WorldWideScience

Sample records for plasma power balance

  1. Effects of plasma collisionality on power balance and magnetic fluctuations in the T1 reversed-field pinch

    Science.gov (United States)

    Hedin, G.; Brzozowski, J. H.; Hörling, P.; Mazur, S.; Nordlund, P.; Drake, J. R.

    1996-05-01

    The effects of plasma collisionality on power balance and magnetic fluctuations have been studied on the Extrap T1 reversed-field pinch. A characteristic minimum in loop voltage is observed as the plasma collisionality decreases. The minimum is caused by an increase in the anomalous input power and coincides with a change of scaling of the magnetic fluctuations and a rapid increase of the electron mean free path. However, the increase of anomalous input power in the low collisional regime appears to have little influence on the total amount of energy stored in the plasma.

  2. Control of electron energy distribution by the power balance of the combined inductively and capacitively coupled RF plasmas

    Science.gov (United States)

    Kim, Jin Seok; Lee, Ho-Jun; Lee, Hae June

    2016-09-01

    The control of electron energy probability function (EEPF) is important to control discharge characteristics in materials processing. For example, O radical density increases by changing the EEPF in O2 plasma, which provides high etching efficiency. The effect of the power balance between the capacitively coupled plasma (CCP) and the inductively coupled plasma (ICP) on the EEPF in Ar and O2 plasmas is investigated with a 1d3v (one-dimensional space and three-dimensional velocity domain) particle-in-cell (PIC) simulation for the combined inductively and capacitively coupled plasmas. The combined effects of the transverse electromagnetic and the longitudinal electrostatic fields are solved in PIC simulation at the same time. In a pressure range of a few mTorr, high energy electrons (>5 eV) are heated by the capacitive power in the sheath while low energy electrons (power in the bulk region. The EEPF has bi-Maxwellian distribution when the CCP power is dominant, but it changes to Maxwellian-like distribution with increasing inductive power. Finally, the EEPF changes to Druyvesteyn-like distribution when the inductive power is dominant.

  3. EU Power Balance

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ Intense clashes of interests and collusion of ideas sprang up incessantly among nations over upward sovereignty transfer, interests distribution and maintenance of parity among partners in the course of economic integration. Disparities in size, territory, national strength and development level conceivably often led to tensions and even crises over power distribution. So EU history can be described as one of crises or crisis settlement through reaching a new equilibrium, a significant process for sustained EU stability.

  4. Radiofrequency power in plasmas

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This document includes the various communications that were presented at the 11th topical conference on radio frequency power in plasmas which took place in Palm Springs in May 1995. It includes current diffusion studies to assess the non-inductive current deposition profiles, experiments for plasma to reach quickly an equilibrium state, and modelling of electrons in plasma. Some comparison studies also reveal the efficiency of the Quasi-Optical Grill antenna for reactor applications. Finally, a scenario for efficient mode conversion heating in the ion cyclotron range of frequency is presented. Separate abstracts were prepared for the 6 papers in this volume. (TEC).

  5. Balancing modern Power System with large scale of wind power

    DEFF Research Database (Denmark)

    Basit, Abdul; Altin, Müfit; Hansen, Anca Daniela

    2014-01-01

    Power system operators must ensure robust, secure and reliable power system operation even with a large scale integration of wind power. Electricity generated from the intermittent wind in large propor-tion may impact on the control of power system balance and thus deviations in the power system...... to be analysed with improved analytical tools and techniques. This paper proposes techniques for the active power balance control in future power systems with the large scale wind power integration, where power balancing model provides the hour-ahead dispatch plan with reduced planning horizon and the real time...... frequency in small or islanded power systems or tie line power flows in interconnected power systems. Therefore, the large scale integration of wind power into the power system strongly concerns the secure and stable grid operation. To ensure the stable power system operation, the evolving power system has...

  6. Balancing modern Power System with large scale of wind power

    OpenAIRE

    Basit, Abdul; Altin, Müfit; Hansen, Anca Daniela; Sørensen, Poul Ejnar

    2014-01-01

    Power system operators must ensure robust, secure and reliable power system operation even with a large scale integration of wind power. Electricity generated from the intermittent wind in large propor-tion may impact on the control of power system balance and thus deviations in the power system frequency in small or islanded power systems or tie line power flows in interconnected power systems. Therefore, the large scale integration of wind power into the power system strongly concerns the s...

  7. When Do States Balance Power?

    DEFF Research Database (Denmark)

    Hariri, Jacob Gerner; Wivel, Anders

    2010-01-01

    This paper explores the logic of balancing in structural realist theory. Arguably, the durability of the unipolar moment is a challenge to the logic of balancing. The paper uses the tools of microeconomics to build a mathematical model of structural realism. The simple model reiterates...... the structural realist prediction that the weaker states should balance the unipole. Under a slight model extension, it is shown that efforts to balance in separate capabilities always tends to offset each other. Under this extension, the durability of the unipolar moment is in fact consistent...

  8. Decentralized Large-Scale Power Balancing

    DEFF Research Database (Denmark)

    Halvgaard, Rasmus; Jørgensen, John Bagterp; Poulsen, Niels Kjølstad

    2013-01-01

    A power balancing strategy based on Douglas-Rachford splitting is proposed as a control method for largescale integration of flexible consumers in a Smart Grid. The total power consumption is controlled through a negotiation procedure between all units and a coordinating system level. The balancing...

  9. Power Balance Estimation in Long Duration Discharges on QUEST

    Science.gov (United States)

    Hanada, K.; Zushi, H.; Idei, H.; Nakamura, K.; Ishiguro, M.; Tashima, S.; I. Kalinnikova, E.; Nagashima, Y.; Hasegawa, M.; Fujisawa, A.; Higashijima, A.; Kawasaki, S.; Nakashima, H.; Mitarai, O.; Fukuyama, A.; Takase, Y.; Gao, X.; H., Liu; Qian, J.; Ono, M.; Raman, R.

    2016-11-01

    Fully non-inductive plasma start-up was successfully achieved by using a well-controlled microwave source on the spherical tokamak, QUEST. Non-inductive plasmas were maintained for approximately 3-5 min, during which time power balance estimates could be achieved by monitoring wall and cooling-water temperatures. Approximately 70%-90% of the injected power could be accounted for by calorimetric measurements and approximately half of the injected power was found to be deposited on the vessel wall, which is slightly dependent on the magnetic configuration. The power distribution to water-cooled limiters, which are expected to be exposed to local heat loads, depends significantly on the magnetic configuration, however some of the deposited power is due to energetic electrons, which have large poloidal orbits and are likely to be deposited on the plasma facing components.

  10. A power balance model for handcycling

    NARCIS (Netherlands)

    Groen, Wim G.; van der Woude, Lucas H. V.; De Koning, Jos J.

    2010-01-01

    Purpose. To demonstrate the applicability of the power balance model to elite handcycling and to obtain values for gross efficiency (GE). Methods. Four members of the Dutch Paralympic team performed trials on a 250-m indoor track. Velocity (v) and power output (PO) were measured in conjunction with

  11. Learning Responsibility and Balance of Power

    Science.gov (United States)

    Çam, Sefika Sümeyye; Ünal Oruç, Eylem

    2014-01-01

    This qualitative study aims to determine teacher perspectives on learning responsibility and balance of power. The research design is case study which was conducted on four primary school teachers. The data were collected with semi-structured interviews and the data obtained were analyzed with categorical analysis, a type of content analysis. The…

  12. Interpreting Power Anisotropy Measurements in Plasma Turbulence

    CERN Document Server

    Chen, C H K; Horbury, T S; Schekochihin, A A

    2009-01-01

    A relationship between power anisotropy and wavevector anisotropy in turbulent fluctuations is derived. This can be used to interpret plasma turbulence measurements, for example in the solar wind. If fluctuations are anisotropic in shape then the ion gyroscale break point in spectra in the directions parallel and perpendicular to the magnetic field would not occur at the same frequency, and similarly for the electron gyroscale break point. This is an important consideration when interpreting solar wind observations in terms of anisotropic turbulence theories. Model magnetic field power spectra are presented assuming a cascade of critically balanced Alfven waves in the inertial range and kinetic Alfven waves in the dissipation range. The variation of power anisotropy with scale is compared to existing solar wind measurements and the similarities and differences are discussed.

  13. Simple annulus power balance in EBT-I

    Energy Technology Data Exchange (ETDEWEB)

    Borowski, S.K.; Uckan, N.A.; Jaeger, E.F.; Kammash, T.

    1979-09-01

    An essential feature of the ELMO Bumpy Torus (EBT) concept is the presence of a relativistic electron annulus in each of the toroidal mirror sectors. These high beta annuli are formed and sustained by microwave heating and are of sufficient density and temperature that diamagnetic currents produce the necessary minimum in the magnetic field required for MHD stability of the toroidal core plasma. Because electron rings play an important role in confinement characteristics and performance of EBT, the trade-off between the quality of the confinement afforded by the rings and the power required to sustain the rings represents an important problem in a fusion reactor. Theoretical estimates of the microwave power required to sustain the annulus are found to be within a factor of 2 of the experimentally determined value. Scaling projections that are shown for both EBT-I and EBT-S enable one to examine the sensitivity of the annulus electron temperature as a function of core plasma density for various microwave power levels. The results are found to be sensitive to the details of the hot electron distribution function as well as geometric and scaling parameters. Improvements to the model are under way in order to increase its capability and accuracy in assessing the overall power balance.

  14. Oil Price Fluctuation Reflects International Power Balance

    Institute of Scientific and Technical Information of China (English)

    张宇燕; 管清友

    2008-01-01

    Due to the uncertainty of the oil economy,economists have yet to build a perfect analytical framework for the oil market.Over a period of time,oil price fluctuates according to the supply and demand of the international market.In the long run,however,given the political nature of oil,oil price fluctuation is also dependent on the power balance between oil consumer and producer countries.History has proven that the world energy landscape is constantly in a process of change and evolution,which underlies the increasing oil price uncertainty in the long run.From the perspective of the world energy landscape and its evolution,this article applies international political-economic methodology in addressing the energy security issues facing China,with the purpose of offering recommendations for further areas of energy research.

  15. Historical Changes In The Balance Of Power

    Directory of Open Access Journals (Sweden)

    Sergiu Tămaș

    2011-11-01

    Full Text Available Humanity crosses a period of historical discontinuity on the socio-politic and economic plan. The major changing vector is represented by the emerging economies, whose development high rates made them become the main contributor to the global growth. One of the principal consequences of this transition is the remodeling of the world’s order, the change in the global balance of powers, through the transition from the uni-polar world dominated by the United States of America to the multi-polar world in which emerging powers’ position is, more and more, taken into account. The progress registered by those emerging economies requires the reviewing of some theories, concepts and principles that orientate the economic and political contemporary practice.

  16. Learning Responsibility and Balance of Power

    Directory of Open Access Journals (Sweden)

    Şefika Sümeyye Çam

    2014-01-01

    Full Text Available This qualitative study aims to determine teacher perspectives on learning responsibility and balance of power. The research design is case study which was conducted on four primary school teachers. The data were collected with semi-structured interviews and the data obtained were analyzed with categorical analysis, a type of content analysis. The findings suggest that teachers think that learner should be at the center of teaching with LCT and they are incapable of applying learner-center teaching. It has been found that the class size and loaded teaching programs prevent them to apply LCT. Therefore, there have been some recommendations about the LCT by the researchers of the study.

  17. "SECULAR RELIGION" AND THE DIPLOMATIC CONCEPT OF POWER BALANCE

    Directory of Open Access Journals (Sweden)

    T. V. Zonova

    2011-01-01

    Full Text Available Abstract: In the XIX century the theory of the power balance grounded on the equality of all sovereign states was becoming obsolete. The representative of three “secular religions” (nationalists, socialists and liberals questioned the rationality of the existing model ousting the traditional theory of power balance in international relation. In the second half of XIX and beginning of XX century official foreign policies of European cabinets were still based on the power balance theory, though the essence of the balance was changed as the balance policy was more often expressed in rivalry and mutual concessions of powers. The article argues that before the First World War the principles of power politics led to the increased dependency from military potential thus the military might became the most important measure of national greatness, what eventually destroyed the classic European power balance system.

  18. Heat flux estimates of power balance on Proto-MPEX with IR imaging

    Science.gov (United States)

    Showers, M.; Biewer, T. M.; Caughman, J. B. O.; Donovan, D. C.; Goulding, R. H.; Rapp, J.

    2016-11-01

    The Prototype Material Plasma Exposure eXperiment (Proto-MPEX) at Oak Ridge National Laboratory (ORNL) is a precursor linear plasma device to the Material Plasma Exposure eXperiment (MPEX), which will study plasma material interactions (PMIs) for future fusion reactors. This paper will discuss the initial steps performed towards completing a power balance on Proto-MPEX to quantify where energy is lost from the plasma, including the relevant diagnostic package implemented. Machine operating parameters that will improve Proto-MPEX's performance may be identified, increasing its PMI research capabilities.

  19. Heat flux estimates of power balance on Proto-MPEX with IR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Showers, M., E-mail: mshower1@vols.utk.edu [Bredesen Center, University of Tennessee, Knoxville, Tennessee 37996 (United States); Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Biewer, T. M.; Caughman, J. B. O.; Goulding, R. H.; Rapp, J. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Donovan, D. C. [Bredesen Center, University of Tennessee, Knoxville, Tennessee 37996 (United States)

    2016-11-15

    The Prototype Material Plasma Exposure eXperiment (Proto-MPEX) at Oak Ridge National Laboratory (ORNL) is a precursor linear plasma device to the Material Plasma Exposure eXperiment (MPEX), which will study plasma material interactions (PMIs) for future fusion reactors. This paper will discuss the initial steps performed towards completing a power balance on Proto-MPEX to quantify where energy is lost from the plasma, including the relevant diagnostic package implemented. Machine operating parameters that will improve Proto-MPEX’s performance may be identified, increasing its PMI research capabilities.

  20. Power Balancing of Inline Multicylinder Diesel Engine

    Directory of Open Access Journals (Sweden)

    S. H. Gawande

    2012-01-01

    Full Text Available In this work, a simplified methodology is presented for power balancing by reducing the amplitude of engine speed variation, which result in excessive torsional vibrations of the crankshaft of inline six-cylinder diesel engine. In modern fuel injection systems for reciprocating engines, nonuniform cylinder-wise torque contribution is a common problem due to nonuniform fuel supply due to a defect in fuel injection system, causing increased torsional vibration levels of the crankshaft and stress of mechanical parts. In this paper, a mathematical model for the required fuel adjustment by using amplitude of engine speed variation applied on the flywheel based on engine dynamics is suggested. From the found empirical relations and FFT analysis, the amplitude of engine speed variation (i.e., torsional vibration levels of the crankshaft of inline six-cylinder diesel engine genset can be reduced up to 55%. This proposed methodology is simulated by developing MATALB code for uniform and nonuniform working of direct injection diesel engine of SL90 type manufactured by Kirloskar Oil Engine Ltd., Pune, India.

  1. Power distribution in complex environmental negotiations: Does balance matter?

    Science.gov (United States)

    Burkardt, N.; Lamb, B.L.; Taylor, J.G.

    1997-01-01

    We studied six interagency negotiations covering Federal Energy Regulatory Commission (FERC) hydroelectric power licenses. Negotiations occurred between state and federal resource agencies and developers over project operations and natural resource mitigation. We postulated that a balance of power among parties was necessary for successful negotiations. We found a complex relationship between balanced power and success and conclude that a balance of power was associated with success in these negotiations. Power played a dynamic role in the bargaining and illuminates important considerations for regulatory design.

  2. T55 power turbine rotor multiplane-multispeed balancing study

    Science.gov (United States)

    Martin, M. R.

    1982-01-01

    A rotordynamic analysis of the T55-L-11C engine was used to evaluate the balancing needs of the power turbine and to optimize the balancing procedure. As a result, recommendations were made for implementation of a multiplane-multispeed balancing plan. Precision collars for the attachment of trial weights to a slender rotor were designed enabling demonstration balancing on production hardware. The quality of the balance was then evaluated by installing a high speed balanced power turbine in an engine and running in a test cell at the Corpus Christi Army depot. The engine used had been tested prior to the turbine changeout and showed acceptable overall vibration levels for the engine were significantly reduced, demonstrating the ability of multiplane-multispeed balancing to control engine vibration.

  3. Real-time impact of power balancing on power system operation with large scale integration of wind power

    DEFF Research Database (Denmark)

    Basit, Abdul; Hansen, Anca Daniela; Sørensen, Poul Ejnar

    2016-01-01

    Highly wind power integrated power system requires continuous active power regulation to tackle the power imbalances resulting from the wind power forecast errors. The active power balance is maintained in real-time with the automatic generation control and also from the control room, where...... regulating power bids are activated manually. In this article, an algorithm is developed to simulate the activation of regulating power bids, as performed in the control room, during power imbalance between generation and load demand. In addition, the active power balance is also controlled through automatic...... power system model. The power system model takes the hour-ahead regulating power plan from power balancing model and the generation and power exchange capacities for the year 2020 into account. The real-time impact of power balancing in a highly wind power integrated power system is assessed...

  4. Energy Balance in DC Arc Plasma Melting Furnace

    Institute of Scientific and Technical Information of China (English)

    ZHAO Peng; MENG Yuedong; YU Xinyao; CHEN Longwei; JIANG Yiman; NI Guohua; CHEN Mingzhou

    2009-01-01

    In order to treat hazardous municipal solid waste incinerator's (MSWI) fly ash, a new DC arc plasma furnace was developed. Taking an arc of 100 V/1000 A DC as an example,the heat transfer characteristics of the DC arc plasma, ablation of electrodes, heat properties of the fly ash during melting, heat transfer characteristics of the flue gas, and heat loss of the furnace were analyzed based on the energy conservation law, so as to achieve the total heat information and energy balance during plasma processing, and to provide a theoretical basis for an optimized design of the structure and to improve energy efficiency.

  5. T700 power turbine rotor multiplane/multispeed balancing demonstration

    Science.gov (United States)

    Burgess, G.; Rio, R.

    1979-01-01

    Research was conducted to demonstrate the ability of influence coefficient based multispeed balancing to control rotor vibration through bending criticals. Rotor dynamic analyses were conducted of the General Electric T700 power turbine rotor. The information was used to generate expected rotor behavior for optimal considerations in designing a balance rig and a balance technique. The rotor was successfully balanced 9500 rpm. Uncontrollable coupling behavior prevented observations through the 16,000 rpm service speed. The balance technique is practical and with additional refinement it can meet production standards.

  6. Power balance considerations for brushless doubly-fed machines

    Energy Technology Data Exchange (ETDEWEB)

    Gorti, B.V.; Alexander, G.C.; Spee, R. [Oregon State Univ., Corvalis, OR (United States). Dept. of Electrical and Computer Engineering

    1996-12-01

    This paper discusses the power balances in a Brushless Doubly-Fed Machine (BDFM). Equations of power in the two stator windings and the rotor circuit, showing the distribution of electrical and mechanical powers in the air-gap, are obtained in two different speed ranges of BDFM synchronous mode operation. Comparisons vis-a-vis power distribution are made between the Wound-Rotor Induction machine (WRIM) and the BDFM. A brief analysis of the power balances, along with experimental data points obtained using a laboratory prototype machine, are given.

  7. Distributed Control of the Power Supply-Demand Balance

    NARCIS (Netherlands)

    Larsen, Gunn K. H.; van Foreest, Nicky D.; Scherpen, Jacquelien M. A.

    2013-01-01

    This paper aims to achieve a balance of power in a group of prosumers, based on a price mechanism, i.e., to steer the difference between the total production and consumption of power to zero. We first set the information network topology such that the prosumers exchange price (power) information wit

  8. Particle balance in long duration RF driven plasmas on QUEST

    Energy Technology Data Exchange (ETDEWEB)

    Hanada, K., E-mail: hanada@triam.kyushu-u.ac.jp [Research Institute for Applied Mechanics, Kyushu University, 6-1, Kasuga-Koen, Kasuga, Fukuoka 812-8580 (Japan); Zushi, H.; Yoshida, N. [Research Institute for Applied Mechanics, Kyushu University, 6-1, Kasuga-Koen, Kasuga, Fukuoka 812-8580 (Japan); Yugami, N.; Honda, T. [Interdisciplinary Graduate School of Engineering Science, Kyushu University, 6-1, Kasuga-Koen, Kasuga, Fukuoka 816-8580 (Japan); Hasegawa, M. [Research Institute for Applied Mechanics, Kyushu University, 6-1, Kasuga-Koen, Kasuga, Fukuoka 812-8580 (Japan); Mishra, K. [Interdisciplinary Graduate School of Engineering Science, Kyushu University, 6-1, Kasuga-Koen, Kasuga, Fukuoka 816-8580 (Japan); Kuzmin, A.; Nakamura, K.; Fujisawa, A.; Idei, H.; Nagashima, Y.; Watanabe, O.; Onchi, T.; Watanabe, H.; Tokunaga, K.; Higashijima, A.; Kawasaki, S.; Nakashima, H. [Research Institute for Applied Mechanics, Kyushu University, 6-1, Kasuga-Koen, Kasuga, Fukuoka 812-8580 (Japan); Takase, Y. [Graduate School of Frontier Science, University of Tokyo (Japan); and others

    2015-08-15

    Global particle balance in non-inductive long-duration plasma on QUEST has been investigated. Approximately 70% of the fuel hydrogen (H) was retained in the wall and then was almost exhausted just after the discharge. The global recycling ratio (R{sub g}), defined as the ratio of the evacuated H{sub 2} flux to that injected, was found to gradually increase during discharges and subsequently rose rapidly. To study the growth of R{sub g}, the thermal desorption spectra after deuterium implantation in a specimen exposed to QUEST plasma was analyzed with a model which includes reflection, diffusion, solution, recombination, trapping, and plasma-induced desorption in the re-deposition layer. The model reconstructs the growth of R{sub g} during a long-duration plasma and indicates solution plays a dominant role in the growth.

  9. High Power Helicon Plasma Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed work seeks to develop and optimize an electrode-less plasma propulsion system that is based on a high power helicon (HPH) that is being developed...

  10. High Power Helicon Plasma Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A new thruster has been conceived and tested that is based on a high power helicon (HPH) plasma wave. In this new method of propulsion, an antenna generates and...

  11. Economic Integration vs European Balance of Power

    Institute of Scientific and Technical Information of China (English)

    Sun Xiaoqing

    2004-01-01

    @@ The fifth round of the EU enlargement on May 1, 2004 turns the long-cherished "utopia" of a unified Europe into reality through a peaceful, economic approach.① This paper attempts to make some explorations on the following issues: Why the option for an economic approach? What changes have taken place in the nature and behavior of the relevant nations? What impact will the event have on European stability and balance?② How will the EU keep equilibrium through systemic mechanisms in case of inter-state disputes so as to lay the political groundwork for a peaceful unification.

  12. Balance Sheet and Analysis of Reactive Power Demand in the Polish Power System

    Directory of Open Access Journals (Sweden)

    Aleksander Kot

    2013-03-01

    Full Text Available The paper presents an analysis of the balance sheet and the reactive power demand of the Polish Power System. Reactive power balance sheets were made for the specific operating conditions of the system: the last winter peak, summer peak and summer off peak load. The basis of the study was load flow models and selected load flow calculation results. In addition, changes in demand for active and reactive power in recent years were presented.

  13. Market integration of wind power in electricity system balancing

    DEFF Research Database (Denmark)

    Sorknæs, Peter; Andersen, Anders N.; Tang, Jens

    2013-01-01

    In most countries markets for electricity are divided into wholesale markets on which electricity is traded before the operation hour, and real-time balancing markets to handle the deviations from the wholesale trading. So far, wind power has been sold only on the wholesale market and has been...... known to increase the need for balancing. This article analyses whether wind turbines in the future should participate in the balancing markets and thereby play a proactive role. The analysis is based on a real-life test of proactive participation of a wind farm in West Denmark. It is found...

  14. 3(omega) Power Balance Procedure on the NIF

    Energy Technology Data Exchange (ETDEWEB)

    Glenzer, S; Jones, O; Speck, D R; Munro, D; Lerche, R; Salmon, T; Bliss, E; Gates, A; Boyd, B; Auerbach, J; Williams, W; Saroyan, A; Kalantar, D; MacGowan, B; Zacharias, R; Hayman, C; Sacks, R

    2001-01-22

    This document defines the detailed NIF full system shot procedure to obtain 8% power balance as specified by the SDR002 3.2.1.04. Because the 48 quads of the NIF will be set up over a period of five years, obtaining power balance will naturally be accomplished in two steps. First, as each quad is brought online, the four laser beams within each quad will be tuned by setting the PABTS splitter ratios so that each beam will give the same laser power on target during low energy square pulse shots. During the quad activation period all of the technical tools and procedures will be developed that are needed for attaining full laser power balance. After the initial settings of the 48 PABTS, if no other tuning is done the overall NIF power balance is expected to be about <15%. In the second step, an iteration procedure with approximately 18 full laser system shots will be needed to obtain 8% power balance by tuning out the remaining systematic differences among the quads to an acceptable small difference of 2% rms (at 3{omega}). This rms difference is smaller than the expected variation of the injection energy or the amplifier gain, and is also of the same order as the laser energy diagnostic accuracy. Therefore, 8% power balance will require a number of precision measurements that will need accurate calibrations combined with a laser performance model that accounts and corrects for variations of the injection energy and the amplifier gain. This document is intended to specify the procedure and the flow-down of requirements from the system design requirement of 8% power balance. It is further intended to help guide the laser shot planning, the laser controls, and the laser performance operations model groups. It should provide input relevant to power balance tuning for the development of an operations model that includes post-shot analysis (as described in NIF-0046491), shot planning (as described in this memo), and pre-shot analysis.

  15. Magnetic helicity balance in the Sustained Spheromak Plasma Experiment

    Science.gov (United States)

    Stallard, B. W.; Hooper, E. B.; Woodruff, S.; Bulmer, R. H.; Hill, D. N.; McLean, H. S.; Wood, R. D.

    2003-07-01

    The magnetic helicity balance between the helicity input injected by a magnetized coaxial gun, the rate-of-change in plasma helicity content, and helicity dissipation in electrode sheaths and Ohmic losses have been examined in the Sustained Spheromak Plasma Experiment (SSPX) [E. B. Hooper, L. D. Pearlstein, and R. H. Bulmer, Nucl. Fusion 39, 863 (1999)]. Helicity is treated as a flux function in the mean-field approximation, allowing separation of helicity drive and losses between closed and open field volumes. For nearly sustained spheromak plasmas with low fluctuations, helicity balance analysis implies a decreasing transport of helicity from the gun input into the spheromak core at higher spheromak electron temperature. Long pulse discharges with continuously increasing helicity and larger fluctuations show higher helicity coupling from the edge to the spheromak core. The magnitude of the sheath voltage drop, inferred from cathode heating and a current threshold dependence of the gun voltage, shows that sheath losses are important and reduce the helicity injection efficiency in SSPX.

  16. Power coal plasma gasification. Computation and experiment

    Energy Technology Data Exchange (ETDEWEB)

    N.A. Bastyrev; V.I. Golysh; M.A. Gorokhovski; Yu.E. Karpenko; V.G. Lukiaschenko; V.E. Messerle; A.O. Nagibin; E.F. Osadchaya; S.F. Osadchy; I.G. Stepanov; K.A. Umbetkaliev; A.B. Ustimenko [Combustion Problems Institute, Almaty (Kazakhstan)

    2005-07-01

    Results of complex experimental and numerical investigation of coal plasma gasification in steam and air are presented. To analyse numerically the universal thermodynamic calculation code TERRA was used. The data base of it contains thermodynamic properties for 3500 individual components in temperature interval from 300 to 6000 K. Experiments were fulfilled at an original installation for coal plasma gasification. Nominal power of the plasma gasifier is 100 kW and sum consumption of the reagents is up to 25 kg/h. High integral indexes of the gasification processes were achieved. The numerical and experimental results comparison showed their satisfied agreement. 7 refs., 7 figs., 3 tabs.

  17. Dual Decomposition for Large-Scale Power Balancing

    DEFF Research Database (Denmark)

    Halvgaard, Rasmus; Jørgensen, John Bagterp; Vandenberghe, Lieven

    2013-01-01

    Dual decomposition is applied to power balancing of exible thermal storage units. The centralized large-scale problem is decomposed into smaller subproblems and solved locallyby each unit in the Smart Grid. Convergence is achieved by coordinating the units consumption through a negotiation...

  18. Generalized balanced power diagrams for 3D representations of polycrystals

    DEFF Research Database (Denmark)

    Alpers, Andreas; Brieden, Andreas; Gritzmann, Peter

    2015-01-01

    Characterizing the grain structure of polycrystalline material is an important task in material science. The present paper introduces the concept of generalized balanced power diagrams as a concise alternative to voxelated mappings. Here, each grain is represented by (measured approximations of...

  19. Thermal Storage Power Balancing with Model Predictive Control

    DEFF Research Database (Denmark)

    Halvgaard, Rasmus; Poulsen, Niels Kjølstad; Madsen, Henrik

    2013-01-01

    The method described in this paper balances power production and consumption with a large number of thermal loads. Linear controllers are used for the loads to track a temperature set point, while Model Predictive Control (MPC) and model estimation of the load behavior are used for coordination....... The total power consumption of all loads is controlled indirectly through a real-time price. The MPC incorporates forecasts of the power production and disturbances that influence the loads, e.g. time-varying weather forecasts, in order to react ahead of time. A simulation scenario demonstrates...

  20. Multiagent system in automatic light power balance in optical networks

    Science.gov (United States)

    Å lapák, Martin; Hůla, Miloslav

    2013-09-01

    This article deals with automatic power balancing along an optical line. For optimal transmission of an optical signal it is important to achieve certain parameters such as the signal to noise ratio or chromatic dispersion and also the sufficient output power level of in-line amplifiers. Pump diodes in amplifiers suffer from aging of material and therefore the driving current of pump diodes has to be accordingly increased to achieve the same gain as in the moment when the pump diodes were new. The use of a minimal required driving current leads to the longer lifetime of optical pumps. Therefore an automatic power balance is one of the methods used to achieve these goals.

  1. Electrical Model of Balanced AC HTS Power Cable

    Science.gov (United States)

    Zuijderduin, R.; Chevtchenko, O.; Smit, J. J.; Willén, D.; Melnik, I.; Geschiere, A.

    The future electricity grid will be more sustainable and it will have more power transmission and distribution capability with more electrical power added from decentralized sources on distribution level and from wind parks and other large sources on transmission level. More interconnections and more underground transmission and distribution will be put up. Use of high temperature superconducting (HTS) power cables provides solutions to many of the future grid problems caused by these trends. In this paper we present an electrical model of a balanced 6 km-long three phase triaxial HTS power cable for the Dutch project being developed by a consortium of Alliander, Ultera™ and TUD. The cable currents in all three phases are balanced by selecting proper twist pitches and insulation thickness. The paper focuses on determining inductances, capacitances and AC losses of the balanced cable. Using the developed model, we also determine the voltage drop as function of the cable length, the neutral current and the effect of the imbalanced capacitances on the current distribution of the Dutch distribution cable. The model is validated and it can be used for accurate simulation of the electrical behaviour of triaxial HTS cables in electrical grids.

  2. Market integration of wind power in electricity system balancing

    DEFF Research Database (Denmark)

    Sorknæs, Peter; Andersen, Anders N.; Tang, Jens

    2013-01-01

    In most countries markets for electricity are divided into wholesale markets on which electricity is traded before the operation hour, and real-time balancing markets to handle the deviations from the wholesale trading. So far, wind power has been sold only on the wholesale market and has been...... known to increase the need for balancing. This article analyses whether wind turbines in the future should participate in the balancing markets and thereby play a proactive role. The analysis is based on a real-life test of proactive participation of a wind farm in West Denmark. It is found...... that the wind farm is able to play a proactive role regarding downward regulation and thereby increase profits....

  3. Power spectral density in balance assessment. Description of methodology.

    Science.gov (United States)

    Syczewska, Małgorzata; Zielińska, Teresa

    2010-01-01

    One of the methods used in clinical setting to assess the balance function is the measurement of the centre of pressure trajectory (COP). The COP trajectory is strongly dependent on the body centre of mass trajectory (COM), but in case of balance problems the corrective signals influence this dependence. The aim of the present study is to explore the possibility of using power spectral density function of the COP vs. COM signal in assessing the amount of correction signals. As the aim was a methodological one, only one healthy adult subject participated in the study. This subject performed five balance tasks of increasing difficulty. The COP trajectory was recorded using the Kistler force plate, and COM trajectory was calculated based on the marker trajectories placed on the subject's body and simultaneously recorded with VICON 460 system. The COM data were subtracted from COP trajectory in anteroposterior (AP) and lateral direction. Next the power spectral density (PSD) was calculated for the new signals. The power spectral density is very low for easiest condition, but increases with the difficulty of task. Moreover, it also provides information in which plane (sagittal or frontal) more correction movements are needed to maintain stability.

  4. Role of external magnetic field and current closure in the force balance mechanism of a magnetically stabilized plasma torch

    Science.gov (United States)

    G, Ravi; Goyal, Vidhi

    2012-10-01

    Experimental investigations on the role of applied external magnetic field and return current closure in the force balance mechanism of a plasma torch are reported. The plasma torch is of low power and has wall, gas and magnetic stabilization mechanisms incorporated in it. Gas flow is divided into two parts: axial-central and peripheral-shroud, applied magnetic field is axial and return current is co-axial. Results indicate that application of large external magnetic field gives rise to not only J x B force but also, coupled with gas flow, to a new drag-cum-centrifugal force that acts on the plasma arc root and column. The magnetic field also plays a role in the return current closure dynamics and thus in the overall force balance mechanism. This in turn affects the electro-thermal efficiency of the plasma torch. Detailed experimental results, analytical calculations and physical model representing the processes will be presented and discussed.

  5. Radiation characteristics of input power from surface wave sustained plasma antenna

    Science.gov (United States)

    Naito, T.; Yamaura, S.; Fukuma, Y.; Sakai, O.

    2016-09-01

    This paper reports radiation characteristics of input power from a surface wave sustained plasma antenna investigated theoretically and experimentally, especially focusing on the power consumption balance between the plasma generation and the radiation. The plasma antenna is a dielectric tube filled with argon and small amount of mercury, and the structure is a basic quarter wavelength monopole antenna at 2.45 GHz. Microwave power at 2.45 GHz is supplied to the plasma antenna. The input power is partially consumed to sustain the plasma, and the remaining part is radiated as a signal. The relationship between the antenna gain and the input power is obtained by an analytical derivation and numerical simulations. As a result, the antenna gain is kept at low values, and most of the input power is consumed to increase the plasma volume until the tube is filled with the plasma whose electron density is higher than the critical electron density required for sustaining the surface wave. On the other hand, the input power is consumed to increase the electron density after the tube is fully filled with the plasma, and the antenna gain increases with increasing the electron density. The dependence of the antenna gain on the electron density is the same as that of a plasma antenna sustained by a DC glow discharge. These results are confirmed by experimental results of the antenna gain and radiation patterns. The antenna gain of the plasma is a few dB smaller than that of the identical metal antenna. The antenna gain of the plasma antenna is sufficient for the wireless communication, although it is difficult to substitute the plasma antenna for metal antennas completely. The plasma antenna is suitable for applications having high affinity with the plasma characteristics such as low interference and dynamic controllability.

  6. Radiation characteristics of input power from surface wave sustained plasma antenna

    Energy Technology Data Exchange (ETDEWEB)

    Naito, T., E-mail: Naito.Teruki@bc.MitsubishiElectric.co.jp [Advanced Technology R& D Center, Mitsubishi Electric Corporation, Amagasaki, Hyogo 661-8661 (Japan); Yamaura, S. [Information Technology R& D Center, Mitsubishi Electric Corporation, Kamakura, Kanagawa 247-8501 (Japan); Fukuma, Y. [Communication System Center, Mitsubishi Electric Corporation, Amagasaki, Hyogo 661-8661 (Japan); Sakai, O. [Department of Electronic System Engineering, The University of Shiga Prefecture, Hikone, Shiga 522-8533 (Japan)

    2016-09-15

    This paper reports radiation characteristics of input power from a surface wave sustained plasma antenna investigated theoretically and experimentally, especially focusing on the power consumption balance between the plasma generation and the radiation. The plasma antenna is a dielectric tube filled with argon and small amount of mercury, and the structure is a basic quarter wavelength monopole antenna at 2.45 GHz. Microwave power at 2.45 GHz is supplied to the plasma antenna. The input power is partially consumed to sustain the plasma, and the remaining part is radiated as a signal. The relationship between the antenna gain and the input power is obtained by an analytical derivation and numerical simulations. As a result, the antenna gain is kept at low values, and most of the input power is consumed to increase the plasma volume until the tube is filled with the plasma whose electron density is higher than the critical electron density required for sustaining the surface wave. On the other hand, the input power is consumed to increase the electron density after the tube is fully filled with the plasma, and the antenna gain increases with increasing the electron density. The dependence of the antenna gain on the electron density is the same as that of a plasma antenna sustained by a DC glow discharge. These results are confirmed by experimental results of the antenna gain and radiation patterns. The antenna gain of the plasma is a few dB smaller than that of the identical metal antenna. The antenna gain of the plasma antenna is sufficient for the wireless communication, although it is difficult to substitute the plasma antenna for metal antennas completely. The plasma antenna is suitable for applications having high affinity with the plasma characteristics such as low interference and dynamic controllability.

  7. Power balance and characterization of impurities in the Maryland Spheromak

    Energy Technology Data Exchange (ETDEWEB)

    Cote, C.

    1993-12-31

    The Maryland Spheromak is a medium size magnetically confined plasma of toroidal shape. Low T{sub e} and higher n{sub e} than expected contribute to produce a radiation dominated short-lived spheromak configuration. A pyroelectric radiation detector and a VUV spectrometer have been used for space and time-resolved measurements of radiated power and impurity line emission. Results from the bolometry and VUV spectroscopy diagnostics have been combined to give the absolute concentrations of the major impurity species together with the electron temperature. The large amount of oxygen and nitrogen ions in the plasma very early in the discharge is seen to be directly responsible for the abnormally high electron density. The dominant power loss mechanisms are found to be radiation (from impurity line emission) and electron convection to the end walls during the formation phase of the spheromak configuration, and radiation only during the decay phase.

  8. Microwave power coupling in a surface wave excited plasma

    CERN Document Server

    Kar, Satyananda; Kousaka, Hiroyuki

    2014-01-01

    In recent decades, different types of plasma sources have been used for various types of plasma processing, such as, etching and thin film deposition. The critical parameter for effective plasma processing is high plasma density. One type of high density plasma source is Microwave sheath-Voltage combination Plasma (MVP). In the present investigation, a better design of MVP source is reported, in which over-dense plasma is generated for low input microwave powers. The results indicate that the length of plasma column increases significantly with increase in input microwave power.

  9. Modeling of plasma devices for pulsed power

    Science.gov (United States)

    Kunc, Joseph A.; Gundersen, Martin A.

    1984-07-01

    This letter considers quantitative models of microscopic processes in plasmas formed in gas phase devices for pulsed power. Although models have been developed for devices such as lasers, there are others, such as switches, where these processes have been treated only phenomenologically. Further, transport data must be adjusted to include the effects of high electron density. It is shown that it is necessary to use a microscopic model to correctly describe the device behavior. Examples presented include the effect of Coulomb collisions on conductivity in various gases, and the ionization processes in a hydrogen thyratron.

  10. Power loss measurement of implantable wireless power transfer components using a Peltier device balance calorimeter

    Science.gov (United States)

    Leung, Ho Yan; Budgett, David M.; Taberner, Andrew; Hu, Patrick

    2014-09-01

    Determining heat losses in power transfer components operating at high frequencies for implantable inductive power transfer systems is important for assessing whether the heat dissipated by the component is acceptable for implantation and medical use. However, this is a challenge at high frequencies and voltages due to limitations in electronic instrumentation. Calorimetric methods of power measurement are immune to the effects of high frequencies and voltages; hence, the measurement is independent of the electrical characteristics of the system. Calorimeters have been widely used to measure the losses of high power electrical components (>50 W), however it is more difficult to perform on low power components. This paper presents a novel power measurement method for components dissipating anywhere between 0.2 W and 1 W of power based on a heat balance calorimeter that uses a Peltier device as a balance sensor. The proposed balance calorimeter has a single test accuracy of ±0.042 W. The experimental results revealed that there was up to 35% difference between the power measurements obtained with electrical methods and the proposed calorimeter.

  11. Power consumption analysis DBD plasma ozone generator

    Science.gov (United States)

    Nur, M.; Restiwijaya, M.; Muchlisin, Z.; Susan, I. A.; Arianto, F.; Widyanto, S. A.

    2016-11-01

    Studies on the consumption of energy by an ozone generator with various constructions electrodes of dielectric barrier discharge plasma (DBDP) reactor has been carried out. This research was done to get the configuration of the reactor, that is capable to produce high ozone concentrations with low energy consumption. BDBP reactors were constructed by spiral- cylindrical configuration, plasma ozone was generated by high voltage AC voltage up to 25 kV and maximum frequency of 23 kHz. The reactor consists of an active electrode in the form of a spiral-shaped with variation diameter Dc, and it was made by using copper wire with diameter Dw. In this research, we variated number of loops coil windings N as well as Dc and Dw. Ozone concentrations greater when the wire's diameter Dw and the diameter of the coil windings applied was greater. We found that impedance greater will minimize the concentration of ozone, in contrary to the greater capacitance will increase the concentration of ozone. The ozone concentrations increase with augmenting of power. Maximum power is effective at DBD reactor spiral-cylinder is on the Dc = 20 mm, Dw = 1.2 mm, and the number of coil windings N = 10 loops with the resulting concentration is greater than 20 ppm and it consumes energy of 177.60 watts

  12. Effect of the Power Balance® hologram on balance, flexibility, strength and speed-coordination among university students

    Directory of Open Access Journals (Sweden)

    Rafael Merino Marban, Daniel Mayorga Vega, Emilio Fernández Rodríguez, Francisco José Santana Pérez, Oscar Romero Ramos

    2011-01-01

    Full Text Available Based on the body’s energy field, the inventors of Power Balance® have created a hologram that theoretically runs through frequencies that are in our natural environment. Its creators say that people may experience improve balance, strength, flexibility, endurance, concentration, coordination and recovery time, among others. The purpose of this research is to evaluate the effect of Power Balance® hologram on balance, flexibility, strength and speed-coordination in university students. A sample of 105 young volunteers’ physical education students (age 20.91 ± 3.36 years, mass 69.69 ± 11.35 kg, height 171.70 ± 8.07 cm was used. A between-group experimental design with double-blind control group was used to evaluate the possible effects of the Power Balance ® on the dynamic balance, flexibility, abdominal strength, endurance and speed-coordination measured with the Dynamic Balance Test, Sit and Reach, Sit-ups in 30 seconds and Race 10 x 5 m, respectively. A t of Student for independent and dependent samples was used to assess the potential effects between-group and intra-group, respectively. Power Balance®’s hologram produces no significant effects on the balance, flexibility, strength and speed-coordination among university students

  13. Balancing the Power Consumption Speed in Flat and Hierarchical WSN

    Institute of Scientific and Technical Information of China (English)

    Hesham Abusaimeh; Shuang-Hua Yang

    2008-01-01

    A combination of a cluster tree routing protocol and an Ad hoc on demand vector (AODV) routing protocol is used in the latest ZigBee standard wireless sensor networks (WSNs) technology. However, the AODV routing protocol has no means by which to take into consideration the power consumption of the nodes during the routing process. Therefore, a new approach is proposed in this paper to balance the power consumption speed and to distribute the responsibilities of routing among fiat wireless sensor nodes and the three levels of hierarchical wireless sensor nodes. These three levels are based on the three types of devices, which are used in the ZigBee standard: the coordinator, the touters, and the end devices. In this paper, we have compared the original AODV routing protocol with our extension approach for the distribution of power consumption. Based on the simulation results, our new approach has achieved better performance in terms of increasing the lifetime of the fiat wireless sensor network, the personal area network (PAN)coordinator, the touters, and the whole network of the hierarchical wireless sensor network. Additionally, it has better performance in terms of distributing the power consumption among the key nodes of the wireless sensor network.

  14. CAN THE POWER BALANCE® BRACELET IMPROVE BALANCE, FLEXIBILITY, STRENGTH, AND POWER?

    Directory of Open Access Journals (Sweden)

    John Porcari

    2011-03-01

    Full Text Available Athletes are constantly searching for something that will give them a competitive edge. Performance jewelry is one of the latest products on the market designed to improve athletic performance. The most common claims are that wearing this performance jewelry will improve flexibility, balance, and strength. There is considerable marketing of these products, including testimonial evidence by high profile athletes, in support of the purported benefits. In demonstrations designed to validate the performance enhancing benefits of these products, however, companies typically conduct the testing in the following sequence: The first trial is done without the bracelet on and the second trial is performed with the bracelet on. Invariably, subjects perform better on the second trial. This brings into questions whether the improvement on the second trial is due to 1 a benefit of the bracelet, 2 the fact the subjects were warmed-up (Maud et al., 2006a; 2006b, 3 subjects being habituated to the task (Benson and Friedman, 1996; Wright et al., 2009, or 4 a placebo effect (Beedie and Foad, 2009.One of the most popular performance enhancing bracelets currently on the market is sold by Power Balance® (www.powerbalance.com. The Power Balance® bracelet has two dime-sized holograms; one on either side of the bracelet. The holograms within the Power Balance® bracelet are designed to "resonate with and respond to the natural energy field of the body". This purportedly improves flexibility, balance, and strength. To our knowledge, no randomized, double- blind, placebo trials have ever been conducted evaluating the validity of these claims. Thus, the purpose of this study was to evaluate whether wearing of the Power Balance® bracelet can improve trunk flexibility, balance, strength, and lower body power.Forty-two NCAA Division III athletes (22M: 20.1 ± 1.4 years, 1.82 ± 6.4 m, 82.0 ± 12.6 kg; 20F: 19.5 ± 1.3 years, 1.66 ± 6. 8 m, 63.2 ± 8.1 kg completed four

  15. The New China and the New Regional Balance of Power

    Directory of Open Access Journals (Sweden)

    Rafael Bueno Martínez

    2000-01-01

    Full Text Available The People’s Republic of China has turned 50. Many things have changed since that first day of October when the Great Leader solemnly declared the proclamation of the birth of a new nation. More than that, though, what he proclaimed that day was the return ofChinese pride - the Chinese people had finally arisen after having knelt before the Western powers for the last century. The end of the Second World and its aftermath facilitated the Communistís triumph in China. The end of the Cold War left in its wake a wide range ofuncertainties and hopes in the zone, the Pacific, where the different Asian powers finally have much to say and decide on regarding the fate of the world as a whole. This new multipolarity has led to the rise of a new balance of power throughout Asia. The Korean peninsulaand Taiwan continue being the most dangerous flash points for conflict, albeit more controlled ones given the tragic consequences that could unfold if they developed into armed conflicts. This article provides a brief analysis of the roles that the leading powers play in the zone within both the regional and global contexts. Among these powers is, obviously, China, viewed in comparison with its neighbor and maximum rival for occupying a dominant role, the Japanese empire. Meanwhile, the two superpowers have seen their influence vary considerably in this area for different reasons: Moscow, in full political decline and economic chaos, with its nuclear arsenal intact; and Washington, with its puzzling and shifting policy towards China, and its military presence in the zone that is both unwanted yet desired by all except Beijing and Pyongyang. The relations among these countries will mark the future of a large part of the planet and that of most of its inhabitants.

  16. Ecological balance of power generation from sewage gas; Oekobilanz Klaergasverstromung

    Energy Technology Data Exchange (ETDEWEB)

    Ronchetti, C.; Bienz, P.; Pridal, R.

    2002-07-01

    This report for the Swiss Federal Office of Energy (SFOE) presents the ecological balance made for the production of electrical power from biogas that is produced in waste water treatment plants. The study was needed as the basis for deciding if power thus generated could be certified to the strict 'Naturemade Star' standards. This label is used to designate 'green' power. The report briefly describes the processes usually used in the treatment of sewage sludge, the energy-intensive aerobic and anaerobic digestion, which produces biogas. The ecological factors of the two processes were assessed using the Eco-Indicator 99 tool. The results are discussed, which showed that a typical modern waste water treatment plant is significantly better as far as energy is concerned than older examples of plant (e.g. those built in 1995) as far as ecological impact is concerned. Also, the study addresses other forms of biogas use, like, for example, its use as a fuel for vehicles.

  17. The Power of Balance: Transforming Self, Society, and Scientific Inquiry

    Directory of Open Access Journals (Sweden)

    William R. Torbert

    2010-03-01

    Full Text Available The “power of balance” as conceived by Torbert represents an integral paradigm of principles, theory, and praxis. Deployed, the paradigm is one that can indeed inform and shape the development of self, society, and scientific inquiry. To explicate that fulsome vision, the book’s fifteen chapters develop the themes of three sections: Theory and Strategy, Heart and Practice, and Vision and Method. Here, we have excerpted from several chapters in Theory and Strategy, and from one chapter in Vision and Method. This means, of course, that we present but a small fraction of this integral classic, leaving out all of the rich, in-depth illustrations, including the author’s learning practice as he first attempted to enact the principles. Yet, we hope even this abbreviated form of The Power of Balance supports at least two goals: to offer deployable insights and practices for developing politics and the political; and to take root as part of a foundational canon for integral political thought, research, and praxis. How we readers deploy these principles in our own actions will determine the degree to which self, society, and scientific inquiry transform.

  18. Reduced storage and balancing needs in a fully renewable European power system with excess wind and solar power generation

    DEFF Research Database (Denmark)

    Heide, Dominik; Greiner, Martin; von Bremen, Lüder

    2011-01-01

    The storage and balancing needs of a simplified European power system, which is based on wind and solar power generation only, are derived from an extensive weather-driven modeling of hourly power mismatches between generation and load. The storage energy capacity, the annual balancing energy...... and the balancing power are found to depend significantly on the mixing ratio between wind and solar power generation. They decrease strongly with the overall excess generation. At 50% excess generation the required long-term storage energy capacity and annual balancing energy amount to 1% of the annual consumption....... The required balancing power turns out to be 25% of the average hourly load. These numbers are in agreement with current hydro storage lakes in Scandinavia and the Alps, as well as with potential hydrogen storage in mostly North-German salt caverns....

  19. Reduced storage and balancing needs in a fully renewable European power system with excess wind and solar power generation

    DEFF Research Database (Denmark)

    Heide, Dominik; Greiner, Martin; von Bremen, Lüder

    The storage and balancing needs of a simplified European power system, which is based on wind and solar power generation only, are derived from an extensive weather-driven modeling of hourly power mismatches between generation and load. The storage energy capacity, the annual balancing energy...... and the balancing power are found to depend significantly on the mixing ratio between wind and solar power generation. They decrease strongly with the overall excess generation. At 50% excess generation the required long-term storage energy capacity and annual balancing energy amount to 1% of the annual consumption....... The required balancing power turns out to be 25% of the average hourly load. These numbers are in agreement with current hydro storage lakes in Scandinavia and the Alps, as well as with potential hydrogen storage in mostly North-German salt caverns....

  20. Power dissipated in a non-thermal atmospheric pressure plasma jet measured by miniaturized electrical probes

    Science.gov (United States)

    Golda, Judith; Schulz-von der Gathen, Volker

    2016-09-01

    Non-thermal atmospheric pressure plasma jets are used in bio-medicine, because they generate reactive species at a low gas temperature. Knowledge and control of plasma parameters is required for stable and reliable operation. Therefore, measuring dissipated power in these plasmas is necessary. However, this is challenging because the delivered sender power is often orders of magnitudes higher than the power dissipated in the discharge itself. To measure this dissipated power, we built miniaturized electrical probes directly attached to the jet device. We observed that the dissipated power is a more comprehensive parameter than the common parameter voltage: For example, gas temperature and emission line intensities rose exponentially with increasing voltage but linearly with increasing power. Our analyses further revealed that a substantial proportion of the dissipated power is transformed into heat. In conclusion, miniaturized electrical probes give a fundamental insight into the energy balance of atmospheric pressure plasmas. In the future, these probes can also be adapted to different types of atmospheric pressure plasmas. This work was supported by DFG within the frameworks of the Package Project PAK 816.

  1. Experimental evaluation of the power balance model of speed skating.

    Science.gov (United States)

    de Koning, Jos J; Foster, Carl; Lampen, Joanne; Hettinga, Floor; Bobbert, Maarten F

    2005-01-01

    Prediction of speed skating performance with a power balance model requires assumptions about the kinetics of energy production, skating efficiency, and skating technique. The purpose of this study was to evaluate these parameters during competitive imitations for the purpose of improving model predictions. Elite speed skaters (n = 8) performed races and submaximal efficiency tests. External power output (P(o)) was calculated from movement analysis and aerodynamic models and ice friction measurements. Aerobic kinetics was calculated from breath-by-breath oxygen uptake (Vo(2)). Aerobic power (P(aer)) was calculated from measured skating efficiency. Anaerobic power (P(an)) kinetics was determined by subtracting P(aer) from P(o). We found gross skating efficiency to be 15.8% (1.8%). In the 1,500-m event, the kinetics of P(an) was characterized by a first-order system as P(an) = 88 + 556e(-0.0494t) (in W, where t is time). The rate constant for the increase in P(aer) was -0.153 s(-1), the time delay was 8.7 s, and the peak P(aer) was 234 W; P(aer) was equal to 234[1 - e(-0.153(t-8.7))] (in W). Skating position changed with preextension knee angle increasing and trunk angle decreasing throughout the event. We concluded the pattern of P(aer) to be quite similar to that reported during other competitive imitations, with the exception that the increase in P(aer) was more rapid. The pattern of P(an) does not appear to fit an "all-out" pattern, with near zero values during the last portion of the event, as assumed in our previous model (De Koning JJ, de Groot G, and van Ingen Schenau GJ. J Biomech 25: 573-580, 1992). Skating position changed in ways different from those assumed in our previous model. In addition to allowing improved predictions, the results demonstrate the importance of observations in unique subjects to the process of model construction.

  2. Analysis of Power Model for Linear Plasma Device

    Science.gov (United States)

    Zhang, Weiwei; Deng, Baiquan; Zuo, Haoyi; Zheng, Xianjun; Cao, Xiaogang; Xue, Xiaoyan; Ou, Wei; Cao, Zhi; Gou, Fujun

    2016-08-01

    A single cathode linear plasma device has been designed and constructed to investigate the interactions between plasma and materials at the Sichuan University. In order to further investigate the Ohmic power of the device, the output heat load on the specimen and electric potential difference (between cathode and anode) have been tested under different discharge currents. This special power distribution in the radial direction of the plasma discharge channel has also been discussed and described by some improved integral equations in this paper; it can be further simplified as P ∝ α-2 in one-parameter. Besides, we have measured the power loss of the channel under different discharge currents by the calorimetric method, calculated the effective power of the device and evaluated the performances of the plasma device through the power efficiency analysis. supported by International Thermonuclear Experimental Reactor (ITER) Program (No. 2013GB114003) and National Natural Science Foundation of China (Nos. 11275135 and 11475122)

  3. Cross-Cultural Differences in Sibling Power Balance and Its Concomitants across Three Age Periods

    Science.gov (United States)

    Buist, Kirsten L.; Metindogan, Aysegül; Coban, Selma; Watve, Sujala; Paranjpe, Analpa; Koot, Hans M.; van Lier, Pol; Branje, Susan J. T.; Meeus, Wim H. J.

    2017-01-01

    We examined cross-cultural differences in (1) sibling power balance and (2) the associations between sibling power balance and internalizing and externalizing problems in three separate cross-cultural studies (early childhood, late childhood, and adolescence). The "early childhood samples" consisted of 123 Turkish and 128 Dutch mothers…

  4. High power, fast, microwave components based on beam generated plasmas

    Science.gov (United States)

    Manheimer, W. M.; Fernsler, R. F.; Gitlin, M. S.

    1998-10-01

    It is shown that the agile mirror plasma, under development as a device to simply and cheaply give electronic steering to microwave beams, also has application as a fast, electronically controlled, high power reflector, or phase shifter. In a radar system, this can lead to such applications as pulse to pulse polarization agility and electronic control of antenna gain, as well as to innovative approaches to high power millimeter wave circulators. The basic theory of the enhanced glow plasma is also developed.

  5. Control of powerful microwaves using EBG plasma structures

    Science.gov (United States)

    Simonchik, Leanid; Callegari, Thierry; Sokoloff, Jerome; Usachonak, Maxim

    2016-09-01

    Glow discharge plasmas have great potential for application as control elements in microwave devices designed on the basis of electromagnetic band gap (EBG) structures. In this report, a plasma control of powerful microwave propagation by means of 1D and 2D EBG structures is under investigation. Three pulsed discharges in argon (or helium) at atmospheric pressure are applied in the capacity of plasma inhomogeneities. Temporal behavior of electron concentration in discharge is determined. The transmission spectra of 1D EBG structure formed solely by plasma in the X-waveguide are measured. The amplitudes of short ( 200 ns) and powerful (50 kW) microwave pulses at frequency of 9.15 GHz are strongly suppressed (more than on 40 dB) when plasma structure exists. The propagation of these powerful microwave pulses through the triangular metallic 2D EBG structure with the plasma control elements is investigated, too. It is shown that the transmission of the 2D EBG structure at the angle of 45o ceases quickly (during a few tenth of nanoseconds) when plasma acts as a compensator of defect in the front row of the structure. On the contrary, the transmission arises quickly once plasma acts as an additional defect. The support of BRFBR-CNRS grant F15F-004 is acknowledged.

  6. Research in Pulsed Power Plasma Physics

    Science.gov (United States)

    1993-11-01

    constraints will preclude the use of channels with much with a Tesla coil. Nor is uniformity improved by the use of larger wall radii. a 3 kA prepulse. Driving...Oliphant. 12C. Bruno, J. Delvaux. A. Nicolas . and M. Roche, IEEE Trans. Plasma and P. F. Ottinger. App!. Phys. Lett. 45. 1043 (1984).ISci. PS-IS, 686

  7. Modeling and simulating an electrical grid subsystem for power balance analysis

    DEFF Research Database (Denmark)

    Totu, Luminita Cristiana; Leth, John-Josef; Wisniewski, Rafal

    2012-01-01

    We present an approach for power balance analysis in Smart Grids where the physical behavior of different electrical devices is modeled at unit level, and the collective load and generation curves can later be obtained by aggregation. In this way, new behaviors, flexibilities and intelligent...... strategies for power consumption and generation can be easily introduced at the user-level and the system-level impact analyzed on the aggregated profiles. The future aim is to investigate bottom-up balancing strategies, where units with a flexible energy band can react independently to power balance signals...

  8. BALANCE

    Science.gov (United States)

    Carmichael, H.

    1953-01-01

    A torsional-type analytical balance designed to arrive at its equilibrium point more quickly than previous balances is described. In order to prevent external heat sources creating air currents inside the balance casing that would reiard the attainment of equilibrium conditions, a relatively thick casing shaped as an inverted U is placed over the load support arms and the balance beam. This casing is of a metal of good thernnal conductivity characteristics, such as copper or aluminum, in order that heat applied to one portion of the balance is quickly conducted to all other sensitive areas, thus effectively preventing the fornnation of air currents caused by unequal heating of the balance.

  9. Plasma erosion switches with imploding plasma loads on a multiterawatt pulsed power generator

    Science.gov (United States)

    Stringfield, R.; Schneider, R.; Genuario, R. D.; Roth, I.; Childers, K.; Stallings, C.; Dakin, D.

    1981-03-01

    Plasma erosion switches have been fielded on the PITHON generator during imploding plasma experiments. Theta pinch plasma guns were used to inject carbon plasmas of densities in the range of 10 to the 12th to 10 to the 14th/cu cm between the electrodes of the vacuum power feed region, upstream from an imploding plasma load. Current monitors indicated that the erosion switches carried substantial current early in time, diverting it from the load. Late in the pulse the erosion switches opened, transferring the current to an imploding plasma with the effect of sharpening the current rise time at the load. Associated with the sharper rise time was an improvement in the quality of the plasma implosions. The results of varying the density and total number of particles in the plasma of the switches are presented with regard to the effect on the current along the vacuum feed and on the behavior of vacuum flowing electrons.

  10. Impact of Seminal Chemical Elements on the Oxidative Balance in Bovine Seminal Plasma and Spermatozoa

    OpenAIRE

    Eva Tvrdá; Norbert Lukáč; Monika Schneidgenová; Jana Lukáčová; Csaba Szabó; Zofia Goc; Agnieszka Greń; Peter Massányi

    2013-01-01

    Mutual relationships between selected chemical elements (Na, K, Fe, Cu, Mg, and Zn), basic motility characteristics (motility and progressive motility), and markers of the oxidative balance (superoxide dismutase, catalase, glutathione, albumin, and malondialdehyde) were investigated in bovine seminal plasma and spermatozoa. Computer assisted sperm analysis was used to assess the motility parameters; mineral concentrations were determined by the voltammetric method and flame absorption spectro...

  11. The Plasma Simulation Code: A modern particle-in-cell code with load-balancing and GPU support

    CERN Document Server

    Germaschewski, Kai; Ahmadi, Narges; Wang, Liang; Abbott, Stephen; Ruhl, Hartmut; Bhattacharjee, Amitava

    2013-01-01

    Recent increases in supercomputing power, driven by the multi-core revolution and accelerators such as the IBM Cell processor, graphics processing units (GPUs) and Intel's Many Integrated Core (MIC) technology have enabled kinetic simulations of plasmas at unprecedented resolutions, but changing HPC architectures also come with challenges for writing efficient numerical codes. This paper describes the Plasma Simulation Code (PSC), an explicit, electromagnetic particle-in-cell code with support for different order particle shape functions. We focus on two distinguishing feature of the code: patch-based load balancing using space-filling curves, and support for Nvidia GPUs, which achieves substantial speed-up of up to more than 6x on the Cray XK7 architecture compared to a CPU-only implementation.

  12. Storage and balancing synergies in a fully or highly renewable pan-European power system

    DEFF Research Database (Denmark)

    Rasmussen, Morten Grud; Bruun Andresen, Gorm; Greiner, Martin

    2012-01-01

    Through a parametric time-series analysis of eight years of hourly data, we quantify the storage size and balancing energy needs for highly and fully renewable European power systems for different levels and mixes of wind and solar energy. By applying a dispatch strategy that minimizes...... that combined with a low-efficiency hydrogen storage and a level of balancing equal to what is today provided by storage lakes, it is sufficient to meet the European electricity demand in a fully renewable power system where the average power generation from combined wind and solar exceeds the demand by only...... the balancing energy needs for a given storage size, the interplay between storage and balancing is quantified, providing a hard upper limit on their synergy. An efficient but relatively small storage reduces balancing energy needs significantly due to its influence on intra-day mismatches. Furthermore, we show...

  13. A theoretical look at the gender balance of power in the American couple.

    Science.gov (United States)

    Blumberg, R L; Coleman, M T

    1989-06-01

    Despite the very rich theoretical literature on marital power, recent empirical investigations on this subject have, in general, relied on disappointing measures of power. The empirically testable model developed in this article is an application of Blumberg's general theory of gender stratification to the contemporary American heterosexual couple. In the model, the authors concur with prior studies that identify economic power as the key variable in the power balance within a marital relationship. Their conceptualization of economic power, however, attempts to reflect the extremely complex nature of marital power. Thus, they offer the notion of overall economic power and then suggest that there are a number of discount factors operating at both the macro and micro levels that affect the power balance, resulting in what is termed net economic power. The fully elaborated model is dynamic, taking into account birth cohort differences, stable versus transitional relationships, and cross-class differences.

  14. Effect of abomasal infusion of aspartate on nitrogen balance and plasma amino acids in Holstein steers.

    Science.gov (United States)

    Wessels, R H; Titgemeyer, E C

    1998-01-01

    We investigated the effect of abomasally infused aspartate (Asp) on N balance and plasma amino acids in steers. Four ruminally cannulated Holstein steers (180 kg) housed in metabolism crates were used in an experiment designed as a 4 x 3 Youden square. Steers received continuous abomasal infusions of water or water containing 40 or 80 g Asp/d. Steers were fed twice daily a diet containing 473 g/kg corn, 463 g/kg alfalfa hay and 52 g/kg soybean meal at levels near ad libitum intake. Abomasally infused Asp had no effect on N balance. Infusion of 80 g Asp/d increased (P < 0.05) plasma concentrations of Asp, glutamate and alanine. Metabolism of Asp by gut tissues probably prevented the large change in plasma concentration of Asp that seems necessary to trigger hormonal responses. We conclude that abomasal supplementation of steers with up to 80 g/d of Asp does not enhance performance.

  15. Power modulation in an atmospheric pressure plasma jet

    Science.gov (United States)

    Kelly, S.; Turner, M. M.

    2014-12-01

    Power modulation in an atmospheric pressure capacitively coupled radio frequency plasma jet is investigated by numerical modelling. The dynamics of successively pulsing the applied power on and off for a helium-oxygen (˜0.6%) plasma is investigated. The impact of power pulsing on reactive species generation and gas heating is discussed with control opportunities emphasized. Power modulation shows linear control for reactive species and heat flux delivery to a treatment surface above an initial phase of power growth. Power is found to be coupled primarily to the electrons with electron loss rates determining the interference between successive power modulation phases. Plasma decay in the power off phase is characterized by a large initial electron loss in the first 0.5 µs followed by ambipolar decay dominated by ions of opposite charge. Power modulation effects on gas heating show a larger range of temperature control when compared with convection cooling. Reactive oxygen species reaching a treatment surface are shown to typically vary over an order of magnitude for variation in the duty cycle.

  16. Using the Power Balance Wristband to Improve Students' Research-Design Skills

    Science.gov (United States)

    Lawson, Timothy J.; Blackhart, Ginette C.; Gialopsos, Brooke M.

    2016-01-01

    We describe an exercise involving the power balance wristband (PBW) designed to enhance students' ability to design scientific tests. An instructor demonstrated that the PBW improved a student's balance, strength, and flexibility and invited students to design and conduct a brief scientific test of the PBW. Research methods students who…

  17. Using the Power Balance Wristband to Improve Students' Research-Design Skills

    Science.gov (United States)

    Lawson, Timothy J.; Blackhart, Ginette C.; Gialopsos, Brooke M.

    2016-01-01

    We describe an exercise involving the power balance wristband (PBW) designed to enhance students' ability to design scientific tests. An instructor demonstrated that the PBW improved a student's balance, strength, and flexibility and invited students to design and conduct a brief scientific test of the PBW. Research methods students who…

  18. Network Condition Based Adaptive Control and its Application to Power Balancing in Electrical Grids

    DEFF Research Database (Denmark)

    Pedersen, Rasmus; Findrik, Mislav; Sloth, Christoffer

    2017-01-01

    of the power balancing effort. Such control strategies require communication networks for exchange of control loop information. In this work, we show how a congested communication network can have a dramatic impact on the control performance of such a power balancing controller. To alleviate potential......To maintain a reliable and stable power grid there must be balance between consumption and production. To achieve power balance in a system with high penetration of distributed renewable resources and flexible assets, these individual system can be coordinated through a control unit to become part...... stability issues and increase control performance, an adaptive control design is proposed together with a communication network state estimation algorithm. Extensive simulation studies on a realistic model of a low voltage residential grid, using network traces obtained from a real powerline network, show...

  19. Plasma characteristics of a high power helicon discharge

    Science.gov (United States)

    Ziemba, T.; Euripides, P.; Slough, J.; Winglee, R.; Giersch, L.; Carscadden, J.; Schnackenberg, T.; Isley, S.

    2006-08-01

    A new high power helicon (HPH) plasma system has been designed to provide input powers of several tens of kilowatts to produce a large area (0.5 m2) of uniform high-density, of at least 5 × 1017 m-3, plasma downstream from the helicon coil. Axial and radial plasma characteristics show that the plasma is to a lesser extent created in and near the helicon coil and then is accelerated into the axial and equatorial regions. The bulk acceleration of the plasma is believed to be due to a coupling of the bulk of the electrons to the helicon field, which in turn transfers energy to the ions via ambipolar diffusion. The plasma beta is near unity a few centimetres away from the HPH system and Bdot measurements show ΔB perturbations in the order of the vacuum magnetic field magnitude. In the equatorial region, a magnetic separatrix is seen to develop roughly at the mid-point between the helicon and chamber wall. The magnetic perturbation develops on the time scale of the plasma flow speed and upon the plasma reaching the chamber wall decays to the vacuum magnetic field configuration within 200 µs.

  20. Plasma characteristics of a high power helicon discharge

    Energy Technology Data Exchange (ETDEWEB)

    Ziemba, T; Euripides, P; Slough, J; Winglee, R; Giersch, L; Carscadden, J; Schnackenberg, T; Isley, S [Box 351310, University of Washington, Seattle WA, 98195 (United States)

    2006-08-01

    A new high power helicon (HPH) plasma system has been designed to provide input powers of several tens of kilowatts to produce a large area (0.5 m{sup 2}) of uniform high-density, of at least 5 x 10{sup 17} m{sup -3}, plasma downstream from the helicon coil. Axial and radial plasma characteristics show that the plasma is to a lesser extent created in and near the helicon coil and then is accelerated into the axial and equatorial regions. The bulk acceleration of the plasma is believed to be due to a coupling of the bulk of the electrons to the helicon field, which in turn transfers energy to the ions via ambipolar diffusion. The plasma beta is near unity a few centimetres away from the HPH system and Bdot measurements show {delta}B perturbations in the order of the vacuum magnetic field magnitude. In the equatorial region, a magnetic separatrix is seen to develop roughly at the mid-point between the helicon and chamber wall. The magnetic perturbation develops on the time scale of the plasma flow speed and upon the plasma reaching the chamber wall decays to the vacuum magnetic field configuration within 200 {mu}s.

  1. Electrical Model of Balanced AC HTS Power Cable

    NARCIS (Netherlands)

    Zuijderduin, R.; Chevtchenko, O.; Smit, J.J.; Willen, D.; Melnik, I.; Geschiere, A.

    2012-01-01

    The future electricity grid will be more sustainable and it will have more power transmission and distribution capability with more electrical power added from decentralized sources on distribution level and from wind parks and other large sources on transmission level. More interconnections and mor

  2. Edge Contact Forces and Quasi-Balanced Power

    OpenAIRE

    dell'Isola, Francesco; Seppecher, Pierre

    1997-01-01

    International audience; We consider continuous media in which contact edge forces are present. Introducing the notion of quasi-balanced contact force distribution, we are able to prove the conjectures by Noll and Virga [1] concerning the representation of contact edge forces. We generalize the Hamel–Noll theorem on the Cauchy postulate. Then we adapt the celebrated tetrahedron construction of Cauchy in order to obtain a representation theorem for stress states. In fact, we show that two stres...

  3. Proton Stopping Power of Different Density Profile Plasmas

    CERN Document Server

    Casas, David; Andreev, Alexander A; Schnürer, Matthias; Morales, Roberto

    2014-01-01

    In this work, the stopping power of a partially ionized plasma is analyzed by means of free electron stopping and bound electron stopping. For the first one, the RPA dielectric function is used, and for the latter one, an interpolation of high and low projectile velocity formulas is used. The dynamical energy loss of an ion beam inside a plasma is estimated by using an iterative scheme of calculation. The Abel inversion is also applied when we have a plasma with radial symmetry. Finally, we compare our methods with two kind of plasmas. In the first one, we estimate the energy loss in a plasma created by a laser prepulse, whose density is approximated by a piecewise function. For the latter one, a radial electron density is supposed and the stopping is obtained as function of radius from the calculated lateral points. In both cases, the dependence with the density profile is observed.

  4. PROTON STOPPING POWER OF DIFFERENT DENSITY PROFILE PLASMAS

    Directory of Open Access Journals (Sweden)

    David Casas

    2015-04-01

    Full Text Available In this work, the stopping power of a partially ionized plasma is analyzed by means of free electron stopping and bound electron stopping. For the first instance, the RPA dielectric function is used, and for the latter one, an interpolation of high and low projectile velocity formulas is used. The dynamical energy loss of a ion beam inside a plasma is estimated by using an iterative scheme of calculation. The Abel inversion is also applied when we have a plasma with radial symmetry. Finally, we compare our methods with two kind of plasmas. In the first one, we estimate the energy loss in a plasma created by a laser prepulse, whose density is approximated by a piecewise function. For the latter one, a radial electron density is supposed and the stopping is obtained as a function of radius from the calculated lateral points. In both cases, the dependence with the density profile is observed.

  5. An optimal model for balancing fluctuating power of large wind parks

    Energy Technology Data Exchange (ETDEWEB)

    Tammoja, Heiki; Palu, Ivo; Keel, Matti; Oidram, Rein [Tallinn Univ. of Technology (Estonia). Dept. of Electrical Power Engineering; Agabus, Hannes [Nelja Energia LLC, Tallinn (Estonia)

    2009-07-01

    Different energy storage devices have different technical properties, including different energy storage capacity and power. The penetration of fluctuating energy sources in electricity generation portfolio is increasing and to keep the system stability new and effective balancing technologies are needed. It is very important in power systems where only thermal power plants for base load exist. The paper is focused on search for large-scale solutions and the outputs are plausible balancing scenarios for power systems. Paper gives brief overview of possible energy storing solutions and suitable technologies concerning local land and power grid specialty. Described model takes into account following generation units: hydro pumped storage power plants, oil-shale thermal power plant and gas turbine. Paper presents optimization problem and optimal conditions. (orig.)

  6. Radiated power distributions in impurity-seeded plasmas in LHD

    Energy Technology Data Exchange (ETDEWEB)

    Morisaki, T., E-mail: morisaki@nifs.ac.jp [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Nagoya University, Nagoya 464-8602 (Japan); Oyama, K. [Nagoya University, Nagoya 464-8602 (Japan); Tamura, N.; Masuzaki, S.; Akiyama, T.; Motojima, G.; Miyazawa, J.; Peterson, B.J. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Ohno, N. [Nagoya University, Nagoya 464-8602 (Japan); Yamada, H. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan)

    2015-08-15

    In LHD, impurity seeding has been performed to enhance the radiative cooling in the edge region. Neon, nitrogen and argon were seeded by gas puffing, and the behaviour of those impurities in the plasma was investigated with the innovative diagnostic method. Two bolometer arrays were used to measure the two-dimensional radiated power distribution. Using the tomographic technique, radiated power distributions on a poloidal plane can be obtained with the high time resolution. During the discharge with neon puff, considerable radiation from the core region was observed, in addition to the strong edge radiation. In spite of the highly radiated power, plasma did not result in the radiation collapse. On the other hand, in the nitrogen-seeded discharge, the strong radiation only from the peripheral region was observed. Different time evolutions of the total radiated power between neon and nitrogen seeded discharges were observed after stopping each impurity puff.

  7. Power Balancing Aggregator Design for Industrial Consumers Using Direct Control

    DEFF Research Database (Denmark)

    Rahnama, Samira; Bendtsen, Jan Dimon; Stoustrup, Jakob

    2015-01-01

    Demand side management in the future smart grid requires new players in the electricity markets. We assume a player, the so-called aggregator which aims to utilize the flexibility in large-scale consumers with thermal energy storage. An aggregator design is proposed to mange the power consumption...

  8. Test-bed Assessment of Communication Technologies for a Power-Balancing Controller

    DEFF Research Database (Denmark)

    Findrik, Mislav; Pedersen, Rasmus; Hasenleithner, Eduard

    2016-01-01

    Due to growing need for sustainable energy, increasing number of different renewable energy resources are being connected into distribution grids. In order to efficiently manage a decentralized power generation units, the smart grid will rely on communication networks for information exchange...... and control. In this paper, we present a Smart Grid test-bed that integrates various communication technologies and deploys a power balancing controller for LV grids. Control performance of the introduced power balancing controller is subsequently investigated and its robustness to communication network cross......-traffic is evaluated. Various scenarios are demonstrated, assessing impact of communication network performance on quality of control....

  9. Plasma relaxation mechanics of pulsed high power microwave surface flashover

    Energy Technology Data Exchange (ETDEWEB)

    Beeson, S.; Dickens, J.; Neuber, A. [Center for Pulsed Power and Power Electronics, Department of Electrical and Computer Engineering and Department of Physics, Texas Tech University, Lubbock, Texas 79409 (United States)

    2013-09-15

    Microwave transmission and reflection characteristics of pulsed radio frequency field generated plasmas are elucidated for air, N{sub 2}, and He environments under pressure conditions ranging from 10 to 600 torr. The pulsed, low temperature plasma is generated along the atmospheric side of the dielectric boundary between the source (under vacuum) and the radiating environment with a thickness on the order of 5 mm and a cross sectional area just smaller than that of the waveguide. Utilizing custom multi-standard waveguide couplers and a continuous low power probing source, the scattering parameters were measured before, during, and after the high power microwave pulse with emphasis on the latter. From these scattering parameters, temporal electron density estimations (specifically the longitudinal integral of the density) were calculated using a 1D plane wave-excited model for analysis of the relaxation processes associated. These relaxation characteristics ultimately determine the maximum repetition rate for many pulsed electric field applications and thus are applicable to a much larger scope in the plasma community than just those related to high power microwaves. This manuscript discusses the diagnostic setup for acquiring the power measurements along with a detailed description of the kinematic and chemical behavior of the plasma as it decays down to its undisturbed state under various gas type and pressure conditions.

  10. Numerical Analysis of Powder Properties in Low Power Plasma Torch

    Institute of Scientific and Technical Information of China (English)

    YAN Zhi-jun; GAO Yang; HEI Zhu-kun; AN Lian-tong

    2004-01-01

    A mathematical model was presented to describe the particle trajectory, velocity and temperature properties in the low power plasma spraying torch (3.6 kW)in which powder particles were directly injected into the region between the cathode and anode. The results show that the characteristics of the particles by low power plasma spraying are similar to that by traditional APS( Atmosphere plasma spraying) in 40 kW. The velocities of the particles increase with the increase of inlet gas flow rate, current and percentage of nitrogen and hydrogen, while the temperature of the powder increase with the decrease of the gas flow rate and with the increase of current and percentage of nitrogen and hydrogen.

  11. Low Power Low Voltage Bulk Driven Balanced OTA

    Directory of Open Access Journals (Sweden)

    Neha Gupta

    2012-01-01

    Full Text Available The last few decades, a great deal of attention has been paid to low-voltage (LV low-power (LP integrated circuits design since the power consumption has become a critical issue. Among many techniques used for the design of LV LP analog circuits, the Bulk-driven principle offers a promising route towards this design for many aspects mainly the simplicity and using the conventional MOS technology to implement these designs. This paper is devoted to the Bulk-driven (BD principle and utilizing this principle to design LV LP building block of Operational Transconductance Amplifier (OTA in standard CMOS processes and supply voltage 0.9V. The simulation results have been carried out by the Spice simulatorusing the 130nm CMOS technology from TSMC.

  12. Low Power Low Voltage Bulk Driven Balanced OTA

    Directory of Open Access Journals (Sweden)

    Neha Gupta

    2011-12-01

    Full Text Available The last few decades, a great deal of attention has been paid to low-voltage (LV low-power (LP integrated circuits design since the power consumption has become a critical issue. Among many techniques used for the design of LV LP analog circuits, the Bulk-driven principle offers a promising route towards this design for many aspects mainly the simplicity and using the conventional MOS technology to implement these designs. This paper is devoted to the Bulk-driven (BD principle and utilizing this principle to design LV LP building block of Operational Trans conductance Amplifier (OTA in standard CMOS processes and supply voltage 0.9 V. The simulation results have been carried out by the Spice simulator using the 130 nm CMOS technology from TSMC.

  13. Low Power Low Voltage Bulk Driven Balanced OTA

    CERN Document Server

    Gupta, Neha; Suthar, Meenakshi; Soni, Priyanka

    2012-01-01

    The last few decades, a great deal of attention has been paid to low-voltage (LV) low-power (LP) integrated circuits design since the power consumption has become a critical issue. Among many techniques used for the design of LV LP analog circuits, the Bulk-driven principle offers a promising route towards this design for many aspects mainly the simplicity and using the conventional MOS technology to implement these designs. This paper is devoted to the Bulk-driven (BD) principle and utilizing this principle to design LV LP building block of Operational Transconductance Amplifier (OTA) in standard CMOS processes and supply voltage 0.9V. The simulation results have been carried out by the Spice simulator using the 130nm CMOS technology from TSMC.

  14. High Power Light Gas Helicon Plasma Source For VASMIR

    Science.gov (United States)

    Squire, J. P.; Chang-Diaz, F. R.; Glover, T. W.; Jacobson, V. T.; McCaskill, G. E.; Winter, D. S.; Baity, F. W.; Carter, M. D.; Goulding, R. H.

    2004-01-01

    The VASIMR space propulsion development effort relies on a high power (greater than 10kW) helicon source to produce a dense flowing plasma (H, D and He) target for ion cyclotron resonance (ICR) acceleration of the ions. Subsequent expansion in an expanding magnetic field (magnetic nozzle) converts ion lunetic energy to directed momentum. This plasma source must have critical features to enable an effective propulsion device. First, it must ionize most of the input neutral flux of gas, thus producing a plasma stream with a high degree of ionization for application of ICR power. This avoids propellant waste and potential power losses due to charge exchange. Next, the plasma stream must flow into a region of high magnetic field (approximately 0.5 T) for efficient ICR acceleration. Third, the ratio of input power to plasma flux must be low, providing an energy per ion-electron pair approaching 100 eV. Lastly, the source must be robust and capable of very long life-times (years). In our helicon experiment (VX-10) we have measured a ratio of input gas to plasma flux near 100%. The plasma flows from the helicon region (B approximately 0.1 T) into a region with a peak magnetic field of 0.8 T. The energy input per ion-electron pair has been measured at 300 plus or minus 100 eV. Recent results at Oak Ridge National Laboratory (ORNL) show an enhanced efficiency mode of operation with a high power density, over 5 kW in a 5 cm diameter tube. Our helicon is presently 9 cm in diameter and operates up to 3.5 kW of input power. An upgrade to a power level of 10 kW is underway. Much of our recent work has been with a Boswell double-saddle antenna design. We are also converting the antenna design to a helical type. With these modifications, we anticipate an improvement in the ionization efficiency. This paper presents the results from scaling the helicon in the VX-10 device from 3.5 to 10 kW. We also compare the operation with a double-saddle to a helical antenna design. Finally, we

  15. High Power Light Gas Helicon Plasma Source For VASMIR

    Science.gov (United States)

    Squire, J. P.; Chang-Diaz, F. R.; Glover, T. W.; Jacobson, V. T.; McCaskill, G. E.; Winter, D. S.; Baity, F. W.; Carter, M. D.; Goulding, R. H.

    2004-01-01

    The VASIMR space propulsion development effort relies on a high power (greater than 10kW) helicon source to produce a dense flowing plasma (H, D and He) target for ion cyclotron resonance (ICR) acceleration of the ions. Subsequent expansion in an expanding magnetic field (magnetic nozzle) converts ion lunetic energy to directed momentum. This plasma source must have critical features to enable an effective propulsion device. First, it must ionize most of the input neutral flux of gas, thus producing a plasma stream with a high degree of ionization for application of ICR power. This avoids propellant waste and potential power losses due to charge exchange. Next, the plasma stream must flow into a region of high magnetic field (approximately 0.5 T) for efficient ICR acceleration. Third, the ratio of input power to plasma flux must be low, providing an energy per ion-electron pair approaching 100 eV. Lastly, the source must be robust and capable of very long life-times (years). In our helicon experiment (VX-10) we have measured a ratio of input gas to plasma flux near 100%. The plasma flows from the helicon region (B approximately 0.1 T) into a region with a peak magnetic field of 0.8 T. The energy input per ion-electron pair has been measured at 300 plus or minus 100 eV. Recent results at Oak Ridge National Laboratory (ORNL) show an enhanced efficiency mode of operation with a high power density, over 5 kW in a 5 cm diameter tube. Our helicon is presently 9 cm in diameter and operates up to 3.5 kW of input power. An upgrade to a power level of 10 kW is underway. Much of our recent work has been with a Boswell double-saddle antenna design. We are also converting the antenna design to a helical type. With these modifications, we anticipate an improvement in the ionization efficiency. This paper presents the results from scaling the helicon in the VX-10 device from 3.5 to 10 kW. We also compare the operation with a double-saddle to a helical antenna design. Finally, we

  16. Benefits of active transmit balanced antenna fed by differential power amplifier

    OpenAIRE

    Sagor, Md. Hasanuzzaman; Callaghan, Peter

    2014-01-01

    A differential amplifier feeding a balanced antenna is investigated experimentally. This approach would suit modern RFIC design rather than using a 50Ω unbalanced connection. As such the balun or power-combining network is eliminated resulting in a compact RF front-end design with wider bandwidth and lower losses. Experimental result shows that this technique promises higher output power compared to conventional feeding approach while using same RFIC and same power supply.

  17. Application possibilities of plasmas generated by high power laser ablation

    OpenAIRE

    Torrisi, L.

    2009-01-01

    High-power pulsed lasers emitting IR and visible radiation with intensities ranging between 10^8 and 10^16 W/cm2, pulse duration from 0.4 to 9 ns and energy from 100 mJ up to 600 J, operating in single mode or in repetition rate, can be employed to produce non-equilibrium plasma in vacuum by irradiating solid targets. Such a laser-produced plasma generates highly charged and high-energy ions of various elements, as well as soft and hard X-ray radiations. Heavy ions with charge state up to 58+...

  18. Power Deposition on Tokamak Plasma-Facing Components

    CERN Document Server

    Arter, Wayne; Fishpool, Geoff

    2014-01-01

    The SMARDDA software library is used to model plasma interaction with complex engineered surfaces. A simple flux-tube model of power deposition necessitates the following of magnetic fieldlines until they meet geometry taken from a CAD (Computer Aided Design) database. Application is made to 1) models of ITER tokamak limiter geometry and 2) MASTU tokamak divertor designs, illustrating the accuracy and effectiveness of SMARDDA, even in the presence of significant nonaxisymmetric ripple field. SMARDDA's ability to exchange data with CAD databases and its speed of execution also give it the potential for use directly in the design of tokamak plasma facing components.

  19. Visible-light spectroscopy of pulsed-power plasmas (invited)

    Science.gov (United States)

    Arad, R.; Clark, R. E. H.; Dadusc, G.; Davara, G.; Duvall, R. E.; Fisher, A.; Fisher, V.; Foord, M. E.; Fruchtman, A.; Gregorian, L.; Krasik, Ya.; Litwin, C.; Maron, Y.; Perelmutter, L.; Sarfaty, M.; Sarid, E.; Shkolnikova, S.; Shpitalnik, R.; Troyansky, L.; Weingarten, A.

    1992-10-01

    We describe the investigations of the plasma behavior in three pulsed-power systems: a magnetically insulated ion diode, and plasma opening switch, and a gas-puffed Z pinch. Recently developed spectroscopic diagnostic techniques allow for measurements with relatively high spectral, temporal, and spatial resolutions. The particle velocity and density distributions within a few tens of microns from the dielectric-anode surface are observed using laser spectroscopy. Fluctuating electric fields in the plasma are inferred from anisotropic Stark broadening. For the plasma opening switch experiment, a novel gaseous plasma source was developed which is mounted inside the high-voltage inner conductor. The properties of this source, together with spectroscopic observations of the electron density and particle velocities of the injected plasma, are described. Emission line intensities during the switch operation are discussed. In the Z-pinch experiment, spectral emission-line profiles of various charge-state ions are studied during the implosion phase. Radial velocity distributions are observed from the line Doppler shifts and widths.

  20. Conducted EMI Suppression in Plasma Cutting Power Supply

    Institute of Scientific and Technical Information of China (English)

    Abdolreza Esmaeli; Sun Li; Zhao Ke

    2005-01-01

    A systematic approach to the design of the conducted electromagnetic interference (EMI) filter of high-density plasma cutting power supply has been developed. Converter components have been accurately modeled, with parasitic elements extracted to reveal their impacts on the EMI noises. Circuit simulations have been used to analyze and minimize the EMI noises.Conducted EMI noise measurement and filter design of this power supply have been achieved which successfully satisfy the FCC class B limits in the frequency range from 150 kHz to 30 MHz.The analyses and experimental results show that the designed filter guarantees that the required attenuation will be achieved.

  1. Plasma engineering studies for Tennessee Tokamak (TENTOK) fusion power reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, K.E.; Lacatski, J.T.; Miller, J.B.; Bryan, W.E.; King, P.W.; Santoro, R.T.; Uckan, N.A.; Shannon, T.E.

    1984-02-01

    This paper summarizes the results of the plasma engineering and systems analysis studies for the Tennessee Tokamak (TENTOK) fusion power reactor. TENTOK is a 3000-MW(t) central station power plant that uses deuterium-tritium fuel in a D-shaped tokamak plasma configuration with a double-null poloidal divertor. The major parameters are R/sub 0/ = 6.4 m, a = 1.6 m, sigma (elongation) = 1.65, (n) = 1.5 x 10/sup 20/ m/sup -3/, (T) = 15 keV, (..beta..) = 6%, B/sub T/ (on-axis) = 5.6 T, I/sub p/ = 8.5 MA, and wall loading = 3 MW/m/sup 2/. Detailed analyses are performed in the areas of (1) transport simulation using the one-and-one-half-dimensional (1-1/2-D) WHIST transport code, (2) equilibrium/poloidal field coil systems, (3) neutral beam and radiofrequency (rf) heating, and (4) pellet fueling. In addition, impurity control systems, diagnostics and controls, and possible microwave plasma preheating and steady-state current drive options are also considered. Some of the major features of TENTOK include rf heating in the ion cyclotron range of frequencies, superconducting equilibrium field coils outside the superconducting toroidal field coils, a double-null poloidal divertor for impurity control and alpha ash removal, and rf-assisted plasma preheating and current startup.

  2. Low energy, high power hydrogen neutral beam for plasma heating

    Energy Technology Data Exchange (ETDEWEB)

    Deichuli, P.; Davydenko, V.; Ivanov, A., E-mail: ivanov@inp.nsk.su; Mishagin, V.; Sorokin, A.; Stupishin, N. [Budker Institute of Nuclear Physics, Prospect Lavrentieva 11, 630090 Novosibirsk (Russian Federation); Korepanov, S.; Smirnov, A. [Tri Alpha Energy, Inc., Foothill Ranch, California 92610 (United States)

    2015-11-15

    A high power, relatively low energy neutral beam injector was developed to upgrade of the neutral beam system of the gas dynamic trap device and C2-U experiment. The ion source of the injector produces a proton beam with the particle energy of 15 keV, current of up to 175 A, and pulse duration of a few milliseconds. The plasma emitter of the ion source is produced by superimposing highly ionized plasma jets from an array of four arc-discharge plasma generators. A multipole magnetic field produced with permanent magnets at the periphery of the plasma box is used to increase the efficiency and improve the uniformity of the plasma emitter. Multi-slit grids with 48% transparency are fabricated from bronze plates, which are spherically shaped to provide geometrical beam focusing. The focal length of the Ion Optical System (IOS) is 3.5 m and the initial beam diameter is 34 cm. The IOS geometry and grid potentials were optimized numerically to ensure accurate beam formation. The measured angular divergences of the beam are ±0.01 rad parallel to the slits and ±0.03 rad in the transverse direction.

  3. Low energy, high power hydrogen neutral beam for plasma heating

    Science.gov (United States)

    Deichuli, P.; Davydenko, V.; Ivanov, A.; Korepanov, S.; Mishagin, V.; Smirnov, A.; Sorokin, A.; Stupishin, N.

    2015-11-01

    A high power, relatively low energy neutral beam injector was developed to upgrade of the neutral beam system of the gas dynamic trap device and C2-U experiment. The ion source of the injector produces a proton beam with the particle energy of 15 keV, current of up to 175 A, and pulse duration of a few milliseconds. The plasma emitter of the ion source is produced by superimposing highly ionized plasma jets from an array of four arc-discharge plasma generators. A multipole magnetic field produced with permanent magnets at the periphery of the plasma box is used to increase the efficiency and improve the uniformity of the plasma emitter. Multi-slit grids with 48% transparency are fabricated from bronze plates, which are spherically shaped to provide geometrical beam focusing. The focal length of the Ion Optical System (IOS) is 3.5 m and the initial beam diameter is 34 cm. The IOS geometry and grid potentials were optimized numerically to ensure accurate beam formation. The measured angular divergences of the beam are ±0.01 rad parallel to the slits and ±0.03 rad in the transverse direction.

  4. Changing Gender Roles, Shifting Power Balance and Long-distance Migration of Couples

    NARCIS (Netherlands)

    Smits, J.P.J.M.; Mulder, C.H.; Hooimeijer, P.

    2003-01-01

    Long-distance migration of couples requires joint decision-making within the household. The uneven power balance between men and women and traditional gender roles have given rise to the concepts of ‘tied stayer’ (usually the male partner) and ‘tied mover’ (usually the female). Since these concepts

  5. Changing gender roles, shifting power balance and long-distance migration of couples

    NARCIS (Netherlands)

    Smits, J.; Mulder, C.H.; Hooimeijer, P.

    2003-01-01

    Long-distance migration of couples requires joint decision-making within the household. The uneven power balance between men and women and traditional gender roles have given rise to the concepts of 'tied stayer' (usually the male partner) and 'tied mover' (usually the female). Since these concepts

  6. Changing gender roles, shifting power balance and long-distance migration of couples

    NARCIS (Netherlands)

    Smits, J.; Mulder, C.H.; Hooimeijer, P.

    2003-01-01

    Long-distance migration of couples requires joint decision-making within the household. The uneven power balance between men and women and traditional gender roles have given rise to the concepts of 'tied stayer' (usually the male partner) and 'tied mover' (usually the female). Since these concepts

  7. Plasma pro-atrial natriuretic peptide to indicate fluid balance during cystectomy

    DEFF Research Database (Denmark)

    Rasmussen, Kirsten C; Højskov, Michael; Ruhnau, Birgitte

    2016-01-01

    : One university/tertiary centre. PARTICIPANTS: The study included patients who underwent radical cystectomy. Plasma for determination of proANP was obtained before surgery, after resection of the bladder, and at the end of surgery for 20 robotic-assisted radical cystectomy (RARC) and 20 open radical......OBJECTIVES: During surgery the volume of administered fluid is debated. Pro-atrial natriuretic peptide (proANP) is released by atrial distension, and we evaluated the relationship between changes in proANP associated with perioperative fluid balance. DESIGN: Prospective observational study. SETTING...

  8. Plasma pro-atrial natriuretic peptide to estimate fluid balance during open and robot-assisted esophagectomy

    DEFF Research Database (Denmark)

    Strandby, Rune Broni; Ambrus, Rikard; Secher, Niels H

    2017-01-01

    BACKGROUND: It remains debated how much fluid should be administered during surgery. The atrial natriuretic peptide precursor proANP is released by atrial distension and deviations in plasma proANP are reported associated with perioperative fluid balance. We hypothesized that plasma proANP would...... decrease when the central blood volume is compromised during the abdominal part of robot-assisted hybrid (RE) esophagectomy and that a positive fluid balance would be required to maintain plasma proANP. METHODS: Patients undergoing RE (n = 25) or open (OE; n = 25) esophagectomy for gastroesophageal cancer...

  9. Power Allocation for Balancing Spectrum Efficiency and Power Consumption in Cognitive Relay Networks

    Directory of Open Access Journals (Sweden)

    Lun Tang

    2011-10-01

    Full Text Available In order to guarantee the QoS requirement of secondary users and not to affect the outage probability of primary user in cognitive relay networks, we propose two optimal power allocation models: (1 maximizing the transmission rate of secondary users; (2 minimizing the total power consumption. Theory analysis shows that two optimal power allocation models conflict between spectrum efficiency and power consumption. Furthermore, an optimal power allocation model which joints the transmission rate and the total power consumption in cognitive relay networks is proposed. By using the Lagrangian method, the optimization algorithm for this model is designed. The proposed algorithm can achieve the trade-off between the transmission rate and the total power consumption by varying the weight. Simulation results show that the proposed algorithm can effectively adjust the transmission rate and the total power consumption of secondary users.

  10. Sensitivity of injected argon behavior to changes in magnetic balance in double-null plasmas in DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Petrie, T.W. [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States)], E-mail: petrie@fusion.gat.com; Brooks, N.H. [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States); Fenstermacher, M.E.; Groth, M. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551 (United States); Hyatt, A.W. [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States); Lasnier, C.J. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551 (United States); Leonard, A.W. [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States); Porter, G.D. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551 (United States); Schaffer, M.J.; Wade, M.R. [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States); Watkins, J.G. [Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185 (United States); West, W.P. [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States)

    2009-06-15

    Recent DIII-D experiments show that both magnetic balance and particle drifts are important to understanding how argon impurities accumulate in balanced and unbalanced double-null plasmas during 'puff and pump' radiating divertor operation. Unbalanced double-null shapes, which are biased in the direction opposite to the ion Bx{nabla}B drift direction, have produced the best result to-date in terms of coupling a radiating divertor approach with an H-mode plasma. The proximity to balanced double-null that can be used for puff-and-pump may depend on the width of the heat flux profile in the scrape-off layer. A comparison of plasma behavior in the open lower divertor to that of the more closed upper divertor determined that plasma density control was far more sensitive to the ion Bx{nabla}B drift direction than to the relative closure of the divertor.

  11. High Power Light Gas Helicon Plasma Source for VASIMR

    Science.gov (United States)

    Squire, Jared P.; Chang-Diaz, Franklin R.; Glover, Timothy W.; Jacobson, Verlin T.; Baity, F. Wally; Carter, Mark D.; Goulding, Richard H.

    2004-01-01

    In the Advanced Space Propulsion Laboratory (ASPL) helicon experiment (VX-10) we have measured a plasma flux to input gas rate ratio near 100% for both helium and deuterium at power levels up to 10 kW. Recent results at Oak Ridge National Laboratory (ORNL) show enhanced efficiency operation with a high power density, over 5 kW in a 5 cm diameter tube. Our helicon is presently 9 cm in diameter and operates up to 10 kW of input power. The data here uses a Boswell double-saddle antenna design with a magnetic cusp just upstream of the antenna. Similar to ORNL, for deuterium at near 10 kW, we find an enhanced performance of operation at magnetic fields above the lower hybrid matching condition.

  12. Overview on the power supply systems for plasma instabilities control

    Energy Technology Data Exchange (ETDEWEB)

    Toigo, V., E-mail: vanni.toigo@igi.cnr.it [Consorzio RFX - EURATOM - ENEA Association, C.so Stati Uniti 4, 35127 Padova (Italy); Gaio, E.; Piovan, R.; Barp, M.; Bigi, M.; Ferro, A.; Finotti, C.; Novello, L.; Recchia, M.; Zamengo, A.; Zanotto, L. [Consorzio RFX - EURATOM - ENEA Association, C.so Stati Uniti 4, 35127 Padova (Italy)

    2011-10-15

    The paper presents an overview on the power supply (PS) systems for plasma instabilities control in fusion experiments, based on active control coils. First, the MHD instabilities and the approach to their control in Tokamaks and Reversed Field Pinches (RFPs) are described. Then, the features of MHD modes controls presently used in fusion experiments are reviewed. For the control systems based on active coils fed by fast power supplies, the typical requirements in terms of power, dynamics, accuracy and delay are summarized and discussed. Then, a survey on the technology available to design these types of PSs is given, together with the most suitable circuit topologies and guidelines for the design, on the basis of solutions adopted in existing experiments.

  13. High Power Light Gas Helicon Plasma Source for VASIMR

    Science.gov (United States)

    Squire, Jared P.; Chang-Diaz, Franklin R.; Glover, Timothy W.; Jacobson, Verlin T.; Baity, F. Wally; Carter, Mark D.; Goulding, Richard H.

    2004-01-01

    In the Advanced Space Propulsion Laboratory (ASPL) helicon experiment (VX-10) we have measured a plasma flux to input gas rate ratio near 100% for both helium and deuterium at power levels up to 10 kW. Recent results at Oak Ridge National Laboratory (ORNL) show enhanced efficiency operation with a high power density, over 5 kW in a 5 cm diameter tube. Our helicon is presently 9 cm in diameter and operates up to 10 kW of input power. The data here uses a Boswell double-saddle antenna design with a magnetic cusp just upstream of the antenna. Similar to ORNL, for deuterium at near 10 kW, we find an enhanced performance of operation at magnetic fields above the lower hybrid matching condition.

  14. On power-counting renormalizability of Ho\\v{r}ava gravity with detailed balance

    CERN Document Server

    Vernieri, Daniele

    2015-01-01

    We consider the version of Ho\\v{r}ava gravity where "detailed balance" is consistently implemented, such as to limitate the huge proliferation of couplings in the full theory and to obtain an healthy dynamics at low-energy. Since a superpotential which is third-order in spatial derivatives is not sufficient to guarantee the power-counting renormalizability of the spin-0 graviton, then one needs to go an order beyond in derivatives, building up a superpotential up to fourth-order spatial derivatives. Here, we perturb the action to quadratic order around flat space, and show that power-counting renormalizability of the spin-0 graviton is achieved only by setting to zero a specific coupling of the theory, while the spin-2 graviton is always power-counting renormalizable for any choice of the couplings. This result raises serious doubts about the use of detailed balance.

  15. Downstream plasma transport and metal ionization in a high-powered pulsed-plasma magnetron

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Liang; Szott, Matthew M.; McLain, Jake T.; Ruzic, David N. [Center for Plasma-Materials Interactions, Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Yu, He [Center for Plasma-Materials Interactions, Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2014-06-14

    Downstream plasma transport and ionization processes in a high-powered pulsed-plasma magnetron were studied. The temporal evolution and spatial distribution of electron density (n{sub e}) and temperature (T{sub e}) were characterized with a 3D scanning triple Langmuir probe. Plasma expanded from the racetrack region into the downstream region, where a high n{sub e} peak was formed some time into the pulse-off period. The expansion speed and directionality towards the substrate increased with a stronger magnetic field (B), largely as a consequence of a larger potential drop in the bulk plasma region during a relatively slower sheath formation. The fraction of Cu ions in the deposition flux was measured on the substrate using a gridded energy analyzer. It increased with higher pulse voltage. With increased B field from 200 to 800 Gauss above racetrack, n{sub e} increased but the Cu ion fraction decreased from 42% to 16%. A comprehensive model was built, including the diffusion of as-sputtered Cu flux, the Cu ionization in the entire plasma region using the mapped n{sub e} and T{sub e} data, and ion extraction efficiency based on the measured plasma potential (V{sub p}) distribution. The calculations matched the measurements and indicated the main causes of lower Cu ion fractions in stronger B fields to be the lower T{sub e} and inefficient ion extraction in a larger pre-sheath potential.

  16. Power Efficient Plasma Technique for Rapid Water Sterilization

    Science.gov (United States)

    Hershcovitch, Ady

    2015-11-01

    Water especially good quality drinking water is a dwindling resource for significant segments of the world population. The BBC quoted this article (http://www.ft.com/cms/s/2/8e42bdc8-0838-11e4-9afc-00144feab7de.html) for a claim that water shortage is a bigger problem than climate change. One option for increasing the water supply is to recycle waste and polluted water by inexpensive, environmentally friendly methods. First steps involve filtrations while the last step is water disinfection. Presently disinfection is done chemically and/or UV radiation. Some chemicals cannot be used in large quantity due to residual toxicity, while UV disinfection systems consume a great deal electricity. Plasmas in water are very attractive for water sterilization due to UV radiation, ozone, etc. generation inside the water volume. Commercially available devices like NK-03 Blue Ballast System are used aboard ships for water purification. But, presently utilized plasmas: glow, pulsed arcs are not power efficient. Vortex stabilized plasmas, which are power efficient, can even degrade medications (antibiotics) advancing the state-of-the-art by orders of magnitude, especially when combined with electron beams. Disinfection scheme will be presented. Work supported by Contract No. DE-AC02-98CH1-886 with the US DOE.

  17. Cold-cathode, pulsed-power plasma discharge switch

    Science.gov (United States)

    Goebel, Dan M.

    1996-09-01

    CROSSATRONTMmodulator switches are cold-cathode, grid-controlled, plasma-discharge devices that are used for thyratron and hard-tube replacement in high-voltage, pulsed-power applications. CROSSATRON modulator switches have been used to produce square pulses of up to 100 kV and 1000 A, and CROSSATRON laser-discharge switches have switched peak discharge currents of up to 10 kA at 40 kV. The major advantage that CROSSATRON switches offer over other plasma switches is a rapid deionization time that permits high pulse-repetition frequencies (103 to 106 pulses per second depending on the application), and a long life associated with the cold-cathode plasma production mechanism. Compared to hard tubes, CROSSATRON switches have a relatively low forward voltage drop (500 V), the ability to close and open up to 1 kA of peak current, and lower grid-drive power requirements. In this article, we describe the physical mechanisms for how the switch works based on simple models and experimental data. The design of CROSSATRON switches is explained, and characteristic performance in closing and opening applications is described and explained.

  18. A Location Selection Policy of Live Virtual Machine Migration for Power Saving and Load Balancing

    Directory of Open Access Journals (Sweden)

    Jia Zhao

    2013-01-01

    Full Text Available Green cloud data center has become a research hotspot of virtualized cloud computing architecture. And load balancing has also been one of the most important goals in cloud data centers. Since live virtual machine (VM migration technology is widely used and studied in cloud computing, we have focused on location selection (migration policy of live VM migration for power saving and load balancing. We propose a novel approach MOGA-LS, which is a heuristic and self-adaptive multiobjective optimization algorithm based on the improved genetic algorithm (GA. This paper has presented the specific design and implementation of MOGA-LS such as the design of the genetic operators, fitness values, and elitism. We have introduced the Pareto dominance theory and the simulated annealing (SA idea into MOGA-LS and have presented the specific process to get the final solution, and thus, the whole approach achieves a long-term efficient optimization for power saving and load balancing. The experimental results demonstrate that MOGA-LS evidently reduces the total incremental power consumption and better protects the performance of VM migration and achieves the balancing of system load compared with the existing research. It makes the result of live VM migration more high-effective and meaningful.

  19. A location selection policy of live virtual machine migration for power saving and load balancing.

    Science.gov (United States)

    Zhao, Jia; Ding, Yan; Xu, Gaochao; Hu, Liang; Dong, Yushuang; Fu, Xiaodong

    2013-01-01

    Green cloud data center has become a research hotspot of virtualized cloud computing architecture. And load balancing has also been one of the most important goals in cloud data centers. Since live virtual machine (VM) migration technology is widely used and studied in cloud computing, we have focused on location selection (migration policy) of live VM migration for power saving and load balancing. We propose a novel approach MOGA-LS, which is a heuristic and self-adaptive multiobjective optimization algorithm based on the improved genetic algorithm (GA). This paper has presented the specific design and implementation of MOGA-LS such as the design of the genetic operators, fitness values, and elitism. We have introduced the Pareto dominance theory and the simulated annealing (SA) idea into MOGA-LS and have presented the specific process to get the final solution, and thus, the whole approach achieves a long-term efficient optimization for power saving and load balancing. The experimental results demonstrate that MOGA-LS evidently reduces the total incremental power consumption and better protects the performance of VM migration and achieves the balancing of system load compared with the existing research. It makes the result of live VM migration more high-effective and meaningful.

  20. The Demand Side Management Potential to Balance a Highly Renewable European Power System

    Directory of Open Access Journals (Sweden)

    Alexander Kies

    2016-11-01

    Full Text Available Shares of renewables continue to grow in the European power system. A fully renewable European power system will primarily depend on the renewable power sources of wind and photovoltaics (PV, which are not dispatchable but intermittent and therefore pose a challenge to the balancing of the power system. To overcome this issue, several solutions have been proposed and investigated in the past, including storage, backup power, reinforcement of the transmission grid, and demand side management (DSM. In this paper, we investigate the potential of DSM to balance a simplified, fully renewable European power system. For this purpose, we use ten years of weather and historical load data, a power-flow model and the implementation of demand side management as a storage equivalent, to investigate the impact of DSM on the need for backup energy. We show that DSM has the potential to reduce the need for backup energy in Europe by up to one third and can cover the need for backup up to a renewable share of 67%. Finally, it is demonstrated that the optimal mix of wind and PV is shifted by the utilisation of DSM towards a higher share of PV, from 19% to 36%.

  1. Physical Limitations of Empirical Field Models: Force Balance and Plasma Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Sorin Zaharia; C.Z. Cheng

    2002-06-18

    In this paper, we study whether the magnetic field of the T96 empirical model can be in force balance with an isotropic plasma pressure distribution. Using the field of T96, we obtain values for the pressure P by solving a Poisson-type equation {del}{sup 2}P = {del} {center_dot} (J x B) in the equatorial plane, and 1-D profiles on the Sun-Earth axis by integrating {del}P = J x B. We work in a flux coordinate system in which the magnetic field is expressed in terms of Euler potentials. Our results lead to the conclusion that the T96 model field cannot be in equilibrium with an isotropic pressure. We also analyze in detail the computation of Birkeland currents using the Vasyliunas relation and the T96 field, which yields unphysical results, again indicating the lack of force balance in the empirical model. The underlying reason for the force imbalance is likely the fact that the derivatives of the least-square fitted model B are not accurate predictions of the actual magnetospheric field derivatives. Finally, we discuss a possible solution to the problem of lack of force balance in empirical field models.

  2. High power microwave source for a plasma wakefield experiment

    Science.gov (United States)

    Shafir, G.; Shlapakovski, A.; Siman-Tov, M.; Bliokh, Yu.; Leopold, J. G.; Gleizer, S.; Gad, R.; Rostov, V. V.; Krasik, Ya. E.

    2017-01-01

    The results of the generation of a high-power microwave (˜550 MW, 0.5 ns, ˜9.6 GHz) beam and feasibility of wakefield-excitation with this beam in under-dense plasma are presented. The microwave beam is generated by a backward wave oscillator (BWO) operating in the superradiance regime. The BWO is driven by a high-current electron beam (˜250 keV, ˜1.5 kA, ˜5 ns) propagating through a slow-wave structure in a guiding magnetic field of 2.5 T. The microwave beam is focused at the desired location by a dielectric lens. Experimentally obtained parameters of the microwave beam at its waist are used for numerical simulations, the results of which demonstrate the formation of a bubble in the plasma that has almost 100% electron density modulation and longitudinal and transverse electric fields of several kV/cm.

  3. Plasma protein oxidation and total antioxidant power in premenstrual syndrome

    Institute of Scientific and Technical Information of China (English)

    Eans Tara Tuladhar; Anjali Rao

    2010-01-01

    Objective:To explore whether oxidative stress has any role inpremenstrual syndrome (PMS). Methods: Female volunteers suffering from PMS , in the age group of 20-24 years were compared to their asymptomatic normomennorhoeic counterparts in follicular phase and late luteal phase for ferric reducing antioxidant power of plasma(FRAP), plasma protein thiols(PPT) and protein carbonyls(PPC) levels.Results:There was no significant change in FRAP and PPC levels in controls andPMS groups but PPT decreased significantly in luteal phase ofPMS (P< 0.05) when compared to follicular phase.Conclusions:Estrogen and progesterone, might be responsible for a healthy antioxidant profile inPMS. However, a marked decrease inPPT in luteal phase of PMS group may be due to pro-oxidant nature of estrogen-active in this phase of PMS leading to consumption of the sacrificial antioxidant-protein thiol.

  4. Kinetic analysis of negative power deposition in low pressure plasmas

    CERN Document Server

    Trieschmann, Jan

    2016-01-01

    The negative power absorption in low pressure plasmas is investigated by means of an analyical model which couples Boltzmann's equation and the quasi-stationary Maxwell's equation. Exploiting standard Hilbert space methods an explicit solution for both, the electric field and the distribution function of the electrons for a bounded discharge configuration subject to an unsymmetrical excitation has been found for the first time. The model is applied to a low pressure inductively coupled plasma discharge. In this context particularly the anomalous skin effect and the effect of phase mixing is discussed. The analytical solution is compared with results from electromagnetic full wave particle in cell simulations. Excellent agreement between the analytical and the numerical results is found.

  5. 76 FR 2368 - Balance Power Systems, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Science.gov (United States)

    2011-01-13

    ... Energy Regulatory Commission Balance Power Systems, LLC; Supplemental Notice That Initial Market-Based... supplemental notice in the above-referenced proceeding of Balance Power Systems, LLC's application for market... 20426. The filings in the above-referenced proceeding are accessible in the Commission's eLibrary...

  6. Plasma and cyclotron frequency effects on output power of the plasma wave-pumped free-electron lasers

    Science.gov (United States)

    Zolghadr, S. H.; Jafari, S.; Raghavi, A.

    2016-05-01

    Significant progress has been made employing plasmas in the free-electron lasers (FELs) interaction region. In this regard, we study the output power and saturation length of the plasma whistler wave-pumped FEL in a magnetized plasma channel. The small wavelength of the whistler wave (in sub-μm range) in plasma allows obtaining higher radiation frequency than conventional wiggler FELs. This configuration has a higher tunability by adjusting the plasma density relative to the conventional ones. A set of coupled nonlinear differential equations is employed which governs on the self-consistent evolution of an electromagnetic wave. The electron bunching process of the whistler-pumped FEL has been investigated numerically. The result reveals that for a long wiggler length, the bunching factor can appreciably change as the electron beam propagates through the wiggler. The effects of plasma frequency (or plasma density) and cyclotron frequency on the output power and saturation length have been studied. Simulation results indicate that with increasing the plasma frequency, the power increases and the saturation length decreases. In addition, when density of background plasma is higher than the electron beam density (i.e., for a dense plasma channel), the plasma effects are more pronounced and the FEL-power is significantly high. It is also found that with increasing the strength of the external magnetic field frequency, the power decreases and the saturation length increases, noticeably.

  7. A Power Balance Aware Wireless Charger Deployment Method for Complete Coverage in Wireless Rechargeable Sensor Networks

    Directory of Open Access Journals (Sweden)

    Tu-Liang Lin

    2016-08-01

    Full Text Available Traditional sensor nodes are usually battery powered, and the limited battery power constrains the overall lifespan of the sensors. Recently, wireless power transmission technology has been applied in wireless sensor networks (WSNs to transmit wireless power from the chargers to the sensor nodes and solve the limited battery power problem. The combination of wireless sensors and wireless chargers forms a new type of network called wireless rechargeable sensor networks (WRSNs. In this research, we focus on how to effectively deploy chargers to maximize the lifespan of a network. In WSNs, the sensor nodes near the sink consume more power than nodes far away from the sink because of frequent data forwarding. This important power unbalanced factor has not been considered, however, in previous charger deployment research. In this research, a power balance aware deployment (PBAD method is proposed to address the power unbalance in WRSNs and to design the charger deployment with maximum charging efficiency. The proposed deployment method is effectively aware of the existence of the sink node that would cause unbalanced power consumption in WRSNs. The simulation results show that the proposed PBAD algorithm performs better than other deployment methods, and fewer chargers are deployed as a result.

  8. Minimizing Wind Power Producer's Balancing Costs Using Electrochemical Energy Storage: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Miettinen, J.; Tikka, V.; Lassila, J.; Partanen, J.; Hodge, B. M.

    2014-08-01

    This paper examines how electrochemical energy storage can be used to decrease the balancing costs of a wind power producer in the Nordic market. Because electrochemical energy storage is developing in both technological and financial terms, a sensitivity analysis was carried out for the most important variables in the wind-storage hybrid system. The system was studied from a wind power producer's point of view. The main result is that there are no technical limitations to using storage for reducing the balancing costs. However, in terms of economic feasibility, installing hybrid wind-storage systems such as the one studied in this paper faces challenges in both the short and long terms.

  9. Minimizing Wind Power Producer's Balancing Costs Using Electrochemical Energy Storage: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Miettinen, J.; Tikka, V.; Lassila, J.; Partanen, J.; Hodge, B. M.

    2014-08-01

    This paper examines how electrochemical energy storage can be used to decrease the balancing costs of a wind power producer in the Nordic market. Because electrochemical energy storage is developing in both technological and financial terms, a sensitivity analysis was carried out for the most important variables in the wind-storage hybrid system. The system was studied from a wind power producer's point of view. The main result is that there are no technical limitations to using storage for reducing the balancing costs. However, in terms of economic feasibility, installing hybrid wind-storage systems such as the one studied in this paper faces challenges in both the short and long terms.

  10. Charge-Balanced Minimum-Power Controls for Spiking Neuron Oscillators

    CERN Document Server

    Dasanayake, Isuru

    2011-01-01

    In this paper, we study the optimal control of phase models for spiking neuron oscillators. We focus on the design of minimum-power current stimuli that elicit spikes in neurons at desired times. We furthermore take the charge-balanced constraint into account because in practice undesirable side effects may occur due to the accumulation of electric charge resulting from external stimuli. Charge-balanced minimum-power controls are derived for a general phase model using the maximum principle, where the cases with unbounded and bounded control amplitude are examined. The latter is of practical importance since phase models are more accurate for weak forcing. The developed optimal control strategies are then applied to both mathematically ideal and experimentally observed phase models to demonstrate their applicability, including the phase model for the widely studied Hodgkin-Huxley equations.

  11. Calcium signalling indicates bilateral power balancing in the Drosophila flight muscle during manoeuvring flight.

    Science.gov (United States)

    Lehmann, Fritz-Olaf; Skandalis, Dimitri A; Berthé, Ruben

    2013-05-06

    Manoeuvring flight in animals requires precise adjustments of mechanical power output produced by the flight musculature. In many insects such as fruit flies, power generation is most likely varied by altering stretch-activated tension, that is set by sarcoplasmic calcium levels. The muscles reside in a thoracic shell that simultaneously drives both wings during wing flapping. Using a genetically expressed muscle calcium indicator, we here demonstrate in vivo the ability of this animal to bilaterally adjust its calcium activation to the mechanical power output required to sustain aerodynamic costs during flight. Motoneuron-specific comparisons of calcium activation during lift modulation and yaw turning behaviour suggest slightly higher calcium activation for dorso-longitudinal than for dorsoventral muscle fibres, which corroborates the elevated need for muscle mechanical power during the wings' downstroke. During turning flight, calcium activation explains only up to 54 per cent of the required changes in mechanical power, suggesting substantial power transmission between both sides of the thoracic shell. The bilateral control of muscle calcium runs counter to the hypothesis that the thorax of flies acts as a single, equally proportional source for mechanical power production for both flapping wings. Collectively, power balancing highlights the precision with which insects adjust their flight motor to changing energetic requirements during aerial steering. This potentially enhances flight efficiency and is thus of interest for the development of technical vehicles that employ bioinspired strategies of power delivery to flapping wings.

  12. Balancing of a power-transmission shaft with the application of axial torque

    Science.gov (United States)

    Zorzi, E. S.; Flemming, D.

    1980-01-01

    Evaluation of power transmission shafting for high-speed balancing has shown that when axial torque is applied, the imbalance response is altered. An increase in synchronous excitation always occurs if the axial torque level is altered from the value used during balancing; this was the case even when the shaft was balanced with torque applied. The twisting of the long slender shaft produces a change in the imbalance distribution sufficient to disrupt the balanced state. This paper presents a review of the analytic development of a weighted least squares approach to influence coefficient balancing and a review of experimental results. The analytic approach takes advantage of the fact that the past testing has shown that the influence coefficients are not significantly affected by the application of axial torque. The 3.60-m (12-ft) long aluminum shaft, 7.62 cm (3 in.) in diameter was run through the first flexural critical speed at torque levels ranging from zero-torque to 903.8 N-M (8000 lb-in.) in 112.9 N-M (1000 lb-in.) increments. Good comparison was achieved between predicted and experimental results.

  13. Integration issues of a plasma contactor Power Electronics Unit

    Science.gov (United States)

    Pinero, Luis R.; York, Kenneth W.; Bowers, Glen E.

    1995-06-01

    A hollow cathode-based plasma contactor is baselined on International Space Station Alpha (ISSA) for spacecraft charge control. The plasma contactor system consists of a hollow cathode assembly (HCA), a power electronics unit (PEU), and an expellant management unit (EMU). The plasma contactor has recently been required to operate in a cyclic mode to conserve xenon expellant and extend system life. Originally, a DC cathode heater converter was baselined for a continuous operation mode because only a few ignitions of the hollow cathode were expected. However, for cyclic operation, a DC heater supply can potentially result in hollow cathode heater component failure due to the DC electrostatic field. This can prevent the heater from attaining the proper cathode tip temperature for reliable ignition of the hollow cathode. To mitigate this problem, an AC cathode heater supply was therefore designed, fabricated, and installed into a modified PEU. The PEU was tested using resistive loads and then integrated with an engineering model hollow cathode to demonstrate stable steady-state operation. Integration issues such as the effect of line and load impedance on the output of the AC cathode heater supply and the characterization of the temperature profile of the heater under AC excitation were investigated.

  14. Integration issues of a plasma contactor Power Electronics Unit

    Science.gov (United States)

    Pinero, Luis R.; York, Kenneth W.; Bowers, Glen E.

    1995-01-01

    A hollow cathode-based plasma contactor is baselined on International Space Station Alpha (ISSA) for spacecraft charge control. The plasma contactor system consists of a hollow cathode assembly (HCA), a power electronics unit (PEU), and an expellant management unit (EMU). The plasma contactor has recently been required to operate in a cyclic mode to conserve xenon expellant and extend system life. Originally, a DC cathode heater converter was baselined for a continuous operation mode because only a few ignitions of the hollow cathode were expected. However, for cyclic operation, a DC heater supply can potentially result in hollow cathode heater component failure due to the DC electrostatic field. This can prevent the heater from attaining the proper cathode tip temperature for reliable ignition of the hollow cathode. To mitigate this problem, an AC cathode heater supply was therefore designed, fabricated, and installed into a modified PEU. The PEU was tested using resistive loads and then integrated with an engineering model hollow cathode to demonstrate stable steady-state operation. Integration issues such as the effect of line and load impedance on the output of the AC cathode heater supply and the characterization of the temperature profile of the heater under AC excitation were investigated.

  15. Lifetime and economic analyses of lithium-ion batteries for balancing wind power forecast error

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef; Stroe, Daniel Ioan; Stroe, Ana-Irina

    2015-01-01

    is considered. In this paper, the economic feasibility of lithium-ion batteries for balancing the wind power forecast error is analysed. In order to perform a reliable assessment, an ageing model of lithium-ion battery was developed considering both cycling and calendar life. The economic analysis considers two......, it was found that for total elimination of the wind power forecast error, it is required to have a 25-MWh Li-ion battery energy storage system for the considered 2 MW WT....

  16. Interaction of powerful hot plasma and fast ion streams with materials in dense plasma focus devices

    Energy Technology Data Exchange (ETDEWEB)

    Chernyshova, M., E-mail: maryna.chernyshova@ipplm.pl [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Gribkov, V.A. [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Institution of Russian Academy of Sciences A.A. Baikov Institute of Metallurgy and Material Science RAS, Moscow (Russian Federation); Kowalska-Strzeciwilk, E.; Kubkowska, M.; Miklaszewski, R.; Paduch, M.; Pisarczyk, T.; Zielinska, E. [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Demina, E.V.; Pimenov, V.N.; Maslyaev, S.A. [Institution of Russian Academy of Sciences A.A. Baikov Institute of Metallurgy and Material Science RAS, Moscow (Russian Federation); Bondarenko, G.G. [National Research University Higher School of Economics (HSE), Moscow (Russian Federation); Vilemova, M.; Matejicek, J. [Institute of Plasma Physics of the CAS, Prague (Czech Republic)

    2016-12-15

    Highlights: • Materials perspective for use in mainstream nuclear fusion facilities were studied. • Powerful streams of hot plasma and fast ions were used to induce irradiation. • High temporal, spatial, angular and spectral resolution available in experiments. • Results of irradiation were investigated by number of analysis techniques. - Abstract: A process of irradiating and ablating solid-state targets with hot plasma and fast ion streams in two Dense Plasma Focus (DPF) devices – PF-6 and PF-1000 was examined by applying a number of diagnostics of nanosecond time resolution. Materials perspective for use in chambers of the mainstream nuclear fusion facilities (mainly with inertial plasma confinement like NIF and Z-machine), intended both for the first wall and for constructions, have been irradiated in these simulators. Optical microscopy, SEM, Atomic Emission Spectroscopy, images in secondary electrons and in characteristic X-ray luminescence of different elements, and X-ray elemental analysis, gave results on damageability for a number of materials including low-activated ferritic and austenitic stainless steels, β-alloy of Ti, as well as two types of W and a composite on its base. With an increase of the number of shots irradiating the surface, its morphology changes from weakly pronounced wave-like structures or ridges to strongly developed ones. At later stages, due to the action of the secondary plasma produced near the target materials they melted, yielding both blisters and a fracturing pattern: first along the grain and then “in-between” the grains creating an intergranular net of microcracks. At the highest values of power flux densities multiple bubbles appeared. Furthermore, in this last case the cracks were developed because of microstresses at the solidification of melt. Presence of deuterium within the irradiated ferritic steel surface nanolayers is explained by capture of deuterons in lattice defects of the types of impurity atoms

  17. Tradeoffs in the design of health plan payment systems: Fit, power and balance.

    Science.gov (United States)

    Geruso, Michael; McGuire, Thomas G

    2016-05-01

    In many markets, including the new U.S. Marketplaces, health insurance plans are paid by risk-adjusted capitation, sometimes combined with reinsurance and other payment mechanisms. This paper proposes a framework for evaluating the de facto insurer incentives embedded in these complex payment systems. We discuss fit, power and balance, each of which addresses a distinct market failure in health insurance. We implement empirical metrics of fit, power, and balance in a study of Marketplace payment systems. Using data similar to that used to develop the Marketplace risk adjustment scheme, we quantify tradeoffs among the three classes of incentives. We show that an essential tradeoff arises between the goals of limiting costs and limiting cream skimming because risk adjustment, which is aimed at discouraging cream-skimming, weakens cost control incentives in practice. A simple reinsurance system scores better on our measures of fit, power and balance than the risk adjustment scheme in use in the Marketplaces. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Judicial Control over Althingi: Altered Balance of Powers in the Constitutional System

    Directory of Open Access Journals (Sweden)

    Björg Thorarensen

    2016-06-01

    Full Text Available The article focuses on how the control of the judiciary over the legislature has increased in the last decades and the reasons for altered balance of powers in the Icelandic constitutional system are explored. Earlier theories of parliamentary precedence over other branches of state power are in transition. There is a growing trend towards the balancing of powers, in which the courts monitor that legislation complies with the constitution. A comparison is made with the developments in the constitutional systems of Denmark and Norway which points at the same direction. The European Convention on Human Rights and constitutional amendments in 1995 have affected the interpretation methods of the Icelandic courts and strengthened their supervisory role. Ideas underlying constitutional democracy, rule of law and effective remedies for individuals are prevailing over the idea of preferred position of the legislative power vis-à-vis the judiciary. The courts see it as a constitutional duty to adjudicate whether a legislative act conforms with constitutional human rights. The Supreme Court of Iceland has referred to the wide discretion of the legislature in the field of fiscal powers, such as regarding taxation and the social security system. However, even where legislation aims at the implementation of important political policies, the discretion of Althingi is subject to certain limits. The effective judicial control requires that Althingi must assess carefully whether legislation which limits constitutionally protected human rights conforms with the principles of equality and proportionality.

  19. Using the power balance model to simulate cross-country skiing on varying terrain

    Directory of Open Access Journals (Sweden)

    Moxnes JF

    2014-05-01

    Full Text Available John F Moxnes,1 Øyvind Sandbakk,2 Kjell Hausken31Department for Protection, Norwegian Defence Research Establishment, Kjeller, Norway; 2Center for Elite Sports Research, Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway; 3Faculty of Social Sciences, University of Stavanger, Stavanger, NorwayAbstract: The current study adapts the power balance model to simulate cross-country skiing on varying terrain. We assumed that the skier’s locomotive power at a self-chosen pace is a function of speed, which is impacted by friction, incline, air drag, and mass. An elite male skier’s position along the track during ski skating was simulated and compared with his experimental data. As input values in the model, air drag and friction were estimated from the literature based on the skier's mass, snow conditions, and speed. We regard the fit as good, since the difference in racing time between simulations and measurements was 2 seconds of the 815 seconds racing time, with acceptable fit both in uphill and downhill terrain. Using this model, we estimated the influence of changes in various factors such as air drag, friction, and body mass on performance. In conclusion, the power balance model with locomotive power as a function of speed was found to be a valid tool for analyzing performance in cross-country skiing.Keywords: air drag, efficiency, friction coefficient, speed, locomotive power

  20. Low complexity transmit antenna selection with power balancing in OFDM systems

    KAUST Repository

    Park, Kihong

    2010-10-01

    In this paper, we consider multi-carrier systems with multiple transmit antennas under the power balancing constraint, which is defined as the constraint that the power on each antenna should be limited under a certain level due to the linearity of the power amplifier of the RF chain. Applying transmit antenna selection and fixed-power variable-rate transmission per subcarrier as a function of channel variations, we propose an implementation-friendly antenna selection method which offers a reduced complexity in comparison with the optimal antenna selection scheme. More specifically, in order to solve the subcarrier imbalance across the antennas, we operate a two-step reallocation procedure to minimize the loss of spectral efficiency. We also provide an analytic lower bound on the spectral efficiency for the proposed scheme. From selected numerical results, we show that our suboptimal scheme offers almost the same spectral efficiency as the optimal one. © 2010 IEEE.

  1. Viewing the Chemical Evolution of the Quark-Gluon Plasma with Charge Balance Functions

    CERN Document Server

    Pratt, Scott

    2013-01-01

    Correlations from charge conservation are affected by when charge/anticharge pairs are created during the course of a relativistic heavy ion collision. For charges created early, balancing charges are typically separated by the order of one unit of spatial rapidity by the end of the collision, whereas those charges produced later in the collision are far more correlated. By analyzing correlations from STAR for different species, I show that one can distinguish the two separate waves of charge creation expected in a high-energy collision, one at early times when the QGP is formed and a second at hadronization. Further, I extract the density of up, down and strange quarks at in the QGP and find agreement at the 20% level with expectations for a chemically thermalized plasma.

  2. Balance and muscle power of children with Charcot-Marie-Tooth

    Directory of Open Access Journals (Sweden)

    Tais R. Silva

    2014-08-01

    Full Text Available BACKGROUND: In certain diseases, functional constraints establish a greater relationship with muscle power than muscle strength. However, in hereditary peripheral polyneuropathies, no such relationship was found in the literature. OBJECTIVE: In children with Charcot-Marie-Tooth (CMT, to identify the impact of muscle strength and range of movement on the static/dynamic balance and standing long jump based on quantitative and functional variables. METHOD: The study analyzed 19 participants aged between 6 and 16 years, of both genders and with clinical diagnoses of CMT of different subtypes. Anthropometric data, muscle strength of the lower limbs (hand-held dynamometer, ankle and knee range of movement, balance (Pediatric Balance Scale and standing long jump distance were obtained by standardized procedures. For the statistical analysis, Pearson and Spearman correlation coefficients were used. RESULTS: There was a strong positive correlation between balance and the muscle strength of the right plantar flexors (r=0.61 and dorsiflexors (r=0.59 and a moderate correlation between balance and the muscle strength of inversion (r=0.41 and eversion of the right foot (r=0.44. For the long jump and range of movement, there was a weak positive correlation with right and left plantar flexion (r=0.20 and r=0.12, respectively and left popliteal angle (r=0.25, and a poor negative correlation with left dorsiflexion (r=-0.15. CONCLUSIONS: The data on the patients analyzed suggests that the maintenance of distal muscle strength favors performance during balance tasks, while limitations in the range of movement of the legs seem not to be enough to influence the performance of the horizontal long jump.

  3. Impact of Seminal Chemical Elements on the Oxidative Balance in Bovine Seminal Plasma and Spermatozoa.

    Science.gov (United States)

    Tvrdá, Eva; Lukáč, Norbert; Schneidgenová, Monika; Lukáčová, Jana; Szabó, Csaba; Goc, Zofia; Greń, Agnieszka; Massányi, Peter

    2013-01-01

    Mutual relationships between selected chemical elements (Na, K, Fe, Cu, Mg, and Zn), basic motility characteristics (motility and progressive motility), and markers of the oxidative balance (superoxide dismutase, catalase, glutathione, albumin, and malondialdehyde) were investigated in bovine seminal plasma and spermatozoa. Computer assisted sperm analysis was used to assess the motility parameters; mineral concentrations were determined by the voltammetric method and flame absorption spectrophotometry; antioxidants and malondialdehyde were evaluated by UV/VIS spectrophotometry. Concentrations of chemical elements in both seminal fractions were in the following descending order: Na > K > Zn > Mg > Fe > Cu. Higher amounts of all minerals and nonenzymatic antioxidants were detected in the seminal plasma (P Zn were positively correlated with the motility and antioxidant parameters (P < 0.05; P < 0.01; P < 0.001). Inversely, K exhibited the positive associations with malondialdehyde (P < 0.05). This study demonstrates that most chemical elements are integral components of bovine semen and are needed for the protection against oxidative stress development.

  4. Impact of Seminal Chemical Elements on the Oxidative Balance in Bovine Seminal Plasma and Spermatozoa

    Directory of Open Access Journals (Sweden)

    Eva Tvrdá

    2013-01-01

    Full Text Available Mutual relationships between selected chemical elements (Na, K, Fe, Cu, Mg, and Zn, basic motility characteristics (motility and progressive motility, and markers of the oxidative balance (superoxide dismutase, catalase, glutathione, albumin, and malondialdehyde were investigated in bovine seminal plasma and spermatozoa. Computer assisted sperm analysis was used to assess the motility parameters; mineral concentrations were determined by the voltammetric method and flame absorption spectrophotometry; antioxidants and malondialdehyde were evaluated by UV/VIS spectrophotometry. Concentrations of chemical elements in both seminal fractions were in the following descending order: Na > K > Zn > Mg > Fe > Cu. Higher amounts of all minerals and nonenzymatic antioxidants were detected in the seminal plasma (P<0.01; P<0.001, while higher MDA concentration and activity of enzymatic antioxidants were recorded in the cell lysates (P<0.01; P<0.001. Na, Fe, Cu, Mg, and Zn were positively correlated with the motility and antioxidant parameters (P<0.05; P<0.01; P<0.001. Inversely, K exhibited the positive associations with malondialdehyde (P<0.05. This study demonstrates that most chemical elements are integral components of bovine semen and are needed for the protection against oxidative stress development.

  5. Using the power balance model to simulate cross-country skiing on varying terrain.

    Science.gov (United States)

    Moxnes, John F; Sandbakk, Oyvind; Hausken, Kjell

    2014-01-01

    The current study adapts the power balance model to simulate cross-country skiing on varying terrain. We assumed that the skier's locomotive power at a self-chosen pace is a function of speed, which is impacted by friction, incline, air drag, and mass. An elite male skier's position along the track during ski skating was simulated and compared with his experimental data. As input values in the model, air drag and friction were estimated from the literature based on the skier's mass, snow conditions, and speed. We regard the fit as good, since the difference in racing time between simulations and measurements was 2 seconds of the 815 seconds racing time, with acceptable fit both in uphill and downhill terrain. Using this model, we estimated the influence of changes in various factors such as air drag, friction, and body mass on performance. In conclusion, the power balance model with locomotive power as a function of speed was found to be a valid tool for analyzing performance in cross-country skiing.

  6. Balancing Power Absorption and Fatigue Loads in Irregular Waves for an Oscillating Surge Wave Energy Converter

    Energy Technology Data Exchange (ETDEWEB)

    Tom, Nathan M.; Yu, Yi-Hsiang; Wright, Alan D.; Lawson, Michael

    2016-06-24

    The aim of this paper is to describe how to control the power-to-load ratio of a novel wave energy converter (WEC) in irregular waves. The novel WEC that is being developed at the National Renewable Energy Laboratory combines an oscillating surge wave energy converter (OSWEC) with control surfaces as part of the structure; however, this work only considers one fixed geometric configuration. This work extends the optimal control problem so as to not solely maximize the time-averaged power, but to also consider the power-take-off (PTO) torque and foundation forces that arise because of WEC motion. The objective function of the controller will include competing terms that force the controller to balance power capture with structural loading. Separate penalty weights were placed on the surge-foundation force and PTO torque magnitude, which allows the controller to be tuned to emphasize either power absorption or load shedding. Results of this study found that, with proper selection of penalty weights, gains in time-averaged power would exceed the gains in structural loading while minimizing the reactive power requirement.

  7. Batch processing of overlapping molecular spectra as a tool for spatio-temporal diagnostics of power modulated microwave plasma jet

    Science.gov (United States)

    Voráč, Jan; Synek, Petr; Potočňáková, Lucia; Hnilica, Jaroslav; Kudrle, Vít

    2017-02-01

    Power modulated microwave plasma jet operating in argon at atmospheric pressure was studied by spatio-temporally resolved optical emission spectroscopy (OES) in order to clarify the influence of modulation on plasma parameters. OES was carried out in OH, NH, N2 and {{{N}}}2+ spectral regions using a spectrometer with intensified CCD detector synchronised with 101–103 Hz sine modulating signal. A special software, able to fit even the overlapping spectra, was developed to batch process the massive datasets produced by this spatio-temporal study. Results show that studied species with the exception of {{{N}}}2+ have balanced rotational and vibrational temperatures across the modulation frequencies. Significant influence of modulation can be clearly observed on temperature spatial gradients. Whereas for low modulation frequencies where the temperatures reach sharp maxima upon discharge tip, the high frequency modulation produces thermally homogeneous plasma.

  8. Dust-acoustic waves and stability in the permeating dust plasma: II. Power-law distributions

    CERN Document Server

    Gong, Jingyu; Du, Jiulin

    2012-01-01

    The dust-acoustic waves and their stability driven by a flowing dust plasma when it cross through a static (target) dust plasma (the so-called permeating dust plasma) are investigated when the components of the dust plasma obey the power-law q-distributions in nonextensive statistics. The frequency, the growth rate and the stability condition of the dust-acoustic waves are derived under this physical situation, which express the effects of the nonextensivity as well as the flowing dust plasma velocity on the dust-acoustic waves in this dust plasma. The numerical results illustrate some new characteristics of the dust-acoustic waves, which are different from those in the permeating dust plasma when the plasma components are the Maxwellian distribution. In addition, we show that the flowing dust plasma velocity has a significant effect on the dust-acoustic waves in the permeating dust plasma with the power-law q-distribution.

  9. Re-insurance in the Swiss health insurance market: Fit, power, and balance.

    Science.gov (United States)

    Schmid, Christian P R; Beck, Konstantin

    2016-07-01

    Risk equalization mechanisms mitigate insurers' incentives to practice risk selection. On the other hand, incentives to limit healthcare spending can be distorted by risk equalization, particularly when risk equalization payments depend on realized costs instead of expected costs. In addition, cost based risk equalization mechanisms may incentivize health insurers to distort the allocation of resources among different services. The incentives to practice risk selection, to limit healthcare spending, and to distort the allocation of resources can be measured by fit, power, and balance, respectively. We apply these three measures to evaluate the risk adjustment mechanism in Switzerland. Our results suggest that it performs very well in terms of power but rather poorly in terms of fit. The latter indicates that risk selection might be a severe problem. We show that re-insurance can reduce this problem while power remains on a high level. In addition, we provide evidence that the Swiss risk equalization mechanism does not lead to imbalances across different services.

  10. CENTER FOR PULSED POWER DRIVEN HIGH ENERGY DENSITY PLASMA STUDIES

    Energy Technology Data Exchange (ETDEWEB)

    Professor Bruce R. Kusse; Professor David A. Hammer

    2007-04-18

    This annual report summarizes the activities of the Cornell Center for Pulsed-Power-Driven High-Energy-Density Plasma Studies, for the 12-month period October 1, 2005-September 30, 2006. This period corresponds to the first year of the two-year extension (awarded in October, 2005) to the original 3-year NNSA/DOE Cooperative Agreement with Cornell, DE-FC03-02NA00057. As such, the period covered in this report also corresponds to the fourth year of the (now) 5-year term of the Cooperative Agreement. The participants, in addition to Cornell University, include Imperial College, London (IC), the University of Nevada, Reno (UNR), the University of Rochester (UR), the Weizmann Institute of Science (WSI), and the P.N. Lebedev Physical Institute (LPI), Moscow. A listing of all faculty, technical staff and students, both graduate and undergraduate, who participated in Center research activities during the year in question is given in Appendix A.

  11. Neutral gas density depletion due to neutral gas heating and pressure balance in an inductively coupled plasma

    Science.gov (United States)

    Shimada, Masashi; Tynan, George R.; Cattolica, Robert

    2007-02-01

    The spatial distribution of neutral gas temperature and total pressure have been measured for pure N2, He/5%N2 and Ar/5%N2 in an inductively coupled plasma (ICP) reactor, and a significant rise in the neutral gas temperature has been observed. When thermal transpiration is used to correct total pressure measurements, the total pressure remains constant regardless of the plasma condition. Neutral pressure is depleted due to the pressure balance when the plasma pressure (mainly electron pressure) becomes comparable to the neutral pressure in high density plasma. Since the neutral gas follows the ideal gas law, the neutral gas density profile was obtained from the neutral gas temperature and the corrected neutral pressure measurements. The results show that the neutral gas density at the centre of the plasma chamber (factor of 2-4 ×) decreases significantly in the presence of a plasma discharge. Significant spatial variation in neutral gas uniformity occurs in such plasmas due to neutral gas heating and pressure balance.

  12. Study on the RF power necessary to ignite plasma for the ICP test facility at HUST

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Haikun [School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan (China); State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan (China); Li, Dong; Wang, Chenre; Li, Xiaofei; Chen, Dezhi; Liu, Kaifeng; Zhou, Chi; Pan, Ruimin [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan (China)

    2015-10-15

    An Radio-Frequency (RF) Inductively Coupled Plasma (ICP) ion source test facility has been successfully developed at Huazhong University of Science and Technology (HUST). As part of a study on hydrogen plasma, the influence of three main operation parameters on the RF power necessary to ignite plasma was investigated. At 6 Pa, the RF power necessary to ignite plasma influenced little by the filament heating current from 5 A to 9 A. The RF power necessary to ignite plasma increased rapidly with the operation pressure decreasing from 8 Pa to 4 Pa. The RF power necessary to ignite plasma decreased with the number of coil turns from 6 to 10. During the experiments, plasma was produced with the electron density of the order of 10{sup 16}m{sup -3} and the electron temperature of around 4 eV. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Microwave power coupling with electron cyclotron resonance plasma using Langmuir probe

    Indian Academy of Sciences (India)

    S K Jain; V K Senecha; P A Naik; P R Hannurkar; S C Joshi

    2013-07-01

    Electron cyclotron resonance (ECR) plasma was produced at 2.45 GHz using 200 – 750 W microwave power. The plasma was produced from argon gas at a pressure of 2 × 10−4 mbar. Three water-cooled solenoid coils were used to satisfy the ECR resonant conditions inside the plasma chamber. The basic parameters of plasma, such as electron density, electron temperature, floating potential, and plasma potential, were evaluated using the current–voltage curve using a Langmuir probe. The effect of microwave power coupling to the plasma was studied by varying the microwave power. It was observed that the optimum coupling to the plasma was obtained for ∼ 600 W microwave power with an average electron density of ∼ 6 × 1011 cm−3 and average electron temperature of ∼ 9 eV.

  14. Balancing Europe's wind power output through spatial deployment informed by weather regimes.

    Science.gov (United States)

    Grams, Christian M; Beerli, Remo; Pfenninger, Stefan; Staffell, Iain; Wernli, Heini

    2017-08-01

    As wind and solar power provide a growing share of Europe's electricity1, understanding and accommodating their variability on multiple timescales remains a critical problem. On weekly timescales, variability is related to long-lasting weather conditions, called weather regimes2-5, which can cause lulls with a loss of wind power across neighbouring countries6. Here we show that weather regimes provide a meteorological explanation for multi-day fluctuations in Europe's wind power and can help guide new deployment pathways which minimise this variability. Mean generation during different regimes currently ranges from 22 GW to 44 GW and is expected to triple by 2030 with current planning strategies. However, balancing future wind capacity across regions with contrasting inter-regime behaviour - specifically deploying in the Balkans instead of the North Sea - would almost eliminate these output variations, maintain mean generation, and increase fleet-wide minimum output. Solar photovoltaics could balance low-wind regimes locally, but only by expanding current capacity tenfold. New deployment strategies based on an understanding of continent-scale wind patterns and pan-European collaboration could enable a high share of wind energy whilst minimising the negative impacts of output variability.

  15. Plasma characteristics in inductively and capacitively coupled hybrid source using single RF power

    Science.gov (United States)

    Kim, Kwan-Yong; Lee, Moo-Young; Kim, Tae-Woo; Kim, Ju-Ho; Chung, Chin-Wook

    2016-09-01

    Parallel combined inductively coupled plasma (ICP) and capacitively coupled plasma (CCP) using single RF generator was proposed to linear control of the plasma density with RF power. In the case of ICP, linear control of the plasma density is difficult because there is a density jump up due to E to H transition. Although the plasma density of CCP changes linearly with power, the density is lower than that of ICP due to high ion energy loss at the substrate. In our hybrid source, the single RF power generator was connected to electrode and antenna, and the variable capacitor was installed between the antenna and the power generator to control the current flowing through the antenna and the electrode. By adjusting the current ratio between the antenna and the electrode, linear characteristic of plasma density with RF power is achieved.

  16. Alfacalcidol improves muscle power, muscle function and balance in elderly patients with reduced bone mass.

    Science.gov (United States)

    Schacht, E; Ringe, Johann D

    2012-01-01

    We investigated the effect of daily therapy with 1 mcg alfacalcidol (Doss(®)-TEVA/AWD-pharma) on muscle power, muscle function, balance performance and fear of falls in an open, multi-centered, uncontrolled, prospective study on a cohort of patients with reduced bone mass. Among the 2,097 participants, 87.1% were post-menopausal women and 12.9% were men. Mean age was 74.8 years and mean body mass index (BMI) 26.3 kg/m². A total of 75.3% of the study population had osteoporosis, 81% a diagnosis of "increased risk of falls" and 70.1% had a creatinine clearance (CrCl) of muscle function and muscle power tests at onset and after 3 and 6 months: the timed up and go test (TUG) and the chair rising test (CRT). At baseline and after 6 months, participants performed the tandem gait test (TGT) and filled out a questionnaire evaluating fear of falling. Successful performance in the muscle tests is associated with a significantly lower risk of falls and non-vertebral fractures in elderly patients (successful test performance: TUG ≤ 10 s (sec), CRT ≤ 10 s, TGT ≥ 8 steps). A significant improvement in the performance of the two muscle tests was proved already after 3 months of treatment with alfacalcidol and further increased by the end of the therapeutic intervention. There were significant increases in the number of participants able to successfully perform the tests: 24.6% at baseline and 46.3% at the end of trial for the TUG (P muscle power, muscle function and balance and reduces fear of falls. The significant improvement in the three muscle and balance tests and fear of falls may have a preventative effect on falls and fractures. We suggest that the quantitative risk tests used in this study could be reliable surrogate parameters for the risk of falls and fractures in elderly patients.

  17. Sterilizing tissue-materials using pulsed power plasma.

    Science.gov (United States)

    Heidarkhan Tehrani, Ashkan; Davari, Pooya; Singh, Sanjleena; Oloyede, Adekunle

    2014-04-01

    This paper investigates the potential of pulsed power to sterilize hard and soft tissues and its impact on their physico-mechanical properties. It hypothesizes that pulsed plasma can sterilize both vascular and avascular tissues and the transitive layers in between without deleterious effects on their functional characteristics. Cartilage/bone laminate was chosen as a model to demonstrate the concept, treated at low temperature, at atmospheric pressure, in short durations and in buffered environment using a purposed-built pulsed power unit. Input voltage and time of exposure were assigned as controlling parameters in a full factorial design of experiment to determine physical and mechanical alteration pre- and post-treatment. The results demonstrated that, discharges of 11 kV sterilized samples in 45 s, reducing intrinsic elastic modules from 1.4 ± 0.9 to 0.9 ± 0.6 MPa. There was a decrease of 14.1 % in stiffness and 27.8 % in elastic-strain energy for the top quartile. Mechanical impairment was directly proportional to input voltage (P value connective tissues with varying level of loss in mechanical robustness which we argue to be acceptable in certain medical and tissue engineering application.

  18. The European system and the Egyptian question 1827-1841 : a study in the theory of balance of power

    OpenAIRE

    Abd El Sattar El Badri, Mohammed

    1996-01-01

    Ankara : The Department of International Relations and Institute of Economics and Social Sciences, Bilkent Univ., 1996. Thesis (Ph.D.) -- Bilkent University, 1996. Includes bibliographical references leaves 289-295. This work aims at explaining the events of the Egyptian Question through the tools of balance of power theory. It is the main hypothesis of this work that the Egyptian Question affected the balance of power in Europe, i.e. Equilibrium, and therefore, was subjecte...

  19. Power Control and Monitoring Requirements for Thermal Vacuum/Thermal Balance Testing of the MAP Observatory

    Science.gov (United States)

    Johnson, Chris; Hinkle, R. Kenneth (Technical Monitor)

    2002-01-01

    The specific heater control requirements for the thermal vacuum and thermal balance testing of the Microwave Anisotropy Probe (MAP) Observatory at the Goddard Space Flight Center (GSFC) in Greenbelt, Maryland are described. The testing was conducted in the 10m wide x 18.3m high Space Environment Simulator (SES) Thermal Vacuum Facility. The MAP thermal testing required accurate quantification of spacecraft and fixture power levels while minimizing heater electrical emissions. The special requirements of the MAP test necessitated construction of five (5) new heater racks.

  20. High Performance Plasma Channel Insulators for High Power Hall Thrusters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA missions for planetary exploration require high power, long-life Hall thrusters. However, thruster power and lifetime are limited by the erosion of plasma...

  1. High Performance Plasma Channel Insulators for High Power Hall Thrusters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA missions for planetary exploration require high power, long-life Hall thrusters. However, thruster power and lifetime are limited by the erosion of plasma...

  2. Large scale exchange of balancing power between Norway and Europe: analysis of impacts

    Energy Technology Data Exchange (ETDEWEB)

    Graabak, Ingeborg; Skjelbred, Hans Ivar

    2012-07-01

    This report is from at study in Centre for environmental design of renewable energy (CEDREN). (The objective of the analysis is to show the impacts on the European power system if Norwegian hydropower is used for large-scale balancing. A special focus in on possible reductions of the CO{sub 2} emissions. A scenario methodology is used to explore different future developments of the power systems. The analysis is performed by the EMPS-model. All expected impacts on the European power system where observed: the Norwegian hydro power system worked as a pump-storage, the surplus in the production, the rationing of the demand and the CO{sub 2} emissions from the European power production were reduced. However, this report must mainly be regarded as preliminary analysis of the impacts of Norway as a 'green battery' for Europe. The work has given increased insight in necessary improvements in the design of the cases for analysis, the use og the EMPS as well as the implementation of the model before it is possible to finally quantify the impacts. The work will be brought further in other projects. (Author)

  3. A careful balance: multinational perspectives on culture, gender, and power in marriage and family therapy practice.

    Science.gov (United States)

    Keeling, Margaret L; Piercy, Fred P

    2007-10-01

    In this study, we examined how marriage and family therapists from various countries and diverse cultural backgrounds address the intersection of gender, power, and culture in therapy. Twenty participants from 15 countries responded to an Internet survey that included several hypothetical, clinical vignettes not associated with any one particular culture or nationality. Participants selected a vignette based on its similarity to clinical situations they face in practice within their cultural contexts, and provided information about their conceptualizations of gender, culture, and power, along with treatment recommendations. We analyzed data using analytic induction and constant comparison methods. Results indicate the careful balance with which the participants work to engage clients in therapy, respect cultural values and practices, and promote equitable gender relationships.

  4. Comparative analysis of hourly and dynamic power balancing models for validating future energy scenarios

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan R.; Heussen, Kai; Østergaard, Poul Alberg

    2011-01-01

    Energy system analyses on the basis of fast and simple tools have proven particularly useful for interdisciplinary planning projects with frequent iterations and re-evaluation of alternative scenarios. As such, the tool “EnergyPLAN” is used for hourly balanced and spatially aggregate annual......, the model is verified on the basis of the existing energy mix on Bornholm as an islanded energy system. Future energy scenarios for the year 2030 are analysed to study a feasible technology mix for a higher share of wind power. Finally, the results of the hourly simulations are compared to dynamic frequency...... simulations incorporating the Vehicle-to-grid technology. The results indicate how the EnergyPLAN model may be improved in terms of intra-hour variability, stability and ancillary services to achieve a better reflection of energy and power capacity requirements....

  5. Effect of seawater immersion on plasma osmotic pressure and electrolyte balance following open chest trauma

    Institute of Scientific and Technical Information of China (English)

    李辉; 鹿尔驯; 虞积耀; 王大鹏; 马聪

    2002-01-01

    To explore the effect of seawater immersion on serum osmotic pressure and electrolytes balance following chest trauma in dogs. Methods: Twenty-five healthy adult dogs were used in the experiment. A canine model of right open pneumothorax was established by chest puncturing on all animals. Animals were divided into three groups: a control group (n = 10) with chest trauma without any immersion;a seawater group ( n = 10) immersed in seawater after chest trauma and a normal saline group ( n = 5 ) immersed in normal saline solution following chest trauma. Blood samples were taken at different time intervals to determine plasma osmotic pressure and electrolytes. The hemodynamic changes were also recorded. Results: Mortality in the seawater group was much higher than that of the control group and the normal saline group. The mean survival time in the seawater group lasted only 45 minutes, while in the control group and the normal saline group the average survival time was more than 4 hours (P < 0.01 ). One of the most important causes of death was hypernatremia and high osmolality. Severe electrolytes imbalance was observed in seawater group.Hypernatremia and high osmolality were the most significant factors of high mortality in the seawater group. Conclusions: Seawater immersion after chest trauma appears to be associated with severe electrolyte imbalance as well as high osmotic pressure, These may be the risk factors leading to fatal outcome.

  6. Model Predictive Controlled Active NPC Inverter for Voltage Stress Balancing Among the Semiconductor Power Switches

    Science.gov (United States)

    Parvez Akter, Md.; Dah-Chuan Lu, Dylan

    2017-07-01

    This paper presents a model predictive controlled three-level three-phase active neutral-point-clamped (ANPC) inverter for distributing the voltage stress among the semiconductor power switches as well as balancing the neutral-point voltage. The model predictive control (MPC) concept uses the discrete variables and effectively operates the ANPC inverter by avoiding any linear controller or modulation techniques. A 4.0 kW three-level three-phase ANPC inverter is developed in the MATLAB/Simulink environment to verify the effectiveness of the proposed MPC scheme. The results confirm that the proposed model predictive controlled ANPC inverter equally distributes the voltage across all the semiconductor power switches and provides lowest THD (0.99%) compared with the traditional NPC inverter. Moreover, the neutral-point voltage balancing is accurately maintained by the proposed MPC algorithm. Furthermore, this MPC concept shows the robustness capability against the parameter uncertainties of the system which is also analyzed by MATLAB/Simulink.

  7. Using plasma-fuel systems at Eurasian coal-fired thermal power stations

    Science.gov (United States)

    Karpenko, E. I.; Karpenko, Yu. E.; Messerle, V. E.; Ustimenko, A. B.

    2009-06-01

    The development of plasma technology for igniting solid fuels at coal-fired thermal power stations in Russia, Kazakhstan, China, and other Eurasian countries is briefly reviewed. Basic layouts and technical and economic characteristics of plasma-fuel systems installed in different coal-fired boiles are considered together with some results from using these systems at coal-fired thermal power stations.

  8. Using plasma-fuel systems at Eurasian coal-fired thermal power stations

    Energy Technology Data Exchange (ETDEWEB)

    E.I. Karpenko; Y.E. Karpenko; V.E. Messerle; A.B. Ustimenko [RAO Unified Energy Systems of Russia, Gusinoozersk (Russian Federation). Russia Sectional Center for Plasma-Power Technologies

    2009-07-01

    The development of plasma technology for igniting solid fuels at coal-fired thermal power stations in Russia, Kazakhstan, China, and other Eurasian countries is briefly reviewed. Basic layouts and technical and economic characteristics of plasma-fuel systems installed in different coal-fired boiles are considered together with some results from using these systems at coal-fired thermal power stations.

  9. Balancing control method by dispersed generators based on H{sub {infinity}} control theory in DC power feeding system

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Kenichi; Goya, Tomonori; Senjyu, Tomonobu; Yona, Atsushi; Urasaki, Naomitsu [University of the Ryukyus, 1 Senbaru Nishihara-cho Nakagami, Okinawa 903-0213 (Japan); Funabashi, Toshihisa [Meidensha Corporation, 36-2 Nihonbashi-Hakozakicho Chuo-ku, Tokyo 103-8513 (Japan); Kim, Chul-Hwan [Sungkyunkwan University and NPT Center, Suwon City 440-746 (Korea)

    2011-01-15

    Recently, dispersed generators have been installed in distribution network to supply power to commercial facilities. Renewable energy generation contains output power fluctuations and distributed generator produces sluggish response for power demand. In order to overcome these problems, an ultra capacitor energy storage system is used for compensating the instantaneous power imbalance. However, use of a large capacity ultra capacitor energy system increases system cost. In addition, PPSs (Power Producer and Supplier) that own these generators are supposed to achieve 30-min balancing control for stable supply of electric power. This paper proposes a control system to achieve both 30-min balancing control and interconnection point power flow control by using a fuel cell and an ultra capacitor based on the H{sub {infinity}} control theory. Besides, remaining storage energy of the ultra capacitor is controlled to be constant to maintain compensation capability. Effectiveness of the proposed control system is verified by using simulation results. (author)

  10. The Plasma Simulation Code: A modern particle-in-cell code with patch-based load-balancing

    Science.gov (United States)

    Germaschewski, Kai; Fox, William; Abbott, Stephen; Ahmadi, Narges; Maynard, Kristofor; Wang, Liang; Ruhl, Hartmut; Bhattacharjee, Amitava

    2016-08-01

    This work describes the Plasma Simulation Code (PSC), an explicit, electromagnetic particle-in-cell code with support for different order particle shape functions. We review the basic components of the particle-in-cell method as well as the computational architecture of the PSC code that allows support for modular algorithms and data structure in the code. We then describe and analyze in detail a distinguishing feature of PSC: patch-based load balancing using space-filling curves which is shown to lead to major efficiency gains over unbalanced methods and a previously used simpler balancing method.

  11. Balance of the LVC plant with increase in 15 % of power; Balance de planta de la CLV con aumento del 15 % de potencia

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, J.J.; Hernandez, J.L.; Perusquia, R.; Castillo, A.; Montes, J.L. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: jjortiz@nuclear.inin.mx

    2005-07-01

    One of the tendencies in many power reactors has been to modify some operation conditions, in order to increasing the electricity generation. The Laguna Verde Nuclear power plant (CNLV) it has not been the exception and in the recent past an increment of 5% was made in the original nominal thermal power. In the face of the possibility of carrying out more modifications, a study was made in the one that one simulates an eventual increment of the power of the reactor in 15% of the original value. With this increment one carries out the balance of the plant and the thermodynamic properties were determined. With this purpose it was developed a computer tool to calculate the thermodynamic properties of the plant in several points of the power cycle, as well as to carry out energy and mass balances to determine the flows in the different extractions of steam of the turbines. The program is compared with the results to 100% and 105% of increase of power obtaining good results, for what it is concluded that the extrapolation to 115% of power increase is acceptable. (Author)

  12. Development of a PEMFC Power System with Integrated Balance of Plant

    Science.gov (United States)

    Wynne, B.; Diffenderfer, C.; Ferguson, S.; Keyser, J.; Miller, M.; Sievers, B.; Ryan, A.; Vasquez, A.

    2012-01-01

    Autonomous Underwater Vehicles (AUV s) have received increasing attention in recent years as military and commercial users look for means to maintain a mobile and persistent presence in the undersea world. Compact, neutrally buoyant power systems are needed for both small and large vehicles. Batteries are usually employed in these applications, but the energy density and therefore the mission duration are limited with current battery technology. At a certain energy or mission duration requirement, other means to get long duration power become feasible. For example, above 10 kW-hrs liquid oxygen and hydrogen have better specific energy than batteries and are preferable for energy storage as long as a compact system of about 100 W/liter is achievable to convert the chemical energy in these reactants into power. Other reactant forms are possible, such as high pressure gas, chemical hydrides or oxygen carriers, but it is essential that the power system be small and light weight. Recent fuel cell work, primarily focused on NASA applications, has developed power systems that can meet this target power density. Passive flow-through systems, using ejector driven reactant (EDR) flow, integrated into a compact balance of plant have been developed. These systems are thermally and functionally integrated in much the same way as are automotive, air breathing fuel cell systems. These systems fit into the small volumes required for AUV and future NASA applications. Designs have been developed for both a 21" diameter and a larger diameter (LD) AUV. These fuel cell systems occupy a very small portion of the overall energy system, allowing most of the system volume to be used for the reactants. The fuel cell systems have been optimized to use reactants efficiently with high stack efficiency and low parasitic losses. The resulting compact, highly efficient fuel cell system provides exceptional reactant utilization and energy density. Key design variables and supporting test data are

  13. Sensitivity of sensor-based sit-to-stand peak power to the effects of training leg strength, leg power and balance in older adults

    NARCIS (Netherlands)

    Regterschot, G Ruben H; Folkersma, Marjanne; Zhang, Wei; Baldus, Heribert; Stevens, Martin; Zijlstra, Wiebren

    2014-01-01

    Increasing leg strength, leg power and overall balance can improve mobility and reduce fall risk. Sensor-based assessment of peak power during the sit-to-stand (STS) transfer may be useful for detecting changes in mobility and fall risk. Therefore, this study investigated whether sensor-based STS pe

  14. High Power, Solid-State RF Generation for Plasma Heating

    Science.gov (United States)

    Prager, James; Ziemba, Timothy; Miller, Kenneth; Pierren, Chris

    2016-10-01

    Radio Frequency heating systems are rarely used by the small-scale validation platform experiments due to the high cost and complexity of these systems. Eagle Harbor Technologies (EHT), Inc. is developing an all-solid-state RF plasma heating system that uses EHT's nanosecond pulser technology in an inductive adder configuration to drive nonlinear transmission lines (NLTL). The system under development does not require the use of vacuum tube technology, is inherently lower cost, and is more robust than traditional high power RF heating schemes. The inductive adder can produce 0 to20 kV pulses into 50 Ohms with sub-10 ns rise times. The inductive adder has been used to drive NLTLs near 2 GHz with other frequencies to be tested in the future. EHT will present experimental results, including RF measurements with D-dot probes and capacitve voltage probes. During this program, EHT will test the system on Helicity Injected Torus at the University of Washington and the High Beta Tokamak at Columbia University.

  15. Power supply-demand balance in a Smart Grid : An information sharing model for a market mechanism

    NARCIS (Netherlands)

    Larsen, Gunn K. H.; van Foreest, Nicky D.; Scherpen, Jacquelien M. A.

    2014-01-01

    In the future, global energy balance of a Smart Grid system can be achieved by its agents deciding on their own power demand and production (locally) and the exchange of these decisions. In this paper, we develop a network model that describes how the information of power imbalance of individual age

  16. Balancing trust and power: a qualitative study of GPs perceptions and strategies for retaining patients in preventive health checks.

    Science.gov (United States)

    Broholm-Jørgensen, Marie; Guassora, Ann Dorrit; Reventlow, Susanne; Dalton, Susanne Oksbjerg; Tjørnhøj-Thomsen, Tine

    2017-03-01

    Little is known about how strategies of retaining patients are acted out by general practitioners (GPs) in the clinical encounter. With this study, we apply Grimens' (2009) analytical connection between trust and power to explore how trust and power appear in preventive health checks from the GPs' perspectives, and in what way trust and power affect and/or challenge strategies towards retaining patients without formal education. Data in this study were obtained through semi-structured interviews with GPs participating in an intervention project, as well as observations of clinical encounters. From the empirical data, we identified three dimensions of respect: respect for the patient's autonomy, respect for professional authority and respect as a mutual exchange. A balance of respect influenced trust in the relationship between GP and patients and the transfer of power in the encounter. The GPs articulated that a balance was needed in preventive health checks in order to establish trust and thus retain the patient in the clinic. One way this balance of respect was carried out was with the use of humour. To retain patients without formal education in the clinical encounter, the GPs balanced trust and power executed through three dimensions of respect. In this study, retaining patients was equivalent to maintaining a trusting relationship. A strategic use of the three dimensions of respect was applied to balance trust and power and thus build or maintain a trusting relationship with patients. KEY POINTS   Little is known about how strategies for retaining patients are acted out by GPs in preventive health checks.  •  Retaining patients requires a balance of trust and power, which is executed through three dimensions of respect by the GPs.  •  Challenges of recruiting and retaining patients in public health initiatives might be associated with the balance of respect.

  17. A new complete model of switch-mode plasma cutting power supply

    Institute of Scientific and Technical Information of China (English)

    Abdolreza Esmaeli; SUN Li(孙力); NIE Jian-hong(聂剑红)

    2004-01-01

    A complete model of switch-mode plasma cutting power supply and its simulation are developed. The full bridge isolated pulse width modulation (PWM) buck converter in continuous conduction mode (CCM) for high watt plasma power supply is approached. Reduced ripple current and improved power factor are achieved in the plasma power supply. With a PID control strategy, circuit responses become more stable and faster with low overshoot during load and current changing. The converter achieved high efficiency under 3 to 15kW load conditions.

  18. Second harmonic electromagnetic emission of a turbulent magnetized plasma driven by a powerful electron beam

    CERN Document Server

    Timofeev, I V

    2012-01-01

    The power of second harmonic electromagnetic emission is calculated for the case when strong plasma turbulence is excited by a powerful electron beam in a magnetized plasma. It is shown that the simple analytical model of strong plasma turbulence with the assumption of a constant pump power is able to explain experimentally observed bursts of electromagnetic radiation as a consequence of separate collapse events. It is also found that the electromagnetic emission power calculated for three-wave interaction processes occurring in the long-wavelength part of turbulent spectrum is in order-of-magnitude agreement with experimental results.

  19. Dynamic Balanced Scorecard for companies in the business field of power supply; Dynamic Balanced Scorecard fuer Unternehmen im Geschaeftsfeld der dezentralen Energieversorgung

    Energy Technology Data Exchange (ETDEWEB)

    Hollmann, M.; Roy, I. [Paderborn Univ. (Germany). Lehrstuhl fuer Nachhaltige Energiekonzepte

    2006-06-19

    Due to deregulation and liberalisation of the power market and due to the opting out of the nuclear energy, the decentralized power supply increasingly gains in importance in comparison to the classical power supply. Thus, the entrepreneur who wants to engage in the decentralized power supply needs a management tool for conversion and supervision his strategy. A pertinent means for this already is the Dynamic Balanced Scorecard. By means of an evaluation of a simple balanced scorecard, the entrepreneur realizes his vision and strategy in order to determine the success-critical factors. These success-critical factors are related together in a causal chain. By this, the entrepreneur can recognize, what has to be done in order to act successfully on the market, and in order to secure the success on a long-term basis. The modelling of the Dynamic balanced Scorecard enables the examination of the corporate strategy, before it is implemented in the enterprise. Thus, the entrepreneur saves time and minimizes the corporate risk.

  20. Power Absorption of High Frequency Electromagnetic Waves in a Partially Ionized Plasma Layer in Atmosphere Conditions

    Institute of Scientific and Technical Information of China (English)

    郭斌; 王晓钢

    2005-01-01

    We have studied the absorption, reflection, and transmission of electromagnetic waves in an unmagnetized uniform plasma layer covering a metal surface in atmosphere conditions.Instead of the absorption of the electromagnetic wave propagating only once in previous work on the plasma layer, a general formula of total power absorption by the plasma layer with an infinite time of reflections between the atmosphere-plasma interface and the metal surface has been derived for the first time. Effects of plasma parameters, especially the dependence of the fraction of positive ions, negative ions and electrons in plasmas on the power absorption processes are discussed. The results show that the existence of negative ions significantly reduces the power absorption of the electromagnetic wave. Absorptions of electromagnetic waves are calculated.

  1. Balancing power: A grounded theory study on partnership of academic service institutes.

    Science.gov (United States)

    Heshmati Nabavi, Fatemeh; Vanaki, Zohreh; Mohammadi, Eesa; Yazdani, Shahram

    2017-07-01

    Governments and professional organizations have called for new partnerships between health care providers and academics to improve clinical education for the benefit of both students and patients. To develop a substantive grounded theory on the process of forming academic-service partnerships in implementing clinical education, from the perspective of academic and clinical nursing staff members and managers working in Iranian settings. The participants included 15 hospital nurses, nurse managers, nurse educators, and educational managers from two central universities and clinical settings from 2009 to 2012. Data were collected through 30 in-depth, semi-structure interviews with the individual participants and then analyzed using the methodology of Strauss and Corbin's grounded theory. Utilizing "balancing power" as the core variable enabled us to integrate the concepts concerning the partnership processes between clinical and educational institutes. Three distinct and significant categories emerged to explain the process of partnership: 1) divergence, 2) conflict between educational and caring functions, and 3) creation of balance between educational and caring functions. In implementing clinical education, partnerships have been formed within a challenging context in Iran. Conflict between clinical and educational functions was the main concern of both sides of the partnership in forming a collaborative relationship, with our findings emphasizing the importance of nursing educators' role in the establishment of partnership programs.

  2. Balancing power among academic and community partners: the case of El Proyecto Bienestar.

    Science.gov (United States)

    Postma, Julie

    2008-06-01

    Balancing power among academic and community partners, addressing community-identified needs, and strengthening community capacity are ethical values unique to community-based participatory research (CBPR). Negotiation of these values in one CBPR environmental justice project was evaluated to advance the environmental and occupational health of a Hispanic agricultural community in central Washington State. Data were collected through document review and participant observation. Applied conversation and discourse analysis were used to interpret the data. Within the organization, farmworkers primarily served an advisory role. Facilitation style influenced how participants negotiated environmental justice. Research goals were advanced in the project, but no direct actions were taken to improve farmworker health. Implementing CBPR's ethical values requires a willingness to confront institutional and interpersonal challenges, and offers a vision of research that builds knowledge and strengthens communities.

  3. Instantaneous phasor method for obtaining instantaneous balanced fundamental components for power quality control and continuous diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, J.S.

    1997-07-01

    This paper introduces an instantaneous phasor method that considers three phases simultaneously. This method produces the instantaneous fundamental balanced components of the polluted voltages or currents. A figure shows three-phase voltages that contain 5% of fundamental magnitude for each order of the 3rd, 5th, 7th, 9th and the 11th harmonics, respectively. Additionally, the voltages have 5% unbalance for all voltage components. A 10% fundamental-frequency zero-sequence component, as well as a 10% fundamental-frequency negative-sequence component are also added to the phase voltages. Furthermore, certain high-frequency pulses arbitrarily given at 5% of a 35th order to represent a possible carrier frequency of power electronic circuits are also included.

  4. Prediction of Critical Power and W′ in Hypoxia: Application to Work-Balance Modelling

    Science.gov (United States)

    Townsend, Nathan E.; Nichols, David S.; Skiba, Philip F.; Racinais, Sebastien; Périard, Julien D.

    2017-01-01

    Purpose: Develop a prediction equation for critical power (CP) and work above CP (W′) in hypoxia for use in the work-balance (WBAL′) model. Methods: Nine trained male cyclists completed cycling time trials (TT; 12, 7, and 3 min) to determine CP and W′ at five altitudes (250, 1,250, 2,250, 3,250, and 4,250 m). Least squares regression was used to predict CP and W′ at altitude. A high-intensity intermittent test (HIIT) was performed at 250 and 2,250 m. Actual and predicted CP and W′ were used to compute W′ during HIIT using differential (WBALdiff′) and integral (WBALint′) forms of the WBAL′ model. Results: CP decreased at altitude (P hypoxia. This enables the application of WBAL′ modelling to training prescription and competition analysis at altitude. PMID:28386237

  5. Impact balance-of-system costs on photovoltaic electric power systems

    Energy Technology Data Exchange (ETDEWEB)

    Saha, H.; Basu, P.; Mukhopadhyay, K.

    1983-03-01

    A simple method based on the balance-of-system (BOS) costs is proposed for computing the allowable solar cell module cost and efficiency for typical applications of photovoltaic electric power systems: microirrigation and a rural electric supply. It is shown that in India the allowable module cost of cell modules with a conversion efficiency of about 5% is about U.S. $2 Wsub(p)/sup -1/ (1980) for microirrigation and about U.S. $0.8 Wsub(p)/sup -1/ for a rural electricity centre. It is further observed that relatively low BOS costs in India and similar places tend to make the allowable module cost become invariant with the efficiency, thus permitting solar cell modules of lower efficiency (5%) to become commercially viable for large-scale applications.

  6. The overnight effect of dietary energy balance on postprandial plasma free amino acid (PFAA) profiles in Japanese adult men.

    Science.gov (United States)

    Nishioka, Manabu; Imaizumi, Akira; Ando, Toshihiko; Tochikubo, Osamu

    2013-01-01

    The plasma free amino acid (PFAA) profile is affected by various nutritional conditions, such as the dietary energy balance. Regarding the clinical use of PFAA profiling, it is of concern that differences in food ingestion patterns may generate systematic errors in a plasma amino acid profile and constitute a confounding factor in assessment. In this study, the overnight impact of the dietary energy balance on the postprandial plasma amino acid profile was investigated to elucidate in particular the effects of high protein meals typical in Japanese cuisine. We conducted diet-controlled, crossover trials in eleven healthy male volunteers aged 40-61 y. They consumed either a normal meal (meal N) or high protein meal (meal H) at dinner. Forearm venous blood was collected, and plasma amino acid concentrations were measured before dinner and the next morning. We found that a high protein meal in the evening that contained 40% energy would significantly increase the PFAA concentration the next morning, even more than 12 hours after the meal. Among amino acids, the most significant difference was observed in the branched-chain amino acids (BCAAs) and in some urea-cycle related compounds. If the subject consumed the high protein diet at dinner, the PFAA profile after overnight fasting might be still affected by the meal even 12 hours after the meal, suggesting that the PFAA profile does not reflect the subject's health condition, but rather the acute effect of high protein ingestion.

  7. The overnight effect of dietary energy balance on postprandial plasma free amino acid (PFAA profiles in Japanese adult men.

    Directory of Open Access Journals (Sweden)

    Manabu Nishioka

    Full Text Available The plasma free amino acid (PFAA profile is affected by various nutritional conditions, such as the dietary energy balance. Regarding the clinical use of PFAA profiling, it is of concern that differences in food ingestion patterns may generate systematic errors in a plasma amino acid profile and constitute a confounding factor in assessment. In this study, the overnight impact of the dietary energy balance on the postprandial plasma amino acid profile was investigated to elucidate in particular the effects of high protein meals typical in Japanese cuisine. We conducted diet-controlled, crossover trials in eleven healthy male volunteers aged 40-61 y. They consumed either a normal meal (meal N or high protein meal (meal H at dinner. Forearm venous blood was collected, and plasma amino acid concentrations were measured before dinner and the next morning. We found that a high protein meal in the evening that contained 40% energy would significantly increase the PFAA concentration the next morning, even more than 12 hours after the meal. Among amino acids, the most significant difference was observed in the branched-chain amino acids (BCAAs and in some urea-cycle related compounds. If the subject consumed the high protein diet at dinner, the PFAA profile after overnight fasting might be still affected by the meal even 12 hours after the meal, suggesting that the PFAA profile does not reflect the subject's health condition, but rather the acute effect of high protein ingestion.

  8. From pulsed power to processing: Plasma initiated chemical process intensification

    NARCIS (Netherlands)

    Heesch, E.J.M. van; Yan, K.; Pemen, A.J.M.; Winands, G.J.J.; Beckers, F.J.C.M.; Hoeben, W.F.L.M.

    2012-01-01

    Smart electric power for process intensification is a challenging research field that integrates power engineering, chemistry and green technology. Pulsed power technology is offering elegant solutions. This work focuses on backgrounds of matching the power source to the process. Important items are

  9. Balancing Autonomy and Utilization of Solar Power and Battery Storage for Demand Based Microgrids.

    Energy Technology Data Exchange (ETDEWEB)

    Lawder, Matthew T.; Viswanathan, Vilayanur V.; Subramanian, Venkat R.

    2015-04-01

    The growth of intermittent solar power has developed a need for energy storage systems in order to decouple generation and supply of energy. Microgrid (MG) systems comprising of solar arrays with battery energy storage studied in this paper desire high levels of autonomy, seeking to meet desired demand at all times. Large energy storage capacity is required for high levels of autonomy, but much of this expensive capacity goes unused for a majority of the year due to seasonal fluctuations of solar generation. In this paper, a model-based study of MGs comprised of solar generation and battery storage shows the relationship between system autonomy and battery utilization applied to multiple demand cases using a single particle battery model (SPM). The SPM allows for more accurate state-of-charge and utilization estimation of the battery than previous studies of renewably powered systems that have used empirical models. The increased accuracy of battery state estimation produces a better assessment of system performance. Battery utilization will depend on the amount of variation in solar insolation as well as the type of demand required by the MG. Consumers must balance autonomy and desired battery utilization of a system within the needs of their grid.

  10. Balancing autonomy and utilization of solar power and battery storage for demand based microgrids

    Science.gov (United States)

    Lawder, Matthew T.; Viswanathan, Vilayanur; Subramanian, Venkat R.

    2015-04-01

    The growth of intermittent solar power has developed a need for energy storage systems in order to decouple generation and supply of energy. Microgrid (MG) systems comprising of solar arrays with battery energy storage studied in this paper desire high levels of autonomy, seeking to meet desired demand at all times. Large energy storage capacity is required for high levels of autonomy, but much of this expensive capacity goes unused for a majority of the year due to seasonal fluctuations of solar generation. In this paper, a model-based study of MGs comprised of solar generation and battery storage shows the relationship between system autonomy and battery utilization applied to multiple demand cases using a single particle battery model (SPM). The SPM allows for more accurate state-of-charge and utilization estimation of the battery than previous studies of renewably powered systems that have used empirical models. The increased accuracy of battery state estimation produces a better assessment of system performance. Battery utilization will depend on the amount of variation in solar insolation as well as the type of demand required by the MG. Consumers must balance autonomy and desired battery utilization of a system within the needs of their grid.

  11. Plasma Processes : Arc root dynamics in high power plasma torches – Evidence of chaotic behavior

    Indian Academy of Sciences (India)

    A K Das

    2000-11-01

    Although plasma torches have been commercially available for about 50 years, areas such as plasma gun design, process efficiency, reproducibility, plasma stability, torch lives etc. have remained mostly unattended. Recent torch developments have been focusing on the basic understanding of the plasma column and its dynamics inside the plasma torch, the interaction of plasma jet and the powders, the interaction of the plasma jet with surroundings and the impingement of the jet on the substrate. Two of the major causes of erratic and poor performance of a variety of thermal plasma processes are currently identified as the fluctuations arising out of the arc root movement on the electrodes inside the plasma torch and the fluid dynamic instabilities arising out of entrainment of the air into the plasma jet. This paper reviews the current state of understanding of these fluctuations as well as the dynamics of arc root movement in plasma torches. The work done at the author’s laboratory on studying the fluctuations in arc voltage, arc current, acoustic emissions and optical emissions are also presented. These fluctuations are observed to be chaotic and interrelated. Real time monitoring and controlling the arc instabilities through chaos characterization parameters can greatly contribute to the understanding of electrode erosion as well as improvement of plasma torch lifetime.

  12. Upper-limit power for self-guided propagation of intense lasers in underdense plasma

    Institute of Scientific and Technical Information of China (English)

    Wei-Min; Wang; Zheng-Ming; Sheng; Yu-Tong; Li; Jie; Zhang

    2013-01-01

    It is found that there is an upper-limit critical power for self-guided propagation of intense lasers in plasma in addition to the well-known lower-limit critical power set by the relativistic effect.Above this upper-limit critical power,the laser pulse experiences defocusing due to expulsion of local plasma electrons by the transverse ponderomotive force.Associated with the upper-limit power,a lower-limit critical plasma density is also found for a given laser spot size,below which self-focusing does not occur for any laser power.Both the upper-limit power and the lower-limit density are derived theoretically and verified by two-dimensional particle-in-cell simulations.The present study provides new guidance for experimental designs,where self-guided propagation of lasers is essential.

  13. Magnetic Flux Compression Using Detonation Plasma Armatures and Superconductor Stators: Integrated Propulsion and Power Applications

    Science.gov (United States)

    Litchford, Ron; Robertson, Tony; Hawk, Clark; Turner, Matt; Koelfgen, Syri

    1999-01-01

    This presentation discusses the use of magnetic flux compression for space flight applications as a propulsion and other power applications. The qualities of this technology that make it suitable for spaceflight propulsion and power, are that it has high power density, it can give multimegawatt energy bursts, and terawatt power bursts, it can produce the pulse power for low impedance dense plasma devices (e.g., pulse fusion drivers), and it can produce direct thrust. The issues of a metal vs plasma armature are discussed, and the requirements for high energy output, and fast pulse rise time requires a high speed armature. The plasma armature enables repetitive firing capabilities. The issues concerning the high temperature superconductor stator are also discussed. The concept of the radial mode pulse power generator is described. The proposed research strategy combines the use of computational modeling (i.e., magnetohydrodynamic computations, and finite element modeling) and laboratory experiments to create a demonstration device.

  14. The Redox Balance in Erythrocytes, Plasma, and Periosteum of Patients with Titanium Fixation of the Jaw

    Directory of Open Access Journals (Sweden)

    Jan Borys

    2017-06-01

    Full Text Available Titanium miniplates and screws are commonly used for fixation of jaw fractured or osteotomies. Despite the opinion of their biocompatibility, in clinical practice symptoms of chronic inflammation around the fixation develop in some patients, even many years after the application of miniplates and screws. The cause of these complications is still an unanswered question. Taking into account that oxidative stress is one of the toxic action of titanium, we have evaluated the antioxidant barrier as well as oxidative stress in the erythrocytes, plasma and periosteum covering the titanium fixation of the jaw. The study group was composed of 32 patients aged 20–30 with inserted miniplates and screws. The antioxidant defense: catalase (CAT, glutathione peroxidase (GPx, superoxide dismutase-1 (SOD1, uric acid (UA, total antioxidant capacity (TAC, as well as oxidative damage products: advanced oxidation protein products (AOPP, advanced glycation end products (AGE, dityrosine, kynurenine, N-formylkynurenine, tryptophan, malondialdehyde (MDA, 4-hydroxynonenal (4-HNE, total oxidant status (TOS, and oxidative status index (OSI were evaluated. SOD1 activity (↓37%, and tryptophan levels (↓34% showed a significant decrease while AOPP (↑25%, TOS (↑80% and OSI (↑101% were significantly elevated in maxillary periosteum of patients who underwent bimaxillary osteotomies as compared to the control group. SOD-1 (↓55%, TAC (↓58.6%, AGE (↓60% and N-formylkynurenine (↓34% was statistically reduced while AOPP (↑38%, MDA (↑29%, 4-HNE (↑114%, TOS (↑99%, and OSI (↑381% were significantly higher in the mandibular periosteum covering miniplates/screw compared with the control tissues. There were no correlations between antioxidants and oxidative stress markers in the periosteum of all patients and the blood. As exposure to the Ti6Al4V titanium alloy leads to disturbances of redox balance in the periosteum surrounding titanium implants of the maxilla

  15. Interaction of high-power microwave with air breakdown plasma at low pressure

    Science.gov (United States)

    Zhao, Pengcheng; Guo, Lixin; Shu, Panpan

    2016-09-01

    The high-power microwave breakdown at the low air pressure (about 0.01 atm) is simulated numerically using the one-dimensional model coupling Maxwell's equations with plasma fluid equations. The accuracy of the model is validated by comparing the breakdown prediction with the experimental data. We find that a diffuse plasma with a stationary front profile forms due to the large electron diffusion. Most of the incident wave energy is absorbed and reflected by the plasma when the plasma front achieves a stationary profile. The front propagation velocity remains almost unchanged with time and increases when the incident wave amplitude increases or the incident wave frequency decreases. With the incident wave frequency increasing, the maximum density of the stationary plasma front increases, while the ratio of the reflected wave power to the incident wave power remains almost unchanged. At a higher incident wave amplitude, the maximum density and reflectance become large.

  16. Generation of high-power electromagnetic radiation by a beam-driven plasma antenna

    Science.gov (United States)

    Annenkov, V. V.; Volchok, E. P.; Timofeev, I. V.

    2016-04-01

    In this paper we study how efficiently electromagnetic radiation can be generated by a relativistic electron beam with a gigawatt power level during its injection into a thin magnetized plasma. It is shown that, if the transverse beam and plasma size is compared with the radiation wavelength and the plasma density is modulated along the magnetic field, such a beam-plasma system can radiate electromagnetic waves via the antenna mechanism. We propose a theoretical model describing generation of electromagnetic waves by this plasma antenna and calculate its main radiation characteristics. In the two-dimensional case theoretical predictions on the radiation efficiency are shown to be confirmed by the results of particle-in-cell simulations, and the three-dimensional variant of this theory is used to estimate the peak power of sub-terahertz radiation that can be achieved in beam-plasma experiments in mirror traps.

  17. Norwegian power and energy balance towards the year of 2010; Norges effekt- og energibalanse frem mot aar 2010

    Energy Technology Data Exchange (ETDEWEB)

    Loekke, K.

    1996-12-31

    The present conference paper deals with the Norwegian power and energy balance towards the year of 2010 based on the rate of domestic energy consumption, development of new power plants, and international supply agreements. The efficiency of power transmission compared to the level of delivered energy in the Norwegian power grid within the period from 1975 to 1992 has increased from 83% to 91% with an equivalency of 5.5 TWh. Aspects in connection with the long-range programme are discussed. 12 figs.

  18. Dielectric function of dense plasmas, their stopping power, and sum rules.

    Science.gov (United States)

    Arkhipov, Yu V; Ashikbayeva, A B; Askaruly, A; Davletov, A E; Tkachenko, I M

    2014-11-01

    Mathematical, particularly, asymptotic properties of the random-phase approximation, Mermin approximation, and extended Mermin-type approximation of the coupled plasma dielectric function are analyzed within the method of moments. These models are generalized for two-component plasmas. Some drawbacks and advantages of the above models are pointed out. The two-component plasma stopping power is shown to be enhanced with respect to that of the electron fluid.

  19. Plasma system requirements and performance data base for the Starlite/Demo fusion power plant

    Energy Technology Data Exchange (ETDEWEB)

    Mau, T.K.; Lee, B.J. [Univ. of California, San Diego, La Jolla, CA (United States). Fusion Energy Research Program; Ehst, D.A. [Argonne National Lab., IL (United States); Jardin, S.C.; Kessel, C.E. [Princeton Plasma Physics Lab., NJ (United States)

    1995-12-31

    General plasma system requirements for the US Demo fusion power plant have been identified, taking into account factors of economics, operability and reliability. Required extrapolations from the present plasma performance database have been assessed for the Demo options in five areas of tokamak operation, namely, stability, current drive, energy confinement, heat exhaust, and ash removal, for which figures of merit have been identified.

  20. Effects of oxygen plasma treatment power on surface properties of poly(p-phenylene benzobisoxazole) fibers

    Energy Technology Data Exchange (ETDEWEB)

    Chen Ping [State Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, School of Chemical Engineering, Dalian University of Technology, Dalian 116012 (China) and Liaoning Key Laboratory of Advanced Polymer Matrix Composites Manufacturing Technology, Shenyang Institute of Aeronautical Engineering, Shenyang 110034 (China)], E-mail: chenping_898@126.com; Zhang Chengshuang; Zhang Xiangyi [State Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, School of Chemical Engineering, Dalian University of Technology, Dalian 116012 (China); Wang Baichen; Li Wei [Liaoning Key Laboratory of Advanced Polymer Matrix Composites Manufacturing Technology, Shenyang Institute of Aeronautical Engineering, Shenyang 110034 (China); Lei Qingquan [State Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, School of Chemical Engineering, Dalian University of Technology, Dalian 116012 (China)

    2008-12-30

    The effects of oxygen plasma treatment power on surface properties of poly(p-phenylene benzobisoxazole) (PBO) fibers were investigated. Surface chemical composition, surface roughness and surface morphologies of PBO fibers were analyzed by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and scanning electron microscopy (SEM), respectively. Surface free energy of the fibers was characterized by dynamic contact angle analysis (DCAA). The results indicated that the oxygen plasma treatment introduced some polar groups to PBO fiber surfaces, enhanced surface roughness and changed surface morphologies of PBO fibers by plasma etching and oxidative reactions. The polar groups and surface free energy of PBO fibers were significantly improved by the oxygen plasma treatment when the plasma treatment power was lower than 200 W. However, these two parameters degraded as the plasma treatment power went up to 300 and 400 W. PBO fibers were notably roughened by the oxygen plasma treatment. Surface morphologies of the fibers became more complicated, and surface roughness of the fibers enhanced almost linearly with the plasma treatment power increasing.

  1. Power loss of an oscillating electric dipole in a quantum plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ghaderipoor, L. [Department of Physics, Faculty of Science, University of Qom, 3716146611 (Iran, Islamic Republic of); Mehramiz, A. [Department of Physics, Faculty of Science, Imam Khomeini Int' l University, Qazvin 34149-16818 (Iran, Islamic Republic of)

    2012-12-15

    A system of linearized quantum plasma equations (quantum hydrodynamic model) has been used for investigating the dispersion equation for electrostatic waves in the plasma. Furthermore, dispersion relations and their modifications due to quantum effects are used for calculating the power loss of an oscillating electric dipole. Finally, the results are compared in quantum and classical regimes.

  2. Study of regeneration system of 300 MW power unit based on nondeaerating heat balance diagram at reduced load

    Science.gov (United States)

    Esin, S. B.; Trifonov, N. N.; Sukhorukov, Yu. G.; Yurchenko, A. Yu.; Grigor'eva, E. B.; Snegin, I. P.; Zhivykh, D. A.; Medvedkin, A. V.; Ryabich, V. A.

    2015-09-01

    More than 30 power units of thermal power stations, based on the nondeaerating heat balance diagram, successfully operate in the former Soviet Union. Most of them are power units with a power of 300 MW, equipped with HTGZ and LMZ turbines. They operate according to a variable electric load curve characterized by deep reductions when undergoing night minimums. Additional extension of the range of power unit adjustment makes it possible to maintain the dispatch load curve and obtain profit for the electric power plant. The objective of this research is to carry out estimated and experimental processing of the operating regimes of the regeneration system of steam-turbine plants within the extended adjustment range and under the conditions when the constraints on the regeneration system and its equipment are removed. Constraints concerning the heat balance diagram that reduce the power unit efficiency when extending the adjustment range have been considered. Test results are presented for the nondeaerating heat balance diagram with the HTGZ turbine. Turbine pump and feed electric pump operation was studied at a power unit load of 120-300 MW. The reliability of feed pump operation is confirmed by a stable vibratory condition and the absence of cavitation noise and vibration at a frequency that characterizes the cavitation condition, as well as by oil temperature maintenance after bearings within normal limits. Cavitation performance of pumps in the studied range of their operation has been determined. Technical solutions are proposed on providing a profitable and stable operation of regeneration systems when extending the range of adjustment of power unit load. A nondeaerating diagram of high-pressure preheater (HPP) condensate discharge to the mixer. A regeneration system has been developed and studied on the operating power unit fitted with a deaeratorless thermal circuit of the system for removing the high-pressure preheater heating steam condensate to the mixer

  3. A Performance Comparison of Stability, Load-Balancing and Power-Aware Routing Protocols for Mobile Ad Hoc Networks

    Science.gov (United States)

    2010-06-01

    and on-demand protocols like the Dynamic Source Routing (DSR) [5], Ad hoc On-demand Distance Vector ( AODV ) routing [6], Location-aided Routing (LAR...minimum residual battery power of a node in the route . MMBCR can be implemented on the top of any on-demand routing protocol like DSR, AODV and etc...Comparison of Stability, Load-Balancing and Power-Aware Routing Protocols for Mobile Ad Hoc Networks Natarajan Meghanathan1 and Leslie C. Milton2

  4. Nonequilibrium steady state in open quantum systems: Influence action, stochastic equation and power balance

    Energy Technology Data Exchange (ETDEWEB)

    Hsiang, J.-T., E-mail: cosmology@gmail.com [Center for Field Theory and Particle Physics, Fudan University, Shanghai 200433 (China); Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan (China); Hu, B.L. [Center for Field Theory and Particle Physics, Fudan University, Shanghai 200433 (China); Joint Quantum Institute and Maryland Center for Fundamental Physics, University of Maryland, College Park, MD 20742 (United States)

    2015-11-15

    The existence and uniqueness of a steady state for nonequilibrium systems (NESS) is a fundamental subject and a main theme of research in statistical mechanics for decades. For Gaussian systems, such as a chain of classical harmonic oscillators connected at each end to a heat bath, and for classical anharmonic oscillators under specified conditions, definitive answers exist in the form of proven theorems. Answering this question for quantum many-body systems poses a challenge for the present. In this work we address this issue by deriving the stochastic equations for the reduced system with self-consistent backaction from the two baths, calculating the energy flow from one bath to the chain to the other bath, and exhibiting a power balance relation in the total (chain + baths) system which testifies to the existence of a NESS in this system at late times. Its insensitivity to the initial conditions of the chain corroborates to its uniqueness. The functional method we adopt here entails the use of the influence functional, the coarse-grained and stochastic effective actions, from which one can derive the stochastic equations and calculate the average values of physical variables in open quantum systems. This involves both taking the expectation values of quantum operators of the system and the distributional averages of stochastic variables stemming from the coarse-grained environment. This method though formal in appearance is compact and complete. It can also easily accommodate perturbative techniques and diagrammatic methods from field theory. Taken all together it provides a solid platform for carrying out systematic investigations into the nonequilibrium dynamics of open quantum systems and quantum thermodynamics. -- Highlights: •Nonequilibrium steady state (NESS) for interacting quantum many-body systems. •Derivation of stochastic equations for quantum oscillator chain with two heat baths. •Explicit calculation of the energy flow from one bath to the

  5. High power impulse magnetron sputtering and related discharges: scalable plasma sources for plasma-based ion implantation and deposition

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Andre

    2009-09-01

    High power impulse magnetron sputtering (HIPIMS) and related self-sputtering techniques are reviewed from a viewpoint of plasma-based ion implantation and deposition (PBII&D). HIPIMS combines the classical, scalable sputtering technology with pulsed power, which is an elegant way of ionizing the sputtered atoms. Related approaches, such as sustained self-sputtering, are also considered. The resulting intense flux of ions to the substrate consists of a mixture of metal and gas ions when using a process gas, or of metal ions only when using `gasless? or pure self-sputtering. In many respects, processing with HIPIMS plasmas is similar to processing with filtered cathodic arc plasmas, though the former is easier to scale to large areas. Both ion implantation and etching (high bias voltage, without deposition) and thin film deposition (low bias, or bias of low duty cycle) have been demonstrated.

  6. Plasma wakefield excitation by incoherent laser pulses: a path towards high-average power laser-plasma accelerators

    CERN Document Server

    Benedetti, C; Esarey, E; Leemans, W P

    2014-01-01

    In a laser plasma accelerator (LPA), a short and intense laser pulse propagating in a plasma drives a wakefield (a plasma wave with a relativistic phase velocity) that can sustain extremely large electric fields, enabling compact accelerating structures. Potential LPA applications include compact radiation sources and high energy linear colliders. We propose and study plasma wave excitation by an incoherent combination of a large number of low energy laser pulses (i.e., without constraining the pulse phases). We show that, in spite of the incoherent nature of electromagnetic fields within the volume occupied by the pulses, the excited wakefield is regular and its amplitude is comparable or equal to that obtained using a single, coherent pulse with the same energy. These results provide a path to the next generation of LPA-based applications, where incoherently combined multiple pulses may enable high repetition rate, high average power LPAs.

  7. Plasma Outages in Pulsed, High-Power RF Hydrogen Ion Sources

    Science.gov (United States)

    Stockli, Martin; Han, Baoxi; Murray, Syd; Pennisi, Terry; Piller, Chip; Santana, Manuel; Welton, Robert

    2011-04-01

    Pulsed, high-power RF ion sources are needed to produce copious amounts of negative H-ions for high-power accelerators with charge-changing injection schemes. When increasing the RF power, the plasma inductance changes the RF resonance, which drifts away from the low-power resonance. When the RF circuit is tuned to maximize the (pulsed) plasma power, the (off-resonance) power at the beginning of the pulse is reduced. If the induced electric fields fall below the breakdown strength of the hydrogen gas, the plasma fails to develop. This can be avoided with a compromise tune and/or by increasing the inductance of the resonant circuit. However, the breakdown strength of the hydrogen gas increases with time due to the gradual decrease of the electron-rich plasma impurities, which causes plasma outages after weeks of reliable operation. In this paper we discuss the success of different mitigations that were tested and implemented to overcome this fundamental problem of pulsed, high-power RF hydrogen ion sources.

  8. Power dependence of terahertz carrier frequency in a plasma-based two-color generation process

    Science.gov (United States)

    Zhao, Ji; Zhang, Liang-Liang; Luo, Yi-Man; Wu, Tong; Zhang, Cun-Lin; Zhao, Yue-Jin

    2014-12-01

    We conduct a frequency spectrum experiment to investigate terahertz (THz) emissions from laser-induced air plasma under different laser incident powers. The frequency spectra are measured using both air-biased-coherent detection and a Michelson interferometer. The red-shift of the THz pulse carrier frequency is observed as a response to increased pump power. These phenomena are related to plasma collisions and can be explained by the plasma collision model. Based on these findings, it is apparent that the tuning of the THz carrier frequency can be achieved through regulation of the pump beam.

  9. Dependence of terahertz power from laser-produced plasma on laser intensity

    Energy Technology Data Exchange (ETDEWEB)

    Shin, J.-H.; Zhidkov, A.; Jin, Z.; Hosokai, T.; Kodama, R. [Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 565-0871 (Japan); Photon Pioneers Center, Osaka University, 2-1, Yamadaoka, Suita, Osaka 565-0871 (Japan); Japan Institute of Laser Engineering, Osaka University, 2-6 Yamadaoka (Japan)

    2012-07-11

    Power of terahertz radiation from plasma which is generated from air irradiated by coupled ({omega}, 2{omega}) femtosecond laser pulses is analyzed for high laser intensities, for which non-linear plasma effects on the pulse propagation become essential, with multidimensional particle-in-cell simulations including the self-consistent plasma kinetics. The growth rate of THz power becomes slower as the laser intensity increases. A reason of such a lowering of efficiency in THz emission is found to be ionization of air by the laser pulse, which results in poor focusing of laser pulses.

  10. Dependence of terahertz power from laser-produced plasma on laser intensity

    Science.gov (United States)

    Shin, J.-H.; Zhidkov, A.; Jin, Z.; Hosokai, T.; Kodama, R.

    2012-07-01

    Power of terahertz radiation from plasma which is generated from air irradiated by coupled (ω, 2ω) femtosecond laser pulses is analyzed for high laser intensities, for which non-linear plasma effects on the pulse propagation become essential, with multidimensional particle-in-cell simulations including the self-consistent plasma kinetics. The growth rate of THz power becomes slower as the laser intensity increases. A reason of such a lowering of efficiency in THz emission is found to be ionization of air by the laser pulse, which results in poor focusing of laser pulses.

  11. A global plasma model for reactive deposition of compound films by modulated pulsed power magnetron sputtering discharges

    Science.gov (United States)

    Zheng, B. C.; Wu, Z. L.; Wu, B.; Li, Y. G.; Lei, M. K.

    2017-05-01

    A spatially averaged, time-dependent global plasma model has been developed to describe the reactive deposition of a TiAlSiN thin film by modulated pulsed power magnetron sputtering (MPPMS) discharges in Ar/N2 mixture gas, based on the particle balance and the energy balance in the ionization region, and considering the formation and erosion of the compound at the target surface. The modeling results show that, with increasing the N2 partial pressure from 0% to 40% at a constant working pressure of 0.3 Pa, the electron temperature during the strongly ionized period increases from 4 to 7 eV and the effective power transfer coefficient, which represents the power fraction that effectively heats the electrons and maintains the discharge, increases from about 4% to 7%; with increasing the working pressure from 0.1 to 0.7 Pa at a constant N2 partial pressure of 25%, the electron temperature decreases from 10 to 4 eV and the effective power transfer coefficient decreases from 8% to 5%. Using the modeled plasma parameters to evaluate the kinetic energy of arriving ions, the ion-to-neutral flux ratio of deposited species, and the substrate heating, the variations of process parameters that increase these values lead to an enhanced adatom mobility at the target surface and an increased input energy to the substrate, corresponding to the experimental observation of surface roughness reduction, the microstructure transition from the columnar structure to the dense featureless structure, and the enhancement of phase separation. At higher N2 partial pressure or lower working pressure, the modeling results demonstrate an increase in electron temperature, which shifts the discharge balance of Ti species from Ti+ to Ti2+ and results in a higher return fraction of Ti species, corresponding to the higher Al/Ti ratio of deposited films at these conditions. The modeling results are well correlated with the experimental observation of the composition variation and the microstructure

  12. Investigating the momentum balance of a plasma pinch: An air-side stereoscopic imaging system for locating probes

    Energy Technology Data Exchange (ETDEWEB)

    Sears, Jason, E-mail: jason.sears@alum.mit.edu; Intrator, T. P.; Feng, Y.; Swan, H. O.; Klarenbeek, J.; Gao, K. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545 (United States)

    2014-10-01

    The momentum balance of a plasma pinch in the Reconnection Scaling Experiment (RSX) is examined in three dimensions using several repositionable, insertable probes. A new camera-based system described here triangulates the locations of the probe tips so that their measurements are spatially registered. The optical system locates probes to within ±1.5 mm of their absolute 3D position in the vessel and to within ±0.7 mm relative to other probes, on the order of the electron inertial length (1–2 mm)

  13. Effects of live weight adjusted feeding strategy on plasma indicators of energy balance in Holstein cows managed for extended lactation.

    Science.gov (United States)

    Gaillard, C; Vestergaard, M; Weisbjerg, M R; Sehested, J

    2016-04-01

    In early lactation, most of the dairy cows are in negative energy balance; the extent and duration depend in part on the feeding strategy. Previous studies showed an increased lactation milk yield by use of a live weight (LW) adjusted feeding strategy with a high energy diet before and a reduced energy diet after LW nadir compared with a standard diet throughout lactation. The objective of the present study was to examine how such an individualized feeding strategy affects plasma indicators of energy status. It was hypothesized that an energy-enriched diet until LW nadir will reduce the severity of the negative energy balance, and that the reduction in diet energy concentration from LW nadir will extend the negative energy balance period further. Sixty-two Holstein cows (30% first parity) were managed for 16 months extended lactation and randomly allocated to one of two feeding strategies at calving. Two partially mixed rations were used, one with a high energy density (HD) and a 50 : 50 forage : concentrate ratio, and one with a lower energy density (LD, control diet) and a 60 : 40 forage : concentrate ratio. Half of the cows were offered the HD diet until they reached at least 42 days in milk and a LW gain⩾0 kg/day based on a 5-days LW average, and were then shifted to the LD diet (strategy HD-LD). The other half of the cows were offered the LD diet throughout lactation (control strategy LD-LD). Weekly blood samples were drawn for analysis of plasma metabolites and hormones. Before the shift in diet, the HD-LD cows had higher glucose and lower beta-hydroxybutyrate and non-esterified fatty acids (NEFA) concentrations than the LD-LD cows. After the shift until 36 weeks after calving, plasma NEFA was higher in HD-LD than LD-LD cows. Insulin and insulin-like growth factor-1 were not affected by the feeding strategy. To conclude, in early lactation, the energy-enriched diet reduced the negative energy balance. Plasma NEFA was higher in HD-LD than LD-LD cows from

  14. CONSEQUENCES OF A SHIFT IN THE POWER BALANCE FOR THE MARKET OF SERVICES

    Directory of Open Access Journals (Sweden)

    Frits van den BERG

    2008-06-01

    Full Text Available This article starts with some observations on changes in the power balance between clients and suppliers in the service industry. The main forces between these changes are more information in the hands of clients (by use of internet and personal experiences and less information received by suppliers (by less contact with potential clients because of cost reduction. These changes can be translated into the replacement of a demand oriented market by a demand driven market. For suppliers of services to individuals in such a market two aspects are highly relevant. First the client will formulate his wishes in a kind of "Terms of Reference" and the supplier has to search for interesting requests. This instead of the client searching on internet or somewhere else for the best standard offer. In the second place the client will formulate his wishes often in a way that a single enterprise cannot deliver what is wanted. In order to survive chains of enterprises have to be formed. I mentioned a few of the vulnerable points of chains, points which need to have attention in the contract between the links of the chain.

  15. Balancing Power Output and Structural Fatigue of Wave Energy Converters by Means of Control Strategies

    Directory of Open Access Journals (Sweden)

    Francesco Ferri

    2014-04-01

    Full Text Available In order to reduce the cost of electricity produced by wave energy converters (WECs, the benefit of selling electricity as well as the investment costs of the structure has to be considered. This paper presents a methodology for assessing the control strategy for a WEC with respect to both energy output and structural fatigue loads. Different active and passive control strategies are implemented (proportional (P controller, proportional-integral (PI controller, proportional-integral-derivative with memory compensation (PID controller, model predictive control (MPC and maximum energy controller (MEC, and load time-series resulting from numerical simulations are used to design structural parts based on fatigue analysis using rain-flow counting, Stress-Number (SN curves and Miner’s rule. The objective of the methodology is to obtain a cost-effective WEC with a more comprehensive analysis of a WEC based on a combination of well known control strategies and standardised fatigue methods. The presented method is then applied to a particular case study, the Wavestar WEC, for a specific location in the North Sea. Results, which are based on numerical simulations, show the importance of balancing the gained power against structural fatigue. Based on a simple cost model, the PI controller is shown as a viable solution.

  16. On the diversity enhancement and power balancing of per-subcarrier antenna selection in OFDM systems

    KAUST Repository

    Park, Kihong

    2010-09-01

    In this paper, we consider multi-carrier systems with multiple transmit antennas under a power balancing constraint. Applying transmit antenna selection and discrete rate adaptive modulation using M-ary quadrature amplitude modulation (QAM) according to the channel variation per subcarrier, we develop an optimal antenna selection scheme in terms of maximum spectral efficiency where all the possible grouping to send the same information bearing signals in a group of subcarriers are searched and the groups of subcarriers to provide the frequency diversity gain are formed. In addition, we propose a suboptimal method to reduce the computational complexity of the optimal method. The suboptimal scheme consider only the subcarriers under outage and those are combined sequentially until it meets a required SNR. Numerical results show that the proposed suboptimal method with diversity combining outperforms the optimal antenna selection without diversity combining introduced in [1], especially for low SNR region and offers the spectral efficiency close to that of the optimal method with diversity combining, while maintaining lower complexity. ©2010 IEEE.

  17. Prediction of Critical Power and W' in Hypoxia: Application to Work-Balance Modelling.

    Science.gov (United States)

    Townsend, Nathan E; Nichols, David S; Skiba, Philip F; Racinais, Sebastien; Périard, Julien D

    2017-01-01

    Purpose: Develop a prediction equation for critical power (CP) and work above CP (W') in hypoxia for use in the work-balance ([Formula: see text]) model. Methods: Nine trained male cyclists completed cycling time trials (TT; 12, 7, and 3 min) to determine CP and W' at five altitudes (250, 1,250, 2,250, 3,250, and 4,250 m). Least squares regression was used to predict CP and W' at altitude. A high-intensity intermittent test (HIIT) was performed at 250 and 2,250 m. Actual and predicted CP and W' were used to compute W' during HIIT using differential ([Formula: see text]) and integral ([Formula: see text]) forms of the [Formula: see text] model. Results: CP decreased at altitude (P CP and W') on modelled [Formula: see text] at 2,250 m (P = 0.24). [Formula: see text] returned higher values than [Formula: see text] throughout HIIT (P CP and W' developed in this study are suitable for use with the [Formula: see text] model in acute hypoxia. This enables the application of [Formula: see text] modelling to training prescription and competition analysis at altitude.

  18. High-temperature coal-syngas plasma characteristics for advanced MHD power generation

    Energy Technology Data Exchange (ETDEWEB)

    Mikheev, A.V.; Kayukawa, N.; Okinaka, N.; Kamada, Y.; Yatsu, S. [Hokkaido University, Hokkaido (Japan)

    2006-03-15

    Properties of magnetohydrodynamic (MHD) plasma based on syngas (CO, H{sub 2}) combustion products were investigated experimentally with shock tube facility. The experiments were carried out under various MHD generator load and shock tube operation conditions. Important characteristics of syngas plasma such as temperature, electric field, conductivity, and total output power were directly measured and evaluated. Special attention was paid to the influence of syngas composition (CO : H{sub 2} : O{sub 2} ratio). The results show that syngas combustion can provide high plasma ionization and attainable plasma electrical conductivity has an order of 60-80 S/m at gas temperature 3100-3300 K.

  19. Study of Dynamic Features of Surface Plasma in High-Power Disk Laser Welding

    Institute of Scientific and Technical Information of China (English)

    王腾; 高向东; Katayatna SEIJI; 金小莉

    2012-01-01

    High-speed photography was used to obtain the dynamic changes in the surface plasma during a high-power disk laser welding process. A color space clustering algorithm to extract the edge information of the surface plasma region was developed in order to improve the accuracy of image processing. With a comparative analysis of the plasma features, i.e., area and height, and the characteristics of the welded seam, the relationship between the surface plasma and the stability of the laser welding process was characterized, which provides a basic understanding for the real-time monitoring of laser welding.

  20. FDTD Simulation on Power Absorption of Terahertz Electromagnetic Waves in Dense Plasma%FDTD Simulation on Power Absorption of Terahertz Electromagnetic Waves in Dense Plasma

    Institute of Scientific and Technical Information of China (English)

    奚衍斌; 刘悦

    2012-01-01

    A finite difference time domain (FDTD) method is used to numerically study the power absorption of broadband terahertz (0.1 - 1.5 THz) electromagnetic waves in a partially ionized uniform plasma layer under low pressure and atmosphere discharge conditions. The power absorption spectra are calculated numerically and the numerical results are in accordance with the analytic results. Meanwhile, the effects on the power absorption are calculated with different applied magnetic fields, collision frequencies and electron number densities, which depend strongly on those parameters. Under the dense strongly magnetized plasma conditions, the absorption gaps appear in the range of 0.3 - 0.36 THz, and are enlarged with the increasing electron number density.

  1. ANALYSIS OF THE HARMONIC LOSSES WITH ARTIFICIAL NEURAL NETWORKS IN UNBALANCED SYSTEM LOSSES USING BALANCED ELECTRIC POWER SYSTEM DATA

    Directory of Open Access Journals (Sweden)

    Aslan İNAN

    2005-01-01

    Full Text Available The losses in the power systems should be low as possible as. Saving energy instead of loses (kWh in power utilities can supply much more energy to the consumers. The lower losses the more energy is saved and thus the power system becomes more economical. In recent years, the increasing number of applications and power ratings of the devices which have nonlinear voltage-current characteristics cause voltage waveform distortion and additional losses. While evaluating losses considering harmonics will provide more contribution to obtain more accurate results. In this study, Artificial Neural Networks (ANN method has been presented to predict the harmonic losses in unbalanced power systems by using the data from balanced power system with nonlinear loads.

  2. A solar powered handheld plasma source for microbial decontamination applications

    Science.gov (United States)

    Ni, Y.; Lynch, M. J.; Modic, M.; Whalley, R. D.; Walsh, J. L.

    2016-09-01

    A fully portable atmospheric pressure air plasma system is reported to be suitable for the microbial decontamination of both surfaces and liquids. The device operates in quiescent air, and includes an integrated battery which is charged from a solar cell and weighs less than 750 g, making it highly amenable for a wide variety of applications beyond the laboratory. Using particle imaging velocimetry to visualise air flows around the device, the geometric configuration of the plasma generating electrodes was enhanced to induce a gas flow on the order of 0.5 m s-1 directed towards a sample placed downstream, thus improving the transport of plasma generated reactive species to the sample. The microbial decontamination efficiency of the system was assessed using potable water samples inoculated with common waterborne organisms Escherichia coli and Pseudomonas fluorescens. The reduction in the number of microorganisms was found to be in the range of 2-8 log and was strongly dependent on the plasma generation conditions.

  3. A 5 kA pulsed power supply for inductive and plasma loads in large volume plasma device

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, P. K., E-mail: pkumar@ipr.res.in; Singh, S. K.; Sanyasi, A. K.; Awasthi, L. M., E-mail: kushagra.lalit@gmail.com; Mattoo, S. K. [Institute for Plasma Research, Gandhinagar (India)

    2016-07-15

    This paper describes 5 kA, 12 ms pulsed power supply for inductive load of Electron Energy Filter (EEF) in large volume plasma device. The power supply is based upon the principle of rapid sourcing of energy from the capacitor bank (2.8 F/200 V) by using a static switch, comprising of ten Insulated Gate Bipolar Transistors (IGBTs). A suitable mechanism is developed to ensure equal sharing of current and uniform power distribution during the operation of these IGBTs. Safe commutation of power to the EEF is ensured by the proper optimization of its components and by the introduction of over voltage protection (>6 kV) using an indigenously designed snubber circuit. Various time sequences relevant to different actions of power supply, viz., pulse width control and repetition rate, are realized through optically isolated computer controlled interface.

  4. A 5 kA pulsed power supply for inductive and plasma loads in large volume plasma device

    Science.gov (United States)

    Srivastava, P. K.; Singh, S. K.; Sanyasi, A. K.; Awasthi, L. M.; Mattoo, S. K.

    2016-07-01

    This paper describes 5 kA, 12 ms pulsed power supply for inductive load of Electron Energy Filter (EEF) in large volume plasma device. The power supply is based upon the principle of rapid sourcing of energy from the capacitor bank (2.8 F/200 V) by using a static switch, comprising of ten Insulated Gate Bipolar Transistors (IGBTs). A suitable mechanism is developed to ensure equal sharing of current and uniform power distribution during the operation of these IGBTs. Safe commutation of power to the EEF is ensured by the proper optimization of its components and by the introduction of over voltage protection (>6 kV) using an indigenously designed snubber circuit. Various time sequences relevant to different actions of power supply, viz., pulse width control and repetition rate, are realized through optically isolated computer controlled interface.

  5. The Nonlinear Ohm's Law: Plasma Heating by Strong Electric Fields and its Effects on the Ionization Balance in Protoplanetary Disks

    CERN Document Server

    Okuzumi, Satoshi

    2014-01-01

    The MHD of protoplanetary disks crucially depends on the ionization state of the disks. Recent simulations suggest that MHD turbulence in the disks can generate a strong electric field in the local rest frame. Such a strong field can heat up plasmas and thereby change the ionization balance. To study this effect, we construct a charge reaction model that includes plasma heating by electric fields and impact ionization by heated electrons, as well as plasma accretion by dust grains. The resulting Ohm's law is nonlinear in the electric field strength. We find that the gas-phase electron abundance decreases with increasing the electric field strength when plasma accretion onto grains dominates over gas-phase recombination, because electron heating accelerates electron--grain collisions. This leads to an increase in the magnetic resistivity, and possibly to a self-regulation of the MHD turbulence. In some cases, even the electric current decreases with increasing the field strength in a certain field range. The N...

  6. Plasma-enhanced gasification of low-grade coals for compact power plants

    Science.gov (United States)

    Uhm, Han S.; Hong, Yong C.; Shin, Dong H.; Lee, Bong J.

    2011-10-01

    A high temperature of a steam torch ensures an efficient gasification of low-grade coals, which is comparable to that of high-grade coals. Therefore, the coal gasification system energized by microwaves can serve as a moderately sized power plant due to its compact and lightweight design. This plasma power plant of low-grade coals would be useful in rural or sparsely populated areas without access to a national power grid.

  7. Multiple electron cyclotron power deposition location tracking by break-in-slope analysis in TCV plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Curchod, L; Felici, F; Pochelon, A; Goodman, T P; Moret, J-M; Paley, J I [Ecole Polytechnique Federale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, Association EURATOM - Confederation Suisse, CH - 1015 Lausanne (Switzerland); Decker, J; Peysson, Y, E-mail: loic.curchod@epfl.ch [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France)

    2011-11-15

    Modulation of the amplitude of externally injected electron cyclotron (EC) power is a frequent method used to determine the radial power deposition profile in fusion plasmas. There are many tools to analyze the plasma response to the power modulations under quasi-stationary conditions. This paper focuses on the unique ability of the break-in-slope (BIS) method to retrieve a quasi-instantaneous estimate of the power deposition profile at each power step in the modulation, an outcome particularly relevant to track the power deposition location under non-stationary conditions. Here, the BIS analysis method is applied to the signals of a fast and high radial resolution wire-chamber soft x-ray camera in the Tokamak a Configuration Variable (TCV) where the plasma magnetic configuration and thus the EC resonance location are varied during the plasma discharge. As a step to validate this technique before real-time control experiments, the time-varying EC power deposition location of a single beam is successfully monitored by off-line BIS analysis. Simultaneous tracking of deposition locations of two EC beams gives promising results.

  8. Atmospheric pressure plasma jet with high-voltage power supply based on piezoelectric transformer.

    Science.gov (United States)

    Babij, Michał; Kowalski, Zbigniew W; Nitsch, Karol; Silberring, Jerzy; Gotszalk, Teodor

    2014-05-01

    The dielectric barrier discharge plasma jet, an example of the nonthermal atmospheric pressure plasma jet (APPJ), generates low-temperature plasmas that are suitable for the atomization of volatile species and can also be served as an ionization source for ambient mass and ion mobility spectrometry. A new design of APPJ for mass spectrometry has been built in our group. In these plasma sources magnetic transformers (MTs) and inductors are typically used in power supplies but they present several drawbacks that are even more evident when dealing with high-voltage normally used in APPJs. To overcome these disadvantages, high frequency generators with the absence of MT are proposed in the literature. However, in the case of miniaturized APPJs these conventional power converters, built of ferromagnetic cores and inductors or by means of LC resonant tank circuits, are not so useful as piezoelectric transformer (PT) based power converters due to bulky components and small efficiency. We made and examined a novel atmospheric pressure plasma jet with PT supplier served as ionization source for ambient mass spectrometry, and especially mobile spectrometry where miniaturization, integration of components, and clean plasma are required. The objective of this paper is to describe the concept, design, and implementation of this miniaturized piezoelectric transformer-based atmospheric pressure plasma jet.

  9. Development of a power electronics unit for the Space Station plasma contactor

    Science.gov (United States)

    Hamley, John A.; Hill, Gerald M.; Patterson, Michael J.; Saggio, Joseph, Jr.; Terdan, Fred; Mansell, Justin D.

    1994-02-01

    A hollow cathode plasma contactor has been baselined as a charge control device for the Space Station (SS) to prevent deleterious interactions of coated structural components with the ambient plasma. NASA LeRC Work Package 4 initiated the development of a plasma contactor system comprised of a Power Electronics Unit (PEU), an Expellant Management Unit (EMU), a command and data interface, and a Plasma Contactor Unit (PCU). A breadboard PEU was designed and fabricated. The breadboard PEU contains a cathode heater and discharge power supply, which were required to operate the PCU, a control and auxiliary power converter, an EMU interface, a command and telemetry interface, and a controller. The cathode heater and discharge supplies utilized a push-pull topology with a switching frequency of 20 kHz and pulse-width-modulated (PWM) control. A pulse ignition circuit derived from that used in arcjet power processors was incorporated in the discharge supply for discharge ignition. An 8088 based microcontroller was utilized in the breadboard model to provide a flexible platform for controller development with a simple command/data interface incorporating a direct connection to SS Mulitplexer/Demultiplexer (MDM) analog and digital I/O cards. Incorporating this in the flight model would eliminate the hardware and software overhead associated with a 1553 serial interface. The PEU autonomously operated the plasma contactor based on command inputs and was successfully integrated with a prototype plasma contactor unit demonstrating reliable ignition of the discharge and steady-state operation.

  10. Development of a Power Electronics Unit for the Space Station Plasma Contactor

    Science.gov (United States)

    Hamley, John A.; Hill, Gerald M.; Patterson, Michael J.; Saggio, Joseph, Jr.; Terdan, Fred; Mansell, Justin D.

    1994-01-01

    A hollow cathode plasma contactor has been baselined as a charge control device for the Space Station (SS) to prevent deleterious interactions of coated structural components with the ambient plasma. NASA LeRC Work Package 4 initiated the development of a plasma contactor system comprised of a Power Electronics Unit (PEU), an Expellant Management Unit (EMU), a command and data interface, and a Plasma Contactor Unit (PCU). A breadboard PEU was designed and fabricated. The breadboard PEU contains a cathode heater and discharge power supply, which were required to operate the PCU, a control and auxiliary power converter, an EMU interface, a command and telemetry interface, and a controller. The cathode heater and discharge supplies utilized a push-pull topology with a switching frequency of 20 kHz and pulse-width-modulated (PWM) control. A pulse ignition circuit derived from that used in arcjet power processors was incorporated in the discharge supply for discharge ignition. An 8088 based microcontroller was utilized in the breadboard model to provide a flexible platform for controller development with a simple command/data interface incorporating a direct connection to SS Mulitplexer/Demultiplexer (MDM) analog and digital I/O cards. Incorporating this in the flight model would eliminate the hardware and software overhead associated with a 1553 serial interface. The PEU autonomously operated the plasma contactor based on command inputs and was successfully integrated with a prototype plasma contactor unit demonstrating reliable ignition of the discharge and steady-state operation.

  11. Activity of 30 different cheeses on cholesterol plasma levels and Oxidative Balance Risk Index (OBRI) in a rat model.

    Science.gov (United States)

    Cornelli, Umberto; Bondiolotti, Gianpietro; Battelli, Giovanna; Zanoni, Giuseppe; Finco, Annarosa; Recchia, Martino

    2015-01-01

    Cheese is considered to increase the total cholesterol levels (CH) due to the high-saturated fat content. New models are needed to measure the relationship between cholesterol and cheese. Thirty different cheeses produced in Val Brembana, Italy ("furmai da mut", "caprino" and "stracchino"), were added to the diet of 30 groups of 4 rats. Cheeses were analyzed to differentiate the volatile organic compounds (VOCs) and the cholesterol content (Ch(f)). The body weight, CH, urine volume and oxidative balance were measured. Three new indexes in relation to CH were calculated: OI (oxidative index), PI (protective index) and OBRI (oxidative balance risk index). None of the cheeses increased CH. Some of the "furmai de mut" were significantly decreasing CH and improved the oxidative balance. Ch(f) was not affecting the CH levels in plasma. In terms of VOCs, the acetic acid content was correlated (p < 0.05) with the CH reduction and PI improvement. OBRI was reduced mainly in the "stracchino group". The model shows that some cheese can reduce significantly CH levels and improve the antioxidant capacity.

  12. On balance of power and the balance of power structure%浅谈权力制衡和我国权力制衡结构的构建

    Institute of Scientific and Technical Information of China (English)

    吴燕

    2014-01-01

    The balance of power is an important issue in the study of political science. Since ancient times, there are many political experts expressed their views on this problem.The balance of power is an important guarantee for social equity and justice, to cure the corruption fundamentally, ensure that the reform and opening up and socialist modernization, the key lies in China's political system reform is successful, and the key to success lies in whether the complete realization of contemporary China's balance of power structure.%权力制衡是政治学研究中一个重要的问题。从古至今,有很多政治学家对这个问题发表了自己的看法。权力制衡是社会公平正义的重要保证,要从根本上根治腐败,保证改革开放和社会主义现代化建设事业的顺利进行,关键在于我国政治体制改革是否成功,而成功的关键在于是否彻底实现当代中国权力制衡结构的构建。

  13. Design of the power supply system for the plasma current modulation on J-TEXT tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, M.; Shao, J.; Ma, S.X., E-mail: mashaoxiang@hust.edu.cn; Liang, X.; Yu, K.X.; Pan, Y.

    2016-10-15

    Highlights: • A modification scheme of heating field power supply system for plasma current modulation. • High-power fast control power supply with multilevel cascade circuit. • Restraining circulating current with coupled inductors in cyclic symmetric structure. - Abstract: In order to further study the influence of current modulation parameters on suppressing tearing instability, the plasma current should be modulated in a wider range. So a modification scheme is designed to improve the performance of ohmic heating power supply system on J-TEXT tokamak. A multilevel cascade circuit with carrier phase-shifted PWM technique has been proposed. Coupled inductors are connected in the form of cyclic symmetry to restrain the circulating current caused by multiple paralleled branches. The simulation proves this proposed current modulation power supply system matches output requirement and achieves good current sharing effect. Finally, a prototype is designed, and the experiment results can verify the correctness of the simulation model well.

  14. Association of GNB3 C825T polymorphism with plasma electrolyte balance and susceptibility to hypertension

    Directory of Open Access Journals (Sweden)

    Azim Nejatizadeh

    2011-01-01

    Full Text Available The role of G-protein activation in cardiovascular disorders is well-known. G-protein β3 subunit (GNB3 C825T polymorphism is associated with increased intracellular signal transduction. We investigated the role of the variant in plasma sodium and potassium concentrations and association with hypertension. 345 healthy controls and 455 patients with essential hypertension were enrolled. Plasma renin activity and aldosterone concentration were measured. The variant, typed by SNaPshot, was analyzed on an ABI Prism 3100 Genetic Analyzer and GeneScan. The TT genotype and T allele were over-represented in the patients (p < 0.001, p < 0.0001. Multiple-logistic regression disclosed that the risk of hypertension was significantly greater for TT (p < 0.0001, OR = 6.1, CI = 2.9-12.7. One-way ANOVA revealed that hypertensive T-allele carriers (CT+TT, compared to non-carriers (CC, had a greater body mass index (BMI, mean arterial pressure (MAP and PAC (p = 0.01, p = 0.01, p < 0.0001, respectively; while the patients with 825TT risk genotype showed higher plasma sodium and lower potassium (p < 0.0001, each. The results strongly emphasize, not only the role of C825T polymorphism by the induction of increased G-protein activity and enhancement of Na/h exchangers, but also the association with higher plasma sodium and lower potassium levels, high BMI and susceptibility to hypertension.

  15. Balance of power theory, implications for the U.S., Iran, Saudi Arabia, and a new arms race

    OpenAIRE

    Turner, Randall G.

    2008-01-01

    As a study in the Bush Doctrine of preventive warfare, the conflict in Iraq has been of great interest. However, the unintended consequences and the impact on regional instability also demand attention. There is a balance of power struggle taking place between Iran and Saudi Arabia which, because of Iran's nuclear ambitions, has drawn the attention of the international community and the ire of the United States. As a result, policy makers in Washington are compelled to determine a course of ...

  16. Photochemical/Microchannel Plasma Reactors Driven By High Power Vacuum Ultraviolet Lamps

    Science.gov (United States)

    Shin, Chul; Park, Sung-Jin; Eden, Gary

    2016-09-01

    Experiments are being conducted in which molecular dissociation or other chemical reactions in microchannel plasmas are accelerated by the introduction of vacuum ultraviolet photons. Initial emphasis is being placed on recently-developed Xe2 lamps that are efficient sources of 172 nm (h ν 7.2 eV) photons. Thin, flat lamps, fabricated from fused silica and having microcavity arrays internal to the lamp, have been developed by the University of Illinois and Eden Park Illumination and produce intensities above 200 mW/cm2. Integrating such lamps into a microcavity plasma reactor yields a hybrid photochemical/plasma system in which product yield and power consumption can be optimized. The selectivity of photodissociation in generating radicals and atomic fragments offers new synergies in plasma processing. Data concerning CO2 dissociation in arrays of microchannel plasmas, and the modification of this process by external 172 nm radiation, will be presented.

  17. Generation of powerful terahertz emission in a beam-driven strong plasma turbulence

    CERN Document Server

    Arzhannikov, A V

    2012-01-01

    Generation of terahertz electromagnetic radiation due to coalescence of upper-hybrid waves in the long-wavelength region of strong plasma turbulence driven by a high-current relativistic electron beam in a magnetized plasma is investigated. The width of frequency spectrum as well as angular characteristics of this radiation for various values of plasma density and turbulence energy are calculated using the simple theoretical model adequately describing beam-plasma experiments at mirror traps. It is shown that the power density of electromagnetic emission at the second harmonic of plasma frequency in the terahertz range for these laboratory experiments can reach the level of 1 ${MW/cm}^3$ with 1% conversion efficiency of beam energy losses to electromagnetic emission.

  18. The rapid nitriding of Al alloys with the controlling of plasma power density and pretreatments

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyun Jun; Moon, Kyoung Il [Korea Institute of Industrial Technology, Cheonan (Korea, Republic of); Lee, Jae Seung; Choi, Yoon [A-Tech System, Seoul (Korea, Republic of)

    2010-05-15

    The properties of AlN make this material very attractive for optical, electronic, and tribological application. Also, if the AlN could be formed on the Al surface to enhance its surface properties, Al could be applied for the lightening of machine parts. However, a dense oxide film exists on the surface of Al, which prevents the formation of the Al nitride even during plasma nitriding and plasma coating process. In this study, plasma nitriding has been tried to form an AlN layer on Al after the surface activation processes. During the plasma nitriding, the density of the nitrogen ions was amplified by means of controlling the power of the Al substrates. The film thickness, microstructural features and the mechanical properties such as hardness and wear properties of the AlN layer were examined as a function of the process parameters of pretreatment and plasma nitriding

  19. Effect of halo on high power laser pulse wake in underdense plasma

    Science.gov (United States)

    Pathak, Naveen; Zhidkov, Alexei; Masuda, Shinichi; Hosokai, Tomonao; Kodama, Ryosuke

    2016-11-01

    Strong disturbance in the wake of the laser pulses propagating in underdense plasma and consequent unstable electron acceleration by the wakefield can be provoked by pulse's halo, which always exists as a result of an imperfect optical focusing. When the power in the halo part exceeds a critical level for the self-focusing, it evolves in the plasma as an independent mode, which later gets coupled with the propagation of the central Gaussian spot of the pulse resulting in a novel instability. Here, this instability is investigated numerically via fully relativistic 3D particle-in-cell simulations and is shown to be partially suppressed by using plasma channels for pulse guiding.

  20. Dry cleaning of fluorocarbon residues by low-power electron cyclotron resonance hydrogen plasma

    CERN Document Server

    Lim, S H; Yuh, H K; Yoon Eui Joon; Lee, S I

    1988-01-01

    A low-power ( 50 W) electron cyclotron resonance hydrogen plasma cleaning process was demonstrated for the removal of fluorocarbon residue layers formed by reactive ion etching of silicon dioxide. The absence of residue layers was confirmed by in-situ reflection high energy electron diffraction and cross-sectional high resolution transmission electron microscopy. The ECR hydrogen plasma cleaning was applied to contact cleaning of a contact string structure, resulting in comparable contact resistance arising during by a conventional contact cleaning procedure. Ion-assisted chemical reaction involving reactive atomic hydrogen species generated in the plasma is attributed for the removal of fluorocarbon residue layers.

  1. Breaking symmetry in propagation of radially and azimuthally polarized high power laser pulses in underdense plasma

    Science.gov (United States)

    Pathak, Naveen; Zhidkov, Alexei; Nakanii, Nobuhiko; Masuda, Shinichi; Hosokai, Tomonao; Kodama, Ryosuke

    2016-03-01

    Propagation of relativistically intense azimuthally or radially polarized laser pulses (RPP) is demonstrated, via 3D particle-in-cell simulations, to be unstable in uniform underdense plasma. Strong breaking of the pulse symmetry occurs for RPP with power exceeding the critical one for self-focusing in transversely uniform plasma with an increment, Γ, close to the well-known Rayleigh-Taylor-like instability depending on the acceleration, α, and the modulated density gradient length, L, as Γ≈(α/L) 1 /2 . In deeper plasma channels, the instability vanishes. Electron self-injection in the pulse wake and resulting acceleration is explored.

  2. A simulation of cross-country skiing on varying terrain by using a mathematical power balance model

    Directory of Open Access Journals (Sweden)

    Moxnes JF

    2013-05-01

    Full Text Available John F Moxnes,1 Øyvind Sandbakk,2 Kjell Hausken31Department for Protection, Norwegian Defence Research Establishment, Kjeller, Norway; 2Human Movement Science Program, Norwegian University of Science and Technology, Trondheim, Norway; 3Faculty of Social Sciences, University of Stavanger, Stavanger, NorwayAbstract: The current study simulated cross-country skiing on varying terrain by using a power balance model. By applying the hypothetical inductive deductive method, we compared the simulated position along the track with actual skiing on snow, and calculated the theoretical effect of friction and air drag on skiing performance. As input values in the model, air drag and friction were estimated from the literature, whereas the model included relationships between heart rate, metabolic rate, and work rate based on the treadmill roller-ski testing of an elite cross-country skier. We verified this procedure by testing four models of metabolic rate against experimental data on the treadmill. The experimental data corresponded well with the simulations, with the best fit when work rate was increased on uphill and decreased on downhill terrain. The simulations predicted that skiing time increases by 3%–4% when either friction or air drag increases by 10%. In conclusion, the power balance model was found to be a useful tool for predicting how various factors influence racing performance in cross-country skiing.Keywords: skiing, power balance, metabolic rate, work rate, air drag, friction coefficient

  3. Plasma-based amplification and manipulation of high-power laser pulses

    Science.gov (United States)

    Lehmann, Goetz

    2016-10-01

    In the last decade the increasing availability of Tera- and Petawatt class lasers with ps to fs pulse duration has intensified the interest in the relativistic interaction between laser radiation and matter. Today laser intensities up to 1022 W/cm2 can be achieved. Most high intensity lasers today rely on amplification schemes that can only hardly be scaled to higher power levels due to material damage thresholds. An alternative approach that allows circumventing these issues is the use of plasma as an amplification medium. Langmuir or ion waves may be used as optical components, scattering the energy from a long pump pulse into a short seed pulse. Damage thresholds of solid-state materials are not only limiting the generation of high power laser light, but also its subsequent manipulation. Again, plasma can provide an alternative approach to light manipulation. We recently proposed the concept of transient plasma photonic crystals, which aims at transferring and extending the concept of photonic crystals to the realm of plasma physics in the range of optical frequencies. In my presentation I will discuss Brillouin type plasma-based laser amplifiers and show that the ion plasma waves, driven by the two laser pulses, eventually form photonic crystals. The properties and possible future applications of these plasma photonic crystals as efficient Bragg type mirrors or polarizers will be discussed.

  4. Raman backscatter as a remote laser power sensor in high-energy-density plasmas

    CERN Document Server

    Moody, J D; Divol, L; Michel, P; Robey, H F; LePape, S; Ralph, J; Ross, J S; Glenzer, S H; Kirkwood, R K; Landen, O L; MacGowan, B J; Nikroo, A; Williams, E A

    2013-01-01

    Stimulated Raman backscatter (SRS) is used as a remote sensor to quantify the instantaneous laser power after transfer from outer to inner cones that cross in a National Ignition Facility (NIF) gas-filled hohlraum plasma. By matching SRS between a shot reducing outer vs a shot reducing inner power we infer that ~half of the incident outer-cone power is transferred to inner cones, for the specific time and wavelength configuration studied. This is the first instantaneous non-disruptive measure of power transfer in an indirect drive NIF experiment using optical measurements.

  5. Strong Scattering of High Power Millimeter Waves in Tokamak Plasmas with Tearing Modes

    DEFF Research Database (Denmark)

    Westerhof, E.; Nielsen, Stefan Kragh; Oosterbeek, J.W.;

    2009-01-01

    In tokamak plasmas with a tearing mode, strong scattering of high power millimeter waves, as used for heating and noninductive current drive, is shown to occur. This new wave scattering phenomenon is shown to be related to the passage of the O point of a magnetic island through the high power...... heating beam. The density determines the detailed phasing of the scattered radiation relative to the O-point passage. The scattering power depends strongly nonlinearly on the heating beam power. ©2009 The American Physical Society...

  6. Unified study of plasma-surface interactions for space power and propulsion

    Science.gov (United States)

    Turchi, P. J.; Davis, J. F., III; Norwood, J., Jr.; Boyer, C. N.

    1985-02-01

    The efficiency and lifetime of high specific power/high specific impulse space power and propulsion devices often depend on particle and energy transport at electrodes and insulators in low temperature plasma flows. Actual measurements of particle and field distributions near solid surfaces in controlled plasma flows were studied and used to develop models for particle and energy transport. A unique advantage in such model development is the ability to vary flow conditions, surface orientation, and material properties and to compare data within a unified experimental framework, thereby allowing complicated interactions to be delineated.

  7. Wire number doubling in plasma-shell regime increases z-accelerator x-ray power

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T.W.L.; Spielman, R.B.; Chandler, G.A. [and others

    1997-11-01

    Doubling the number of tungsten wires from 120 to 240, keeping the mass fixed, increased the radiated x-ray power relative to the electrical power at the insulator stack of the z accelerator by (40{+-}20)% for 8.75- and 20-mm-radii z-pinch wire arrays. Radiation-magneto-hydrodynamic calculations suggest that the arrays were operating in the {open_quotes}plasma shell{close_quotes} regime, where the plasmas generated by the individual wires merge prior to the inward implosion of the entire array.

  8. Effect of voltage shape of electrical power supply on radiation and density of a cold atmospheric argon plasma jet

    National Research Council Canada - National Science Library

    F Sohbatzadeh; M Bagheri; S Motallebi

    2017-01-01

    In this work, we investigated generating argon cold plasma jet at atmospheric pressure based on dielectric barrier discharge configuration using three electrical power supplies of sinusoidal, pulsed...

  9. The rate and pattern of urea infusion into the rumen of wethers alters nitrogen balance and plasma ammonia.

    Science.gov (United States)

    Recavarren, M I; Milano, G D

    2014-12-01

    Changes in N balance, urinary excretion of purine derivative (PD), urea, creatinine and ammonia and plasma ammonia, glucose, urea, insulin and IGF-1 were examined in four wethers (37 ± 2.6 kg BW). The animals were fitted with permanent ruminal catheters, fed lucerne hay (9.4 MJ/day; 23 g N/day; 7 g soluble N/day, 6 equal meals/day) and treated with contrasting rates of urea infusion into the rumen: first, a continuous infusion (CT), at 3.2 mg urea-N/min for 10 days and then a discontinuous infusion (DT) at 156 mg urea-N/min for 4 min; in 6 daily doses with the meals for 7 days. N balance was calculated from pooled samples of faeces and urine. Jugular blood samples were collected before and 1.5 h after the morning meal (M1) on days CT10, DT2, DT4 and DT6. N retention decreased during DT (p = 0.01) due to a significant increase of N excretion in urine (4 g/day; p = 0.009) and faeces (1 g/day; p = 0.02). Dry matter (p < 0.001) and N digestibility in vivo (p = 0.01) decreased significantly during DT. Urinary urea and PD excretion were not altered by treatment. Significant linear (p = 0.004) and quadratic (p = 0.001) effects were observed for plasma ammonia in M1 (from 170 CT10 to 235 μm DT2 and returned to 120 μm DT6). No changes were observed in plasma glucose, urea, insulin and IGF-1. Results indicate that changes from CT to DT reduced N retention in sheep due to enhanced urinary N excretion, but it was not associated with changes in urinary urea or PD excretion; or plasma concentrations of insulin and IGF-1. As the dry matter (DM) an N digestibility could account a 0.23 of the decrease in N retention; the largest fraction of the reduction in N retention remained unexplained by the results.

  10. E→H mode transition density and power in two types of inductively coupled plasma configuration

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jian; Du, Yin-chang; Zhang, Xiao; Zheng, Zhe; Liu, Yu; Xu, Liang; Wang, Pi; Cao, Jin-xiang, E-mail: jxcao@ustc.edu.cn [Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2014-07-15

    E → H transition power and density were investigated at various argon pressures in inductively coupled plasma (ICP) in a cylindrical interlaid chamber. The transition power versus the pressure shows a minimum transition power at 4 Pa (ν/ω=1) for argon. Then the transition density hardly changes at low pressures (ν/ω≪1), but it increases clearly when argon pressure exceeds an appropriate value. In addition, both the transition power and transition density are lower in the re-entrant configuration of ICP compared with that in the cylindrical configuration of ICP. The result may be caused from the decrease of stochastic heating in the re-entrant configuration of ICP. This work is useful to understand E → H mode transition and control the transition points in real plasma processes.

  11. Enhancement of the power supply systems in RFX-mod towards 2 MA plasma current

    Energy Technology Data Exchange (ETDEWEB)

    Novello, Luca, E-mail: luca.novello@igi.cnr.it [Consorzio RFX, Euratom-ENEA Association, Padova (Italy); Zamengo, Andrea; Ferro, Alberto; Zanotto, Loris; Barp, Marco; Cavazzana, Roberto; Finotti, Claudio; Recchia, Mauro; Gaio, Elena [Consorzio RFX, Euratom-ENEA Association, Padova (Italy)

    2011-10-15

    The recent start-up improvements brought to RFX-mod have allowed increasing the plasma current in the range 1.7-1.9 MA, but still they proved to be not sufficient to routinely and reliably reach higher values of plasma current that would be very useful for the present studies on enhanced confinement. The need for higher poloidal flux variation together with the overabundant available toroidal flux has led to the study of a rearrangement of the power supply system with the aim of increasing the first at the expenses of the latter. Thanks to the flexibility of the power supply system, composed of modular thyristor converters, the rearrangement has been easily obtained and the resulting enhanced poloidal flux capability scenario described in the paper allows a two step plasma current ramp-up. In order to increase as much as possible the plasma current up to the nominal value of 2 MA it is necessary to fully exploit the thyristor converter power capability, in particular in the first ramp-up phase. In the paper a detailed verification of their maximum performance is presented. The first results obtained after power supply reconfiguration are very good, with plasma current kept constant at about 2 MA for 100 ms. The enabled operation at very high plasma current requires also an optimization of the magneto hydro dynamics (MHD) mode coil power supplies that are required to provide higher current values. Therefore a dedicated study of their control system has been worked out, which allowed understanding how to increase as much as possible the output current without losing the dynamic performance, so keeping the efficiency in the control of dominant and secondary modes, which is essential to obtain good and reproducible discharges.

  12. Coverage extension and balancing the transmitted power of the moving relay node at LTE-A cellular network.

    Science.gov (United States)

    Aldhaibani, Jaafar A; Yahya, Abid; Ahmad, R Badlishah

    2014-01-01

    The poor capacity at cell boundaries is not enough to meet the growing demand and stringent design which required high capacity and throughput irrespective of user's location in the cellular network. In this paper, we propose new schemes for an optimum fixed relay node (RN) placement in LTE-A cellular network to enhance throughput and coverage extension at cell edge region. The proposed approach mitigates interferences between all nodes and ensures optimum utilization with the optimization of transmitted power. Moreover, we proposed a new algorithm to balance the transmitted power of moving relay node (MR) over cell size and providing required SNR and throughput at the users inside vehicle along with reducing the transmitted power consumption by MR. The numerical analysis along with the simulation results indicates that an improvement in capacity for users is 40% increment at downlink transmission from cell capacity. Furthermore, the results revealed that there is saving nearly 75% from transmitted power in MR after using proposed balancing algorithm. ATDI simulator was used to verify the numerical results, which deals with real digital cartographic and standard formats for terrain.

  13. Multi-MW Closed Cycle MHD Nuclear Space Power Via Nonequilibrium He/Xe Working Plasma

    Science.gov (United States)

    Litchford, Ron J.; Harada, Nobuhiro

    2011-01-01

    Prospects for a low specific mass multi-megawatt nuclear space power plant were examined assuming closed cycle coupling of a high-temperature fission reactor with magnetohydrodynamic (MHD) energy conversion and utilization of a nonequilibrium helium/xenon frozen inert plasma (FIP). Critical evaluation of performance attributes and specific mass characteristics was based on a comprehensive systems analysis assuming a reactor operating temperature of 1800 K for a range of subsystem mass properties. Total plant efficiency was expected to be 55.2% including plasma pre-ionization power, and the effects of compressor stage number, regenerator efficiency and radiation cooler temperature on plant efficiency were assessed. Optimal specific mass characteristics were found to be dependent on overall power plant scale with 3 kg/kWe being potentially achievable at a net electrical power output of 1-MWe. This figure drops to less than 2 kg/kWe when power output exceeds 3 MWe. Key technical issues include identification of effective methods for non-equilibrium pre-ionization and achievement of frozen inert plasma conditions within the MHD generator channel. A three-phase research and development strategy is proposed encompassing Phase-I Proof of Principle Experiments, a Phase-II Subscale Power Generation Experiment, and a Phase-III Closed-Loop Prototypical Laboratory Demonstration Test.

  14. Plasma Efficiency and Losses for pulsed Xe Excimer DBDs at high Power Densities

    Science.gov (United States)

    Paravia, Mark; Meisser, Michael; Heering, Wolfgang

    2009-10-01

    The UV water disinfection for example needs efficient lamps with high power densities. Xe2^* dielectric barrier discharges (DBDs) with phosphor coating can be used due to plasma efficiencies up to 60 % at pulsed electrical power densities of 0.04 W/cm^2 [1]. The power density can be increased by pressure or (operation) frequency. However, the plasma efficiency declines with frequency. We present measurements of the radiant flux for pulsed DBDs made of fused silica as function of pressure and frequency. By calculation of optical losses the plasma efficiency is estimated to be 52 % at 0.07 W/cm^2 but decreases to 34 % at 0.8 W/cm^2. The maximum frequency is pressure dependent and limited due to change-over from homogeneous into filamented mode. In comparison we measured the gas gap voltage and internal plasma current of a pulsed planar DBD for general lighting [2]. This comparison makes it possible to explain the frequency dependence of plasma efficiency and radiant flux. Due to the high frequency the remaining charge density is increased and the discharge becomes a glow discharge. For that reason the typical peak current during ignition drops and explains the declined efficiency by glow phase losses. [4pt] [1] Beleznai, S., et al., JPhysD, 41 (2008) [0pt] [2] Paravia, M., et al., GEC, Dallas, 2008

  15. Balancing Power Absorption and Fatigue Loads in Irregular Waves for an Oscillating Surge Wave Energy Converter: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Tom, Nathan M.; Yu, Yi-Hsiang; Wright, Alan D.; Lawson, Michael

    2016-06-01

    The aim of this paper is to describe how to control the power-to-load ratio of a novel wave energy converter (WEC) in irregular waves. The novel WEC that is being developed at the National Renewable Energy Laboratory combines an oscillating surge wave energy converter (OSWEC) with control surfaces as part of the structure; however, this work only considers one fixed geometric configuration. This work extends the optimal control problem so as to not solely maximize the time-averaged power, but to also consider the power-take-off (PTO) torque and foundation forces that arise because of WEC motion. The objective function of the controller will include competing terms that force the controller to balance power capture with structural loading. Separate penalty weights were placed on the surge-foundation force and PTO torque magnitude, which allows the controller to be tuned to emphasize either power absorption or load shedding. Results of this study found that, with proper selection of penalty weights, gains in time-averaged power would exceed the gains in structural loading while minimizing the reactive power requirement.

  16. High current multicharged metal ion source using high power gyrotron heating of vacuum arc plasma.

    Science.gov (United States)

    Vodopyanov, A V; Golubev, S V; Khizhnyak, V I; Mansfeld, D A; Nikolaev, A G; Oks, E M; Savkin, K P; Vizir, A V; Yushkov, G Yu

    2008-02-01

    A high current, multi charged, metal ion source using electron heating of vacuum arc plasma by high power gyrotron radiation has been developed. The plasma is confined in a simple mirror trap with peak magnetic field in the plug up to 2.5 T, mirror ratio of 3-5, and length variable from 15 to 20 cm. Plasma formed by a cathodic vacuum arc is injected into the trap either (i) axially using a compact vacuum arc plasma gun located on axis outside the mirror trap region or (ii) radially using four plasma guns surrounding the trap at midplane. Microwave heating of the mirror-confined, vacuum arc plasma is accomplished by gyrotron microwave radiation of frequency 75 GHz, power up to 200 kW, and pulse duration up to 150 micros, leading to additional stripping of metal ions by electron impact. Pulsed beams of platinum ions with charge state up to 10+, a mean charge state over 6+, and total (all charge states) beam current of a few hundred milliamperes have been formed.

  17. Enhancing gas-phase reaction in a plasma using high intensity and high power ultrasonic acoustic waves

    DEFF Research Database (Denmark)

    2010-01-01

    is absorbed into said plasma (104), and where a sound pressure level of said generated ultrasonic high intensity and high power acoustic waves (102) is at least substantially 140 dB and where an acoustic power of said generated ultrasonic high intensity and high power acoustic waves (102); is at least......This invention relates to enhancing a gas-phase reaction in a plasma comprising: creating plasma (104) by at least one plasma source (106), and wherein that the method further comprises: generating ultrasonic high intensity and high power acoustic waves (102) having a predetermined amount...... of acoustic energy by at least one ultrasonic high intensity and high power gas-jet acoustic wave generator (101), where said ultrasonic high intensity and high power acoustic waves are directed to propagate towards said plasma (104) so that at least a part of said predetermined amount of acoustic energy...

  18. Plasma plume diagnostics of low power stationary plasma thruster (SPT-20M8) with collisional radiative model

    Science.gov (United States)

    Uttamsing Rajput, Rajendrasing; Alona, Khaustova; Loyan, Andriy V.

    2017-03-01

    Electric propulsion offers higher specific impulse compared to the chemical propulsion systems. It reduces the overall propellant mass and enables high operational lifetimes. Scientific Technological Center of Space Power and Energy (STC SPE), KhAI is involved in designing, manufacturing and testing of stationary plasma thrusters (SPT). Efforts are made to perform plasma diagnostics with corona and collisional radiative models (C-R model), as expected corona model falls short below 4 eV because of the heavy particle collisions elimination, whereas the C-R model's applicability is confirmed. Several tests are performed to analyze the electron temperature at various operational parameters of thruster like discharge voltage and mass flow rate. SPT-20M8 far and near-field plumes diagnostics are performed. Feasibility of C-R model by comparing its result to optical emission spectroscopy (OES) to investigate the electron temperature is validated with the probe measurements within the 10% of discrepancy.

  19. Ionization balance of impurities in turbulent scrape-off layer plasmas I: local ionization-recombination equilibrium

    Science.gov (United States)

    Guzman, F.; Marandet, Y.; Tamain, P.; Bufferand, H.; Ciraolo, G.; Ghendrih, Ph; Guirlet, R.; Rosato, J.; Valentinuzzi, M.

    2015-12-01

    In magnetized fusion devices, cross field impurity transport is often dominated by turbulence, in particular in the scrape-off layer. In these outer regions of the plasma, fluctuations of plasma parameters can be comparable to mean values, and the way ionization and recombination sources are treated in transport codes becomes questionnable. In fact, sources are calculated using the mean density and temperature values, with no account of fluctuations. In this work we investigate the modeling uncertainties introduced by this approximation, both qualitatively and quantitatively for the local ionization equilibrium. As a first step transport effects are neglected, and their role will be discussed in a companion paper. We show that temperature fluctuations shift the ionization balance towards lower temperatures, essentially because of the very steep temperature dependence of the ionization rate coefficients near the threshold. To reach this conclusion, a thorough analysis of the time scales involved is carried out, in order to devise a proper way of averaging over fluctuations. The effects are found to be substantial only for fairly large relative fluctuation levels for temperature, that is of the order of a few tens of percents.

  20. A Performance Comparison of Stability, Load-Balancing and Power-Aware Routing Protocols for Mobile Ad Hoc Networks

    CERN Document Server

    Meghanathan, Natarajan

    2010-01-01

    The high-level contribution of this paper is a simulation-based detailed performance comparison of three different classes of routing protocols for mobile ad hoc networks: stability-based routing, power-aware routing and load-balanced routing. We choose the Flow-Oriented Routing protocol (FORP), the traffic interference based Load Balancing Routing (LBR) protocol and Min-Max Battery Cost Routing (MMBCR) as representatives of the stability-based routing, load-balancing and power-aware routing protocols respectively. Among the three routing protocols, FORP incurs the least number of route transitions; while LBR incurs the smallest hop count and lowest end-to-end delay per data packet. Energy consumed per node is the least for MMBCR, closely followed by LBR. MMBCR is the most fair in terms of node usage and hence it incurs the largest time for first node failure. FORP tends to repeatedly use nodes lying on the stable path and hence is the most unfair of the three routing protocols and it incurs the smallest valu...

  1. Application of reflectometry power flow for magnetic field pitch angle measurements in tokamak plasmas (invited).

    Science.gov (United States)

    Gourdain, P-A; Peebles, W A

    2008-10-01

    Reflectometry has successfully demonstrated measurements of many important parameters in high temperature tokamak fusion plasmas. However, implementing such capabilities in a high-field, large plasma, such as ITER, will be a significant challenge. In ITER, the ratio of plasma size (meters) to the required reflectometry source wavelength (millimeters) is significantly larger than in existing fusion experiments. This suggests that the flow of the launched reflectometer millimeter-wave power can be realistically analyzed using three-dimensional ray tracing techniques. The analytical and numerical studies presented will highlight the fact that the group velocity (or power flow) of the launched microwaves is dependent on the direction of wave propagation relative to the internal magnetic field. It is shown that this dependence strongly modifies power flow near the cutoff layer in a manner that embeds the local magnetic field direction in the "footprint" of the power returned toward the launch antenna. It will be shown that this can potentially be utilized to locally determine the magnetic field pitch angle at the cutoff location. The resultant beam drift and distortion due to magnetic field and relativistic effects also have significant consequences on the design of reflectometry systems for large, high-field fusion experiments. These effects are discussed in the context of the upcoming ITER burning plasma experiment.

  2. Fast-projectile stopping power of quantal multicomponent strongly coupled plasmas.

    Science.gov (United States)

    Ballester, D; Tkachenko, I M

    2008-08-15

    The Bethe-Larkin formula for the fast-projectile stopping power is extended to multicomponent plasmas. The results are to contribute to the correct interpretation of the experimental data, which could permit us to test existing and future models of thermodynamic, static, and dynamic characteristics of strongly coupled Coulomb systems.

  3. Study of the general plasma characteristics of a high power multifilament ion source

    Energy Technology Data Exchange (ETDEWEB)

    Schoenberg, K.F.

    1979-09-01

    A general assessment of the steady state and time dependent plasma properties which characterize a high power multifilament ion source is presented. Steady state measurements, obtained via a pulsed electrostatic probe data acquisition system, are described. Fluctuation measurements, obtained via a broadband digital spectral analysis system, are also given.

  4. A low power miniaturized dielectric barrier discharge based atmospheric pressure plasma jet

    Science.gov (United States)

    Divya Deepak, G.; Joshi, N. K.; Pal, Dharmendra Kumar; Prakash, Ram

    2017-01-01

    In this paper, a dielectric barrier discharge plasma based atmospheric pressure plasma jet has been generated in a floating helix and floating end ring electrode configuration using argon and helium gases. This configuration is subjected to a range of supply frequencies (10-25 kHz) and supply voltages (2-6 kV) at a fixed rate of gas flow rate (i.e., 1 l/min). The electrical characterization of the plasma jet has been carried out using a high voltage probe and current transformer. The current-voltage characteristics have been analyzed, and the consumed power has been estimated at different applied combinations for optimum power consumption at maximum jet length. The obtained optimum power and jet length for argon and helium gases are 12 mW and 32 mm, and 7.7 mW and 42 mm, respectively. It is inferred that besides the electrode configurations, the discharge gas is also playing a significant role in the low power operation of the cold plasma jet at maximum jet length. The obtained results are interpreted on the basis of penning processes.

  5. Multi-Objective Reservoir Optimization Balancing Energy Generation and Firm Power

    Directory of Open Access Journals (Sweden)

    Fang-Fang Li

    2015-07-01

    Full Text Available To maximize annual power generation and to improve firm power are important but competing goals for hydropower stations. The firm power output is decisive for the installed capacity in design, and represents the reliability of the power generation when the power plant is put into operation. To improve the firm power, the whole generation process needs to be as stable as possible, while the maximization of power generation requires a rapid rise of the water level at the beginning of the storage period. Taking the minimal power output as the firm power, both the total amount and the reliability of the hydropower generation are considered simultaneously in this study. A multi-objective model to improve the comprehensive benefits of hydropower stations are established, which is optimized by Non-dominated Sorting Genetic Algorithm-II (NSGA-II. The Three Gorges Cascade Hydropower System (TGCHS is taken as the study case, and the Pareto Fronts in different search spaces are obtained. The results not only prove the effectiveness of the proposed method, but also provide operational references for the TGCHS, indicating that there is room of improvement for both the annual power generation and the firm power.

  6. Active experiments in geospace plasmas with gigawatts of RF power at HAARP

    Science.gov (United States)

    Sheerin, James

    2016-07-01

    The ionosphere provides a relatively quiescent plasma target, stable on timescales of minutes, for a whole host of active plasma experiments. The largest HF transmitter built to date is the HAARP phased-array HF transmitter near Gakona, Alaska which can deliver up to 3.6 Gigawatts (ERP) of CW RF power in the range of 2.8 - 10 MHz to the ionosphere with millisecond pointing, power modulation, and frequency agility. With an ionospheric background thermal energy in the range of only 0.1 eV, this amount of power gives access to the highest regimes of the nonlinearity (RF intensity to thermal pressure) ratio. HAARP's unique features have enabled the conduct of a number of nonlinear plasma experiments in the inter¬action region of overdense ionospheric plasma including generation of artificial aurorae, artificial ionization layers, VLF wave-particle interactions in the magnetosphere, parametric instabilities, stimulated electromagnetic emissions (SEE), strong Langmuir turbulence (SLT) and suprathermal electron acceleration. Diagnostics include the Modular UHF Ionospheric Radar (MUIR) sited at HAARP, the SuperDARN-Kodiak HF radar, spacecraft radio beacons, HF receivers to record stimulated electromagnetic emissions (SEE) and optics for optical emissions. We report on short timescale ponderomotive overshoot effects, artificial field-aligned irregularities (AFAI), the aspect angle dependence of the intensity of the HF-enhanced plasma line, and production of suprathermal electrons. Applications are made to the controlled study of fundamental nonlinear plasma processes of relevance to laboratory plasmas, ionospheric irregularities affecting spacecraft communication and navigation systems, artificial ionization mirrors, wave-particle interactions in the magnetosphere, active global magnetospheric experiments, and many more.

  7. Investigation on transmission and reflection characteristics of plasma array to 6 GHz high-power microwave

    Science.gov (United States)

    Yang, Liu; Yang, Zhongcun; Wan, Jianing; Liu, Hao

    2016-10-01

    For the safety of electronic equipment, a double-layer barrier of cylindrical plasma array was designed, and its protective performance to high-power microwave (HPM) were analyzed and the protective performance experiment was conducted. Combining the density distribution characteristic of the discharge plasma, the shielding effectiveness of the double-layer plasma on 6GHz HPM pulse was studied. The experiment results indicate that the protective effectiveness of two layers plasma array is better than that of one layer. Two layers plasma array can make the peak electric field of transmission waveform less than interference threshold of electronic equipment to achieve better protection effectiveness. Transmission attenuation of one layer and two layers plasma array to HPM can reach -6.6066dB and -24.9357dB. The results also show that for the existence of multiple reflection, even the plasma electron density is not high enough, it can realize a strong attenuation. The experiment results in this paper are of great significance in protecting against HPM and electromagnetic pulse.

  8. Hydrodynamic theory for ion structure and stopping power in quantum plasmas.

    Science.gov (United States)

    Shukla, P K; Akbari-Moghanjoughi, M

    2013-04-01

    We present a theory for the dynamical ion structure factor (DISF) and ion stopping power in an unmagnetized collisional quantum plasma with degenerate electron fluids and nondegenerate strongly correlated ion fluids. Our theory is based on the fluctuation dissipation theorem and the quantum plasma dielectric constant that is deduced from a linearized viscoelastic quantum hydrodynamical (LVQHD) model. The latter incorporates the essential physics of quantum forces, which are associated with the quantum statistical pressure, electron-exchange, and electron-correlation effects, the quantum electron recoil effect caused by the dispersion of overlapping electron wave functions that control the dynamics of degenerate electron fluids, and the viscoelastic properties of strongly correlated ion fluids. Both degenerate electrons and nondegenerate strongly correlated ions are coupled with each other via the space charge electric force. Thus, our LVQHD theory is valid for a collisional quantum plasma at atomic scales with a wide range of the ion coupling parameter, the plasma composition, and plasma number densities that are relevant for compressed plasmas in laboratories (inertial confinement fusion schemes) and in astrophysical environments (e.g., warm dense matter and the cores of white dwarf stars). It is found that quantum electron effects and viscoelastic properties of strongly correlated ions significantly affect the features of the DISF and the ion stopping power (ISP). Unlike previous theories, which have studied ion correlations in terms of the ion coupling parameter, by neglecting the essential physics of collective effects that are competing among each other, we have here developed a method to evaluate the dependence of the plasma static and dynamical features in terms of individual parameters, like the Wigner-Seitz radius, the ion atomic number, and the ion temperature. It is found that due to the complex nature of charge screening in quantum plasmas, the ion

  9. Hydrodynamic theory for ion structure and stopping power in quantum plasmas

    Science.gov (United States)

    Shukla, P. K.; Akbari-Moghanjoughi, M.

    2013-04-01

    We present a theory for the dynamical ion structure factor (DISF) and ion stopping power in an unmagnetized collisional quantum plasma with degenerate electron fluids and nondegenerate strongly correlated ion fluids. Our theory is based on the fluctuation dissipation theorem and the quantum plasma dielectric constant that is deduced from a linearized viscoelastic quantum hydrodynamical (LVQHD) model. The latter incorporates the essential physics of quantum forces, which are associated with the quantum statistical pressure, electron-exchange, and electron-correlation effects, the quantum electron recoil effect caused by the dispersion of overlapping electron wave functions that control the dynamics of degenerate electron fluids, and the viscoelastic properties of strongly correlated ion fluids. Both degenerate electrons and nondegenerate strongly correlated ions are coupled with each other via the space charge electric force. Thus, our LVQHD theory is valid for a collisional quantum plasma at atomic scales with a wide range of the ion coupling parameter, the plasma composition, and plasma number densities that are relevant for compressed plasmas in laboratories (inertial confinement fusion schemes) and in astrophysical environments (e.g., warm dense matter and the cores of white dwarf stars). It is found that quantum electron effects and viscoelastic properties of strongly correlated ions significantly affect the features of the DISF and the ion stopping power (ISP). Unlike previous theories, which have studied ion correlations in terms of the ion coupling parameter, by neglecting the essential physics of collective effects that are competing among each other, we have here developed a method to evaluate the dependence of the plasma static and dynamical features in terms of individual parameters, like the Wigner-Seitz radius, the ion atomic number, and the ion temperature. It is found that due to the complex nature of charge screening in quantum plasmas, the ion

  10. Detailed-balance power conversion limits of nanocrystal-quantum-dot solar cells in the presence of carrier multiplication

    Science.gov (United States)

    Klimov, Victor I.

    2006-09-01

    Semiconductor nanocrystals can respond to absorption of a single photon by producing multiple electron-hole pairs with extremely high efficiencies. This letter analyzes the impact of this carrier-multiplication (CM) phenomenon on power conversion limits of solar cells using detailed-balance considerations that take into account practical values of CM efficiencies measured in experimental studies. For PbSe nanocrystals that exhibit a ca. 3Eg CM threshold (Eg is the energy gap), the calculated maximum detailed-balance efficiency is 36% in the presence of CM versus 31% in the no-CM case. An increase to 42% is possible if the CM threshold is at its theoretical minimum of 2Eg.

  11. CERN LINAC4 H- Source and SPL plasma generator RF systems, RF power coupling and impedance measurements

    CERN Document Server

    Paoluzzi, M; Marques-Balula, J; Nisbet, D

    2010-01-01

    In the LINAC4 H- source and the SPL plasma generator at CERN, the plasma is heated by a 100 kW, 2 MHz RF system. Matching of the load impedance to the final amplifier is achieved with a resonant network. The system implements a servo loop for power stabilization and frequency hopping to cope with the detuning effects induced by the plasma. This paper provides a detailed description of the system, including the pulse rate increase to 50 Hz for use in the SPL plasma generator. The performances, measurements of RF power coupling, contribution of the plasma to the impedance as well as first operation are reported.

  12. Balancing the Power-to-Load Ratio for a Novel Variable Geometry Wave Energy Converter with Nonideal Power Take-Off in Regular Waves: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Tom, Nathan M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yu, Yi-Hsiang [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wright, Alan D [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-28

    This work attempts to balance power absorption against structural loading for a novel variable geometry wave energy converter. The variable geometry consists of four identical flaps that will be opened in ascending order starting with the flap closest to the seafloor and moving to the free surface. The influence of a pitch motion constraint on power absorption when utilizing a nonideal power take-off (PTO) is examined and found to reduce the losses associated with bidirectional energy flow. The power-to-load ratio is evaluated using pseudo-spectral control to determine the optimum PTO torque based on a multiterm objective function. The pseudo-spectral optimal control problem is extended to include load metrics in the objective function, which may now consist of competing terms. Separate penalty weights are attached to the surge-foundation force and PTO control torque to tune the optimizer performance to emphasize either power absorption or load shedding. PTO efficiency is not included in the objective function, but the penalty weights are utilized to limit the force and torque amplitudes, thereby reducing losses associated with bidirectional energy flow. Results from pseudo-spectral control demonstrate that shedding a portion of the available wave energy can provide greater reductions in structural loads and reactive power.

  13. Research on Two-channel Interleaved Two-stage Paralleled Buck DC-DC Converter for Plasma Cutting Power Supply

    DEFF Research Database (Denmark)

    Yang, Xi-jun; Qu, Hao; Yao, Chen

    2014-01-01

    As for high power plasma power supply, due to high efficiency and flexibility, multi-channel interleaved multi-stage paralleled Buck DC-DC Converter becomes the first choice. In the paper, two-channel interleaved two- stage paralleled Buck DC-DC Converter powered by three-phase AC power supply...

  14. High-power laser delocalization in plasmas leading to long-range beam merging

    Energy Technology Data Exchange (ETDEWEB)

    Nakatsutsumi, M.; Marques, J.R.; Antici, P.; Bourgeois, N.; Romagnani, L.; Audebert, P.; Fuchs, J. [UPMC, CEA, CNRS, LULI, Ecole Polytech, F-91128 Palaiseau (France); Nakatsutsumi, M.; Kodama, R. [Osaka Univ, Grad Sch Engn, Suita, Osaka 5650871 (Japan); Antici, P. [Univ Roma La Sapienza, Dipartimento SBAI, I-00161 Rome (Italy); Feugeas, J.L.; Nicolai, P. [Univ Bordeaux 1, CNRS, CEA, Ctr Lasers Intenses and Applicat, F-33405 Talence (France); Lin, T. [Fox Chase Canc Ctr, Philadelphia, PA 19111 (United States)

    2010-07-01

    Attraction and fusion between co-propagating light beams, mutually coherent or not, can take place in nonlinear media as a result of the beam power modifying the refractive index of the medium. In the context of high-power light beams, induced modifications of the beam patterns could potentially impact many topics, including long-range laser propagation, the study of astrophysical colliding blast waves and inertial confinement fusion. Here, through experiments and simulations, we show that in a fully ionized plasma, which is a nonlinear medium, beam merging can take place for high-power and mutually incoherent beams that are initially separated by several beam diameters. This is in contrast to the usual assumption that this type of interaction is limited to beams separated by only one beam diameter. This effect, which is orders of magnitude more significant than Kerr-like nonlinearity in gases, demonstrates the importance of potential cross-talk amongst multiple beams in plasma. (authors)

  15. Gas mixing enhanced by power modulations in atmospheric pressure microwave plasma jet

    Science.gov (United States)

    Voráč, J.; Potočňáková, L.; Synek, P.; Hnilica, J.; Kudrle, V.

    2016-04-01

    Microwave plasma jet operating in atmospheric pressure argon was power modulated by audio frequency sine envelope in the 102 W power range. Its effluent was imaged using interference filters and ICCD camera for several different phases of the modulating signal. The combination of this fast imaging with spatially resolved optical emission spectroscopy provides useful insights into the plasmachemical processes involved. Phase-resolved schlieren photography was performed to visualize the gas dynamics. The results show that for higher modulation frequencies the plasma chemistry is strongly influenced by formation of transient flow perturbation resembling a vortex during each period. The perturbation formation and speed are strongly influenced by the frequency and power variations while they depend only weakly on the working gas flow rate. From application point of view, the perturbation presence significantly broadened lateral distribution of active species, effectively increasing cross-sectional area suitable for applications.

  16. Plasma antennas driven by 5–20 kHz AC power supply

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jiansen, E-mail: 67093058@qq.com; Chen, Yuli; Sun, Yang; Wu, Huafeng; Liu, Yue; Yuan, Qiumeng [Merchant Marine College, Shanghai Maritime University, Shanghai, 201306 (China)

    2015-12-15

    The experiments described in this work were performed with the aim of introducing a new plasma antenna that was excited by a 5–20 kHz alternating current (AC) power supply, where the antenna was transformed into a U-shape. The results show that the impedance, voltage standing-wave ratio (VSWR), radiation pattern and gain characteristics of the antenna can be controlled rapidly by varying not only the discharge power, but also by varying the discharge frequency in the range from 5 to 20 kHz. When the discharge frequency is adjusted from 10 to 12 kHz, the gain is higher within a relatively broad frequency band and the switch-on time is less than 1 ms when the discharge power is less than 5 W, meaning that the plasma antenna can be turned on and off rapidly.

  17. Feedback control of plasma density and heating power for steady state operation in LHD

    Energy Technology Data Exchange (ETDEWEB)

    Kamio, Shuji, E-mail: kamio@nifs.ac.jp; Kasahara, Hiroshi; Seki, Tetsuo; Saito, Kenji; Seki, Ryosuke; Nomura, Goro; Mutoh, Takashi

    2015-12-15

    Highlights: • We upgraded a control system for steady state operation in LHD. • This system contains gas fueling system and ICRF power control system. • Automatic power boost system is also attached for stable operation. • As a result, we achieved the long pulse up to 48 min in the electron density of more than 1 × 10{sup 19} m{sup −3}. - Abstract: For steady state operation, the feedback control of plasma density and heating power system was developed in the Large Helical Device (LHD). In order to achieve a record of the long pulse discharge, stable plasma density and heating power are needed. This system contains the radio frequency (RF) heating power control, interlocks, gas fueling, automatic RF phase control, ion cyclotron range of frequency (ICRF) antenna position control, and graphical user interface (GUI). Using the density control system, the electron density was controlled to the target density and using the RF heating power control system, the RF power injection could be stable. As a result of using this system, we achieved the long pulse up to 48 min in the electron density of more than 1 × 10{sup 19} m{sup −3}. Further, the ICRF hardware experienced no critical accidents during the 17th LHD experiment campaign in 2013.

  18. Reactive power balance in a distribution network with wind farms and CHPS

    DEFF Research Database (Denmark)

    Lund, Torsten; Nielsen, John Eli; Hylle, Per

    2007-01-01

    In Denmark, a large part of the electricity is generated by wind turbines and combined heat and power plants. Most of them are connected to the distribution systems. In periods with high wind speeds, large flows of reactive power have been observed between the 150kV and the 60 kV systems. The tra...

  19. Analyze and Improve Lifetime in 3L-NPC Inverter from Power Cycle and Thermal Balance

    DEFF Research Database (Denmark)

    Chen, Quan; Chen, Zhe; Wang, Qunjing

    2014-01-01

    Three-level Neutral-point-clamped (3L-NPC) topology is becoming a realistic alternative to the conventional one in high-voltage and high-power application. Studies show that the power cycling mean time to failure (MTTF) of the semiconductor bond wire in 3L-NPC inverter system may be very short un...

  20. Vacuum Testing of a Miniaturized Switch Mode Amplifier Powering an Electrothermal Plasma Micro-Thruster

    Directory of Open Access Journals (Sweden)

    Christine Charles

    2017-08-01

    Full Text Available A structurally supportive miniaturized low-weight (≤150 g radiofrequency switch mode amplifier developed to power the small diameter Pocket Rocket electrothermal plasma micro-thruster called MiniPR is tested in vacuum conditions representative of space to demonstrate its suitability for use on nano-satellites such as “CubeSats.” Argon plasma characterization is carried out by measuring the optical emission signal seen through the plenum window vs. frequency (12.8–13.8 MHz and the plenum cavity pressure increase (indicative of thrust generation from volumetric gas heating in the plasma cavity vs. power (1–15 Watts with the amplifier operating at atmospheric pressure and a constant flow rate of 20 sccm. Vacuum testing is subsequently performed by measuring the operational frequency range of the amplifier as a function of gas flow rate. The switch mode amplifier design is finely tuned to the input impedance of the thruster (~16 pF to provide a power efficiency of 88% at the resonant frequency and a direct feed to a low-loss (~10 % impedance matching network. This system provides successful plasma coupling at 1.54 Watts for all investigated flow rates (10–130 sccm for cryogenic pumping speeds of the order of 6,000 l.s−1 and a vacuum pressure of the order of ~2 × 10−5 Torr during operation. Interestingly, the frequency bandwidth for which a plasma can be coupled increases from 0.04 to 0.4 MHz when the gas flow rate is increased, probably as a result of changes in the plasma impedance.

  1. Reactive power balance in a distribution network with wind farms and CHPS

    DEFF Research Database (Denmark)

    Lund, Torsten; Nielsen, John Eli; Hylle, Per

    2007-01-01

    In Denmark, a large part of the electricity is generated by wind turbines and combined heat and power plants. Most of them are connected to the distribution systems. In periods with high wind speeds, large flows of reactive power have been observed between the 150kV and the 60 kV systems....... The transfer of reactive power reduces the capacity of the lines, causes thermal losses and can in some cases reduce the voltage stability margin of the system. To identify the origin of the problem, an actual distribution system with a high penetration of wind power and distributed generation has been...... thoroughly investigated. Active and reactive power measurements for transformers and production units have been inserted in a detailed system model. With intervals of 15 min and a total period of over 5 months, the measured situations have been reproduced with load flow calculations. The simulations have...

  2. Increased plasma levels of zinc in obese adult females on a weight-loss program based on a hypocaloric balanced diet.

    Science.gov (United States)

    Ishikawa, Yuko; Kudo, Hideki; Kagawa, Yasuo; Sakamoto, Shinobu

    2005-01-01

    Zinc is required for many biological functions including DNA synthesis, cell division, gene expression and the activity of various enzymes in humans and animals. Zinc concentrations in the plasma and erythrocytes are lower and urinary zinc excretion and serum insulin levels are higher in subjects with obesity. The effects of a weight-loss program based on a hypocaloric balanced diet were investigated on 23 obese females, who had a body mass index of more than 25.0 and had dieted for 6 months at the Nutrition Clinic, Institute of Nutrition Sciences, Kagawa Nutrition University, Tokyo, Japan. The subjects ranged in age from 29 to 76 (54.3 +/- 13.0) years old. The hypocaloric balanced diet significantly reduced the body weight, body mass index, body fat percentage and amount of body fat with a slight lowering of blood pressure and plasma levels of triglyceride. Interestingly, the plasma concentrations of zinc were markedly enhanced at the end of the program.

  3. High-power EUV lithography sources based on gas discharges and laser-produced plasmas

    Science.gov (United States)

    Stamm, Uwe; Ahmad, Imtiaz; Balogh, Istvan; Birner, H.; Bolshukhin, D.; Brudermann, J.; Enke, S.; Flohrer, Frank; G„bel, Kai; G÷tze, S.; Hergenhan, G.; Kleinschmidt, J.'rgen; Kl÷pfel, Diethard; Korobotchko, Vladimir; Ringling, Jens; Schriever, Guido; Tran, C. D.; Ziener, C.

    2003-06-01

    Semiconductor chip manufacturers are expecting to use extreme UV lithography for production in 2009. EUV tools require high power, brilliant light sources at 13.5 nm with collector optics producing 120 W average power at entrance of the illuminator system. Today the power and lifetime of the EUV light source are considered as the most critical issue for EUV lithography. The present paper gives an update of the development status of EUV light sources at XTREME technologies, a joint venture of Lambda Physik AG, Goettingen, and Jenoptik LOS GmbH, Jena, Germany. Results on both laser produced plasma (LPP) and gas discharge produced plasma (GDPP), the two major technologies in EUV sources, are given. The LPP EUV sources use xenon-jet target systems and pulsed lasers with 400 W average power at 10 kHz developed at XTREME technologies. The maximum conversion efficiency form laser power into EUV in-band power is 0.75% into 2π solid angle. With 300 W laser average power at 3300 Hz repetition rate up to 1.5 W EUV radiation is generated at 13.5 nm. After a collector of 5 sr this corresponds to 0.6 W in intermediate focus without spectral purity filter and 0.5 W in intermediate focus with spectral purity filter. The direct generation of the EUV emitting plasma from electrical discharges is much simpler than LPP because the electrical energy has not to be converted into laser radiation before plasma excitation. XTREME technologies' Xenon GDPP EUV sources use the Z-pinch principle with efficient sliding discharge pre-ionization. The plasma pinch size and the available emission angle have been matched to the etendue of the optical system of 2-3 mm2 sr, i.e. no additional etendue related loss reduces the usable EUV power from the source. In continuous operation at 1000 Hz the GDPP sources emit 50W into 2π solid angle are obtained from the Z-pinch sources. Spatial and temporal emission stability of the EUV sources is in the range of a few percent. Debris shields for EUV sources

  4. Numerical simulation for the influence of injected laser power on plasma drag reduction

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Z; Fang, J [Department of Postgraduates, Academy of Equipment Command and Technology, 3380 Post box, Huairou Beijing 101416 (China); Dou, Z G; Huang, H, E-mail: liuzhun0@gmail.com [Department of Basic Theories, Academy of Equipment Command and Technology, 3380 Post box, Huairou Beijing 101416 (China)

    2011-02-01

    Laser plasma drag reduction is a new method to reduce the wave drag of hypersonic flight. Inject laser power is an important parameter. An appropriate laser power should be chosen when laser power was injected to achieve the best drag reduction effect via the minimum laser power. The effect of inject laser power on the performance of laser plasma drag reduction when incoming flight Mach number is 6.5 and at 30km altitude was simulated numerically. The result indicates that the drag can be effectively reduced by energy injection in the upstream flow. The larger the inject power is, the smaller the drag of the blunt body obtained. The energy injection can also influence the pressure and temperature on the surface of blunt body. When laser energy injected, high pressure region on the surface moves to the back of the hemisphere, the pressure of stagnation point decreased. There are two peaks of temperature on the blunt surface, one is the stagnation point and the other is the high pressure region. Temperature of the surface after high pressure region is lower comparison to the condition that no energy injected.

  5. Agricultural and Food Processing Applications of Pulsed Power and Plasma Technologies

    Science.gov (United States)

    Takaki, Koichi

    Agricultural and food processing applications of pulsed power and plasma technologies are described in this paper. Repetitively operated compact pulsed power generators with a moderate peak power are developed for the agricultural and the food processing applications. These applications are mainly based on biological effects and can be categorized as germination control of plants such as Basidiomycota and arabidopsis inactivation of bacteria in soil and liquid medium of hydroponics; extraction of juice from fruits and vegetables; decontamination of air and liquid, etc. Types of pulsed power that have biological effects are caused with gas discharges, water discharges, and electromagnetic fields. The discharges yield free radicals, UV radiation, intense electric field, and shock waves. Biologically based applications of pulsed power and plasma are performed by selecting the type that gives the target objects the adequate result from among these agents or byproducts. For instance, intense electric fields form pores on the cell membrane, which is called electroporation, or influence the nuclei. This paper mainly describes the application of the pulsed power for the germination control of Basidiomycota i.e. mushroom, inactivation of fungi in the soil and the liquid medium in hydroponics, and extraction of polyphenol from skins of grape.

  6. Is direct marketing a risk factor? Inaccurate forecasting of power generation from renewables raises the demand for balancing power; Risikofaktor Direktvermarktung? Durch ungenaue Prognosen bei der Einspeisung von gruenem Strom steigt der Bedarf an Regelleistung

    Energy Technology Data Exchange (ETDEWEB)

    Korn, Stefan

    2012-05-15

    Since the amendment of the EEG in January 2012, enormous amounts of electric power from renewable energy sources are marketed directly, i.e. outside the control of power supply grid owners and operators that formerly sold the electric power in the stock exchange. Inaccurate prognoses made by the direct marketers as well as their marketing strategies have increased the demand for balancing power and made critical situations in the power grid even more difficult.

  7. Utilization of Model Predictive Control to Balance Power Absorption Against Load Accumulation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Nikhar; Tom, Nathan

    2017-09-01

    Wave energy converter (WEC) control strategies have been primarily focused on maximizing power absorption. The use of model predictive control strategies allows for a finite-horizon, multiterm objective function to be solved. This work utilizes a multiterm objective function to maximize power absorption while minimizing the structural loads on the WEC system. Furthermore, a Kalman filter and autoregressive model were used to estimate and forecast the wave exciting force and predict the future dynamics of the WEC. The WEC's power-take-off time-averaged power and structural loads under a perfect forecast assumption in irregular waves were compared against results obtained from the Kalman filter and autoregressive model to evaluate model predictive control performance.

  8. Harmonic balance finite element method applications in nonlinear electromagnetics and power systems

    CERN Document Server

    Lu, Junwei; Yamada, Sotoshi

    2016-01-01

    The first book applying HBFEM to practical electronic nonlinear field and circuit problems * Examines and solves wide aspects of practical electrical and electronic nonlinear field and circuit problems presented by HBFEM * Combines the latest research work with essential background knowledge, providing an all-encompassing reference for researchers, power engineers and students of applied electromagnetics analysis * There are very few books dealing with the solution of nonlinear electric- power-related problems * The contents are based on the authors' many years' research and industry experience; they approach the subject in a well-designed and logical way * It is expected that HBFEM will become a more useful and practical technique over the next 5 years due to the HVDC power system, renewable energy system and Smart Grid, HF magnetic used in DC/DC converter, and Multi-pulse transformer for HVDC power supply * HBFEM can provide effective and economic solutions to R&D product development * Includes Matlab e...

  9. Acute Pyelonephritis during Pregnancy Changes the Balance of Angiogenic and Anti-Angiogenic Factors in Maternal Plasma

    Science.gov (United States)

    Chaiworapongsa, Tinnakorn; Romero, Roberto; Gotsch, Francesca; Kusanovic, Juan Pedro; Mittal, Pooja; Kim, Sun Kwon; Erez, Offer; Vaisbuch, Edi; Mazaki-Tovi, Shali; Kim, Chong Jai; Dong, Zhong; Yeo, Lami; Hassan, Sonia S

    2012-01-01

    Objective Angiogenic factors have been implicated in the pathophysiology of sepsis. In experimental models of sepsis (endotoxemia and/or cecal ligation puncture), there is increased expression of vascular endothelial growth factors (VEGF) and the administration of exogenous soluble VEGF receptor (sVEGFR)-1, an antagonist to VEGF, reduces morbidity and mortality. Moreover, a dramatic elevation in sVEGFR-1 has been demonstrated in human sepsis. Although a balance between angiogenic and anti-angiogenic factors is essential for feto-placental development, the changes of angiogenic factors during pregnancy in the context of infection have never been explored. Angiogenic factors also play crucial roles in the pathophysiology of preeclampsia. This study was conducted to determine if maternal plasma concentrations of placental growth factor (PlGF), sVEGFR-2 and soluble endoglin (sEng) change in pregnancies complicated by acute pyelonephritis (AP) compared to normal pregnancy and preeclampsia (PE). Study Design A case-control study was conducted in patients with AP, normal pregnant women (NP) and patients with PE (n=36 for each group) matched for gestational age. AP was diagnosed in the presence of fever (temperature ≥ 38°C), clinical signs of infection, and a positive urine culture for micro-organisms. Plasma concentrations of PlGF, sVEGFR-2 and sEng were determined by ELISA. The results of plasma sVEGFR-1 concentrations has previously been reported before, but were included in this study to provide a complete picture of the angiogenic/anti-angiogenic profiles. Serum concentrations of interleukin (IL)-1β, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12p70, IL-13, interferon (IFN)-γ, Granulocyte macrophage colony stimulating factor (GM-CSF), and tumor necrosis factor (TNF)-α were also determined using high sensitivity multiplexed immunoassays in patients with AP and NP. Results AP was associated with a lower median plasma concentration of PlGF and sVEGFR-2 than NP

  10. A Rising China: Shifting the Economic Balance of Power Through Cyberspace

    Science.gov (United States)

    2014-12-01

    state.86 They propose that states try to forge issue linkages by creating an asymmetric advantage in one area to overcome a disadvantage in another...is part of a deliberate, state-sponsored project to circumvent the costs of research, overcome cultural disadvantages , and ‘leapfrog’ to the...power grids; and nuclear, solar, wind, and biomass power. 3. Clean Energy Vehicles: Including electric hybrid cars, pure electric cars, and fuel

  11. Enhancing the calculation accuracy of performance characteristics of power-generating units by correcting general measurands based on matching energy balances

    Science.gov (United States)

    Shchinnikov, P. A.; Safronov, A. V.

    2014-12-01

    General principles of a procedure for matching energy balances of thermal power plants (TPPs), whose use enhances the accuracy of information-measuring systems (IMSs) during calculations of performance characteristics (PCs), are stated. To do this, there is the possibility for changing values of measured and calculated variables within intervals determined by measurement errors and regulations. An example of matching energy balances of the thermal power plants with a T-180 turbine is made. The proposed procedure allows one to reduce the divergence of balance equations by 3-4 times. It is shown also that the equipment operation mode affects the profit deficiency. Dependences for the divergence of energy balances on the deviation of input parameters and calculated data for the fuel economy before and after matching energy balances are represented.

  12. Multivariate test power approximations for balanced linear mixed models in studies with missing data.

    Science.gov (United States)

    Ringham, Brandy M; Kreidler, Sarah M; Muller, Keith E; Glueck, Deborah H

    2016-07-30

    Multilevel and longitudinal studies are frequently subject to missing data. For example, biomarker studies for oral cancer may involve multiple assays for each participant. Assays may fail, resulting in missing data values that can be assumed to be missing completely at random. Catellier and Muller proposed a data analytic technique to account for data missing at random in multilevel and longitudinal studies. They suggested modifying the degrees of freedom for both the Hotelling-Lawley trace F statistic and its null case reference distribution. We propose parallel adjustments to approximate power for this multivariate test in studies with missing data. The power approximations use a modified non-central F statistic, which is a function of (i) the expected number of complete cases, (ii) the expected number of non-missing pairs of responses, or (iii) the trimmed sample size, which is the planned sample size reduced by the anticipated proportion of missing data. The accuracy of the method is assessed by comparing the theoretical results to the Monte Carlo simulated power for the Catellier and Muller multivariate test. Over all experimental conditions, the closest approximation to the empirical power of the Catellier and Muller multivariate test is obtained by adjusting power calculations with the expected number of complete cases. The utility of the method is demonstrated with a multivariate power analysis for a hypothetical oral cancer biomarkers study. We describe how to implement the method using standard, commercially available software products and give example code. Copyright © 2015 John Wiley & Sons, Ltd.

  13. Impact of Iran's Nuclear Program, on Turkey s National Security (In light of the Theory of Balance of Power

    Directory of Open Access Journals (Sweden)

    Hossein Masoudnia

    2012-01-01

    Full Text Available Since the nuclear program of the Islamic Republic of Iran It is always have been followed global and regional responses and objections. But after the election of Ahmadinejad as president of Iran and his willingness to advance the nuclear program, Western opposition to this trend intensified to the point where many of issuing sanctions against Iran. Among the countries that have been tried as a mediator between Iran and the International Union of Europe and the United States (5 +1 will act and encourage the parties to resolve the dispute diplomatically, Turkey. Considering this background, this paper attempts to link the Iranian nuclear program and Turkey's national security in light of the balance of power theory can be analyzed. The findings confirm the assumption that Turkey's concerns about Iran's nuclear program in the context of possible changes in the regional balance of power in the Islamic Republic's pursuit of nuclear energy is the analysis and evaluation, This is because the Turkish success in achieving the goals defined in the context of the challenges faced by policy-oriented Neo-Ottomans

  14. A simulation of cross-country skiing on varying terrain by using a mathematical power balance model.

    Science.gov (United States)

    Moxnes, John F; Sandbakk, Oyvind; Hausken, Kjell

    2013-01-01

    The current study simulated cross-country skiing on varying terrain by using a power balance model. By applying the hypothetical inductive deductive method, we compared the simulated position along the track with actual skiing on snow, and calculated the theoretical effect of friction and air drag on skiing performance. As input values in the model, air drag and friction were estimated from the literature, whereas the model included relationships between heart rate, metabolic rate, and work rate based on the treadmill roller-ski testing of an elite cross-country skier. We verified this procedure by testing four models of metabolic rate against experimental data on the treadmill. The experimental data corresponded well with the simulations, with the best fit when work rate was increased on uphill and decreased on downhill terrain. The simulations predicted that skiing time increases by 3%-4% when either friction or air drag increases by 10%. In conclusion, the power balance model was found to be a useful tool for predicting how various factors influence racing performance in cross-country skiing.

  15. THE EFFECTS OF TAI CHI CHUAN COMBINED WITH VIBRATION TRAINING ON BALANCE CONTROL AND LOWER EXTREMITY MUSCLE POWER

    Directory of Open Access Journals (Sweden)

    Pao-Hung Chung

    2013-03-01

    Full Text Available The aim of this study was to determine whether performing Tai Chi Chuan on a customized vibration platform could enhance balance control and lower extremity muscle power more efficiently than Tai Chi Chuan alone in an untrained young population. Forty-eight healthy young adults were randomly assigned to the following three groups: a Tai Chi Chuan combined with vibration training group (TCV, a Tai Chi Chuan group (TCC or a control group. The TCV group underwent 30 minutes of a reformed Tai Chi Chuan program on a customized vibration platform (32 Hz, 1 mm three times a week for eight weeks, whereas the TCC group was trained without vibration stimuli. A force platform was used to measure the moving area of a static single leg stance and the heights of two consecutive countermovement jumps. The activation of the knee extensor and flexor was also measured synchronously by surface electromyography in all tests. The results showed that the moving area in the TCV group was significantly decreased by 15.3%. The second jump height in the TCV group was significantly increased by 8.14%, and the activation of the knee extensor/flexor was significantly decreased in the first jump. In conclusion, Tai Chi Chuan combined with vibration training can more efficiently improve balance control, and the positive training effect on the lower extremity muscle power induced by vibration stimuli still remains significant because there is no cross-interaction between the two different types of training methods.

  16. Ab initio approach to the ion stopping power at the plasma-solid interface

    Science.gov (United States)

    Bonitz, Michael; Schlünzen, Niclas; Wulff, Lasse; Joost, Jan-Philip; Balzer, Karsten

    2016-10-01

    The energy loss of ions in solids is of key relevance for many applications of plasmas, ranging from plasma technology to fusion. Standard approaches are based on density functional theory or SRIM simulations, however, the applicability range and accuracy of these results are difficult to assess, in particular, for low energies. Here we present an independent approach that is based on ab initio nonequilibrium Green functions theory, e.g. that allows to incorporate electronic correlations effects of the solid. We present the first application of this method to low-temperature plasmas, concentrating on proton and alpha-particle stopping in a graphene layer. In addition to the stopping power we present time-dependent results for the local electron density, the spectral function and the photoemission spectrum that is directly accessible in optical, UV or x-ray diagnostics. http://www.itap.uni-kiel.de/theo-physik/bonitz/.

  17. Power law relation between particle concentrations and their sizes in the blood plasma

    Science.gov (United States)

    Kirichenko, M. N.; Chaikov, L. L.; Zaritskii, A. R.

    2016-08-01

    This work is devoted to the investigation of sizes and concentrations of particles in blood plasma by dynamic light scattering (DLS). Blood plasma contains many different proteins and their aggregates, microparticles and vesicles. Their sizes, concentrations and shapes can give information about donor's health. Our DLS study of blood plasma reveals unexpected dependence: with increasing of the particle sizes r (from 1 nm up to 1 μm), their concentrations decrease as r-4 (almost by 12 orders). We found also that such dependence was repeated for model solution of fibrinogen and thrombin with power coefficient is -3,6. We believe that this relation is a fundamental law of nature that shows interaction of proteins (and other substances) in biological liquids.

  18. Balancing power: A grounded theory study on partnership of academic service institutes

    Directory of Open Access Journals (Sweden)

    FATEMEH HESHMATI NABAVI

    2017-07-01

    Full Text Available Introduction: Governments and professional organizations have called for new partnerships between health care providers and academics to improve clinical education for the benefit of both students and patients. To develop a substantive grounded theory on the process of forming academic-service partnerships in implementing clinical education, from the perspective of academic and clinical nursing staff members and managers working in Iranian settings. Methods: The participants included 15 hospital nurses, nurse managers, nurse educators, and educational managers from two central universities and clinical settings from 2009 to 2012. Data were collected through 30 in-depth, semi-structure interviews with the individual participants and then analyzed using the methodology of Strauss and Corbin’s grounded theory. Results: Utilizing “balancing power” as the core variable enabled us to integrate the concepts concerning the partnership processes between clinical and educational institutes. Three distinct and significant categories emerged to explain the process of partnership: 1 divergence, 2 conflict between educational and caring functions, and 3 creation of balance between educational and caring functions. Conclusions: In implementing clinical education, partnerships have been formed within a challenging context in Iran. Conflict between clinical and educational functions was the main concern of both sides of the partnership in forming a collaborative relationship, with our findings emphasizing the importance of nursing educators’ role in the establishment of partnership programs.

  19. Studies on the mechanisms of powerful terahertz radiations from laser plasmas

    Institute of Scientific and Technical Information of China (English)

    Weimin Wang; Zhengming Sheng; Yutong Li; Liming Chen; Quanli Dong; Xin Lu; Jinglong Ma; Jie Zhang

    2011-01-01

    A survey on the mechanisms of powerful terahertz (THz) radiation from laser plasmas is presented. Firstly, an analytical model is described, showing that a transverse net current formed in a plasma can be converted into THz radiations at the plasma oscillation frequency. This theory is applied to explain THz generation in a gas driven by two-color laser pulses. It is also applied to THz generation in a tenuous plasma driven by a chirped laser pulse, a few-cycle laser pulse, a DC/AC bias electric field. These are well verified by particle-in-cell simulations, demonstrating that THz radiations produced in these approaches are nearly single-cycles and linear polarized. In the chirped laser scheme and the few-cycle laser scheme, THz radiations with the peak field strength of tens of MV/cm and the peak power of gigawatt can be achieved with the incident laser intensity less than 1017 W/cm2.%1.IntroductionTerahertz (THz) waves with the field strength up to MV/cm or beyond are demanded for broad applications,such as nonlinear THz spectroscopy,THz nonlinear physics in condensed matters and semiconductors,nonperturbative THz electro-optics,etc.[1,2].Such THz waves are usually obtained from accelerator-based sources,which are still limited by the bandwidth,waveform,and the availability to most users.Therefore,table-top powerful THz sources[3-9] based on laserplasma interactions or laser-gas interactions have been attracting significant attention recently.For example,strong THz radiations can be prodeced from the laser wakefield in inhomogeneous plasmas by linear mode conversion[4] or from the transition radiation at plasmavacuum boundaries using ultrashort electron bunches produced from laser wakefield acceleration[8].

  20. An All Solid-State Pulsed Power Generator for Plasma Immersion Ion Implantation (PⅢ)

    Institute of Scientific and Technical Information of China (English)

    LIU Kefu; QIU Jian; WU Yifan

    2009-01-01

    An all solid-state pulsed power generator for plasma immersion ion implantation (PⅢ) is described. The pulsed power system is based on a Marx circuit configuration and semi-conductor switches, which have many advantages in adjustable repetition frequency, pulse width modulation and long serving life compared with the conventional circuit category, tube-based technologies such as gridded vacuum tubes, thyratrons, pulse forming networks and transformers.The operation of PⅢ with pulse repetition frequencies up to 500 Hz has been achieved at a pulse voltage amplitude from 2 kV to 60 kV, with an adjustable pulse duration from 1 μs to 100 μs.The proposed system and its performance, as used to drive a plasma ion implantation chamber,axe described in detail on the basis of the experimental results.

  1. Outgoing electromagnetic power induced from pair plasma falling into a rotating black hole

    CERN Document Server

    Kojima, Yasufumi

    2015-01-01

    We examine energy conversion from accreting pair plasma to outgoing Poynting flux by black hole rotation. Our approach is based on a two-fluid model consisting of collisionless pair plasma. The electric potential is not constant along magnetic field lines, unlike an ideal magnetohydrodynamics approximation. We show how and where longitudinal electric fields and toroidal magnetic fields are generated by the rotation, whereas they vanish everywhere for radial flow in a split monopole magnetic field in a Schwarzschild black hole. Outgoing electromagnetic power in a steady state is calculated by applying the WKB method to the perturbation equations for a small spin parameter. In our model, the luminosity has a peak in the vicinity of the black hole, but is damped toward the event horizon and infinity. The power at the peak is of the same order as that in the Blandford--Znajek process, although the physical mechanism is different.

  2. Statistical tests with accurate size and power for balanced linear mixed models.

    Science.gov (United States)

    Muller, Keith E; Edwards, Lloyd J; Simpson, Sean L; Taylor, Douglas J

    2007-08-30

    The convenience of linear mixed models for Gaussian data has led to their widespread use. Unfortunately, standard mixed model tests often have greatly inflated test size in small samples. Many applications with correlated outcomes in medical imaging and other fields have simple properties which do not require the generality of a mixed model. Alternately, stating the special cases as a general linear multivariate model allows analysing them with either the univariate or multivariate approach to repeated measures (UNIREP, MULTIREP). Even in small samples, an appropriate UNIREP or MULTIREP test always controls test size and has a good power approximation, in sharp contrast to mixed model tests. Hence, mixed model tests should never be used when one of the UNIREP tests (uncorrected, Huynh-Feldt, Geisser-Greenhouse, Box conservative) or MULTIREP tests (Wilks, Hotelling-Lawley, Roy's, Pillai-Bartlett) apply. Convenient methods give exact power for the uncorrected and Box conservative tests. Simulations demonstrate that new power approximations for all four UNIREP tests eliminate most inaccuracy in existing methods. In turn, free software implements the approximations to give a better choice of sample size. Two repeated measures power analyses illustrate the methods. The examples highlight the advantages of examining the entire response surface of power as a function of sample size, mean differences, and variability.

  3. Politic alternation in Baja California: Toward a new balance of powers

    Directory of Open Access Journals (Sweden)

    Cuauhtémoc López Guzmán

    2001-01-01

    Full Text Available Ever since the National Action Party (PAN won the governor elections in the State of Baja California in 1989, Mexico experienced the inauguration of a political alternation in a governor’s office, which brought about the smashing of the myth that it was impossible for the PRI to share power at that level. The scarce forums won or surrendered by the party ever present in power, allowed the opposition to confront and criticize the centralization of power and the neutralization of representation, that is, rather than offering its voters nationalistic discourses, the opposition parties joined the cause of the anti-centralist resent, particularly present in the northern part of the country, and discredited the decaying relationship between the legislative and the executive powers (the presidency, both at a federal and states levels. In view of these considerations, the possibilities of setting the foundations for a new horizontal and vertical relationship among powers in the state of Baja California, which during the last ten years has been governed by the National Action Party, are discussed in this essay.

  4. The extent of power-law energy spectra in collisionless relativistic magnetic reconnection in pair plasmas

    CERN Document Server

    Werner, G R; Cerutti, B; Nalewajko, K; Begelman, M C

    2014-01-01

    Using two-dimensional particle-in-cell simulations, we characterize the energy spectra of particles accelerated by relativistic magnetic reconnection (without guide field) in collisionless electron-positron plasmas, for a wide range of upstream magnetizations $\\sigma$ and system sizes $L$. The particle spectra are well-represented by a power law $\\gamma^{-\\alpha}$, with a combination of exponential and super-exponential high-energy cutoffs, proportional to $\\sigma$ and $L$, respectively. For large $L$ and $\\sigma$, the power-law index $\\alpha$ approaches about 1.2.

  5. Numerical Investigation of Thermal Effect in Plasma Electrode Pockels Cell for High Average Power

    Institute of Scientific and Technical Information of China (English)

    CAO Ding-Xiang; ZHANG Xiong-Jun; ZHENG Wan-Guo; HE Shao-Bo; SUI Zhan

    2006-01-01

    @@ The average power of a Pockels cell is limited by thermal effects arising from the optical absorption of the laser pulse. These thermal effects can be managed by configuring the switch as a plasma-electrode thin plate Pockels cell, which works under heat-capacity operation. Simulation results show that, based on KD*P (in thickness 0.5cm) at an average power loading of 1 kW, the aperture integrated depolarization loss at 1.06 um is less than 10% in 5min working time.

  6. A Tesla-pulse forming line-plasma opening switch pulsed power generator

    Science.gov (United States)

    Novac, B. M.; Kumar, R.; Smith, I. R.

    2010-10-01

    A pulsed power generator based on a high-voltage Tesla transformer which charges a 3.85 Ω/55 ns water-filled pulse forming line to 300 kV has been developed at Loughborough University as a training tool for pulsed power students. The generator uses all forms of insulation specific to pulsed power technology, liquid (oil and water), gas (SF6), and magnetic insulation in vacuum, and a number of fast voltage and current sensors are implemented for diagnostic purposes. A miniature (centimeter-size) plasma opening switch has recently been coupled to the output of the pulse forming line, with the overall system comprising the first phase of a program aimed at the development of a novel repetitive, table-top generator capable of producing 15 GW pulses for high power microwave loads. Technical details of all the generator components and the main experimental results obtained during the program and demonstrations of their performance are presented in the paper, together with a description of the various diagnostic tools involved. In particular, it is shown that the miniature plasma opening switch is capable of reducing the rise time of the input current while significantly increasing the load power. Future plans are outlined in the conclusions.

  7. Low-pressure hydrogen discharge maintenance in a large-size plasma source with localized high radio-frequency power deposition

    Energy Technology Data Exchange (ETDEWEB)

    Todorov, D.; Shivarova, A., E-mail: ashiva@phys.uni-sofia.bg; Paunska, Ts. [Faculty of Physics, Sofia University, BG-1164 Sofia (Bulgaria); Tarnev, Kh. [Department of Applied Physics, Technical University-Sofia, BG-1000 Sofia (Bulgaria)

    2015-03-15

    The development of the two-dimensional fluid-plasma model of a low-pressure hydrogen discharge, presented in the study, is regarding description of the plasma maintenance in a discharge vessel with the configuration of the SPIDER source. The SPIDER source, planned for the neutral-beam-injection plasma-heating system of ITER, is with localized high RF power deposition to its eight drivers (cylindrical-coil inductive discharges) and a large-area second chamber, common for all the drivers. The continuity equations for the charged particles (electrons and the three types of positive ions) and for the neutral species (atoms and molecules), their momentum equations, the energy balance equations for electrons, atoms and molecules and the Poisson equations are involved in the discharge description. In addition to the local processes in the plasma volume, the surface processes of particle reflection and conversion on the walls as well as for a heat exchange with the walls are included in the model. The analysis of the results stresses on the role of the fluxes (particle and energy fluxes) in the formation of the discharge structure. The conclusion is that the discharge behavior is completely obeyed to non-locality. The latter is displayed by: (i) maximum values of plasma parameters (charged particle densities and temperatures of the neutral species) outside the region of the RF power deposition, (ii) shifted maxima of the electron density and temperature, of the plasma potential and of the electron production, (iii) an electron flux, with a vortex structure, strongly exceeding the total ion flux which gives evidence of a discharge regime of non-ambipolarity and (iv) a spatial distribution of the densities of the neutral species resulting from their fluxes.

  8. Study of the plasma interference with high voltage electrode array for space power application

    OpenAIRE

    Iwasa, Minoru; TANAKA, KOJI; Sasaki, Susumu; ODAWARA, OSAMU; 岩佐 稔; 田中 孝治; 佐々木 進; 小田原 修

    2005-01-01

    We are studying the problems associated with high voltage power systems in space. Especially we are interested in the potential distribution of the solar array that is resistant to the electrical discharge. We have carried out experiments on the interaction between the high voltage solar array and the ambient plasma. In the experiment, an array of electrodes distributed on the insulation panel was used to simulate the inter-connectors of the solar array. An electrode array without the insulat...

  9. Thermal distortion and birefringence in repetition-rate plasma electrode Pockels cell for high average power

    Institute of Scientific and Technical Information of China (English)

    Dingxiang Cao; Xiongjun Zhang; Wanguo Zheng; Shaobo He; Zhan Sui

    2007-01-01

    We numerically study thermally induced birefringence and distortion in plasma electrode Pockels cell based on KD*P as the electro-optic material. This device can repetitively operate under the heat capacity mode.Simulation results indicate that the excellent switching performances and low wave-front distortion are achieved within several tens seconds working time at average power in excess of 1 kW.

  10. The diffusion of charged particles in the weakly ionized plasma with power-law kappa-distributions

    Science.gov (United States)

    Wang, Lan; Du, Jiulin

    2017-10-01

    We study the diffusion of charged particles in the weakly ionized plasma with the power-law κ-distributions and without the magnetic field. The electrons and ions have different κ-parameters. We obtain the expressions of both diffusion and mobility coefficients of electrons and ions respectively in the plasma. We find that these new transport coefficient formulae depend strongly on the κ-parameters in the power-law distributed plasma. When we take κ→∞, these formulae reduce to the classical forms in the weakly ionized plasma with a Maxwellian distribution.

  11. High-Power Tunable Laser Pulse Driven Terahertz Generation in Corrugated Plasma Waveguides

    Science.gov (United States)

    Miao, Chenlong; Palastro, John; Antonsen, Thomas

    2016-10-01

    Excitation of terahertz radiation by the interaction of an ultra-short laser pulse and the fields of a miniature, corrugated plasma waveguide is considered. Plasma structures of this type have been realized experimentally and they can support electromagnetic (EM) channel modes with properties that allow for radiation generation. In particular, the mode have subluminal field components, thus allowing phase matching between the generated THz modes and the ponderomotive potential of the laser pulse. Theoretical analysis and full format PIC simulations are conducted. We find THz generated by this slow wave phase matching mechanism is characterized by lateral emission and a coherent, narrow band, tunable spectrum with relatively high power and conversion efficiency. We investigated two different types of channels, and a range of realistic laser pulses and plasma profile parameters are considered with the goal of increasing the conversion of optical energy to THz radiation. We find high laser intensities strongly modify the THz spectrum by exciting higher order channel modes. Enhancement of a specific channel mode can be realized by using an optimum pulse duration and plasma density. As an example, a fixed drive pulse (0.55 J) with spot size of 15 µm and pulse duration of 15 fs excites 37.8 mJ of THz radiation in a 1.5 cm corrugated plasma waveguide with on axis average density of 1.4×1018cm-3, conversion efficiency exceeding 8% is achieved.

  12. Analysis and Interpretation of the Plasma Dynamic Response to Additional Heating Power using different Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Manini, A

    2002-07-01

    The main goal in the research of nuclear fusion, and therefore in tokamak research as well, is the development of a high power, steady-state power plant. To obtain the high power required for igniting the plasma, the size of the device must be very large. The performance of the tokamak plasma depends in particular on the plasma shape and on the internal plasma profiles. These profiles include those of the current density and the pressure, two quantities that can be modified by means of auxiliary heating methods such as Electron Cyclotron Heating (ECH). ECH is a very important tool due to its capability of injecting highly localised and intense power. Off-axis ECH and Electron Cyclotron Current Drive (ECCD) modify both current density and electron temperature profiles, leading to modification of confinement and stability properties. in particular, complete stabilisation of magnetohydrodynamic modes using ECCD is feasible. Furthermore, ECH is crucial as a mean of increasing the bootstrap current fraction through the formation of internal transport barriers, so that confinement is also improved. Finally, it is also noted that modulated ECH (MECH) is a very effective tool for perturbative energy transport experiments in many different regimes. Experiments performed in the TCV and the ASDEX Upgrade tokamaks are presented. The role of TCV is very important due to its flexibility of varying the plasma shape, its versatile high power ECH system at both the second and third electron cyclotron harmonics, and due to the numerous diagnostics installed, e.g. the two soft X-ray (SXR) diagnostics which simultaneously allow high temporal and spatial resolutions. The importance of ASDEX Upgrade is related to its large size, which makes it a reactor-relevant experimental facility, and to the Neutral Beam Injection (NBI) and ECH heating facilities, which allow a study of heat and particle transport in either mostly ion-heated or mostly electron-heated regimes. Moreover, for the

  13. Electrical Power Grid Delivery Dynamic Analysis: Using Prime Mover Engines to Balance Dynamic Wind Turbine Output

    Energy Technology Data Exchange (ETDEWEB)

    Diana K. Grauer; Michael E. Reed

    2011-11-01

    This paper presents an investigation into integrated wind + combustion engine high penetration electrical generation systems. Renewable generation systems are now a reality of electrical transmission. Unfortunately, many of these renewable energy supplies are stochastic and highly dynamic. Conversely, the existing national grid has been designed for steady state operation. The research team has developed an algorithm to investigate the feasibility and relative capability of a reciprocating internal combustion engine to directly integrate with wind generation in a tightly coupled Hybrid Energy System. Utilizing the Idaho National Laboratory developed Phoenix Model Integration Platform, the research team has coupled demand data with wind turbine generation data and the Aspen Custom Modeler reciprocating engine electrical generator model to investigate the capability of reciprocating engine electrical generation to balance stochastic renewable energy.

  14. Congress, the FCC and Children's Television Regulation: A Shift in the Balance of Power.

    Science.gov (United States)

    Markin, Karen

    The Federal Communications Commission (FCC) of the late 1980s appeared to pursue its own agenda of broadcast deregulation, notwithstanding congressional pressures. The apparent power shift is evident in a case study of the interactions between Congress and the FCC on the subject of children's television. In the early 1970s, the FCC tended to…

  15. The electrohydraulic balance of the solar heat storage with autonomous power supply

    Directory of Open Access Journals (Sweden)

    M. K. Marahtanov

    2014-01-01

    Full Text Available The introduction of the paper emphasizes an increasingly important role of alternative power sources nowadays. At the same time, a solar collector (suntrap is one of the most frequent techniques to use the solar energy. It is an absorber that picks up solar radiation and heats a heat carrier circulating in the close loop. Then the heat is transferred to the heat accumulator that is integrated in the hot-tap water system (HWS.The paper presents a prospective circuit of the solar collector. It differs from the traditional one because, in addition to absorbing panel, it uses photoconverters to generate electric power for the circulating pump. The advantage of this system is that for operation such a solar energy converter has no need in external power sources, i.e. it is autonomous. The need to calculate the essential thermo-physical parameters that ensure no-break system operation was stated as a main objective of the work.The suggested circuit has a photocell panel to convert solar radiation into dc voltage of 12 V. In case of a lack of the solar energy an accumulator battery can be used for feeding. To ensure the no-break supply of power an adaptor is offered.To calculate a density distribution of solar radiation a sine law is offered depending on the time of day and geographical locality. This dependence was used to obtain the expressions for calculating the water temperature in boiler over daytime.Further, the calculations have been done for the operating conditions under which an efficient heat exchange will be provided with the minimum consumption of electric power for the heat carrier circulation in the first loop. For this purpose, a pump power was calculated depending on consumption and hydraulic losses of head in the pipeline. As a minimum required consumption the value has been chosen at which a laminar flow regime changes to the turbulent one because of the most efficient heat exchange being both in collector and in heat accumulator

  16. Nonlinear plasma experiments in geospace with gigawatts of RF power at HAARP

    Science.gov (United States)

    Sheerin, J. P.; Cohen, Morris B.

    2015-12-01

    The ionosphere is the ionized uppermost layer of our atmosphere (from 70 - 500 km altitude) where free electron densities yield peak critical frequencies in the HF (3 - 30 MHz) range. The ionosphere thus provides a quiescent plasma target, stable on timescales of minutes, for a whole host of active plasma experiments. High power RF experiments on ionospheric plasma conducted in the U.S. have been reported since 1970. The largest HF transmitter built to date is the HAARP phased-array HF transmitter near Gakona, Alaska which can deliver up to 3.6 Gigawatts (ERP) of CW RF power in the range of 2.8 - 10 MHz to the ionosphere with microsecond pointing, power modulation, and frequency agility. With an ionospheric background thermal energy in the range of only 0.1 eV, this amount of power gives access to the highest regimes of the nonlinearity (RF intensity to thermal pressure) ratio. HAARP's unique features have enabled the conduct of a number of unique nonlinear plasma experiments in the interaction region of overdense ionospheric plasma including generation of artificial aurorae, artificial ionization layers, VLF wave-particle interactions in the magnetosphere, parametric instabilities, stimulated electromagnetic emissions (SEE), strong Langmuir turbulence (SLT) and suprathermal electron acceleration. Diagnostics include the Modular UHF Ionospheric Radar (MUIR) sited at HAARP, the SuperDARN-Kodiak HF radar, spacecraft radio beacons, HF receivers to record stimulated electromagnetic emissions (SEE) and telescopes and cameras for optical emissions. We report on short timescale ponderomotive overshoot effects, artificial field-aligned irregularities (AFAI), the aspect angle dependence of the intensity of the HF-enhanced plasma line, and production of suprathermal electrons. One of the primary missions of HAARP, has been the generation of ELF (300 - 3000 Hz) and VLF (3 - 30 kHz) radio waves which are guided to global distances in the Earth-ionosphere waveguide. We review

  17. Nonlinear plasma experiments in geospace with gigawatts of RF power at HAARP

    Energy Technology Data Exchange (ETDEWEB)

    Sheerin, J. P., E-mail: jsheerin@emich.edu [Physics and Astronomy, Eastern Michigan Univ., Ypsilanti, MI 48197 (United States); Cohen, Morris B., E-mail: mcohen@gatech.edu [Electrical and Computer Engineering, Georgia Tech, Atlanta, GA 30332-0250 (United States)

    2015-12-10

    The ionosphere is the ionized uppermost layer of our atmosphere (from 70 – 500 km altitude) where free electron densities yield peak critical frequencies in the HF (3 – 30 MHz) range. The ionosphere thus provides a quiescent plasma target, stable on timescales of minutes, for a whole host of active plasma experiments. High power RF experiments on ionospheric plasma conducted in the U.S. have been reported since 1970. The largest HF transmitter built to date is the HAARP phased-array HF transmitter near Gakona, Alaska which can deliver up to 3.6 Gigawatts (ERP) of CW RF power in the range of 2.8 – 10 MHz to the ionosphere with microsecond pointing, power modulation, and frequency agility. With an ionospheric background thermal energy in the range of only 0.1 eV, this amount of power gives access to the highest regimes of the nonlinearity (RF intensity to thermal pressure) ratio. HAARP’s unique features have enabled the conduct of a number of unique nonlinear plasma experiments in the interaction region of overdense ionospheric plasma including generation of artificial aurorae, artificial ionization layers, VLF wave-particle interactions in the magnetosphere, parametric instabilities, stimulated electromagnetic emissions (SEE), strong Langmuir turbulence (SLT) and suprathermal electron acceleration. Diagnostics include the Modular UHF Ionospheric Radar (MUIR) sited at HAARP, the SuperDARN-Kodiak HF radar, spacecraft radio beacons, HF receivers to record stimulated electromagnetic emissions (SEE) and telescopes and cameras for optical emissions. We report on short timescale ponderomotive overshoot effects, artificial field-aligned irregularities (AFAI), the aspect angle dependence of the intensity of the HF-enhanced plasma line, and production of suprathermal electrons. One of the primary missions of HAARP, has been the generation of ELF (300 – 3000 Hz) and VLF (3 – 30 kHz) radio waves which are guided to global distances in the Earth

  18. RACLETTE: a model for evaluating the thermal response of plasma facing components to slow high power plasma transients. Part II: Analysis of ITER plasma facing components

    Science.gov (United States)

    Federici, Gianfranco; Raffray, A. René

    1997-04-01

    The transient thermal model RACLETTE (acronym of Rate Analysis Code for pLasma Energy Transfer Transient Evaluation) described in part I of this paper is applied here to analyse the heat transfer and erosion effects of various slow (100 ms-10 s) high power energy transients on the actively cooled plasma facing components (PFCs) of the International Thermonuclear Experimental Reactor (ITER). These have a strong bearing on the PFC design and need careful analysis. The relevant parameters affecting the heat transfer during the plasma excursions are established. The temperature variation with time and space is evaluated together with the extent of vaporisation and melting (the latter only for metals) for the different candidate armour materials considered for the design (i.e., Be for the primary first wall, Be and CFCs for the limiter, Be, W, and CFCs for the divertor plates) and including for certain cases low-density vapour shielding effects. The critical heat flux, the change of the coolant parameters and the possible severe degradation of the coolant heat removal capability that could result under certain conditions during these transients, for example for the limiter, are also evaluated. Based on the results, the design implications on the heat removal performance and erosion damage of the variuos ITER PFCs are critically discussed and some recommendations are made for the selection of the most adequate protection materials and optimum armour thickness.

  19. Analysis and Interpretation of the Plasma Dynamic Response to Additional Heating Power using different Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Manini, A

    2002-07-01

    The main goal in the research of nuclear fusion, and therefore in tokamak research as well, is the development of a high power, steady-state power plant. To obtain the high power required for igniting the plasma, the size of the device must be very large. The performance of the tokamak plasma depends in particular on the plasma shape and on the internal plasma profiles. These profiles include those of the current density and the pressure, two quantities that can be modified by means of auxiliary heating methods such as Electron Cyclotron Heating (ECH). ECH is a very important tool due to its capability of injecting highly localised and intense power. Off-axis ECH and Electron Cyclotron Current Drive (ECCD) modify both current density and electron temperature profiles, leading to modification of confinement and stability properties. in particular, complete stabilisation of magnetohydrodynamic modes using ECCD is feasible. Furthermore, ECH is crucial as a mean of increasing the bootstrap current fraction through the formation of internal transport barriers, so that confinement is also improved. Finally, it is also noted that modulated ECH (MECH) is a very effective tool for perturbative energy transport experiments in many different regimes. Experiments performed in the TCV and the ASDEX Upgrade tokamaks are presented. The role of TCV is very important due to its flexibility of varying the plasma shape, its versatile high power ECH system at both the second and third electron cyclotron harmonics, and due to the numerous diagnostics installed, e.g. the two soft X-ray (SXR) diagnostics which simultaneously allow high temporal and spatial resolutions. The importance of ASDEX Upgrade is related to its large size, which makes it a reactor-relevant experimental facility, and to the Neutral Beam Injection (NBI) and ECH heating facilities, which allow a study of heat and particle transport in either mostly ion-heated or mostly electron-heated regimes. Moreover, for the

  20. Design of battery storage power station for power balance%用于电力平衡的蓄电池储能电站的设计

    Institute of Scientific and Technical Information of China (English)

    孟彦京; 刘圆圆; 商晓英

    2013-01-01

    利用蓄电池储能电站调整负荷来保持电力平衡,是解决电力供需矛盾的一种有效途径.建立蓄电池储能电站,蓄电池的选型很重要,因为电池是电站的核心元件.根据机组调峰容量比的概念,建立了调荷容量的数学模型,再结合蓄电池组的调荷容量比,以满足电网综合调荷容量比最小为目标,计算出蓄电池组容量.储能电站的设计中,往往忽略蓄电池连接方式的选择问题,通过多种蓄电池组并串联方案的比较,找出最佳的蓄电池组连接方式,完成锂离子蓄电池储能电站的宏观设计.%It is an effective measure to use battery storage power station to regulate load and keep power balance. For setting up battery storage station, the type selection of batteries which are heart components of the power station is important. The mathematical model of load regulation capacity was built according to the ratio of peak regulation capacity. Then, combined with load regulation capacity ratio of batteries, the capacity of batteries was computed to minimize the integrate load regulation capacity ratio of electricity grid. In design of storage power station, the choice of connection mode is often neglected. Through comparing several schemes of serial-parallel batteries, the best scheme was found to finish the whole design of lithium-ion battery storage power station.

  1. Syngas production from tar reforming by microwave plasma jet at atmospheric pressure: power supplied influence

    Science.gov (United States)

    de Souza Medeiros, Henrique; Justiniano, Lucas S.; Gomes, Marcelo P.; Soares da Silva Sobrinho, Argemiro; Petraconi Filho, Gilberto

    2013-09-01

    Now a day, scientific community is searching for new fuels able to replace fossil fuels with economic and environment gains and biofuel play a relevant rule, mainly for the transport sector. A major process to obtaining such type of renewable resource is biomass gasification. This process has as product a gas mixture containing CO, CH4, and H2 which is named synthesis gas (syngas). However, an undesirable high molecular organic species denominated tar are also produced in this process which must be removed. In this work, results of syngas production via tar reforming in the atmospheric pressure microwave discharge having as parameter the power supply. Argon, (argon + ethanol), and (argon + tar solution) plasma jet were produced by different values of power supplied (from 0.5 KW to 1.5 KW). The plasma compounds were investigated by optical spectroscopy to each power and gas composition. The main species observed in the spectrum are Ar, CN, OII, OIV, OH, H2, H(beta), CO2, CO, and SIII. This last one came from tar. The best value of the power applied to syngas production from tar reforming was verified between 1.0 KW and 1.2 KW. We thank the following institutions for financial support: CNPq, CAPES, and FAPESP.

  2. Pulsed plasma arc cladding

    Institute of Scientific and Technical Information of China (English)

    龙; 白钢; 李振民; 张赋升; 杨思乾

    2004-01-01

    A prototype of Pulsed Plasma Arc Cladding system was developed, in which single power source supplies both transferred plasma arc (TPA) and non-transferred plasma arc (N-TPA). Both plasmas work in turn in a high frequency controlled by an IGBT connecting nozzle and workpiece. The working frequency of IGBT ranges from 50 ~ 7000Hz, in which the plasmas can work in turn smoothly. Higher than 500 Hz of working frequency is suggested for promotion of cladding quality and protection of IGBT. Drag phenomenon of TPA intensifies as the frequency goes up, which tends to increase the current proportion of TPA and suppress N-TPA. The occupation ratio of IGBT can be regulated from 5% ~ 95%, which balances the power supplies of both plasmas. An occupation ratio higher than 50% gives adequate proportion of arc current for N-TPA to preheat powder.

  3. RF electric field penetration and power deposition into nonequilibrium planar-type inductively coupled plasmas

    Institute of Scientific and Technical Information of China (English)

    Mao Ming; Wang Shuai; Dai Zhong-Ling; Wang You-Nian

    2007-01-01

    The RF electric field penetration and the power deposition into planar-type inductively coupled plasmas in lowpressure discharges have been studied by means of a self-consistent model which consists of Maxwell equations combined with the kinetic equation of electrons. The Maxwell equations are solved based on the expansion of the Fourier-Bessel series for determining the RF electric field. Numerical results show the influence of a non-Maxwellian electron energy distribution on the RF electric field penetration and the power deposition for different coil currents. Moreover, the two-dimensional spatial profiles of RF electric field and power density are also shown for different numbers of RF coil turns.

  4. Analysis of Heat Balance on Innovative-Simplified Nuclear Power Plant Using Multi-Stage Steam Injectors

    Science.gov (United States)

    Goto, Shoji; Ohmori, Shuichi; Mori, Michitsugu

    The total space and weight of the feedwater heaters in a nuclear power plant (NPP) can be reduced by replacing low-pressure feedwater heaters with high-efficiency steam injectors (SIs). The SI works as a direct heat exchanger between feedwater from condensers and steam extracted from turbines. It can attain pressures higher than the supplied steam pressure. The maintenance cost is lower than that of the current feedwater heater because of its simplified system without movable parts. In this paper, we explain the observed mechanisms of the SI experimentally and the analysis of the computational fluid dynamics (CFD). We then describe mainly the analysis of the heat balance and plant efficiency of the innovative-simplified NPP, which adapted to the boiling water reactor (BWR) with the high-efficiency SI. The plant efficiencies of this innovative-simplified BWR with SI are compared with those of a 1100MWe-class BWR. The SI model is adopted in the heat balance simulator as a simplified model. The results show that the plant efficiencies of the innovate-simplified BWR with SI are almost equal to those of the original BWR. They show that the plant efficiency would be slightly higher if the low-pressure steam, which is extracted from the low-pressure turbine, is used because the first-stage of the SI uses very low pressure.

  5. Small-scale combined heat and power as a balancing reserve for wind – The case of participation in the German secondary control reserve

    Directory of Open Access Journals (Sweden)

    Peter Sorknæs

    2014-06-01

    Full Text Available Increasing amounts of intermittent renewable energy sources (RES are being integrated into energy systems worldwide. Due to the nature of these sources, they are found to increase the importance of mechanisms for balancing the electricity system. Small-scale combined heat and power (CHP plants based on gas have proven their ability to participate in the electricity system balancing, and can hence be used to facilitate an integration of intermittent RES into electricity systems. Within the EU electricity system, balancing reserves have to be procured on a market basis. This paper investigates the ability and challenges of a small-scale CHP plant based on natural gas to participate in the German balancing reserve for secondary control. It is found that CHP plants have to account for more potential losses than traditional power plants. However, it is also found that the effect of these losses can be reduced by increasing the flexibility of the CHP unit.

  6. Evaluation of Communication Network State Estimators for Adaptive Power-Balancing

    DEFF Research Database (Denmark)

    Findrik, Mislav; Pedersen, Rasmus; Sloth, Christoffer;

    2016-01-01

    Smart Grid applications are going to reach the LV grid assets and households in order to efficiently use the resources in distribution grids. A cost effective way to connect these devices is to utilize the existing network infrastructure or to utilize Power-Line Com- munication (PLC). In this work...... we have show how PLC communication can have significant impairments for load-frequency control operations in the microgrid. Moreover, we have demonstrate how such poor network performance can influence the control performance on a case study of the low voltage grid controller. Further- more, we have...

  7. Evaluation of Communication Network State Estimators for Adaptive Power-Balancing

    DEFF Research Database (Denmark)

    Findrik, Mislav; Pedersen, Rasmus; Sloth, Christoffer

    2017-01-01

    Smart Grid applications are going to reach the LV grid assets and households in order to efficiently use the resources in distribution grids. A cost effective way to connect these devices is to utilize the existing network infrastructure or to utilize Power-Line Com- munication (PLC). In this work...... we have show how PLC communication can have significant impairments for load-frequency control operations in the microgrid. Moreover, we have demonstrate how such poor network performance can influence the control performance on a case study of the low voltage grid controller. Further- more, we have...

  8. Investigation of the vapour-plasma plume in the welding of titanium by high-power ytterbium fibre laser radiation

    Science.gov (United States)

    Bykovskiy, D. P.; Petrovskii, V. N.; Uspenskiy, S. A.

    2015-03-01

    The vapour-plasma plume produced in the welding of 6-mm thick VT-23 titanium alloy plates by ytterbium fibre laser radiation of up to 10 kW power is studied in the protective Ar gas medium. High-speed video filming of the vapour-plasma plume is used to visualise the processes occurring during laser welding. The coefficient of inverse bremsstrahlung by the welding plasma plume is calculated from the data of the spectrometric study.

  9. Integrated energy balance analysis of a stand-alone wind power system for various typical Aegean Sea regions

    Science.gov (United States)

    Kaldellis, J. K.; Tsesmelis, M.

    2002-01-01

    The wind power industry is nowadays a mature energy production sector disposing to market commercial wind converters from 50 W up to 5 MW. In the present work the possibility of using stand-alone electricity production systems based on a small wind turbine in order to meet the electricity requirements of remote consumers is analysed for selected Aegean Sea regions possessing representative wind potential types. The proposed configuration results from an extensive long-term meteorological data analysis on a no-load rejection condition basis during the entire time period examined. Accordingly, an integrated energy balance analysis is carried out for the whole time period investigated, including also the system battery depth-of-discharge distribution versus time. Finally, the predicted optimum system configuration is compared to other existing technoeconomic alternatives on a simplified total production cost basis. The results support the viability of similar solutions, especially for areas of high or medium wind potential.

  10. Integrated energy balance analysis of a stand-alone wind power system for various typical Aegean Sea regions

    Energy Technology Data Exchange (ETDEWEB)

    Kaldellis, J.K.; Tsesmelis, M. [TEI Piraeus, Hellinico (Greece). Mechanical Engineering Dept.

    2002-07-01

    The wind power industry is nowadays a mature energy production sector disposing to market commercial wind converters from 50 W up to 5 MW. In the present work the possibility of using stand-alone electricity production systems based on a small wind turbine in order to meet the electricity requirements of remote consumers is analysed for selected Aegean Sea regions possessing representative wind potential types. The proposed configuration results from an extensive long-term meteorological data analysis on a no-load rejection condition basis during the entire time period examined. Accordingly, an integrated energy balance analysis is carried out for the whole time period investigated, including also the system battery depth-of-discharge distribution versus time. Finally, the predicted optimum system configuration is compared to other existing technoeconomic alternatives on a simplified total production cost basis. The results support the viability of similar solutions, especially for areas of high or medium wind potential. (author)

  11. Reaction-in-Flight Neutrons as a Test of Stopping Power in Degenerate Plasmas

    CERN Document Server

    Hayes, A C; Schulz, A E; Boswell, M; Fowler, M M; Grim, G; Klein, A; Rundberg, R S; Wilhelmy, J B; Wilson, D

    2014-01-01

    We present the first measurements of reaction-in-flight (RIF) neutrons in an inertial confinement fusion system. The experiments were carried out at the National Ignition Facility, using both Low Foot and High Foot drives and cryogenic plastic capsules. In both cases, the high-energy RIF ($E_n>$ 15 MeV) component of the neutron spectrum was found to be about $10^{-4}$ of the total. The majority of the RIF neutrons were produced in the dense cold fuel surrounding the burning hotspot of the capsule and the data are consistent with a compressed cold fuel that is moderately to strongly coupled $(\\Gamma\\sim$0.6) and electron degenerate $(\\theta_\\mathrm{Fermi}/\\theta_e\\sim$4). The production of RIF neutrons is controlled by the stopping power in the plasma. Thus, the current RIF measurements provide a unique test of stopping power models in an experimentally unexplored plasma regime. We find that the measured RIF data strongly constrain stopping models in warm dense plasma conditions and some models are ruled out b...

  12. Boron-rich plasma by high power impulse magnetron sputtering of lanthanum hexaboride

    Energy Technology Data Exchange (ETDEWEB)

    Oks, Efim M. [State University of Control Systems and Radioelectronics, Tomsk (Russian Federation); Anders, Andre [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2012-10-15

    Boron-rich plasmas have been obtained using a LaB{sub 6} target in a high power impulse sputtering (HiPIMS) system. The presence of {sup 10}B{sup +}, {sup 11}B{sup +}, Ar{sup 2+}, Ar{sup +}, La{sup 2+}, and La{sup +} and traces of La{sup 3+}, {sup 12}C{sup +}, {sup 14}N{sup +}, and {sup 16}O{sup +} have been detected using an integrated mass and energy spectrometer. Peak currents as low as 20 A were sufficient to obtain plasma dominated by {sup 11}B{sup +} from a 5 cm planar magnetron. The ion energy distribution function for boron exhibits an energetic tail extending over several 10 eV, while argon shows a pronounced peak at low energy (some eV). This is in agreement with models that consider sputtering (B, La) and gas supply (from background and 'recycling'). Strong voltage oscillations develop at high current, greatly affecting power dissipation and plasma properties.

  13. Dependence of the L-H power threshold on magnetic balance and heating method in NSTX

    Science.gov (United States)

    Maingi, R.; Biewer, T.; Meyer, H.; Bell, R.; Leblanc, B.; Chang, C. S.

    2007-11-01

    H-mode access is a critical issue for next step devices, such as the International Thermonuclear Experimental Reactor (ITER), which is projected to have a modest heating power margin over the projected L-H power threshold (PLH). The importance of a second X-point in setting the value of PLH has been clarified in recent experiments on several tokamaks. Specifically a reduction of PLH was observed when the magnetic configuration was changed from single null (SN) to double null (DN) in the MAST, NSTX, and ASDEX-Upgrade devices [1]. Motivated by these results, detailed PLH studies on NSTX have compared discharges with neutral beam and rf heating, as a function of drsep. Similar PLH values and edge parameters are observed with the two heating methods in the same magnetic configuration, with PLH ˜ 0.6 MW lowest in DN and increasing to ˜ 1.1 MW and 2-4 MW in lower-SN and upper-SN configurations respectively (ion grad-B-drift towards lower X-point). The evolution of the experimental profiles of parameters in L-mode before the L/H transition will be compared with simulations using the XGC code (C.S. Chang). [1] MEYER, H. et al., Nucl. Fusion 46 (2006) 64.

  14. Changing the balance of power – Worldwide air force`s capability turbulences

    Directory of Open Access Journals (Sweden)

    Pavel NEČAS

    2012-03-01

    Full Text Available In past Century, the air power had undergone a significant journey. In its humble beginnings during WWI an airplane proved itself a perspective and highly capable new weapon. WWII demonstrated the importance of air superiority for waging a global warfare. The Cold War mastered technologies enabling air power to be not only a weapon a mass destruction but also a surgical tool. On one hand, an aircraft has become a state of art technology, yet on the other hand a cost for its development, procurement, and servicing grew into an astronomic levels. Therefore, since mid 1970s there have been trends to shift airpower from quantity into quality, which has gained a new moment with the end of the Cold War. Starting with the first Gulf War, in past two decades demonstrated a growing importance of a multirole fighter aircraft that is able to carry out a full specter of missions for minimal costs. When analyzing five most potent airpowers of the 21st century, we can witness that this is the trend is on and it will surely continue in future.

  15. Atomic and molecular processes in fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Janev, R.K. [International Atomic Energy Agency, Vienna (Austria)

    1997-01-01

    The role of atomic and molecular processes in achieving and maintaining the conditions for thermonuclear burn in a magnetically confined fusion plasma is described. Emphasis is given to the energy balance and power and particle exhaust issues. The most important atomic and molecular processes which affect the radiation losses and impurity transport in the core plasma, the neutral particle transport in the plasma edge and the radiative cooling of divertor plasmas are discussed in greater detail. (author)

  16. Using Electric Vehicles to Meet Balancing Requirements Associated with Wind Power

    Energy Technology Data Exchange (ETDEWEB)

    Tuffner, Francis K.; Kintner-Meyer, Michael CW

    2011-07-31

    Many states are deploying renewable generation sources at a significant rate to meet renewable portfolio standards. As part of this drive to meet renewable generation levels, significant additions of wind generation are planned. Due to the highly variable nature of wind generation, significant energy imbalances on the power system can be created and need to be handled. This report examines the impact on the Northwest Power Pool (NWPP) region for a 2019 expected wind scenario. One method for mitigating these imbalances is to utilize plug-in hybrid electric vehicles (PHEVs) or battery electric vehicles (BEVs) as assets to the grid. PHEVs and BEVs have the potential to meet this demand through both charging and discharging strategies. This report explores the usage of two different charging schemes: V2GHalf and V2GFull. In V2GHalf, PHEV/BEV charging is varied to absorb the additional imbalance from the wind generation, but never feeds power back into the grid. This scenario is highly desirable to automotive manufacturers, who harbor great concerns about battery warranty if vehicle-to-grid discharging is allowed. The second strategy, V2GFull, varies not only the charging of the vehicle battery, but also can vary the discharging of the battery back into the power grid. This scenario is currently less desirable to automotive manufacturers, but provides an additional resource benefit to PHEV/BEVs in meeting the additional imbalance imposed by wind. Key findings in the report relate to the PHEV/BEV population required to meet the additional imbalance when comparing V2GHalf to V2GFull populations, and when comparing home-only-charging and work-and-home-charging scenarios. Utilizing V2GFull strategies over V2GHalf resulted in a nearly 33% reduction in the number of vehicles required. This reduction indicates fewer vehicles are needed to meet the unhandled energy, but they would utilize discharging of the vehicle battery into the grid. This practice currently results in the

  17. Application of poloidal beta and plasma internal inductance in determination of input power time of Damavand tokamak

    Science.gov (United States)

    Noori, Ehsanallah; Sadeghi, Yahya; Ghoranneviss, Mahmood

    2016-10-01

    In this study, magnetic measurement of poloidal fields were used to determine poloidal beta and plasma internal inductance of Damavand tokamak combination of poloidal beta and plasma internal inductance (β _p+{l_i}/{2} ), known as Shafranov parameter, was obtained experimentally in terms of normal and tangential components of the magnetic field. Plasma internal inductance and poloidal beta were obtained using parametrization method based on analytical solution of Grad-Shafranov equation (GSE) and compared with parabolic-like profile of toroidal current density approach for determination of the plasma internal inductance. Finding evolution of β _p+{l_i}/{2} and plasma internal inductance. Finding poloidal beta (Shafranov parameter and internal inductance) and using energy balance equation, thermal energy and energy confinement were determined qualitatively in terms of poloidal beta during a regular discharge of Damavand tokamak.

  18. Mean excitation energies for stopping powers in various materials using local plasma oscillator strengths

    Science.gov (United States)

    Wilson, J. W.; Xu, Y. J.; Kamaratos, E.; Chang, C. K.

    1984-01-01

    The basic model of Lindhard and Scharff, known as the local plasma model, is used to study the effects on stopping power of the chemical and physical state of the medium. Unlike previous work with the local plasma model, in which individual electron shifts in the plasma frequency were estimated empirically, he Pines correction derived for a degenerate Fermi gas is shown herein to provide a reasonable estimate, even on the atomic scale. Thus, the model is moved to a complete theoretical base requiring no empirical adjustments, as characteristic of past applications. The principal remaining error is in the overestimation of the low-energy absorption properties that are characteristic of the plasma model in the region of the atomic discrete spectrum, although higher-energy phenomena are accurately represented, and even excitation-to-ionization ratios are given to fair accuracy. Mean excitation energies for covalent-bonded gases and solids, for ionic gases and crystals, and for metals are calculated using first-order models of the bonded states.

  19. Design of Plasma Generator Driven by High-frequency High-voltage Power Supply

    Directory of Open Access Journals (Sweden)

    C. Yong-Nong

    2013-03-01

    Full Text Available In this research, a high-frequency high-voltage power supply designed for plasma generator is presented. The powersupply mainly consists of a series resonant converter with a high-frequency high-voltage boost transformer. Due to theindispensable high-voltage inheritance in the operation of plasma generator, the analysis of transformer needconsidering not only winding resistance, leakage inductance, magnetizing inductance, and core-loss resistance, butalso parasitic capacitance resulted from the insulation wrappings on the high-voltage side. This research exhibits asimple approach to measuring equivalent circuit parameters of the high-frequency, high-voltage transformer with straycapacitance being introduced into the conventional modeling. The proposed modeling scheme provides not only aprecise measurement procedure but also effective design information for series-load resonant converter. The plasmadischarging plate is designed as part of the electric circuit in the series load-resonant converter and the circuit modelof the plasma discharging plate is also conducted as well. Thus, the overall model of the high-voltage plasmagenerator is built and the designing procedures for appropriate selections of the corresponding resonant-circuitparameters can be established. Finally, a high-voltage plasma generator with 220V, 60Hz, and 1kW input, along witha 22 kHz and over 8kV output, is realized and implemented.

  20. The dependence of the sporicidal effects on the power and pressure of RF-generated plasma processes.

    Science.gov (United States)

    Lassen, Klaus S; Nordby, Bolette; Grün, Reinar

    2005-07-01

    The sporicidal effect of 20 different radio-frequency plasma processes produced by combining five different gas mixtures [O(2), Ar/H(2) (50/50%), Ar/H(2) (5/95%), O(2)/H(2) (50/50%), O(2)/H(2) (95/5%)] with four power/pressure settings were tested. Sporicidal effects of oxygen-containing plasmas were dependent on power at low pressure settings but not at high pressure settings. In the absence of oxygen no power dependency was observed at either high or low pressure settings. Survivor curves obtained with the use of nonoxygen plasmas typically had a tailing tendency. Only a mixture-optimized Ar/H(2) (15/85%) plasma process was not encumbered by tailing, and produced a decimal reduction time (D value) below 2 min for Bacillus stearothermophilus spores. Scanning electron microscopy showed that a CF(4)/O(2) plasma did more damage to the substrate than the 15/85% Ar/H(2) plasma. The present results indicate that UV irradiation inactivation is swift and power and pressure independent. Additionally, it is produced at low energy. However, it is not complete. Inactivation through etching is highly power and pressure dependent; finally, inactivation by photodesorption is moderately power and pressure dependent. A sterilization process relying on this mechanism is very advantageous because it combines a highly sporicidal effect with low substrate damage.

  1. Network stability is a balancing act of personality, power, and conflict dynamics in rhesus macaque societies.

    Directory of Open Access Journals (Sweden)

    Brenda McCowan

    Full Text Available Stability in biological systems requires evolved mechanisms that promote robustness. Cohesive primate social groups represent one example of a stable biological system, which persist in spite of frequent conflict. Multiple sources of stability likely exist for any biological system and such robustness, or lack thereof, should be reflected and thus detectable in the group's network structure, and likely at multiple levels. Here we show how network structure and group stability are linked to the fundamental characteristics of the individual agents in groups and to the environmental and social contexts in which these individuals interact. Both internal factors (e.g., personality, sex and external factors (e.g., rank dynamics, sex ratio were considered from the level of the individual to that of the group to examine the effects of network structure on group stability in a nonhuman primate species. The results yielded three main findings. First, successful third-party intervention behavior is a mechanism of group stability in rhesus macaques in that successful interventions resulted in less wounding in social groups. Second, personality is the primary factor that determines which individuals perform the role of key intervener, via its effect on social power and dominance discrepancy. Finally, individuals with high social power are not only key interveners but also key players in grooming networks and receive reconciliations from a higher diversity of individuals. The results from this study provide sound evidence that individual and group characteristics such as personality and sex ratio influence network structures such as patterns of reconciliation, grooming and conflict intervention that are indicators of network robustness and consequent health and well-being in rhesus macaque societies. Utilizing this network approach has provided greater insight into how behavioral and social processes influence social stability in nonhuman primate groups.

  2. Dynamic properties of ionospheric plasma turbulence driven by high-power high-frequency radiowaves

    Science.gov (United States)

    Grach, S. M.; Sergeev, E. N.; Mishin, E. V.; Shindin, A. V.

    2017-02-01

    A review is given of the current state-of-the-art of experimental studies and the theoretical understanding of nonlinear phenomena that occur in the ionospheric F-layer irradiated by high-power high-frequency ground-based transmitters. The main focus is on the dynamic features of high-frequency turbulence (plasma waves) and low-frequency turbulence (density irregularities of various scales) that have been studied in experiments at the Sura and HAARP heating facilities operated in temporal and frequency regimes specially designed with consideration of the characteristic properties of nonlinear processes in the perturbed ionosphere using modern radio receivers and optical instruments. Experimental results are compared with theoretical turbulence models for a magnetized collisional plasma in a high-frequency electromagnetic field, allowing the identification of the processes responsible for the observed features of artificial ionospheric turbulence.

  3. Stopping power and polarization induced in a plasma by a fast charged particle in circular motion

    Energy Technology Data Exchange (ETDEWEB)

    Villo-Perez, Isidro [Departamento de Electronica, Tecnologia de las Computadoras y Proyectos, Universidad Politecnica de Cartagena, Cartagena (Spain); Arista, Nestor R. [Division Colisiones Atomicas, Centro Atomico Bariloche and Instituto Balseiro, Comision Nacional de Energia Atomica, Bariloche (Argentina); Garcia-Molina, Rafael [Departamento de Fisica, Universidad de Murcia, Murcia (Spain)

    2002-03-28

    We describe the perturbation induced in a plasma by a charged particle in circular motion, analysing in detail the evolution of the induced charge, the electrostatic potential and the energy loss of the particle. We describe the initial transitory behaviour and the different ways in which convergence to final stationary solutions may be obtained depending on the basic parameters of the problem. The results for the stopping power show a resonant behaviour which may give place to large stopping enhancement values as compared with the case of particles in straight-line motion with the same linear velocity. The results also explain a resonant effect recently obtained for particles in circular motion in magnetized plasmas. (author)

  4. Physics and potentials of fissioning plasmas for space power and propulsion

    Science.gov (United States)

    Thom, K.; Schwenk, F. C.; Schneider, R. T.

    1976-01-01

    Fissioning uranium plasmas are the nuclear fuel in conceptual high-temperature gaseous-core reactors for advanced rocket propulsion in space. A gaseous-core nuclear rocket would be a thermal reactor in which an enriched uranium plasma at about 10,000 K is confined in a reflector-moderator cavity where it is nuclear critical and transfers its fission power to a confining propellant flow for the production of thrust at a specific impulse up to 5000 sec. With a thrust-to-engine weight ratio approaching unity, the gaseous-core nuclear rocket could provide for propulsion capabilities needed for manned missions to the nearby planets and for economical cislunar ferry services. Fueled with enriched uranium hexafluoride and operated at temperatures lower than needed for propulsion, the gaseous-core reactor scheme also offers significant benefits in applications for space and terrestrial power. They include high-efficiency power generation at low specific mass, the burnup of certain fission products and actinides, the breeding of U-233 from thorium with short doubling times, and improved convenience of fuel handling and processing in the gaseous phase.

  5. INPROVING OF THE QUALITY FOOD FOR ANIMALS BY PULSED POWER PLASMA DISCHARGE

    Directory of Open Access Journals (Sweden)

    Sebastian Gnapowski

    2015-08-01

    Full Text Available Soy beans powder mixed with water is a good food for animals. However, there are two problems with this brew. One is that soy beans powder is sunk down to fast. Parts of soy beans powder are too big and too heavy. Animals do not eat soy beans powder because after a few minutes (around 3min is sunk down and soy beans are on the bottom case. Another negative point is a quick growth of mold, especially during summer when the temperature is highest. Mold is making food unhealthy and causes unpleasant smell. After mold appears it is difficult to clean the case. One of the solutions to eliminate these problems is to use pulse power plasma discharge and the second solution is ultra sound treatment. It was observed that pulse power discharge can decrease the size of soy beans powder a few times. Another advantage of such experiments was that the pulse power discharge killed bacteria and viruses. After our experiments we did not observe mold growing. Using pulse power discharge we can decrease sinking speed by about ten times. Ultra sound generation is useful and can decrease sinking speed even more, compared with pulse power discharge.

  6. Spectral diagnostics of a vapor-plasma plume produced during welding titanium with a high-power ytterbium fiber laser

    Science.gov (United States)

    Uspenskiy, S. A.; Petrovskiy, V. N.; Bykovskiy, D. P.; Mironov, V. D.; Prokopova, N. M.; Tret'yakov, E. V.

    2015-03-01

    This work is devoted to the research of welding plume during high power ytterbium fiber laser welding of a titanium alloy in the Ar shielding gas environment. High speed video observation of a vapor-plasma plume for visualization of processes occurring at laser welding was carried out. The coefficient of the inverse Bremsstrahlung absorption of laser radiation is calculated for a plasma welding plume by results of spectrometer researches. The conclusion deals with the impact of plasma on a high-power fiber laser radiation.

  7. Compiler-directed power optimization of high-performance interconnection networks for load-balancing MPI applications

    Institute of Scientific and Technical Information of China (English)

    YANG Xuejun; YI Huizhan; QU Xiangli; ZHOU Haifang

    2007-01-01

    Energy consumption of parallel computers has been becoming the obstruction to higher-performance systems.In this paper,we focus on power optimization of highperformance interconnection networks for MPI applications in high-performance parallel computers.Compared with the past history-based work,we propose the idea of compilerdirected power-aware on/off network links.There are some idle intervals for network links during the execution of parallel applications,at which the links still consume large amounts of energy.Using on/off network links,compiler first divides load-balancing MPI applications into the communication intervals and the computation intervals,and then inserts the on/off instruction into the applications to switch the link state.To avoid the time overhead of state switching,we use a time estimation technique to analyze the computation time,and insert the on instruction before reaching the communication intervals.Results from simulations and experiments show that the proposed compiler- directed method can reduce energy consumption of interconnection networks by 20~70%,at a loss of less than 1% network latency and performance degradation.

  8. Simulation of damage to tokamaks plasma facing components during intense abnormal power deposition

    Energy Technology Data Exchange (ETDEWEB)

    Genco, F., E-mail: fgenco@purdue.edu; Hassanein, A., E-mail: hassanein@purdue.edu

    2014-04-15

    Highlights: • HEIGHTS-PIC a new technique based on particle in cell method to study disruptions events, ELMS and VDE is benchmarked in this paper with the use of the MK-200 experiments. • Disruptions simulations results for erosion and erosion rate are proposed showing good agreement with published experimental available data for such conditions. • Results are also compared with other published results produced by FOREV1/FOREV2 computer package and the original HEIGHTS computer package. • Accuracy of the simulations results is proposed with specific aim to address the use of number of super particles adopted versus computational time. - Abstract: Intense power deposition on plasma facing components (PFC) is expected in tokamaks during loss of confinement events such as disruptions, vertical displacement events (VDE), runaway electrons (RE), or during normal operating conditions such as edge-localized modes (ELM). These highly energetic events are damaging enough to hinder long term operation and may not be easily mitigated without loss of structural or functional performance of the PFC. Surface erosion, melted/ablated-vaporized material splashing, and material transport into the bulk plasma are reliability-threatening for the machine and system performance. A novel particle-in-cell (PIC) technique has been developed and integrated into the existing HEIGHTS package in order to obtain a global view of the plasma evolution upon energy impingement. This newly developed PIC technique is benchmarked against plasma gun experimental data, the original HEIGHTS computer package, and laser experiments. Benchmarking results are shown in this paper for various relevant reactor and experimental devices. The evolution of the plasma vapor cloud is followed temporally and results are explained and commented as a function of the computational time needed and the accuracy of the calculation.

  9. Studies of Plasma Instability Process Excited by Ground Based High Power HF (Heating) Facilities

    Science.gov (United States)

    2007-11-02

    the altitude z = 285 km. Night time plasma line intensities were observed to be enhanced by a factor 10 ÷ 100 extended to altitude below 250 km. When HF...waves, whose wave vector is directed toward the radar, and the phase velocity vph is equal to the velocity of suprathermal electrons v vph =(1/2) λr...averaged and in final form depends on two scalar factors only: full power density P absorbed by fast electrons in the acceleration layer, and characteristic

  10. High-Power γ-Ray Flash Generation in Ultraintense Laser-Plasma Interactions

    Science.gov (United States)

    Nakamura, Tatsufumi; Koga, James K.; Esirkepov, Timur Zh.; Kando, Masaki; Korn, Georg; Bulanov, Sergei V.

    2012-05-01

    When high-intensity laser interaction with matter enters the regime of dominated radiation reaction, the radiation losses open the way for producing short pulse high-power γ-ray flashes. The γ-ray pulse duration and divergence are determined by the laser pulse amplitude and by the plasma target density scale length. On the basis of theoretical analysis and particle-in-cell simulations with the radiation friction force incorporated, optimal conditions for generating a γ-ray flash with a tailored overcritical density target are found.

  11. Spectroscopic imaging of self-organization in high power impulse magnetron sputtering plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, 117543 Singapore, Singapore; Andersson, Joakim; Ni, Pavel; Anders, Andre

    2013-07-17

    Excitation and ionization conditions in traveling ionization zones of high power impulse magnetron sputtering plasmas were investigated using fast camera imaging through interference filters. The images, taken in end-on and side on views using light of selected gas and target atom and ion spectral lines, suggest that ionization zones are regions of enhanced densities of electrons, and excited atoms and ions. Excited atoms and ions of the target material (Al) are strongly concentrated near the target surface. Images from the highest excitation energies exhibit the most localized regions, suggesting localized Ohmic heating consistent with double layer formation.

  12. The present-day state and outlooks of using plasma-energy technologies in heat power industry

    Energy Technology Data Exchange (ETDEWEB)

    Karpenko, E.; Messerle, V.; Buyantuev, S. [J.S. Co. `Gusinoozyorsk SDPS`, Gusinoozyorsk (Russian Federation)

    1997-12-31

    The urgency of using plasma-energy technologies in the power industry is outlined with the aim of increasing economical efficiency, decreasing of energy consumption and decreasing environmental pollution. Scientific and technical bases for plasma-energy technologies of fuel utilization, are presented, with results of theoretical, experimental and rig investigations of processes of plasma ignition, gasification, thermochemical preparation for burning and combined processing of coals. Results of realization of plasma technologies of residual-oil-free (mazout) pulverized coal boiler kindling, lighting of torch and stabilization of fluid slagging in furnaces with removal of fluid slag, are described. 6 refs.,1 fig., 2 tabs.

  13. Effect of high-power laser divergence on the plasma structural parameters during multiple filamentation in air

    Science.gov (United States)

    Geints, Yu. E.; Zemlyanov, A. A.

    2016-06-01

    Multiple filamentation of an infrared high-power laser pulse in air is considered. Based on the numerical solution to the unidirectional pulse propagation equation, the effect of radiation external focusing on the spatial structure of the plasma area produced in the filamentation region is studied. We show that the number of generated plasma channels in the beam wake and the density of their spatial distribution over the filamentation region depend on the initial divergence of laser radiation. We found that in a specific range of beam focusing the number of produced plasma channels could be minimized due to the formation of a consolidated thick plasma bunch at the beam axis.

  14. Control of highly vertically unstable plasmas in TCV with internal coils and fast power supply

    Energy Technology Data Exchange (ETDEWEB)

    Favre, A.; Moret, J.M.; Chavan, R.; Fasel, D.; Hofmann, F.; Lister, J.B.; Mayor, J.M.; Perez, A. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP); Elkjaer, A. [Danfysik A/S, Jyllinge (Denmark)

    1996-10-01

    The goal of TCV (Tokamak a Configuration Variable) is to investigate effects of plasma shape, in particular high elongation (up to 3), on tokamak physics. Such elongated configurations (I{sub p}{approx_equal}1 MA) are highly vertically unstable with growth rates up to {gamma}=4000 s{sup -1}. Control of the vertical position using the poloidal coils located outside the vessel is limited to {gamma}{<=}1000 s{sup -1} because of the shielding effect of the conductive vessel and because of the relative slow time response of their power supplies (0.8 ms thyristor 12 pulse switching at 120 Hz). This dictated the necessity to install a coil set inside the vacuum vessel fed with a Fast Power Supply (FPS). The choice and design of the system with a special attention to the mechanical and electrical constraints in TCV tokamak, as the results and real performances, will be presented. (author) 3 figs., 2 tabs., 2 refs.

  15. Gaseous hydrocarbon production by the reaction of coal char with hydrogen plasma at relatively lower microwave power

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, S.; Nishikubo, K.; Imamura, T. [Kyushu National Industrial Research Institute, Tosu (Japan)

    1998-07-01

    Experimental conditions such as reaction temperature, microwave power and reaction pressure were changed in the reaction of carbon with hydrogen plasma. Methane was major product and other hydrocarbons such as acetylene and C2-C4 hydrocarbons were also produced. Methane production shows its maximum at 700-900 K and at 30W of microwave power. 2 figs.

  16. Striving for a balance: Nature, power, science and India′s Indira Gandhi, 1917-1984

    Directory of Open Access Journals (Sweden)

    Rangarajan Mahesh

    2009-01-01

    exchanges unify the world, divisions between and within nation states are central to most issues. By looking at a key figure of the latter half of the twentieth century, the article hopes to shed fresh light on how to look at the relations of nature, science, and power.

  17. Electron energy distributions and electron impact source functions in Ar/N{sub 2} inductively coupled plasmas using pulsed power

    Energy Technology Data Exchange (ETDEWEB)

    Logue, Michael D., E-mail: mdlogue@umich.edu; Kushner, Mark J., E-mail: mjkush@umich.edu [Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Ave., Ann Arbor, Michigan 48109-2122 (United States)

    2015-01-28

    In plasma materials processing, such as plasma etching, control of the time-averaged electron energy distributions (EEDs) in the plasma allows for control of the time-averaged electron impact source functions of reactive species in the plasma and their fluxes to surfaces. One potential method for refining the control of EEDs is through the use of pulsed power. Inductively coupled plasmas (ICPs) are attractive for using pulsed power in this manner because the EEDs are dominantly controlled by the ICP power as opposed to the bias power applied to the substrate. In this paper, we discuss results from a computational investigation of EEDs and electron impact source functions in low pressure (5–50 mTorr) ICPs sustained in Ar/N{sub 2} for various duty cycles. We find there is an ability to control EEDs, and thus source functions, by pulsing the ICP power, with the greatest variability of the EEDs located within the skin depth of the electromagnetic field. The transit time of hot electrons produced in the skin depth at the onset of pulse power produces a delay in the response of the EEDs as a function of distance from the coils. The choice of ICP pressure has a large impact on the dynamics of the EEDs, whereas duty cycle has a small influence on time-averaged EEDs and source functions.

  18. Plasma formation and dynamics in conical wire arrays in the Llampudken pulsed power generator

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz, C. Gonzalo, E-mail: gamunoz2f@uc.cl, E-mail: fveloso@fis.puc.cl; Valenzuela, Vicente, E-mail: gamunoz2f@uc.cl, E-mail: fveloso@fis.puc.cl; Veloso, Felipe, E-mail: gamunoz2f@uc.cl, E-mail: fveloso@fis.puc.cl; Favre, Mario, E-mail: gamunoz2f@uc.cl, E-mail: fveloso@fis.puc.cl; Wyndham, Edmund, E-mail: gamunoz2f@uc.cl, E-mail: fveloso@fis.puc.cl [Instituto de Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago (Chile)

    2014-12-15

    Plasma formation and dynamics from conical wire array is experimentally studied. Ablation from the wires is observed, forming plasma accumulation at the array axis and subsequently a jet outflow been expelled toward the top of the array. The arrays are composed by 16 equally spaced 25μ diameter tungsten wires. Their dimensions are 20mm height, with base diameters of 8mm and 16mm top diameter. The array loads are design to be overmassed, hence no complete ablation of the wires is observed during the current rise. The experiments have been carried out in the Llampudken. pulsed power generator (∼350kA in ∼350ns). Plasma dynamics is studied in both side-on and end-on directions. Laser probing (shadowgraphy) is achieved using a frequency doubled Nd:YAG laser (532nm, 12ps FWHM) captured by CCD cameras. Pinhole XUV imaging is captured using gated microchannel plate cameras with time resolution ∼5ns. Results on the jet velocity and the degree of collimation indicating the plausibility on the use of these jets as comparable to the study astrophysically produced jets are presented and discussed.

  19. Distance-dependent plasma composition and ion energy in high power impulse magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Ehiasarian, Arutiun P; Andersson, Joakim; Anders, Andr& #233

    2010-04-18

    The plasma composition of high power impulse magnetron sputtering (HIPIMS) has been studied for titanium and chromium targets using a combined energy analyser and quadrupole mass spectrometer. Measurements were done at distances from 50 to 300 mm from the sputtering target. Ti and Cr are similar in atomic mass but have significantly different sputter yields, which gives interesting clues on the effect of the target on plasma generation and transport of atoms. The Ti and Cr HIPIMS plasmas operated at a peak target current density of ~;;0.5 A cm-2. The measurements of the argon and metal ion content as well as the ion energy distribution functions showed that (1) singly and doubly charged ions were found for argon as well as for the target metal, (2) the majority of ions were singly charged argon for both metals at all distances investigated, (3) the Cr ion density was maintained to distances further from the target than Ti. Gas rarefaction was identified as a main factor promoting transport of metal ions, with the stronger effect observed for Cr, the material with higher sputter yield. Cr ions were found to displace a significant portion of the gas ions, whereas this was less evident in the Ti case. The observations indicate that the presence of metal vapour promotes charge exchange and reduces the electron temperature and thereby practically prevents the production of Ar2+ ions near the target. The content of higher charge states of metal ions depends on the probability of charge exchange with argon.

  20. Power supply and impedance matching to drive technological radio-frequency plasmas with customized voltage waveforms.

    Science.gov (United States)

    Franek, James; Brandt, Steven; Berger, Birk; Liese, Martin; Barthel, Matthias; Schüngel, Edmund; Schulze, Julian

    2015-05-01

    We present a novel radio-frequency (RF) power supply and impedance matching to drive technological plasmas with customized voltage waveforms. It is based on a system of phase-locked RF generators that output single frequency voltage waveforms corresponding to multiple consecutive harmonics of a fundamental frequency. These signals are matched individually and combined to drive a RF plasma. Electrical filters are used to prevent parasitic interactions between the matching branches. By adjusting the harmonics' phases and voltage amplitudes individually, any voltage waveform can be approximated as a customized finite Fourier series. This RF supply system is easily adaptable to any technological plasma for industrial applications and allows the commercial utilization of process optimization based on voltage waveform tailoring for the first time. Here, this system is tested on a capacitive discharge based on three consecutive harmonics of 13.56 MHz. According to the Electrical Asymmetry Effect, tuning the phases between the applied harmonics results in an electrical control of the DC self-bias and the mean ion energy at almost constant ion flux. A comparison with the reference case of an electrically asymmetric dual-frequency discharge reveals that the control range of the mean ion energy can be significantly enlarged by using more than two consecutive harmonics.

  1. Kinetic instabilities in a mirror-confined plasma sustained by high-power microwave radiation

    Science.gov (United States)

    Shalashov, A. G.; Viktorov, M. E.; Mansfeld, D. A.; Golubev, S. V.

    2017-03-01

    This paper summarizes the studies of plasma kinetic instabilities in the electron cyclotron frequency range carried out over the last decade at the Institute of Applied Physics in Nizhny Novgorod. We investigate the nonequilibrium plasma created and sustained by high-power microwave radiation of a gyrotron under the electron cyclotron resonance condition. Resonant plasma heating results in the formation of at least two electron components, one of which, more dense and cold, determines the dispersion properties of the high-frequency waves, and the other, a small group of energetic electrons with a highly anisotropic velocity distribution, is responsible for the excitation of unstable waves. Dynamic spectra and the intensity of stimulated electromagnetic emission are studied with high temporal resolution. Interpretation of observed data is based on the cyclotron maser paradigm; in this context, a laboratory modeling of non-stationary wave-particle interaction processes has much in common with similar processes occurring in the magnetosphere of Earth, planets, and solar coronal loops.

  2. The snowflake divertor, physics of a new concept for power exhaust of fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Lunt, Tilmann; Feng, Yuehe [Max-Planck-Institut fuer Plasmaphysik, Garching/Greifswald (Germany); Canal, Gustavo; Reimerdes, Holger [Ecole Polytechnique Federale de Lausanne, Lausanne (Switzerland)

    2014-07-01

    Fusion reactors based on the tokamak design will have to deal with very high heat loads on the divertor plates. One of the approaches to solve this heat load problem is the so called 'snowflake divertor', a magnetic configuration with two nearby x-points and two additional divertor legs. In this contribution we report on 'EMC3-Eirene' simulations of the plasma- and neutral particle transport in the scrape-off layer of the swiss tokamak TCV of a series of snowflake equilibria with different values of σ, the distance between the x-points normalized to the minor radius of the plasma. The constant anomalous transport coefficients were chosen such that the power- and particle deposition profiles at the primary inner strike point match the Langmuir probe measurements for the σ=0.1 case. At one of the secondary strike points, however, a significantly larger power flux than that predicted by the simulation was measured by the probes, indicating the presence of an enhanced transport across the primary separatrix. We discuss the possible reason for this enhanced transport as well as its scaling with machine size. Another prediction from the simulation is that the density as well as the radiation maximum are moving from the recycling region in front of the plates upwards to the x-point.

  3. Plasma characteristics of argon glow discharge produced by AC power supply operating at low frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Kongpiboolkid, Watcharapon; Mongkolnavin, Rattachat [Department of Physics, Facuty of Science, Chulalongkorn University, Bangkok (Thailand); Plasma Technology and Nuclear Fusion Research Unit, Chulalongkorn University, Bangkok (Thailand)

    2015-04-24

    Non-thermal properties of Argon glow discharge operating with various operating pressures were measured and presented in this work. The Argon plasma is produced by a parallel conducting electrodes coupling with a high voltage AC power supply. The power supply can generate high AC voltage at various frequencies. The frequencies for the operation are in the range of a few kHz. The system is capable of generating electric field between the two metal electrodes discharge system. The characteristics of plasma produced were measured by optical emission spectroscopy (OES) technique where electron temperature (T{sub e}) and electron number density (n{sub e}) can be determined by line intensity ratio method. The value of electron number density was then determined from the Saha-Eggert equation. Our results show that the electron number density of the discharge obtained is of the order of 10{sup −17} − 10{sup −18} m{sup −3} where the electron temperature is between 1.00−2.00 eV for various operating frequencies used which are in good agreement with similar results published earlier.

  4. Validation of the thermal balance of Laguna Verde turbine under conditions of extended power increase; Validacion del balance termico de turbina de Laguna Verde en condiciones de aumento de potencia extendido

    Energy Technology Data Exchange (ETDEWEB)

    Castaneda G, M. A.; Cruz B, H. J.; Mercado V, J. J.; Cardenas J, J. B.; Garcia de la C, F. M., E-mail: miguel.castaneda01@cfe.gob.mx [Comision Federal de Electricidad, Central Nucleoelectrica Laguna Verde, Carretera Cardel-Nautla Km 42.5, Alto Lucero, Veracruz (Mexico)

    2012-10-15

    The present work is a continuation of the task: Modeling of the vapor cycle of Laguna Verde with the PEPSE code to conditions of thermal power licensed at present (2027 MWt) in which the modeling of the vapor cycle of the nuclear power plant of Laguna Verde was realized with PEPSE code (Performance Evaluation of Power System Efficiencies). Once reached the conditions of nominal operation of extended power increase, operating both units to 2371 MWt; after the tests phase of starting-up and operation is necessary to carry out a verification of the proposed design of the vapor cycle for the new operation conditions. All this, having in consideration that the vapor cycle designer only knows the detail of the prospective performance of the main turbine, for all the other components (for example pumps, heat inter changers, valves, reactor, humidity separators and re-heaters, condensers, etc.) makes generic suppositions based on engineering judgment. This way carries out the calculations of thermal balance to determine the guaranteed gross power. The purpose of the present work is to comment the detail of the validation carried out of the specific thermal balance (thermal kit) of the nuclear power plant, making use of the design characteristics of the different components that conform the vapor cycle. (Author)

  5. Delicate Balance of Power in the Asia-Pacific: The Obama Administration’s Strategic Rebalance and the Transformation of US-China Relationship

    Institute of Scientific and Technical Information of China (English)

    SUISHENG; ZHAO

    2013-01-01

    The rise of China has transformed the global power balance and made the US-China relationship increasingly strategic and complicated.While some Americans are anxious about what China’s great power aspiration means for US interests,many Chinese are concerned about the US intention to keep China down.In this context,many in Beijing believe that the Obama administration’s strategic rebalance toward the Asia-Pacific is bent on hindering China’s rise as a great power.To what extent is the strategic rebalance about China?Is it part of the US strategy to contain China’s rise?Can the US and China function in relative power equality and build a balance of power to maintain peace and stability in the Asia-Pacific?Seeking answers to these important questions,this article argues that the strategic rebalance is a continuation of the long-standing struggle of the US to define its interests in the region.China remains a centerpiece in the rebalance not only because building a cooperative relationship with China is the key for its success,but also because the rebalance has to address the rapidly shifting balance of power in the region where China has emerged as an ever-more influential power.It is in US interests to work with its partners as well as China to construct a regional order based on the balance of power,and rules and institutions capable of allowing China to grow and be secured but not use its new might arbitrarily.

  6. ELM-induced melting: assessment of shallow melt layer damage and the power handling capability of tungsten in a linear plasma device

    NARCIS (Netherlands)

    Morgan, T. W.; van Eden, G. G.; de Kruif, T. M.; van den Berg, M. A.; J Matejicek,; T Chraska,; De Temmerman, G.

    2014-01-01

    Tungsten samples were exposed to combined steady state and edge localised mode transient replication experiments in a linear plasma device; either in combined hydrogen plasma and high powered laser exposures at Magnum-PSI or steady state hydrogen plasma and superimposed plasma pulses created using a

  7. Child abuse and the balance of power in parental relationships: an evolved domain-independent mental mechanism that accounts for behavioral variation.

    Science.gov (United States)

    Handwerker, W P

    2001-01-01

    Previous studies use zero-order analyses to show a link between child abuse and exposure to "stepfathers." These studies rest on a proposed evolved, domain-specific cognitive mechanism that induces adult males to abuse or kill offspring not their own and, so, contribute directly to reproductive success. However, child abuse may reflect an evolved neurological mechanism that creates behavioral plasticity and adaptability by assigning emotional weights (which in consciousness appear rationalized as costs and benefits) to choice alternatives in all behavioral domains. This mechanism should act as a selective mechanism to create enhanced ability to avoid predation (social exploitation) and to obtain access to resources, given the properties of specific ecosystems, and should control behavioral responses to variation in the balance of power in social relationships. Power equalities should elicit good treatment for both parties; power inequalities, by contrast, should elicit exploitative and coercive behavior on the part of those who hold the balance of power. This paper reports a test of both hypotheses simultaneously, controlling for a standard social science risk factor (growing up in poverty). Once we control for the balance of power in parental relationships, exposure to a stepfather and growing up in poverty show no effect on the intensity of child abuse. Powerful women negotiated affectionate behavior from their partners for both themselves and their children; powerless women's negotiations with partners usually left both themselves and their children open to violence.

  8. DET/MPS - THE GSFC ENERGY BALANCE PROGRAM, DIRECT ENERGY TRANSFER/MULTIMISSION SPACECRAFT MODULAR POWER SYSTEM (UNIX VERSION)

    Science.gov (United States)

    Jagielski, J. M.

    1994-01-01

    The DET/MPS programs model and simulate the Direct Energy Transfer and Multimission Spacecraft Modular Power System in order to aid both in design and in analysis of orbital energy balance. Typically, the DET power system has the solar array directly to the spacecraft bus, and the central building block of MPS is the Standard Power Regulator Unit. DET/MPS allows a minute-by-minute simulation of the power system's performance as it responds to various orbital parameters, focusing its output on solar array output and battery characteristics. While this package is limited in terms of orbital mechanics, it is sufficient to calculate eclipse and solar array data for circular or non-circular orbits. DET/MPS can be adjusted to run one or sequential orbits up to about one week, simulated time. These programs have been used on a variety of Goddard Space Flight Center spacecraft projects. DET/MPS is written in FORTRAN 77 with some VAX-type extensions. Any FORTRAN 77 compiler that includes VAX extensions should be able to compile and run the program with little or no modifications. The compiler must at least support free-form (or tab-delineated) source format and 'do do-while end-do' control structures. DET/MPS is available for three platforms: GSC-13374, for DEC VAX series computers running VMS, is available in DEC VAX Backup format on a 9-track 1600 BPI tape (standard distribution) or TK50 tape cartridge; GSC-13443, for UNIX-based computers, is available on a .25 inch streaming magnetic tape cartridge in UNIX tar format; and GSC-13444, for Macintosh computers running AU/X with either the NKR FORTRAN or AbSoft MacFORTRAN II compilers, is available on a 3.5 inch 800K Macintosh format diskette. Source code and test data are supplied. The UNIX version of DET requires 90K of main memory for execution. DET/MPS was developed in 1990. A/UX and Macintosh are registered trademarks of Apple Computer, Inc. VMS, DEC VAX and TK50 are trademarks of Digital Equipment Corporation. UNIX is a

  9. 3. Pulsed Power Generator with Inductive-Energy Storage Using Semiconductor Opening Switch(Present and Future of Semiconductor Pulsed Power Generator : Role of Power Semiconductor Devices in Plasma Research)

    OpenAIRE

    浪平, 隆男; 佐久川, 貴志; 勝木, 淳; 秋山, 秀典; ナミヒラ, タカオ; サクガワ, タカシ; カツキ, スナオ; アキヤマ, ヒデノリ; Namihara, Takao; Sakugawa, Takashi; Katsuki, Sunao; Akiyama, Hidenori

    2005-01-01

    Pulsed power technology enables the generation of large electrical power of micro to nano second duration by compressing and releasing electrical energy. The pulsed power is utilized in a variety of applications such as large-volume non-thermal plasmas and excimer laser excitation, neither of which could be realized by conventional high-voltage and current technology. Pulsed power has been generated by capacitive energy storage (CES) systems based on the direct discharge of the capacitor. On ...

  10. Plasma Physics Challenges of MM-to-THz and High Power Microwave Generation

    Science.gov (United States)

    Booske, John

    2007-11-01

    Homeland security and military defense technology considerations have stimulated intense interest in mobile, high power sources of millimeter-wave to terahertz regime electromagnetic radiation, from 0.1 to 10 THz. While sources at the low frequency end, i.e., the gyrotron, have been deployed or are being tested for diverse applications such as WARLOC radar and active denial systems, the challenges for higher frequency sources have yet to be completely met for applications including noninvasive sensing of concealed weapons and dangerous agents, high-data-rate communications, and high resolution spectroscopy and atmospheric sensing. The compact size requirements for many of these high frequency sources requires miniscule, micro-fabricated slow wave circuits with high rf ohmic losses. This necessitates electron beams with not only very small transverse dimensions but also very high current density for adequate gain. Thus, the emerging family of mm-to-THz e-beam-driven vacuum electronics devices share many of the same plasma physics challenges that currently confront ``classic'' high power microwave (HPM) generators [1] including bright electron sources, intense beam transport, energetic electron interaction with surfaces and rf air breakdown at output windows. Multidimensional theoretical and computational models are especially important for understanding and addressing these challenges. The contemporary plasma physics issues, recent achievements, as well as the opportunities and outlook on THz and HPM will be addressed. [1] R.J. Barker, J.H. Booske, N.C. Luhmann, and G.S. Nusinovich, Modern Microwave and Millimeter-Wave Power Electronics (IEEE/Wiley, 2005).

  11. The Penobscot River, Maine, USA: a Basin-Scale Approach to Balancing Power Generation and Ecosystem Restoration

    Directory of Open Access Journals (Sweden)

    Jeffrey J. Opperman

    2011-09-01

    Full Text Available Although hydropower is a source of low-carbon energy, without careful consideration and management, dams have the potential to degrade river ecosystems and the goods and services they provide to society. Today, a broad range of hydropower interests and stakeholders are seeking approaches to hydropower development and operation that are more environmentally and socially sustainable. The Penobscot River Restoration Project ('the Project' illustrates that basin-scale approaches can provide a broader set of solutions for balancing energy and riverine environmental resources than can be achieved at the scale of individual projects. The Penobscot basin is the largest in Maine and historically supported culturally and economically significant populations of migratory fish. These migratory fish populations declined dramatically following the construction of a series of hydropower dams on the main stem river and major tributaries in the early 20th century. The Project, negotiated between a power company (PPL Corporation and a coalition including the Penobscot Indian Nation, resource agencies, and nongovernmental conservation organizations, features the removal of two main stem dams on the lower Penobscot and improved fish passage at the dams that remain. Because of various capacity and/or operational changes, power production will be increased at the remaining dams and total hydropower energy production from the basin will be maintained or increase slightly. The Project is expected to expand considerably the proportion of the basin accessible to migratory fish and contribute to significant increases in fish populations. The Project illustrates that a basin-scale approach can potentially yield more comprehensive solutions for sustainable hydropower than can be achieved at the project scale, and we recommend that such large-scale planning processes can improve the sustainability of both regulatory licensing of existing dams as well as the planning of

  12. THE EAP: A FAILURE OF THE EUROPEAN NEIGHBOURHOOD POLICY OR SHARING A POWER BALANCE IN THE NEIGHBOURHOOD?

    Directory of Open Access Journals (Sweden)

    Nona TATIASHVILI

    2016-10-01

    Full Text Available The present paper analyses achievements and challenges of the EaP in the prism of EU-Russia asymmetric energy interdependence, as the major factor affecting the successful implementation of the Eastern partnership. To identify whether energy interdependence is the main sphere of interest in the EaP neighbourhood, where EU-Russia common interests intersect in one point or is it a sharing a power balance in “common neighbourhood”?. The research paper reviews major policy documents of the ENP/EaP, in order to analyze to what extent is policy coherent/incoherent towards partner countries. Moreover, the paper evaluates the European neighbourhood external policy instruments (the ENP/EaP from the perspective of three prioritised countries of the Eastern partnership: Moldova, Georgia and Ukraine, including the analysis of the effectiveness of proposed incentives under the ENP/EaP, as sufficient instruments for successful implementation of the Eastern partnership, in the presence of unpredictable external veto player.

  13. Robust low frequency current ripple elimination algorithm for grid-connected fuel cell systems with power balancing technique

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong-Soo; Choe, Gyu-Yeong; Lee, Byoung-Kuk [School of Information and Communication Engineering, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Kang, Hyun-Soo [R and D Center, Advanced Drive Technology (ADT) Company, 689-26 Geumjeong-dong, Gunpo-si, Gyeonggi-do 435-862 (Korea, Republic of)

    2011-05-15

    The low frequency current ripple in grid-connected fuel cell systems is generated from dc-ac inverter operation, which generates 60 Hz fundamental component, and gives harmful effects on fuel cell stack itself, such as making cathode surface responses slower, causing an increase of more than 10% in the fuel consumption, creating oxygen starvation, causing a reduction in the operating lifetime, and incurring a nuisance tripping such as overload situation. With these reasons, low frequency current ripple makes fuel cell system unstable and lifetime of fuel cell stack itself short. This paper presents a fast and robust control algorithm to eliminate low frequency current ripple in grid-connected fuel cell systems. Compared with the conventional methods, in the proposed control algorithm, dc link voltage controller is shifted from dc-dc converter to dc-ac inverter, resulting that dc-ac inverter handles dc link voltage control and output current control simultaneously with help of power balancing technique. The results indicate that the proposed algorithm can not only completely eliminate current ripple but also significantly reduce the overshoot or undershoot during transient states without any extra hardware. The validity of the proposed algorithm is verified by computer simulations and also by experiments with a 1 kW laboratory prototype. (author)

  14. On the diversity enhancement and power balancing of per-subcarrier transmit antenna selection in OFDM systems

    KAUST Repository

    Park, Kihong

    2011-01-01

    In this paper, we consider multicarrier systems with multiple transmit antennas under a power-balancing constraint. Applying transmit antenna selection and discrete rate-adaptive modulation using M-ary quadrature-amplitude modulation (QAM) according to the channel variation per subcarrier, we develop an optimal transmit antenna selection scheme in terms of the maximum spectral efficiency, where all the possible groupings for sending the same information-bearing signals in a group of subcarriers are searched, and the groups of subcarriers for providing the frequency diversity gain are formed. In addition, we propose a suboptimal method for reducing the computational complexity of the optimal method. The suboptimal scheme considers only the subcarriers under outage, and these subcarriers are sequentially combined until the required signal-to-noise ratio (SNR) is met. Numerical results show that the proposed suboptimal method with diversity combining outperforms the optimal antenna selection without diversity combining, as introduced in the work of Sandell and Coon, particularly for low-SNR regions, and offers the spectral efficiency close to the optimal method with diversity combining while maintaining lower complexity. © 2011 IEEE.

  15. Output Filter Design for a Novel Dual-Input PV-Wind Power Converter by Energy Balance Principle

    Directory of Open Access Journals (Sweden)

    Chih-Lung Shen

    2016-09-01

    Full Text Available In this paper, a detailed and systematic derivation of the output filter in a novel dual-input photovoltaic (PV-wind converter (DIPWC is presented. The theoretical derivation is based on an energy balance principle. While the DIPWC operates in steady state, the amount of charged energy of the output filter will be equal to that of the energy pumped away within one switching cycle. From this zero net change in energy, the minimum value of the output filter can be found. With the determined value, the DIPWC is able to operate in continuous conduction for high power applications. The developed procedure of the inductance determination can be applied to other types of dual-input converters. Therefore, it makes significant contributions to the design toward a green-energy, multi-input converter. To verify the correctness of the mathematical analysis, the DIPWC—with the derived output inductance—is built and tested. Practical measurements and results have verified the inductance determination.

  16. Progress Toward Accurate Measurements of Power Consumptions of DBD Plasma Actuators

    Science.gov (United States)

    Ashpis, David E.; Laun, Matthew C.; Griebeler, Elmer L.

    2012-01-01

    The accurate measurement of power consumption by Dielectric Barrier Discharge (DBD) plasma actuators is a challenge due to the characteristics of the actuator current signal. Micro-discharges generate high-amplitude, high-frequency current spike transients superimposed on a low-amplitude, low-frequency current. We have used a high-speed digital oscilloscope to measure the actuator power consumption using the Shunt Resistor method and the Monitor Capacitor method. The measurements were performed simultaneously and compared to each other in a time-accurate manner. It was found that low signal-to-noise ratios of the oscilloscopes used, in combination with the high dynamic range of the current spikes, make the Shunt Resistor method inaccurate. An innovative, nonlinear signal compression circuit was applied to the actuator current signal and yielded excellent agreement between the two methods. The paper describes the issues and challenges associated with performing accurate power measurements. It provides insights into the two methods including new insight into the Lissajous curve of the Monitor Capacitor method. Extension to a broad range of parameters and further development of the compression hardware will be performed in future work.

  17. Empirical studies of solar flares: Comparison of X-ray and H alpha filtergrams and analysis of the energy balance of the X-ray plasma

    Science.gov (United States)

    Moore, R. L.

    1979-01-01

    The physics of solar flares was investigated through a combined analysis of X-ray filtergrams of the high temperature coronal component of flares and H alpha filtergrams of the low temperature chromospheric component. The data were used to study the magnetic field configuration and its changes in solar flares, and to examine the chromospheric location and structure of X-ray bright points (XPB) and XPB flares. Each topic and the germane data are discussed. The energy balance of the thermal X-ray plasma in flares, while not studied, is addressed.

  18. The effect of heterogeneous variance on efficiency and power of cluster randomized trials with a balanced 2 × 2 factorial design.

    Science.gov (United States)

    Lemme, Francesca; van Breukelen, Gerard J P; Candel, Math J J M; Berger, Martijn P F

    2015-10-01

    Sample size calculation for cluster randomized trials (CRTs) with a [Formula: see text] factorial design is complicated due to the combination of nesting (of individuals within clusters) with crossing (of two treatments). Typically, clusters and individuals are allocated across treatment conditions in a balanced fashion, which is optimal under homogeneity of variance. However, the variance is likely to be heterogeneous if there is a treatment effect. An unbalanced allocation is then more efficient, but impractical because the optimal allocation depends on the unknown variances. Focusing on CRTs with a [Formula: see text] design, this paper addresses two questions: How much efficiency is lost by having a balanced design when the outcome variance is heterogeneous? How large must the sample size be for a balanced allocation to have sufficient power under heterogeneity of variance? We consider different scenarios of heterogeneous variance. Within each scenario, we determine the relative efficiency of a balanced design, as a function of the level (cluster, individual, both) and amount of heterogeneity of the variance. We then provide a simple correction of the sample size for the loss of power due to heterogeneity of variance when a balanced allocation is used. The theory is illustrated with an example of a published 2 x2 CRT.

  19. Emissions treatment of diesel engines by plasma outside of balance; Tratamiento de emisiones de motores diesel por plasma fuera de equilibrio

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco P, M.; Pacheco S, J.; Valdivia B, R.; Garcia R, M.; Estrada M, N. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Santana D, A. [Instituto Tecnologico y de Estudios Superiores de Monterrey, Mexico D. F. (Mexico); Lefort, B.; Le Moyne, L.; Zamilpa, C., E-mail: marquidia.pacheco@inin.gob.mx [Institut Superieur d l' Automobile et des Transports, 49 rue Madeimoiselle Bourgeois BP31, 58027 Nevers cedex (France)

    2013-07-01

    Nowadays, diesel engines are greatly developed in automobiles allowing the reduction of carbon dioxide emissions (CO{sub 2}); however high emissions of particulate matter (Mp) and nitric oxides (NO{sub x}) still remain. A technology based on non-thermal plasma to diminish toxic emissions is exposed in this work. From previous experimental and simulation results, a chemical mechanism is proposed showing a rapidly diminution of Mp and NO{sub x}, in presence of plasma. (Author)

  20. Dissipated power and induced velocity fields data of a micro single dielectric barrier discharge plasma actuator for active flow control☆

    Science.gov (United States)

    Pescini, E.; Martínez, D.S.; De Giorgi, M.G.; Francioso, L.; Ficarella, A.

    2015-01-01

    In recent years, single dielectric barrier discharge (SDBD) plasma actuators have gained great interest among all the active flow control devices typically employed in aerospace and turbomachinery applications [1,2]. Compared with the macro SDBDs, the micro single dielectric barrier discharge (MSDBD) actuators showed a higher efficiency in conversion of input electrical power to delivered mechanical power [3,4]. This article provides data regarding the performances of a MSDBD plasma actuator [5,6]. The power dissipation values [5] and the experimental and numerical induced velocity fields [6] are provided. The present data support and enrich the research article entitled “Optimization of micro single dielectric barrier discharge plasma actuator models based on experimental velocity and body force fields” by Pescini et al. [6]. PMID:26425667

  1. Spectral diagnostics of a vapor-plasma plume produced during welding with a high-power ytterbium fiber laser

    Science.gov (United States)

    Uspenskiy, S. A.; Shcheglov, P. Yu.; Petrovskiy, V. N.; Gumenyuk, A. V.; Rethmeier, M.

    2013-07-01

    We have conducted spectroscopic studies of the welding plasma formed in the process of welding with an ytterbium fiber laser delivering output power of up to 20 kW. The influence of shielding gases (Ar, He) on different parts of the welding plume is investigated. The absorption coefficient of the laser radiation by the welding-plume plasma is estimated. Scattering of 532-nm probe radiation from particles of the condensed metal vapor within the caustic of a high-power fiber laser beam is measured. Based on the obtained results, conclusions are made on the influence of the plasma formation and metal vapor condensation on the radiation of the high-power fiber laser and the stability of the welding process.

  2. Innovative Plasma Disinfection Technique with the Reduced-pH Method and the Plasma-Treated Water (PTW) -Safety and Powerful Disinfection with Cryopreserved PTW-

    Science.gov (United States)

    Kitano, Katsuhisa; Ikawa, Satoshi; Nakashima, Yoichi; Tani, Atsushi; Yokoyama, Takashi; Ohshima, Tomoko

    2015-09-01

    Among the applications of the plasma disinfection to human body, plasma sterilization in liquid is crucial. We found that the plasma-treated water (PTW) has strong bactericidal activity under low pH condition and the half-lives of its activity depend on temperature. Lower temperature brings longer half-life and the bactericidal activity of PTW can be kept by cryopreservation. These physicochemical properties were in accordance with Arrhenius equation both in liquid and solid states. From the experimental results of ESR (Electron Spin Resonance) measurement of O2-in liquid against PTW with spin trapping method, half-lives of PTW were also in accordance with Arrhenius equation. It suggests that high concentration PTW as integrated value can be achieved by cooling of plasma apparatus. Pure PTW has disinfection power of 22 log reduction (B. subtilis). This corresponds to 65% H2O2, 14% hypochlorous acid and 0.33% peracetic acid, which are deadly poison for human. On the other hand, PTW is deactivated soon at body temperature. This indicates that toxicity to human body seems to be low. PTW, which is a sort of indirect plasma exposure, with pH and temperature controls could be applied for safety and powerful disinfection. MEXT (15H03583, 23340176, 25108505). NCCE (23-A-15).

  3. The power-supply control system in the device of acetylene production by H-plasma pyrolysis coal

    Energy Technology Data Exchange (ETDEWEB)

    Chen, F.Y.; Zhang, M.; Fu, P.; Weng, P.D. [Chinese Academy of Sciences, Hefei (China)

    2006-09-15

    The device of acetylene production by hydrogen (H{sub 2}) plasma pyrolysis coal is examined and developed not only for studying the application of low temperature plasma but also for studying the clean use of coal. The power-supply control system is used to ensure supplying a steady energy to generate and maintain the plasma electric arc of the device. The hardware configuration and the software design of the system are described in this paper. Verified by experiments, this system can meet the requirements of real-time performance, reliability and extensibility for the device.

  4. The Power-Supply Control System in the Device of Acetylene Production by H-Plasma Pyrolysis Coal

    Science.gov (United States)

    Chen, Feiyun; Zhang, Ming; Fu, Peng; Weng, Peide

    2006-09-01

    The device of acetylene production by hydrogen (H-) plasma pyrolysis coal is examined and developed not only for studying the application of low temperature plasma but also for studying the clean use of coal. The power-supply control system is used to ensure supplying a steady energy to generate and maintain the plasma electric arc of the device. The hardware configuration and the software design of the system are described in this paper. Verified by experiments, this system can meet the requirements of real-time performance, reliability and extensibility for the device.

  5. Kinetic analysis of negative power deposition in inductive low pressure plasmas

    Science.gov (United States)

    Trieschmann, Jan; Mussenbrock, Thomas

    2017-02-01

    Negative power deposition in low pressure inductively coupled plasmas (ICPs) is investigated by means of an analytical model which couples Boltzmann’s equation and the quasi-stationary Maxwell’s equations. Exploiting standard Hilbert space methods an explicit solution for both, the electric field and the distribution function of the electrons for a bounded discharge configuration subject to an unsymmetrical excitation is found for the first time. The model is applied to a low pressure ICP discharge. In this context particularly the anomalous skin effect and the effect of phase mixing is discussed. The analytical solution is compared with results from electromagnetic full wave particle in cell simulations. Excellent agreement between the analytical and the numerical results is found.

  6. Tungsten carbide coatings with different binders prepared by low power plasma spray system

    Institute of Scientific and Technical Information of China (English)

    GAO Yang; M.F.Morks; FU Ying-qing

    2004-01-01

    Thermal spraying of cermet coatings is widely used for protection of machining parts against wear and corrosion. These coatings consist of WC particles in metal binders such as Co, Cr and Ni. Three kinds of WC powders with different metal binders (Co, NiCr and CoCr) were sprayed by low power plasma spray system on Al-Si-Cu alloy substrate. Fundamental aspects of sprayed cermet coatings, including (i) the effects of binder type on the coating structure, (ii) the hardness and (iii) the microstructure, were investigated. All cermet coatings have the same phase structure such as WC and W2 C. However, the intensities of these phases are different in each coating, mainly due to the difference in solidification rate in each case. Moreover, the hardness measurements are found to be different in each coating. The results show that, binder type has a significant effect on the physical and mechanical properties of the sprayed coatings.

  7. A Survey on Investigating the Need for Intelligent Power-Aware Load Balanced Routing Protocols for Handling Critical Links in MANETs

    Science.gov (United States)

    Sivakumar, B.; Bhalaji, N.; Sivakumar, D.

    2014-01-01

    In mobile ad hoc networks connectivity is always an issue of concern. Due to dynamism in the behavior of mobile nodes, efficiency shall be achieved only with the assumption of good network infrastructure. Presence of critical links results in deterioration which should be detected in advance to retain the prevailing communication setup. This paper discusses a short survey on the specialized algorithms and protocols related to energy efficient load balancing for critical link detection in the recent literature. This paper also suggests a machine learning based hybrid power-aware approach for handling critical nodes via load balancing. PMID:24790546

  8. A Survey on Investigating the Need for Intelligent Power-Aware Load Balanced Routing Protocols for Handling Critical Links in MANETs

    Directory of Open Access Journals (Sweden)

    B. Sivakumar

    2014-01-01

    Full Text Available In mobile ad hoc networks connectivity is always an issue of concern. Due to dynamism in the behavior of mobile nodes, efficiency shall be achieved only with the assumption of good network infrastructure. Presence of critical links results in deterioration which should be detected in advance to retain the prevailing communication setup. This paper discusses a short survey on the specialized algorithms and protocols related to energy efficient load balancing for critical link detection in the recent literature. This paper also suggests a machine learning based hybrid power-aware approach for handling critical nodes via load balancing.

  9. A survey on investigating the need for intelligent power-aware load balanced routing protocols for handling critical links in MANETs.

    Science.gov (United States)

    Sivakumar, B; Bhalaji, N; Sivakumar, D

    2014-01-01

    In mobile ad hoc networks connectivity is always an issue of concern. Due to dynamism in the behavior of mobile nodes, efficiency shall be achieved only with the assumption of good network infrastructure. Presence of critical links results in deterioration which should be detected in advance to retain the prevailing communication setup. This paper discusses a short survey on the specialized algorithms and protocols related to energy efficient load balancing for critical link detection in the recent literature. This paper also suggests a machine learning based hybrid power-aware approach for handling critical nodes via load balancing.

  10. A two-stream plasma electron microwave source for high-power millimeter wave generation, phase 1

    Science.gov (United States)

    Guest, Gareth E.; Dandl, Raphael A.

    1989-03-01

    A novel high power millimeter/microwave source is proposed in which one or more pairs of interpenetrating streams of electrons, flowing through a background plasma in a static magnetic field are used to generate a hot-electron plasma that is confined in a mirror-like magnetic field. Energy stored in the anisotropic, hot-electron plasma is then used to amplify pulses of unstable plasma waves to large amplitude by selective deactivation of mechanisms that stabilize the hot-electron plasma during the energy accumulation phase when the density of hot electrons is rapidly increased through the beam-plasma interaction. The Phase 1 program has yielded a design for an experimental arrangement capable of verifying the key aspects of this novel source concept, as well as a theoretical framework for interpreting the empirical Phase 2 results produced by the experimental device and extrapolating those results to evaluate the suitability of the proposed source to meet the requirements of various high power microwave and millimeter wave defense and industrial applications. The experiments will be carried out in a timely and cost-effective way by employing the AMPHED (a CW magetic mirror) experimental facility at Applied Microwave Plasma Concepts (AMPC).

  11. Relationships among growth mechanism, structure and morphology of PEALD TiO2 films: the influence of O2 plasma power, precursor chemistry and plasma exposure mode

    Science.gov (United States)

    Chiappim, W.; Testoni, G. E.; Doria, A. C. O. C.; Pessoa, R. S.; Fraga, M. A.; Galvão, N. K. A. M.; Grigorov, K. G.; Vieira, L.; Maciel, H. S.

    2016-07-01

    Titanium dioxide (TiO2) thin films have generated considerable interest over recent years, because they are functional materials suitable for a wide range of applications. The efficient use of the outstanding functional properties of these films relies strongly on their basic characteristics, such as structure and morphology, which are affected by deposition parameters. Here, we report on the influence of plasma power and precursor chemistry on the growth kinetics, structure and morphology of TiO2 thin films grown on Si(100) by plasma-enhanced atomic layer deposition (PEALD). For this, remote capacitively coupled 13.56 MHz oxygen plasma was used to act as a co-reactant during the ALD process using two different metal precursors: titanium tetrachloride (TiCl4) and titanium tetraisopropoxide (TTIP). Furthermore, we investigate the effect of direct plasma exposure during the co-reactant pulse on the aforementioned material properties. The extensive characterization of TiO2 films using Rutherford backscattering spectroscopy, ellipsometry, x-ray diffraction (XRD), field-emission scanning electron microscopy, and atomic force microscopy (AFM) have revealed how the investigated process parameters affect their growth per cycle (GPC), crystallization and morphology. The GPC tends to increase with plasma power for both precursors, however, for the TTIP precursor, it starts decreasing when the plasma power is greater than 100 W. From XRD analysis, we found a good correlation between film crystallinity and GPC behavior, mainly for the TTIP process. The AFM images indicated the formation of films with grain size higher than film thickness (grain size/film thickness ratio ≈20) for both precursors, and plasma power analysis allows us to infer that this phenomenon can be directly related to the increase of the flux of energetic oxygen species on the substrate/growing film surface. Finally, the effect of direct plasma exposure on film structure and morphology was evidenced

  12. Lower-extremity resistance training on unstable surfaces improves proxies of muscle strength, power and balance in healthy older adults: a randomised control trial.

    Science.gov (United States)

    Eckardt, Nils

    2016-11-24

    It is well documented that both balance and resistance training have the potential to mitigate intrinsic fall risk factors in older adults. However, knowledge about the effects of simultaneously executed balance and resistance training (i.e., resistance training conducted on unstable surfaces [URT]) on lower-extremity muscle strength, power and balance in older adults is insufficient. The objective of the present study was to compare the effects of machine-based stable resistance training (M-SRT) and two types of URT, i.e., machine-based (M-URT) and free-weight URT (F-URT), on measures of lower-extremity muscle strength, power and balance in older adults. Seventy-five healthy community-dwelling older adults aged 65-80 years, were assigned to three intervention groups: M-SRT, M-URT and F-URT. Over a period of ten weeks, all participants exercised two times per week with each session lasting ~60 min. Tests included assessment of leg muscle strength (e.g., maximal isometric leg extension strength), power (e.g., chair rise test) and balance (e.g., functional reach test), carried out before and after the training period. Furthermore, maximal training load of the squat-movement was assessed during the last training week. Maximal training load of the squat-movement was significantly lower in F-URT in comparison to M-SRT and M-URT. However, lower-extremity resistance training conducted on even and uneven surfaces meaningfully improved proxies of strength, power and balance in all groups. M-URT produced the greatest improvements in leg extension strength and F-URT in the chair rise test and functional reach test. Aside from two interaction effects, overall improvements in measures of lower-extremity muscle strength, power and balance were similar across training groups. Importantly, F-URT produced similar results with considerably lower training load as compared to M-SRT and M-URT. Concluding, F-URT seems an effective and safe alternative training program to mitigate

  13. RACLETTE: a model for evaluating the thermal response of plasma facing components to slow high power plasma transients. Part I: Theory and description of model capabilities

    Science.gov (United States)

    Raffray, A. René; Federici, Gianfranco

    1997-04-01

    RACLETTE (Rate Analysis Code for pLasma Energy Transfer Transient Evaluation), a comprehensive but relatively simple and versatile model, was developed to help in the design analysis of plasma facing components (PFCs) under 'slow' high power transients, such as those associated with plasma vertical displacement events. The model includes all the key surface heat transfer processes such as evaporation, melting, and radiation, and their interaction with the PFC block thermal response and the coolant behaviour. This paper represents part I of two sister and complementary papers. It covers the model description, calibration and validation, and presents a number of parametric analyses shedding light on and identifying trends in the PFC armour block response to high plasma energy deposition transients. Parameters investigated include the plasma energy density and deposition time, the armour thickness and the presence of vapour shielding effects. Part II of the paper focuses on specific design analyses of ITER plasma facing components (divertor, limiter, primary first wall and baffle), including improvements in the thermal-hydraulic modeling required for better understanding the consequences of high energy deposition transients in particular for the ITER limiter case.

  14. The role of the gas/plasma plume and self-focusing in a gas-filled capillary discharge waveguide for high-power laser-plasma applications

    CERN Document Server

    Ciocarlan, C.; Islam, M. R.; Ersfeld, B.; Abuazoum, S.; Wilson, R.; Aniculaesei, C.; Welsh, G. H.; Vieux, G.; Jaroszynski, D. A.; 10.1063/1.4822333

    2013-01-01

    The role of the gas/plasma plume at the entrance of a gas-filled capillary discharge plasma waveguide in increasing the laser intensity has been investigated. Distinction is made between neutral gas and hot plasma plumes that, respectively, develop before and after discharge breakdown. Time-averaged measurements show that the on-axis plasma density of a fully expanded plasma plume over this region is similar to that inside the waveguide. Above the critical power, relativistic and ponderomotive selffocusing lead to an increase in the intensity, which can be nearly a factor of 2 compared with the case without a plume. When used as a laser plasma wakefield accelerator, the enhancement of intensity can lead to prompt electron injection very close to the entrance of the waveguide. Self-focusing occurs within two Rayleigh lengths of the waveguide entrance plane in the region, where the laser beam is converging. Analytical theory and numerical simulations show that, for a density of 3.01018 cm3, the peak normalized...

  15. Battery-powered pulsed high density inductively coupled plasma source for pre-ionization in laboratory astrophysics experiments.

    Science.gov (United States)

    Chaplin, Vernon H; Bellan, Paul M

    2015-07-01

    An electrically floating radiofrequency (RF) pre-ionization plasma source has been developed to enable neutral gas breakdown at lower pressures and to access new experimental regimes in the Caltech laboratory astrophysics experiments. The source uses a customized 13.56 MHz class D RF power amplifier that is powered by AA batteries, allowing it to safely float at 3-6 kV with the electrodes of the high voltage pulsed power experiments. The amplifier, which is capable of 3 kW output power in pulsed (<1 ms) operation, couples electrical energy to the plasma through an antenna external to the 1.1 cm radius discharge tube. By comparing the predictions of a global equilibrium discharge model with the measured scalings of plasma density with RF power input and axial magnetic field strength, we demonstrate that inductive coupling (rather than capacitive coupling or wave damping) is the dominant energy transfer mechanism. Peak ion densities exceeding 5 × 10(19) m(-3) in argon gas at 30 mTorr have been achieved with and without a background field. Installation of the pre-ionization source on a magnetohydrodynamically driven jet experiment reduced the breakdown time and jitter and allowed for the creation of hotter, faster argon plasma jets than was previously possible.

  16. EDITORIAL: Special section on the physics and technology of plasma heating by ICRF power

    Science.gov (United States)

    Noterdaeme, Jean-Marie; Van Eester, Dirk

    2006-07-01

    This special section brings together much of what is currently at the forefront of ion cyclotron resonance frequency (ICRF) research. Which theories are people working on? Where is progress being made? What results are being obtained? The present Nuclear Fusion section on ICRF is not—and was explicitly meant not to be—an overview or review of ICRF systems, research achievements or theories. It is more a snapshot of the leading edge of the investigations. It is based, in part, on presentations to the 16th Topical Conference on RF Power in Plasmas, Park City, Utah, USA, April 2005. The forefront of ICRF research currently being actively pursued covers a wide range of topics: theoretical, experimental and technological. As can be expected, most of the papers in this section have direct relevance to ITER. Elements that will be important in ITER, and that are being addressed and developed in the papers, are the presence of fast particles with their influence on wave propagation and damping, the non-linear mechanisms in the edge—in particular close to the wave launcher—and steady-state aspects. Specific ITER components as well as RF scenarios are studied. Continued efforts to improve the analytical description of wave damping and absorption and the availability of gradually more powerful computers led to significant progress in incorporating the effect of particles with non-thermal velocity distributions—the presence of which has already become significant in present-day machines due to massive RF and/or NBI heating which forces the particles away from thermo-dynamical equilibrium (Brambilla et al, Jaeger et al). The exact role that RF-created and fusion-born fast particles will play is still a matter of lively debate. As shown in the papers by Choi et al and Pinsker et al, the presence of energetic particles is a significant factor in the wave absorption, even at high harmonics. Accounting for the actual magnetic topology allows the capture of RF induced

  17. Qualifying plasma diagnostics for a high power microwave background of ECRH heated discharges

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, M.; Baldzuhn, J.; Endler, M.; Laux, M.; Zhang, D.; Laqua, H.P.; Noke, F.; Purps, F.; Ewert, K. [Max-Planck Institut fur Plasmaphysik, EURATOM Association, D-17491 Greifswald (Germany); Oosterbeek, J.W. [Technische Universiteit Eindhoven, Den Doelch 2, 5612 AZ Eindhoven (Netherlands); Jimenez, R. [Associacion EURATOM/CIEMAT, av. Complutense 22, 28040, Madrid (Spain)

    2011-07-01

    Microwave background radiation resulting from multiple reflected unabsorbed ECRH / ECCD power may cause severe problems for microwave absorbing in-vessel components such as gaskets, bellows, windows, isolators and cable insulations in particular during long pulse operation. For qualifying in-vessel components of W7-X in the environment of an isotropic 140 GHz radiation the Microwave Stray Radiation Launch facility, MISTRAL is operated at IPP. Power flux densities of 10-40 kW/m{sup 2} are obtained with a pulsed power gyrotron launching the microwave via a corrugated transmission line and a vacuum window to the MISTRAL vessel. The focus of the program was on cable isolations as required e.g. for in-vessel magnetic diagnostics. Sufficient shielding is obtained in nearly closed metal pipes only. Cryo pumps require a temperature < 12 K where Hydrogen desorption starts. The cryo pumps are usually shielded from plasma radiation by so called chevron structures. It is investigated whether coating of these chevrons with a microwave absorbing layer yields a sufficient reduction of the stray radiation level to ensure cryo pump operation. Diagnostic windows have been tested also. Although the temperature rise even of uncooled ZnSe and quartz windows at 10 kW/m{sup 2} is uncritical with respect to damage the associated refractive index changes may be too high for some diagnostic purposes e.g. for interferometry. A possible shielding are meshes or {mu}W absorbing coatings. Integrated diagnostic mock-ups such as for the diamagnetic loop, the inner Rogowski coils, Mirnov coils and the bolometer head also have been tested

  18. Radiant-and-plasma technology for coal processing

    OpenAIRE

    Vladimir Messerle; Alexander Ustimenko

    2012-01-01

    Radiant-and-plasma technology for coal processing is presented in the article. Thermodynamic computation and experiments on plasma processing of bituminous coal preliminary electron-beam activated were fulfilled in comparison with plasma processing of the coal. Positive influence of the preliminary electron-beam activation of coal on synthesis gas yield was found. Experiments were carried out in the plasma gasifier of 100 kW power. As a result of the measurements of material and heat balance ...

  19. Power generation from bio methane. Requirements of the EEG 2012 and balancing in gas infrastructure; Verstromung von Biomethan. Anforderungen des EEG 2012 und gaswirtschaftliche Bilanzierung

    Energy Technology Data Exchange (ETDEWEB)

    Herz, Steffen; Bredow, Hartwig von [von Bredow Valentin Rechtsanwaelte, Berlin (Germany)

    2012-12-15

    Six years ago, the first biogas infeed plant was connected to the natural gas distribution system. The infeed of biogas progressed beyond the nursery stage. The infeed of bio methane significantly is promoted by the renewable energy law. One fundamental requirement for the promotion with respect to the Renewable Energy Law is the generation of the power to be remunerated by means of the exclusive use of biomass. The Renewable Energy Law EEG 2012 contains the new requirement, that furthermore the transport of biogas from its production until removal has to be documented by means of a mass balance. Under this aspect, the authors of the contribution under consideration report on the requirements of the EEG 2012 and the balancing in gas infrastructure with respect to the power generation from biomass.

  20. Influence of the radio-frequency power on the physical and optical properties of plasma polymerized cyclohexane thin films

    Energy Technology Data Exchange (ETDEWEB)

    Manaa, C., E-mail: chadlia.el.manaa@gmail.com [Laboratoire de Physique de la Matière Condensée, Université de Picardie Jules Verne, UFR des Sciences d' Amiens, 33 rue Saint Leu, 80039 Amiens CEDEX 2 (France); Laboratoire des Matériaux Avancés et Phénomènes Quantiques, Université de Tunis El-Manar, Faculté des Sciences de Tunis, Campus universitaire El-Manar, 1068 Tunis (Tunisia); Lejeune, M. [Laboratoire de Physique de la Matière Condensée, Université de Picardie Jules Verne, UFR des Sciences d' Amiens, 33 rue Saint Leu, 80039 Amiens CEDEX 2 (France); Kouki, F. [Laboratoire des Matériaux Avancés et Phénomènes Quantiques, Université de Tunis El-Manar, Faculté des Sciences de Tunis, Campus universitaire El-Manar, 1068 Tunis (Tunisia); Durand-Drouhin, O. [Laboratoire de Physique de la Matière Condensée, Université de Picardie Jules Verne, UFR des Sciences d' Amiens, 33 rue Saint Leu, 80039 Amiens CEDEX 2 (France); Bouchriha, H. [Laboratoire des Matériaux Avancés et Phénomènes Quantiques, Université de Tunis El-Manar, Faculté des Sciences de Tunis, Campus universitaire El-Manar, 1068 Tunis (Tunisia); and others

    2014-06-02

    We investigate in the present study the effects of the radio-frequency plasma power on the opto-electronical properties of the polymeric amorphous hydrogenated carbon thin films deposited at room temperature and different radio-frequency powers by plasma-enhanced chemical vapor deposition method using cyclohexane as precursor. A combination of U.V.–Visible and infrared transmission measurements is applied to characterize the bonding and electronic properties of these films. Some film properties namely surface roughness, contact angle, surface energy, and optical properties are found to be significantly influenced by the radio-frequency power. The changes in these properties are analyzed within the microstructural modifications occurring during growth. - Highlights: • Effects of the radio-frequency power on the optoelectronic properties of thin films • Elaboration of plasma polymerized thin films using cyclohexane as precursor gas • The use of U.V.–Visible-infrared transmission, and optical gap • Study of the surface topography of the films by using Atomic Force microscopy • The use of a capacitively coupled plasma enhanced chemical vapor deposition method.

  1. The TELEC - A plasma type of direct energy converter. [Thermo-Electronic Laser Energy Converter for electric power generation

    Science.gov (United States)

    Britt, E. J.

    1978-01-01

    The Thermo-Electronic Laser Energy Converter (TELEC) is a high-power density plasma device designed to convert a 10.6-micron CO2 laser beam into electric power. Electromagnetic radiation is absorbed in plasma electrons, creating a high-electron temperature. Energetic electrons diffuse from the plasma and strike two electrodes having different areas. The larger electrode collects more electrons and there is a net transport of current. An electromagnetic field is generated in the external circuit. A computer program has been designed to analyze TELEC performance allowing parametric variation for optimization. Values are presented for TELEC performance as a function of cesium pressure and for current density and efficiency as a function of output voltage. Efficiency is shown to increase with pressure, reaching a maximum over 45%.

  2. Outlook for the use of microsecond plasma opening switches to generate high-power nanosecond current pulses

    Science.gov (United States)

    Dolgachev, G. I.; Maslennikov, D. D.; Ushakov, A. G.

    2006-12-01

    An analysis is made of the current break process in microsecond plasma opening switches and their possible application in high-current generators. Necessary conditions are determined for generating megavolt pulses in the erosion mode of a plasma opening switch with the gap insulated by an external magnetic field. Under these conditions, efficient sharpening of high-power submegampere current pulses can be achieved. The possibility of using plasma opening switches operating at voltages of 5 6 MV to generate X-ray and gamma emission is discussed. The main operating and design parameters of a six-module plasma opening switch with a current pulse amplitude of 3.7 MA and voltage of 4 6 MV for use in the MOL generator, which is the prototype of one of the 24 modules of the projected Baikal multimegajoule generator, are estimated by using the available scalings.

  3. Restoration of the plasma discharge during density limit disruptions in the T-10 tokamak using electron cyclotron heating and ohmic power supply system

    Science.gov (United States)

    Savrukhin, P. V.; Shestakov, E. A.

    2016-11-01

    Experiments in the T-10 tokamak [Alikaev et al., Plasma Phys. Controlled Fusion 30, 381 (1988)] have demonstrated the possibility of control of the plasma current and prevention of formation of the non-thermal (Eγ > 150 keV) electron beams after an energy quench at the density limit disruption using electron cyclotron heating (ECRH) and controlled operation of the Ohmic power supply system. Quasi-stable plasma operation with repetitive sawtooth oscillations can be restored after an energy quench using high auxiliary power Pec > 2-5 Poh. Optimal conditions of the plasma discharge recovery after an energy quench using auxiliary heating are identified. At high auxiliary power, restoration of the plasma discharge can be provided with the location of the EC resonance zone within the whole plasma cross section. The auxiliary power required for discharge restoration is minimal when the power is deposited around the m = 2, n = 1 magnetic island (here m and n poloidal and toroidal wave numbers). The threshold ECRH power increases linearly with plasma current. Prevention of the non-thermal electron beams during density limit disruption is associated with stabilization of bursts of the magnetohydrodynamic modes, creation of the saturated magnetic islands, and heating of the background plasma using ECRH. Plasma discharge recovery after an energy quench in a tokamak reactor using auxiliary heating and controllable reduction of the plasma current is discussed.

  4. A balance between B cell receptor and inhibitory receptor signaling controls plasma cell differentiation by maintaining optimal Ets1 levels.

    Science.gov (United States)

    Luo, Wei; Mayeux, Jessica; Gutierrez, Toni; Russell, Lisa; Getahun, Andrew; Müller, Jennifer; Tedder, Thomas; Parnes, Jane; Rickert, Robert; Nitschke, Lars; Cambier, John; Satterthwaite, Anne B; Garrett-Sinha, Lee Ann

    2014-07-15

    Signaling through the BCR can drive B cell activation and contribute to B cell differentiation into Ab-secreting plasma cells. The positive BCR signal is counterbalanced by a number of membrane-localized inhibitory receptors that limit B cell activation and plasma cell differentiation. Deficiencies in these negative signaling pathways may cause autoantibody generation and autoimmune disease in both animal models and human patients. We have previously shown that the transcription factor Ets1 can restrain B cell differentiation into plasma cells. In this study, we tested the roles of the BCR and inhibitory receptors in controlling the expression of Ets1 in mouse B cells. We found that Ets1 is downregulated in B cells by BCR or TLR signaling through a pathway dependent on PI3K, Btk, IKK2, and JNK. Deficiencies in inhibitory pathways, such as a loss of the tyrosine kinase Lyn, the phosphatase Src homology region 2 domain-containing phosphatase 1 (SHP1) or membrane receptors CD22 and/or Siglec-G, result in enhanced BCR signaling and decreased Ets1 expression. Restoring Ets1 expression in Lyn- or SHP1-deficient B cells inhibits their enhanced plasma cell differentiation. Our findings indicate that downregulation of Ets1 occurs in response to B cell activation via either BCR or TLR signaling, thereby allowing B cell differentiation and that the maintenance of Ets1 expression is an important function of the inhibitory Lyn → CD22/SiglecG → SHP1 pathway in B cells.

  5. Nonlinear Gyrokinetics: A Powerful Tool for the Description of Microturbulence in Magnetized Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    John E. Krommes

    2010-09-27

    Gyrokinetics is the description of low-frequency dynamics in magnetized plasmas. In magnetic-confinement fusion, it provides the most fundamental basis for numerical simulations of microturbulence; there are astrophysical applications as well. In this tutorial, a sketch of the derivation of the novel dynamical system comprising the nonlinear gyrokinetic (GK) equation (GKE) and the coupled electrostatic GK Poisson equation will be given by using modern Lagrangian and Lie perturbation methods. No background in plasma physics is required in order to appreciate the logical development. The GKE describes the evolution of an ensemble of gyrocenters moving in a weakly inhomogeneous background magnetic field and in the presence of electromagnetic perturbations with wavelength of the order of the ion gyroradius. Gyrocenters move with effective drifts, which may be obtained by an averaging procedure that systematically, order by order, removes gyrophase dependence. To that end, the use of the Lagrangian differential one-form as well as the content and advantages of Lie perturbation theory will be explained. The electromagnetic fields follow via Maxwell's equations from the charge and current density of the particles. Particle and gyrocenter densities differ by an important polarization effect. That is calculated formally by a "pull-back" (a concept from differential geometry) of the gyrocenter distribution to the laboratory coordinate system. A natural truncation then leads to the closed GK dynamical system. Important properties such as GK energy conservation and fluctuation noise will be mentioned briefly, as will the possibility (and diffculties) of deriving nonlinear gyro fluid equations suitable for rapid numerical solution -- although it is probably best to directly simulate the GKE. By the end of the tutorial, students should appreciate the GKE as an extremely powerful tool and will be prepared for later lectures describing its applications to physical problems.

  6. Application of powerful quasi-steady-state plasma accelerators for simulation of ITER transient heat loads on divertor surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Tereshin, V I [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Bandura, A N [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Byrka, O V [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Chebotarev, V V [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Garkusha, I E [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Landman, I [Forschungszentrum Karlsruhe, IHM, Karlsruhe 76021 (Germany); Makhlaj, V A [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Neklyudov, I M [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Solyakov, D G [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Tsarenko, A V [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine)

    2007-05-15

    The paper presents the investigations of high power plasma interaction with material surfaces under conditions simulating the ITER disruptions and type I ELMs. Different materials were exposed to plasma with repetitive pulses of 250 {mu}s duration, the ion energy of up to 0.6 keV, and the heat loads varying in the 0.5-25 MJ m{sup -2} range. The plasma energy transfer to the material surface versus impact load has been analysed. The fraction of plasma energy that is absorbed by the target surface is rapidly decreased with the achievement of the evaporation onset for exposed targets. The distributions of evaporated material in front of the target surface and the thickness of the shielding layer are found to be strongly dependent on the target atomic mass. The surface analysis of tungsten targets exposed to quasi-steady-state plasma accelerators plasma streams is presented together with measurements of the melting onset load and evaporation threshold, and also of erosion patterns with increasing heat load and the number of plasma pulses.

  7. Enhancing Plasma Surface Modification using high Intensity and high Power Ultrasonic Acoustic Waves

    DEFF Research Database (Denmark)

    2010-01-01

    This invention relates to a plasma surface modification process (and a corresponding a system) of a solid object (100) comprising creating plasma (104) by a plasma source (106), application of the plasma (104) to at least a part of a surface (314) of the solid object (100), generating ultrasonic...... or a mixture of gases (500) flow in contact with said solid object (100) is thinned or destructed for at least a part of said surface (314). In this way, the plasma can more efficiently access and influence the surface of the solid object to be treated by the plasma, which speeds the process time up...

  8. Numerical Study of Plasma-Fluid Behavior and Generation Characteristics of the Closed Loop MHD Electrical Power Generator

    Science.gov (United States)

    Ohno, Jun; Liberati, Alessandro; Murakami, Tomoyuki; Okuno, Yoshihiro

    Time dependent r-z two-dimensional numerical simulations with LES technique have been carried out in order to clarify the plasma fluid behavior and power generation characteristics of the disk MHD generator under the rated operation conditions demonstrated in the closed loop experimental facility at Tokyo Tech. The generator currently installed could suffer from the non-uniform and low electrical conductivity, and the boundary layer separation even under the rated operation conditions. The large amount of generated electric power is consumed in the boundary layer separation region, which reduces a net output power. Reducing the back pressure and improving the inlet plasma conditions surely provide the higher generator performance. The influence of 90 degree bend downstream duct on the generator performance is found to be not marked.

  9. Laboratory experiments on plasma jets in a magnetic field using high-power lasers

    Directory of Open Access Journals (Sweden)

    Nishio K.

    2013-11-01

    Full Text Available The experiments to simulate astrophysical jet generation are performed using Gekko XII (GXII HIPER laser system at the Institute of Laser Engineering. In the experiments a fast plasma flow generated by shooting a CH plane (10 μm thickness is observed at the rear side of the plane. By separating the focal spot of the main beams, a non-uniform plasma is generated. The non-uniform plasma flow in an external magnetic field (0.2∼0.3 T perpendicular to the plasma is more collimated than that without the external magnetic field. The plasma β, the ratio between the plasma and magnetic pressure, is ≫ 1, and the magnetic Reynolds number is ∼150 in the collimated plasma. It is considered that the magnetic field is distorted by the plasma flow and enhances the jet collimation.

  10. Laboratory experiments on plasma jets in a magnetic field using high-power lasers

    Science.gov (United States)

    Nishio, K.; Sakawa, Y.; Kuramitsu, Y.; Morita, T.; Ide, T.; Kuwada, M.; Koga, M.; Kato, T.; Norimatsu, T.; Gregory, C.; Woolsey, N.; Murphy, C.; Gregori, G.; Schaar, K.; Diziere, A.; Koenig, M.; Pelka, A.; Wang, S.; Dong, Q.; Li, Y.; Takabe, H.

    2013-11-01

    The experiments to simulate astrophysical jet generation are performed using Gekko XII (GXII) HIPER laser system at the Institute of Laser Engineering. In the experiments a fast plasma flow generated by shooting a CH plane (10 μm thickness) is observed at the rear side of the plane. By separating the focal spot of the main beams, a non-uniform plasma is generated. The non-uniform plasma flow in an external magnetic field (0.2˜0.3 T) perpendicular to the plasma is more collimated than that without the external magnetic field. The plasma β, the ratio between the plasma and magnetic pressure, is ≫ 1, and the magnetic Reynolds number is ˜150 in the collimated plasma. It is considered that the magnetic field is distorted by the plasma flow and enhances the jet collimation.

  11. Generation of powerful terahertz emission in a beam-driven strong plasma turbulence

    OpenAIRE

    Arzhannikov, A.V.; Timofeev, I. V.

    2012-01-01

    Generation of terahertz electromagnetic radiation due to coalescence of upper-hybrid waves in the long-wavelength region of strong plasma turbulence driven by a high-current relativistic electron beam in a magnetized plasma is investigated. The width of frequency spectrum as well as angular characteristics of this radiation for various values of plasma density and turbulence energy are calculated using the simple theoretical model adequately describing beam-plasma experiments at mirror traps....

  12. Effect of the applied power of atmospheric pressure plasma on the adhesion of composite resin to dental ceramic.

    Science.gov (United States)

    Han, Geum-Jun; Chung, Sung-No; Chun, Bae-Hyeock; Kim, Chang-Keun; Oh, Kyu-Hwan; Cho, Byeong-Hoon

    2012-08-01

    To evaluate the effect of applied power on dental ceramic bonding of composite resin using nonthermal atmospheric pressure plasma (APP). A pencil-type APP torch was used to modify the surface chemical composition and hydrophilicity of dental ceramic and to improve the adhesion of composite resin to the surface. The effect of the applied power on chemical changes of the plasma polymer on a ceramic surface and the adhesive strength between the composite resin and feldspathic porcelain were examined. Adhesion was evaluated by comparing shear bond strengths (SBS) using the iris method. The chemical composition of the plasma polymer deposited on the ceramic surface was evaluated using x-ray photoelectron spectroscopy (XPS). Hydrophilicity was evaluated by contact angle measurements. The fracture mode at the interface was also evaluated. The APP treatment was effective and the SBS of the experimental groups were significantly higher than those of the negative control group (p adhesion by producing carboxyl groups on the ceramic surface and as a result by improving surface hydrophilicity. The carboxyl group contents in the plasma polymer on the ceramic surface increased as the applied power increased.

  13. One session of high-intensity interval training (HIIT) every 5 days, improves muscle power but not static balance in lifelong sedentary ageing men: A randomized controlled trial.

    Science.gov (United States)

    Sculthorpe, Nicholas F; Herbert, Peter; Grace, Fergal

    2017-02-01

    Declining muscle power during advancing age predicts falls and loss of independence. High-intensity interval training (HIIT) may improve muscle power, but remains largely unstudied in ageing participants. This randomized controlled trial (RCT) investigated the efficacy of a low-frequency HIIT (LfHIIT) intervention on peak muscle power (peak power output [PPO]), body composition, and balance in lifelong sedentary but otherwise healthy males. Thirty-three lifelong sedentary ageing men were randomly assigned to either intervention (INT; n = 22, age 62.3 ± 4.1 years) or control (n = 11, age 61.6 ± 5.0 years) who were both assessed at 3 distinct measurement points (phase A), after 6 weeks of conditioning exercise (phase B), and after 6 weeks of HIIT once every 5 days in INT (phase C), where control remained inactive throughout the study. Static balance remained unaffected, and both absolute and relative PPO were not different between groups at phases A or B, but increased significantly in INT after LfHIIT (P sedentary ageing men.

  14. Investigation of bonded hydrogen defects in nanocrystalline diamond films grown with nitrogen/methane/hydrogen plasma at high power conditions

    Science.gov (United States)

    Tang, C. J.; Hou, Haihong; Fernandes, A. J. S.; Jiang, X. F.; Pinto, J. L.; Ye, H.

    2017-02-01

    In this work, we investigate the influence of some growth parameters such as high microwave power ranging from 3.0 to 4.0 kW and N2 additive on the incorporation of bonded hydrogen defects in nanocrystalline diamond (NCD) films grown through a small amount of pure N2 addition into conventional 4% CH4/H2 plasma using a 5 kW microwave plasma CVD system. Incorporation form and content of hydrogen point defects in the NCD films produced with pure N2 addition was analyzed by employing Fourier-transform infrared (FTIR) spectroscopy for the first time. A large amount of hydrogen related defects was detected in all the produced NCD films with N2 additive ranging from 29 to 87 μm thick with grain size from 47 nm to 31 nm. Furthermore, a specific new H related sharp absorption peak appears in all the NCD films grown with pure N2/CH4/H2 plasma at high powers and becomes stronger at powers higher than 3.0 kW and is even stronger than the 2920 cm-1 peak, which is commonly found in CVD diamond films. Based on these experimental findings, the role of high power and pure nitrogen addition on the growth of NCD films including hydrogen defect formation is analyzed and discussed.

  15. Balancing Power Absorption and Structural Loading for a Novel Fixed-Bottom Wave Energy Converter with Nonideal Power Take-Off in Regular Waves: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Tom, Nathan M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yu, Yi-Hsiang [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wright, Alan D [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-06-08

    In this work, the net power delivered to the grid from a nonideal power take-off (PTO) is introduced followed by a review of the pseudo-spectral control theory. A power-to-load ratio, used to evaluate the pseudo-spectral controller performance, is discussed, and the results obtained from optimizing a multiterm objective function are compared against results obtained from maximizing the net output power to the grid. Simulation results are then presented for four different oscillating wave energy converter geometries to highlight the potential of combing both geometry and PTO control to maximize power while minimizing loads.

  16. One session of high-intensity interval training (HIIT) every 5 days, improves muscle power but not static balance in lifelong sedentary ageing men

    Science.gov (United States)

    Sculthorpe, Nicholas F.; Herbert, Peter; Grace, Fergal

    2017-01-01

    Abstract Background: Declining muscle power during advancing age predicts falls and loss of independence. High-intensity interval training (HIIT) may improve muscle power, but remains largely unstudied in ageing participants. Methods: This randomized controlled trial (RCT) investigated the efficacy of a low-frequency HIIT (LfHIIT) intervention on peak muscle power (peak power output [PPO]), body composition, and balance in lifelong sedentary but otherwise healthy males. Methods: Thirty-three lifelong sedentary ageing men were randomly assigned to either intervention (INT; n = 22, age 62.3 ± 4.1 years) or control (n = 11, age 61.6 ± 5.0 years) who were both assessed at 3 distinct measurement points (phase A), after 6 weeks of conditioning exercise (phase B), and after 6 weeks of HIIT once every 5 days in INT (phase C), where control remained inactive throughout the study. Results: Static balance remained unaffected, and both absolute and relative PPO were not different between groups at phases A or B, but increased significantly in INT after LfHIIT (P < 0.01). Lean body mass displayed a significant interaction (P < 0.01) due to an increase in INT between phases B and C (P < 0.05). Conclusions: 6 weeks of LfHIIT exercise feasible and effective method to induce clinically relevant improvements in absolute and relative PPO, but does not improve static balance in sedentary ageing men. PMID:28178145

  17. Helicon plasma thruster discharge model

    Energy Technology Data Exchange (ETDEWEB)

    Lafleur, T., E-mail: trevor.lafleur@lpp.polytechnique.fr [Laboratoire de Physique des Plasmas, CNRS, Sorbonne Universités, UPMC Univ Paris 06, Univ Paris-Sud, Ecole Polytechnique, 91128 Palaiseau, France and ONERA - The French Aerospace Lab, 91120 Palaiseau (France)

    2014-04-15

    By considering particle, momentum, and energy balance equations, we develop a semi-empirical quasi one-dimensional analytical discharge model of radio-frequency and helicon plasma thrusters. The model, which includes both the upstream plasma source region as well as the downstream diverging magnetic nozzle region, is compared with experimental measurements and confirms current performance levels. Analysis of the discharge model identifies plasma power losses on the radial and back wall of the thruster as the major performance reduction factors. These losses serve as sinks for the input power which do not contribute to the thrust, and which reduce the maximum plasma density and hence propellant utilization. With significant radial plasma losses eliminated, the discharge model (with argon) predicts specific impulses in excess of 3000 s, propellant utilizations above 90%, and thruster efficiencies of about 30%.

  18. Pulsed Power and Transient Plasmas: Basic Research With Application to Ignition, Emissions, and New Pulsed Power Technology

    Science.gov (United States)

    2007-11-02

    approach. Figure 2. Apparatus for quiescent fuel mixture studies. Pulse generator employs either thyratron (100 nsec or longer pulses) or pseudospark...International Conference on Plasma Science, June 28-July 1, 2004, Baltimore, MD. A. Kuthi and M. Gundersen, “Simple Model of Pseudospark discharge

  19. Central receiver solar thermal power system, Phase 1. CDRL item 2. Pilot plant preliminary design report. Volume VI. Electrical power generation and master control subsystems and balance of plant

    Energy Technology Data Exchange (ETDEWEB)

    Hallet, Jr., R. W.; Gervais, R. L.

    1977-10-01

    The requirements, performance, and subsystem configuration for both the Commercial and Pilot Plant electrical power generation subsystems (EPGS) and balance of plants are presented. The EPGS for both the Commercial Plant and Pilot Plant make use of conventional, proven equipment consistent with good power plant design practices in order to minimize risk and maximize reliability. The basic EPGS cycle selected is a regenerative cycle that uses a single automatic admission, condensing, tandem-compound double-flow turbine. Specifications, performance data, drawings, and schematics are included. (WHK)

  20. Revenue Sharing in Professional Sports Leagues : For the Sake of Competitive Balance or as a Result of Monopsony Power?

    NARCIS (Netherlands)

    Palomino, F.A.; Sakovics, J.

    2000-01-01

    We analyze the distribution of broadcasting revenues by sports leagues.In the context of an isolated league, we show that when the teams engage in competitive bidding to attract talent, the league's optimal choice is full revenue sharing (resulting in full competitive balance) even if the revenues a

  1. Voltage Gain Derivation Based on Energy-Balanced Criterion for a Novel Hybrid-Input PV-Wind Power Conversion System

    Directory of Open Access Journals (Sweden)

    Chih-Lung Shen

    2015-01-01

    Full Text Available This paper applies energy-balanced criterion to a novel hybrid-input PV-wind power conversion system (HPWPCS for voltage gain derivation. With the energy-balanced concept, complicated mathematical problems related to voltage gain derivation can be readily resolved. Based on the derived results, it is proven that the proposed HPWPCS is able to process two different kinds of renewable energy resources simultaneously. Even though the HPWPCS includes seven capacitors and three magnetic components, its voltage gain still can be found by the mathematical analysis. In the theoretical derivation, only the energy status of output inductor is dealt with such that complicated derivation procedure is avoided. This analysis method can also be applied to other hybrid green-energy conversion systems. In this paper, a 200 W 50 kHz prototype of HPWPCS is built and examined to verify the mathematical results.

  2. THE NONLINEAR OHM'S LAW: PLASMA HEATING BY STRONG ELECTRIC FIELDS AND ITS EFFECTS ON THE IONIZATION BALANCE IN PROTOPLANETARY DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Okuzumi, Satoshi [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551 (Japan); Inutsuka, Shu-ichiro, E-mail: okuzumi@geo.titech.ac.jp [Department of Physics, Nagoya University, Nagoya, Aichi 464-8602 (Japan)

    2015-02-10

    The ionization state of the gas plays a key role in the magnetohydrodynamics (MHD) of protoplanetary disks. However, the ionization state can depend on the gas dynamics, because electric fields induced by MHD turbulence can heat up plasmas and thereby affect the ionization balance. To study this nonlinear feedback, we construct an ionization model that includes plasma heating by electric fields and impact ionization by heated electrons, as well as charging of dust grains. We show that when plasma sticking onto grains is the dominant recombination process, the electron abundance in the gas decreases with increasing electric field strength. This is a natural consequence of electron-grain collisions whose frequency increases with the electron's random velocity. The decreasing electron abundance may lead to a self-regulation of MHD turbulence. In some cases, not only the electron abundance but also the electric current decreases with increasing field strength in a certain field range. The resulting N-shaped current-field relation violates the fundamental assumption of the non-relativistic MHD that the electric field is uniquely determined by the current density. At even higher field strengths, impact ionization causes an abrupt increase of the electric current as expected by previous studies. We find that this discharge current is multi-valued (i.e., the current-field relation is S-shaped) under some circumstances, and that the intermediate branch is unstable. The N/S-shaped current-field relations may yield hysteresis in the evolution of MHD turbulence in some parts of protoplanetary disks.

  3. Period-doubling bifurcation in two-stage power factor correction converters using the method of incremental harmonic balance and Floquet theory

    Science.gov (United States)

    Wang, Fa-Qiang; Zhang, Hao; Ma, Xi-Kui

    2012-02-01

    In this paper, period-doubling bifurcation in a two-stage power factor correction converter is analyzed by using the method of incremental harmonic balance (IHB) and Floquet theory. A two-stage power factor correction converter typically employs a cascade configuration of a pre-regulator boost power factor correction converter with average current mode control to achieve a near unity power factor and a tightly regulated post-regulator DC—DC Buck converter with voltage feedback control to regulate the output voltage. Based on the assumption that the tightly regulated post-regulator DC—DC Buck converter is represented as a constant power sink and some other assumptions, the simplified model of the two-stage power factor correction converter is derived and its approximate periodic solution is calculated by the method of IHB. And then, the stability of the system is investigated by using Floquet theory and the stable boundaries are presented on the selected parameter spaces. Finally, some experimental results are given to confirm the effectiveness of the theoretical analysis.

  4. Period-doubling bifurcation in two-stage power factor correction converters using the method of incremental harmonic balance and Floquet theory

    Institute of Scientific and Technical Information of China (English)

    Wang Fa-Qiang; Zhang Hao; Ma Xi-Kui

    2012-01-01

    In this paper,period-doubling bifurcation in a two-stage power factor correction converter is analyzed by using the method of incremental harmonic balance (IHB) and Floquet theory.A two-stage power factor correction converter typically employs a cascade configuration of a pre-regulator boost power factor correction converter with average current mode control to achieve a near unity power factor and a tightly regulated post-regulator DC-DC Buck converter with voltage feedback control to regulate the output voltage. Based on the assumption that the tightly regulated postregulator DC-DC Buck converter is represented as a constant power sink and some other assumptions,the simplified model of the two-stage power factor correction converter is derived and its approximate periodic solution is calculated by the method of IHB.And then,the stability of the system is investigated by using Floquet theory and the stable boundaries are presented on the selected parameter spaces.Finally,some experimental results are given to confirm the effectiveness of the theoretical analysis.

  5. Surface activation of polyethylene with an argon atmospheric pressure plasma jet: Influence of applied power and flow rate

    Science.gov (United States)

    Van Deynse, A.; Cools, P.; Leys, C.; De Geyter, N.; Morent, R.

    2015-02-01

    Atmospheric pressure plasma technology offers attractive perspectives to alter the surface properties of polymers. Within this context, the surface modification of polyethylene (LDPE) by an argon atmospheric pressure plasma jet (APPJ) is profoundly investigated in this work. The influence of two different parameters (applied power and argon flow rate) on the plasma jet characteristics and the LDPE surface properties is examined in detail. In a first step, the APPJ is electrically and visually characterized and visual inspection of the afterglow clearly shows that mainly a variation in argon flow rate can result in a changing afterglow length. A maximum afterglow length is obtained at an argon flow rate of 1-1.25 slm, while higher gas flows result in turbulence leading to a shorter afterglow. Secondly, the surface modification of LDPE is examined using different analyzing techniques namely water contact angle (WCA) measurements for the wettability, X-ray photoelectron spectroscopy (XPS) for the chemical composition and atomic force microscopy (AFM) for the surface morphology determination. WCA measurements show that by increasing the applied power the wettability of the LDPE increases. Increasing the argon flow rate up to 1.25 slm gives a decrease in WCA value or in other words an increased wettability. From 1.25 slm on, an increase in argon flow rate during plasma treatment decreases the LDPE wettability as can be concluded from the increased WCA values. An increased wettability can be explained by the incorporation of oxygen moieties. By increasing the discharge power, the concentrations of all oxygen containing groups such as Csbnd O, Cdbnd O and Osbnd Cdbnd O increase. Increasing the flow rate up to 1.25 slm results mainly in an increase in Osbnd Cdbnd O groups. However, from a flow rate of 1.25 slm on, the concentration of all oxygen groups again decreases. Based on these results, the appropriate settings for an efficient plasma treatment can easily be selected.

  6. Surface activation of polyethylene with an argon atmospheric pressure plasma jet: Influence of applied power and flow rate

    Energy Technology Data Exchange (ETDEWEB)

    Van Deynse, A., E-mail: Annick.VanDeynse@ugent.be [Department Industrial Technology and Construction, Faculty of Engineering & Architecture, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent (Belgium); Cools, P., E-mail: Pieter.Cools@ugent.be [Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering & Architecture, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Ghent (Belgium); Leys, C., E-mail: Christophe.Leys@ugent.be [Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering & Architecture, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Ghent (Belgium); De Geyter, N., E-mail: Nathalie.DeGeyter@ugent.be [Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering & Architecture, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Ghent (Belgium); Morent, R., E-mail: Rino.Morent@ugent.be [Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering & Architecture, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Ghent (Belgium)

    2015-02-15

    Highlights: • Surface modification of polyethylene by an argon atmospheric pressure plasma jet. • Investigation of the influence of the applied power and argon flow rate. • Turbulence in the gas flow leads to a shorter afterglow. • Turbulence in the gas flow results in a lower wettability of the polyethylene. • Increasing the applied power increases the wettability of the polyethylene. - Abstract: Atmospheric pressure plasma technology offers attractive perspectives to alter the surface properties of polymers. Within this context, the surface modification of polyethylene (LDPE) by an argon atmospheric pressure plasma jet (APPJ) is profoundly investigated in this work. The influence of two different parameters (applied power and argon flow rate) on the plasma jet characteristics and the LDPE surface properties is examined in detail. In a first step, the APPJ is electrically and visually characterized and visual inspection of the afterglow clearly shows that mainly a variation in argon flow rate can result in a changing afterglow length. A maximum afterglow length is obtained at an argon flow rate of 1–1.25 slm, while higher gas flows result in turbulence leading to a shorter afterglow. Secondly, the surface modification of LDPE is examined using different analyzing techniques namely water contact angle (WCA) measurements for the wettability, X-ray photoelectron spectroscopy (XPS) for the chemical composition and atomic force microscopy (AFM) for the surface morphology determination. WCA measurements show that by increasing the applied power the wettability of the LDPE increases. Increasing the argon flow rate up to 1.25 slm gives a decrease in WCA value or in other words an increased wettability. From 1.25 slm on, an increase in argon flow rate during plasma treatment decreases the LDPE wettability as can be concluded from the increased WCA values. An increased wettability can be explained by the incorporation of oxygen moieties. By increasing the

  7. Numerical simulations of output pulse extraction from a high-power microwave compressor with a plasma switch

    Energy Technology Data Exchange (ETDEWEB)

    Shlapakovski, Anatoli; Beilin, Leonid; Bliokh, Yuri; Donskoy, Moshe; Krasik, Yakov E. [Physics Department, Technion, Haifa 32000 (Israel); Hadas, Yoav [Department of Applied Physics, Rafael, PO Box 2250, Haifa 31021 (Israel); Schamiloglu, Edl [Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico 87131 (United States)

    2014-05-07

    Numerical simulations of the process of electromagnetic energy release from a high-power microwave pulse compressor comprising a gas-filled cavity and interference switch were carried out. A microwave plasma discharge in a rectangular waveguide H-plane tee was modeled with the use of the fully electromagnetic particle-in-cell code MAGIC. The gas ionization, plasma evolution, and interaction with RF fields accumulated within the compressor were simulated using different approaches provided by the MAGIC code: particle-in-cell approach accounting for electron-neutral collisions, gas conductivity model based on the concept of mobility, and hybrid modeling. The dependences of the microwave output pulse peak power and waveform on parameters that can be controlled in experiments, such as an external ionization rate, RF field amplitude, and background gas pressure, were investigated.

  8. Effect of voltage shape of electrical power supply on radiation and density of a cold atmospheric argon plasma jet

    Directory of Open Access Journals (Sweden)

    F Sohbatzadeh

    2017-02-01

    Full Text Available In this work, we investigated generating argon cold plasma jet at atmospheric pressure based on dielectric barrier discharge configuration using three electrical power supplies of sinusoidal, pulsed and saw tooth high voltage shapes at 8 KHZ. At first; we describe the electronic circuit features for generating high voltage (HV wave forms including saw tooth, sinusoidal and pulsed forms. Then, we consider the effect of voltage shape on the electrical breakdown. Relative concentrations of chemical reactive species such as Oxygen, atomic Nitrogen and OH were measured using optical emission spectroscopy. Using a simple numerical model, we showed a HV with less rise time increases electron density, therefore a cold plasma jet can be produced with a minimal consumption electrical power

  9. Effects of Strength Training Using Unstable Surfaces on Strength, Power and Balance Performance Across the Lifespan: A Systematic Review and Meta-analysis.

    Science.gov (United States)

    Behm, David G; Muehlbauer, Thomas; Kibele, Armin; Granacher, Urs

    2015-12-01

    The effectiveness of strength training on unstable surfaces (STU) versus stable surfaces (STS) or a control condition (CON; i.e., no training or regular training only) for strength, power and balance performance across the lifespan has not yet been investigated in a systematic review and meta-analysis. The aims of this systematic review and meta-analysis were to determine the general effects of STU versus STS or CON on muscle strength, power and balance in healthy individuals across the lifespan and to investigate whether performance changes following STU are age specific. A computerized systematic literature search was performed in the electronic databases PubMed and Web of Science from January 1984 up to February 2015. Initially, 209 articles were identified for review. Only controlled trials were included if they investigated STU in healthy individuals and tested at least one measure of maximal strength, strength endurance, muscle power, or static/dynamic balance. In total, 22 studies met the inclusion criteria. The included studies were coded for the following criteria: age, sex, training status, training modality, exercise and test modality. Effect size measures included within-subject standardized mean differences (SMDw) and weighted between-subject standardized mean differences (SMDb). Heterogeneity between studies was assessed using I2 and χ2 statistics. The methodological quality of each study was assessed using the Physiotherapy Evidence Database (PEDro) Scale. Our search failed to identify studies that examined the effects of STU versus STS or CON in children and middle-aged adults. However, four studies were identified that investigated the effects of STU versus CON or STS in adolescents, 15 studies were identified in young adults and three studies were identified in old adults. Compared with CON, STU produced medium effects on maximal strength in young adults and no effects to medium effects in old adults. In addition, large effects were detected on

  10. Effect of voltage shape of electrical power supply on radiation and density of a cold atmospheric argon plasma jet

    OpenAIRE

    F. Sohbatzadeh; Bagheri, M; S. Motallebi

    2017-01-01

    In this work, we investigated generating argon cold plasma jet at atmospheric pressure based on dielectric barrier discharge configuration using three electrical power supplies of sinusoidal, pulsed and saw tooth high voltage shapes at 8 KHZ. At first; we describe the electronic circuit features for generating high voltage (HV) wave forms including saw tooth, sinusoidal and pulsed forms. Then, we consider the effect of voltage shape on the electrical breakdown. Relative concentrations of chem...

  11. Balance of power in Waltz's neorealist theory, after the Franco-Prussian War and the unification of Germany

    Directory of Open Access Journals (Sweden)

    Alexandru Voicu

    2014-04-01

    Full Text Available The neorealist theory developed by Kenneth Waltz is one of the most important theories of international relations. The most significant predictions of his theory is that the balancing behavior is a systemic product, which will occur regularly in international relations whether the states want it or not. This papers aims to bring a critical perspective on the concept of balancing as it is developed by Waltz. Therefore, the prediction made by Waltz will be tested against the international system developed at the end of the nineteenth century, particularly after the Franco-Prussian War. Finally, it will be concluded that the parsimony that is characterizing Waltz’s theory is inaccurate because it makes it on one hand irrefutable and on the other hand, it makes it inconsistent.

  12. Is China turning Latin?: China’s balancing act between power and dependence on the wave of global imbalances

    OpenAIRE

    2010-01-01

    textabstractThis paper investigates whether China has escaped the vulnerabilities of peripheral and dependent late industrialisation in the build up to the current global economic crisis, with reference to structuralist critiques of Latin American industrialisation in the 1960s and examined through China’s balance of payments data. While it would seem that China’s huge surpluses amid sustained growth eliminate any comparative relevance to Latin America, the paper argues that analogous vulnera...

  13. Wide-Area Energy Storage and Management System to Balance Intermittent Resources in the Bonneville Power Administration and California ISO Control Areas

    DEFF Research Database (Denmark)

    Makarov, Yuri V.; Yang, Bo; DeSteese, John G.

    2009-01-01

    (CAISO) areas. The proposed wide area energy management system (WAEMS) addresses these additional balancing requirements through energy exchange between the participat-ing control areas and through the use of energy storage and other generation resources. For the BPA and CAISO control areas, the new...... energy storage technologies for the pro-posed application include flywheel energy storage devices (ESD), pumped or conventional hydro power plants, and so-dium sulfur or nickel cadmium batteries. A preferred WAEMS architecture was selected as an aggregation of a flywheel ESD and a pumped storage (or...

  14. Design and realization of JT-60SA Fast Plasma Position Control Coils power supplies

    Energy Technology Data Exchange (ETDEWEB)

    Zito, P., E-mail: pietro.zito@enea.it [National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Via E. Fermi, N. 45, 00044 Frascati (Italy); Lampasi, A. [National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Via E. Fermi, N. 45, 00044 Frascati (Italy); Coletti, A.; Novello, L. [Fusion for Energy (F4E) Broader Fusion Development Department, Garching (Germany); Matsukawa, M.; Shimada, K. [Japan Atomic Energy Agency (JAEA), Naka Fusion Institute, Mukouyama, Naka-si, Ibaraki-ken (Japan); Cinarelli, D.; Portesine, M. [POSEICO, via Pillea 42-44, 16152 Genova (Italy); Dorronsoro, A.; Vian, D. [JEMA, Paseo del Circuito 10, 20160 Lasarte-Oria Gipuzkoa (Spain)

    2015-10-15

    Highlights: • Fast Plasma Position Control Coils PSs control the vertical position of the plasma during a plasma shot. • The design phase was developed considering of providing full voltage at any current level. • The testing phase was successfully completed, according to the IEC60146 standards. • The measured rise time of the voltage response is 2.88 ms for a reference voltage step of 1 kV. - Abstract: Fast Plasma Position Control Coils (FPPCC) PSs control the vertical position of the plasma during a plasma shot, to prevent Vertical Displacement Event (VDE), using FPPC coils installed in vacuum vessel for JT-60SA. For this task, the FPPCC PSs have to be very fast for reacting to plasma movements. Further, an open loop feed forward voltage control is adopted in order to achieve a fast control of FPPCC PSs. The main characteristics are: 4-quadrant AC/DC converter 12-pulse with circulating current, DC load voltage ±1000 V and DC load current ±5 kA. The overvoltage induced by FPPC coil during a plasma disruption can reach 10 kV and it is protected by a nonlinear resistor in parallel to the crowbar up to its intervention. All these technical characteristics have strongly influenced the design of the FPPCC converter and transformers which have been validated by simulation model of FPPCC PS. The outcomes of the simulation allowed to finalize the performances and dynamic behavior of voltage response.

  15. Power Balance Control in an AC/DC/AC Converter for Regenerative Braking in a Two-Voltage-Level Flywheel-Based Driveline

    Directory of Open Access Journals (Sweden)

    Janaína G. Oliveira

    2011-01-01

    Full Text Available The integration of a flywheel as a power handling can increase the energy storage capacity and reduce the number of battery charge/discharge cycles. Furthermore, the ability of recovering energy of the vehicle during breaking can increase the system efficiency. The flywheel-based all-electric driveline investigated here has its novelty in the use of a double-wound flywheel motor/generator, which divides the system in two different voltage levels, enhancing the efficiency of the electric driveline. The connection of two AC electrical machines (i.e., the flywheel and the wheel motor with different and variable operation frequency is challenging. A power matching control applied to an AC/DC/AC converter has been implemented. The AC/DC/AC converter regenerates the electric power converted during braking to the flywheel machine, used here as power handling device. By controlling the power balance, the same hardware can be used for acceleration and braking, providing the reduction of harmonics and robust response. A simulation of the complete system during braking mode has been performed both in Matlab and Simulink, and their results have been compared. The functionality of the proposed control has been shown and discussed, with full regeneration achieved. A round-trip efficiency (wheel to wheel higher than 80% has been obtained.

  16. Plasma wakefields driven by an incoherent combination of laser pulses: a path towards high-average power laser-plasma accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Benedetti, C.; Schroeder, C.B.; Esarey, E.; Leemans, W.P.

    2014-05-01

    he wakefield generated in a plasma by incoherently combining a large number of low energy laser pulses (i.e.,without constraining the pulse phases) is studied analytically and by means of fully-self-consistent particle-in-cell simulations. The structure of the wakefield has been characterized and its amplitude compared with the amplitude of the wake generated by a single (coherent) laser pulse. We show that, in spite of the incoherent nature of the wakefield within the volume occupied by the laser pulses, behind this region the structure of the wakefield can be regular with an amplitude comparable or equal to that obtained from a single pulse with the same energy. Wake generation requires that the incoherent structure in the laser energy density produced by the combined pulses exists on a time scale short compared to the plasma period. Incoherent combination of multiple laser pulses may enable a technologically simpler path to high-repetition rate, high-average power laser-plasma accelerators and associated applications.

  17. Influence of plasma DNA on acid-base balance, blood gas measurement, and oxygen transport in health and stroke.

    Science.gov (United States)

    Konorova, Irina L; Veiko, Natalya N; Novikov, Viktor E

    2008-08-01

    Hyperoxia and alkalemia, as a result of pulmonary hyperventilation and elevation of plasma DNA (pDNA), are seen during the first 24 h after ischemic stroke. In this study we have examined the correlation between pDNA and these blood parameters in health and stroke. Acid-base equilibrium, oxygen status, hemoglobin affinity to oxygen and concentration of pDNA in arterial blood were measured after the intravenous injection of homologous long-chain DNA to healthy rats and rats subjected to common carotid arterial occlusion. In addition the effect of adding homologous DNA to human and rat venous blood samples was studied in vitro. Hyperoxia, alkalemia, and an increase in hemoglobin affinity to oxygen were seen in rats with artificial stroke. A marked decrease in pulmonary hyperventilation and hemoglobin affinity to oxygen was observed after injection of homologous genomic DNA (10(-6) g/mL of blood). After the DNA injection, blood gas measurement and concentration of pDNA were correlated. Addition of DNA at a concentration of 10(-7) g/mL to venous blood samples in vitro increased oxygen saturation that disappeared when the dose of the DNA increased 10-fold. Thus, a change of pDNA concentration or size can alter acid-base equilibrium, oxygen status, and oxygen transport. These results may be important for a better understanding of the mechanisms of stroke and other diseases associated with the elevation of pDNA concentration, and they open the possibility of new therapeutic approaches.

  18. Atomic mean excitation energies for stopping powers from local plasma oscillator strengths

    Science.gov (United States)

    Wilson, J. W.; Xu, Y. J.; Chang, C. K.; Kamaratos, E.

    1984-01-01

    The stopping of a charged particle by isolated atoms is investigated theoretically using an 'atomic plasma' model in which atomic oscillator strengths are replaced by the plasma frequency spectrum. The plasma-frequency correction factor for individual electron motion proposed by Pines (1953) is incorporated, and atomic mean excitation energies are calculated for atoms through Sr. The results are compared in a graph with those obtained theoretically by Inokuti et al. (1978, 1981) and Dehmer et al. (1975) and with the experimental values compiled by Seltzer and Berger (1982): good agreement is shown.

  19. Breaking symmetry in propagation of radially and azimuthally polarized high power laser pulses in underdense plasma

    CERN Document Server

    Pathak, Naveen; Nakanii, Nobuhiko; Masuda, Shinichi; Hosokai, Tomonao; Kodama, R

    2015-01-01

    Propagation of relativistically intense azimuthally or radially polarized laser pulses (RPP) in underdense plasmas is demonstrated to be unstable, via 3D particle-in-cell simulation and disregarding the Kerr non-linearity. Strong pulse filamentation occurs for RPP in transversely uniform plasma with an increment, $\\Gamma$, close to the well-known one depending on acceleration, $\\alpha$, and modulated density gradient length, $L$, as $\\Gamma \\approx (\\alpha/L)^{1/2}$. In deep plasma channels the instability vanishes. Electron self-injection and acceleration by the resulting laser pulse wake is explored.

  20. Comparison of pulsating DC and DC power air-water plasma jet: A method to decrease plume temperature and increase ROS

    Science.gov (United States)

    Liu, K.; Hu, H.; Lei, J.; Hu, Y.; Zheng, Z.

    2016-12-01

    Most air-water plasma jets are rich in hydroxyl radicals (•OH), but the plasma has higher temperatures, compared to that of pure gas, especially when using air as working gas. In this paper, pulsating direct current (PDC) power was used to excite the air-water plasma jet to reduce plume temperature. In addition to the temperature, other differences between PDC and DC plasma jets are not yet clear. Thus, comparative studies of those plasmas are performed to evaluate characteristics, such as breakdown voltage, temperature, and reactive oxygen species. The results show that the plume temperature of PDC plasma is roughly 5-10 °C lower than that of DC plasma in the same conditions. The •OH content of PDC is lower than that of DC plasma, whereas the O content of PDC plasma is higher. The addition of water leads in an increase in the plume temperature and in the production of •OH with two types of power supplies. The production of O inversely shows a declining tendency with higher water ratio. The most important finding is that the PDC plasma with 100% water ratio achieves lower temperature and more abundant production of •OH and O, compared with DC plasma with 0% water ratio.

  1. 简述19世纪英国的均势战略%Review on British Power Balance Strategy in the 19th Century

    Institute of Scientific and Technical Information of China (English)

    徐瑞雪; 鲍永娟

    2015-01-01

    英国的均势战略逐渐形成于16世纪,经过几个世纪的运用发展,在19世纪达到成熟。在这一时期内,英国不论是哪个君主在位、哪个政党当政,在对外活动中一直坚持均势战略,即“干预欧陆政治,防止出现压倒一切的大陆霸主,在必要时不惜投入战争摧毁大陆霸权势力。”%British power balance strategy evolved in the 16th century and has reached maturity in the 19th century through sev-eral centuries of application and development.During this period,no matter what the British monarch reign and which the party in power,the external balance of strategic activities has always insisted that "European political intervention to prevent overri-ding continental hegemony,when necessary,destroye the continental hegemony forces into the war.

  2. A standard description and costing methodology for the balance-of-plant items of a solar thermal electric power plant. Report of a multi-institutional working group

    Science.gov (United States)

    1983-01-01

    Standard descriptions for solar thermal power plants are established and uniform costing methodologies for nondevelopmental balance of plant (BOP) items are developed. The descriptions and methodologies developed are applicable to the major systems. These systems include the central receiver, parabolic dish, parabolic trough, hemispherical bowl, and solar pond. The standard plant is defined in terms of four categories comprising (1) solar energy collection, (2) power conversion, (3) energy storage, and (4) balance of plant. Each of these categories is described in terms of the type and function of components and/or subsystems within the category. A detailed description is given for the BOP category. BOP contains a number of nondevelopmental items that are common to all solar thermal systems. A standard methodology for determining the costs of these nondevelopmental BOP items is given. The methodology is presented in the form of cost equations involving cost factors such as unit costs. A set of baseline values for the normalized cost factors is also given.

  3. Reaction-in-Flight neutrons as a test of stopping power in degenerate plasmas

    Science.gov (United States)

    Hayes, A. C.; Cerjan, C. J.; Jungman, G.; Fowler, M. M.; Gooden, M. E.; Grim, G. P.; Henry, E.; Rundberg, R. S.; Sepke, S. M.; Schneider, D. H. G.; Singleton, R. L.; Tonchev, A. P.; Wilhelmy, J. B.; Yeamans, C. B.

    2016-05-01

    Cryogenically cooled inertial confinement fusion capsule designs are suitable for studies of reaction-in-flight (RIF) neutrons. RIF neutrons occur when energetically up-scattered ions undergo DT reactions with a thermal ion in the plasma, producing neutrons in the energy range 9-30 MeV. The knock-on ions lose energy as they traverse the plasma, which directly affects the spectrum of the produced RIF neutrons. Here we present measurements from the National Ignition Facility (NIF) of RIF neutrons produced in cryogenic capsules, with energies above 15 MeV. We show that the measured RIFs probe stopping under previously unexplored degenerate plasma conditions and constrain stopping models in warm dense plasma conditions.

  4. Feasibility study of monitoring of plasma etching chamber conditions using superimposed high-frequency signals on rf power transmission line.

    Science.gov (United States)

    Kasashima, Y; Uesugi, F

    2015-10-01

    An in situ monitoring system that can detect changes in the conditions of a plasma etching chamber has been developed. In the system, low-intensity high-frequency signals are superimposed on the rf power transmission line used for generating plasma. The system measures reflected high-frequency signals and detects the change in their frequency characteristics. The results indicate that the system detects the changes in the conditions in etching chambers caused by the changes in the electrode gap and the inner wall condition and demonstrate the effectiveness of the system. The system can easily be retrofitted to mass-production equipment and it can be used with or without plasma discharge. Therefore, our system is suitable for in situ monitoring of mass-production plasma etching chambers. The system is expected to contribute to development of predictive maintenance, which monitors films deposited on the inner wall of the chamber and prevents equipment faults caused by misalignment of chamber parts in mass-production equipment.

  5. Power matching between plasma generation and electrostatic acceleration in helicon electrostatic thruster

    Science.gov (United States)

    Ichihara, D.; Nakagawa, Y.; Uchigashima, A.; Iwakawa, A.; Sasoh, A.; Yamazaki, T.

    2017-10-01

    The effects of a radio-frequency (RF) power on the ion generation and electrostatic acceleration in a helicon electrostatic thruster were investigated with a constant discharge voltage of 300 V using argon as the working gas at a flow rate either of 0.5 Aeq (Ampere equivalent) or 1.0 Aeq. A RF power that was even smaller than a direct-current (DC) discharge power enhanced the ionization of the working gas, thereby both the ion beam current and energy were increased. However, an excessively high RF power input resulted in their saturation, leading to an unfavorable increase in an ionization cost with doubly charged ion production being accompanied. From the tradeoff between the ion production by the RF power and the electrostatic acceleration made by the direct current discharge power, the thrust efficiency has a maximum value at an optimal RF to DC discharge power ratio of 0.6 - 1.0.

  6. Effects of growth hormone-releasing hormone treatment on milk production and plasma hormones and metabolites in lactating Japanese Black cows under negative energy balance.

    Science.gov (United States)

    Shingu, H; Hodate, K; Kushibiki, S; Touno, E; Oshibe, A; Ueda, Y; Shinoda, M; Ohashi, S

    2009-04-01

    The current study was performed to clarify the effects of GHRH treatment on milk production and plasma hormones and metabolites in lactating Japanese Black cows (a beef breed) under negative energy balance (EB). Ten multiparous lactating beef cows were offered a normal-energy diet daily (110% of ME requirements for maintenance and lactation) until 5 d in milk (DIM) to standardize the cows before dietary treatment. From 6 DIM to the final days (63 DIM) of the experiment, the cows were allotted to experimental dietary treatments: 5 cows were offered a diet formulated for 130% [high-energy diet (HED)] and the remaining 5 cows were offered a diet formulated for 80% [low-energy diet (LED)] of ME requirements for maintenance and lactation. In addition, all cows received daily subcutaneous injections of 3 mg of bovine GHRH from 36 to 56 DIM (GHRH treatment period). Differences in BW of HED- and LED-fed cows at 63 DIM were +28.4 and -7.2 kg compared with BW at 6 DIM, and HED- and LED-fed cows were under positive EB (+23.7 MJ/d) and negative EB (-11.6 MJ/d) throughout the experiment period. Treatment with GHRH increased (Pnegative EB in lactating beef cows.

  7. Effects of supplementing rare earth element cerium on rumen fermentation, nutrient digestibility, nitrogen balance and plasma biochemical parameters in beef cattle.

    Science.gov (United States)

    Lin, S X; Wei, C; Zhao, G Y; Zhang, T T; Yang, K

    2015-12-01

    The objectives of the trial were to investigate the effects of supplementing rare earth element (REE) cerium (Ce) on rumen fermentation, nutrient digestibility, methane (CH4 ) production, nitrogen (N) balance and plasma biochemical parameters in beef cattle. Four Simmental male cattle, aged at 14 months, with initial liveweight of 355 ± 8 kg and fitted with permanent rumen cannulas, were used as experimental animals. The cattle were fed with a total mixed ration (TMR) composed of concentrate mixture and corn silage. Four levels of cerium chloride (CeCl3 ·7H2 O, purity 99.9%), that is 0, 80, 160 and 240 mg CeCl3 /kg DM, were added to basal ration in a 4 × 4 Latin square design. Each experimental period lasted 15 days, of which the first 12 days were for pre-treatment and the last 3 days were for sampling. The results showed that supplementing CeCl3 at 160 or 240 mg/kg DM increased neutral detergent fibre (NDF) digestibility (p cattle increased the digestibility of NDF, decreased the molar ratio of rumen acetate to propionate, increased N retention and microbial N flow and decreased CH4 /kg DMI.

  8. Effects of increased wind power generation on Mid-Norway's energy balance under climate change: A market based approach

    Science.gov (United States)

    Francois, Baptiste; Martino, Sara; Tofte, Lena; Hingray, Benoit; Mo, Birger; Creutin, Jean-Dominique

    2017-04-01

    Thanks to its huge water storage capacity, Norway has an excess of energy generation at annual scale, although significant regional disparity exists. On average, the Mid-Norway region has an energy deficit and needs to import more electricity than it exports. We show that this energy deficit can be reduced with an increase in wind generation and transmission line capacity, even in future climate scenarios where both mean annual temperature and precipitation are changed. For the considered scenarios, the deficit observed in winter disappears, i.e. when electricity consumption and prices are high. At the annual scale, the deficit behavior depends more on future changes in precipitation. Another consequence of changes in wind production and transmission capacity is the modification of electricity exchanges with neighboring regions which are also modified both in terms of average, variability and seasonality. Keywords: Variable renewable energy, Wind, Hydro, Energy balance, Energy market

  9. Dynamic Analysis of Electrical Power Grid Delivery: Using Prime Mover Engines to Balance Dynamic Wind Turbine Output

    Energy Technology Data Exchange (ETDEWEB)

    Diana K. Grauer

    2011-10-01

    This paper presents an investigation into integrated wind + combustion engine high penetration electrical generation systems. Renewable generation systems are now a reality of electrical transmission. Unfortunately, many of these renewable energy supplies are stochastic and highly dynamic. Conversely, the existing national grid has been designed for steady state operation. The research team has developed an algorithm to investigate the feasibility and relative capability of a reciprocating internal combustion engine to directly integrate with wind generation in a tightly coupled Hybrid Energy System. Utilizing the Idaho National Laboratory developed Phoenix Model Integration Platform, the research team has coupled demand data with wind turbine generation data and the Aspen Custom Modeler reciprocating engine electrical generator model to investigate the capability of reciprocating engine electrical generation to balance stochastic renewable energy.

  10. Final Report LDRD 02-ERD-013 Dense Plasma Characterization by X-ray Thomson Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Landen, O L; Glenzer, S H; Gregori, G; Pollaine, S M; Hammer, J H; Rogers, F; Meezan, N B; Chung, H; Lee, R W

    2005-02-11

    We have successfully demonstrated spectrally-resolved x-ray scattering in a variety of dense plasmas as a powerful new technique for providing microscopic dense plasma parameters unattainable by other means. The results have also been used to distinguish between ionization balance models. This has led to 10 published or to be published papers, 8 invited talks and significant interest from both internal and external experimental plasma physicists and the international statistical plasma physics theory community.

  11. Influences of Uncaptured Electron on Energy Conversion of Photon Compton Scattering in High Power Laser-plasma

    Institute of Scientific and Technical Information of China (English)

    ZHENG Jing-hua; HAO Xiao-fei; HAO Dong-shan

    2004-01-01

    Using the single particle theory and the non-flexibility collision model of electron and photon, the influence of the uncaptured electrons on the energy conversion efficiency of multi-photon nonlinear Compton scattering in the extra stationary laser-plasma is investigated. It shows that in extra stationary laser-plasma,the uncaptured electrons make the Δω of the scattering frequency of the multi-photon Compton fall down with the increases of the incident radiation electron speed,the materials of the incident collision of electron and photon, and the number of the photons which work with the electrons at the same time. Under the modulation of the uncaptured electrons to the laser field, the energy conversion efficiency between electrons and photons will fall down with the increase of the electron incident radiation speed, using the low-power electrons for incident source, the loss can be efficiently reduced.

  12. Balancing Power Absorption and Structural Loading for an Assymmetric Heave Wave-Energy Converter in Regular Waves: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Tom, Nathan M.; Madhi, Farshad; Yeung, Ronald W.

    2016-07-01

    The aim of this paper is to maximize the power-to-load ratio of the Berkeley Wedge: a one-degree-of-freedom, asymmetrical, energy-capturing, floating breakwater of high performance that is relatively free of viscosity effects. Linear hydrodynamic theory was used to calculate bounds on the expected time-averaged power (TAP) and corresponding surge restraining force, pitch restraining torque, and power take-off (PTO) control force when assuming that the heave motion of the wave energy converter remains sinusoidal. This particular device was documented to be an almost-perfect absorber if one-degree-of-freedom motion is maintained. The success of such or similar future wave energy converter technologies would require the development of control strategies that can adapt device performance to maximize energy generation in operational conditions while mitigating hydrodynamic loads in extreme waves to reduce the structural mass and overall cost. This paper formulates the optimal control problem to incorporate metrics that provide a measure of the surge restraining force, pitch restraining torque, and PTO control force. The optimizer must now handle an objective function with competing terms in an attempt to maximize power capture while minimizing structural and actuator loads. A penalty weight is placed on the surge restraining force, pitch restraining torque, and PTO actuation force, thereby allowing the control focus to be placed either on power absorption or load mitigation. Thus, in achieving these goals, a per-unit gain in TAP would not lead to a greater per-unit demand in structural strength, hence yielding a favorable benefit-to-cost ratio. Demonstrative results in the form of TAP, reactive TAP, and the amplitudes of the surge restraining force, pitch restraining torque, and PTO control force are shown for the Berkeley Wedge example.

  13. Balancing Power Absorption and Structural Loading for an Asymmetric Heave Wave-Energy Converter in Regular Waves

    Energy Technology Data Exchange (ETDEWEB)

    Tom, Nathan M.; Madhi, Farshad; Yeung, Ronald W.

    2016-06-24

    The aim of this paper is to maximize the power-to-load ratio of the Berkeley Wedge: a one-degree-of-freedom, asymmetrical, energy-capturing, floating breakwater of high performance that is relatively free of viscosity effects. Linear hydrodynamic theory was used to calculate bounds on the expected time-averaged power (TAP) and corresponding surge restraining force, pitch restraining torque, and power take-off (PTO) control force when assuming that the heave motion of the wave energy converter remains sinusoidal. This particular device was documented to be an almost-perfect absorber if one-degree-of-freedom motion is maintained. The success of such or similar future wave energy converter technologies would require the development of control strategies that can adapt device performance to maximize energy generation in operational conditions while mitigating hydrodynamic loads in extreme waves to reduce the structural mass and overall cost. This paper formulates the optimal control problem to incorporate metrics that provide a measure of the surge restraining force, pitch restraining torque, and PTO control force. The optimizer must now handle an objective function with competing terms in an attempt to maximize power capture while minimizing structural and actuator loads. A penalty weight is placed on the surge restraining force, pitch restraining torque, and PTO actuation force, thereby allowing the control focus to be placed either on power absorption or load mitigation. Thus, in achieving these goals, a per-unit gain in TAP would not lead to a greater per-unit demand in structural strength, hence yielding a favorable benefit-to-cost ratio. Demonstrative results in the form of TAP, reactive TAP, and the amplitudes of the surge restraining force, pitch restraining torque, and PTO control force are shown for the Berkeley Wedge example.

  14. Melting and spheroidization of hexagonal boron nitride in a microwave-powered, atmospheric pressure nitrogen plasma `

    Energy Technology Data Exchange (ETDEWEB)

    Gleiman, S. S. (Seth S.); Phillips, J. (Jonathan)

    2001-01-01

    We have developed a method for producing spherically-shaped, hexagonal phase boron nitride (hBN) particles of controlled diameter in the 10-100 micron size range. Specifically, platelet-shaped hBN particles are passed as an aerosol through a microwave-generated, atmospheric pressure, nitrogen plasma. In the plasma, agglomerates formed by collisions between input hBN particles, melt and forms spheres. We postulate that this unprecedented process takes place in the unique environment of a plasma containing a high N-atom concentration, because in such an environment the decomposition temperature can be raised above the melting temperature. Indeed, given the following relationship [1]: BN{sub (condensed)} {leftrightarrow} B{sub (gas)} + N{sub (gas)}. Standard equilibrium thermodynamics indicate that the decomposition temperature of hBN is increased in the presence of high concentrations of N atoms. We postulate that in our plasma system the N atom concentration is high enough to raise the decomposition temperature above the (undetermined) melting temperature. Keywords Microwave plasma, boron nitride, melting, spherical, thermodynamics, integrated circuit package.

  15. High Power Laser-Plasma Interaction under a Strong Magnetic Field

    Science.gov (United States)

    Sano, Takayoshi; Tanaka, Yuki; Yamaguchi, Tomohito; Murakami, Masakatsu; Iwata, Natsumi; Hata, Masayasu; Mima, Kunioki

    2016-10-01

    We investigate laser-plasma interactions under a strong magnetic field by one-dimensional Particle-in-Cell (PIC) simulations. A simple setup is considered in our analysis, in which a thin foil is irradiated by a right-handed circularly polarized laser. A uniform magnetic field is assumed in the direction of the laser propagation. Then the whistler wave can penetrate the overdense plasma when the external field is larger than the critical field strength Bc =meω0 / e . In this situation, key parameters of the system are the plasma density and the size of the external field. We performed various models in the density-field strength diagram, which is actually the so-called CMA diagram, to evaluate the efficiency of the energy conversion from the laser to plasma and the reflectivity and transmittance of the laser. It is found that there are two important processes in the interaction between the whistler wave and overdense plasma, which are the cyclotron resonance of relativistic electrons and the parametric (Brillouin) instability. Because of the high temperature of electrons, ions can be accelerated dramatically by a large sheath field at the target surface.

  16. Effects of electromagnetic fields exposure on plasma hormonal and inflammatory pathway biomarkers in male workers of a power plant

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhaopin; Fei, Ying; Liu, Hui [Zhejiang Univ., Hangzhou (China). Dept. of Epidemiology and Health Statistics; Zhejiang Univ., Hangzhou (China). Chronic Disease Research Inst.; and others

    2016-01-15

    The potential health risks of electromagnetic fields (EMFs) have currently raised considerable public concerns. The aim of this study was to evaluate the effects of EMF exposure on levels of plasma hormonal and inflammatory pathway biomarkers in male workers of an electric power plant. Seventy-seven male workers with high occupational EMF exposure and 77 male controls with low exposure, matched by age, were selected from a cross-sectional study. Moreover, high EMF exposure group was with walkie-talkies usage and exposed to power frequency EMF at the work places for a longer duration than control group. A questionnaire was applied to obtain relevant information, including sociodemographic characteristics, lifestyle factors, and EMF exposures. Plasma levels of testosterone, estradiol, melatonin, NF-KB, heat-shock protein (HSP) 70, HSP27, and TET1 were determined by an enzyme-linked immunosorbent assay. EMF exposure group had statistically significantly lower levels of testosterone (β = -0.3 nmol/L, P = 0.015), testosterone/estradiol (T/E2) ratio (β = -15.6, P = 0.037), and NF-KB (β = -20.8 ng/L, P = 0.045) than control group. Moreover, joint effects between occupational EMF exposure and employment duration, mobile phone fees, years of mobile phone usage, and electric fees on levels of testosterone and T/E2 ratio were observed. Nevertheless, no statistically significant associations of EMF exposures with plasma estradiol, melatonin, HSP70, HSP27, and TET1 were found. The findings showed that chronic exposure to EMF could decrease male plasma testosterone and T/E2 ratio, and it might possibly affect reproductive functions in males. No significant associations of EMF exposure with inflammatory pathway biomarkers were found.

  17. Comparison of excitation mechanisms in the analytical regions of a high-power two-jet plasma

    Energy Technology Data Exchange (ETDEWEB)

    Zaksas, Natalia P., E-mail: zak@niic.nsc.ru

    2015-07-01

    Excitation mechanisms in the analytical regions of a high-power two-jet plasma were investigated. A new plasmatron recently developed was applied in this work. The Boltzmann population of excited levels of Fe atoms and ions was observed in both analytical regions, before and after the jet confluence, as well as in the jet confluence, which proves excitation of atoms and ions by electron impact. The disturbance of local thermodynamic equilibrium in all regions of the plasma flow was deduced on the basis of considerable difference in Fe atomic and ionic excitation temperatures. Such a difference is most likely to be caused by contribution of metastable argon to atom ionization. The region before the jet confluence has the greatest difference in Fe atomic and ionic excitation temperatures and is more non-equilibrium than the region after the confluence due to comparatively low electron and high metastable argon concentrations. Low electron concentration in this region provides lower background emission than in the region after the jet confluence, which leads to better detection limits for the majority of elements. - Highlights: • Excitation mechanisms were investigated in the analytical regions of a high-power TJP. • Boltzmann population of excited levels of Fe atoms and ions takes place in all regions of the plasma flow. • The considerable difference in Fe atomic and ionic excitation temperatures occurs. • Penning ionization by metastable argon results in disturbance of LTE in the plasma. • The region before the jet confluence is more non-equilibrium than after that.

  18. Effects of electromagnetic fields exposure on plasma hormonal and inflammatory pathway biomarkers in male workers of a power plant.

    Science.gov (United States)

    Wang, Zhaopin; Fei, Ying; Liu, Hui; Zheng, Shuangshuang; Ding, Zheyuan; Jin, Wen; Pan, Yifeng; Chen, Zexin; Wang, Lijuan; Chen, Guangdi; Xu, Zhengping; Zhu, Yongjian; Yu, Yunxian

    2016-01-01

    The potential health risks of electromagnetic fields (EMFs) have currently raised considerable public concerns. The aim of this study was to evaluate the effects of EMF exposure on levels of plasma hormonal and inflammatory pathway biomarkers in male workers of an electric power plant. Seventy-seven male workers with high occupational EMF exposure and 77 male controls with low exposure, matched by age, were selected from a cross-sectional study. Moreover, high EMF exposure group was with walkie-talkies usage and exposed to power frequency EMF at the work places for a longer duration than control group. A questionnaire was applied to obtain relevant information, including sociodemographic characteristics, lifestyle factors, and EMF exposures. Plasma levels of testosterone, estradiol, melatonin, NF-κB, heat-shock protein (HSP) 70, HSP27, and TET1 were determined by an enzyme-linked immunosorbent assay. EMF exposure group had statistically significantly lower levels of testosterone (β = -0.3 nmol/L, P = 0.015), testosterone/estradiol (T/E2) ratio (β = -15.6, P = 0.037), and NF-κB (β = -20.8 ng/L, P = 0.045) than control group. Moreover, joint effects between occupational EMF exposure and employment duration, mobile phone fees, years of mobile phone usage, and electric fees on levels of testosterone and T/E2 ratio were observed. Nevertheless, no statistically significant associations of EMF exposures with plasma estradiol, melatonin, HSP70, HSP27, and TET1 were found. The findings showed that chronic exposure to EMF could decrease male plasma testosterone and T/E2 ratio, and it might possibly affect reproductive functions in males. No significant associations of EMF exposure with inflammatory pathway biomarkers were found.

  19. Imaging diagnostics of pulsed plasma discharges in saline generated with various sharp pin powered electrodes

    Science.gov (United States)

    Asimakoulas, L.; Karim, M. L.; Dostal, L.; Krcma, F.; Graham, W. G.; Field, T. A.

    2016-09-01

    Plasmas formed by 1 ms pulses of between 180 and 300 V applied to sharp pin-like electrodes immersed in saline solution have been imaged with a Photron SA-X2 fast framing camera and an Andor iStar 510 ICCD camera. Stainless steel, Tungsten and Gold electrodes were investigated with tip diameters of 30 μm, 1 μm and volume, which appears to move about, but remains close to the tip. In the case of Tungsten with higher voltages or longer pulses the tip of the needle can heat up to incandescent temperatures. At higher voltages shock wave fronts appear to be observed as the vapour layer collapses at the end of the voltage pulse. Backlighting and no lighting to observe bubble/vapour layer formation and emission due to plasma formation were employed. Sometimes at higher voltages a thicker vapour layer engulfs the tip and no plasma emission/current is observed.

  20. Interaction of high power laser beams with plasma in ICF hohlraum using the FDTD method

    Science.gov (United States)

    Lin, Zhili

    2016-11-01

    In the indirect-drive Inertial confinement fusion (ICF) system, groups of laser beams are injected into a gold cylindrical hohlraum and plasma is stimulated with the ablation of the wall of hohlraum by the laser beams. In our work, the finite-difference time-domain (FDTD) method associated with the bilinear transform and Maclaurin series expansion approaches is utilized to examine the laser beam propagation in plasma described by the Drude model. The state-of-the-art approaches for generating the laser beams are presented and realized according to the full utilization of the TF/SF source condition. Base on the previous technologies, the quantitatively numerical analysis of the propagation characteristics of laser beams in the plasma is conducted. The obtained results are illustrated and discussed that are helpful for the parameter optimization of laser beams for an ICF system.

  1. Plasma Microdischarge as Power-Induced Limiter Element in Microstrip Devices

    OpenAIRE

    Pascaud, Romain; Pizarro, Francisco; Callegari, Thierry; Liard, Laurent; Pascal, Olivier

    2015-01-01

    The use of micro-hollow cathode sustained discharges (MCSD) as power-induced limiter elements in microstrip devices is proposed to protect receivers against high-power microwave (HPM) threats. The basic principle of the MCSD and its integration into a microstrip circuit are exposed. The power-limiting capability of such a solution has been experimentally assessed for three microstrip circuits, namely a microstrip transmission line, a microstrip ring filter, and a microstrip antenna.

  2. Evidence for breathing modes in direct current, pulsed, and high power impulse magnetron sputtering plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yuchen [State Key Lab for Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720 (United States); Zhou, Xue [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720 (United States); Department of Electrical Engineering, Harbin Institute of Technology, Harbin 150000 (China); Liu, Jason X. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720 (United States); Department of Physics, University of California, Berkeley, Berkeley, California 94720 (United States); Anders, André, E-mail: aanders@lbl.gov [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720 (United States)

    2016-01-18

    We present evidence for breathing modes in magnetron sputtering plasmas: periodic axial variations of plasma parameters with characteristic frequencies between 10 and 100 kHz. A set of azimuthally distributed probes shows synchronous oscillations of the floating potential. They appear most clearly when considering the intermediate current regime in which the direction of azimuthal spoke motion changes. Breathing oscillations were found to be superimposed on azimuthal spoke motion. Depending on pressure and current, one can also find a regime of chaotic fluctuations and one of stable discharges, the latter at high current. A pressure-current phase diagram for the different situations is proposed.

  3. Direct vector controlled six-phase asymmetrical induction motor with power balanced space vector PWM multilevel operation

    DEFF Research Database (Denmark)

    Padmanaban, Sanjeevi Kumar; Grandi, Gabriele; Ojo, Joseph Olorunfemi

    2016-01-01

    In this paper, a six-phase (asymmetrical) machine is investigated, 300 phase displacement is set between two three-phase stator windings keeping deliberately in open-end configuration. Power supply consists of four classical three-phase voltage inverters (VSIs), each one connected to the open......) approach was adopted for each couple of VSIs to operate as multilevel output voltage generators. The proposed power sharing algorithm is verified for the ac drive system by observing the dynamic behaviours in different set conditions by complete simulation modelling in software (Matlab....../Simulink-PLECS) and the results are provided in this paper. Furthermore, harmonic components are shown in each subspace and analysed with Fourier spectrum to confirm the smooth torque propagation with free of harmonic components. The numerical simulation results provided in this paper are closely matching with theoretical...

  4. Tallying the U.S.-China Military Scorecard: Relative Capabilities and the Balance of Power, 1996-2017

    Science.gov (United States)

    2015-01-01

    analysis of Chinese and U.S. military forces and developments—and even less rigorous analysis of how those inventories and systems would perform against...analysis that seeks to fill this gap. The research uses a set of “scorecards” to assess the relative capabilities of U.S. and Chinese forces in...will progressively recede as China’s ability to project power improves. • The United States should adjust operational concepts , force structure, and

  5. Sexual orientation and household decision making. Same-sex couples' balance of power and labor supply choices

    OpenAIRE

    Oreffice, Sonia

    2009-01-01

    I estimate how intra-household bargaining affects gay and lesbian couples¿ labor supplies, investigating their similarity to heterosexual decision-making, in a collective household framework. Data from the 2000 US Census shows that couples of all types exhibit a significant response to bargaining power shifts, as measured by differences between partners in age or non-labor income. In gay, lesbian, and heterosexual cohabiting couples, a relatively young or rich partner has more bargaining powe...

  6. Preventing Control Constraint Violations by Use of Energy Balances for a Class of Coupled Systems: Applied to a Power Plant

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob

    2007-01-01

    In this paper a scheme is presented for preventing violations of control signal constraints in a class of coupled systems. The scheme is an add-on solution to the existing control system; it works like a fault tolerant scheme, by accommodating the problem then occurring. The proposed scheme...... and not to optimize performance during all conditions. The scheme is applied to an example with a coal mill pulverizing coal for a power plant.  ...

  7. An optical fiber sensor based on cladding photoluminescence for high power microwave plasma ultraviolet lamps used in water treatment

    Science.gov (United States)

    Fitzpatrick, C.; Lewis, E.; Al-Shamma'A, A.; Pandithas, I.; Cullen, J.; Lucas, J.

    2001-11-01

    Low-pressure mercury lamps are commonly used for germicidal applications such as water and wastewater sterilisation. The germicidal effect is due to the emission of light at 254 nm, which leads to the destruction of most waterborne bacteria. The Microwave plasma ultraviolet lamp (MPUVL) is a new technology for generating a high intensity ultraviolet (UV) light. A Fluorescent optical fiber based sensor is presented which is used for monitoring the output of a high power microwave UV light source and its control. This sensor is a fiber which has had its cladding removed and been coated with a phosphor doped polymer.

  8. Properties of Cr3C2-NiCr Cermet Coating Sprayed by High Power Plasma and HVOF Processes

    OpenAIRE

    Otsubo, Fumitaka; Era, Hidenori; Kishitake, K; Uchida, T.

    2000-01-01

    The structure, hardness and shear adhesion strength have beeninvestigated in Cr3C2-NiCr cermet coatings sprayed onto a mild steelsubstrate by 200 kW high power plasma spraying (HPS) and high velocityoxy-fuel (HVOF) processes. Amorphous and supersaturated nickel phasesform in both as-sprayed coatings. The hardness of the HVOF coating ishigher than that of the HPS coating because the HVOF coating containsmore non-melted Cr3C2 carbide particles. On heat-treating at 873 K, theamorphous phase deco...

  9. Balance Problems

    Science.gov (United States)

    ... you are having balance problems, see your doctor. Balance disorders can be signs of other health problems, such ... cases, treating the illness that is causing the disorder will help with the balance problem. Exercises, a change in diet, and some ...

  10. Dynamic-energetic balance of agricultural tractors: active systems for the measurement of the power requirements in static tests and under field conditions

    Directory of Open Access Journals (Sweden)

    Daniele Pochi

    2013-09-01

    Full Text Available Modern tractors are characterized by the introduction of devices designed to increase the operative performances of the machines, such as systems for monitoring and controlling various functions (through a massive use of electronics and hydraulics, or deputed to improve the comfort of the driver (paying more attention to ergonomics, air-conditioning, noise and vibration. Such devices need energy to be operated, affecting the energetic balance of the tractor. In this context, the availability of suitable methodologies and instrumental systems could be useful to provide objective, accurate and reliable measurements of the performances of the tractors under different conditions, also considering the power requirements from ancillary services and/or simulating the coupling with operating machines. The tests on the performances of tractors are now made using different methods, including the trial codes issued by the OECD Codes. Beyond their undoubted validity, they fix standard test conditions that often do not adequately represent the operative reality, so that, much remains to investigate on the actual performances provided by the tractors. From this point of view and with reference to fixed point tests, a test bench was developed for the measurement of the power required by various devices, such as transmission and air conditioning. It was used in experimental tests on a tracked tractor and on a wheeled tractor, aimed at validating the test device, measuring the power absorption related to the rotational speed of the organs of propulsion and to the characteristics curves, in order to quantify the power drawn by the transmission and by the air conditioning and assess the residual power for other tractor functions. As to field conditions, a study is being conducted at CRA-ING, within the project PTO (Mi.P.A.A.F., to develop a mobile test bench aimed at evaluating the power required by different operations, such as self displacement, traction, use of

  11. Effects of quantum statistical pressure on the Washimi-Karpman magnetization and power radiation in degenerate quantum Fermi-Dirac plasmas

    Science.gov (United States)

    Lee, Myoung-Jae; Jung, Young-Dae

    2017-09-01

    The physical properties of the Washimi-Karpman ponderomotive magnetization are investigated in relativistically degenerate quantum Fermi-Dirac plasmas including the influence of quantum statistical degeneracy pressure. The induced magnetization and power radiation due to the Washimi-Karpman ponderomotive interaction are obtained in Fermi-Dirac plasmas. It is found that the ponderomotive magnetization decreases with an increase of the relativistic degeneracy parameter. It is also shown that the quantum statistical degeneracy pressure effect is more significant in small frequency and large wave number domains than that in large frequency and small wave number domains. In addition, it is found that the ponderomotive power radiation decreases with an increase of the relativistic degeneracy parameter in Fermi-Dirac plasmas. The variations of the Washimi-Karpman magnetization and power radiation due to the physical characteristics of degenerate quantum Fermi-Dirac plasmas are also discussed.

  12. Fast plasma discharge capillary design as a high power throughput soft x-ray emission source.

    Science.gov (United States)

    Wyndham, E S; Favre, M; Valdivia, M P; Valenzuela, J C; Chuaqui, H; Bhuyan, H

    2010-09-01

    We present the experimental details and results from a low energy but high repetition rate compact plasma capillary source for extreme ultraviolet and soft x-ray research and applications. Two lengths of capillary are mounted in two versions of a closely related design. The discharge operates in 1.6 and 3.2 mm inner diameter alumina capillaries of lengths 21 and 36 mm. The use of water both as dielectric and as coolant simplifies the compact low inductance design with nanosecond discharge periods. The stored electrical energy of the discharge is approximately 0.5 J and is provided by directly charging the capacitor plates from an inexpensive insulated-gate bipolar transistor in 1 μs or less. We present characteristic argon spectra from plasma between 30 and 300 Å as well as temporally resolved x-ray energy fluence in discrete bands on axis. The spectra also allow the level of ablated wall material to be gauged and associated with useful capillary lifetime according to the chosen configuration and energy storage. The connection between the electron beams associated with the transient hollow cathode mechanism, soft x-ray output, capillary geometry, and capillary lifetime is reported. The role of these e-beams and the plasma as measured on-axis is discussed. The relation of the electron temperature and the ionization stages observed is discussed in the context of some model results of ionization in a non-Maxwellian plasma.

  13. Engineering solutions for components facing the plasma in experimental fusion power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Casini, G.; Farfaletti-Casali, F.

    1986-07-01

    An analysis is made of the engineering problems related to the structures facing the plasma in experimental tokamak-type reactors. Attention is focused on the so-called ''current first wall'', i.e. the wall side of the blanket segments facing the plasma, and on the collector plates of the impurity control system. The design of a first wall, developed at the JRC-Ispra for INTOR/NET and based on the idea of conceiving it as one of the sides, of a box which envelopes a blanket segment, is described. The progress in the structural analysis of the first wall box under operating and abnormal (plasma disruption) conditions is presented and discussed. The design of the collector plates of the single-null divertor of INTOR/NET, as developed at the JRC-Ispra, is described. This design is based on a W-Re protective layer and a water-cooled heat sink, including cooling channels iun Cu-alloys and a Cu-matrix for bonding. The results of the elastic and elasto-plastic evaluations are discussed, together with a layout of the experimental activity in progress. It is concluded that, even if the uncertainties related to the plasma-wall interaction are still relevant, the engineering solutions identified look manageable, although they require a large research and development effort.

  14. Experiments on Self-Guiding Mechanisms of High Power Laser Pulses in a Plasma

    Science.gov (United States)

    Ralph, Joseph; Pak, Arthur; Marsh, Kenneth; Clayton, Christopher; Fang, Fang; Joshi, Chandrashekhar

    2007-11-01

    Recent 3D theory and PIC simulations in the blowout regime, wherein the pondermotive force of laser with a pulse length on the order of a plasma wavelength expels all electrons, has predicted a range of parameter space where stable laser propagation can occur [1]. In this theory, the density depression caused by electron blow out is the dominant mechism responsible for self-guiding. In this paper we examine experimentally and with PIC simulations laser beam guiding of a multi terwatt TiSapphire laser in a supersonic Helium gas jet. Gas jet density was varied from 2*E18 to to 2*E19 and the length of the plasma was varied from 2 to 5 mm using several gas jets with different diameters. Pondermotive and relativistic effects are considerd by varying laser and plasma parameters. Diagnostics include interferometric and Schlieren techniques. Images of the guided mode are taken at the exit of the gas jet. In addition, the forward images were sent to an imaging spectragraph to observe photon deceleration and deceleration [2]. [1] W. Lu, C. Huang, M. Zhou, and M. Tzoufras, F. S. Tsung, W. B. Mori, and T. Katsouleas, Phys. Plasmas 13, 056709 (2006) [2] A. E. Pak, J. E. Ralph, K. A. Marsh , C. E. Clayton, F. Fang and C. Joshi, These Procedings

  15. High-power electron beam preionized CO/sub 2/ laser modelling. II - Analysis of plasma characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Botti, E. (Napoli, Universita, Naples, Italy); Martellucci, S. (Parma, Universita, Parma, Italy)

    1982-05-11

    In this paper the results of a theoretical analysis on the properties of electric discharges used in high-power molecular lasers are presented. The mathematical model is based on continuity and transport equations for electrons and ions and on the equations concerning the electric field. The model is used both for self-sustained and for non-self-sustained discharges operating in conditions as usually attained in high-power lasers. Spatial profiles of the electrical parameters near the electrodes and in the plasma area are assessed. Current-voltage characteristics are finally derived for a He:N/sub 2/:CO/sub 2/:CO laser mixture. A future work will be devoted both to the kinetic and to the fluid-dynamic model of the laser and to a comparison of the numerical results obtained with available experimental data.

  16. Evolution of Electron Phase Orbits of Multi-photon Nonlinear Compton Scattering in High Power Laser-plasma

    Institute of Scientific and Technical Information of China (English)

    HAO Dong-shan; L(U) Jian

    2005-01-01

    The evolution of the electron phase orbits based on the multi-photon nonlinear Compton scattering with the high power laser-plasma is discussed by using Kroll-Morton-Rosenbluth theory. The random evolution of the un-captured electron phase orbits from periodicity to non-periodicity is found after the energy has been exchanged between the electron and photons. With the increase of the absorbed photon number n by an electron,this evolution will be more and more intense, while which is rapidly decreased with the enhancement of the collision non-flexibility ξ and their initial speeds of the electrons and photons, but this evolution is lower than that in the high power laser field. When the electrons are captured by the laser field, the evolution is finished, and the electrons will stably transport,and the photons don't provide the energy for these electrons any more.

  17. Impact of nitrogen seeding on confinement and power load control of a high-triangularity JET ELMy H-mode plasma with a metal wall

    NARCIS (Netherlands)

    Giroud, C.; Maddison, G. P.; Jachmich, S.; Rimini, F.; Beurskens, M. N. A.; Balboa, I.; Brezinsek, S.; Coelho, R.; Coenen, J. W.; Frassinetti, L.; Joffrin, E.; Oberkofler, M.; Lehnen, M.; Liu, Y.; Marsen, S.; McCormick, K.; Meigs, A.; Neu, R.; Sieglin, B.; van Rooij, G. J.; Arnoux, G.; Belo, P.; Brix, M.; Clever, M.; Coffey, I.; Devaux, S.; Douai, D.; Eich, T.; Flanagan, J.; S. Grünhagen,; Huber, A.; Kempenaars, M.; Kruezi, U.; Lawson, K.; Lomas, P.; Lowry, C.; Nunes, I.; Sirinnelli, A.; Sips, A.C.C.; Stamp, M.; Wiesen, S.; JET-EFDA Contributors,

    2013-01-01

    This paper reports the impact on confinement and power load of the high-shape 2.5 MA ELMy H-mode scenario at JET of a change from all carbon plasma-facing components to an all metal wall. In preparation to this change, systematic studies of power load reduction and impact on confinement as a result

  18. Detailed investigation of optoelectronic and microstructural properties of plasma polymerized cyclohexane thin films: Dependence on the radiofrequency power

    Energy Technology Data Exchange (ETDEWEB)

    Manaa, C.; Bouaziz, L. [Laboratoire de Physique de la Matière Condensée, Université de Picardie Jules Verne, UFR des Sciences d' Amiens, 33 rue Saint Leu, 80039 Amiens Cedex 2 (France); Laboratoire de Matériaux Avancés et Phénomènes Quantiques, Université de Tunis El-Manar, Faculté des Sciences de Tunis, Campus universitaire El-Manar, 1068 Tunis (Tunisia); Lejeune, M.; Zellama, K., E-mail: kacem.zellama@u-picardie.fr; Benlahsen, M. [Laboratoire de Physique de la Matière Condensée, Université de Picardie Jules Verne, UFR des Sciences d' Amiens, 33 rue Saint Leu, 80039 Amiens Cedex 2 (France); Kouki, F.; Mejatty, M.; Bouchriha, H. [Laboratoire de Matériaux Avancés et Phénomènes Quantiques, Université de Tunis El-Manar, Faculté des Sciences de Tunis, Campus universitaire El-Manar, 1068 Tunis (Tunisia)

    2015-06-07

    Optical properties of polymerized cyclohexane films deposited by radiofrequency plasma enhanced chemical vapor deposition technique at different radiofrequency powers onto glass and silicon substrates, are studied and correlated with the microstructure of the films, using a combination of atomic force microscopy, Raman and Fourier Transformer Infrared spectroscopy and optical measurements. The optical constants such as refractive index n, dielectric permittivity ε and extinction k and absorption α coefficients, are extracted from transmission and reflection spectra through the commercial software CODE. These constants lead, by using common theoretical models as Cauchy, Lorentz, Tauc and single effective oscillator, to the determination of the static refractive index n{sub s} and permittivity ε{sub s}, the plasma frequency ω{sub p}, the carrier density to effective mass ratio N/m{sub e}{sup *}, the optical conductivity σ{sub oc}, the optical band gap E{sub g} and the oscillation and dispersion energies E{sub 0} and E{sub d}, respectively. We find that n, ε{sub s}, ω{sub p}, N/m{sub e}{sup *}, E{sub d}, increase with radiofrequency power, while E{sub g} and E{sub 0} decrease in the same range of power. These results are well correlated with those obtained from atomic force microscopy, Raman and infrared measurements. They also indicate that the increase of the radiofrequency power promotes the fragmentation of the precursor and increases the carbon C-sp{sup 2} hybridization proportion, which results in an improvement of the optoelectronic properties of the films.

  19. Optimal Configuration of Multiple Pump Powers and Wavelengths for Balanced Pre- and Post-pumped Raman Fiber Amplifiers

    Institute of Scientific and Technical Information of China (English)

    YAN Minhui; CHEN Jianping; LI Jianlang; JIANG Wenning; CHEN Junfeng; LI Xin

    2002-01-01

    A novel configuration algorithm for bi-directionally pumped Raman amplifier is developed by adopting simulated annealing algorithm. Automatic design of optical fiber Raman amplifier using 10 laser diode pumps with different wavelengths and powers is demonstrated for 64 channels DWDM systems. The resulted gain ripple is less than 2.6 dB in amplification bandwidth of more than 50 nm for a transmission span of more than 300 km. The algorithm can be practically applied to desired signal channel number and gain profile.

  20. Children and adults minimise activated muscle volume by selecting gait parameters that balance gross mechanical power and work demands.

    Science.gov (United States)

    Hubel, Tatjana Y; Usherwood, James R

    2015-09-01

    Terrestrial locomotion on legs is energetically expensive. Compared with cycling, or with locomotion in swimming or flying animals, walking and running are highly uneconomical. Legged gaits that minimise mechanical work have previously been identified and broadly match walking and running at appropriate speeds. Furthermore, the 'cost of muscle force' approaches are effective in relating locomotion kinetics to metabolic cost. However, few accounts have been made for why animals deviate from either work-minimising or muscle-force-minimising strategies. Also, there is no current mechanistic account for the scaling of locomotion kinetics with animal size and speed. Here, we report measurements of ground reaction forces in walking children and adult humans, and their stance durations during running. We find that many aspects of gait kinetics and kinematics scale with speed and size in a manner that is consistent with minimising muscle activation required for the more demanding between mechanical work and power: spreading the duration of muscle action reduces activation requirements for power, at the cost of greater work demands. Mechanical work is relatively more demanding for larger bipeds--adult humans--accounting for their symmetrical M-shaped vertical force traces in walking, and relatively brief stance durations in running compared with smaller bipeds--children. The gaits of small children, and the greater deviation of their mechanics from work-minimising strategies, may be understood as appropriate for their scale, not merely as immature, incompletely developed and energetically sub-optimal versions of adult gaits.

  1. Influence of successive badminton matches on muscle strength, power, and body-fluid balance in elite players.

    Science.gov (United States)

    Abian-Vicen, Javier; Castanedo, Adrián; Abian, Pablo; Gonzalez-Millan, Cristina; Salinero, Juan José; Del Coso, Juan

    2014-07-01

    The aim was to analyze the influence of competitive round on muscle strength, body-fluid balance, and renal function in elite badminton players during a real competition. Body mass, jump height during a countermovement jump, handgrip force, and urine samples were obtained from 13 elite badminton players (6 men and 7 women) before and after the 2nd-round and quarterfinal matches of the national Spanish badminton championship. Sweat rate was determined by using prematch-to-postmatch body-mass change and by weighing individually labeled fluid bottles. Sweat rates were 1.04 ± 0.62 and 0.98 ± 0.43 L/h, while rehydration rate was 0.69 ± 0.26 and 0.91 ± 0.52 L/h for the 2nd round and quarterfinals, respectively. Thus, dehydration was 0.47% ± 1.03% after the 2nd round and 0.23% ± 0.43% after the quarterfinals. There were no differences in prematch-to-postmatch jump height, but jump height was reduced from 37.51 ± 8.83 cm after the 2nd-round game to 34.82 ± 7.37 cm after the quarterfinals (P badminton competition were effective to prevent dehydration. A badminton match did not affect jump height or handgrip force, but jump height was progressively reduced by the competitive round. Badminton players' renal responses reflected diminished renal flux due to the high-intensity nature of this racket sport.

  2. Power dissipated - or generated - by the various excited modes in a plasma; Puissance dissipee - ou generee - par les differents modes excites dans un plasma

    Energy Technology Data Exchange (ETDEWEB)

    Rolland, P. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-07-01

    The energy exchange between a plasma and a source of excitation J(r)sin(w{sub 0}t) is investigated. In order to include the case of growing waves associated with connective instabilities, this problem is treated in the context of the wave-packet theory, by writing the field as a double integral in two complex planes. the paths of the integration are defined after a separation into two classes of the root k(w) of the dispersion equation. We find that - at even in the absence of collisions - there is still a power exchange exchange, due to the spatial dispersion. Thus a connexion can be established with the kinematic theories of growing waves [1][2] and the modes generating power can be found. Moreover, the power dissipated by spatial dispersion is found to be critical with that due to Landau's effect for long waves. This confirms the kinematic character of the latter and bridges a gap between macroscopic and microscopic theories. (author) [French] On etudie les echanges d'energie entre un plasma et une source d'excitation J(r)sin(w{sub 0}t). Pour inclure le cas des ondes croissantes associees aux instabilites convectives, on traite ce probleme dans le cadre de la theorie du paquet d'ondes en definissant le champ par une integrale double dans deux plans complexes; les parcours d'integration sont precises apres avoir separe en deux classes les racines k(w) de l'equation de dispersion. On trouve que meme en l'absence de collisions, la puissance echangee n'est pas nulle, a cause de la dispersion spatiale. Ceci permet d'etablir une connexion avec les theories cinematiques des ondes croissantes [1][2], tout en precisant quels sont les modes generateurs d'energie. Par ailleurs, la puissance dissipee par dispersion spatiale se revele identique a la dissipation par effet Landau pour les grandes ondes, ce qui confirme le caractere cinematique de ce dernier et fait la jonction entre les theories microscopique et macroscopique

  3. In vessel characterization and first power tests on plasma of the Real-Time controllable EC launcher on FTU Tokamak

    Directory of Open Access Journals (Sweden)

    Nardone A.

    2012-09-01

    Full Text Available The Electron Cyclotron (EC fast launcher for real time control experiments has been installed on FTU and characterized to be fully integrated in a real-time MHD control module under development. The launcher scheme is based on a two module system, symmetric with respect to the equatorial plane of FTU, with a front steering concept and the launched beams are real-time controllable both in poloidal and toroidal directions. Specific design parameters, defined by the FTU MHD dynamics (typically island size and q profile changes, are the beam dimensions with zooming capabilities, the steering range and mirror speed with the most demanding requirement on poloidal speed of the Steering Mirror (SM Δθ = 1° in 10 ms. A set of tests has been done to verify the system performance. High power tests of the launcher have been done on a 500 kA, 0.5·1020m−3 and 5.3 T plasma with 2·300 kW of EC power delivered to the plasma. The steering mechanism was tested under the automatic control system and showed a dynamic response in line with the requirements. Results of these tests will be presented in the paper.

  4. Energetic Ion Mitigation Methodology for High Power Plasma Thruster Cathodes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The presence of energetic ions, that appear under high cathode current operation, stand as a showstopper to the realization of high power electric propulsion....

  5. Understanding narrow SOL power flux component in COMPASS limiter plasmas by use of Langmuir probes

    Energy Technology Data Exchange (ETDEWEB)

    Dejarnac, R., E-mail: dejarnac@ipp.cas.cz [Institute of Plasma Physics, ASCR, Za Slovankou 3, 182 00 Prague (Czech Republic); Stangeby, P.C. [University of Toronto, Institute for Aerospace Studies, 4925 Dufferin St., Toronto M3H 5T6 (Canada); Goldston, R.J. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Gauthier, E. [CEA, IRFM, F-13108 St Paul-lez-Durance (France); Horacek, J.; Hron, M. [Institute of Plasma Physics, ASCR, Za Slovankou 3, 182 00 Prague (Czech Republic); Kocan, M. [ITER Organisation, Route de Vinon-sur-Verdon, CS 90 046, F-13067 St Paul-lez-Durance cedex (France); Komm, M.; Panek, R. [Institute of Plasma Physics, ASCR, Za Slovankou 3, 182 00 Prague (Czech Republic); Pitts, R.A. [ITER Organisation, Route de Vinon-sur-Verdon, CS 90 046, F-13067 St Paul-lez-Durance cedex (France); Vondracek, P. [Institute of Plasma Physics, ASCR, Za Slovankou 3, 182 00 Prague (Czech Republic)

    2015-08-15

    The narrow scrape-off layer power component observed in COMPASS inner wall limiter circular discharges by means of IR thermography is investigated by Langmuir probes embedded in the limiter. The power flux profiles are in good agreement with IR observations and can be described by a double-exponential decay with a short decay length (<5 mm) just outside the separatrix and a longer one (∼50 mm) for the rest of the profile in the main scrape-off layer. Non-ambipolar currents measured at the limiter apex play a relatively modest role in the formation of the narrow component. The fraction of the deposited power due to non-ambipolarity varies between 2% and 45%. On the other hand, the measured power widths are roughly consistent in magnitude with a model that takes into account drift effects, suggesting these effects may be dominant.

  6. Integral electrical characteristics and local plasma parameters of a RF ion thruster

    Energy Technology Data Exchange (ETDEWEB)

    Masherov, P. E.; Riaby, V. A., E-mail: riaby2001@yahoo.com [Research Institute of Applied Mechanics and Electrodynamics of the Moscow Aviation Institute (National Research University), Moscow (Russian Federation); Godyak, V. A. [Electrical Engineering and Computer Science Department, University of Michigan, Ann Arbor, Michigan 48109, USA and RF Plasma Consulting, Brookline, Massachusetts 02446 (United States)

    2016-02-15

    Comprehensive diagnostics has been carried out for a RF ion thruster based on inductively coupled plasma (ICP) source with an external flat antenna coil enhanced by ferrite core. The ICP was confined within a cylindrical chamber with low aspect ratio to minimize plasma loss to the chamber wall. Integral diagnostics of the ICP electrical parameters (RF power balance and coil current) allowed for evaluation of the antenna coils, matching networks, and eddy current loss and the true RF power deposited to plasma. Spatially resolved electron energy distribution functions, plasma density, electron temperatures, and plasma potentials were measured with movable Langmuir probes.

  7. Insight of breaking of powerful axisymmetrically-polarized laser pulses in under-dense plasma

    CERN Document Server

    Nakanii, Nobuhiko; Pathak, Naveen C; Masuda, Shinichi; Zhidkov, Alexei G; Nakahara, Hiroki; Iwasa, Kenta; Mizuta, Yoshio; Takeguchi, Naoki; Otsuka, Takamitsu P; Sueda, Keiichi; Nakamura, Hirotaka; Mori, Michiaki; Kando, Masaki; Kodama, Ryosuke

    2015-01-01

    Interaction of axisymmetrically-polarized (radially or azimuthally-polarized), relativistically intense laser pulses (ALP) with under-dense plasma is shown experimentally to be different from the interaction of conventional Gaussian pulses. The difference is clearly observed in distinct spectra of scattered laser light as well as in appearance of a strong side emission of second harmonic in the vicinity of focus spot. According 3D particle-in-cell simulations, this is a result of instability in the propagation of ALP in under-dense plasma. Laser wakefield acceleration of electrons by ALP, therefore, is less efficient than that by Gaussian laser pulses but ALP may be interesting for efficient electron self-injection.

  8. Studying astrophysical collisionless shocks with counterstreaming plasmas from high power lasers

    Science.gov (United States)

    Park, Hye-Sook; Ryutov, D. D.; Ross, J. S.; Kugland, N. L.; Glenzer, S. H.; Plechaty, C.; Pollaine, S. M.; Remington, B. A.; Spitkovsky, A.; Gargate, L.; Gregori, G.; Bell, A.; Murphy, C.; Sakawa, Y.; Kuramitsu, Y.; Morita, T.; Takabe, H.; Froula, D. H.; Fiksel, G.; Miniati, F.; Koenig, M.; Ravasio, A.; Pelka, A.; Liang, E.; Woolsey, N.; Kuranz, C. C.; Drake, R. P.; Grosskopf, M. J.

    2012-03-01

    Collisions of high Mach number flows occur frequently in astrophysics, and the resulting shock waves are responsible for the properties of many astrophysical phenomena, such as supernova remnants, Gamma Ray Bursts and jets from Active Galactic Nuclei. Because of the low density of astrophysical plasmas, the mean free path due to Coulomb collisions is typically very large. Therefore, most shock waves in astrophysics are "collisionless", since they form due to plasma instabilities and self-generated magnetic fields. Laboratory experiments at the laser facilities can achieve the conditions necessary for the formation of collisionless shocks, and will provide a unique avenue for studying the nonlinear physics of collisionless shock waves. We are performing a series of experiments at the Omega and Omega-EP lasers, in Rochester, NY, with the goal of generating collisionless shock conditions by the collision of two high-speed plasma flows resulting from laser ablation of solid targets using ˜1016 W/cm2 laser irradiation. The experiments will aim to answer several questions of relevance to collisionless shock physics: the importance of the electromagnetic filamentation (Weibel) instabilities in shock formation, the self-generation of magnetic fields in shocks, the influence of external magnetic fields on shock formation, and the signatures of particle acceleration in shocks. Our first experiments using Thomson scattering diagnostics studied the plasma state from a single foil and from double foils whose flows collide "head-on". Our data showed that the flow velocity and electron density were 108 cm/s and 1019 cm-3, respectively, where the Coulomb mean free path is much larger than the size of the interaction region. Simulations of our experimental conditions show that weak Weibel mediated current filamentation and magnetic field generation were likely starting to occur. This paper presents the results from these first Omega experiments.

  9. The role of plasma chemistry on functional silicon nitride film properties deposited at low-temperature by mixing two frequency powers using PECVD.

    Science.gov (United States)

    Sahu, B B; Yin, Y Y; Tsutsumi, T; Hori, M; Han, Jeon G

    2016-05-14

    Control of the plasma densities and energies of the principal plasma species is crucial to induce modification of the plasma reactivity, chemistry, and film properties. This work presents a systematic and integrated approach to the low-temperature deposition of hydrogenated amorphous silicon nitride films looking into optimization and control of the plasma processes. Radiofrequency (RF) and ultrahigh frequency (UHF) power are combined to enhance significantly the nitrogen plasma and atomic-radical density to enforce their effect on film properties. This study presents an extensive investigation of the influence of combining radiofrequency (RF) and ultrahigh frequency (UHF) power as a power ratio (PR = RF : UHF), ranging from 4 : 0 to 0 : 4, on the compositional, structural, and optical properties of the synthesized films. The data reveal that DF power with a characteristic bi-Maxwellian electron energy distribution function (EEDF) is effectively useful for enhancing the ionization and dissociation of neutrals, which in turn helps in enabling high rate deposition with better film properties than that of SF operations. Utilizing DF PECVD, a wide-bandgap of ∼3.5 eV with strong photoluminescence features can be achieved only by using a high-density plasma and high nitrogen atom density at room temperature. The present work also proposes the suitability of the DF PECVD approach for industrial applications.

  10. Influence of low-power laser radiation on carbohydrate metabolism and insulin-glycemic balance in experimental animals

    Science.gov (United States)

    Radelli, Jolanta; Cieslar, Grzegorz; Sieron, Aleksander; Grzybek, Henryk

    1996-11-01

    The aim of the study was to determine the dose-dependent influence of low-power laser radiation on carbohydrate metabolism in 70 male Wistar rats. The animals were primarily divided into 2 groups: B - irradiated group and C - control one in which sham - irradiation was made. The rats from B - group were irradiated daily for 10 minutes with semiconductive laser emitting the radiation of infrared wavelength 904 nm. Within both groups the animals were divided into subgroups (B I - B VII and CI - C VII) in which the dissections were made on 1st, 3rd, 6th, 9th, and 14th day of irradiation and on 5th and 8th day after the end of cycle of irradiation respectively. In all subgroups blood samples were collected to determine the glucose and insulin levels. Parts of the liver and pancreas were taken for histological examination in light microscope and in electron microscope. The lowest, statistically significant glycaemia was observed in the subgroup B V. Significant increase of glycaemia and significantly higher insulin concentration was found only in the subgroup B VI. The I/G ratio increased significantly in the subgroup B V. Lower intensity of paS reaction was presented in subgroups B I, B III, B V, B VI and B VII. The increased amount of paS-positive substances was observed in the I and II zone of liver acinus. Electron microscopic studies of hepatocytes showed: numerous glycogen conglomerations in subgroups B I, B II, B VI and B VII, the extension of RER in B II and B III, light vacuoles in B II, Golgi apparatus and biliary canaliculus expansion in B V and structural changes of several mitochondria - slight swelling or discontinuation of their outer membranes, electron microscopic findings in pancreas cells included: lower number of typical granules in beta and alpha cells as well as Golgi apparatus results it was concluded that the influence of low power laser radiation on carbohydrate metabolism in generally insignificant. It is observed only for higher doses of

  11. Regimes of enhanced electromagnetic emission in beam-plasma interactions

    Energy Technology Data Exchange (ETDEWEB)

    Timofeev, I. V.; Annenkov, V. V.; Arzhannikov, A. V. [Budker Institute of Nuclear Physics, SB RAS, 630090 Novosibirsk, Russia and Novosibirsk State University, 630090 Novosibirsk (Russian Federation)

    2015-11-15

    The ways to improve the efficiency of electromagnetic waves generation in laboratory experiments with high-current relativistic electron beams injected into a magnetized plasma are discussed. It is known that such a beam can lose, in a plasma, a significant part of its energy by exciting a high level of turbulence and heating plasma electrons. Beam-excited plasma oscillations may simultaneously participate in nonlinear processes resulting in a fundamental and second harmonic emissions. It is obvious, however, that in the developed plasma turbulence the role of these emissions in the total energy balance is always negligible. In this paper, we investigate whether electromagnetic radiation generated in the beam-plasma system can be sufficiently enhanced by the direct linear conversion of resonant beam-driven modes into electromagnetic ones on preformed regular inhomogeneities of plasma density. Due to the high power of relativistic electron beams, the mechanism discussed may become the basis for the generator of powerful sub-terahertz radiation.

  12. Regimes of enhanced electromagnetic emission in beam-plasma interactions

    Science.gov (United States)

    Timofeev, I. V.; Annenkov, V. V.; Arzhannikov, A. V.

    2015-11-01

    The ways to improve the efficiency of electromagnetic waves generation in laboratory experiments with high-current relativistic electron beams injected into a magnetized plasma are discussed. It is known that such a beam can lose, in a plasma, a significant part of its energy by exciting a high level of turbulence and heating plasma electrons. Beam-excited plasma oscillations may simultaneously participate in nonlinear processes resulting in a fundamental and second harmonic emissions. It is obvious, however, that in the developed plasma turbulence the role of these emissions in the total energy balance is always negligible. In this paper, we investigate whether electromagnetic radiation generated in the beam-plasma system can be sufficiently enhanced by the direct linear conversion of resonant beam-driven modes into electromagnetic ones on preformed regular inhomogeneities of plasma density. Due to the high power of relativistic electron beams, the mechanism discussed may become the basis for the generator of powerful sub-terahertz radiation.

  13. 大功率干扰下LVS负载均衡集群抗扰动算法%LVS Load Balance Cluster Disturbance Algorithm Under High Power Interference

    Institute of Scientific and Technical Information of China (English)

    徐红梅

    2015-01-01

    Linux虚拟服务器(LVS)是一个虚拟的服务器集群系统。在大功率干扰下,LVS集群的抗扰动性能不好,无法有效实现IP负载均衡和任务调度。提出一种基于功率自激的大功率干扰下LVS负载均衡集群抗扰动算法。采用自适应神经模糊系统网络动态干扰监测模型构建网络信息鲁棒性评价模型及Linux嵌入式用户信任感知网络信息信任度评价,计算MAC层两个模糊概念之间的相似度。得到大功率干扰监测数学模型,假设干扰信号表现为一种动态随机噪声信号,实现对大功率干扰下的LVS网络的扰动容错方案设计,对簇节点的接收信号强度(RSSI)信息没有合理开发应用,在簇头生成过程中形成的帧没能实现自适应均衡处理,分析节点之间发射和接收信号的耦合效应,需要实现算法上的改进。仿真结果表明,该算法有效实现IP负载均衡和任务调度,延迟了网络生命周期,提高Linux虚拟服务器的抗扰动性能。%The Linux virtual server (LVS) is a virtual server cluster system. In the high power interference, anti disturbance performance is not good LVS cluster, not the effective implementation of IP load balancing and scheduling tasks. Put for⁃ward a kind of high power self interference power under LVS load balance cluster algorithm based on anti disturbance. The adaptive neural fuzzy dynamic interference monitoring model of system network construction network information robust⁃ness evaluation model and Linux embedded user perceived trust network trust evaluation, the calculation of similarity be⁃tween the MAC layer two fuzzy concept. High power interference monitoring mathematical model, assuming that the interfer⁃ence signal is shown as a kind of dynamic random noise signal, the realization of fault tolerant scheme design for high pow⁃er disturbance under the interference of LVS network, the received signal strength on the cluster

  14. Magnetic fields and uniformity of radio frequency power deposition in low-frequency inductively coupled plasmas with crossed internal oscillating currents

    DEFF Research Database (Denmark)

    Tsakadze, Erekle; Ostrikov, K.N.; Tsakadze, Z.L.

    2004-01-01

    and equidistant copper litz wires in quartz enclosures and generates three magnetic (H-z, H-r, and H-phi) and two electric (E-phi and E-r) field components at the fundamental frequency. The measurements have been performed in rarefied and dense plasmas generated in the electrostatic (E) and electromagnetic (H......) discharge modes using two miniature magnetic probes. It is shown that the radial uniformity and depth of the rf power deposition can be improved as compared with conventional sources of inductively coupled plasmas with external flat spiral ("pancake") antennas. Relatively deeper rf power deposition...... in the plasma source results in more uniform profiles of the optical emission intensity, which indicates on the improvement of the plasma uniformity over large chamber volumes. The results of the numerical modeling of the radial magnetic field profiles are found in a reasonable agreement with the experimental...

  15. MS2 virus inactivation by atmospheric-pressure cold plasma using different gas carriers and power levels.

    Science.gov (United States)

    Wu, Yan; Liang, Yongdong; Wei, Kai; Li, Wei; Yao, Maosheng; Zhang, Jue; Grinshpun, Sergey A

    2015-02-01

    In this study, airborne MS2 bacteriophages were exposed for subsecond time intervals to atmospheric-pressure cold plasma (APCP) produced using different power levels (20, 24, and 28 W) and gas carriers (ambient air, Ar-O2 [2%, vol/vol], and He-O2 [2%, vol/vol]). In addition, waterborne MS2 viruses were directly subjected to the APCP treatment for up to 3 min. MS2 viruses with and without the APCP exposure were examined by scanning electron microscopy (SEM), reverse transcription-PCR (RT-PCR), and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Viral inactivation was shown to exhibit linear relationships with the APCP generation power and exposure time (R(2) > 0.95 for all energy levels tested) up to 95% inactivation (1.3-log reduction) after a subsecond airborne exposure at 28 W; about the same inactivation level was achieved for waterborne viruses with an exposure time of less than 1 min. A larger amount of reactive oxygen species (ROS), such as atomic oxygen, in APCP was detected for a higher generation power with Ar-O2 and He-O2 gas carriers. SEM images, SDS-PAGE, and agarose gel analysis of exposed waterborne viruses showed various levels of damage to both surface proteins and their related RNA genes after the APCP exposure, thus leading to the loss of their viability and infectivity.

  16. Diagnosing Pulsed Power Produced Plasmas with X-ray Thomson Scattering at the Nevada Terawatt Facility

    Science.gov (United States)

    Valenzuela, J. C.; Krauland, C.; Mariscal, D.; Krasheninnikov, I.; Beg, F. N.; Wiewior, P.; Covington, A.; Presura, R.; Ma, T.; Niemann, C.; Mabey, P.; Gregori, G.

    2015-11-01

    We present experimental results on X-ray Thomson scattering (XRTS) at the Nevada Terawatt Facility (NTF) to study current driven plasmas. Using the Leopard laser, ~ 30 J and pulse width of 0.8 ns, we generated He- α emission (4.75 keV) from a thin Ti foil. Initial parameter scans showed that the optimum intensity is ~ 1015W/cm2 with a foil thickness of 2 μm for forward X-ray production. Bandwidth measurements of the source, using a HAPG crystal in the Von Hamos configuration, were found to be ΔE/E ~ 0.01. Giving the scattering angle of our experimental setup of 129 degrees and X-ray probing energy, the non-collective regime was accessed. The ZEBRA load was a 3 mm wide, 500 μm thick, and 10 mm long graphite foil, placed at one of the six current return posts. Estimates of the plasma temperature, density and ionization state were made by fitting the scattering spectra with dynamic structure factor calculations based on the random phase approximation for the treatment of charged particle coupling. The work was partially funded by the Department of Energy grant number DE-NA0001995.

  17. 英国欧陆均势政策的原因探析%A Tentative Analysis of the Reasons for Britain’s Balance of Power Policy towards Europe

    Institute of Scientific and Technical Information of China (English)

    陈翔

    2014-01-01

    Balance of power is not only one kind of foreign policy and national behavior,but also a sort of operation state and existing form of international system.In modern international relations in Europe,as the islands country located outside the European continent,for the sake of its own interests,Britain has adopted the balance of power policy to balance and fight against seekers for hegemony,which has become a long-term policy and consistent action.There are profound and complicated reasons for Britain’s viewing balance of power policy as a“golden law”.In order to better understand Britain’s balance of power policy,this paper tries to analyze the British foreign policy,and explore the reasons for Britain’s balance of power policy.%均势既是国家的一种对外政策和对外行为,又是国际体系的一种运行状态和存在形式。几个世纪以来,英国将均势政策视为一种“金科玉律”或国际政治铁律,有着深刻和复杂的根源。在近现代欧洲国际政治中,面对欧洲大陆一系列统治者屡次掀起的追求霸权的狂潮,作为欧洲大陆外缘海岛国家的英国,基于自身的利益考量,采取均势外交政策,制衡和打击霸权追求者成为英国在此期间经久不息和坚持不懈的政策与行动。

  18. MHD control in burning plasmas MHD control in burning plasmas

    Science.gov (United States)

    Donné, Tony; Liang, Yunfeng

    2012-07-01

    Fusion physics focuses on the complex behaviour of hot plasmas confined by magnetic fields with the ultimate aim to develop a fusion power plant. In the future generation of tokamaks like ITER, the power generated by the fusion reactions substantially exceeds the external input power (Pfusion}/Pin >= 10). When this occurs one speaks of a burning plasma. Twenty per cent of the generated fusion power in a burning plasma is carried by the charged alpha particles, which transfer their energy to the ambient plasma in collisions, a process called thermalization. A new phenomenon in burning plasmas is that the alpha particles, which form a minority but carry a large fraction of the plasma kinetic energy, can collectively drive certain types of magneto-hydrodynamic (MHD) modes, while they can suppress other MHD modes. Both types of MHD modes can have desirable effects on the plasma, as well as be detrimental to the plasma. For example, the so-called sawtooth instability, on the one hand, is largely responsible for the transport of the thermalized alpha particles out of the core, but, on the other hand, may result in the loss of the energetic alphas before they have fully thermalized. A further undesirable effect of the sawtooth instability is that it may trigger other MHD modes such as neoclassical tearing modes (NTMs). These NTMs, in turn, are detrimental to the plasma confinement and in some cases may even lead to disruptive termination of the plasma. At the edge of the plasma, finally, so-called edge localized modes or ELMs occur, which result in extremely high transient heat and particle loads on the plasma-facing components of a reactor. In order to balance the desired and detrimental effects of these modes, active feedback control is required. An additional complication occurs in a burning plasma as the external heating power, which is nowadays generally used for plasma control, is small compared to the heating power of the alpha particles. The scientific challenge

  19. Power

    DEFF Research Database (Denmark)

    Elmholdt, Claus Westergård; Fogsgaard, Morten

    2016-01-01

    In this chapter, we will explore the dynamics of power in processes of creativity, and show its paradoxical nature as both a bridge and a barrier to creativity in organisations. Recent social psychological experimental research (Slighte, de Dreu & Nijstad, 2011) on the relation between power...... and creativity suggests that when managers give people the opportunity to gain power and explicate that there is reason to be more creative, people will show a boost in creative behaviour. Moreover, this process works best in unstable power hierarchies, which implies that power is treated as a negotiable...... and floating source for empowering people in the organisation. We will explore and discuss here the potentials, challenges and pitfalls of power in relation to creativity in the life of organisations today. The aim is to demonstrate that power struggles may be utilised as constructive sources of creativity...

  20. RELATIONSHIP BETWEEN ANTIOXIDANT POWER OF PLASMA WITH LIPID PEROXIDE FORMATION IN PLASMA AND LIVER DAMAGES CAUSED BY OVERDOSE OF VITAMIN K1 IN ADULT AND WEANLING RATS

    Directory of Open Access Journals (Sweden)

    H. Ansari Hadipour

    2003-08-01

    Full Text Available In this study the plasma levels of lipid peroxidation (LP products, protein carbonyls and antioxidant capacity of plasma as judged by ferric reducing ability of plasma (FRAP assay were compared in adult and weanling rats treated with vitamin K1 phylloquinone.