WorldWideScience

Sample records for plasma process-induced damage

  1. Temperature effect on protection diode for plasma-process induced charging damage

    NARCIS (Netherlands)

    Wang, Zhichun; Scarpa, A.; Smits, Sander M.; Kuper, F.G.; Salm, Cora

    2002-01-01

    In this paper, the leakage current of different drain-well diodes for plasma-charging protection has been simulated at high temperature. The simulation shows that the high ambient temperature, especially during plasma deposition process, enormously enhances the efficacy of the protection diodes in

  2. Process induced sub-surface damage in mechanically ground silicon wafers

    International Nuclear Information System (INIS)

    Yang Yu; De Munck, Koen; Teixeira, Ricardo Cotrin; Swinnen, Bart; De Wolf, Ingrid; Verlinden, Bert

    2008-01-01

    Micro-Raman spectroscopy, scanning electron microcopy, atomic force microscopy and preferential etching were used to characterize the sub-surface damage induced by the rough and fine grinding steps used to make ultra-thin silicon wafers. The roughly and ultra-finely ground silicon wafers were examined on both the machined (1 0 0) planes and the cross-sectional (1 1 0) planes. They reveal similar multi-layer damage structures, consisting of amorphous, plastically deformed and elastically stressed layers. However, the thickness of each layer in the roughly ground sample is much higher than its counterpart layers in the ultra-finely ground sample. The residual stress after rough and ultra-fine grinding is in the range of several hundreds MPa and 30 MPa, respectively. In each case, the top amorphous layer is believed to be the result of sequential phase transformations (Si-I to Si-II to amorphous Si). These phase transformations correspond to a ductile grinding mechanism, which is dominating in ultra-fine grinding. On the other hand, in rough grinding, a mixed mechanism of ductile and brittle grinding causes multi-layer damage and sub-surface cracks

  3. Characterization of process-induced damage in Cu/low-k interconnect structure by microscopic infrared spectroscopy with polarized infrared light

    Energy Technology Data Exchange (ETDEWEB)

    Seki, Hirofumi, E-mail: Hirofumi-Seki@trc.toray.co.jp; Hashimoto, Hideki [Toray Research Center, Inc., 3-3-7 Sonoyama, Otsu, Shiga 520-8567 (Japan); Ozaki, Yukihiro [Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1, Gakuen, Sanda, Hyogo 669-1337 (Japan)

    2016-09-07

    Microscopic Fourier-transform infrared (FT-IR) spectra are measured for a Cu/low-k interconnect structure using polarized IR light for different widths of low-k spaces and Cu lines, and for different heights of Cu lines, on Si substrates. Although the widths of the Cu line and the low-k space are 70 nm each, considerably smaller than the wavelength of the IR light, the FT-IR spectra of the low-k film were obtained for the Cu/low-k interconnect structure. A suitable method was established for measuring the process-induced damage in a low-k film that was not detected by the TEM-EELS (Transmission Electron Microscope-Electron Energy-Loss Spectroscopy) using microscopic IR polarized light. Based on the IR results, it was presumed that the FT-IR spectra mainly reflect the structural changes in the sidewalls of the low-k films for Cu/low-k interconnect structures, and the mechanism of generating process-induced damage involves the generation of Si-OH groups in the low-k film when the Si-CH{sub 3} bonds break during the fabrication processes. The Si-OH groups attract moisture and the OH peak intensity increases. It was concluded that the increase in the OH groups in the low-k film is a sensitive indicator of low-k damage. We achieved the characterization of the process-induced damage that was not detected by the TEM-EELS and speculated that the proposed method is applicable to interconnects with line and space widths of 70 nm/70 nm and on shorter scales of leading edge devices. The location of process-induced damage and its mechanism for the Cu/low-k interconnect structure were revealed via the measurement method.

  4. D-D nuclear fusion processes induced in polyethylene foams by TW Laser-generated plasma

    Directory of Open Access Journals (Sweden)

    Torrisi L.

    2015-01-01

    Full Text Available Deuterium-Deuterium fusion processes were generated by focusing the 3 TW PALS Laser on solid deuterated polyethylene targets placed in vacuum. Deuterium ion acceleration of the order of 4 MeV was obtained using laser irradiance Iλ2 ∼ 5 × 1016 W μm2/cm2 on the target. Thin and thick targets, at low and high density, were irradiated and plasma properties were monitored “on line” and “off line”. The ion emission from plasma was monitored with Thomson Parabola Spectrometer, track detectors and ion collectors. Fast semiconductor detectors based on SiC and fast plastic scintillators, both employed in time-of-flight configuration, have permitted to detect the characteristic 3.0 MeV protons and 2.45 MeV neutrons emission from the nuclear fusion reactions. From massive absorbent targets we have evaluated the neutron flux by varying from negligible values up to about 5 × 107 neutrons per laser shot in the case of foams targets, indicating a reaction rate of the order of 108 fusion events per laser shot using “advanced targets”.

  5. Process induced poling and plasma induced damage of thin films PZT

    NARCIS (Netherlands)

    Wang, J.; Houwman, Evert Pieter; Salm, Cora; Nguyen, Duc Minh; Vergeer, Kurt; Schmitz, Jurriaan

    2017-01-01

    This paper treats processing sequence induced changes on PZT. Two kinds of metal-PZT-metal capacitors are compared. The top surface and sidewall of PZT in one kind of capacitor is directly bombarded by energetic particles during ion milling process, whereas PZT in the other kind of capacitor is not.

  6. [Plasma cell dyscrasias and renal damage].

    Science.gov (United States)

    Pasquali, Sonia; Iannuzzella, Francesco; Somenzi, Danio; Mattei, Silvia; Bovino, Achiropita; Corradini, Mattia

    2012-01-01

    Kidney damage caused by immunoglobulin free light chains in the setting of plasma cell dyscrasias is common and may involve all renal compartments, from the glomerulus to the tubulointerstitium, in a wide variety of histomorphological and clinical patterns. The knowledge of how free light chains can promote kidney injury is growing: they can cause functional changes, be processed and deposited, mediate inflammation, apoptosis and fibrosis, and obstruct nephrons. Each clone of the free light chain is unique and its primary structure and post-translation modification can determine the type of renal disease. Measurement of serum free light chain concentrations and calculation of the serum kappa/lambda ratio, together with renal biopsy, represent essential diagnostic tools. An early and correct diagnosis of renal lesions due to plasma cell dyscrasias will allow early initiation of disease-specific treatment strategies. The treatment of free light chain nephropathies is evolving and knowledge of the pathways that promote renal damage should lead to further therapeutic developments.

  7. Plasmid DNA damage induced by helium atmospheric pressure plasma jet

    Science.gov (United States)

    Han, Xu; Cantrell, William A.; Escobar, Erika E.; Ptasinska, Sylwia

    2014-03-01

    A helium atmospheric pressure plasma jet (APPJ) is applied to induce damage to aqueous plasmid DNA. The resulting fractions of the DNA conformers, which indicate intact molecules or DNA with single- or double-strand breaks, are determined using agarose gel electrophoresis. The DNA strand breaks increase with a decrease in the distance between the APPJ and DNA samples under two working conditions of the plasma source with different parameters of applied electric pulses. The damage level induced in the plasmid DNA is also enhanced with increased plasma irradiation time. The reactive species generated in the APPJ are characterized by optical emission spectra, and their roles in possible DNA damage processes occurring in an aqueous environment are also discussed.

  8. Initial damage processes for diamond film exposure to hydrogen plasma

    International Nuclear Information System (INIS)

    Deslandes, A.; Guenette, M.C.; Samuell, C.M.; Karatchevtseva, I.; Ionescu, M.; Cohen, D.D.; Blackwell, B.; Corr, C.; Riley, D.P.

    2013-01-01

    Graphical abstract: -- Highlights: • Exposing chemical vapour deposited (CVD) diamond films in a recently constructed device, MAGPIE, specially commissioned to simulate fusion plasma conditions. • Non-diamond material is etched from the diamond. • There is no hydrogen retention observed, which suggests diamond is an excellent candidate for plasma facing materials. • Final structure of the surface is dependent on synergistic effects of etching and ion-induced structural change. -- Abstract: Diamond is considered to be a possible alternative to other carbon based materials as a plasma facing material in nuclear fusion devices due to its high thermal conductivity and resistance to chemical erosion. In this work CVD diamond films were exposed to hydrogen plasma in the MAGnetized Plasma Interaction Experiment (MAGPIE): a linear plasma device at the Australian National University which simulates plasma conditions relevant to nuclear fusion. Various negative sample stage biases of magnitude less than 500 V were applied to control the energies of impinging ions. Characterisation results from SEM, Raman spectroscopy and ERDA are presented. No measureable quantity of hydrogen retention was observed, this is either due to no incorporation of hydrogen into the diamond structure or due to initial incorporation as a hydrocarbon followed by subsequent etching back into the plasma. A model is presented for the initial stages of diamond erosion in fusion relevant hydrogen plasma that involves chemical erosion of non-diamond material from the surface by hydrogen radicals and damage to the subsurface region from energetic hydrogen ions. These results show that the initial damage processes in this plasma regime are comparable to previous studies of the fundamental processes as reported for less extreme plasma such as in the development of diamond films

  9. Evaluation of surface fractal dimension of carbon for plasma-facing material damaged by hydrogen plasma

    International Nuclear Information System (INIS)

    Nishino, Nobuhiro

    1997-01-01

    The surface structure of the plasma facing materials (PFM) changes due to plasma-surface interaction in a nuclear fusion reactor. Usually B 4 C coated graphite block are used as PFM. In this report, the surface fractal was applied to study the surface structure of plasma-damaged PFM carbon. A convenient flow-type adsorption apparatus was developed to evaluate the surface fractal dimension of materials. Four branched alkanol molecules with different apparent areas were used as the probe adsorbates. The samples used here were B 4 C coated isotopic graphite which were subjected to hydrogen plasma for various periods of exposure. The monolayer capacities of these samples for alkanols were determined by applying BET theory. The surface fractal dimension was calculated using the monolayer capacities and molecular areas for probe molecules and was found to increase from 2 to 3 with the plasma exposure time. (author)

  10. Surface damage of W exposed to combined stationary D plasma and ELMs-like pulsed plasma

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Y.Z., E-mail: jaja880816@aliyun.com [Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China, Chengdu, Sichuan 610213 (China); Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Liu, W., E-mail: liuw@mail.tsinghua.edu.cn [Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Xu, B.; Qu, S.L. [Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Morgan, T.W. [FOM Institute DIFFER-Dutch Institute for Fundamental Energy Research, 5612AJ Eindhoven (Netherlands)

    2017-04-15

    The surface damage of W under D plasma and ELMs-like transient heat loads was studied by combined stationary and pulsed D plasma. Low-flux transient heat loads will promote blister formation due to the gas expansion inside the blisters. On the contrary, high-flux transient heat loads will mitigate blistering due to the high surface temperature. Therefore, blistering on W surface first increased and then decreased with the increasing transient heat loads. The promotion effect of pulsed plasma on blistering is more obvious on [001] and [110] surfaces than on [111] surface, and the orientation dependence of blisters was mitigated by the transient heat loads. Surface modification induced by transient heat loads only formed on [001] and [110] surfaces, but did not form on [111] surface. The orientation dependence of surface modification was mainly due to the slipping system of dislocations.

  11. High-Density Plasma-Induced Etch Damage of GaN

    International Nuclear Information System (INIS)

    Baca, A.G.; Han, J.; Lester, L.F.; Pearton, S.J.; Ren, F.; Shul, R.J.; Willison, C.G.; Zhang, L.; Zolper, J.C.

    1999-01-01

    Anisotropic, smooth etching of the group-III nitrides has been reported at relatively high rates in high-density plasma etch systems. However, such etch results are often obtained under high de-bias and/or high plasma flux conditions where plasma induced damage can be significant. Despite the fact that the group-III nitrides have higher bonding energies than more conventional III-V compounds, plasma-induced etch damage is still a concern. Attempts to minimize such damage by reducing the ion energy or increasing the chemical activity in the plasma often result in a loss of etch rate or anisotropy which significantly limits critical dimensions and reduces the utility of the process for device applications requiring vertical etch profiles. It is therefore necessary to develop plasma etch processes which couple anisotropy for critical dimension and sidewall profile control and high etch rates with low-damage for optimum device performance. In this study we report changes in sheet resistance and contact resistance for n- and p-type GaN samples exposed to an Ar inductively coupled plasma (ICP). In general, plasma-induced damage was more sensitive to ion bombardment energies as compared to plasma flux. In addition, p-GaN was typically more sensitive to plasma-induced damage as compared to n-GaN

  12. Plasma damage in floating metal-insulator-metal capacitors

    NARCIS (Netherlands)

    Ackaert, Jan; Wang, Zhichun; De Backer, E.; Coppens, P.

    2002-01-01

    In this paper, charging induced damage (CID) to metal-insulator-metal capacitors (MIMCs), is reported. CID does not necessarily lead to direct yield loss, but may also induce latent damage leading to reliability losses. The damage is caused by the build up of a voltage potential difference between

  13. Plasma Damage in Floating Metal-Insulator-Metal Capacitors

    NARCIS (Netherlands)

    Ackaert, Jan; Wang, Zhichun; Backer, E.; Coppens, P.

    2001-01-01

    In this paper, charging induced damage (CID) to metal-insulator-metal capacitors (MIMCs), is reported. CID does not necessarily lead to direct yield loss, but may also induce latent damage leading to reliability losses. The damage is caused by the build up of a voltage potential difference between

  14. Mechanistic study of plasma damage to porous low-k: Process development and dielectric recovery

    Science.gov (United States)

    Shi, Hualiang

    Low-k dielectrics with porosity are being introduced to reduce the RC delay of Cu/low-k interconnect. However, during the O2 plasma ashing process, the porous low-k dielectrics tend to degrade due to methyl depletion, moisture uptake, and densification, increasing the dielectric constant and leakage current. This dissertation presents a study of the mechanisms of plasma damage and dielectric recovery. The kinetics of plasma interaction with low-k dielectrics was investigated both experimentally and theoretically. By using a gap structure, the roles of ion, photon, and radical in producing damage on low-k dielectrics were differentiated. Oxidative plasma induced damage was proportional to the oxygen radical density, enhanced by VUV photon, and increased with substrate temperature. Ion bombardment induced surface densification, blocking radical diffusion. Two analytical models were derived to quantify the plasma damage. Based on the radical diffusion, reaction, and recombination inside porous low-k dielectrics, a plasma altered layer model was derived to interpret the chemical effect in the low ion energy region. It predicted that oxidative plasma induced damage can be reduced by decreasing pore radius, substrate temperature, and oxygen radical density and increasing carbon concentration and surface recombination rate inside low-k dielectrics. The model validity was verified by experiments and Monte-Carlo simulations. This model was also extended to the patterned low-k structure. Based on the ion collision cascade process, a sputtering yield model was introduced to interpret the physical effect in the high ion energy region. The model validity was verified by checking the ion angular and energy dependences of sputtering yield using O2/He/Ar plasma, low-k dielectrics with different k values, and a Faraday cage. Low-k dielectrics and plasma process were optimized to reduce plasma damage, including increasing carbon concentration in low-k dielectrics, switching plasma

  15. Determination of processing-induced stresses and properties of layered and graded coatings: Experimental method and results for plasma-sprayed Ni-Al{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Kesler, O.; Finot, M.; Suresh, S. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Materials Science and Engineering; Sampath, S. [State Univ. of New York, Stony Brook, NY (United States). Dept. of Materials Science and Engineering

    1997-08-01

    An experimental method is proposed which enables the determination of processing-induced intrinsic stresses, elastic modulus, and coefficients of thermal expansion of surface coatings of homogeneous and graded compositions. In this method, a number of identical substrate specimens are coated simultaneously with surface layers of fixed or graded compositions, and specimens with different layer thicknesses are periodically removed from the deposition chamber. It is shown that the following results can be obtained from a knowledge of the strain or curvature and thermal history of the coated specimens, in conjunction with simple four-point bend tests and thermal loading/cycling at different temperatures: (i) the magnitude of the processing-induced intrinsic stresses through the thickness of the coating, (ii) the in-plane Young`s modulus, E, as a function of the coating thickness, (iii) the coefficient of thermal expansion, {alpha}, as a function of the coating thickness, (iv) the variation of E and {alpha} as a function of temperature at any thickness location within the coating, and (v) the separation of internal stresses arising from thermal expansion mismatch between different constituent phases or layers from those arising from the deposition process (so-called intrinsic or quench stresses). The thermomechanical analyses underlying this method are discussed in detail, and its significance and limitations are addressed. The proposed method is used to determine the evolution of processing-induced stresses during the successive build-up of plasma-sprayed Ni-Al{sub 2}O{sub 3} coatings of homogeneous and graded compositions.

  16. Inductively Coupled Plasma-Induced Etch Damage of GaN p-n Junctions

    International Nuclear Information System (INIS)

    SHUL, RANDY J.; ZHANG, LEI; BACA, ALBERT G.; WILLISON, CHRISTI LEE; HAN, JUNG; PEARTON, S.J.; REN, F.

    1999-01-01

    Plasma-induced etch damage can degrade the electrical and optical performance of III-V nitride electronic and photonic devices. We have investigated the etch-induced damage of an Inductively Coupled Plasma (ICP) etch system on the electrical performance of mesa-isolated GaN pn-junction diodes. GaN p-i-n mesa diodes were formed by Cl 2 /BCl 3 /Ar ICP etching under different plasma conditions. The reverse leakage current in the mesa diodes showed a strong relationship to chamber pressure, ion energy, and plasma flux. Plasma induced damage was minimized at moderate flux conditions (≤ 500 W), pressures ≥2 mTorr, and at ion energies below approximately -275 V

  17. DNA damage and plasma homocysteine levels are associated with ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-01-18

    Jan 18, 2010 ... (Fluitest Glu, Biocon Solutions Pte Ltd, Singapore). Cholesterol, ... migration in the comet tail was taken as an estimate of DNA damage and is ..... fever, and dietary energy intake on weight gain in rural Bangladeshi children.

  18. Temperature dependence on plasma-induced damage and chemical reactions in GaN etching processes using chlorine plasma

    Science.gov (United States)

    Liu, Zecheng; Ishikawa, Kenji; Imamura, Masato; Tsutsumi, Takayoshi; Kondo, Hiroki; Oda, Osamu; Sekine, Makoto; Hori, Masaru

    2018-06-01

    Plasma-induced damage (PID) on GaN was optimally reduced by high-temperature chlorine plasma etching. Energetic ion bombardments primarily induced PID involving stoichiometry, surface roughness, and photoluminescence (PL) degradation. Chemical reactions under ultraviolet (UV) irradiation and chlorine radical exposure at temperatures higher than 400 °C can be controlled by taking into account the synergism of simultaneous photon and radical irradiations to effectively reduce PID.

  19. Structural and electrical characterization of HBr/O2 plasma damage to Si substrate

    International Nuclear Information System (INIS)

    Fukasawa, Masanaga; Nakakubo, Yoshinori; Matsuda, Asahiko; Takao, Yoshinori; Eriguchi, Koji; Ono, Kouichi; Minami, Masaki; Uesawa, Fumikatsu; Tatsumi, Tetsuya

    2011-01-01

    Silicon substrate damage caused by HBr/O 2 plasma exposure was investigated by spectroscopic ellipsometry (SE), high-resolution Rutherford backscattering spectroscopy, and transmission electron microscopy. The damage caused by H 2 , Ar, and O 2 plasma exposure was also compared to clarify the ion-species dependence. Although the damage basically consists of a surface oxidized layer and underlying dislocated Si, the damage structure strongly depends on the incident ion species, ion energy, and oxidation during air and plasma exposure. In the case of HBr/O 2 plasma exposure, hydrogen generated the deep damaged layer (∼10 nm), whereas ion-enhanced diffusion of oxygen, supplied simultaneously by the plasma, caused the thick surface oxidation. In-line monitoring of damage thicknesses by SE, developed with an optimized optical model, showed that the SE can be used to precisely monitor damage thicknesses in mass production. Capacitance-voltage (C-V) characteristics of a damaged layer were studied before and after diluted-HF (DHF) treatment. Results showed that a positive charge is generated at the surface oxide-dislocated Si interface and/or in the bulk oxide after plasma exposure. After DHF treatment, most of the positive charges were removed, while the thickness of the ''Si recess'' was increased by removing the thick surface oxidized layer. As both the Si recess and remaining dislocated Si, including positive charges, cause the degradation of electrical performance, precise monitoring of the surface structure and understanding its effect on device performance is indispensable for creating advanced devices.

  20. Structural and electrical characterization of HBr/O{sub 2} plasma damage to Si substrate

    Energy Technology Data Exchange (ETDEWEB)

    Fukasawa, Masanaga; Nakakubo, Yoshinori; Matsuda, Asahiko; Takao, Yoshinori; Eriguchi, Koji; Ono, Kouichi; Minami, Masaki; Uesawa, Fumikatsu; Tatsumi, Tetsuya [Semiconductor Technology Development Division, Semiconductor Business Group, Professional, Device and Solutions Group, Sony Corporation, 4-14-1 Asahi-cho, Atsugi-shi, Kanagawa 243-0014 (Japan); Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501 (Japan); Semiconductor Technology Development Division, Semiconductor Business Group, Professional, Device and Solutions Group, Sony Corporation, 4-14-1 Asahi-cho, Atsugi-shi, Kanagawa 243-0014 (Japan)

    2011-07-15

    Silicon substrate damage caused by HBr/O{sub 2} plasma exposure was investigated by spectroscopic ellipsometry (SE), high-resolution Rutherford backscattering spectroscopy, and transmission electron microscopy. The damage caused by H{sub 2}, Ar, and O{sub 2} plasma exposure was also compared to clarify the ion-species dependence. Although the damage basically consists of a surface oxidized layer and underlying dislocated Si, the damage structure strongly depends on the incident ion species, ion energy, and oxidation during air and plasma exposure. In the case of HBr/O{sub 2} plasma exposure, hydrogen generated the deep damaged layer ({approx}10 nm), whereas ion-enhanced diffusion of oxygen, supplied simultaneously by the plasma, caused the thick surface oxidation. In-line monitoring of damage thicknesses by SE, developed with an optimized optical model, showed that the SE can be used to precisely monitor damage thicknesses in mass production. Capacitance-voltage (C-V) characteristics of a damaged layer were studied before and after diluted-HF (DHF) treatment. Results showed that a positive charge is generated at the surface oxide-dislocated Si interface and/or in the bulk oxide after plasma exposure. After DHF treatment, most of the positive charges were removed, while the thickness of the ''Si recess'' was increased by removing the thick surface oxidized layer. As both the Si recess and remaining dislocated Si, including positive charges, cause the degradation of electrical performance, precise monitoring of the surface structure and understanding its effect on device performance is indispensable for creating advanced devices.

  1. Vacuum ultra-violet damage and damage mitigation for plasma processing of highly porous organosilicate glass dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Marneffe, J.-F. de, E-mail: marneffe@imec.be; Lukaszewicz, M.; Porter, S. B.; Vajda, F.; Rutigliani, V.; Verdonck, P.; Baklanov, M. R. [IMEC v.z.w., 3001 Leuven (Belgium); Zhang, L.; Heyne, M.; El Otell, Z.; Krishtab, M. [IMEC v.z.w., 3001 Leuven (Belgium); Department of Chemistry, KULeuven, 3001 Leuven (Belgium); Goodyear, A.; Cooke, M. [Oxford Instruments Plasma Technology, BS49 4AP Bristol (United Kingdom)

    2015-10-07

    Porous organosilicate glass thin films, with k-value 2.0, were exposed to 147 nm vacuum ultra-violet (VUV) photons emitted in a Xenon capacitive coupled plasma discharge. Strong methyl bond depletion was observed, concomitant with a significant increase of the bulk dielectric constant. This indicates that, besides reactive radical diffusion, photons emitted during plasma processing do impede dielectric properties and therefore need to be tackled appropriately during patterning and integration. The detrimental effect of VUV irradiation can be partly suppressed by stuffing the low-k porous matrix with proper sacrificial polymers showing high VUV absorption together with good thermal and VUV stability. In addition, the choice of an appropriate hard-mask, showing high VUV absorption, can minimize VUV damage. Particular processing conditions allow to minimize the fluence of photons to the substrate and lead to negligible VUV damage. For patterned structures, in order to reduce VUV damage in the bulk and on feature sidewalls, the combination of both pore stuffing/material densification and absorbing hard-mask is recommended, and/or the use of low VUV-emitting plasma discharge.

  2. DNA damage and plasma homocysteine levels are associated with ...

    African Journals Online (AJOL)

    This study describes the association between levels of DNA damage and homocysteine (Hcy) in persistent diarrheic (PD) patients and correlates them with serum biochemical metabolites and mineral components. PD patients (n = 36) age 4 - 6 years from Faisalabad hospitals were examined for anthropometric factors, ...

  3. Plasma membrane damage detected by nucleic acid leakage

    International Nuclear Information System (INIS)

    Fortunati, E.; Bianchi, V.

    1989-01-01

    Among the indicators of membrane damage, the leakage of intracellular components into the medium is the most directly related to the perturbations of the membrane molecular organization. The extent of the damage can be evaluated from the size of the released components. We have designed a protocol for the detection of membrane leakage based on the preincubation of cells with tritiated adenine for 24 h, followed by a 24-h chase in nonradioactive medium. The treatment takes place when the distribution of the precursor among its end products has reached the plateau, and thus the differences of radioactivity in the fractions obtained from the control and treated cultures (medium, nucleotide pool, RNA, DNA) correspond to actual quantitative variations induced by the test chemical. Aliquots of the medium are processed to determine which percentage of the released material is macromolecular, in order to distinguish between mild and severe membrane damage. The origin of the extracellular radioactivity can be recognized from the variations of RNA counts in the treated cells. DNA radioactivity is used to evaluate the number of cells that remain attached to the plates in the different conditions of treatment. By this means, generalized permeabilization of membranes to macromolecules is distinguished from complete solubilization of only a subpopulation of cells. We present some examples of application of the protocol with detergents (LAS, SDS, Triton X-100) and with Cr(VI), which damages cell membranes by a different mechanism of action

  4. The effect of low temperature plasma on DNA damage of maize seeds

    International Nuclear Information System (INIS)

    Uhrin, F.; Ondriasova, K.; Kyzek, S.; Galova, E.; Medvecka, V.; Zahoranova, A.

    2017-01-01

    It is known that the low temperature plasma shows antimicrobial and disinfecting effects. It also supports the seed germination and it is used in many fields of common life. But there is just a few scientific papers dealing with the genotoxic properties of plasma. In our work, we try to determine the relative rate of DNA double strand breaks formation resulting from the low temperature plasma treatment in the seeds of Zea mays L. using the constant field gel electrophoresis (CFGE). We compared DNA damage in seedlings resulting from plasma and zeocin treatment with seedlings, which seeds were treated just with zeocin. (authors)

  5. Ascorbic acid protects lipids in human plasma and low-density lipoprotein against oxidative damage

    Energy Technology Data Exchange (ETDEWEB)

    Frei, B. (Department of Nutrition, Harvard School of Public Health, Boston, MA (Unites States))

    1991-12-01

    The authors exposed human blood plasma and low-density lipoprotein (LDL) to many different oxidative challenges and followed the temporal consumption of endogenous antioxidants in relation to the initiation of oxidative damage. Under all types of oxidizing conditions, ascorbic acid completely protects lipids in plasma and LDL against detectable peroxidative damage as assessed by a specific and highly sensitive assay for lipid peroxidation. Ascorbic acid proved to be superior to the other water-soluble plasma antioxidants bilirubin, uric acid, and protein thiols as well as to the lipoprotein-associated antioxidants alpha-tocopherol, ubiquinol-10, lycopene, and beta-carotene. Although these antioxidants can lower the rate of detectable lipid peroxidation, they are not able to prevent its initiation. Only ascorbic acid is reactive enough to effectively intercept oxidants in the aqueous phase before they can attack and cause detectable oxidative damage to lipids.

  6. Surface damage characteristics of CFC and tungsten with repetitive ELM-like pulsed plasma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Y., E-mail: ykikuchi@eng.u-hyogo.ac.jp [Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, 671-2280 Hyogo (Japan); Nishijima, D. [Center for Energy Research, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0417 (United States); Nakatsuka, M.; Ando, K.; Higashi, T.; Ueno, Y.; Ishihara, M.; Shoda, K.; Nagata, M. [Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, 671-2280 Hyogo (Japan); Kawai, T.; Ueda, Y. [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Fukumoto, N. [Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, 671-2280 Hyogo (Japan); Doerner, R.P. [Center for Energy Research, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0417 (United States)

    2011-08-01

    Surface damage of carbon fiber composite (CFC) and tungsten (W) due to repetitive ELM-like pulsed plasma irradiation has been investigated by using a magnetized coaxial plasma gun. CX2002U CFC and stress-relieved W samples were exposed to repetitive pulsed deuterium plasmas with duration of {approx}0.5 ms, incident ion energy of {approx}30 eV, and surface absorbed energy density of {approx}0.3-0.7 MJ/m{sup 2}. Bright spots on a CFC surface during pulsed plasma exposures were clearly observed with a high-speed camera, indicating a local surface heating. No melting of a W surface was observed under a single plasma pulse exposure at energy density of {approx}0.7 MJ/m{sup 2}, although cracks were formed. Cracking of the W surface grew with repetitive pulsed plasma exposures. Subsequently, the surface melted due to localized heat absorption.

  7. Plasma induced DNA damage: Comparison with the effects of ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lazović, S.; Maletić, D.; Puač, N.; Malović, G.; Petrović, Z. Lj. [Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); Leskovac, A.; Filipović, J.; Joksić, G. [Department of Physical Chemistry, Vinča Institute of Nuclear Sciences, University of Belgrade, 11001 Belgrade (Serbia)

    2014-09-22

    We use human primary fibroblasts for comparing plasma and gamma rays induced DNA damage. In both cases, DNA strand breaks occur, but of fundamentally different nature. Unlike gamma exposure, contact with plasma predominantly leads to single strand breaks and base-damages, while double strand breaks are mainly consequence of the cell repair mechanisms. Different cell signaling mechanisms are detected confirming this (ataxia telangiectasia mutated - ATM and ataxia telangiectasia and Rad3 related - ATR, respectively). The effective plasma doses can be tuned to match the typical therapeutic doses of 2 Gy. Tailoring the effective dose through plasma power and duration of the treatment enables safety precautions mainly by inducing apoptosis and consequently reduced frequency of micronuclei.

  8. DNA damage in oral cancer cells induced by nitrogen atmospheric pressure plasma jets

    Science.gov (United States)

    Han, Xu; Klas, Matej; Liu, Yueying; Stack, M. Sharon; Ptasinska, Sylwia

    2013-09-01

    The nitrogen atmospheric pressure plasma jet (APPJ) has been shown to effectively induce DNA double strand breaks in SCC-25 oral cancer cells. The APPJ source constructed in our laboratory consists of two external electrodes wrapping around a quartz tube and nitrogen as a feed gas and operates based on dielectric barrier gas discharge. Generally, it is more challenging to ignite plasma in N2 atmosphere than in noble gases. However, this design provides additional advantages such as lower costs compared to the noble gases for future clinical operation. Different parameters of the APPJ configuration were tested in order to determine radiation dosage. To explore the effects of delayed damage and cell self-repairing, various incubation times of cells after plasma treatment were also performed. Reactive species generated in plasma jet and in liquid environment are essential to be identified and quantified, with the aim of unfolding the mystery of detailed mechanisms for plasma-induced cell apoptosis. Moreover, from the comparison of plasma treatment effect on normal oral cells OKF6T, an insight to the selectivity for cancer treatment by APPJ can be explored. All of these studies are critical to better understand the damage responses of normal and abnormal cellular systems to plasma radiation, which are useful for the development of advanced plasma therapy for cancer treatment at a later stage.

  9. DNA damage in oral cancer cells induced by nitrogen atmospheric pressure plasma jets

    Energy Technology Data Exchange (ETDEWEB)

    Han, Xu; Ptasinska, Sylwia [Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Klas, Matej [Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Liu, Yueying [Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Sharon Stack, M. [Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556 (United States)

    2013-06-10

    The nitrogen atmospheric pressure plasma jet (APPJ) was applied to induce DNA damage of SCC-25 oral cancer cells. Optical emission spectra were taken to characterize the reactive species produced in APPJ. In order to explore the spatial distribution of plasma effects, cells were placed onto photo-etched grid slides and the antibody H2A.X was used to locate double strand breaks of DNA inside nuclei using an immunofluorescence assay. The number of cells with double strand breaks in DNA was observed to be varied due to the distance from the irradiation center and duration of plasma treatment.

  10. DNA damage in oral cancer cells induced by nitrogen atmospheric pressure plasma jets

    International Nuclear Information System (INIS)

    Han, Xu; Ptasinska, Sylwia; Klas, Matej; Liu, Yueying; Sharon Stack, M.

    2013-01-01

    The nitrogen atmospheric pressure plasma jet (APPJ) was applied to induce DNA damage of SCC-25 oral cancer cells. Optical emission spectra were taken to characterize the reactive species produced in APPJ. In order to explore the spatial distribution of plasma effects, cells were placed onto photo-etched grid slides and the antibody H2A.X was used to locate double strand breaks of DNA inside nuclei using an immunofluorescence assay. The number of cells with double strand breaks in DNA was observed to be varied due to the distance from the irradiation center and duration of plasma treatment.

  11. Investigation of plasma etch damage to porous oxycarbosilane ultra low-k dielectric

    International Nuclear Information System (INIS)

    Bruce, R L; Engelmann, S; Purushothaman, S; Volksen, W; Frot, T J; Magbitang, T; Dubois, G; Darnon, M

    2013-01-01

    There has been much interest recently in porous oxycarbosilane (POCS)-based materials as the ultra-low k dielectric (ULK) in back-end-of-line (BEOL) applications due to their superior mechanical properties compared to traditional organosilicate-based ULK materials at equivalent porosity and dielectric constant. While it is well known that plasma etching and strip processes can cause significant damage to ULK materials in general, little has been reported about the effect of plasma damage to POCS as the ULK material. We investigated the effect of changing the gas discharge chemistry and substrate bias in the dielectric trench etch and also the subsequent effect of the cap-open etch on plasma damage to POCS during BEOL integration. Large differences in surface roughness and damage behaviour were observed by changing the fluorocarbon depositing conditions. These damage behaviour trends will be discussed and potential rationalizations offered based on the formation of pits and craters at the etch front that lead to surface roughness and microtrenching. (paper)

  12. DNA damage in oral cancer and normal cells induced by nitrogen atmospheric pressure plasma jets

    Science.gov (United States)

    Han, Xu; Kapaldo, James; Liu, Yueying; Stack, M. Sharon; Ptasinska, Sylwia

    2015-09-01

    Nitrogen atmospheric pressure plasma jets (APPJs) have been shown to effectively induce DNA double strand breaks in SCC25 oral cancer cells. The APPJ source constructed in our laboratory operates based on dielectric barrier discharge. It consists of two copper electrodes alternatively wrapping around a fused silica tube with nitrogen as a feed gas. It is generally more challenging to ignite plasma in N2 atmosphere than in noble gases. However, N2 provides additional advantages such as lower costs compared to noble gases, thus this design can be beneficial for the future long-term clinical use. To compare the effects of plasma on cancer cells (SCC25) and normal cells (OKF), the cells from both types were treated at the same experimental condition for various treatment times. The effective area with different damage levels after the treatment was visualized as 3D maps. The delayed damage effects were also explored by varying the incubation times after the treatment. All of these studies are critical for a better understanding of the damage responses of cellular systems exposed to the plasma radiation, thus are useful for the development of the advanced plasma cancer therapy. The research described herein was supported by the Division of Chemical Sciences, Geosciences and Biosciences, Basic Energy Sciences, Office of Science, United States Department of Energy through Grant No. DE-FC02-04ER15533.

  13. Comprehensive simulation of vertical plasma instability events and their serious damage to ITER plasma facing components

    International Nuclear Information System (INIS)

    Hassanein, A.; Sizyuk, T.

    2008-01-01

    Safe and reliable operation is still one of the major challenges in the development of the new generation of ITER-like fusion reactors. The deposited plasma energy during major disruptions, edge-localized modes (ELMs) and vertical displacement events (VDEs) causes significant surface erosion, possible structural failure and frequent plasma contamination. While plasma disruptions and ELM will have no significant thermal effects on the structural materials or coolant channels because of their short deposition time, VDEs having longer-duration time could have a destructive impact on these components. Therefore, modelling the response of structural materials to VDE has to integrate detailed energy deposition processes, surface vaporization, phase change and melting, heat conduction to coolant channels and critical heat flux criteria at the coolant channels. The HEIGHTS 3D upgraded computer package considers all the above processes to specifically study VDE in detail. Results of benchmarking with several known laboratory experiments prove the validity of HEIGHTS implemented models. Beryllium and tungsten are both considered surface coating materials along with copper structure and coolant channels using both smooth tubes with swirl tape insert. The design requirements and implications of plasma facing components are discussed along with recommendations to mitigate and reduce the effects of plasma instabilities on reactor components.

  14. Damage of actively cooled plasma facing components of magnetic confinement controlled fusion machines

    Energy Technology Data Exchange (ETDEWEB)

    Chevet, G. [Association Euratom-CEA, DSM/DRFC, CEA Cadarache, Saint-Paul-Lez-Durance (France)], E-mail: gaelle.chevet@cea.fr; Schlosser, J. [Association Euratom-CEA, DSM/DRFC, CEA Cadarache, Saint-Paul-Lez-Durance (France); Martin, E.; Herb, V.; Camus, G. [Universite Bordeaux 1, UMR 5801 (CNRS-SAFRAN-CEA-UB1), Laboratoire des Composites Thermostructuraux, F-33600 Pessac (France)

    2009-03-31

    Plasma facing components (PFCs) of magnetic fusion machines have high manufactured residual stresses and have to withstand important stress ranges during operation. These actively cooled PFCs have a carbon fibre composite (CFC) armour and a copper alloy heat sink. Cracks mainly appear in the CFC near the composite/copper interface. In order to analyse damage mechanisms, it is important to well simulate the damage mechanisms both of the CFC and the CFC/Cu interface. This study focuses on the mechanical behaviour of the N11 material for which the scalar ONERA damage model was used. The damage parameters of this model were identified by similarity to a neighbour material, which was extensively analysed, according to the few characterization test results available for the N11. The finite elements calculations predict a high level of damage of the CFC at the interface zone explaining the encountered difficulties in the PFCs fabrication. These results suggest that the damage state of the CFC cells is correlated with a conductivity decrease to explain the temperature increase of the armour surface under fatigue heat load.

  15. Damage of actively cooled plasma facing components of magnetic confinement controlled fusion machines

    Science.gov (United States)

    Chevet, G.; Schlosser, J.; Martin, E.; Herb, V.; Camus, G.

    2009-03-01

    Plasma facing components (PFCs) of magnetic fusion machines have high manufactured residual stresses and have to withstand important stress ranges during operation. These actively cooled PFCs have a carbon fibre composite (CFC) armour and a copper alloy heat sink. Cracks mainly appear in the CFC near the composite/copper interface. In order to analyse damage mechanisms, it is important to well simulate the damage mechanisms both of the CFC and the CFC/Cu interface. This study focuses on the mechanical behaviour of the N11 material for which the scalar ONERA damage model was used. The damage parameters of this model were identified by similarity to a neighbour material, which was extensively analysed, according to the few characterization test results available for the N11. The finite elements calculations predict a high level of damage of the CFC at the interface zone explaining the encountered difficulties in the PFCs fabrication. These results suggest that the damage state of the CFC cells is correlated with a conductivity decrease to explain the temperature increase of the armour surface under fatigue heat load.

  16. Damage of actively cooled plasma facing components of magnetic confinement controlled fusion machines

    International Nuclear Information System (INIS)

    Chevet, G.; Schlosser, J.; Martin, E.; Herb, V.; Camus, G.

    2009-01-01

    Plasma facing components (PFCs) of magnetic fusion machines have high manufactured residual stresses and have to withstand important stress ranges during operation. These actively cooled PFCs have a carbon fibre composite (CFC) armour and a copper alloy heat sink. Cracks mainly appear in the CFC near the composite/copper interface. In order to analyse damage mechanisms, it is important to well simulate the damage mechanisms both of the CFC and the CFC/Cu interface. This study focuses on the mechanical behaviour of the N11 material for which the scalar ONERA damage model was used. The damage parameters of this model were identified by similarity to a neighbour material, which was extensively analysed, according to the few characterization test results available for the N11. The finite elements calculations predict a high level of damage of the CFC at the interface zone explaining the encountered difficulties in the PFCs fabrication. These results suggest that the damage state of the CFC cells is correlated with a conductivity decrease to explain the temperature increase of the armour surface under fatigue heat load

  17. Radiation damage and redeposited-layer formation on plasma facing materials in the TRIAM-1M

    International Nuclear Information System (INIS)

    Hirai, Takeshi; Tokunaga, Kazutoshi; Fujiwara, Tadashi; Yoshida, Naoaki; Itoh, Satoshi

    1997-01-01

    As an aim to obtain some informations of material damage at long time discharge and redeposited-layer formed by scrape off layer (SOL), two collector probe experiments were conducted by using Tokamak of Research Institute for Applied Mechanics (TRIAM-IM). As a result, radiation damage due to charge exchange neutral particles of more than 2 MeV high energy component flying from plasma was observed. And in either experiment, redeposited-layer formation due to deposite of impurity atoms in the plasma could be observed. In the first experiment, a redeposited-layer with fine crystalline particles was observed, which was formed to contain multi-component system of Fe, Cr and Ni and light elements O and C. And, in the second experiment, a redeposited-layer grain-grown in which main component was Mo was observed. Surface modification of plasma facing material such as above-mentioned damage induction, redeposited-layer formation, and so on, was thought to much affect deterioration of materials and recycling of hydrogen. (G.K.)

  18. Study of the damage processes induced by thermal fatigue in stainless steels F17TNb and R20-12 for automobile application; Etude de l'endommagement en fatigue thermique des aciers inoxydables F17TNb et R20-12 pour application automobile

    Energy Technology Data Exchange (ETDEWEB)

    Bucher, L.

    2004-12-15

    Thermal cycling is the main cause of fatigue failure in automobile exhaust manifolds for which the use of stainless steel now rivals that of cast iron which has been traditionally used. An original fatigue test has been developed by Ugine and ALZ, a stainless steel producer, so as to be able to compare different grades of stainless steel alloys. This test is representative of the thermal conditions encountered in the critical zones of exhaust manifolds. However, it has revealed significant differences in damage processes in the ferritic and austenitic grades tested. The subject of this thesis is the damage processes induced by thermal fatigue in stainless steels used for automotive exhaust manifolds. Two stainless steels were studied: a ferritic grade, F17TNb (17%Cr and stabilized with Ti and Nb), and an austenitic grade, R20-12, containing 20% Cr and 12% Ni. The first objective was to understand the different damage processes induced by thermal fatigue in the ferritic and austenitic grades. The second was to develop a numerical design tool of the thermally tested structures. (author)

  19. Optimum inductively coupled plasma etching of fused silica to remove subsurface damage layer

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xiaolong; Liu, Ying, E-mail: liuychch@ustc.edu.cn; Liu, Zhengkun; Qiu, Keqiang; Xu, Xiangdong; Hong, Yilin; Fu, Shaojun

    2015-11-15

    Highlights: • SSD layer of fused silica is removed by ICP etch with surface roughness of 0.23 nm. • Metal contamination is successfully avoided by employing an isolation device. • Unique low-density plasma induced pitting damage is discovered and eliminated. • Lateral etching of SSD is avoided due to the improvement of etching anisotropy. - Abstract: In this work, we introduce an optimum ICP etching technique that successfully removes the subsurface damage (SSD) layer of fused silica without causing plasma induced surface damage (PISD) or lateral etching of SSD. As one of the commonest PISD initiators, metal contamination from reactor chamber is prevented by employing a simple isolation device. Based on this device, a unique low-density pitting damage is discovered and subsequently eliminated by optimizing the etching parameters. Meanwhile etching anisotropy also improves a lot, thus preventing the lateral etching of SSD. Using this proposed technique, SSD layer of fused silica is successfully removed with a surface roughness of 0.23 nm.

  20. Evolution of transiently melt damaged tungsten under ITER-relevant divertor plasma heat loading

    Energy Technology Data Exchange (ETDEWEB)

    Bardin, S., E-mail: s.bardin@differ.nl [FOM Institute DIFFER – Dutch Institute For Fundamental Energy Research, Ass EURATOM-FOM, Trilateral Euregio Cluster, Nieuwegein (Netherlands); Morgan, T.W. [FOM Institute DIFFER – Dutch Institute For Fundamental Energy Research, Ass EURATOM-FOM, Trilateral Euregio Cluster, Nieuwegein (Netherlands); Glad, X. [Université de Lorraine, Institut Jean Lamour, Vandoeuvre-les-Nancy (France); Pitts, R.A. [ITER Organization, CS 90 046, 13067 St Paul Lez Durance Cedex (France); De Temmerman, G. [FOM Institute DIFFER – Dutch Institute For Fundamental Energy Research, Ass EURATOM-FOM, Trilateral Euregio Cluster, Nieuwegein (Netherlands); ITER Organization, CS 90 046, 13067 St Paul Lez Durance Cedex (France)

    2015-08-15

    A high-repetition-rate ELM simulation system was used at both the Pilot-PSI and Magnum-PSI linear plasma devices to investigate the nature of W damage under multiple shallow melt events and the subsequent surface evolution under ITER relevant plasma fluence and high ELM number. First, repetitive shallow melting of two W monoblocks separated by a 0.5 mm gap was obtained by combined pulsed/steady-state hydrogen plasma loading at normal incidence in the Pilot-PSI device. Surface modifications including melting, cracking and strong net-reshaping of the surface are obtained. During the second step, the pre-damaged W sample was exposed to a high flux plasma regime in the Magnum-PSI device with a grazing angle of 35°. SEM analysis indicates no measurable change to the surface state after the exposure in Magnum-PSI. An increase in transient-induced temperature rise of 40% is however observed, indicating a degradation of thermal properties over time.

  1. Apparatus and method for atmospheric pressure reactive atom plasma processing for shaping of damage free surfaces

    Science.gov (United States)

    Carr,; Jeffrey, W [Livermore, CA

    2009-03-31

    Fabrication apparatus and methods are disclosed for shaping and finishing difficult materials with no subsurface damage. The apparatus and methods use an atmospheric pressure mixed gas plasma discharge as a sub-aperture polisher of, for example, fused silica and single crystal silicon, silicon carbide and other materials. In one example, workpiece material is removed at the atomic level through reaction with fluorine atoms. In this example, these reactive species are produced by a noble gas plasma from trace constituent fluorocarbons or other fluorine containing gases added to the host argon matrix. The products of the reaction are gas phase compounds that flow from the surface of the workpiece, exposing fresh material to the etchant without condensation and redeposition on the newly created surface. The discharge provides a stable and predictable distribution of reactive species permitting the generation of a predetermined surface by translating the plasma across the workpiece along a calculated path.

  2. Initial evaluation and comparison of plasma damage to atomic layer carbon materials using conventional and low T{sub e} plasma sources

    Energy Technology Data Exchange (ETDEWEB)

    Jagtiani, Ashish V.; Miyazoe, Hiroyuki; Chang, Josephine; Farmer, Damon B.; Engel, Michael; Neumayer, Deborah; Han, Shu-Jen; Engelmann, Sebastian U., E-mail: suengelm@us.ibm.com; Joseph, Eric A. [IBM, T. J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Boris, David R.; Hernández, Sandra C.; Walton, Scott G. [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (United States); Lock, Evgeniya H. [Materials Science and Technology Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2016-01-15

    The ability to achieve atomic layer precision is the utmost goal in the implementation of atomic layer etch technology. Carbon-based materials such as carbon nanotubes (CNTs) and graphene are single atomic layers of carbon with unique properties and, as such, represent the ultimate candidates to study the ability to process with atomic layer precision and assess impact of plasma damage to atomic layer materials. In this work, the authors use these materials to evaluate the atomic layer processing capabilities of electron beam generated plasmas. First, the authors evaluate damage to semiconducting CNTs when exposed to beam-generated plasmas and compare these results against the results using typical plasma used in semiconductor processing. The authors find that the beam generated plasma resulted in significantly lower current degradation in comparison to typical plasmas. Next, the authors evaluated the use of electron beam generated plasmas to process graphene-based devices by functionalizing graphene with fluorine, nitrogen, or oxygen to facilitate atomic layer deposition (ALD). The authors found that all adsorbed species resulted in successful ALD with varying impact on the transconductance of the graphene. Furthermore, the authors compare the ability of both beam generated plasma as well as a conventional low ion energy inductively coupled plasma (ICP) to remove silicon nitride (SiN) deposited on top of the graphene films. Our results indicate that, while both systems can remove SiN, an increase in the D/G ratio from 0.08 for unprocessed graphene to 0.22 to 0.26 for the beam generated plasma, while the ICP yielded values from 0.52 to 1.78. Generally, while some plasma-induced damage was seen for both plasma sources, a much wider process window as well as far less damage to CNTs and graphene was observed when using electron beam generated plasmas.

  3. Reduction of etching damage in lead-zirconate-titanate thin films with inductively coupled plasma

    International Nuclear Information System (INIS)

    Lim, Kyu-Tae; Kim, Kyoung-Tae; Kim, Dong-Pyo; Kim, Chang-Il

    2003-01-01

    In this work, we etched lead-zirconate-titanate (PZT) films with various additive gases (O 2 and Ar) in Cl 2 /CF 4 plasmas, while mixing ratio was fixed at 8/2. After the etching, the plasma induced damages are characterized in terms of hysteresis curves, leakage current, retention properties, and switching polarization. When the electrical properties of PZT etched in O 2 or Ar added to Cl 2 /CF 4 were compared, the value of remanent polarization in O 2 added to Cl 2 /CF 4 plasma is higher than that in Ar added plasma. The maximum etch rate of the PZT thin films was 145 nm/min for 30% Ar added Cl 2 /CF 4 gas having mixing ratio of 8/2 and 110 nm/min for 10% O 2 added to that same gas mixture. In order to recover the ferroelectric properties of the PZT thin films after etching, we annealed the etched PZT thin films at 550 deg. C in an O 2 atmosphere for 10 min. From the hysteresis curves, leakage current, retention property, and switching polarization, the reduction of the etching damage and the recovery via the annealing turned out to be more effective when O 2 was added to Cl 2 /CF 4 than Ar. X-ray diffraction showed that the structural damage was lower when O 2 was added to Cl 2 /CF 4 and the improvement in the ferroelectric properties of the annealed samples was consistent with the increased intensities of the (100) and the (200) PZT peaks

  4. Daily grape juice consumption reduces oxidative DNA damage and plasma free radical levels in healthy Koreans

    International Nuclear Information System (INIS)

    Park, Yoo Kyoung; Park, Eunju; Kim, Jung-Shin; Kang, Myung-Hee

    2003-01-01

    Grape contains flavonoids with antioxidant properties which are believed to be protective against various types of cancer. This antioxidative protection is possibly provided by the effective scavenging of reactive oxygen species (ROS), thus defending cellular DNA from oxidative damage and potential mutations. This study of healthy adults tested whether a daily regimen of grape juice supplementation could reduce cellular DNA damage in peripheral lymphocytes and reduce the amount of free radicals released. Sixty-seven healthy volunteers (16 women and 51 men) aged 19-57 years were given 480 ml of grape juice daily for 8 weeks in addition to their normal diet, and blood samples were drawn before and after the intervention. The DNA damage was determined by using the single cell gel (comet) assay with alkaline electrophoresis and was quantified by measuring tail length (TL). Levels of free radicals were determined by reading the lucigenin-perborate ROS generating source, using the Ultra-Weak Chemiluminescence Analyzer System. Grape juice consumption resulted in a significant decrease in lymphocyte DNA damage expressed by TL (before supplementation: 88.75±1.55 μm versus after supplementation: 70.25±1.31 μm; P=0.000 by paired t-test). Additionally, grape juice consumption for 8 weeks reduced the ROS/photon count by 15%, compared to the beginning of the study. The preventive effect of grape juice against DNA damage was simultaneously shown in both sexes. These results indicate that the consumption of grape juice may increase plasma antioxidant capacity, resulting in reduced DNA damage in peripheral lymphocytes achieved at least partially by a reduced release of ROS. Our findings support the hypothesis that polyphenolic compounds contained in grape juice exert cancer-protective effects on lymphocytes, limiting oxidative DNA damage possibly via a decrease in free radical levels

  5. Daily grape juice consumption reduces oxidative DNA damage and plasma free radical levels in healthy Koreans

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yoo Kyoung; Park, Eunju; Kim, Jung-Shin; Kang, Myung-Hee

    2003-08-28

    Grape contains flavonoids with antioxidant properties which are believed to be protective against various types of cancer. This antioxidative protection is possibly provided by the effective scavenging of reactive oxygen species (ROS), thus defending cellular DNA from oxidative damage and potential mutations. This study of healthy adults tested whether a daily regimen of grape juice supplementation could reduce cellular DNA damage in peripheral lymphocytes and reduce the amount of free radicals released. Sixty-seven healthy volunteers (16 women and 51 men) aged 19-57 years were given 480 ml of grape juice daily for 8 weeks in addition to their normal diet, and blood samples were drawn before and after the intervention. The DNA damage was determined by using the single cell gel (comet) assay with alkaline electrophoresis and was quantified by measuring tail length (TL). Levels of free radicals were determined by reading the lucigenin-perborate ROS generating source, using the Ultra-Weak Chemiluminescence Analyzer System. Grape juice consumption resulted in a significant decrease in lymphocyte DNA damage expressed by TL (before supplementation: 88.75{+-}1.55 {mu}m versus after supplementation: 70.25{+-}1.31 {mu}m; P=0.000 by paired t-test). Additionally, grape juice consumption for 8 weeks reduced the ROS/photon count by 15%, compared to the beginning of the study. The preventive effect of grape juice against DNA damage was simultaneously shown in both sexes. These results indicate that the consumption of grape juice may increase plasma antioxidant capacity, resulting in reduced DNA damage in peripheral lymphocytes achieved at least partially by a reduced release of ROS. Our findings support the hypothesis that polyphenolic compounds contained in grape juice exert cancer-protective effects on lymphocytes, limiting oxidative DNA damage possibly via a decrease in free radical levels.

  6. Effect of ultraviolet curing wavelength on low-k dielectric material properties and plasma damage resistance

    Energy Technology Data Exchange (ETDEWEB)

    Marsik, Premysl, E-mail: marsik@physics.muni.c [UFKL, Masaryk University, Kotlarska 2, 61137 Brno (Czech Republic); IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Urbanowicz, Adam M. [UFKL, Masaryk University, Kotlarska 2, 61137 Brno (Czech Republic); Verdonck, Patrick [IMEC, Kapeldreef 75, 3001 Leuven (Belgium); De Roest, David; Sprey, Hessel [ASM Belgium, Kapeldreef 75, 3001 Leuven (Belgium); Baklanov, Mikhail R. [IMEC, Kapeldreef 75, 3001 Leuven (Belgium)

    2011-03-31

    A set of SiCOH low dielectric constant films (low-k) has been deposited by plasma enhanced chemical vapor deposition using variable flow rates of the porogen (sacrificial phase) and matrix precursors. During the deposition, two different substrate temperatures and radio frequency power settings were applied. Next, the deposited films were cured by the UV assisted annealing (UV-cure) using two industrial UV light sources: a monochromatic UV source with intensity maximum at {lambda} = 172 nm (lamp A) and a broadband UV source with intensity spectrum distributed below 200 nm (lamp B). This set of various low-k films has been additionally exposed to NH{sub 3} plasma (used for the CuO{sub x} reduction during Cu/low-k integration) in order to evaluate the effect of the film preparation conditions on the plasma damage resistance of low-k material. Results show that the choice of the UV-curing light source has significant impact on the chemical composition of the low-k material and modifies the porogen removal efficiency and subsequently the material porosity. The 172 nm photons from lamp A induce greater changes to most of the evaluated properties, particularly causing undesired removal of Si-CH{sub 3} groups and their replacement with Si-H. The softer broadband radiation from lamp B improves the porogen removal efficiency, leaving less porogen residues detected by spectroscopic ellipsometry in UV range. Furthermore, it was found that the degree of bulk hydrophilization (plasma damage) after NH{sub 3} plasma exposure is driven mainly by the film porosity.

  7. A New Experimental Approach to Evaluate Plasma-induced Damage in Microcantilever

    Directory of Open Access Journals (Sweden)

    Yuki Nishimori

    2013-09-01

    Full Text Available Plasma  etching,  during  micro-fabrication  processing  is  indispensable  for  fabricating  MEMS  structures.  During  the plasma  processes,  two  major matters,  charged  ions  and  vacuum–ultraviolet  (VUV  irradiation  damage,  take  charge  of reliability  degradation.  The  charged  ions  induce  unwanted  sidewall  etching,  generally  called  as  “notching”,  which causes  degradation  in  brittle  strength.  Furthermore,  the  VUV  irradiation  gives  rise  to  crystal  defects  on  the  etching surface.  To overcome  the  problem,  neutral  beam  etching  (NBE,  which  use  neutral  particles  without  the  VUV irradiation,  has  been  developed.  In  order  to  evaluate  the  effect  of  the  NBE  quantitatively,  we  measured  the  resonance property of a micro-cantilever before and after NBE treatment. The thickness of damage layer (δ times the imaginary part  of  the  complex Young's  modulus  (Eds  were  then  compared,  which  is  a  parameter  of  surface  damage.  Although plasma processes  make the initial surface of cantilevers damaged during their fabrication, the removal of that damage by NBE was confirmed as the reduction in δEds. NBE will realize a damage-free surface for microstructures.

  8. Ion-induced crystal damage during plasma-assisted MBE growth of GaN layers

    Science.gov (United States)

    Kirchner, V.; Heinke, H.; Birkle, U.; Einfeldt, S.; Hommel, D.; Selke, H.; Ryder, P. L.

    1998-12-01

    Gallium nitride layers were grown by plasma-assisted molecular-beam epitaxy on (0001)-oriented sapphire substrates using an electron cyclotron resonance (ECR) and a radio frequency (rf) plasma source. An applied substrate bias was varied from -200 to +250 V, resulting in a change of the density and energy of nitrogen ions impinging the growth surface. The layers were investigated by high-resolution x-ray diffractometry and high-resolution transmission electron microscopy (HRTEM). Applying a negative bias during growth has a marked detrimental effect on the crystal perfection of the layers grown with an ECR plasma source. This is indicated by a change in shape and width of (0002) and (202¯5) reciprocal lattice points as monitored by triple axis x-ray measurements. In HRTEM images, isolated basal plane stacking faults were found, which probably result from precipitation of interstitial atoms. The crystal damage in layers grown with a highly negative substrate bias is comparable to that observed for ion implantation processes at orders of magnitude larger ion energies. This is attributed to the impact of ions on the growing surface. None of the described phenomena was observed for the samples grown with the rf plasma source.

  9. Characterization of plasma etching damage on p-type GaN using Schottky diodes

    International Nuclear Information System (INIS)

    Kato, M.; Mikamo, K.; Ichimura, M.; Kanechika, M.; Ishiguro, O.; Kachi, T.

    2008-01-01

    The plasma etching damage in p-type GaN has been characterized. From current-voltage and capacitance-voltage characteristics of Schottky diodes, it was revealed that inductively coupled plasma (ICP) etching causes an increase in series resistance of the Schottky diodes and compensation of acceptors in p-type GaN. We investigated deep levels near the valence band of p-type GaN using current deep level transient spectroscopy (DLTS), and no deep level originating from the ICP etching damage was observed. On the other hand, by capacitance DLTS measurements for n-type GaN, we observed an increase in concentration of a donor-type defect with an activation energy of 0.25 eV after the ICP etching. The origin of this defect would be due to nitrogen vacancies. We also observed this defect by photocapacitance measurements for ICP-etched p-type GaN. For both n- and p-type GaN, we found that the low bias power ICP etching is effective to reduce the concentration of this defect introduced by the high bias power ICP etching

  10. Elevated Plasma Cardiac Troponin T Levels Caused by Skeletal Muscle Damage in Pompe Disease.

    Science.gov (United States)

    Wens, Stephan C A; Schaaf, Gerben J; Michels, Michelle; Kruijshaar, Michelle E; van Gestel, Tom J M; In 't Groen, Stijn; Pijnenburg, Joon; Dekkers, Dick H W; Demmers, Jeroen A A; Verdijk, Lex B; Brusse, Esther; van Schaik, Ron H N; van der Ploeg, Ans T; van Doorn, Pieter A; Pijnappel, W W M Pim

    2016-02-01

    Elevated plasma cardiac troponin T (cTnT) levels in patients with neuromuscular disorders may erroneously lead to the diagnosis of acute myocardial infarction or myocardial injury. In 122 patients with Pompe disease, the relationship between cTnT, cardiac troponin I, creatine kinase (CK), CK-myocardial band levels, and skeletal muscle damage was assessed. ECG and echocardiography were used to evaluate possible cardiac disease. Patients were divided into classic infantile, childhood-onset, and adult-onset patients. cTnT levels were elevated in 82% of patients (median 27 ng/L, normal values normal in all patients, whereas CK-myocardial band levels were increased in 59% of patients. cTnT levels correlated with CK levels in all 3 subgroups (Pmass index measured with echocardiography was normal in all the 3 subgroups. cTnT mRNA expression in skeletal muscle was not detectable in controls but was strongly induced in patients with Pompe disease. cTnT protein was identified by mass spectrometry in patient-derived skeletal muscle tissue. Elevated plasma cTnT levels in patients with Pompe disease are associated with skeletal muscle damage, rather than acute myocardial injury. Increased cTnT levels in Pompe disease and likely other neuromuscular disorders should be interpreted with caution to avoid unnecessary cardiac interventions. © 2016 American Heart Association, Inc.

  11. Simulation of damage to tokamaks plasma facing components during intense abnormal power deposition

    International Nuclear Information System (INIS)

    Genco, F.; Hassanein, A.

    2014-01-01

    Highlights: • HEIGHTS-PIC a new technique based on particle in cell method to study disruptions events, ELMS and VDE is benchmarked in this paper with the use of the MK-200 experiments. • Disruptions simulations results for erosion and erosion rate are proposed showing good agreement with published experimental available data for such conditions. • Results are also compared with other published results produced by FOREV1/FOREV2 computer package and the original HEIGHTS computer package. • Accuracy of the simulations results is proposed with specific aim to address the use of number of super particles adopted versus computational time. - Abstract: Intense power deposition on plasma facing components (PFC) is expected in tokamaks during loss of confinement events such as disruptions, vertical displacement events (VDE), runaway electrons (RE), or during normal operating conditions such as edge-localized modes (ELM). These highly energetic events are damaging enough to hinder long term operation and may not be easily mitigated without loss of structural or functional performance of the PFC. Surface erosion, melted/ablated-vaporized material splashing, and material transport into the bulk plasma are reliability-threatening for the machine and system performance. A novel particle-in-cell (PIC) technique has been developed and integrated into the existing HEIGHTS package in order to obtain a global view of the plasma evolution upon energy impingement. This newly developed PIC technique is benchmarked against plasma gun experimental data, the original HEIGHTS computer package, and laser experiments. Benchmarking results are shown in this paper for various relevant reactor and experimental devices. The evolution of the plasma vapor cloud is followed temporally and results are explained and commented as a function of the computational time needed and the accuracy of the calculation

  12. High-density plasma etching of III-nitrides: Process development, device applications and damage remediation

    Science.gov (United States)

    Singh, Rajwinder

    Plasma-assisted etching is a key technology for III-nitride device fabrication. The inevitable etch damage resulting from energetic pattern transfer is a challenge that needs to be addressed in order to optimize device performance and reliability. This dissertation focuses on the development of a high-density inductively-coupled plasma (ICP) etch process for III-nitrides, the demonstration of its applicability to practical device fabrication using a custom built ICP reactor, and development of techniques for remediation of etch damage. A chlorine-based standard dry etch process has been developed and utilized in fabrication of a number of electronic and optoelectronic III-nitride devices. Annealing studies carried out at 700°C have yielded the important insight that the annealing time necessary for making good-quality metal contacts to etch processed n-GaN is very short (water, prior to metallization, removes some of the etch damage and is helpful in recovering contact quality. In-situ treatment consisting of a slow ramp-down of rf bias at the end of the etch is found to achieve the same effect as the ex-situ treatment. This insitu technique is significantly advantageous in a large-scale production environment because it eliminates a process step, particularly one involving treatment in hydrochloric acid. ICP equipment customization for scaling up the process to full 2-inch wafer size is described. Results on etching of state of the art 256 x 256 AlGaN focal plane arrays of ultraviolet photodetectors are reported, with excellent etch uniformity over the wafer area.

  13. CFC/Cu bond damage in actively cooled plasma facing components

    International Nuclear Information System (INIS)

    Schlosser, J; Martin, E; Henninger, C; Boscary, J; Camus, G; Escourbiac, F; Leguillon, D; Missirlian, M; Mitteau, R

    2007-01-01

    Carbon fibre composite (CFC) armours have been successfully used for actively cooled plasma facing components (PFCs) of the Tore Supra (TS) tokamak. They were also selected for the divertor of the stellarator W7-X under construction and for the vertical target of the ITER divertor. In TS and W7-X a flat tile design for heat fluxes of 10 MW m -2 has been chosen. To predict the lifetime of such PFCs, it is necessary to analyse the damage mechanisms and to model the damage propagation when the component is exposed to thermal cycling loads. Work has been performed to identify a constitutive law for the CFC and parameters to model crack propagation from the edge singularity. The aim is to predict damage rates and to propose geometric or material improvements to increase the strength and the lifetime of the interfacial bond. For ITER a tube-in-tile concept (monoblock), designed to sustain heat fluxes up to 20 MW m -2 , has been developed. The optimization of the CFC/Cu bond, proposed for flat tiles, could be adopted for the monoblock concept

  14. Effect of low-damage inductively coupled plasma on shallow nitrogen-vacancy centers in diamond

    Energy Technology Data Exchange (ETDEWEB)

    Fávaro de Oliveira, Felipe; Momenzadeh, S. Ali; Wang, Ya; Denisenko, Andrej, E-mail: a.denisenko@physik.uni-stuttgart.de [3. Institute of Physics, Research Center SCoPE and IQST, University of Stuttgart, 70569 Stuttgart (Germany); Konuma, Mitsuharu [Max Planck Institute for Solid State Research, 70569 Stuttgart (Germany); Markham, Matthew; Edmonds, Andrew M. [Element Six Innovation, Harwell Oxford, Didcot, Oxfordshire OX11 0QR (United Kingdom); Wrachtrup, Jörg [3. Institute of Physics, Research Center SCoPE and IQST, University of Stuttgart, 70569 Stuttgart (Germany); Max Planck Institute for Solid State Research, 70569 Stuttgart (Germany)

    2015-08-17

    Near-surface nitrogen-vacancy (NV) centers in diamond have been successfully employed as atomic-sized magnetic field sensors for external spins over the last years. A key challenge is still to develop a method to bring NV centers at nanometer proximity to the diamond surface while preserving their optical and spin properties. To that aim we present a method of controlled diamond etching with nanometric precision using an oxygen inductively coupled plasma process. Importantly, no traces of plasma-induced damages to the etched surface could be detected by X-ray photoelectron spectroscopy and confocal photoluminescence microscopy techniques. In addition, by profiling the depth of NV centers created by 5.0 keV of nitrogen implantation energy, no plasma-induced quenching in their fluorescence could be observed. Moreover, the developed etching process allowed even the channeling tail in their depth distribution to be resolved. Furthermore, treating a {sup 12}C isotopically purified diamond revealed a threefold increase in T{sub 2} times for NV centers with <4 nm of depth (measured by nuclear magnetic resonance signal from protons at the diamond surface) in comparison to the initial oxygen-terminated surface.

  15. Characterization of thermomechanical damage on tungsten surfaces during long-duration plasma transients

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, David, E-mail: david.rivera.ucla@gmail.com; Crosby, Tamer; Sheng, Andrew; Ghoniem, Nasr M.

    2014-12-15

    A new experimental facility constructed at UCLA for the simulation of high heat flux effects on plasma-facing materials is described. The High Energy Flux Test Facility (HEFTY) is equipped with a Praxair model SG-100 plasma gun, which is nominally rated at 80 kW of continuous operation, of which approximately 30 kW reaches the target due to thermal losses. The gun is used to impart high intermittent heat flux to metal samples mounted within a cylindrical chamber. The system is capable of delivering an instantaneous heat flux in the range of 30–300 MW/m{sup 2}, depending on sample proximity to the gun. The duration of the plasma heat flux is in the range of 1–1000 s, making it ideal for studies of mild plasma transients of relatively long duration. Tungsten and tungsten-copper alloy metal samples are tested in these transient heat flux conditions, and the surface is characterized for damage evaluation using optical, SEM, XRD, and micro-fabrication techniques. Results from a Finite Element (FE) thermo-elastoplasticity model indicate that during the heat-up phase of a plasma transient pulse, the majority of the sample surface is under compressive stresses leading to plastic deformation of the surface. Upon sample cooling, the recovered elastic strain of cooler parts of the sample exceeds that from parts that deformed plastically, resulting in a tensile surface self-stress (residual surface stress). The intensity of the residual tensile surface stress is experimentally correlated with the onset of complex surface fracture morphology on the tungsten surface, and extending below the surface region. Micro-compression mechanical tests of W micro-pillars show that the material has significant plasticity, failing by a “barreling” mode before plasma exposure, and by normal dislocation slip and localized shear after plasma exposure. Ongoing modeling of the complex thermo-fracture process, coupled with elasto-plasticity is based on a phase field approach for distributed

  16. Prediction of UV spectra and UV-radiation damage in actual plasma etching processes using on-wafer monitoring technique

    International Nuclear Information System (INIS)

    Jinnai, Butsurin; Fukuda, Seiichi; Ohtake, Hiroto; Samukawa, Seiji

    2010-01-01

    UV radiation during plasma processing affects the surface of materials. Nevertheless, the interaction of UV photons with surface is not clearly understood because of the difficulty in monitoring photons during plasma processing. For this purpose, we have previously proposed an on-wafer monitoring technique for UV photons. For this study, using the combination of this on-wafer monitoring technique and a neural network, we established a relationship between the data obtained from the on-wafer monitoring technique and UV spectra. Also, we obtained absolute intensities of UV radiation by calibrating arbitrary units of UV intensity with a 126 nm excimer lamp. As a result, UV spectra and their absolute intensities could be predicted with the on-wafer monitoring. Furthermore, we developed a prediction system with the on-wafer monitoring technique to simulate UV-radiation damage in dielectric films during plasma etching. UV-induced damage in SiOC films was predicted in this study. Our prediction results of damage in SiOC films shows that UV spectra and their absolute intensities are the key cause of damage in SiOC films. In addition, UV-radiation damage in SiOC films strongly depends on the geometry of the etching structure. The on-wafer monitoring technique should be useful in understanding the interaction of UV radiation with surface and in optimizing plasma processing by controlling UV radiation.

  17. Characterization and damaging law of CFC for high heat flux actively cooled plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Chevet, G., E-mail: gaelle.chevet@cea.fr [Association EURATOM-CEA, DSM/IRFM, CEA Cadarache, F-13108 Saint Paul lez Durance (France); Martin, E., E-mail: martin@lcts.u-bordeaux1.fr [LCTS, CNRS UMR 5801, Universite Bordeaux 1, Bordeaux (France); Boscary, J., E-mail: jean.boscary@ipp.mpg.de [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, 85748 Garching (Germany); Camus, G., E-mail: camus@lcts.u-bordeaux1.fr [LCTS, CNRS UMR 5801, Universite Bordeaux 1, Bordeaux (France); Herb, V., E-mail: herb@lcts.u-bordeaux1.fr [LCTS, CNRS UMR 5801, Universite Bordeaux 1, Bordeaux (France); Schlosser, J., E-mail: jacques.schlosser@cea.fr [Association EURATOM-CEA, DSM/IRFM, CEA Cadarache, F-13108 Saint Paul lez Durance (France); Escourbiac, F., E-mail: frederic.escourbiac@cea.fr [Association EURATOM-CEA, DSM/IRFM, CEA Cadarache, F-13108 Saint Paul lez Durance (France); Missirlian, M., E-mail: marc.missirlian@cea.fr [Association EURATOM-CEA, DSM/IRFM, CEA Cadarache, F-13108 Saint Paul lez Durance (France)

    2011-10-01

    The carbon fiber reinforced carbon composite (CFC) Sepcarb N11 has been used in the Tore Supra (TS) tokamak (Cadarache, France) as armour material for the plasma facing components. For the fabrication of the Wendelstein 7-X (W7-X) divertor (Greifswald, Germany), the NB31 material was chosen. For the fabrication of the ITER divertor, two potential CFC candidates are the NB31 and NB41 materials. In the case of Tore Supra, defects such as microcracks or debonding were found at the interface between CFC tile and copper heat sink. A mechanical characterization of the behaviour of N11 and NB31 was undertaken, allowing the identification of a damage model and finite element calculations both for flat tiles (TS and W7-X) and monoblock (ITER) armours. The mechanical responses of these CFC materials were found almost linear under on-axis tensile tests but highly nonlinear under shear tests or off-axis tensile tests. As a consequence, damage develops within the high shear-stress zones.

  18. Characterization and damaging law of CFC for high heat flux actively cooled plasma facing components

    International Nuclear Information System (INIS)

    Chevet, G.; Martin, E.; Boscary, J.; Camus, G.; Herb, V.; Schlosser, J.; Escourbiac, F.; Missirlian, M.

    2011-01-01

    The carbon fiber reinforced carbon composite (CFC) Sepcarb N11 has been used in the Tore Supra (TS) tokamak (Cadarache, France) as armour material for the plasma facing components. For the fabrication of the Wendelstein 7-X (W7-X) divertor (Greifswald, Germany), the NB31 material was chosen. For the fabrication of the ITER divertor, two potential CFC candidates are the NB31 and NB41 materials. In the case of Tore Supra, defects such as microcracks or debonding were found at the interface between CFC tile and copper heat sink. A mechanical characterization of the behaviour of N11 and NB31 was undertaken, allowing the identification of a damage model and finite element calculations both for flat tiles (TS and W7-X) and monoblock (ITER) armours. The mechanical responses of these CFC materials were found almost linear under on-axis tensile tests but highly nonlinear under shear tests or off-axis tensile tests. As a consequence, damage develops within the high shear-stress zones.

  19. Screening of large panel of gastrointestinal peptide plasma levels is not adapted for the evaluation of digestive damage following irradiation

    International Nuclear Information System (INIS)

    Dublineau, I.; Dudoignon, N.; Monti, P.; Combes, O.; Wysocki, J.; Grison, S.; Baudelin, C.; Griffiths, N.M.; Scanff, P.

    2004-01-01

    The aim of this study was to assess the potential of gastrointestinal peptide plasma levels as biomarkers of radiation-induced digestive tract damage. To this end, plasma levels of substance P, GRP, motilin, PYY, somatostatin-28, gastrin, and neurotensin were followed for up to 5 days in pigs after a 16-Gy whole-body X-irradiation, completed by a histopathological study performed at 5 days. Each peptide gave a specific response to irradiation. The plasma levels of GRP and substance P were not modified by irradiation exposure; neither were those of motilin and PYY. Concerning gastrin, a 2-3-fold increase of plasma concentration was observed in pig, which presented the most important histological alterations of the stomach. The plasma levels of somatostatin, unchanged from 1 to 4 days after irradiation, was also increased by 130% at 5 days. In contrast, a diminution of neurotensin plasma levels was noted, firstly at 1 day (-88%), and from 3 days after exposure (-50%). The present study suggested that changes in gastrin and neurotensin plasma levels were associated with structural alterations of the stomach and ileum, respectively, indicating that they may be relevant biological indicators of radiation-induced digestive damage to these segments. (author)

  20. Formation of plasma induced surface damage in silica glass etching for optical waveguides

    International Nuclear Information System (INIS)

    Choi, D.Y.; Lee, J.H.; Kim, D.S.; Jung, S.T.

    2004-01-01

    Ge, B, P-doped silica glass films are widely used as optical waveguides because of their low losses and inherent compatibility with silica optical fibers. These films were etched by ICP (inductively coupled plasma) with chrome etch masks, which were patterned by reactive ion etching (RIE) using chlorine-based gases. In some cases, the etched surfaces of silica glass were very rough (root-mean square roughness greater than 100 nm) and we call this phenomenon plasma induced surface damage (PISD). Rough surface cannot be used as a platform for hybrid integration because of difficulty in alignment and bonding of active devices. PISD reduces the etch rate of glass and it is very difficult to remove residues on a rough surface. The objective of this study is to elucidate the mechanism of PISD formation. To achieve this goal, PISD formation during different etching conditions of chrome etch mask and silica glass was investigated. In most cases, PISD sources are formed on a glass surface after chrome etching, and metal compounds are identified in theses sources. Water rinse after chrome etching reduces the PISD, due to the water solubility of metal chlorides. PISD is decreased or even disappeared at high power and/or low pressure in glass etching, even if PISD sources were present on the glass surface before etching. In conclusion, PISD sources come from the chrome etching process, and polymer deposition on these sources during the silica etching cause the PISD sources to grow. In the area close to the PISD source there is a higher ion flux, which causes an increase in the etch rate, and results in the formation of a pit

  1. Damage prediction of carbon fibre composite armoured actively cooled plasma-facing components under cycling heat loads

    International Nuclear Information System (INIS)

    Chevet, G; Schlosser, J; Courtois, X; Escourbiac, F; Missirlian, M; Herb, V; Martin, E; Camus, G; Braccini, M

    2009-01-01

    In order to predict the lifetime of carbon fibre composite (CFC) armoured plasma-facing components in magnetic fusion devices, it is necessary to analyse the damage mechanisms and to model the damage propagation under cycling heat loads. At Tore Supra studies have been launched to better understand the damage process of the armoured flat tile elements of the actively cooled toroidal pump limiter, leading to the characterization of the damageable mechanical behaviour of the used N11 CFC material and of the CFC/Cu bond. Up until now the calculations have shown damage developing in the CFC (within the zone submitted to high shear stress) and in the bond (from the free edge of the CFC/Cu interface). Damage is due to manufacturing shear stresses and does not evolve under heat due to stress relaxation. For the ITER divertor, NB31 material has been characterized and the characterization of NB41 is in progress. Finite element calculations show again the development of CFC damage in the high shear stress zones after manufacturing. Stresses also decrease under heat flux so the damage does not evolve. The characterization of the CFC/Cu bond is more complex due to the monoblock geometry, which leads to more scattered stresses. These calculations allow the fabrication difficulties to be better understood and will help to analyse future high heat flux tests on various mock-ups.

  2. Damage to Preheated Tungsten Targets after Multiple Plasma Impacts Simulating ITER ELMs

    Energy Technology Data Exchange (ETDEWEB)

    Garkusha, I.E.; Bandura, A.N.; Byrka, O.V.; Chebotarev, V.V.; Makhlay, V.A.; Tereshin, V.I. [Kharkov Inst. of Physics and Technology, Inst. of Plasma Physics of National Science Center, Akademicheskaya street, 1, 61108 Kharkov (Ukraine); Landman, I.; Pestchanyi, S. [FZK-Forschungszentrum Karlsruhe, Association Euratom-FZK, Technik und Umwelt, Postfach 3640, D-7602 1 Karlsruhe (Germany)

    2007-07-01

    Full text of publication follows: The energy loads onto ITER divertor surfaces associated with the Type I ELMs are expected to be up to 1 MJ/m{sup 2} during 0.1-0.5 ms, with the number of pulses about 103 per discharge. Tungsten is a candidate material for major part of the surface, but its brittleness can result in substantial macroscopic erosion after the repetitive heat loads. To minimize the brittle destruction, tungsten may be preheated above the ductile-to-brittle transition temperature. In this work the behavior of preheated tungsten targets under repetitive ELM-like plasma pulses is studied in simulation experiments with the quasi-stationary plasma accelerator QSPA Kh-50. The targets have been exposed up to 450 pulses of the duration 0.25 ms and the heat loads either 0.45 MJ/m{sup 2} or 0.75 MJ/m{sup 2}, which is respectively below and above the melting threshold. During the exposures the targets were permanently kept preheated at 650 deg. C by a heater at target backside. In the course of exposures the irradiated surfaces were examined after regular numbers of pulses using the SEM and the optical microscopy. The profilometry, XRD, microhardness and weight loss measurements have been performed, as well as comparisons of surface damages after the heat loads both below and above the melting threshold. It is obtained that macro-cracks do not develop on the preheated surface. After the impacts with surface melting, a fine mesh of intergranular microcracks has appeared. The width of fine intergranular cracks grows with pulse number, achieving 1-1.5 microns after 100 pulses, and after 210 pulses the crack width increases up to 20 microns, which is comparable with grain sizes. Threshold changes in surface morphology resulting in corrugation structures and pits on the surface as well as importance of surface tension in resulted 'micro-brush' structures are discussed. Further evolution of the surface pattern is caused by loss of separated grains on exposed

  3. Targeting Ongoing DNA Damage in Multiple Myeloma: Effects of DNA Damage Response Inhibitors on Plasma Cell Survival

    Directory of Open Access Journals (Sweden)

    Ana Belén Herrero

    2017-05-01

    Full Text Available Human myeloma cell lines (HMCLs and a subset of myeloma patients with poor prognosis exhibit high levels of replication stress (RS, leading to DNA damage. In this study, we confirmed the presence of DNA double-strand breaks (DSBs in several HMCLs by measuring γH2AX and RAD51 foci and analyzed the effect of various inhibitors of the DNA damage response on MM cell survival. Inhibition of ataxia telangiectasia and Rad3-related protein (ATR, the main kinase mediating the response to RS, using the specific inhibitor VE-821 induced more cell death in HMCLs than in control lymphoblastoid cells and U266, an HMCL with a low level of DNA damage. The absence of ATR was partially compensated by ataxia telangiectasia-mutated protein (ATM, since chemical inhibition of both kinases using VE-821 and KU-55933 significantly increased the death of MM cells with DNA damage. We found that ATM and ATR are involved in DSB repair by homologous recombination (HR in MM. Inhibition of both kinases resulted in a stronger inhibition that may underlie cell death induction, since abolition of HR using two different inhibitors severely reduced survival of HMCLs that exhibit DNA damage. On the other hand, inhibition of the other route involved in DSB repair, non-homologous end joining (NHEJ, using the DNA-PK inhibitor NU7441, did not affect MM cell viability. Interestingly, we found that NHEJ inhibition did not increase cell death when HR was simultaneously inhibited with the RAD51 inhibitor B02, but it clearly increased the level of cell death when HR was inhibited with the MRE11 inhibitor mirin, which interferes with recombination before DNA resection takes place. Taken together, our results demonstrate for the first time that MM cells with ongoing DNA damage rely on an intact HR pathway, which thereby suggests therapeutic opportunities. We also show that inhibition of HR after the initial step of end resection might be more appropriate for inducing MM cell death, since it

  4. Low Damage, High Anisotropy Inductively Coupled Plasma for Gallium Nitride based Devices

    KAUST Repository

    Ibrahim, Youssef H.

    2013-05-27

    Group III-nitride semiconductors possess unique properties, which make them versatile materials for suiting many applications. Structuring vertical and exceptionally smooth GaN profiles is crucial for efficient optical device operation. The processing requirements for laser devices and ridge waveguides are stringent as compared to LEDs and other electronic devices. Due to the strong bonding and chemically inert nature of GaN, dry etching becomes a critical fabrication step. The surface morphology and facet etch angle are analyzed using SEM and AFM measurements. The influence of different mask materials is also studied including Ni as well as a SiO2 and resist bilayer. The high selectivity Ni Mask is found to produce high sidewall angles ~79°. Processing parameters are optimized for both the mask material and GaN in order to achieve a highly anisotropic, smooth profile, without resorting to additional surface treatment steps. An optimizing a SF6/O2 plasma etch process resulted in smooth SiO2 mask sidewalls. The etch rate and GaN surface roughness dependence on the RF power was also examined. Under a low 2mTorr pressure, the RF and ICP power were optimized to 150W and 300W respectively, such that a smooth GaN morphology and sidewalls was achieved with reduced ion damage. The The AFM measurements of the etched GaN surface indicate a low RMS roughness ranging from 4.75 nm to 7.66 nm.

  5. The plasma levels of soluble ST2 as a marker of gut mucosal damage in early HIV infection

    Science.gov (United States)

    Mehraj, Vikram; Jenabian, Mohammad-Ali; Ponte, Rosalie; Lebouché, Bertrand; Costiniuk, Cecilia; Thomas, Réjean; Baril, Jean-Guy; LeBlanc, Roger; Cox, Joseph; Tremblay, Cécile; Routy, Jean-Pierre

    2016-01-01

    Objective: Following tissue barrier breaches, interleukin-33 (IL-33) is released as an ‘alarmin’ to induce inflammation. Soluble suppression of tumorigenicity 2 (sST2), as an IL-33 decoy receptor, contributes to limit inflammation. We assessed the relationship between the IL-33/ST2 axis and markers of gut mucosal damage in patients with early (EHI) and chronic HIV infection (CHI) and elite controllers. Design: Analyses on patients with EHI and CHI were conducted to determine IL-33/sST2 changes over time. Methods: IL-33 and sST2 levels were measured in plasma. Correlations between sST2 levels and plasma viral load, CD4+ and CD8+ T-cell counts, expression of T-cell activation/exhaustion markers, gut mucosal damage, microbial translocation and inflammation markers, as well as kynurenine/tryptophan ratio were assessed. Results: Plasma sST2 levels were elevated in EHI compared with untreated CHI and uninfected controls, whereas IL-33 levels were comparable in all groups. In EHI, sST2 levels were positively correlated with the CD8+ T-cell count and the percentage of T cells expressing activation and exhaustion markers, but not with viral load or CD4+ T-cell count. Plasma sST2 levels also correlated with plasma levels of gut mucosal damage, microbial translocation and kynurenine/tryptophan ratio and for some markers of inflammation. Prospective analyses showed that early antiretroviral therapy had no impact on sST2 levels, whereas longer treatment duration initiated during CHI normalized sST2. Conclusion: As sST2 levels were elevated in EHI and were correlated with CD8+ T-cell count, immune activation, and microbial translocation, sST2 may serve as a marker of disease progression, gut damage and may directly contribute to HIV pathogenesis. PMID:27045377

  6. A study of oxidative stress induced by non-thermal plasma-activated water for bacterial damage

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qian; Ma, Ruonan; Tian, Ying [Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Liang, Yongdong; Feng, Hongqing [College of Engineering, Peking University, Beijing 100871 (China); Zhang, Jue; Fang, Jing [Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); College of Engineering, Peking University, Beijing 100871 (China)

    2013-05-20

    Ar/O{sub 2} (2%) cold plasma microjet was used to create plasma-activated water (PAW). The disinfection efficacy of PAW against Staphylococcus aureus showed that PAW can effectively disinfect bacteria. Optical emission spectra and oxidation reduction potential results demonstrated the inactivation is attributed to oxidative stress induced by reactive oxygen species in PAW. Moreover, the results of X-ray photoelectron spectroscopy, atomic absorption spectrometry, and transmission electron microscopy suggested that the chemical state of cell surface, the integrity of cell membrane, as well as the cell internal components and structure were damaged by the oxidative stress.

  7. A study of oxidative stress induced by non-thermal plasma-activated water for bacterial damage

    International Nuclear Information System (INIS)

    Zhang, Qian; Ma, Ruonan; Tian, Ying; Liang, Yongdong; Feng, Hongqing; Zhang, Jue; Fang, Jing

    2013-01-01

    Ar/O 2 (2%) cold plasma microjet was used to create plasma-activated water (PAW). The disinfection efficacy of PAW against Staphylococcus aureus showed that PAW can effectively disinfect bacteria. Optical emission spectra and oxidation reduction potential results demonstrated the inactivation is attributed to oxidative stress induced by reactive oxygen species in PAW. Moreover, the results of X-ray photoelectron spectroscopy, atomic absorption spectrometry, and transmission electron microscopy suggested that the chemical state of cell surface, the integrity of cell membrane, as well as the cell internal components and structure were damaged by the oxidative stress.

  8. Use of plasma creatine kinase pharmacokinetics to estimate the amount of excercise-induced muscle damage in Beagles.

    Science.gov (United States)

    Chanoit, G P; Lefebvre, H P; Orcel, K; Laroute, V; Toutain, P L; Braun, J P

    2001-09-01

    To assess the effects of moderate exercise on plasma creatine kinase (CK) pharmacokinetics and to estimate exercise-induced muscle damage in dogs. 6 untrained adult Beagles. The study was divided into 3 phases. In phase 1, dogs ran for 1 hour at a speed of 9 km/h, and samples were used to determine the area under the plasma CK activity versus time curve (AUC) induced by exercise. In phases 2 and 3, pharmacokinetics of CK were calculated in dogs during exercise and at rest, respectively. Values for AUC and plasma clearance (CI) were used to estimate muscle damage. At rest, values for Cl, steady-state volume of distribution (Vdss), and mean retention time (MRT) were 0.32+/-0.02 ml/kg of body weight/min, 57+/-173 ml/kg, and 3.0+/-0.57 h, respectively. During exercise, Cl decreased significantly (0.26+/-0.03 ml/kg/min), MRT increased significantly, (4.4+/-0.97 h), and Vdss remained unchanged. Peak of plasma CK activity (151+/-58.8 U/L) was observed 3 hours after completion of exercise. Estimated equivalent amount of muscle corresponding to the quantity of CK released was 41+/-29.3 mg/kg. These results revealed that exercise had a minor effect on CK disposition and that the equivalent amount of muscle damaged by moderate exercise was negligible. This study illustrates the relevance for use of the minimally invasive and quantitative pharmacokinetic approach when estimating muscle damage.

  9. Quantitative evaluation of DNA damage and mutation rate by atmospheric and room-temperature plasma (ARTP) and conventional mutagenesis.

    Science.gov (United States)

    Zhang, Xue; Zhang, Chong; Zhou, Qian-Qian; Zhang, Xiao-Fei; Wang, Li-Yan; Chang, Hai-Bo; Li, He-Ping; Oda, Yoshimitsu; Xing, Xin-Hui

    2015-07-01

    DNA damage is the dominant source of mutation, which is the driving force of evolution. Therefore, it is important to quantitatively analyze the DNA damage caused by different mutagenesis methods, the subsequent mutation rates, and their relationship. Atmospheric and room temperature plasma (ARTP) mutagenesis has been used for the mutation breeding of more than 40 microorganisms. However, ARTP mutagenesis has not been quantitatively compared with conventional mutation methods. In this study, the umu test using a flow-cytometric analysis was developed to quantify the DNA damage in individual viable cells using Salmonella typhimurium NM2009 as the model strain and to determine the mutation rate. The newly developed method was used to evaluate four different mutagenesis systems: a new ARTP tool, ultraviolet radiation, 4-nitroquinoline-1-oxide (4-NQO), and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) mutagenesis. The mutation rate was proportional to the corresponding SOS response induced by DNA damage. ARTP caused greater DNA damage to individual living cells than the other conventional mutagenesis methods, and the mutation rate was also higher. By quantitatively comparing the DNA damage and consequent mutation rate after different types of mutagenesis, we have shown that ARTP is a potentially powerful mutagenesis tool with which to improve the characteristics of microbial cell factories.

  10. Experimental Study of Plasma-Surface Interaction and Material Damage Relevant to ITER Type I Elms

    International Nuclear Information System (INIS)

    Makhlai, V.A.; Bandura, A.N.; Byrka, O.V. and others; Landman, I.; Neklyudov, I.M.

    2006-01-01

    The paper presents experimental investigations of main features of plasma surface interaction and energy transfer to the material surface in dependence on plasma heat loads. The experiments were performed with QSPA repetitive plasma pulses of the duration of 0.25 ms and the energy density up to 2.5 MJ/m 2 . Surface morphology of the targets exposed to QSPA plasma screams is analyzed. Relative contribution of the Lorentz force and plasma pressure gradient to the resulting surface profile is discussed. development of cracking on the tungsten surface and swelling of the surface are found to be in strong dependence on initial temperature of the target

  11. Comparison of tissue damage caused by various laser systems with tissue tolerable plasma by light and laser scan microscopy

    International Nuclear Information System (INIS)

    Vandersee, Staffan; Lademann, Jürgen; Richter, Heike; Patzelt, Alexa; Lange-Asschenfeldt, Bernhard

    2013-01-01

    Tissue tolerable plasma (TTP) represents a novel therapeutic method with promising capabilities in the field of dermatological interventions, in particular disinfection but also wound antisepsis and regeneration. The energy transfer by plasma into living tissue is not easily educible, as a variety of features such as the medium’s actual molecule-stream, the ions, electrons and free radicals involved, as well as the emission of ultraviolet, visible and infrared light contribute to its increasingly well characterized effects. Thus, relating possible adversary effects, especially of prolonged exposure to a single component of the plasma’s mode of action, is difficult. Until now, severe adverse events connected to plasma exposure have not been reported when conducted according to existing therapeutic protocols. In this study, we have compared the tissue damage-potential of CO 2 and dye lasers with TTP in a porcine model. After exposure of pig ear skin to the three treatment modalities, all specimens were examined histologically and by means of laser scan microscopy (LSM). Light microscopical tissue damage could only be shown in the case of the CO 2 laser, whereas dye laser and plasma treatment resulted in no detectable impairment of the specimens. In the case of TTP, LSM examination revealed only an impairment of the uppermost corneal layers of the skin, thus stressing its safety when used in vivo. (letter)

  12. Plasma generated in culture medium induces damages of HeLa cells due to flow phenomena

    Science.gov (United States)

    Sato, Yusuke; Sato, Takehiko; Yoshino, Daisuke

    2018-03-01

    Plasma in a liquid has been anticipated as an effective tool for medical applications, however, few reports have described cellular responses to plasma generated in a liquid similar to biological fluids. Herein we report the effects of plasma generated in a culture medium on HeLa cells. The plasma in the culture medium produced not only heat, shock waves, and reactive chemical species but also a jet flow with sub millimeter-sized bubbles. Cells exposed to the plasma exhibited detachment, morphological changes, and changes in the actin cytoskeletal structure. The experimental results suggest that wall shear stress over 160 Pa was generated on the surface of the cells by the plasma. It is one of the main factors that cause those cellular responses. We believe that our findings would provide valuable insight into advancements in medical applications of plasma in a liquid.

  13. Comparison of gate dielectric plasma damage from plasma-enhanced atomic layer deposited and magnetron sputtered TiN metal gates

    Energy Technology Data Exchange (ETDEWEB)

    Brennan, Christopher J.; Neumann, Christopher M.; Vitale, Steven A., E-mail: steven.vitale@ll.mit.edu [Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02420 (United States)

    2015-07-28

    Fully depleted silicon-on-insulator transistors were fabricated using two different metal gate deposition mechanisms to compare plasma damage effects on gate oxide quality. Devices fabricated with both plasma-enhanced atomic-layer-deposited (PE-ALD) TiN gates and magnetron plasma sputtered TiN gates showed very good electrostatics and short-channel characteristics. However, the gate oxide quality was markedly better for PE-ALD TiN. A significant reduction in interface state density was inferred from capacitance-voltage measurements as well as a 1200× reduction in gate leakage current. A high-power magnetron plasma source produces a much higher energetic ion and vacuum ultra-violet (VUV) photon flux to the wafer compared to a low-power inductively coupled PE-ALD source. The ion and VUV photons produce defect states in the bulk of the gate oxide as well as at the oxide-silicon interface, causing higher leakage and potential reliability degradation.

  14. Impact of Plasma Electron Flux on Plasma Damage-Free Sputtering of Ultrathin Tin-Doped Indium Oxide Contact Layer on p-GaN for InGaN/GaN Light-Emitting Diodes.

    Science.gov (United States)

    Son, Kwang Jeong; Kim, Tae Kyoung; Cha, Yu-Jung; Oh, Seung Kyu; You, Shin-Jae; Ryou, Jae-Hyun; Kwak, Joon Seop

    2018-02-01

    The origin of plasma-induced damage on a p -type wide-bandgap layer during the sputtering of tin-doped indium oxide (ITO) contact layers by using radiofrequency-superimposed direct current (DC) sputtering and its effects on the forward voltage and light output power (LOP) of light-emitting diodes (LEDs) with sputtered ITO transparent conductive electrodes (TCE) is systematically studied. Changing the DC power voltage from negative to positive bias reduces the forward voltages and enhances the LOP of the LEDs. The positive DC power drastically decreases the electron flux in the plasma obtained by plasma diagnostics using a cutoff probe and a Langmuir probe, suggesting that the repulsion of plasma electrons from the p -GaN surface can reduce plasma-induced damage to the p -GaN. Furthermore, electron-beam irradiation on p -GaN prior to ITO deposition significantly increases the forward voltages, showing that the plasma electrons play an important role in plasma-induced damage to the p -GaN. The plasma electrons can increase the effective barrier height at the ITO/deep-level defect (DLD) band of p -GaN by compensating DLDs, resulting in the deterioration of the forward voltage and LOP. Finally, the plasma damage-free sputtered-ITO TCE enhances the LOP of the LEDs by 20% with a low forward voltage of 2.9 V at 20 mA compared to LEDs with conventional e-beam-evaporated ITO TCE.

  15. Prediction of plasma-induced damage distribution during silicon nitride etching using advanced three-dimensional voxel model

    Energy Technology Data Exchange (ETDEWEB)

    Kuboi, Nobuyuki, E-mail: Nobuyuki.Kuboi@jp.sony.com; Tatsumi, Tetsuya; Kinoshita, Takashi; Shigetoshi, Takushi; Fukasawa, Masanaga; Komachi, Jun; Ansai, Hisahiro [Device and Material Research Group, RDS Platform, Sony Corporation, 4-14-1 Asahi-cho, Atsugi, Kanagawa 243-0014 (Japan)

    2015-11-15

    The authors modeled SiN film etching with hydrofluorocarbon (CH{sub x}F{sub y}/Ar/O{sub 2}) plasma considering physical (ion bombardment) and chemical reactions in detail, including the reactivity of radicals (C, F, O, N, and H), the area ratio of Si dangling bonds, the outflux of N and H, the dependence of the H/N ratio on the polymer layer, and generation of by-products (HCN, C{sub 2}N{sub 2}, NH, HF, OH, and CH, in addition to CO, CF{sub 2}, SiF{sub 2}, and SiF{sub 4}) as ion assistance process parameters for the first time. The model was consistent with the measured C-F polymer layer thickness, etch rate, and selectivity dependence on process variation for SiN, SiO{sub 2}, and Si film etching. To analyze the three-dimensional (3D) damage distribution affected by the etched profile, the authors developed an advanced 3D voxel model that can predict the time-evolution of the etched profile and damage distribution. The model includes some new concepts for gas transportation in the pattern using a fluid model and the property of voxels called “smart voxels,” which contain details of the history of the etching situation. Using this 3D model, the authors demonstrated metal–oxide–semiconductor field-effect transistor SiN side-wall etching that consisted of the main-etch step with CF{sub 4}/Ar/O{sub 2} plasma and an over-etch step with CH{sub 3}F/Ar/O{sub 2} plasma under the assumption of a realistic process and pattern size. A large amount of Si damage induced by irradiated hydrogen occurred in the source/drain region, a Si recess depth of 5 nm was generated, and the dislocated Si was distributed in a 10 nm deeper region than the Si recess, which was consistent with experimental data for a capacitively coupled plasma. An especially large amount of Si damage was also found at the bottom edge region of the metal–oxide–semiconductor field-effect transistors. Furthermore, our simulation results for bulk fin-type field-effect transistor side-wall etching

  16. Clovamide-rich extract from Trifolium pallidum reduces oxidative stress-induced damage to blood platelets and plasma.

    Science.gov (United States)

    Kolodziejczyk, Joanna; Olas, Beata; Wachowicz, Barbara; Szajwaj, Barbara; Stochmal, Anna; Oleszek, Wieslaw

    2011-09-01

    Numerous plants (including clovers) have been widely used in folk medicine for the treatment of different disorders. This in vitro study was designed to examine the antioxidative effects of the clovamide-rich fraction, obtained from aerial parts of Trifolium pallidum, in the protection of blood platelets and plasma against the nitrative and oxidative damage, caused by peroxynitrite (ONOO(-)). Carbonyl groups and 3-nitrotyrosine in blood platelet and plasma proteins were determined by ELISA tests. Thiol groups level was estimated by using 5,5'-dithio-bis(2-nitro-benzoic acid, DTNB). Plasma lipid peroxidation was measured spectrophotometrically as the production of thiobarbituric acid reactive substances. The results from our work indicate that clovamide-rich T. pallidum extract may reveal the protective properties in the prevention against oxidative stress. The presence of clovamide-rich T. pallidum extract (12.5-100 μg/ml) partly inhibited ONOO(-)-mediated protein carbonylation and nitration. All the used concentrations of T. pallidum extract reduced lipid peroxidation in plasma. The antioxidative action of the tested extract in the protection of blood platelet lipids was less effective; the extract at the lowest final concentration (12.5 μg/ml) had no protective effect against lipid peroxidation. The present results indicate that the extract from T. pallidum is likely to be a source of compounds with the antioxidative properties, useful in the prevention against the oxidative stress-related diseases.

  17. Disruption simulation experiments in a pulsed plasma accelerator - energy absorption and damage evolution on plasma facing materials

    International Nuclear Information System (INIS)

    Bolt, H.; Barabash, V.; Gervash, A.; Linke, J.; Lu, L.P.; Ovchinnikov, I.; Roedig, M.

    1995-01-01

    Plasma accelerators are used as test beds for disruption simulation experiments on plasma facing materials, because the incident energy fluxes and the discharge duration are of similar order as those expected during disruptions in ITER. The VIKA facility was used for the testing of materials under incident energies up to 5 kJ/cm 2 . Different carbon materials, SiC, stainless steel, TZM and tungsten have been tested. From the experimental results a scaling of the ablation with incident energy density was derived. The resulting ablation depth on carbon materials is roughly 2 μm per kJcm -2 of incident energy density. For metals this ablation is much higher due to the partial loss of the melt layer from splashing. For stainless steel an ablation depth of 9.5 μm per kJcm -2 was determined. The result of a linear scaling of the ablation depth with incident energy density is consistent with a previous calorimetric study. (orig.)

  18. Heat pump processes induced by laser radiation

    Science.gov (United States)

    Garbuny, M.; Henningsen, T.

    1980-01-01

    A carbon dioxide laser system was constructed for the demonstration of heat pump processes induced by laser radiation. The system consisted of a frequency doubling stage, a gas reaction cell with its vacuum and high purity gas supply system, and provisions to measure the temperature changes by pressure, or alternatively, by density changes. The theoretical considerations for the choice of designs and components are dicussed.

  19. Experimental Simulation of Beryllium Armour Damage Under ITER-like Intense Transient Plasma Loads

    Energy Technology Data Exchange (ETDEWEB)

    Kupriyanov, I.; Basaleev, E.; Nikolaev, G.; Kurbatova, L., E-mail: igkupr@gmail.com [A.A. Bochvar High Technology Research Institute of Inorganic Material, Moscow (Russian Federation); Podkovyrov, V.; Zhitlukhin, A. [SRC RF TRINITI, Troitsk (Russian Federation); Khimchenko, L. L. [Project Centre of ITER, Moscow (Russian Federation)

    2012-09-15

    Full text: Beryllium will be used as a plasma facing material in the next generation of tokamaks such as ITER. During plasma operation in ITER, the plasma facing materials and components will be suffered by different kinds of loading which may affect their surface or their joint to the heat sink. In addition to quasi-stationary loadings which are caused by the normal cycling operation, the plasma facing components and materials may also be exposed to the intense short transient loads like disruptions, ELMs. All these events may lead to beryllium surface melting, cracking, evaporation and erosion. It is expected that the erosion of beryllium under transient plasma loads such as ELMs and disruptions will mainly determine a lifetime of ITER first wall. To obtain the experimental data for the evaluation of the beryllium armor lifetime and dust production under ITER-relevant transient loads, the advanced plasma gun QSPA-Be facility has been constructed in Bochvar Institute. This paper presents recent results of the experiments with Russian beryllium of TGP-56FW ITER grade. The mock-ups of a special design armored with two beryllium targets (80 x 80 x 10 mm{sup 3}) were tested by hydrogen plasma streams (5 cm in diameter) with pulse duration of 0.5 ms and heat load of 0.5 and 1.0 MJ/m{sup 2}. Experiments were performed at RT temperature. The evolution of surface microstructure and profile, cracks morphology and mass loss/gain under erosion process on the beryllium surface exposed to up to 250 shots will be presented and discussed. (author)

  20. Multiphysics model of thermomechanical and helium-induced damage of tungsten during plasma heat transients

    Energy Technology Data Exchange (ETDEWEB)

    Crosby, Tamer, E-mail: tcrosby@ucla.edu; Ghoniem, Nasr M., E-mail: ghoniem@ucla.edu

    2013-11-15

    A combination of transient heating and bombardment by helium and hydrogen atoms has been experimentally proven to lead to severe surface and sub-surface damage. We developed a computational model to determine the relationship between the thermomechanical loading conditions and the onset of damage and failure of tungsten surfaces. The model is based on a thermoelasticity fracture damage approach that was developed using the phase field method. The model simulates the distribution of helium bubbles inside the grains and on grain boundaries using space-dependent rate theory. In addition, the model is coupled with a transient heat conduction analysis for temperature distributions inside the material. The results show the effects of helium bubbles on reducing tungsten surface energy. Further, a temperature gradient in the material equals to 10 K/μm, resulted in deep cracks propagating from the tungsten surface.

  1. Oral and intraperitoneal administration of quercetin decreased lymphocyte DNA damage and plasma lipid peroxidation induced by TSA in vivo.

    Science.gov (United States)

    Chan, Shu-Ting; Lin, Yi-Chin; Chuang, Cheng-Hung; Shiau, Rong-Jen; Liao, Jiunn-Wang; Yeh, Shu-Lan

    2014-01-01

    Our previous study showed that quercetin enhances the anticancer effect of trichostatin A (TSA) in xenograft mice given quercetin intraperitoneally (10 mg/kg, 3 times/week). Herein, we investigate whether quercetin administered orally exerts such an effect and prevents the cytotoxic side effects of TSA. We found that quercetin given orally (20 and 100 mg/kg, 3 times/week) failed to enhance the antitumor effect of TSA although it increased the total quercetin concentration more than quercetin administered intraperitoneally in the plasma. The compound quercetin-3-glucuronide (Q3G) increased the most. However, quercetin administered intraperitoneally increased the total quercetin level in tumor tissues more than oral quercetin. Oral and intraperitoneal administration of quercetin similarly decreased lymphocyte DNA damage and plasma lipid peroxidation level induced by TSA. Furthermore, we found that the enhancing effect of Q3G on the antitumor effect of TSA and the incorporation of Q3G was less than that of quercetin in A549 cells. However, we found that A549 cells possessed the ability to convert Q3G to quercetin. In conclusion, different from quercetin administered intraperitoneally, quercetin administered orally failed to enhance the antitumor effect of TSA because of its metabolic conversion. However, it prevented TSA-induced DNA damage and lipid peroxidation.

  2. Mechanical joining of materials with limited ductility: Analysis of process-induced defects

    Science.gov (United States)

    Jäckel, M.; Coppieters, S.; Hofmann, M.; Vandermeiren, N.; Landgrebe, D.; Debruyne, D.; Wallmersberger, T.; Faes, K.

    2017-10-01

    The paper shows experimental and numerical analyses of the clinching process of 6xxx series aluminum sheets in T6 condition and the self-pierce riveting process of an aluminum die casting. In the experimental investigations the damage behavior of the materials when using different tool parameters is analyzed. The focus of the numerical investigations is the damage prediction by a comparison of different damage criteria. Moreover, strength-and fatigue tests were carried out to investigate the influence of the joining process-induced damages on the strength properties of the joints.

  3. Nitrogen gas plasma treatment of bacterial spores induces oxidative stress that damages the genomic DNA.

    Science.gov (United States)

    Sakudo, Akikazu; Toyokawa, Yoichi; Nakamura, Tetsuji; Yagyu, Yoshihito; Imanishi, Yuichiro

    2017-01-01

    Gas plasma, produced by a short high‑voltage pulse generated from a static induction thyristor power supply [1.5 kilo pulse/sec (kpps)], was demonstrated to inactivate Geobacillus stearothermophilus spores (decimal reduction time at 15 min, 2.48 min). Quantitative polymerase chain reaction and enzyme‑linked immunosorbent assays further indicated that nitrogen gas plasma treatment for 15 min decreased the level of intact genomic DNA and increased the level of 8-hydroxy-2'-deoxyguanosine, a major product of DNA oxidation. Three potential inactivation factors were generated during operation of the gas plasma instrument: Heat, longwave ultraviolet-A and oxidative stress (production of hydrogen peroxide, nitrite and nitrate). Treatment of the spores with hydrogen peroxide (3x2‑4%) effectively inactivated the bacteria, whereas heat treatment (100˚C), exposure to UV-A (75‑142 mJ/cm2) and 4.92 mM peroxynitrite (•ONOO‑), which is decomposed into nitrite and nitrate, did not. The results of the present study suggest the gas plasma treatment inactivates bacterial spores primarily by generating hydrogen peroxide, which contributes to the oxidation of the host genomic DNA.

  4. Prediction of ultraviolet-induced damage during plasma processes in dielectric films using on-wafer monitoring techniques

    International Nuclear Information System (INIS)

    Ishikawa, Yasushi; Katoh, Yuji; Okigawa, Mitsuru; Samukawa, Seiji

    2005-01-01

    We measured electron-hole pairs generated in dielectric film using our developed on-wafer monitoring technique to detect electrical currents in the film during the plasma etching processes. The electron-hole pairs were generated by plasma induced ultraviolet (UV) photons, and the number of electron-hole pairs depends on the UV wavelength. In SiO 2 film, UV light, which has a wavelength of less than 140 nm, generates electron-hole pairs, because the band gap energy of the film is 8.8 eV. On the other hand, in Si 3 N 4 film, which has a band gap energy level of 5.0 eV, UV light below 250 nm induces the electron-hole pairs. Additionally, we evaluated the fluorocarbon gas plasma process that induces UV radiation damage using multilayer sensors that consisted of both SiO 2 and Si 3 N 4 stacked films. In these cases, electron-hole pair generation depended on the dielectric film structure. There were more electron-hole pairs generated in the SiO 2 deposited on the Si 3 N 4 film than in the Si 3 N 4 deposited on the SiO 2 film. As a result, our developed on-wafer monitoring sensor was able to predict electron-hole pair generation and the device characteristics

  5. Influence of plasma molybdenizing and shot-peening on fretting damage behavior of titanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Chang-bin, E-mail: tcbtop@126.com [School of Metallurgy and Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi 710055 (China); Institute of Corrosion and Protection, Northwestern Polytechnical University, Xi’an, Shaanxi 710072 (China); Liu, Dao-xin, E-mail: liudaox@nwpu.edu.cn [Institute of Corrosion and Protection, Northwestern Polytechnical University, Xi’an, Shaanxi 710072 (China); Tang, Bin [Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan Shanxi 030024 (China); Zhang, Xiao-hua [Institute of Corrosion and Protection, Northwestern Polytechnical University, Xi’an, Shaanxi 710072 (China); Qin, Lin [Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan Shanxi 030024 (China); Liu, Cheng-song [Institute of Corrosion and Protection, Northwestern Polytechnical University, Xi’an, Shaanxi 710072 (China)

    2016-12-30

    Highlights: • Plasma molybdenizing increases FW resistance of Ti6Al4V, but reduces its FF life. • Shot-peened plasmamolybdenizing surface enhances FW and FF resistance of Ti6Al4V. • Combined treatment yields low surface-roughness & high hardness gradient distribution. • Combined treatment yields beneficial residual compressive stress & good toughness. • Anti-wear & -fatigue performance improvements for surface engineering applications. - Abstract: Effect of plasma molybdenizing and shot-peening on fretting wear and fretting fatigue behaviors of Ti6Al4V alloy was investigated. The plasma molybdenized layer composed of a dense molybdenum deposition layer and a Mo–Ti solid–solution layer can increase surface hardness by 2.8 times and cause its volume loss by fretting wear to decrease to 1/14 compared with that of the substrate. Plasma molybdenized treatment results in a significant decrease in resistance of the substrate to fretting fatigue. It is ascribed that the molybdenized layer with high hardness yields a low toughness, and its high surface roughness leads to a micro-notched effect. However, proper combination plasma molybdenizing and subsequent shot-peening may enhance the simultaneous fretting fatigue and fretting wear resistance of Ti6Al4V significantly, which can decrease the fretting wear volume loss to 1/27, and may increase the fretting fatigue life by more than 69 times. A synergistic improvement in fretting fatigue of the titanium alloy by combining surface alloying with shot-peening can be achieved. The results indicate that a beneficial residual compressive stress distribution, high surface hardness with suitable hardness gradient distribution, good apparent toughness, relatively low surface roughness, and excellent surface integrity are achieved.

  6. Comparative kinetics of damage to the plasma and mitochondrial membranes by intra-cellularly synthesized and externally-provided photosensitizers using multi-color FACS.

    Science.gov (United States)

    Haupt, Sara; Malik, Zvi; Ehrenberg, Benjamin

    2014-01-01

    Photodynamic therapy (PDT) of cancer involves inflicting lethal damage to the cells of malignant tumors, primarily by singlet oxygen that is generated following light-absorption in a photosensitizer molecule. Dysfunction of cells is manifested in many ways, including peroxidation of cellular components, membrane rupture, depolarization of electric potentials, termination of mitochondrial activity, onset of apoptosis and necrosis and eventually cell lysis. These events do not necessarily occur in linear fashion and different types of damage to cell components occur, most probably, in parallel. In this report we measured the relative rates of damage to two cellular membranes: the plasma membrane and the mitochondrial membrane. We employed photosensitizers of diverse hydrophobicities and used different incubation procedures, which lead to their different intra-cellular localizations. We monitored the damage that was inflicted on these membranes, by employing optical probes of membrane integrity, in a multi-color FACS experiment. The potentiometric indicator JC-1 monitored the electric cross-membrane potential of the mitochondria and the fluorometric indicator Draq7 monitored the rupture of the plasma membrane. We show that the electric depolarization of the mitochondrial membrane and the damage to the enveloping plasma membrane proceed with different kinetics that reflect the molecular character and intracellular location of the sensitizer: PpIX that is synthesized in the cells from ALA causes rapid mitochondrial damage and very slow damage to the plasma membrane, while externally added PpIX has an opposite effect. The hydrophilic sensitizer HypS4 can be taken up by the cells by different incubation conditions, and these affect its intracellular location, and as a consequence either the plasma membrane or the mitochondria is damaged first. A similar correlation was found for additional extracellularly-provided photosensitizers HP and PpIX.

  7. Dry Etch Black Silicon with Low Surface Damage: Effect of Low Capacitively Coupled Plasma Power

    DEFF Research Database (Denmark)

    Iandolo, Beniamino; Plakhotnyuk, Maksym; Gaudig, Maria

    2017-01-01

    Black silicon fabricated by reactive ion etch (RIE) is promising for integration into silicon solar cells thanks to its excellent light trapping ability. However, intensive ion bombardment during the RIE induces surface damage, which results in enhanced surface recombination velocity. Here, we pr...... carrier lifetime thanks to reduced ion energy. Surface passivation using atomic layer deposition of Al2O3 improves the effective lifetime to 7.5 ms and 0.8 ms for black silicon n- and p-type wafers, respectively.......Black silicon fabricated by reactive ion etch (RIE) is promising for integration into silicon solar cells thanks to its excellent light trapping ability. However, intensive ion bombardment during the RIE induces surface damage, which results in enhanced surface recombination velocity. Here, we...... present a RIE optimization leading to reduced surface damage while retaining excellent light trapping and low reflectivity. In particular, we demonstrate that the reduction of the capacitively coupled power during reactive ion etching preserves a reflectance below 1% and improves the effective minority...

  8. Damage to preheated tungsten targets after multiple plasma impacts simulating ITER ELMs

    Energy Technology Data Exchange (ETDEWEB)

    Garkusha, I.E. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine)], E-mail: garkusha@ipp.kharkov.ua; Bandura, A.N.; Byrka, O.V.; Chebotarev, V.V. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine); Landman, I. [Forschungszentrum Karlsruhe, IHM, 76021 Karlsruhe (Germany); Makhlaj, V.A. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine); Pestchanyi, S. [Forschungszentrum Karlsruhe, IHM, 76021 Karlsruhe (Germany); Tereshin, V.I. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine)

    2009-04-30

    The behavior of a preheated at 650 deg. C tungsten targets under repetitive ELM-like plasma pulses is studied in simulation experiments with the quasi-stationary plasma accelerator QSPA Kh-50. The targets have been exposed up to 350 pulses of the duration 0.25 ms and the surface heat loads either 0.45 MJ/m{sup 2} or 0.75 MJ/m{sup 2}, which is below and above the melting threshold, respectively. The development of surface morphology of the exposed targets as well as cracking and swelling at the surface is discussed. First comparisons of obtained experimental results with corresponding numerical simulations of the code PEGASUS-3D are presented.

  9. A study on the Regenerative Effect of Platelets Rich Plasma on Experimentally Induced Hepatic Damage In Albino Rats.

    Science.gov (United States)

    Shoeib, Heba Mamdoh; Keshk, Walaa Arafa; Foda, Abdallah Mahmoud; Abo El Noeman, Saad El-Deen Abd Elfatah

    2018-02-14

    Hepatic fibrosis is a worldwide health problem with significant morbidity and mortality. Currently, there is no effective therapy for hepatic fibrosis. So that the present study was aimed to evaluate the possible regenerative effect of Platelet-rich plasma (PRP) against thioacetamide (TAA) induced hepatic damage. Eighty albino rats were included; 40 were used for PRP preparation and 40 were randomly divided into four groups. Group I (control group); group II (PRP control); group III (TAA- intoxicated in a dose of 200 mg ∕ kg body weight/twice weekly for 7 weeks, intra-peritoneal and group IV (TAA-intoxicated+ PRP treated). Macrophage inflammatory protein-1α (MIP-1α) and cyclic adenosine monophosphate (cAMP) were immunoassayed in addition to peroxinitrite level, NADPH-quinine oxido-reductase-1 (NQO1) enzyme activity and liver function. PRP treatment showed significant improvement in hepatic function, decreased MIP-1α and peroxinitrite level. Meanwhile, significant increase in NQO1 enzyme activity and cAMP level were observed. The histopathological results confirmed the laboratory results with improvement of hepatic architecture except for some inflammatory cellular infiltrates. PRP has the ability to protect against TAA-induced liver damage possibly by improving redox status, liver histopathological architecture, disruption of the inflammatory and fibrotic response induced by TAA.

  10. Damage of DNA and plasma membranes in murine lymphoma cells irradiated under aerobic or hypoxic conditions

    International Nuclear Information System (INIS)

    Wlodek, D.

    1983-01-01

    A review of the knowledge of radiation effects on cell membranes and DNA and of repair mechanisms of radiation lesions is given. Investigations of properties of plasma membranes in L5178Y-S and L5178Y-R cells (surface charge, fluidity, transport of amino acids) indicate that there is no direct connection between membrane lesions and reproductive death. It was also found that in irradiated cells of both L5178Y-strains the rate of DNA chain elongation is the same, similarly as the amount of the initial DNA lesions and the rate of repair processes. Difference in the level of DNA synthesis inhibition is not proportional to the lethal effect. The results are also reported point to the difference between L5178Y-S and L5178Y-R cells in susceptibility of post-irradiation DNA synthesis to factors modifying chromatin conformation, such as inhibitors of (ADP-ribose) n polymerase. 221 refs. (author)

  11. Effects of branched-chain amino acids supplementation on both plasma amino acids concentration and muscle energetics changes resulting from muscle damage: A randomized placebo controlled trial.

    Science.gov (United States)

    Fouré, Alexandre; Nosaka, Kazunori; Gastaldi, Marguerite; Mattei, Jean-Pierre; Boudinet, Hélène; Guye, Maxime; Vilmen, Christophe; Le Fur, Yann; Bendahan, David; Gondin, Julien

    2016-02-01

    Branched-chain amino acids promote muscle-protein synthesis, reduce protein oxidation and have positive effects on mitochondrial biogenesis and reactive oxygen species scavenging. The purpose of the study was to determine the potential benefits of branched-chain amino acids supplementation on changes in force capacities, plasma amino acids concentration and muscle metabolic alterations after exercise-induced muscle damage. (31)P magnetic resonance spectroscopy and biochemical analyses were used to follow the changes after such damage. Twenty six young healthy men were randomly assigned to supplemented branched-chain amino acids or placebo group. Knee extensors maximal voluntary isometric force was assessed before and on four days following exercise-induced muscle damage. Concentrations in phosphocreatine [PCr], inorganic phosphate [Pi] and pH were measured during a standardized rest-exercise-recovery protocol before, two (D2) and four (D4) days after exercise-induced muscle damage. No significant difference between groups was found for changes in maximal voluntary isometric force (-24% at D2 and -21% at D4). Plasma alanine concentration significantly increased immediately after exercise-induced muscle damage (+25%) in both groups while concentrations in glycine, histidine, phenylalanine and tyrosine decreased. No difference between groups was found in the increased resting [Pi] (+42% at D2 and +34% at D4), decreased resting pH (-0.04 at D2 and -0.03 at D4) and the slower PCr recovery rate (-18% at D2 and -24% at D4). The damaged muscle was not able to get benefits out of the increased plasma branched-chain amino acids availability to attenuate changes in indirect markers of muscle damage and muscle metabolic alterations following exercise-induced muscle damage. Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  12. High-density plasma-induced etch damage of wafer-bonded AlGaInP/mirror/Si light-emitting diodes

    CERN Document Server

    Wuu, D S; Huang, S H; Chung, C R

    2002-01-01

    Dry etch of wafer-bonded AlGaInP/mirror/Si light-emitting diodes (LEDs) with planar electrodes was performed by high-density plasma using an inductively coupled plasma (ICP) etcher. The etching characteristics were investigated by varying process parameters such as Cl sub 2 /N sub 2 gas combination, chamber pressure, ICP power and substrate-bias power. The corresponding plasma properties (ion flux and dc bias), in situ measured by a Langmuir probe, show a strong relationship to the etch results. With a moderate etch rate of 1.3 mu m/min, a near vertical and smooth sidewall profile can be achieved under a Cl sub 2 /(Cl sub 2 +N sub 2) gas mixture of 0.5, ICP power of 800 W, substrate-bias power of 100 W, and chamber pressure of 0.67 Pa. Quantitative analysis of the plasma-induced damage was attempted to provide a means to study the mechanism of leakage current and brightness with various dc bias voltages (-110 to -328 V) and plasma duration (3-5 min) on the wafer-bonded LEDs. It is found that the reverse leaka...

  13. Initiation and propagation of damage in actively cooled CFC armoured high heat flux components in fusion machines

    International Nuclear Information System (INIS)

    Chevet, G.; Schlosser, J.; Martin, E.; Herb, V.; Camus, G.; Escourbiac, F.

    2009-01-01

    Plasma facing components (PFCs) in magnetic confinement controlled fusion machines are armoured with carbon fibre composite (CFC) bonded to a copper alloy heat sink. The manufacturing process induces high level of residual stresses due to the thermal expansion mismatch between CFC and copper and PFCs have to withstand strong stress ranges during operation. To study the initiation and propagation of damage in the CFC part, the ONERA damage model is used to describe the behaviour of the N11 material. The finite element simulations show that the damage is located near the interface and develops during the manufacturing of the PFCs as a consequence of the high amplitude of shear stresses. Under high heat flux, stresses decrease and the damage does not evolve. Further studies will take into account the damageable behaviour of the composite/copper interface, which will lead to geometrical optimisations and better knowledge of the link between damage and conductivity.

  14. Relationship of plasma proadrenomedullin and cortisol levels with systemic inflammatory response and target organ damage in children with sepsis after burn

    Directory of Open Access Journals (Sweden)

    Xing Wei

    2017-08-01

    Full Text Available Objective: To study the relationship of plasma proadrenomedullin (pro-ADM and cortisol (Cor levels with systemic inflammatory response and target organ damage in children with sepsis after burn. Methods: A total of 30 children with sepsis after burn who were treated in the hospital between August 2014 and August 2016 were collected as observation group, and 30 normal children who received vaccination in the hospital during the same period were collected as normal control group. The pro-ADM and Cor levels in plasma as well as the levels of inflammatory factors, myocardial injury markers and intestinal barrier function indexes in serum of the two groups were determined. Pearson test was used to assess the correlation of plasma pro-ADM and Cor levels with systemic inflammatory response and target organ damage in patients with sepsis after burn. Results: Plasma pro-ADM and Cor levels in observation group were higher than those in normal control group. Serum inflammatory cytokines IL-1, IL-6, IL-10 and TNF-α levels in observation group were higher than those in normal control group; serum myocardial injury markers CK-MB, cTnⅠ and NT-proBNP levels were higher than those in normal control group; serum intestinal barrier function indexes ET, DAO and D-L levels were higher than those in normal control group. Conclusion: Plasma pro-ADM and Cor levels increase in patients with sepsis after burn, and are highly consistent with systemic inflammatory response and target organ injury.

  15. X-Ray photoelectron spectroscopy analysis of plasma-polymer interactions for development of low-damage plasma processing of soft materials

    International Nuclear Information System (INIS)

    Setsuhara, Yuichi; Cho, Ken; Shiratani, Masaharu; Sekine, Makoto; Hori, Masaru

    2010-01-01

    Plasma-polymer interactions have been investigated using atomic force microscopy (AFM) and x-ray photoelectron spectroscopy (XPS) of polyethyleneterephthalate (PET) films, which have been exposed to argon plasmas driven by low-inductance antenna modules as a parameter of ion energy. The AFM images indicated that the argon plasma exposure exhibited a significant change in surface roughness. The XPS analyses suggested that the degradation of chemical bonding structure and/or bond scission of PET could be effectively suppressed in the plasma exposures with ion energies below 6 eV. However, significant degradations of O = C-O bond, C-O bond and phenyl group were observed with increasing ion energy above 6 eV.

  16. Plasma clearance of sup(99m)Tc-N/2,4-dimethyl-acetanilido/iminodiacetate complex as a measure of parenchymal liver damage

    International Nuclear Information System (INIS)

    Studniarek, M.; Durski, K.; Liniecki, J.; Akademia Medyczna, Lodz

    1983-01-01

    Fifty-two patients were studied with various diseases affecting liver parenchyma. Any disorders of bile transport were excluded on the basis of dynamic liver scintigraphy using intravenously injected N/2,4-dimethyl acetanilid/iminodiacetate sup(99m)Tc complex (HEPIDA). The activity concentration of sup(99m)Tc-HEPIDA in plasma was measured from 5 through 60 min post injection. Clearance of the substance (Clsub(B)) was calculated from blood plasma disappearance curves and compared with results of 13 laboratory tests used conventionally for assessment of damage of the liver and its functional capacity; age and body weight was also included in the analysis. Statistical relations were studied using linear regression analysis of two variables, multiple regression analysis as well as multidimensional analysis of variance. It was demonstrated that sup(99m)Tc-HEPIDA clearance is a simple, accurate and repeatable measure of liver parenchyma damage. In males, values of Clsub(B) above 245 ml min - 1 /1.73 m 2 exclude hepatic damage with high probability; values below 195 ml min - 1 /1.73 m 2 indicate evident impairment of liver parenchyma function. (orig.) [de

  17. Thrombomodulin, von Willebrand factor and E-selectin as plasma markers of endothelial damage/dysfunction and activation in pregnancy induced hypertension.

    Science.gov (United States)

    Nadar, Sunil K; Al Yemeni, Eman; Blann, Andrew D; Lip, Gregory Y H

    2004-01-01

    Endothelial disturbance (whether activation, dysfunction or damage) is a likely pathogenic mechanism in pre-eclampsia and pregnancy-induced hypertension (PIH). We set out to determine which of three plasma markers of endothelial disturbance, indicating endothelial activation (E-selectin) or damage/dysfunction (von Willebrand factor (vWf), soluble thrombomodulin), would provide the best discriminator of PIH compared to normotensive pregnancy. Cross-sectional study of 36 consecutive women with PIH (age 31+/-6 years) and 36 consecutive women with normotensive pregnancies (age 29+/-5 years) of similar parity. Plasma levels of vWf, E-selectin and thrombomodulin were measured using ELISA. As expected, women with PIH had significantly higher levels of plasma vWf (by 19%, p=0.003), E-selectin (by 40%, p<0.001) and thrombomodulin (by 61%, p=0.01) than normotensive women. However, on stepwise multiple regression analysis, only thrombomodulin was an independent significant predictor of the presence of PIH (p=0.023). We conclude that although vWf, E-selectin and thrombomodulin are all raised in PIH, only thrombomodulin was independently associated with PIH. This molecule could potentially be useful in monitoring and in providing clues in aetiology and pathophysiology, and may have implications for the clinical complications associated with PIH.

  18. Experimental study of divertor plasma-facing components damage under a combination of pulsed and quasi-stationary heat loads relevant to expected transient events at ITER

    International Nuclear Information System (INIS)

    Klimov, N S; Podkovyrov, V L; Kovalenko, D V; Zhitlukhin, A M; Barsuk, V A; Mazul, I V; Giniyatulin, R N; Kuznetsov, V Ye; Riccardi, B; Loarte, A; Merola, M; Koidan, V S; Linke, J; Landman, I S; Pestchanyi, S E; Bazylev, B N

    2011-01-01

    This paper concerns the experimental study of damage of ITER divertor plasma-facing components (PFCs) under a combination of pulsed plasma heat loads (representative of controlled ITER type I edge-localized modes (ELMs)) and quasi-stationary heat loads (representative of the high heat flux (HHF) thermal fatigue expected during ITER normal operations and slow transient events). The PFC's tungsten armor damage under pulsed plasma exposure was driven by (i) the melt layer motion, which leads to bridges formation between neighboring tiles and (ii) the W brittle failure giving rise to a stable crack pattern on the exposed surface. The crack width reaches a saturation value that does not exceed some tens of micrometers after several hundreds of ELM-like pulses. HHF thermal fatigue tests have shown (i) a peeling-off of the re-solidified material due to its brittle failure and (ii) a significant widening (up to 10 times) of the cracks and the formation of additional cracks.

  19. High plasma homocyst(e)ine levels in elderly Japanese patients are associated with increased cardiovascular disease risk independently from markers of coagulation activation and endothelial cell damage.

    Science.gov (United States)

    Kario, K; Duell, P B; Matsuo, T; Sakata, T; Kato, H; Shimada, K; Miyata, T

    2001-08-01

    Elevated plasma homocyst(e)ine is a risk factor for cardiovascular disease (CVD) in many populations, but the relationship between homocyst(e)ine and CVD in Japanese subjects has been unclear. It has been hypothesized that the link between homocyst(e)ine and CVD may be mediated in part by activation of coagulation and endothelial cell injury in the elderly Japanese subjects. To further evaluate this hypothesis, the present cross-sectional study was designed to assess the relationships among plasma homocyst(e)ine concentrations, risk of CVD, and markers of coagulation (fibrinogen, FVII, F1+2, FVIIa and FXIIa) and endothelial cell damage (vWF and thrombomodulin) in 146 elderly Japanese subjects (79 healthy controls and 67 patients with CVD). The geometric mean (range) of plasma homocyst(e)ine concentrations was 10.2 (3.2--33) micromol/l in 79 Japanese healthy elderly subjects. As expected, healthy female and male elderly subjects had homocyst(e)ine levels that were 2.5 and 5.3 micromol/; higher, respectively, compared to healthy young control subjects (n=62). Healthy young and elderly men had homocyst(e)ine levels that were 1.7 and 4.5 micromol/l higher, respectively, compared to values in women. This higher plasma homocyst(e)ine levels in the elderly subjects were negatively correlated with levels of folic acid, albumin and total cholesterol, but were not significantly related to markers of coagulation or endothelial cell-damage. The results of multiple logistic regression analyses suggested that high homocyst(e)ine levels were independently related to CVD risk. In addition, levels of FVIIa, and F1+2 were significantly higher in elderly Japanese patients with CVD compared to elderly subjects without CVD, but were unrelated to plasma homocyst(e)ine concentrations. In summary, elevated plasma concentrations of homocyst(e)ine, FVIIa, and F1+2 were associated with increased risk of CVD in elderly male and female Japanese subjects, but the association between homocyst

  20. Clinical characteristics of high plasma adiponectin and high plasma leptin as risk factors for arterial stiffness and related end-organ damage.

    Science.gov (United States)

    Kohara, Katsuhiko; Ochi, Masayuki; Okada, Yoko; Yamashita, Taiji; Ohara, Maya; Kato, Takeaki; Nagai, Tokihisa; Tabara, Yasuharu; Igase, Michiya; Miki, Tetsuro

    2014-08-01

    The relationship between plasma levels of adiponectin and cardiovascular events is inconclusive. We evaluated the clinical characteristics of people with high plasma adiponectin and high plasma leptin levels. Thousand seven hundred participants recruited from visitors to the Anti-Aging Doc were divided into four groups by combining the bipartiles of plasma adiponectin and leptin levels in men and women separately: AL, high adiponectin and high leptin; Al, high adiponectin and low leptin; al, low adiponectin and low leptin; aL, low adiponectin and high leptin. Body composition, including visceral fat area and thigh muscle cross-sectional area (CSA), brachial-ankle pulse wave velocity (baPWV), periventricular hyperintensity, and urinary albumin excretion, were determined. Twenty percent of the studied population fell within the AL group. This group had a significantly higher visceral fat area than the Al group. Thigh muscle CSA was lowest in the AL group among groups. baPWV, brain white matter lesions, and albuminuria findings in the AL group were significantly higher than those of the Al group. Multiple and logistic regression analyses with confounding parameters further confirmed that plasma adiponectin was not an independent determinant for brain and renal small vessel-related disease. These findings suggest that the plasma level of adiponectin alone is not enough for the risk stratification of cardiovascular disease. Leptin resistance associated with skeletal muscle loss in addition to obesity may need to be addressed to identify high risk people with high plasma adiponectin levels. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. Effect of high-flux H/He plasma exposure on tungsten damage due to transient heat loads

    Czech Academy of Sciences Publication Activity Database

    De Temmerman, G.; Morgan, T.W.; van Eden, G.G.; de Kruif, T.; Wirtz, M.; Matějíček, Jiří; Chráska, Tomáš; Pitts, R.A.; Wright, G.M.

    2015-01-01

    Roč. 463, August (2015), s. 198-201 ISSN 0022-3115. [PLASMA-SURFACE INTERACTIONS 21: International Conference on Plasma-Surface Interactions in Controlled Fusion Devices. Kanazawa, 26.05.2014-30.05.2014] R&D Projects: GA ČR(CZ) GA14-12837S Institutional support: RVO:61389021 Keywords : plasma-facing components * tungsten * hydrogen * helium * ELM Subject RIV: JF - Nuclear Energetics OBOR OECD: Nuclear related engineering Impact factor: 2.199, year: 2015 http://www.sciencedirect.com/science/article/pii/S0022311514006758#

  2. Plasma-Induced Damage on the Reliability of Hf-Based High-k/Dual Metal-Gates Complementary Metal Oxide Semiconductor Technology

    International Nuclear Information System (INIS)

    Weng, W.T.; Lin, H.C.; Huang, T.Y.; Lee, Y.J.; Lin, H.C.

    2009-01-01

    This study examines the effects of plasma-induced damage (PID) on Hf-based high-k/dual metal-gates transistors processed with advanced complementary metal-oxide-semiconductor (CMOS) technology. In addition to the gate dielectric degradations, this study demonstrates that thinning the gate dielectric reduces the impact of damage on transistor reliability including the positive bias temperature instability (PBTI) of n-channel metal-oxide-semiconductor field-effect transistors (NMOSFETs) and the negative bias temperature instability (NBTI) of p-channel MOSFETs. This study shows that high-k/metal-gate transistors are more robust against PID than conventional SiO 2 /poly-gate transistors with similar physical thickness. Finally this study proposes a model that successfully explains the observed experimental trends in the presence of PID for high-k/metal-gate CMOS technology.

  3. Photoluminescence recovery by in-situ exposure of plasma-damaged n-GaN to atomic hydrogen at room temperature

    Directory of Open Access Journals (Sweden)

    Shang Chen

    2012-06-01

    Full Text Available The effect of in-situ exposure of n-GaN damaged by Cl2 plasma to atomic hydrogen (H radicals at room temperature was investigated. We found that the PL intensities of the band-edge emission, which had been drastically reduced by plasma-beam irradiation at a Cl ion dose of 5 × 1016 cm−2, recovered to values close to those of as-grown samples after H radical exposure at a dose of 3.8 × 1017 cm−2. XPS revealed the appearance of a peak at a binding energy of 18.3 eV, which is tentatively assigned to Ga-H, and confirmed the removal of Cl after H radical exposure.

  4. Integrated Prediction and Mitigation Methods of Materials Damage and Lifetime Assessment during Plasma Operation and Various Instabilities in Fusion Devices

    Energy Technology Data Exchange (ETDEWEB)

    Hassanein, Ahmed [Purdue Univ., West Lafayette, IN (United States)

    2015-03-31

    This report describes implementation of comprehensive and integrated models to evaluate plasma material interactions during normal and abnormal plasma operations. The models in full3D simulations represent state-of-the art worldwide development with numerous benchmarking of various tokamak devices and plasma simulators. In addition, significant number of experimental work has been performed in our center for materials under extreme environment (CMUXE) at Purdue to benchmark the effect of intense particle and heat fluxes on plasma-facing components. This represents one-year worth of work and resulted in more than 23 Journal Publications and numerous conferences presentations. The funding has helped several students to obtain their M.Sc. and Ph.D. degrees and many of them are now faculty members in US and around the world teaching and conducting fusion research. Our work has also been recognized through many awards.

  5. Integrated Prediction and Mitigation Methods of Materials Damage and Lifetime Assessment during Plasma Operation and Various Instabilities in Fusion Devices

    International Nuclear Information System (INIS)

    Hassanein, Ahmed

    2015-01-01

    This report describes implementation of comprehensive and integrated models to evaluate plasma material interactions during normal and abnormal plasma operations. The models in full3D simulations represent state-of-the art worldwide development with numerous benchmarking of various tokamak devices and plasma simulators. In addition, significant number of experimental work has been performed in our center for materials under extreme environment (CMUXE) at Purdue to benchmark the effect of intense particle and heat fluxes on plasma-facing components. This represents one-year worth of work and resulted in more than 23 Journal Publications and numerous conferences presentations. The funding has helped several students to obtain their M.Sc. and Ph.D. degrees and many of them are now faculty members in US and around the world teaching and conducting fusion research. Our work has also been recognized through many awards.

  6. Increased protein damage in renal glomeruli, retina, nerve, plasma and urine and its prevention by thiamine and benfotiamine therapy in a rat model of diabetes.

    Science.gov (United States)

    Karachalias, N; Babaei-Jadidi, R; Rabbani, N; Thornalley, P J

    2010-07-01

    The aim of this study was to quantify protein damage by glycation, oxidation and nitration in a rat model of diabetes at the sites of development of microvascular complications, including the effects of thiamine and benfotiamine therapy. Diabetes was induced in male Sprague-Dawley rats by 55 mg/kg streptozotocin and moderated by insulin (2 U twice daily). Diabetic and control rats were given thiamine or benfotiamine (7 or 70 mg kg(-1) day(-1)) over 24 weeks. Plasma, urine and tissues were collected and analysed for protein damage by stable isotopic dilution analysis MS. There were two- to fourfold increases in fructosyl-lysine and AGE content of glomerular, retinal, sciatic nerve and plasma protein in diabetes. Increases in AGEs were reversed by thiamine and benfotiamine therapy but increases in fructosyl-lysine were not. Methionine sulfoxide content of plasma protein and 3-nitrotyrosine content of sciatic nerve protein were increased in diabetes. Plasma glycation free adducts were increased up to twofold in diabetes; the increases were reversed by thiamine. Urinary excretion of glycation, oxidation and nitration free adducts was increased by seven- to 27-fold in diabetes. These increases were reversed by thiamine and benfotiamine therapy. AGEs, particularly arginine-derived hydroimidazolones, accumulate at sites of microvascular complication development and have markedly increased urinary excretion rates in experimental diabetes. Thiamine and benfotiamine supplementation prevented tissue accumulation and increased urinary excretion of protein glycation, oxidation and nitration adducts. Similar effects may contribute to the reversal of early-stage clinical diabetic nephropathy by thiamine.

  7. Human circulating plasma DNA significantly decreases while lymphocyte DNA damage increases under chronic occupational exposure to low-dose gamma-neutron and tritium β-radiation

    Energy Technology Data Exchange (ETDEWEB)

    Korzeneva, Inna B., E-mail: inna.korzeneva@molgen.vniief.ru [Russian Federal Nuclear Center – All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) 607190, Sarov, 37 Mira ave., Nizhniy Novgorod Region (Russian Federation); Kostuyk, Svetlana V.; Ershova, Liza S. [Research Centre for Medical Genetics, Russian Academy of Medical Sciences, 115478 Moscow, 1 Moskvorechye str. (Russian Federation); Osipov, Andrian N. [Federal Medial and Biological Center named after Burnazyan of the Federal Medical and Biological Agency (FMBTz named after Burnazyan of FMBA), Moscow (Russian Federation); State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Zhivopisnaya, 46, Moscow, 123098 (Russian Federation); Zhuravleva, Veronika F.; Pankratova, Galina V. [Russian Federal Nuclear Center – All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) 607190, Sarov, 37 Mira ave., Nizhniy Novgorod Region (Russian Federation); Porokhovnik, Lev N.; Veiko, Natalia N. [Research Centre for Medical Genetics, Russian Academy of Medical Sciences, 115478 Moscow, 1 Moskvorechye str. (Russian Federation)

    2015-09-15

    Highlights: • The chronic exposure to low-dose IR induces DSBs in human lymphocytes (TM index). • Exposure to IR decreases the level of human circulating DNA (cfDNA index). • IR induces an increase of DNase1 activity (DNase1 index) in plasma. • IR induces an increase of the level of antibodies to DNA (Ab DNA index) in plasma. • The ratio cfDNA/(DNase 1 × Ab DNA × TM) is a potential marker of human exposure to IR. - Abstract: The blood plasma of healthy people contains cell-fee (circulating) DNA (cfDNA). Apoptotic cells are the main source of the cfDNA. The cfDNA concentration increases in case of the organism’s cell death rate increase, for example in case of exposure to high-dose ionizing radiation (IR). The objects of the present research are the blood plasma and blood lymphocytes of people, who contacted occupationally with the sources of external gamma/neutron radiation or internal β-radiation of tritium N = 176). As the controls (references), blood samples of people, who had never been occupationally subjected to the IR sources, were used (N = 109). With respect to the plasma samples of each donor there were defined: the cfDNA concentration (the cfDNA index), DNase1 activity (the DNase1 index) and titre of antibodies to DNA (the Ab DNA index). The general DNA damage in the cells was defined (using the Comet assay, the tail moment (TM) index). A chronic effect of the low-dose ionizing radiation on a human being is accompanied by the enhancement of the DNA damage in lymphocytes along with a considerable cfDNA content reduction, while the DNase1 content and concentration of antibodies to DNA (Ab DNA) increase. All the aforementioned changes were also observed in people, who had not worked with the IR sources for more than a year. The ratio cfDNA/(DNase1 × Ab DNA × TM) is proposed to be used as a marker of the chronic exposure of a person to the external low-dose IR. It was formulated the assumption that the joint analysis of the cfDNA, DNase1, Ab

  8. Effect of high-flux H/He plasma exposure on tungsten damage due to transient heat loads

    Energy Technology Data Exchange (ETDEWEB)

    De Temmerman, G., E-mail: gregory.detemmerman@iter.org [FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM, Trilateral Euregion Cluster, Postbus 1207, 3430BE Nieuwegein (Netherlands); ITER Organization, Route de Vinon sur Verdon, CS 90 096, 13067 Saint Paul-lez-Durance (France); Morgan, T.W.; Eden, G.G. van; Kruif, T. de [FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM, Trilateral Euregion Cluster, Postbus 1207, 3430BE Nieuwegein (Netherlands); Wirtz, M. [Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research – Microstructure and Properties of Materials (IEK-2), EURATOM Association, 52425 Jülich (Germany); Matejicek, J.; Chraska, T. [Institute of Plasma Physics, Association EURATOM-IPP, CR Prague (Czech Republic); Pitts, R.A. [ITER Organization, Route de Vinon sur Verdon, CS 90 096, 13067 Saint Paul-lez-Durance (France); Wright, G.M. [MIT Plasma Science and Fusion Center, 77 Massachusetts Ave., Cambridge, MA 02139 (United States)

    2015-08-15

    The thermal shock behaviour of tungsten exposed to high-flux plasma is studied using a high-power laser. The cases of laser-only, sequential laser and hydrogen (H) plasma and simultaneous laser plus H plasma exposure are studied. H plasma exposure leads to an embrittlement of the material and the appearance of a crack network originating from the centre of the laser spot. Under simultaneous loading, significant surface melting is observed. In general, H plasma exposure lowers the heat flux parameter (F{sub HF}) for the onset of surface melting by ∼25%. In the case of He-modified (fuzzy) surfaces, strong surface deformations are observed already after 1000 laser pulses at moderate F{sub HF} = 19 MJ m{sup −2} s{sup −1/2}, and a dense network of fine cracks is observed. These results indicate that high-fluence ITER-like plasma exposure influences the thermal shock properties of tungsten, lowering the permissible transient energy density beyond which macroscopic surface modifications begin to occur.

  9. Damage-free plasma etching of porous organo-silicate low-k using micro-capillary condensation above -50 °C.

    Science.gov (United States)

    Chanson, R; Zhang, L; Naumov, S; Mankelevich, Yu A; Tillocher, T; Lefaucheux, P; Dussart, R; Gendt, S De; Marneffe, J-F de

    2018-01-30

    The micro-capillary condensation of a new high boiling point organic reagent (HBPO), is studied in a periodic mesoporous oxide (PMO) with ∼34 % porosity and k-value ∼2.3. At a partial pressure of 3 mT, the onset of micro-capillary condensation occurs around +20 °C and the low-k matrix is filled at -20 °C. The condensed phase shows high stability from -50 < T ≤-35 °C, and persists in the pores when the low-k is exposed to a SF 6 -based plasma discharge. The etching properties of a SF 6 -based 150W-biased plasma discharge, using as additive this new HBPO gas, shows that negligible damage can be achieved at -50 °C, with acceptable etch rates. The evolution of the damage depth as a function of time was studied without bias and indicates that Si-CH 3 loss occurs principally through Si-C dissociation by VUV photons.

  10. MAT1A variants modulate the effect of dietary fatty acids on plasma homocysteine concentrations and DNA damage

    Science.gov (United States)

    Dietary n-3 polyunsaturated fatty acids (PUFA) are associated with decreased plasma homocysteine (Hcy), an important biomarker for cardiovascular disease. Methionine adenosyltransferase (MAT1A) is an enzyme involved in formation of form S-adenosylmethionine during methionine metabolism. The objectiv...

  11. Thermolysin damages animal life through degradation of plasma proteins enhanced by rapid cleavage of serpins and activation of proteases.

    Science.gov (United States)

    Kong, Lulu; Lu, Anrui; Guan, Jingmin; Yang, Bing; Li, Muwang; Hillyer, Julián F; Ramarao, Nalini; Söderhäll, Kenneth; Liu, Chaoliang; Ling, Erjun

    2015-01-01

    Thermolysin, a metallopeptidase secreted by pathogenic microbes, is concluded as an important virulence factor due to cleaving purified host proteins in vitro. Using the silkworm Bombyx mori as a model system, we found that thermolysin injection into larvae induces the destruction of the coagulation response and the activation of hemolymph melanization, which results in larval death. Thermolysin triggers the rapid degradation of insect and mammalian plasma proteins at a level that is considerably greater than expected in vitro and/or in vivo. To more specifically explore the mechanism, thermolysin-induced changes to key proteins belonging to the insect melanization pathway were assessed as a window for observing plasma protein cleavage. The application of thermolysin induced the rapid cleavage of the melanization negative regulator serpin-3, but did not directly activate the melanization rate-limiting enzyme prophenoloxidase (PPO) or the terminal serine proteases responsible for PPO activation. Terminal serine proteases of melanization are activated indirectly after thermolysin exposure. We hypothesize that thermolysin induces the rapid degradation of serpins and the activation of proteases directly or indirectly, boosting uncontrolled plasma protein degradation in insects and mammalians. © 2014 Wiley Periodicals, Inc.

  12. Human circulating plasma DNA significantly decreases while lymphocyte DNA damage increases under chronic occupational exposure to low-dose gamma-neutron and tritium β-radiation.

    Science.gov (United States)

    Korzeneva, Inna B; Kostuyk, Svetlana V; Ershova, Liza S; Osipov, Andrian N; Zhuravleva, Veronika F; Pankratova, Galina V; Porokhovnik, Lev N; Veiko, Natalia N

    2015-09-01

    The blood plasma of healthy people contains cell-fee (circulating) DNA (cfDNA). Apoptotic cells are the main source of the cfDNA. The cfDNA concentration increases in case of the organism's cell death rate increase, for example in case of exposure to high-dose ionizing radiation (IR). The objects of the present research are the blood plasma and blood lymphocytes of people, who contacted occupationally with the sources of external gamma/neutron radiation or internal β-radiation of tritium N = 176). As the controls (references), blood samples of people, who had never been occupationally subjected to the IR sources, were used (N = 109). With respect to the plasma samples of each donor there were defined: the cfDNA concentration (the cfDNA index), DNase1 activity (the DNase1 index) and titre of antibodies to DNA (the Ab DNA index). The general DNA damage in the cells was defined (using the Comet assay, the tail moment (TM) index). A chronic effect of the low-dose ionizing radiation on a human being is accompanied by the enhancement of the DNA damage in lymphocytes along with a considerable cfDNA content reduction, while the DNase1 content and concentration of antibodies to DNA (Ab DNA) increase. All the aforementioned changes were also observed in people, who had not worked with the IR sources for more than a year. The ratio cfDNA/(DNase1×Ab DNA × TM) is proposed to be used as a marker of the chronic exposure of a person to the external low-dose IR. It was formulated the assumption that the joint analysis of the cfDNA, DNase1, Ab DNA and TM values may provide the information about the human organism's cell resistivity to chronic exposure to the low-dose IR and about the development of the adaptive response in the organism that is aimed, firstly, at the effective cfDNA elimination from the blood circulation, and, secondly - at survival of the cells, including the cells with the damaged DNA. Copyright © 2015. Published by Elsevier B.V.

  13. Quantification of cell-free DNA in blood plasma and DNA damage degree in lymphocytes to evaluate dysregulation of apoptosis in schizophrenia patients.

    Science.gov (United States)

    Ershova, E S; Jestkova, E M; Chestkov, I V; Porokhovnik, L N; Izevskaya, V L; Kutsev, S I; Veiko, N N; Shmarina, G; Dolgikh, O; Kostyuk, S V

    2017-04-01

    Oxidative DNA damage has been proposed as one of the causes of schizophrenia (SZ), and post mortem data indicate a dysregulation of apoptosis in SZ patients. To evaluate apoptosis in vivo we quantified the concentration of plasma cell-free DNA (cfDNA index, determined using fluorescence), the levels of 8-oxodG in cfDNA (immunoassay) and lymphocytes (FL1-8-oxodG index, flow cytometry) of male patients with acute psychotic disorders: paranoid SZ (total N = 58), schizophreniform (N = 11) and alcohol-induced (N = 14) psychotic disorder, and 30 healthy males. CfDNA in SZ (N = 58) does not change compared with controls. In SZ patients. Elevated levels of 8-oxodG were found in cfDNA (N = 58) and lymphocytes (n = 45). The main sources of cfDNA are dying cells with oxidized DNA. Thus, the cfDNA/FL1-8-oxodG ratio shows the level of apoptosis in damaged cells. Two subgroups were identified among the SZ patients (n = 45). For SZ-1 (31%) and SZ-2 (69%) median values of cfDNA/FL1-8-oxodG index are related as 1:6 (p DNA in the patient's body tissues and may be a contributing cause of acute psychotic disorder. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Surface damages of polycrystalline W and La2O3-doped W induced by high-flux He plasma irradiation

    Science.gov (United States)

    Liu, Lu; Li, Shouzhe; Liu, Dongping; Benstetter, Günther; Zhang, Yang; Hong, Yi; Fan, Hongyu; Ni, Weiyuan; Yang, Qi; Wu, Yunfeng; Bi, Zhenhua

    2018-04-01

    In this study, polycrystalline tungsten (W) and three oxide dispersed strengthened W with 0.1 vol %, 1.0 vol % and 5.0 vol % lanthanum trioxide (La2O3) were irradiated with low-energy (200 eV) and high-flux (5.8 × 1021 or 1.4 × 1022 ions/m2ṡs) He+ ions at elevated temperature. After He+ irradiation at a fluence of 3.0 × 1025/m2, their surface damages were observed by scanning electron microscopy, energy dispersive spectroscopy, scanning electron microscopy-electron backscatter diffraction, and conductive atomic force microscopy. Micron-sized holes were formed on the surface of W alloys after He+ irradiation at 1100 K. Analysis shows that the La2O3 grains doped in W were sputtered preferentially by the high-flux He+ ions when compared with the W grains. For irradiation at 1550 K, W nano-fuzz was formed at the surfaces of both polycrystalline W and La2O3-doped W. The thickness of the fuzz layers formed at the surface of La2O3-doped W is 40% lower than the one of polycrystalline W. The presence of La2O3 could suppress the diffusion and coalescence of He atoms inside W, which plays an important role in the growth of nanostructures fuzz.

  15. Systematics of quasi-elastic processes induced by heavy ions

    International Nuclear Information System (INIS)

    Baltz, A.J.

    1976-01-01

    An attempt is made to delineate the areas in the systematics of quasi-elastic processes induced by heavy ions that are well described theoretically from the specific features that seem not to be understood. One- and two-particle transfer reactions are considered. A general systematic seen in transfer angular distribution data and theory, some successes and failures of the DWBA and coupled-channels theories in describing heavy-ion-reaction data, and the specific example 232 Th( 40 Ar,K) and implications for deep inelastic reactions with even heavier projectiles such as Kr and Xe are considered

  16. Effective hydrogenation and surface damage induced by MW-ECR plasma of fine-grained polycrystalline silicon

    Energy Technology Data Exchange (ETDEWEB)

    Madi, D. [Institut d' Electronique du Solide et des Systemes (InESS)-CNRS/UdS, Strasbourg (France); Universite de Jijel, Laboratoire d' Etudes et de Modelisation en Electrotechnique (LAMEL), Faculte des Sciences de l' Ingenieur, Jijel (Algeria); Prathap, P.; Focsa, A.; Slaoui, A. [Institut d' Electronique du Solide et des Systemes (InESS)-CNRS/UdS, Strasbourg (France); Birouk, B. [Universite de Jijel, Laboratoire d' Etudes et de Modelisation en Electrotechnique (LAMEL), Faculte des Sciences de l' Ingenieur, Jijel (Algeria)

    2010-06-15

    This work reports the investigations on the effects of the hydrogenation process of thin film polycrystalline n{sup +}pp{sup +} mesa silicon cells using MW-ECR plasma in a conventional PECVD system. Different operating parameters such as MW-ECR power, annealing temperature and the doping level of the emitter region were varied. The n{sup +}-type emitter regions were obtained by phosphorus diffusion in a conventional furnace using an oxide doping source containing phosphorus (P507 or P509 solutions, from Filmtronics Inc.). The MW hydrogenation was carried out at a sample temperature of 400 C for 60 min. Both types of emitters formed from P507 and P509 showed V{sub oc} of 155 mV and 206 mV, which increased linearly to 305 mV and 331 mV, respectively, after hydrogenation when the MW power varied from 200 to 650 W. However, the sheet resistances of the n{sup +} emitter region showed a slight increase depending upon hydrogenation power because of its etching. In a further study, hydrogenated samples were annealed in neutral or forming gas (FG) and we observed interesting results on V{sub oc} in the presence of FG. The FG annealing temperature study revealed a strong dependence of V{sub oc} on MW power, which affected the etching level of emitter and emitter dopant concentration, which controls the diffusion of hydrogen ions during post-hydrogenation step. The results were explained in detail by combining the effects of MW power and dopant level of the emitter. (orig.)

  17. Flexible Transparent Electrode of Hybrid Ag-Nanowire/Reduced-Graphene-Oxide Thin Film on PET Substrate Prepared Using H2/Ar Low-Damage Plasma

    Directory of Open Access Journals (Sweden)

    Chi-Hsien Huang

    2017-01-01

    Full Text Available We employ H2/Ar low-damage plasma treatment (H2/Ar-LDPT to reduce graphene oxide (GO coating on a polymer substrate—polyethylene terephthalate (PET—with the assistance of atomic hydrogen (Hα at low temperature of 70 °C. Four-point probing and ultraviolet-visible (UV-Vis spectroscopy demonstrate that the conductivity and transmittance can be controlled by varying the H2/Ar flow rate, treatment time, and radio-frequency (RF power. Optical emission spectroscopy reveals that the Hα intensity depends on these processing parameters, which influence the removal of oxidative functional groups (confirmed via X-ray photoelectron spectroscopy to yield reduced GO (rGO. To further improve the conductivity while maintaining high transmittance, we introduce silver nanowires (AgNWs between rGO and a PET substrate to obtain a hybrid rGO/AgNWs/PET with a sheet resistance of ~100 Ω/sq and 81% transmittance. In addition, the hybrid rGO/AgNWs thin film also shows high flexibility and durability and is suitable for flexible and wearable electronics applications.

  18. Process induced residual stresses and distortions in pultrusion

    DEFF Research Database (Denmark)

    Baran, Ismet; Tutum, Cem Celal; Nielsen, Michael Wenani

    2013-01-01

    In the present study, a coupled 3D transient Eulerian thermo-chemical analysis together with a 2D plane strain Lagrangian mechanical analysis of the pultrusion process, which has not been considered until now, is carried out. The development of the process induced residual stresses and strains...... together with the distortions are predicted during the pultrusion in which the cure hardening instantaneous linear elastic (CHILE) approach is implemented. At the end of the process, tension stresses prevail for the inner region of the composite since the curing rate is higher here as compared to the outer...... regions where compression stresses are obtained. The separation between the heating die and the part due to shrinkage is also investigated using a mechanical contact formulation at the die-part interface. The proposed approach is found to be efficient and fast for the calculation of the residual stresses...

  19. Melatonin Treatment Reduces Oxidative Damage and Normalizes Plasma Pro-Inflammatory Cytokines in Patients Suffering from Charcot-Marie-Tooth Neuropathy: A Pilot Study in Three Children.

    Science.gov (United States)

    Chahbouni, Mariam; López, María Del Señor; Molina-Carballo, Antonio; de Haro, Tomás; Muñoz-Hoyos, Antonio; Fernández-Ortiz, Marisol; Guerra-Librero, Ana; Acuña-Castroviejo, Darío

    2017-10-14

    Charcot-Marie-Tooth neuropathy (CMT) is a motor and sensory neuropathy comprising a heterogeneous group of inherited diseases. The CMT1A phenotype is predominant in the 70% of CMT patients, with nerve conduction velocity reduction and hypertrophic demyelination. These patients have elevated oxidative stress and chronic inflammation. Currently, there is no effective cure for CMT; herein, we investigated whether melatonin treatment may reduce the inflammatory and oxidative damage in CMT1A patients. Three patients, aged 8-10 years, were treated with melatonin (60 mg at 21:00 h plus 10 mg at 09:00 h), and plasma levels of lipid peroxidation (LPO), nitrites (NOx), IL-1β, IL-2, IL-6, TNF-α, INF-γ, oxidized to reduced glutathione (GSSG/GSH) ratio, and the activities of superoxide dismutase (SOD), glutathione-S transferase (GST), glutathione peroxidase (GPx), and reductase (GRd), were determined in erythrocytes at 3 and 6 months of treatment. Healthy age- and sex-matched subjects were used as controls. The results showed increased activities of SOD, GST, GPx, and GRd in CMT1A patients, which were reduced at 3 and 6 months of treatment. The GSSG/GSH ratio significantly increased in the patients, returning to control values after melatonin treatment. The inflammatory process was confirmed by the elevation of all proinflammatory cytokines measured, which were also normalized by melatonin. LPO and NOx, which also were elevated in the patients, were normalized by melatonin. The results document beneficial effects of the use of melatonin in CMT1A patients to reduce the hyperoxidative and inflammatory condition, which may correlate with a reduction of the degenerative process.

  20. Tokamak ARC damage

    International Nuclear Information System (INIS)

    Murray, J.G.; Gorker, G.E.

    1985-01-01

    Tokamak fusion reactors will have large plasma currents of approximately 10 MA with hundreds of megajoules stored in the magnetic fields. When a major plasma instability occurs, the disruption of the plasma current induces voltage in the adjacent conducting structures, giving rise to large transient currents. The induced voltages may be sufficiently high to cause arcing across sector gaps or from one protruding component to another. This report reviews a tokamak arcing scenario and provides guidelines for designing tokamaks to minimize the possibility of arc damage

  1. Tokamak ARC damage

    Energy Technology Data Exchange (ETDEWEB)

    Murray, J.G.; Gorker, G.E.

    1985-01-01

    Tokamak fusion reactors will have large plasma currents of approximately 10 MA with hundreds of megajoules stored in the magnetic fields. When a major plasma instability occurs, the disruption of the plasma current induces voltage in the adjacent conducting structures, giving rise to large transient currents. The induced voltages may be sufficiently high to cause arcing across sector gaps or from one protruding component to another. This report reviews a tokamak arcing scenario and provides guidelines for designing tokamaks to minimize the possibility of arc damage.

  2. The effect of high-flux H plasma exposure with simultaneous transient heat loads on tungsten surface damage and power handling

    NARCIS (Netherlands)

    van Eden, G. G.; Morgan, T. W.; van der Meiden, H. J.; J Matejicek,; T Chraska,; Wirtz, M.; De Temmerman, G.

    2014-01-01

    The performance of the full-W ITER divertor may be significantly affected by the interplay between steady-state plasma exposure and transient events. To address this issue, the effect of a high-flux H plasma on the thermal shock response of W to ELM-like transients has been investigated. Transient

  3. Magnetic reconnection processes induced by a CME expansion

    Directory of Open Access Journals (Sweden)

    A. Bemporad

    2008-10-01

    Full Text Available On 10–11 December 2005 a slow CME occurred in the Western Hemisphere in between two coronal streamers. SOHO/MDI magnetograms show a multipolar magnetic configuration at the photosphere: a complex of active regions located at the CME source and two bipoles at the base of the lateral coronal streamers. White light observations reveal that the CME expansion affects both of them and induces the release of plasma within or close to the nearby streamers. These transient phenomena are possibly due to magnetic reconnections induced by the CME expansion and occurring inside the streamer current sheet or between the CME flanks and the streamer. These events have been observed by the SOHO/UVCS with the spectrometer slit centered at 1.8 R⊙ over about a full day. In this work we focus on the interaction between the CME and the streamer: the UVCS spectral interval included UV lines from ions at different temperatures of maximum formation such as O VI, Si XIII and Al Xi. These data gave us the opportunity to infer the evolution of plasma temperature and density at the reconnection site and adjacent regions. These are relevant to characterize secondary reconnection processes occurring during a CME development.

  4. Plasma Concentration of Biomarkers Reflecting Endothelial Cell- and Glycocalyx Damage are Increased in Patients with Suspected St-Elevation Myocardial Infarction Complicated by Cardiogenic Shock

    DEFF Research Database (Denmark)

    Frydland, Martin; Ostrowski, Sisse Rye; Møller, Jacob Eifer

    2018-01-01

    BACKGROUND: Mortality in ST-elevation myocardial infarction (STEMI)-patients developing cardiogenic shock (CS) during hospitalization is high. Catecholamines, ischemia, and inflammation (parameters present in CS) affect the endothelium. We hypothesized that plasma level of biomarkers reflecting e...

  5. Evaluation of hemostasis parameters and the role of the oxidative damage to plasma proteins in the modulation of hemostasis in patients with nephrolithiasis before and after extracorporeal shock wave lithotripsy.

    Directory of Open Access Journals (Sweden)

    Paweł Woźniak

    Full Text Available Extracorporeal shock wave lithotripsy (ESWL is a commonly-used method in urology, which may modulate hemostasis and may induce lipid peroxidation in patients with nephrolithiasis. However, previous studies only examine changes occurring in patients 30-240 min after ESWL. The main aim of the present study was to determine whether oxidative stress may modulate the hemostatic activity of plasma in patients with nephrolithiasis before ESWL and the day after treatment ESWL. This will be performed by measuring selected parameters of hemostasis in these patients, both before ESWL and the following day, and assessing the level of oxidative damage to plasma proteins in these patients by measuring two biomarkers.Twelve patients with nephrolithiasis and 10 healthy participants were included. The following parameters of hemostasis were measured: the activated partial thromboplastin time (APTT, prothrombin time (PT, and thrombin time (TT of plasma, the level of fibrinogen, the level of D-dimer and blood platelet count. In addition, two selected biomarkers of oxidative stress were measured: protein carbonylation level and the number of protein thiol groups.No difference was observed between patients with nephrolithiasis before and after ESWL and healthy controls with regard to PT, TT or APTT. Fibrinogen concentration and blood platelet count were lower in the nephrolithiasis patients in the period after ESWL than before ESWL. The nephrolithiasis patients demonstrated elevated D-dimer concentration after ESWL. However, although oxidative damage was observed in the plasma proteins in the nephrolithiasis patients, this was not influenced by ESWL.Oxidative stress may induce changes of hemostasis in patients with nephrolithiasis, both before and after ESWL. In addition, changes of hemostasis parameters such as fibrinogen, blood platelet count and D-dimer level can be observed in these patients, especially after ESWL, and this may suggest that ESWL modulates

  6. Evaluation of hemostasis parameters and the role of the oxidative damage to plasma proteins in the modulation of hemostasis in patients with nephrolithiasis before and after extracorporeal shock wave lithotripsy.

    Science.gov (United States)

    Woźniak, Paweł; Kontek, Bogdan; Różański, Waldemar; Olas, Beata

    2017-01-01

    Extracorporeal shock wave lithotripsy (ESWL) is a commonly-used method in urology, which may modulate hemostasis and may induce lipid peroxidation in patients with nephrolithiasis. However, previous studies only examine changes occurring in patients 30-240 min after ESWL. The main aim of the present study was to determine whether oxidative stress may modulate the hemostatic activity of plasma in patients with nephrolithiasis before ESWL and the day after treatment ESWL. This will be performed by measuring selected parameters of hemostasis in these patients, both before ESWL and the following day, and assessing the level of oxidative damage to plasma proteins in these patients by measuring two biomarkers. Twelve patients with nephrolithiasis and 10 healthy participants were included. The following parameters of hemostasis were measured: the activated partial thromboplastin time (APTT), prothrombin time (PT), and thrombin time (TT) of plasma, the level of fibrinogen, the level of D-dimer and blood platelet count. In addition, two selected biomarkers of oxidative stress were measured: protein carbonylation level and the number of protein thiol groups. No difference was observed between patients with nephrolithiasis before and after ESWL and healthy controls with regard to PT, TT or APTT. Fibrinogen concentration and blood platelet count were lower in the nephrolithiasis patients in the period after ESWL than before ESWL. The nephrolithiasis patients demonstrated elevated D-dimer concentration after ESWL. However, although oxidative damage was observed in the plasma proteins in the nephrolithiasis patients, this was not influenced by ESWL. Oxidative stress may induce changes of hemostasis in patients with nephrolithiasis, both before and after ESWL. In addition, changes of hemostasis parameters such as fibrinogen, blood platelet count and D-dimer level can be observed in these patients, especially after ESWL, and this may suggest that ESWL modulates hemostasis. By

  7. Improvement of interfacial adhesion and nondestructive damage evaluation for plasma-treated PBO and Kevlar fibers/epoxy composites using micromechanical techniques and surface wettability.

    Science.gov (United States)

    Park, Joung-Man; Kim, Dae-Sik; Kim, Sung-Ryong

    2003-08-15

    Comparison of interfacial properties and microfailure mechanisms of oxygen-plasma treated poly(p-phenylene-2,6-benzobisoxazole (PBO, Zylon) and poly(p-phenylene terephthalamide) (PPTA, Kevlar) fibers/epoxy composites were investigated using a micromechanical technique and nondestructive acoustic emission (AE). The interfacial shear strength (IFSS) and work of adhesion, Wa, of PBO or Kevlar fiber/epoxy composites increased with oxygen-plasma treatment, due to induced hydrogen and covalent bondings at their interface. Plasma-treated Kevlar fiber showed the maximum critical surface tension and polar term, whereas the untreated PBO fiber showed the minimum values. The work of adhesion and the polar term were proportional to the IFSS directly for both PBO and Kevlar fibers. The microfibril fracture pattern of two plasma-treated fibers appeared obviously. Unlike in slow cooling, in rapid cooling, case kink band and kicking in PBO fiber appeared, whereas buckling in the Kevlar fiber was observed mainly due to compressive and residual stresses. Based on the propagation of microfibril failure toward the core region, the number of AE events for plasma-treated PBO and Kevlar fibers increased significantly compared to the untreated case. The results of nondestructive AE were consistent with microfailure modes.

  8. Damage of target edges in brush-like geometry in the course of ELM-like plasma pulses in QSPA Kh-50

    Science.gov (United States)

    Makhlaj, V. A.; Garkusha, I. E.; Aksenov, N. N.; Bazylev, B.; Byrka, O. V.; Chebotarev, V. V.; Landman, I.; Herashchenko, S. S.; Staltsov, V. V.

    2015-08-01

    Castellated edges of macro-brush armour elements of ITER divertor can be a source of molten/solid dust particles which are injected into the plasma. The targets that combined in brush-like geometry have been irradiated under different inclination angles in QSPA Kh-50. The cubic brushes element has typical size of 1 cm. The titanium was used to investigate dynamics of mountains' formation. The onset of dust particles ejection from the exposed castellated targets has been studied. Formation of resolidified bridges through the gaps of brush-like targets due to the melt motion is studied in dynamics. With following plasma impacts such resolidified bridges became additional source of dust.

  9. Damage of target edges in brush-like geometry in the course of ELM-like plasma pulses in QSPA Kh-50

    International Nuclear Information System (INIS)

    Makhlaj, V.A.; Garkusha, I.E.; Aksenov, N.N.; Bazylev, B.; Byrka, O.V.; Chebotarev, V.V.; Landman, I.; Herashchenko, S.S.; Staltsov, V.V.

    2015-01-01

    Castellated edges of macro-brush armour elements of ITER divertor can be a source of molten/solid dust particles which are injected into the plasma. The targets that combined in brush-like geometry have been irradiated under different inclination angles in QSPA Kh-50. The cubic brushes element has typical size of 1 cm. The titanium was used to investigate dynamics of mountains’ formation. The onset of dust particles ejection from the exposed castellated targets has been studied. Formation of resolidified bridges through the gaps of brush-like targets due to the melt motion is studied in dynamics. With following plasma impacts such resolidified bridges became additional source of dust

  10. Damage of target edges in brush-like geometry in the course of ELM-like plasma pulses in QSPA Kh-50

    Energy Technology Data Exchange (ETDEWEB)

    Makhlaj, V.A., E-mail: makhlay@ipp.kharkov.ua [Institute of Plasma Physics of the NSC KIPT, 61108 Kharkov (Ukraine); Garkusha, I.E.; Aksenov, N.N. [Institute of Plasma Physics of the NSC KIPT, 61108 Kharkov (Ukraine); Bazylev, B. [Karlsruhe Institute of Technology (KIT), IHM, 76344 Karlsruhe (Germany); Byrka, O.V.; Chebotarev, V.V. [Institute of Plasma Physics of the NSC KIPT, 61108 Kharkov (Ukraine); Landman, I. [Karlsruhe Institute of Technology (KIT), IHM, 76344 Karlsruhe (Germany); Herashchenko, S.S.; Staltsov, V.V. [Institute of Plasma Physics of the NSC KIPT, 61108 Kharkov (Ukraine)

    2015-08-15

    Castellated edges of macro-brush armour elements of ITER divertor can be a source of molten/solid dust particles which are injected into the plasma. The targets that combined in brush-like geometry have been irradiated under different inclination angles in QSPA Kh-50. The cubic brushes element has typical size of 1 cm. The titanium was used to investigate dynamics of mountains’ formation. The onset of dust particles ejection from the exposed castellated targets has been studied. Formation of resolidified bridges through the gaps of brush-like targets due to the melt motion is studied in dynamics. With following plasma impacts such resolidified bridges became additional source of dust.

  11. Differential effects of fresh frozen plasma and normal saline on secondary brain damage in a large animal model of polytrauma, hemorrhage and traumatic brain injury

    DEFF Research Database (Denmark)

    Hwabejire, John O; Imam, Ayesha M; Jin, Guang

    2013-01-01

    We have previously shown that the extent of traumatic brain injury (TBI) in large animal models can be reduced with early infusion of fresh frozen plasma (FFP), but the precise mechanisms remain unclear. In this study, we investigated whether resuscitation with FFP or normal saline differed in th...... in their effects on cerebral metabolism and excitotoxic secondary brain injury in a model of polytrauma, TBI, and hemorrhagic shock....

  12. ELM-induced melting: assessment of shallow melt layer damage and the power handling capability of tungsten in a linear plasma device

    Czech Academy of Sciences Publication Activity Database

    Morgan, T.W.; van Eden, G.G.; de Kruif, T.M.; van den Berg, A.; Matějíček, Jiří; Chráska, Tomáš; De Temmerman, G.

    -, T159 (2014), 014022-014022 ISSN 0031-8949. [International Conference on Plasma-Facing Materials and Components for Fusion Applications/14./. Jülich, 13.05.2013-17.05.2013] Institutional support: RVO:61389021 Keywords : melting * tungsten * ELMs * divertor * ITER * DEMO Subject RIV: JG - Metallurgy Impact factor: 1.126, year: 2014 http://iopscience.iop.org/1402-4896/2014/T159/014022/pdf/1402-4896_2014_T159_014022.pdf

  13. Experimental studies and modeling of X-Rays multilayer mirrors damages under high X-Ray flux generated by a laser-plasma experiment; Etude experimentale et modelisation de l`endommagement des miroirs multicouches X soumis a de hauts flux de rayonnement X dans le cadre de l`experience plasma-laser

    Energy Technology Data Exchange (ETDEWEB)

    Le Guern, F

    1996-05-24

    We have been able with this work to point out characterize X-Rays multilayers mirrors damages. We have designed two experimental set-up which have been installed in the HELIOTROPE experimental chamber of the OCTAL facility located at the CEA in Limeil-Valenton. We have demonstrated that X-Rays multilayer mirrors properties were drastically modified by X-Rays emitted by a golden laser plasma. We have, more precisely, introduced the damage speed concept to quantify the expansion of the multilayer mirror period. We have been able to classify different multilayer mirrors in function of their resistance to damage and we have demonstrated that a silicate layer deposited on a mirror allowed to increase his resistance to damage. In a second part we have developed a simulation tool in order to simulate the X-Rays multilayer mirrors optical properties modifications. We have therefore coupled a thermo-mechanic code with an optical program. The results of the simulations are in a rather good agreement with the experiments and can be used to predict, before experiments, the multilayer mirror behavior under X-Rays irradiation. (author) 55 refs.

  14. Modeling of fuel retention in the pre-damaged tungsten with MeV W ions after exposure to D plasma

    Directory of Open Access Journals (Sweden)

    Zhenhou Wang

    2017-12-01

    Full Text Available Modeling of high-Z ion irradiated-induced damages on fuel retention inside tungsten (W material has been performed in this work. The upgraded Hydrogen Isotope Inventory Processes Code (HIIPC is applied to model the deuterium (D retention inside pre-damaged W during exposed to low-energy D flux, and the W is pre-irradiated by 20 MeV W-ion before exposed to D flux. Three types of trap, i.e. mono-vacancies, dislocations and grain boundary vacancies, are considered in the present model. The mono-vacancy defects induced by energetic W ions are calculated by SRIM code. First, the model is validated against the available experimental data under the same D flux exposure conditions, showing the reasonable agreement. Then, the effect of radiation-induced defects produced by pre-exposed energetic W-ion with different energy and fluence on the fuel retention are studied, confirming that the irradiation-induced traps play a dominated role on the fuel retention in the surface of the material (∼ micrometer. Finally, the effects of different type of defect, D fluence, and wall temperature on the fuel retention are discussed systemically, and these modeling results are in well agreement with the previous studies.

  15. Packaging materials for plasma sterilization with the flowing afterglow of an N{sub 2}-O{sub 2} discharge: damage assessment and inactivation efficiency of enclosed bacterial spores

    Energy Technology Data Exchange (ETDEWEB)

    Levif, P; Moisan, M; Soum-Glaude, A [Groupe de Physique des Plasmas, Universite de Montreal, CP 6128, Succursale Centre-Ville, Montreal H3C 3J7, Quebec (Canada); Seguin, J; Barbeau, J, E-mail: michel.moisan@umontreal.ca [Faculte de Medecine Dentaire, Laboratoire de Controle des Infections, Universite de Montreal, CP 6128, Montreal H3C 3J7, Quebec (Canada)

    2011-10-12

    In conventional sterilization methods (steam, ozone, gaseous chemicals), after their proper cleaning, medical devices are wrapped/enclosed in adequate packaging materials, then closed/sealed before initiating the sterilization process: these packaging materials thus need to be porous. Gaseous plasma sterilization being still under development, evaluation and comparison of packaging materials have not yet been reported in the literature. To this end, we have subjected various porous packagings used with conventional sterilization systems to the N{sub 2}-O{sub 2} flowing afterglow and also a non-porous one to evaluate and compare their characteristics towards the inactivation of B. atrophaeus endospores deposited on a Petri dish and enclosed in such packagings. Because the sterilization process with the N{sub 2}-O{sub 2} discharge afterglow is conducted under reduced-pressure conditions, non-porous pouches can be sealed only after returning to atmospheric pressure. All the tests were therefore conducted with one end of the packaging freely opened, post-sealing being required. The features of these packaging materials, namely mass loss, resistance, toxicity to human cells as well as some characteristics specific to the plasma method used such as ultraviolet transparency, were examined before and after exposure to the flowing afterglow. All of our results show that the non-porous packaging considered is much more suitable than the conventionally used porous ones as far as ensuring an efficient and low-damage sterilization process with an N{sub 2}-O{sub 2} plasma-afterglow is concerned.

  16. Mirror plasma apparatus

    International Nuclear Information System (INIS)

    Moir, R.W.

    1981-01-01

    A mirror plasma apparatus which utilizes shielding by arc discharge to form a blanket plasma and lithium walls to reduce neutron damage to the wall of the apparatus. An embodiment involves a rotating liquid lithium blanket for a tandem mirror plasma apparatus wherein the first wall of the central mirror cell is made of liquid lithium which is spun with angular velocity great enough to keep the liquid lithium against the first material wall, a blanket plasma preventing the lithium vapor from contaminating the plasma

  17. Evaluation of plasma sphingosine 1-phosphate, hepcidin and cardiovascular damage biomarkers (cardiac troponin I and homocysteine) in rats infected with brucellosis and vaccinated (Rev-1, RB-51).

    Science.gov (United States)

    Azimzadeh, Kaveh; Nasrollahi Nargesabad, Reza; Vousooghi, Nasim

    2017-08-01

    Brucellosis is known as one of important zoonosis. Studying the histological and biochemical effects of the disease could help to increase our knowledge about it. The aim of the present study was to evaluate changes of plasma parameters after intraperitoneal injection of two species of Brucella (Brucella melitensis and Brucella abortus) and two vaccines (Rev-1, RB-51) in the rat. Forty male rats were divided into five groups (n = 8 in each group). Two groups received suspensions of Brucella abortus and Brucella melitensis and two other groups were injected intraperitoneally with two mentioned vaccines and the last group received only distilled water. The results showed a significant increase in sphingosine 1-phosphate, Malondialdehyde, hepcidin, homocysteine, cardiac troponin I and copper levels and a considerable decrease in the levels of iron and zinc (P ≤ 0.01) in infected groups compared to the control animals. In vaccinated groups, hepcidin was increased but other parameters were not changed in comparison to the control group. It can be concluded that increase of homocysteine and cardiac troponin I in brucellosis could be a warning for cardiac adverse effects. Besides, increase of sphingosine 1-phosphate probably indicates its stimulant and modulatory effects in anti- Brucellosis biochemical pathways of the host. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. A fresh frozen plasma to red blood cell transfusion ratio of 1:1 mitigates lung injury in a rat model of damage control resuscitation for hemorrhagic shock.

    Science.gov (United States)

    Zhao, Jingxiang; Pan, Guocheng; Wang, Bo; Zhang, Yuhua; You, Guoxing; Wang, Ying; Gao, Dawei; Zhou, Hong; Zhao, Lian

    2015-06-01

    We aimed to evaluate the effects of resuscitation with different ratios of fresh frozen plasma (FFP) to red blood cells (RBCs) on pulmonary inflammatory injury and to illuminate the beneficial effects of FFP on lung protection compared with lactated ringers (LR) using a rat model of hemorrhagic shock. Rats underwent pressure-controlled hemorrhage for 60 minutes and were then transfused with LR for initial resuscitation. Thereafter, the rats were transfused with varying ratios of FFP:RBC (1:4, 1:2, 1:1, and 2:1) or LR:RBC (1:1) to hold their mean arterial pressure (MAP) at 100 ± 3 mm Hg for 30 minutes. After 4 hours of observation, lung tissue was harvested to determine the wet/dry weight, myeloperoxidase levels, tumor necrosis factor α levels, macrophage inflammatory protein 2 (MIP-2) levels, inducible nitric oxide synthase activity, and the nuclear factor κB p65 DNA-binding activity. With an increase in the FFP:RBC ratio, the volume of required RBC to maintain the target MAP decreased. The MAP value in each group was not significantly different during the whole experiment period. The values of the wet/dry weights and MIP-2 were significantly lower in the FFP:RBC = 1:1 group than the other groups (P ratio of FFP to RBC results in decreased lung inflammation. Compared with LR, FFP could further mitigate lung inflammatory injury. Copyright © 2015. Published by Elsevier Inc.

  19. Prediction of process induced shape distortions and residual stresses in large fibre reinforced composite laminates

    DEFF Research Database (Denmark)

    Nielsen, Michael Wenani

    to their accuracy in predicting process induced strain and stress development in thick section laminates during curing, and more precisely regarding the evolution of the composite thermoset polymer matrix mechanical behaviour during the phase transitions experienced during curing. The different constitutive...

  20. Numerical and semi-analytical modelling of the process induced distortions in pultrusion

    DEFF Research Database (Denmark)

    Baran, Ismet; Carlone, P.; Hattel, Jesper Henri

    2013-01-01

    , the transient distortions are inferred adopting a semi-analytical procedure, i.e. post processing numerical results by means of analytical methods. The predictions of the process induced distortion development using the aforementioned methods are found to be qualitatively close to each other...

  1. Radiation damage

    CERN Document Server

    Heijne, Erik H M; CERN. Geneva

    1998-01-01

    a) Radiation damage in organic materials. This series of lectures will give an overview of radiation effects on materials and components frequently used in accelerator engineering and experiments. Basic degradation phenomena will be presented for organic materials with comprehensive damage threshold doses for commonly used rubbers, thermoplastics, thermosets and composite materials. Some indications will be given for glass, scintillators and optical fibres. b) Radiation effects in semiconductor materials and devices. The major part of the time will be devoted to treat radiation effects in semiconductor sensors and the associated electronics, in particular displacement damage, interface and single event phenomena. Evaluation methods and practical aspects will be shown. Strategies will be developed for the survival of the materials under the expected environmental conditions of the LHC machine and detectors. I will describe profound revolution in our understanding of black holes and their relation to quantum me...

  2. Interaction of elementary damage processes and their contribution to neutron damage of ceramics

    International Nuclear Information System (INIS)

    Itoh, Noriaki

    1989-01-01

    Specific features of radiation damage of ceramics as compared with those of metals are discussed. It is pointed out that the electronic excitation gives considerable contribution to radiation damage of ceramics not only by itself but also through interaction with knock-on processes. In the talk first I mention briefly the elementary damage processes; the knock-on process and the processes induced by electronic excitation; the latter is of particularly importance in ceramics because of large energy quantums. Then I discuss possible interactions between these elementary processes; why they may contribute to radiation damage and in what situation they are induced. The types of interactions discussed include those between knock-on processes, between electronic excitation and knock-on processes and between processes induced by electronic excitation. Experimental results which prove directly the significance of such interactions are also described. Importance of such interactions in radiation damage of ceramics and their relevance to other phenomena, such as laser damage, is emphasized. Possible experimental techniques, including those which uses high energy neutron sources, are described. (author)

  3. Tort Damages

    NARCIS (Netherlands)

    L.T. Visscher (Louis)

    2008-01-01

    textabstractAbstract: In this Chapter, I provide an overview of Law and Economics literature regarding tort damages. Where necessary, attention is also spent to rules of tort liability. Both types of rules provide behavioral incentives to both injurers and victims, with respect to their level of

  4. Influence of processing-induced phase transformations on the dissolution of theophylline tablets

    OpenAIRE

    Debnath, Smita; Suryanarayanan, Raj

    2004-01-01

    The object of this investigation was to evaluate the influence of (1) processing-induced decrease in drug crystallinity and (2) phase transformations during dissolution, on the per-formance of theophylline tablet formulations. Anhydrous theophylline underwent multiple transformations (anhydrate »hydrate»anhydrate) during processing. Although the crystallinity of the anhydrate obtained finally was lower than that of the unprocessed drug, it dissolved at a slower rate. This decrease in dissolut...

  5. Irradiation damage

    Energy Technology Data Exchange (ETDEWEB)

    Howe, L.M

    2000-07-01

    There is considerable interest in irradiation effects in intermetallic compounds from both the applied and fundamental aspects. Initially, this interest was associated mainly with nuclear reactor programs but it now extends to the fields of ion-beam modification of metals, behaviour of amorphous materials, ion-beam processing of electronic materials, and ion-beam simulations of various kinds. The field of irradiation damage in intermetallic compounds is rapidly expanding, and no attempt will be made in this chapter to cover all of the various aspects. Instead, attention will be focused on some specific areas and, hopefully, through these, some insight will be given into the physical processes involved, the present state of our knowledge, and the challenge of obtaining more comprehensive understanding in the future. The specific areas that will be covered are: point defects in intermetallic compounds; irradiation-enhanced ordering and irradiation-induced disordering of ordered alloys; irradiation-induced amorphization.

  6. Irradiation damage

    International Nuclear Information System (INIS)

    Howe, L.M.

    2000-01-01

    There is considerable interest in irradiation effects in intermetallic compounds from both the applied and fundamental aspects. Initially, this interest was associated mainly with nuclear reactor programs but it now extends to the fields of ion-beam modification of metals, behaviour of amorphous materials, ion-beam processing of electronic materials, and ion-beam simulations of various kinds. The field of irradiation damage in intermetallic compounds is rapidly expanding, and no attempt will be made in this chapter to cover all of the various aspects. Instead, attention will be focused on some specific areas and, hopefully, through these, some insight will be given into the physical processes involved, the present state of our knowledge, and the challenge of obtaining more comprehensive understanding in the future. The specific areas that will be covered are: point defects in intermetallic compounds; irradiation-enhanced ordering and irradiation-induced disordering of ordered alloys; irradiation-induced amorphization

  7. Tactical Damage Control Resuscitation.

    Science.gov (United States)

    Fisher, Andrew D; Miles, Ethan A; Cap, Andrew P; Strandenes, Geir; Kane, Shawn F

    2015-08-01

    Recently the Committee on Tactical Combat Casualty Care changed the guidelines on fluid use in hemorrhagic shock. The current strategy for treating hemorrhagic shock is based on early use of components: Packed Red Blood Cells (PRBCs), Fresh Frozen Plasma (FFP) and platelets in a 1:1:1 ratio. We suggest that lack of components to mimic whole blood functionality favors the use of Fresh Whole Blood in managing hemorrhagic shock on the battlefield. We present a safe and practical approach for its use at the point of injury in the combat environment called Tactical Damage Control Resuscitation. We describe pre-deployment preparation, assessment of hemorrhagic shock, and collection and transfusion of fresh whole blood at the point of injury. By approaching shock with goal-directed therapy, it is possible to extend the period of survivability in combat casualties. Reprint & Copyright © 2015 Association of Military Surgeons of the U.S.

  8. Damaged Skylab

    Science.gov (United States)

    1973-01-01

    The Saturn V vehicle, carrying the unmarned orbital workshop for the Skylab-1 mission, lifted off successfully and all systems performed normally. Sixty-three seconds into the flight, engineers in the operation support and control center saw an unexpected telemetry indication that signalled that damages occurred on one solar array and the micrometeoroid shield during the launch. The micrometeoroid shield, a thin protective cylinder surrounding the workshop protecting it from tiny space particles and the sun's scorching heat, ripped loose from its position around the workshop. This caused the loss of one solar wing and jammed the other. Still unoccupied, the Skylab was stricken with the loss of the heat shield and sunlight beat mercilessly on the lab's sensitive skin. Internal temperatures soared, rendering the station uninhabitable, threatening foods, medicines, films, and experiments. This image, taken during a fly-around inspection by the Skylab-2 crew, shows a crippled Skylab in orbit. The crew found their home in space to be in serious shape; the heat shield gone, one solar wing gone, and the other jammed. The Marshall Space Flight Center (MSFC) developed, tested, rehearsed, and approved three repair options. These options included a parasol sunshade and a twin-pole sunshade to restore the temperature inside the workshop, and a set of metal cutting tools to free the jammed solar panel.

  9. Structural damage

    International Nuclear Information System (INIS)

    Gray, R.E.; Bruhn, R.W.

    1992-01-01

    Virtually all structures show some signs of distress due to deterioration of the building components, to changed loads, or to changed support conditions. Changed support conditions result from ground movements. In mining regions many cases of structural distress are attributed to mining without considering alternative causes. This is particularly true of coal mining since it occurs under extensive areas. Coal mining is estimated to have already undermined more than eight million acres and may eventually undermine 40 million acres in the United States. Other nonmetal and metal underground mines impact much smaller areas. Although it is sometimes difficult, even with careful study, to identify the actual cause of damage, persons responsible for underground coal mining should at least be aware of possible causes of building stress other than mine subsidence. This paper presents information on distress to structures and briefly reviews a number of causes of ground movements other than subsidence: Mass movements, dissolution, erosion, frost action, shrinking and swelling, yield into excavations and compressibility

  10. Radiation damage prediction system using damage function

    International Nuclear Information System (INIS)

    Tanaka, Yoshihisa; Mori, Seiji

    1979-01-01

    The irradiation damage analysis system using a damage function was investigated. This irradiation damage analysis system consists of the following three processes, the unfolding of a damage function, the calculation of the neutron flux spectrum of the object of damage analysis and the estimation of irradiation effect of the object of damage analysis. The damage function is calculated by applying the SAND-2 code. The ANISN and DOT3, 5 codes are used to calculate neutron flux. The neutron radiation and the allowable time of reactor operation can be estimated based on these calculations of the damage function and neutron flux. The flow diagram of the process of analyzing irradiation damage by a damage function and the flow diagram of SAND-2 code are presented, and the analytical code for estimating damage, which is determined with a damage function and a neutron spectrum, is explained. The application of the irradiation damage analysis system using a damage function was carried out to the core support structure of a fast breeder reactor for the damage estimation and the uncertainty evaluation. The fundamental analytical conditions and the analytical model for this work are presented, then the irradiation data for SUS304, the initial estimated values of a damage function, the error analysis for a damage function and the analytical results are explained concerning the computation of a damage function for 10% total elongation. Concerning the damage estimation of FBR core support structure, the standard and lower limiting values of damage, the permissible neutron flux and the allowable years of reactor operation are presented and were evaluated. (Nakai, Y.)

  11. Distorted wave calculations for electron loss process induced by bare ion impact on biological targets

    International Nuclear Information System (INIS)

    Monti, J.M.; Tachino, C.A.; Hanssen, J.; Fojón, O.A.; Galassi, M.E.; Champion, C.; Rivarola, R.D.

    2014-01-01

    Distorted wave models are employed to investigate the electron loss process induced by bare ions on biological targets. The two main reactions which contribute to this process, namely, the single electron ionization as well as the single electron capture are here studied. In order to further assess the validity of the theoretical descriptions used, the influence of particular mechanisms are studied, like dynamic screening for the case of electron ionization and energy deposition on the target by the impacting projectile for the electron capture one. Results are compared with existing experimental data. - Highlights: ► Distorted wave models are used to investigate ion-molecule collisions. ► Differential and total cross-sections for capture and ionization are evaluated. ► The influence of dynamic screening is determined. ► Capture reaction dominates the mean energy deposited by the projectile on the target

  12. Process-induced degradation of bioresorbable PDLGA in bone tissue scaffold production.

    Science.gov (United States)

    Little, H; Clarke, S A; Cunningham, E; Buchanan, F

    2017-12-28

    Process-induced degradation of clinically relevant resorbable polymers was investigated for two thermal techniques, filament extrusion followed by fused deposition modelling (FDM). The aim was to develop a clear understanding of the relationship between temperature, processing time and resultant process-induced degradation. This acts to address the current knowledge gap in studies involving thermal processing of resorbable polymers. Poly(DL-lactide-co-glycolide) (PDLGA) was chosen for its clinically relevant resorption properties. Furthermore, a comparative study of controlled thermal exposure was conducted through compression moulding PDLGA at a selected range of temperatures (150-225 °C) and times (0.5-20 min). Differential scanning calorimetry (DSC) and gel permeation chromatography (GPC) were used to characterise thermally induced degradation behaviour. DSC proved insensitive to degradation effects, whereas GPC demonstrated distinct reductions in molecular weight allowing for the quantification of degradation. A near-exponential pattern of degradation was identified. Through the application of statistical chain scission equations, a predictive plot of theoretical degradation was created. Thermal degradation was found to have a significant effect on the molecular weight with a reduction of up to 96% experienced in the controlled processing study. The proposed empirical model may assist prediction of changes in molecular weight, however, accuracy limitations are highlighted for twin-screw extrusion, accredited to high-shear mixing. The results from this study highlight the process sensitivity of PDLGA and proposes a methodology for quantification and prediction, which contributes to efforts in understanding the influence of manufacture on performance of degradable medical implants.

  13. In situ measurement using FBGs of process-induced strains during curing of thick glass/epoxy laminate plate

    DEFF Research Database (Denmark)

    Nielsen, Michael Wenani; Schmidt, Jacob Wittrup; Hattel, Jesper Henri

    2012-01-01

    For large composite structures, such as wind turbine blades, thick laminates are required to withstand large in-service loads. During the manufacture of thick laminates, one of the challenges met is avoiding process-induced shape distortions and residual stresses. In this paper, embedded fibre...... Bragg grating sensors are used to monitor process-induced strains during vacuum infusion of a thick glass/epoxy laminate. The measured strains are compared with predictions from a cure hardening instantaneous linear elastic (CHILE) thermomechanical numerical model where different mechanical boundary...... conditions are employed. The accuracy of the CHILE model in predicting process-induced internal strains, in what is essentially a viscoelastic boundary value problem, is investigated. A parametric study is furthermore performed to reveal the effect of increasing the laminate thickness. The numerical model...

  14. Thermal process induced change of conductivity in As-doped ZnO

    Science.gov (United States)

    Su, S. C.; Fan, J. C.; Ling, C. C.

    2012-02-01

    Arsenic-doped ZnO films were fabricated by radio frequency magnetron sputtering method with different substrate temperature TS. Growing with the low substrate temperature of TS=200°C yielded n-type semi-insulating sample. Increasing the substrate temperature would yield p-type ZnO film and reproducible p-type film could be produced at TS~450°C. Post-growth annealing of the n-type As-doped ZnO sample grown at the low substrate temperature (TS=200°C) in air at 500°C also converted the film to p-type conductivity. Further increasing the post-growth annealing temperature would convert the p-type sample back to n-type. With the results obtained from the studies of positron annihilation spectroscopy (PAS), photoluminescence (PL), cathodoluminescence (CL), X-ray photoelectron spectroscopy (XPS), secondary ion mass spectroscopy (SIMS) and nuclear reaction analysis (NRA), we have proposed mechanisms to explain for the thermal process induced conduction type conversion as observed in the As-doped ZnO films.

  15. Plasma turbulence

    International Nuclear Information System (INIS)

    Horton, W.

    1998-07-01

    The origin of plasma turbulence from currents and spatial gradients in plasmas is described and shown to lead to the dominant transport mechanism in many plasma regimes. A wide variety of turbulent transport mechanism exists in plasmas. In this survey the authors summarize some of the universally observed plasma transport rates

  16. Benfotiamine reduces genomic damage in peripheral lymphocytes of hemodialysis patients.

    Science.gov (United States)

    Schupp, Nicole; Dette, Eva Maria; Schmid, Ursula; Bahner, Udo; Winkler, Michaela; Heidland, August; Stopper, Helga

    2008-09-01

    Hemodialysis patients have an elevated genomic damage in peripheral blood lymphocytes (PBLs) and an increased cancer incidence, possibly due to accumulation of uremic toxins like advanced glycation end products (AGEs). Because the vitamin B1 prodrug benfotiamine reduces AGE levels in experimental diabetes, and dialysis patients often suffer from vitamin B1 deficiency, we conducted two consecutive studies supplementing hemodialysis patients with benfotiamine. In both studies, genomic damage was measured as micronucleus frequency of PBLs before and at three time-points after initiation of benfotiamine supplementation. AGE-associated fluorescence in plasma, and in the second study additionally, the antioxidative capacity of plasma was analyzed. Benfotiamine significantly lowered the genomic damage of PBLs in hemodialysis patients of both studies independent of changes in plasma AGE levels. The second study gave a hint to the mechanism, as the antioxidative capacity of the plasma of the treated patients clearly increased, which might ameliorate the DNA damage.

  17. Plasma properties

    International Nuclear Information System (INIS)

    Weitzner, H.

    1990-06-01

    This paper discusses the following topics: MHD plasma activity: equilibrium, stability and transport; statistical analysis; transport studies; edge physics studies; wave propagation analysis; basic plasma physics and fluid dynamics; space plasma; and numerical methods

  18. Plasma accelerators

    International Nuclear Information System (INIS)

    Bingham, R.; Angelis, U. de; Johnston, T.W.

    1991-01-01

    Recently attention has focused on charged particle acceleration in a plasma by a fast, large amplitude, longitudinal electron plasma wave. The plasma beat wave and plasma wakefield accelerators are two efficient ways of producing ultra-high accelerating gradients. Starting with the plasma beat wave accelerator (PBWA) and laser wakefield accelerator (LWFA) schemes and the plasma wakefield accelerator (PWFA) steady progress has been made in theory, simulations and experiments. Computations are presented for the study of LWFA. (author)

  19. Damage analysis: damage function development and application

    International Nuclear Information System (INIS)

    Simons, R.L.; Odette, G.R.

    1975-01-01

    The derivation and application of damage functions, including recent developments for the U.S. LMFBR and CTR programs, is reviewed. A primary application of damage functions is in predicting component life expectancies; i.e., the fluence required in a service spectrum to attain a specified design property change. An important part of the analysis is the estimation of the uncertainty in such fluence limit predictions. The status of standardizing the procedures for the derivation and application of damage functions is discussed. Improvements in several areas of damage function development are needed before standardization can be completed. These include increasing the quantity and quality of the data used in the analysis, determining the limitations of the analysis due to the presence of multiple damage mechanisms, and finally, testing of damage function predictions against data obtained from material surveillance programs in operating thermal and fast reactors. 23 references. (auth)

  20. Vitamin C for DNA damage prevention

    International Nuclear Information System (INIS)

    Sram, Radim J.; Binkova, Blanka; Rossner, Pavel

    2012-01-01

    The ability of vitamin C to affect genetic damage was reviewed in human studies that used molecular epidemiology methods, including analysis of DNA adducts, DNA strand breakage (using the Comet assay), oxidative damage measured as levels of 8-oxo-7,8-dihydroxy-2′-deoxyguanosine (8-oxodG), cytogenetic analysis of chromosomal aberrations and micronuclei, and the induction of DNA repair proteins. The protective effect of vitamin C was observed at plasma levels > 50 μmol/l. Vitamin C supplementation decreased the frequency of chromosomal aberrations in groups with insufficient dietary intake who were occupationally exposed to mutagens, and also decreased the sensitivity to mutagens as assessed using the bleomycin assay. High vitamin C levels in plasma decreased the frequency of genomic translocations in groups exposed to ionizing radiation or c-PAHs in polluted air. The frequency of micronuclei was decreased by vitamin C supplementation in smokers challenged with γ-irradiation, and higher vitamin C levels in plasma counteracted the damage induced by air pollution. The prevalence of DNA adducts inversely correlated with vitamin C levels in groups environmentally exposed to high concentrations of c-PAHs. Increased vitamin C levels decreased DNA strand breakage induced by air pollution. Oxidative damage (8-oxodG levels) was decreased by vitamin C supplementation in groups with plasma levels > 50 μmol/l exposed to PM2.5 and c-PAHs. Modulation of DNA repair by vitamin C supplementation was observed both in poorly nourished subjects and in groups with vitamin C plasma levels > 50 μmol/l exposed to higher concentrations of c-PAHs. It is possible that the impact of vitamin C on DNA damage depends both on background values of vitamin C in the individual as well as on the level of exposure to xenobiotics or oxidative stress.

  1. Vitamin C for DNA damage prevention

    Energy Technology Data Exchange (ETDEWEB)

    Sram, Radim J., E-mail: sram@biomed.cas.cz [Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14220 Prague 4 (Czech Republic); Binkova, Blanka; Rossner, Pavel [Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14220 Prague 4 (Czech Republic)

    2012-05-01

    The ability of vitamin C to affect genetic damage was reviewed in human studies that used molecular epidemiology methods, including analysis of DNA adducts, DNA strand breakage (using the Comet assay), oxidative damage measured as levels of 8-oxo-7,8-dihydroxy-2 Prime -deoxyguanosine (8-oxodG), cytogenetic analysis of chromosomal aberrations and micronuclei, and the induction of DNA repair proteins. The protective effect of vitamin C was observed at plasma levels > 50 {mu}mol/l. Vitamin C supplementation decreased the frequency of chromosomal aberrations in groups with insufficient dietary intake who were occupationally exposed to mutagens, and also decreased the sensitivity to mutagens as assessed using the bleomycin assay. High vitamin C levels in plasma decreased the frequency of genomic translocations in groups exposed to ionizing radiation or c-PAHs in polluted air. The frequency of micronuclei was decreased by vitamin C supplementation in smokers challenged with {gamma}-irradiation, and higher vitamin C levels in plasma counteracted the damage induced by air pollution. The prevalence of DNA adducts inversely correlated with vitamin C levels in groups environmentally exposed to high concentrations of c-PAHs. Increased vitamin C levels decreased DNA strand breakage induced by air pollution. Oxidative damage (8-oxodG levels) was decreased by vitamin C supplementation in groups with plasma levels > 50 {mu}mol/l exposed to PM2.5 and c-PAHs. Modulation of DNA repair by vitamin C supplementation was observed both in poorly nourished subjects and in groups with vitamin C plasma levels > 50 {mu}mol/l exposed to higher concentrations of c-PAHs. It is possible that the impact of vitamin C on DNA damage depends both on background values of vitamin C in the individual as well as on the level of exposure to xenobiotics or oxidative stress.

  2. Plasma device

    International Nuclear Information System (INIS)

    Thode, L.E.

    1981-01-01

    A method is described for electron beam heating of a high-density plasma to drive a fast liner. An annular or solid relativistic electron beam is used to heat a plasma to kilovolt temperatures through streaming instabilities in the plasma. Energy deposited in the plasma then converges on a fast liner to explosively or ablatively drive the liner to implosion. (U.K.)

  3. Plasma Modes

    Science.gov (United States)

    Dubin, D. H. E.

    This chapter explores several aspects of the linear electrostatic normal modes of oscillation for a single-species non-neutral plasma in a Penning trap. Linearized fluid equations of motion are developed, assuming the plasma is cold but collisionless, which allow derivation of the cold plasma dielectric tensor and the electrostatic wave equation. Upper hybrid and magnetized plasma waves in an infinite uniform plasma are described. The effect of the plasma surface in a bounded plasma system is considered, and the properties of surface plasma waves are characterized. The normal modes of a cylindrical plasma column are discussed, and finally, modes of spheroidal plasmas, and finite temperature effects on the modes, are briefly described.

  4. Radiation damage of nonmetallic solids

    International Nuclear Information System (INIS)

    Goland, A.N.

    1975-01-01

    A review of data and information on radiation damage in nonmetallic solids is presented. Discussions are included on defects in nonmetals, radiation damage processes in nonmetals, electronic damage processes, physical damage processes, atomic displacement, photochemical damage processes, and ion implantation

  5. Femoral nerve damage (image)

    Science.gov (United States)

    The femoral nerve is located in the leg and supplies the muscles that assist help straighten the leg. It supplies sensation ... leg. One risk of damage to the femoral nerve is pelvic fracture. Symptoms of femoral nerve damage ...

  6. Analysis of Boling's laser-damage morphology

    International Nuclear Information System (INIS)

    Sparks, M.S.

    1980-01-01

    Boling observed that his total-internal-reflection laser-damage sites in glass closely resembled the scattering cross section for small (ka << 1), perfectly conducting sphere and suggested that a very small plasma formed and grew to a larger size, still with ka << 1 satisfied. Even with ka = 1, for which the cross section is different from that observed, the scattered field still is too small to explain the damage in terms of constructive interference between the incident- and scattered fields. Furthermore, the characteristic shape of the scattering cross section that matches the damage patterns is for circular polarization or unpolarized light, in contrast to the experimental plane polarizations. Extending the ideas to include effects of the scattered field outside the glass, such as plasma formation, and to include the correct field (with interesting polarization, including longitudinal circuler polarization at certain distances from the surface) incident on the sphere may explain the experiments. Additional experiments and analysis would be useful to determine if the extended model is valid and to investigate related materials improvement, nondestructive testing, and the relation between laser damage, plasma initiation, and failure under stress, all initiated at small isolated spots

  7. Damage Mechanism of High Voltage Solar Arrays and Electronic Equipment in the Plasma Environment%高压太阳能电池阵与电子设备在等离子体环境中的毁伤机理

    Institute of Scientific and Technical Information of China (English)

    施维; 郑步生; 刘少斌

    2015-01-01

    目的 通过研究高压太阳能电池阵与电子设备在等离子体环境中气体放电的毁伤机理,从而可运用于军事上的电子对抗、干扰及隐身技术.方法 通过分析气体放电的几种基本形式,研究太阳能电池阵和电子设备在等离子体射流或等离子体环境下可能发生的放电过程.结果 高压太阳能电池阵在等离子体环境下易产生电弧放电现象,而电子设备在此环境下的毁伤主要是通过内部充电与外部充电产生的.结论 在等离子体环境中,气体放电会对高压太阳能电池阵和电子设备产生严重的影响,可以利用这种影响对空间邻域的探索提供帮助.%Objective To research the damage mechanism of gas discharge of high voltage solar arrays and electronic equipment in the plasma environment in order to apply in electronic warfare, interference and military stealth technology. Methods By analysis of several basic forms of gas discharge, the discharge process of high voltage solar arrays and electronic equipment which may occur in the plasma jet or the plasma environment was researched. Results High voltage solar arrays were likely to generate arc discharge, and the damage of the electronic equipment was mainly caused by internal and external charging in this environment. Conclusion Gas discharge may have a serious effect on high voltage solar arrays and electronic equipment in the plasma environment. This effect may help to explore the spatial neighborhood.

  8. Plasma centrifuges

    International Nuclear Information System (INIS)

    Karchevskij, A.I.; Potanin, E.P.

    2000-01-01

    The review of the most important studies on the isotope separation processes in the rotating plasma is presented. The device is described and the characteristics of operation of the pulse plasma centrifuges with weakly and strongly ionized plasma as well as the stationary plasma centrifuges with the medium weak ionization and devices, applying the stationary vacuum arc with the high ionization rate and the stationary beam-plasma discharge with complete ionization, are presented. The possible mechanisms of the isotope separation in plasma centrifuges are considered. The specific energy consumption for isotope separation in these devices is discussed [ru

  9. Plasma astrophysics

    CERN Document Server

    Kaplan, S A; ter Haar, D

    2013-01-01

    Plasma Astrophysics is a translation from the Russian language; the topics discussed are based on lectures given by V.N. Tsytovich at several universities. The book describes the physics of the various phenomena and their mathematical formulation connected with plasma astrophysics. This book also explains the theory of the interaction of fast particles plasma, their radiation activities, as well as the plasma behavior when exposed to a very strong magnetic field. The text describes the nature of collective plasma processes and of plasma turbulence. One author explains the method of elementary

  10. Plasma waves

    CERN Document Server

    Swanson, DG

    1989-01-01

    Plasma Waves discusses the basic development and equations for the many aspects of plasma waves. The book is organized into two major parts, examining both linear and nonlinear plasma waves in the eight chapters it encompasses. After briefly discussing the properties and applications of plasma wave, the book goes on examining the wave types in a cold, magnetized plasma and the general forms of the dispersion relation that characterize the waves and label the various types of solutions. Chapters 3 and 4 analyze the acoustic phenomena through the fluid model of plasma and the kinetic effects. Th

  11. Plasma device

    International Nuclear Information System (INIS)

    Thode, L.E.

    1981-01-01

    A method is described of providing electron beam heating of a high-density plasma to drive a fast liner to implode a structured microsphere. An annular relativistic electron beam is used to heat an annular plasma to kilovolt temperatures through streaming instabilities in the plasma. Energy deposited in the annular plasma then converges on a fast liner to explosively or ablatively drive the liner to convergence to implode the structured microsphere. (U.K.)

  12. Imbibitional damage in conidia of the entomopathogenic fungi Beauveria bassiana, Metarhizium anisopliae, and Metarhizium acridum

    Science.gov (United States)

    When dried organisms are immersed in water, rapid imbibition may cause severe damage to plasma membranes; in unicellular organisms, such damage is usually lethal. This study investigated effects of pre-immersion moisture levels and immersion temperature on imbibitional damage in three insect pathoge...

  13. Dusty plasmas

    International Nuclear Information System (INIS)

    Jones, M.E.; Winske, D.; Keinigs, R.; Lemons, D.

    1996-01-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project has been to develop a fundamental understanding of dusty plasmas at the Laboratory. While dusty plasmas are found in space in galactic clouds, planetary rings, and cometary tails, and as contaminants in plasma enhanced fabrication of microelectronics, many of their properties are only partially understood. Our work has involved both theoretical analysis and self-consistent plasma simulations to understand basic properties of dusty plasmas related to equilibrium, stability, and transport. Such an understanding can improve the control and elimination of plasma dust in industrial applications and may be important in the study of planetary rings and comet dust tails. We have applied our techniques to the study of charging, dynamics, and coagulation of contaminants in plasma processing reactors for industrial etching and deposition processes and to instabilities in planetary rings and other space plasma environments. The work performed in this project has application to plasma kinetics, transport, and other classical elementary processes in plasmas as well as to plasma waves, oscillations, and instabilities

  14. Plasma chromatography

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    This book examines the fundamental theory and various applications of ion mobility spectroscopy. Plasma chromatography developed from research on the diffusion and mobility of ions. Topics considered include instrument design and description (e.g., performance, spectral interpretation, sample handling, mass spectrometry), the role of ion mobility in plasma chromatography (e.g., kinetic theory of ion transport), atmospheric pressure ionization (e.g., rate equations), the characterization of isomers by plasma chromatography (e.g., molecular ion characteristics, polynuclear aromatics), plasma chromatography as a gas chromatographic detection method (e.g., qualitative analysis, continuous mobility monitoring, quantitative analysis), the analysis of toxic vapors by plasma chromatography (e.g., plasma chromatograph calibration, instrument control and data processing), the analysis of semiconductor devices and microelectronic packages by plasma chromatography/mass spectroscopy (e.g., analysis of organic surface contaminants, analysis of water in sealed electronic packages), and instrument design and automation (hardware, software)

  15. Method to reduce damage to backing plate

    Science.gov (United States)

    Perry, Michael D.; Banks, Paul S.; Stuart, Brent C.

    2001-01-01

    The present invention is a method for penetrating a workpiece using an ultra-short pulse laser beam without causing damage to subsequent surfaces facing the laser. Several embodiments are shown which place holes in fuel injectors without damaging the back surface of the sack in which the fuel is ejected. In one embodiment, pulses from an ultra short pulse laser remove about 10 nm to 1000 nm of material per pulse. In one embodiment, a plasma source is attached to the fuel injector and initiated by common methods such as microwave energy. In another embodiment of the invention, the sack void is filled with a solid. In one other embodiment, a high viscosity liquid is placed within the sack. In general, high-viscosity liquids preferably used in this invention should have a high damage threshold and have a diffusing property.

  16. Arcing and surface damage in DITE

    International Nuclear Information System (INIS)

    Goodall, D.H.J.; McCracken, G.M.

    1977-11-01

    An investigation into the arcing damage on surfaces exposed to plasmas in the DITE tokamak is described. It has been found that arcing occurs on the fixed limiters, on probes inserted into the plasma and on parts of the torus structure. For surfaces parallel to the toroidal field most of the arcs run across the surface orthogonal to the field direction. Observations in the scanning electron microscope show that the arc tracks are formed by a series of melted craters characteristic of cathode arc spots. The amount of metal removed from the surface is consistent with the concentration of metal observed in the plasma. In plasmas with hydrogen gas puffing during the discharge or with injection of low Z impurities, the arc tracks are observed to be much shallower than in normal low density discharges. Several types of surface damage other than arc tracks have also been observed on probes. These phenomena occur less frequently than arcing and appear to be associated with abnormal discharge conditions. (author)

  17. Fabrication-process-induced variations of Nb/Al/AlOx/Nb Josephson junctions in superconductor integrated circuits

    International Nuclear Information System (INIS)

    Tolpygo, Sergey K; Amparo, Denis

    2010-01-01

    Currently, superconductor digital integrated circuits fabricated at HYPRES, Inc. can operate at clock frequencies approaching 40 GHz. The circuits present multilayered structures containing tens of thousands of Nb/Al/AlO x /Nb Josephson junctions (JJs) of various sizes interconnected by four Nb wiring layers, resistors, and other circuit elements. In order to be fully operational, the integrated circuits should be fabricated such that the critical currents of the JJs are within the tight design margins and the proper relationships between the critical currents of JJs of different sizes are preserved. We present experimental data and discuss mechanisms of process-induced variations of the critical current and energy gap of Nb/Al/AlO x /Nb JJs in integrated circuits. We demonstrate that the Josephson critical current may depend on the type and area of circuit elements connected to the junction, on the circuit pattern, and on the step in the fabrication process at which the connection is made. In particular, we discuss the influence of (a) the junction base electrode connection to the ground plane, (b) the junction counter electrode connection to the ground plane, and (c) the counter electrode connection to the Ti/Au or Ti/Pd/Au contact pads by Nb wiring. We show that the process-induced changes of the properties of Nb/Al/AlO x /Nb junctions are caused by migration of impurity atoms (hydrogen) between the different layers comprising the integrated circuits.

  18. Radiation damage to mushrooms

    International Nuclear Information System (INIS)

    Sattler, P.W.

    1986-01-01

    This document contains newspaper cuttings and correspondence with various ministries in Hessen on the subject of radiation damage to mushrooms from the Odenwald area. The reader is given, amongst other things, detailed information on radiation damage to different types of mushroom in 1986. (MG) [de

  19. Animal damage to birch

    Science.gov (United States)

    James S. Jordan; Francis M. Rushmore

    1969-01-01

    A relatively few animal species are responsible for most of the reported damage to the birches. White-tailed deer, yellow-bellied sapsuckers, porcupines, moose, and hares are the major animals involved. We will review reports of damage, discuss the underlying causes, and describe possible methods of control. For example, heavy deer browsing that eliminates birch...

  20. Animal damage management handbook.

    Science.gov (United States)

    Hugh C. Black

    1994-01-01

    This handbook treats animal damage management (ADM) in the West in relation to forest, range, and recreation resources; predator management is not addressed. It provides a comprehensive reference of safe, effective, and practical methods for managing animal damage on National Forest System lands. Supporting information is included in references after each chapter and...

  1. Nuclear damage - civil liability

    International Nuclear Information System (INIS)

    Simoes, A.C.

    1980-01-01

    An analysis is made of the civil liability for nuclear damage since there is a need to adjust the existing rules to the new situations created. The conventions that set up the new disciplining rules not considered in the common law for the liability of nuclear damage are also mentioned. (A.L.) [pt

  2. DNA damage and autophagy

    International Nuclear Information System (INIS)

    Rodriguez-Rocha, Humberto; Garcia-Garcia, Aracely; Panayiotidis, Mihalis I.; Franco, Rodrigo

    2011-01-01

    Both exogenous and endogenous agents are a threat to DNA integrity. Exogenous environmental agents such as ultraviolet (UV) and ionizing radiation, genotoxic chemicals and endogenous byproducts of metabolism including reactive oxygen species can cause alterations in DNA structure (DNA damage). Unrepaired DNA damage has been linked to a variety of human disorders including cancer and neurodegenerative disease. Thus, efficient mechanisms to detect DNA lesions, signal their presence and promote their repair have been evolved in cells. If DNA is effectively repaired, DNA damage response is inactivated and normal cell functioning resumes. In contrast, when DNA lesions cannot be removed, chronic DNA damage triggers specific cell responses such as cell death and senescence. Recently, DNA damage has been shown to induce autophagy, a cellular catabolic process that maintains a balance between synthesis, degradation, and recycling of cellular components. But the exact mechanisms by which DNA damage triggers autophagy are unclear. More importantly, the role of autophagy in the DNA damage response and cellular fate is unknown. In this review we analyze evidence that supports a role for autophagy as an integral part of the DNA damage response.

  3. Damage free Ar ion plasma surface treatment on In{sub 0.53}Ga{sub 0.47}As-on-silicon metal-oxide-semiconductor device

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Donghyi; Shin, Seung Heon; Ahn, Jaehyun; Sonde, Sushant; Banerjee, Sanjay K. [Department of Electrical and Computer Engineering, Microelectronics Research Center, The University of Texas at Austin, 10100 Burnet Road, Austin, Texas 78758 (United States); Kwon, Hyuk-Min [SK Hynix, Icheon, 2091, Gyeongchung-daero, Bubal-eub, Icheon-si, Gyeonggi-do 136-1 (Korea, Republic of); Orzali, Tommaso; Kim, Tae-Woo, E-mail: twkim78@gmail.com [SEMATECH Inc., 257 Fuller Rd #2200, Albany, New York 12203 (United States); Kim, Dae-Hyun [Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 702-701 (Korea, Republic of)

    2015-11-02

    In this paper, we investigated the effect of in-situ Ar ion plasma surface pre-treatment in order to improve the interface properties of In{sub 0.53}Ga{sub 0.47}As for high-κ top-gate oxide deposition. X-ray photoelectron spectroscopy (XPS) and metal-oxide-semiconductor capacitors (MOSCAPs) demonstrate that Ar ion treatment removes the native oxide on In{sub 0.53}Ga{sub 0.47}As. The XPS spectra of Ar treated In{sub 0.53}Ga{sub 0.47}As show a decrease in the AsO{sub x} and GaO{sub x} signal intensities, and the MOSCAPs show higher accumulation capacitance (C{sub acc}), along with reduced frequency dispersion. In addition, Ar treatment is found to suppress the interface trap density (D{sub it}), which thereby led to a reduction in the threshold voltage (V{sub th}) degradation during constant voltage stress and relaxation. These results outline the potential of surface treatment for III-V channel metal-oxide-semiconductor devices and application to non-planar device process.

  4. Plasma physics

    CERN Document Server

    Drummond, James E

    1961-01-01

    A historic snapshot of the field of plasma physics, this fifty-year-old volume offers an edited collection of papers by pioneering experts in the field. In addition to assisting students in their understanding of the foundations of classical plasma physics, it provides a source of historic context for modern physicists. Highly successful upon its initial publication, this book was the standard text on plasma physics throughout the 1960s and 70s.Hailed by Science magazine as a ""well executed venture,"" the three-part treatment ranges from basic plasma theory to magnetohydrodynamics and microwa

  5. Plasma generator

    International Nuclear Information System (INIS)

    Omichi, Takeo; Yamanaka, Toshiyuki.

    1976-01-01

    Object: To recycle a coolant in a sealed hollow portion formed interiorly of a plasma limiter itself to thereby to cause direct contact between the coolant and the plasma limiter and increase of contact area therebetween to cool the plasma limiter. Structure: The heat resulting from plasma generated during operation and applied to the body of the plasma limiter is transmitted to the coolant, which recycles through an inlet and outlet pipe, an inlet and outlet nozzle and a hollow portion to hold the plasma limiter at a level less than a predetermined temperature. On the other hand, the heater wire is, at the time of emergency operation, energized to heat the plasma limiter, but this heat is transmitted to the limiter body to increase the temperature thereof. However, the coolant recycling the hollow portion comes into direct contact with the limiter body, and since the plasma limiter surround the hollow portion, the heat amount transmitted from the limiter body to the coolant increases to sufficiently cool the plasma limiter. (Yoshihara, H.)

  6. Metabolite Damage and Metabolite Damage Control in Plants

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Andrew D. [Horticultural Sciences Department and; Henry, Christopher S. [Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois 60439, email:; Computation Institute, University of Chicago, Chicago, Illinois 60637; Fiehn, Oliver [Genome Center, University of California, Davis, California 95616, email:; de Crécy-Lagard, Valérie [Microbiology and Cell Science Department, University of Florida, Gainesville, Florida 32611, email: ,

    2016-04-29

    It is increasingly clear that (a) many metabolites undergo spontaneous or enzyme-catalyzed side reactions in vivo, (b) the damaged metabolites formed by these reactions can be harmful, and (c) organisms have biochemical systems that limit the buildup of damaged metabolites. These damage-control systems either return a damaged molecule to its pristine state (metabolite repair) or convert harmful molecules to harmless ones (damage preemption). Because all organisms share a core set of metabolites that suffer the same chemical and enzymatic damage reactions, certain damage-control systems are widely conserved across the kingdoms of life. Relatively few damage reactions and damage-control systems are well known. Uncovering new damage reactions and identifying the corresponding damaged metabolites, damage-control genes, and enzymes demands a coordinated mix of chemistry, metabolomics, cheminformatics, biochemistry, and comparative genomics. This review illustrates the above points using examples from plants, which are at least as prone to metabolite damage as other organisms.

  7. Plasma contactor development for Space Station

    Science.gov (United States)

    Patterson, Michael J.; Hamley, John A.; Sarmiento, Charles J.; Manzella, David H.; Sarver-Verhey, Timothy; Soulas, George C.; Nelson, Amy

    1993-01-01

    Plasma contactors have been baselined for the Space Station (SS) to control the electrical potentials of surfaces to eliminate/mitigate damaging interactions with the space environment. The system represents a dual-use technology which is a direct outgrowth of the NASA electric propulsion program and, in particular, the technology development effort on ion thrustor systems. The plasma contactor subsystems include the plasma contactor unit, a power electronics unit, and an expellant management unit. Under this pre-flight development program these will all be brought to breadboard or engineering model status. Development efforts for the plasma contactor include optimizing the design and configuration of the contactor, validating its required lifetime, and characterizing the contactor plume and electromagnetic interference. The plasma contactor unit design selected for the SS is an enclosed keeper, xenon hollow cathode plasma source. This paper discusses the test results and development status of the plasma contactor unit subsystem for the SS.

  8. DNA damage and polyploidization.

    Science.gov (United States)

    Chow, Jeremy; Poon, Randy Y C

    2010-01-01

    A growing body of evidence indicates that polyploidization triggers chromosomal instability and contributes to tumorigenesis. DNA damage is increasingly being recognized for its roles in promoting polyploidization. Although elegant mechanisms known as the DNA damage checkpoints are responsible for halting the cell cycle after DNA damage, agents that uncouple the checkpoints can induce unscheduled entry into mitosis. Likewise, defects of the checkpoints in several disorders permit mitotic entry even in the presence of DNA damage. Forcing cells with damaged DNA into mitosis causes severe chromosome segregation defects, including lagging chromosomes, chromosomal fragments and chromosomal bridges. The presence of these lesions in the cleavage plane is believed to abort cytokinesis. It is postulated that if cytokinesis failure is coupled with defects of the p53-dependent postmitotic checkpoint pathway, cells can enter S phase and become polyploids. Progress in the past several years has unraveled some of the underlying principles of these pathways and underscored the important role of DNA damage in polyploidization. Furthermore, polyploidization per se may also be an important determinant of sensitivity to DNA damage, thereby may offer an opportunity for novel therapies.

  9. Bridge between fusion plasma and plasma processing

    International Nuclear Information System (INIS)

    Ohno, Noriyasu; Takamura, Shuichi

    2008-01-01

    In the present review, relationship between fusion plasma and processing plasma is discussed. From boundary-plasma studies in fusion devices new applications such as high-density plasma sources, erosion of graphite in a hydrogen plasma, formation of helium bubbles in high-melting-point metals and the use of toroidal plasmas for plasma processing are emerging. The authors would like to discuss a possibility of knowledge transfer from fusion plasmas to processing plasmas. (T. Ikehata)

  10. US-Japan workshop Q-181 on high heat flux components and plasma-surface interactions for next devices: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, R.T. [ed.] [Sandia National Labs., Albuquerque, NM (United States); Yamashina, T. [ed.] [Hokkadio Univ. (Japan)

    1994-04-01

    This report contain viewgraphs of papers from the following sessions: plasma facing components issues for future machines; recent PMI results from several tokamaks; high heat flux technology; plasma facing components design and applications; plasma facing component materials and irradiation damage; boundary layer plasma; plasma disruptions; conditioning and tritium; and erosion/redeposition.

  11. US-Japan workshop Q-181 on high heat flux components and plasma-surface interactions for next devices: Proceedings

    International Nuclear Information System (INIS)

    McGrath, R.T.; Yamashina, T.

    1994-04-01

    This report contain viewgraphs of papers from the following sessions: plasma facing components issues for future machines; recent PMI results from several tokamaks; high heat flux technology; plasma facing components design and applications; plasma facing component materials and irradiation damage; boundary layer plasma; plasma disruptions; conditioning and tritium; and erosion/redeposition

  12. High-Damage-Threshold Pinhole for Glass Fusion Laser Applications

    International Nuclear Information System (INIS)

    Kumit, N.A.; Letzring, S.A.; Johnson, R.P.

    1998-01-01

    We are investigating methods to fabricate high-damage-threshold spatial-filter pinholes that might not be susceptible to plasma closure for relatively high energies and long pulses. These are based on the observation that grazing-incidence reflection from glass can withstand in excess of 5 kJ/cm 2 (normal to the beam) without plasma formation. The high damage threshold results from both the cos q spreading of the energy across the surface and the reflection of a large fraction of the energy from the surface, thereby greatly reducing the field strength within the medium

  13. Plasma waves

    National Research Council Canada - National Science Library

    Swanson, D. G

    1989-01-01

    ... Swanson, D.G. (Donald Gary), D a t e - Plasma waves. Bibliography: p. Includes index. 1. Plasma waves. QC718.5.W3S43 1989 ISBN 0-12-678955-X I. Title. 530.4'4 88-34388 Printed in the United Sta...

  14. Plasma properties

    International Nuclear Information System (INIS)

    Weitzner, H.

    1991-06-01

    The Magneto-Fluid Dynamics Division continues to study a broad range of problems originating in plasma physics. Its principal focus is fusion plasma physics, and most particularly topics of particular significance for the world magnetic fusion program. During the calendar year 1990 we explored a wide range of topics including RF-induced transport as a plasma control mechanism, edge plasma modelling, further statistical analysis of L and H mode tokamak plasmas, antenna design, simulation of the edge of a tokamak plasma and the L-H transition, interpretation of the CCT experimental results at UCLA, turbulent transport, studies in chaos, the validity of moment approximations to kinetic equations and improved neoclassical modelling. In more basic studies we examined the statistical mechanisms of Coulomb systems and applied plasma ballooning mode theory to conventional fluids in order to obtain novel fluid dynamics stability results. In space plasma physics we examined the problem of reconnection, the effect of Alfven waves in space environments, and correct formulation of boundary conditions of the Earth for waves in the ionosphere

  15. Plasma container

    International Nuclear Information System (INIS)

    Ebisawa, Katsuyuki.

    1985-01-01

    Purpose: To enable to easily detect that the thickness of material to be abraded is reduced to an allowable limit from the outerside of the plasma container even during usual operation in a plasma vessel for a thermonuclear device. Constitution: A labelled material is disposed to the inside or rear face of constituent members of a plasma container undergoing the irradiation of plasma particles. A limiter plate to be abraded in the plasma container is composed of an armour member and heat removing plate, in which the armour member is made of graphite and heat-removing plate is made of copper. If the armour member is continuously abraded under the effect of sputtering due to plasma particles, silicon nitride embedded so far in the graphite at last appears on the surface of the limiter plate to undergo the impact shocks of the plasma particles. Accordingly, abrasion of the limiter material can be detected by a detector comprising gas chromatography and it can easily be detected from the outside of the plasma content even during normal operation. (Horiuchi, T.)

  16. First-in-man intraglandular implantation of stromal vascular fraction and adipose-derived stem cells plus platelet-rich plasma in irradiation-induced gland damage: a case study

    Directory of Open Access Journals (Sweden)

    Comella K

    2017-08-01

    Full Text Available Kristin Comella,1 Walter Bell2 1US Stem Cell, Inc, Sunrise, FL, USA; 2South African Stem Cell Institute, Parys, South Africa Background: Stromal vascular fraction (SVF is a mixture of cells which can be isolated from a mini-lipoaspirate of fat tissue. Platelet-rich plasma (PRP is a mixture of growth factors and other nutrients which can be obtained from peripheral blood. Adipose-derived stem/stromal cells (ADSCs can be isolated from fat tissue and expanded in culture. The SVF includes a variety of different cells such as ADSCs, pericytes, endothelial/progenitor cells, and a mix of different growth factors. The adipocytes (fat cells can be removed via centrifugation. Here, we describe the rationale and, to our knowledge, the first clinical implementation of SVF and PRP followed by repeat dosing of culture-expanded ADSCs into a patient with severe xerostomia postirradiation. Methods: Approximately 120 mLs of adipose tissue was removed via mini-lipoaspirate procedure under local anesthetic. The SVF was prepared from half of the fat and resuspended in PRP. The mixture was delivered via ultrasound directly into the submandibular and parotid glands on both the right and left sides. The remaining 60 mLs of fat was processed to culture-expand ADSCs. The patient received seven follow-up injections of the ADSCs plus PRP at 5, 8, 16, 18, 23, 28, and 31 months postliposuction. The subject was monitored over a period of 31 months for safety (adverse events, glandular size via ultrasound and saliva production. Results: Throughout the 31-month monitoring period, no safety events such as infection or severe adverse events were reported. The patient demonstrated an increase in gland size as measured by ultrasound which corresponded to increased saliva production. Conclusion: Overall, the patient reported improved quality of life and willingness to continue treatments. The strong safety profile and preliminary efficacy results warrant larger studies to determine

  17. Cosmic plasma

    Energy Technology Data Exchange (ETDEWEB)

    Alfven, H [California Univ., San Diego, La Jolla (USA)

    1981-01-01

    The properties of space plasmas are analyzed, based on laboratory results and data obtained by in situ measurements in the magnetosphere (including the heliosphere). Attention is given to the question of how much knowledge can be gained by a systematic comparison of different regions of plasma, and plasmas are considered with linear dimensions varying from laboratory size up to the Hubble distance. The traditional magnetic field description of plasmas is supplemented by an electric current description and it is demonstrated that many problems are easier to understand with a dualistic approach. Using the general plasma properties obtained, the origin and evolution of the solar system is summarized and the evolution and present structure of the universe (cosmology) is discussed.

  18. Plasma device

    International Nuclear Information System (INIS)

    Thode, L.E.

    1981-01-01

    A relativistic electron beam generator or accelerator produces a high-voltage electron beam which is modulated to initiate electron bunching within the beam which is then applied to a high-density target plasma which typically comprises DT, DD, or similar thermonuclear gas at a density of 10 17 to 10 20 electrons per cubic centimeter. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy into a small localized region of the high-density plasma target. The high-temperature plasma can be used to heat a high Z material to generate radiation. Alternatively, a tunable radiation source is produced by using a moderate Z gas or a mixture of high Z and low Z gas as the target plasma. (author)

  19. Superconducting plasmas

    International Nuclear Information System (INIS)

    Ohnuma, Toshiro; Ohno, J.

    1994-01-01

    Superconducting (SC) plasmas are proposed and investigated. The SC plasmas are not yet familiar and have not yet been studied. However, the existence and the importance of SC plasmas are stressed in this report. The existence of SC plasmas are found as follows. There is a fundamental property of Meissner effect in superconductors, which shows a repulsive effect of magnetic fields. Even in that case, in a microscopic view, there is a region of magnetic penetration. The penetration length λ is well-known as London's penetration depth, which is expressed as δ = (m s /μ 0 n s q s 2 ) 1/2 where m s , n s , q s and μ o show the mass, the density, the charge of SC electron and the permeability in free space, respectively. Because this expression is very simple, no one had tried it into more simple and meaningful form. Recently, one of the authors (T.O.) has found that the length can be expressed into more simple and understandable fundamental form as λ = c/ω ps where c = (ε 0 μ 0 ) -1/2 and ω ps = (n s q s 2 /m s ε 0 ) 1/2 are the light velocity and the superconducting plasma frequency. From this simple expression, the penetration depth of the magnetic field to SC is found as a SC plasma skin depth, that is, the fundamental property of SC can be expressed by the SC plasmas. This discovery indicates an importance of the studies of superconducting plasmas. From these points, several properties (propagating modes et al) of SC plasmas, which consist of SC electrons, normal electrons and lattice ions, are investigated in this report. Observations of SC plasma frequency is also reported with a use of Terahertz electromagnet-optical waves

  20. A plasma microlens for ultrashort high power lasers

    Science.gov (United States)

    Katzir, Yiftach; Eisenmann, Shmuel; Ferber, Yair; Zigler, Arie; Hubbard, Richard F.

    2009-07-01

    We present a technique for generation of miniature plasma lens system that can be used for focusing and collimating a high intensity femtosecond laser pulse. The plasma lens was created by a nanosecond laser, which ablated a capillary entrance. The spatial configuration of the ablated plasma focused a high intensity femtosecond laser pulse. This configuration offers versatility in the plasma lens small f-number for extremely tight focusing of high power lasers with no damage threshold restrictions of regular optical components.

  1. A plasma microlens for ultrashort high power lasers

    International Nuclear Information System (INIS)

    Katzir, Yiftach; Eisenmann, Shmuel; Ferber, Yair; Zigler, Arie; Hubbard, Richard F.

    2009-01-01

    We present a technique for generation of miniature plasma lens system that can be used for focusing and collimating a high intensity femtosecond laser pulse. The plasma lens was created by a nanosecond laser, which ablated a capillary entrance. The spatial configuration of the ablated plasma focused a high intensity femtosecond laser pulse. This configuration offers versatility in the plasma lens small f-number for extremely tight focusing of high power lasers with no damage threshold restrictions of regular optical components.

  2. Comprehensive physical models and simulation package for plasma/material interactions during plasma instabilities

    International Nuclear Information System (INIS)

    Hassanein, A.; Konkashbaev, I.

    1999-01-01

    Damage to plasma-facing components (PFCs) from plasma instabilities remains a major obstacle to a successful tokamak concept. The extent of the damage depends on the detailed physics of the disrupting plasma, as well as on the physics of plasma-material interactions. A comprehensive computer package called high energy interaction with general heterogeneous target systems (HEIGHTS) has been developed and consists of several integrated computer models that follow the beginning of a plasma disruption at the scrape-off layer (SOL) through the transport of the eroded debris and splashed target materials to nearby locations as a result of the deposited energy. The package can study, for the first time, plasma-turbulent behavior in the SOL and predict the plasma parameters and conditions at the divertor plate. Full two-dimensional (2-D) comprehensive radiation magnetohydrodynamic (MHD) models are coupled with target thermodynamics and liquid hydrodynamics to evaluate the integrated response of plasma-facing materials. Factors that influence the lifetime of plasma-facing and nearby components, such as loss of vapor cloud confinement and vapor removal due to MHD effects, damage to nearby components due to intense vapor radiation, melt splashing, and brittle destruction of target materials, are also modeled and discussed. (orig.)

  3. Comprehensive physical models and simulation package for plasma/material interactions during plasma instabilities

    International Nuclear Information System (INIS)

    Hassanein, A.

    1998-01-01

    Damage to plasma-facing components (PFCS) from plasma instabilities remains a major obstacle to a successful tokamak concept. The extent of the damage depends on the detailed physics of the disrupting plasma, as well as on the physics of plasma-material interactions. A comprehensive computer package called High Energy Interaction with General Heterogeneous Target Systems (HEIGHTS) has been developed and consists of several integrated computer models that follow the beginning of a plasma disruption at the scrape-off layer (SOL) through the transport of the eroded debris and splashed target materials to nearby locations as a result of the deposited energy. The package can study, for the first time, plasma-turbulent behavior in the SOL and predict the plasma parameters and conditions at the divertor plate. Full two-dimensional (2-D) comprehensive radiation magnetohydrodynamic (MHD) models are coupled with target thermodynamics and liquid hydrodynamics to evaluate the integrated response of plasma-facing materials. Factors that influence the lifetime of plasma-facing and nearby components, such as loss of vapor-cloud confinement and vapor removal due to MHD effects, damage to nearby components due to intense vapor radiation, melt splashing, and brittle destruction of target materials, are also modeled and discussed

  4. LSD and Genetic Damage

    Science.gov (United States)

    Dishotsky, Norman I.; And Others

    1971-01-01

    Reviews studies of the effects of lysergic acid diethylamide (LSD) on man and other organisms. Concludes that pure LSD injected in moderate doses does not cause chromosome or detectable genetic damage and is not a teratogen or carcinogen. (JM)

  5. Diabetes and nerve damage

    Science.gov (United States)

    Diabetic neuropathy; Diabetes - neuropathy; Diabetes - peripheral neuropathy ... In people with diabetes, the body's nerves can be damaged by decreased blood flow and a high blood sugar level. This condition is ...

  6. Plasma universe

    International Nuclear Information System (INIS)

    Alfven, H.

    1986-04-01

    Traditionally the views in our cosmic environment have been based on observations in the visual octave of the electromagnetic spectrum, during the last half-century supplemented by infrared and radio observations. Space research has opened the full spectrum. Of special importance are the X-ray-gamma-ray regions, in which a number of unexpected phenomena have been discovered. Radiations in these regions are likely to originate mainly from magnetised cosmic plasma. Such a medium may also emit synchrotron radiation which is observable in the radio region. If we try to base a model of the universe on the plasma phenomena mentioned we find that the plasma universe is drastically different from the traditional visual universe. Information about the plasma universe can also be obtained by extrapolation of laboratory experiments and magnetospheric in situ measurements of plasma. This approach is possible because it is likely that the basic properties of plasma are the same everywhere. In order to test the usefulness of the plasma universe model we apply it to cosmogony. Such an approach seems to be rather successful. For example, the complicated structure of the Saturnian C ring can be accounted for. It is possible to reconstruct certain phenomena 4-5 bilions years ago with an accuracy of better than 1 percent

  7. An Improved Spectral Analysis Method for Fatigue Damage Assessment of Details in Liquid Cargo Tanks

    Science.gov (United States)

    Zhao, Peng-yuan; Huang, Xiao-ping

    2018-03-01

    Errors will be caused in calculating the fatigue damages of details in liquid cargo tanks by using the traditional spectral analysis method which is based on linear system, for the nonlinear relationship between the dynamic stress and the ship acceleration. An improved spectral analysis method for the assessment of the fatigue damage in detail of a liquid cargo tank is proposed in this paper. Based on assumptions that the wave process can be simulated by summing the sinusoidal waves in different frequencies and the stress process can be simulated by summing the stress processes induced by these sinusoidal waves, the stress power spectral density (PSD) is calculated by expanding the stress processes induced by the sinusoidal waves into Fourier series and adding the amplitudes of each harmonic component with the same frequency. This analysis method can take the nonlinear relationship into consideration and the fatigue damage is then calculated based on the PSD of stress. Take an independent tank in an LNG carrier for example, the accuracy of the improved spectral analysis method is proved much better than that of the traditional spectral analysis method by comparing the calculated damage results with the results calculated by the time domain method. The proposed spectral analysis method is more accurate in calculating the fatigue damages in detail of ship liquid cargo tanks.

  8. Plasma physics

    International Nuclear Information System (INIS)

    1979-01-01

    This report contains the papers delivered at the AEB - Natal University summer school on plasma physics held in Durban during January 1979. The following topics were discussed: Tokamak devices; MHD stability; trapped particles in tori; Tokamak results and experiments; operating regime of the AEB Tokamak; Tokamak equilibrium; high beta Tokamak equilibria; ideal Tokamak stability; resistive MHD instabilities; Tokamak diagnostics; Tokamak control and data acquisition; feedback control of Tokamaks; heating and refuelling; neutral beam injection; radio frequency heating; nonlinear drift wave induced plasma transport; toroidal plasma boundary layers; microinstabilities and injected beams and quasilinear theory of the ion acoustic instability

  9. Plasma centrifuge

    International Nuclear Information System (INIS)

    Ikehata, Takashi; Mase, Hiroshi

    1998-01-01

    The plasma centrifuge is one of statistical isotope separation processes which uses the centrifugal force of a J x B driven rotating plasma in a magnetic field to give rise to the mass-dependent radial transport of isotopic ions. The system has been developed as an alternative to the gas centrifuge because a much higher rotational velocity and separation factor have been achieved. In this review, the physical aspects of the plasma centrifuge followed by the recent experimental achievements are described, especially in comparison with the gas centrifuge. (author)

  10. Modeling of laser damage initiated by surface contamination

    International Nuclear Information System (INIS)

    Feit, M.D.; Rubenchik, A.M.; Faux, D.R.; Riddle, R.A.; Shapiro, A.; Eder, D.C.; Penetrante, B.M.; Milam, D.; Genin, F.Y.; Kozlowski, M.R.

    1996-11-01

    The authors are engaged in a comprehensive effort to understand and model the initiation and growth of laser damage initiated by surface contaminants. This includes, for example, the initial absorption by the contaminant, heating and plasma generation, pressure and thermal loading of the transparent substrate, and subsequent shockwave propagation, 'splashing' of molten material and possible spallation, optical propagation and scattering, and treatment of material fracture. The integration use of large radiation hydrodynamics codes, optical propagation codes and material strength codes enables a comprehensive view of the damage process The following picture of surface contaminant initiated laser damage is emerging from our simulations

  11. Plasma membrane disruption: repair, prevention, adaptation

    Science.gov (United States)

    McNeil, Paul L.; Steinhardt, Richard A.

    2003-01-01

    Many metazoan cells inhabit mechanically stressful environments and, consequently, their plasma membranes are frequently disrupted. Survival requires that the cell rapidly repair or reseal the disruption. Rapid resealing is an active and complex structural modification that employs endomembrane as its primary building block, and cytoskeletal and membrane fusion proteins as its catalysts. Endomembrane is delivered to the damaged plasma membrane through exocytosis, a ubiquitous Ca2+-triggered response to disruption. Tissue and cell level architecture prevent disruptions from occurring, either by shielding cells from damaging levels of force, or, when this is not possible, by promoting safe force transmission through the plasma membrane via protein-based cables and linkages. Prevention of disruption also can be a dynamic cell or tissue level adaptation triggered when a damaging level of mechanical stress is imposed. Disease results from failure of either the preventive or resealing mechanisms.

  12. Plasma Cleaning

    Science.gov (United States)

    Hintze, Paul E.

    2016-01-01

    NASA's Kennedy Space Center has developed two solvent-free precision cleaning techniques: plasma cleaning and supercritical carbon dioxide (SCCO2), that has equal performance, cost parity, and no environmental liability, as compared to existing solvent cleaning methods.

  13. Laser Plasmas

    Indian Academy of Sciences (India)

    -focusing in a plasma ... Center for Energy Studies, Indian Institute of Technology, New Delhi 110 016, India; Tata Consultancy Services, Gurgaon, India; Ideal Institute of Technology, Ghaziabad, India; Center for Research in Cognitive, ...

  14. Plasma will…

    Czech Academy of Sciences Publication Activity Database

    Lunov, Oleg

    2016-01-01

    Roč. 174, č. 3 (2016), s. 486-487 ISSN 0007-0963 Institutional support: RVO:68378271 Keywords : plasma * ionized gas Subject RIV: BO - Biophysics OBOR OECD: Biophysics Impact factor: 4.706, year: 2016

  15. Plasma technology

    International Nuclear Information System (INIS)

    Drouet, M.G.

    1984-03-01

    IREQ was contracted by the Canadian Electrical Association to review plasma technology and assess the potential for application of this technology in Canada. A team of experts in the various aspects of this technology was assembled and each team member was asked to contribute to this report on the applications of plasma pertinent to his or her particular field of expertise. The following areas were examined in detail: iron, steel and strategic-metals production; surface treatment by spraying; welding and cutting; chemical processing; drying; and low-temperature treatment. A large market for the penetration of electricity has been identified. To build up confidence in the technology, support should be provided for selected R and D projects, plasma torch demonstrations at full power, and large-scale plasma process testing

  16. Plasma metallization

    International Nuclear Information System (INIS)

    Crowther, J.M.

    1997-09-01

    Many methods are currently used for the production of thin metal films. However, all of these have drawbacks associated with them, for example the need for UHV conditions, high temperatures, exotic metal precursors, or the inability to coat complex shaped objects. Reduction of supported metal salts by non-isothermal plasma treatment does not suffer from these drawbacks. In order to produce and analyse metal films before they become contaminated, a plasma chamber which could be attached directly to a UHV chamber with XPS capability was designed and built. This allowed plasma treatment of supported metal salts and surface analysis by XPS to be performed without exposure of the metal film to the atmosphere. Non-equilibrium plasma treatment of Nylon 66 supported gold(lll) chloride using hydrogen as the feed gas resulted in a 95% pure gold film, the remaining 5% of the film being carbon. If argon or helium were used as the feed gases during plasma treatment the resultant gold films were 100% pure. Some degree of surface contamination of the films due to plasma treatment was observed but was easily removed by argon ion cleaning. Hydrogen plasma reduction of glass supported silver(l) nitrate and palladium(ll) acetate films reveals that this metallization technique is applicable to a wide variety of metal salts and supports, and has also shown the ability of plasma reduction to retain the complex 'fern-like' structures seen for spin coated silver(l) nitrate layers. Some metal salts are susceptible to decomposition by X-rays. The reduction of Nylon 66 supported gold(lll) chloride films by soft X-rays to produce nanoscopic gold particles has been studied. The spontaneous reduction of these X-ray irradiated support gold(lll) chloride films on exposure to the atmosphere to produce gold rich metallic films has also been reported. (author)

  17. Plasma confinement

    CERN Document Server

    Hazeltine, R D

    2003-01-01

    Detailed and authoritative, this volume examines the essential physics underlying international research in magnetic confinement fusion. It offers readable, thorough accounts of the fundamental concepts behind methods of confining plasma at or near thermonuclear conditions. Designed for a one- or two-semester graduate-level course in plasma physics, it also represents a valuable reference for professional physicists in controlled fusion and related disciplines.

  18. Plasma Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Zaveryaev, V [Kurchatov Institute, Moscow (Russian Federation); others, and

    2012-09-15

    The success in achieving peaceful fusion power depends on the ability to control a high temperature plasma, which is an object with unique properties, possibly the most complicated object created by humans. Over years of fusion research a new branch of science has been created, namely plasma diagnostics, which involves knowledge of almost all fields of physics, from electromagnetism to nuclear physics, and up-to-date progress in engineering and technology (materials, electronics, mathematical methods of data treatment). Historically, work on controlled fusion started with pulsed systems and accordingly the methods of plasma parameter measurement were first developed for short lived and dense plasmas. Magnetically confined hot plasmas require the creation of special experimental techniques for diagnostics. The diagnostic set is the most scientifically intensive part of a plasma device. During many years of research operation some scientific tasks have been solved while new ones arose. New tasks often require significant changes in the diagnostic system, which is thus a very flexible part of plasma machines. Diagnostic systems are designed to solve several tasks. As an example here are the diagnostic tasks for the International Thermonuclear Experimental Reactor - ITER: (1) Measurements for machine protection and basic control; (2) Measurements for advanced control; (3) Additional measurements for performance evaluation and physics. Every new plasma machine is a further step along the path to the main goal - controlled fusion - and nobody knows in advance what new phenomena will be met on the way. So in the planning of diagnostic construction we should keep in mind further system upgrading to meet possible new scientific and technical challenges. (author)

  19. Recent measurements of electron density profiles of plasmas in PLADIS I, a plasma disruption simulator

    International Nuclear Information System (INIS)

    Bradley, J. III; Sharp, G.; Gahl, J.M. Kuznetsov, V.; Rockett, P.; Hunter, J.

    1995-01-01

    Tokamak disruption simulation experiments are being conducted at the University of New Mexico (UNM) using the PLADIS I plasma gun system. PLADIS I is a high power, high energy coaxial plasma gun configured to produce an intense plasma beam. First wall candidate materials are placed in the beam path to determine their response under disruption relevant energy densities. An optically thick vapor shield plasma has been observed to form above the target surface in PLADIS I. Various diagnostics have been used to determine the characteristics of the incident plasma and the vapor shielding plasma. The cross sectional area of the incident plasma beam is a critical characteristic, as it is used in the calculation of the incident plasma energy density. Recently, a HeNe interferometer in the Mach-Zehnder configuration has been constructed and used to probe the electron density of the incident plasma beam and vapor shield plasma. The object beam of the interferometer is scanned across the plasma beam on successive shots, yielding line integrals of beam density on different chords through the plasma. Data from the interferometer is used to determine the electron density profile of the incident plasma beam as a function of beam radius. This data is then used to calculate the effective beam area. Estimates. of beam area, obtained from other diagnostics such as damage targets, calorimeter arrays and off-axis measurements of surface pressure, will be compared with data from the interferometer to obtain a better estimate of the beam cross sectional area

  20. Plasma surface interaction studies in Japan

    International Nuclear Information System (INIS)

    Hino, T.; Hirohata, Y.; Yamashina, T.

    1994-01-01

    In order to achieve a long burning time period in a fusion reactor, the interactions between the plasma facing materials and the fusion plasma have to be well controlled. Namely, the radiation loss due to impurities and deterioration of the energy confinement time due to fuel particle recyclings have to be suppressed, in addition to the requirement of heat removal based on a high heat flux component. Recently, in Japan, the plasma facing material/component has been very actively developed for ITER and Large Helical Device (LHD). In this review paper, we briefly introduce the following issues, (1) progress of plasma surface interactions in tokamaks and helical devices, (2) development of plasma facing materials, (3) divertor development, (4) boronization, (5) selective pumping of helium ash, (6) tritium retention, and (7) neutron damage of graphite plasma facing material. (author)

  1. Dynamic behavior of plasma-facing materials during plasma instabilities in tokamak reactors

    International Nuclear Information System (INIS)

    Hassanein, A.; Konkashbaev, I.

    1997-01-01

    Damage to plasma-facing and nearby components due to plasma instabilities remains a major obstacle to a successful tokamak concept. The high energy deposited on facing materials during plasma instabilities can cause severe erosion, plasma contamination, and structural failure of these components. Erosion damage can take various forms such as surface vaporization, spallation, and liquid ejection of metallic materials. Comprehensive thermodynamic and radiation hydrodynamic codes have been developed, integrated, and used to evaluate the extent of various damage to plasma-facing and nearby components. The eroded and splashed materials will be transported and then redeposited elsewhere on other plasma-facing components. Detailed physics of plasma/solid-liquid/vapor interaction in a strong magnetic field have been developed, optimized, and implemented in a self-consistent model. The plasma energy deposited in the evolving divertor debris is quickly and intensely reradiated, which may cause severe erosion and melting of other nearby components. Factors that influence and reduce vapor-shielding efficiency such as vapor diffusion and turbulence are also discussed and evaluated

  2. Coal transportation road damage

    International Nuclear Information System (INIS)

    Burtraw, D.; Harrison, K.; Pawlowski, J.A.

    1994-01-01

    Heavy trucks are primarily responsible for pavement damage to the nation's highways. In this paper we evaluate the pavement damage caused by coal trucks. We analyze the chief source of pavement damage (vehicle weight per axle, not total vehicle weight) and the chief cost involved (the periodic overlay that is required when a road's surface becomes worn). This analysis is presented in two stages. In the first section we present a synopsis of current economic theory including simple versions of the formulas that can be: used to calculate costs of pavement wear. In the second section we apply this theory to a specific example proximate to the reference environment for the Fuel Cycle Study in New Mexico in order to provide a numerical measure of the magnitude of the costs

  3. Natural resource damage assessment

    International Nuclear Information System (INIS)

    Seddelmeyer, J.

    1991-01-01

    The assessment and collection of natural resource damages from petroleum and chemical companies unfortunate enough to have injured publicly owned natural resources is perhaps the most rapidly expanding area of environmental liability. The idea of recovering for injury to publicly owned natural resources is an extension of traditional common law tort concepts under which a person who negligently injures another or his property is called upon to compensate the injured party. Normally, once liability has been established, it is a fairly straightforward matter to calculate the various elements of loss, such as the cost to repair or replace damaged property, or medical expenses, and lost income. More difficult questions, such as the amount to be awarded for pain and suffering or emotional distress, are left to the jury, although courts limit the circumstances in which the jury is permitted to award such damages

  4. Sterilization by oxygen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Adir Jose; Mansano, Ronaldo Domingues; Andreoli Pinto, Terezinha de Jesus; Ruas, Ronaldo; Silva Zambon, Luis da; Silva, Monica Valero da; Verdonck, Patrick Bernard

    2004-07-31

    The use of polymeric medical devices has stimulated the development of new sterilization methods. The traditional techniques rely on ethylene oxide, but there are many questions concerning the carcinogenic properties of the ethylene oxide residues adsorbed on the materials after processing. Another common technique is the gamma irradiation process, but it is costly, its safe operation requires an isolated site and it also affects the bulk properties of the polymers. The use of a gas plasma is an elegant alternative sterilization technique. The plasma promotes an efficient inactivation of the micro-organisms, minimises the damage to the materials and presents very little danger for personnel and the environment. Pure oxygen reactive ion etching type of plasmas were applied to inactivate a biologic indicator, the Bacillus stearothermophilus, to confirm the efficiency of this process. The sterilization processes took a short time, in a few minutes the mortality was complete. In situ analysis of the micro-organisms' inactivating time was possible using emission spectrophotometry. The increase in the intensity of the 777.5 nm oxygen line shows the end of the oxidation of the biologic materials. The results were also observed and corroborated by scanning electron microscopy.

  5. Seed disinfection effect of atmospheric pressure plasma and low pressure plasma on Rhizoctonia solani.

    Science.gov (United States)

    Nishioka, Terumi; Takai, Yuichiro; Kawaradani, Mitsuo; Okada, Kiyotsugu; Tanimoto, Hideo; Misawa, Tatsuya; Kusakari, Shinichi

    2014-01-01

    Gas plasma generated and applied under two different systems, atmospheric pressure plasma and low pressure plasma, was used to investigate the inactivation efficacy on the seedborne pathogenic fungus, Rhizoctonia solani, which had been artificially introduced to brassicaceous seeds. Treatment with atmospheric plasma for 10 min markedly reduced the R. solani survival rate from 100% to 3% but delayed seed germination. The low pressure plasma treatment reduced the fungal survival rate from 83% to 1.7% after 10 min and the inactivation effect was dependent on the treatment time. The seed germination rate after treatment with the low pressure plasma was not significantly different from that of untreated seeds. The air temperature around the seeds in the low pressure system was lower than that of the atmospheric system. These results suggested that gas plasma treatment under low pressure could be effective in disinfecting the seeds without damaging them.

  6. Integrated models for plasma/material interaction during loss of plasma confinement

    International Nuclear Information System (INIS)

    Hassanein, A.

    1998-01-01

    A comprehensive computer package, High Energy Interaction with General Heterogeneous Target Systems (HEIGHTS), has been developed to evaluate the damage incurred on plasma-facing materials during loss of plasma confinement. The HEIGHTS package consists of several integrated computer models that follow the start of a plasma disruption at the scrape-off layer (SOL) through the transport of the eroded debris and splashed target materials to nearby locations as a result of the energy deposited. The package includes new models to study turbulent plasma behavior in the SOL and predicts the plasma parameters and conditions at the divertor plate. Full two-dimensional comprehensive radiation magnetohydrodynamic models are coupled with target thermodynamics and liquid hydrodynamics to evaluate the integrated response of plasma-facing materials. A brief description of the HEIGHTS package and its capabilities are given in this work with emphasis on turbulent plasma behavior in the SOL during disruptions

  7. Theory and models of material erosion and lifetime during plasma instabilities in a tokamak environment

    International Nuclear Information System (INIS)

    Hassanein, A.; Konkashbaev, I.

    1999-01-01

    Surface and structural damage to plasma-facing components (PFCs) due to the frequent loss of plasma confinement remains a serious problem for the tokamak reactor concept. The deposited plasma energy causes significant surface erosion, possible structural failure, and frequent plasma contamination. Surface damage consists of vaporization, spallation, and liquid splatter of metallic materials. Structural damage includes large temperature increases in structural materials and at the interfaces between surface coatings and structural members. To evaluate the lifetimes of plasma-facing materials and nearby components and to predict the various forms of damage that they experience, comprehensive models (contained in the HEIGHTS computer simulation package) are developed, integrated self-consistently, and enhanced. Splashing mechanisms such as bubble boiling and various liquid magnetohydrodynamic instabilities and brittle destruction mechanisms of nonmelting materials are being examined. The design requirements and implications of plasma-facing and nearby components are discussed, along with recommendations to mitigate and reduce the effects of plasma instabilities on reactor components

  8. Differences in muscle pain and plasma creatine kinase activity after ...

    African Journals Online (AJOL)

    encephalopathy,18 and the decrement in muscle power associated with muscle damage.6 ... A high degree of intra-individual variability in plasma. CK activity was ..... 21. Komi PV. Stretch-shortening cycle exercise: a powerful model to study.

  9. Cold plasmas

    International Nuclear Information System (INIS)

    Franz, G.

    1990-01-01

    This textbook discusses the following topics: Phenomenological description of a direct current glow discharge; the plasma (temperature distribution and measurement, potential variation, electron energy distribution function, charge neutralization, wall potentials, plasma oscillations); Production of charge carriers (ions, electrons, ionization in the cathode zone, negative glowing zone, Faraday dark space, positive column, anode zone, hollow cathode discharges); RF-discharges (charge carrier production, RF-Shields, scattering mechanisms); Sputtering (ion-surface interaction, kinetics, sputtering yield and energy distribution, systems and conditions, film formation and stresses, contamination, bias techniques, multicomponent film deposition, cohesion, magnetrons, triode systems, plasma enhanced chemical vapor deposition); Dry etching (sputter etching, reactive etching, topography, process control, quantitative investigations); Etching mechanisms (etching of Si and SiO 2 with CF 4 , of III/V-compound-semiconductors, combination of isotrope and anisotrope etching methods, surface cleaning); ion beam systems (applications, etching); Dyclotron-resonance-systems (electron cyclotron resonance systems, whistler-sources and 'resonant inductive plasma etching'); Appendix (electron energy distribution functions, Bohm's transition zone, plasma oscillations, scattering cross sections and mean free path, metastable states, Child-Langmuir-Schottky equation, loss mechanisms, charge carrier distribution in the positive column, breakdown at high frequencies, motion in a magnetic field, skin depth of an electric field for a HF-discharge, whistler waves, dispersion relations for plane wave propagation). (orig.) With 138 figs

  10. Plasma heating

    International Nuclear Information System (INIS)

    Wilhelm, R.

    1989-01-01

    Successful plasma heating is essential in present fusion experiments, for the demonstration of DpT burn in future devices and finally for the fusion reactor itself. This paper discusses the common heating systems with respect to their present performance and their applicability to future fusion devices. The comparative discussion is oriented to the various function of heating, which are: - plasma heating to fusion-relevant parameters and to ignition in future machines, -non-inductive, steady-pstate current drive, - plasma profile control, -neutral gas breakdown and plasma build-up. In view of these different functions, the potential of neutral beam injection (NBI) and the various schemes of wave heating (ECRH, LH, ICRH and Alven wave heating) is analyzed in more detail. The analysis includes assessments of the present physical and technical state of these heating methods, and makes suggestions for future developments and about outstanding problems. Specific attention is given to the still critical problem of efficient current drive, especially with respect to further extrapolation towards an economically operating tokamak reactor. Remarks on issues such as reliability, maintenance and economy conclude this comparative overview on plasma heating systems. (author). 43 refs.; 13 figs.; 3 tabs

  11. mapDamage

    DEFF Research Database (Denmark)

    Ginolhac, Aurélien; Rasmussen, Morten; Gilbert, Tom

    2011-01-01

    Ancient DNA extracts consist of a mixture of contaminant DNA molecules, most often originating from environmental microbes, and endogenous fragments exhibiting substantial levels of DNA damage. The latter introduce specific nucleotide misincorporations and DNA fragmentation signatures in sequenci...... of the SAMtools suite and R environment and has been validated on both GNU/Linux and MacOSX operating systems....

  12. Core damage risk indicators

    International Nuclear Information System (INIS)

    Szikszai, T.

    1994-01-01

    The purpose of this document is to show a method for the fast recalculation of the PSA. To avoid the information loose, it is necessary to simplify the PSA models, or at least reorganize them. The method, introduced in this document, require that preparation, so we try to show, how to do that. This document is an introduction. This is the starting point of the work related to the development of the risk indicators. In the future, with the application of this method, we are going to show an everyday use of the PSA results to produce the indicators of the core damage risk. There are two different indicators of the plant safety performance, related to the core damage risk. The first is the core damage frequency indicator (CDFI), and the second is the core damage probability indicator (CDPI). Of course, we cannot describe all of the possible ways to use these indicators, rather we will try to introduce the requirements to establish such an indicator system and the calculation process

  13. Risk of nuclear damage

    International Nuclear Information System (INIS)

    Kienzl, K.

    1997-01-01

    Following the opening and words of welcome by Mr. Fritz Unterpertinger (unit director at the Austrian Federal Ministry for the Environment, Youth and Family; BMUJF) Mrs Helga Kromp-Kolb (professor at the Institute for Meteorology and Physics of the University of Natural Resources Science Vienna) illustrated the risks of nuclear damage in Europe by means of a nuclear risk map. She explained that even from a scientific or technical point of view the assessment of risks arising from nuclear power stations was fraught with great uncertainties. Estimates about in how far MCAs (maximum credible accident) could still be controlled by safety systems vary widely and so do assessments of the probability of a core melt. But there is wide agreement in all risk assessments conducted so far that MCAs might occur within a - from a human point of view - conceivable number of years. In this connection one has to bear in mind that the occurrence of such a major accident - whatever its probability may be - could entail immense damage and the question arises whether or not it is at all justifiable to expose the general public to such a risk. Klaus Rennings (Centre for European Economic Research, Mannheim, Germany) dealt with the economic aspects of nuclear risk assessment. He explained that there are already a number of studies available aiming to assess the risk of damage resulting from a core melt accident in economic terms. As to the probability of occurrence estimates vary widely between one incident in 3,333 and 250,000 year of reactor operation. It is assumed, however, that a nuclear accident involving a core melt in Germany would probably exceed the damage caused by the Chernobyl accident. The following speakers addressed the legal aspects of risks associated with nuclear installations. Mrs Monika Gimpel-Hinteregger (professor at the Institute for Civil Law in Graz) gave an overview on the applicable Austrian law concerning third party liability in the field of nuclear energy

  14. Tissue and plasma enzyme activities in juvenile green iguanas.

    Science.gov (United States)

    Wagner, R A; Wetzel, R

    1999-02-01

    To determine activities of intracellular enzymes in 8 major organs in juvenile green iguanas and to compare tissue and plasma activities. 6 green iguanas iguanas, but high values may not always indicate overt muscle disease. The AMS activity may be specific for the pancreas, but the wide range of plasma activity would likely limit its diagnostic usefulness. Activities of AST and LDH may reflect tissue damage or inflammation, but probably do not reflect damage to specific tissues or organs.

  15. PLASMA DEVICE

    Science.gov (United States)

    Gow, J.D.; Wilcox, J.M.

    1961-12-26

    A device is designed for producing and confining highenergy plasma from which neutrons are generated in copious quantities. A rotating sheath of electrons is established in a radial electric field and axial magnetic field produced within the device. The electron sheath serves as a strong ionizing medium to gas introdueed thereto and also functions as an extremely effective heating mechanism to the resulting plasma. In addition, improved confinement of the plasma is obtained by ring magnetic mirror fields produced at the ends of the device. Such ring mirror fields are defined by the magnetic field lines at the ends of the device diverging radially outward from the axis of the device and thereafter converging at spatial annular surfaces disposed concentrically thereabout. (AFC)

  16. Plasma properties

    International Nuclear Information System (INIS)

    Weitzner, H.

    1989-08-01

    A cursory examination of the research activities of the Magneto-Fluid Dynamics Division for the calendar year 1988 shows the effects of the gradual transformation of the group. Although our principal activity, fusion plasma physics research, is unchanged, the work shows closer ties to problems relevant to present experiments than previously. Most notable is the concentrated effort on tokamak equilibrium and transport. We are exploring the implication of turbulence induced transport, resistive MHD effects, neoclassical transport, and possible interpretations of transport based on classical phenomena. In addition, one of our members has chosen to focus on problems of enhanced statistical methods for interpretation of experiments. All of this activity preceded the Tokamak Transport Initiative and reflects our active involvement and concern with the world-wide tokamak program. Since equilibrium and transport are by no means the only theoretical plasma physics problems affecting fusion devices we continue substantial efforts in wave propagation and heating, particle simulation of plasmas, stability theory, enhancement of numerical algorithms, and general plasma physics. We are attempting to develop effective numerical schemes for the Boltzmann equation, adaptive grid methods for MHD, and particle simulation of boundary and antenna effects. Many of these topics reflect our continuing concern to maintain a modest effort in the development of theoretical models and tools for problems of real significance to fusion, but not necessarily of immediate highest priority. We select problems which we expect to become extremely important in the future. Our space plasma physics activities, funded by agencies other than DOE, transfers knowledge learned in fusion plasma physics to another area and conversely stimulates work also relevant to fusion problems

  17. Electron plasma waves and plasma resonances

    International Nuclear Information System (INIS)

    Franklin, R N; Braithwaite, N St J

    2009-01-01

    In 1929 Tonks and Langmuir predicted of the existence of electron plasma waves in an infinite, uniform plasma. The more realistic laboratory environment of non-uniform and bounded plasmas frustrated early experiments. Meanwhile Landau predicted that electron plasma waves in a uniform collisionless plasma would appear to be damped. Subsequent experimental work verified this and revealed the curious phenomenon of plasma wave echoes. Electron plasma wave theory, extended to finite plasmas, has been confirmed by various experiments. Nonlinear phenomena, such as particle trapping, emerge at large amplitude. The use of electron plasma waves to determine electron density and electron temperature has not proved as convenient as other methods.

  18. ''Dusty plasmas''

    International Nuclear Information System (INIS)

    Tsytovich, V.N.; Bingham, R.; Angelis, U. de

    1989-09-01

    The field of ''dusty plasmas'' promises to be a very rewarding topic of research for the next decade or so, not only from the academic point of view where the emphasis is on developing the theory of the often complex collective and non-linear processes, but also from the point of view of applications in astrophysics, space physics, environmental and energy research. In this ''comment'' we should like to sketch the current development of this fast growing and potentially very important research area. We will discuss the new features of ''dusty'' plasmas in the most general terms and then briefly mention some successful applications and effects which have already been examined. (author)

  19. Damage of metal surfaces by a hot, dense deuterium plasma

    International Nuclear Information System (INIS)

    Panayotou, N.F.

    1978-01-01

    The effect of differences in alloy chemistry and systematic changes in microstructural interface density on the occurrence of unipolar arcing was studied. The effect of thermionic emission is examined by comparing the refractory metals W, Nb, and Nb-751 alloy to the non-refractory stainless steels, AISI 304, 316 and Nimonic PE-16. The effect of alloying additions is examined by comparing Mo containing 316 and Mo free 304 stainless steels as well as Zr containing Nb-751 and Zr free Nb. The effect of interface density is examined by systematically varying the density of microstructural interfaces in AISI 4130, a ferritic steel. Although most of the metals and alloys studied are candidate fusion reactor materials, 4130 was chosen on the basis of our ability to modify the density of microstructural interfaces in the material by heat treatment. The results are discussed with respect to available unipolar arcing theory. The significance of the work, in terms of actual power reactors is assessed and the need for further work defined

  20. Plasma Malondialdehyde (MDA): an indication of liver damage in ...

    African Journals Online (AJOL)

    Non-pregnant women were selected from volunteered members of staff. Malondialdehyde (MDA), aspartate transaminase (AST) and alanine transaminase (ALT) analyses were determined on collected venous blood sample. Statistical analyses of variables were done using SPSS 17 taking level of significance to be p<0.05.

  1. Plasma physics and engineering

    CERN Document Server

    Fridman, Alexander

    2011-01-01

    Part I: Fundamentals of Plasma Physics and Plasma ChemistryPlasma in Nature, in the Laboratory, and in IndustryOccurrence of Plasma: Natural and Man MadeGas DischargesPlasma Applications, Plasmas in IndustryPlasma Applications for Environmental ControlPlasma Applications in Energy ConversionPlasma Application for Material ProcessingBreakthrough Plasma Applications in Modern TechnologyElementary Processes of Charged Species in PlasmaElementary Charged Particles in Plasma and Their Elastic and Inelastic CollisionsIonization ProcessesMechanisms of Electron Losses: The Electron-Ion RecombinationEl

  2. Plasma chromograninx

    DEFF Research Database (Denmark)

    Goetze, Jens P; Hilsted, Linda M; Rehfeld, Jens F

    2014-01-01

    Cardiovascular risk assessment remains difficult in elderly patients. We examined whether chromogranin A (CgA) measurement in plasma may be valuable in assessing risk of death in elderly patients with symptoms of heart failure in a primary care setting. A total of 470 patients (mean age 73 years...

  3. Burning plasmas

    International Nuclear Information System (INIS)

    Furth, H.P.; Goldston, R.J.; Zweben, S.J.

    1990-10-01

    The fraction of fusion-reaction energy that is released in energetic charged ions, such as the alpha particles of the D-T reaction, can be thermalized within the reacting plasma and used to maintain its temperature. This mechanism facilitates the achievement of very high energy-multiplication factors Q, but also raises a number of new issues of confinement physics. To ensure satisfactory reaction operation, three areas of energetic-ion interaction need to be addressed: single-ion transport in imperfectly symmetric magnetic fields or turbulent background plasmas; energetic-ion-driven (or stabilized) collective phenomena; and fusion-heat-driven collective phenomena. The first of these topics is already being explored in a number of tokamak experiments, and the second will begin to be addressed in the D-T-burning phase of TFTR and JET. Exploration of the third topic calls for high-Q operation, which is a goal of proposed next-generation plasma-burning projects. Planning for future experiments must take into consideration the full range of plasma-physics and engineering R ampersand D areas that need to be addressed on the way to a fusion power demonstration

  4. Immunoassay of DNA damage

    International Nuclear Information System (INIS)

    Gasparro, F.P.; Santella, R.M.

    1988-01-01

    The direct photomodification of DNA by ultraviolet light or the photo-induced addition of exogenous compounds to DNA components results in alterations of DNA structure ranging from subtle to profound. There are two consequences of these conformational changes. First, cells in which the DNA has been damaged are capable of executing repair steps. Second, the DNA which is usually of very low immunogenicity now becomes highly antigenic. This latter property has allowed the production of a series of monoclonal antibodies that recognize photo-induced DNA damage. Monoclonal antibodies have been generated that recognize the 4',5'-monoadduct and the crosslink of 8-methoxypsoralen in DNA. In addition, another antibody has been prepared which recognizes the furan-side monoadduct of 6,4,4'-trimethylangelicin in DNA. These monoclonal antibodies have been characterized as to sensitivity and specificity using non-competitive and competitive enzyme-linked-immunosorbent assays (ELISA). (author)

  5. Neutron induced radiation damage

    International Nuclear Information System (INIS)

    Williams, M.M.R.

    1977-01-01

    We derive a general expression for the number of displaced atoms of type j caused by a primary knock-on of type i. The Kinchin-Pease model is used, but considerably generalised to allow for realistic atomic potentials. Two cases are considered in detail: the single particle problem causing a cascade and the neutron initiated problem which leads to multiple subcascades. Numerical results have been obtained for a variety of scattering laws. An important conclusion is that neutron initiated damage is much more severe than atom-initiated damage and leads to the number of displaced atoms being a factor of (A+1) 2 /4A larger than the single primary knock-on theory predicts. A is the ratio of the atomic mass to the neutron mass. The importance of this result to the theory of neutron sputtering is explained. (orig.) [de

  6. Immunoassay of DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Gasparro, F P; Santella, R M

    1988-09-01

    The direct photomodification of DNA by ultraviolet light or the photo-induced addition of exogenous compounds to DNA components results in alterations of DNA structure ranging from subtle to profound. There are two consequences of these conformational changes. First, cells in which the DNA has been damaged are capable of executing repair steps. Second, the DNA which is usually of very low immunogenicity now becomes highly antigenic. This latter property has allowed the production of a series of monoclonal antibodies that recognize photo-induced DNA damage. Monoclonal antibodies have been generated that recognize the 4',5'-monoadduct and the crosslink of 8-methoxypsoralen in DNA. In addition, another antibody has been prepared which recognizes the furan-side monoadduct of 6,4,4'-trimethylangelicin in DNA. These monoclonal antibodies have been characterized as to sensitivity and specificity using non-competitive and competitive enzyme-linked-immunosorbent assays (ELISA).

  7. Radiation damage in DNA

    International Nuclear Information System (INIS)

    Lafleur, V.

    1978-01-01

    A number of experiments are described with the purpose to obtain a better insight in the chemical nature and the biological significance of radiation-induced damage in DNA, with some emphasis on the significance of alkali-labile sites. It is shown that not only reactions of OH radicals but also of H radicals introduce breaks and other inactivating damage in single-standed phiX174 DNA. It is found that phosphate buffer is very suitable for the study of the reactions of H radicals with DNA, as the H 2 PO 4 - ions convert the hydrated electrons into H radicals. The hydrated electron, which does react with DNA, does not cause a detectable inactivation. (Auth.)

  8. Cannabidiol restores intestinal barrier dysfunction and inhibits the apoptotic process induced by Clostridium difficile toxin A in Caco-2 cells.

    Science.gov (United States)

    Gigli, Stefano; Seguella, Luisa; Pesce, Marcella; Bruzzese, Eugenia; D'Alessandro, Alessandra; Cuomo, Rosario; Steardo, Luca; Sarnelli, Giovanni; Esposito, Giuseppe

    2017-12-01

    Clostridium difficile toxin A is responsible for colonic damage observed in infected patients. Drugs able to restore Clostridium difficile toxin A-induced toxicity have the potential to improve the recovery of infected patients. Cannabidiol is a non-psychotropic component of Cannabis sativa, which has been demonstrated to protect enterocytes against chemical and/or inflammatory damage and to restore intestinal mucosa integrity. The purpose of this study was to evaluate (a) the anti-apoptotic effect and (b) the mechanisms by which cannabidiol protects mucosal integrity in Caco-2 cells exposed to Clostridium difficile toxin A. Caco-2 cells were exposed to Clostridium difficile toxin A (30 ng/ml), with or without cannabidiol (10 -7 -10 -9  M), in the presence of the specific antagonist AM251 (10 -7  M). Cytotoxicity assay, transepithelial electrical resistence measurements, immunofluorescence analysis and immunoblot analysis were performed in the different experimental conditions. Clostridium difficile toxin A significantly decreased Caco-2 cells' viability and reduced transepithelial electrical resistence values and RhoA guanosine triphosphate (GTP), bax, zonula occludens-1 and occludin protein expression, respectively. All these effects were significantly and concentration-dependently inhibited by cannabidiol, whose effects were completely abolished in the presence of the cannabinoid receptor type 1 (CB1) antagonist, AM251. Cannabidiol improved Clostridium difficile toxin A-induced damage in Caco-2 cells, by inhibiting the apoptotic process and restoring the intestinal barrier integrity, through the involvement of the CB1 receptor.

  9. Radiation damage of uranium

    International Nuclear Information System (INIS)

    Lazarevic, Dj.

    1966-11-01

    Study of radiation damage covered the following: Kinetics of electric resistance of uranium and uranium alloy with 1% of molybdenum dependent on the second phase and burnup rate; Study of gas precipitation and diffusion of bubbles by transmission electron microscopy; Numerical analysis of the influence of defects distribution and concentration on the rare gas precipitation in uranium; study of thermal sedimentation of uranium alloy with molybdenum; diffusion of rare gas in metal by gas chromatography method

  10. Cavitation damage of ceramics

    International Nuclear Information System (INIS)

    Kovalenko, V.I.; Marinin, V.G.

    1988-01-01

    Consideration is given to results of investigation of ceramic material damage under the effect of cavitation field on their surface, formed in water under the face of exponential concentrator, connected with ultrasonic generator UZY-3-0.4. Amplitude of vibrations of concentrator face (30+-2)x10 -6 m, frequency-21 kHz. It was established that ceramics resistance to cavitation effect correlated with the product of critical of stress intensity factor and material hardness

  11. Nondestructive damage detection and evaluation technique for seismically damaged structures

    Science.gov (United States)

    Adachi, Yukio; Unjoh, Shigeki; Kondoh, Masuo; Ohsumi, Michio

    1999-02-01

    The development of quantitative damage detection and evaluation technique, and damage detection technique for invisible damages of structures are required according to the lessons from the 1995 Hyogo-ken Nanbu earthquake. In this study, two quantitative damage sensing techniques for highway bridge structures are proposed. One method is to measure the change of vibration characteristics of the bridge structure. According to the damage detection test for damaged bridge column by shaking table test, this method can successfully detect the vibration characteristic change caused by damage progress due to increment excitations. The other method is to use self-diagnosis intelligent materials. According to the reinforced concrete beam specimen test, the second method can detect the damage by rupture of intelligent sensors, such as optical fiber or carbon fiber reinforced plastic rod.

  12. Magnetoresistive waves in plasmas

    International Nuclear Information System (INIS)

    Felber, F.S.; Hunter, R.O. Jr.; Pereira, N.R.; Tajima, T.

    1982-01-01

    The self-generated magnetic field of a current diffusing into a plasma between conductors can magnetically insulate the plasma. Propagation of magnetoresistive waves in plasmas is analyzed. Applications to plasma opening switches are discussed

  13. Military Robotics and Collateral Damage

    National Research Council Canada - National Science Library

    Kott, Robert Douglass ;Alexander

    2004-01-01

    .... Such concepts raise important questions in terms of their impact on collateral damage. In a broader context, western warfare in general places a continuously growing emphasis on issues of collateral damage...

  14. Study of plasma charging-induced white pixel defect increase in CMOS active pixel sensor

    International Nuclear Information System (INIS)

    Tokashiki, Ken; Bai, KeunHee; Baek, KyeHyun; Kim, Yongjin; Min, Gyungjin; Kang, Changjin; Cho, Hanku; Moon, Jootae

    2007-01-01

    Plasma process-induced 'white pixel defect' (WPD) of CMOS active pixel sensor (APS) is studied for Si3N4 spacer etch back process by using a magnetically enhanced reactive ion etching (MERIE) system. WPD preferably takes place at the wafer edge region when the magnetized plasma is applied to Si3N4 etch. Plasma charging analysis reveals that the plasma charge-up characteristic is well matching the edge-intensive WPD generation, rather than the UV radiation. Plasma charging on APS transfer gate might lead to a gate leakage, which could play a role in generation of signal noise or WPD. In this article the WPD generation mechanism will be discussed from plasma charging point of view

  15. Resistivity of flame plasma in an electric field

    International Nuclear Information System (INIS)

    Ikuta, Kazunari.

    1989-01-01

    A generalized Ohm's law is obtained for a flame plasma in an electric field for the study of arc resistivity in an electromagnetic launcher (EML). The effective resistivity of flame plasma is reduced by the source, which suggests the injection of premixed combustible fuel into the arc plasma in EML in order to reduce the electron energy of the arc. The reduction of electron energy in the arc is desirable to minimize the damage of electrodes in EML. (author)

  16. Assessment of DNA damage in ceramic workers.

    Science.gov (United States)

    Anlar, Hatice Gul; Taner, Gokce; Bacanli, Merve; Iritas, Servet; Kurt, Turker; Tutkun, Engin; Yilmaz, Omer Hinc; Basaran, Nursen

    2018-02-24

    It is known that ceramic workers are potentially exposed to complex mixture of chemicals such as silica, inorganic lead, lime, beryllium and aluminum that can be associated with an increased risk of several diseases. All operations in the ceramic industries such as mixing, moulding, casting, shaking out and finishing jobs, have been associated with the higher exposure levels and in most of the silica-related industries, average overall exposure exceeded permissible exposure levels for respirable crystalline silica. The aim of this study was to evaluate the possible genotoxic damage in ceramic workers exposed to complex mixture of chemicals mainly crystalline silica. For this purpose, the blood and buccal epithelial cell samples were taken from the ceramic workers (n = 99) and their controls (n = 81). The genotoxicity was assessed by the alkaline comet assay in isolated lymphocytes and whole blood. Micronucleus (MN), binucleated (BN), pyknotic (PYC), condensed chromatin (CC), karyolytic (KYL), karyorrhectic (KHC) and nuclear bud (NBUD) frequencies in buccal epithelial cells and plasma 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) levels were also evaluated. In the study, 38 workers were diagnosed with silicosis, 9 workers were suspected to have silicosis, whereas 52 workers were found to be healthy. DNA damage in blood and lymphocytes; MN, CC + KHC, PYC frequencies in buccal epithelial cells and 8-oxodG levels in plasma were increased in workers compared to their controls. These results showed that occupational chemical mixture exposure in ceramic industry may cause genotoxic damage that can lead to important health problems in the workers.

  17. Radiation damage in semiconductor detectors

    International Nuclear Information System (INIS)

    Kraner, H.W.

    1981-12-01

    A survey is presented of the important damage-producing interactions in semiconductor detectors and estimates of defect numbers are made for MeV protons, neutrons and electrons. Damage effects of fast neutrons in germanium gamma ray spectrometers are given in some detail. General effects in silicon detectors are discussed and damage constants and their relationship to leakage current is introduced

  18. Interaction of powerful hot plasma and fast ion streams with materials in dense plasma focus devices

    Czech Academy of Sciences Publication Activity Database

    Chernyshova, M.; Gribkov, V. A.; Kowalska-Strzeciwilk, E.; Kubkowska, M.; Miklaszewski, R.; Paduch, M.; Pisarczyk, T.; Zielinska, E.; Demina, E.V.; Pimenov, V. N.; Maslyaev, S. A.; Bondarenko, G.G.; Vilémová, Monika; Matějíček, Jiří

    2016-01-01

    Roč. 113, December (2016), s. 109-118 ISSN 0920-3796 R&D Projects: GA ČR(CZ) GA14-12837S Institutional support: RVO:61389021 Keywords : Radiation damageability * Materials tests * Plasma focus * Plasma streams * Ion beams * Laser interferometrya Subject RIV: JF - Nuclear Energetics OBOR OECD: Nuclear related engineering Impact factor: 1.319, year: 2016 http://www.sciencedirect.com/science/article/pii/S0920379616306858

  19. Chemistry of radiation damage to wire chambers

    International Nuclear Information System (INIS)

    Wise, J.

    1992-08-01

    Proportional counters are used to study aspects of radiation damage to wire chambers (wire aging). Principles of low-pressure, rf plasma chemistry are used to predict the plasma chemistry in electron avalanches (1 atm, dc). (1) Aging is studied in CF 4 /iC 4 H 10 gas mixtures. Wire deposits are analyzed by Auger electron spectroscopy. An apparent cathode aging process resulting in loss of gain rather than in a self-sustained current is observed in CF 4 -rich gases. A four-part model considering plasma polymerization of the hydrocarbon, etching of wire deposits by CF 4 , acceleration of deposition processes in strongly etching environments, and reactivity of the wire surface is developed to understand anode wire aging in CF 4 /iC 4 H 10 gases. Practical guidelines suggested by the model are discussed. (2) Data are presented to suggest that trace amounts of Freons do not affect aging rates in either dimethyl ether or Ar/C 2 H 6 . Apparent loss of gain is explained by attachment of primary electrons to a continuously increasing concentration of Freon 11 (CCl 3 F) in the counter gas. An increase in the concentration of Freon 11 in dimethyl ether is caused by a distillation process in the gas supply bottle and is a natural consequence of the unequal volatilities of the two compounds

  20. Plasma physics

    CERN Document Server

    Cairns, R A

    1985-01-01

    This book is intended as an introduction to plasma physics at a level suitable for advanced undergraduates or beginning postgraduate students in physics, applied mathematics or astrophysics. The main prerequisite is a knowledge of electromagnetism and of the associated mathematics of vector calculus. SI units are used throughout. There is still a tendency amongst some plasma physics researchers to· cling to C.g.S. units, but it is the author's view that universal adoption of SI units, which have been the internationally agreed standard since 1960, is to be encouraged. After a short introductory chapter, the basic properties of a plasma con­ cerning particle orbits, fluid theory, Coulomb collisions and waves are set out in Chapters 2-5, with illustrations drawn from problems in nuclear fusion research and space physics. The emphasis is on the essential physics involved and (he theoretical and mathematical approach has been kept as simple and intuitive as possible. An attempt has been made to draw attention t...

  1. Fatigue Damage in Wood

    DEFF Research Database (Denmark)

    Clorius, Christian Odin; Pedersen, Martin Bo Uhre; Hoffmeyer, Preben

    1996-01-01

    An investigation of fatigue failure in wood subjected to load cycles in compression parallel to grain is presented. Fatigue failure is found to depend both on the total time under load and on the number of cycles.Recent accelerated fatigue research on wood is reviewed, and a discrepancy between...... to 10 Hz are used. The number of cycles to failure is found to be a poor measure of the fatigue performance of wood. Creep, maximum strain, stiffness and work are monitored throughout the fatigue tests. Accumulated creep is suggested identified with damage and a correlation between stiffness reduction...

  2. Contextualizing aquired brain damage

    DEFF Research Database (Denmark)

    Nielsen, Charlotte Marie Bisgaard

    2014-01-01

    Contextualizing aquired brain damage Traditional approaches study ’communicational problems’ often in a discourse of disabledness or deficitness. With an ontology of communcation as something unique and a presupposed uniqueness of each one of us, how could an integrational approach (Integrational...... for people with aquired brain injuries will be presented and comparatively discussed in a traditional versus an integrational perspective. Preliminary results and considerations on ”methods” and ”participation” from this study will be presented along with an overview of the project's empirical data....

  3. Severe fuel damage projects

    International Nuclear Information System (INIS)

    Sdouz, G.

    1987-10-01

    After the descriptions of the generation of a Severe Fuel Damage Accident in a LWR the hypothetical course of such an accident is explained. Then the most significant projects are described. At each project the experimental facility, the most important results and the concluding models and codes are discussed. The selection of the projects is concentrated on the German Projekt Nukleare Sicherheit (PNS), tests performed at the Idaho National Engineering Laboratory (INEL) and smaller projects in France and Great Britain. 25 refs., 26 figs. (Author)

  4. Plasma shutdown device

    International Nuclear Information System (INIS)

    Hosogane, Nobuyuki; Nakayama, Takahide.

    1985-01-01

    Purpose: To prevent concentration of plasma currents to the plasma center upon plasma shutdown in a torus type thermonuclear device by the injection of fuels to the plasma center thereby prevent plasma disruption at the plasma center. Constitution: The plasma shutdown device comprises a plasma current measuring device that measures the current distribution of plasmas confined within a vacuum vessel and outputs a control signal for cooling the plasma center when the plasma currents concentrate to the plasma center and a fuel supply device that supplies fuels to the plasma center for cooling the center. The fuels are injected in the form of pellets into the plasmas. The direction and the velocity of the injection are set such that the pellets are ionized at the center of the plasmas. (Horiuchi, T.)

  5. Oxidative damage of DNA in subjects occupationally exposed to lead.

    Science.gov (United States)

    Pawlas, Natalia; Olewińska, Elżbieta; Markiewicz-Górka, Iwona; Kozłowska, Agnieszka; Januszewska, Lidia; Lundh, Thomas; Januszewska, Ewa; Pawlas, Krystyna

    2017-09-01

    Exposure to lead (Pb) in environmental and occupational settings continues to be a serious public health problem and may pose an elevated risk of genetic damage. The aim of this study was to assess the level of oxidative stress and DNA damage in subjects occupationally exposed to lead. We studied a population of 78 male workers exposed to lead in a lead and zinc smelter and battery recycling plant and 38 men from a control group. Blood lead levels were detected by graphite furnace atomic absorption spectrophotometry and plasma lead levels by inductively coupled plasma-mass spectrometry. The following assays were performed to assess the DNA damage and oxidative stress: comet assay, determination of 8-hydroxy-2'-deoxyguanosine (8-OHdG), lipid peroxidation and total antioxidant status (TAS). The mean concentration of lead in the blood of the exposed group was 392 ± 103 μg/L and was significantly higher than in the control group (30.3 ± 29.4 μg/L, p lead exposure [lead in blood, lead in plasma, zinc protoporphyrin (ZPP)] and urine concentration of 8-OHdG. The level of oxidative damage of DNA was positively correlated with the level of lipid peroxidation (TBARS) and negatively with total anti-oxidative status (TAS). Our study suggests that occupational exposure causes an increase in oxidative damage to DNA, even in subjects with relatively short length of service (average length of about 10 years). 8-OHdG concentration in the urine proved to be a sensitive and non-invasive marker of lead induced genotoxic damage.

  6. Thoracic damage control surgery.

    Science.gov (United States)

    Gonçalves, Roberto; Saad, Roberto

    2016-01-01

    The damage control surgery came up with the philosophy of applying essential maneuvers to control bleeding and abdominal contamination in trauma patients who are within the limits of their physiological reserves. This concept was extended to thoracic injuries, where relatively simple maneuvers can shorten operative time of in extremis patients. This article aims to revise the various damage control techniques in thoracic organs that must be known to the surgeon engaged in emergency care. RESUMO A cirurgia de controle de danos surgiu com a filosofia de se aplicar manobras essenciais para controle de sangramento e contaminação abdominal, em doentes traumatizados, nos limites de suas reservas fisiológicas. Este conceito se estendeu para as lesões torácicas, onde manobras relativamente simples, podem abreviar o tempo operatório de doentes in extremis. Este artigo tem como objetivo, revisar as diversas técnicas de controle de dano em órgãos torácicos, que devem ser de conhecimento do cirurgião que atua na emergência.

  7. Hydrogen damage in stainless steel

    International Nuclear Information System (INIS)

    Caskey, G.R. Jr.

    1981-01-01

    Hydrogen damage has been studied in a wide variety of stainless steels. Both internal and external hydrogen damage were evaluated by ductility or J-integral under rising tensile loads and by fractography. Analysis of the data has emphasized the potential effects of strain-induced martensite on hydrogen damage. Strain-induced martensite was neither necessary nor sufficient for hydrogen damage in the alloys studied. Neither ductility loss nor fracture-mode change correlated generally with martensite formation. Alloy composition, particularly nickel and nitrogen contents, was the primary factor in resistance to hydrogen damage. Thermomechanical processing, however, could alter the degree of hydrogen damage in an alloy and was critical for optimizing resistance to hydrogen damage. 10 figures, 10 tables

  8. Microstructure processes induced by phase transitions in a CuAu alloy as studied by acoustic emission and optical cinematography

    Energy Technology Data Exchange (ETDEWEB)

    Masek, P.; Chmelik, F.; Sima, V. [Charles Univ., Prague (Czech Republic). Dept. of Metal Physics; Brinck, A.; Neuhaeuser, H. [Technische Univ. Braunschweig (Germany). Inst. fuer Metallphysik und Nukleare Festkoerperphysik

    1999-01-15

    Combined acoustic emission measurements and surface cinematography observations have been applied to determine the structure evolution during thermal loading of the CuAu alloy. Thermal history and the fashion of thermal loading have been shown to affect considerably the structure response of the CuAu alloy on temperature changes. On thermal loading, intense plastic deformation occurs in certain temperature intervals due to the relaxation of internal stresses induced by phase transitions and structure anisotropy. The main mechanism is twinning taking place most probably in (110) planes. Dislocation glide and grain-boundary sliding have also been observed as minor mechanisms. A shape-restoration effect associated with the order-disorder transition is revealed. Thermal cycling with upper temperatures over 500 C may also result in structural damage.

  9. Damage scenarios and an onboard support system for damaged ships

    Directory of Open Access Journals (Sweden)

    Choi Jin

    2014-06-01

    Full Text Available Although a safety assessment of damaged ships, which considers environmental conditions such as waves and wind, is important in both the design and operation phases of ships, in Korea, rules or guidelines to conduct such assessments are not yet developed. However, NATO and European maritime societies have developed guidelines for a safety assessment. Therefore, it is required to develop rules or guidelines for safety assessments such as the Naval Ship Code (NSC of NATO. Before the safety assessment of a damaged ship can be performed, the available damage scenarios must be developed and the safety assessment criteria must be established. In this paper, the parameters related to damage by accidents are identified and categorized when developing damage scenarios. The need for damage safety assessment criteria is discussed, and an example is presented. In addition, a concept and specifications for the DB-based supporting system, which is used in the operation phases, are proposed.

  10. Environmentally damaging electricity trade

    International Nuclear Information System (INIS)

    Billette de Villemeur, Etienne; Pineau, Pierre-Olivier

    2010-01-01

    Electricity trade across regions is often considered welfare enhancing. We show in this paper that this should be reconsidered if environmental externalities are taken into account. We consider two cases where trade is beneficial, before accounting for environmental damages: first, when two regions with the same technology display some demand heterogeneity; second when one region endowed with hydropower arbitrages with its 'thermal' neighbor. Our results show that under reasonable demand and supply elasticities, trade comes with an additional environmental cost. This calls for integrating environmental externalities into market reforms when redesigning the electricity sector. Two North American applications illustrate our results: trade between Pennsylvania and New York, and trade between hydro-rich Quebec and New York.

  11. Vasectomy and psychosexual damage.

    Science.gov (United States)

    Savage, P M

    1972-11-01

    The director of the Family Planning Project of the San Bernardino County (California) Health Department reviews the results of a questionnaire completed by 300 husbands and their wives 6 months to 1 year after vasectomy. The replies indicated psychosexual damage from vasectomy is virtually nonexistent. 100% of the males reported an enhanced or unchanged sense of masculinity. Vasectomy clinics have been conducted by the San Bernardino County Health Department since August 1970. More than 1000 vasectomies have been completed. Vasectomies are currently being performed at a rate of 12/week. Prevasectomy group counseling should inform couples of 1) the physiological mechanisms involved, 2) the situational nature of any psychologic changes, and 3) the probability of irreversibility of the procedure.

  12. Environmentally damaging electricity trade

    Energy Technology Data Exchange (ETDEWEB)

    Billette de Villemeur, Etienne [Toulouse School of Economics (IDEI and GREMAQ) (France); Pineau, Pierre-Olivier [HEC Montreal (Canada)

    2010-03-15

    Electricity trade across regions is often considered welfare enhancing. We show in this paper that this should be reconsidered if environmental externalities are taken into account. We consider two cases where trade is beneficial, before accounting for environmental damages: first, when two regions with the same technology display some demand heterogeneity; second when one region endowed with hydropower arbitrages with its ''thermal'' neighbor. Our results show that under reasonable demand and supply elasticities, trade comes with an additional environmental cost. This calls for integrating environmental externalities into market reforms when redesigning the electricity sector. Two North American applications illustrate our results: trade between Pennsylvania and New York, and trade between hydro-rich Quebec and New York. (author)

  13. Multivariate pluvial flood damage models

    International Nuclear Information System (INIS)

    Van Ootegem, Luc; Verhofstadt, Elsy; Van Herck, Kristine; Creten, Tom

    2015-01-01

    Depth–damage-functions, relating the monetary flood damage to the depth of the inundation, are commonly used in the case of fluvial floods (floods caused by a river overflowing). We construct four multivariate damage models for pluvial floods (caused by extreme rainfall) by differentiating on the one hand between ground floor floods and basement floods and on the other hand between damage to residential buildings and damage to housing contents. We do not only take into account the effect of flood-depth on damage, but also incorporate the effects of non-hazard indicators (building characteristics, behavioural indicators and socio-economic variables). By using a Tobit-estimation technique on identified victims of pluvial floods in Flanders (Belgium), we take into account the effect of cases of reported zero damage. Our results show that the flood depth is an important predictor of damage, but with a diverging impact between ground floor floods and basement floods. Also non-hazard indicators are important. For example being aware of the risk just before the water enters the building reduces content damage considerably, underlining the importance of warning systems and policy in this case of pluvial floods. - Highlights: • Prediction of damage of pluvial floods using also non-hazard information • We include ‘no damage cases’ using a Tobit model. • The damage of flood depth is stronger for ground floor than for basement floods. • Non-hazard indicators are especially important for content damage. • Potential gain of policies that increase awareness of flood risks

  14. Multivariate pluvial flood damage models

    Energy Technology Data Exchange (ETDEWEB)

    Van Ootegem, Luc [HIVA — University of Louvain (Belgium); SHERPPA — Ghent University (Belgium); Verhofstadt, Elsy [SHERPPA — Ghent University (Belgium); Van Herck, Kristine; Creten, Tom [HIVA — University of Louvain (Belgium)

    2015-09-15

    Depth–damage-functions, relating the monetary flood damage to the depth of the inundation, are commonly used in the case of fluvial floods (floods caused by a river overflowing). We construct four multivariate damage models for pluvial floods (caused by extreme rainfall) by differentiating on the one hand between ground floor floods and basement floods and on the other hand between damage to residential buildings and damage to housing contents. We do not only take into account the effect of flood-depth on damage, but also incorporate the effects of non-hazard indicators (building characteristics, behavioural indicators and socio-economic variables). By using a Tobit-estimation technique on identified victims of pluvial floods in Flanders (Belgium), we take into account the effect of cases of reported zero damage. Our results show that the flood depth is an important predictor of damage, but with a diverging impact between ground floor floods and basement floods. Also non-hazard indicators are important. For example being aware of the risk just before the water enters the building reduces content damage considerably, underlining the importance of warning systems and policy in this case of pluvial floods. - Highlights: • Prediction of damage of pluvial floods using also non-hazard information • We include ‘no damage cases’ using a Tobit model. • The damage of flood depth is stronger for ground floor than for basement floods. • Non-hazard indicators are especially important for content damage. • Potential gain of policies that increase awareness of flood risks.

  15. Graphite limiter and armour damage in Doublet III

    International Nuclear Information System (INIS)

    McKelvey, T.; Taylor, T.; Trester, P.

    1983-01-01

    Graphite coated with TiC has been used extensively in Doublet III for limiters and neutral beam armour. Performance of these components has been superior to that of the metal components previously used. Damage to the coated graphite has occurred and can be classified into three categories: (1) gross failure of the graphite due to thermal stresses induced by the combination of high applied energy fluxes and mechanical restraint, (2) surface failure of the graphite due to runaway electron impingement, and (3) loss of TiC coating due to arcing, sputtering, vaporization and spalling, primarily during plasma disruptions and other abnormal plasma conditions. Design improvements are being continually implemented to minimize this damage and its consequences. (author)

  16. Measurement of damage in systemic vasculitis: a comparison of the Vasculitis Damage Index with the Combined Damage Assessment Index

    DEFF Research Database (Denmark)

    Suppiah, Ravi; Flossman, Oliver; Mukhtyar, Chetan

    2011-01-01

    To compare the Vasculitis Damage Index (VDI) with the Combined Damage Assessment Index (CDA) as measures of damage from vasculitis.......To compare the Vasculitis Damage Index (VDI) with the Combined Damage Assessment Index (CDA) as measures of damage from vasculitis....

  17. Plasma focus breeder

    International Nuclear Information System (INIS)

    Ikuta, Kazunari.

    1981-09-01

    Instead of using linear accelerators, it is possible to breed fissile fuels with the help of high current plasma focus device. A mechanism of accelerating proton beam in plasma focus device to high energy would be a change of inductance in plasma column because of rapid growth of plasma instability. A possible scheme of plasma focus breeder is also proposed. (author)

  18. Tribulus terrestris extracts alleviate muscle damage and promote anaerobic performance of trained male boxers and its mechanisms: Roles of androgen, IGF-1, and IGF binding protein-3

    Directory of Open Access Journals (Sweden)

    Yiming Ma

    2017-12-01

    Conclusion: Taking 1250 mg capsules containing TT extracts did not change muscle mass and plasma levels of testosterone, DHT, and IGF-1 but significantly alleviated muscle damage and promoted anaerobic performance of trained male boxers, which may be related to the decrease of plasma IGFBP-3 rather than androgen in plasma.

  19. Electron damage in organic crystals

    International Nuclear Information System (INIS)

    Howitt, D.G.; Thomas, G.

    1977-01-01

    The effects of radiation damage in three crystalline organic materials (l-valine, cytosine, copper phthalocyanine) have been investigated by electron microscopy. The degradation of these materials has been found to be consistent with a gradual collapse of their crystal structures brought about by ionization damage to the comprising molecules. It is inferred that the crystallinity of these materials is destroyed by ionizing radiation because the damaged molecules cannot be incorporated into the framework of their original structures. (author)

  20. Tailored ion energy distributions on plasma electrodes

    International Nuclear Information System (INIS)

    Economou, Demetre J.

    2013-01-01

    As microelectronic device features continue to shrink approaching atomic dimensions, control of the ion energy distribution on the substrate during plasma etching and deposition becomes increasingly critical. The ion energy should be high enough to drive ion-assisted etching, but not too high to cause substrate damage or loss of selectivity. In many cases, a nearly monoenergetic ion energy distribution (IED) is desired to achieve highly selective etching. In this work, the author briefly reviews: (1) the fundamentals of development of the ion energy distribution in the sheath and (2) methods to control the IED on plasma electrodes. Such methods include the application of “tailored” voltage waveforms on an electrode in continuous wave plasmas, or the application of synchronous bias on a “boundary electrode” during a specified time window in the afterglow of pulsed plasmas

  1. Earthquake damage to underground facilities

    International Nuclear Information System (INIS)

    Pratt, H.R.; Hustrulid, W.A.; Stephenson, D.E.

    1978-11-01

    The potential seismic risk for an underground nuclear waste repository will be one of the considerations in evaluating its ultimate location. However, the risk to subsurface facilities cannot be judged by applying intensity ratings derived from the surface effects of an earthquake. A literature review and analysis were performed to document the damage and non-damage due to earthquakes to underground facilities. Damage from earthquakes to tunnels, s, and wells and damage (rock bursts) from mining operations were investigated. Damage from documented nuclear events was also included in the study where applicable. There are very few data on damage in the subsurface due to earthquakes. This fact itself attests to the lessened effect of earthquakes in the subsurface because mines exist in areas where strong earthquakes have done extensive surface damage. More damage is reported in shallow tunnels near the surface than in deep mines. In mines and tunnels, large displacements occur primarily along pre-existing faults and fractures or at the surface entrance to these facilities.Data indicate vertical structures such as wells and shafts are less susceptible to damage than surface facilities. More analysis is required before seismic criteria can be formulated for the siting of a nuclear waste repository

  2. Interface characteristics of peeling-off damages of laser coatings

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Yun, E-mail: coating@siom.ac.cn; Yi, Kui; Guohang, Hu; Shao, Jianda

    2014-01-30

    Coating stacks of HfO{sub 2}/SiO{sub 2} and Ta{sub 2}O{sub 5}/SiO{sub 2} were separately prepared by electron beam evaporation and dual ion beam sputtering. Damage characteristics at the interlayer interfaces were analyzed after irradiation of the coatings by a 1064 nm laser. The cross-sectional morphologies of damage spots indicated that peeling-off damages always occurred at the interface where the low refractive index material (SiO{sub 2}) was deposited on the high refractive index material (HfO{sub 2} or Ta{sub 2}O{sub 5}). The effects of interface microstructure and components on peeling-off damages were also discussed. The microstructure of the interface was not a major factor that influenced peeling-off damages. Incomplete oxides (SiO{sub x}) and Na, K, Li ions accumulated near the interface and caused the formation of micro-defects layers with nano-sized thicknesses. Micro-defects layers maybe reduced adhesion of different interfaces and formed plasmas by absorbing laser energy. Finally stripping damages happened from micro-defects layers during irradiation by a 1064 nm laser.

  3. Plasma Channel Lenses and Plasma Tornadoes for Optical Beam Focusing and Transport

    Science.gov (United States)

    Hubbard, R. F.; Kaganovich, D.; Johnson, L. A.; Gordon, D. F.; Penano, J. R.; Hafizi, B.; Helle, M. H.; Mamonau, A. A.

    2017-10-01

    Shaped plasmas offer the possibility of manipulating laser pulses at intensities far above the damage limits for conventional optics. An example is the plasma channel, which is a cylindrical plasma column with an on-axis density minimum. Long plasma channels have been widely used to guide intense laser pulses, particularly in laser wakefield accelerators. A new concept, the ``plasma tornado'', offers the possibility of creating long plasma channels with no nearby structures and at densities lower than can be achieved by capillary discharges. A short plasma channel can focus a laser pulse in much the same manner as a conventional lens or off-axis parabola. When placed in front of the focal point of an intense laser pulse, a plasma channel lens (PCL) can reduce the effective f-number of conventional focusing optics. When placed beyond the focal point, it can act as a collimator. We will present experimental and modeling results for a new plasma tornado design, review experimental methods for generating short PCLs, and discuss potential applications. Supported by the Naval Research Laboratory Base Program.

  4. Nuclear Fusion Research Understanding Plasma-Surface Interactions

    CERN Document Server

    Clark, Robert E.H

    2005-01-01

    It became clear in the early days of fusion research that the effects of the containment vessel (erosion of "impurities") degrade the overall fusion plasma performance. Progress in controlled nuclear fusion research over the last decade has led to magnetically confined plasmas that, in turn, are sufficiently powerful to damage the vessel structures over its lifetime. This book reviews current understanding and concepts to deal with this remaining critical design issue for fusion reactors. It reviews both progress and open questions, largely in terms of available and sought-after plasma-surface interaction data and atomic/molecular data related to these "plasma edge" issues.

  5. The kinetics of nonequilibrium chain plasma-chemical oxidation in heterogeneous media

    International Nuclear Information System (INIS)

    Deminskii, M.A.; Potapkin, B.V.; Rusanov, V.D.

    1994-01-01

    The kinetics of oxidation of low-impurity components in air mixtures under heterogeneous conditions was studied. The principal kinetic features of the process were determined on the basis of theoretical analysis of plasma-chemical oxidation in heterogeneous media. The analysis also showed that low concentrations of impurities in liquid aerosol particles can be efficiently oxidized via a chain process induced by reactive species formed in the gas

  6. Radiation damage to histones

    International Nuclear Information System (INIS)

    Mee, L.K.; Adelstein, S.J.

    1985-01-01

    The damage to histones irradiated in isolation is being elaborated to aid the identification of the crosslinking sites in radiation-induced DNA-histone adducts. Histones are being examined by amino acid analysis to determine the destruction of residues and by polyacrylamide gel electrophoresis to delineate changes in conformation. For the slightly lysine-rich histone, H2A, a specific attack on selective residues has been established, the aromatic residues, tyrosine and phenylalanine, and the heterocyclic residue, histidine, being significantly destroyed. In addition, a significant increase in aspartic acid was found; this may represent a radiation product from scission of the ring in the histidine residues. The similarity of the effects on residues in nitrous oxide-saturated and nitrogen-saturated solutions suggests that OH . and e/sub aq//sup -/ are equally efficient and selective in their attack. On gel electrophoresis degradation of the histone H2A was found to be greatest for irradiations in nitrous oxide-saturated solutions, suggesting CH . is the most effective radical for producing changes in conformation; O/sub 2//sup -/ was essentially ineffective. Other histones are being examined for changes in amino acid composition, conformation, and for the formation of radiation products

  7. Plasma Free Metanephrines

    Science.gov (United States)

    ... Links Patient Resources For Health Professionals Subscribe Search Plasma Free Metanephrines Send Us Your Feedback Choose Topic ... Images View Sources Ask Us Also Known As Plasma Metanephrines Formal Name Fractionated Plasma Free Metanephrines (Metanephrine ...

  8. Improved plasma accelerator

    Science.gov (United States)

    Cheng, D. Y.

    1971-01-01

    Converging, coaxial accelerator electrode configuration operates in vacuum as plasma gun. Plasma forms by periodic injections of high pressure gas that is ionized by electrical discharges. Deflagration mode of discharge provides acceleration, and converging contours of plasma gun provide focusing.

  9. A special cell morphology of saccharomyces cerevisiae induced by low-temperature plasma

    International Nuclear Information System (INIS)

    Ling Dajun; Cao Jinxiang

    2003-01-01

    A special cell morphology, cavity-like cells, was found in posterities of Saccharomyces cerevisiae treated by low-temperature air plasma with different powers. The feature of the special morphology indicates that the cavity-like cells may be formed by cellular mutation effect induced by the plasma, instead of direct cellular damage by the plasma. The results suggest that the cellular mutation effect of the low-temperature plasma is a complex process

  10. Shock Initiation of Damaged Explosives

    Energy Technology Data Exchange (ETDEWEB)

    Chidester, S K; Vandersall, K S; Tarver, C M

    2009-10-22

    Explosive and propellant charges are subjected to various mechanical and thermal insults that can increase their sensitivity over the course of their lifetimes. To quantify this effect, shock initiation experiments were performed on mechanically and thermally damaged LX-04 (85% HMX, 15% Viton by weight) and PBX 9502 (95% TATB, 5% Kel-F by weight) to obtain in-situ manganin pressure gauge data and run distances to detonation at various shock pressures. We report the behavior of the HMX-based explosive LX-04 that was damaged mechanically by applying a compressive load of 600 psi for 20,000 cycles, thus creating many small narrow cracks, or by cutting wedge shaped parts that were then loosely reassembled, thus creating a few large cracks. The thermally damaged LX-04 charges were heated to 190 C for long enough for the beta to delta solid - solid phase transition to occur, and then cooled to ambient temperature. Mechanically damaged LX-04 exhibited only slightly increased shock sensitivity, while thermally damaged LX-04 was much more shock sensitive. Similarly, the insensitive explosive PBX 9502 was mechanically damaged using the same two techniques. Since PBX 9502 does not undergo a solid - solid phase transition but does undergo irreversible or 'rachet' growth when thermally cycled, thermal damage to PBX 9502 was induced by this procedure. As for LX-04, the thermally damaged PBX 9502 demonstrated a greater shock sensitivity than mechanically damaged PBX 9502. The Ignition and Growth reactive flow model calculated the increased sensitivities by igniting more damaged LX-04 and PBX 9502 near the shock front based on the measured densities (porosities) of the damaged charges.

  11. ECR plasma photographs as a plasma diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Racz, R; Biri, S; Palinkas, J [Institute of Nuclear Research (ATOMKI), H-4026 Debrecen, Bem ter 18/c (Hungary)

    2011-04-15

    Low, medium or highly charged ions delivered by electron cyclotron resonance (ECR) ion sources all are produced in the ECR plasma. In order to study such plasmas, high-resolution visible light plasma photographs were taken at the ATOMKI ECR ion source. An 8 megapixel digital camera was used to photograph plasmas made from He, methane, N, O, Ne, Ar, Kr, Xe gases and from their mixtures. The analysis of the photo series gave many qualitative and some valuable physical information on the nature of ECR plasmas. A comparison was made between the plasma photos and computer simulations, and conclusions were drawn regarding the cold electron component of the plasma. The warm electron component of similar simulation was compared with x-ray photos emitted by plasma ions. While the simulations are in good agreement with the photos, a significant difference was found between the spatial distribution of the cold and warm electrons.

  12. Plasma physics and fusion plasma electrodynamics

    CERN Document Server

    Bers, Abraham

    2016-01-01

    Plasma is a ubiquitous state of matter at high temperatures. The electrodynamics of plasmas encompasses a large number of applications, from understanding plasmas in space and the stars, to their use in processing semiconductors, and their role in controlled energy generation by nuclear fusion. This book covers collective and single particle dynamics of plasmas for fully ionized as well as partially ionized plasmas. Many aspects of plasma physics in current fusion energy generation research are addressed both in magnetic and inertial confinement plasmas. Linear and nonlinear dynamics in hydrodynamic and kinetic descriptions are offered, making both simple and complex aspects of the subject available in nearly every chapter. The approach of dividing the basic aspects of plasma physics as "linear, hydrodynamic descriptions" to be covered first because they are "easier", and postponing the "nonlinear and kinetic descriptions" for later because they are "difficult" is abandoned in this book. For teaching purpose...

  13. Plasma waves in an inhomogeneous cylindrical plasma

    International Nuclear Information System (INIS)

    Pesic, S.S.

    1976-01-01

    The complete dispersion equation governing small amplitude plasma waves propagating in an inhomogeneous cylindrical plasma confined by a helical magnetic field is solved numerically. The efficiency of the wave energy thermalization in the lower hybrid frequency range is studied

  14. Thermal coupling and damage mechanisms of laser radiation on selected materials

    International Nuclear Information System (INIS)

    Schwirzke, F.; Jenkins, W.F.; Schmidt, W.R.

    1983-01-01

    High power laser beams interact with targets by a variety of thermal, impulse, and electrical effects. Energy coupling is considerably enhanced once surface electrical breakdown occurs. The laser heated plasma then causes surface damage via thermal evaporation, ion sputtering, and unipolar arcing. While the first two are purely thermal and mechanical effects, the last one, unipolar arcing, is an electrical plasma-surface interaction process which leads to crater formation, usually called laser-pitting, a process which was often observed but not well understood. Unipolar arcing occurs when a plasma of sufficiently high electron temperature interacts with a surface. Without an external voltage applied, many electrical micro-arcs burn between the surface and the plasma, driven by local variations of the sheath potential with the surface acting as both the cathode and anode. Laser induced unipolar arcing represents the most damaging and non-uniform plasma-surface interaction process since the energy available in the plasma concentrates towards the cathode spots. This causes cratering of the materials surface. The ejection of material in the form of small jets from the craters leads to ripples in the critical plasma density contour. This in turn contributes to the onset of plasma instabilities, small scale magnetic field generation and laser beam filamentation. The ejection of a plasma jet from the unipolar arc crater also causes highly localized shock waves to propagate into the target, softening it in the process. Thus, local surface erosion by unipolar arcing is much more severe than for uniform energy deposition

  15. Quiescent plasma machine for plasma investigation

    International Nuclear Information System (INIS)

    Ferreira, J.L.

    1993-01-01

    A large volume quiescent plasma device is being developed at INPE to study Langmuir waves and turbulence generated by electron beams (E b ≤ 500 e V) interacting with plasma. This new quiescent plasma machine was designed to allow the performance of several experiments specially those related with laboratory space plasma simulation experiments. Current-driven instabilities and related phenomena such as double-layers along magnetic field lines are some of the many experiments planned for this machine. (author)

  16. Plasma basic concepts and nitrogen containing plasmas

    OpenAIRE

    Sanz Lluch, M. del Mar; Tanarro, Isabel

    2007-01-01

    Basic concepts related to plasmas are described as well as the typical characterization methods currently available. A brief overview about some plasma applications is given, but focusing on plasma used in material processing mainly devoted to the microelectronics industry. Finally, specific applications related to plasma-assisted MBE for nitrides and dilute nitrides are given, showing some interesting research works performed to that purpose, and giving the usual characterization techniques ...

  17. Low surface damage dry etched black silicon

    Science.gov (United States)

    Plakhotnyuk, Maksym M.; Gaudig, Maria; Davidsen, Rasmus Schmidt; Lindhard, Jonas Michael; Hirsch, Jens; Lausch, Dominik; Schmidt, Michael Stenbæk; Stamate, Eugen; Hansen, Ole

    2017-10-01

    Black silicon (bSi) is promising for integration into silicon solar cell fabrication flow due to its excellent light trapping and low reflectance, and a continuously improving passivation. However, intensive ion bombardment during the reactive ion etching used to fabricate bSi induces surface damage that causes significant recombination. Here, we present a process optimization strategy for bSi, where surface damage is reduced and surface passivation is improved while excellent light trapping and low reflectance are maintained. We demonstrate that reduction of the capacitively coupled plasma power, during reactive ion etching at non-cryogenic temperature (-20 °C), preserves the reflectivity below 1% and improves the effective minority carrier lifetime due to reduced ion energy. We investigate the effect of the etching process on the surface morphology, light trapping, reflectance, transmittance, and effective lifetime of bSi. Additional surface passivation using atomic layer deposition of Al2O3 significantly improves the effective lifetime. For n-type wafers, the lifetime reaches 12 ms for polished and 7.5 ms for bSi surfaces. For p-type wafers, the lifetime reaches 800 μs for both polished and bSi surfaces.

  18. Lectures in plasma diagnostics

    International Nuclear Information System (INIS)

    Hutchinson, I.H.

    1990-06-01

    This paper discusses the following topics on plasma diagnostics: Electric probes in flowing and magnetized plasmas; Electron cyclotron emission absorption; Magnetic diagnostics; Spectroscopy; and Thomson Scattering

  19. Study on the effects of physical plasma on in-vitro cultivates cells; Untersuchungen zum Einfluss von physikalischem Plasma auf in vitro kultivierte Zellen

    Energy Technology Data Exchange (ETDEWEB)

    Strassenburg, Susanne

    2014-03-15

    This study focused on the interactions of non thermal atmospheric pressure plasma on in vitro cultured keratinocytes (HaCaT keratinocytes) and melanoma cells (MV3). Three different plasma sources were used: a plasma jet (kINPen 09), a surface DBD (dielectric barrier discharge) and a volume DBD. For analyzing basic effects of plasma on cells, influence of physical plasma on viability, on DNA and on induction of ROS were investigated. Following assays were used: -- Viability: - neutral red uptake assay, cell counting (number of viable cells, cell integrity) - BrdU assay (proliferation) - Annexin V and propidium iodide staining, flow cytometry (induction of apoptosis), -- DNA: - alkaline comet assay (detection of DNA damage) - staining of DNA with propidium iodide, flow cytometry (cell cycle analysis), -- ROS: - H2DCFDA assay, flow cytometry (detection of ROS-positive cells). In addition to the effects which where induced by the plasma sources, the influence of the plasma treatment regime (direct, indirect and direct with medium exchange), the working gas (argon, air) and the surrounding liquids (cell culture medium: RPMI, IMDM; buffer solutions: HBSS, PBS) on the extent of the plasma cell effects were investigated. All plasma sources induced treatment time-dependent effects in HaCaT keratinocytes and melanoma cells (MV3): - loss of viable cells and reduced proliferation - induction of apoptosis after the longest treatment times - DNA damage 1 h after plasma treatment, 24 h after plasma treatment DNA damage was present only after the longest treatment times, evidence for DNA damage repair - due to accumulation of cells in G2/M phase, cell count in G1 phase (24 h) is lower - increase of ROS-positive cells 1 h and 24 h after plasma treatment. It was shown that cells which were cultured in RPMI showed stronger effects (stronger loss of viability and more DNA damage) than cells which were cultured in IMDM. Also plasma-treated buffer solutions (HBSS, PBS) induced DNA

  20. Fatigue damage of nuclear facilities

    International Nuclear Information System (INIS)

    2001-01-01

    The conference on the fatigue damage of nuclear facilities, organized by the SFEN (french society of nuclear energy), took place at Paris the 23. of november 2000. Eleven papers were presented, showing the state of the art and the research programs in the domain of the sizing rules, safety, installations damage, examination and maintenance. (A.L.B.)

  1. Grounding Damage to Conventional Vessels

    DEFF Research Database (Denmark)

    Lützen, Marie; Simonsen, Bo Cerup

    2003-01-01

    The present paper is concerned with rational design of conventional vessels with regard to bottom damage generated in grounding accidents. The aim of the work described here is to improve the design basis, primarily through analysis of new statistical data for grounding damage. The current regula...

  2. LX-10 Explosive Damage Studies

    Science.gov (United States)

    2015-03-03

    opposite end of the vessel. The inside of the bomb is fitted with a stainless steel liner to protect the inner surface and to change the bomb...19  18. Size Fractions for Spherical LX-10 Samples Impact Damaged Between 312 and 416 ft/s...19  19. Spherical LX-10 Sample Impact Damaged at 416 ft/s ....................................... 20  20

  3. Structural Damage in Mexico City

    OpenAIRE

    Hall, John F.; Beck, James L.

    1986-01-01

    This paper describes the structural damage in Mexico City caused by the September 19, 1985 earthquake. Photographs which illustrate various features of structural behavior are included. One explanation is presented as to why buildings with fundamental periods of elastic vibration considerably below the predominant two‐second period of the ground motion were most vulnerable to damage.

  4. Damage control in vascular injury

    NARCIS (Netherlands)

    Leenen, L. P.H.

    2017-01-01

    The highest goal in damage control surgery is to stop the bleeding. Major injuries to the vessels therefore pose the major challenge in the damage control approach. Optimal care can be provided in combination with receiving and treatment rooms with CT, operative and endovascular capabilities. For

  5. Radiation damage in carbon-carbon composites

    International Nuclear Information System (INIS)

    Burchell, T.D.; Eartherly, W.P.; Nelson, G.E.

    1992-01-01

    Graphite and carbon-carbon composite materials are widely used in plasma facing applications in current Tokamak devices such as TFTR and DIIID in the USA, JET, Tore Supra and TEXTOR in Europe, and JT-60U in Japan. Carbon-carbon composites are attractive choices for Tokamak limiters and diverters because of their low atomic number, high thermal shock resistance, high melting point, and high thermal conductivity. Next generation machines such as the International Thermonuclear Experimental Reactor (ITER) will utilize carbon-carbon composites in their first wall and diverter. ITER will be an ignition machine and thus will produce substantial neutron fluences from the D-T fusion reaction. The resultant high energy neutrons will cause carbon atom displacements in the plasma facing materials which will markedly affect their structure and physical properties. The effect of neutron damage on graphite has been studied for over forty years. Recently the effects of neutron irradiation on the fusion relevant graphite GraphNOL N3M was reviewed. In contrast to graphite, relatively little work has been performed to elucidate the effects of neutron irradiation on carbon-carbon composites. The results of our previous irradiation experiments have been published elsewhere. Here the irradiation induced dimensional changes in 1D, 2D, and 3D carbon-carbon composites are reported for fluences up to 4.7 dpa at an irradiation temperature of 600 degree C

  6. Plasma electron losses in a multidipole plasma

    International Nuclear Information System (INIS)

    Haworth, M.D.

    1983-01-01

    The magnitude of the plasma electron cusp losses in a multidipole plasma device is determined by using a plasma electron heating technique. This method consists of suddenly generating approximately monoenergetic test electrons inside the multidipole plasma, which is in a steady-state equilibrium prior to the introduction of the test electrons. The Coulomb collisions between the test electrons and the plasma electrons result in heating the plasma electrons. The experimentally measured time evolution of the plasma electron temperature is compared with that predicted by a kinetic-theory model which calculates the time evolution of the test electron and the plasma electron distribution functions. The analytical solution of the plasma electron heating rate when the test electrons are first introduced into the plasma predicts that there is no dependence on ion mass. Experimental results in helium, neon, argon, and krypton multidipole plasmas confirm this prediction. The time-evolved solution of the kinetic equations must be solved numerically, and these results (when coupled with the experimental heating results) show that the plasma electron cusp-loss width is on the order of an electron Larmor radius

  7. Physics of plasma etching and plasma deposition

    NARCIS (Netherlands)

    Schram, D.C.; Hoog, de F.J.; Bisschops, T.J.; Kroesen, G.M.W.; Howorka, F.; Lindinger, W.; Maerk, T.D.

    1986-01-01

    The kinetics and mechanism of the title processes are discussed on the basis of a model in which the plasma-surface system is subdivided into 5 regions: (I) plasma prodn., (II) plasma flow plus radicals, (III) gas adsorbed layer, (IV) modified surface, and (V) undisturbed solid (or liq.) state.

  8. Damage growth in aerospace composites

    CERN Document Server

    2015-01-01

    This book presents novel methods for the simulation of damage evolution in aerospace composites that will assist in predicting damage onset and growth and thus foster less conservative designs which realize the promised economic benefits of composite materials. The presented integrated numerical/experimental methodologies are capable of taking into account the presence of damage and its evolution in composite structures from the early phases of the design (conceptual design) through to the detailed finite element method analysis and verification phase. The book is based on the GARTEUR Research Project AG-32, which ran from 2007 to 2012, and documents the main results of that project. In addition, the state of the art in European projects on damage evolution in composites is reviewed. While the high specific strength and stiffness of composite materials make them suitable for aerospace structures, their sensitivity to damage means that designing with composites is a challenging task. The new approaches describ...

  9. Steady State Shift Damage Localization

    DEFF Research Database (Denmark)

    Sekjær, Claus; Bull, Thomas; Markvart, Morten Kusk

    2017-01-01

    The steady state shift damage localization (S3DL) method localizes structural deterioration, manifested as either a mass or stiffness perturbation, by interrogating the damage-induced change in the steady state vibration response with damage patterns cast from a theoretical model. Damage is, thus...... the required accuracy when examining complex structures, an extensive amount of degrees of freedom (DOF) must often be utilized. Since the interrogation matrix for each damage pattern depends on the size of the system matrices constituting the FE-model, the computational time quickly becomes of first......-order importance. The present paper investigates two sub-structuring approaches, in which the idea is to employ Craig-Bampton super-elements to reduce the amount of interrogation distributions while still providing an acceptable localization resolution. The first approach operates on a strict super-element level...

  10. Radiation Damage in Scintillating Crystals

    CERN Document Server

    Zhu Ren Yuan

    1998-01-01

    Crystal Calorimetry in future high energy physics experiments faces a new challenge to maintain its precision in a hostile radiation environment. This paper discusses the effects of radiation damage in scintillating crystals, and concludes that the predominant radiation damage effect in crystal scintillators is the radiation induced absorption, or color center formation, not the loss of the scintillation light yield. The importance of maintaining crystal's light response uniformity and the feasibility to build a precision crystal calorimeter under radiation are elaborated. The mechanism of the radiation damage in scintillating crystals is also discussed. While the damage in alkali halides is found to be caused by the oxygen or hydroxyl contamination, it is the structure defects, such as oxygen vacancies, cause damage in oxides. Material analysis methods used to reach these conclusions are presented in details.

  11. Direct plasma interaction with living tissue

    Science.gov (United States)

    Fridman, Gregory

    For some time, plasma has been used in medicine to cauterize or cut tissue using heat and mechanical energy. In the recent decade, some researchers around the world have started to investigate how gas jets that pass through thermal plasma can be employed in medicine. This thesis presents the first investigation of biomedical uses of non-thermal plasma discharge which comes in direct contact with living tissue. It is demonstrated that the direct application of non-thermal plasma in air can cause rapid deactivation of bacteria on surfaces of tissues without causing any visible tissue damage. Medical need for such a device is discussed. Construction and operation of various types of non-thermal plasma power supplies and many types of treatment electrodes are presented as well. Application of this plasma to living organisms is shown to be safe from both the electrical perspective and from the biological perspective. Biological safety is revealed through a series of differential skin toxicity trials on human cadaver tissue, live hairless mouse skin tissue, live pig skin tissue, and finally in an open wound model on pigs. Direct non-thermal plasma in air is shown to deactivate bacteria about 100 times faster than indirect application using jets. A series of experiments reveal that this effectiveness is due to the ability of direct discharge to bring charges to tissue surfaces. It is demonstrated that neither ultraviolet (UV) radiation nor neutral active species such as hydroxyl radicals or ozone produced in plasma are responsible for the main effect on bacteria. Although much additional work remains on establishing detailed mechanism by which charges from plasma achieve this effect, the work carried out in this thesis clearly demonstrates that direct application of non-thermal plasma in air can be a very useful tool in medicine.

  12. Theoretical research of multi-pulses laser induced damage in dielectrics

    International Nuclear Information System (INIS)

    Luo Jin; Liu Zhichao; Chen Songlin; Ma Ping

    2013-01-01

    The pulse width is different, the mechanism of the laser-matter interaction is different. Damage results from plasma formation and ablation forτ≤10 ps and from heat depositing and conventional melting for τ>100 ps. Two theoretical models of transparent dielectrics irradiated by multi-pulses laser are respectively developed based on the above-mentioned different mechanism. One is the dielectric breakdown model based on electron density evolution equation for femtosecond multi-pluses laser, the other is the dielectric heat-damage model based on Fourier's heat exchange equation for nanosecond multi-pluses laser. Using these models, the effects of laser parameters and material parameters on the laser-induced damage threshold of dielectrics are analyzed. The analysis results show that different parameters have different influence on the damage threshold. The effect of parameters on the multi -pulses damage threshold is not entirely the same to the single-pulse damage threshold. The multi-pulses damage mechanism of dielectrics is discussed in detail, considering the effect of different parameters. The discussion provides more information for understanding its damage process and more knowledge to improve its damage thresholds. And the relationship between damage threshold and pulse number is illustrated, it is in good agreement with experimental results. The illustration can help us to predict the multi-pulses damage threshold and the lifetime of optical components. (authors)

  13. Anisotropic creep damage in the framework of continuum damage mechanics

    International Nuclear Information System (INIS)

    Caboche, J.L.

    1983-01-01

    For some years, various works have shown the possibility of applying continuum mechanics to model the evolution of the damage variable, initially introduced by Kachanov. Of interest here are the complex problems posed by the anisotropy which affects both the elastic behaviour and the viscoplastic one, and also the rupture phenomenon. The main concepts of the Continuum Damage Mechanics are briefly reviewed together with some classical ways to introduce anisotropy of damage in the particular case of proportional loadings. Based on previous works, two generalizations are presented and discussed, which use different kinds of tensors to describe the anisotropy of creep damage: - The first one, by Murakami and Ohno introduces a second rank damage tensor and a net stress tensor through a net area definition. The effective stress-strain behaviour is then obtained by a fourth rank tensor. - The second theory, by the author, uses one effective stress tensor only, defined in terms of the macroscopic strain behaviour, through a fourth-order non-symmetrical damage tensor. The two theories are compared at several levels: difference and similarities are pointed out for the damage evolution during tensile creep as well as for anisotropy effects. The possibilities are discussed and compared on the basis of some existing experimental results, which leads to a partial validation of the two approaches. (orig.)

  14. Peroxynitrite-mediated oxidation of plasma fibronectin

    DEFF Research Database (Denmark)

    Degendorfer, Georg; Chuang, Christine Y; Kawasaki, Hiroaki

    2016-01-01

    Fibronectin is a large dimeric glycoprotein present in both human plasma and in basement membranes. The latter are specialized extracellular matrices underlying endothelial cells in the artery wall. Peroxynitrous acid (ONOOH) a potent oxidizing and nitrating agent, is formed in vivo from superoxide...... and nitric oxide radicals by stimulated macrophages and other cells. Considerable evidence supports ONOOH involvement in human atherosclerotic lesion development and rupture, possibly via extracellular matrix damage. Here we demonstrate that Tyr and Trp residues on human plasma fibronectin are highly...

  15. DNA damage in neurodegenerative diseases

    Energy Technology Data Exchange (ETDEWEB)

    Coppedè, Fabio, E-mail: fabio.coppede@med.unipi.it; Migliore, Lucia, E-mail: lucia.migliore@med.unipi.it

    2015-06-15

    Highlights: • Oxidative DNA damage is one of the earliest detectable events in the neurodegenerative process. • The mitochondrial DNA is more vulnerable to oxidative attack than the nuclear DNA. • Cytogenetic damage has been largely documented in Alzheimer's disease patients. • The question of whether DNA damage is cause or consequence of neurodegeneration is still open. • Increasing evidence links DNA damage and repair with epigenetic phenomena. - Abstract: Following the observation of increased oxidative DNA damage in nuclear and mitochondrial DNA extracted from post-mortem brain regions of patients affected by neurodegenerative diseases, the last years of the previous century and the first decade of the present one have been largely dedicated to the search of markers of DNA damage in neuronal samples and peripheral tissues of patients in early, intermediate or late stages of neurodegeneration. Those studies allowed to demonstrate that oxidative DNA damage is one of the earliest detectable events in neurodegeneration, but also revealed cytogenetic damage in neurodegenerative conditions, such as for example a tendency towards chromosome 21 malsegregation in Alzheimer's disease. As it happens for many neurodegenerative risk factors the question of whether DNA damage is cause or consequence of the neurodegenerative process is still open, and probably both is true. The research interest in markers of oxidative stress was shifted, in recent years, towards the search of epigenetic biomarkers of neurodegenerative disorders, following the accumulating evidence of a substantial contribution of epigenetic mechanisms to learning, memory processes, behavioural disorders and neurodegeneration. Increasing evidence is however linking DNA damage and repair with epigenetic phenomena, thereby opening the way to a very attractive and timely research topic in neurodegenerative diseases. We will address those issues in the context of Alzheimer's disease

  16. DNA damage in neurodegenerative diseases

    International Nuclear Information System (INIS)

    Coppedè, Fabio; Migliore, Lucia

    2015-01-01

    Highlights: • Oxidative DNA damage is one of the earliest detectable events in the neurodegenerative process. • The mitochondrial DNA is more vulnerable to oxidative attack than the nuclear DNA. • Cytogenetic damage has been largely documented in Alzheimer's disease patients. • The question of whether DNA damage is cause or consequence of neurodegeneration is still open. • Increasing evidence links DNA damage and repair with epigenetic phenomena. - Abstract: Following the observation of increased oxidative DNA damage in nuclear and mitochondrial DNA extracted from post-mortem brain regions of patients affected by neurodegenerative diseases, the last years of the previous century and the first decade of the present one have been largely dedicated to the search of markers of DNA damage in neuronal samples and peripheral tissues of patients in early, intermediate or late stages of neurodegeneration. Those studies allowed to demonstrate that oxidative DNA damage is one of the earliest detectable events in neurodegeneration, but also revealed cytogenetic damage in neurodegenerative conditions, such as for example a tendency towards chromosome 21 malsegregation in Alzheimer's disease. As it happens for many neurodegenerative risk factors the question of whether DNA damage is cause or consequence of the neurodegenerative process is still open, and probably both is true. The research interest in markers of oxidative stress was shifted, in recent years, towards the search of epigenetic biomarkers of neurodegenerative disorders, following the accumulating evidence of a substantial contribution of epigenetic mechanisms to learning, memory processes, behavioural disorders and neurodegeneration. Increasing evidence is however linking DNA damage and repair with epigenetic phenomena, thereby opening the way to a very attractive and timely research topic in neurodegenerative diseases. We will address those issues in the context of Alzheimer's disease

  17. Fusion plasma physics

    CERN Document Server

    Stacey, Weston M

    2012-01-01

    This revised and enlarged second edition of the popular textbook and reference contains comprehensive treatments of both the established foundations of magnetic fusion plasma physics and of the newly developing areas of active research. It concludes with a look ahead to fusion power reactors of the future. The well-established topics of fusion plasma physics -- basic plasma phenomena, Coulomb scattering, drifts of charged particles in magnetic and electric fields, plasma confinement by magnetic fields, kinetic and fluid collective plasma theories, plasma equilibria and flux surface geometry, plasma waves and instabilities, classical and neoclassical transport, plasma-materials interactions, radiation, etc. -- are fully developed from first principles through to the computational models employed in modern plasma physics. The new and emerging topics of fusion plasma physics research -- fluctuation-driven plasma transport and gyrokinetic/gyrofluid computational methodology, the physics of the divertor, neutral ...

  18. Oscillatory processes in plasma

    International Nuclear Information System (INIS)

    Gallin, E.

    1980-01-01

    The oscillatory process play an important part in plasma evolution, In hot plasma in particular, the interactions between the oscillation modes are preponderant in relation to the binary collisions between particles. The nonlineary interactions between collective plasma oscillations can generate, in this case, a non-balanced steady state of plasma (steady turbulence). The paper elucidates some aspects of the oscillatory phenomena which contribute to the plasma state evolution, especially of hot plasma. A major part of the paper is devoted to the study of parametric instabilities in plasma and their role in increasing the temperature of plasma components (electrons, ions). Both parametric instabilities in plasma in the vicinity of thermodynamic balance and parametric processes is steady turbulent plasma are analysed - in relation to additional heating of hot plasma. An important result of the thesis refers to the drowing-up of a non-lineary interaction model between the oscillation modes in turbulent plasma, being responsible for the electromagnetic radiation in hot plasma. On the basis of the model suggested in the paper the existence of a low frequency radiative mode in hot plasma in a turbulent state, can be demonstrated. Its frequency could be even lower than plasma frequency in the field of long waves be even lower than plasma frequency in the field of long waves. Such a radiative mode was detected experimentally in focussed plasma installations. (author)

  19. Calculation of voltages and currents induced in the vacuum vessel of ASDEX by plasma disruptions

    International Nuclear Information System (INIS)

    Preis, H.

    1978-01-01

    An approximation method is used to analyze the electromagnetic diffusion process induced in the walls of the ASDEX vacuum vessel by plasma disruptions. For this purpose the rotational-symmetric vessel is regarded as N = 82 circular conductors connected in parallel and inductively coupled with one another and with the plasma. The transient currents and voltages occurring in this circuit are calculated with computer programs. From the calculated currents it is possible to determine the time behavior of the distributions of the current density and magnetic force density in the vessel walls. (orig.) [de

  20. Design and testing of miniaturized plasma sensor for measuring hypervelocity impact plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Goel, A., E-mail: ashish09@stanford.edu; Tarantino, P. M.; Lauben, D. S.; Close, S. [Department of Aeronautics and Astronautics, Stanford University, Stanford, California 94305 (United States)

    2015-04-15

    An increasingly notable component of the space environment pertains to the impact of meteoroids and orbital debris on spacecraft and the resulting mechanical and electrical damages. Traveling at speeds of tens of km/s, when these particles, collectively referred to as hypervelocity particles, impact a satellite, they vaporize, ionize, and produce a radially expanding plasma that can generate electrically harmful radio frequency emission or serve as a trigger for electrostatic discharge. In order to measure the flux, composition, energy distribution, and temperature of ions and electrons in this plasma, a miniaturized plasma sensor has been developed for carrying out in-situ measurements in space. The sensor comprises an array of electrostatic analyzer wells split into 16 different channels, catering to different species and energy ranges in the plasma. We present results from numerical simulation based optimization of sensor geometry. A novel approach of fabricating the sensor using printed circuit boards is implemented. We also describe the test setup used for calibrating the sensor and show results demonstrating the energy band pass characteristics of the sensor. In addition to the hypervelocity impact plasmas, the plasma sensor developed can also be used to carry out measurements of ionospheric plasma, diagnostics of plasma propulsion systems, and in other space physics experiments.

  1. Dust-Plasma Interactions

    International Nuclear Information System (INIS)

    Rosenberg, Marelene

    2005-01-01

    Our theoretical research on dust-plasma interactions has concentrated on three main areas: (a)studies of grain charging and applications; (b) waves and instabilities in weakly correlated dusty plasma with applications to space and laboratory plasmas; (c) waves in strongly coupled dusty plasmas.

  2. Communication through plasma sheaths

    International Nuclear Information System (INIS)

    Korotkevich, A. O.; Newell, A. C.; Zakharov, V. E.

    2007-01-01

    We wish to transmit messages to and from a hypersonic vehicle around which a plasma sheath has formed. For long distance transmission, the signal carrying these messages must be necessarily low frequency, typically 2 GHz, to which the plasma sheath is opaque. The idea is to use the plasma properties to make the plasma sheath appear transparent

  3. Plasma Turbulence General Topics

    Energy Technology Data Exchange (ETDEWEB)

    Kadomtsev, B. B. [Nuclear Energy Institute, Academy of Sciences of the USSR, Moscow, USSR (Russian Federation)

    1965-06-15

    It is known that under experimental conditions plasma often shows chaotic motion. Such motion, when many degrees of freedom are excited to levels considerably above the thermal level, will be called turbulent. The properties of turbulent plasma in many respects differ from the properties of laminar plasma. It can be said that the appearance of various anomalies in plasma behaviour indicates the presence of turbulence in plasma. In order to verify directly the presence of turbulent motion in plasma we must, however, measure the fluctuation of some microscopic parameters in plasma.

  4. Introduction to plasma dynamics

    CERN Document Server

    Morozov, A I

    2013-01-01

    As the twenty-first century progresses, plasma technology will play an increasing role in our lives, providing new sources of energy, ion-plasma processing of materials, wave electromagnetic radiation sources, space plasma thrusters, and more. Studies of the plasma state of matter not only accelerate technological developments but also improve the understanding of natural phenomena. Beginning with an introduction to the characteristics and types of plasmas, Introduction to Plasma Dynamics covers the basic models of classical diffuse plasmas used to describe such phenomena as linear and shock w

  5. Clinical light damage to the eye

    International Nuclear Information System (INIS)

    Miller, D.

    1987-01-01

    This book contains four sections: The Nature of Light and of Light Damage to Biological Tissues; Light Damage to the Eye; Protecting the Eye from Light Damage; and Overview of Light Damage to the Eye. Some of the paper titles are: Ultraviolet-Absorbing Intraocular Lens Implants; Phototoxic Changes in the Retina; Light Damage to the Lens; and Radiation, Light, and Sight

  6. Collisionless plasmas in astrophysics

    CERN Document Server

    Belmont, Gerard; Mottez, Fabrice; Pantellini, Filippo; Pelletier, Guy

    2013-01-01

    Collisionless Plasmas in Astrophysics examines the unique properties of media without collisions in plasma physics. Experts in this field, the authors present the first book to concentrate on collisionless conditions in plasmas, whether close or not to thermal equilibrium. Filling a void in scientific literature, Collisionless Plasmas in Astrophysics explains the possibilities of modeling such plasmas, using a fluid or a kinetic framework. It also addresses common misconceptions that even professionals may possess, on phenomena such as "collisionless (Landau) damping". Abundant illustrations

  7. Experimental plasma physics

    International Nuclear Information System (INIS)

    Dreicer, H.; Banton, M.E.; Ingraham, J.C.; Wittman, F.; Wright, B.L.

    1976-01-01

    The Experimental Plasma Physics group's main efforts continue to be directed toward the understanding of the mechanisms of electromagnetic energy absorption in a plasma, and the resultant plasma heating and energy transport. The high-frequency spectrum of plasma waves parametrically excited by the microwave signal at high powers has been measured. The absorption of a small test microwave signal in a plasma made parametrically unstable by a separate high-power driver microwave signal was also studied

  8. Examples of plasma horizons

    International Nuclear Information System (INIS)

    Hanni, R.S.

    1975-01-01

    The concept of the plasma horizon, defined as the boundary of the region in which an infinitely thin plasma can be supported against Coulomb attraction by a magnetic field, shows that the argument of selective accretion does not rule out the existence of charged black holes embedded in a conducting plasma. A detailed account of the covariant definition of plasma horizon is given and some examples of plasma horizons are presented. 7 references

  9. BDS thin film damage competition

    Science.gov (United States)

    Stolz, Christopher J.; Thomas, Michael D.; Griffin, Andrew J.

    2008-10-01

    A laser damage competition was held at the 2008 Boulder Damage Symposium in order to determine the current status of thin film laser resistance within the private, academic, and government sectors. This damage competition allows a direct comparison of the current state-of-the-art of high laser resistance coatings since they are all tested using the same damage test setup and the same protocol. A normal incidence high reflector multilayer coating was selected at a wavelength of 1064 nm. The substrates were provided by the submitters. A double blind test assured sample and submitter anonymity so only a summary of the results are presented here. In addition to the laser resistance results, details of deposition processes, coating materials, and layer count will also be shared.

  10. Probabilistic Fatigue Damage Program (FATIG)

    Science.gov (United States)

    Michalopoulos, Constantine

    2012-01-01

    FATIG computes fatigue damage/fatigue life using the stress rms (root mean square) value, the total number of cycles, and S-N curve parameters. The damage is computed by the following methods: (a) traditional method using Miner s rule with stress cycles determined from a Rayleigh distribution up to 3*sigma; and (b) classical fatigue damage formula involving the Gamma function, which is derived from the integral version of Miner's rule. The integration is carried out over all stress amplitudes. This software solves the problem of probabilistic fatigue damage using the integral form of the Palmgren-Miner rule. The software computes fatigue life using an approach involving all stress amplitudes, up to N*sigma, as specified by the user. It can be used in the design of structural components subjected to random dynamic loading, or by any stress analyst with minimal training for fatigue life estimates of structural components.

  11. Kava Linked to Liver Damage

    Science.gov (United States)

    ... of these countries to remove kava from the market. Although liver damage appears to be rare, the ... are marketed to men, women, children, and the elderly. Advice to Consumers Safety is a concern for ...

  12. Civil Liability for Environmental Damages

    Directory of Open Access Journals (Sweden)

    Daniela Ciochină

    2012-05-01

    Full Text Available We debated in this article the civil liability for environmental damages as stipulated in ourlegislation with reference to Community law. The theory of legal liability in environmental law is basedon the duty of all citizens to respect and protect the environment. Considering the importance ofenvironment in which we live, the liability for environmental damages is treated by the Constitution as aprinciple and a fundamental obligation. Many human activities cause environmental damages and, in linewith the principle of sustainable development, they should be avoided. However, when this is notpossible, they must be regulated (by criminal or administrative law in order to limit their adverse effectsand, according to the polluter pays principle, to internalize in advance their externalities (through taxes,insurances or other forms of financial security products. Communication aims to analyze these issues andlegal regulations dealing with the issue of liability for environmental damage.

  13. Corneal Damage from Infrared Radiation

    National Research Council Canada - National Science Library

    McCally, Russell

    2000-01-01

    ...) laser radiation at 10.6 (micrometer) and Tm: YAG laser radiation at 2.02 (micrometer). Retinal damage from sources with rectangular irradiance distributions was also modeled. Thresholds for CO(2...

  14. Radiation Damage and Dimensional Changes

    International Nuclear Information System (INIS)

    El-Barbary, A.A.; Lebda, H.I.; Kamel, M.A.

    2009-01-01

    The dimensional changes have been modeled in order to be accommodated in the reactor design. This study has major implications for the interpretation of damage in carbon based nuclear fission and fusion plant materials. Radiation damage of graphite leads to self-interstitials and vacancies defects. The aggregation of these defects causes dimensional changes. Vacancies aggregate into lines and disks which heal and contract the basal planes. Interstitials aggregate into interlayer disks which expand the dimension

  15. Apportioning liability for transborder damage

    International Nuclear Information System (INIS)

    Krause-Ablass, W.D.

    1988-01-01

    The author analyses the different legal systems applicable to transfrontier nuclear damage. Using examples, he describes the mechanisms enabling a victim of such damage to identify the competent court and the relevant law, according to whether the provisions of the Paris or the Vienna Convention come into play or whether the rules of private international law, incorporated in the various national laws are applicable (NEA) [fr

  16. Damage Atlas for Photographic materials

    Directory of Open Access Journals (Sweden)

    Kristel Van Camp

    2010-11-01

    Full Text Available La conservation des documents photographiques peut nécessiter des interventions préventives ou curatives. Ce choix est guidé par leur état de conservation. Une meilleure connaissance des détériorations est donc cruciale. Le répertoire présenté ici essaie de les classifier selon des caractéristiques spécifiques et leur niveau de gravité. Les différents types de dégradation sont illustrés et décrits avec une terminologie précise. L’auteur propose en regard de ceux-ci l’intervention qui semble la plus appropriée. Ce répertoire s’adresse à toutes les personnes concernées par la photographie, qu’ils soient dans le milieu de la conservation ou dans le domaine artistique, dans les musées ou dans les archives. In order to rescue a damaged photographic object, preventive or conservative actions are needed. Knowing the specific characteristics of different types of damage is crucial. A damage atlas can provide these characteristics. With this atlas the damage can be recognised and appropriate actions can be taken. This damage atlas offers a first attempt to such a characterisation in the field of photography. The damage atlas contains images and the necessary information about damage on photographic material. The atlas with special annotations about the terminology and the grade of the damage is meant for everybody who works with photographic material, as well in museums as in archives.

  17. Minimally Invasive Treatment with Platelet Rich Plasma in Patients with Knee Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Albu Daniel–Emil

    2016-09-01

    Full Text Available Background: The main target of the structural damage in osteoarthritisis the hyaline cartilage. New options such as PRP (platelet rich plasma may cause structural improvement of the cartilage.

  18. Study on the effects of physical plasma on in-vitro cultivates cells

    International Nuclear Information System (INIS)

    Strassenburg, Susanne

    2014-03-01

    This study focused on the interactions of non thermal atmospheric pressure plasma on in vitro cultured keratinocytes (HaCaT keratinocytes) and melanoma cells (MV3). Three different plasma sources were used: a plasma jet (kINPen 09), a surface DBD (dielectric barrier discharge) and a volume DBD. For analyzing basic effects of plasma on cells, influence of physical plasma on viability, on DNA and on induction of ROS were investigated. Following assays were used: -- Viability: - neutral red uptake assay, cell counting (number of viable cells, cell integrity) - BrdU assay (proliferation) - Annexin V and propidium iodide staining, flow cytometry (induction of apoptosis), -- DNA: - alkaline comet assay (detection of DNA damage) - staining of DNA with propidium iodide, flow cytometry (cell cycle analysis), -- ROS: - H2DCFDA assay, flow cytometry (detection of ROS-positive cells). In addition to the effects which where induced by the plasma sources, the influence of the plasma treatment regime (direct, indirect and direct with medium exchange), the working gas (argon, air) and the surrounding liquids (cell culture medium: RPMI, IMDM; buffer solutions: HBSS, PBS) on the extent of the plasma cell effects were investigated. All plasma sources induced treatment time-dependent effects in HaCaT keratinocytes and melanoma cells (MV3): - loss of viable cells and reduced proliferation - induction of apoptosis after the longest treatment times - DNA damage 1 h after plasma treatment, 24 h after plasma treatment DNA damage was present only after the longest treatment times, evidence for DNA damage repair - due to accumulation of cells in G2/M phase, cell count in G1 phase (24 h) is lower - increase of ROS-positive cells 1 h and 24 h after plasma treatment. It was shown that cells which were cultured in RPMI showed stronger effects (stronger loss of viability and more DNA damage) than cells which were cultured in IMDM. Also plasma-treated buffer solutions (HBSS, PBS) induced DNA

  19. RENAL DAMAGE WITH MALIGNANT NEOPLASMS

    Directory of Open Access Journals (Sweden)

    I. B. Kolina

    2015-01-01

    Full Text Available The relationship between renal damage and malignant neoplasms is one of the most actual problems of the medicine of internal diseases. Very often, exactly availability of renal damage determines the forecast of cancer patients. The range of renal pathologies associated with tumors is unusually wide: from the mechanical effect of the tumor or metastases on the kidneys and/or the urinary tract and paraneoplastic manifestations in the form of nephritis or amyloidosis to nephropathies induced with drugs or tumor lysis, etc. Thrombotic complications that develop as a result of exposure to tumor effects, side effects of certain drugs or irradiation also play an important role in the development of the kidney damage. The most frequent variants of renal damage observed in the practice of medical internists (therapists, urologists, surgeons, etc., as well as methods of diagnosis and treatment approaches are described in the article. Timely and successful prevention and treatment of tumor-associated nephropathies give hope for retaining renal functions, therefore, a higher life standard after completion of anti-tumor therapy. Even a shortterm episode of acute renal damage suffered by a cancer patient must be accompanied with relevant examination and treatment. In the caseof transformation of acute renal damage into the chronic kidney disease, such patients need systematic and weighted renoprotective therapy and correct dosing of nephrotoxic drugs.

  20. CEREBRAL CORTEX DAMAGE INDUCED BY ACUTE ORAL ...

    African Journals Online (AJOL)

    2018-02-28

    Feb 28, 2018 ... This study examines alcohol-induced cerebral cortex damage and the association with oxidative ... alcohol has profound effects on the function ... Chronic use of ..... Alcohol induced brain damage and liver damage in young.

  1. Platelet Rich Plasma and Knee Surgery

    Directory of Open Access Journals (Sweden)

    Mikel Sánchez

    2014-01-01

    Full Text Available In orthopaedic surgery and sports medicine, the knee joint has traditionally been considered the workhorse. The reconstruction of every damaged element in this joint is crucial in achieving the surgeon’s goal to restore the knee function and prevent degeneration towards osteoarthritis. In the last fifteen years, the field of regenerative medicine is witnessing a boost of autologous blood-derived platelet rich plasma products (PRPs application to effectively mimic and accelerate the tissue healing process. The scientific rationale behind PRPs is the delivery of growth factors, cytokines, and adhesive proteins present in platelets and plasma, as well as other biologically active proteins conveyed by the plasma such as fibrinogen, prothrombin, and fibronectin; with this biological engineering approach, new perspectives in knee surgery were opened. This work describes the use of PRP to construct and repair every single anatomical structure involved in knee surgery, detailing the process conducted in ligament, meniscal, and chondral surgery.

  2. Plasma protein haptoglobin modulates renal iron loading

    DEFF Research Database (Denmark)

    Fagoonee, Sharmila; Gburek, Jakub; Hirsch, Emilio

    2005-01-01

    Haptoglobin is the plasma protein with the highest binding affinity for hemoglobin. The strength of hemoglobin binding and the existence of a specific receptor for the haptoglobin-hemoglobin complex in the monocyte/macrophage system clearly suggest that haptoglobin may have a crucial role in heme...... distribution of hemoglobin in haptoglobin-deficient mice resulted in abnormal iron deposits in proximal tubules during aging. Moreover, iron also accumulated in proximal tubules after renal ischemia-reperfusion injury or after an acute plasma heme-protein overload caused by muscle injury, without affecting...... morphological and functional parameters of renal damage. These data demonstrate that haptoglobin crucially prevents glomerular filtration of hemoglobin and, consequently, renal iron loading during aging and following acute plasma heme-protein overload....

  3. Erosion and foreign object damage of thermal barrier coatings

    International Nuclear Information System (INIS)

    Nicholls, J.R.; Jaslier, Y.; Rickerby, D.S.

    1997-01-01

    Thermal barrier coating technology is used in the hot sections of gas turbines to extend component life. To maximise these benefits, the thermal barrier coating has to remain intact throughout the life of the turbine. High velocity ballistic damage can lead to total thermal barrier removal, while erosion may lead to progressive loss of thickness during operation. This paper particularly addresses the erosion resistance and resistance to foreign object damage of thermal barrier coatings. It was found that EB-PVD thermal barriers are significantly more erosion resistant when impacted with alumina or silica, than the equivalent plasma spray coating, both at room temperature and 910 C. Examination of tested hardware, reveals that cracking occurs within the near surface region of the columns for EB-PVD ceramic and that erosion occurs by removal of these small blocks of material. In stark contrast, removal of material for plasma sprayed ceramic occurs through poorly bonded splat boundaries. Large particle impact results in severe damage to the EB-PVD thermal barrier, with cracks penetrating through the ceramic coating to the ceramic/bond coat interface. Material removal, per particle impact, increases with increased particle size. (orig.)

  4. Elements of plasma technology

    CERN Document Server

    Wong, Chiow San

    2016-01-01

    This book presents some fundamental aspects of plasma technology that are important for beginners interested to start research in the area of plasma technology . These include the properties of plasma, methods of plasma generation and basic plasma diagnostic techniques. It also discusses several low cost plasma devices, including pulsed plasma sources such as plasma focus, pulsed capillary discharge, vacuum spark and exploding wire; as well as low temperature plasmas such as glow discharge and dielectric barrier discharge which the authors believe may have potential applications in industry. The treatments are experimental rather than theoretical, although some theoretical background is provided where appropriate. The principles of operation of these devices are also reviewed and discussed.

  5. TFTR plasma feedback systems

    International Nuclear Information System (INIS)

    Efthimion, P.; Hawryluk, R.J.; Hojsak, W.; Marsala, R.J.; Mueller, D.; Rauch, W.; Tait, G.D.; Taylor, G.; Thompson, M.

    1985-01-01

    The Tokamak Fusion Test Reactor employs feedback control systems for four plasma parameters, i.e. for plasma current, for plasma major radius, for plasma vertical position, and for plasma density. The plasma current is controlled by adjusting the rate of change of current in the Ohmic Heating (OH) coil system. Plasma current is continuously sensed by a Rogowski coil and its associated electronics; the error between it and a preprogrammed reference plasma current history is operated upon by a ''proportional-plusintegral-plus-derivative'' (PID) control algorithm and combined with various feedforward terms, to generate compensating commands to the phase-controlled thyristor rectifiers which drive current through the OH coils. The plasma position is controlled by adjusting the currents in Equilibrium Field and Horizontal Field coil systems, which respectively determine the vertical and radial external magnetic fields producing J X B forces on the plasma current. The plasma major radius position and vertical position, sensed by ''B /sub theta/ '' and ''B /sub rho/ '' magnetic flux pickup coils with their associated electronics, are controlled toward preprogrammed reference histories by allowing PID and feedforward control algorithms to generate commands to the EF and HF coil power supplies. Plasma density is controlled by adjusting the amount of gas injected into the vacuum vessel. Time-varying gains are used to combine lineaveraged plasma density measurements from a microwave interferometer plasma diagnostic system with vacuum vessel pressure measurements from ion gauges, with various other measurements, and with preprogrammed reference histories, to determine commands to piezoelectric gas injection valves

  6. OXIDATIVE STRESS AND VASCULAR DAMAGE IN HYPOXIA PROCESSES. MALONDIALDEHYDE (MDA AS BIOMARKER FOR OXIDATIVE DAMAGE

    Directory of Open Access Journals (Sweden)

    Muñiz P

    2014-05-01

    Full Text Available Changes in the levels oxidative stress biomarkers are related with different diseases such as ischemia/reperfusion, cardiovascular, renal, aging, etc. One of these biomarkers is the malondialdehyde (MDA generated as resulted of the process of lipid peroxidation. This biomarker is increased under conditions of the oxidative stress. Their levels, have been frequently used to measure plasma oxidative damage to lipids by their atherogenic potential. Its half-life high and their reactivity allows it to act both inside and outside of cells and interaction with proteins and DNA involve their role in different pathophysiological processes. This paper presents an analysis of the use of MDA as a biomarker of oxidative stress and its implications associated pathologies such as cardiovascular diseases ago.

  7. International conference on plasma physics

    International Nuclear Information System (INIS)

    Silin, V.P.; Sitenko, A.G.

    1985-01-01

    A brief report on the 6th International conference on plasma physics and on the 6th International Congress on plasma waves and plasma instabilities, which have taken place in summer 1984 in Losanne, is presented. Main items of the conference are enlightened, such as the general theory of a plasma, laboratory plasma, thermonuclear plasma, cosmic plasma and astrophysics

  8. Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses. I. Experimental. Part 1

    International Nuclear Information System (INIS)

    Stuart, B.C.; Herman, S.; Perry, M.D.

    1994-12-01

    The authors report extensive laser-induced damage threshold measurements on pure and multilayer dielectrics at 1053 and 526 mm for pulse durations, τ, ranging from 140 fs to 1 ns. Qualitative differences in the morphology of damage and a departure from the diffusion-dominated τ 1/2 scaling indicate that damage results from plasma formation and ablation for τ≤10 ps and from conventional melting and boiling for τ>50 ps. A theoretical model based on electron production via multiphoton ionization, Joule heating, and collisional (avalanche) ionization is in good agreement with both the pulsewidth and wavelength scaling of experimental results

  9. Glaucomatous damage of the macula.

    Science.gov (United States)

    Hood, Donald C; Raza, Ali S; de Moraes, Carlos Gustavo V; Liebmann, Jeffrey M; Ritch, Robert

    2013-01-01

    There is a growing body of evidence that early glaucomatous damage involves the macula. The anatomical basis of this damage can be studied using frequency domain optical coherence tomography (fdOCT), by which the local thickness of the retinal nerve fiber layer (RNFL) and local retinal ganglion cell plus inner plexiform (RGC+) layer can be measured. Based upon averaged fdOCT results from healthy controls and patients, we show that: 1. For healthy controls, the average RGC+ layer thickness closely matches human histological data; 2. For glaucoma patients and suspects, the average RGC+ layer shows greater glaucomatous thinning in the inferior retina (superior visual field (VF)); and 3. The central test points of the 6° VF grid (24-2 test pattern) miss the region of greatest RGC+ thinning. Based upon fdOCT results from individual patients, we have learned that: 1. Local RGC+ loss is associated with local VF sensitivity loss as long as the displacement of RGCs from the foveal center is taken into consideration; and 2. Macular damage is typically arcuate in nature and often associated with local RNFL thinning in a narrow region of the disc, which we call the macular vulnerability zone (MVZ). According to our schematic model of macular damage, most of the inferior region of the macula projects to the MVZ, which is located largely in the inferior quadrant of the disc, a region that is particularly susceptible to glaucomatous damage. A small (cecocentral) region of the inferior macula, and all of the superior macula (inferior VF), project to the temporal quadrant, a region that is less susceptible to damage. The overall message is clear; clinicians need to be aware that glaucomatous damage to the macula is common, can occur early in the disease, and can be missed and/or underestimated with standard VF tests that use a 6° grid, such as the 24-2 VF test. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Carbon-carbon composite and copper-composite bond damages for high flux component controlled fusion

    International Nuclear Information System (INIS)

    Chevet, G.

    2010-01-01

    Plasma facing components constitute the first wall in contact with plasma in fusion machines such as Tore Supra and ITER. These components have to sustain high heat flux and consequently elevated temperatures. They are made up of an armour material, the carbon-carbon composite, a heat sink structure material, the copper chromium zirconium, and a material, the OFHC copper, which is used as a compliant layer between the carbon-carbon composite and the copper chromium zirconium. Using different materials leads to the apparition of strong residual stresses during manufacturing, because of the thermal expansion mismatch between the materials, and compromises the lasting operation of fusion machines as damage which appeared during manufacturing may propagate. The objective of this study is to understand the damage mechanisms of the carbon-carbon composite and the composite-copper bond under solicitations that plasma facing components may suffer during their life. The mechanical behaviours of carbon-carbon composite and composite-copper bond were studied in order to define the most suitable models to describe these behaviours. With these models, thermomechanical calculations were performed on plasma facing components with the finite element code Cast3M. The manufacturing of the components induces high stresses which damage the carbon-carbon composite and the composite-copper bond. The damage propagates during the cooling down to room temperature and not under heat flux. Alternative geometries for the plasma facing components were studied to reduce damage. The relation between the damage of the carbon-carbon composite and its thermal conductivity was also demonstrated. (author) [fr

  11. Non-thermal Plasma and Oxidative Stress

    Science.gov (United States)

    Toyokuni, Shinya

    2015-09-01

    Thermal plasmas and lasers have been used in medicine to cut and ablate tissues and for coagulation. Non-equilibrium atmospheric pressure plasma (NEAPP; non-thermal plasma) is a recently developed, non-thermal technique with possible biomedical applications. Although NEAPP reportedly generates reactive oxygen/nitrogen species, electrons, positive ions, and ultraviolet radiation, few research projects have been conducted to merge this technique with conventional free radical biology. Recently, Prof. Masaru Hori's group (Plasma Nanotechnology Research Center, Nagoya University) developed a NEAPP device with high electron density. Here electron spin resonance revealed hydroxyl radicals as a major product. To merge non-thermal plasma biology with the preexisting free radical biology, we evaluated lipid peroxidation and DNA modifications in various in vitro and ex vivo experiments. Conjugated dienes increased after exposure to linoleic and alfa-linolenic acids. An increase in 2-thiobarbituric acid-reactive substances was also increased after exposure to phosphatidylcholine, liposomes or liver homogenate. Direct exposure to rat liver in medium produced immunohistochemical evidence of 4-hydroxy-2-nonenal- and acrolein-modified proteins. Exposure to plasmid DNA induced dose-dependent single/double strand breaks and increased the amounts of 8-hydroxy-2'-deoxyguanosine and cyclobutane pyrimidine dimers. These results indicate that oxidative biomolecular damage by NEAPP is dose-dependent and thus can be controlled in a site-specific manner. Simultaneous oxidative and UV-specific DNA damage may be useful in cancer treatment. Other recent advancements in the related studies of non-thermal plasma in Nagoya University Graduate School of Medicine will also be discussed.

  12. Plasmas and fluids

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Plasma and fluid physics includes the fields of fusion research and space investigation. This book discusses the most important advances in these areas over the past decade and recommends a stronger commitment to basic research in plasma and fluid physics. The book recommends that plasma and fluid physics be included in physics curriculums because of their increasing importance in energy and defense. The book also lists recent accomplishments in the fields of general plasma physics, fusion plasma confinement and heating, space and astrophysical plasmas, and fluid physics and lists research opportunities in these areas. A funding summary explains how research monies are allocated and suggests ways to improve their effectiveness

  13. Plasma processing of soft materials for development of flexible devices

    International Nuclear Information System (INIS)

    Setsuhara, Yuichi; Cho, Ken; Takenaka, Kosuke; Shiratani, Masaharu; Sekine, Makoto; Hori, Masaru

    2011-01-01

    Plasma-polymer interactions have been studied as a basis for development of next-generation processing of flexible devices with soft materials by means of low-damage plasma technologies (soft materials processing technologies). In the present article, interactions between argon plasmas and polyethylene terephthalate (PET) films have been examined for investigations of physical damages induced by plasma exposures to the organic material via chemical bonding-structure analyses using hard X-ray photoelectron spectroscopy (HXPES) together with conventional X-ray photoelectron spectroscopy (XPS). The PET film has been selected as a test material for investigations in the present study not merely because of its specific applications, such as a substrate material, but because PET is one of the well defined organic materials containing major components in a variety of functional soft materials; C-C main chain, CH bond, oxygen functionalities (O=C-O bond and C-O bond) and phenyl group. Especially, variations of the phenyl group due to argon plasma exposures have been investigated in the present article in order to examine plasma interactions with π-conjugated system, which is in charge of electronic functions in many of the π-conjugated electronic organic materials to be utilized as functional layer for advanced flexible device formations. The PET films have been exposed to argon plasmas sustained via inductive coupling of RF power with low-inductance antenna modules. The HXPES analyses exhibited that the degradations of the oxygen functionalities and the phenyl group in the deeper regions up to 50 nm from the surface of the samples were insignificant indicating that the bond scission and/or the degradations of the chemical bonding structures due to photoirradiation from the plasma and/or surface heating via plasma exposure were relatively insignificant as compared with damages in the vicinity of the surface layers.

  14. DNA Damage, Mutagenesis and Cancer

    Directory of Open Access Journals (Sweden)

    Ashis K. Basu

    2018-03-01

    Full Text Available A large number of chemicals and several physical agents, such as UV light and γ-radiation, have been associated with the etiology of human cancer. Generation of DNA damage (also known as DNA adducts or lesions induced by these agents is an important first step in the process of carcinogenesis. Evolutionary processes gave rise to DNA repair tools that are efficient in repairing damaged DNA; yet replication of damaged DNA may take place prior to repair, particularly when they are induced at a high frequency. Damaged DNA replication may lead to gene mutations, which in turn may give rise to altered proteins. Mutations in an oncogene, a tumor-suppressor gene, or a gene that controls the cell cycle can generate a clonal cell population with a distinct advantage in proliferation. Many such events, broadly divided into the stages of initiation, promotion, and progression, which may occur over a long period of time and transpire in the context of chronic exposure to carcinogens, can lead to the induction of human cancer. This is exemplified in the long-term use of tobacco being responsible for an increased risk of lung cancer. This mini-review attempts to summarize this wide area that centers on DNA damage as it relates to the development of human cancer.

  15. Autophagy in DNA Damage Response

    Directory of Open Access Journals (Sweden)

    Piotr Czarny

    2015-01-01

    Full Text Available DNA damage response (DDR involves DNA repair, cell cycle regulation and apoptosis, but autophagy is also suggested to play a role in DDR. Autophagy can be activated in response to DNA-damaging agents, but the exact mechanism underlying this activation is not fully understood, although it is suggested that it involves the inhibition of mammalian target of rapamycin complex 1 (mTORC1. mTORC1 represses autophagy via phosphorylation of the ULK1/2–Atg13–FIP200 complex thus preventing maturation of pre-autophagosomal structures. When DNA damage occurs, it is recognized by some proteins or their complexes, such as poly(ADPribose polymerase 1 (PARP-1, Mre11–Rad50–Nbs1 (MRN complex or FOXO3, which activate repressors of mTORC1. SQSTM1/p62 is one of the proteins whose levels are regulated via autophagic degradation. Inhibition of autophagy by knockout of FIP200 results in upregulation of SQSTM1/p62, enhanced DNA damage and less efficient damage repair. Mitophagy, one form of autophagy involved in the selective degradation of mitochondria, may also play role in DDR. It degrades abnormal mitochondria and can either repress or activate apoptosis, but the exact mechanism remains unknown. There is a need to clarify the role of autophagy in DDR, as this process may possess several important biomedical applications, involving also cancer therapy.

  16. Radiation exposure and chromosome damage

    International Nuclear Information System (INIS)

    Lloyd, D.

    1979-01-01

    Chromosome damage is discussed as a means of biologically measuring radiation exposure to the body. Human lymphocytes are commonly used for this test since the extent of chromosome damage induced is related to the exposure dose. Several hundred lymphocytes are analysed in metaphase for chromosome damage, particularly dicentrics. The dose estimate is made by comparing the observed dicentric yield against calibration curves, previously produced by in vitro irradiation of blood samples to known doses of different types of radiation. This test is useful when there is doubt that the film badge has recorded a reasonable whole body dose and also when there is an absence of any physical data. A case of deliberate exposure is described where the chromosome damage test estimated an exposure of 152 rads. The life span of cell aberrations is also considered. Regular checks on radiotherapy patients and some accidental overdose cases have shown little reduction in the aberration levels over the first six weeks after which the damage disappears slowly with a half-life of about three years. In conclusion, chromosome studies have been shown to be of value in resolving practical problems in radiological protection. (U.K.)

  17. Tissue repair in myxobacteria: A cooperative strategy to heal cellular damage.

    Science.gov (United States)

    Vassallo, Christopher N; Wall, Daniel

    2016-04-01

    Damage repair is a fundamental requirement of all life as organisms find themselves in challenging and fluctuating environments. In particular, damage to the barrier between an organism and its environment (e.g. skin, plasma membrane, bacterial cell envelope) is frequent because these organs/organelles directly interact with the external world. Here, we discuss the general strategies that bacteria use to cope with damage to their cell envelope and their repair limits. We then describe a novel damage-coping mechanism used by multicellular myxobacteria. We propose that cell-cell transfer of membrane material within a population serves as a wound-healing strategy and provide evidence for its utility. We suggest that--similar to how tissues in eukaryotes have evolved cooperative methods of damage repair--so too have some bacteria that live a multicellular lifestyle. © 2016 WILEY Periodicals, Inc.

  18. A Comparison of Curing Process-Induced Residual Stresses and Cure Shrinkage in Micro-Scale Composite Structures with Different Constitutive Laws

    Science.gov (United States)

    Li, Dongna; Li, Xudong; Dai, Jianfeng; Xi, Shangbin

    2018-02-01

    In this paper, three kinds of constitutive laws, elastic, "cure hardening instantaneously linear elastic (CHILE)" and viscoelastic law, are used to predict curing process-induced residual stress for the thermoset polymer composites. A multi-physics coupling finite element analysis (FEA) model implementing the proposed three approaches is established in COMSOL Multiphysics-Version 4.3b. The evolution of thermo-physical properties with temperature and degree of cure (DOC), which improved the accuracy of numerical simulations, and cure shrinkage are taken into account for the three models. Subsequently, these three proposed constitutive models are implemented respectively in a 3D micro-scale composite laminate structure. Compared the differences between these three numerical results, it indicates that big error in residual stress and cure shrinkage generates by elastic model, but the results calculated by the modified CHILE model are in excellent agreement with those estimated by the viscoelastic model.

  19. Thermal conductivity reduction of tungsten plasma facing material due to helium plasma irradiation in PISCES using the improved 3-omega method

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Shuang [Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093 (United States); Simmonds, Michael [Department of Physics, University of California, San Diego, La Jolla, CA 92093 (United States); Center for Energy Research, University of California, San Diego, La Jolla, CA 92093 (United States); Qin, Wenjing; Ren, Feng [School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072 (China); Tynan, George R. [Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093 (United States); Center for Energy Research, University of California, San Diego, La Jolla, CA 92093 (United States); Doerner, Russell P. [Center for Energy Research, University of California, San Diego, La Jolla, CA 92093 (United States); Chen, Renkun, E-mail: rkchen@ucsd.edu [Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093 (United States); Center for Energy Research, University of California, San Diego, La Jolla, CA 92093 (United States)

    2017-04-01

    The near-surface region of plasma facing material (PFM) plays an important role in thermal management of fusion reactors. In this work, we measured thermal conductivity of tungsten (W) surface layers damaged by He plasma in PISCES at UCSD. We studied the damage effect on both bulk, and thin film, W. We observed that the surface morphology of both bulk and thin film was altered after exposure to He plasma with the fluence of 1 × 10{sup 26} m{sup −2} (bulk) and 2 × 10{sup 24} m{sup −2} (thin film). Transmission electron microscopy (TEM) analysis reveals that the depth of the irradiation damaged layer was approximately 20 nm on the bulk W exposed to He plasma at 773 K for 2000 s. In order to measure the thermal conductivity of this exceedingly thin damaged layer in the bulk W, we adopted the well-established ‘3-omega’ method and employed novel nanofabrication techniques to improve the measurement sensitivity. For the damaged W thin film sample, we measured the reduction in electrical conductivity and used the Wiedemann-Franz (W-F) law to extract the thermal conductivity. Results from both measurements show that thermal conductivity in the damaged layers was reduced by at least ∼80% compared to that of undamaged W. This large reduction in thermal conductivity can be attributed to the scattering of electrons, the dominant heat carriers in W, caused by defects introduced by He plasma irradiation.

  20. Plasma flow measurements in a simulated low earth orbit plasma

    International Nuclear Information System (INIS)

    Gabriel, S.B.; Mccoy, J.E.; Carruth, M.R. Jr.

    1982-01-01

    The employment of large, higher power solar arrays for space operation has been considered, taking into account a utilization of high operating voltages. In connection with the consideration of such arrays, attention must be given to the fact that the ambient environment of space contains a tenuous low energy plasma which can interact with the high voltage array causing power 'leakage' and arcing. An investigation has been conducted with the aim to simulate the behavior of such an array in low-earth-orbit (LEO). During the experiments, local concentrations of the 'leakage' current were observed when the panel was at a high voltage. These concentrations could overload or damage a small area of cells in a large string. It was hypothesized that this effect was produced by electrostatic focusing of the particles by the sheath fields. To verify this experimentally, an end-effect Langmuir probe was employed. The obtained results are discussed

  1. Enhanced surface functionality via plasma modification and plasma deposition techniques to create more biologically relevant materials

    Science.gov (United States)

    Shearer, Jeffrey C.

    Functionalizing nanoparticles and other unusually shaped substrates to create more biologically relevant materials has become central to a wide range of research programs. One of the primary challenges in this field is creating highly functionalized surfaces without modifying the underlying bulk material. Traditional wet chemistry techniques utilize thin film depositions to functionalize nanomaterials with oxygen and nitrogen containing functional groups, such as --OH and --NHx. These functional groups can serve to create surfaces that are amenable to cell adhesion or can act as reactive groups for further attachment of larger structures, such as macromolecules or antiviral agents. Additional layers, such as SiO2, are often added between the nanomaterial and the functionalized coating to act as a barrier films, adhesion layers, and to increase overall hydrophilicity. However, some wet chemistry techniques can damage the bulk material during processing. This dissertation examines the use of plasma processing as an alternative method for producing these highly functionalized surfaces on nanoparticles and polymeric scaffolds through the use of plasma modification and plasma enhanced chemical vapor deposition techniques. Specifically, this dissertation will focus on (1) plasma deposition of SiO2 barrier films on nanoparticle substrates; (2) surface functionalization of amine and alcohol groups through (a) plasma co-polymerization and (b) plasma modification; and (3) the design and construction of plasma hardware to facilitate plasma processing of nanoparticles and polymeric scaffolds. The body of work presented herein first examines the fabrication of composite nanoparticles by plasma processing. SiOxC y and hexylamine films were coated onto TiO2 nanoparticles to demonstrate enhanced water dispersion properties. Continuous wave and pulsed allyl alcohol plasmas were used to produce highly functionalized Fe2 O3 supported nanoparticles. Specifically, film composition was

  2. Ar + NO microwave plasmas for Escherichia coli sterilization

    Energy Technology Data Exchange (ETDEWEB)

    Hueso, Jose L; Rico, Victor J; Cotrino, Jose; Gonzalez-Elipe, Agustin R [Instituto de Ciencia de Materiales de Sevilla, Centro Mixto CSIC-Universidad de Sevilla, Centro de Investigaciones Cientificas Isla de la Cartuja, Avda. Americo Vespucio 49, 41092 Sevilla (Spain); Frias, Jose E [Instituto de BioquImica Vegetal y FotosIntesis (IBVF-CSIC). Centro de Investigaciones CientIficas Isla de la Cartuja. Avda Americo Vespucio, 49, 41092 Sevilla (Spain)], E-mail: jhueso@icmse.csic.es

    2008-05-07

    Ar + NO microwave discharges are used for sterilization and the results are compared with additional experiments with Ar, O{sub 2} and N{sub 2}-O{sub 2} plasma mixtures. The NO{sup *} species produced in the Ar-NO mixtures remain up to long distances from the source, thus improving the sterilization efficiency of the process. E. coli individuals exposed to the Ar + NO plasma undergo morphological damage and cell lysis. Combined effects of etching (by O{sup *} and Ar{sup *} species) and UV radiation (from deactivation of NO{sup *} species) are responsible for the higher activity found for this plasma mixture. (fast track communication)

  3. The influence of plasma motion on disruption generated runaway electrons

    International Nuclear Information System (INIS)

    Russo, A.J.

    1991-01-01

    One of the possible consequences of disruptions is the generation of runaway electrons which can impact plasma facing components and cause damage due to high local energy deposition. This problem becomes more serious as the machine size and plasma current increases. Since large size and high currents are characteristics of proposed future machines, control of runaway generation is an important design consideration. A lumped circuit model for disruption runaway electron generation indicates that control circuitry on strongly influence runaway behavior. A comparison of disruption data from several shots on JET and D3-D with model results, demonstrate the effects of plasma motion on runaway number density and energy. 6 refs., 12 figs

  4. Ar + NO microwave plasmas for Escherichia coli sterilization

    International Nuclear Information System (INIS)

    Hueso, Jose L; Rico, Victor J; Cotrino, Jose; Gonzalez-Elipe, Agustin R; Frias, Jose E

    2008-01-01

    Ar + NO microwave discharges are used for sterilization and the results are compared with additional experiments with Ar, O 2 and N 2 -O 2 plasma mixtures. The NO * species produced in the Ar-NO mixtures remain up to long distances from the source, thus improving the sterilization efficiency of the process. E. coli individuals exposed to the Ar + NO plasma undergo morphological damage and cell lysis. Combined effects of etching (by O * and Ar * species) and UV radiation (from deactivation of NO * species) are responsible for the higher activity found for this plasma mixture. (fast track communication)

  5. Periodontal tissue damage in smokers

    Directory of Open Access Journals (Sweden)

    Hutojo Djajakusuma

    2006-09-01

    Full Text Available Dental plaque is the primary etiological factor in periodontal diseases. However, there are many factors that can modify how an individual periodontal tissue will respond to the accumulation of dental plaque. Among such risk factors, there is increasing evidence that smoking tobacco products alters the expression and rate of progression of periodontal diseases. The aim of this study was to find out the loss of periodontal tissue adhesion in smokers by measuring pocket depth using probe, and by measuring alveolar bone damage using Bone Loss Score (BLS radiographic methods on teeth 12, 11, 21, 22, 32, 31, 41, 42. Based on T Test statistical analysis, there were significant differences in pocket depth damage of alveolar bone in smokers and non smokers. In conclusion there were increasing pocket depth and alveolar bone damage in smokers.

  6. Innovative repair of subsidence damage

    International Nuclear Information System (INIS)

    Marino, G.G.

    1992-01-01

    In order to improve handling of subsidence damages the Illinois Mine Subsidence Insurance Fund supported the development of novel cost-effective methods of repair. The research in developing the repairs was directed towards the most common and costly damages that had been observed. As a result repair techniques were designed for structurally cracked foundations in the tension zone; structurally cracked foundations in the compression zone; and damaged or undamaged tilted foundations. When appropriate the postulated methods would result in: 1. significant cost savings (over conventional procedures); 2. a structural capacity greater than when the foundation was uncracked; and 3. an aesthetic appeal. All the postulated repair methodologies were laboratory and/or field tested. This paper will summarize the essentials of each technique developed and the test results

  7. Special issue: Plasma Conversion

    NARCIS (Netherlands)

    Nozaki, T.; Bogaerts, A.; Tu, X.; van de Sanden, M. C. M.

    2017-01-01

    With growing concern of energy and environmental issues, the combination of plasma and heterogeneous catalysts receives special attention in greenhouse gas conversion, nitrogen fixation and hydrocarbon chemistry. Plasma gas conversion driven by renewable electricity is particularly important for the

  8. Neutrino beam plasma instability

    Indian Academy of Sciences (India)

    positron or electron–proton plasma in the context of early universe, stars and supernova ... proper. Of course, in their later work on kinetic theory (KT) [5] of neutrino plasma inter- .... for electron also with additional electric potential term.

  9. Plasma kinetic theory

    International Nuclear Information System (INIS)

    Elliott, J.A.

    1993-01-01

    Plasma kinetic theory is discussed and a comparison made with the kinetic theory of gases. The plasma is described by a modified set of fluid equations and it is shown how these fluid equations can be derived. (UK)

  10. Physics of laser plasma

    International Nuclear Information System (INIS)

    Rubenchik, A.; Witkowski, S.

    1991-01-01

    This book provides a comprehensive review of laser fusion plasma physics and contains the most up-to-date information on high density plasma physics and radiation transport, useful for astrophysicists and high density physicists

  11. Plasma heating in collisionless plasma at low plasma density

    International Nuclear Information System (INIS)

    Wulf, H.O.

    1977-01-01

    The high frequency heating of a collisionless, fully ionized low density plasma is investigated in the range: 2ωc 2 2 under pumping frequencies. A pulsed 1 MHz transmitter excites a fast standing, magneto-acoustical wave in the plasma, via the high frequency magnetic field of a Stix solenoid. The available modulation degrees are between 0.7 and 7.0%. As power consumption measurements show, there appears at all investigated pumping frequencies an effective energy transfer to the plasma that cannot be explained with the classical MHD models. Measurements with electrostatic probes and further with a miniature counter-field spectrometer yield an electron and ion temperature gain of two to three factors and 15-18, compared to the corresponding values in the initial plasma. (orig./HT) [de

  12. The CATDAT damaging earthquakes database

    Directory of Open Access Journals (Sweden)

    J. E. Daniell

    2011-08-01

    Full Text Available The global CATDAT damaging earthquakes and secondary effects (tsunami, fire, landslides, liquefaction and fault rupture database was developed to validate, remove discrepancies, and expand greatly upon existing global databases; and to better understand the trends in vulnerability, exposure, and possible future impacts of such historic earthquakes.

    Lack of consistency and errors in other earthquake loss databases frequently cited and used in analyses was a major shortcoming in the view of the authors which needed to be improved upon.

    Over 17 000 sources of information have been utilised, primarily in the last few years, to present data from over 12 200 damaging earthquakes historically, with over 7000 earthquakes since 1900 examined and validated before insertion into the database. Each validated earthquake includes seismological information, building damage, ranges of social losses to account for varying sources (deaths, injuries, homeless, and affected, and economic losses (direct, indirect, aid, and insured.

    Globally, a slightly increasing trend in economic damage due to earthquakes is not consistent with the greatly increasing exposure. The 1923 Great Kanto ($214 billion USD damage; 2011 HNDECI-adjusted dollars compared to the 2011 Tohoku (>$300 billion USD at time of writing, 2008 Sichuan and 1995 Kobe earthquakes show the increasing concern for economic loss in urban areas as the trend should be expected to increase. Many economic and social loss values not reported in existing databases have been collected. Historical GDP (Gross Domestic Product, exchange rate, wage information, population, HDI (Human Development Index, and insurance information have been collected globally to form comparisons.

    This catalogue is the largest known cross-checked global historic damaging earthquake database and should have far-reaching consequences for earthquake loss estimation, socio-economic analysis, and the global

  13. The CATDAT damaging earthquakes database

    Science.gov (United States)

    Daniell, J. E.; Khazai, B.; Wenzel, F.; Vervaeck, A.

    2011-08-01

    The global CATDAT damaging earthquakes and secondary effects (tsunami, fire, landslides, liquefaction and fault rupture) database was developed to validate, remove discrepancies, and expand greatly upon existing global databases; and to better understand the trends in vulnerability, exposure, and possible future impacts of such historic earthquakes. Lack of consistency and errors in other earthquake loss databases frequently cited and used in analyses was a major shortcoming in the view of the authors which needed to be improved upon. Over 17 000 sources of information have been utilised, primarily in the last few years, to present data from over 12 200 damaging earthquakes historically, with over 7000 earthquakes since 1900 examined and validated before insertion into the database. Each validated earthquake includes seismological information, building damage, ranges of social losses to account for varying sources (deaths, injuries, homeless, and affected), and economic losses (direct, indirect, aid, and insured). Globally, a slightly increasing trend in economic damage due to earthquakes is not consistent with the greatly increasing exposure. The 1923 Great Kanto (214 billion USD damage; 2011 HNDECI-adjusted dollars) compared to the 2011 Tohoku (>300 billion USD at time of writing), 2008 Sichuan and 1995 Kobe earthquakes show the increasing concern for economic loss in urban areas as the trend should be expected to increase. Many economic and social loss values not reported in existing databases have been collected. Historical GDP (Gross Domestic Product), exchange rate, wage information, population, HDI (Human Development Index), and insurance information have been collected globally to form comparisons. This catalogue is the largest known cross-checked global historic damaging earthquake database and should have far-reaching consequences for earthquake loss estimation, socio-economic analysis, and the global reinsurance field.

  14. Radiation-induced liver damage

    International Nuclear Information System (INIS)

    Marcial, V.A.; Santiago-Delpin, E.A.; Lanaro, A.E.; Castro-Vita, H.; Arroyo, G.; Moscol, J.A.; Gomez, C.; Velazquez, J.; Prado, K.

    1977-01-01

    Due to the recent increase in the use of radiation therapy in the treatment of cancer with or without chemotherapy, the risk of liver radiation damage has become a significant concern for the radiotherapist when the treated tumour is located in the upper abdomen or lower thorax. Clinically evident radiation liver damage may result in significant mortality, but at times patients recover without sequelae. The dose of 3000 rads in 3 weeks to the entire liver with 5 fractions per week of 200 rads each, seems to be tolerated well clinically by adult humans. Lower doses may lead to damage when used in children, when chemotherapy is added, as in recent hepatectomy cases, and in the presence of pre-existent liver damage. Reduced fractionation may lead to increased damage. Increased fractionation, limitation of the dose delivered to the entire liver, and restriction of the high dose irradiation volume may afford protection. With the aim of studying the problems of hepatic radiation injury in humans, a project of liver irradiation in the dog is being conducted. Mongrel dogs are being conditioned, submitted to pre-irradiation studies (haemogram, blood chemistry, liver scan and biopsy), irradiated under conditions resembling human cancer therapy, and submitted to post-irradiation evaluation of the liver. Twenty-two dogs have been entered in the study but only four qualify for the evaluation of all the study parameters. It has been found that dogs are susceptible to liver irradiation damage similar to humans. The initial mortality has been high mainly due to non-radiation factors which are being kept under control at the present phase of the study. After the initial experiences, the study will involve variations in total dose and fractionation, and the addition of anticoagulant therapy for possible prevention of radiation liver injury. (author)

  15. DNA damage response in monozygotic twins discordant for smoking habits.

    Science.gov (United States)

    Marcon, Francesca; Carotti, Daniela; Andreoli, Cristina; Siniscalchi, Ester; Leopardi, Paola; Caiola, Stefania; Biffoni, Mauro; Zijno, Andrea; Medda, Emanuela; Nisticò, Lorenza; Rossi, Sabrina; Crebelli, Riccardo

    2013-03-01

    Previous studies in twins indicate that non-shared environment, beyond genetic factors, contributes substantially to individual variation in mutagen sensitivity; however, the role of specific causative factors (e.g. tobacco smoke, diet) was not elucidated. In this investigation, a population of 22 couples of monozygotic twins with discordant smoking habits was selected with the aim of evaluating the influence of tobacco smoke on individual response to DNA damage. The study design virtually eliminated the contribution of genetic heterogeneity to the intra-pair variation in DNA damage response, and thus any difference in the end-points investigated could directly be attributed to the non-shared environment experienced by co-twins, which included as main factor cigarette smoke exposure. Peripheral lymphocytes of study subjects were challenged ex vivo with γ-rays, and the induction, processing, fixation of DNA damage evaluated through multiple approaches. Folate status of study subjects was considered significant covariate since it is affected by smoking habits and can influence radiosensitivity. Similar responses were elicited by γ-rays in co-twins for all the end-points analysed, despite their discordant smoking habits. Folate status did not modify DNA damage response, even though a combined effect of smoking habits, low-plasma folic acid level, and ionising radiation was observed on apoptosis. A possible modulation of DNA damage response by duration and intensity of tobacco smoke exposure was suggested by Comet assay and micronucleus data, but the effect was quantitatively limited. Overall, the results obtained indicate that differences in smoking habits do not contribute to a large extent to inter-individual variability in the response to radiation-induced DNA damage observed in healthy human populations.

  16. Influence of O2 or H2O in a plasma jet and its environment on plasma electrical and biochemical performances

    Science.gov (United States)

    Adhikari, Ek R.; Samara, Vladimir; Ptasinska, Sylwia

    2018-05-01

    Because environmental conditions, such as room temperature and humidity, fluctuate arbitrarily, effects of atmospheric pressure plasma jets (APPJs) used in medical applications operating at various places and time might vary. Therefore, understanding the possible effects of air components in and outside APPJs is essential for clinical use, which requires reproducibility of plasma performance. These air components can influence the formation of reactive species in the APPJ, and the type and amount of these species formed depend on the feed gas inside the APPJ and the plasma jet environment. In this study, we monitored changes in plasma current and power, as well as in the level of DNA damage attributable to plasma irradiation, by adjusting the fraction of oxygen and water vapor in the plasma jet environment and feed gas. Here, DNA was used as a molecular probe to identify chemical changes that occurred in the plasma jet under these various environmental conditions. The damaged and undamaged fractions of DNA were quantified using agarose gel electrophoresis. We obtained an optimal amount of oxygen or water vapor in the plasma jet environment, as well as in the feed gas, which increased the level of DNA damage significantly. This increase can be attributed primarily to the formation of reactive species caused by water and oxygen decomposition in the APPJ detected with mass spectrometry. Moreover, we observed that the plasma power remained the same or decreased when gas was added to the jet environment or the feed gas, respectively, but in both cases, DNA damage increased. This indicates the superiority of plasma chemistry over the electrical power applied for APPJ ignition of the plasma sources used in medical applications.

  17. Radiation damage in plastic scintillators

    International Nuclear Information System (INIS)

    Majewski, S.

    1990-01-01

    Results of radiation damage studies in plastic scintillators are reviewed and critically analyzed from the point of view of applications of plastic scintillators in calorimetric detectors for the SSC. Damage to transmission and to fluorescent yield in different conditions is discussed. New directions in R ampersand D are outlined. Several examples are given of the most recent data on the new scintillating materials made with old and new plastics and fluors, which are exhibiting significantly improved radiation resistance. With a present rate of a vigorous R D programme, the survival limits in the vicinity of 100 MRad seem to be feasible within a couple of years

  18. Atom bombs and genetic damage

    International Nuclear Information System (INIS)

    Berry, R.J.

    1982-01-01

    Comments are made on a 1981 review on genetic damage in the off-spring of the atom bomb survivors in Hiroshima and Nagasaki. The main criticisms of the review concerned, 1) the 'minimal' doubling dose value for radiation-induced mutation in man, 2) the gametic doubling dose value for sex chromosome aneuploidy and 3) the validity of trebling an observed acute doubling dose to measure the effect of chronic irradiation. The firmest conclusion which may be deduced from the studies on A-bomb survivors is that humans are fairly resistant to genetic damage from radiation. (U.K.)

  19. Introduction to Plasma Physics

    Science.gov (United States)

    Gurnett, Donald A.; Bhattacharjee, Amitava

    2017-03-01

    Preface; 1. Introduction; 2. Characteristic parameters of a plasma; 3. Single particle motions; 4. Waves in a cold plasma; 5. Kinetic theory and the moment equations; 6. Magnetohydrodynamics; 7. MHD equilibria and stability; 8. Discontinuities and shock waves; 9. Electrostatic waves in a hot unmagnetized plasma; 10. Waves in a hot magnetized plasma; 11. Nonlinear effects; 12. Collisional processes; Appendix A. Symbols; Appendix B. Useful trigonometric identities; Appendix C. Vector differential operators; Appendix D. Vector calculus identities; Index.

  20. Plasma-wall interaction

    International Nuclear Information System (INIS)

    Reichle, R.

    2004-01-01

    This document gathers the 43 slides presented in the framework of the week long lecture 'hot plasmas 2004' and dedicated to plasma-wall interaction in a tokamak. This document is divided into 4 parts: 1) thermal load on the wall, power extraction and particle recovery, 2) basic edge plasma physics, 3) processes that drive the plasma-solid interaction, and 4) material conditioning (surface treatment...) for ITER

  1. Plasma physics an introduction

    CERN Document Server

    Fitzpatrick, Richard

    2014-01-01

    Plasma Physics: An Introduction is based on a series of university course lectures by a leading name in the field, and thoroughly covers the physics of the fourth state of matter. This book looks at non-relativistic, fully ionized, nondegenerate, quasi-neutral, and weakly coupled plasma. Intended for the student market, the text provides a concise and cohesive introduction to plasma physics theory, and offers a solid foundation for students wishing to take higher level courses in plasma physics.

  2. Application of plasma focus device to compression of toroidal plasma

    International Nuclear Information System (INIS)

    Ikuta, Kazunari

    1980-01-01

    A new concept of compressing a toroidal plasma using a plasma focus device is considered. Maximum compression ratio of toroidal plasma is determined merely by the initial density ratio of the toroidal plasma to a sheet plasma in a focus device because of the Rayleigh-Taylor instability. An initiation senario of plasma-linear is also proposed with a possible application of this concepts to the creation of a burning plasma in reversed field configurations, i.e., burning plasma vortex. (author)

  3. Endocrine intervention during irradiation does not prevent damage to the thyroid gland

    NARCIS (Netherlands)

    van Santen, H. M.; van Dijk, J. E.; Rodermond, H.; Vansenne, F.; Endert, E.; de Vijlder, J. J. M.; Haveman, J.; Vulsma, T.

    2006-01-01

    Radiation to the head-neck region may damage the thyroid gland, leading to hypothyroidism or thyroid carcinoma. Outcomes of radiation protection by lowering plasma thyroid-stimulating hormone (TSH) have thus far been ambiguous. Our aim was to evaluate the radioprotective effect of inhibiting the

  4. Mechanisms of cytolysin-induced cell damage -- a role for auto- and paracrine signalling

    DEFF Research Database (Denmark)

    Skals, Marianne Gerberg; Prætorius, Helle

    2013-01-01

    Cytolysins inflict cell damage by forming pores in the plasma membrane. The Na(+) conductivity of these pores results in an ion influx that exceeds the capacity of the Na(+) /K(+) -pump to extrude Na(+) . This net load of intracellular osmolytes results in swelling and eventual lysis of the attac...

  5. Prehospital use of plasma: the blood bankers' perspective.

    Science.gov (United States)

    Hervig, Tor; Doughty, Heidi; Ness, Paul; Badloe, John F; Berseus, Olle; Glassberg, Elon; Heier, Hans E

    2014-05-01

    At the 2013 Traumatic Hemostasis and Oxygenation Research Network's Remote Damage Control Resuscitation symposium, a panel of senior blood bankers with both civilian and military background was invited to discuss their willingness and ability to supply prehospital plasma for resuscitation of massively bleeding casualties and to comment on the optimal preparations for such situations. Available evidence indicates that prehospital use of plasma may improve remote damage control resuscitation, although level I evidence is lacking. This practice is well established in several military services and is also being introduced in civilian settings. There are few, if any, clinical contraindications to the prehospital use of plasma, except for blood group incompatibility and the danger of transfusion-induced acute lung injury, which can be circumvented in various ways. However, the choice of plasma source, plasma preparation, and logistics including stock management require consideration. Staff training should include hemovigilance and traceability as well as recognition and management of eventual adverse effects. Prehospital use of plasma should occur within the framework of clinical algorithms and prospective clinical studies. Clinicians have an ethical responsibility to both patients and donors; therefore, the introduction of new clinical capabilities of transfusion must be safe, efficacious, and sustainable. The panel agreed that although these problems need further attention and scientific studies, now is the time for both military and civilian transfusion systems to prepare for prehospital use of plasma in massively bleeding casualties.

  6. Simulation of Plasma Disruptions for HL-2M with the DINA Code

    International Nuclear Information System (INIS)

    Xue Lei; Duan Xu-Ru; Zheng Guo-Yao; Yan Shi-Lei; Liu Yue-Qiang; Dokuka, V. V.; Khayrutdinov, R. R.; Lukash, V. E.

    2015-01-01

    Plasma disruption is often an unavoidable aspect of tokamak operations. It may cause severe damage to in-vessel components such as the vacuum vessel conductors, the first wall and the divertor target plates. Two types of disruption, the hot-plasma vertical displacement event and the major disruption with a cold-plasma vertical displacement event, are simulated by the DINA code for HL-2M. The time evolutions of the plasma current, the halo current, the magnetic axis, the minor radius, the elongation as well as the electromagnetic force and eddy currents on the vacuum vessel during the thermal quench and the current quench are investigated. By comparing the electromagnetic forces before and after the disruption, we find that the disruption causes great damage to the vacuum vessel conductors. In addition, the hot-plasma vertical displacement event is more dangerous than the major disruption with the cold-plasma vertical displacement event. (paper)

  7. MUSCLE DAMAGE AFTER A TENNIS MATCH IN YOUNG PLAYERS

    Directory of Open Access Journals (Sweden)

    R.V. Gomes

    2014-07-01

    Full Text Available The present study investigated changes in indirect markers of muscle damage following a simulated tennis match play using nationally ranked young (17.6 ± 1.4 years male tennis players. Ten young athletes played a 3-hour simulated match play on outdoor red clay courts following the International Tennis Federation rules. Muscle soreness, plasma creatine kinase activity (CK, serum myoglobin concentration (Mb, one repetition maximum (1RM squat strength, and squat jump (SJ and counter movement jump (CMJ heights were assessed before, immediately after, and 24 and 48 h after the simulated match play. All parameters were also evaluated in a non-exercised group (control group. A small increase in the indirect markers of muscle damage (muscle soreness, CK and Mb was detected at 24-48 hours post-match (p<0.05. A marked acute decrement in neuromuscular performance (1RM squat strength: -35.2 ± 10.4%, SJ: -7.0 ± 6.0%, CMJ: -10.0 ± 6.3% was observed immediately post-match (p<0.05. At 24 h post-match, the 1RM strength and jump heights were not significantly different from the baseline values. However, several players showed a decrease of these measures at 24 h after the match play. The simulated tennis match play induced mild muscle damage in young players. Coaches could monitor changes in the indirect markers of muscle damage to assess athletes’ recovery status during training and competition.

  8. Plasma membrane ATPases

    DEFF Research Database (Denmark)

    Palmgren, Michael Broberg; Bækgaard, Lone; Lopez Marques, Rosa Laura

    2011-01-01

    The plasma membrane separates the cellular contents from the surrounding environment. Nutrients must enter through the plasma membrane in order to reach the cell interior, and toxic metabolites and several ions leave the cell by traveling across the same barrier. Biological pumps in the plasma me...

  9. Plasma in wound healing

    NARCIS (Netherlands)

    Tipa, R.S.

    2012-01-01

    Plasmas, due to their electrical and chemical properties, release in the invironment a unique cocktail of charged species, energetic photons and active radicals. Plasmas have a miriad of applications. To mention just a few, plasmas are being used in the semiconductors industry, atomic layer

  10. Plasma in astrophysics

    International Nuclear Information System (INIS)

    Kulsrud, R.M.

    1982-10-01

    Two examples of plasma phenomena of importance to astrophysics are reviewed. These are examples where astrophysical understanding hinges on further progress in plasma physics understanding. The two examples are magnetic reconnection and the collisionless interaction between a population of energetic particles and a cooler gas or plasma, in particular the interaction between galactic cosmic rays and the interstellar medium

  11. Plasma processing and chemistry

    NARCIS (Netherlands)

    Schram, D.C.; Mullen, van der J.J.A.M.; Sanden, van de M.C.M.

    1994-01-01

    The growing field of applications of plasma as deposition, etching, surface modification and chemical conversion has stimulated a renewed interest in plasma science in the atomic physical chemistry regime. The necessity to optimize the various plasma processing techniques in terms of rates, and

  12. Tritium saturation in plasma-facing materials surfaces

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Anderl, R.A.; Pawelko, R.J.; Causey, R.A.; Federici, G.; Haasz, A.A.

    1998-01-01

    Plasma-facing components in the international thermonuclear experimental reactor (ITER) will experience high heat loads and intense plasma fluxes of order 10 20 -10 23 particles/m 2 s. Experiments on Be and W, two of the materials considered for use in ITER, have revealed that a tritium saturation phenomenon can take place under these conditions in which damage to the surface results that enhances the return of implanted tritium to the plasma and inhibits uptake of tritium. This phenomenon is important because it implies that tritium inventories due to implantation in these plasma-facing materials will probably be lower than was previously estimated using classical recombination-limited release at the plasma surface. Similarly, permeation through these components to the coolant streams should be reduced. In this paper we discuss evidences for the existence of this phenomenon, describe techniques for modeling it, and present results of the application of such modeling to prior experiments. (orig.)

  13. How deep can plasma penetrate into a biofilm?

    Science.gov (United States)

    Xiong, Z.; Du, T.; Lu, X.; Cao, Y.; Pan, Y.

    2011-05-01

    It is well known that plasma can deactivate various types of microorganisms. However, one fundamental key question has never been addressed, namely, how deep can plasma penetrate into multilayer biofilms. In this letter, Porphyromonas gingivalis (PG) biofilms (10 days growth, which has about 30 layers of PG cells with a thickness of about 15 μm) are treated with a cold plasma plume. It is found that the plasma can penetrate the biofilms and effectively deactivate all the bacteria in the 15 μm thick biofilms. Moreover, it was found that most of the dead cells' structures in the biofilms are not damaged. From the optical emission spectra of the plasma, it can be concluded that it is O and OH, rather than O2-, N2+, or UV emission that play the major role in the deactivation processes.

  14. Effect of disruptions on plasma-facing components

    International Nuclear Information System (INIS)

    Gilligan, J.G.; Bourham, M.A.; Tucker, E.C.

    1995-01-01

    Erosion of plasma-facing components during disruptions is a limiting factor in the design of large tokamaks like ITER. During a disruption, much of the stored thermal energy of the plasma will be dumped onto divertor plates, resulting in local heat fluxes, which may exceed 100 GW/m 2 over a period of about 0.1--1.0 msec. Melted and/or vaporized material is produced which is redistributed in the divertor region. Simulation of disruption damage is summarized from code results and from experimental exposure of materials to high heat-flux plasmas in plasma guns. In the US several codes have been used to predict both melt/vaporization and heat transfer on surfaces as well as energy and momentum transport in the vapor/plasma shield produced at the surface

  15. Evaluation of the damage in fish spermatozoa cryopreservation

    Science.gov (United States)

    Li, Jun; Liu, Qinghua; Zhang, Shicui

    2006-12-01

    Cryodamages occur during sperm cryopreservation. Cryopreservation of fish sperm usually results in marked decrease in sperm quality, such as swelling or disruption of the plasma membrane, mitochondrial dysfunction, diminished sperm motility, impaired velocity, shorter motility period, denaturation, and release of some enzymes from spermatozoa. In this paper, damages in morphology, physiology, biochemistry and metabolism, and genetic integrity of fish semen after cryopreservation are discussed. New approaches in assessment of fish thawed sperm quality such as computer assisted sperm analysis, flow cytometic analysis combined with fluorescent probes and single cell gel electrophoresis are also briefly reviewed.

  16. Inability to identify source of HIV precludes damage award.

    Science.gov (United States)

    1996-08-09

    The Florida Court of Appeals ruled that the spouse of a hemophiliac who contracted HIV from a tainted blood-clotting product cannot recover wrongful death damages because she could not identify a specific manufacturer. [Name removed] [name removed]'s widow sued four manufacturers of clotting concentrate, Armour Pharmaceutical Co., Alpha Therapeutic Corp., Cutter Laboratories, and Baxter Healthcare Corp. The court rejected the applicability of a market-share approach to liability in this case. The Court of Appeals explained that blood-clotting products do not share a uniform composition because the plasma is collected from different sites across the country.

  17. Radiation-induced damage of membranes

    International Nuclear Information System (INIS)

    Yonei, Shuji

    1977-01-01

    An outline of membranous structure was stated, and radiation-induced damage of membranes were surveyed. By irradiation, permeability of membranes, especially passive transportation mechanism, was damaged, and glycoprotein in the surface layers of cells and the surface layer structures were changed. The intramembranous damage was induced by decrease of electrophoresis of nuclear mambranes and a quantitative change of cytochrome P450 of microsomal membranes of the liver, and peroxidation of membranous lipid and SH substitute damage of membranous protein were mentioned as the mechanism of membranous damage. Recovery of membranous damage depends on radiation dose and temperature, and membranous damage participates largely in proliferation death. (tsunoda, M.)

  18. Some aspects of plasma thermodynamics

    International Nuclear Information System (INIS)

    Gorgoraki, V.I.

    1986-01-01

    The objective reasons which have inhibited the development of a plasma-thermodynamics theory are discussed and the authors formulate the fundamental principles which can be the basis of a common plasma-thermodynamics theory. Two kinds of thermodynamic equilibrium plasmas are discussed, an isothermal plasma and a nonisothermal plasma. An isothermal plasma is a high-temperature plasma; the Saha-Eggert equation describes its behavior. A nonisothermal plasma is a low-temperature plasma, and the reactions taking place therein are purely plasma-chemical. The ionization equilibrium and the composition of such a plasma can be found with the aid of the equations presented in this paper

  19. effects of artemether on the plasma and urine concentrations of ...

    African Journals Online (AJOL)

    Dr Komolafe

    2011-05-16

    May 16, 2011 ... degeneration of the renal tissue of rats, inability of the damaged kidneys to concentrate urine, which manifested as excessive water loss and electrolyte depletion. Key words: Artemether, electrolytes in plasma, urine concentrations, rats. INTRODUCTION. Artemether, one of the derivatives of artemisinin, is.

  20. Nonthermal-plasma-mediated animal cell death

    Science.gov (United States)

    Kim, Wanil; Woo, Kyung-Chul; Kim, Gyoo-Cheon; Kim, Kyong-Tai

    2011-01-01

    Animal cell death comprising necrosis and apoptosis occurred in a well-regulated manner upon specific stimuli. The physiological meanings and detailed molecular mechanisms of cell death have been continuously investigated over several decades. Necrotic cell death has typical morphological changes, such as cell swelling and cell lysis followed by DNA degradation, whereas apoptosis shows blebbing formation and regular DNA fragmentation. Cell death is usually adopted to terminate cancer cells in vivo. The current strategies against tumour are based on the induction of cell death by adopting various methods, including radiotherapy and chemotherapeutics. Among these, radiotherapy is the most frequently used treatment method, but it still has obvious limitations. Recent studies have suggested that the use of nonthermal air plasma can be a prominent method for inducing cancer cell death. Plasma-irradiated cells showed the loss of genomic integrity, mitochondrial dysfunction, plasma membrane damage, etc. Tumour elimination with plasma irradiation is an emerging concept in cancer therapy and can be accelerated by targeting certain tumour-specific proteins with gold nanoparticles. Here, some recent developments are described so that the mechanisms related to plasma-mediated cell death and its perspectives in cancer treatment can be understood.

  1. Nonthermal-plasma-mediated animal cell death

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Wanil; Woo, Kyung-Chul; Kim, Kyong-Tai [Department of Life Science, Division of Molecular and Life Science, Pohang University of Science and Technology, San 31, Hyoja Dong, Pohang 790-784 (Korea, Republic of); Kim, Gyoo-Cheon, E-mail: ktk@postech.ac.kr [Department of Oral Anatomy and Cell Biology, School of Dentistry, Pusan National University, Yangsan 626-810 (Korea, Republic of)

    2011-01-12

    Animal cell death comprising necrosis and apoptosis occurred in a well-regulated manner upon specific stimuli. The physiological meanings and detailed molecular mechanisms of cell death have been continuously investigated over several decades. Necrotic cell death has typical morphological changes, such as cell swelling and cell lysis followed by DNA degradation, whereas apoptosis shows blebbing formation and regular DNA fragmentation. Cell death is usually adopted to terminate cancer cells in vivo. The current strategies against tumour are based on the induction of cell death by adopting various methods, including radiotherapy and chemotherapeutics. Among these, radiotherapy is the most frequently used treatment method, but it still has obvious limitations. Recent studies have suggested that the use of nonthermal air plasma can be a prominent method for inducing cancer cell death. Plasma-irradiated cells showed the loss of genomic integrity, mitochondrial dysfunction, plasma membrane damage, etc. Tumour elimination with plasma irradiation is an emerging concept in cancer therapy and can be accelerated by targeting certain tumour-specific proteins with gold nanoparticles. Here, some recent developments are described so that the mechanisms related to plasma-mediated cell death and its perspectives in cancer treatment can be understood. (topical review)

  2. Nonthermal-plasma-mediated animal cell death

    International Nuclear Information System (INIS)

    Kim, Wanil; Woo, Kyung-Chul; Kim, Kyong-Tai; Kim, Gyoo-Cheon

    2011-01-01

    Animal cell death comprising necrosis and apoptosis occurred in a well-regulated manner upon specific stimuli. The physiological meanings and detailed molecular mechanisms of cell death have been continuously investigated over several decades. Necrotic cell death has typical morphological changes, such as cell swelling and cell lysis followed by DNA degradation, whereas apoptosis shows blebbing formation and regular DNA fragmentation. Cell death is usually adopted to terminate cancer cells in vivo. The current strategies against tumour are based on the induction of cell death by adopting various methods, including radiotherapy and chemotherapeutics. Among these, radiotherapy is the most frequently used treatment method, but it still has obvious limitations. Recent studies have suggested that the use of nonthermal air plasma can be a prominent method for inducing cancer cell death. Plasma-irradiated cells showed the loss of genomic integrity, mitochondrial dysfunction, plasma membrane damage, etc. Tumour elimination with plasma irradiation is an emerging concept in cancer therapy and can be accelerated by targeting certain tumour-specific proteins with gold nanoparticles. Here, some recent developments are described so that the mechanisms related to plasma-mediated cell death and its perspectives in cancer treatment can be understood. (topical review)

  3. Damage limits of accelerator equipment

    CERN Document Server

    Rosell, Gemma

    2014-01-01

    Beam losses occur in particle accelerators for various reasons. The effect of lost particles on accelerator equipment becomes more severe with the increasing energies and intensities. The present study is focused on the damage potential of the proton beam as a function of particle energy and beam size. Injection and extraction energies of different accelerators at CERN were considered.

  4. DNA damage by Auger emitters

    International Nuclear Information System (INIS)

    Martin, R.F.; d'Cunha, Glenn; Gibbs, Richard; Murray, Vincent; Pardee, Marshall; Allen, B.J.

    1988-01-01

    125 I atoms can be introduced at specific locations along a defined DNA target molecule, either by site-directed incorporation of an 125 I-labelled deoxynucleotide or by binding of an 125 I-labelled sequence-selective DNA ligand. After allowing accumulation of 125 I decay-induced damage to the DNA, application of DNA sequencing techniques enables positions of strand breaks to be located relative to the site of decay, at a resolution corresponding to the distance between adjacent nucleotides [0.34 nm]. Thus, DNA provides a molecular framework to analyse the extent of damage following [averaged] individual decay events. Results can be compared with energy deposition data generated by computer-simulation methods developed by Charlton et al. The DNA sequencing technique also provides information about the chemical nature of the termini of the DNA chains produced following Auger decay-induced damage. In addition to reviewing the application of this approach to the analysis of 125 I decay induced DNA damage, some more recent results obtained by using 67 Ga are also presented. (author)

  5. Preparation of bubble damage detectors

    International Nuclear Information System (INIS)

    Tu Caiqing; Guo Shilun; Wang Yulan; Hao Xiuhong; Chen Changmao; Su Jingling

    1997-01-01

    Bubble damage detectors have been prepared by using polyacrylamide as detector solid and freon as detector liquid. Tests show that the prepared detectors are sensitive to fast neutrons and have proportionality between bubble number and neutron fluence within a certain range of neutron fluence. Therefore, it can be used as a fast neutron detector and a dosimeter

  6. Space plasma simulation chamber

    International Nuclear Information System (INIS)

    1986-01-01

    Scientific results of experiments and tests of instruments performed with the Space Plasma Simulation Chamber and its facility are reviewed in the following six categories. 1. Tests of instruments on board rockets, satellites and balloons. 2. Plasma wave experiments. 3. Measurements of plasma particles. 4. Optical measurements. 5. Plasma production. 6. Space plasms simulations. This facility has been managed under Laboratory Space Plasma Comittee since 1969 and used by scientists in cooperative programs with universities and institutes all over country. A list of publications is attached. (author)

  7. Computations in plasma physics

    International Nuclear Information System (INIS)

    Cohen, B.I.; Killeen, J.

    1984-01-01

    A review of computer application in plasma physics is presented. Computer contribution to the investigation of magnetic and inertial confinement of a plasma and charged particle beam propagation is described. Typical utilization of computer for simulation and control of laboratory and cosmic experiments with a plasma and for data accumulation in these experiments is considered. Basic computational methods applied in plasma physics are discussed. Future trends of computer utilization in plasma reseaches are considered in terms of an increasing role of microprocessors and high-speed data plotters and the necessity of more powerful computer application

  8. Model of detached plasmas

    International Nuclear Information System (INIS)

    Yoshikawa, S.; Chance, M.

    1986-07-01

    Recently a tokamak plasma was observed in TFTR that was not limited by a limiter or a divertor. A model is proposed to explain this equilibrium, which is called a detached plasma. The model consists of (1) the core plasma where ohmic heating power is lost by anomalous heat conduction and (2) the shell plasma where the heat from the core plasma is radiated away by the atomic processes of impurity ions. A simple scaling law is proposed to test the validity of this model

  9. Contemporary plasma physics

    International Nuclear Information System (INIS)

    Sodha, M.S.; Tewari, D.P.; Subbarao, D.

    1983-01-01

    The book consists of review articles on some selected contemporary aspects of plasma physics. The selected topics present a panoramic view of contemporary plasma physics and applications to fusion, space and MHD power generation. Basic non-linear plasma theory is also covered. The book is supposed to be useful for M.S./M.Sc. students specialising in plasma physics and for those beginning research work in plasma physics. It will also serve as a valuable reference book for more advanced research workers. (M.G.B.)

  10. ECR Plasma Photos

    International Nuclear Information System (INIS)

    Racz, R.; Biri, S.; Palinkas, J.

    2009-01-01

    Complete text of publication follows. In order to observe and study systematically the plasma of electron cyclotron resonance (ECR) ion sources (ECRIS) we made a high number of high-resolution visible light plasma photos and movies in the ATOMKI ECRIS Laboratory. This required building the ECR ion source into an open plasma device, temporarily. An 8MP digital camera was used to record photos of plasmas made from He, methane, N, O, Ne, Ar, Kr, Xe gases and from their mixtures. The effects of the main external setting parameters (gas pressure, gas composition, magnetic field, microwave power, microwave frequency) were studied to the shape, color and structure of the plasma. The double frequency mode (9+14 GHz) was also realized and photos of this special 'star-in-star' shape plasma were recorded. A study was performed to analyze and understand the color of the ECR plasmas. The analysis of the photo series gave us many qualitative and numerous valuable physical information on the nature of ECR plasmas. To our best knowledge our work is the first systematic study of ECR plasmas in the visible light region. When looking in the plasma chamber of an ECRIS we can see an axial image of the plasma (figure 1) in conformity with experimental setup. Most of the quantitative information was obtained through the summarised values of the Analogue Digital Unit (ADU) of pixels. By decreasing the strength of the magnetic trap we clearly observed that the brightness of the central part of the plasma gradually decreases, i.e. the plasma becomes more and more 'empty'. Figure 2 shows a photo series of ECR plasma at decreasing axial magnetic field. The radial size of the plasma increased because of the ascendant resonant zone. By increasing the power of the injected microwave an optimum (or at least saturation) was found in the brightness of the plasma. We found correlation between the gas dosing rates and plasma intensities. When sweeping the frequency of the microwave in a wide region

  11. Cyclotron waves in plasma

    CERN Document Server

    Lominadze, D G

    2013-01-01

    Cyclotron Waves in Plasma is a four-chapter text that covers the basic physical concepts of the theory of cyclotron waves and cyclotron instabilities, brought about by the existence of steady or alternating plasma currents flowing perpendicular to the magnetic field.This book considers first a wide range of questions associated with the linear theory of cyclotron oscillations in equilibrium plasmas and in electron plasmas in metals and semiconductors. The next chapter deals with the parametric excitation of electron cyclotron oscillations in plasma in an alternating electric field. A chapter f

  12. Introduction to plasma engineering

    International Nuclear Information System (INIS)

    Roth, J.R.

    1988-01-01

    The author has begun writing a textbook entitled Introduction to Plasma Engineering, which is intended for upper division undergraduates or professionals who are entering the field. This paper features a detailed topical outline of all 20 chapters of the book. The text is organized so that the first five chapters cover plasma physics and basic principles; the next 13 chapters cover the most important engineering applications of plasmas, in order of increasing plasma energy/number density; and two final chapters cover plasma diagnostics and magnetic coil design

  13. Melt damage simulation of W-macrobrush and divertor gaps after multiple transient events in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Bazylev, B.N. [Forschungszentrum Karlsruhe, IHM, P.O. Box 3640, 76021 Karlsruhe (Germany)]. E-mail: bazylev@ihm.fzk.de; Janeschitz, G. [Forschungszentrum Karlsruhe, Fusion, P.O. Box 3640, 76021 Karlsruhe (Germany); Landman, I.S. [Forschungszentrum Karlsruhe, IHM, P.O. Box 3640, 76021 Karlsruhe (Germany); Loarte, A. [EFDA-CSU, Max-Planck-Institut fuer Plasmaphysik, D-85748 Garching (Germany); Pestchanyi, S.E. [Forschungszentrum Karlsruhe, IHM, P.O. Box 3640, 76021 Karlsruhe (Germany)

    2007-06-15

    Tungsten in the form of macrobrush structure is foreseen as one of two candidate materials for the ITER divertor and dome. In ITER, even for moderate and weak ELMs when a thin shielding layer does not protect the armour surface from the dumped plasma, the main mechanisms of metallic target damage remain surface melting and melt motion erosion, which determines the lifetime of the plasma facing components. The melt erosion of W-macrobrush targets with different geometry of brush surface under the heat loads caused by weak ELMs is numerically investigated using the modified code MEMOS. The optimal angle of brush surface inclination that provides a minimum of surface roughness is estimated for given inclination angles of impacting plasma stream and given parameters of the macrobrush target. For multiple disruptions the damage of the dome gaps and the gaps between divertor cassettes caused by the radiation impact is estimated.

  14. Melt damage simulation of W-macrobrush and divertor gaps after multiple transient events in ITER

    Science.gov (United States)

    Bazylev, B. N.; Janeschitz, G.; Landman, I. S.; Loarte, A.; Pestchanyi, S. E.

    2007-06-01

    Tungsten in the form of macrobrush structure is foreseen as one of two candidate materials for the ITER divertor and dome. In ITER, even for moderate and weak ELMs when a thin shielding layer does not protect the armour surface from the dumped plasma, the main mechanisms of metallic target damage remain surface melting and melt motion erosion, which determines the lifetime of the plasma facing components. The melt erosion of W-macrobrush targets with different geometry of brush surface under the heat loads caused by weak ELMs is numerically investigated using the modified code MEMOS. The optimal angle of brush surface inclination that provides a minimum of surface roughness is estimated for given inclination angles of impacting plasma stream and given parameters of the macrobrush target. For multiple disruptions the damage of the dome gaps and the gaps between divertor cassettes caused by the radiation impact is estimated.

  15. Melt damage simulation of W-macrobrush and divertor gaps after multiple transient events in ITER

    International Nuclear Information System (INIS)

    Bazylev, B.N.; Janeschitz, G.; Landman, I.S.; Loarte, A.; Pestchanyi, S.E.

    2007-01-01

    Tungsten in the form of macrobrush structure is foreseen as one of two candidate materials for the ITER divertor and dome. In ITER, even for moderate and weak ELMs when a thin shielding layer does not protect the armour surface from the dumped plasma, the main mechanisms of metallic target damage remain surface melting and melt motion erosion, which determines the lifetime of the plasma facing components. The melt erosion of W-macrobrush targets with different geometry of brush surface under the heat loads caused by weak ELMs is numerically investigated using the modified code MEMOS. The optimal angle of brush surface inclination that provides a minimum of surface roughness is estimated for given inclination angles of impacting plasma stream and given parameters of the macrobrush target. For multiple disruptions the damage of the dome gaps and the gaps between divertor cassettes caused by the radiation impact is estimated

  16. Application of a plasma-jet for skin antisepsis: analysis of the thermal action of the plasma by laser scanning microscopy

    International Nuclear Information System (INIS)

    Lademann, O; Kramer, A; Richter, H; Patzelt, A; Alborova, A; Humme, D; Weltmann, K-D; Hartmann, B; Hinz, P; Koch, S

    2010-01-01

    Recently, it was reported that a plasma-jet could be efficiently applied for the antisepsis of wounds. In this case, the discharge in an argon gas stream was used to produce a so-called ''cold plasma'' on the skin surface. The thermal action of the plasma on the skin was investigated in the present study by means of laser scanning microscopy (LSM) and by histological analysis. Consequently, the plasma beam was moved with a definite velocity at an optimal distance over the skin surface. The structural changes of the tissue were analyzed. It was found by LSM that a thermal damage could be detected only in the upper cell layers of the stratum corneum (SC) at moving velocities of the plasma beam, usually applied in clinical practice. Deeper parts of the SC were not damaged. The structural changes were so superficial that they could be detected only by LSM but not by analysis of the histological sections

  17. TCV mirrors cleaned by plasma

    Directory of Open Access Journals (Sweden)

    L. Marot

    2017-08-01

    Full Text Available Metallic mirrors exposed in TCV tokamak were cleaned by plasma in laboratory. A gold (Au mirror was deposited with 185–285nm of amorphous carbon (aC:D film coming from the carbon tiles of TCV. Another molybdenum (Mo mirror had a thicker deposit due to a different location within the tokamak. The thickness measurements were carried out using ellipsometry and the reflectivity measurements performed by spectrophotometry revealed a decrease of the specular reflectivity in the entire range (250–2500nm for the Mo mirror and specifically in the visible spectrum for the Au. Comparison of the simulated reflectivity using a refractive index of 1.5 and a Cauchy model for the aC:D gives good confidence on the estimated film thickness. Plasma cleaning using radio frequency directly applied to a metallic plate where the mirrors were fixed demonstrated the ability to remove the carbon deposits. A mixture of 50% hydrogen and 50% helium was used with a −200V self-bias. Due to the low sputtering yield of He and the low chemical erosion of hydrogen leading to volatile molecules, 20h of cleaning were needed for Au mirror and more than 60h for Mo mirror. Recovery of the reflectivity was not complete for the Au mirror most likely due to damage of the surface during tokamak exposure (breakdown phenomena.

  18. Applied plasma physics

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Applied Plasma Physics is a major sub-organizational unit of the Magnetic Fusion Energy (MFE) Program. It includes Fusion Plasma Theory and Experimental Plasma Research. The Fusion Plasma Theory group has the responsibility for developing theoretical-computational models in the general areas of plasma properties, equilibrium, stability, transport, and atomic physics. This group has responsibility for giving guidance to the mirror experimental program. There is a formal division of the group into theory and computational; however, in this report the efforts of the two areas are not separated since many projects have contributions from members of both. Under the Experimental Plasma Research Program we are developing a neutral-beam source, the intense, pulsed ion-neutral source (IPINS), for the generation of a reversed-field configuration on 2XIIB. We are also studying the feasibility of using certain neutron-detection techniques as plasma diagnostics in the next generation of thermonuclear experiments

  19. Plasma polymerization by Softplasma

    DEFF Research Database (Denmark)

    Jiang, J.; Wu, Zhenning; Benter, Maike

    2008-01-01

    , external electrode, and electrodeless microwave or high frequency reactors. [3] Softplasma™ is an internal electrode plasma setup powered by low frequenc~ gower supply. It was developed in late 90s for surface treatment of silicone rubber. [ ]- 5] It is a low pressure, low electron density, 3D homogenous......In the late 19th century, the first depositions - known today as plasma polymers, were reported. In the last century, more and more research has been put into plasma polymers. Many different deposition systems have been developed. [1, 2] Shi F. F. broadly classified them into internal electrode...... plasma. In this study, we are presenting the surface modification"pf polymers by plasma polymerization using Softplasma™. Softplasma™ can be used for two major types of polymerization: polymerization of vinyl monomers, where plasma acts as initiator; chemical vapour deposition, where plasma acts...

  20. Plasma engineering: a perspective

    International Nuclear Information System (INIS)

    Gralnick, S.L.

    1978-01-01

    This review paper will present the authors perspective of the field of Plasma Engineering as it has evolved over the preceding five years. This embrionic discipline has grown in that period of time to the point where it is sufficiently mature to become part of the curriculum, and a speciality within, the discipline of Nuclear Engineering. Plasma Engineering can be distinguished from the underlying science of plasma physics in that in the pursuit of the latter, our goal is the understanding of the fundamental processes governing the behavior of plasmas while the former discipline seeks the embodiment of these concepts in useful devices. Consequent to this goal, the plasma engineer, of necessity, is concerned with the interfaces between a plasma configuration and the device by which it is produced and maintained. These interface problems, often referred to as kitchen physics are multidisciplinary in nature, and their solution requires careful attention to both plasma physics and machine engineering detail

  1. Applied plasma physics

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Applied Plasma Physics is a major sub-organizational unit of the MFE Program. It includes Fusion Plasma Theory and Experimental Plasma Research. The Fusion Plasma Theory group has the responsibility for developing theoretical-computational models in the general areas of plasma properties, equilibrium, stability, transport, and atomic physics. This group has responsibility for giving guidance to the mirror experimental program. There is a formal division of the group into theory and computational; however, in this report the efforts of the two areas are not separated since many projects have contributions from members of both. Under the Experimental Plasma Research Program, we are developing the intense, pulsed neutral-beam source (IPINS) for the generation of a reversed-field configuration on 2XIIB. We are also studying the feasibility of utilizing certain neutron-detection techniques as plasma diagnostics in the next generation of thermonuclear experiments

  2. Metallurgical plasma torches

    International Nuclear Information System (INIS)

    Shapovalov, V.A.; Latash, Yu.V.

    2000-01-01

    The technological equipment for the plasma heating of metals, plasma melting and plasma treatment of the surface is usually developed on the basis of are plasma torches using direct or alternating current. The reasons which partly restrict the industrial application of the plasma torches are the relatively short service life of the electrode (cathode) on which the arc is supported, and the contamination of the treated metal with the products of failure of the electrode. The aim of this work was to determine the reasons for the occurrence of negative phenomena observed in the process of service of plasma torches, and propose suitable approaches to the design of metallurgical plasma torches characterised by a long service life

  3. Plasmas for medicine

    Science.gov (United States)

    von Woedtke, Th.; Reuter, S.; Masur, K.; Weltmann, K.-D.

    2013-09-01

    Plasma medicine is an innovative and emerging field combining plasma physics, life science and clinical medicine. In a more general perspective, medical application of physical plasma can be subdivided into two principal approaches. (i) “Indirect” use of plasma-based or plasma-supplemented techniques to treat surfaces, materials or devices to realize specific qualities for subsequent special medical applications, and (ii) application of physical plasma on or in the human (or animal) body to realize therapeutic effects based on direct interaction of plasma with living tissue. The field of plasma applications for the treatment of medical materials or devices is intensively researched and partially well established for several years. However, plasma medicine in the sense of its actual definition as a new field of research focuses on the use of plasma technology in the treatment of living cells, tissues, and organs. Therefore, the aim of the new research field of plasma medicine is the exploitation of a much more differentiated interaction of specific plasma components with specific structural as well as functional elements or functionalities of living cells. This interaction can possibly lead either to stimulation or inhibition of cellular function and be finally used for therapeutic purposes. During recent years a broad spectrum of different plasma sources with various names dedicated for biomedical applications has been reported. So far, research activities were mainly focused on barrier discharges and plasma jets working at atmospheric pressure. Most efforts to realize plasma application directly on or in the human (or animal) body for medical purposes is concentrated on the broad field of dermatology including wound healing, but also includes cancer treatment, endoscopy, or dentistry. Despite the fact that the field of plasma medicine is very young and until now mostly in an empirical stage of development yet, there are first indicators of its enormous

  4. Plasma sheath in non-Maxwellian plasma

    International Nuclear Information System (INIS)

    Shimizu, Takuo; Horigome, Takashi

    1992-01-01

    Reviewing many theoretical and experimental works on the electron-energy distributions (EEDF) of various plasmas, we point out that many plasmas have EEDF of non-Maxwellian in shape. Therefore, the recent treatment of plasma sheath using the Maxwell-Boltzmann distribution approximation should be improved. To do this, we have adopted Rutcher's standard distribution as a generalized form in place of the traditional Maxwellian, and found that the minimum energy of ions entering the sheath edge (Bohm's criterion) varies largely, and have also shown the variation of Debye length with the shape of EEDF. The length is the most important parameter to proceed with more detailed analysis on plasma-sheaths, and also to control them in the future. (author)

  5. Implementation of an anisotropic damage material model using general second order damage tensor

    NARCIS (Netherlands)

    Niazi, Muhammad Sohail; Mori, K.; Wisselink, H.H.; Pietrzyk, M.; Kusiak, J.; Meinders, Vincent T.; ten Horn, Carel; Majta, J.; Hartley, P.; Lin, J.

    2010-01-01

    Damage in metals is mainly the process of the initiation and growth of voids. With the growing complexity in materials and forming proc-esses, it becomes inevitable to include anisotropy in damage (tensorial damage variable). Most of the anisotropic damage models define the damage tensor in the

  6. Particle modeling of plasmas computational plasma physics

    International Nuclear Information System (INIS)

    Dawson, J.M.

    1991-01-01

    Recently, through the development of supercomputers, a powerful new method for exploring plasmas has emerged; it is computer modeling of plasmas. Such modeling can duplicate many of the complex processes that go on in a plasma and allow scientists to understand what the important processes are. It helps scientists gain an intuition about this complex state of matter. It allows scientists and engineers to explore new ideas on how to use plasma before building costly experiments; it allows them to determine if they are on the right track. It can duplicate the operation of devices and thus reduce the need to build complex and expensive devices for research and development. This is an exciting new endeavor that is in its infancy, but which can play an important role in the scientific and technological competitiveness of the US. There are a wide range of plasma models that are in use. There are particle models, fluid models, hybrid particle fluid models. These can come in many forms, such as explicit models, implicit models, reduced dimensional models, electrostatic models, magnetostatic models, electromagnetic models, and almost an endless variety of other models. Here the author will only discuss particle models. He will give a few examples of the use of such models; these will be taken from work done by the Plasma Modeling Group at UCLA because he is most familiar with work. However, it only gives a small view of the wide range of work being done around the US, or for that matter around the world

  7. Analysis of localized damage in creep rupture

    International Nuclear Information System (INIS)

    Wang Zhengdong; Wu Dongdi

    1992-01-01

    Continuum Damage Mechanics studies the effect of distributed defects, whereas the failure of engineering structures is usually caused by local damage. In this paper, an analysis of localized damage in creep rupture is carried out. The material tested is a 2 1/4Cr-1Mo pressure vessel steel and the material constants necessary for damage analysis are evaluated. Notched specimens are used to reflect localized damage in creep rupture and the amount of damage is measured using DCPD method. Through FEM computation, stress components and effective stress in the region of notch root are evaluated and it is found that the von Mises effective stress can represent the damage effective stress in the analysis of localized creep damage. It is possible to develop a method for the assessment of safety of pressure vessels under creep through localized creep damage analysis. (orig.)

  8. Lymphocyte DNA damage and oxidative stress in patients with iron deficiency anemia.

    Science.gov (United States)

    Aslan, Mehmet; Horoz, Mehmet; Kocyigit, Abdurrahim; Ozgonül, Saadet; Celik, Hakim; Celik, Metin; Erel, Ozcan

    2006-10-10

    Oxidant stress has been shown to play an important role in the pathogenesis of iron deficiency anemia. The aim of this study was to investigate the association between lymphocyte DNA damage, total antioxidant capacity and the degree of anemia in patients with iron deficiency anemia. Twenty-two female with iron deficiency anemia and 22 healthy females were enrolled in the study. Peripheral DNA damage was assessed using alkaline comet assay and plasma total antioxidant capacity was determined using an automated measurement method. Lymphocyte DNA damage of patients with iron deficiency anemia was significantly higher than controls (ptotal antioxidant capacity was significantly lower (ptotal antioxidant capacity and hemoglobin levels (r=0.706, ptotal antioxidant capacity and hemoglobin levels were negatively correlated with DNA damage (r=-0.330, p<0.05 and r=-0.323, p<0.05, respectively). In conclusion, both oxidative stress and DNA damage are increased in IDA patients. Increased oxidative stress seems as an important factor that inducing DNA damage in those IDA patients. The relationships of oxidative stress and DNA damage with the severity of anemia suggest that both oxidative stress and DNA damage may, in part, have a role in the pathogenesis of IDA.

  9. Effects of Atmospheric Pressure Plasmas on Isolated and Cellular DNA—A Review

    Directory of Open Access Journals (Sweden)

    Krishna Priya Arjunan

    2015-01-01

    Full Text Available Atmospheric Pressure Plasma (APP is being used widely in a variety of biomedical applications. Extensive research in the field of plasma medicine has shown the induction of DNA damage by APP in a dose-dependent manner in both prokaryotic and eukaryotic systems. Recent evidence suggests that APP-induced DNA damage shows potential benefits in many applications, such as sterilization and cancer therapy. However, in several other applications, such as wound healing and dentistry, DNA damage can be detrimental. This review reports on the extensive investigations devoted to APP interactions with DNA, with an emphasis on the critical role of reactive species in plasma-induced damage to DNA. The review consists of three main sections dedicated to fundamental knowledge of the interactions of reactive oxygen species (ROS/reactive nitrogen species (RNS with DNA and its components, as well as the effects of APP on isolated and cellular DNA in prokaryotes and eukaryotes.

  10. Effects of Atmospheric Pressure Plasmas on Isolated and Cellular DNA—A Review

    Science.gov (United States)

    Arjunan, Krishna Priya; Sharma, Virender K.; Ptasinska, Sylwia

    2015-01-01

    Atmospheric Pressure Plasma (APP) is being used widely in a variety of biomedical applications. Extensive research in the field of plasma medicine has shown the induction of DNA damage by APP in a dose-dependent manner in both prokaryotic and eukaryotic systems. Recent evidence suggests that APP-induced DNA damage shows potential benefits in many applications, such as sterilization and cancer therapy. However, in several other applications, such as wound healing and dentistry, DNA damage can be detrimental. This review reports on the extensive investigations devoted to APP interactions with DNA, with an emphasis on the critical role of reactive species in plasma-induced damage to DNA. The review consists of three main sections dedicated to fundamental knowledge of the interactions of reactive oxygen species (ROS)/reactive nitrogen species (RNS) with DNA and its components, as well as the effects of APP on isolated and cellular DNA in prokaryotes and eukaryotes. PMID:25642755

  11. Effects of atmospheric pressure plasmas on isolated and cellular DNA-a review.

    Science.gov (United States)

    Arjunan, Krishna Priya; Sharma, Virender K; Ptasinska, Sylwia

    2015-01-29

    Atmospheric Pressure Plasma (APP) is being used widely in a variety of biomedical applications. Extensive research in the field of plasma medicine has shown the induction of DNA damage by APP in a dose-dependent manner in both prokaryotic and eukaryotic systems. Recent evidence suggests that APP-induced DNA damage shows potential benefits in many applications, such as sterilization and cancer therapy. However, in several other applications, such as wound healing and dentistry, DNA damage can be detrimental. This review reports on the extensive investigations devoted to APP interactions with DNA, with an emphasis on the critical role of reactive species in plasma-induced damage to DNA. The review consists of three main sections dedicated to fundamental knowledge of the interactions of reactive oxygen species (ROS)/reactive nitrogen species (RNS) with DNA and its components, as well as the effects of APP on isolated and cellular DNA in prokaryotes and eukaryotes.

  12. Experimental study of EUV mirror radiation damage resistance under long-term free-electron laser exposures below the single-shot damage threshold

    Czech Academy of Sciences Publication Activity Database

    Makhotkin, I.; Sobierajski, R.; Chalupský, Jaromír; Tiedtke, K.; de Vries, G.; Stoermer, M.; Scholze, F.; Siewert, F.; van de Kruijs, R.W.E.; Milov, I.; Louis, E.; Jacyna, I.; Jurek, M.; Klinger, D.; Nittler, L.; Syryanyy, Y.; Juha, Libor; Hájková, Věra; Vozda, Vojtěch; Burian, Tomáš; Saksl, Karel; Faatz, B.; Keitel, B.; Ploenjes, E.; Schreiber, S.; Toleikis, S.; Loch, R.A.; Hermann, M.; Strobel, S.; Nienhuys, H.-K.; Gwalt, G.; Mey, T.; Enkisch, H.

    2018-01-01

    Roč. 25, č. 1 (2018), s. 77-84 ISSN 1600-5775. [Workshop on FEL Photon Diagnostics, Instrumentation and Beamline Design (PhotonDiag2017). Stanford, 01.05.2017-03.05.2017] R&D Projects: GA MŠk LG15013; GA ČR(CZ) GA17-05167s; GA ČR(CZ) GA14-29772S Institutional support: RVO:68378271 Keywords : free-electron laser induced damage * EUV optics * thin films * FELs Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 3.011, year: 2016

  13. Experimental study of EUV mirror radiation damage resistance under long-term free-electron laser exposures below the single-shot damage threshold

    Czech Academy of Sciences Publication Activity Database

    Makhotkin, I.A.; Sobierajski, R.; Chalupský, J.; Tiedtke, K.; de Vries, G.; Stoermer, M.; Scholze, F.; Siewert, F.; van de Kruijs, R.W.E.; Louis, E.; Jacyna, I.; Jurek, M.; Klinger, D.; Nittler, L.; Syryanyy, Y.; Juha, Libor; Hájková, V.; Vozda, V.; Burian, Tomáš; Saksl, K.; Faatz, B.; Keitel, B.; Ploenjes, E.; Schreiber, S.; Toleikis, S.; Loch, R.; Hermann, M.; Strobel, S.; Nienhuys, H.-K.; Gwalt, G.; Mey, T.; Enkisch, H.

    2018-01-01

    Roč. 25, č. 1 (2018), s. 77-84 ISSN 0909-0495. [Workshop on FEL Photon Diagnostics, Instrumentation and Beamline Design (PhotonDiag2017). Stanford, 01.05.2017-03.05.2017] R&D Projects: GA ČR(CZ) GA14-29772S; GA MŠk LG15013 Institutional support: RVO:61389021 Keywords : free-electron laser induced damage * EUV optics * thin films * FELs Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics)

  14. Magnetospheric plasma waves

    International Nuclear Information System (INIS)

    Shawhan, S.D.

    1977-01-01

    A brief history of plasma wave observations in the Earth's magnetosphere is recounted and a classification of the identified plasma wave phenomena is presented. The existence of plasma waves is discussed in terms of the characteristic frequencies of the plasma, the energetic particle populations and the proposed generation mechanisms. Examples are given for which plasmas waves have provided information about the plasma parameters and particle characteristics once a reasonable theory has been developed. Observational evidence and arguments by analogy to the observed Earth plasma wave processes are used to identify plasma waves that may be significant in other planetary magnetospheres. The similarities between the observed characteristics of the terrestrial kilometric radiation and radio bursts from Jupiter, Saturn and possibly Uranus are stressed. Important scientific problems concerning plasma wave processes in the solar system and beyond are identified and discussed. Models for solar flares, flare star radio outbursts and pulsars include elements which are also common to the models for magnetospheric radio bursts. Finally, a listing of the research and development in terms of instruments, missions, laboratory experiments, theory and computer simulations needed to make meaningful progress on the outstanding scientific problems of plasma wave research is given. (Auth.)

  15. Particle beams and plasmas

    International Nuclear Information System (INIS)

    Hofmann, A.; Messerschmid, E.; Lawson, J.D.

    1976-01-01

    These lectures present a survey of some of the concepts of plasma physics and look at some situations familiar to particle-accelerator physicists from the point of view of a plasma physicist, with the intention of helping to link together the two fields. At the outset, basic plasma concepts are presented, including definitions of a plasma, characteristic parameters, magnetic pressure and confinement. This is followed by a brief discussion on plasma kinetic theory, non-equilibrium plasma, and the temperature of moving plasmas. Examples deal with beams in the CERN Intersecting Storage Rings as well as with non-steady beams in cyclic accelerators and microwave tubes. In the final chapters, time-varying systems are considered: waves in free space and the effect of cylinder bounds, wave motion in cold stationary plasmas, and waves in plasmas with well-defined streams. The treatment throughout is informal, with emphasis on the essential physical properties of continuous beams in accelerators and storage rings in relation to the corresponding problems in plasma physics and microwave tubes. (Author)

  16. Genetic damage following nuclear war

    International Nuclear Information System (INIS)

    Oftedal, P.

    1984-01-01

    Genetic damage may be caused by ionizing radiation from the exploding bomb itself, or from radioactive nuclides released or formed in the explosion. Long-wave radiation in the heat flash and physical force do not contribute. Thus only a small fraction of the energy of the explosion - fission or fusion- can cause genetic damage. Neutron irradiation is generally found to be 5-20 times more efficient than gamma irradiation for the same absorbed dose. Fetuses and children are generally more radiosensitive than adults. Exposure of gonads during the proliferative stage of gonad growth may conceivably lead to a ''fluctuation test'' effect, so that a gonad may contain a sector of cells carrying identical mutations. A corresponding development may take place if the gonad stem cell population has been severely depleted by an acute exposure and recovers

  17. Apportioning liability for transborder damages

    International Nuclear Information System (INIS)

    Krause-Ablass, W.-D.

    1988-01-01

    The legal situation in the case of cross border damage being caused by reactor accidents or transportation of nuclear material through more than one country is analysed. Two questions have to be asked - which country's courts have jurisdiction over the claims for damage? and which law is applicable? In considering the jurisdiction problem, the Paris and Vienna Conventions are discussed and also other rules of jurisdiction. The way the law is applicable is discussed in the second section. When the action for liability is based on the Paris or Vienna Convention the issue of reciprocity may arise and this is discussed. After a nuclear incident a potential plaintiff may have a choice amongst various jurisdictions and various available laws. Success may depend on the right choice of the forum chosen. This is illustrated by two examples. (U.K.)

  18. Genetic doping and health damages.

    Science.gov (United States)

    Fallahi, Aa; Ravasi, Aa; Farhud, Dd

    2011-01-01

    Use of genetic doping or gene transfer technology will be the newest and the lethal method of doping in future and have some unpleasant consequences for sports, athletes, and outcomes of competitions. The World Anti-Doping Agency (WADA) defines genetic doping as "the non-therapeutic use of genes, genetic elements, and/or cells that have the capacity to enhance athletic performance ". The purpose of this review is to consider genetic doping, health damages and risks of new genes if delivered in athletes. This review, which is carried out by reviewing relevant publications, is primarily based on the journals available in GOOGLE, ELSEVIER, PUBMED in fields of genetic technology, and health using a combination of keywords (e.g., genetic doping, genes, exercise, performance, athletes) until July 2010. There are several genes related to sport performance and if they are used, they will have health risks and sever damages such as cancer, autoimmunization, and heart attack.

  19. Civil liability for nuclear damage

    International Nuclear Information System (INIS)

    1963-01-01

    An international Convention on Civil Liability for Nuclear Damage was adopted in Vienna on 19 May 1963 by a sixty-nation conference convened by the International Atomic Energy Agency. The Convention, which is subject to ratification by the States signing it, will come into force three months after the deposit of the fifth instrument of ratification. The Convention is designee only to establish minimum rules regarding civil liability for nuclear damage; it may thus well be described as a framework convention, the main provisions of which represent the essential common denomination acceptable to as many States as possible. It leaves wide scope for national legislation and regional arrangements with a view to implementing these provisions The Convention does not purport to create a uniform civil law in this field, but it contains the minimal essential for protection of the public and forms the legal basis for uniform world-wide liability rules

  20. Damaging brands through market research:

    DEFF Research Database (Denmark)

    Horn, C.; Brem, Alexander; Ivens, B.

    2014-01-01

    Purpose – The purpose of this paper is to investigate the possibility of using the new marketing research tool of prediction markets (PMs), which integrates customers to into the marketing research process. The research questions are: does taking part in PMs influence customers’ brand perception......? Is there a danger of damaging a brand through this tool? Design/methodology/approach – The paper uses a series of five short-term (less than one hour) and five long-term (three weeks) experimental online PMs where customers are integrated into marketing research and apply a series of online-surveys before and after...... taking part as virtual stock market traders. Subjects of research are taken from the sporting goods industry. Findings – The paper shows that PMs can be used by marketing researchers without the danger of damaging the brand of the products that are subject of the PMs, although customers are being...

  1. Radiation damage in biomolecular systems

    CERN Document Server

    Fuss, Martina Christina

    2012-01-01

    Since the discovery of X-rays and radioactivity, ionizing radiations have been widely applied in medicine both for diagnostic and therapeutic purposes. The risks associated with radiation exposure and handling led to the parallel development of the field of radiation protection. Pioneering experiments done by Sanche and co-workers in 2000 showed that low-energy secondary electrons, which are abundantly generated along radiation tracks, are primarily responsible for radiation damage through successive interactions with the molecular constituents of the medium. Apart from ionizing processes, which are usually related to radiation damage, below the ionization level low-energy electrons can induce molecular fragmentation via dissociative processes such as internal excitation and electron attachment. This prompted collaborative projects between different research groups from European countries together with other specialists from Canada,  the USA and Australia. This book summarizes the advances achieved by these...

  2. A damage-tolerant glass.

    Science.gov (United States)

    Demetriou, Marios D; Launey, Maximilien E; Garrett, Glenn; Schramm, Joseph P; Hofmann, Douglas C; Johnson, William L; Ritchie, Robert O

    2011-02-01

    Owing to a lack of microstructure, glassy materials are inherently strong but brittle, and often demonstrate extreme sensitivity to flaws. Accordingly, their macroscopic failure is often not initiated by plastic yielding, and almost always terminated by brittle fracture. Unlike conventional brittle glasses, metallic glasses are generally capable of limited plastic yielding by shear-band sliding in the presence of a flaw, and thus exhibit toughness-strength relationships that lie between those of brittle ceramics and marginally tough metals. Here, a bulk glassy palladium alloy is introduced, demonstrating an unusual capacity for shielding an opening crack accommodated by an extensive shear-band sliding process, which promotes a fracture toughness comparable to those of the toughest materials known. This result demonstrates that the combination of toughness and strength (that is, damage tolerance) accessible to amorphous materials extends beyond the benchmark ranges established by the toughest and strongest materials known, thereby pushing the envelope of damage tolerance accessible to a structural metal.

  3. Effects of background fluid on the efficiency of inactivating yeast with non-thermal atmospheric pressure plasma.

    Directory of Open Access Journals (Sweden)

    Young-Hyo Ryu

    Full Text Available Non-thermal plasma at atmospheric pressure has been actively applied to sterilization. However, its efficiency for inactivating microorganisms often varies depending on microbial species and environments surrounding the microorganisms. We investigated the influence of environmental factors (surrounding media on the efficiency of microbial inactivation by plasma using an eukaryotic model microbe, Saccharomyces cerevisiae, to elucidate the mechanisms for differential efficiency of sterilization by plasma. Yeast cells treated with plasma in water showed the most severe damage in viability and cell morphology as well as damage to membrane lipids, and genomic DNA. Cells in saline were less damaged compared to those in water, and those in YPD (Yeast extract, Peptone, Dextrose were least impaired. HOG1 mitogen activated protein kinase was activated in cells exposed to plasma in water and saline. Inactivation of yeast cells in water and saline was due to the acidification of the solutions by plasma, but higher survival of yeast cells treated in saline may have resulted from the additional effect related to salt strength. Levels of hydroxyl radical (OH· produced by plasma were the highest in water and the lowest in YPD. This may have resulted in differential inactivation of yeast cells in water, saline, and YPD by plasma. Taken together, our data suggest that the surrounding media (environment can crucially affect the outcomes of yeast cell plasma treatment because plasma modulates vital properties of media, and the toxic nature of plasma can also be altered by the surrounding media.

  4. Smart accelerometer. [vibration damage detection

    Science.gov (United States)

    Bozeman, Richard J., Jr. (Inventor)

    1994-01-01

    The invention discloses methods and apparatus for detecting vibrations from machines which indicate an impending malfunction for the purpose of preventing additional damage and allowing for an orderly shutdown or a change in mode of operation. The method and apparatus is especially suited for reliable operation in providing thruster control data concerning unstable vibration in an electrical environment which is typically noisy and in which unrecognized ground loops may exist.

  5. Damage-resistant brittle coatings

    Energy Technology Data Exchange (ETDEWEB)

    Lawn, B.R.; Lee, K.S. [National Inst. of Stand. and Technol., Gaithersburg, MD (United States). Mater. Sci. and Eng. Lab.; Chai, H. [Tel Aviv Univ. (Israel). Faculty of Engineering; Pajares, A. [Universidad de Extremadura, Badajoz (Spain). Dept. de Fisica; Kim, D.K. [Korea Advanced Inst. of Science and Technolgy, Taejon (Korea). Dept. of Materials Science and Engineering; Wuttiphan, S. [National Metal and Materials Technology Center, Bangkok (Thailand); Peterson, I.M. [Corning Inc., NY (United States); Hu Xiaozhi [Western Australia Univ., Nedlands, WA (Australia). Dept. of Mechanical and Materials Engineering

    2000-11-01

    Laminate structures consisting of hard, brittle coatings and soft, tough substrates are important in a wide variety of engineering applications, biological structures, and traditional pottery. In this study the authors introduce a new approach to the design of damage-resistant brittle coatings, based on a combination of new and existing relations for crack initiation in well-defined contact-induced stress fields. (orig.)

  6. Analysis of radiation damaged nanocrystals

    International Nuclear Information System (INIS)

    Sitek, J.; Dekan, J.; Sedlackova, K.; Sagatova, A.

    2014-01-01

    Ribbon-shaped specimens of the master alloy were prepared by planar flow casting. The ribbons with nominal composition of (Fe_1_-_xN_x)_8_1Nb_7B_1_2 (x = 0, 0.25, 0.5, 0.75) were about 25 μm thick and 10 mm wide. To achieve nanocrystalline state, the amorphous ribbons were annealed in vacuum at the temperature of 550 grad C for 1 hour. Samples were irradiated by neutrons in nuclear reactor with fluence of 10"1"6 n/cm"2 and 10"1"7 n/cm"2. and by electrons in linear accelerator with dose 1 MGy at the Slovak Medical University. Moessbauer spectra were collected in transmission geometry by a conventional constant-acceleration spectrometer with a "5"7Co(Rh) source. All spectra were measured at room temperature and evaluated by the CONFIT program, which allows simultaneous treatment of crystalline and residual amorphous phase by means of individual lines and distribution of hyperfine components. After summarizing all obtained results, the fluence 10"1"6 n/cm"2 is still not sufficiently high significantly damage amorphous and crystalline structure. This fluence more or less modify the structure than damage. After fluence 10"17"n/cm"2 we observed beginning of the. structural damage. Our results show, that high electron dose also modify the structure of nanocrystaline alloys. In further study of this alloy it would be necessary to find the limit of electron dose under that the alloy is resistant against electron's damage. From point of view Moessbauer spectroscopy the most sensitive parameter is direction of net magnetic moment. (authors)

  7. Quantification of thermal damage in skin tissue

    Institute of Scientific and Technical Information of China (English)

    Xu Feng; Wen Ting; Lu Tianjian; Seffen Keith

    2008-01-01

    Skin thermal damage or skin burns are the most commonly encountered type of trauma in civilian and military communities. Besides, advances in laser, microwave and similar technologies have led to recent developments of thermal treatments for disease and damage involving skin tissue, where the objective is to induce thermal damage precisely within targeted tissue structures but without affecting the surrounding, healthy tissue. Further, extended pain sensation induced by thermal damage has also brought great problem for burn patients. Thus, it is of great importance to quantify the thermal damage in skin tissue. In this paper, the available models and experimental methods for quantification of thermal damage in skin tissue are discussed.

  8. Biologically important radiation damage in DNA

    International Nuclear Information System (INIS)

    Ward, J.F.

    1994-01-01

    Most DNA damage by the hydroxyl radical is confined to the bases, and this base damage represents an important component of locally multiply demanded sites (LMOS). The yields of the major damaged bases have been determined by gas chromatography mass spectrometry. For our propose, it was necessary to convert a known fraction of these damaged bases to strand breaks and then assay these labile sites as the increase in strand break yield over the normally observed level. Three potential agents by which this strategy of conversion of base damage to strand break could be implemented were identified in the original application: 1, Sl nuclease; 2, piperidine; and 3, base damage specific enzymes

  9. Economic measurement of environment damages

    Energy Technology Data Exchange (ETDEWEB)

    Krawiec, F.

    1980-05-01

    The densities, energy consumption, and economic development of the increasing population exacerbate environmental degradation. Air and water pollution is a major environmental problem affecting life and health, outdoor recreation, household soiling, vegetation, materials, and production. The literature review indicated that numerous studies have assessed the physical and monetary damage to populations at risk from excessive concentrations of major air and water pollutants-sulfur dioxide, total suspended particulate matter, oxidants, and carbon monoxide in air; and nutrients, oil, pesticides, and toxic metals and others in water. The measurement of the damages was one of the most controversial issues in pollution abatement. The methods that have been used to estimate the societal value of pollution abatement are: (1) chain of effects, (2) market approaches, and (3) surveys. National gross damages of air pollution of $20.2 billion and of water pollution of $11.1 billion for 1973 are substantial. These best estimates, updated for the economic and demographic conditions, could provide acceptable control totals for estimating and predicting benefits and costs of abating air and water pollution emissions. The major issues to be resolved are: (1) lack of available noneconomic data, (2) theoretical and empirical difficulties of placing a value on human life and health and on benefits such as aesthetics, and (3) lack of available demographic and economic data.

  10. Radiation damage of structural materials

    International Nuclear Information System (INIS)

    Koutsky, J.; Kocik, J.

    1994-01-01

    Maintaining the integrity of nuclear power plants (NPP) is critical in the prevention or control of severe accidents. This monograph deals with both basic groups of structural materials used in the design of light-water nuclear reactors, making the primary safety barriers of NPPs. Emphasis is placed on materials used in VVER-type nuclear reactors: Cr-Mo-V and Cr-Ni-Mo-V steel for reactor pressure vessels (RPV) and Zr-Nb alloys for fuel element cladding. The book is divided into seven main chapters, with the exception of the opening one and the chapter providing phenomenological background for the subject of radiation damage. Chapters 3-6 are devoted to RPV steels and chapters 7-9 to zirconium alloys, analyzing their radiation damage structure, changes of mechanical properties due to neutron irradiation as well as factors influencing the degree of their performance degradation. The recovery of damaged materials is also discussed. Considerable attention is paid to a comparison of VVER-type and western-type light-water materials

  11. Damage-induced tensile instability

    International Nuclear Information System (INIS)

    Hult, J.

    1975-01-01

    The paper presents a unified description of ductile and brittle rupture phenomena in structural components under tensile loading with particular emphasis on creep rupture. Two structural elements are analyzed in detail: 1) the uniform tensile bar subject to a Heaviside history of tensile force and superimposed such loadings, i.e. staircase histories, and 2) the thinwalled spherical pressure vessel subject to a Heaviside history of internal pressure. For both these structures the conditions for instantaneous as well as delayed rupture are analysed. It is shown that a state of mechanical instability will be reached at a certain load or after a certain time. The cases of purely ductile rupture and purely brittle fracture are identified as two limiting cases of this general instability phenomenon. The Kachanov-Rabotnov damage law implies that a structural component will fail in tension only when it has reached a state of complete damage, i.e. zero load carrying capacity. The extended law predicts failure at an earlier stage of the deterioration process and is therefore more compatible with experimental observation. Further experimental support is offered by predictions for staircase loading histories, both step-up and step-down type. The presented damage theory here predicts strain histories which are in closer agreement with test data than predictions based on other phenomenological theories

  12. DNA Damage and Pulmonary Hypertension

    Science.gov (United States)

    Ranchoux, Benoît; Meloche, Jolyane; Paulin, Roxane; Boucherat, Olivier; Provencher, Steeve; Bonnet, Sébastien

    2016-01-01

    Pulmonary hypertension (PH) is defined by a mean pulmonary arterial pressure over 25 mmHg at rest and is diagnosed by right heart catheterization. Among the different groups of PH, pulmonary arterial hypertension (PAH) is characterized by a progressive obstruction of distal pulmonary arteries, related to endothelial cell dysfunction and vascular cell proliferation, which leads to an increased pulmonary vascular resistance, right ventricular hypertrophy, and right heart failure. Although the primary trigger of PAH remains unknown, oxidative stress and inflammation have been shown to play a key role in the development and progression of vascular remodeling. These factors are known to increase DNA damage that might favor the emergence of the proliferative and apoptosis-resistant phenotype observed in PAH vascular cells. High levels of DNA damage were reported to occur in PAH lungs and remodeled arteries as well as in animal models of PH. Moreover, recent studies have demonstrated that impaired DNA-response mechanisms may lead to an increased mutagen sensitivity in PAH patients. Finally, PAH was linked with decreased breast cancer 1 protein (BRCA1) and DNA topoisomerase 2-binding protein 1 (TopBP1) expression, both involved in maintaining genome integrity. This review aims to provide an overview of recent evidence of DNA damage and DNA repair deficiency and their implication in PAH pathogenesis. PMID:27338373

  13. Damage studies on tungsten due to helium ion irradiation

    International Nuclear Information System (INIS)

    Dutta, N.J.; Buzarbaruah, N.; Mohanty, S.R.

    2014-01-01

    Highlights: • Used plasma focus helium ion source to study radiation induced damage on tungsten. • Surface analyses confirm formation of micro-crack, bubbles, blisters, pinholes, etc. • XRD patterns confirm development of compressive stress due to thermal load. • Reduction in hardness value is observed in the case of exposed sample. - Abstract: Energetic and high fluence helium ions emitted in a plasma focus device have been used successfully to study the radiation induced damage on tungsten. The reference and irradiated samples were characterized by optical microscopy, field emission scanning electron microscopy, X-ray diffraction and by hardness testers. The micrographs of the irradiated samples at lower magnification show uniform mesh of cracks of micrometer width. However at higher magnification, various types of crystalline defects such as voids, pinholes, bubbles, blisters and microcracks are distinctly noticed. The prominent peaks in X-ray diffraction spectrum of irradiated samples are seen shifted toward higher Bragg angles, thus indicating accumulation of compressive stress due to the heat load delivered by helium ions. A marginal reduction in hardness of the irradiated sample is also noticed

  14. Coupling of Plasmas and Liquids

    Science.gov (United States)

    Lindsay, Alexander David

    surface loss coefficients. Within a reasonable range for these parameters, we have demonstrated that the electron density on the gas phase side of the interface can vary by orders of magnitude. Significant effects can also be seen on the gas phase interfacial electron energy. Electron density and energy will play important roles in determining gas phase chemistry in more complex future models; this will in turn feed back into the liquid phase chemistry. To remove this uncertainty in interfacial behavior, we recommend finer scale atomistic or molecular dynamics simulations. Efficient coupling of the highly non-linear discharge physics equations to liquid transport required creation of a new simulation code named Zapdos, built on top of the MOOSE framework. The operation and capabilities of the code are described in this work. Moreover, changes made to the MOOSE framework allowing coupling of physics across subdomain boundaries, necessary for plasma-liquid coupling, are also detailed. In the latter half of this work, we investigate experimental optimization and characterization of plasma-liquid interactions surrounding a unique very high frequency (VHF) plasma discharge. Several geometric configurations are considered. In the most promising set-up, the discharge is pointed upwards and water is pumped through the source's inner conductor until it forms a milimeter thick water layer on top of the powered electrode. This maximizes the amount of charged and neutral species flux received by the aqueous phase as well as the amount of water vapor created in the gas phase. Additionally, the configuration eliminates electrode damage by providing an infinitely renewable liquid surface layer. The presence of large amounts of water vapor and OH radicals is confirmed by optical emission and broadband absorption spectroscopy. Characterization of liquid phase species like NO-3 , NO-2 , and H2O2 is carried out through ion chromatography (IC) and colorimetric measurements. After detailing

  15. Introduction to complex plasmas

    International Nuclear Information System (INIS)

    Bonitz, Michael; Ludwig, Patrick; Horing, Norman

    2010-01-01

    Complex plasmas differ from traditional plasmas in many ways: these are low-temperature high pressure systems containing nanometer to micrometer size particles which may be highly charged and strongly interacting. The particles may be chemically reacting or be in contact with solid surfaces, and the electrons may show quantum behaviour. These interesting properties have led to many applications of complex plasmas in technology, medicine and science. Yet complex plasmas are extremely complicated, both experimentally and theoretically, and require a variety of new approaches which go beyond standard plasma physics courses. This book fills this gap presenting an introduction to theory, experiment and computer simulation in this field. Based on tutorial lectures at a very successful recent Summer Institute, the presentation is ideally suited for graduate students, plasma physicists and experienced undergraduates. (orig.)

  16. Introduction to Complex Plasmas

    CERN Document Server

    Bonitz, Michael; Ludwig, Patrick

    2010-01-01

    Complex plasmas differ from traditional plasmas in many ways: these are low-temperature high pressure systems containing nanometer to micrometer size particles which may be highly charged and strongly interacting. The particles may be chemically reacting or be in contact with solid surfaces, and the electrons may show quantum behaviour. These interesting properties have led to many applications of complex plasmas in technology, medicine and science. Yet complex plasmas are extremely complicated, both experimentally and theoretically, and require a variety of new approaches which go beyond standard plasma physics courses. This book fills this gap presenting an introduction to theory, experiment and computer simulation in this field. Based on tutorial lectures at a very successful recent Summer Institute, the presentation is ideally suited for graduate students, plasma physicists and experienced undergraduates.

  17. Nonideal plasmas - experimental research

    International Nuclear Information System (INIS)

    Guenther, K.; Hess, H.; Radtke, R.

    1986-01-01

    The investigation of nonideal, strongly coupled, or non-Debye plasmas is a new field of the well-known arc plasma physics. The increased pressure and density cause different behaviour of the dense plasma. The paper surveys the main differences between the nonideal and the usual arc plasmas. The electrical conductivity, continuum radiation absorption coefficient, shift and broadening of spectral lines, and plasma phase transition are discussed. The problems of generation and diagnostics of nonideal plasmas are also described. Finally, the importance of the topic is underlined: possible applications in astrophysics and in different fields of technology: light sources, MHD generators, circuit breakers, laser mirrors and shutters, high temperature gas-phase fission reactors, material treatment and laser fusion are mentioned. (D.Gy.)

  18. Thermal plasma waste treatment

    International Nuclear Information System (INIS)

    Heberlein, Joachim; Murphy, Anthony B

    2008-01-01

    Plasma waste treatment has over the past decade become a more prominent technology because of the increasing problems with waste disposal and because of the realization of opportunities to generate valuable co-products. Plasma vitrification of hazardous slags has been a commercial technology for several years, and volume reduction of hazardous wastes using plasma processes is increasingly being used. Plasma gasification of wastes with low negative values has attracted interest as a source of energy and spawned process developments for treatment of even municipal solid wastes. Numerous technologies and approaches exist for plasma treatment of wastes. This review summarizes the approaches that have been developed, presents some of the basic physical principles, provides details of some specific processes and considers the advantages and disadvantages of thermal plasmas in waste treatment applications. (topical review)

  19. Watson-Crick Base Pair Radical Cation as a Model for Oxidative Damage in DNA.

    Science.gov (United States)

    Feketeová, Linda; Chan, Bun; Khairallah, George N; Steinmetz, Vincent; Maitre, Philippe; Radom, Leo; O'Hair, Richard A J

    2017-07-06

    The deleterious cellular effects of ionizing radiation are well-known, but the mechanisms causing DNA damage are poorly understood. The accepted molecular events involve initial oxidation and deprotonation at guanine sites, triggering hydrogen atom abstraction reactions from the sugar moieties, causing DNA strand breaks. Probing the chemistry of the initially formed radical cation has been challenging. Here, we generate, spectroscopically characterize, and examine the reactivity of the Watson-Crick nucleobase pair radical cation in the gas phase. We observe rich chemistry, including proton transfer between the bases and propagation of the radical site in deoxyguanosine from the base to the sugar, thus rupturing the sugar. This first example of a gas-phase model system providing molecular-level details on the chemistry of an ionized DNA base pair paves the way toward a more complete understanding of molecular processes induced by radiation. It also highlights the role of radical propagation in chemistry, biology, and nanotechnology.

  20. Compression of toroidal plasma by imploding plasma-liner

    International Nuclear Information System (INIS)

    Ikuta, Kazunari.

    1979-07-01

    A new concept of compressing a plasma in a closed magnetic configuration by a version of liner implosion flux compression technique is considered. The liner consists of a dense plasma cylinder, i.e. the plasma-liner. Maximum compression ratio of toroidal plasma is determined just by the initial density ratio of the toroidal plasma to the liner plasma because of the Rayleigh-Taylor instability. A start-up senario of plasma-liner is also proposed with a possible application of this concept to the creation of a burning plasma in reversed field configurations, i.e. burning plasma vortex. (author)

  1. Space plasmas 2

    International Nuclear Information System (INIS)

    Frankel, N.E.; Hines, K.C.; Kowalenko, V.

    1981-01-01

    The longitudinal dielectric response of an ultra-degenerate relativistic plasma composed of electrons and positrons is considered. The relativistic Hartree self-consistent field method is used to investigate the dispersion relations and damping parameters of such a plasma in the presence of a magnetic field. These properties must be studied in the various regimes appropriate for a relativistic plasma as detailed by Tsytovich and Jancovici

  2. Plasma polarization spectroscopy

    International Nuclear Information System (INIS)

    Iwamae, Atsushi; Horimoto, Yasuhiro; Fujimoto, Takashi; Hasegawa, Noboru; Sukegawa, Kouta; Kawachi, Tetsuya

    2005-01-01

    The electron velocity distribution function (EVDF) in plasma can be anisotropic in laser-produced plasmas. We have developed a new technique to evaluate the polarization degree of the emission lines in the extreme vacuum ultra violet wavelength region. The polarization of the emission lines and the continuums from the lithium-like nitrogen and from helium- and hydrogen-like carbon in recombining plasma is evaluated. Particle simulation in the velocity space gives the time scale for relaxation of anisotropic EVDFs. (author)

  3. Plasma nitriding of steels

    CERN Document Server

    Aghajani, Hossein

    2017-01-01

    This book focuses on the effect of plasma nitriding on the properties of steels. Parameters of different grades of steels are considered, such as structural and constructional steels, stainless steels and tools steels. The reader will find within the text an introduction to nitriding treatment, the basis of plasma and its roll in nitriding. The authors also address the advantages and disadvantages of plasma nitriding in comparison with other nitriding methods. .

  4. Development of high damage threshold optics for petawatt-class short-pulse lasers

    International Nuclear Information System (INIS)

    Stuart, B.C.; Perry, M.D.; Boyd, R.D.

    1995-01-01

    The authors report laser-induced damage threshold measurements on pure and multilayer dielectrics and gold-coated optics at 1053 and 526 nm for pulse durations, τ, ranging from 140 fs to 1 ns. Damage thresholds of gold coatings are limited to 500 mJ/cm 2 in the subpicosecond range for 1053-nm pulses. In dielectrics, qualitative differences in the morphology of damage and a departure from the diffusion-dominated τ1/2 scaling indicate that damage results from plasma formation and ablation for τ≤10 ps and from conventional melting and boiling for τ>50 ps. A theoretical model based on electron production via multiphoton ionization, Joule heating, and collisional (avalanche) ionization is in quantitative agreement with both the pulsewidth and wavelength scaling of experimental results

  5. Hormones and endocrine disruptors in human seminal plasma.

    Science.gov (United States)

    Hampl, R; Kubatova, J; Heracek, J; Sobotka, V; Starka, L

    2013-07-01

    Seminal plasma represents a unique environment for maturation, nutrition, and protection of male germ cells from damaging agents. It contains an array of organic as well as inorganic chemicals, encompassing a number of biologically and immunologically active compounds, including hormones. Seminal plasma contains also various pollutants transferred from outer environment known as endocrine disruptors. They interfere with hormones at the receptor level, act as inhibitors of their biosynthesis, and affect hormone regulation.In this minireview, the main groups of hormones detected in seminal plasma are summarized. Seminal gonadal steroids were investigated mostly with aim to use them as biomarkers of impaired spermatogenesis (sperm count, motility, morphology). Concentrations of hormones in the seminal plasma often differ considerably from the blood plasma levels in dependence on their origin. In some instances (dihydrotestosterone, estradiol), their informative value is higher than determination in blood.Out of peptide hormones detected in seminal plasma, peptides of transforming growth factor beta family, especially antimullerian hormone, and oligopeptides related to thyrotropin releasing hormone have the high informative value, while assessment of seminal gonadotropins and prolactin does not bring advantage over determination in blood.Though there is a large body of information about the endocrine disruptors' impact on male reproduction, especially with their potential role in decline of male reproductive functions within the last decades, there are only scarce reports on their presence in seminal plasma. Herein, the main groups of endocrine disruptors found in seminal plasma are reviewed, and the use of their determination for investigation of fertility disorders is discussed.

  6. [Relations between plasma-erythrocyte viscosity factors and ESR].

    Science.gov (United States)

    Cortinovis, A; Crippa, A; Crippa, M; Bosoni, T; Moratti, R

    1992-09-01

    The ESR is usually put in relationship: to the real density of the RBCs (erythrocytes) (difference between the RBC specific gravity and the plasma one), and to the resistance that the RBCs meet moving in a medium, which is due to the plasma viscosity and to the total external RBC surface. When the RBCs take shape of aggregates, their external surface is decreased and ESR increases. The most important plasma factor causing changes in ESR is the fibrinogen level followed by the plasma globulins and by the products arising from the tissue damage. The resistance that the RBCs meet moving in the plasma is well expressed by the measurement of the plasma-RBC viscosity considering that is inclusive of both factors that are the plasma viscosity and the external RBC surface. The plasma-RBC viscosity is the resultant of several factors: Fa = Fb - Fe - Fs - Fm, were: Fa is the resultant, Fb the attracting forces due to the proteic macromolecules, Fe the repulsing forces due the negative charges. Fs the repulsing forces due to the shear-stress, Fm the force which opposes itself against the surface tension of the aggregation; it depends on the RBC morphology and on the RBC rigidity. The ESR has been recently used like an index of the RBC aggregation. The Authors study the relationship between several hemorheological parameters and the ESR in infective and inflammatory processes.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Evaluation of runaway-electron effects on plasma-facing components for NET

    Science.gov (United States)

    Bolt, H.; Calén, H.

    1991-03-01

    Runaway electrons which are generated during disruptions can cause serious damage to plasma facing components in a next generation device like NET. A study was performed to quantify the response of NET plasma facing components to runaway-electron impact. For the determination of the energy deposition in the component materials Monte Carlo computations were performed. Since the subsurface metal structures can be strongly heated under runaway-electron impact from the computed results damage threshold values for the thermal excursions were derived. These damage thresholds are strongly dependent on the materials selection and the component design. For a carbonmolybdenum divertor with 10 and 20 mm carbon armour thickness and 1 degree electron incidence the damage thresholds are 100 MJ/m 2 and 220 MJ/m 2. The thresholds for a carbon-copper divertor under the same conditions are about 50% lower. On the first wall damage is anticipated for energy depositions above 180 MJ/m 2.

  8. Cyclotron waves in plasma

    International Nuclear Information System (INIS)

    Lominadse, D.G.

    1975-01-01

    The book deals with fundamental physical concepts of the theory of cyclotron waves and cyclotron instabilities conditioned by the presence in plasma of direct or alternating electric currents passing in it perpendicularily to a magnetic field. A great variety of problems is considered connected with the linear theory of cyclotron oscillations in equilibrium and electron plasma of metals and semiconductors. Parametric excitations of electron cyclotron oscillations of plasma in an alternating electric field are studied. Particular attention is paid to the investigation of plasma turbulence arising as a result of development of cyclotron instabilities. Experimental data are discussed and compared with theoretical results

  9. Princeton Plasma Physics Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This report discusses the following topics: principal parameters achieved in experimental devices fiscal year 1990; tokamak fusion test reactor; compact ignition tokamak; Princeton beta experiment- modification; current drive experiment-upgrade; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma processing: deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for fiscal year 1990; graduate education; plasma physics; graduate education: plasma science and technology; science education program; and Princeton Plasma Physics Laboratory reports fiscal year 1990.

  10. Princeton Plasma Physics Laboratory

    International Nuclear Information System (INIS)

    1990-01-01

    This report discusses the following topics: principal parameters achieved in experimental devices fiscal year 1990; tokamak fusion test reactor; compact ignition tokamak; Princeton beta experiment- modification; current drive experiment-upgrade; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma processing: deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for fiscal year 1990; graduate education; plasma physics; graduate education: plasma science and technology; science education program; and Princeton Plasma Physics Laboratory reports fiscal year 1990

  11. Plasma processing for VLSI

    CERN Document Server

    Einspruch, Norman G

    1984-01-01

    VLSI Electronics: Microstructure Science, Volume 8: Plasma Processing for VLSI (Very Large Scale Integration) discusses the utilization of plasmas for general semiconductor processing. It also includes expositions on advanced deposition of materials for metallization, lithographic methods that use plasmas as exposure sources and for multiple resist patterning, and device structures made possible by anisotropic etching.This volume is divided into four sections. It begins with the history of plasma processing, a discussion of some of the early developments and trends for VLSI. The second section

  12. Nonlinear Physics of Plasmas

    CERN Document Server

    Kono, Mitsuo

    2010-01-01

    A nonlinearity is one of the most important notions in modern physics. A plasma is rich in nonlinearities and provides a variety of behaviors inherent to instabilities, coherent wave structures and turbulence. The book covers the basic concepts and mathematical methods, necessary to comprehend nonlinear problems widely encountered in contemporary plasmas, but also in other fields of physics and current research on self-organized structures and magnetized plasma turbulence. The analyses make use of strongly nonlinear models solved by analytical techniques backed by extensive simulations and available experiments. The text is written for senior undergraduates, graduate students, lecturers and researchers in laboratory, space and fusion plasmas.

  13. The plasma universe

    International Nuclear Information System (INIS)

    Faelthammar, C.G.

    1989-12-01

    The term 'Plasma Universe', coined by Hannes Alfven, emphasices the fact that plasma phenomena discovered in the laboratory and in accessible regions of space. must be important also in the rest of the universe, which consists almost entirely of matter in the plasma state. Relevant aspect of this concept will be discussed. They include the response of the plasma to electric currents, the support of magnetic-field aligned electric fields, violation of the frozen-field condition, rapid release of magnetically stored energy, acceleration of charged particles, chemical separation, and filamentary and cellular structures. (authors)

  14. Modeling damage in concrete pavements and bridges.

    Science.gov (United States)

    2010-09-01

    This project focused on micromechanical modeling of damage in concrete under general, multi-axial loading. A : continuum-level, three-dimensional constitutive model based on micromechanics was developed. The model : accounts for damage in concrete by...

  15. Nerve damage from diabetes - self-care

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000326.htm Nerve damage from diabetes - self-care To use the ... or at other unusual times. Treating and Preventing Nerve Damage from Diabetes Treating diabetic neuropathy can make ...

  16. Damage Models for Soft Tissues: A Survey.

    Science.gov (United States)

    Li, Wenguang

    Damage to soft tissues in the human body has been investigated for applications in healthcare, sports, and biomedical engineering. This paper reviews and classifies damage models for soft tissues to summarize achievements, identify new directions, and facilitate finite element analysis. The main ideas of damage modeling methods are illustrated and interpreted. A few key issues related to damage models, such as experimental data curve-fitting, computational effort, connection between damage and fractures/cracks, damage model applications, and fracture/crack extension simulation, are discussed. Several new challenges in the field are identified and outlined. This review can be useful for developing more advanced damage models and extending damage modeling methods to a variety of soft tissues.

  17. Effective elastic properties of damaged isotropic solids

    International Nuclear Information System (INIS)

    Lee, U Sik

    1998-01-01

    In continuum damage mechanics, damaged solids have been represented by the effective elastic stiffness into which local damage is smoothly smeared. Similarly, damaged solids may be represented in terms of effective elastic compliances. By virtue of the effective elastic compliance representation, it may become easier to derive the effective engineering constants of damaged solids from the effective elastic compliances, all in closed form. Thus, in this paper, by using a continuum modeling approach based on both the principle of strain energy equivalence and the equivalent elliptical micro-crack representation of local damage, the effective elastic compliance and effective engineering constants are derived in terms of the undamaged (virgin) elastic properties and a scalar damage variable for both damaged two-and three-dimensional isotropic solids

  18. Oxidative DNA damage in vitamin C-supplemented guinea pigs after intratracheal instillation of diesel exhaust particles

    DEFF Research Database (Denmark)

    Moller, P.; Daneshvar, B.; Loft, S.

    2003-01-01

    . The concentrations of ascorbate in liver, lung, and plasma were unaltered by the DEP exposure. The results indicate that in guinea pigs DEP causes oxidative DNA damage rather than bulky DNA adducts in the lung. Guinea pigs, which are similar to humans with respect to vitamin C metabolism, may serve as a new model...... for the study of oxidative damage induced by particulate matter. (C) 2003 Elsevier Science (USA). All rights reserved....

  19. Damage in agitated vessels of large visco-elastic particles dispersed in a highly viscous fluid.

    Science.gov (United States)

    Bouvier, Laurent; Moreau, Anne; Line, Alain; Fatah, Nouria; Delaplace, Guillaume

    2011-01-01

    Many food recipes entail several homogenization steps for solid particles in hot or cold viscous liquids, such as pureed fruit and sugar, jam or sauce with mushroom pieces. Unfortunately, these unavoidable processes induce damage to the solid particles. To date, little is known of the extent and nature of the damage caused. Consequently, few clear guidelines are available for monitoring solid particle integrity when mixing solid/liquid suspensions in an agitated tank. In this study, an attempt is made to quantify the impact of various physical parameters including the influence of the rotational speed of the impeller and the processing time on particle attrition, when a suspension of large visco-elastic particles in a highly viscous fluid is mixed under isothermal condition. Pectin gel particles were immerged in a viscous liquid and homogenized for various times and rotational speeds, while the evolution of the particle's morphological parameters was monitored. Then, a set of dimensionless numbers governing the attrition mechanism is established and some empirical process relationships are proposed to correlate these numbers to the morphological characteristics and mass balance ratios. From the conditions observed, it is clear that 2 dimensionless ratios could be responsible for a change in the damaging mechanisms. These 2 ratios are the Froude and impeller rotation numbers. Finally, in the conditions tested, mass balance ratios appear to be mainly sensitive to the impeller rotational number, while the shape ratios are both impacted by the Froude and impeller rotational numbers. Damage to solid particles suspended in a stirred vessel reduce the final product quality in industrial cooking processes. Examples of this are fruit in jam or sauces with mushroom pieces. The attrition phenomenon was measured and the influences of the impeller rotational speed and processing time were evaluated quantitatively in function of dimensionless numbers. This study contributes key

  20. Method for atmospheric pressure reactive atom plasma processing for surface modification

    Science.gov (United States)

    Carr, Jeffrey W [Livermore, CA

    2009-09-22

    Reactive atom plasma processing can be used to shape, polish, planarize and clean the surfaces of difficult materials with minimal subsurface damage. The apparatus and methods use a plasma torch, such as a conventional ICP torch. The workpiece and plasma torch are moved with respect to each other, whether by translating and/or rotating the workpiece, the plasma, or both. The plasma discharge from the torch can be used to shape, planarize, polish, and/or clean the surface of the workpiece, as well as to thin the workpiece. The processing may cause minimal or no damage to the workpiece underneath the surface, and may involve removing material from the surface of the workpiece.

  1. Increased Chromosomal and Oxidative DNA Damage in Patients with Multinodular Goiter and Their Association with Cancer

    Directory of Open Access Journals (Sweden)

    Hamiyet Donmez-Altuntas

    2017-01-01

    Full Text Available Thyroid nodules are a common clinical problem worldwide. Although thyroid cancer accounts for a small percentage of thyroid nodules, the majority are benign. 8-Hydroxy-2′-deoxyguanosine (8-OHdG levels are a marker of oxidative stress and play a key role in the initiation and development of a range of diseases and cancer types. This study evaluates cytokinesis-block micronucleus cytome (CBMN-cyt assay parameters and plasma 8-OHdG levels and their association with thyroid nodule size and thyroid hormones in patients with multinodular goiter. The study included 32 patients with multinodular goiter and 18 age- and sex-matched healthy controls. CBMN-cyt assay parameters in peripheral blood lymphocytes of patients with multinodular goiter and controls were evaluated, and plasma 8-OHdG levels were measured. The micronucleus (MN frequency (chromosomal DNA damage, apoptotic and necrotic cells (cytotoxicity, and plasma 8-OHdG levels (oxidative DNA damage were significantly higher among patients with multinodular goiter. Our study is the first report of increased chromosomal and oxidative DNA damage in patients with multinodular goiter, which may predict an increased risk of thyroid cancer in these patients. MN frequency and plasma 8-OHdG levels may be markers of the carcinogenic potential of multinodular goiters and could be used for early detection of different cancer types, including thyroid cancer.

  2. Nuclear responses in INTOR plasma stabilization elements

    International Nuclear Information System (INIS)

    Gohar, Y.; Gilligan, J.; Jung, J.; Mattas, R.F.; Miley, G.H.; Wiffen, F.W.; Yang, S.

    1985-01-01

    Nuclear responses in the plasma stabilization elements were studied in a parametric fashion as a part of the transient electromagnetics critical issue C of ETR/INTOR activity. The main responses are neutron fluence and radiation dose in the insulator material, induced resistivity and atomic displacement in the conductor material, nuclear heating and life analysis for the elements. Copper and aluminum conductors with either MgAl 2 O 4 or MgO insulating material were investigated. Radiation damage and life analysis for these elements were also discussed

  3. Cold plasma decontamination using flexible jet arrays

    Science.gov (United States)

    Konesky, Gregory

    2010-04-01

    Arrays of atmospheric discharge cold plasma jets have been used to decontaminate surfaces of a wide range of microorganisms quickly, yet not damage that surface. Its effectiveness in decomposing simulated chemical warfare agents has also been demonstrated, and may also find use in assisting in the cleanup of radiological weapons. Large area jet arrays, with short dwell times, are necessary for practical applications. Realistic situations will also require jet arrays that are flexible to adapt to contoured or irregular surfaces. Various large area jet array prototypes, both planar and flexible, are described, as is the application to atmospheric decontamination.

  4. Quantification of thermal damage in skin tissue

    Institute of Scientific and Technical Information of China (English)

    徐峰; 文婷; 卢天健; Seffen; Keith

    2008-01-01

    Skin thermal damage or skin burns are the most commonly encountered type of trauma in civilian and military communities. Besides, advances in laser, microwave and similar technologies have led to recent developments of thermal treatments for disease and damage involving skin tissue, where the objective is to induce thermal damage precisely within targeted tissue structures but without affecting the surrounding, healthy tissue. Further, extended pain sensation induced by thermal damage has also brought great...

  5. Large area damage testing of optics

    International Nuclear Information System (INIS)

    Sheehan, L.; Kozlowski, M.; Stolz, C.

    1996-01-01

    The damage threshold specifications for the National Ignition Facility will include a mixture of standard small-area tests and new large-area tests. During our studies of laser damage and conditioning processes of various materials we have found that some damage morphologies are fairly small and this damage does not grow with further illumination. This type of damage might not be detrimental to the laser performance. We should therefore assume that some damage can be allowed on the optics, but decide on a maximum damage allowance of damage. A new specification of damage threshold termed open-quotes functional damage thresholdclose quotes was derived. Further correlation of damage size and type to system performance must be determined in order to use this measurement, but it is clear that it will be a large factor in the optics performance specifications. Large-area tests have verified that small-area testing is not always sufficient when the optic in question has defect-initiated damage. This was evident for example on sputtered polarizer and mirror coatings where the defect density was low enough that the features could be missed by standard small- area testing. For some materials, the scale-length at which damage non-uniformities occur will effect the comparison of small-area and large-area tests. An example of this was the sub-aperture tests on KD*P crystals on the Beamlet test station. The tests verified the large-area damage threshold to be similar to that found when testing a small-area. Implying that for this KD*P material, the dominate damage mechanism is of sufficiently small scale-length that small-area testing is capable of determining the threshold. The Beamlet test station experiments also demonstrated the use of on-line laser conditioning to increase the crystals damage threshold

  6. The plasma physics of plasma processing

    International Nuclear Information System (INIS)

    Shohet, L.

    1991-01-01

    Plasma processing is used for producing new materials with unusual and superior properties, for developing new chemical compounds and processes, for machining, and for altering and refining materials and surfaces. It has direct applications to semiconductor fabrication, materials synthesis, welding, lighting, polymers, anti-corrosion coatings, machine tools, metallurgy, electrical and electronics devices, hazardous waste removal, high performance ceramics, and many other items in both high-technology and the more traditional industries. Plasma processing takes on a wide variety of apparently different forms in industry, but the techniques share many common characteristics and problems. Control of the generation and flux of ions, electrons and free radicals in the plasma and their incidence on a surface is vital. Diagnostics, sensors, modeling techniques, and associated statistical methods are needed. However, without an in-depth understanding of the variety of phenomena taking place and their application to the industrial environment, advances in this technology, and its efficient use, will occur at a diminishing rate

  7. ITER transient consequences for material damage: modelling versus experiments

    International Nuclear Information System (INIS)

    Bazylev, B; Janeschitz, G; Landman, I; Pestchanyi, S; Loarte, A; Federici, G; Merola, M; Linke, J; Zhitlukhin, A; Podkovyrov, V; Klimov, N; Safronov, V

    2007-01-01

    Carbon-fibre composite (CFC) and tungsten macrobrush armours are foreseen as PFC for the ITER divertor. In ITER the main mechanisms of metallic armour damage remain surface melting and melt motion erosion. In the case of CFC armour, due to rather different heat conductivities of CFC fibres a noticeable erosion of the PAN bundles may occur at rather small heat loads. Experiments carried out in the plasma gun facilities QSPA-T for the ITER like edge localized mode (ELM) heat load also demonstrated significant erosion of the frontal and lateral brush edges. Numerical simulations of the CFC and tungsten (W) macrobrush target damage accounting for the heat loads at the face and lateral brush edges were carried out for QSPA-T conditions using the three-dimensional (3D) code PHEMOBRID. The modelling results of CFC damage are in a good qualitative and quantitative agreement with the experiments. Estimation of the droplet splashing caused by the Kelvin-Helmholtz (KH) instability was performed

  8. Metformin (dimethyl-biguanide induced DNA damage in mammalian cells

    Directory of Open Access Journals (Sweden)

    Rubem R. Amador

    2012-01-01

    Full Text Available Metformin (dimethyl-biguanide is an insulin-sensitizing agent that lowers fasting plasma-insulin concentration, wherefore it's wide use for patients with a variety of insulin-resistant and prediabetic states, including impaired glucose tolerance. During pregnancy it is a further resource for reducing first-trimester pregnancy loss in women with the polycystic ovary syndrome. We tested metformin genotoxicity in cells of Chinese hamster ovary, CHO-K1 (chromosome aberrations; comet assays and in mice (micronucleus assays. Concentrations of 114.4 µg/mL and 572 µg/mL were used in in vitro tests, and 95.4 mg/kg, 190.8 mg/kg and 333.9 mg/kg in assaying. Although the in vitro tests revealed no chromosome aberrations in metaphase cells, DNA damage was detected by comet assaying after 24 h of incubation at both concentrations. The frequency of DNA damage was higher at concentrations of 114.4 µg/mL. Furthermore, although mortality was not observed in in vitro tests, the highest dose of metformin suppressed bone marrow cells. However, no statistically significant differences were noted in micronuclei frequencies between treatments. In vitro results indicate that chronic metformin exposure may be potentially genotoxic. Thus, pregnant woman undergoing treatment with metformin should be properly evaluated beforehand, as regards vulnerability to DNA damage.

  9. XIX Conference on Plasma Surface Interactions

    International Nuclear Information System (INIS)

    Kurnaev, V A; Gasparyan, Yu M

    2016-01-01

    The 19 th Conference on Plasma Surface Interactions (PSI-2016) was held at National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) on 28-29 January 2016. This is a traditional annual meeting organized by MEPhI for many years and devoted to the recent achievements of Russian scientists and foreign colleagues in experimental and computer simulations of plasma and its components' interactions with plasma faced materials (PFM) for fusion devices and plasma technologies. The conference agenda covered a broad list of topics including: • plasma induced erosion and modification of materials; • radiation damage in materials; • lithium and liquid metals as PFM; • modeling of plasma surface interaction and processes in SOL of tokamak plasma; • diagnostics of plasma-surface interaction. The aim of the conference was to present and discuss new results in PSI in a wide audience with different areas of expertise. The important feature of the conference is to give PhD and undergraduate students the opportunity for approbation of results of their scientific activity and improve their knowledge in the novel directions of R and D in the field of fusion and plasma technologies. In total, more than 80 experienced and young researchers participated in the conference. These Proceedings contain 21 papers selected for publication, which were reviewed by the invited international team of editors (T. Tanabe, S. Petrovich, Ch. Grisolia, Yu. Martynenko, S. Krasheninnikov, L. Begrambekov, A. Pisarev). The Conference as well as editing of this issue were supported by National Research Nuclear University MEPhI in the framework of the Russian Academic Excellence Project (contract No. 02.a03.21.0005, 27.08.2013). Finally, we would like to thank all of the speakers, participants and organizing committee members for their contribution to the conference. Acknowledgements The organizers of the conference would like to thank for the support from National Research

  10. Protecting Against Damage from Refraction of High Power Microwaves in the DIII-D Tokamak

    Directory of Open Access Journals (Sweden)

    Lohr John

    2017-01-01

    Full Text Available Several new protective systems are being installed on the DIII D tokamak to increase the safety margins for plasma operations with injected ECH power at densities approaching cutoff. Inadvertent overdense operation has previously resulted in reflection of an rf beam back into a launcher causing extensive arcing and melt damage on one waveguide line. Damage to microwave diagnostics, which are located on the same side of the tokamak as the ECH launchers, also has occurred. Developing a reliable microwave based interlock to protect the many vulnerable systems in DIII-D has proved to be difficult. Therefore, multiple protective steps have been taken to reduce the risk of damage in the future. Among these is a density interlock generated by the plasma control system, with setpoint determined by the ECH operators based on rf beam trajectories and plasma parameters. Also installed are enhanced video monitoring of the launchers, and an ambient light monitor on each of the waveguide systems, along with a Langmuir probe at the mouth of each launcher. Versatile rf monitors, measuring forward and reflected power in addition to the mode content of the rf beams, have been installed as the last miter bends in each waveguide line. As these systems are characterized, they are being incorporated in the interlock chains, which enable the ECH injection permits. The diagnostics most susceptible to damage from the ECH waves have also been fitted with a variety of protective devices including stripline filters, thin resonant notch filters tuned to the 110 GHz injected microwave frequency, blazed grating filters and shutters. Calculations of rf beam trajectories in the plasmas are performed using the TORAY ray tracing code with input from kinetic profile diagnostics. Using these calculations, strike points for refracted beams on the vacuum vessel are calculated, which allows evaluation of the risk of damage to sensitive diagnostics and hardware.

  11. Percutaneous penetration through slightly damaged skin

    DEFF Research Database (Denmark)

    Nielsen, Jesper B

    2005-01-01

    with human skin. A slight damage to the barrier integrity was induced by pre-treatment of the skin with sodium lauryl sulphate (SLS) before pesticide exposure. The experimental model with 3 h pre-treatment with SLS (0.1% or 0.3%) assured a significant but controlled damage to the barrier integrity, a damage...

  12. Chromium-induced membrane damage: protective role of ascorbic acid.

    Science.gov (United States)

    Dey, S K; Nayak, P; Roy, S

    2001-07-01

    Importance of chromium as environmental toxicant is largely due to impact on the body to produce cellular toxicity. The impact of chromium and their supplementation with ascorbic acid was studied on plasma membrane of liver and kidney in male Wistar rats (80-100 g body weight). It has been observed that the intoxication with chromium (i.p.) at the dose of 0.8 mg/100 g body weight per day for a period of 28 days causes significant increase in the level of cholesterol and decrease in the level of phospholipid of both liver and kidney. The alkaline phosphatase, total ATPase and Na(+)-K(+)-ATPase activities were significantly decreased in both liver and kidney after chromium treatment, except total ATPase activity of kidney. It is suggested that chromium exposure at the present dose and duration induce for the alterations of structure and function of both liver and kidney plasma membrane. Ascorbic acid (i.p. at the dose of 0.5 mg/100 g body weight per day for period of 28 days) supplementation can reduce these structural changes in the plasma membrane of liver and kidney. But the functional changes can not be completely replenished by the ascorbic acid supplementation in response to chromium exposure. So it is also suggested that ascorbic acid (nutritional antioxidant) is useful free radical scavenger to restrain the chromium-induced membrane damage.

  13. Radiation damage in lithium orthosilicate

    Energy Technology Data Exchange (ETDEWEB)

    Noda, K.; Nakazawa, T.; Ishii, Y.; Fukai, K.; Watanabe, H. (Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment); Matsui, H.; Vollath, D.

    1993-11-01

    Radiation damage in lithium orthosilicate (Li[sub 4]SiO[sub 4]) and Al-doped Li[sub 4]SiO[sub 4] (Li[sub 3.7]Al[sub 0.1]SiO[sub 4]) irradiated with oxygen ions was studied with ionic conductivity measurements, Raman spectroscopy, Fourier transform infrared photo-acoustic spectroscopy (FT-IR PAS) and transmission electron microscopy. It was seen from the ionic conductivity measurements that lithium-ion vacancies were introduced as irradiation defects for Li-ions sites in both materials due to the irradiation. By the Raman spectroscopy, oxygen atoms in SiO[sub 4] tetrahedra were considered to be preferentially displaced due to the irradiation for Li[sub 4]SiO[sub 4], although only a decrease of the number of SiO[sub 4] tetrahedra occurred for Li[sub 3.7]Al[sub 0.1]SiO[sub 4] by displacement of both silicon and oxygen atoms. Decomposition of SiO[sub 4] tetrahedra and formation of some new phases having Si-O-Si and Si-O bonds were found to take place for both Li[sub 4]SiO[sub 4] and Li[sub 3.7]Al[sub 0.1]SiO[sub 4] by FT-IR PAS. In the electron microscopy, damage microstructure consisting of many voids or cavities and amorphization were observed for Li[sub 4]SiO[sub 4] irradiated with oxygen ions. The recovery behavior of radiation damage mentioned above was also investigated. (author).

  14. Damage instability and Earthquake nucleation

    Science.gov (United States)

    Ionescu, I. R.; Gomez, Q.; Campillo, M.; Jia, X.

    2017-12-01

    Earthquake nucleation (initiation) is usually associated to the loss of the stability of the geological structure under a slip-weakening friction acting on the fault. The key parameters involved in the stability of the fault are the stress drop, the critical slip distance but also the elastic stiffness of the surrounding materials (rocks). We want to explore here how the nucleation phenomena are correlated to the material softening during damage accumulation by dynamic and/or quasi-static processes. Since damage models are describing micro-cracks growth, which is generally an unstable phenomenon, it is natural to expect some loss of stability on the associated micro-mechanics based models. If the model accurately captures the material behavior, then this can be due to the unstable nature of the brittle material itself. We obtained stability criteria at the microscopic scale, which are related to a large class of damage models. We show that for a given continuous strain history the quasi-static or dynamic problems are instable or ill-posed (multiplicity of material responses) and whatever the selection rule is adopted, shocks (time discontinuities) will occur. We show that the quasi-static equilibria chosen by the "perfect delay convention" is always stable. These stability criteria are used to analyze how NIC (Non Interacting Crack) effective elasticity associated to "self similar growth" model work in some special configurations (one family of micro-cracks in mode I, II and III and in plane strain or plain stress). In each case we determine a critical crack density parameter and critical micro-crack radius (length) which distinguish between stable and unstable behaviors. This critical crack density depends only on the chosen configuration and on the Poisson ratio.

  15. Plasma Physics An Introduction to Laboratory, Space, and Fusion Plasmas

    CERN Document Server

    Piel, Alexander

    2010-01-01

    Plasma Physics gives a comprehensive introduction to the basic processes in plasmas and demonstrates that the same fundamental concepts describe cold gas-discharge plasmas, space plasmas, and hot fusion plasmas. Starting from particle drifts in magnetic fields, the principles of magnetic confinement fusion are explained and compared with laser fusion. Collective processes are discussed in terms of plasma waves and instabilities. The concepts of plasma description by magnetohydrodynamics, kinetic theory, and particle simulation are stepwise introduced. Space charge effects in sheath regions, double layers and plasma diodes are given the necessary attention. The new fundamental mechanisms of dusty plasmas are explored and integrated into the framework of conventional plasmas. The book concludes with a brief introduction to plasma discharges. Written by an internationally renowned researcher in experimental plasma physics, the text keeps the mathematical apparatus simple and emphasizes the underlying concepts. T...

  16. Radiation damage of structural materials

    CERN Document Server

    Koutsky, Jaroslav

    1994-01-01

    Maintaining the integrity of nuclear power plants is critical in the prevention or control of severe accidents. This monograph deals with both basic groups of structural materials used in the design of light-water nuclear reactors, making the primary safety barriers of NPPs. Emphasis is placed on materials used in VVER-type nuclear reactors: Cr-Mo-V and Cr-Ni-Mo-V steel for RPV and Zr-Nb alloys for fuel element cladding. The book is divided into 7 main chapters, with the exception of the opening one and the chapter providing a phenomenological background for the subject of radiation damage. Ch

  17. Radiation damage in silicon detectors

    CERN Document Server

    Lindström, G

    2003-01-01

    Radiation damage effects in silicon detectors under severe hadron and gamma-irradiation are surveyed, focusing on bulk effects. Both macroscopic detector properties (reverse current, depletion voltage and charge collection) as also the underlying microscopic defect generation are covered. Basic results are taken from the work done in the CERN-RD48 (ROSE) collaboration updated by results of recent work. Preliminary studies on the use of dimerized float zone and Czochralski silicon as detector material show possible benefits. An essential progress in the understanding of the radiation-induced detector deterioration had recently been achieved in gamma irradiation, directly correlating defect analysis data with the macroscopic detector performance.

  18. The ischemic perinatal brain damage

    International Nuclear Information System (INIS)

    Crisi, G.; Mauri, C.; Canossi, G.; Della Giustina, E.

    1986-01-01

    The term ''hypoxic-ischemic encephalopathy'' covers a large part of neonatal neuropathology including the various forms of intracerebral haemorrhage. In the present work the term is confined to ischemic brain edema and actual infarction, be it diffuse or focal. Eighteen newborns with CT evidence of ischemic brain lesions and infarctual necrosis were selected. Emphasis is placed on current data on neuropathology of ischemic brain edema and its CT appearance. Particular entities such as periventricular leukomalacia and multicystic encephalopathy are discussed. Relationship between CT and temporal profile of cerebral damage is emphasized in order to predict the structural sequelae and the longterm prognosis

  19. Damages by radiation in glasses

    International Nuclear Information System (INIS)

    Olguin, F.; Gutierrez, C.; Cisniega, G.; Flores, J.H.; Golzarri, J.I.; Espinoza, G.

    1997-01-01

    As a part of the works carried out to characterize the electrons beam from the Pelletron accelerator of the Mexican Nuclear Center aluminium-silicate glass samples were irradiated. The purpose of these irradiations is to cause alterations in the amorphous microstructure of the material by means of the creation of color centers. The population density of these defects, consequence to the irradiation, is function of the exposure time which varied from 1 to 30 minutes, with an electronic beam energy of 400 keV, doing the irradiations at free atmosphere. the obtained spectra are correlated by damage which the radiation produced. (Author)

  20. Air pollution damage to plants

    Energy Technology Data Exchange (ETDEWEB)

    Daly, G T

    1974-01-01

    The effects of the most important air pollutants on plants are described in detail. The include: smoke and particulates, sulfur dioxide, fluorides, peroxyacetyl nitrate, nitrogen oxides, and ozone. An attempt is made to show that plant injury by air pollution can be recognized and evaluated in the presence of effects from insect, fungal, bacterial, viral pathogens and the symptoms of nutrient and enviromental stress. All plants are more or less affected by toxic gases and metals absorbed from the air. For each plant and each pollutant there is a critical concentration above which damage occurs, and below which growth is normal.