itoh, Sanae-I.; Inagaki, Shigeru; Fujisawa, Akihide; Yagi, Masatoshi [Itoh Research Center for Plasma Turbulence, Kyushu University, Kasuga 816-8580 (Japan); Research Institute for Applied Mechanics, Kyushu University, Kasuga 816-8580 (Japan); Arakawa, Hiroyuki [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga 816-8580 (Japan); Kasuya, Naohiro; Itoh, Kimitaka [Itoh Research Center for Plasma Turbulence, Kyushu University, Kasuga 816-8580 (Japan); National Institute for Fusion Science, Toki 509-5292 (Japan); Kamataki, Kunihiro [Center for Research and Advancement in Higher Education, Kyushu University, Fukuoka 816-8580 (Japan); Shinohara, Shunjiro [Institute of Engineering, Tokyo University of Agriculture and Technology, Koganei 184-8588 (Japan); Oldenbuerger, Stella [Itoh Research Center for Plasma Turbulence, Kyushu University, Kasuga 816-8580 (Japan); Takase, Yuichi [Graduate School of Frontier Sciences, University of Tokyo, Kashiwa 277-8561 (Japan); Diamond, Patrick H. [Itoh Research Center for Plasma Turbulence, Kyushu University, Kasuga 816-8580 (Japan); Center for Astrophysics and Space Sciences, University of California San Diego, La Jolla, California 92093 (United States)

    2011-07-15

    Non-Gaussian statistical properties of the azimuthally averaged momentum and particle fluxes driven by turbulence have been simultaneously observed in inhomogeneous magnetized plasmas for the first time. We identified the stretched Gaussian distribution of the both fluxes and the transition from the point-wise distribution to averaged ones was confirmed. The change of the particle flux precedes that of the momentum flux, demonstrating that the momentum flux is induced by the relaxation of density gradient.

  3. Exploring experimental fitness landscapes for chemical synthesis and property optimization.

    Science.gov (United States)

    Tibbetts, Katharine Moore; Feng, Xiao-Jiang; Rabitz, Herschel

    2017-02-08

    Optimization is a central goal in the chemical sciences, encompassing diverse objectives including synthesis yield, catalytic activity of a material, and binding efficiency of a molecule to a target protein. Considering the enormous size of chemical space and the expected large numbers of experiments necessary to search through it in any particular application, optimization in chemistry is surprisingly efficient. This good fortune has recently been explained by analysis of the fitness landscape, i.e., the functional relationship between a target objective J (e.g., percent yield, catalytic activity) and a suitable set of variables (e.g., resources such as reactant concentrations and processing conditions). Mathematical analysis has demonstrated that, upon satisfaction of reasonable physical assumptions, the fitness landscape contains no local sub-optimal "traps" that preclude identification of the globally best value of J, in a development called the "OptiChem" theorem. One of the key assumptions behind the theorem is that sufficient resources are available to achieve the posed optimization goal. This work assesses the validity of this assumption underlying the OptiChem theorem through examination of experimental data from the recent literature. In order to explore fitness landscapes in high dimensions where the landscape cannot be visualized, a high dimensional model representation (HDMR) of experimental data is used to construct a model landscape amenable to topology assessment via gradient algorithm search. This method is shown to correctly capture the trap-free topology of a four-dimensional landscape where the objective is to optimize the composition of a solid state material (subject to an elemental mole-fraction constraint) for catalytic activity towards the oxygen evolution reaction. Analysis of a six-dimensional landscape for the objective of maximizing the photoluminescence of rare-earth solid state materials subject to two elemental mole

  4. Structure and property evaluation of a vacuum plasma sprayed nanostructured tungsten-hafnium carbide bulk composite

    Energy Technology Data Exchange (ETDEWEB)

    Rea, K.E.; Viswanathan, V.; Kruize, A. [Surface Engineering and Nanotechnology Facility (SNF), University of Central Florida, Eng. 381, 4000 Central Florida Blvd., Orlando, FL 32816 (United States); AMPAC, Department of Mechanical, Materials, and Aerospace Engineering (MMAE), Nanoscience and Technology Center, University of Central Florida, Eng. 381, 4000 Central Florida Blvd., Orlando, FL 32816 (United States); Hosson, J.Th.M. de [Department of Applied Physics, University of Groningen, Nijenborgh 4, NL-9747 AG (Netherlands); O' Dell, S.; McKechnie, T. [Plasma Processes, Inc., 4914 Moores Mill Road, Huntsville, AL 35811 (United States); Rajagopalan, S.; Vaidyanathan, R. [AMPAC, Department of Mechanical, Materials, and Aerospace Engineering (MMAE), Nanoscience and Technology Center, University of Central Florida, Eng. 381, 4000 Central Florida Blvd., Orlando, FL 32816 (United States); Seal, S. [Surface Engineering and Nanotechnology Facility (SNF), University of Central Florida, Eng. 381, 4000 Central Florida Blvd., Orlando, FL 32816 (United States); AMPAC, Department of Mechanical, Materials, and Aerospace Engineering (MMAE), Nanoscience and Technology Center, University of Central Florida, Eng. 381, 4000 Central Florida Blvd., Orlando, FL 32816 (United States)], E-mail: sseal@mail.ucf.edu

    2008-03-25

    Vacuum plasma spray (VPS) forming of tungsten-based metal matrix nanocomposites (MMCs) has shown to be a cost effective and time saving method for the formation of bulk monolithic nanostructured thermo-mechanical components. Spray drying of powder feedstock appears to have a significant effect on the improved mechanical properties of the bulk nanocomposite. The reported elastic modulus of the nanocomposite nearly doubles due to the presence of HfC nano particulates in the W matrix. High resolution transmission electron microscopy (HRTEM) revealed the retention of nanostructures at the select process conditions and is correlated with the enhanced mechanical properties of the nanocomposite.

  5. Effects of copper vapour on thermophysical properties of CO2-N2 plasma

    Science.gov (United States)

    Zhong, Linlin; Wang, Xiaohua; Rong, Mingzhe; Cressault, Yann

    2016-10-01

    CO2-N2 mixtures are often used as arc quenching medium (to replace SF6) in circuit breakers and shielding gas in arc welding. In such applications, copper vapour resulting from electrode surfaces can modify characteristics of plasmas. This paper therefore presents an investigation of the effects of copper on thermophysical properties of CO2-N2 plasma. The equilibrium compositions, thermodynamic properties (including mass density, specific enthalpy, and specific heat), transport coefficients (including electrical conductivity, viscosity, and thermal conductivity), and four kinds of combined diffusion coefficients due to composition gradients, applied electric fields, temperature gradients, and pressure gradients respectively, were calculated and discussed for CO2-N2 (mixing ratio 7:3) plasma contaminated by different proportions of copper vapour. The significant influences of copper were observed on all the properties of CO2-N2-Cu mixtures. The better ionization ability and larger molar mass of copper and larger collision integrals related to copper, should be responsible for such influences.

  6. Plasma scattering of electromagnetic radiation

    CERN Document Server

    Sheffield, John

    1975-01-01

    Plasma Scattering of Electromagnetic Radiation covers the theory and experimental application of plasma scattering. The book discusses the basic properties of a plasma and of the interaction of radiation with a plasma; the relationship between the scattered power spectrum and the fluctuations in plasma density; and the incoherent scattering of low-temperature plasma. The text also describes the constraints and problems that arise in the application of scattering as a diagnostic technique; the characteristic performance of various dispersion elements, image dissectors, and detectors; and the ge

  7. Experimental Studies of Band-Structure Properties in Bloch Transistors

    Science.gov (United States)

    Flees, Daniel J.

    1998-03-01

    One of the most striking features in small SIS tunnel junctions is the energy-band structure produced by Josephson coupling and charging effects. These energy bands are analogous to Bloch bands in crystalline solids. The superconducting single-electron (Bloch) transistor is the simplest system in which the energy bands can be readily studied. It consists of a superconducting island coupled to a source and drain through two small tunnel junctions. The elastic tunneling of Cooper-Pairs onto the island mixes the discrete charge states of the island. The shapes of the resulting energy bands can be modified by changing the electrostatic energies of these charge states with a voltage applied to a capacitively coupled gate. The maximum zero-voltage current (supercurrent) of each band depends upon the shape of the band and so the gate modulates the supercurrent. Each band has a different characteristic supercurrent modulation, with excited bands generally having lower currents. Thus! we can use the reduction in super current associated with a transition to an excited band to begin probing aip.org/journal_cgi/ getabs?KEY=PRLTAO&cvips=PRLTAO000078000025004817000001&gifs=No>band- structure properties such as the band-gap.(Daniel J. Flees, Siyuan Han, and J.E. Lukens, Phys. Rev. Lett. 78), 4817 (1997).

  8. Investigations of plasma induced effects on the surface properties of lignocellulosic natural coir fibres

    Energy Technology Data Exchange (ETDEWEB)

    Praveen, K.M., E-mail: praveenkmiiucnn@gmail.com [International and Inter University Centre for Nano Science and Nanotechnology (IIUCNN), Mahatma Gandhi University, Kottayam, Kerala (India); Centre de Recherche C.Huygens, LIMATB (Laboratoired’Ingénierie des Matériaux de Bretagne), Université De Bretagne-Sud, Rue stMaudé – BP 92116, Cedex Lorient 56321 Lorient (France); Thomas, Sabu [International and Inter University Centre for Nano Science and Nanotechnology (IIUCNN), Mahatma Gandhi University, Kottayam, Kerala (India); Grohens, Yves [Centre de Recherche C.Huygens, LIMATB (Laboratoired’Ingénierie des Matériaux de Bretagne), Université De Bretagne-Sud, Rue stMaudé – BP 92116, Cedex Lorient 56321 Lorient (France); Mozetič, Miran; Junkar, Ita; Primc, Gregor [Department of Surface Engineering, Jozef Stefan Institute, Jamovacesta 39, Ljubljana 1000 (Slovenia); Gorjanc, Marija [Faculty of Natural Sciences and Engineering, University of Ljubljana, Aškerčeva 12, Ljubljana 1000 (Slovenia)

    2016-04-15

    Graphical abstract: Plasma induced changes on the morphology of coir fibres (Viewed and Analysed using scanning electron microscopy, Jeol JSM 7600 FEG). The O{sub 2} plasma treated fibre possessed increased hydrophilicity due to the chemical and physical changes induced by plasma. - Highlights: • Plasma-induced effects on the surface properties of lignocellulosic natural coir fibres were investigated. • The morphological study using SEM analysis also confirmed the surface changes which were observed after plasma treatment. • The water absorption studies show an increase of water absorption from 39% to around 100%. • The topographic measurements done using atomic force microscopy (AFM) showed etching of fibre wall, and this is responsible for higher water absorption. • XPS analysis reveals that the oxygen content measured for samples treated at 50 Pa increased from initial 18 at% to about 32 at%. - Abstract: The development of lignocellulosic natural-fibre-reinforced polymers composites are constrained by two limitations: the upper temperature at which the fibre can be processed and the significant differences between the surface energy of the fibre and the polymer matrix. Since the fibres and matrices are chemically different, strong adhesion at their interface is needed for the effective transfer of stress and bond distribution throughout the interface. The present study investigated the plasma induced effects on the surface properties of natural coir fibres. Weakly ionized oxygen plasma was created in two different discharge chambers by an inductively coupled radiofrequency (RF) discharge. The water absorption studies showed an increase of water sorption from 39% to 100%. The morphological study using scanning electron microscopy (SEM) analysis also confirmed the surface changes which were observed after the plasma treatment. The topographic measurements and phase imaging done using atomic force microscopy (AFM) indicated difference in topographic

  9. Mechanical Properties of Air Plasma Sprayed Environmental Barrier Coating (EBC) Materials

    Science.gov (United States)

    Richards, Bradley; Zhu, Dongming; Ghosn, Louis; Wadley, Haydn

    2015-01-01

    Development work in Environmental Barrier Coatings (EBCs) for Ceramic Matrix Composites (CMCs) has focused considerably on the identification of materials systems and coating architectures to meet application needs. The evolution of these systems has occurred so quickly that modeling efforts and requisite data for modeling lag considerably behind development. Materials property data exists for many systems in the bulk form, but the effects of deposition on the critical properties of strength and fracture behavior are not well studied. We have plasma sprayed bulk samples of baseline EBC materials (silicon, ytterbium disilicate) and tested the mechanical properties of these materials to elicit differences in strength and toughness. We have also endeavored to assess the mixed-mode fracture resistance, Gc, of silicon in a baseline EBC applied to SiCSiC CMC via four point bend test. These results are compared to previously determined properties of the comparable bulk material.

  10. Effect of plasma nitriding time on surface properties of hard chromium electroplated AISI 1010 steel

    Energy Technology Data Exchange (ETDEWEB)

    Kocabas, Mustafa [Yildiz Technical Univ., Istanbul (Turkey). Metallurgical and Materials Engineering Dept.; Danisman, Murat [Gedik Univ., Istanbul (Turkey). Electrical and Electronic Engineering Dept.; Cansever, Nurhan [Yildiz Technical Univ., Istanbul (Turkey); Uelker, Suekrue [Afyon Kocatepe Univ. (Turkey). Dept. of Mechanical Engineering

    2015-06-01

    Properties of steel can be enhanced by surface treatments such as coating. In some cases, further treatments such as nitriding can also be used in order to get even better results. In order to investigate the properties of nitride layer on hard Cr coated AISI 1010 steel, substrates were electroplated to form hard Cr coatings. Then hard Cr coatings were plasma nitrided at 700 C for 3 h, 5 h and 7 h and nitride phases on the coatings were investigated by X-ray diffraction analysis. The layer thickness and surface properties of nitride films were investigated by scanning electron microscopy. The hardness and adhesion properties of Cr-N phases were examined using nano indentation and Daimler-Benz Rockwell C adhesion tests. The highest measured hardness was 24.1 GPa and all the three samples exhibited poor adhesion.

  11. Detailed Experimental Study of Ion Acceleration by Interaction of an Ultra-Short Intense Laser with an Underdense Plasma.

    Science.gov (United States)

    Kahaly, S; Sylla, F; Lifschitz, A; Flacco, A; Veltcheva, M; Malka, V

    2016-08-17

    Ion acceleration from intense (Iλ(2) > 10(18) Wcm(-2) μm(2)) laser-plasma interaction is experimentally studied within a wide range of He gas densities. Focusing an ultrashort pulse (duration  ion plasma period) on a newly designed submillimetric gas jet system, enabled us to inhibit total evacuation of electrons from the central propagation channel reducing the radial ion acceleration associated with ponderomotive Coulomb explosion, a mechanism predominant in the long pulse scenario. New ion acceleration mechanism have been unveiled in this regime leading to non-Maxwellian quasi monoenergetic features in the ion energy spectra. The emitted nonthermal ion bunches show a new scaling of the ion peak energy with plasma density. The scaling identified in this new regime differs from previously reported studies.

  12. Experimental research of pulsed discharge plasma and TiO2/Zeolite coupling technology for formaldehyde removal

    Science.gov (United States)

    Dong, Bingyan; Lan, Shuirong

    2013-03-01

    The pulsed discharge plasma combining with catalyst to remove formaldehyde is a novel type of advanced oxidation technology. In the present work, taking wire-tube pulsed discharge plasma and TiO2/Zeolite coupling technology for formaldehyde removal. The studies have investigated the wire-tube reactor with zeolite, TiO2, TiO2/Zeolite for formaldehyde removal respectively. Results show that in the optimal experimental conditions and the baking time is 120 min, the baking temperature is 450 °C, that TiO2/Zeolite catalyst which made by sol-gel shows higher photocatalytic activity and efficiency. The pulsed discharge with TiO2/Zeolite catalyst for formaldehyde removal has higher removal efficiency than pulsed discharge with zeolite or TiO2. Therefore, pulsed discharge plasma with TiO2/Zeolite for the removal of formaldehyde can greatly increase the removal efficiency.

  13. High-temperature thermo-mechanical behavior of functionally graded materials produced by plasma sprayed coating: Experimental and modeling results

    Science.gov (United States)

    Choi, Kang Hyun; Kim, Hyun-Su; Park, Chang Hyun; Kim, Gon-Ho; Baik, Kyoung Ho; Lee, Sung Ho; Kim, Taehyung; Kim, Hyoung Seop

    2016-09-01

    Thermal barrier coatings are widely used in aerospace industries to protect exterior surfaces from harsh environments. In this study, functionally graded materials (FGMs) were investigated with the aim to optimize their high temperature resistance and strength characteristics. NiCrAlY bond coats were deposited on Inconel-617 superalloy substrate specimens by the low vacuum plasma spraying technique. Functionally graded Ni-yttria-stabilized zirconia (YSZ) coatings with gradually varying amounts of YSZ (20%-100%) were fabricated from composite powders by vacuum plasma spraying. Heat shield performance tests were conducted using a high- temperature plasma torch. The temperature distributions were measured using thermocouples at the interfaces of the FGM layers during the tests. A model for predicting the temperature at the bond coating-substrate interface was established. The temperature distributions simulated using the finite element method agreed well with the experimental results.

  14. Experimental studies of axial magnetic fields generated in ultrashort-pulse laser-plasma interaction

    Institute of Scientific and Technical Information of China (English)

    李玉同; 张杰; 陈黎明; 赵理曾; 夏江帆; 魏志义; 江文勉

    2000-01-01

    The quasistatic axial magnetic fields in plasmas produced by ultrashort laser pulses were measured by measuring the Faraday rotation angle of the backscattered emission. The spatial distribution of the axial magnetic field was obtained with a peak value as high as 170 Tesla. Theory suggests that the axial magnetic field is generated by dynamo effect in laser-plasma interaction.

  15. Experimental investigations on the basis for intellectual property rights.

    Science.gov (United States)

    Fast, Anne A; Olson, Kristina R; Mandel, Gregory N

    2016-08-01

    Lay people routinely misunderstand or do not obey laws protecting intellectual property (IP), leading to a variety of (largely unsuccessful) efforts by policymakers, IP owners, and researchers to change those beliefs and behaviors. The current work tests a new approach, inquiring whether lay people's views about IP protection can be modified by arguments concerning the basis for IP rights. Across 2 experiments, 572 adults (recruited through Amazon Mechanical Turk) read 1 of 6 arguments about the basis for IP protection (incentives, natural rights, expressive rights, plagiarism, commons, or no argument). Participants then reported their general support for IP protection. Participants also reported their evaluations of 2 scenarios that involved infringement of IP rights, including cases in which there were mitigating experiences (e.g., the copier acknowledged the original source), and completed several demographic questions. Three primary findings emerged: (a) exposure to the importance of the public commons (and to a lesser extent, exposure to the argument that plagiarism is the basis of IP protection) led participants to become less supportive of IP protection than the incentives, natural rights, expressive rights, and control conditions; (b) people believed that infringement was more acceptable if the infringer acknowledged the original creator of the work; and (c) older adults and women were especially likely to see infringement as problematic. These findings illustrate several ways in which lay beliefs are at odds with legal doctrine, and suggest that people's views about IP protection can be shaped in certain ways by learning the basis for IP rights. (PsycINFO Database Record

  16. [Experimental Study of PMI Foam Composite Properties in Terahertz].

    Science.gov (United States)

    Xing, Li-yun; Cui, Hong-liang; Shi, Chang-cheng; Han, Xiao-hui; Zhang, Zi-yin; Li, Wei; Ma, Yu-ting; Zheng, Yan; Zhang, Song-nian

    2015-12-01

    Polymethacrylimide (PMI) foam composite has many excellent properties. Currently, PMI is heat-resistant foam, with the highest strength and stiffness. It is suitable as a high-performance sandwich structure core material. It can replace the honeycomb structure. It is widely used in aerospace, aviation, military, marine, automotive and high-speed trains, etc. But as new sandwich materials, PMI performance testing in the THz band is not yet visible. Based on the Terahertz (THz) time-domain spectroscopy technique, we conducted the transmission and reflection experiments, got the time domain waveforms and power density spectrum. And then we analyzed and compared the signals. The MATALB and Origin 8. 0 was used to calculate and obtain the transmittance (transfer function), absorptivity Coefficient, reflectance and the refractive index of the different thickness Degussa PMI (Model: Rohacell WF71), which were based on the application of the time-domain and frequency-domain analysis methods. We used the data to compared with the THz refractive index and absorption spectra of a domestic PMI, Baoding Meiwo Technology Development Co. , Ltd. (Model: SP1D80-P-30). The result shows that the impact of humidity on the measurement results is obvious. The refractive index of PMI is about 1. 05. The attenuation of power spectrum is due to the signal of the test platform is weak, the sample is thick and the internal scattering of PMI foam microstructure. This conclusion provides a theoretical basis for the THz band applications in the composite PMI. It also made a good groundwork for THz NDT (Non-Destructive Testing, NDT) technology in terms of PMI foam composites.

  17. Analytical and experimental investigation of the coaxial plasma gun for use as a particle accelerator

    Science.gov (United States)

    Shriver, E. L.

    1972-01-01

    The coaxial plasma accelerator for use as a projectile accelerator is discussed. The accelerator is described physically and analytically by solution of circuit equations, and by solving for the magnetic pressures which are formed by the j cross B vector forces on the plasma. It is shown that the plasma density must be increased if the accelerator is to be used as a projectile accelerator. Three different approaches to increasing plasma density are discussed. When a magnetic field containment scheme was used to increase the plasma density, glass beads of 0.66 millimeter diameter were accelerated to 7 to 8 kilometers per second velocities. Glass beads of smaller diameter were accelerated to more than twice this velocity.

  18. Experimental Research on Plasma Induced by TEA CO2 Laser Propulsion

    Institute of Scientific and Technical Information of China (English)

    LU Hong; CHENG Zuhai; ZUO Duluo; ZHAI Bingjie; YU Liangying; ZHU Haihong

    2008-01-01

    Results in the air-breathing propulsion experiments with a parabolic light craft and a self-made UV-preionized 100 J TEA CO2 laser device are presented. Air disturbance and the spectrum of the plasma after the interaction of pulsed laser radiation with the light craft were studied. It was found that the focal length of the parabolic light craft had a significant effect on the air-disturbance. Two shock waves were detected for the longer focal length, while only one shock wave detected for the short focal length. The spectrum of the laser-induced plasma, the distribution of the characteristic lines, and the temporal behaviors of the air plasma were studied in detail. The results showed that, the evolution of the laser-induced plasma lasted 20 μs, and the plasma spectrum would reach the maximum intensity at 7 μs.

  19. Theoretical and experimental study of cyclotronic waves in a fusion plasma; Etude theorique et experimentale des ondes cyclotroniques electroniques dans un plasma de fusion

    Energy Technology Data Exchange (ETDEWEB)

    Vezard, D.

    1994-12-20

    This thesis presents a study concerning cyclotronic waves in a plasma. It starts with an illustration of the elementary interaction between electromagnetic waves and matter.It shows that electrons from tokamak absorbs waves at cyclotronic frequency. Cyclotronic waves are studied by solving the dispersion relation in plasma; it concerns polarisation, absorption, dispersion, extinction. Then, classical theories are reminded in order to speak about decoupled electrons and their interactions. Absorption and emission properties of cyclotronic waves by electrons from a queue are described. After that, cyclotronic waves propagation is studied taking into account resonance. The last part of this thesis is dedicated to the electronic distribution function that is made by a wave spectra at a inferior hybrid frequency. (TEC). 129 refs., 75 figs.

  20. Experimental Study on Surface Dielectric Barrier Discharge Plasma Actuator with Different Encapsulated Electrode Widths for Airflow Control at Atmospheric Pressure

    Science.gov (United States)

    Qi, Xiaohua; Yang, Liang; Yan, Huijie; Jin, Ying; Hua, Yue; Ren, Chunsheng

    2016-10-01

    The surface dielectric barrier discharge (SDBD) plasma actuator has shown great promise as an aerodynamic flow control device. In this paper, the encapsulated electrode width of a SDBD actuator is changed to study the airflow acceleration behavior. The effects of encapsulated electrode width on the actuator performance are experimentally investigated by measuring the dielectric layer surface potential, time-averaged ionic wind velocity and thrust force. Experimental results show that the airflow velocity and thrust force increase with the encapsulated electrode width. The results can be attributed to the distinct plasma distribution at different encapsulated electrode widths. supported by National Natural Science Foundation of China (No. 11175037), National Natural Science Foundation for Young Scientists of China (No. 11305017) and Special Fund for Theoretical Physics (No. 11247239)

  1. Radiative properties of argon-helium-nitrogen-carbon-cobalt-nickel plasmas used in CNT synthesis

    Science.gov (United States)

    Salem, D.; Hannachi, R.; Cressault, Y.; Teulet, Ph; Béji, L.

    2015-02-01

    This work presents the radiative properties of argon-helium-nitrogen-carbon-nickel-cobalt thermal plasmas by the computation of net emission coefficients (NECs) under the assumption of a local thermodynamic equilibrium and at temperature range 1000-20 000 K. These mixtures were often used in the study of carbon nanotubes (CNTs) synthesis with arc plasma which becomes one of the most useful techniques in terms of flexibility of carbon nanostructures produced with fewer defects. The values of NEC allow estimation of total radiation losses in plasmas, by taking into account the emission radiation resulting from the atomic continuum, the molecular continuum, the atomic lines and some molecular bands. Free-free transitions (Bremsstrahlung) and free-bound (electron-ion recombination), have been considered for the calculation of atomic continuum. For bound-bound transitions, natural, resonance, Van der Waals, Stark and Doppler effects have been taken into account in the calculation of the lines broadenings while the self-absorption of the resonance lines has been treated using their escape factors. Molecular continuum has been only considered for N2, C2 and CN molecules whereas we have only taken into account diatomic systems N2, \\text{N}2+ , CN and C2 for the emission of the molecular bands. The results obtained show that even for low concentrations of Ni and Co in the plasma, the NECs are modified and considerably increase only at a low temperature (T < 8000 K) and the major contribution in the total radiation arises from the lines emission. However, the effect of the thickness of the plasma on plasma radiation has been analysed based on the self absorption phenomenon of resonance lines.

  2. Experimental study of mechanical properties of friction welded AISI 1021 steels

    Indian Academy of Sciences (India)

    Amit Handa; Vikas Chawla

    2013-12-01

    Friction welding is widely used as a mass production method in various industries. In the present study, an experimental set-up was designed in order to achieve friction welding of plastically deformed AISI 1021 steels. In this study, low alloy steel (AISI 1021) was welded under different welding parameters and afterwards the mechanical properties such as tensile strength, impact strength and hardness were experimentally determined. On the basis of the results obtained from the experimentation, the graphs were plotted. It is the strength of welded joints, which is fundamental property to the service reliability of the weldments and hence present work was undertaken to study the influence of axial pressure and rotational speed in friction welded joints. Axial pressure and rotational speed are the two major parameters which can influence the strength and hence the mechanical properties of the friction welded joints. Thus the axial pressure and rotational speed were taken as welding parameters, which reflect the mechanical properties.

  3. Study on structural, morphological and thermal properties of surface modified polyvinylchloride (PVC) film under air, argon and oxygen discharge plasma

    Science.gov (United States)

    Suganya, Arjunan; Shanmugavelayutham, Gurusamy; Serra Rodríguez, Carmen

    2016-09-01

    The effect of air, argon, oxygen DC glow discharge plasma on the polyvinylchloride (PVC) film synthesized by solution casting technique, were evaluated via changes in physio-chemical properties such as structural, morphological, crystalline, thermal properties. The PVC film was plasma treated as a function of exposure time and different plasma forming gases, while other operating parameters such as power and pressure remained constant at 100 W and 2 Pa respectively. The plasma treated PVC were characterized by static contact angle, ATR-FTIR, XPS, AFM and T-peel analysis. It was found that various gaseous plasma treatments have improved the polar components, surface roughness on the surface of PVC which was confirmed by XPS, AFM, resulting in highly enhanced wettability and adhesion. X-ray diffraction study showed that plasma treatment does not persuade considerable change, even though it vaguely induces the crystallinity. The thermal properties of plasma treated PVC were evaluated by Differential Scanning Calorimetry and it was observed that O2 plasma treatment gives higher glass transition temperature of 87.21 °C compared with the untreated one. The glass transition temperature slightly increased for Oxygen plasma treated material due to the presence of higher concentration of the polar functional groups on the PVC surface due to strong intramolecular bonding.

  4. An Experimental Research to Study the Microwaves Transmission Characteristics of Ablating Material in Arc-Heated Plasma Flow

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this paper, an experimental research the effect of ablating material on the reflection and the transmission of microwaves in arc-heated plasma flow is presented by using the C band microwave measuring system. The results show that the ablating material with accidented surface and its high temperature have remarkably affected the reflection and the transmission of microwaves. The experiment proves that the system has outstanding precision and reliability.

  5. Quantum molecular dynamics simulations of transport properties in liquid and dense-plasma plutonium

    Science.gov (United States)

    Kress, J. D.; Cohen, James S.; Kilcrease, D. P.; Horner, D. A.; Collins, L. A.

    2011-02-01

    We have calculated the viscosity and self-diffusion coefficients of plutonium in the liquid phase using quantum molecular dynamics (QMD) and in the dense-plasma phase using orbital-free molecular dynamics (OFMD), as well as in the intermediate warm dense matter regime with both methods. Our liquid metal results for viscosity are about 40% lower than measured experimentally, whereas a previous calculation using an empirical interatomic potential (modified embedded-atom method) obtained results 3-4 times larger than the experiment. The QMD and OFMD results agree well at the intermediate temperatures. The calculations in the dense-plasma regime for temperatures from 50 to 5000 eV and densities about 1-5 times ambient are compared with the one-component plasma (OCP) model, using effective charges given by the average-atom code inferno. The inferno-OCP model results agree with the OFMD to within about a factor of 2, except for the viscosity at temperatures less than about 100 eV, where the disagreement is greater. A Stokes-Einstein relationship of the viscosities and diffusion coefficients is found to hold fairly well separately in both the liquid and dense-plasma regimes.

  6. Quantum molecular dynamics simulations of transport properties in liquid and dense-plasma plutonium.

    Science.gov (United States)

    Kress, J D; Cohen, James S; Kilcrease, D P; Horner, D A; Collins, L A

    2011-02-01

    We have calculated the viscosity and self-diffusion coefficients of plutonium in the liquid phase using quantum molecular dynamics (QMD) and in the dense-plasma phase using orbital-free molecular dynamics (OFMD), as well as in the intermediate warm dense matter regime with both methods. Our liquid metal results for viscosity are about 40% lower than measured experimentally, whereas a previous calculation using an empirical interatomic potential (modified embedded-atom method) obtained results 3-4 times larger than the experiment. The QMD and OFMD results agree well at the intermediate temperatures. The calculations in the dense-plasma regime for temperatures from 50 to 5000 eV and densities about 1-5 times ambient are compared with the one-component plasma (OCP) model, using effective charges given by the average-atom code INFERNO. The INFERNO-OCP model results agree with the OFMD to within about a factor of 2, except for the viscosity at temperatures less than about 100 eV, where the disagreement is greater. A Stokes-Einstein relationship of the viscosities and diffusion coefficients is found to hold fairly well separately in both the liquid and dense-plasma regimes.

  7. Effect of Solid Shield on Coating Properties in Atmospheric Plasma Spray Process

    Science.gov (United States)

    Liu, Ting; Zheng, Lili; Zhang, Hui

    2016-12-01

    This paper investigates the impact of shrouded shield structure on plasma spray processes and the selection of optimal shield structure. Response of plasma flame characteristics to solid shield structures is studied first, and experimental investigations are then performed for both atmospheric (APS) and shrouded (SPS) plasma spray processes. It is found that the usage of conical shield (divergence angle 5.5°) with 90 mm in length is effective to form a low-oxygen (3000 K) region in the plasma flame and this region can cover the majority area for particles passing by. The average particle temperature is higher in SPS than in APS with the given conditions, and such behavior is intensified as solid shield length increases. Using the SPS process, more disk-shaped splats are obtained, and the oxygen concentration in coating is significantly reduced. The degree of the oxidation in the coatings is further reduced as the length of the solid shield increases from 50 to 90 mm. Applying solid shield will lead to high flame temperature and low oxidation; however, the substrate overheating and velocity reduction may occur. For the cases studied, the optimal shield length is around 90 mm.

  8. Effects of plasma and vacuum-ultraviolet exposure on the mechanical properties of low-k porous organosilicate glass

    Science.gov (United States)

    X. Guo; J.E. Jakes; S. Banna; Y. Nishi; J.L. Shohet

    2014-01-01

    The effects of plasma exposure and vacuum-ultraviolet (VUV) irradiation on the mechanical properties of low-k porous organosilicate glass (SiCOH) dielectric films were investigated. Nanoindentation measurements were made on SiCOH films before and after exposure to an electron-cyclotron-resonance plasma or a monochromatic synchrotron VUV beam, to determine the changes...

  9. Experimental Investigation of Turbulent-driven Sheared Parallel Flows in the CSDX Plasma Device

    Science.gov (United States)

    Tynan, George; Hong, Rongjie; Li, Jiacong; Thakur, Saikat; Diamond, Patrick

    2016-10-01

    Parallel velocity and its radial shear is a key element for both accessing improved confinement regimes and controlling the impurity transport in tokamak devices. In this study, the development of radially sheared parallel plasma flows in plasmas without magnetic shear is investigated using laser induced fluorescence, multi-tip Langmuir and Mach probes in the CSDX helicon linear plasma device. Results show that a mean parallel velocity shear grows as the radial gradient of plasma density increased. The sheared flow onset corresponds to the onset of a finite parallel Reynolds stress that acts to reinforce the flow. As a result, the mean parallel flow gains energy from the turbulence that, in turn, is driven by the density gradient. This results in a flow away from the plasma source in the central region of the plasma and a reverse flow in far-peripheral region of the plasma column. The results motivate a model of negative viscosity induced by the turbulent stress which may help explain the origin of intrinsic parallel flow in systems without magnetic shear.

  10. Changing the surface properties on naval steel as result of non-thermal plasma treatment

    Science.gov (United States)

    Hnatiuc, B.; Sabău, A.; Dumitrache, C. L.; Hnatiuc, M.; Crețu, M.; Astanei, D.

    2016-08-01

    The problem of corrosion, related to Biofouling formation, is an issue with very high importance in the maritime domain. According to new rules, the paints and all the technologies for the conditioning of naval materials must fulfil more restrictive environmental conditions. In order to solve this issue, different new clean technologies have been proposed. Among them, the use of non-thermal plasmas produced at atmospheric pressure plays a very important role. This study concerns the opportunity of plasma treatment for preparation or conditioning of naval steel OL36 type. The plasma reactors chosen for the experiments can operate at atmospheric pressure and are easy to use in industrial conditions. They are based on electrical discharges GlidArc and Spark, which already proved their efficiency for the surface activation or even for coatings of the surface. The non-thermal character of the plasma is ensured by a gas flow blown through the electrical discharges. One power supply has been used for reactors that provide a 5 kV voltage and a maximum current of 100 mA. The modifications of the surface properties and composition have been studied by XPS technique (X-ray Photoelectron Spectroscopy). There were taken into consideration 5 samples: 4 of them undergoing a Mini-torch plasma, a Gliding Spark, a GlidArc with dry air and a GlidArc with CO2, respectively the fifth sample which is the untreated witness. Before the plasma treatment, samples of naval steel were processed in order to obtain mechanical gloss. The time of treatment was chosen to 12 minutes. In the spectroscopic analysis, done on a ULVAC-PHI, Inc. PHI 5000 Versa Probe scanning XPS microprobe, a monocromated Al Kα X-ray source with a spot size of 100 μm2 was used to scan each sample while the photoelectrons were collected at a 45-degree take-off angle. Differences were found between atomic concentrations in each individual case, which proves that the active species produced by each type of plasma affects

  11. Calculation of thermodynamic and transport properties of thermal plasmas based on the Cantera software toolkit

    Science.gov (United States)

    Doiron, Charles; Hencken, Kai

    2013-09-01

    Computational fluid-dynamic simulations nowadays play a central role in the development of new gas circuit breakers. For these simulations to be reliable, a good knowledge of the pressure and temperature-dependence of the thermodynamic and transport properties of ionized gases is required. A key ingredient in the calculation of thermodynamic properties of thermal plasmas is the calculation of the chemical equilibrium composition of the gas. The general-purpose, open-source software toolkit Cantera provides most functionality required to carry out such thermodynamic calculations. In this contribution, we explain how we tailored Cantera specifically to calculate material properties of plasmas. The highly modular architecture of this framework made it possible to add support for Debye-Hückel non-ideality corrections in the calculation of the chemical equilibrium mixture, as well as to enable the calculation of the key transport parameters needed in CFD-based electric arc simulations: electrical and thermal conductivity, viscosity, and diffusion coefficients. As an example, we discuss the thermodynamic and transport properties of mixtures of carbon dioxide and copper vapor.

  12. Plasma-Sprayed Hydroxylapatite-Based Coatings: Chemical, Mechanical, Microstructural, and Biomedical Properties

    Science.gov (United States)

    Heimann, Robert B.

    2016-06-01

    This contribution discusses salient properties and functions of hydroxylapatite (HA)-based plasma-sprayed coatings, including the effect on biomedical efficacy of coating thickness, phase composition and distribution, amorphicity and crystallinity, porosity and surface roughness, cohesion and adhesion, micro- and nano-structured surface morphology, and residual coating stresses. In addition, it will provide details of the thermal alteration that HA particles undergo in the extremely hot plasma jet that leads to dehydroxylated phases such as oxyhydroxylapatite (OHA) and oxyapatite (OA) as well as thermal decomposition products such as tri-(TCP) and tetracalcium phosphates (TTCP), and quenched phases such as amorphous calcium phosphate (ACP). The contribution will further explain the role of ACP during the in vitro interaction of the as-deposited coatings with simulated body fluid resembling the composition of extracellular fluid (ECF) as well as the in vivo responses of coatings to the ECF and the host tissue, respectively. Finally, it will briefly describe performance profiles required to fulfill biological functions of osteoconductive bioceramic coatings designed to improve osseointegration of hip endoprostheses and dental root implants. In large parts, the content of this contribution is a targeted review of work done by the author and his students and coworkers over the last two decades. In addition, it is considered a stepping stone toward a standard operation procedure aimed at depositing plasma-sprayed bioceramic implant coatings with optimum properties.

  13. Signature biochemical properties of broadly cross-reactive HIV-1 neutralizing antibodies in human plasma.

    Science.gov (United States)

    Sajadi, Mohammad M; Lewis, George K; Seaman, Michael S; Guan, Yongjun; Redfield, Robert R; DeVico, Anthony L

    2012-05-01

    The common properties of broadly cross-reactive HIV-1 neutralization antibodies found in certain HIV-1-infected individuals holds significant value for understanding natural and vaccine-mediated anti-HIV immunity. Recent efforts have addressed this question by deriving neutralizing monoclonal anti-envelope antibodies from memory B cell pools of selected subjects. However, it has been more difficult to identify whether broadly neutralizing antibodies circulating in plasma possess shared characteristics among individuals. To address this question, we used affinity chromatography and isoelectric focusing to fractionate plasma immunoglobulin from 10 HIV-1-infected subjects (5 subjects with broad HIV-1 neutralizing activity and 5 controls). We find that plasma neutralizing activity typically partitions into at least two subsets of antibodies. Antibodies with restricted neutralization breadth have relatively neutral isoelectric points and preferentially bind to envelope monomers and trimers versus core antigens from which variable loops and other domains have been deleted. In comparison, broadly neutralizing antibodies account for a minor fraction of the total anti-envelope response. They are consistently distinguished by more basic isoelectric points and specificity for epitopes shared by monomeric gp120, gp120 core, or CD4-induced structures. Such biochemical properties might be exploited to reliably predict or produce broad anti-HIV immunity.

  14. In vitro antibacterial and osteogenic properties of plasma sprayed silver-containing hydroxyapatite coating

    Institute of Scientific and Technical Information of China (English)

    RUAN HongJiang; FAN CunYi; ZHENG XueBin; ZHANG Yan; CHEN YiKai

    2009-01-01

    The objective of the present investigation was to characterize the antibacterial and osteogenic proper-ties of plasma sprayed silver-containing hydroxyapatite (HA/Ag) coating in vitro. HA/Ag coating was deposited via vacuum plasma spraying. The concentration of silver ions released from HA/Ag coating, the efficacy of the HA/Ag coating against bacterial biofilm development, the effect of the HA/Ag coating on early adhesion and ossification of osteoblast cells in vitro was measured. The silver ion concentra-tion released from the HA/Ag coating was between the minimum inhibitory concentration to bacteria and the cytotoxic concentration. Bacterial biofiim inhibition studies indicated an antibacterial activity on the HA/Ag coating surface when compared with hydroxyapatite (HA) coating alone. Moreover, it was demonstrated that osteoblast cell adhesion and mineralization occurred on the HA/Ag coating surface during the testing period. We conclude that the vacuum plasma sprayed HA/Ag coating possesses good antibacterial capability and osteogenic properties in vitro and represents a promising candidate for coating orthopedic implants.

  15. Ceramic Top Coats of Plasma-Sprayed Thermal Barrier Coatings: Materials, Processes, and Properties

    Science.gov (United States)

    Bakan, Emine; Vaßen, Robert

    2017-08-01

    The ceramic top coat has a major influence on the performance of the thermal barrier coating systems (TBCs). Yttria-partially-stabilized zirconia (YSZ) is the top coat material frequently used, and the major deposition processes of the YSZ top coat are atmospheric plasma spraying and electron beam physical vapor deposition. Recently, also new thermal spray processes such as suspension plasma spraying or plasma spray-physical vapor deposition have been intensively investigated for TBC top coat deposition. These new processes and particularly the different coating microstructures that can be deposited with them will be reviewed in this article. Furthermore, the properties and the intrinsic-extrinsic degradation mechanisms of the YSZ will be discussed. Following the TBC deposition processes and standard YSZ material, alternative ceramic materials such as perovskites and hexaaluminates will be summarized, while properties of pyrochlores with regard to their crystal structure will be discussed more in detail. The merits of the pyrochlores such as good CMAS resistance as well as their weaknesses, e.g., low fracture toughness, processability issues, will be outlined.

  16. Investigation on the Plasma-Induced Emission Properties of Large Area Carbon Nanotube Array Cathodes with Different Morphologies

    OpenAIRE

    Liu Liang; Liao Qingliang; Qin Zi; Zhang Zheng; Qi Junjie; Zhang Yue; Huang Yunhua

    2011-01-01

    Abstract Large area well-aligned carbon nanotube (CNT) arrays with different morphologies were synthesized by using a chemical vapor deposition. The plasma-induced emission properties of CNT array cathodes with different morphologies were investigated. The ratio of CNT height to CNT-to-CNT distance has considerable effects on their plasma-induced emission properties. As the ratio increases, emission currents of CNT array cathodes decrease due to screening effects. Under the pulse electric fie...

  17. Experimental study of plasma energy transfer and material erosion under ELM-like heat loads

    Energy Technology Data Exchange (ETDEWEB)

    Garkusha, I.E., E-mail: garkusha@ipp.kharkov.u [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine); Makhlaj, V.A.; Chebotarev, V.V. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine); Landman, I. [Forschungszentrum Karlsruhe, IHM, 76021 Karlsruhe (Germany); Tereshin, V.I.; Aksenov, N.N.; Bandura, A.N. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine)

    2009-06-15

    Main features of plasma-surface interaction and energy transfer to tokamak plasma facing components are studied at different heat loads in ELM simulation experiments with the plasma gun QSPA Kh-50. Repetitive plasma exposures of tungsten, graphite and different combined W-C targets were performed at the pulse duration of 0.25 ms and the heat loads varied in the range 0.2-2.5 MJ/m{sup 2}. The onset of vapor shield in front of the surface was investigated. The evaporation is immediately followed by a saturation of surface heat load if further increasing the impact energy. The presence of graphite essentially decreases the heat flux to the nearby tungsten surface, which is due to the carbon vapor shield. Droplet splashing at the tungsten surface and formation of hot spots on the graphite surface are discussed.

  18. Experimental observation of electron-temperature-gradient turbulence in a laboratory plasma.

    Science.gov (United States)

    Mattoo, S K; Singh, S K; Awasthi, L M; Singh, R; Kaw, P K

    2012-06-22

    We report the observation of electron-temperature-gradient (ETG) driven turbulence in the laboratory plasma of a large volume plasma device. The removal of unutilized primary ionizing and nonthermal electrons from uniform density plasma and the imposition and control of the gradient in the electron temperature (T[Symbol: see text] T(e)) are all achieved by placing a large (2 m diameter) magnetic electron energy filter in the middle of the device. In the dressed plasma, the observed ETG turbulence in the lower hybrid range of frequencies ν = (1-80 kHz) is characterized by a broadband with a power law. The mean wave number k perpendicular ρ(e) = (0.1-0.2) satisfies the condition k perpendicular ρ(e) ≤ 1, where ρ(e) is the electron Larmor radius.

  19. First experimental demonstration of magnetic-field assisted fast heating of a dense plasma core

    Science.gov (United States)

    Fujioka, Shinsuke; Sakata, Shohei; Lee, Seung Ho; Matsuo, Kazuki; Sawada, Hiroshi; Iwasa, Yuki; Law, King Fai Farley; Morita, Hitoki; Kojima, Sadaoki; Abe, Yuki; Yao, Akira; Hata, Masayasu; Johzaki, Tomoyuki; Sunahara, Atsushi; Ozaki, Tetsuo; Sakagami, Hitoshi; Morace, Alessio; Arikawa, Yasunobu; Yogo, Akifumi; Nishimura, Hiroaki; Nakai, Mitsuo; Shiraga, Hiroyuki; Sentoku, Yasuhiko; Nagatomo, Hideo; Azechi, Hiroshi; Firex Project Team

    2016-10-01

    Fast heating of a dense plasma core by an energetic electron beam is being studied on GEKKO-LFEX laser facility. Here, we introduce a laser-driven kilo-tesla external magnetic field to guide the diverging electron beam to the dense plasma core. This involve placing a spherical target in the magnetic field, compressing it with the GEKKO-XII laser beams and then using the LFEX laser beams injected into the dense plasma to generate the electron beam which do the fast heating. Cu-Ka emission is used to visualize transport or heating processes of a dense plasma. X-ray spectrum from a highly ionized Cu ions indicates several keV of the temperature increment induced by the LFEX.

  20. Spark Plasma Sintering Properties of Ultrafine Ti ( C,N)-based Cermet

    Institute of Scientific and Technical Information of China (English)

    FENG Ping; XIONG Wei-hao; ZHENG Yong; YU Li-xin; XIA Yang-hua

    2004-01-01

    Ultrafine Ti( C, N )-based cermet was sintered by SPS from 1050℃ to 1450℃ and its sintering properties, such as porosity, mechanical properties and phase transformation, were investigated by optical mi-croscopy (OM), scanning electron microscopy (SEM), X- ray diffraction (XRD), and differential scanning calo-rimeter (DSC). It is found that the spark plasma sintering properties of Ti( C, N )-based cermet differ from thoseof conventional vacuum sintering. The liquid phase appearance is at least lower by 150℃ than that in vacuum sin-tering. The porosity decreases sharply below 1 200℃ and reaches minimum at 1 200℃ , and afterwards it almostkeeps invariable and no longer increases. SPS remarkably accelerates the phase transformation of Ti( C, N )-basedcermet and it has a powerful ability to remove oxides in Ti( C, N )-based cermets. Above 1 3502 ,denitrificationoccurred. Fresh graphite phase formed above 1 430℃ . Both the porosity and graphite are responsible for the poor TRS.

  1. Effect of space flights on plasma hormone levels in man and in experimental animal

    Science.gov (United States)

    Macho, L.; Kvetňanský, R.; Vigaš, M.; Németh, S.; Popova, I.; Tigranian, R. A.; Noskov, V. B.; Serova, L.; Grigoriev, I. A.

    An important increase of plasma hormone levels like insulin, TSH and aldosterone was observed in human subjects after space flights, however in the changes of plasma content of ACTH, cortisol, adrenaline and noradrenaline the individual variations were observed in relation to number and duration of space flight. For evaluation of the effects of these changes in plasma hormone levels on metabolic processes also the experiments with small animals subjected to space flights on a board of biosatellite of Cosmos series were running. An elevation of plasma levels of corticosterone, adrenaline, noradrenaline and insulin was found in rats after the space flights of duration from 7 to 20 days. It was demonstrated, that the increase of corticosterone in plasma is followed by the activation of enzymes involved in the aminoacid metabolism in rat liver (tyrosine aminotransferase, tryptophanpyrolase, alanine aminotransferase and aspartate aminotransferase). After a short recovery period (2 to 6 days) the plasma corticosterone concentration and also the activity of liver enzymes returned to control levels. The exposition of animals to stress stimuli during this recovery period showed higher response of corticosterone levels in flight rats as compared to intact controls. The increase of plasma catecholamine levels was not followed by elevation of lipolysis in adipose tissue. This is due to lower response of adipose tissue to catecholamine because a decrease of the stimulation of lipolysis by noradrenaline was observed in animals after space flight. The increase of insulin was not followed by adequate decrease of glucose concentration suggesting a disturbances in glucose utilization similarly as in cosmonauts after a long-term space flight. These results showed that changes in plasma hormone levels, observed after space flight, affected the regulation of metabolic processes in tissues.

  2. Two Temperature Modeling and Experimental Measurements of Laser Sustained Hydrogen Plasmas

    Science.gov (United States)

    1993-05-01

    Thermal Rocket Performance," AIAA Paper 88-2774, AIAA Thermophysics...Krier, H., and Mazumder, J. (1990). "Continuous Wave Laser Sustained Hydrogen Plasmas for Thermal Rocket Propulsion," AIAA Paper 90-2637, AIAA/DGLR...Schwartz, S., Mertogul, A.E., Chen, X., Krier, H., and Mazumder, J. (1990). "Laser-Sustained Argon Plasmas for Thermal Rocket Propulsion," Journal of Propulsion and Power, Vol. 6, No. 1, pp. 38-45, January-February 1990.

  3. Development and Experimental Operation of a Flashboard Plasma Cathode Test Stand

    Science.gov (United States)

    2012-06-01

    Bixier, M. Krishnan, and D. Huet, “Density measurements in flash board plasmas for a magnetically confined plasma opening switch ,” in Pulsed Power...of HPMWs ........................................................ 3  C.  BACKGROUND OF CATHODES AND THEIR LIMITATIONS ............ 6  1.  Thermionic ...HPM system ...... 4  Figure 2.  Illustration of a thermionic cathode in an electron gun (From [11]) ....... 6  Figure 3.  Photoelectric emission from

  4. Experimental study of turbulence on Tore Supra by plasma micro-waves interaction; Etude experimentale de la turbulence sur Tore Supra par interaction plasma micro-ondes

    Energy Technology Data Exchange (ETDEWEB)

    Colas, L

    1996-09-23

    Internal small-scale magnetic turbulence is a serious candidate to explain the anomalous heat transport in tokamaks. This turbulence is badly known in the gradient region of large machines. In this work internal magnetic fluctuations are measured on Tore Supra with an original diagnostic : Cross Polarization Scattering (CPS). This experimental tool relies on the Eigenmode change of a probing polarised microwave beam scattered by magnetic fluctuations, close to a cut-off layer for the incident wave. In this work, the diagnostic is first qualified to assess its sensitivity to magnetic fluctuations, and the spatial localisation for its measurements. The magnetic fluctuation behaviour is then analysed over a wide range of plasma current, density and additional power, and interpreted with a simple 1-D scattering model. A scan of the plasma density or magnetic field is used to move the CPS measurement location from r/a = 0.3 to r/a = 0.75. A fluctuation radial profile is obtained by two means. In L-mode discharges, the relation between magnetic fluctuations, temperature profiles and local heat diffusivities is investigated. With all measurements, it is also possible to look for a local parameter correlated to the turbulence in a large domain of plasma conditions. The fluctuation-induced local heat diffusivity expected from the measured fluctuations is estimated using the non-collisional quasi-linear formula: X{sup mag}{sub e} = {pi}qRV{sub te}({delta}B / B){sup 2}. Both the absolute values and the parametric dependence of calculated X{sup mag}{sub e} are close to the electron thermal diffusivities Xe determined by transport analysis. In particular, a threshold is evidenced in the dependence of fluctuation-induced heat fluxes on local {nabla}T{sub e}, which is analogous to the critical gradient for measured heat fluxes. The experimental setup is also sensitive to the Thomson scattering of the probing wave by density fluctuations. Its measurements are analysed as the

  5. Glucose kinetics, plasma metabolites, and endocrine responses during experimental ketosis in steers.

    Science.gov (United States)

    Lyle, R R; deBoer, G; Mills, S E; Russell, R W; Beitz, D C; Young, J W

    1984-10-01

    Phlorizin and 1,3-butanediol were used to determine effects of glucosuria and ketonemia on concentrations of metabolites in blood plasma and on kinetics of glucose metabolism. Four steers received four treatments (control; control plus dietary 1,3-butanediol; control plus phlorizin injections; and control plus phlorizin and 1,3-butanediol) in a Latin square design. Treatments lasted 14 days. All steers received a 30% grain, 70% forage ration in equal meals every 2 h. Metabolite concentrations in blood plasma and urine and glucose kinetics were measured on each of the last 3 days of each treatment period. Phlorizin caused glucosuria; decreased plasma glucose, glucose total entry rate, and glucose recycling; and increased plasma free fatty acids and glucose irreversible loss. Glucose pool size was increased by 1,3-butanediol. Phlorizin plus 1,3-butanediol caused glucosuria and ketonuria; decreased plasma glucose; and increased blood ketone bodies, plasma free fatty acids, glucose irreversible loss, and glucose pool size. Growth hormone, insulin, and glucagon were not affected by treatment. Physiological perturbations in these steers were characteristic of some of those in ketotic cows.

  6. Changes in Properties of Dielectric Barrier Discharge Plasma Jets for Different Gases and for Insulating and Conducting Transfer Plates

    Science.gov (United States)

    do Nascimento, Fellype; Moshkalev, Stanislav; Machida, Munemasa

    2017-03-01

    Dielectric barrier discharge (DBD) plasma jets have been studied extensively in recent years because of its wide range of applications. DBD plasmas can be produced using many different gases and can be applied to a broad variety of surfaces and substrates. This work provides comparisons of DBD plasmas generated using argon (Ar), helium (He), and nitrogen (N2), as well as their mixtures with water vapor in order to know how some plasma properties are affected by the use of different gases. All plasmas were studied in two different conditions: using a transfer plate made of a conductive material and using a transfer plate made of an insulating one. It was observed that the process of Penning ionization of nitrogen molecules by direct collisions with metastable atoms and molecules is evident and significant only in plasmas that use He as the working gas, which means that He atoms in metastable states have greater ability to transfer energy to molecules of nitrogen in the plasma. The collisions of metastable He with N2 molecules determine the vibrational temperature (T vib) values in He plasmas, while in Ar and N2 plasmas, the T vib values are determined mainly by collisions of electrons with N2 molecules. It was noticed that the use of an insulating or a conducting transfer plate as the sample holder affects the results of adhesion between poly(dimethylsiloxane) samples, and it is mainly due to the differences in the plasma power, with a higher plasma power leading to better adhesion.

  7. Optical and structural properties of plasma-treated Cordyceps bassiana spores as studied by circular dichroism, absorption, and fluorescence spectroscopy

    Science.gov (United States)

    Lee, Geon Joon; Sim, Geon Bo; Choi, Eun Ha; Kwon, Young-Wan; Kim, Jun Young; Jang, Siun; Kim, Seong Hwan

    2015-01-01

    To understand the killing mechanism of fungal spores by plasma treatment, the optical, structural, and biological properties of the insect pathogenic fungus Cordyceps bassiana spores were studied. A nonthermal atmospheric-pressure plasma jet (APPJ) was used to treat the spores in aqueous solution. Optical emission spectra of the APPJ acquired in air indicated emission peaks corresponding to hydroxyl radicals and atomic oxygen. When the APPJ entered the aqueous solution, additional reactive species were derived from the interaction of plasma radicals with the aqueous solution. Fluorescence and absorption spectroscopy confirmed the generation of hydroxyl radicals and hydrogen peroxide in the plasma-activated water (PAW). Spore counting showed that plasma treatment significantly reduced spore viability. Absorption spectroscopy, circular dichroism (CD) spectroscopy, and agarose gel electrophoresis of the DNA extracted from plasma-treated spores showed a reduction in spore DNA content. The magnitude of the dip in the CD spectrum was lower in the plasma-treated spores than in the control, indicating that plasma treatment causes structural modifications and/or damage to cellular components. Tryptophan fluorescence intensity was lower in the plasma-treated spores than in the control, suggesting that plasma treatment modified cell wall proteins. Changes in spore viability and DNA content were attributed to structural modification of the cell wall by reactive species coming from the APPJ and the PAW. Our results provided evidence that the plasma radicals and the derived reactive species play critical roles in fungal spore inactivation.

  8. Optical and structural properties of plasma-treated Cordyceps bassiana spores as studied by circular dichroism, absorption, and fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Geon Joon, E-mail: gjlee@kw.ac.kr; Sim, Geon Bo; Choi, Eun Ha [Plasma Bioscience Research Center/Department of Electrical and Biological Physics, Kwangwoon University, Seoul 139-701 (Korea, Republic of); Kwon, Young-Wan [KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 136-701 (Korea, Republic of); Kim, Jun Young; Jang, Siun; Kim, Seong Hwan, E-mail: piceae@naver.com [Department of Microbiology and Institute of Basic Sciences, Dankook University, Cheonan 330-714 (Korea, Republic of)

    2015-01-14

    To understand the killing mechanism of fungal spores by plasma treatment, the optical, structural, and biological properties of the insect pathogenic fungus Cordyceps bassiana spores were studied. A nonthermal atmospheric-pressure plasma jet (APPJ) was used to treat the spores in aqueous solution. Optical emission spectra of the APPJ acquired in air indicated emission peaks corresponding to hydroxyl radicals and atomic oxygen. When the APPJ entered the aqueous solution, additional reactive species were derived from the interaction of plasma radicals with the aqueous solution. Fluorescence and absorption spectroscopy confirmed the generation of hydroxyl radicals and hydrogen peroxide in the plasma-activated water (PAW). Spore counting showed that plasma treatment significantly reduced spore viability. Absorption spectroscopy, circular dichroism (CD) spectroscopy, and agarose gel electrophoresis of the DNA extracted from plasma-treated spores showed a reduction in spore DNA content. The magnitude of the dip in the CD spectrum was lower in the plasma-treated spores than in the control, indicating that plasma treatment causes structural modifications and/or damage to cellular components. Tryptophan fluorescence intensity was lower in the plasma-treated spores than in the control, suggesting that plasma treatment modified cell wall proteins. Changes in spore viability and DNA content were attributed to structural modification of the cell wall by reactive species coming from the APPJ and the PAW. Our results provided evidence that the plasma radicals and the derived reactive species play critical roles in fungal spore inactivation.

  9. An experimental investigation of stimulated Brillouin scattering in laser-produced plasmas relevant to inertial confinement fusion

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, K.S. [Univ. of California, Davis, CA (US)

    1993-02-11

    Despite the apparent simplicity of controlled fusion, there are many phenomena which have prevented its achievement. One phenomenon is laser-plasma instabilities. An investigation of one such instability, stimulated Brillouin scattering (SBS), is reported here. SBS is a parametric process whereby an electromagnetic wave (the parent wave) decays into another electromagnetic wave and an ion acoustic wave (the daughter waves). SBS impedes controlled fusion since it can scatter much or all of the incident laser light, resulting in poor drive symmetry and inefficient laser-plasma coupling. It is widely believed that SBS becomes convectively unstable--that is, it grows as it traverses the plasma. Though it has yet to be definitively tested, convective theory is often invoked to explain experimental observations, even when one or more of the theory`s assumptions are violated. In contrast, the experiments reported here not only obeyed the assumptions of the theory, but were also conducted in plasmas with peak densities well below quarter-critical density. This prevented other competing or coexisting phenomena from occurring, thereby providing clearly interpretable results. These are the first SBS experiments that were designed to be both a clear test of linear convective theory and pertinent to controlled fusion research. A crucial part of this series of experiments was the development of a new instrument, the Multiple Angle Time Resolving Spectrometer (MATRS). MATRS has the unique capability of both spectrally and temporally resolving absolute levels of scattered light at many angles simultaneously, and is the first of its kind used in laser-plasma experiments. A detailed comparison of the theoretical predictions and the experimental observations is made.

  10. Properties of AlN films deposited by reactive ion-plasma sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Bert, N. A.; Bondarev, A. D.; Zolotarev, V. V.; Kirilenko, D. A.; Lubyanskiy, Ya. V.; Lyutetskiy, A. V.; Slipchenko, S. O.; Petrunov, A. N.; Pikhtin, N. A., E-mail: nike@hpld.ioffe.ru; Ayusheva, K. R.; Arsentyev, I. N.; Tarasov, I. S. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation)

    2015-10-15

    The properties of SiO{sub 2}, Al{sub 2}O{sub 3}, and AlN dielectric coatings deposited by reactive ion-plasma sputtering are studied. The refractive indices of the dielectric coatings are determined by optical ellipsometry. It is shown that aluminum nitride is the optimal material for achieving maximum illumination of the output mirror of a semiconductor laser. A crystalline phase with a hexagonal atomic lattice and oxygen content of up to 10 at % is found by transmission electron microscopy in the aluminum-nitride films. It is found that a decrease in the concentration of residual oxygen in the chamber of the reactive ion-plasma sputtering installation makes it possible to eliminate the appearance of vertical pores in the bulk of the aluminum-nitride film.

  11. Cold plasma welding of polyaniline nanofibers with enhanced electrical and mechanical properties

    Science.gov (United States)

    Ye, Dong; Yu, Yao; Liu, Lin; Lu, Xinpei; Wu, Yue

    2015-12-01

    Joining conducting polymer (CP) nanofibers into an interconnected porous network can result in good mechanical and electrical contacts between nanofibers that can be beneficial for the high performance of CP-based devices. Here, we demonstrate the cold welding of polyaniline (PAni) nanofiber loose ends with cold plasma. The room-temperature and atmospheric-pressure helium micro-plasma jet launches highly charged ion bullets at a PAni nanofiber target with high precision and the highly charged ion bullet selectively induces field emission at the sharp nanofiber loose ends. This technique joins nanofiber tips without altering the morphology of the film and protonation thus leading to significantly enhanced electrical and mechanical properties. In addition, this technique has high spatial resolution and is able to selectively weld and dope regions of nanofiber film with promising novel device applications.

  12. Effects of non-thermal plasma on the electrical properties of an erythrocyte membrane

    Science.gov (United States)

    Lee, Jin Young; Baik, Ku Youn; Kim, Tae Soo; Lim, Jaekwan; Uhm, Han S.; Choi, Eun Ha

    2015-09-01

    Non-thermal plasma is used here for membrane oxidation and permeabilization in which the electrical properties of an erythrocyte membrane are investigated after treatments. The zeta potential as measured by electrophoresis shows the increased negativity of the membrane surface potential (Ψs). The secondary electron emission coefficient ( γ) measured by a focused ion beam shows a decrease in the dipole potential (Ψd) of lipid molecules. The voltage-sensitive fluorescent intensity as measured by flow cytometry shows a decrease in the trans-membrane potential (ΔΨ) through the lipid bilayer membrane. These results allow us to take a step forward to unveil the complex events occurring in plasma-treated cells.

  13. The effect of oxygen-plasma treatment on the mechanical and piezoelectrical properties of ZnO nanorods

    Science.gov (United States)

    Hussain, Mushtaque; Khan, Azam; Nur, Omer; Willander, Magnus; Broitman, Esteban

    2014-07-01

    We have studied the effect of oxygen plasma treatment on piezoelectric response and on the mechanical stability of ZnO nanorods synthesized on FTO by using ACG method. XRD and SEM techniques have shown highly dense and uniformly distributed nanorods. The piezoelectric properties and mechanical stability of as-grown and oxygen plasma treated samples were investigated by using nanoindentation technique. The comparison of load-displacement curves showed that the oxygen plasma treated samples are much stiffer and show higher generated piezo-voltage. This study demonstrates that the oxygen-plasma treatment is a good option to fabricate reliable and efficient nanodevices for enhanced generation of piezoelectricity.

  14. Properties of highly electronegative plasmas produced in a multipolar magnetic-confined device with a transversal magnetic filter

    DEFF Research Database (Denmark)

    Draghici, Mihai; Stamate, Eugen

    2010-01-01

    electrodes on plasma parameters, the formation of the negative ion sheath and etching rates by positive and negative ions have been investigated for different experimental conditions. When the electron temperature was reduced below 1 eV the density ratio of negative ion to electron exceeded 100 even for very......Highly electronegative plasmas were produced in Ar/SF6 gas mixtures in a dc discharge with multipolar magnetic confinement and transversal magnetic filter. Langmuir probe and mass spectrometry were used for plasma diagnostics. Plasma potential drift, the influence of small or large area biased...... low amounts of SF6 gas. The plasma potential drift could be controlled by proper wall conditioning. A large electrode biased positively had no effect on plasma potential for density ratios of negative ions to electrons larger than 50. For similar electronegativities or higher a negative ion sheath...

  15. Investigation on the properties of omnidirectional photonic band gaps in two-dimensional plasma photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hai-Feng, E-mail: hanlor@163.com [Key Laboratory of Radar Imaging and Microwave Photonics, Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Nanjing Artillery Academy, Nanjing 211132 (China); Liu, Shao-Bin; Li, Bing-Xiang [Key Laboratory of Radar Imaging and Microwave Photonics, Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)

    2016-01-15

    The properties of omnidirectional photonic band gaps (OBGs) in two-dimensional plasma photonic crystals (2D PPCs) are theoretically investigated by the modified plane wave expansion method. In the simulation, we consider the off-plane incident wave vector. The configuration of 2D PPCs is the triangular lattices filled with the nonmagnetized plasma cylinders in the homogeneous and isotropic dielectric background. The calculated results show that the proposed 2D PPCs possess a flatbands region and the OBGs. Compared with the OBGs in the conventional 2D dielectric-air PCs, it can be obtained more easily and enlarged in the 2D PPCs with a similar structure. The effects of configurational parameters of the PPCs on the OBGs also are studied. The simulated results demonstrate that the locations of OBGs can be tuned easily by manipulating those parameters except for changing plasma collision frequency. The achieved OBGs can be enlarged by optimizations. The OBGs of two novel configurations of PPCs with different cross sections are computed for a comparison. Both configurations have the advantages of obtaining the larger OBGs compared with the conventional configuration, since the symmetry of 2D PPCs is broken by different sizes of periodically inserted plasma cylinders or connected by the embedded plasma cylinders with thin veins. The analysis of the results shows that the bandwidths of OBGs can be tuned by changing geometric and physical parameters of such two PPCs structures. The theoretical results may open a new scope for designing the omnidirectional reflectors or mirrors based on the 2D PPCs.

  16. Investigation on the Plasma-Induced Emission Properties of Large Area Carbon Nanotube Array Cathodes with Different Morphologies.

    Science.gov (United States)

    Liao, Qingliang; Qin, Zi; Zhang, Zheng; Qi, Junjie; Zhang, Yue; Huang, Yunhua; Liu, Liang

    2011-12-01

    Large area well-aligned carbon nanotube (CNT) arrays with different morphologies were synthesized by using a chemical vapor deposition. The plasma-induced emission properties of CNT array cathodes with different morphologies were investigated. The ratio of CNT height to CNT-to-CNT distance has considerable effects on their plasma-induced emission properties. As the ratio increases, emission currents of CNT array cathodes decrease due to screening effects. Under the pulse electric field of about 6 V/μm, high-intensity electron beams of 170-180 A/cm(2) were emitted from the surface plasma. The production mechanism of the high-intensity electron beams emitted from the CNT arrays was plasma-induced emission. Moreover, the distribution of the electron beams was in situ characterized by the light emission from the surface plasma.

  17. Investigation on the Plasma-Induced Emission Properties of Large Area Carbon Nanotube Array Cathodes with Different Morphologies

    Directory of Open Access Journals (Sweden)

    Liu Liang

    2011-01-01

    Full Text Available Abstract Large area well-aligned carbon nanotube (CNT arrays with different morphologies were synthesized by using a chemical vapor deposition. The plasma-induced emission properties of CNT array cathodes with different morphologies were investigated. The ratio of CNT height to CNT-to-CNT distance has considerable effects on their plasma-induced emission properties. As the ratio increases, emission currents of CNT array cathodes decrease due to screening effects. Under the pulse electric field of about 6 V/μm, high-intensity electron beams of 170–180 A/cm2 were emitted from the surface plasma. The production mechanism of the high-intensity electron beams emitted from the CNT arrays was plasma-induced emission. Moreover, the distribution of the electron beams was in situ characterized by the light emission from the surface plasma.

  18. Experimentally determined mechanical properties of, and models for, the periodontal ligament: critical review of current literature.

    Science.gov (United States)

    Fill, Ted S; Carey, Jason P; Toogood, Roger W; Major, Paul W

    2011-01-01

    Introduction. This review is intended to highlight and discuss discrepancies in the literature of the periodontal ligament's (PDL) mechanical properties and the various experimental approaches used to measure them. Methods. Searches were performed on biomechanical and orthodontic publications (in databases: Compendex, EMBASE, MEDLINE, PubMed, ScienceDirect, and Scopus). Results. The review revealed that significant variations exist, some on the order of six orders of magnitude, in the PDL's elastic constants and mechanical properties. Possible explanations may be attributable to different experimental approaches and assumptions. Conclusions. The discrepancies highlight the need for further research into PDL properties under various clinical and experimental loading conditions. Better understanding of the PDL's biomechanical behavior under physiologic and traumatic loading conditions might enhance the understanding of the PDL's biologic reaction in health and disease. Providing a greater insight into the response of the PDL would be instrumental to orthodontists and engineers for designing more predictable, and therefore more efficacious, orthodontic appliances.

  19. Optical and mechanical properties of diamond like carbon films deposited by microwave ECR plasma CVD

    Indian Academy of Sciences (India)

    S B Singh; M Pandey; N Chand; A Biswas; D Bhattacharya; S Dash; A K Tyagi; R M Dey; S K Kulkarni; D S Patil

    2008-10-01

    Diamond like carbon (DLC) films were deposited on Si (111) substrates by microwave electron cyclotron resonance (ECR) plasma chemical vapour deposition (CVD) process using plasma of argon and methane gases. During deposition, a d.c. self-bias was applied to the substrates by application of 13.56 MHz rf power. DLC films deposited at three different bias voltages (–60 V, –100 V and –150 V) were characterized by FTIR, Raman spectroscopy and spectroscopic ellipsometry to study the variation in the bonding and optical properties of the deposited coatings with process parameters. The mechanical properties such as hardness and elastic modulus were measured by load depth sensing indentation technique. The DLC film deposited at –100 V bias exhibit high hardness (∼ 19 GPa), high elastic modulus (∼ 160 GPa) and high refractive index (∼ 2.16–2.26) as compared to films deposited at –60 V and –150 V substrate bias. This study clearly shows the significance of substrate bias in controlling the optical and mechanical properties of DLC films.

  20. Surface properties of low alloy steel treated by plasma nitrocarburizing prior to laser quenching process

    Science.gov (United States)

    Wang, Y. X.; Yan, M. F.; Li, B.; Guo, L. X.; Zhang, C. S.; Zhang, Y. X.; Bai, B.; Chen, L.; Long, Z.; Li, R. W.

    2015-04-01

    Laser quenching (LQ) technique is used as a part of duplex treatments to improve the thickness and hardness of the surface layers of steels. The present study is to investigate the surface properties of low alloy steel treated by plasma nitrocarburizing (PNC) prior to a laser quenching process (PNC+LQ). The microstructure and properties of PNC+LQ layer determined are compared with those obtained by PNC and LQ processes. OM, XRD, SEM and EDS analyses are utilized for microstructure observation, phases identification, morphology observation and chemical composition detection, respectively. Microhardness tester and pin-on-disc tribometer are used to investigate the mechanical properties of the modified layers. Laser quenching of plasma nitrocarburized (PNC+LQ) steel results in much improved thickness and hardness of the modified layer in comparison with the PNC or LQ treated specimens. The mechanism is that the introduction of trace of nitrogen decreases the eutectoid point, that is, the transformation hardened region is enlarged under the same temperature distribution. Moreover, the layer treated by PNC+LQ process exhibits enhanced wear resistance, due to the lubrication effect and optimized impact toughness, which is contributed to the formation of oxide film consisting of low nitrogen compound (FeN0.076) and iron oxidation (mainly of Fe3O4).

  1. Effect of shape of scatterers and plasma frequency on the complete photonic band gap properties of two-dimensional dielectric-plasma photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Fathollahi Khalkhali, T., E-mail: tfathollahi@aeoi.org.ir; Bananej, A.

    2016-12-16

    In this study, we analyze complete photonic band gap properties of two-dimensional dielectric-plasma photonic crystals with triangular and square lattices, composed of plasma rods with different geometrical shapes in the anisotropic tellurium background. Using the finite-difference time-domain method we discuss the maximization of the complete photonic band gap width as a function of plasma frequency and plasma rods parameters with different shapes and orientations. The numerical results demonstrate that our proposed structures represent significantly wide complete photonic band gaps in comparison to previously studied dielectric-plasma photonic crystals. - Highlights: • In this paper, we have investigated plasma photonic crystals. • Plasma is a kind of dispersive medium with its equivalent refractive index related to the frequency of an incident EM wave. • In this work, our simulations are performed using the Meep implementation of the finite-difference time-domain (FDTD) method. • For this study, the lattice structures investigated are triangular and square. • Extensive calculations reveal that almost all of these structures represent wide complete band gaps.

  2. Influence of metallic vapours on thermodynamic and transport properties of two-temperature air plasma

    Science.gov (United States)

    Zhong, Linlin; Wang, Xiaohua; Cressault, Yann; Teulet, Philippe; Rong, Mingzhe

    2016-09-01

    The metallic vapours (i.e., copper, iron, and silver in this paper) resulting from walls and/or electrode surfaces can significantly affect the characteristics of air plasma. Different from the previous works assuming local thermodynamic equilibrium, this paper investigates the influence of metallic vapours on two-temperature (2 T) air plasma. The 2 T compositions of air contaminated by Cu, Fe, and Ag are first determined based on Saha's and Guldberg-Waage's laws. The thermodynamic properties (including mass density, specific enthalpy, and specific heat) are then calculated according to their definitions. After determining the collision integrals for each pair of species in air-metal mixtures using the newly published methods and source data, the transport coefficients (including electrical conductivity, viscosity, and thermal conductivity) are calculated for air-Cu, air-Fe, and air-Ag plasmas with different non-equilibrium degree θ (Te/Th). The influences of metallic contamination as well as non-equilibrium degree are discussed. It is found that copper, iron, and silver exist mainly in the form of Cu2, FeO, and AgO at low temperatures. Generally, the metallic vapours increase mass density at most temperatures, reduce the specific enthalpy and specific heat in the whole temperature range, and affect the transport properties remarkably from 5000 K to 20 000 K. The effect arising from the type of metals is little except for silver at certain temperatures. Besides, the departure from thermal equilibrium results in the delay of dissociation and ionization reactions, leading to the shift of thermodynamic and transport properties towards a higher temperature.

  3. Effect of plasma surface treatment of recycled carbon fiber on carbon fiber-reinforced plastics (CFRP) interfacial properties

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hooseok, E-mail: hooseok.lee@gmail.com; Ohsawa, Isamu; Takahashi, Jun

    2015-02-15

    Highlights: • Plasma treatment was used to improve the adhesion property between the recycled CF and polymer matrix. • In order to evaluate the adhesion between plasma treated recycled CF and polymer, micro droplet test was conducted. • The interfacial shear strength and the interfacial adhesion of recycled carbon fiber increased. - Abstract: We studied the effects of plasma surface treatment of recycled carbon fiber on adhesion of the fiber to polymers after various treatment times. Conventional surface treatment methods have been attempted for recycled carbon fiber, but most require very long processing times, which may increase cost. Hence, in this study, plasma processing was performed for 0.5 s or less. Surface functionalization was quantified by X-ray photoelectron spectroscopy. O/C increased from approximately 11% to 25%. The micro-droplet test of adhesion properties and the mechanical properties of CFRP were also investigated.

  4. Experimental studies of high-confinement mode plasma response to non-axisymmetric magnetic perturbations in ASDEX Upgrade

    Science.gov (United States)

    Suttrop, W.; Kirk, A.; Nazikian, R.; Leuthold, N.; Strumberger, E.; Willensdorfer, M.; Cavedon, M.; Dunne, M.; Fischer, R.; Fietz, S.; Fuchs, J. C.; Liu, Y. Q.; McDermott, R. M.; Orain, F.; Ryan, D. A.; Viezzer, E.; The ASDEX Upgrade Team; The DIII-D Team; The Eurofusion MST1 Team

    2017-01-01

    The interaction of externally applied small non-axisymmetric magnetic perturbations (MP) with tokamak high-confinement mode (H-mode) plasmas is reviewed and illustrated by recent experiments in ASDEX Upgrade. The plasma response to the vacuum MP field is amplified by stable ideal kink modes with low toroidal mode number n driven by the H-mode edge pressure gradient (and associated bootstrap current) which is experimentally evidenced by an observable shift of the poloidal mode number m away from field alignment (m  =  qn, with q being the safety factor) at the response maximum. A torque scan experiment demonstrates the importance of the perpendicular electron flow for shielding of the resonant magnetic perturbation, as expected from a two-fluid MHD picture. Two significant effects of MP occur in H-mode plasmas at low pedestal collisionality, ν \\text{ped}\\ast≤slant 0.4 : (a) a reduction of the global plasma density by up to 61 % and (b) a reduction of the energy loss associated with edge localised modes (ELMs) by a factor of up to 9. A comprehensive database of ELM mitigation pulses at low {ν\\ast} in ASDEX Upgrade shows that the degree of ELM mitigation correlates with the reduction of pedestal pressure which in turn is limited and defined by the onset of ELMs, i. e. a modification of the ELM stability limit by the magnetic perturbation.

  5. Analysis of Cable-in-Conduit Conductors' DC Performance in Light of Strand's Experimental Properties

    Institute of Scientific and Technical Information of China (English)

    TAN Yunfei; WENG Peide; LIU Fang; LI Shaolei

    2007-01-01

    Conductor qualification will be carried out with four Cable-in-Conduit Conductor (CICC) samples made of superconducting strands. The direct current (DC) performance of these samples will be tested in the SULTAN facility. The critical current densities of the strands can be well simulated by empirical equations. In this paper, a model is illustrated to predict the DC behaviour of the cable in light of the single strand's experimental properties. The simulation results were compared with experimental results.

  6. On the Experimental and Theoretical Investigations of Lean Partially Premixed Combustion, Burning Speed, Flame Instability and Plasma Formation of Alternative Fuels at High Temperatures and Pressures

    Science.gov (United States)

    Askari, Omid

    This dissertation investigates the combustion and injection fundamental characteristics of different alternative fuels both experimentally and theoretically. The subjects such as lean partially premixed combustion of methane/hydrogen/air/diluent, methane high pressure direct-injection, thermal plasma formation, thermodynamic properties of hydrocarbon/air mixtures at high temperatures, laminar flames and flame morphology of synthetic gas (syngas) and Gas-to-Liquid (GTL) fuels were extensively studied in this work. These subjects will be summarized in three following paragraphs. The fundamentals of spray and partially premixed combustion characteristics of directly injected methane in a constant volume combustion chamber have been experimentally studied. The injected fuel jet generates turbulence in the vessel and forms a turbulent heterogeneous fuel-air mixture in the vessel, similar to that in a Compressed Natural Gas (CNG) Direct-Injection (DI) engines. The effect of different characteristics parameters such as spark delay time, stratification ratio, turbulence intensity, fuel injection pressure, chamber pressure, chamber temperature, Exhaust Gas recirculation (EGR) addition, hydrogen addition and equivalence ratio on flame propagation and emission concentrations were analyzed. As a part of this work and for the purpose of control and calibration of high pressure injector, spray development and characteristics including spray tip penetration, spray cone angle and overall equivalence ratio were evaluated under a wide range of fuel injection pressures of 30 to 90 atm and different chamber pressures of 1 to 5 atm. Thermodynamic properties of hydrocarbon/air plasma mixtures at ultra-high temperatures must be precisely calculated due to important influence on the flame kernel formation and propagation in combusting flows and spark discharge applications. A new algorithm based on the statistical thermodynamics was developed to calculate the ultra-high temperature plasma

  7. Physical, mechanical, and tribological properties of quasicrystalline Al-Cu-Fe coatings prepared by plasma spraying

    Science.gov (United States)

    Lepeshev, A. A.; Rozhkova, E. A.; Karpov, I. V.; Ushakov, A. V.; Fedorov, L. Yu.

    2013-12-01

    The physical, mechanical, and tribological properties of quasicrystalline coatings based on the Al65Cu23Fe12 alloy prepared by plasma spraying have been investigated. The specific features of the phase formation due to the competitive interactions of the icosahedral ψ and cubic β phases have been elucidated. A correlation between the microhardness and the content of the icosahedral phase in the coating has been determined. The decisive role of the quasicrystalline phase in the formation of high tribological characteristics of the coatings has been revealed and tested.

  8. Experimental Studies of Microwave Reflection and Attenuation by Plasmas Produced by Burning Chemicals in Atmosphere

    Institute of Scientific and Technical Information of China (English)

    YUAN Zhongcai; SHI Jiaming; WANG Jiachun

    2007-01-01

    A series of chemicals are designed and prepared.With the method of thermodynamics,the average electron densities of the plasmas generated by burning chemicals are calculated.The reflection and attenuation of the microwaves,in a frequency band of 2 GHz to 15 GHz,by the plasma are measured.The results of measurements indicate that the plasma can absorb the energies of the microwaves in a broad band and reflect them faintly.Moreover,theoretical discussion reveals that the electron-neutral collision is the major factor that results in the absorption in the wide band.By using Appleton equations,average collision frequencies and electron densities are calculated from the attenuations of microwaves.

  9. Experimental studies on removal of airborne haloanisoles by non-thermal plasma air purifiers

    DEFF Research Database (Denmark)

    Fang, Lei; Hallam, David; Bermúdez, Raúl

    2016-01-01

    A laboratory study was conducted to test the performance of non-thermal plasma air purifiers on its removal effectiveness of two haloanisoles – 2,4,6-trichloroanisole (TCA) and 2,4,6-Tribromoanisole (TBA). TCA and TBA are the two major compounds found in wine cellars that can contaminate wine...... to produce unpalatable mouldy and musty tastes. The test was first conducted in a climate chamber. The plasma air purifier was installed in a test rig developed for the testing and challenged by airflow with certain concentrations of TCA and TBA. Air samples upstream and downstream of the air purifier...... was collected by Tenax tubes and the concentration of TCA and TBA were analyzed by thermal desorption GC–MS. The results showed that the plasma air purifier was effective on removing TCA and TBA with a single pass efficiency of better than 82%. The effect was further validated in a wine cellar under a realistic...

  10. Experimental demonstration of Martian soil simulant removal from a surface using a pulsed plasma jet.

    Science.gov (United States)

    Ticoş, C M; Scurtu, A; Toader, D; Banu, N

    2015-03-01

    A plasma jet produced in a small coaxial plasma gun operated at voltages up to 2 kV and working in pure carbon dioxide (CO2) at a few Torr is used to remove Martian soil simulant from a surface. A capacitor with 0.5 mF is charged up from a high voltage source and supplies the power to the coaxial electrodes. The muzzle of the coaxial plasma gun is placed at a few millimeters near the dusty surface and the jet is fired parallel with the surface. Removal of dust is imaged in real time with a high speed camera. Mars regolith simulant JSC-Mars-1A with particle sizes up to 5 mm is used on different types of surfaces made of aluminium, cotton fabric, polyethylene, cardboard, and phenolic.

  11. Experimental demonstration of Martian soil simulant removal from a surface using a pulsed plasma jet

    Science.gov (United States)

    Ticoş, C. M.; Scurtu, A.; Toader, D.; Banu, N.

    2015-03-01

    A plasma jet produced in a small coaxial plasma gun operated at voltages up to 2 kV and working in pure carbon dioxide (CO2) at a few Torr is used to remove Martian soil simulant from a surface. A capacitor with 0.5 mF is charged up from a high voltage source and supplies the power to the coaxial electrodes. The muzzle of the coaxial plasma gun is placed at a few millimeters near the dusty surface and the jet is fired parallel with the surface. Removal of dust is imaged in real time with a high speed camera. Mars regolith simulant JSC-Mars-1A with particle sizes up to 5 mm is used on different types of surfaces made of aluminium, cotton fabric, polyethylene, cardboard, and phenolic.

  12. Influence of non-thermal plasma forming gases on improvement of surface properties of low density polyethylene (LDPE)

    Energy Technology Data Exchange (ETDEWEB)

    Pandiyaraj, K. Navaneetha, E-mail: dr.knpr@gmail.com [Surface Engineering Laboratory, Department of Physics, Sri Shakthi Institute of Engineering and Technology, L and T by pass, Chinniyam Palayam (post), Coimbatore 641062 (India); Deshmukh, R.R. [Department of Physics, Institute of Chemical Technology, Matunga, Mumbai 400 019 (India); Ruzybayev, Inci; Shah, S. Ismat [Department of Physics and Astronomy, Department of Materials Science and Engineering, University of Delaware, 208 Dupont Hall, Newark, NJ (United States); Su, Pi-Guey [Department of Chemistry, Chinese Culture University, Taipei 111, Taiwan (China); Halleluyah, Jr. mercy; Halim, Ahmad Sukari [School of Medical Sciences, Health Campus Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia)

    2014-07-01

    Owing to the superior physico-chemical properties, the low density polyethylene (LDPE) has been widely used in the various industrial applications; especially in biomedical field for artificial organs, medical devices and disposable clinical apparatus. However, the poor anticoagulation property is one of the main drawbacks of the LDPE due to its poor surface properties. Therefore, in this paper we present the effect of plasma forming gases such as argon (Ar), oxygen (O{sub 2}), air and argon-oxygen (Ar + O{sub 2}) mixture on improvement of the surfaces properties of LDPE film using direct current (dc) excited glow discharge plasma. Contact angle with evaluation of surface energy, X-ray photo electron spectroscopy (XPS), atomic force microscopy (AFM) techniques were used to examine the change in surface properties such as hydrophilicity, chemical composition and surface topography, respectively. Furthermore, the hydrophobic recovery of the plasma treated LDPE was analyzed using ageing effect under different storage condition i.e. in air and water. The adhesive strength of the LDPE films was determined using T-peel test. In vitro tests were used to examine the blood compatibility of the surface modified LDPE films. It has been found that the hydrophilicity of the various plasma treated LDPE films was improved significantly due to the formation of oxygen containing polar groups such as OH, COO, C-O, C=O as confirmed by contact angle and XPS analysis. AFM revealed the changes in surface topography of plasma processed films. The gas mixture Ar + O{sub 2} plasma influenced the remarkable improvement on the surface properties of a LDPE film compared with other gaseous plasmas. These physiochemical changes induced by the plasma on the surface facilitate to improve the adhesive strength and blood compatibility.

  13. Experimental observation of the longitudinal plasma excitation in intrinsic Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Irie, A; Oya, G [Department of Electrical and Electronic Systems Engineering, Utsunomiya University, 7-1-2 Yoto, Utsunomiya 321-8585 (Japan); Shukrinov, Yu M [Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Moscow Region, 141980 (Russian Federation)], E-mail: iriea@cc.utsunomiya-u.ac.jp

    2008-10-15

    We have investigated the current-voltage characteristics (IVCs) of intrinsic Josephson junctions (IJJs). Recently, it is predicted that the longitudinal plasma wave can be excited by the parametric resonance in IJJs. Such an excitation induces a singularity called as breakpoint region around switch back region in the IVC. We have succeeded in the observation of the breakpoint region in the IVC of the mesa with 5 IJJs at 4.2 K. Furthermore, it is found that the temperature dependence of the breakpoint current is in agreement with the theoretical prediction. This suggests that the wave number of the excited plasma wave varies with temperature.

  14. Experimental observation of the longitudinal plasma excitation in intrinsic Josephson junctions

    Science.gov (United States)

    Irie, A.; Shukrinov, Yu M.; Oya, G.

    2008-10-01

    We have investigated the current-voltage characteristics (IVCs) of intrinsic Josephson junctions (IJJs). Recently, it is predicted that the longitudinal plasma wave can be excited by the parametric resonance in IJJs. Such an excitation induces a singularity called as breakpoint region around switch back region in the IVC. We have succeeded in the observation of the breakpoint region in the IVC of the mesa with 5 IJJs at 4.2 K. Furthermore, it is found that the temperature dependence of the breakpoint current is in agreement with the theoretical prediction. This suggests that the wave number of the excited plasma wave varies with temperature.

  15. Experimental Study of Kinetic Properties of Pyrolysis for Conveyor Belt in Coal Mine

    Institute of Scientific and Technical Information of China (English)

    SONG Zheng-chang

    2005-01-01

    The combustion of conveyor belt is a leading factor of mine fire. In this paper, the pyrolysis properties of ordinary conveyor belt and fire-resistant belt were studied experimentally with thermo-gravimetric analysis and derivative thermo-gravimetric analysis, and the curves of pyrolysis properties were achieved. On this basis, the activation energy and reaction order of pyrolysis were obtained in combination with theoretical analysis, aiming to provide data for further numerical simulation and simulating experiment of mine fire.

  16. AlN thin films prepared by ArF plasma assisted PLD. Role of process conditions on electronic and chemical-morphological properties

    Science.gov (United States)

    Cappelli, E.; Trucchi, D. M.; Orlando, S.; Valentini, V.; Mezzi, A.; Kaciulis, S.

    2014-02-01

    Aluminium nitride thin films were deposited on n-Si substrates by RF plasma activated reactive pulsed laser deposition (PLD). An ArF excimer pulsed laser, 10 Hz and 2.5 J/cm2 energy fluence, has been used to ablate a pure Al target in a reactive atmosphere of N2 plasma (generated by a RF source), at varying processing parameters (substrate temperature, time, and N2 plasma configuration). We studied the dependence and correlation of structural and electronic properties with the experimental conditions. The chemical composition of deposited material has been determined by both Raman and X-ray photoelectron spectroscopy (XPS). Electrical resistivity has been evaluated by the sheet resistance method. Both spectroscopic characterizations (Raman and XPS) show a strong dependence in the formation of AlN on the deposition temperature. At low temperatures, there is little formation of nitride, with a prevalence of aluminium oxide, while at higher temperatures the N uptake increases, with AlN formation. Raman analysis also highlights the formation of nano-structures, for temperatures ≥400∘C. These material characteristics have a fundamental influence on the electronic properties. Indeed, electrical resistivity properties have been found to be strongly dependent on the film structure, nitrogen incorporation, and presence of mixed oxide compounds, closely related to deposition temperature.

  17. Experimental Study of the Movement of Particles in the Coupled Field of Low Temperature Plasma and Cyclone

    Institute of Scientific and Technical Information of China (English)

    Ma Chaochen; Li Minghua; Wei Mingshan

    2005-01-01

    An investigation was made of the movement of particles in the coupled field of alow temperature plasma and cyclone with PIV in order to study the moving trace of particles'movement in an electrostatic cyclonic collector. The experimental results show that the plasmafield had little effect on the tangential velocity of particles, but had an obvious influence on theradial velocity. The tangential velocity of airflow had a great impact on particles' tangentialmovement. With the particles going down the cyclone tube, their tangential velocity dropped.Their radial velocity dropped as the radius enlarged from the center to the collecting wall of thetube. The plasma field could improve the radial velocity of particles by 5% ~ 10%, but the motionalong the radius was determined by the cyclone.

  18. Design and evaluation of an emulsion vehicle for paclitaxel. I. Physicochemical properties and plasma stability.

    Science.gov (United States)

    Han, Jihong; Davis, Stanley S; Papandreou, Catherine; Melia, Colin D; Washington, Clive

    2004-09-01

    The current formulation of paclitaxel contains ethanol and Cremophor EL and has been reported to cause serious adverse reactions. The purpose of the present work was to develop an improved emulsion vehicle for paclitaxel and to study the physicochemical properties of such a system. Emulsions were prepared by either microfluidization or sonication method and the droplet size characterized by dynamic light scattering and light microscopy. Stable emulsions could be made using mixtures of lecithin/sodium deoxycholate as the emulsifiers. The formulation was further improved by using a combination of free acid and the sodium salt. Paclitaxel could be loaded into the emulsions at 2.5 mg/ml without the formation of drug crystals. While these emulsions were stable on storage, they flocculated when mixed with plasma. Steric stabilization of the emulsion droplets with poloxamer 188 increased the stability of the emulsions in plasma but promoted the crystallization of paclitaxel. The crystallization tendency could be reduced by using PEG5000PE (1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[poly (ethylene glycol) 5000]), a less water-soluble stabilizer. Emulsions with good stability characteristics containing 2.5 mg/ml paclitaxel could be made using bile salt/acid and lecithin, and the excellent stability of these emulsions in plasma was achieved by steric stabilization using PEG5000PE.

  19. Cold atmospheric pressure plasmas exhibit antimicrobial properties against critical bacteria and yeast species.

    Science.gov (United States)

    Wiegand, C; Fink, S; Hipler, U-C; Beier, O; Horn, K; Pfuch, A; Schimanski, A; Grünler, B

    2017-08-02

    Cold atmospheric pressure plasmas (CAPPs) have been used to sterilise implant materials and other thermally unstable medical products and to modify chemical surfaces. This study investigates the antimicrobial effect of the gas and input power used to generate CAPPs on microorganisms causing skin infections, such as Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans and Malassezia pachydermatis. Microorganisms were cultivated on Mueller Hinton 2 (MH2) agar plates. CAPP treatment was performed using the Plasma BLASTER MEF. To investigate the antimicrobial effects the following CAPP parameters were varied: the gas used, input power, as well as number of treatments and treatment time. The antimicrobial efficacy of the CAPPs was found to increase with increasing input power and treatment time (or cycles). Furthermore the plasma generated from nitrogen is more effective than from air. The study showed that CAPPs demonstrate strong bactericidal and fungicidal properties in vitro. The selective application of CAPPs for the treatment of wound infections may offer a promising supplementary tool alongside current therapies.

  20. Characterization of the Basic Operational Properties of the Capillary Plasma Electrode (CPE) Discharge

    Science.gov (United States)

    Lopez, Jose; Zhu, Weidong; Figus, Margaret; Becker, Kurt

    2008-10-01

    Various approaches have been pursued to create stable atmospheric pressure discharges by extending the lifetime of the diffuse phase of the discharge to hundreds of microseconds. Previous research showed that the stability of the diffuse mode is dependent on the frequency (in the kHz range), gas type, power, mode of the excitation, and geometrical confinement. The Capillary Plasma Electrode (CPE) discharge is able to produce stable atmospheric pressure nonequilibrium plasmas. The CPE is similar in design to a barrier-electrode discharge, but has perforated dielectrics. This configuration, aside from exhibiting a diffuse mode of operation, also exhibits the so-called ``capillary jet'' mode, in which the capillaries ``turn on'' and a bright plasma jet emerges from the capillaries. The capillary jets from adjacent capillaries overlap so that the discharge appears uniform when the electrode contains an array of holes. There appears to be a threshold frequency for the capillary jet formation, which is strongly dependent on the L/D ratio of the capillaries, where D is the diameter of a capillary and L its length. This current work explores these modes of operation of the CPE by characterizing the electrical and optical emission properties of this discharge.

  1. Global low-frequency modes in weakly ionized magnetized plasmas: effects of equilibrium plasma rotation

    Energy Technology Data Exchange (ETDEWEB)

    Sosenko, P.; Pierre, Th. [Universite Marseille, Lab. PIIM - UMR6633 CNRS, Centre Saint Jerome, 13 - Marseille (France); Zagorodny, A. [Nancy-1 Univ. Henri Poincare, Lab. de Physique des Milieux Ionises (LPMIA, UPRES-A), Nancy 54 (France); International Centre of Physics, Kyiv (Ukraine)

    2004-07-01

    The linear and non-linear properties of global low-frequency oscillations in cylindrical weakly ionized magnetized plasmas are investigated analytically for the conditions of equilibrium plasma rotation. The theoretical results are compared with the experimental observations of rotating plasmas in laboratory devices, such as Mistral and Mirabelle in France, and KIWI in Germany. (authors)

  2. Induction of experimental proteinuria in vivo following infusion of human plasma hemopexin

    NARCIS (Netherlands)

    Cheung, PK; Klok, PA; Baller, JFW; Bakker, WW

    2000-01-01

    Background. The human plasma constituent hemopexin (Hx), following incubation with renal tissue, is able to induce glomerular alterations in vitro that are similar to those seen in minimal change disease (MCD). Whether this acute phase reactant is also able to induce proteinuria and minimal change-l

  3. Initial design for an experimental investigation of strongly coupled plasma behavior in the ATLAS facility

    CERN Document Server

    Munson, C P; Taylor, A J; Trainor, R J; Wood, B P; Wysocki, F J

    1999-01-01

    Summary form only given. Atlas is a high current (~30 MA peak, with a current risetime ~4.5 mu sec), high energy (E/sub stored/=24 MJ, E /sub load/=3-6 MJ), pulsed power facility which is being constructed at Los Alamos National Laboratory with a scheduled completion date in the year 2000. When operational, this facility will provide a platform for experiments in high pressure shocks (>20 Mbar), adiabatic compression ( rho / rho /sub 0/>5, P>10 Mbar), high magnetic fields (~2000 T), high strain and strain rates ( epsilon >200, d epsilon /dt~10/sup 4/ to 10/sup 6/ s/sup -1/), hydrodynamic instabilities of materials in turbulent regimes, magnetized target fusion, equation of state, and strongly coupled plasmas. For the strongly coupled plasma experiments, an auxiliary capacitor bank will be used to generate a moderate density (<0.1 solid), relatively cold (~1 eV) plasma by ohmic heating of a conducting material of interest such as titanium. This target plasma will be compressed against a central column conta...

  4. Experimental investigation of axial plasma injection into a magnetic dipole field

    DEFF Research Database (Denmark)

    Jensen, Vagn Orla

    1968-01-01

    A high-density helium plasma, accelerated from a conical pinch, is injected axially into a magnetic dipole field. Magnetic probe measurements show that, near the axis, a compression of the field is super-imposed on the standard diamagnetic depression. The compression starts downstream and moves...

  5. Fabrication And Properties Of Silver Based Multiwall Carbon Nanotube Composite Prepared By Spark Plasma Sintering Method

    Directory of Open Access Journals (Sweden)

    Lis M.

    2015-06-01

    Full Text Available The paper presents results of investigations of the obtained nanocomposite materials based on silver with addition of multiwall carbon nanotubes. The powder of carbon nanotubes content from 0.1 to 3 wt. % was produced by application of powder metallurgy methods, through mixing and high-energetic milling, and also chemical methods. Modification of carbon nanotubes included electroless deposition of silver particles on the carbon nanotube active surfaces and chemical reduction with strong reducing agent – sodium borohydride (NaBH4. The obtained powder mixtures were consolidated by SPS – Spark Plasma Sintering method. The formed composites were subjected to tests of relative density, electrical conductivity and electro-erosion properties. Detailed examinations of the structure with application of X-ray microanalysis, with consideration of carbon nanotubes distribution, were also carried out. The effect of manufacturing methods on properties of the obtained composites was observed.

  6. Thermodynamical and microscopic properties of turbulent transport in the edge plasma

    Science.gov (United States)

    Ghendrih, Ph; Norscini, C.; Hasenbeck, F.; Dif-Pradalier, G.; Abiteboul, J.; Cartier-Michaud, T.; Garbet, X.; Grandgirard, V.; Marandet, Y.; Sarazin, Y.; Tamain, P.; Zarzoso, D.

    2012-12-01

    Edge plasma turbulence modelled with 2D interchange is shown to exhibit convective transport at the microscale level. This transport property is related to avalanche like transport in such a flux-driven system. Correlation functions and source modulation are used to analyse the transport properties but do not allow one to recover the Fick law that must characterise the system at large scales. Coarse graining is then introduced to average out the small scales in order to recover the Fick law. One finds that the required space averaging is comparable to the system size while the time averaging is comparable to the confinement time. The system is then reduced to a single reservoir such that transport is characterised by a single scalar, either the diffusion coefficient of the Fick law or a characteristic evolution time constant.

  7. Structural, Mechanical and Optical Properties of Plasma-chemical Si-C-N Films

    Directory of Open Access Journals (Sweden)

    A.O. Kozak

    2014-11-01

    Full Text Available An influence of the substrate temperature in the range of 40-400 °C on the properties of the Si-C-N films deposited by plasma enhanced chemical vapor deposition (PECVD technique using hexamethyldisilazane is analyzed. Study of the structure, chemical bonding, surface morphology, mechanical properties and energy gap of the obtained films was carried out using X-ray diffraction, infrared spectroscopy, X-ray photoelectron spectroscopy, atomic force microscopy, optical measurements and nanoindentation. It was established that all the films were X-ray amorphous and had low surface roughness. Intensive hydrogen effusion from the films takes place, when substrate temperature increases up to 400 °C, which promotes a decrease of roughness and an increase in hardness and Young modules more than twice.

  8. Effects of spark plasma sintering conditions on the anisotropic thermoelectric properties of bismuth antimony telluride

    DEFF Research Database (Denmark)

    Han, Li; Hegelund Spangsdorf, Steeven; Van Nong, Ngo

    2016-01-01

    Bismuth antimony telluride (BixSb2-xTe3, 0.4 Sb1.6Te3 samples were prepared under various conditions (temperature, holding time, and ramp......-rate) using spark plasma sintering (SPS). The effects of SPS conditions on the anisotropic thermoelectric properties and microstructure evolutions were systematically investigated. The change of sintering temperature showed stronger influence than other sintering parameters to the resulting thermoelectric...... properties. Samples sintered over the temperature range between 653 K and 773 K showed significant differences in the degrees of orientations. The change was mainly caused by grain growth and re-orientation. Despite of the anisotropy, zT value as high as 1.2 to 1.3 was achieved over the temperature range...

  9. Microstructure and mechanical properties of spark plasma sintered Ti-Mo alloys for dental applications

    Institute of Scientific and Technical Information of China (English)

    Xin Lu; Bo Sun; Teng-fei Zhao; Lu-ning Wang; Cheng-cheng Liu; Xuan-hui Qu

    2014-01-01

    Ti-Mo alloys with various Mo contents from 6wt%to 14wt%were processed by spark plasma sintering based on elemental pow-ders. The influence of sintering temperature and Mo content on the microstructure and mechanical properties of the resulting alloys were in-vestigated. For each Mo concentration, the optimum sintering temperature was determined, resulting in a fully dense and uniform micro-structure of the alloy. The optimized sintering temperature gradually increases in the range of 1100-1300°C with the increase in Mo content. The microstructure of the Ti-(6-12)Mo alloy consists of acicularαphase surrounded by equiaxed grains ofβphase, while the Ti-14Mo al-loy only contains singleβphase. A small amount of fineαlath precipitated fromβphase contributes to the improvement in strength and hardness of the alloys. Under the sintering condition at 1250°C, the Ti-12Mo alloy is found to possess superior mechanical properties with the Vickers hardness of Hv 472, the compressive yield strength of 2182 MPa, the compression rate of 32.7%, and the elastic modulus of 72.1 GPa. These results demonstrate that Ti-Mo alloys fabricated via spark plasma sintering are indeed a perspective candidate alloy for dental applications.

  10. Microstructure and Tribological Properties of Plasma-sprayed Nanostructured Sulfide Coating

    Institute of Scientific and Technical Information of China (English)

    Yang XU; Yaohui GUAN; Zhongyu ZHENG; Xiaohui TONG

    2006-01-01

    The friction and wear properties of plasma-sprayed nanostructured FeS coating were investigated on an MHK-500 friction and wear tester under both oil lubrication and dry friction condition. The microstructure, worn surface morphology and phase composition of the coating were characterized by scanning electron microscopy(SEM)and X-ray diffraction(XRD). It was found that the coating was mainly composed of FeS, a small quantity of Fe1-xS and oxide were also found. The coating was formed by small particles of 50~100 nm in size. The thickness of the coating is approximately 150μm. The friction-reduction and wear-resistance properties of plasma-sprayed nanostructured FeS coating were superior to that of GCr15 steel substrate.Especially under oil lubrication condition, the friction coefficient of nanostructured FeS coating was 50% of that of GCr15 steel, the wear scar widths of the coating were also reduced to nearly 50% of that of GCr15 steel under high load. The failure of the coating was mainly attributed to plastic deformation under both oil lubrication and dry friction condition.

  11. Characterization of Microstructure and Thermal Properties of YSZ Coatings Obtained by Axial Suspension Plasma Spraying (ASPS)

    Science.gov (United States)

    Ganvir, Ashish; Curry, Nicholas; Björklund, Stefan; Markocsan, Nicolaie; Nylén, Per

    2015-10-01

    The paper aims at demonstrating various microstructures which can be obtained using the suspension spraying technique and their respective significance in enhancing the thermal insulation property of a thermal barrier coating. Three different types of coating microstructures are discussed which were produced by the Axial Suspension Plasma Spraying. Detailed characterization of coatings was then performed. Optical and scanning electron microscopy were utilized for microstructure evaluations; x-ray diffraction for phase analysis; water impregnation, image analysis, and mercury intrusion porosimetry for porosity analysis, and laser flash analysis for thermal diffusivity measurements were used. The results showed that Axial Suspension Plasma Spraying can generate vertically cracked, porous, and feathery columnar-type microstructures. Pore size distribution was found in micron, submicron, and nanometer range. Higher overall porosity, the lower density of vertical cracks or inter-column spacing, and higher inter-pass porosity favored thermal insulation property of the coating. Significant increase in thermal diffusivity and conductivity was found at higher temperature, which is believed to be due to the pore rearrangement (sintering and pore coarsening). Thermal conductivity values for these coatings were also compared with electron beam physical vapor deposition (EBPVD) thermal barrier coatings from the literature and found to be much lower.

  12. Properties of sintered glass-ceramics prepared from plasma vitrified air pollution control residues.

    Science.gov (United States)

    Roether, J A; Daniel, D J; Rani, D Amutha; Deegan, D E; Cheeseman, C R; Boccaccini, A R

    2010-01-15

    Air pollution control (APC) residues, obtained from a major UK energy from waste (EfW) plant, processing municipal solid waste, have been blended with silica and alumina and melted using DC plasma arc technology. The glass produced was crushed, milled, uni-axially pressed and sintered at temperatures between 750 and 1150 degrees C, and the glass-ceramics formed were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Mechanical properties assessed included Vickers's hardness, flexural strength, Young's modulus and thermal shock resistance. The optimum sintering temperature was found to be 950 degrees C. This produced a glass-ceramic with high density (approximately 2.58 g/cm(3)), minimum water absorption (approximately 2%) and relatively high mechanical strength (approximately 81+/-4 MPa). Thermal shock testing showed that 950 degrees C sintered samples could withstand a 700 degrees C quench in water without micro-cracking. The research demonstrates that glass-ceramics can be readily formed from DC plasma treated APC residues and that these have comparable properties to marble and porcelain. This novel approach represents a technically and commercially viable treatment option for APC residues that allow the beneficial reuse of this problematic waste.

  13. The physical properties of cubic plasma-enhanced atomic layer deposition TaN films

    Science.gov (United States)

    Kim, H.; Lavoie, C.; Copel, M.; Narayanan, V.; Park, D.-G.; Rossnagel, S. M.

    2004-05-01

    Plasma-enhanced atomic layer deposition (PE-ALD) is a promising technique to produce high quality metal and nitride thin films at low growth temperature. In this study, very thin (<10 nm) low resistivity (350 μΩ cm) cubic TaN Cu diffusion barrier were deposited by PE-ALD from TaCl5 and a plasma of both hydrogen and nitrogen. The physical properties of TaN thin films including microstructure, conformality, roughness, and thermal stability were investigated by various analytical techniques including x-ray diffraction, medium energy ion scattering, and transmission electron microscopy. The Cu diffusion barrier properties of PE-ALD TaN thin films were studied using synchrotron x-ray diffraction, optical scattering, and sheet resistance measurements during thermal annealing of the test structures. The barrier failure temperatures were obtained as a function of film thickness and compared with those of PE-ALD Ta, physical vapor deposition (PVD) Ta, and PVD TaN. A diffusion kinetics analysis showed that the microstructure of the barrier materials is one of the most critical factors for Cu diffusion barrier performance.

  14. On Disturbance Attenuation Properties of Control Schemes for Euler-Lagrange Systems : Theoretical and Experimental Results

    NARCIS (Netherlands)

    Scherpen, Jacquelien M.A.; Ortega, Romeo; Escobar, Gerardo

    1997-01-01

    In this paper we analyse and experimentally verify the (local) disturbance attenuation properties of some asymptotically stabilizing nonlinear controllers for Euler-Lagrange systems reported in the literature. Our objective with this study is twofold: first, to compare the performance of these schem

  15. Experimental investigation of chirp properties induced by signal amplification in quantum-dot semiconductor optical amplifiers.

    Science.gov (United States)

    Matsuura, Motoharu; Ohta, Hiroaki; Seki, Ryota

    2015-03-15

    We experimentally show the dynamic frequency chirp properties induced by signal amplification in a quantum-dot semiconductor optical amplifier (QD-SOA) for the first time. We also compare the red and blue chirp peak values and temporal chirp changes while changing the gain and injected signal powers of the QD-SOA with those of a common SOA.

  16. Physical and optical properties of DCJTB dye for OLED display applications: Experimental and theoretical investigation

    Science.gov (United States)

    Kurban, Mustafa; Gündüz, Bayram

    2017-06-01

    In this study, 4-(dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidin-4-yl-vinyl)-4H-pyran (DCJTB) was achieved using the experimental and theoretical studies. The electronic, optical and spectroscopic properties of DCJTB molecule were first investigated by performing experimental both solution and thin film techniques and then theoretical calculations. Theoretical results showed that one intense electronic transition is 505.26 nm a quite reasonable and agreement with the measured experimental data 505.00 and 503 nm with solution technique and film technique, respectively. Experimental and simple models were also taken into consideration to calculate the optical refractive index (n) of DCJTB molecule. The structural and electronic properties were next calculated using density functional theory (DFT) with B3LYP/6-311G (d, p) basis set. UV, FT-IR spectra characteristics and the electronic properties, such as frontier orbitals, and band gap energy (Eg) of DCJTB were also recorded time-dependent (TD) DFT approach. The theoretical Eg value were found to be 2.269 eV which is consistent with experimental results obtained from solution technique for THF solvent (2.155 eV) and literature (2.16 eV). The results herein obtained reveal that solution is simple, cost-efficient and safe for optoelectronic applications when compared with film technique.

  17. Analysis of ionization wave dynamics in low-temperature plasma jets from fluid modeling supported by experimental investigations

    Science.gov (United States)

    Yousfi, M.; Eichwald, O.; Merbahi, N.; Jomaa, N.

    2012-08-01

    This work is devoted to fluid modeling based on experimental investigations of a classical setup of a low-temperature plasma jet. The latter is generated at atmospheric pressure using a quartz tube of small diameter crossed by helium gas flow and surrounded by an electrode system powered by a mono-polar high-voltage pulse. The streamer-like behavior of the fast plasma bullets or ionization waves launched in ambient air for every high-voltage pulse, already emphasized in the literature from experimental or analytical considerations or recent preliminary fluid models, is confirmed by a numerical one-moment fluid model for the simulation of the ionization wave dynamics. The dominant interactions between electron and the main ions present in He-air mixtures with their associated basic data are taken into account. The gradual dilution of helium in air outside the tube along the axis is also considered using a gas hydrodynamics model based on the Navier-Stokes equation assuming a laminar flow. Due to the low magnitude of the reduced electric field E/N (not exceeding 15 Td), it is first shown that consideration of the stepwise ionization of helium metastables is required to reach the critical size of the electron avalanches in order to initiate the formation of ionization waves. It is also shown that a gas pre-ionization ahead of the wave front of about 109 cm-3 (coming from Penning ionization without considering the gas photo-ionization) is required for the propagation. Furthermore, the second ionization wave experimentally observed during the falling time of the voltage pulse, between the powered electrode and the tube exit, is correlated with the electric field increase inside the ionized channel in the whole region between the electrode and the tube exit. The propagation velocity and the distance traveled by the front of the ionization wave outside the tube in the downstream side are consistent with the present experimental measurements. In comparison with the

  18. Spark Plasma Sintering of Aluminum-Magnesium-Matrix Composites with Boron Carbide and Tungsten Nano-powder Inclusions: Modeling and Experimentation

    Science.gov (United States)

    Dvilis, E. S.; Khasanov, O. L.; Gulbin, V. N.; Petyukevich, M. S.; Khasanov, A. O.; Olevsky, E. A.

    2016-03-01

    Spark-plasma sintering (SPS) is used to fabricate fully-dense metal-matrix (Al/Mg) composites containing hard ceramic (boron carbide) and refractory metal (tungsten) inclusions. The study objectives include the modeling (and its experimental verification) of the process of the consolidation of the composites consisted of aluminum-magnesium alloy AMg6 (65 wt.%), B4C powder (15 wt.%), and W nano-powder (20 wt.%), as well as the optimization of the composite content and of the SPS conditions to achieve higher density. Discrete element modeling of the composite particles packing based on the particle size distribution functions of real powders is utilized for the determination of the powder compositions rendering maximum mixture packing densities. Two models: a power-law creep model of the high temperature deformation of powder materials, and an empirical logarithmic pressure-temperature-relative density relationship are successfully applied for the description of the densification of the aluminum-magnesium metal matrix powder composite subjected to spark-plasma sintering. The elastoplastic properties of the sintered composite samples are assessed by nanoindentation.

  19. Experimental investigation and performance analysis of inertia properties measurement for heavy truck cab

    Directory of Open Access Journals (Sweden)

    Tianjun Zhu

    2015-11-01

    Full Text Available An experimental investigation and performance analysis of inertia properties measurement for heavy truck cab is presented. This method is specifically intended for measuring the inertia properties of irregular rigid bodies, and it has the potential to be applied to the measurement of the inertia properties of vehicle bodies, such as the cab, engine, and gearbox. This article, based on CATARC moment of inertia measurement system test rig, develops an accurate measuring method to identify inertia parameters of heavy truck cab. First, corresponding tests are carried out, and the lever principle and moments of inertia parallel theorem are employed to calculate and analyse the test results, which leads to the accurate value of inertia parameters. Second, the performance analysis of the proposed method is verified through the measurement error analysis. As a result, the proposed method shows high accuracy, which provides an experimental basis for accurate inertia parameter measurement of heavy truck cab.

  20. Experimental and theoretical assessment of flexural properties of hybrid natural fibre composites

    DEFF Research Database (Denmark)

    Raghavalu Thirumalai, Durai Prabhakaran; Toftegaard, Helmuth Langmaack; Markussen, Christen Malte

    2014-01-01

    The concept of hybridization of natural fibre composites with synthetic fibres is attracting increasing scientific attention. The present study addresses the flexural properties of hybrid flax/glass/epoxy composites to demonstrate the potential benefits of hybridization. The study covers both...... experimental and theoretical assessments. Composite laminates with different hybrid fibre mixing ratios and different layer configurations were manufactured, and their volumetric composition and flexural properties were measured. The relationship between volume fractions in the composites is shown to be well...... predicted as a function of the hybrid fibre mixing ratio. The flexural modulus of the composites is theoretically assessed by using micromechanical models and laminate theory. The model predictions are compared with the experimentally determined flexural properties. Both approaches show that the flexural...