WorldWideScience

Sample records for plasma potential fluctuations

  1. Fluctuation characteristics in detached recombining plasmas

    International Nuclear Information System (INIS)

    Ohno, Noriyasu; Tanaka, Naoyuki; Takamura, Shuichi; Budaev, Viatcheslav

    2002-01-01

    Fluctuation in detached recombining plasmas has been investigated experimentally in the linear divertor plasma simulator, NAGDIS-II. As increasing neutral gas pressure, floating potential fluctuation of the target plate installed at the end of the NADIS-II device becomes larger and bursty negative spikes are observed in the signal associated with a transition from attached to detached a plasmas. The fluctuation property has been analyzed by using Fast Fourier Transform (FFT), probability distribution function (PDF) and wavelet transform. The PDF of the floating potential fluctuation in the attached plasma condition obeys the Gaussian distribution function, on the other hand, the PDF in detached plasma shows a strong deviation from the Gaussian distribution function, which can be characterized by flatness and skewness. Comparison of the fluctuation properties between the floating potential and the optical emission from the detached plasma has been done based on the wavelet transform to show that a strong correlation between them, which could indicate bursty transport of energetic electrons from upstream to downstream region along the magnetic field. (author)

  2. Effects of dust grain charge fluctuation on obliquely propagating dust-acoustic potential in magnetized dusty plasmas

    International Nuclear Information System (INIS)

    Mamun, A.A.; Hassan, M.H.A.

    1999-05-01

    Effects of dust grain charge fluctuation, obliqueness and external magnetic field on finite amplitude dust-acoustic solitary potential in a magnetized dusty plasma, consisting of electrons, ions and charge fluctuating dust grains, have been investigated by the reductive perturbation method. It has been shown that such a magnetized dusty plasma system may support dust-acoustic solitary potential on a very slow time scale involving the motion of dust grains, whose charge is self-consistently determined by local electron and ion currents. The effects of dust grain charge fluctuation, external magnetic field and obliqueness are found to modify the properties of this dust-acoustic solitary potential significantly. The implications of these results to some space and astrophysical dusty plasma systems, especially to planetary ring-systems and cometary tails, are briefly mentioned. (author)

  3. Origin of fluctuations in atmospheric pressure arc plasma devices

    International Nuclear Information System (INIS)

    Ghorui, S.; Das, A.K.

    2004-01-01

    Fluctuations in arc plasma devices are extremely important for any technological application in thermal plasma. The origin of such fluctuations remains unexplained. This paper presents a theory for observed fluctuations in atmospheric pressure arc plasma devices. A qualitative explanation for observed behavior on atmospheric pressure arc plasma fluctuations, reported in the literature, can be obtained from the theory. The potential of the theory is demonstrated through comparison of theoretical predictions with reported experimental observations

  4. Bispectral analysis applied to coherent floating potential fluctuations obtained in the edge plasmas on JFT-2M

    International Nuclear Information System (INIS)

    Nagashima, Y; Itoh, K; Itoh, S-I; Fujisawa, A; Hoshino, K; Takase, Y; Yagi, M; Ejiri, A; Ida, K; Shinohara, K; Uehara, K; Kusama, Y

    2006-01-01

    This paper presents results of bispectral analysis applied to floating potential fluctuations in the edge region of ohmically heated plasmas in the JAERI Fusion Torus-2 Modified (JFT-2M) tokamak. Inside the outermost surface of plasmas, coherent mode fluctuations (CMs) in floating potential were observed around the frequency of the geodesic acoustic mode. The squared bicoherence shows significant nonlinear couplings between the CMs and background fluctuations. The biphase at the frequency of the CMs is localized around π, while that at frequencies of background fluctuations distributes in a wide range. The total bicoherence at the frequency of the CMs is proportional to the squared amplitude of the CMs. These observations are consistent with the theoretical prediction on the drift wave-zonal flow systems. Interpretation of the absolute value of the total bicoherence is also discussed

  5. Asymptotic behavior of correlation functions for electric potential and field fluctuations in a classical one-component plasma

    NARCIS (Netherlands)

    Suttorp, L.G.

    1992-01-01

    The correlations of the electric potential fluctuations in a classical one-component plasma are studied for large distances between the observation points. The two-point correlation function for these fluctuations is known to decay slowly for large distances, even if exponential clustering holds for

  6. Transition in plasma fluctuation between attached and detached plasmas

    International Nuclear Information System (INIS)

    Okazaki, Katsuya; Ohno, Noriyasu; Kajita, Shin; Tanaka, Hirohiko

    2012-01-01

    The static and dynamic behaviors of detached plasmas have received considerable attention because the use of a detached divertor is thought to provide a promising method for reducing the heat flux to plasma-facing components. In this study, fluctuations were measured with an electrostatic probe as the plasma was changed from attached to detached states by increasing the neutral gas pressure. The transition from an attached plasma to a detached plasma was found to change the phase relation between the density and the potential. (author)

  7. Density, potential and temperature fluctuations in Wendelstein 7-AS and ASDEX

    Energy Technology Data Exchange (ETDEWEB)

    Balbin, R; Hidalgo, C [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain); Carlson, A; Endler, M; Giannone, L.; Niedermeyer, H; Rudyj, A; Theimer, G [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

    1993-12-31

    Measurements of density, potential and temperature fluctuations in Wendelstein 7-AS stellarator (W7-AS) and ASDEX tokamak have been carried out. The properties of plasma fluctuations in a tokamak and stellarator can then be compared. A reciprocating Langmuir probe with an array of 19 graphite tips has been used to measure the radial profiles of fluctuations in the ion saturation current and floating potential in W7-AS and ASDEX. In both devices, a reversal in radial electric field and an associated velocity shear layer at the plasma boundary have been observed and in both cases the normalized ion saturation current fluctuation level decreases monotonically moving towards the plasma centre and through the shear layer. At the radial position where the phase velocity in the poloidal direction of the fluctuations goes to zero, the normalized ion saturation current fluctuation level of 0.25 are similar for edge plasma parameters of similar temperatures and densities. A spatial crosscorrelation between fluctuations in floating potential and ion saturation current has been observed in both machines. (author) 6 refs., 4 figs.

  8. RF current drive and plasma fluctuations

    International Nuclear Information System (INIS)

    Peysson, Yves; Decker, Joan; Morini, L; Coda, S

    2011-01-01

    The role played by electron density fluctuations near the plasma edge on rf current drive in tokamaks is assessed quantitatively. For this purpose, a general framework for incorporating density fluctuations in existing modelling tools has been developed. It is valid when rf power absorption takes place far from the fluctuating region of the plasma. The ray-tracing formalism is modified in order to take into account time-dependent perturbations of the density, while the Fokker–Planck solver remains unchanged. The evolution of the electron distribution function in time and space under the competing effects of collisions and quasilinear diffusion by rf waves is determined consistently with the time scale of fluctuations described as a statistical process. Using the ray-tracing code C3PO and the 3D linearized relativistic bounce-averaged Fokker–Planck solver LUKE, the effect of electron density fluctuations on the current driven by the lower hybrid (LH) and the electron cyclotron (EC) waves is estimated quantitatively. A thin fluctuating layer characterized by electron drift wave turbulence at the plasma edge is considered. The effect of fluctuations on the LH wave propagation is equivalent to a random scattering process with a broadening of the poloidal mode spectrum proportional to the level of the perturbation. However, in the multipass regime, the LH current density profile remains sensitive to the ray chaotic behaviour, which is not averaged by fluctuations. The effect of large amplitude fluctuations on the EC driven current is found to be similar to an anomalous radial transport of the fast electrons. The resulting lower current drive efficiency and broader current profile are in better agreement with experimental observations. Finally, applied to the ITER ELMy H-mode regime, the model predicts a significant broadening of the EC driven current density profile with the fluctuation level, which can make the stabilization of neoclassical tearing mode potentially

  9. Edge transport and fluctuation induced turbulence characteristics in early SST-1 plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kakati, B., E-mail: bharat.kakati@ipr.res.in; Pradhan, S., E-mail: pradhan@ipr.res.in; Dhongde, J.; Semwal, P.; Yohan, K.; Banaudha, M.

    2017-02-15

    Highlights: • Anomalous particle transport during the high MHD activity at SST-1. • Electrostatic turbulence is modulated by MHD activity at SST-1 tokamak. • Edge floating potential fluctuations shows poloidal long-range cross correlation. - Abstract: Plasma edge transport characteristics are known to be heavily influenced by the edge fluctuation induced turbulences. These characteristics play a critical role towards the confinement of plasma column in a Tokamak. The edge magnetic fluctuations and its subsequent effect on electrostatic fluctuations have been experimentally investigated for the first time at the edge of the SST-1 plasma column. This paper reports the correlations that exist and is experimentally been observed between the edge densities and floating potential fluctuations with the magnetic fluctuations. The edge density and floating potential fluctuations have been measured with the help of poloidally separated Langmuir probes, whereas the magnetic fluctuations have been measured with poloidally spaced Mirnov coils. Increase in magnetic fluctuations associated with enhanced MHD activities has been found to increase the floating potential and ion saturation current. These observations indicate electrostatic turbulence getting influenced with the MHD activities and reveal the edge anomalous particle transport during SST-1 tokamak discharge. Large-scale coherent structures have been observed in the floating potential fluctuations, indicating long-distance cross correlation in the poloidal directions. From bispectral analysis, a strong nonlinear coupling among the floating potential fluctuations is observed in the low-frequency range about 0–15 kHz.

  10. Thermal fluctuations and critical behavior in a magnetized, anisotropic plasma

    International Nuclear Information System (INIS)

    Hazeltine, R. D.; Mahajan, S. M.

    2013-01-01

    Thermal fluctuations in a magnetized, anisotropic plasma are studied by applying standard methods, based on the Einstein rule, to the known thermodynamic potential of the system. It is found in particular that magnetic fluctuations become critical when the anisotropy p ∥ −p ⊥ changes sign. By examining the critical region, additional insight on the equations of state for near-critical anisotropic plasma is obtained

  11. Effects of dust-charge fluctuations on the potential of an array of projectiles in a partially ionized dusty plasma

    International Nuclear Information System (INIS)

    Ali, S.; Nasim, M.H.; Murtaza, G.

    2003-01-01

    The expressions for the Debye and the wake potential are derived by incorporating dust-charge fluctuations of a single projectile, as well as of an array of dust grain projectiles, propagating through a partially ionized dusty plasma with a constant velocity. Numerically, the effects of the dust-charge fluctuations and the dust-neutral collisions on the electrostatic potential for a single, three, six and ten projectiles are examined. The dust-charge relaxation rate modifies the shape of the Debye as well as the wake potential. For smaller values of the relaxation rates a potential well is formed instead of Debye potential

  12. Plasma diffusion due to magnetic field fluctuations

    International Nuclear Information System (INIS)

    Okuda, H.; Lee, W.W.; Lin, A.T.

    1979-01-01

    Plasma diffusion due to magnetic field fluctuations has been studied in two dimensions for a plasma near thermal equilibrium and when the fluctuations are suprathermal. It is found that near thermal equilibrium electron diffusion varies as B -2 when the collisionless skin depth is greater than the thermal electron gyroradius and is generally smaller than the diffusion due to collisions or electrostatic fluctuations for a low-β plasma. When the suprathermal magnetic fluctuation exists because of macroscopic plasma currents, electron diffusion is enhanced due to the coalescence of current filaments and magnetic islands. Magnetic field energy is found to condense to the longest wavelength available in the system and stays there longer than the electron diffusion time scale

  13. Theory of electromagnetic fluctuations for magnetized multi-species plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, Roberto E., E-mail: roberto.navarro@ug.uchile.cl; Muñoz, Víctor [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Araneda, Jaime [Departamento de Física, Universidad de Concepción, Concepción 4070386 (Chile); Moya, Pablo S. [NASA Goddard Space Flight Center, Heliophysics Science Division, Geospace Physics Laboratory, Mail Code 673, Greenbelt, Maryland 20771 (United States); Department of Physics, Catholic University of America, Washington, D. C. 20064 (United States); Viñas, Adolfo F. [NASA Goddard Space Flight Center, Heliophysics Science Division, Geospace Physics Laboratory, Mail Code 673, Greenbelt, Maryland 20771 (United States); Valdivia, Juan A. [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Centro de Estudios Interdisciplinarios Básicos y Aplicados en Complejidad, CEIBA complejidad, Bogotá (Colombia)

    2014-09-15

    Analysis of electromagnetic fluctuations in plasma provides relevant information about the plasma state and its macroscopic properties. In particular, the solar wind persistently sustains a small but detectable level of magnetic fluctuation power even near thermal equilibrium. These fluctuations may be related to spontaneous electromagnetic fluctuations arising from the discreteness of charged particles. Here, we derive general expressions for the plasma fluctuations in a multi-species plasma following arbitrary distribution functions. This formalism, which generalizes and includes previous works on the subject, is then applied to the generation of electromagnetic fluctuations propagating along a background magnetic field in a plasma of two proton populations described by drifting bi-Maxwellians.

  14. Probability distribution functions for intermittent scrape-off layer plasma fluctuations

    Science.gov (United States)

    Theodorsen, A.; Garcia, O. E.

    2018-03-01

    A stochastic model for intermittent fluctuations in the scrape-off layer of magnetically confined plasmas has been constructed based on a super-position of uncorrelated pulses arriving according to a Poisson process. In the most common applications of the model, the pulse amplitudes are assumed exponentially distributed, supported by conditional averaging of large-amplitude fluctuations in experimental measurement data. This basic assumption has two potential limitations. First, statistical analysis of measurement data using conditional averaging only reveals the tail of the amplitude distribution to be exponentially distributed. Second, exponentially distributed amplitudes leads to a positive definite signal which cannot capture fluctuations in for example electric potential and radial velocity. Assuming pulse amplitudes which are not positive definite often make finding a closed form for the probability density function (PDF) difficult, even if the characteristic function remains relatively simple. Thus estimating model parameters requires an approach based on the characteristic function, not the PDF. In this contribution, the effect of changing the amplitude distribution on the moments, PDF and characteristic function of the process is investigated and a parameter estimation method using the empirical characteristic function is presented and tested on synthetically generated data. This proves valuable for describing intermittent fluctuations of all plasma parameters in the boundary region of magnetized plasmas.

  15. Density, potential and temperature fluctuations in Wendelstein 7-AS and ASDEX

    International Nuclear Information System (INIS)

    Balbin, R.; Hidalgo, C.; Carlson, A.; Endler, M.; Giannone, L.; Herre, G.; Niedermeyer, H.; Rudyj, A.; Theimer, G.

    1992-01-01

    Measurements of ion saturation current, floating potential and temperature fluctuations in Wendelstein 7-AS stellarator (W7-AS) and ASDEX tokamak have been carried out. A reciprocating Langmuir probe with an array of 19 graphite tips has been used to obtain the radial profiles of these fluctuations in W7-AS and ASDEX. In both devices, a reversal of the radial electric field and an associated velocity shear layer at the plasma boundary have been observed. At the radial position where the phase velocity the poloidal direction of the fluctuations goes to zero, the normalised ion saturation current fluctuation level of 0.2 is the same for edge plasma parameters of similar temperatures and densities. A spatial crosscorrelation between floating potential and ion saturation current fluctuations has been observed in both machines and this feature can be explained in terms of turbulent eddies. A comparison of fluctuations in a tokamak and stellarator therefore shows many features in common. (orig.)

  16. Collective fluctuations in magnetized plasma: Transition probability approach

    International Nuclear Information System (INIS)

    Sosenko, P.P.

    1997-01-01

    Statistical plasma electrodynamics is elaborated with special emphasis on the transition probability approach and quasi-particles, and on modern applications to magnetized plasmas. Fluctuation spectra in the magnetized plasma are calculated in the range of low frequencies (with respect to the cyclotron one), and the conditions for the transition from incoherent to collective fluctuations are established. The role of finite-Larmor-radius effects and particle polarization drift in such a transition is explained. The ion collective features in fluctuation spectra are studied. 63 refs., 30 figs

  17. Plasma fluctuation measurements in tokamaks using beam-plasma interactions

    International Nuclear Information System (INIS)

    Fonck, R.J.; Duperrex, P.A.; Paul, S.F.

    1990-01-01

    High-frequency observations of light emitted from the interactions between plasma ions and injected neutral beam atoms allow the measurement of moderate-wavelength fluctuations in plasma and impurity ion densities. To detect turbulence in the local plasma ion density, the collisionally excited fluorescence from a neutral beam is measured either separately at several spatial points or with a multichannel imaging detector. Similarly, the role of impurity ion density fluctuations is measured using charge exchange recombination excited transitions emitted by the ion species of interest. This technique can access the relatively unexplored region of long-wavelength plasma turbulence with k perpendicular ρ i much-lt 1, and hence complements measurements from scattering experiments. Optimization of neutral beam geometry and optical sightlines can result in very good localization and resolution (Δx≤1 cm) in the hot plasma core region. The detectable fluctuation level is determined by photon statistics, atomic excitation processes, and beam stability, but can be as low as 0.2% in a 100 kHz bandwidth over the 0--1 MHz frequency range. The choices of beam species (e.g., H 0 , He 0 , etc.), observed transition (e.g., H α , L α , He I singlet or triplet transitions, C VI Δn=1, etc.) are dictated by experiment-specific factors such as optical access, flexibility of beam operation, plasma conditions, and detailed experimental goals. Initial tests on the PBX-M tokamak using the H α emissions from a heating neutral beam show low-frequency turbulence in the edge plasma region

  18. Influence of Plasma Pressure Fluctuation on RF Wave Propagation

    International Nuclear Information System (INIS)

    Liu Zhiwei; Bao Weimin; Li Xiaoping; Liu Donglin; Zhou Hui

    2016-01-01

    Pressure fluctuations in the plasma sheath from spacecraft reentry affect radio-frequency (RF) wave propagation. The influence of these fluctuations on wave propagation and wave properties is studied using methods derived by synthesizing the compressible turbulent flow theory, plasma theory, and electromagnetic wave theory. We study these influences on wave propagation at GPS and Ka frequencies during typical reentry by adopting stratified modeling. We analyzed the variations in reflection and transmission properties induced by pressure fluctuations. Our results show that, at the GPS frequency, if the waves are not totally reflected then the pressure fluctuations can remarkably affect reflection, transmission, and absorption properties. In extreme situations, the fluctuations can even cause blackout. At the Ka frequency, the influences are obvious when the waves are not totally transmitted. The influences are more pronounced at the GPS frequency than at the Ka frequency. This suggests that the latter can mitigate blackout by reducing both the reflection and the absorption of waves, as well as the influences of plasma fluctuations on wave propagation. Given that communication links with the reentry vehicles are susceptible to plasma pressure fluctuations, the influences on link budgets should be taken into consideration. (paper)

  19. Time and space-correlated plasma potential measurements in the near field of a coaxial Hall plasma discharge

    International Nuclear Information System (INIS)

    Smith, A. W.; Cappelli, M. A.

    2009-01-01

    Space- and time-correlated measurements of floating and plasma potential are made in the near field, external flow cathode region of a coaxial Hall plasma discharge using an emissive probe synchronized to quasicoherent fluctuations in discharge current. The luminous axial feature frequently observed in the near field of operating plasma accelerators is found to be concomitant with a spike in the plasma potential (and electron temperature). The structure of the plasma potential allows for multiple avenues for back-streaming ions to accelerate toward the discharge front pole and may pull some classes of ions toward the central axis. The fluctuations in plasma properties exhibit a complex structure at frequencies on the order of the so-called 'breathing mode' ionization instability often seen in these types of discharges. Most notably, the plasma potential appears to fluctuate in a helical fashion, resembling tilted drift waves rotating about the central axis. A simple analysis of these waves draws attention to the possible role that they may play in driving anomalous cross-field electron transport in the near field region.

  20. Experimental evidence of significant temperature fluctuations in the plasma edge region of the TJ-I Tokamak

    International Nuclear Information System (INIS)

    Hidalgo, C.; Balbin, R.; Pedrosa, M.A.; Garcia-Cortes, I.; Ochando, M.A.

    1993-01-01

    Density and temperature fluctuations have been measured in the plasma bulk side of the velocity shear location of the TJ-I tokamak using a foast swept Langmuir probe technique. Evidence of sustantial temperature fluctuations which are in phase close to opposition with the corresponding density fluctuations has been found. This result suggests the possible role of radiation in determining edge fluctuation levels and call into question the determination of the density and potential fluctuations from the Langmuir current-probe and floating potential fluctuations. (Author)

  1. Experimental evidence of significant temperature fluctuations in the plasma EDGE region of the TJ-I Tokamak

    International Nuclear Information System (INIS)

    Hidalgo, C.; Balbin, R.; Pedrosa, M. A.; Garcia-Cortes, I.; Ochando, M. A.

    1993-01-01

    Density and temperature fluctuations have been measured in the plasma bulk side of the velocity shear location of the TJ-I tokamak using a feast swept Langmuir probe technique. Evidence of substantial temperature fluctuations which are in phase close to opposition with the corresponding density fluctuations has been found. This result suggests the possible role of radiation in determining edge fluctuation levels and call into question the determination of the density and potential fluctuations from the Langmuir current-probe and floating potential fluctuations. (Author) 16 refs

  2. Experimental evidence of significant temperature fluctuations in the plasma EDGE region of the TJ-I Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Hidalgo, C; Balbin, R; Pedrosa, M A; Garcia-Cortes, I; Ochando, M A

    1993-07-01

    Density and temperature fluctuations have been measured in the plasma bulk side of the velocity shear location of the TJ-I tokamak using a feast swept Langmuir probe technique. Evidence of substantial temperature fluctuations which are in phase close to opposition with the corresponding density fluctuations has been found. This result suggests the possible role of radiation in determining edge fluctuation levels and call into question the determination of the density and potential fluctuations from the Langmuir current-probe and floating potential fluctuations. (Author) 16 refs.

  3. Charge density fluctuation of low frequency in a dusty plasma

    Institute of Scientific and Technical Information of China (English)

    李芳; 吕保维; O.Havnes

    1997-01-01

    The charge density fluctuation of low frequency in a dusty plasma, which is derived from the longitudinal dielectric permittivity of the dusty plasma, has been studied by kinetic theory. The results show that the P value, which describes the relative charge density on the dust in the plasma, and the charging frequency of a dust particle Ωc, which describes the ratio of charge changing of the dust particles, determine the character of the charge density fluctuation of low frequency. For a dusty plasma of P<<1, when the charging frequency Ωc is much smaller than the dusty plasma frequency wd, there is a strong charge density fluctuation which is of character of dust acoustic eigen wave. For a dusty plasma of P>>1, when the frequency Ωc, is much larger than wd there are weaker fluctuations with a wide spectrum. The results have been applied to the ionosphere and the range of radius and density of dust particles is found, where a strong charge density fluctuation of low frequency should exist.

  4. Plasma fluctuation measurements in tokamaks using beam-plasma interactions (abstract)

    International Nuclear Information System (INIS)

    Fonck, R.J.; Duperrex, P.A.; Paul, S.F.

    1990-01-01

    High-frequency observations of light emitted from the interactions between plasma ions and injected neutral beam atoms allow the measurement of moderate-wavelength fluctuations in plasma and impurity ion densities. To detect turbulence in the local plasma ion density, the collisionally excited fluorescence from a neutral beam is measured either separately at several spatial points or with a multichannel imaging detector. Similarly, the role of impurity ion density fluctuations is measured using charge exchange recombination excited transitions emitted by the ion species of interest. This technique can access the relatively unexplored region of long-wavelength plasma turbulence with k perpendicular ρ i much-lt 1, and hence complements measurements from scattering experiments. Optimization of neutral beam geometry and optical sightlines can result in very good localization and resolution (Δx≤1 cm) in the hot plasma core region. The detectable fluctuation level is determined by photon statistics, atomic excitation processes, and beam stability, but can be as low as 0.2% in a 100 kHz bandwidth over the 0--1 MHz frequency range. The choices of beam species (e.g., H 0 , He 0 , etc.), observed transition (e.g., H α , L α , He I singlet or triplet transitions, C VI Δn=1, etc.) are dictated by experiment-specific factors such as optical access, flexibility of beam operation, plasma conditions, and detailed experimental goals. Initial tests on the PBX-M tokamak using the H α emissions from a heating neutral beam show low-frequency turbulence in the edge plasma region

  5. Spontaneous magnetic fluctuations and collisionless regulation of the Earth's plasma sheet

    Science.gov (United States)

    Moya, P. S.; Espinoza, C.; Stepanova, M. V.; Antonova, E. E.; Valdivia, J. A.

    2017-12-01

    Even in the absence of instabilities, plasmas often exhibit inherent electromagnetic fluctuations which are present due to the thermal motion of charged particles, sometimes called thermal (quasi-thermal) noise. One of the fundamental and challenging problems of laboratory, space, and astrophysical plasma physics is the understanding of the relaxation processes of nearly collisionless plasmas, and the resultant state of electromagnetic plasma turbulence. The study of thermal fluctuations can be elegantly addressed by using the Fluctuation-Dissipation Theorem that describes the average amplitude of the fluctuations through correlations of the linear response of the media with the perturbations of the equilibrium state (the dissipation). Recently, it has been shown that solar wind plasma beta and temperature anisotropy observations are bounded by kinetic instabilities such as the ion cyclotron, mirror, and firehose instabilities. The magnetic fluctuations observed within the bounded area are consistent with the predictions of the Fluctuation-Dissipation theorem even far below the kinetic instability thresholds, with an enhancement of the fluctuation level near the thresholds. Here, for the very first time, using in-situ magnetic field and plasma data from the THEMIS spacecraft, we show that such regulation also occurs in the Earth's plasma sheet at the ion scales and that, regardless of the clear differences between the solar wind and the magnetosphere environments, spontaneous fluctuation and their collisionless regulation seem to be fundamental features of space and astrophysical plasmas, suggesting the universality of the processes.

  6. Electrostatic fluctuations measured in low temperature helical plasmas with low collisionality

    International Nuclear Information System (INIS)

    Takeuchi, M.; Ikeda, R.; Ito, T.; Toi, K.; Suzuki, C.; Matsunaga, G.

    2004-01-01

    Electrostatic fluctuations have been measured by Langmuir probes from edge to core plasma region in low temperature helical plasmas which are produced by 2.45 GHz microwaves at very low field less than 0.1 T. The principal dimensionless parameters of the plasmas, that is, the normalized electron-ion collision frequency ν ei , and averaged plasma β φ and others are in the same range of them in high temperature plasmas, except the normalized gyro radius ρ s . The data on fluctuation characteristics from the dimensionally similar low temperature plasmas may give an important insight into the understanding of turbulent transport in high temperature plasmas. Dependences of fluctuation amplitudes on the radial electric field shear, ρ s and ν ei are investigated. Electrostatic fluctuations propagating in electron-diamagnetic drift direction have been observed in the plasma edge region and in ion-diamagnetic drift direction in the plasma core region. (authors)

  7. Plasma parameters, fluctuations and kinetics in a magnetic field line reconnection experiment

    International Nuclear Information System (INIS)

    Wild, N.C. Jr.

    1983-01-01

    The processes associated with reconnecting magnetic field lines have been studied in a large experimental laboratory plasma. Detailed time- and space-resolved probe measurements of the plasma density, temperature, potential and electric and magnetic fields are discussed. Plasma currents are seen to modify the vacuum magnetic field topology. A flat neutral sheet develops along the separatrix where magnetic flux is transferred from regions of private to common flux. Forced tearing and magnetic island formation are also observed. Rapid electron heating, density and temperature nonuniformities and plasma potential gradients are all observed. The pressure is found to peak at the two edges of the neutral sheet. The dissipation E.J is determined and analyzed in terms of particle heating and fluid acceleration. A consistent, detailed picture of the energy flow via Poynting's theorem is also described. Significant temporal fluctuations in the magnetic fields and electron velocity distribution are measured and seen to give rise to anomalously high values for the plasma resistivity, the ion viscosity and the cross-field thermal conductivity. Electron temperature fluctuations, double layers associated with partial current disruptions, and whistler wave magnetic turbulence have all been identified and studied during the course of the reconnection event

  8. Measurements of plasma density fluctuations and electric wave fields using spherical electrostatic probes

    International Nuclear Information System (INIS)

    Eriksson, A.I.; Bostroem, R.

    1995-04-01

    Spherical electrostatic probes are in wide use for the measurements of electric fields and plasma density. This report concentrates on the measurements of fluctuations of these quantities rather than background values. Potential problems with the technique include the influence of density fluctuations on electric field measurements and vice versa, effects of varying satellite potential, and non-linear rectification in the probe and satellite sheaths. To study the actual importance of these and other possible effects, we simulate the response of the probe-satellite system to various wave phenomena in the plasma by applying approximate analytical as well as numerical methods. We use a set of non-linear probe equations, based on probe characteristics experimentally obtained in space, and therefore essentially independent of any specific probe theory. This approach is very useful since the probe theory for magnetized plasmas is incomplete. 47 refs

  9. Correlation anlaysis of plasma fluctuation signals

    International Nuclear Information System (INIS)

    Wan Baonian; Wang Zhaoshen

    1987-01-01

    The application of correlation analysis to identify waves and instabilities in plasma is presented. First, the principle of correlation analysis and its application to diagnose plasma fluctuation signals are given. Then, the data acqusition system, application program and calibration method are described. Finally, experimental results from a mirror device are given

  10. Simultaneous measurement of 3 fluctuating plasma parameters

    International Nuclear Information System (INIS)

    Carlson, A.; Giannone, L.

    1991-01-01

    Langmuir triple probes can provide simultaneous measurements of n e , T e and V pl with good temporal and spatial resolution, and therefore are especially suited to detailed investigations of plasma turbulence in the scrape-off-layer. Unfortunately, the finite tip separation coupled with the fluctuating gradients prevents a simple interpretation of the results. We have developed a method using, essentially, two or more triple probes, which allows a good estimate of the three plasma parameters and their spatial derivatives at each point of time (assuming tip separation is much less than correlation length and dimensionless fluctuation levels are much less than unity). In particular, we can unambiguously measure the temperature fluctuations and the turbulent particle and heat flux. (author) 1 fig

  11. Simultaneous measurement of 3 fluctuating plasma parameters

    International Nuclear Information System (INIS)

    Carlson, A.; Giannone, L.

    1991-01-01

    Langmuir triple probes can provide simultaneous measurements of n e , T e , and V pl with good temporal and spatial resolution, and therefore are especially suited to detailed investigations of plasma turbulence in the scrape-off-layer. Unfortunately, the finite tip separation coupled with the fluctuating gradients prevents a simple interpretation of the results. We have developed a method using, essentially, two or more triple probes, which allows a good estimate of the three plasma parameters and their spatial derivatives at each point of time (assuming tip separation is much less than correlation length and dimensionless fluctuation levels are much less than unity). In particular, we can unambiguously measure the temperature fluctuations and the turbulent particle and heat flux. (orig.)

  12. Simultaneous measurement of 3 fluctuating plasma parameters

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, A; Giannone, L. (Max-Planck-Institut fuer Plasmaphysik, Garching (Germany))

    1991-01-01

    Langmuir triple probes can provide simultaneous measurements of n[sub e], T[sub e] and V[sub pl] with good temporal and spatial resolution, and therefore are especially suited to detailed investigations of plasma turbulence in the scrape-off-layer. Unfortunately, the finite tip separation coupled with the fluctuating gradients prevents a simple interpretation of the results. We have developed a method using, essentially, two or more triple probes, which allows a good estimate of the three plasma parameters and their spatial derivatives at each point of time (assuming tip separation is much less than correlation length and dimensionless fluctuation levels are much less than unity). In particular, we can unambiguously measure the temperature fluctuations and the turbulent particle and heat flux. (author) 1 fig.

  13. Fluctuations in macroscopically agitated plasma:quasiparticles and effective temperature

    International Nuclear Information System (INIS)

    Sosenko, P.P.; Gresillon, D.

    1994-01-01

    Fluctuations in the plasma, in which macroscopic fluid-like motion is agitated due to large-scale and low-frequency electro-magnetic fields, are studied. Such fields can be produced by external factors or internally, for example due to turbulence. Fluctuation spectral distributions are calculated with regard to the renormalization of the transition probability for a test-particle and of the test-particle shielding. If the correlation length for the random fluid-like motion is large as compared to the fluctuation scale lengths, then the fluctuation spectral distributions can be explained in terms of quasiparticles originating from macroscopic plasma agitation and of an effective temperature

  14. Temperature, density and potential fluctuations by a swept Langmuir probe in Wendelstein 7-AS

    Energy Technology Data Exchange (ETDEWEB)

    Giannone, L.; Niedermeyer, H; Endler, M; Theimer, G; Rudyj, A; Verplancke, Ph [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Balbin, R; Hidalgo, C [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain)

    1994-12-31

    Numerous experiments using a Langmuir probe to investigate the magnitude of temperature fluctuations and their contribution to heat transport in the edge region of tokamak plasmas have been carried out. Sweeping the voltage applied to a tip fast enough to ensure that the ion saturation current, floating potential and electron temperature may be assumed to be constant during the sweep is experimentally more difficult than alternative schemes but this disadvantage is compensated by the ability to measure all three of these quantities at one spatial location. Sweep frequencies up to 600 kHz have been employed to obtain the current-voltage characteristic. A radial scan in the vicinity of the velocity shear layer on W7-AS stellarator was performed. Inside and outside the shear layer the normalised magnitude of the temperature fluctuations was found to be approximately 30% larger than the magnitude of the electron density fluctuations, approaching a value of 0.12 and 0.09 respectively at a radial position 1 cm inside the shear layer. An increase in the coherency of the temperature, floating potential and density fluctuations between tips with a poloidal separation of 2 mm was also measured as the shear layer was crossed. Heat conduction produced by correlated temperature and poloidal electric field fluctuations is therefore possible. An increasing coherence of temperature and floating potential fluctuations leads to an increase in the coherence of temperature and plasma potential fluctuations as the shear layer was crossed. (author) 7 refs., 3 figs.

  15. Changes in atomic populations due to edge plasma fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Hammami, R., E-mail: ramzi.hammami@univ-provence.fr [PIIM, Aix-Marseille Université and CNRS, centre Saint Jérôme, Marseille 13397 (France); Capes, H. [PIIM, Aix-Marseille Université and CNRS, centre Saint Jérôme, Marseille 13397 (France); Catoire, F. [CELIA, Université de Bordeaux 1 and CNRS, Domaine du Haut Carré, Talence 33405 (France); Godbert-Mouret, L.; Koubiti, M.; Marandet, Y.; Mekkaoui, A.; Rosato, J.; Stamm, R. [PIIM, Aix-Marseille Université and CNRS, centre Saint Jérôme, Marseille 13397 (France)

    2013-07-15

    The population balance of atoms or ions in an edge plasma is calculated in the presence of fluctuating density or temperature. We have used a stochastic model taking advantage of the knowledge of the plasma parameter statistical properties, and assuming a stepwise constant stochastic process for the fluctuating variable. The model is applied to simplified atomic systems such as three level hydrogen atoms or the ionization balance of carbon affected by electronic temperature or density fluctuations obeying a gamma PDF, and an exponential waiting time distribution.

  16. Determination of plasma velocity from light fluctuations in a cutting torch

    International Nuclear Information System (INIS)

    Prevosto, L.; Mancinelli, B.; Kelly, H.

    2009-01-01

    Measurements of plasma velocities in a 30 A high energy density cutting torch are reported. The velocity diagnostic is based on the analysis of the light fluctuations emitted by the arc which are assumed to propagate with the flow velocity. These light fluctuations originate from plasma temperature and plasma density fluctuations mainly due to hydrodynamic instabilities. Fast photodiodes are employed as the light sensors. The arc core velocity was obtained from spectrally filtered light fluctuations measurements using a band-pass filter to detect light emission fluctuations emitted only from the arc axis. Maximum plasma jet velocities of 5000 m s -1 close to the nozzle exit and about 2000 m s -1 close to the anode were found. The obtained velocity values are in good agreement with those values predicted by a numerical code for a similar torch to that employed in this work.

  17. Fast Plasma Potential Measurements Using an Emissive Probe

    Science.gov (United States)

    Ready, Amanda; Clark, Michael; Endrizzi, Douglass; Forest, Cary; Peterson, Ethan

    2017-10-01

    A heated emissive probe was developed for making direct plasma potential (Vp) measurements in rapidly fluctuating plasmas. Previous experiments on the Big Red Ball (BRB) were hindered by sudden potential drops, making Langmuir measurements of the plasma potential difficult. DC heating of a tungsten filament to emission allowed for fast (4 MHz) floating potential measurements that closely matched Vp. Two BRB experiments currently use the emissive probe. The investigation of unmagnetized, collisionless shocks used plasma potential measurements to study the sub-structure of strong plasma shocks. A separate investigation of emulated magnetospheres in laboratory plasmas used the plasma potential to map the equilibria and instabilities in the electric field of such structures. Results showing electric field measurements and comparison with cold Langmuir measurements will be presented. Future plans for probe modifications and applications to other experiments on the BRB will also be shown.

  18. Equilibrium fluctuation energy of gyrokinetic plasma

    International Nuclear Information System (INIS)

    Krommes, J.A.; Lee, W.W.; Oberman, C.

    1985-11-01

    The thermal equilibrium electric field fluctuation energy of the gyrokinetic model of magnetized plasma is computed, and found to be smaller than the well-known result (k)/8π = 1/2T/[1 + (klambda/sub D/) 2 ] valid for arbitrarily magnetized plasmas. It is shown that, in a certain sense, the equilibrium electric field energy is minimum in the gyrokinetic regime. 13 refs., 2 figs

  19. Localization of waves in a fluctuating plasma

    International Nuclear Information System (INIS)

    Escande, D.F.; Souillard, B.

    1984-01-01

    We present the first application of localization theory to plasma physics: Density fluctuations induce exponential localization of longitudinal and transverse electron plasma waves, i.e., the eigenmodes have an amplitude decreasing exponentially for large distances without any dissipative mechanism in the plasma. This introduces a new mechanism for converting a convective instability into an absolute one. Localization should be observable in clear-cut experiments

  20. Investigation of radial propagation of electrostatic fluctuations in the IR-T1 tokamak plasma edge

    Energy Technology Data Exchange (ETDEWEB)

    Shariatzadeh, R; Ghoranneviss, M; Salem, M K [Plasma Physics Research Center, Science and Research Branch, Islamic Azad University (IAU), PO Box 14665-678, Tehran (Iran, Islamic Republic of); Emami, M, E-mail: rezashariatzadeh@gmail.com [Laser and Optics Research School, NSTRI, AEOI, PO Box 14155-1339, Tehran (Iran, Islamic Republic of)

    2011-01-15

    The radial propagation of electrostatic fluctuation is considered extremely important for understanding cross-field anomalous transport. In this paper, two arrays of Langmuir probes are used to analyze electrostatic fluctuations in the edge of IR-T1 tokamak plasma in both the radial and the poloidal directions. The propagation characteristics of the floating potential fluctuations are analyzed by the two-point correlation technique. The wavenumber spectrum shows that there is a net radially outward propagation of turbulent fluctuations in the edge and scrape-off layer (SOL) regions. Hence, edge turbulence presumably originates from core fluctuations.

  1. Investigation of radial propagation of electrostatic fluctuations in the IR-T1 tokamak plasma edge

    International Nuclear Information System (INIS)

    Shariatzadeh, R; Ghoranneviss, M; Salem, M K; Emami, M

    2011-01-01

    The radial propagation of electrostatic fluctuation is considered extremely important for understanding cross-field anomalous transport. In this paper, two arrays of Langmuir probes are used to analyze electrostatic fluctuations in the edge of IR-T1 tokamak plasma in both the radial and the poloidal directions. The propagation characteristics of the floating potential fluctuations are analyzed by the two-point correlation technique. The wavenumber spectrum shows that there is a net radially outward propagation of turbulent fluctuations in the edge and scrape-off layer (SOL) regions. Hence, edge turbulence presumably originates from core fluctuations.

  2. Electrostatic fluctuation in Low-{beta} plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Krane, B

    1997-11-01

    The thesis gives an overview, which by no means is complete, to two dimensional plasma flows. The plasma is taken to be strongly magnetized such that magnetic fields generated by internal currents are small compared to the background magnetic field. This requires that the magnetic pressure exerted by the ambient magnetic field is large compared to the pressure due to thermal fluctuations, i.e. low-{beta} plasma. The author also assume low frequency electrostatic fluctuations with {omega}<<{omega}{sub c}i where {omega}{sub c}i is the ion gyro frequency. A brief introduction to nonlinear phenomena in two dimensional plasma flows has been presented. Particular attention was given to simple models describing flute and drift modes. Although the derivations of the model equations are based on different assumptions regarding the plasma conditions, the resulting equations exhibit similar behavior in some respects. For instance, both the simple guiding center model and the Hasegawa-Mima model have stable dipolar structures. The inverse cascade was also found in both models. However, it is evident that there are significant differences, first of all the Hasegawa-Mima model assumes a background density gradient which makes it an inhomogeneous model. Secondly, in this model the electrons respond instantaneously to variations in the ion density by moving along the magnetic field, thereby introducing Debye shielding.

  3. Electrostatic fluctuation in Low-β plasmas

    International Nuclear Information System (INIS)

    Krane, B

    1997-11-01

    The thesis gives an overview, which by no means is complete, to two dimensional plasma flows. The plasma is taken to be strongly magnetized such that magnetic fields generated by internal currents are small compared to the background magnetic field. This requires that the magnetic pressure exerted by the ambient magnetic field is large compared to the pressure due to thermal fluctuations, i.e. low-β plasma. The author also assume low frequency electrostatic fluctuations with ω c i where ω c i is the ion gyro frequency. A brief introduction to nonlinear phenomena in two dimensional plasma flows has been presented. Particular attention was given to simple models describing flute and drift modes. Although the derivations of the model equations are based on different assumptions regarding the plasma conditions, the resulting equations exhibit similar behavior in some respects. For instance, both the simple guiding center model and the Hasegawa-Mima model have stable dipolar structures. The inverse cascade was also found in both models. However, it is evident that there are significant differences, first of all the Hasegawa-Mima model assumes a background density gradient which makes it an inhomogeneous model. Secondly, in this model the electrons respond instantaneously to variations in the ion density by moving along the magnetic field, thereby introducing Debye shielding

  4. Structure of density fluctuations in the edge plasma of ASDEX

    International Nuclear Information System (INIS)

    Rudyj, A.; Carlson, A.; Endler, M.; Giannone, L.; Niedermeyer, H.; Theimer, G.

    1990-01-01

    It is now generally believed that the anomalous particle and energy transport in tokamaks is caused by turbulent fluctuations. The physical nature of these fluctuations (mode type, the driving mechanism) have still to be identified experimentally before a self consistent transport theory can be developed. In contrast to the confinement region the plasma edge can be well diagnosed. H α -light, which is emitted at the edge, reacts to density and to some extend to temperature fluctuations. It delivers information about radially integrated spectra and correlations. Langmuir probes measure density and potential fluctuations with good spatial resolution. The edge transport governs the physics in the scrape-off layer and in the divertor which is extremely important for a reactor and therefore deserves a major experimental effort. In this paper we report on an attempt to gain detailed information about the spatial and temporal structure of the edge turbulence hoping to reduce the degrees of freedom for theoretical models to a manageable number. (author) 3 refs., 3 figs

  5. Fluctuations and transport in an inhomogeneous plasma

    International Nuclear Information System (INIS)

    Nevins, W.M.; Chen, L.

    1979-11-01

    A formalism is developed for calculating the equilibrium fluctuation level in an inhomogeneous plasma. This formalism is applied to the collisionless drift wave in a sheared magnetic field. The fluctuation level is found to be anomalously large due to both the presence of weakly damped normal modes and convective amplification. As the magnetic shear is reduced, the steady-state fluctuation spectrum is found to increase both in coherence and in amplitude. The transport associated with this mode is evaluated. The diffusion coefficient is found to scale as D is proportional to B 2 /nT/sup 1/2/

  6. Fluctuations in collisional plasma in the presence of an external electric field

    International Nuclear Information System (INIS)

    Momot, A. I.; Zagorodny, A. G.

    2011-01-01

    The theory of large-scale fluctuations in a plasma is used to calculate the correlations functions of electron and ion density with regard to particle collisions described within the Bhatnagar-Gross-Krook (BGK) model and the presence of a constant external electric field. The changes of plasma particle distribution functions due to an external electric field and their influence on the plasma dielectric response are taken into account. The dispersion relations for longitudinal waves in such a plasma are studied in details. It is shown that external electric field can lead to the ion-acoustic wave instability and anomalous growth of the fluctuation level. Detailed numerical studies of the general relations for electron number density fluctuations are performed and the effect of external electric field on the fluctuation spectra is studied.

  7. Edge plasma fluctuations in STOR-M

    International Nuclear Information System (INIS)

    Zhang, W.; Hirose, A.; Zhang, L.; Xiao, C.; Conway, G.D.; Skarsgard, H.M.

    1993-01-01

    In the STOR-M tokamak, the coherence and propagation nature of the density (n e ) and magnetic (B r ) fluctuations are investigated both in the scrape-off layer (SOL, r/a > 1) and at the plasma edge (r/a -2 is of the order of the reverse electron skin depth kθ ≅ ω pe /c. In terms of the hybrid ion Larmor radius ρ s = c s /Ω i , it corresponds to k θρ s ≅ 0.1. These observations support the skin size electromagnetic drift mode which predicts that a low β tokamak discharge is unstable against the skin size electromagnetic instability with a phase velocity significantly smaller than the electron diamagnetic drift velocity. Edge fluctuations observed in STOR-M appear to propagate at the local E x B drift, and the phase velocity in the plasma from is υ theta ≅ 5 x 10 4 cm/sec, compared with the local electron diamagnetic drift, υ e ≅ 2.5 x 10 5 cm/sec. In the SOL region, the density fluctuations propagate in the ion diamagnetic drift, but still with the local E x B drift because E r changes its sign at r/a ≅ 1

  8. Non-Markovian dynamics of dust charge fluctuations in dusty plasmas

    Science.gov (United States)

    Asgari, H.; Muniandy, S. V.; Ghalee, Amir; Ghalee

    2014-06-01

    Dust charge fluctuates even in steady-state uniform plasma due to the discrete nature of the charge carriers and can be described using standard Langevin equation. In this work, two possible approaches in order to introduce the memory effect in dust charging dynamics are proposed. The first part of the paper provides the generalization form of the fluctuation-dissipation relation for non-Markovian systems based on generalized Langevin equations to determine the amplitudes of the dust charge fluctuations for two different kinds of colored noises under the assumption that the fluctuation-dissipation relation is valid. In the second part of the paper, aiming for dusty plasma system out of equilibrium, the fractionalized Langevin equation is used to derive the temporal two-point correlation function of grain charge fluctuations which is shown to be non-stationary due to the dependence on both times and not the time difference. The correlation function is used to derive the amplitude of fluctuations for early transient time.

  9. Density fluctuations due to Raman forward scattering in quantum plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Punit, E-mail: punitkumar@hotmail.com; Singh, Shiv; Rathore, Nisha Singh, E-mail: nishasingh-rathore@yahoo.com [Department of Physics, University of Lucknow, Lucknow-226007 (India)

    2016-05-06

    Density fluctuations due Raman forward scattering (RFS) is analysed in the interaction of a high intensity laser pulse with high density quantum plasma. The interaction model is developed using the quantum hydrodynamic (QHD) model which consist of a set of equations describing the transport of charge, density, momentum and energy of a charged particle system interacting through a self-consistent electrostatic potential. The nonlinear source current has been obtained incorporating the effects of quantum Bohm potential, Fermi pressure and electron spin. The laser spectrum is strongly modulated by the interaction, showing sidebands at the plasma frequency. Furthermore, as the quiver velocity of the electrons in the high electric field of the laser beam is quit large, various quantum effects are observed which can be attributed to the variation of electron mass with laser intensity.

  10. Structure of density fluctuations in the edge plasma of ASDEX

    Energy Technology Data Exchange (ETDEWEB)

    Rudyj, A; Carlson, A; Endler, M; Giannone, L.; Niedermeyer, H; Theimer, G [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

    1990-01-01

    It is now generally believed that the anomalous particle and energy transport in tokamaks is caused by turbulent fluctuations. The physical nature of these fluctuations (mode type, the driving mechanism) have still to be identified experimentally before a self consistent transport theory can be developed. In contrast to the confinement region the plasma edge can be well diagnosed. H{sub {alpha}}-light, which is emitted at the edge, reacts to density and to some extend to temperature fluctuations. It delivers information about radially integrated spectra and correlations. Langmuir probes measure density and potential fluctuations with good spatial resolution. The edge transport governs the physics in the scrape-off layer and in the divertor which is extremely important for a reactor and therefore deserves a major experimental effort. In this paper we report on an attempt to gain detailed information about the spatial and temporal structure of the edge turbulence hoping to reduce the degrees of freedom for theoretical models to a manageable number. (author) 3 refs., 3 figs.

  11. Role of stochastic fluctuations in the charge on macroscopic particles in dusty plasmas

    International Nuclear Information System (INIS)

    Vaulina, O.S.; Nefedov, A.P.; Petrov, O.F.; Khrapak, S.A.

    1999-01-01

    The currents which charge a macroscopic particle placed in a plasma consist of discrete charges; hence, the charge can undergo random fluctuations about its equilibrium value. These random fluctuations can be described by a simple model which, if the mechanisms for charging of macroscopic particles are known, makes it possible to determine the dependence of the temporal and amplitude characteristics of the fluctuations on the plasma parameters. This model can be used to study the effect of charge fluctuations on the dynamics of the macroscopic particles. The case of so-called plasma-dust crystals (i.e., highly ordered structures which develop because of strong interactions among macroscopic particles) in laboratory gaseous discharge plasmas is considered as an example. The molecular dynamics method shows that, under certain conditions, random fluctuations in the charge can effectively heat a system of macroscopic particles, thereby impeding the ordering process

  12. Magnetic fluctuations in the plasma of KT-5C tokamak

    International Nuclear Information System (INIS)

    Lu Ronghua; Pan Gesheng; Wang Zhijiang; Wen Yizhi; Yu Changxuan; Wan Shude; Liu Wandong; Wang Jun; Xu Min; Xiao Delong; Yu Yi

    2004-01-01

    A newly developed moveable magnetic probe array was installed on KT-5C tokamak. The profiles of radial and poloidal magnetic fluctuations of the plasma have been measured for (0.5r/a1.1). The experimental results indicate that there is a radial gradient which is greater than relative electrostatic fluctuations and the magnetic fluctuations contribute a little to losses. A strong coherence between fluctuations of 4 mm nearby two points suggests that the magnetic fluctuations have quite a long correlation length

  13. Recent results of studies of plasma fluctuations in stellarators by microwave scattering technique

    International Nuclear Information System (INIS)

    Skvortsova, N.N.; Batanov, G.M.; Kolik, L.V.; Petrov, A.E.; Pshenichnikov, A.A.; Sarksyan, K.A.; Kharchev, N.K.; Khol'nov, Yu.V.; Kubo, S.; Sanchez, J.

    2005-01-01

    Microwave scattering diagnostics are described that allow direct measurements of the turbulent processes in a high-temperature plasma of magnetic confinement systems. Plasma density fluctuations in the heating region of the L-2M stellarator were measured from microwave scattering at the fundamental and the second harmonics of the heating gyrotron radiation. In the TJ-II stellarator, a separate 2-mm microwave source was used to produce a probing beam; the measurements were performed at the middle of the plasma radius. Plasma density fluctuations in the axial (heating) region of the LHD stellarator were measured from microwave scattering at the fundamental harmonic of the heating gyrotron radiation. Characteristic features of fluctuations, common for all three devices, are revealed with the methods of statistical and spectral analysis. These features are the wide frequency Fourier and wavelet spectra, autocorrelation functions with slowly decreasing tails, and non-Gaussian probability distributions of the magnitudes and the increments of the magnitude of fluctuations. The drift-dissipative instability and the instability driven by trapped electrons are examined as possible sources of turbulence in a high-temperature plasma. Observations showed the high level of coherence between turbulent fluctuations in the central region and at the edge of the plasma in L-2M. It is shown in L-2M that the relative intensity of the second harmonic of gyrotron radiation on the axis of a microwave beam after quasi-optical filtering in a four-mirror quasi-optical transmission line is about -50 dB of the total radiation intensity. Spatiotemporal structures in plasma density fluctuations were observed in the central region of the plasma column. The correlation time between the structures was found to be on the order of 1 ms. It is shown that, the spectrum of the signal from the second-harmonic scattering extends to higher frequencies in comparison with that from the fundamental

  14. Investigation of low-frequency fluctuations in the edge plasma of ASDEX

    Energy Technology Data Exchange (ETDEWEB)

    Rudyj, A; Carlson, A; Giannone, L.; Niedermeyer, H [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany, F.R.); Bengtson, R D; Ritz, Ch P [Texas Univ., Austin, TX (USA); Kraemer, M [Bochum Univ. (Germany, F.R.); Tsois, N [NRS Demokritos, Attiki (Greece)

    1989-01-01

    Density fluctuations in the edge plasma of tokamaks in the frequency range up to a few 100 kHz have been reported for many years. The fluctuations are easily observed with Langmuir probes and are also visible in the H/sub {alpha}/ emission at locations with sufficient neutral gas density. High speed cine films taken on ASDEX show fluctuating stripes aligned approximately parallel to the magnetic field. It has been shown that these fluctuations, which are electrostatic, cause a major part if not all of the particle transport at the plasma edge. The mechanism driving these instabilities is however not yet clear. Langmuir probe measurements and optical observations were performed on ASDEX and a comparison was made with magnetic fluctuation measurements in order to further clarify the mechanism responsible for the edge turbulence. 5 refs., 3 figs.

  15. Investigation of low-frequency fluctuations in the edge plasma of ASDEX

    International Nuclear Information System (INIS)

    Rudyj, A.; Carlson, A.; Giannone, L.; Niedermeyer, H.; Bengtson, R.D.; Ritz, Ch.P.; Kraemer, M.; Tsois, N.

    1989-01-01

    Density fluctuations in the edge plasma of tokamaks in the frequency range up to a few 100 kHz have been reported for many years. The fluctuations are easily observed with Langmuir probes and are also visible in the H α emission at locations with sufficient neutral gas density. High speed cine films taken on ASDEX show fluctuating stripes aligned approximately parallel to the magnetic field. It has been shown that these fluctuations, which are electrostatic, cause a major part if not all of the particle transport at the plasma edge. The mechanism driving these instabilities is however not yet clear. Langmuir probe measurements and optical observations were performed on ASDEX and a comparison was made with magnetic fluctuation measurements in order to further clarify the mechanism responsible for the edge turbulence. 5 refs., 3 figs

  16. Anomalous cross-field current and fluctuating equilibrium of magnetized plasmas

    DEFF Research Database (Denmark)

    Rypdal, K.; Garcia, O.E.; Paulsen, J.V.

    1997-01-01

    It is shown by simple physical arguments and fluid simulations that electrostatic flute-mode fluctuations can sustain a substantial cross-field current in addition to mass and energy transport. The simulations show that this current determines essential features of the fluctuating plasma...

  17. Conditional analysis of floating potential fluctuations at the edge of the Texas Experimental Tokamak Upgrade (TEXT-U)

    International Nuclear Information System (INIS)

    Filippas, A.V.; Bengston, R.D.; Li, G.; Meier, M.; Ritz, C.P.; Powers, E.J.

    1995-01-01

    Fluctuations in floating potential in the scrape-off layer and plasma edge were analyzed using a conditional statistical analysis technique. The floating potential fluctuations had a nearly Gaussian probability density function with the largest deviation from a Gaussian at the shear layer. The conditional averaging technique followed the statistical evolution of selected conditions in the floating potential signal. The decay rate of a conditional feature in time or space showed a small systematic variation with the amplitude of condition chosen. Either long-lived coherent structures are not present in statistically significant numbers, or the fluctuations are dominated by a large number of coherent structures with a nearly Gaussian distribution of fluctuation amplitudes, or conditional analysis using the amplitude of the floating potential as a condition is not a sensitive technique for identifying coherent structures

  18. New fluctuation phenomena in the H-mode regime of PDX tokamak plasmas

    International Nuclear Information System (INIS)

    Slusher, R.E.; Surko, C.M.; Valley, J.F.; Crowley, T.; Mazzucato, E.; McGuire, K.

    1984-05-01

    A new kind of quasi-coherent fluctuation is observed near the edge of plasmas in the PDX tokamak during H-mode operation. (The H-mode occurs in neutral beam heated divertor plasmas and is characterized by improved energy containment as well as large density and temperature gradients near the plasma edge.) These fluctuations are evidenced as VUV and density fluctuation bursts at well-defined frequencies (Δω/ω less than or equal to 0.1) in the frequency range between 50 and 180 kHz. They affect the edge temperature-density product, and therefore they may be important for understanding the relationship between the large edge density and temperature gradients and the improved energy confinement

  19. Bursty fluctuation characteristics in SOL/divertor plasmas of large helical device

    International Nuclear Information System (INIS)

    Ohno, N.

    2006-01-01

    Full text: Fluctuation properties in the SOL plasmas were intensively studied to understand the crossfield plasma transport, which determines the SOL structure and heat/particle deposition onto the first wall. Recent studies in tokamaks showed that the SOL density fluctuation is highly intermittent. Convective cross-field transport associated with the intermittent events would have strong influence on recycling processes and impurity generation from the first wall. On the other hand, in helical devices, there are few systematic studies on the SOL fluctuation property focusing on the intermittent bursty fluctuations related to plasma blob transport. Recent theory predicts that the blobs propagate toward a low field side in tokamaks. On the other hand, in the Large Helical Device (LHD), the direction of the gradient in B is not uniform because the high-field and the low-field sides rotates poloidally along the torus in the helical system. Comparison between the intermittent bursty fluctuations in the edge plasma of tokamaks and helical devices makes it possible to understand the essential physics of the blob transport. Recently, fast camera observation showed the radial motion of filaments in the edge of the LHD, suggesting the convective cross-field transport. In this paper, bursty fluctuation properties in the edge of the LHD have been investigated by analyzing the ion saturation currents measured with a probe array embedded in an outboard divertor plate. Statistical analysis based on probability distribution function was employed to determine the intermittent evens in the density fluctuation. Large positive bursty events were often observed in the ion saturation current measured with a divertor probe near a divertor leg at which the magnetic line of force connected to the area of a low-field side with a short connection length. Condition averaging result of the positive bursty events indicates the intermittent feature with a rapid increase and a slow decay is

  20. Fluctuations of the charge on a dust grain in a plasma

    International Nuclear Information System (INIS)

    Cui, C.; Goree, J.

    1994-01-01

    A dust grain in a plasma acquires an electric charge by collecting electron and ion currents. These currents consist of discrete charges, causing the charge to fluctuate around an equilibrium value (Q). Electrons and ions are collected at random intervals and in a random sequence, with probabilities that depend on the grain's potential. The authors developed a model for these probabilities and implemented it in a numerical simulation of the collection of individual ions and electrons, yielding a time series Q(t) for the grain's charge. Electron emission from the grain is not included, although it could be added easily to the method. They obtained the power spectrum and the rms fluctuation level, as well as the distribution function of the charge. Most of the power in the spectrum lies at frequencies much lower than 1/τ, the inverse charging time. The rms fractional fluctuation level varies as 0.5 |left-angle N right-angle | -1/2 , where left-angle N right-angle = left-angle Q right-angle/e is the average number of electron charges on the grain. This inverse square-root scaling means that fluctuations are most important for small grains. They also show that very small grains can experience fluctuations to neutral and positive polarities, even in the absence of electron emission

  1. Helicon plasma potential measurements using a heavy ion beam probe

    International Nuclear Information System (INIS)

    P. Schoch; K. Connor; J. Si

    2005-01-01

    A Heavy Ion Beam Probe, HIBP, has been installed on a helicon plasma device. The objective was to measure plasma fluctuations at the 13.55MHz RF frequency. This offers a unique challenge for the HIBP, because the transit time of the probing ion is long compared to the fluctuations of interest. For previous HIBPs, the transit time has been short compared to the period of the fluctuations which permits one to assume that the magnetic and electric fields are static. Modeling has shown that the diagnostic will still accurately measure the average potential. The fluctuating potential was to be detected but the absolute magnitude is difficult to determine with signal from a single point. However, modeling indicates multipoint measurements will allow one to resolve the absolute fluctuation magnitude. Work supported by DOE Grant No. DE-FG02-99ER5452985 During the funding of this grant, a helicon plasma discharge device was built and operated. A Heavy Ion Beam Probe primary system was installed and operated. A primary beam detector was installed and primary beam was detected both with and without plasma. Attempts were made to detect secondary ions using the primary beam detector, without success. Given the lack of a detectable signal, the energy analyzer of the HIBP system was never installed. It is available for installation if there is a reason to do so in the future. Analysis of the system indicated that the plasma electron temperature, estimated to be a few eV, was the likely reason for the lack of detectable secondary ions. A change of ion species to either Boron or Magnesium would greatly increase the signal, but neither of these ions have been used in a HIBP system. The ion source used in this system is made by using a charge exchange process to create a zeolite loaded with the desired ion. Attempts were made to use charge exchange to load Magnesium into a zeolite, and were not successful. It is felt that Magnesium and/or Boron zeolite sources could be created, but

  2. Arc Voltage Fluctuation in DC Laminar and Turbulent Plasma Jets Generation

    International Nuclear Information System (INIS)

    Pan Wenxia; Meng Xian; Wu Chengkang

    2006-01-01

    Arc voltage fluctuations in a direct current (DC) non-transferred arc plasma generator are experimentally studied, in generating a jet in the laminar, transitional and turbulent regimes. The study is with a view toward elucidating the mechanism of the fluctuations and their relationship with the generating parameters, arc root movement and flow regimes. Results indicate that the existence of a 300 Hz alternating current (AC) component in the power supply ripples does not cause the transition of the laminar plasma jet into a turbulent state. There exists a high frequency fluctuation at 4 kHz in the turbulent jet regime. It may be related to the rapid movement of the anode attachment point of the arc

  3. Self-similarity of fluctuation particle fluxes in the plasma edge of the stellarator L-2M

    Energy Technology Data Exchange (ETDEWEB)

    Saenko, V.V. [Ulyanovsk State University, Leo Tolstoy str., 42, Ulyanovsk (Russian Federation)

    2010-05-15

    Results are presented of statistical studies of probability density of fluctuations of plasma density, floating potential, and turbulent particle fluxes measured by a Langmuir probe in the edge plasma of the L-2M stellarator. Empirical probability densities differ from Gaussian distributions. The empirical probability density distributions have heavy tails decreasing as x{sup -{alpha}}{sup -1} and are leptokurtic. Fractional stable distributions were successfully applied to describing such distributions. It is shown that fractional stable distributions give good fit to the distri-butions of increments of fluctuation amplitudes of physical variables under study. The distribution parameters are statistically estimated from measured time sequences (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Self-similarity of fluctuation particle fluxes in the plasma edge of the stellarator L-2M

    International Nuclear Information System (INIS)

    Saenko, V.V.

    2010-01-01

    Results are presented of statistical studies of probability density of fluctuations of plasma density, floating potential, and turbulent particle fluxes measured by a Langmuir probe in the edge plasma of the L-2M stellarator. Empirical probability densities differ from Gaussian distributions. The empirical probability density distributions have heavy tails decreasing as x -α-1 and are leptokurtic. Fractional stable distributions were successfully applied to describing such distributions. It is shown that fractional stable distributions give good fit to the distri-butions of increments of fluctuation amplitudes of physical variables under study. The distribution parameters are statistically estimated from measured time sequences (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Energy change of a heavy quark in a viscous quark–gluon plasma with fluctuations

    International Nuclear Information System (INIS)

    Jiang, Bing-feng; Hou, De-fu; Li, Jia-rong

    2016-01-01

    When a heavy quark travels through the quark–gluon plasma, the polarization and fluctuating chromoelectric fields will be produced simultaneously in the plasma. The drag force due to those fields exerting in return on the moving heavy quark will cause energy change to it. Based on the dielectric functions derived from the viscous chromohydrodynamics, we have studied the collisional energy change of a heavy quark traversing the viscous quark–gluon plasma including fluctuations of chromoelectric field. Numerical results indicate that the chromoelectric field fluctuations lead to an energy gain of the moving heavy quark. Shear viscosity suppresses the fluctuation-induced energy gain and the viscous suppression effect for the charm quark is much more remarkable than that for the bottom quark. While, the fluctuation energy gain is much smaller than the polarization energy loss in magnitude and the net energy change for the heavy quark is at loss.

  6. CO2 laser diagnostics for measurements of the plasma density profile and plasma density fluctuations on LHD

    International Nuclear Information System (INIS)

    Vyacheslavov, L.N.; Tanaka, K.; Kawahata, K.

    2001-04-01

    A CO 2 laser based diagnostics complimentary to the existing FIR interferometer is proposed. It combines interferometry for plasma density profile measurement under conditions of large density gradients, and both imaging and scattering techniques for observation of plasma fluctuations. Two-colour interferometer with a slablike probe beam and a single multichannel linear detector array provide observation of plasma density profile and density fluctuations at two locations along the probe beam. Basic characteristics of the diagnostics are considered as well as some effects that include dispersion and are critical for two colour imaging technique. The results of the bench-top experiments with the prototype of the interferometer are presented. (author)

  7. Large daily fluctuations in plasma tyrosine in treated patients with phenylketonuria

    NARCIS (Netherlands)

    vanSpronsen, FJ; vanDijk, T; Smit, GPA; vanRijn, M; Reijngoud, DJ; Berger, Ruud; Heymans, HSA

    1996-01-01

    In patients with phenylketonuria (PKU), extra tyrosine supplementation is advocated in addition to tyrosine-enriched amino acid mixtures. PKU patients have low fasting plasma tyrosine concentrations, but little is known about tyrosine fluctuations during the day. Plasma tyrosine concentrations were

  8. Charge-fluctuation-induced heating of dust particles in a plasma.

    Science.gov (United States)

    Vaulina, O S; Khrapak, S A; Nefedov, A P; Petrov, O F

    1999-11-01

    Random charge fluctuations are always present in dusty plasmas due to the discrete nature of currents charging the dust particle. These fluctuations can be a reason for the heating of the dust particle system. Such unexpected heating leading to the melting of the dust crystals was observed recently in several experiments. In this paper we show by analytical evaluations and numerical simulation that charge fluctuations provide an effective source of energy and can heat the dust particles up to several eV, in conditions close to experimental ones.

  9. Study of the thermal and suprathermal electron density fluctuations of the plasma in the Focus experiment

    International Nuclear Information System (INIS)

    Jolas, A.

    1981-10-01

    An experiment on Thomson scattering of ruby laser light by the electrons of a plasma produced by an intense discharge between the electrodes of a coaxial gun in a gas at low pressure has been carried out. It is shown that the imploding plasma is made up of layers with different characteristics: a dense plasma layer where the density fluctuations are isotropic and have a thermal level, and a tenuous plasma layer where the fluctuations are anisotropic, and strongly suprathermal. The suprathermal fluctuations are attributed to microscopic instabilities generated by the electric current circulating in the transition zone where the magnetic field penetrates the plasma [fr

  10. Simultaneous Measurements of Electrostatic and Magnetic Fluctuations in ASDEX Upgrade Edge Plasma

    DEFF Research Database (Denmark)

    Ionita, Codrina; Vianello, Nicola; Müller, H.W.

    2009-01-01

    In ASDEX Upgrade (AUG) electrostatic and magnetic fluctuations in the edge plasma region were measured simultaneously during ELMy H-mode (high confinement) plasmas and L-mode (low confinement) plasmas and during a transition between the two modes. A special probe was used containing six Langmuir...

  11. Electromagnetic fluctuation spectra of collective oscillations in magnetized Maxwellian plasmas for parallel wave vectors

    Science.gov (United States)

    Vafin, S.; Schlickeiser, R.; Yoon, P. H.

    2016-05-01

    The general electromagnetic fluctuation theory for magnetized plasmas is used to calculate the steady-state wave number spectra and total electromagnetic field strength of low-frequency collective weakly damped eigenmodes with parallel wavevectors in a Maxwellian electron-proton plasma. These result from the equilibrium of spontaneous emission and collisionless damping, and they represent the minimum electromagnetic fluctuations guaranteed in quiet thermal space plasmas, including the interstellar and interplanetary medium. Depending on the plasma beta, the ratio of |δB |/B0 can be as high as 10-12 .

  12. Electromagnetic Fluctuations during Fast Reconnection in a Laboratory Plasma

    International Nuclear Information System (INIS)

    Hantao Ji; Stephen Terry; Masaaki Yamada; Russell Kulsrud; Aleksey Kuritsyn; Yang Ren

    2003-01-01

    Clear evidence for a positive correlation is established between the magnitude of magnetic fluctuations in the lower-hybrid frequency range and enhancement of reconnection rates in a well-controlled laboratory plasma. The fluctuations belong to the right-hand polarized whistler wave branch, propagating obliquely to the reconnecting magnetic field, with a phase velocity comparable to the relative drift velocity between electrons and ions. The short coherence length and large variation along the propagation direction indicate their strongly nonlinear nature in three dimensions

  13. Identification of trapped electron modes in frequency fluctuation spectra of fusion plasmas

    International Nuclear Information System (INIS)

    Arnichand, Hugo

    2015-01-01

    This thesis shows that the analysis of frequency fluctuation spectra can provide an additional experimental indication of the dominant mode. Depending on the plasma scenario, fluctuation spectra can display different frequency components: Broadband spectra (Δf ∼ hundreds of kHz) which are always observed. Their amplitude is maximum at the zero frequency and they are attributed to turbulence. Coherent modes (Δf ∼ 1 kHz) which oscillate at a very well defined frequency. They can for example be due to geodesic acoustic or magnetohydrodynamic (MHD) modes; Quasi-Coherent (QC) modes (Δf ∼ tens of kHz) which oscillate at a rather well defined frequency but which are reminiscent of broadband fluctuations. The fluctuation study performed in the plasma core region shows that the fluctuation spectra in TEM-dominated regimes can be noticeably different from the ones in ITG-dominated regimes, as only TEM can induce QC modes. Such a finding has been achieved by comparing fluctuations measurements with simulations Measurements are made with a reflectometry diagnostic, a radar-like technique able to provide local indications of the density fluctuations occurring in the vicinity of the reflection layer. Frequency fluctuation spectra are inferred from a Fourier analysis of the reflectometry signal. First, the main properties of QC modes are characterized experimentally. Their normalized scale is estimated to k(perpendicular)ρ i ≤1, their amplitude is ballooned on the low field side mid-plane and they can be observed at many different radii. These indications are in agreement with what could be expected for ITG/TEM instabilities. Then reflectometry measurements are analyzed in Ohmic plasmas. QC modes are observed in the Linear Ohmic Confinement (LOC) regime dominated by TEM whereas only broadband spectra are seen in the Saturated Ohmic Confinement (SOC) regime dominated by ITG. Frequency spectra from nonlinear gyrokinetic simulations show that TEM induce a narrow

  14. Thermal fluctuation levels of magnetic and electric fields in unmagnetized plasma: The rigorous relativistic kinetic theory

    International Nuclear Information System (INIS)

    Yoon, P. H.; Schlickeiser, R.; Kolberg, U.

    2014-01-01

    Any fully ionized collisionless plasma with finite random particle velocities contains electric and magnetic field fluctuations. The fluctuations can be of three different types: weakly damped, weakly propagating, or aperiodic. The kinetics of these fluctuations in general unmagnetized plasmas, governed by the competition of spontaneous emission, absorption, and stimulated emission processes, is investigated, extending the well-known results for weakly damped fluctuations. The generalized Kirchhoff radiation law for both collective and noncollective fluctuations is derived, which in stationary plasmas provides the equilibrium energy densities of electromagnetic fluctuations by the ratio of the respective spontaneous emission coefficient and the true absorption coefficient. As an illustrative example, the equilibrium energy densities of aperiodic transverse collective electric and magnetic fluctuations in an isotropic thermal electron-proton plasmas of density n e are calculated as |δB|=√((δB) 2 )=2.8(n e m e c 2 ) 1/2 g 1/2 β e 7/4 and |δE|=√((δE) 2 )=3.2(n e m e c 2 ) 1/2 g 1/3 β e 2 , where g and β e denote the plasma parameter and the thermal electron velocity in units of the speed of light, respectively. For densities and temperatures of the reionized early intergalactic medium, |δB|=6·10 −18 G and |δE|=2·10 −16 G result

  15. CO{sub 2} laser diagnostics for measurements of the plasma density profile and plasma density fluctuations on LHD

    Energy Technology Data Exchange (ETDEWEB)

    Vyacheslavov, L.N. [Budker Institute of Nuclear Physics, Novosibirsk (Russian Federation); Tanaka, K.; Kawahata, K. [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2001-04-01

    A CO{sub 2} laser based diagnostics complimentary to the existing FIR interferometer is proposed. It combines interferometry for plasma density profile measurement under conditions of large density gradients, and both imaging and scattering techniques for observation of plasma fluctuations. Two-colour interferometer with a slablike probe beam and a single multichannel linear detector array provide observation of plasma density profile and density fluctuations at two locations along the probe beam. Basic characteristics of the diagnostics are considered as well as some effects that include dispersion and are critical for two colour imaging technique. The results of the bench-top experiments with the prototype of the interferometer are presented. (author)

  16. Long-time integrator for the study on plasma parameter fluctuations

    International Nuclear Information System (INIS)

    Zalkind, V.M.; Tarasenko, V.P.

    1975-01-01

    A device measuring the absolute value (x) of a fluctuating quantity x(t) averaged over a large number of realizations is described. The specific features of the device are the use of the time selector (Δ t = 50 μs - 1 ms) and the large time integration constant (tau = 30 hrs). The device is meant for studying fluctuations of parameters of a pulse plasma with a small repetition frequency

  17. Ionization-potential depression and dynamical structure factor in dense plasmas

    Science.gov (United States)

    Lin, Chengliang; Röpke, Gerd; Kraeft, Wolf-Dietrich; Reinholz, Heidi

    2017-07-01

    The properties of a bound electron system immersed in a plasma environment are strongly modified by the surrounding plasma. The modification of an essential quantity, the ionization energy, is described by the electronic and ionic self-energies, including dynamical screening within the framework of the quantum statistical theory. Introducing the ionic dynamical structure factor as the indicator for the ionic microfield, we demonstrate that ionic correlations and fluctuations play a critical role in determining the ionization potential depression. This is, in particular, true for mixtures of different ions with large mass and charge asymmetry. The ionization potential depression is calculated for dense aluminum plasmas as well as for a CH plasma and compared to the experimental data and more phenomenological approaches used so far.

  18. Dynamical interplay between fluctuations, electric fields and transport in fusion plasmas

    International Nuclear Information System (INIS)

    Hidalgo, C.; Pedrosa, M.A.; Goncalves, B.

    2003-01-01

    A view of recent experimental results and progress in the characterization of the statistical properties of electrostatic turbulence in magnetically confined devices is given. An empirical similarity in the scaling properties of the probability distribution function (PDF) of turbulent transport has been observed in the plasma edge region in fusion plasmas. The investigation of the dynamical interplay between fluctuation in gradients, turbulent transport and radial electric fields has shows that these parameters are strongly coupled both in tokamak and stellarator plasmas. The bursty behaviour of turbulent transport is linked with a departure from the most probable radial gradient. The dynamical relation between fluctuations in gradients and transport is strongly affected by the presence of sheared poloidal flows which organized themselves near marginal stability. These results emphasize the importance of the statistical description of transport processes in fusion plasmas as an alternative approach to the traditional way to characterize transport based on the computation of effective transport coefficients. (author)

  19. Plasma potential measurements in the edge region of the ISTTOK plasma, using electron emissive probes

    International Nuclear Information System (INIS)

    Ionita, C.; Balan, P.; Schrittwieser, R.; Cabral, J.A.; Fernandes, H.; Figueiredo, H. F.C.; Varandas, C.

    2001-01-01

    We have recently started to use electron-emissive probes for direct measurements of the plasma potential and its fluctuations in the edge region of the plasma ring in the tokamak ISTTOK in Lisbon, Portugal. This method is based on the fact that the electron emission current of such a probe is able to compensate electron temperature variations and electron drifts, which can occur in the edge plasma region of magnetized fusion devices, and which are making measurements with cold probes prone to errors. In this contribution we present some of the first results of our investigations in ISTTOK.(author)

  20. Density, temperature, and potential fluctuation measurements by the swept Langmuir probe technique in Wendelstein 7-AS

    International Nuclear Information System (INIS)

    Giannone, L.; Balbin, R.; Niedermeyer, H.; Endler, M.; Herre, G.; Hidalgo, C.; Rudyj, A.; Theimer, G.; Verplanke, P.

    1994-01-01

    In the Wendelstein 7-AS stellarator (W7-AS) [Plasma Phys. Controlled Fusion 33, 1591 (1991)], current-voltage characteristics of the Langmuir probe at sweep frequencies in the range 400 kHz to 1 MHz were measured and it was found that the mean and fluctuation values of the ion saturation current, floating potential, and electron temperature were independent of the sweep frequency. A radial scan in the vicinity of the velocity shear layer was performed. The simultaneous sweeping of 3 probe tips showed a statistically significant spatial coherence of the fluctuations in the poloidal direction and a decrease in spatial coherence of the fluctuations with increasing tip separation could be demonstrated. The observation of a change in the propagation direction of fluctuations as the shear layer was crossed and a calculation of the transport spectrum show that the swept probe method is capable of reproducing known results. Apparent temperature fluctuations, due to variations of density and potential during a sweep, are shown by simulations to be only of importance at frequencies above half the Nyquist frequency

  1. The Role of Higher-Order Modes on the Electromagnetic Whistler-Cyclotron Wave Fluctuations of Thermal and Non-Thermal Plasmas

    Science.gov (United States)

    Vinas, Adolfo F.; Moya, Pablo S.; Navarro, Roberto; Araneda, Jamie A.

    2014-01-01

    Two fundamental challenging problems of laboratory and astrophysical plasmas are the understanding of the relaxation of a collisionless plasmas with nearly isotropic velocity distribution functions and the resultant state of nearly equipartition energy density with electromagnetic plasma turbulence. Here, we present the results of a study which shows the role that higher-order-modes play in limiting the electromagnetic whistler-like fluctuations in a thermal and non-thermal plasma. Our main results show that for a thermal plasma the magnetic fluctuations are confined by regions that are bounded by the least-damped higher order modes. We further show that the zone where the whistler-cyclotron normal modes merges the electromagnetic fluctuations shifts to longer wavelengths as the beta(sub e) increases. This merging zone has been interpreted as the beginning of the region where the whistler-cyclotron waves losses their identity and become heavily damped while merging with the fluctuations. Our results further indicate that in the case of nonthermal plasmas, the higher-order modes do not confine the fluctuations due to the effective higher-temperature effects and the excess of suprathermal plasma particles. The analysis presented here considers the second-order theory of fluctuations and the dispersion relation of weakly transverse fluctuations, with wave vectors parallel to the uniform background magnetic field, in a finite temperature isotropic bi-Maxwellian and Tsallis-kappa-like magnetized electron-proton plasma. Our results indicate that the spontaneously emitted electromagnetic fluctuations are in fact enhanced over these quasi modes suggesting that such modes play an important role in the emission and absorption of electromagnetic fluctuations in thermal or quasi-thermal plasmas.

  2. Plasma structure change and intermittent fluctuation near magnetic island X-point under detached plasma condition in LHD

    International Nuclear Information System (INIS)

    Ohno, N.; Tsuji, Y.; Tanaka, H.; Masuzaki, S.; Kobayashi, M.; Akiyama, T.; Morisaki, T.; Motojima, G.; Narushima, Y.

    2014-10-01

    Plasma profiles and intermittent fluctuations near the helical divertor X-point and on a divertor plate were investigated using a fast scanning Langmuir probe and a probe array embedded on a divertor plate in detached divertor condition that was sustained by applying a resonant magnetic perturbation (RMP) field in LHD. When the RMP induced magnetic island X-point (n/m = 1/1) is located near the helical divertor X-point, the reduction of particle flux accompanied by the plasma detachment occurred near the helical divertor X-point (n/m = 2/10), which leads to the reduction of the particle flux at the strike point on the divertor plate. We also found that when the divertor plasma turned to be the detached condition, the enhanced plasma fluctuations were confirmed between the helical divertor X-point and ergodic region, which exhibited a dynamic behavior having a large amount of positive-spike components with highly intermittent property. (author)

  3. On lower hybrid wave scattering by plasma density fluctuations

    International Nuclear Information System (INIS)

    Petrzilka, V.

    1988-01-01

    The scattering of lower hybrid waves on plasma density fluctuations in a thin turbulent layer at the plasma periphery is studied numerically. The lower hybrid waves are supposed to be radiated by a four-waveguide grill used on the CASTOR tokamak. A great number of calculated scattered wave spectra show that the scattered spectrum shifts to larger values of the parallel-to-magnetic-field component of the wave vector (to slower waves) with increasing central plasma density and with the decreasing safety factor at the boundary. As known, this shift of the wave spectra results in a decrease in current drive efficiency. The current drive efficiency will hence decrease with growing plasma density and with decreasing safety factor. (J.U.). 2 figs., 4 refs

  4. Conserved charge fluctuations at vanishing and non-vanishing chemical potential

    Science.gov (United States)

    Karsch, Frithjof

    2017-11-01

    Up to 6th order cumulants of fluctuations of net baryon-number, net electric charge and net strangeness as well as correlations among these conserved charge fluctuations are now being calculated in lattice QCD. These cumulants provide a wealth of information on the properties of strong-interaction matter in the transition region from the low temperature hadronic phase to the quark-gluon plasma phase. They can be used to quantify deviations from hadron resonance gas (HRG) model calculations which frequently are used to determine thermal conditions realized in heavy ion collision experiments. Already some second order cumulants like the correlations between net baryon-number and net strangeness or net electric charge differ significantly at temperatures above 155 MeV in QCD and HRG model calculations. We show that these differences increase at non-zero baryon chemical potential constraining the applicability range of HRG model calculations to even smaller values of the temperature.

  5. Fluctuations from dissipation in a hot non-Abelian plasma

    CERN Document Server

    Litim, Daniel F; Litim, Daniel F.; Manuel, Cristina

    2000-01-01

    We consider a transport equation of the Boltzmann-Langevin type for non-Abelian plasmas close to equilibrium to derive the spectral functions of the underlying microscopic fluctuations from the entropy. The correlator of the stochastic source is obtained from the dissipative processes in the plasma. This approach, based on classical transport theory, exploits the well-known link between a linearized collision integral, the entropy and the spectral functions. Applied to the ultra-soft modes of a hot non-Abelian (classical or quantum) plasma, the resulting spectral functions agree with earlier findings obtained from the microscopic theory. As a by-product, it follows that theorem.

  6. Edge fluctuation studies in Heliotron J

    International Nuclear Information System (INIS)

    Mizuuchi, T.; Chechkin, V.V.; Ohashi, K.; Sorokovoy, E.L.; Chechkin, A.V.; Gonchar, V.Yu.; Takahashi, K.; Kobayashi, S.; Nagasaki, K.; Okada, H.; Yamamoto, S.; Sano, F.; Kondo, K.; Nishino, N.; Kawazome, H.; Shidara, H.; Kaneko, S.; Fukagawa, Y.; Morita, Y.; Nakazawa, S.; Nishio, S.; Tsuboi, S.; Yamada, M.

    2005-01-01

    Low frequency and small-scale fluctuations of density and potential near the last closed flux surface are investigated by using Langmuir probes for the second harmonic ECH plasmas in a helical-axis heliotron device, Heliotron J. The existence of a plasma layer with a radial electric field shear was indicated near the last closed flux surface. Near this layer, the reversal of phase velocity and de-correlation of the fluctuations were observed. On the other hand, it is suggested that a considerable fraction of the fluctuation induced particle flux is carried off through the intermittent events. Preliminary analyses to classify the PDFs of the ion-saturation current fluctuation as stable Levy distributions demonstrate that the Levy index decreases from the inner to the outer region of edge plasma, suggesting that the PDFs near the boundary region of Heliotron J are nearly Gaussian, whereas at the outer regions of plasma they become strongly non-Gaussian

  7. Bistable intrinsic charge fluctuations of a dust grain subject to secondary electron emission in a plasma.

    Science.gov (United States)

    Shotorban, B

    2015-10-01

    A master equation was formulated to study intrinsic charge fluctuations of a grain in a plasma as ions and primary electrons are attached to the grain through collisional collection, and secondary electrons are emitted from the grain. Two different plasmas with Maxwellian and non-Maxwellian distributions were considered. The fluctuations could be bistable in either plasma when the secondary electron emission is present, as two stable macrostates, associated with two stable roots of the charge net current, may exist. Metastablity of fluctuations, manifested by the passage of the grain charge between two macrostates, was shown to be possible.

  8. The effect of plasma fluctuations on parallel transport parameters in the SOL

    DEFF Research Database (Denmark)

    Havlíčková, E.; Fundamenski, W.; Naulin, Volker

    2011-01-01

    The effect of plasma fluctuations due to turbulence at the outboard midplane on parallel transport properties is investigated. Time-dependent fluctuating signals at different radial locations are used to study the effect of signal statistics. Further, a computational analysis of parallel transport...... to a comparison of steady-state and time-dependent modelling....

  9. Spectroscopic interpretation and velocimetry analysis of fluctuations in a cylindrical plasma recorded by a fast camera

    Science.gov (United States)

    Oldenbürger, S.; Brandt, C.; Brochard, F.; Lemoine, N.; Bonhomme, G.

    2010-06-01

    Fast visible imaging is used on a cylindrical magnetized argon plasma produced by thermionic discharge in the Mirabelle device. To link the information collected with the camera to a physical quantity, fast camera movies of plasma structures are compared to Langmuir probe measurements. High correlation is found between light fluctuations and plasma density fluctuations. Contributions from neutral argon and ionized argon to the overall light intensity are separated by using interference filters and a light intensifier. Light emitting transitions are shown to involve a metastable neutral argon state that can be excited by thermal plasma electrons, thus explaining the good correlation between light and density fluctuations. The propagation velocity of plasma structures is calculated by adapting velocimetry methods to the fast camera movies. The resulting estimates of instantaneous propagation velocity are in agreement with former experiments. The computation of mean velocities is discussed.

  10. Spectroscopic interpretation and velocimetry analysis of fluctuations in a cylindrical plasma recorded by a fast camera

    International Nuclear Information System (INIS)

    Oldenbuerger, S.; Brandt, C.; Brochard, F.; Lemoine, N.; Bonhomme, G.

    2010-01-01

    Fast visible imaging is used on a cylindrical magnetized argon plasma produced by thermionic discharge in the Mirabelle device. To link the information collected with the camera to a physical quantity, fast camera movies of plasma structures are compared to Langmuir probe measurements. High correlation is found between light fluctuations and plasma density fluctuations. Contributions from neutral argon and ionized argon to the overall light intensity are separated by using interference filters and a light intensifier. Light emitting transitions are shown to involve a metastable neutral argon state that can be excited by thermal plasma electrons, thus explaining the good correlation between light and density fluctuations. The propagation velocity of plasma structures is calculated by adapting velocimetry methods to the fast camera movies. The resulting estimates of instantaneous propagation velocity are in agreement with former experiments. The computation of mean velocities is discussed.

  11. Interpretation of fast measurements of plasma potential, temperature and density in SOL of ASDEX Upgrade

    DEFF Research Database (Denmark)

    Horacek, J.; Adamek, J.; Müller, H.W.

    2010-01-01

    This paper focuses on interpretation of fast (1 µs) and local (2–4 mm) measurements of plasma density, potential and electron temperature in the edge plasma of tokamak ASDEX Upgrade. Steady-state radial profiles demonstrate the credibility of the ball-pen probe. We demonstrate that floating...... potential fluctuations measured by a Langmuir probe are dominated by plasma electron temperature rather than potential. Spatial and temporal scales are found consistent with expectations based on interchange-driven turbulence. Conditionally averaged signals found for both potential and density are also...

  12. Plasma fluctuations and confinement of fusion reaction products

    International Nuclear Information System (INIS)

    Coppi, B.; Pegoraro, F.

    1981-01-01

    The interaction between the fluctuations that can be excited in a magnetically confined plasma and the high-energy-particle population produced by fusion reactions is analyzed in view of its relevance to the process of thermonuclear ignition. The spectrum of the perturbations that, in the absence of fusion reaction products, would be described by the incompressible ideal magnetohydrodynamic approximation is studied considering finite value of the plasma pressure relative ot the magnetic pressure. The combined effects of the magnetic field curvature and shear are taken into account and the relevant spectrum is shown to consist of a continuous portion, that could be identified as a mixture of shear-Alfven and interchange oscillations, and a discrete unstable part corresponding to the so-called ballooning modes. The rate of diffusion of the fusion reaction products induced by oscillations in the continuous part of the spectrum, as estimated from the appropriate quasi-linear theory, is found to be significantly smaller than could be expected if normal modes (i.e., nonconvective solutions) were excited. However, a relatively wide intermediate region is identified where opalescent fluctuations, capable of achieving significant amplitudes and corresponding to a quasi-discrete spectrum, can be excited

  13. Electron temperature fluctuation in the HT-7 tokamak plasma observed by electron cyclotron emission imaging

    International Nuclear Information System (INIS)

    Xiao-Yuan, Xu; Jun, Wang; Yi, Yu; Yi-Zhi, Wen; Chang-Xuan, Yu; Wan-Dong, Liu; Bao-Nian, Wan; Xiang, Gao; Luhmann, N. C.; Domier, C. W.; Wang, Jian; Xia, Z. G.; Shen, Zuowei

    2009-01-01

    The fluctuation of the electron temperature has been measured by using the electron cyclotron emission imaging in the Hefei Tokamak-7 (HT-7) plasma. The electron temperature fluctuation with a broadband spectrum shows that it propagates in the electron diamagnetic drift direction, and the mean poloidal wave-number k-bar θ is calculated to be about 1.58 cm −1 , or k-bar θρ s thickapprox 0.34. It indicates that the fluctuation should come from the electron drift wave turbulence. The linear global scaling of the electron temperature fluctuation with the gradient of electron temperature is consistent with the mixing length scale qualitatively. Evolution of spectrum of the fluctuation during the sawtooth oscillation phases is investigated, and the fluctuation is found to increase with the gradient of electron temperature increasing during most phases of the sawtooth oscillation. The results indicate that the electron temperature gradient is probably the driver of the fluctuation enhancement. The steady heat flux driven by electron temperature fluctuation is estimated and compared with the results from power balance estimation. (fluids, plasmas and electric discharges)

  14. Space potential fluctuations during MHD activities in the Compact Helical System (CHS)

    International Nuclear Information System (INIS)

    Iguchi, H.; Fujisawa, A.; Crowley, T.P.

    1998-02-01

    Local space potential fluctuations have been measured during MHD activities in a low-beta NBI heated plasma in the Compact Helical System (CHS) by the use of a heavy ion beam probe (HIBP). Two types of MHD modes with accompanying potential oscillations are observed. One appears in periodic bursts with relatively low frequency (< 40 kHz) and large amplitude (20-40 volts), and is localized around the q=2 surface (average minor radius ρ ∼ 0.7). The other appears in continuous and coherent oscillation with higher frequency (105-125 kHz) and smaller amplitude (∼5 volts). This oscillation also has spatial structure. Possible interpretation for the space potential oscillations is presented. (author)

  15. Scattering of electromagnetic waves by anomalous fluctuations of a magnetized plasma

    Science.gov (United States)

    Pavlenko, V. N.; Panchenko, V. G.

    1990-04-01

    Fluctuations and scattering of transverse electromagnetic waves by density fluctuations in a magnetized plasma in the presence of parametric decay of the pump wave are investigated. The spectral density of electron-density fluctuations is calculated. It is shown that the differential scattering cross-section has sharp maxima at the ion-acoustic and lower-hybrid frequencies when parametric decay of the lower-hybrid pump wave occurs. We note that scattering at the ion-acoustic frequency is dominant. When the pump-wave amplitude tends to the threshold strength of the electric field the scattering cross-section increases anomalously, i.e. there is critical opalescence.

  16. Multiscale gyrokinetics for rotating tokamak plasmas: fluctuations, transport and energy flows.

    Science.gov (United States)

    Abel, I G; Plunk, G G; Wang, E; Barnes, M; Cowley, S C; Dorland, W; Schekochihin, A A

    2013-11-01

    This paper presents a complete theoretical framework for studying turbulence and transport in rapidly rotating tokamak plasmas. The fundamental scale separations present in plasma turbulence are codified as an asymptotic expansion in the ratio ε = ρi/α of the gyroradius to the equilibrium scale length. Proceeding order by order in this expansion, a set of coupled multiscale equations is developed. They describe an instantaneous equilibrium, the fluctuations driven by gradients in the equilibrium quantities, and the transport-timescale evolution of mean profiles of these quantities driven by the interplay between the equilibrium and the fluctuations. The equilibrium distribution functions are local Maxwellians with each flux surface rotating toroidally as a rigid body. The magnetic equilibrium is obtained from the generalized Grad-Shafranov equation for a rotating plasma, determining the magnetic flux function from the mean pressure and velocity profiles of the plasma. The slow (resistive-timescale) evolution of the magnetic field is given by an evolution equation for the safety factor q. Large-scale deviations of the distribution function from a Maxwellian are given by neoclassical theory. The fluctuations are determined by the 'high-flow' gyrokinetic equation, from which we derive the governing principle for gyrokinetic turbulence in tokamaks: the conservation and local (in space) cascade of the free energy of the fluctuations (i.e. there is no turbulence spreading). Transport equations for the evolution of the mean density, temperature and flow velocity profiles are derived. These transport equations show how the neoclassical and fluctuating corrections to the equilibrium Maxwellian act back upon the mean profiles through fluxes and heating. The energy and entropy conservation laws for the mean profiles are derived from the transport equations. Total energy, thermal, kinetic and magnetic, is conserved and there is no net turbulent heating. Entropy is produced

  17. Effect of Fluctuations of DC Current on Properties of Plasma Jet Generated in Plasma Spraying Torch with Gerdien Arc

    Czech Academy of Sciences Publication Activity Database

    Hrabovský, Milan; Kopecký, Vladimír; Chumak, Oleksiy; Kavka, Tetyana; Mašláni, Alan; Sember, Viktor; Ctibor, Pavel

    2009-01-01

    Roč. 13, č. 2 (2009), s. 229-240 ISSN 1093-3611 Institutional research plan: CEZ:AV0Z20430508 Keywords : Plasma torch * dc arc * plasma jet * fluctuations * plasma spraying Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.333, year: 2009 http://www.begellhouse.com/journals/57d172397126f956,4e2a92412d8c6bb5.html

  18. Scattering effects of small-scale density fluctuations on reflectometric measurements in a tokamak plasma

    International Nuclear Information System (INIS)

    Garcia, J.P.; Manso, M.E.; Serra, F.M.; Mendonca, J.T.

    1989-01-01

    When a wave propagates in a non homogeneous fluctuating plasma part of the incident energy is scattered out to the nonlinear interaction between the wave and the oscillating modes perturbing the plasma. The possibility of enhanced scattering at the cutoff layer, where reflection of the incident wave occurs, has been recently suggested as the basis of a reflectometric experiment to determine the spatial location of small scale fluctuations in a fusion plasma. Here we report on the development of a theoretical model to evaluate the flux of energy scattered by fluctuations, in order to give insight about the interpretation of measurements using a microwave reflectometry diagnostic in a tokamak. The scattered field is obtained through the resolution of a (non-homogeneous) wave propagation equation where the source term is related with the nonlinear current due to the interaction between the incident wave and local fluctuations. We use a slab model for the plasma, and an ordinary (0) wave propagation along the density gradient is considered. The amplitude of the scattered wave at the border of the plasma is estimated. In order to know the contributions to the energy scattered both from the propagation region and the reflecting layer, an approach was used where perturbations are modelled by spatial step functions at several layers. The main contribution to the scattered power comes from the cutoff region, where the electric field amplitude swells as compared with the incident value. Considering the reflectometric system recently installed on the ASDEX tokamak, and using typical density profiles, expected values of the 'swelling factor' have been numerically evaluated. The role of incoherent scattering due to drift wave activity is discussed as well as the coherent scattering due to fluctuations induced by lower hybrid (LH) waves. (author) 2 refs., 4 figs

  19. Intermittent fluctuations in the Alcator C-Mod scrape-off layer for ohmic and high confinement mode plasmas

    Science.gov (United States)

    Garcia, O. E.; Kube, R.; Theodorsen, A.; LaBombard, B.; Terry, J. L.

    2018-05-01

    Plasma fluctuations in the scrape-off layer of the Alcator C-Mod tokamak in ohmic and high confinement modes have been analyzed using gas puff imaging data. In all cases investigated, the time series of emission from a single spatially resolved view into the gas puff are dominated by large-amplitude bursts, attributed to blob-like filament structures moving radially outwards and poloidally. There is a remarkable similarity of the fluctuation statistics in ohmic plasmas and in edge localized mode-free and enhanced D-alpha high confinement mode plasmas. Conditionally averaged waveforms have a two-sided exponential shape with comparable temporal scales and asymmetry, while the burst amplitudes and the waiting times between them are exponentially distributed. The probability density functions and the frequency power spectral densities are similar for all these confinement modes. These results provide strong evidence in support of a stochastic model describing the plasma fluctuations in the scrape-off layer as a super-position of uncorrelated exponential pulses. Predictions of this model are in excellent agreement with experimental measurements in both ohmic and high confinement mode plasmas. The stochastic model thus provides a valuable tool for predicting fluctuation-induced plasma-wall interactions in magnetically confined fusion plasmas.

  20. Stability Dust-Ion-Acoustic Wave In Dusty Plasmas With Stream -Influence Of Charge Fluctuation Of Dust Grains

    International Nuclear Information System (INIS)

    Atamaniuk, Barbara; Zuchowski, Krzysztof

    2006-01-01

    There is a quickly increasing wealth of experimental data on so-called dusty plasmas i. e. ionized gases or usual plasmas that contain micron sized charged particles. Interest in these structures is driven both by their importance in many astrophysical as well as commercial situations. Among them are linear and nonlinear wave phenomena. We consider the influence of dust charge fluctuations on stability of the ion-acoustic waves when the stream of particles is present. It is assumed that all grains of dust have equal masses but charges are not constant in time-they may fluctuate in time. The dust charges are not really independent of the variations of the plasma potentials. All modes will influence the charging mechanism, and feedback will lead to several new interesting and unexpected phenomena. The charging of the grains depends on local plasma characteristics. If the waves disturb these characteristic, then charging of the grains is affected and the grain charge is modified, with a resulting feedback on the wave mode. In case considering here, when temperature of electrons is much greater then the temperature of the ions and temperature of electrons is not great enough for further ionization of the ions, we show that stability of the acoustic wave depends only one phenomenological coefficient

  1. Time-resolved Evolution of Low Frequency Electrostatic Fluctuations during Slow L-H Transition at the Boundary Plasma of HL-2A Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, J.; Zhao, K. J.; Li, Y. G.; Song, X. M.; Yang, Q. W.; Ding, X. T.; Duan, X. R.; Liu, Y., E-mail: chengj@swip.ac.cn [Southwestern Institute of Physics, Chengdu (China); Huang, Z. H.; Yan, L. W.; Dong, J. Q.; Hong, W. Y.; Kong, D. F.; Lan, T.; Liu, A. D. [Southwestern Institute of Physics, Hefei (China); Xu, M. [CMTFO and CER and MAE Department, UCSD, La Jolla (United States)

    2012-09-15

    Full text: A quasi-period electrostatic oscillation with 2 - 3 kHz is observed using Langmuir probe array during slow L-H transition in edge plasma of HL-2A Tokomak. This low frequency oscillation radially propagates inwards with 0.3 - 0.6 km/s inside the separatrix about 3 - 8 mm, and it appears on potential, density, electron pressure and Reynolds stress gradients. The dP{sub e}/dr fluctuation amplitude can reach 30 - 40%. The dR{sub s}/dr is prior to E{sub r} fluctuation about {pi}/2, indicating the existence of nonlinear interaction between them. In near SOL, this low frequency oscillation also appears in potentials, E{sub r} and density fluctuation, suggesting a significant correlation among them at edge and near SOL plasma. This quasi-period oscillation might be correlated with mean flow or low frequency zonal flow, and the latter might set a condition for the former developing, implying a competitive process between them. The competition characterized by a quasi-period oscillation seems to determine the L-H transition. (author)

  2. Energy loss of ions by electric-field fluctuations in a magnetized plasma.

    Science.gov (United States)

    Nersisyan, Hrachya B; Deutsch, Claude

    2011-06-01

    The results of a theoretical investigation of the energy loss of charged particles in a magnetized classical plasma due to the electric-field fluctuations are reported. The energy loss for a test particle is calculated through the linear-response theory. At vanishing magnetic field, the electric-field fluctuations lead to an energy gain of the charged particle for all velocities. It has been shown that in the presence of strong magnetic field, this effect occurs only at low velocities. In the case of high velocities, the test particle systematically loses its energy due to the interaction with a stochastic electric field. The net effect of the fluctuations is the systematic reduction of the total energy loss (i.e., the sum of the polarization and stochastic energy losses) at vanishing magnetic field and reduction or enhancement at strong field, depending on the velocity of the particle. It is found that the energy loss of the slow heavy ion contains an anomalous term that depends logarithmically on the projectile mass. The physical origin of this anomalous term is the coupling between the cyclotron motion of the plasma electrons and the long-wavelength, low-frequency fluctuations produced by the projectile ion. This effect may strongly enhance the stochastic energy gain of the particle.

  3. On current fluctuations in near-earth space plasma with lower-hybrid-drift turbulence

    International Nuclear Information System (INIS)

    Meister, C.V.

    1993-01-01

    Electron and ion current fluctuations caused by lower-hybrid-drift turbulence are estimated within nonlinear theory for the plasma of the ionospheric F-layer, as well as for the plasma mantle and the plasma sheet boundary layer of the tail of the earth's magnetosphere. They are found to be of the order of 10 -14 - 10 -11 A/m 2 and 10 -13 - 10 -9 A/m 2 , respectively. (orig.)

  4. Magnetic Fluctuations during plasma current rise of divertor discharge in JT-60

    International Nuclear Information System (INIS)

    Ushigusa, Kenkichi; Kikuchi, Mitsuru; Hosogane, Nobuyuki; Tsuji, Syunji; Hayashi, Kazuo.

    1986-03-01

    During a current rise phase in the JT-60 divertor discharge, a series of magnetic fluctuations which do not rotate poloidally (phase-locking) is observed. They cause a cooling of plasma periphery and an enhancement of H α emission in the divertor chamber. A significant increase in β P + 1 i /2 with minor disruptions during the phase-locked magnetic fluctuation suggests a relaxation of the current profile in the current rise phase of the divertor discharge. (author)

  5. Core density fluctuations in reverse magnetic shear plasmas with internal transport barrier on JT-60U

    International Nuclear Information System (INIS)

    Nazikian, R.; Shinohara, K.; Yoshino, R.; Fujita, T.; Shirai, H.; Kramer, G.T.

    1999-01-01

    First measurements of the radial correlation length of density fluctuations in JT-60U plasmas with internal transport barrier (ITB) is reported. The measurements are obtained using a newly installed correlation reflectometer operating in the upper X-mode. Before transport barrier formation in the low beam power current ramp-up phase of the discharge, reflectometer measurements indicate density fluctuation levels n-tilde/n∼0.1-0.2% and radial correlation lengths 2-3 cm (k r p i ≤0.5) in the central plasma region (r/a r p i ∼3. However, fluctuation levels are considerably higher than measured near the magnetic axis. Reflectometer measurements obtained at the foot of the ITB also indicate high fluctuation levels compared to measurements in the central region of the discharge. (author)

  6. Derivation of stochastic differential equations for scrape-off layer plasma fluctuations from experimentally measured statistics

    Energy Technology Data Exchange (ETDEWEB)

    Mekkaoui, Abdessamad [IEK-4 Forschungszentrum Juelich 52428 (Germany)

    2013-07-01

    A method to derive stochastic differential equations for intermittent plasma density dynamics in magnetic fusion edge plasma is presented. It uses a measured first four moments (mean, variance, Skewness and Kurtosis) and the correlation time of turbulence to write a Pearson equation for the probability distribution function of fluctuations. The Fokker-Planck equation is then used to derive a Langevin equation for the plasma density fluctuations. A theoretical expectations are used as a constraints to fix the nonlinearity structure of the stochastic differential equation. In particular when the quadratically nonlinear dynamics is assumed, then it is shown that the plasma density is driven by a multiplicative Wiener process and evolves on the turbulence correlation time scale, while the linear growth is quadratically damped by the fluctuation level. Strong criteria for statistical discrimination of experimental time series are proposed as an alternative to the Kurtosis-Skewness scaling. This scaling is broadly used in contemporary literature to characterize edge turbulence, but it is inappropriate because a large family of distributions could share this scaling. Strong criteria allow us to focus on the relevant candidate distribution and approach a nonlinear structure of edge turbulence model.

  7. A direct indication of plasma potential diagnostic with fast time response and high accuracy based on a differential emissive probe

    International Nuclear Information System (INIS)

    Yao, W.E.; Hershkowitz; Intrator, T.

    1985-01-01

    The floating potential of the emissive probe has been used to directly measure the plasma potential. The authors have recently presented another method for directly indicating the plasma potential with a differential emissive probe. In this paper they describe the effects of probe size, plasma density and plasma potential fluctuation on plasma potential measurements and give methods for reducing errors. A control system with fast time response (α 20 μs) and high accuracy (the order of the probe temperature T/sub w//e) for maintaining a differential emissive probe at plasma potential has been developed. It can be operated in pulsed discharge plasma to measure plasma potential dynamic characteristics. A solid state optical coupler is employed to improve circuit performance. This system was tested experimentally by measuring the plasma potential in an argon plasma device an on the Phaedrus tandem mirror

  8. A direct indication of plasma potential diagnostic with fast time response and high accuracy based on a differential emissive probe

    International Nuclear Information System (INIS)

    Yao, W.E.; Hershkowitz, N.; Intrator, T.

    1985-01-01

    The floating potential of the emissive probe has been used to directly measure the plasma potential. The authors have recently presented another method for directly indicating the plasma potential with a differential emissive probe. In this paper they describe the effects of probe size, plasma density and plasma potential fluctuation on plasma potential measurements and give methods for reducing errors. A control system with fast time response (≅ 20 μs) and high accuracy (the order of the probe temperature T/sub w//e) for maintaining a differential emissive probe at plasma potential has been developed. It can be operated in pulsed discharge plasma to measure plasma potential dynamic characteristics. A solid state optical coupler is employed to improve circuit performance. This system was tested experimentally by measuring the plasma potential in an argon plasma device and on the Phaedrus tandem mirror

  9. Neutral Beam Source and Target Plasma for Development of a Local Electric Field Fluctuation Diagnostic

    Science.gov (United States)

    Bakken, M. R.; Burke, M. G.; Fonck, R. J.; Lewicki, B. T.; Rhodes, A. T.; Winz, G. R.

    2016-10-01

    A new diagnostic measuring local E-> (r , t) fluctuations is being developed for plasma turbulence studies in tokamaks. This is accomplished by measuring fluctuations in the separation of the π components in the Hα motional Stark spectrum. Fluctuations in this separation are expected to be Ẽ / ẼEMSE 10-3EMSE 10-3 . In addition to a high throughput, high speed spectrometer, the project requires a low divergence (Ω 0 .5°) , 80 keV, 2.5 A H0 beam and a target plasma test stand. The beam employs a washer-stack arc ion source to achieve a high species fraction at full energy. Laboratory tests of the ion source demonstrate repeatable plasmas with Te 10 eV and ne 1.6 ×1017 m-3, sufficient for the beam ion optics requirements. Te and ne scalings of the ion source plasma are presented with respect to operational parameters. A novel three-phase resonant converter power supply will provide 6 mA/cm2 of 80 keV H0 at the focal plane for pulse lengths up to 15 ms, with low ripple δV / 80 keV 0.05 % at 280 kHz. Diagnostic development and validation tests will be performed on a magnetized plasma test stand with 0.5 T field. The test chamber will utilize a washer-stack arc source to produce a target plasma comparable to edge tokamak plasmas. A bias-plate with programmable power supply will be used to impose Ẽ within the target plasma. Work supported by US DOE Grant DE-FG02-89ER53296.

  10. Collective laser light scattering from electron density fluctuations in fusion research plasmas (invited)

    International Nuclear Information System (INIS)

    Holzhauer, E.; Dodel, G.

    1990-01-01

    In magnetically confined plasmas density fluctuations of apparently turbulent nature with broad spectra in wave number and frequency space are observed which are thought to be the cause for anomalous energy and particle transport across the confining magnetic field. Collective laser light scattering has been used to study the nature of these fluctuations. Specific problems of scattering from fusion plasmas are addressed and illustrated with experimental results from the 119 μm far infrared laser scattering experiment operated on the ASDEX tokamak. Using the system in the heterodyne mode the direction of propagation with respect to the laboratory frame can be determined. Spatial resolution has bean improved by making use of the change in pitch of the total magnetic field across the minor plasma radius. Special emphasis is placed on the ohmic phase where a number of parameter variations including electron density, electron temperature, toroidal magnetic field, and filling gas were performed

  11. The theory of electromagnetic wave scattering by density fluctuations in nonequilibrium plasma

    International Nuclear Information System (INIS)

    Pavlenko, V.N.; Panchenko, V.G.

    1993-01-01

    Scattering of electromagnetic waves by density fluctuations in a magnetized plasma in the presence of the external pump field is investigated. The spectral density of electron density fluctuations is calculated. The pump wave is supposed to decay into a lower hybrid wave and low frequency oscillations (ion-acoustic wave, modified convective cell and ion-cyclotron wave with ion-temperature anisotropy). When the pump wave amplitude tends to the threshold strength of the electric field, the scattering cross section increases anomalously, i.e. there is the critical opalescence. The differential scattering cross section dependence on the pump amplitude and ion temperature anisotropy is obtained in the region above the parametric instability threshold. For characteristic parameters of fusion and space plasmas it is shown that the pump field terms considerably surmount the thermal noise contribution to the scattering cross section

  12. Experimental and theoretical investigation of density and potential fluctuations in the scrape-off layer of ASDEX

    Energy Technology Data Exchange (ETDEWEB)

    Endler, M; Giannone, L.; Niedermeyer, H; Rudyj, A; Theimer, G [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

    1994-12-31

    Electrostatic fluctuations (i.e. the magnetic field is assumed constant) are candidates for the explanation of the anomalous transport of particles and energy in both tokamaks and stellarators. While most theoretical effort has been directed to an explanation of the anomalous transport in the bulk plasma, it is now widely being realized that the anomalous radial transport in the scrape-off layer, determining the width of the power flow channel at limiter or divertor plates, may be equally important to a future reactor experiment. In the divertor tokamak ASDEX density and potential fluctuations in the scrape-off layer were investigated with high temporal and spatial resolution by Langmuir probes and an H{sub {alpha}} diagnostic. Many results of these measurements were reported and are summarized below. Several of these properties of the fluctuations have also been reported from other experiments. (author) 3 refs., 4 figs.

  13. Parallel-beam correlation technique for measuring density fluctuations in plasmas with strong magnetic shear

    International Nuclear Information System (INIS)

    Jacobson, A.R.

    1981-04-01

    A laser diagnostic scheme is described which facilitates localization of density fluctuations along the line of sight. The method exploits both the generally observed anisotropy of density fluctuations in low-beta plasmas, as well as the twisting of the magnetic field which occurs across the minor diameter of reversed-field pinches, spheromaks, etc. Both interferometric and schlieren variations are discussed

  14. Development of ion-acoustic double layers through ion-acoustic fluctuations

    International Nuclear Information System (INIS)

    Sekar, A.N.; Saxena, Y.C.

    1985-01-01

    Experimental results on the formation of ion acoustic double layers resembling asymmetric ion-holes are presented. In a double plasma device, modified suitably to inject electron beam into the target plasma, modulation of the beam through step potential leads to excitation of ion-acoustic fluctuation. The ion-acoustic fluctuation, growing away from the grids separating source and target plasmas, developed into weak asymmetric ion-acoustic double layer. The observations are in qualitative agreement with theoretical models and computer simulations. (author)

  15. A Tutorial on Basic Principles of Microwave Reflectometry Applied to Fluctuation Measurements in Fusion Plasmas

    International Nuclear Information System (INIS)

    Nazikian, R.; Kramer, G.J.; Valeo, E.

    2001-01-01

    Microwave reflectometry is now routinely used for probing the structure of magnetohydrodynamic and turbulent fluctuations in fusion plasmas. Conditions specific to the core of tokamak plasmas, such as small amplitude of density irregularities and the uniformity of the background plasma, have enabled progress in the quantitative interpretation of reflectometer signals. In particular, the extent of applicability of the 1-D [one-dimensional] geometric optics description of the reflected field is investigated by direct comparison to 1-D full wave analysis. Significant advances in laboratory experiments are discussed which are paving the way towards a thorough understanding of this important measurement technique. Data is presented from the Tokamak Fusion Test Reactor [R. Hawryluk, Plasma Physics and Controlled Fusion 33 (1991) 1509] identifying the validity of the geometric optics description of the scattered field and demonstrating the feasibility of imaging turbulent fluctuations in fusion scale devices

  16. The scattering of E. M. waves from density fluctuations in a plasma

    International Nuclear Information System (INIS)

    Hagfors, T.

    1977-01-01

    The scattering of electromagnetic (EM) waves by a single electron is developed from first principles. The result is used to derive the relationship of the scattered power spectrum to the spacetime Fourier transform of the electron density fluctuations in a plasma. (Auth.)

  17. Fluctuations and transport in fusion plasmas. Annual progress report, October 1, 1983-September 30, 1984

    International Nuclear Information System (INIS)

    Gould, R.W.

    1984-01-01

    This grant supports an integrated program of experiment and theory in tokamak plasma physics. Emphasis is placed on microscopic fluctuations and anomalous transport. The primary objective is to characterize the properties of the microscopic fluctuations observed in tokamaks and to try to develop an understanding of the fluctuation-induced transport of particles and heat. Anomalous transport, which causes energy losses one to two orders of magnitude larger than predicted by neoclassical transport theory, occurs in all tokamaks and underlies empirical scaling laws

  18. Lithium line radiation in turbulent edge plasmas: Effects of low and high frequency temperature fluctuations

    Science.gov (United States)

    Rosato, J.; Capes, H.; Catoire, F.; Kadomtsev, M. B.; Levashova, M. G.; Lisitsa, V. S.; Marandet, Y.; Rosmej, F. B.; Stamm, R.

    2011-08-01

    In lithium-wall-conditioned tokamaks, the line radiation due to the intrinsic impurities (Li/Li+/Li++) plays a significant role on the power balance. Calculations of the radiation losses are usually performed using a stationary collisional-radiative model, assuming constant values for the plasma parameters (Ne, Te,…). Such an approach is not suitable for turbulent plasmas where the various parameters are time-dependent. This is critical especially for the edge region, where the fluctuation rates can reach several tens of percents [e.g. J.A. Boedo, J. Nucl. Mater. 390-391 (2009) 29-37]. In this work, the role of turbulence on the radiated power is investigated with a statistical formalism. A special emphasis is devoted to the role of temperature fluctuations, successively for low-frequency fluctuations and in the general case where the characteristic turbulence frequencies can be comparable to the collisional and radiative rates.

  19. Nonstandard primordial fluctuations from a polynomial inflation potential

    International Nuclear Information System (INIS)

    Hodges, H.M.; Kofman, L.A.; Primack, J.R.; California Univ., Santa Cruz, CA; California Univ., Berkeley, CA

    1990-01-01

    We examine in detail the properties of inflation determined from the most general renormalizable potential for a single real scalar field Φ: V(Φ)=AΦ 4 /4+BΦ 3 /3+CΦ 2 /2+V 0 . We find sets of parameters that can strongly break scale invariance, with a valley in the usual Zel'dovich spectrum. Such a valley can lead to earlier galaxy formation and more large scale structure in the Universe than in the usual scale-invariant cold dark matter scenario. We also find that the parameters of the potential can be many orders of magnitude larger than what would be allowed without the inclusion of the cubic term, which can lead to high reheat temperatures T reh ≅ 10 15 GeV. We have mapped out all regions of parameter space and have identified those regions that produce interesting behavior, as well as the entire region that leads to an acceptable inflationary scenario with small enough fluctuations. We further explore the possibility of generating interesting non-gaussian adiabatic density fluctuations from this potential, and find that it is unlikely for general single scalar field potentials that do not contain false vacua in the path of the inflaton, as significant non-gaussian behavior implies too large a fluctuation amplitude. (orig.)

  20. Influence of the collisional recombination on the electrostatic fluctuation spectrum in an helium plasma

    International Nuclear Information System (INIS)

    Baravian, G.; Bretagne, J.; Godart, J.; Sultan, G.

    1975-01-01

    The collisional recombination, in the afterglow of a dense plasma, is regarded as a source process for an overpopulation of the high energy tail of the electron velocity distribution function. The perturbation of the distribution function leads to an important enhancement of the fluctuations of the electrostatic field in a narrow range near the plasma frequency ωsub(p). (orig.) [de

  1. Consideration of magnetic field fluctuation measurements in a torus plasma with heavy ion beam probe

    International Nuclear Information System (INIS)

    Shimizu, A.; Fujisawa, A.; Ohshima, S.; Nakano, H.

    2004-03-01

    The article discusses feasibility of magnetic fluctuation measurement with a heavy ion beam probe (HIBP) in an axisymmetric torus configuration. In the measurements, path integral fluctuation along the probing beam orbit should be considered as is similar to the density fluctuation measurements with HIBP. A calculation, based on an analytic formula, is performed to estimate the path integral effects for fluctuation patterns that have difference in profile, the correlation length, the radial wavelength, and the poloidal mode number. In addition, the large distance between the plasma and the detector is considered to lessen the path integral effect. As a result, it is found that local fluctuation of magnetic field can be properly detected with a heavy ion beam probe. (author)

  2. Lithium line radiation in turbulent edge plasmas: Effects of low and high frequency temperature fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Rosato, J., E-mail: joel.rosato@univ-provence.fr [PIIM, UMR 6633, Universite de Provence/CNRS, Centre de St.-Jerome, Case 232, F-13397 Marseille Cedex 20 (France); Capes, H.; Catoire, F. [PIIM, UMR 6633, Universite de Provence/CNRS, Centre de St.-Jerome, Case 232, F-13397 Marseille Cedex 20 (France); Kadomtsev, M.B.; Levashova, M.G.; Lisitsa, V.S. [ITP, Russian Research Center ' Kurchatov Institute' , Moscow (Russian Federation); Marandet, Y. [PIIM, UMR 6633, Universite de Provence/CNRS, Centre de St.-Jerome, Case 232, F-13397 Marseille Cedex 20 (France); Rosmej, F.B. [LULI, UMR 7605, Universite Pierre et Marie Curie/CNRS, 4 Place Jussieu, Case 128, F-75252 Paris Cedex 05 (France); Stamm, R. [PIIM, UMR 6633, Universite de Provence/CNRS, Centre de St.-Jerome, Case 232, F-13397 Marseille Cedex 20 (France)

    2011-08-01

    In lithium-wall-conditioned tokamaks, the line radiation due to the intrinsic impurities (Li/Li{sup +}/Li{sup ++}) plays a significant role on the power balance. Calculations of the radiation losses are usually performed using a stationary collisional-radiative model, assuming constant values for the plasma parameters (N{sub e}, T{sub e},...). Such an approach is not suitable for turbulent plasmas where the various parameters are time-dependent. This is critical especially for the edge region, where the fluctuation rates can reach several tens of percents [e.g. J.A. Boedo, J. Nucl. Mater. 390-391 (2009) 29-37]. In this work, the role of turbulence on the radiated power is investigated with a statistical formalism. A special emphasis is devoted to the role of temperature fluctuations, successively for low-frequency fluctuations and in the general case where the characteristic turbulence frequencies can be comparable to the collisional and radiative rates.

  3. Improved Frequency Fluctuation Model for Spectral Line Shape Calculations in Fusion Plasmas

    International Nuclear Information System (INIS)

    Ferri, S.; Calisti, A.; Mosse, C.; Talin, B.; Lisitsa, V.

    2010-01-01

    A very fast method to calculate spectral line shapes emitted by plasmas accounting for charge particle dynamics and effects of an external magnetic field is proposed. This method relies on a new formulation of the Frequency Fluctuation Model (FFM), which yields to an expression of the dynamic line profile as a functional of the static distribution function of frequencies. This highly efficient formalism, not limited to hydrogen-like systems, allows to calculate pure Stark and Stark-Zeeman line shapes for a wide range of density, temperature and magnetic field values, which is of importance in plasma physics and astrophysics. Various applications of this method are presented for conditions related to fusion plasmas.

  4. Scrape-off layer-induced beam density fluctuations and their effect on beam emission spectroscopy

    Science.gov (United States)

    Moulton, D.; Marandet, Y.; Tamain, P.; Dif-Pradalier, G.

    2015-07-01

    A statistical model is presented to calculate the magnitude of beam density fluctuations generated by a turbulent scrape-off layer (SOL). It is shown that the SOL can induce neutral beam density fluctuations of a similar magnitude to the plasma density fluctuations in the core, potentially corrupting beam emission spectroscopy measurements. The degree of corruption is quantified by combining simulations of beam and plasma density fluctuations inside a simulated measurement window. A change in pitch angle from the separatrix to the measurement window is found to reduce the effect of beam fluctuations, whose largest effect is to significantly reduce the measured correlation time.

  5. Study of density fluctuation in L-mode and H-mode plasmas on JFT-2M by microwave reflectometer

    International Nuclear Information System (INIS)

    Shinohara, Kouji

    1997-08-01

    We propose the model which can explain the runaway phase. The model takes account of the scattered wave which is caused by the density fluctuation near the cut-off layer. We should take a new approach instead of the conventional phase measurement in order to derive the information of the density fluctuation from the data with the runaway phase. The complex spectrum and the rotary spectrum analyses are useful tools to analyze such data. The density fluctuation in L-mode and H-mode plasmas is discussed by using this new approach. We have observed that the reduction of the density fluctuation is localized in the edge region where the sheared electric field is produced. The fluctuations in the range of frequency lower than 100 kHz are mainly reduced. Two interesting features have been observed. One is the detection of the coherent mode around 100 kHz in H-mode. This mode appears about 10 ms after L to H transition. The timing corresponds to the formation of a steep density and temperature gradient in the edge region. The other is the enhancement of the fluctuations with the frequency higher than 300 kHz in H-mode in contrast to the reduction of the fluctuations with the frequency lower than 100 kHz. The Doppler shift is observed in the complex auto-power spectrum of the reflected wave when the plasma is actively moved. We have confirmed that the movement of the plasma is appropriately measured by using the low pass filter. The reflectometer can be used to measure the density profile by using a low pass filter even when the runaway phase phenomenon occurs. (author). 150 refs

  6. Plasma density fluctuation measurements from coherent and incoherent microwave reflection

    International Nuclear Information System (INIS)

    Conway, G.D.; Schott, L.; Hirose, A.

    1996-01-01

    Using the spatial coherency present in a reflected microwave signal (Conway et al 1994 Rev. Sci. Instrum. 65 2920) it is possible to measure a coherent, Γ c , and an incoherent, Γ i , reflection coefficient (proportional to the radar cross section) from a turbulent plasma cutoff layer. Results acquired with a 17 GHz reflectometer from a STOR-M tokamak edge region (r/a ∼ 0.8) give significant Γ c and Γ i , which suggests two-dimensional structure in the reflection layer. Using a 'distorted-mirror' model for the plasma fluctuations, estimates of an effective radial width, σ, and poloidal correlation length, L p , can be derived from the reflection coefficients. STOR-M results typically give a σ of a few millimetres and an L p of a couple of centimetres. (author)

  7. Electrostatic fluctuation and fluctuation-induced particle flux during formation of the edge transport barrier in the JFT-2M tokamak

    International Nuclear Information System (INIS)

    Ido, T.; Hamada, Y.; Nagashima, Y.; Nishizawa, A.; Kawasumi, Y.; Miura, Y.; Hoshino, K.; Ogawa, H.; Shinohara, K.; Kamiya, K.; Kusama, Y.

    2005-01-01

    The electrostatic fluctuation with Geodesic-Acoustic-Mode (GAM) frequency is observed in L-mode plasmas. The fluctuation has the poloidal wave number (k θ ) of (-2 ± 24) x 10 -3 (cm -1 ), that corresponds to the poloidal mode number of 1.5 or less, and the radial wave number (k r ) of 0.94 ± 0.05 (cm -1 ), that is corresponds to k r ρ i = 0.26 < 1. The amplitude of the fluctuation changes in the radial direction; it is small near the separatrix and it has maximum at 3 cm inside the separatrix. The relation between the amplitude of potential fluctuation and that of density fluctuation is the same as that of the predicted GAM. The fluctuation is probably GAM. The envelope of ambient density fluctuation and the potential fluctuation have a significant coherence at the GAM frequency. Thus, it is clearly verified that the fluctuation with the GAM frequency correlates with the ambient density fluctuation. The fluctuation with the GAM frequency affects the particle transport through the modulation of the ambient fluctuation. But the effect is not large, and it is not a sufficient condition to form the edge transport barrier and to drive the intermittent particle flux. (author)

  8. Electrostatic fluctuation and fluctuation-induced particle flux during formation of the edge transport barrier in the JFT-2M tokamak

    International Nuclear Information System (INIS)

    Ido, T.; Miura, K.; Hoshino, K.

    2005-01-01

    The electrostatic fluctuation with Geodesic-Acoustic-Mode (GAM) frequency is observed in L-mode plasmas. The fluctuation has the poloidal wave number (k θ ) of (-2 ± 24) x 10 -3 (cm -1 ), that corresponds to the poloidal mode number of 1.5 or less, and the radial wave number (k γ ) of 0.94±0.05 (cm -1 ), that is corresponds to k γ ρ i =0.26 < 1. The amplitude of the fluctuation changes in the radial direction; it is small near the separatrix and it has maximum at 3 cm inside the separatrix. The relation between the amplitude of potential fluctuation and that of density fluctuation is the same as that of the predicted GAM. The fluctuation is probably GAM. The envelope of ambient density fluctuation and the potential fluctuation have a significant coherence at the GAM frequency. Thus, it is clearly verified that the fluctuation with the GAM frequency correlates with the ambient density fluctuation. The fluctuation with the GAM frequency affects the particle transport through the modulation of the ambient fluctuation. But the effect is not large, and it is not a sufficient condition to form the edge transport barrier and to drive the intermittent particle flux. (author)

  9. Equilibrium fluctuations formulas for the quantum one-component plasma in a magnetic field

    NARCIS (Netherlands)

    John, P.; Suttorp, L.G.

    1993-01-01

    The authors derive a complete set of equilibrium fluctuation formulae for the charge density, the current density and the energy density of the quantum one-component plasma in a magnetic field. The derivation is based on the use of imaginary-time-dependent Green functions and their Kubo transforms.

  10. On generation of Alfvenic-like fluctuations by drift wave-zonal flow system in large plasma device experiments

    International Nuclear Information System (INIS)

    Horton, W.; Correa, C.; Chagelishvili, G. D.; Avsarkisov, V. S.; Lominadze, J. G.; Perez, J. C.; Kim, J.-H.; Carter, T. A.

    2009-01-01

    According to recent experiments, magnetically confined fusion plasmas with ''drift wave-zonal flow turbulence'' (DW-ZF) give rise to broadband electromagnetic waves. Sharapov et al. [Europhysics Conference Abstracts, 35th EPS Conference on Plasma Physics, Hersonissos, 2008, edited by P. Lalousis and S. Moustaizis (European Physical Society, Switzerland, 2008), Vol. 32D, p. 4.071] reported an abrupt change in the magnetic turbulence during L-H transitions in Joint European Torus [P. H. Rebut and B. E. Keen, Fusion Technol. 11, 13 (1987)] plasmas. A broad spectrum of Alfvenic-like (electromagnetic) fluctuations appears from ExB flow driven turbulence in experiments on the large plasma device (LAPD) [W. Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] facility at UCLA. Evidence of the existence of magnetic fluctuations in the shear flow region in the experiments is shown. We present one possible theoretical explanation of the generation of electromagnetic fluctuations in DW-ZF systems for an example of LAPD experiments. The method used is based on generalizing results on shear flow phenomena from the hydrodynamics community. In the 1990s, it was realized that fluctuation modes of spectrally stable nonuniform (sheared) flows are non-normal. That is, the linear operators of the flows modal analysis are non-normal and the corresponding eigenmodes are not orthogonal. The non-normality results in linear transient growth with bursts of the perturbations and the mode coupling, which causes the generation of electromagnetic waves from the drift wave-shear flow system. We consider shear flow that mimics tokamak zonal flow. We show that the transient growth substantially exceeds the growth of the classical dissipative trapped-particle instability of the system.

  11. Kinetic evolution and correlation of fluctuations in an expanding quark gluon plasma

    Science.gov (United States)

    Sarwar, Golam; Alam, Jan-E.

    2018-03-01

    Evolution of spatially anisotropic perturbation created in the system formed after Relativistic Heavy Ion Collisions has been studied. The microscopic evolution of the fluctuations has been examined within the ambit of Boltzmann Transport Equation (BTE) in a hydrodynamically expanding background. The expansion of the background composed of quark gluon plasma (QGP) is treated within the framework of relativistic hydrodynamics. Spatial anisotropic fluctuations with different geometries have been evolved through Boltzmann equation. It is observed that the trace of such fluctuation survives the evolution. Within the relaxation time approximation, analytical results have been obtained for the evolution of these anisotropies. Explicit relations between fluctuations and transport coefficients have been derived. The mixing of various Fourier (or k) modes of the perturbations during the evolution of the system has been explicitly demonstrated. This study is very useful in understanding the presumption that the measured anisotropies in the data from heavy ion collisions at relativistic energies imitate the initial state effects. The evolution of correlation function for the perturbation in pressure has been studied and shows that the initial correlation between two neighbouring points in real space evolves to a constant value at later time which gives rise to Dirac delta function for the correlation function in Fourier space. The power spectrum of the fluctuation in thermodynamic quantities (like temperature estimated in this work) can be connected to the fluctuation in transverse momentum of the thermal hadrons measured experimentally. The bulk viscous coefficient of the QGP has been estimated by using correlations of pressure fluctuation with the help of Green-Kubo relation. Angular power spectrum of the anisotropies has been estimated in the appendix.

  12. Kinetic instabilities in plasmas: from electromagnetic fluctuations to collisionless shocks

    International Nuclear Information System (INIS)

    Ruyer, Charles

    2014-01-01

    Collisionless shocks play a major role in powerful astrophysical objects (e.g., gamma-ray bursts, supernova remnants, pulsar winds, etc.), where they are thought to be responsible for non-thermal particle acceleration and radiation. Numerical simulations have shown that, in the absence of an external magnetic field, these self-organizing structures originate from electromagnetic instabilities triggered by high-velocity colliding flows. These Weibel-like instabilities are indeed capable of producing the magnetic turbulence required for both efficient scattering and Fermi-type acceleration. Along with rapid advances in their theoretical understanding, intense effort is now underway to generate collisionless shocks in the laboratory using energetic lasers. In a first part we study the (w,k)-resolved electromagnetic thermal spectrum sustained by a drifting relativistic plasma. In particular, we obtain analytical formulae for the fluctuation spectra, the latter serving as seeds for growing magnetic modes in counterstreaming plasmas. Distinguishing between sub-luminal and supra-luminal thermal fluctuations, we derived analytical formulae of their respective spectral contributions. Comparisons with particle-in-cell (PIC) simulations are made, showing close agreement in the sub-luminal regime along with some discrepancy in the supra-luminal regime. Our formulae are then used to estimate the saturation time of the Weibel instability of relativistic pair plasmas. Our predictions are shown to match 2-D particle-in-cell (PIC) simulations over a three-decade range in flow energy. We then develop a predictive kinetic model of the nonlinear phase of the Weibel instability induced by two counter-streaming, symmetric and non-relativistic ion beams. This self consistent, fully analytical model allows us to follow the evolution of the beams' properties up to a stage close to complete isotropization and thus to shock formation. Its predictions are supported by 2D and 3D particle

  13. Plasma mass density, species mix and fluctuation diagnostics using fast Alfven wave

    International Nuclear Information System (INIS)

    Ikezi, H.; deGrassie, J.S.; Pinsker, R.I.; Snider, R.T.

    1996-06-01

    The authors propose to employ a fast Alfven wave interferometer and reflectometer as a tokamak diagnostic to measure the plasma mass density, D-T species mix profile, and density fluctuations. Utilize the property that the phase velocity of the fast wave propagating across the magnetic field is the Alfven speed with thermal correction, this fast wave interferometer on the DIII-D tokamak was successfully used to obtain the line integrated density. Since the position of the ion-ion hybrid cut-off in tokamaks is uniquely determined by the species mix ratio and the wave frequency, the reflectometer arrangement finds the species mix profile. The inversion method of reflectometry is discussed. The multiple chord interferometer also measures the mass density fluctuation profile

  14. Plasma mass density, species mix and fluctuation diagnostics using fast Alfven wave

    Energy Technology Data Exchange (ETDEWEB)

    Ikezi, H.; deGrassie, J.S.; Pinsker, R.I.; Snider, R.T.

    1996-06-01

    The authors propose to employ a fast Alfven wave interferometer and reflectometer as a tokamak diagnostic to measure the plasma mass density, D-T species mix profile, and density fluctuations. Utilize the property that the phase velocity of the fast wave propagating across the magnetic field is the Alfven speed with thermal correction, this fast wave interferometer on the DIII-D tokamak was successfully used to obtain the line integrated density. Since the position of the ion-ion hybrid cut-off in tokamaks is uniquely determined by the species mix ratio and the wave frequency, the reflectometer arrangement finds the species mix profile. The inversion method of reflectometry is discussed. The multiple chord interferometer also measures the mass density fluctuation profile.

  15. Fluctuation characteristics of arc voltage and jet flow in a non-transferred dc plasma generated at reduced pressure

    International Nuclear Information System (INIS)

    Pan, W X; Guo, Z Y; Meng, X; Huang, H J; Wu, C K

    2009-01-01

    A torch with a set of inter-electrode inserts between the cathode and the anode/nozzle with a wide nozzle exit was designed to generate plasma jets at chamber pressures of 500-10 000 Pa. The variation of the arc voltage was examined with the change in working parameters such as gas flow rate and chamber pressure. The fluctuation in the arc voltage was recorded with an oscilloscope, and the plasma jet fluctuation near the torch exit was observed with a high-speed video camera and detected with a double-electrostatic probe. Results show that the 300 Hz wave originated from the tri-phase rectified power supply was always detected under all generating conditions. Helmholtz oscillations over 3000 Hz was detected superposed on the 300 Hz wave at gas flow rates higher than 8.8 slm with a peak to valley amplitude lower than 5% of the average voltage value. No appreciable voltage fluctuation caused by the irregular arc root movement is detected, and mechanisms for the arc voltage and jet flow fluctuations are discussed.

  16. An experimental study of plasma fluctuations in the TCV and TEXTOR Tokamaks

    International Nuclear Information System (INIS)

    Mejeire de, C. A.

    2013-01-01

    The main body of this thesis reports on the commissioning and first measurements with a novel tangential phase-contrast imaging (TPCI) diagnostic, which had previously been installed in the TCV tokamak. The instrument measures fluctuations in line-integrated electron density along 9 parallel chords within a 6 cm diameter CO 2 laser beam. TPCI measurements reveal the first evidence in TCV of the geodesic acoustic mode (GAM), which is an oscillating zonal flow. Frequency, radial wavelength, radial extent and propagation are all in qualitative agreement with a gyro-kinetic simulation and recent theoretical work. The mode is found to have a modest, but measurable magnetic component, whose spatial structure is characterised for the first time in a toroidal plasma. For some experiments, clear evidence is found of the theoretically expected m/n = 2/0 mode structure, although in others the structure appears to be more complex. Electron energy confinement in X 2 heated TCV L-mode plasmas had previously been observed to increase on changing the triangularity (δ) of the poloidal plasma cross-section from δ = +0.4 to δ = −0.4. Measurements with the TPCI diagnostic reveal that this change coincides with a clear decrease in both the absolute level and the decorrelation time of broadband electron density fluctuations. This is in agreement with the conjecture that the increased confinement time is caused by a change in the turbulent state. The second part of the thesis reports on a fluctuation study in the TEXTOR tokamak. At sufficiently weak toroidal magnetic field, NBI heated, limited TEXTOR plasmas exhibit bursts of beam-ion driven ‘fishbone’ and Alfvén modes, which are characterised using the multi-antenna reflectometer and Mirnov coils. In H-mode the fishbone triggers ELMs and in L-mode it triggers previously unobserved bursts of particle recycling, resembling the ELMs. The reflectometer phase shows statistically significant bispectral coherence between the fishbone

  17. The role of fluctuation-induced transport in a toroidal plasma with strong radial electric fields

    Science.gov (United States)

    Roth, J. R.; Krawczonek, W. M.; Powers, E. J.; Hong, J. Y.; Kim, Y. C.

    1981-01-01

    Previous work employing digitally implemented spectral analysis techniques is extended to demonstrate that radial fluctuation-induced transport is the dominant ion transport mechanism in an electric field dominated toroidal plasma. Such transport can be made to occur against a density gradient, and hence may have a very beneficial effect on confinement in toroidal plasmas of fusion interest. It is shown that Bohm or classical diffusion down a density gradient, the collisional Pedersen-current mechanism, and the collisionless electric field gradient mechanism described by Cole (1976) all played a minor role, if any, in the radial transport of this plasma.

  18. Enhanced confinement with plasma biasing in the MST reversed field pinch

    International Nuclear Information System (INIS)

    Craig, D.; Almagri, A.F.; Anderson, J.K.

    1997-06-01

    We report an increase in particle confinement with plasma biasing in a reversed field pinch. Miniature plasma sources are used as electrodes to negatively bias the plasma at the edge (r/a ∼ 0.9). Particle content increases and H α radiation decreases upon application of bias and global particle confinement roughly doubles as a result. Measurements of plasma potential, impurity flow, and floating potential fluctuations indicate that strong flows are produced and that electrostatic fluctuations are reduced

  19. Magnetic evaluation of hydrogen pressures changes on MHD fluctuations in IR-T1 tokamak plasma

    Science.gov (United States)

    Alipour, Ramin; Ghanbari, Mohamad R.

    2018-04-01

    Identification of tokamak plasma parameters and investigation on the effects of each parameter on the plasma characteristics is important for the better understanding of magnetohydrodynamic (MHD) activities in the tokamak plasma. The effect of different hydrogen pressures of 1.9, 2.5 and 2.9 Torr on MHD fluctuations of the IR-T1 tokamak plasma was investigated by using of 12 Mirnov coils, singular value decomposition and wavelet analysis. The parameters such as plasma current, loop voltage, power spectrum density, energy percent of poloidal modes, dominant spatial structures and temporal structures of poloidal modes at different plasma pressures are plotted. The results indicate that the MHD activities at the pressure of 2.5 Torr are less than them at other pressures. It also has been shown that in the stable area of plasma and at the pressure of 2.5 Torr, the magnetic force and the force of plasma pressure are in balance with each other and the MHD activities are at their lowest level.

  20. The effect of Gaussian white noise on the fractality of fluctuations in the plasma of a symmetrical discharge

    International Nuclear Information System (INIS)

    Stan, Cristina; Cristescu, Cristina Maria; Alexandroaei, D.; Cristescu, C.P.

    2014-01-01

    Highlights: •We study the white Gaussian noise effect on the fractality of plasma fluctuations. •Multifractality strength is increased by the noise, at all inter-anode voltages. •New positive influence of noise resulting in an increasing of the predictability. •Identifying the fluctuations nature: chaotic or stochastic by multifractal analysis. •Noise changes the position of the maximum in the singularity spectra. - Abstract: In this work we investigate the influence of white Gaussian noise on the fluctuations in the plasma of a symmetrical discharge using multifractal detrended fluctuation analysis. We observe that in the range of noise intensity used in our study, the multifractality strength is increased by the noise, at all values of the inter-anode voltage, both for original and filtered time-series. This is interpreted as a new positive influence of noise because this effect can be understood as an increasing in the predictability on the dynamics in a time-series. A constructive influence of noise can appear only for fluctuations with underlying chaotic dynamics. The shuffling analysis demonstrates that the multifractality is purely a consequence of the correlations of the fluctuations. The noise influence is also observed in the change of the position of the maximum in the singularity spectra. The multifractal detrended cross correlation between light intensity and current intensity demonstrates that the fluctuations in both parameters are generated by the same physical processes though they are very different in nature: one is a local parameter and the other is a global one

  1. Effects of rf power on electron density and temperature, neutral temperature, and Te fluctuations in an inductively coupled plasma

    International Nuclear Information System (INIS)

    Camparo, James; Fathi, Gilda

    2009-01-01

    Atomic clocks that fly on global-navigation satellites such as global positioning system (GPS) and Galileo employ light from low-temperature, inductively coupled plasmas (ICPs) for atomic signal generation and detection (i.e., alkali/noble-gas rf-discharge lamps). In this application, the performance of the atomic clock and the capabilities of the navigation system depend sensitively on the stability of the ICP's optical emission. In order to better understand the mechanisms that might lead to instability in these rf-discharge lamps, and hence the satellite atomic clocks, we studied the optical emission from a Rb/Xe ICP as a function of the rf power driving the plasma. Surprisingly, we found that the electron density in the plasma was essentially independent of increases in rf power above its nominal value (i.e., 'rf-power gain') and that the electron temperature was only a slowly varying function of rf-power gain. The primary effect of rf power was to increase the temperature of the neutrals in the plasma, which was manifested by an increase in Rb vapor density. Interestingly, we also found evidence for electron temperature fluctuations (i.e., fluctuations in the plasma's high-energy electron content). The variance of these fluctuations scaled inversely with the plasma's mean electron temperature and was consistent with a simple model that assumed that the total electron density in the discharge was independent of rf power. Taken as a whole, our results indicate that the electrons in alkali/noble-gas ICPs are little affected by slight changes in rf power and that the primary effect of such changes is to heat the plasma's neutral species.

  2. Effects of fueling profiles on plasma transport

    International Nuclear Information System (INIS)

    Houlberg, W.A.; Mense, A.T.; Attenberger, S.E.; Milora, S.L.

    1977-01-01

    The effects of cold particle fueling profiles on particle and energy transport in an ignition sized tokamak plasma are investigated in this study with a one-dimensional, multifluid transport model. A density gradient driven trapped particle microinstability model for plasma transport is used to demonstrate potential effects of fueling profiles on ignition requirements. Important criteria for the development of improved transport models under the conditions of shallow particle fueling profiles are outlined. A discrete pellet fueling model indicates that large fluctuations in density and temperature may occur in the outer regions of the plasma with large, shallowly penetrating pellets, but fluctuations in the pressure profile are small. The hot central core of the plasma remains unaffected by the large fluctuations near the plasma edge

  3. Effect of electric fields and fluctuations on confinement in a bumpy torus

    International Nuclear Information System (INIS)

    Hiroe, S.; Glowienka, J.C.; Hillis, D.L.

    1986-06-01

    In order to understand the relationships between confinement and space potential (electric field) and between confinement and density fluctuations, plasma parameters in the ELMO Bumpy Torus Scale (EBT-S) have been measured systematically for a wide range of operating conditions. Present EBT plasma parameters do not show a strong dependence on the potential profile, but rather exhibit a correlation with the fluctuations. The plasma pressure profile is found to be consistent with the profile anticipated on the basis of the flute stability criterion for a marginally stable plasma. For a heating power of 100 kW, the stored energy density is found to be restricted to the range between 4.5 x 10 13 eV-cm -3 and 7 x 10 13 eV-cm -3 . The lower limit remains constant regardless of heating power and pertains to plasmas lacking an equilibrium and/or stability. The upper limit increases with heating power and is found to result from the onset of instabilities. In between the two limits is a plasma that is in an equilibrium state and is marginally stable. Operational trajectories exist that take the EBT plasma from one limit to the other

  4. Size scaling effects on the particle density fluctuations in confined plasmas

    International Nuclear Information System (INIS)

    Vazquez, Federico; Markus, Ferenc

    2009-01-01

    In this paper, memory and nonlocal effects on fluctuating mass diffusion are addressed in the context of fusion plasmas. Nonlocal effects are included by considering a diffusivity coefficient depending on the size of the container in the transverse direction to the applied magnetic field. It is obtained by resorting to the general formulation of the extended version of irreversible thermodynamics in terms of the higher order dissipative fluxes. The developed model describes two different types of the particle density time correlation function. Both have been observed in tokamak and nontokamak devices. These two kinds of time correlation function characterize the wave and the diffusive transport mechanisms of particle density perturbations. A transition between them is found, which is controlled by the size of the container. A phase diagram in the (L,2π/k) space describes the relation between the dynamics of particle density fluctuations and the size L of the system together with the oscillating mode k of the correlation function.

  5. Bursty fluctuation characteristics in SOL/divertor plasmas of Large Helical Device

    International Nuclear Information System (INIS)

    Ohno, N.; Masuzaki, S.; Morisaki, T.; Ohyabu, N.; Komori, A.; Budaev, V.P.; Miyoshi, H.; Takamura, S.

    2006-10-01

    Bursty electrostatic fluctuation in the scrape off layer (SOL) and the divertor region of the Large Helical Device (LHD) have been investigated by using a Langmuir probe array on a divertor plate and a reciprocating Langmuir probe. Large positive bursty events were often observed in the ion saturation current measured with a divertor probe near the divertor leg at which the magnetic line of force connected to the area of a low-field side with a short connection length. Condition averaging result of the positive bursty events indicates the intermittent feature with a rapid increase and a slow decay is similar to that of plasma blobs observed in tokamaks. On the other hand, at a striking point with a long connection length, negative spikes were observed. Statistical analysis based on probability distribution function (PDF) was employed to investigate the bursty fluctuation property. The observed scaling exponents disagree with the predictions for the self-organized criticality (SOC) paradigm. (author)

  6. Fluctuations and Photons

    International Nuclear Information System (INIS)

    Gupta, Sourendu

    2007-01-01

    In this talk I discuss measures of fluctuations, especially those leading to the proof that the quark gluon plasma indeed contains quarks. I discuss the quark mass dependence of the critical end point of QCD. Then I discuss probes of the QCD critical point. Non-gaussian behaviour of event-to-event fluctuations of conserved quantum numbers is one such probe. Another is due to the coupling of fluctuations in baryon number and electrical charge, giving rise to long range random fluctuations of local charge density which relax slowly. These fluctuations can scatter photons, giving rise to critical opalescence

  7. Fluctuations and Photons

    Science.gov (United States)

    Gupta, Sourendu

    2007-02-01

    In this talk I discuss measures of fluctuations, especially those leading to the proof that the quark gluon plasma indeed contains quarks. I discuss the quark mass dependence of the critical end point of QCD. Then I discuss probes of the QCD critical point. Non-gaussian behaviour of event-to-event fluctuations of conserved quantum numbers is one such probe. Another is due to the coupling of fluctuations in baryon number and electrical charge, giving rise to long range random fluctuations of local charge density which relax slowly. These fluctuations can scatter photons, giving rise to critical opalescence.

  8. Fluctuations and Photons

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Sourendu [Department of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India)

    2007-02-15

    In this talk I discuss measures of fluctuations, especially those leading to the proof that the quark gluon plasma indeed contains quarks. I discuss the quark mass dependence of the critical end point of QCD. Then I discuss probes of the QCD critical point. Non-gaussian behaviour of event-to-event fluctuations of conserved quantum numbers is one such probe. Another is due to the coupling of fluctuations in baryon number and electrical charge, giving rise to long range random fluctuations of local charge density which relax slowly. These fluctuations can scatter photons, giving rise to critical opalescence.

  9. Heavy ion beam probe investigations of plasma potential in ECRH and NBI in the TJ-II stellarator

    International Nuclear Information System (INIS)

    Melnikov, A.V.; Eliseev, L.; Perfilov, S.V.; Chmyga, A.A.; Dreval, N.; Khrebtov, S.M.; Komarov, A.D.; Kozachok, A.S.; Krupnik, L.; Alonso, A.; Pablos, J.L. de; Cappa, A.; Fernandez, A.; Fuentes, C.; Hidalgo, C.; Liniers, M.; Pedrosa, M.A.

    2005-01-01

    Direct measurements of electric potential and its fluctuations are of a primary importance in magnetic confinement systems. The Heavy Ion Beam Probe (HIBP) diagnostic is used in TJ-2 stellarator to study directly plasma electric potential profiles with spatial (up to 1cm) and temporal (up to 10 ∝s) resolution. The singly charged heavy ions Cs + with energies up to 125 keV are used to probe the plasma column from the edge to the core. Both ECRH and NBI heated plasmas (P ECRH = 200 - 400kW, P NBI = 400kW, E NBI = 28 kV) were studied. The significant improvement in the HIBP beam control system and the acquisition electronics leads us to increase the possibilities of the diagnostic. The most crucial one is the extension of the signal dynamic range, which allows us to have the reliable profiles from the plasma center to the plasma edge both in the high and low field side regions. Low density ECRH (n = 0.5-1.1.10 13 cm -3 ) plasmas in TJ-2 are characterised by core positive plasma potential of order of 500 - 1000 V and positive electric fields up to 50 V/cm. Edge radial electric fields remain positive at low densities and became negative at the threshold density that depends of plasma configuration. NBI plasmas are characterized by negative electric potential in the full plasma column and negative radial electric fields (in the range of 10 - 40 V/cm). The density rise during the NBI phase is accompanied by the decay of core plasma potential. When density is getting the level of n ∼ 2.0.10 13 cm -3 , the potential stops its evolution and remains constant. The evolution of plasma potential near density limit is under investigation. These observations, reported in different magnetic configurations, show the clear link between plasma potential and plasma density. (author)

  10. Correlation measurements for fusion plasma diagnostics

    International Nuclear Information System (INIS)

    Pazsit, I.

    1995-01-01

    A list of a few methods for plasma diagnostics via fluctuations (noise) analysis of random (both temporally and spatially) system parameters is reviewed. Analogy is drawn with certain noise analysis methods, used in the diagnostics of fission reactors. These methods have been applied also to fusion measurements to some extent. However, the treatment of fusion plasma fluctuations is dominated by an approach that allows for temporal randomness, but assumes periodicity in space. This approach suits well a large class of phenomena such as magnetic fluctuations (MHD effects), but is much less suited to treat localised effects such as turbulence and density fluctuations. This paper discusses the potentials of the former approach, i.e. ordinary noise analysis methods of non-periodic variables in fusion plasma diagnostics. A new recommendation is to use the crossed beam correlation analysis of soft X-ray signals for determining the local short-range correlations in the plasma and to perform a systematic exploration of the plasma spatial correlation structure with that and other methods. 16 refs, 7 figs

  11. To the theory of fluctuations in a non-equilibrium plasma with taking into account the particle collisional interaction

    International Nuclear Information System (INIS)

    Puchkov, V.A.

    1998-01-01

    A method for calculation of non-equilibrium fluctuations in a totally ionized stable plasma with taking into account the particle collisions is proposed. The spectrum of high-frequency fluctuations of the electric field is calculated by the developed method. The formula obtained for the spectrum takes into consideration both the Coulomb collisions and influence of collective effects on the collisions and is applicable for stable arbitrary distributions of electrons and ions

  12. Fluctuations and stability in the Advanced Toroidal Facility (ATF) torsatron

    International Nuclear Information System (INIS)

    Harris, J.H.; Charlton, L.A.; Bell, J.D.; Bigelow, T.S.; Carreras, B.A.; Colchin, R.J.; Crume, E.C.; Dominguez, N.; Dunlap, J.L.; Dyer, G.R.; England, A.C.; Glowienka, J.C.; Hillis, D.L.; Hiroe, S.; Horton, L.D.; Howe, H.C.; Isler, R.C.; Jernigan, T.C.; Leboeuf, J.N.; Lee, D.K.; Lynch, V.E.; Lyon, J.F.; Menon, M.M.; Murakami, M.; Rasmussen, D.A.; Uckan, T.; Wilgen, J.B.; Wing, W.R.; Bell, G.L.; Crocker, N.A.; Hanson, G.R.; Thomas, C.E.; Wade, M.R.; Ritz, C.P.

    1990-01-01

    We present the results of experimental and theoretical studies of fluctuations and instabilities in the ATF torsatron, a type of stellarator. Measurements of globally coherent magnetic fluctuations in high-β plasmas with narrow pressure profiles produced by a field error show evidence of self-stabilization ('second stability'); the trends are compatible with theoretical analysis of self-stabilization of resistive curvature-driven instabilities, but there are discrepancies between the absolute experimental and theoretical fluctuation amplitudes. Fluctuation measurements in plasma with broad pressure profiles reveal new phenomena--specifically, toroidally localized magnetic fluctuations, whose amplitudes increase with plasma pressure, and coherent density fluctuations with significant radial width

  13. Quantum tunnelling fluctuations in anharmonic potentials

    International Nuclear Information System (INIS)

    Papadopoulos, G.J.; Hadjiagapiou, I.A.

    1993-01-01

    A nonlinear perturbation theory is developed for the logarithm of the wavefunction. It is then used developing a long range time perturbation series for the wavefunction of the Schroedinger equation in the case of a cubic potential exhibiting a valley and a hump. Starting with a low energy Gaussian wavefunction centred at the bottom of the valley the profiles of the probability and current densities are obtained at different times, thus providing an idea of their evolution. While the probability density is slightly displaced the current density, starting from zero, fluctuates vividly. (author). 4 refs, 4 figs

  14. Effects of density gradients and fluctuations at the plasma edge on ECEI measurements at ASDEX Upgrade

    NARCIS (Netherlands)

    Vanovac, B.; Wolfrum, E.; Denk, S. S.; Mink, F.; Laggner, F. M.; Birkenmeier, G.; Willensdorfer, M.; Viezzer, E.; Hoelzl, M.; Freethy, S. J.; Dunne, M. G.; Lessig, A.; Luhmann, N. C.; ASDEX Upgrade team,; EUROfusion MST1 Team,

    2018-01-01

    Electron cyclotron emission imaging (ECEI) provides measurements of electron temperature (T-e) and its fluctuations (delta T-e). However, when measuring at the plasma edge, in the steep gradient region, radiation transport effects must be taken into account. It is shown that due to these effects,

  15. Broadband magnetic and density fluctuations in the TCA tokamak

    International Nuclear Information System (INIS)

    Hollenstein, Ch.; Keller, R.; Pochelon, A.; Ryter, F.; Sawley, M.L.; Simm, W.; Weisen, H.

    1987-01-01

    The results of comparative studies of broadband magnetic and density fluctuations during ohmic discharges in the TCA tokamak are described. Long coherence lengths are observed in poloidal and toroidal directions between magnetic probes in the scrape-off layer. A phase contrast diagnostic provides a newly accessible range of density fluctuations in the bulk plasma with very long wavelengths. Langmuir probes provide similar measurements in the scrape-off layer. Statistical dispersion relations for both density and magnetic fluctuations are deduced and are shown to be substantially different. Low mean poloidal wavenumbers (m ∼ 2 at 100 kHz) are obtained for the magnetic fluctuations, in contrast to the much higher values measured for density fluctuations. The difference between magnetic and density fluctuations is also reflected in different scalings with plasma parameters and with electron confinement time. The helicity of the coherent magnetic structures is analyzed to show that interior regions of the plasma, such as the q = 2 region contribute to the magnetic activity at the edge. This explains why the magnetic fluctuations measured at the edge are likely to reflect the confinement properties of the bulk plasma. The results of detailed probe rotation experiments and coherence measurements give indications of the physical nature and origin of magnetic fluctuations

  16. The plasma position control of ITER EDA plasma

    International Nuclear Information System (INIS)

    Senda, Ikuo; Nishio, Satoshi; Tsunematsu, Toshihide; Nishino, Toru; Fujieda, Hirobumi.

    1994-09-01

    The study on the plasma position control of ITER EDA performed by Japan Home Team during the sensitivity study in 1994 is summarized. The controllabilities of plasmas in the Outline Design and elongated version are compared. The model used to describe the motion of the plasma is a rigid model. The PD feedback control is applied with respect to the displacements of the plasma from the equilibrium. Three types of fluctuations, which initiate the motion of the plasma, are examined, namely a finite horizontal fluctuation field, a small horizontal fluctuation field such that the motion of the plasma is governed by the passive structures and an abrupt change of the poloidal beta β p and internal inductance l i . In the simulations of finite horizontal fluctuation fields, controls depend on the strength of the fluctuations, for instance, 3-5V is needed for 5-10G of fluctuation fields in the Outline Design. When the fluctuation field is small and the plasma displacement grows in a characteristic time of the passive structures, a few volt of the control voltage is enough to obtain good controllability. It is shown that the control when (β p , l i ) changes simultaneously is demanding and a large control voltage is required to maintain satisfactory control. Comparing the elongated version with the Outline Design, the control voltage which is larger than the Outline Design by a factor of 2-3 is required to obtain the same controllability in the elongated version. (author)

  17. RADAR upper hybrid resonance scattering diagnostics of small-scale fluctuations and waves in tokamak plasmas

    International Nuclear Information System (INIS)

    Bulyiginskiy, D.G.; Gurchenko, A.D.; Gusakov, E.Z.; Korkin, V.V.; Larionov, M.M.; Novik, K.M.; Petrov, Yu.V.; Popov, A.Yu.; Saveliev, A.N.; Selenin, V.L.; Stepanov, A.Yu.

    2001-01-01

    The upper hybrid resonance (UHR) scattering technique possessing such merits as one-dimensional probing geometry, enhancement of cross section, and fine localization of scattering region is modified in the new diagnostics under development to achieve wave number resolution. The fluctuation wave number is estimated in the new technique from the scattering signal time delay measurements. The feasibility of the scheme is checked in the proof of principal experiment in a tokamak. The time delay of the UHR scattering signal exceeding 10 ns is observed. The small scale low frequency density fluctuations are investigated in the UHR RADAR backscattering experiment. The UHR cross-polarization scattering signal related to small scale magnetic fluctuations is observed. The lower hybrid (LH) wave propagation and both linear and nonlinear wave conversion are investigated. The small wavelength (λ≤0.02 cm) high number ion Bernstein harmonics, resulting from the linear wave conversion of the LH wave are observed in a tokamak plasma for the first time

  18. Stable explicit coupling of the Yee scheme with a linear current model in fluctuating magnetized plasmas

    International Nuclear Information System (INIS)

    Silva, Filipe da; Pinto, Martin Campos; Després, Bruno; Heuraux, Stéphane

    2015-01-01

    This work analyzes the stability of the Yee scheme for non-stationary Maxwell's equations coupled with a linear current model with density fluctuations. We show that the usual procedure may yield unstable scheme for physical situations that correspond to strongly magnetized plasmas in X-mode (TE) polarization. We propose to use first order clustered discretization of the vectorial product that gives back a stable coupling. We validate the schemes on some test cases representative of direct numerical simulations of X-mode in a magnetic fusion plasma including turbulence

  19. Development of a LiF-filter for measuring plasma fluctuations in the far ultraviolet radiation spectral range

    International Nuclear Information System (INIS)

    Schittenhelm, M.

    1991-06-01

    The investigations of fluctuations and anomalous transport lie at hart of the tokamak research program, especially in the shear zone close to and beyond the last closed flux surface. Until now fluctuation measurements using plasma radiation were only made on the edge of the plasma, since they rely on the H α emission. In order to measure electron density fluctuations with good spatial and temporal resolution in the shear zone, the OVI doublet (2s-2p) can be observed. These are very strong impurity emission lines in the VUV region (103.2 nm and 103.8 nm) emitted from a narrow layer close to the separatrix. To get an image of this layer and to achieve enough intensity for a good temporal resolution, it is necessary to develop a filter with high transmission. A possible candidate is lithium fluoride (LiF), which transmits light at shorter wavelength than other materials. By cooling LiF crystals from 300 K to 220 K the cutoff wavelength decreases from 105 nm to about 103 nm. This master thesis presents a detailed investigation of the transmission of LiF near the cutoff wavelength. Crystal sheets produced by different manufactures were tested and the temperature dependence of the cutoff edge was investigated. (orig./AH)

  20. Effects of density gradients and fluctuations at the plasma edge on ECEI measurements at ASDEX Upgrade

    Science.gov (United States)

    Vanovac, B.; Wolfrum, E.; Denk, S. S.; Mink, F.; Laggner, F. M.; Birkenmeier, G.; Willensdorfer, M.; Viezzer, E.; Hoelzl, M.; Freethy, S. J.; Dunne, M. G.; Lessig, A.; Luhmann, N. C., Jr.; the ASDEX Upgrade Team; the EUROfusion MST1 Team

    2018-04-01

    Electron cyclotron emission imaging (ECEI) provides measurements of electron temperature (T e ) and its fluctuations (δT e ). However, when measuring at the plasma edge, in the steep gradient region, radiation transport effects must be taken into account. It is shown that due to these effects, the scrape-off layer region is not accessible to the ECEI measurements in steady state conditions and that the signal is dominated by the shine-through emission. Transient effects, such as filaments, can change the radiation transport locally, but cannot be distinguished from the shine-through. Local density measurements are essential for the correct interpretation of the electron cyclotron emission, since the density fluctuations influence the temperature measurements at the plasma edge. As an example, a low frequency 8 kHz mode, which causes 10%-15% fluctuations in the signal level of the ECEI, is analysed. The same mode has been measured with the lithium beam emission spectroscopy density diagnostic, and is very well correlated in time with high frequency magnetic fluctuations. With radiation transport modelling of the electron cyclotron radiation in the ECEI geometry, it is shown that the density contributes significantly to the radiation temperature (T rad) and the experimental observations have shown the amplitude modulation in both density and temperature measurements. The poloidal velocity of the low frequency mode measured by the ECEI is 3 km s-1. The calculated velocity of the high frequency mode measured with the magnetic pick-up coils is about 25 km s-1. Velocities are compared with the E × B background flow velocity and possible explanations for the origin of the low frequency mode are discussed.

  1. Modification of boundary fluctuations by LHCD in the HT-7 tokamak

    International Nuclear Information System (INIS)

    Song Mei; Wan Baonian; Xu Guosheng; Ling Bili

    2003-01-01

    Measurements of boundary fluctuations and fluctuation driven electron fluxes have been performed in ohmic and lower hybrid current drive enhanced confinement plasma using a graphite Langmuir probe array on HT-7 tokamak. The fluctuations are significantly suppressed and the turbulent fluxes are remarkably depressed in the enhanced plasma. We characterized the statistical properties of fluctuations and the particle flux and found a non-Gaussian character in the whole scrape-off layer with minimum deviations from Gaussian in the proximity of the velocity shear layer in ohmic plasma. In the enhanced plasma the deviations in the boundary region are all reduces obviously. The fluctuations and induced electron fluxes show sporadic bursts asymmetric in time and the asymmetry is remarkably weakened in the lower hybrid current driving (LHCD) phase. The results suggest a coupling between the statistical behaviour of fluctuations and the turbulent flow

  2. Current density fluctuations and ambipolarity of transport

    International Nuclear Information System (INIS)

    Shen, W.; Dexter, R.N.; Prager, S.C.

    1991-10-01

    The fluctuation in the plasma current density is measured in the MIST reversed field pinch experiment. Such fluctuations, and the measured radial profile of the k spectrum of magnetic fluctuations, supports the view and that low frequency fluctuations (f r >) demonstrates that radial particle transport from particle motion parallel to a fluctuating magnetic field is ambipolar over the full frequency range

  3. Electrostatic potential fluctuation induced by charge discreteness in a nanoscale trench

    International Nuclear Information System (INIS)

    Lee, Taesang; Kim, S. S.; Jho, Y. S.; Park, Gunyoung; Chang, C. S.

    2007-01-01

    A simplified two-dimensional Monte Carlo simulation is performed to estimate the charging potential fluctuations caused by strong binary Coulomb interactions between discrete charged particles in nanometer scale trenches. It is found that the discrete charge effect can be an important part of the nanoscale trench research, inducing scattering of ion trajectories in a nanoscale trench by a fluctuating electric field. The effect can enhance the ion deposition on the side walls and disperse the material contact energy of the incident ions, among others

  4. Collector floating potentials in a discharge plasma

    International Nuclear Information System (INIS)

    Cercek, M.; Gyergyek, T.

    1999-01-01

    We present the results of a study on electrode floating potential formation in a hot-cathode discharge plasma. The electron component of the plasma is composed from two populations. The high temperature component develops from primary electrons and the cool component from secondary electrons born by ionisation of cold neutral gas. A static, kinetic plasma-sheath model is use to calculate the pre-sheath potential and the floating potential of the electrode. For hot primary electrons a truncated Maxwellian distribution is assumed. The plasma system is also modelled numerically with a dynamic, electrostatic particle simulation. The plasma source injects temporally equal fluxes of ions and electrons with half-Maxwellian velocities. Again, the hot electron distribution is truncated in the high velocity tail. The plasma parameters, such as ion temperature and mass, electron temperatures, discharge voltages, etc. correspond to experimental values. The experimental measurements of the electrode floating potential are performed in weakly magnetised plasma produced with hot cathode discharge in argon gas. Theoretical, simulation and experimental results are compared and they agree very well.(author)

  5. Review of electric discharge microplasmas generated in highly fluctuating fluids: Characteristics and application to nanomaterials synthesis

    International Nuclear Information System (INIS)

    Stauss, Sven; Terashima, Kazuo; Muneoka, Hitoshi; Urabe, Keiichiro

    2015-01-01

    Plasma-based fabrication of novel nanomaterials and nanostructures is indispensible for the development of next-generation electronic devices and for green energy applications. In particular, controlling the interactions between plasmas and materials interfaces, and the plasma fluctuations, is crucial for further development of plasma-based processes and bottom-up growth of nanomaterials. Electric discharge microplasmas generated in supercritical fluids represent a special class of high-pressure plasmas, where fluctuations on the molecular scale influence the discharge properties and the possible bottom-up growth of nanomaterials. This review discusses an anomaly observed for direct current microplasmas generated near the critical point, a local decrease in the breakdown voltage. This anomalous behavior is suggested to be caused by the concomitant decrease of the ionization potential due to the formation of clusters near the critical point, and the formation of extended electron mean free paths caused by the high-density fluctuation near the critical point. It is also shown that in the case of dielectric barrier microdischarges generated close to the critical point, the high-density fluctuation of the supercritical fluid persists. The final part of the review discusses the application of discharges generated in supercritical fluids to synthesis of nanomaterials, in particular, molecular diamond—so-called diamondoids—by microplasmas generated inside conventional batch-type and continuous flow microreactors

  6. Role of rational surfaces on fluctuations and transport in the plasma edge of the TJ-II stellarator

    International Nuclear Information System (INIS)

    Pedrosa, M.A.; Hidalgo, C.; Lopez-Fraguas, A.

    2000-01-01

    It has been shown that transport barriers in toroidal magnetically confined plasmas tend to be linked to regions of unique magnetic topology such as the location of a minimum in the safety factor, rational surfaces or the boundary between closed and open flux surfaces. In the absence of E x B sheared flows, fluctuations are expected to show maximum amplitude near rational surfaces, and plasma confinement might tend to deteriorate. On the other hand, if the generation of E x B sheared flows were linked to low order rational surfaces, these would be beneficial to confinement. Experimental evidence of E x B sheared flows linked to rational surfaces has been obtained in the plasma edge region of the TJ-II stellarator. (author)

  7. Fluctuation reduction and enhanced confinement in the MST reversed-field pinch

    International Nuclear Information System (INIS)

    Chapman, B.E.

    1997-10-01

    Plasmas with a factor of ≥3 improvement in energy confinement have been achieved in the MST reversed-field pinch (RFP). These plasmas occur spontaneously, following sawtooth crashes, subject to constraints on, eg, toroidal magnetic field reversal and wall conditioning. Possible contributors to the improved confinement include a reduction of core-resonant, global magnetic fluctuations and a reduction of electrostatic fluctuations over the entire plasma edge. One feature of these plasmas is a region of strong ExB flow shear in the edge. Never before observed in conjunction with enhanced confinement in the RFP, such shear is common in enhanced confinement discharges in tokamaks and stellarators. Another feature of these plasmas is a new type of discrete dynamo event. Like sawtooth crashes, a common form of discrete dynamo, these events correspond to bursts of edge parallel current. The reduction of electrostatic fluctuations in these plasmas occurs within and beyond the region of strong ExB flow shear, similar to what is observed in tokamaks and stellarators. However, the reductions in the MST include fluctuations whose correlation lengths are larger than the width of the shear region. The reduction of the global magnetic fluctuations is most likely due to flattening of the μ=μ 0 rvec J· rvec B/B 2 profile. Flattening can occur, eg, due to the new type of discrete dynamo event and reduced edge resistivity. Enhanced confinement plasmas are also achieved in the MST when auxiliary current is applied to flatten the μ profile and reduce magnetic fluctuations. Unexpectedly, these plasmas also exhibit a region (broader than in the case above) of strong ExB flow shear in the edge, an edge-wide reduction of electrostatic fluctuations, and the new type of discrete dynamo event. Auxiliary current drive has historically been viewed as the principal route to fusion reactor viability for the RFP

  8. Measurement of current density fluctuations and ambipolar particle flux due to magnetic fluctuations in MST

    International Nuclear Information System (INIS)

    Shen, Weimin.

    1992-08-01

    Studies of magnetic fluctuation induced particle transport on Reversed Field Pinch plasmas were done on the Madison Symmetric Torus. Plasma current density and current density fluctuations were measured using a multi-coil magnetic probes. The low frequency (f parallel B r >. The result of zero net charged particle loss was obtained, meaning the flux is ambipolar. The ambipolarity of low frequency global tearing modes is satisfied through the phase relations determined by tearing instabilities. The ambipolarity of high frequency localized modes could be partially explained by the simple model of Waltz based on the radial average of small scale turbulence

  9. PLASMA HEATING INSIDE INTERPLANETARY CORONAL MASS EJECTIONS BY ALFVÉNIC FLUCTUATIONS DISSIPATION

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui; Wang, Chi; Zhang, Lingqian [State Key Laboratory of Space Weather, National Space Science Center, CAS, Beijing, 100190 (China); He, Jiansen [School of Earth and Space Sciences, Peking University, Beijing, 100871 (China); Richardson, John D.; Belcher, John W. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA (United States); Tu, Cui, E-mail: hli@spaceweather.ac.cn [Laboratory of Near Space Environment, National Space Science Center, CAS, Beijing, 100190 (China)

    2016-11-10

    Nonlinear cascade of low-frequency Alfvénic fluctuations (AFs) is regarded as one of the candidate energy sources that heat plasma during the non-adiabatic expansion of interplanetary coronal mass ejections (ICMEs). However, AFs inside ICMEs were seldom reported in the literature. In this study, we investigate AFs inside ICMEs using observations from Voyager 2 between 1 and 6 au. It has been found that AFs with a high degree of Alfvénicity frequently occurred inside ICMEs for almost all of the identified ICMEs (30 out of 33 ICMEs) and for 12.6% of the ICME time interval. As ICMEs expand and move outward, the percentage of AF duration decays linearly in general. The occurrence rate of AFs inside ICMEs is much less than that in ambient solar wind, especially within 4.75 au. AFs inside ICMEs are more frequently presented in the center and at the boundaries of ICMEs. In addition, the proton temperature inside ICME has a similar “W”-shaped distribution. These findings suggest significant contribution of AFs on local plasma heating inside ICMEs.

  10. Higher-order fluctuation-dissipation relations in plasma physics: Binary Coulomb systems

    Science.gov (United States)

    Golden, Kenneth I.

    2018-05-01

    A recent approach that led to compact frequency domain formulations of the cubic and quartic fluctuation-dissipation theorems (FDTs) for the classical one-component plasma (OCP) [Golden and Heath, J. Stat. Phys. 162, 199 (2016), 10.1007/s10955-015-1395-6] is generalized to accommodate binary ionic mixtures. Paralleling the procedure followed for the OCP, the basic premise underlying the present approach is that a (k ,ω ) 4-vector rotational symmetry, known to be a pivotal feature in the frequency domain architectures of the linear and quadratic fluctuation-dissipation relations for a variety of Coulomb plasmas [Golden et al., J. Stat. Phys. 6, 87 (1972), 10.1007/BF01023681; J. Stat. Phys. 29, 281 (1982), 10.1007/BF01020787; Golden, Phys. Rev. E 59, 228 (1999), 10.1103/PhysRevE.59.228], is expected to be a pivotal feature of the frequency domain architectures of the higher-order members of the FDT hierarchy. On this premise, each member, in its most tractable form, connects a single (p +1 )-point dynamical structure function to a linear combination of (p +1 )-order p density response functions; by definition, such a combination must also remain invariant under rotation of their (k1,ω1) ,(k2,ω2) ,...,(kp,ωp) , (k1+k2+⋯+kp,ω1+ω2+⋯+ωp) 4-vector arguments. Assigned to each 4-vector is a species index that corotates in lock step. Consistency is assured by matching the static limits of the resulting frequency domain cubic and quartic FDTs to their exact static counterparts independently derived in the present work via a conventional time-independent perturbation expansion of the Liouville distribution function in its macrocanonical form. The proposed procedure entirely circumvents the daunting issues of entangled Liouville space paths and nested Poisson brackets that one would encounter if one attempted to use the conventional time-dependent perturbation-theoretic Kubo approach to establish the frequency domain FDTs beyond quadratic order.

  11. Ion acoustic waves and double-layers in electronegative expanding plasmas

    International Nuclear Information System (INIS)

    Plihon, Nicolas; Chabert, Pascal

    2011-01-01

    Ion acoustic waves and double-layers are observed in expanding plasmas in electronegative gases, i.e., plasmas containing an appreciable fraction of negative ions. The reported experiments are performed in argon gas with a variable amount of SF 6 . When varying the amount of SF 6 , the negative ion fraction increases and three main regimes were identified previously: (i) the plasma smoothly expands at low negative ion fraction, (ii) a static double-layer (associated with an abrupt potential drop and ion acceleration) forms at intermediate negative ion fraction, (iii) double-layers periodically form and propagate (in the plasma expansion direction) at high negative ion fraction. In this paper, we show that transition phases exist in between these regimes, where fluctuations are observed. These fluctuations are unstable slow ion acoustic waves, propagating in the direction opposite to the plasma expansion. These fluctuations are excited by the most unstable eigenmodes and display turbulent features. It is suggested that the static double layer forms when the ion acoustic fluctuations become non-linearly unstable: the double layer regime being a bifurcated state of the smoothly expanding regime. For the highest negative ion fraction, a coexistence of (upstream propagating) slow ion acoustic fluctuations and (downstream) propagating double layers was observed.

  12. Localized Measurement of Turbulent Fluctuations in Tokamaks with Coherent Scattering of Electromagnetic Waves

    International Nuclear Information System (INIS)

    Mazzucato, E.

    2002-01-01

    Localized measurements of short-scale turbulent fluctuations in tokamaks are still an outstanding problem. In this paper, the method of coherent scattering of electromagnetic waves for the detection of density fluctuations is revisited. Results indicate that the proper choice of frequency, size and launching of the probing wave can transform this method into an excellent technique for high-resolution measurements of those fluctuations that plasma theory indicates as the potential cause of anomalous transport in tokamaks. The best spatial resolution can be achieved when the range of scattering angles corresponding to the spectrum of fluctuations under investigation is small. This favors the use of high frequency probing waves, such as those of far infrared lasers. The application to existing large tokamaks is discussed

  13. Analysis of density fluctuations in the Tore Supra tokamak. Up-down asymmetries and limiter effect on plasma turbulence; Etude des fluctuations de density dans les plasmas du tokamak Tore Supra. Asymetries haut-bas et effet du limiteur sur la turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Fenzi, Ch

    1999-10-29

    In magnetic fusion devices, the optimisation of the power deposition profile on plasma facing components crucially depends on the heat diffusivity across the magnetic field fines, which is determined by the plasma edge turbulence. In this regard, spatial asymmetries of plasma edge turbulence are of great interest. In this work, we interest in up-down asymmetries of density fluctuations which are usually observed in Tore Supra, using a coherent light scattering experiment. It is shown that these asymmetries are correlated to the plasma edge geometrical configuration (plasma facing components, limiters). In fact, the plasma-limiter interaction induces locally in the plasma edge and the SOL (r/a > 0.9) an additional turbulence with short correlation length along the magnetic field fines, which spreads in the plasma core (0.9 {>=} r/a {>=} 0.5). The resultant up-down asymmetry weakly depends on density, increases with the edge safety factor, and inverts when the plasma current direction is reversed. Such up-down asymmetry observations bring strong impact on edge turbulence and transport models, which usually predict a ballooning of the turbulence in the high-field side but not an up-down asymmetry. A possible model is proposed here, based on the Kelvin Helmholtz instability. (author)

  14. Correlation length of magnetosheath fluctuations: Cluster statistics

    Directory of Open Access Journals (Sweden)

    O. Gutynska

    2008-09-01

    Full Text Available Magnetosheath parameters are usually described by gasdynamic or magnetohydrodynamic (MHD models but these models cannot account for one of the most important sources of magnetosheath fluctuations – the foreshock. Earlier statistical processing of a large amount of magnetosheath observations has shown that the magnetosheath magnetic field and plasma flow fluctuations downstream of the quasiparallel shock are much larger than those at the opposite flank. These studies were based on the observations of a single spacecraft and thus they could not provide full information on propagation of the fluctuations through the magnetosheath.

    We present the results of a statistical survey of the magnetosheath magnetic field fluctuations using two years of Cluster observations. We discuss the dependence of the cross-correlation coefficients between different spacecraft pairs on the orientation of the separation vector with respect to the average magnetic field and plasma flow vectors and other parameters. We have found that the correlation length does not exceed ~1 RE in the analyzed frequency range (0.001–0.125 Hz and does not depend significantly on the magnetic field or plasma flow direction. A close connection of cross-correlation coefficients computed in the magnetosheath with the cross-correlation coefficients between a solar wind monitor and a magnetosheath spacecraft suggests that solar wind structures persist on the background of magnetosheath fluctuations.

  15. Correlation length of magnetosheath fluctuations: Cluster statistics

    Directory of Open Access Journals (Sweden)

    O. Gutynska

    2008-09-01

    Full Text Available Magnetosheath parameters are usually described by gasdynamic or magnetohydrodynamic (MHD models but these models cannot account for one of the most important sources of magnetosheath fluctuations – the foreshock. Earlier statistical processing of a large amount of magnetosheath observations has shown that the magnetosheath magnetic field and plasma flow fluctuations downstream of the quasiparallel shock are much larger than those at the opposite flank. These studies were based on the observations of a single spacecraft and thus they could not provide full information on propagation of the fluctuations through the magnetosheath. We present the results of a statistical survey of the magnetosheath magnetic field fluctuations using two years of Cluster observations. We discuss the dependence of the cross-correlation coefficients between different spacecraft pairs on the orientation of the separation vector with respect to the average magnetic field and plasma flow vectors and other parameters. We have found that the correlation length does not exceed ~1 RE in the analyzed frequency range (0.001–0.125 Hz and does not depend significantly on the magnetic field or plasma flow direction. A close connection of cross-correlation coefficients computed in the magnetosheath with the cross-correlation coefficients between a solar wind monitor and a magnetosheath spacecraft suggests that solar wind structures persist on the background of magnetosheath fluctuations.

  16. Interaction of charged reaction products with opalescent fluctuations

    International Nuclear Information System (INIS)

    Coppi, B.; Pegoraro, F.

    1981-01-01

    In a D-T plasma close to ignition, if the contribution of the 3.5 MeV fusion-produced α-particles to the total plasma pressure is neglected, the interaction of these particles with the magnetic fluctuations which are supported by the bulk of the plasma can be described by retaining the contribution arising from the wave-particle resonant interaction only. Then, following a perturbation approach, we can start by examining the time evolution, in the absence of α-particles, of magnetic fluctuations of the shear-Alfven type in a sheared magnetic configuration where the presence of magnetic curvature causes a mixing between these waves and interchange instabilities. In the description of these fluctuations, we shall adopt an equation, derived from the theory of ballooning modes that can be proved to be valid in the neighborhood of the magnetic axis

  17. Self-regulated shear flow turbulence in confined plasmas: Basic concepts and potential applications to the L → H transition

    International Nuclear Information System (INIS)

    Diamond, P.H.; Shapiro, V.; Schevchenko, V.; Kim, Y.B.; Rosenbluth, M.N.; Carreras, B.A.; Sidikman, K.; Lynch, V.E.; Garcia, L.; Terry, P.W.; Sagdeev, R.Z.

    1992-01-01

    This paper describes developments in the theory of edge plasma turbulence in a differentially rotating plasma. The thesis that such systems are dynamically self-regulating is presented. Results indicate that relevant fluctuations will generate a predominantly curved flow. Similar, curvature is shown to be the predominant flow profile effect on fluctuations. A system fixed point is identified, the eigenfrequencies for small oscillations around it are calculated, and an over-all stability criterion is determined

  18. Electric discharge microplasmas generated in highly fluctuating fluids: Characteristics and application to the synthesis of molecular diamond

    Science.gov (United States)

    Stauss, Sven

    2014-10-01

    Plasma-based fabrication of novel nanomaterials and nanostructures is paramount for the development of next-generation electronic devices and for green energy applications. In particular, controlling the interactions between plasmas and materials interfaces, and the plasma fluctuations are crucial for further development of plasma-based processes and bottom-up growth of nanomaterials. Discharge microplasmas generated in supercritical fluids represent a special class of high-pressure plasmas, where fluctuations on the molecular scale influence the discharge properties and the possible bottom-up growth of nanomaterials. In the first part of the talk, we will discuss an anomaly observed for microplasmas generated near the critical point, a local decrease in the breakdown voltage, which has been observed for both molecular and monoatomic gases. This anomalous behavior is suggested to be caused by the concomitant decrease of the ionization potential due to the formation of clusters near the critical point, and the formation of extended electron mean free paths induced by the high-density fluctuation near the critical point. We will also show that when generating microplasma discharges close to the critical point, that the high-density fluctuation of the supercritical fluid persists. In the second part of the presentation, we will first introduce the basic properties of diamondoids and their potential for application in many different fields - biotechnology, medicine, opto- and nanoelectronics - before discussing their synthesis by microplasmas generated inside both conventional batch-type and continuous flow reactors, using the smallest diamondoid, adamantane, as a precursor and seed. Finally we show that one possible growth mechanism of larger diamondoids from smaller ones consists in the repeated abstraction of hydrogen terminations and the addition of methyl radicals. Supported financially in part by Grant No. 23760688 and Grant No. 21110002 from the Ministry of

  19. Conditional Eddies in Plasma Turbulence

    DEFF Research Database (Denmark)

    Johnsen, Helene; Pécseli, Hans; Trulsen, J.

    1986-01-01

    Conditional structures, or eddies, in turbulent flows are discussed with special attention to electrostatic turbulence in plasmas. The potential variation of these eddies is obtained by sampling the fluctuations only when a certain condition is satisfied in a reference point. The resulting...

  20. Magnetic fluctuations associated with density fluctuations in the tokamak edge

    International Nuclear Information System (INIS)

    Kim, Y.J.; Gentle, K.W.; Ritz, C.P.; Rhodes, T.L.; Bengtson, R.D.

    1989-01-01

    Electrostatic density and potential fluctuations occurring with high amplitude near the edge of a tokamak are correlated with components of the fluctuating magnetic field measured outside the limiter radius. It has been established that this turbulence is associated with fluctuations in current as well as density and potential. The correlation extends for substantial toroidal distances, but only if the probes are displaced approximately along field lines, consistent with the short coherence lengths poloidally but long coherence lengths parallel to the field which are characteristic for this turbulence. Furthermore, the correlation can be found only with density fluctuations measured inside the limiter radius; density fluctuations behind the limiter have no detectable magnetic concomitant for the toroidally spaced probes used here. (author). Letter-to-the-editor. 12 refs, 3 figs

  1. Computer experiments on dynamical cloud and space time fluctuations in one-dimensional meta-equilibrium plasmas

    International Nuclear Information System (INIS)

    Rouet, J.L.; Feix, M.R.

    1996-01-01

    The test particle picture is a central theory of weakly correlated plasma. While experiments and computer experiments have confirmed the validity of this theory at thermal equilibrium, the extension to meta-equilibrium distributions presents interesting and intriguing points connected to the under or over-population of the tail of these distributions (high velocity) which have not yet been tested. Moreover, the general dynamical Debye cloud (which is a generalization of the static Debye cloud supposing a plasma at thermal equilibrium and a test particle of zero velocity) for any test particle velocity and three typical velocity distributions (equilibrium plus two meta-equilibriums) are presented. The simulations deal with a one-dimensional two-component plasma and, moreover, the relevance of the check for real three-dimensional plasma is outlined. Two kinds of results are presented: the dynamical cloud itself and the more usual density (or energy) fluctuation spectrums. Special attention is paid to the behavior of long wavelengths which needs long systems with very small graininess effects and, consequently, sizable computation efforts. Finally, the divergence or absence of energy in the small wave numbers connected to the excess or lack of fast particles of the two above mentioned meta-equilibrium is exhibited. copyright 1996 American Institute of Physics

  2. Design of the electromagnetic fluctuations diagnostic for MFTF-B

    International Nuclear Information System (INIS)

    House, P.A.; Goerz, D.A.; Martin, R.

    1983-01-01

    The Electromagnetic Fluctuations (EMF) diagnostic will be used to monitor ion fluctuations which could be unstable in MFTF-B. Each probe assembly includes a high impedance electrostatic probe to measure potential fluctuations, and a group of nested, single turn loops to measure magnetic fluctuations in three directions. Eventually, more probes and loops will be added to each probe assembly for making more detailed measurements. The sensors must lie physically close to the plasma edge and are radially positionable. Also, probes at separate axial locations can be positioned to connect along the same magnetic field line. These probes are similar in concept to the rf probes used on TMX, but the high thermal load for 30-second shots on MFTF-B requires a water-cooled design along with temperature monitors. Each signal channel has a bandwidth of .001 to 150 MHz and is monitored by up to four different data channels which obtain amplitude and frequency information. This paper describes the EMF diagnostic and presents the detailed mechanical and electrical designs

  3. Nematic fluctuations, fermiology and the pairing potential in iron-based superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kretzschmar, Florian

    2015-08-18

    The thesis comprises a systematic study on the doping, temperature and momentum dependent electron dynamics in iron-based superconductors using inelastic light scattering. The observation of Bardasis-Schrieffer modes in the excitation spectrum of superconducting Ba{sub 0.6}K{sub 0.4}Fe{sub 2}As{sub 2} is reported and the energy and symmetry dependence of the modes are analyzed. The analysis yields the identification of a strong subdominant component of the interaction potential V(k,k{sup '}). Strong nematic fluctuations are investigated in Ba(Fe{sub 1-x}Co{sub x}){sub 2}As{sub 2}. The nature of the fluctuations and the origin of nematicity in Ba(Fe{sub 1-x}Co{sub x}){sub 2}As{sub 2} are identified.

  4. Effect of Stochastic Charge Fluctuations on Dust Dynamics

    Science.gov (United States)

    Matthews, Lorin; Shotorban, Babak; Hyde, Truell

    2017-10-01

    The charging of particles in a plasma environment occurs through the collection of electrons and ions on the particle surface. Depending on the particle size and the plasma density, the standard deviation of the number of collected elementary charges, which fluctuates due to the randomness in times of collisions with electrons or ions, may be a significant fraction of the equilibrium charge. We use a discrete stochastic charging model to simulate the variations in charge across the dust surface as well as in time. The resultant asymmetric particle potentials, even for spherical grains, has a significant impact on the particle coagulation rate as well as the structure of the resulting aggregates. We compare the effects on particle collisions and growth in typical laboratory and astrophysical plasma environments. This work was supported by the National Science Foundation under Grant PHY-1414523.

  5. Potential of an emissive cylindrical probe in plasma.

    Science.gov (United States)

    Fruchtman, A; Zoler, D; Makrinich, G

    2011-08-01

    The floating potential of an emissive cylindrical probe in a plasma is calculated for an arbitrary ratio of Debye length to probe radius and for an arbitrary ion composition. In their motion to the probe the ions are assumed to be collisionless. For a small Debye length, a two-scale analysis for the quasineutral plasma and for the sheath provides analytical expressions for the emitted and collected currents and for the potential as functions of a generalized mass ratio. For a Debye length that is not small, it is demonstrated that, as the Debye length becomes larger, the probe potential approaches the plasma potential and that the ion density near the probe is not smaller but rather is larger than it is in the plasma bulk.

  6. Transport and fluctuations in high temperature spheromak plasmas

    International Nuclear Information System (INIS)

    McLean, H.S.; Wood, R.D.; Cohen, B.I.; Hooper, E.B.; Hill, D.N.; Moller, J.M.; Romero-Talamas, C.; Woodruff, S.

    2006-01-01

    Higher electron temperature (T e >350 eV) and reduced electron thermal diffusivity (χ e 2 /s) is achieved in the Sustained Spheromak Physics Experiment (SSPX) by increasing the discharge current=I gun and gun bias flux=ψ gun in a prescribed manner. The internal current and q=safety factor profile derived from equilibrium reconstruction as well as the measured magnetic fluctuation amplitude can be controlled by programming the ratio λ gun =μ 0 I gun /ψ gun . Varying λ gun above and below the minimum energy eigenvalue=λ FC of the flux conserver (∇xB-vector=λ FC B-vector) varies the q profile and produces the m/n=poloidal/toroidal magnetic fluctuation mode spectrum expected from mode-rational surfaces with q=m/n. The highest T e is measured when the gun is driven with λ gun slightly less than λ FC , producing low fluctuation amplitudes ( e as T e increases, differing from Bohm or open field line transport models where χ e increases with T e . Detailed resistive magnetohydrodynamic simulations with the NIMROD code support the analysis of energy confinement in terms of the causal link with the q profile, magnetic fluctuations associated with low-order mode-rational surfaces, and the quality of magnetic surfaces

  7. ATF edge plasma turbulence studies using a fast reciprocating Langmuir probe

    International Nuclear Information System (INIS)

    Uckan, T.; Hidalgo, C.; Bell, J.D.; Harris, J.H.; Dunlap, J.L.; Dyer, G.R.; Mioduszewski, P.K.; Wilgen, J.B.; Ritz, C.P.; Wootton, A.J.; Rhodes, T.L.; Carter, K.

    1991-01-01

    Electrostatic turbulence on the edge of the Advanced Toroidal Facility (ATF) torsatron is investigated experimentally with a fast reciprocating Langmuir probe (FRLP) array. Initial measurements of plasma electron density n e and temperature T e and fluctuations in density (n e ) and plasma floating potential (φ f ) are made in electron cyclotron heated plasmas at 1 T. At the last closed flux surface (LCFS, r√a ∼ 1), T e ∼ 20--40 eV and n e ∼ 10 12 cm -3 for a line-averaged electron density bar n e = (3--6) x 10 12 cm -3 . Relative fluctuation levels, as the FRLP is moved into core plasma where T e > 20 eV, are n e /n e ∼ 5% and eφ f /T e ∼ 2n e /n e about 2 cm inside the LCFS. The observed fluctuation spectra are broadband (40--300 kHz) with bar kρ s ≤ 0.1, where bar k is the wavenumber of the fluctuations and ρ s is the ion Larmor radius at the sound speed. The propagation direction of the fluctuations reverses to the electron diamagnetic direction around r√a ph ∼ v de ). The fluctuation-induced particle flux is comparable to fluxes estimated from the particle balance using the H α spectroscopic measurements. Many of the features seen in these experiments resemble the features of ohmically heated plasmas in the Texas Experimental Tokamak (TEXT). 18 refs., 10 figs

  8. Event by event fluctuations in heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Volker

    2001-01-01

    The authors discuss the physics underlying event-by-event fluctuations in relativistic heavy ion collisions. We will argue that the fluctuations of the ratio of positively over negatively charged particles may serve as a unique signature for the Quark Gluon Plasma.

  9. Plasma generation using the hollow cathod

    International Nuclear Information System (INIS)

    Moon, K.J.

    1983-01-01

    A hollow cathode of tungsten was adapted to an University of California, Berkely, LBL bucket ion source to investigate ion density fluctuations at the extractior grid. Fluctuations in plasma ion density are observed to range between 100kHz to 2 MHz. The observed fluctuation frequencies of plasma ion density are found to be inversely proportional to the square root of ion masses. It is guessed that the plasma fluctuation are also correlated with the hollow cathode length. (Author)

  10. Plasma biomarkers in juvenile marine fish provide evidence for endocrine modulation potential of organotin compounds.

    Science.gov (United States)

    Min, Byung Hwa; Kim, Bo-Mi; Kim, Moonkoo; Kang, Jung-Hoon; Jung, Jee-Hyun; Rhee, Jae-Sung

    2018-08-01

    Organotin compounds, such as tributyltin (TBT) and triphenyltin (TPT), have been widely used to control marine fouling. Here, we show that organotin stimulation reduces the hormone levels in the plasma of two economically important aquaculture fish. Blood plasma samples were collected from juvenile red seabream and black rockfish exposed to environmentally realistic concentrations of TBT and TPT for 14 days. The levels of two plasma biomarkers, namely the yolk protein precursor vitellogenin (VTG) and the sex steroid 17β-estradiol (E2), were measured to determine the endocrine disrupting potential of the organotin compounds. Both organotin compounds were dose-dependently accumulated in the blood of two fish. Exposure to waterborne TBT and TBT significantly decreased the plasma VTG levels in both the juvenile fish in a dose-dependent manner. In contrast, the treatment with E2, a well-known VTG inducer, significantly increased the plasma VTG levels in both the fish. In addition, the mRNA levels of vtg were also downregulated in the liver tissues of both the fish at 100 and/or 1000 ng L -1 of TBT or TPT exposure. The plasma E2 titers were significantly suppressed at 100 and/or 1000 ng L -1 of TBT or TPT exposure for 14 days compared to their titer in the control. Since estrogen directly regulates vtg gene expression and VTG synthesis, our results reveal the endocrine disrupting potential of organotin compounds, and subsequently the endocrine modulation at early stage of fish can trigger further fluctuations in sexual differentiation, maturation, sex ration or egg production. In addition, the results demonstrate their effects on non-target organisms, particularly on animals reared in aquaculture and fisheries. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Multi-channel Langmuir-probe and H[alpha]-measurements of edge fluctuations on ASDEX

    Energy Technology Data Exchange (ETDEWEB)

    Niedermeyer, H; Carlson, A; Endler, M; Giannone, L.; Rudyj, A; Theimer, G [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

    1991-01-01

    The anomalous transport observed in tokamaks is caused by turbulent fluctuations, the nature of which is still poorly understood. Diagnostic difficulties are one major reason for this lack of understanding, at least with respect to the bulk plasma. The plasma edge, however, is accessible by several diagnostics permitting localized measurements of different parameters with good spatial and temporal resolution. For this reason one can hope to obtain enough information about edge fluctuations to permit the development of theoretical models. Different ranges of plasma parameters and the lack of closed magnetic surfaces distinguish this plasma zone from the bulk plasma. Edge turbulence might well involve other mechanisms than the turbulence in the bulk. Although transport in the bulk plasma receives more attention transport in the edge plasma and edge physics are very relevant for reactor design. The realistic hope to find a solution and the importance of the problem for the next step in fusion research are reasons for the strong effort in this field on many tokamaks. Like in many limiter tokamaks Langmuir probes were used in the ASDEX divertor device for measurements of the floating potential and of the ion saturation current. Under certain assumptions the electron density and the plasma potential can be derived from these data. Observation of the H[alpha]-light emitted from the edge in the vicinity of a neutral gas source yields information about the electron density. While probe measurements are more suitable for quantitative evaluations including the calculation of the local particle flux the H[alpha]-method is not calibrated and integrates radially over the edge. It is however applicable in situations where probes fail because of excessive heat load. With 16-channel arrays both methods permit spatial correlations and wavenumber spectra to be determined without any further assumptions. (author) 4 refs., 2 figs.

  12. Nonstationary stochastic charge fluctuations of a dust particle in plasmas.

    Science.gov (United States)

    Shotorban, B

    2011-06-01

    Stochastic charge fluctuations of a dust particle that are due to discreteness of electrons and ions in plasmas can be described by a one-step process master equation [T. Matsoukas and M. Russell, J. Appl. Phys. 77, 4285 (1995)] with no exact solution. In the present work, using the system size expansion method of Van Kampen along with the linear noise approximation, a Fokker-Planck equation with an exact Gaussian solution is developed by expanding the master equation. The Gaussian solution has time-dependent mean and variance governed by two ordinary differential equations modeling the nonstationary process of dust particle charging. The model is tested via the comparison of its results to the results obtained by solving the master equation numerically. The electron and ion currents are calculated through the orbital motion limited theory. At various times of the nonstationary process of charging, the model results are in a very good agreement with the master equation results. The deviation is more significant when the standard deviation of the charge is comparable to the mean charge in magnitude.

  13. Influence of vacuum space on formation of potential sheath in plasmas

    International Nuclear Information System (INIS)

    Uhm, H.S.

    1997-01-01

    Properties of potential sheaths developed in plasmas are investigated in terms of the plasma Debye length and the dimension of vacuum space. Biased plasma potential and the potential profile depend very sensitively on the geometrical configuration of plasma and vacuum space. The potential sheath is never developed near electrodes in high-density plasmas where the Debye length is much less than the dimension of the vacuum space. In this case, most of the potential drops occur in the vacuum space and almost no electric field exists inside the plasma. Parametric investigation of the potential sheath in terms of the vacuum-space and plasma dimensions is carried out. (orig.)

  14. Stochastic heating of a single Brownian particle by charge fluctuations in a radio-frequency produced plasma sheath

    Science.gov (United States)

    Schmidt, Christian; Piel, Alexander

    2015-10-01

    The Brownian motion of a single particle in the plasma sheath is studied to separate the effect of stochastic heating by charge fluctuations from heating by collective effects. By measuring the particle velocities in the ballistic regime and by carefully determining the particle mass from the Epstein drag it is shown that for a pressure of 10 Pa, which is typical of many experiments, the proper kinetic temperature of the Brownian particle remains close to the gas temperature and rises only slightly with particle size. This weak effect is confirmed by a detailed model for charging and charge fluctuations in the sheath. A substantial temperature rise is found for decreasing pressure, which approximately shows the expected scaling with p-2. The system under study is an example for non-equilibrium Brownian motion under the influence of white noise without corresponding dissipation.

  15. Comparative measurements of plasma potential with ball-pen and Langmuir probe in low-temperature magnetized plasma

    Science.gov (United States)

    Zanáška, M.; Adámek, J.; Peterka, M.; Kudrna, P.; Tichý, M.

    2015-03-01

    The ball-pen probe (BPP) is used for direct plasma potential measurements in magnetized plasma. The probe can adjust the ratio of the electron and ion saturation currents Isat-/Isat+ to be close to one and therefore its I-V characteristic becomes nearly symmetric. If this is achieved, the floating potential of the BPP is close to the plasma potential. Because of its rather simple construction, it offers an attractive probe for measurements in magnetized plasma. Comparative measurements of plasma potential by BPPs of different dimensions as well as one Langmuir probe (LP) in an argon discharge plasma of a cylindrical magnetron were performed at various experimental conditions. An additional comparison by an emissive probe was also performed. All these types of probes provide similar values of plasma potential in a wide range of plasma parameters. Our results for three different BPP dimensions indicate that the BPP can be operated in a cylindrical magnetron DC argon discharge if the value of the ratio of the magnetic field and neutral gas pressure, B/p, is greater than approximately 10 mT/Pa.

  16. Sheared-flow induced confinement transition in a linear magnetized plasma

    Science.gov (United States)

    Zhou, S.; Heidbrink, W. W.; Boehmer, H.; McWilliams, R.; Carter, T. A.; Vincena, S.; Friedman, B.; Schaffner, D.

    2012-01-01

    A magnetized plasma cylinder (12 cm in diameter) is induced by an annular shape obstacle at the Large Plasma Device [W. Gekelman, H. Pfister, Z. Lucky, J. Bamber, D. Leneman, and J. Maggs, Rev. Sci. Instrum. 62, 2875 (1991)]. Sheared azimuthal flow is driven at the edge of the plasma cylinder through edge biasing. Strong fluctuations of density and potential (δn /n~eδφ/kTe~0.5) are observed at the plasma edge, accompanied by a large density gradient (Ln=|∇lnn |-1~2cm) and shearing rate (γ ~300kHz). Edge turbulence and cross-field transport are modified by changing the bias voltage (Vbias) on the obstacle and the axial magnetic field (Bz) strength. In cases with low Vbias and large Bz, improved plasma confinement is observed, along with steeper edge density gradients. The radially sheared flow induced by E ×B drift dramatically changes the cross-phase between density and potential fluctuations, which causes the wave-induced particle flux to reverse its direction across the shear layer. In cases with higher bias voltage or smaller Bz, large radial transport and rapid depletion of the central plasma density are observed. Two-dimensional cross-correlation measurement shows that a mode with azimuthal mode number m =1 and large radial correlation length dominates the outward transport in these cases. Linear analysis based on a two-fluid Braginskii model suggests that the fluctuations are driven by both density gradient (drift wave like) and flow shear (Kelvin-Helmholtz like) at the plasma edge.

  17. Sheared-flow induced confinement transition in a linear magnetized plasma

    International Nuclear Information System (INIS)

    Zhou, S.; Heidbrink, W. W.; Boehmer, H.; McWilliams, R.; Carter, T. A.; Vincena, S.; Friedman, B.; Schaffner, D.

    2012-01-01

    A magnetized plasma cylinder (12 cm in diameter) is induced by an annular shape obstacle at the Large Plasma Device [W. Gekelman, H. Pfister, Z. Lucky, J. Bamber, D. Leneman, and J. Maggs, Rev. Sci. Instrum. 62, 2875 (1991)]. Sheared azimuthal flow is driven at the edge of the plasma cylinder through edge biasing. Strong fluctuations of density and potential (δn/n∼eδφ/kT e ∼0.5) are observed at the plasma edge, accompanied by a large density gradient (L n =∇lnn -1 ∼2cm) and shearing rate (γ∼300kHz). Edge turbulence and cross-field transport are modified by changing the bias voltage (V bias ) on the obstacle and the axial magnetic field (B z ) strength. In cases with low V bias and large B z , improved plasma confinement is observed, along with steeper edge density gradients. The radially sheared flow induced by ExB drift dramatically changes the cross-phase between density and potential fluctuations, which causes the wave-induced particle flux to reverse its direction across the shear layer. In cases with higher bias voltage or smaller B z , large radial transport and rapid depletion of the central plasma density are observed. Two-dimensional cross-correlation measurement shows that a mode with azimuthal mode number m=1 and large radial correlation length dominates the outward transport in these cases. Linear analysis based on a two-fluid Braginskii model suggests that the fluctuations are driven by both density gradient (drift wave like) and flow shear (Kelvin-Helmholtz like) at the plasma edge.

  18. [Fluctuations and transport in fusion plasma]: Progress report, October 1, 1989--September 30, 1990

    International Nuclear Information System (INIS)

    1995-01-01

    In the study of plasma collection by obstacles in a tokamak edge plasma, the effect of anomalous transport have been examined using an extension of the 2D fluid code developed here previously (Appendices A and B). The origin of the anomalous transport is assumed to be a randomly fluctuating electric field such as would be caused by drift waves. As before, the magnetic field is assumed to be uniform and perpendicular to the obstacle, which is taken to be an infinite strip. In the absence of ambient plasma flow, the numerical results indicate that ion viscous heating is important near the tip of the obstacle, where there is a large velocity gradient in the flow. For typical plasma parameters, the maximum ion temperature near the tip is up to 85% higher than the ambient ion temperature. When there is a subsonic plasma flow past the obstacle, the numerical results indicate that, near the tip of the obstacle, the ions on the downstream side are hotter than those on the upstream side. Furthermore, the ion density is higher on the upstream side. A detailed report of this work has been prepared and will be submitted as part of the Annual Progress Report. Recently, the 2D parallel electrostatic plasma particle-in-cell (PIC) code described in reference (9) (Appendix B) has been upgraded to a 2D fully electromagnetic PIC code. This code has been successfully tested on the JPL/Caltech Mark III Hypercube concurrent computers and can be used to simulate interactions of electromagnetic waves with a magnetized plasma. It is currently applied to investigate the decay of large amplitude Alfven waves, such as those observed in the solar wind. Large amplitude Alfven waves, propagating parallel to the magnetic field, are predicted to decay into obliquely propagating daughter waves and standing magnetosonic waves. Results from the simulations will be compared with theoretical predictions

  19. Effect of magnetic and density fluctuations on the propagation of lower hybrid waves in tokamaks

    Science.gov (United States)

    Vahala, George; Vahala, Linda; Bonoli, Paul T.

    1992-12-01

    Lower hybrid waves have been used extensively for plasma heating, current drive, and ramp-up as well as sawteeth stabilization. The wave kinetic equation for lower hybrid wave propagation is extended to include the effects of both magnetic and density fluctuations. This integral equation is then solved by Monte Carlo procedures for a toroidal plasma. It is shown that even for magnetic/density fluctuation levels on the order of 10-4, there are significant magnetic fluctuation effects on the wave power deposition into the plasma. This effect is quite pronounced if the magnetic fluctuation spectrum is peaked within the plasma. For Alcator-C-Mod [I. H. Hutchinson and the Alcator Group, Proceedings of the IEEE 13th Symposium on Fusion Engineering (IEEE, New York, 1990), Cat. No. 89CH 2820-9, p. 13] parameters, it seems possible to be able to infer information on internal magnetic fluctuations from hard x-ray data—especially since the effects of fluctuations on electron power density can explain the hard x-ray data from the JT-60 tokamak [H. Kishimoto and JT-60 Team, in Plasma Physics and Controlled Fusion (International Atomic Energy Agency, Vienna, 1989), Vol. I, p. 67].

  20. Experimental and theoretical investigation of density and potential fluctuations in the scrape-off layer of ASDEX

    International Nuclear Information System (INIS)

    Endler, M.; Giannone, L.; Niedermeyer, H.; Rudyj, A.; Theimer, G.

    1993-01-01

    In the divertor tokamak ASDEX density and potential fluctuations in the scrape-off layer were investigated with high temporal and spatial resolution by Langmuir probes and an H α diagnostic. Many results of these measurements were reported and are summarized below. Several of these properties of the fluctuations have also been reported from other experiments. (orig.)

  1. Comparative measurements of plasma potential with ball-pen and Langmuir probe in low-temperature magnetized plasma

    International Nuclear Information System (INIS)

    Zanáška, M.; Kudrna, P.; Tichý, M.; Adámek, J.; Peterka, M.

    2015-01-01

    The ball-pen probe (BPP) is used for direct plasma potential measurements in magnetized plasma. The probe can adjust the ratio of the electron and ion saturation currents I sat − /I sat + to be close to one and therefore its I-V characteristic becomes nearly symmetric. If this is achieved, the floating potential of the BPP is close to the plasma potential. Because of its rather simple construction, it offers an attractive probe for measurements in magnetized plasma. Comparative measurements of plasma potential by BPPs of different dimensions as well as one Langmuir probe (LP) in an argon discharge plasma of a cylindrical magnetron were performed at various experimental conditions. An additional comparison by an emissive probe was also performed. All these types of probes provide similar values of plasma potential in a wide range of plasma parameters. Our results for three different BPP dimensions indicate that the BPP can be operated in a cylindrical magnetron DC argon discharge if the value of the ratio of the magnetic field and neutral gas pressure, B/p, is greater than approximately 10 mT/Pa

  2. Comparative measurements of plasma potential with ball-pen and Langmuir probe in low-temperature magnetized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Zanáška, M.; Kudrna, P.; Tichý, M. [Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 3, 12116 Prague 2 (Czech Republic); Adámek, J. [Institute of Plasma Physics AS CR, v.v.i., Za Slovankou 3, 18200 Prague 8 (Czech Republic); Peterka, M. [Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 3, 12116 Prague 2 (Czech Republic); Institute of Plasma Physics AS CR, v.v.i., Za Slovankou 3, 18200 Prague 8 (Czech Republic)

    2015-03-15

    The ball-pen probe (BPP) is used for direct plasma potential measurements in magnetized plasma. The probe can adjust the ratio of the electron and ion saturation currents I{sub sat}{sup −}/I{sub sat}{sup +} to be close to one and therefore its I-V characteristic becomes nearly symmetric. If this is achieved, the floating potential of the BPP is close to the plasma potential. Because of its rather simple construction, it offers an attractive probe for measurements in magnetized plasma. Comparative measurements of plasma potential by BPPs of different dimensions as well as one Langmuir probe (LP) in an argon discharge plasma of a cylindrical magnetron were performed at various experimental conditions. An additional comparison by an emissive probe was also performed. All these types of probes provide similar values of plasma potential in a wide range of plasma parameters. Our results for three different BPP dimensions indicate that the BPP can be operated in a cylindrical magnetron DC argon discharge if the value of the ratio of the magnetic field and neutral gas pressure, B/p, is greater than approximately 10 mT/Pa.

  3. Long-range interaction between dust grains in plasma

    Directory of Open Access Journals (Sweden)

    D.Yu. Mishagli

    2014-03-01

    Full Text Available The nature of long-range interactions between dust grains in plasma is discussed. The dust grain interaction potential within a cell model of dusty plasma is introduced. The attractive part of inter-grain potential is described by multipole interaction between two electro-neutral cells. This allowed us to draw an analogy with molecular liquids where attraction between molecules is determined by dispersion forces. Also main ideas of the fluctuation theory for electrostatic field in cell model are formulated, and the dominating contribution to attractive part of inter-grain potential is obtained.

  4. High-frequency coherent edge fluctuations in a high-pedestal-pressure quiescent H-mode plasma.

    Science.gov (United States)

    Yan, Z; McKee, G R; Groebner, R J; Snyder, P B; Osborne, T H; Burrell, K H

    2011-07-29

    A set of high frequency coherent (HFC) modes (f=80-250 kHz) is observed with beam emission spectroscopy measurements of density fluctuations in the pedestal of a strongly shaped quiescent H-mode plasma on DIII-D, with characteristics predicted for kinetic ballooning modes (KBM): propagation in the ion-diamagnetic drift direction; a frequency near 0.2-0.3 times the ion-diamagnetic frequency; inferred toroidal mode numbers of n∼10-25; poloidal wave numbers of k(θ)∼0.17-0.4 cm(-1); and high measured decorrelation rates (τ(c)(-1)∼ω(s)∼0.5×10(6) s(-1)). Their appearance correlates with saturation of the pedestal pressure. © 2011 American Physical Society

  5. Validation study of a drift-wave turbulence model for CSDX linear plasma device

    Science.gov (United States)

    Vaezi, P.; Holland, C.; Thakur, S. C.; Tynan, G. R.

    2017-09-01

    A validation study of self-regulating drift-wave turbulence/zonal flow dynamics in the Controlled Shear Decorrelation Experiment linear plasma device using Langmuir probe synthetic diagnostics is presented in this paper. We use a set of nonlocal 3D equations, which evolve density, vorticity, and electron temperature fluctuations, and include proper sheath boundary conditions. Nonlinear simulations of these equations are carried out using BOUndary Turbulence (BOUT++) framework. To identify the dominant parametric dependencies of the model, a linear growth rate sensitivity analysis is performed using input parameter uncertainties, which are taken from the experimental measurements. For the direct comparison of nonlinear simulation results to experiment, we use synthetic Langmuir probe diagnostics to generate a set of synthetic ion saturation current and floating potential fluctuations. In addition, comparisons of azimuthal velocities determined via time-delay estimation, and nonlinear energy transfer are shown. We observe a significant improvement of model-experiment agreement relative to the previous 2D simulations. An essential component of this improved agreement is found to be the effect of electron temperature fluctuations on floating potential measurements, which introduces clear amplitude and phase shifts relative to the plasma potential fluctuations in synthetically measured quantities, where the simulations capture the experimental measurements in the core of plasma. However, the simulations overpredict the fluctuation levels at larger radii. Moreover, systematic simulation scans show that the self-generated E × B zonal flows profile is very sensitive to the steepening of density equilibrium profile. This suggests that evolving both fluctuations and equilibrium profiles, along with the inclusion of modest axial variation of radial profiles in the model are needed for further improvement of simulation results against the experimental measurements.

  6. Charging a Capacitor from an External Fluctuating Potential using a Single Conical Nanopore

    Science.gov (United States)

    Gomez, Vicente; Ramirez, Patricio; Cervera, Javier; Nasir, Saima; Ali, Mubarak; Ensinger, Wolfgang; Mafe, Salvador

    2015-01-01

    We explore the electrical rectification of large amplitude fluctuating signals by an asymmetric nanostructure operating in aqueous solution. We show experimentally and theoretically that a load capacitor can be charged to voltages close to 1 V within a few minutes by converting zero time-average potentials of amplitudes in the range 0.5–3 V into average net currents using a single conical nanopore. This process suggests that significant energy conversion and storage from an electrically fluctuating environment is feasible with a nanoscale pore immersed in a liquid electrolyte solution, a system characteristic of bioelectronics interfaces, electrochemical cells, and nanoporous membranes. PMID:25830563

  7. Visualization of phosphatidic acid fluctuations in the plasma membrane of living cells.

    Directory of Open Access Journals (Sweden)

    José P Ferraz-Nogueira

    Full Text Available We developed genetically-encoded fluorescent sensors based on Förster Resonance Energy Transfer to monitor phosphatidic acid (PA fluctuations in the plasma membrane using Spo20 as PA-binding motif. Basal PA levels and phospholipase D activity varied in different cell types. In addition, stimuli that activate PA phosphatases, leading to lower PA levels, increased lamellipodia and filopodia formation. Lower PA levels were observed in the leading edge than in the trailing edge of migrating HeLa cells. In MSC80 and OLN93 cells, which are stable cell lines derived from Schwann cells and oligodendrocytes, respectively, a higher ratio of diacylglycerol to PA levels was demonstrated in the membrane processes involved in myelination, compared to the cell body. We propose that the PA sensors reported here are valuable tools to unveil the role of PA in a variety of intracellular signaling pathways.

  8. Measurements and modelling of electrostatic fluctuations in the scrape-off layer of ASDEX

    Energy Technology Data Exchange (ETDEWEB)

    Endler, M; Niedermeyer, H; Giannone, L.; Holzhauer, E; Rudyj, A; Theimer, G; Tsois, N [Association Euratom-Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); ASDEX Team

    1995-11-01

    In the edge plasma of the ASDEX tokamak, electrostatic fluctuations were observed with Langmuir probes and in H{sub {alpha}} light with high poloidal and temporal resolution. These fluctuations contribute a significant fraction to the `anomalous` radial particle transport in the scrape-off layer (SOL). The basic properties and the dependence of the fluctuations parameters on the discharge conditions are documented. A model for an instability mechanism specific to the SOL is introduced and the experimentally observed fluctuation parameters are compared with the predictions of the linearized version of this model. For plasma temperatures above {approx} 10eV in the SOL the observed parameter dependences of the fluctuations are well reproduced by the model. By mixing length arguments the radial transport and the resulting density and pressure gradients in the SOL are estimated from the model. Their dependence on plasma temperature and density qualitatively agrees with the behaviour observed in ohmic discharges on ASDEX. (author). 54 refs, 25 figs.

  9. Measurements and modelling of electrostatic fluctuations in the scrape-off layer of ASDEX

    International Nuclear Information System (INIS)

    Endler, M.; Niedermeyer, H.; Giannone, L.; Holzhauer, E.; Rudyj, A.; Theimer, G.; Tsois, N.

    1995-01-01

    In the edge plasma of the ASDEX tokamak, electrostatic fluctuations were observed with Langmuir probes and in H α light with high poloidal and temporal resolution. These fluctuations contribute a significant fraction to the 'anomalous' radial particle transport in the scrape-off layer (SOL). The basic properties and the dependence of the fluctuations parameters on the discharge conditions are documented. A model for an instability mechanism specific to the SOL is introduced and the experimentally observed fluctuation parameters are compared with the predictions of the linearized version of this model. For plasma temperatures above ∼ 10eV in the SOL the observed parameter dependences of the fluctuations are well reproduced by the model. By mixing length arguments the radial transport and the resulting density and pressure gradients in the SOL are estimated from the model. Their dependence on plasma temperature and density qualitatively agrees with the behaviour observed in ohmic discharges on ASDEX. (author). 54 refs, 25 figs

  10. Plasma turbulence in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Caldas, Ibere L.; Heller, M.V.A.P.; Brasilio, Z.A. [Sao Paulo Univ., SP, RJ (Brazil). Inst. de Fisica

    1997-12-31

    Full text. In this work we summarize the results from experiments on electrostatic and magnetic fluctuations in tokamak plasmas. Spectral analyses show that these fluctuations are turbulent, having a broad spectrum of wavectors and a broad spectrum of frequencies at each wavector. The electrostatic turbulence induces unexpected anomalous particle transport that deteriorates the plasma confinement. The relationship of these fluctuations to the current state of plasma theory is still unclear. Furthermore, we describe also attempts to control this plasma turbulence with external magnetic perturbations that create chaotic magnetic configurations. Accordingly, the magnetic field lines may become chaotic and then induce a Lagrangian diffusion. Moreover, to discuss nonlinear coupling and intermittency, we present results obtained by using numerical techniques as bi spectral and wavelet analyses. (author)

  11. ICRF-enhanced plasma potentials in the SOL of Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    Ochoukov, R.; Whyte, D. G.; Brunner, D.; LaBombard, B.; Lipschultz, B.; Terry, J. L.; Wukitch, S. J. [PSFC MIT, NW17, 175 Albany Street, Cambridge, MA 02139 (United States); D' Ippolito, D. A.; Myra, J. R. [Lodestar Research Corporation, 2400 Central Avenue, Boulder, Colorado 80301 (United States)

    2014-02-12

    We performed an extensive survey of the plasma potential in the scrape-off layer (SOL) of Ion Cyclotron Range-of Frequencies (ICRF)-heated discharges on Alcator C-Mod. Our results show that plasma potentials are enhanced in the presence of ICRF power and plasma potential values of >100 V are often observed. Such potentials are high enough to induce sputtering of high-Z molybdenum (Mo) plasma facing components by deuterium ions on C-Mod. For comparison, the plasma potential in Ohmic discharges is typically less than 10 V, well below the threshold needed to induce Mo sputtering by deuterium ions. ICRF-enhanced plasma potentials are observed in the SOL regions that both magnetically map and do not map to active ICRF antennas. Regions that magnetically map to active ICRF antennas are accessible to slow waves directly launched by the antennas and these regions experience plasma potential enhancement that is partially consistent with the slow wave rectification mechanism. One of the most defining features of the slow wave rectification is a threshold appearance of significant plasma potentials (>100 V) when the dimensionless rectification parameter Λ{sub −o} is above unity and this trend is observed experimentally. We also observe ICRF-enhanced plasma potentials >100 V in regions that do not magnetically map to the active antennas and, hence, are not accessible for slow waves launched directly by the active antennas. However, unabsorbed fast waves can reach these regions. The general trend that we observe in these 'un-mapped' regions is that the plasma potential scales with the strength of the local RF wave fields with the fast wave polarization and the highest plasma potentials are observed in discharges with the highest levels of unabsorbed ICRF power. Similarly, we find that core Mo levels scale with the level of unabsorbed ICRF power suggesting a link between plasma potentials in the SOL and the strength of the impurity source.

  12. Langmuir probe evaluation of the plasma potential in tokamak edge plasma for non-Maxwellian EEDF

    Energy Technology Data Exchange (ETDEWEB)

    Popov, Ts.K. [Faculty of Physics, St. Kliment Ohridski University (Bulgaria); Dimitrova, M. [Institute of Plasma Physics, Academy of Sciences of the Czech Republic v.v.i., Prague (Czech Republic); Institute of Electronics, Bulgarian Academy of Sciences, Sofia (Bulgaria); Ivanova, P. [Institute of Electronics, Bulgarian Academy of Sciences, Sofia (Bulgaria); Hasan, E. [Faculty of Physics, St. Kliment Ohridski University (Bulgaria); Institute of Electronics, Bulgarian Academy of Sciences, Sofia (Bulgaria); Horacek, J.; Dejarnac, R.; Stoeckel, J.; Weinzettl, V. [Institute of Plasma Physics, Academy of Sciences of the Czech Republic v.v.i., Prague (Czech Republic); Kovacic, J. [Jozef Stefan Institute, Ljubljana (Slovenia)

    2014-04-15

    The First derivative probe technique for a correct evaluation of the plasma potential in the case of non-Maxwellian EEDF is presented and used to process experimental data from COMPASS tokamak. Results obtained from classical and first derivative techniques are compared and discussed. The first derivative probe technique provides values for the plasma potential in the scrape-off layer of tokamak plasmas with an accuracy of about ±10%. Classical probe technique can provide values of the plasma potential only, if the electron and ion temperatures are known as well as the coefficient of secondary electron emission. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Asymmetry in the convective energy fluxes due to electrostatic and magnetic fluctuations in magnetized plasmas

    International Nuclear Information System (INIS)

    Smolyakov, A.I.; Hirose, A.

    1993-01-01

    The structure of the energy balance equation for a magnetically confined plasma in the presence of electromagnetic fluctuations is investigated by using the drift kinetic equation. The convective energy fluxes, one caused by E x B electrostatic turbulence and the other by shear-Alfven type magnetic turbulence, are asymmetric: For low frequency electrostatic turbulence, the convective energy flux has a unique numerical factor 3/2, while the convective energy flux induced by magnetic turbulence has a numerical factor 5/2. As expected, in the drift approximation, turbulent heating by the longitudinal electric field is the only anomalous source term in the total energy balance equation. (Author)

  14. Active probing of plasma edge turbulence and feedback studies on the Texas Experimental Tokamak (TEXT)

    International Nuclear Information System (INIS)

    Uckan, T.; Richards, B.; Bengtson, R.D.

    1993-08-01

    A novel experiment is under way on the Texas Experimental Tokamak (TEXT) to actively modify the turbulence at the plasma edge by launching waves using electrostatic probes in the shadow of the limiter. The experiments are carried out with a wave launching system consisting of two Langmuir probes, which are about 1.8 cm apart in the poloidal direction, with respect to the magnetic field. These probes are operated in the electron side of the (I,V) characteristic. The probe tips are fed separately by independent ac power supplies. Measurements indicate that the wave, launched with a typical frequency image of 15--50 kHz from the edge of the machine top, is received by sensing probes located halfway around the torus. The detected signal strength depends on the frequency of the wave, the plasma current, and the phasing of the applied ac signal between the launching probes. Modifications to the spectra of the density and potential fluctuations are observed. These experiments have been extended to control of the edge plasma fluctuation level using feedback to explore its effects on confinement. When the launcher is driven by the floating potential of the fluctuating plasma at the location of the launching probes, then the fluctuations are suppressed or excited, depending on the phasing between the probe tips, both locally and at the downstream sensing probes. The fluctuation-induced particle flux also varies with the feedback phasing

  15. Measurement of magnetic fluctuations on ZT-40(M)

    International Nuclear Information System (INIS)

    Miller, G.

    1990-01-01

    The mathematical basis for experimental measurement of magnetic fluctuations in a Reversed Field Pinch is reviewed. A quasi-static drift model is introduced as the frame-work for analysis of the five-fixed-probe technique. The extrapolation of edge-measured rvec B r fluctuations into the plasma is discussed. Correlations between magnetic and other fluctuations expected from a quasi-static model are derived and transport-relevant correlations are discussed. Data from ZT-40(M) are presented

  16. Fluctuations measured by flush mounted versus proud divertor Langmuir probes - why are they different?

    Science.gov (United States)

    Garcia, O. E.; Kuang, A. Q.; Brunner, D.; Labombard, B.; Kube, R.

    2017-10-01

    A flush-mounted, toroidally-elongated, and field-aligned divertor `rail' Langmuir probe array was installed in Alcator C-Mod in 2015. This geometry is heat flux tolerant and effectively mitigates sheath expansion effects down to incident field line angles of 0.5 degree. Further complications have arisen that cannot be explained by sheath-expansion. In particular, the `rail' probe geometry measures significantly higher plasma fluctuation levels in the common flux region compared to traditional proud probes, whereas they are similar in the private flux zone. In some instances, the amplitudes of ion saturation current fluctuations normalized to the mean are a factor of 2 higher; probability distribution functions correspondingly record large amplitude events that are not seen by the proud probes. This discrepancy also appears to depend on divertor plasma regime. For example, fluctuations become similar near the strikepoint when the electron temperature is low. To ensure that these discrepancies were not due to perturbations caused by the voltage bias or currents collected by the probes, the two Langmuir probe systems were left to `float' and the fluctuation statistics analyzed. Yet, even in this non-perturbative situation, there exist clear differences in the fluctuation characteristics. The raises two questions: how does the probe geometry affect plasma fluctuations measurements and what are the true plasma fluctuations experienced by the divertor surface? Supported by USDoE awards DE-FC02-99ER54512.

  17. ATF [Advanced Toroidal Facility] edge plasma turbulence studies using a fast reciprocating Langmuir probe

    International Nuclear Information System (INIS)

    Uckan, T.; Hidalgo, C.; Bell, J.D.; Harris, J.H.; Dunlap, J.L.; Dyer, G.R.; Mioduszewski, P.K.; Wilgen, J.B.; Ritz, C.P.; Wootton, A.J.; Rhodes, T.L.; Carter, K.

    1990-01-01

    Electrostatic turbulence on the edge of the Advanced Torodial Facility (ATF) torsatron is investigated experimentally with a fast reciprocating Langmuir probe (FRLP) array. Initial measurements of plasma electron density n e and temperature T e and fluctuations in density (n e ) and plasma floating potential (φ f ) are made in ECH plasmas at 1 T. At the last closed flux surface (LCFS, r/bar a ∼1), T e ∼ 20--40 eV and n e ∼ 10 12 cm -3 for a line-averaged electron density bar n e = (3--6) x 10 12 cm -3 . Relative fluctuation levels, as the FRLP is moved into core plasma where T e > 20 eV, are n e /n e ∼ 5%, and e φ f /T e ∼ 2n e /n e about 2 cm inside the LCFS. The observed fluctuation spectra are broadband (40--300 kHz) with bar kρ s ≤ 0.1, where bar k is the wavenumber of the fluctuations and ρ s is the ion Larmor radius at the sound speed. The propagation direction of the fluctuations reverses to the electron diamagnetic direction around r/bar a ph ∼ v de ). The fluctuation-induced particle flux is comparable to fluxes estimated from the particle balance using the H α spectroscopic measurements. Many of the features seen in these experiments resemble the features of ohmically heated plasmas in the Texas Experimental Tokamak (TEXT). 17 refs., 10 figs

  18. Plasma Fluctuation Studies in the TCV Tokamak: Modeling of Shaping Effects and Advanced Diagnostic Development

    International Nuclear Information System (INIS)

    Marinoni, A.

    2009-10-01

    One of the most important issues for magnetic-confinement fusion research is the so-called anomalous transport across magnetic field lines, i.e. transport that is in excess of that caused by collisional processes. The need to reduce anomalous transport in order to increase the efficiency of a prospective fusion reactor must be addressed through an investigation of its fundamental underlying causes. This thesis is divided into two distinct components: one experimental and instrumental, and the other theoretical and based on numerical modeling. The experimental part consists of the design and installation of a new diagnostic for core turbulence fluctuations in the TCV tokamak. An extensive conceptual investigation of a number of possible solutions, including Beam Emission Spectroscopy, Reflectometry, Cross Polarization, Collective Scattering and different Imaging techniques, was carried out at first. A number of criteria, such as difficulties in data interpretation, costs, variety of physics issues that could be addressed and expected performance, were used to compare the different techniques for specific application to the TCV tokamak. The expected signal to noise ratio and the required sampling frequency for TCV were estimated on the basis of a large number of linear, local gyrokinetic simulations of plasma fluctuations. This work led to the choice of a Zernike phase contrast imaging system in a tangential launching configuration. The diagnostic was specifically designed to provide information on turbulence features up to now unknown. In particular, it is characterized by an outstanding spatial resolution and by the capability to measure a very broad range of fluctuations, from ion to electron Larmor radius scales, thus covering the major part of the instabilities expected to be at play in TCV. The spectrum accessible covers the wavenumber region from 0.9 cm -1 to 60 cm -1 at 24 radial positions with 3 MHz bandwidth. The diagnostic is an imaging technique and is

  19. Oscillatory wake potential with exchange-correlation in plasmas

    Science.gov (United States)

    Khan, Arroj A.; Zeba, I.; Jamil, M.; Asif, M.

    2017-12-01

    The oscillatory wake potential of a moving test charge is studied in quantum dusty plasmas. The plasma system consisting of electrons, ions and negatively charged dust species is embedded in an ambient magnetic field. The modified equation of dispersion is derived using a Quantum Hydrodynamic Model for magnetized plasmas. The quantum effects are inculcated through Fermi degenerate pressure, the tunneling effect and exchange-correlation effects. The study of oscillatory wake is important to know the existence of silence zones in space and astrophysical objects as well as for crystal formation. The graphical description of the potential depicts the significance of the exchange and correlation effects arising through spin and other variables on the wake potential.

  20. Reconstruction of a Broadband Spectrum of Alfvenic Fluctuations

    Science.gov (United States)

    Vinas, Adolfo F.; Fuentes, Pablo S. M.; Araneda, Jaime A.; Maneva, Yana G.

    2014-01-01

    Alfvenic fluctuations in the solar wind exhibit a high degree of velocities and magnetic field correlations consistent with Alfven waves propagating away and toward the Sun. Two remarkable properties of these fluctuations are the tendencies to have either positive or negative magnetic helicity (-1 less than or equal to sigma(sub m) less than or equal to +1) associated with either left- or right- topological handedness of the fluctuations and to have a constant magnetic field magnitude. This paper provides, for the first time, a theoretical framework for reconstructing both the magnetic and velocity field fluctuations with a divergence-free magnetic field, with any specified power spectral index and normalized magnetic- and cross-helicity spectrum field fluctuations for any plasma species. The spectrum is constructed in the Fourier domain by imposing two conditions-a divergence-free magnetic field and the preservation of the sense of magnetic helicity in both spaces-as well as using Parseval's theorem for the conservation of energy between configuration and Fourier spaces. Applications to the one-dimensional spatial Alfvenic propagation are presented. The theoretical construction is in agreement with typical time series and power spectra properties observed in the solar wind. The theoretical ideas presented in this spectral reconstruction provide a foundation for more realistic simulations of plasma waves, solar wind turbulence, and the propagation of energetic particles in such fluctuating fields.

  1. Heavy ion beam probe (HIBP) diagnostics as a tool for investigations into the plasma turbulence and the local electric field of dense plasma

    Energy Technology Data Exchange (ETDEWEB)

    Krupnik, L.I.; Chmyga, A.A.; Komarov, A.D.; Kozachok, A.S.; Zhezhera, A.I. [Institute of Plasma Physics, NSC KIPT, 310108 Kharkov (Ukraine); Melnikov, A.V.; Eliseev, L.G.; Lysenko, S.E.; Mavrin, V.A.; Perfilov, S.V. [Institute of Nuclear Fusion, RRC ' Kurchatov Institute' , Moscow (Russian Federation); Hidalgo, C.; Ascasibar, E.; Estrada, T.; Liniers, M.; Ochando, M.A.; Pablos, J.L. de; Pedrosa, M.A.; Tabares, F. [Laboratorio Nacional de Fusion por Confinamiento Magnetico, Asociacion EURATOM-CIEMAT, 28040-Madrid (Spain)

    2011-07-01

    One of essential achievements of the Heavy Ion Beam Probe (HIBP) diagnostics is the possibility to use it for investigation of plasma confinement by measuring the fluctuations of electric field and plasma density; the method is based on the important role of the plasma electric fields. Both edge and core transport barriers are related to a large increase in the E*B sheared flows in a fusion device. In the TJ-II stellarator the HIBP diagnostics has recently been upgraded for two-point measurements with a good spatial (1 cm) and temporal (10 {mu}s) resolution of the plasma electric potential and density, as well as their fluctuations and poloidal component of electric field, E{sub p} equals ({phi}1 - {phi}2)/{Delta}r [V/cm]; these data give chance to extract the radial turbulent particle flux: {Gamma}(r) equals {Gamma}(Epol*Btor) equals {Gamma}(E*B). (authors)

  2. Duality and reciprocity of fluctuation-dissipation relations in conductors.

    Science.gov (United States)

    Reggiani, Lino; Alfinito, Eleonora; Kuhn, Tilmann

    2016-09-01

    By analogy with linear response, we formulate the duality and reciprocity properties of current and voltage fluctuations expressed by Nyquist relations, including the intrinsic bandwidths of the respective fluctuations. For this purpose, we individuate total-number and drift-velocity fluctuations of carriers inside a conductor as the microscopic sources of noise. The spectral densities at low frequency of the current and voltage fluctuations and the respective conductance and resistance are related in a mutually exclusive way to the corresponding noise source. The macroscopic variances of current and voltage fluctuations are found to display a dual property via a plasma conductance that admits a reciprocal plasma resistance. Analogously, the microscopic noise sources are found to obey a dual property and a reciprocity relation. The formulation is carried out in the frame of the grand canonical (for current noise) and canonical (for voltage noise) ensembles, and results are derived that are valid for classical as well as degenerate statistics, including fractional exclusion statistics. The unifying theory so developed sheds new light on the microscopic interpretation of dissipation and fluctuation phenomena in conductors. In particular, it is proven that for fermions, as a consequence of the Pauli principle, nonvanishing single-carrier velocity fluctuations at zero temperature are responsible for diffusion but not for current noise, which vanishes in this limit.

  3. Measurements of the sheath potential in low density plasmas

    International Nuclear Information System (INIS)

    Bradley, J.W.; Khamis, R.A.; Sanduk, M.I.; Elliott, J.A.; Rusbridge, M.G.

    1992-01-01

    We have measured the sheath potential around a probe in a range of different plasma conditions in the UMIST, University of Manchester Institute of Science and Technology, quadrupole GOLUX and in a related experiment in which the plasma expands freely to supersonic velocity. In the latter case, the sheath potential agrees well with an appropriately modified form of the usual expression for a field-free plasma, for both hydrogen and argon plasmas. In GOLUX, however, the sheath potential is found to be significantly less than the accepted value, even when the magnetic field is taken into account. For the slow moving plasma in the outer part of the quadrupole confining field, we present both theoretical and experimental results showing that the reduction is due to truncation of the electron velocity distribution as the probe drains electrons from a closed flux tube faster than they can be replaced. In the central hot plasma, however, this explanation cannot apply. Here, the plasma is moving at about sonic speed and magnetic effects are weak. Nevertheless, the results are significantly different from both in the field free experiment. (author)

  4. Collisionality dependent transport in TCV SOL plasmas

    DEFF Research Database (Denmark)

    Garcia, Odd Erik; Pitts, R.A.; Horacek, J.

    2007-01-01

    Results are presented from probe measurements in the low field side scrape-off layer (SOL) region of TCV during plasma current scan experiments. It is shown that with decreasing plasma current the radial particle density profile becomes broader and the fluctuation levels and turbulence driven...... radial particle flux increase. In the far SOL the fluctuations exhibit a high degree of statistical similarity and the particle density and flux at the wall radius scale inversely with the plasma current. Together with previous TCV density scan experiments, this indicates that plasma fluctuations...

  5. Controlled fusion and plasma heating

    International Nuclear Information System (INIS)

    1990-06-01

    The contributions presented in the 17th European Conference on Controlled Fusion and Plasma Heating were focused on Tore Supra investigations. The following subjects were presented: ohmic discharges, lower hybrid experiments, runaway electrons, Thomson scattering, plasma density measurements, magnetic fluctuations, polarization scattering, plasma currents, plasma fluctuation measurements, evaporation of hydrogen pellets in presence of fast electrons, ripple induced stochastic diffusion of trapped particles, tearing mode stabilization, edge effects on turbulence behavior, electron cyclotron heating, micro-tearing modes, divertors, limiters

  6. Microwave Imaging Reflectometry for the Measurement of Turbulent Fluctuations in Tokamaks

    International Nuclear Information System (INIS)

    Mazzucato, E.

    2004-01-01

    This article describes a numerical study of microwave reflectometry for the measurement of turbulent fluctuations in tokamak-like plasmas with a cylindrical geometry. Similarly to what was found previously in plane-stratified plasmas, the results indicate that the characteristics of density fluctuations cannot be uniquely determined from the reflected waves if the latter are allowed to propagate freely to the point of detection, as in standard reflectometry. Again, we find that if the amplitude of fluctuations is below a threshold that is set by the spectrum of poloidal wave numbers, the local characteristics of density fluctuations can be obtained from the phase of reflected waves when these are collected with a wide aperture antenna, and an image of the cutoff is formed onto an array of phase-sensitive detectors

  7. Impact of magnetic shear modification on confinement and turbulent fluctuations in LHD plasmas

    International Nuclear Information System (INIS)

    Fukuda, T.; Tamura, N.; Ida, K.

    2008-10-01

    For the comprehensive understandings of transport phenomena in toroidal confinement systems and improvement of the predictive capability of burning plasmas in ITER, the impact of magnetic shear has been extensively investigated in the Large Helical Device (LHD) for comparison with tokamaks. Consequently, it was heuristically documented that the pronounced effect of magnetic shear, which has been hitherto considered to be ubiquitous and strongly impacts the core transport in the tokamak experiments, is not quite obvious. Namely, the kinetic profiles respond little under extensive modification of the magnetic shear in the core, although the local transport analysis indicates the sign of improvement in confinement transiently when the magnetic shear is reduced. It was thereby concluded that the magnetic shear in the core strongly influences the MHD activity, but it may only be one of the necessary conditions for the transport reduction, and some other crucial knobs, such as the density gradient or T e /T i ratio, would have to be simultaneously controlled. The low wavenumber turbulence seems to be suppressed under the weak shear, and the turbulent fluctuation intensity behaves in a consistent manner as a whole, following the conventional paradigm accumulated in the negative shear experiments in tokamaks. However, vigorous dynamics of turbulent fluctuations have occasionally been observed under the magnetic shear modification, which respond in much faster time scale than the characteristic time scale for either the magnetic diffusion or the profile evolution. (author)

  8. Study of fluctuation and turbulance of JFT-2M

    Energy Technology Data Exchange (ETDEWEB)

    Toyama, Hiroshi; Hanada, Kazuaki; Yamagishi, Kenichi [Tokyo Univ. (Japan)] [and others

    1998-01-01

    In many improved containment modes, it is said that E x B shear flow formed by shear of radial electric field acts as a mechanism of fluctuation control. In order to understand the mechanism of these improved containment modes, it is necessary to investigate a cause and result relation between controls of fluctuation on formation of sheared flow and fluctuating magnetic wave by using geometrical optics approximation. In this study, the following articles were conducted: (1) to improve a reflectometer with fixed 1-ch frequency using at last fiscal year to one with 2-ch variable frequency to test density fluctuation ranging 0.98 to 3.1 x 10(exp 19)m(sup-3) in density, (2) to examine a relationship between runaway phase and scattering, to propose and application of complex spectrum for usable analytical method even to runaway phase, (3) to study density fluctuation at L-H transition by using this analytical method, and (4) to research cause and result relation of the L-H transition by measuring various plasma parameters by inserting a triple probe array into main plasma. (G.K.)

  9. Study of fluctuation and turbulance of JFT-2M

    International Nuclear Information System (INIS)

    Toyama, Hiroshi; Hanada, Kazuaki; Yamagishi, Kenichi

    1998-01-01

    In many improved containment modes, it is said that E x B shear flow formed by shear of radial electric field acts as a mechanism of fluctuation control. In order to understand the mechanism of these improved containment modes, it is necessary to investigate a cause and result relation between controls of fluctuation on formation of sheared flow and fluctuating magnetic wave by using geometrical optics approximation. In this study, the following articles were conducted: 1) to improve a reflectometer with fixed 1-ch frequency using at last fiscal year to one with 2-ch variable frequency to test density fluctuation ranging 0.98 to 3.1 x 10(exp 19)m(sup-3) in density, 2) to examine a relationship between runaway phase and scattering, to propose and application of complex spectrum for usable analytical method even to runaway phase, 3) to study density fluctuation at L-H transition by using this analytical method, and 4) to research cause and result relation of the L-H transition by measuring various plasma parameters by inserting a triple probe array into main plasma. (G.K.)

  10. Measurement of core velocity fluctuations and the dynamo in a reversed-field pinch

    International Nuclear Information System (INIS)

    Den Hartog, D.J.; Craig, D.; Fiksel, G.; Fontana, P.W.; Prager, S.C.; Sarff, J.S.; Chapman, J.T.

    1998-01-01

    Plasma flow velocity fluctuations have been directly measured in the high temperature magnetically confined plasma in the Madison Symmetric Torus (MST) Reversed-Field Pinch (RFP). These measurements show that the flow velocity fluctuations are correlated with magnetic field fluctuations. This initial measurement is subject to limitations of spatial localization and other uncertainties, but is evidence for sustainment of the RFP magnetic field configuration by the magnetohydrodynamic (MHD) dynamo. Both the flow velocity and magnetic field fluctuations are the result of global resistive MHD modes of helicity m = 1, n = 5--10 in the core of MST. Chord-averaged flow velocity fluctuations are measured in the core of MST by recording the Doppler shift of impurity line emission with a specialized high resolution and throughput grating spectrometer. Magnetic field fluctuations are recorded with a large array of small edge pickup coils, which allows spectral decomposition into discrete modes and subsequent correlation with the velocity fluctuation data

  11. Creation of Magnetic Fields by Electrostatic and Thermal Fluctuations

    International Nuclear Information System (INIS)

    Saleem, Hamid

    2009-01-01

    It is pointed out that the electrostatic and thermal fluctuations are the main source of magnetic fields in unmagnetized inhomogeneous plasmas. The unmagnetized inhomogeneous plasmas can support a low frequency electromagnetic ion wave as a normal mode like Alfven wave of magnetized plasmas. But this is a coupled mode produced by the mixing of longitudinal and transverse components of perturbed electric field due to density inhomogeneity. The ion acoustic wave does not remain electrostatic in non-uniform plasmas. On the other hand, a low frequency electrostatic wave can also exist in the pure electron plasmas and it couples with ion acoustic wave when ions are dynamic. These waves can become unstable when density and temperature gradients are parallel to each other as can be the case of laser plasmas and is the common situation in stellar cores. The main instability condition for the electrostatic and electromagnetic modes is the same (2/3)κ n T (where κ n and κ T are inverse of the scale lengths of gradients of density and electron temperature, respectively). This indicates that the electrostatic and magnetic field fluctuations are strongly coupled in unmagnetized nonuniform plasmas.

  12. Investigation of E x B transport with a multi-electrode probe in the plasma boundary of TEXTOR

    International Nuclear Information System (INIS)

    Ivanov, R.S.; Moyer, R.A.; Nieuwenhove, R. van; Oost, G. van; Fuchs, G.; Hoethker, K.; Samm, U.

    1991-01-01

    A movable multi-element Langmuir probe was implemented in TEXTOR in order to study properties of the edge and scrape-off plasma. The probe has five graphite electrode pins allowing the simultaneous measurement of main parameters such as plasma densities, electron temperatures, floating potentials, poloidal and radial electric fields. Both time-averaged and fluctuating quantities have been considered in order to evaluate the DC and turbulence-driven cross-field particle fluxes. The spectral analysis of the fluctuating floating potentials at spatially separated probe pins allows to determine the velocity associated with the rotations of the boundary plasma. The investigations have been focused on the variations of plasma boundary properties in plasmas with pure ohmic heating as well as auxiliary heating (ICRH). Special attention has been paid to the change of transport properties with the transition to a detached plasma. In particular, a significant reduction of the poloidal phase velocity at the limited edge has been observed for detached plasmas. Preliminary data on physical effects near the plasma boundary, which occur when the toroidal belt limiter (ALT-II) is biased, are reported. (orig.)

  13. Sheared Rotation Effects on Kinetic Stability in Enhanced Confinement Tokamak Plasmas, and Nonlinear Dynamics of Fluctuations and Flows in Axisymmetric Plasmas

    International Nuclear Information System (INIS)

    Beer, M.A.; Chance, M.S.; Hahm, T.S.; Lin, Z.; Rewoldt, G.; Tang, W.M.

    1997-01-01

    Sheared rotation dynamics are widely believed to have signficant influence on experimentally observed confinement transitions in advanced operating modes in major tokamak experiments, such as the Tokamak Fusion Test Reactor (TFTR) [D.J. Grove and D.M. Meade, Nuclear Fusion 25, 1167 (1985)], with reversed magnetic shear regions in the plasma interior. The high-n toroidal drift modes destabilized by the combined effects of ion temperature gradients and trapped particles in toroidal geometry can be strongly affected by radially sheared toroidal and poloidal plasma rotation. In previous work with the FULL linear microinstability code, a simplified rotation model including only toroidal rotation was employed, and results were obtained. Here, a more complete rotation model, that includes contributions from toroidal and poloidal rotation and the ion pressure gradient to the total radial electric field, is used for a proper self-consistent treatment of this key problem. Relevant advanced operating mode cases for TFTR are presented. In addition, the complementary problem of the dynamics of fluctuation-driven E x B flow is investigated by an integrated program of gyrokinetic simulation in annulus geometry and gyrofluid simulation in flux tube geometry

  14. Plasma potentials and performance of the advanced electron cyclotron resonance ion source

    International Nuclear Information System (INIS)

    Xie, Z.Q.; Lyneis, C.M.

    1994-01-01

    The mean plasma potential was measured on the LBL advanced electron cyclotron resonance (AECR) ion source for a variety of conditions. The mean potentials for plasmas of oxygen, argon, and argon mixed with oxygen in the AECR were determined. These plasma potentials are positive with respect to the plasma chamber wall and are on the order of tens of volts. Electrons injected into the plasma by an electron gun or from an aluminum oxide wall coating with a very high secondary electron emission reduce the plasma potential as does gas mixing. A lower plasma potential in the AECR source coincides with enhanced production of high charged state ions indicating longer ion confinement times. The effect of the extra electrons from external injection or wall coatings is to lower the average plasma potential and to increase the n e τ i of the ECR plasma. With sufficient extra electrons, the need for gas mixing can be eliminated or reduced to a lower level, so the source can operate at lower neutral pressures. A reduction of the neutral pressure decreases charge exchange between ions and neutrals and enhances the production of high charge state ions. An aluminum oxide coating results in the lowest plasma potential among the three methods discussed and the best source performance

  15. Laser-heated emissive plasma probe.

    Science.gov (United States)

    Schrittwieser, Roman; Ionita, Codrina; Balan, Petru; Gstrein, Ramona; Grulke, Olaf; Windisch, Thomas; Brandt, Christian; Klinger, Thomas; Madani, Ramin; Amarandei, George; Sarma, Arun K

    2008-08-01

    Emissive probes are standard tools in laboratory plasmas for the direct determination of the plasma potential. Usually they consist of a loop of refractory wire heated by an electric current until sufficient electron emission. Recently emissive probes were used also for measuring the radial fluctuation-induced particle flux and other essential parameters of edge turbulence in magnetized toroidal hot plasmas [R. Schrittwieser et al., Plasma Phys. Controlled Fusion 50, 055004 (2008)]. We have developed and investigated various types of emissive probes, which were heated by a focused infrared laser beam. Such a probe has several advantages: higher probe temperature without evaporation or melting and thus higher emissivity and longer lifetime, no deformation of the probe in a magnetic field, no potential drop along the probe wire, and faster time response. The probes are heated by an infrared diode laser with 808 nm wavelength and an output power up to 50 W. One probe was mounted together with the lens system on a radially movable probe shaft, and radial profiles of the plasma potential and of its oscillations were measured in a linear helicon discharge.

  16. Laser-heated emissive plasma probe

    International Nuclear Information System (INIS)

    Schrittwieser, Roman; Ionita, Codrina; Balan, Petru; Gstrein, Ramona; Grulke, Olaf; Windisch, Thomas; Brandt, Christian; Klinger, Thomas; Madani, Ramin; Amarandei, George; Sarma, Arun K.

    2008-01-01

    Emissive probes are standard tools in laboratory plasmas for the direct determination of the plasma potential. Usually they consist of a loop of refractory wire heated by an electric current until sufficient electron emission. Recently emissive probes were used also for measuring the radial fluctuation-induced particle flux and other essential parameters of edge turbulence in magnetized toroidal hot plasmas [R. Schrittwieser et al., Plasma Phys. Controlled Fusion 50, 055004 (2008)]. We have developed and investigated various types of emissive probes, which were heated by a focused infrared laser beam. Such a probe has several advantages: higher probe temperature without evaporation or melting and thus higher emissivity and longer lifetime, no deformation of the probe in a magnetic field, no potential drop along the probe wire, and faster time response. The probes are heated by an infrared diode laser with 808 nm wavelength and an output power up to 50 W. One probe was mounted together with the lens system on a radially movable probe shaft, and radial profiles of the plasma potential and of its oscillations were measured in a linear helicon discharge

  17. Laser-heated emissive plasma probe

    Science.gov (United States)

    Schrittwieser, Roman; Ionita, Codrina; Balan, Petru; Gstrein, Ramona; Grulke, Olaf; Windisch, Thomas; Brandt, Christian; Klinger, Thomas; Madani, Ramin; Amarandei, George; Sarma, Arun K.

    2008-08-01

    Emissive probes are standard tools in laboratory plasmas for the direct determination of the plasma potential. Usually they consist of a loop of refractory wire heated by an electric current until sufficient electron emission. Recently emissive probes were used also for measuring the radial fluctuation-induced particle flux and other essential parameters of edge turbulence in magnetized toroidal hot plasmas [R. Schrittwieser et al., Plasma Phys. Controlled Fusion 50, 055004 (2008)]. We have developed and investigated various types of emissive probes, which were heated by a focused infrared laser beam. Such a probe has several advantages: higher probe temperature without evaporation or melting and thus higher emissivity and longer lifetime, no deformation of the probe in a magnetic field, no potential drop along the probe wire, and faster time response. The probes are heated by an infrared diode laser with 808nm wavelength and an output power up to 50W. One probe was mounted together with the lens system on a radially movable probe shaft, and radial profiles of the plasma potential and of its oscillations were measured in a linear helicon discharge.

  18. Modifications of plasma edge electric field and confinement properties by limiter biasing on the KT-5C tokamak

    International Nuclear Information System (INIS)

    Hui Gao; Kan Zhai; Yizhi Wen; Shude Wan; Guiding Wang; Changxun Yu

    1995-01-01

    Experiments using a biased multiblock limiter in the KT-5C tokamak show that positive biasing is more effective than negative biasing in modifying the edge electric field, suppressing fluctuations and improving plasma confinement. The biasing effect varies with the limiter area, the toroidal magnetic field and the biasing voltage. By positive biasing, the edge profiles of the plasma potential, the electron temperature and the density become steeper, resulting in a reduced edge particle flux, an increased global particle confinement time and lower fluctuation levels of the edge plasma. (author)

  19. Role of potential fluctuations in phase-change GST memory devices

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Satish C. [Department of Physics, Indian Institute of Technology, Kanpur 208016 (India)

    2012-10-15

    The long range potential fluctuations (LRPFs) arising from the defects and heterogeneities in disordered semiconductors are important for understanding their atomic and electronic properties. Here, they are measured in Ge{sub X}Sb{sub Y}Te{sub 1-X-Y} (GST) chalcogenide glasses used in rewritable phase change memory (PCM) devices. It is found that the most commonly used composition Ge{sub 2}Sb{sub 2}Te{sub 5} has the smallest LRPF amongst its nearby compositions. This finding may be useful in the search for better PCM materials. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Chiral charge erasure via thermal fluctuations of magnetic helicity

    International Nuclear Information System (INIS)

    Long, Andrew J.; Sabancilar, Eray

    2016-01-01

    We consider a relativistic plasma of fermions coupled to an Abelian gauge field and carrying a chiral charge asymmetry, which might arise in the early Universe through baryogenesis. It is known that on large length scales, λ≳1/(αμ_5), the chiral anomaly opens an instability toward the erasure of chiral charge and growth of magnetic helicity. Here the chemical potential μ_5 parametrizes the chiral asymmetry and α is the fine-structure constant. We study the process of chiral charge erasure through the thermal fluctuations of magnetic helicity and contrast with the well-studied phenomenon of Chern-Simons number diffusion. Through the fluctuation-dissipation theorem we estimate the amplitude and time scale of helicity fluctuations on the length scale λ, finding δ H∼λT and τ∼αλ"3T"2 for a relativistic plasma at temperature T. We argue that the presence of a chiral asymmetry allows the helicity to grow diffusively for a time t∼T"3/(α"5μ_5"4) until it reaches an equilibrium value H∼μ_5T"2/α, and the chiral asymmetry is partially erased. If the chiral asymmetry is small, μ_5< T/α, this avenue for chiral charge erasure is found to be slower than the chiral magnetic effect for which t∼T/(α"3μ_5"2). This mechanism for chiral charge erasure can be important for the hypercharge sector of the Standard Model as well as extensions including U(1) gauge interactions, such as asymmetric dark matter models.

  1. Tension moderation and fluctuation spectrum in simulated lipid membranes under an applied electric potential

    DEFF Research Database (Denmark)

    Loubet, Bastien; Lomholt, Michael Andersen; Khandelia, Himanshu

    2013-01-01

    , and bilayer thickness are investigated in detail. In particular, the least square fitting technique is used to calculate the fluctuation spectra. The simulations confirm a recently proposed theory that the effect of an applied electric potential on the membrane will be moderated by the elastic properties...

  2. Charging properties of a dust grain in collisional plasmas

    International Nuclear Information System (INIS)

    Khrapak, S.A.; Morfill, G.E.; Khrapak, A.G.; D'yachkov, L.G.

    2006-01-01

    Charging related properties of a small spherical grain immersed in a collisional plasma are investigated. Asymptotic expressions for charging fluxes, grain surface potential, long range electrostatic potential, and the properties of grain charge fluctuations due to the discrete nature of the charging process are obtained. These analytical results are in reasonable agreement with the available results of numerical modeling

  3. Bispectral experimental estimation of the nonlinear energy transfer in two-dimensional plasma turbulence

    DEFF Research Database (Denmark)

    Manz, P.; Ramisch, M.; Stroth, U.

    2008-01-01

    Experimental density and potential fluctuation data from a 2D probe array have been analysed to study the turbulent cascade in a toroidally confined magnetized plasma. The bispectral analysis technique used is from Ritz et al ( 1989 Phys. Fluids B 1 153) and Kim et al ( 1996 Phys. Plasmas 3 3998...... scales. This is the first experimental evidence for the dual turbulent cascade in a magnetized plasma....

  4. Inward transport of a toroidally confined plasma subject to strong radial electric fields

    Science.gov (United States)

    Roth, J. R.; Krawczonek, W. M.; Powers, E. J.; Hong, J.; Kim, Y.

    1977-01-01

    The paper aims at showing that the density and confinement time of a toroidal plasma can be enhanced by radial electric fields far stronger than the ambipolar values, and that, if such electric fields point into the plasma, radially inward transport can result. The investigation deals with low-frequency fluctuation-induced transport using digitally implemented spectral analysis techniques and with the role of strong applied radial electric fields and weak vertical magnetic fields on plasma density and particle confinement times in a Bumpy Torus geometry. Results indicate that application of sufficiently strong radially inward electric fields results in radially inward fluctuation-induced transport into the toroidal electrostatic potential well; this inward transport gives rise to higher average electron densities and longer particle confinement times in the toroidal plasma.

  5. Exponential power spectra, deterministic chaos and Lorentzian pulses in plasma edge dynamics

    International Nuclear Information System (INIS)

    Maggs, J E; Morales, G J

    2012-01-01

    Exponential spectra have been observed in the edges of tokamaks, stellarators, helical devices and linear machines. The observation of exponential power spectra is significant because such a spectral character has been closely associated with the phenomenon of deterministic chaos by the nonlinear dynamics community. The proximate cause of exponential power spectra in both magnetized plasma edges and nonlinear dynamics models is the occurrence of Lorentzian pulses in the time signals of fluctuations. Lorentzian pulses are produced by chaotic behavior in the separatrix regions of plasma E × B flow fields or the limit cycle regions of nonlinear models. Chaotic advection, driven by the potential fields of drift waves in plasmas, results in transport. The observation of exponential power spectra and Lorentzian pulses suggests that fluctuations and transport at the edge of magnetized plasmas arise from deterministic, rather than stochastic, dynamics. (paper)

  6. Consideration of fluctuation in secondary beam intensity of heavy ion beam probe measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fujisawa, A.; Iguchi, H.; Lee, S.; Hamada, Y.

    1997-01-01

    Heavy ion beam probes have capability to detect local electron density fluctuation in the interior of plasmas through the detected beam intensity fluctuation. However, the intensity fluctuation should suffer a certain degree of distortion from electron density and temperature fluctuations on the beam orbits, and as a result the signal can be quite different from the local density fluctuation. This paper will present a condition that the intensity fluctuation can be regarded as being purely local electron density fluctuation, together with discussion about the contamination of the fluctuation along the beam orbits to the beam intensity fluctuation. (author)

  7. Collisionless damping of nonlinear dust ion acoustic wave due to dust charge fluctuation

    International Nuclear Information System (INIS)

    Ghosh, Samiran; Chaudhuri, Tushar K.; Sarkar, Susmita; Khan, Manoranjan; Gupta, M.R.

    2002-01-01

    A dissipation mechanism for the damping of the nonlinear dust ion acoustic wave in a collisionless dusty plasma consisting of nonthermal electrons, ions, and variable charge dust grains has been investigated. It is shown that the collisionless damping due to dust charge fluctuation causes the nonlinear dust ion acoustic wave propagation to be described by the damped Korteweg-de Vries equation. Due to the presence of nonthermal electrons, the dust ion acoustic wave admits both positive and negative potential and it suffers less damping than the dust acoustic wave, which admits only negative potential

  8. Crossover from bound to free states in plasmas

    International Nuclear Information System (INIS)

    Lankin, Alexander V; Norman, Genri E

    2009-01-01

    A self-consistent joint description of free and weakly bound electron states in strongly coupled plasmas is presented. The existence of two problems is emphasized. The first one is a well-known restriction of the number of atomic excited states. Another one is a description of the smooth crossover from bound pair electron-ion excited states to collective excitations of free electrons. The fluctuation approach is developed to study the spectrum domain intermediate between low-lying excited atoms and free electron continuous energy levels. The molecular dynamics method is applied to study the plasma model since the method is able to distinguish all kinds of fluctuations. The electron-ion interaction is described by the temperature-independent cut-off Coulomb potential. The diagnostics of pair electron-ion fluctuations is developed. The concept of pair fluctuations elucidates the smooth vanishing of atomic states near the ionization limit. The approach suggested removes the artificial break of the electron state density at the ionization limit: atomic state density divergent at the negative energy side and free electron state density starting from zero density at the positive energy side

  9. Fusion Plasma Theory: Task 1, Magnetic confinement Fusion Plasma Theory

    International Nuclear Information System (INIS)

    Callen, J.D.

    1993-01-01

    The research performed under this grant during the current year has concentrated on few tokamak plasma confinement issues: applications of our new Chapman-Enskog-like approach for developing hybrid fluid/kinetic descriptions of tokamak plasmas; multi-faceted studies as part of our development of a new interacting island paradigm for the tokamak equilibrium'' and transport; investigations of the resolution power of BES and ECE diagnostics for measuring core plasma fluctuations; and studies of net transport in the presence of fluctuating surfaces. Recent progress and publications in these areas, and in the management of the NERSC node and the fusion theory workstations are summarized briefly in this report

  10. Stable confinement of toroidal electron plasma in an internal conductor device Prototype-Ring Trap

    International Nuclear Information System (INIS)

    Saitoh, H.; Yoshida, Z.; Watanabe, S.

    2005-01-01

    A pure electron plasma has been produced in an internal conductor device Prototype-Ring Trap (Proto-RT). The temporal evolution of the electron plasma was investigated by the measurement of electrostatic fluctuations. Stable confinement was realized when the potential profile adjusted to match the magnetic surfaces. The confinement time varies as a function of the magnetic field strength and the neutral gas pressure, and is comparable to the diffusion time of electrons determined by the classical collisions with neutral gas. Although the addition of a toroidal magnetic field stabilized the electrostatic fluctuation of the plasma, the effects of the magnetic shear shortened the stable confinement time, possibly because of the obstacles of coil support structures

  11. Quantum gravity fluctuations flatten the Planck-scale Higgs potential

    Science.gov (United States)

    Eichhorn, Astrid; Hamada, Yuta; Lumma, Johannes; Yamada, Masatoshi

    2018-04-01

    We investigate asymptotic safety of a toy model of a singlet-scalar extension of the Higgs sector including two real scalar fields under the impact of quantum-gravity fluctuations. Employing functional renormalization group techniques, we search for fixed points of the system which provide a tentative ultraviolet completion of the system. We find that in a particular regime of the gravitational parameter space the canonically marginal and relevant couplings in the scalar sector—including the mass parameters—become irrelevant at the ultraviolet fixed point. The infrared potential for the two scalars that can be reached from that fixed point is fully predicted and features no free parameters. In the remainder of the gravitational parameter space, the values of the quartic couplings in our model are predicted. In light of these results, we discuss whether the singlet-scalar could be a dark-matter candidate. Furthermore, we highlight how "classical scale invariance" in the sense of a flat potential of the scalar sector at the Planck scale could arise as a consequence of asymptotic safety.

  12. Energy balance of plasma with wave taking the nonpotential nature of the waves into consideration

    International Nuclear Information System (INIS)

    Gel'berg, M.G.; Volosevich, A.V.

    1986-01-01

    It is shown that in the ionospheric plasma the potential electric field of low-frequency plasma waves is shifted in phase with respect to fluctuations of current by approximately -π/2 and the rotational field is almost in phase with the current. Therefore, the energy transfer between the plasma and the wave occurs mainly with the participation of rotational field

  13. Kinetic equations and fluctuations in μspace of one-component dilute plasmas

    International Nuclear Information System (INIS)

    Tokuyama, Michio; Mori, Hazime

    1977-01-01

    Kinetic equations for a spatially coarse-grained electron density in μ phase space A(p, r; t) with a length cutoff b and for its fluctuations are studied by a scaling method and a time-convolutionless approach developed by the present authors. An electron gas with a small plasma parameter epsilon=1/c (lambda sub(D)) 3 has three characteristic lengths; the Landau cutoff r sub(L)=epsilon lambda sub(D), the Debye length lambda sub(D)=√k sub(B)T/4πe 2 c and the mean free path l sub(f)=lambda sub(D)/epsilon, e and c being electronic charge and mean electron density, respectively. It is shown that there are two characteristic regions of the length cutoff b. One is a coherent region where r sub(L)<< b<< lambda sub(D). Its characteristic scaling is c→0, b→infinity, t→infinity with b√c and t√c being kept constant. The Vlasov equation is derived in this limit. The other is a kinetic region where lambda sub(D)<< b<< l sub(f). Its characteristic scaling is c→0, b→infinity, t→infinity with bc and tc being kept constant. The Vlasov term disappears and the Balescu-Lenard-Boltzmann-Landau equation, which is free of divergence for both close and distant collisions, is derived in this limit. It is shown that the fluctuations of A(p, r; t) obey a Markov process with scaling exponents α=0, β=1/2 in the coherent region near thermal equilibrium, while they obey a Gaussian Markov process with α=0, β=1 in the kinetic region. The present theory does not need the factorization ansatz and Bogoliubov's functional ansatz. (auth.)

  14. Analytic analysis on asymmetrical micro arcing in high plasma potential RF plasma systems

    International Nuclear Information System (INIS)

    Yin, Y; McKenzie, D R; Bilek, M M M

    2006-01-01

    We report experimental and analytical results on asymmetrical micro arcing in a RF (radio frequency) plasma. Micro arcing, resulting from high plasma potential, in RF plasma was found to occur only on the grounded electrode for a variety of electrode and surface configurations. The analytic derivation was based on a simple RF time-dependent Child-Langmuir sheath model and electric current continuity. We found that the minimum potential difference in one RF period across the grounded electrode sheath depends on the area ratio of the grounded electrode to the powered electrode. As the area ratio increases, the minimum potential difference across a sheath increases for the grounded electrode but not for the RF powered electrode. We showed that discharge time in micro arcing is more than 100 RF periods; thus the presence of a continuous high electric field in one RF cycle results in micro arcing on the grounded electrode. However, the minimum potential difference in one RF period across the powered electrode sheath is always small so that it prevents micro arcing occurring even though the average sheath voltage can be large. This simple analytic model is consistent with particle-in-cell simulation results

  15. The effect of plasma density profile on the backscatter of microwaves from a plasma-covered plane conductor

    International Nuclear Information System (INIS)

    Destler, W.W.; Singh, A.; Rodgers, J.

    1993-01-01

    In order to gain further insight into the mechanism of anomalous absorption of microwaves in a pulsed plasma column, the latter was studied using single and double Langmuir probes. Graphs of plasma potential recorded by floating Langmuir probes as a function of time were obtained for a range of pressure of the background gas and at different distances from the plasma-covered plane-conducting plate. From this data, two main components of the plasma have been identified. The first appears earlier, exhibits greater fluctuations and is shorter in duration than the second component. The presence of these two plasma components is consistent with earlier observations obtained from transverse transmission measurements of microwaves through the plasma. Variations in the envelopes of these two components as experimental conditions are changed will be presented. Microwave backscatter measurements under varying conditions of plasma-density profile and ambient gas pressure will also be presented

  16. A complex probe for tokamak plasma edge conditions

    International Nuclear Information System (INIS)

    Castro, R.M. de; Silva, R.P. da; Heller, M.V.A.P.; Caldas, I.L.; Nascimento, I.C.; Degasperi, F.T.

    1995-01-01

    The study of the physical processes that occur in the plasma edge of tokamak machines has recently grown due to the evidence that these processes influence those that occur in the center of the plasma column. Experimental studies show the existence of a strong level of fluctuations in the plasma edge. The results of these studies indicate that these fluctuations enhance particle and energy transport and degrade the confinement. In order to investigate these processes in the plasma edge of the TBR-1 Tokamak, a Langmuir probe array, a triple and a set of magnetic probes have been designed and constructed. With this set probes the mean and fluctuation values of the magnetic field were detected and correlated with the fluctuating parameters obtained with the electrostatic probes. (author). 7 refs., 5 figs

  17. Methods for direct measurement of the plasma potential

    DEFF Research Database (Denmark)

    Andersen, S. A.; Christoffersen, G. B.; Jensen, Vagn Orla

    1972-01-01

    Reports on a simple experimental technique which can be used for determination of the plasma where the plasma potential prevails; these ions are accepted by the analyser plate when phi c= phi pl. Part of this technique has been used by Andersen, Jensen, Michelsen and Nielsen (1971) in measurements...

  18. Fast potential change in sawteeth in JIPP T-IIU tokamak plasmas

    International Nuclear Information System (INIS)

    Hamada, Y.; Nishizawa, A.; Kawasumi, Y.

    1994-12-01

    Fast changes of electric potential with different polarities are observed during sawtooth oscillation in a core region of a tokamak plasma using a heavy ion beam probe. The potential change inside the inversion radius is found to be positive. The change is negative outside the inversion radius and shows clearly a propagation nature. The observed potential can be interpreted by the mixture of the potentials of two origins. One of them drives the fast MHD plasma motion through E/B drift and the other is a barrier potential induced by mixing of hot and cold plasmas at sawtooth crash. (author)

  19. Potential fluctuations due to randomly distributed charges at the semiconductor-insulator interface in MIS-structures

    International Nuclear Information System (INIS)

    Yanchev, I.

    2003-01-01

    A new expression for the Fourier transform of the binary correlation function of the random potential near the semiconductor-insulator interface is derived. The screening from the metal electrode in MIS-structure is taken into account introducing an effective insulator thickness. An essential advantage of this correlation function is the finite dispersion of the random potential to which it leads in distinction with the so far known correlation functions leading to a divergent dispersion. The dispersion, an important characteristic of the random potential distribution, determining the amplitude of the potential fluctuations is calculated

  20. Potential fluctuations due to randomly distributed charges at the semiconductor-insulator interface in MIS-structures

    CERN Document Server

    Yanchev, I

    2003-01-01

    A new expression for the Fourier transform of the binary correlation function of the random potential near the semiconductor-insulator interface is derived. The screening from the metal electrode in MIS-structure is taken into account introducing an effective insulator thickness. An essential advantage of this correlation function is the finite dispersion of the random potential to which it leads in distinction with the so far known correlation functions leading to a divergent dispersion. The dispersion, an important characteristic of the random potential distribution, determining the amplitude of the potential fluctuations is calculated.

  1. Potential fluctuations due to randomly distributed charges at the semiconductor-insulator interface in MIS-structures

    Energy Technology Data Exchange (ETDEWEB)

    Yanchev, I

    2003-07-01

    A new expression for the Fourier transform of the binary correlation function of the random potential near the semiconductor-insulator interface is derived. The screening from the metal electrode in MIS-structure is taken into account introducing an effective insulator thickness. An essential advantage of this correlation function is the finite dispersion of the random potential to which it leads in distinction with the so far known correlation functions leading to a divergent dispersion. The dispersion, an important characteristic of the random potential distribution, determining the amplitude of the potential fluctuations is calculated.

  2. Nonlocality of plasma fluctuations and transport in magnetically confined plasmas nonlocal plasma transport and radial structural formation

    International Nuclear Information System (INIS)

    Toi, Kazuo

    2002-01-01

    Experimental evidence and underlying physical processes of nonlocal characters and structural formation in magnetically confined toroidal plasmas are reviewed. Radial profiles of the plasmas exhibit characteristic structures, depending on the various confinement regimes. Profile stiffness subjected to some global constraint and rapid plasma responses to applied plasma perturbation result from nonlocal transport. Once the plasma is free from the constraint, the plasma state can be changed to a new state exhibiting various types of prominent structural formation such as an internal transport barrier. (author)

  3. Theoretical studies on rapid fluctuations in solar flares

    International Nuclear Information System (INIS)

    Vlahos, L.

    1986-01-01

    Rapid fluctuations in the emission of solar bursts may have many different origins, e.g., the acceleration process can have a pulsating structure, the propagation of energetic electrons and ions can be interrupted from plasma instabilities and finally the electromagnetic radiation produced by the interaction of electrostatic and electromagnetic waves may have a pulsating behavior in time. In two separate studies the conditions for rapid fluctuations in solar flare driven emission were analyzed

  4. Theoretical studies on rapid fluctuations in solar flares

    Science.gov (United States)

    Vlahos, Loukas

    1986-01-01

    Rapid fluctuations in the emission of solar bursts may have many different origins e.g., the acceleration process can have a pulsating structure, the propagation of energetic electrons and ions can be interrupted from plasma instabilities and finally the electromagnetic radiation produced by the interaction of electrostatic and electromagnetic waves may have a pulsating behavior in time. In two separate studies the conditions for rapid fluctuations in solar flare driven emission were analyzed.

  5. Radial evolution of the intermittency of density fluctuations in the fast solar wind

    International Nuclear Information System (INIS)

    Bruno, R.; D'Amicis, R.; Telloni, D.; Primavera, L.; Sorriso-Valvo, L.; Carbone, V.; Malara, F.; Veltri, P.; Pietropaolo, E.

    2014-01-01

    We study the radial evolution of the intermittency of density fluctuations in the fast solar wind. The study is performed by analyzing the plasma density measurements provided by Helios 2 in the inner heliosphere between 0.3 and 0.9 AU. The analysis is carried out by means of a complete set of diagnostic tools, including the flatness factor at different timescales to estimate intermittency, the Kolmogorov-Smirnov test to estimate the degree of intermittency, and the Fourier transform to estimate the power spectral densities of these fluctuations. Density fluctuations within the fast wind are rather intermittent and their level of intermittency, together with the amplitude of intermittent events, decreases with the distance from the Sun, at odds with the intermittency of both magnetic field and all other plasma parameters. Furthermore, the intermittent events are strongly correlated, exhibiting temporal clustering. This indicates that the mechanism underlying their generation departs from a time-varying Poisson process. A remarkable, qualitative similarity with the behavior of plasma density fluctuations obtained from a numerical study of the nonlinear evolution of parametric instability in the solar wind supports the idea that this mechanism has an important role in governing density fluctuations in the inner heliosphere.

  6. Statistical properties of turbulent transport and fluctuations in tokamak and stellarator devices

    Energy Technology Data Exchange (ETDEWEB)

    Hidalgo, C; Pedrosa, M A; Milligen, B Van; Sanchez, E; Balbin, R; Garcia-Cortes, I [Euratom-CIEMAT Association, Madrid (Spain); Bleuel, J; Giannone, L.; Niedermeyer, H [Euratom-IPP Association, Garching (Germany)

    1997-05-01

    The statistical properties of fluctuations and turbulent transport have been studied in the plasma boundary region of stellarator (TJ-IU, W7-AS) and tokamak (TJ-I) devices. The local flux probability distribution function shows the bursty character of the flux and presents a systematic change as a function of the radial location. There exist large amplitude transport bursts that account for a significant part of the total flux. There is a strong similarity between the statistical properties of the turbulent fluxes in different devices. The value of the radial coherence associated with fluctuations and turbulent transport is strongly intermittent. This result emphasizes the importance of measurements with time resolution in understanding the interplay between the edge and the core regions in the plasma. For measurements in the plasma edge region of the TJ-IU torsatron, the turbulent flux does not, in general, show a larger radial coherence than the one associated with the fluctuations. (author). 14 refs, 6 figs.

  7. Simulation of density fluctuations before the L-H transition for Hydrogen and Deuterium plasmas in the DIII-D tokamak using the BOUT++ code

    Science.gov (United States)

    Wang, Y. M.; Xu, X. Q.; Yan, Z.; Mckee, G. R.; Grierson, B. A.; Xia, T. Y.; Gao, X.

    2018-02-01

    A six-field two-fluid model has been used to simulate density fluctuations. The equilibrium is generated by experimental measurements for both Deuterium (D) and Hydrogen (H) plasmas at the lowest densities of DIII-D low to high confinement (L-H) transition experiments. In linear simulations, the unstable modes are found to be resistive ballooning modes with the most unstable mode number n  =  30 or k_θρ_i˜0.12 . The ion diamagnetic drift and E× B convection flow are balanced when the radial electric field (E r ) is calculated from the pressure profile without net flow. The curvature drift plays an important role in this stage. Two poloidally counter propagating modes are found in the nonlinear simulation of the D plasma at electron density n_e˜1.5×1019 m-3 near the separatrix while a single ion mode is found in the H plasma at the similar lower density, which are consistent with the experimental results measured by the beam emission spectroscopy (BES) diagnostic on the DIII-D tokamak. The frequency of the electron modes and the ion modes are about 40 kHz and 10 kHz respectively. The poloidal wave number k_θ is about 0.2 cm -1 (k_θρ_i˜0.05 ) for both ion and electron modes. The particle flux, ion and electron heat fluxes are  ˜3.5-6 times larger for the H plasma than the D plasma, which makes it harder to achieve H-mode for the same heating power. The change of the atomic mass number A from 2 to 1 using D plasma equilibrium make little difference on the flux. Increase the electric field will suppress the density fluctuation. The electric field scan and ion mass scan results show that the dual-mode results primarily from differences in the profiles rather than the ion mass.

  8. Field-aligned plasma-potential structure formed by local electron cyclotron resonance

    International Nuclear Information System (INIS)

    Hatakeyama, Rikizo; Kaneko, Toshiro; Sato, Noriyoshi

    2001-01-01

    The significance of basic experiments on field-aligned plasma-potential structure formed by local electron cyclotron resonance (ECR) is claimed based on the historical development of the investigation on electric double layer and electrostatic potential confinement of open-ended fusion-oriented plasmas. In the presence of a single ECR point in simple mirror-type configurations of magnetic field, a potential dip (thermal barrier) appears around this point, being followed by a subsequent potential hump (plug potential) along a collisionless plasma flow. The observed phenomenon gives a clear-cut physics to the formation of field-aligned plug potential with thermal barrier, which is closely related to the double layer formation triggered by a negative dip. (author)

  9. Current carrying properties of double layers and low frequency auroral fluctuations

    International Nuclear Information System (INIS)

    Singh, N.; Schunk, R.W.

    1982-01-01

    Numerical simulations showed recurring interruption and recovery of electron and ion currents through double layers. The time period tau of the recurring phenomena is governed by the ion dynamics; for ions with a drift V/sub i/ entering the simulation plasma such that V/sub i/ V/sub ti/ ion-acoustic modes also appear in the electron- and ion-current fluctuations. The electron current fluctuations are governed by the ion current through the Langmuir criterion. It is suggested that some low frequency auroral fluctuations could possibly be explained by current fluctuations through double layers

  10. Particle transport due to magnetic fluctuations

    International Nuclear Information System (INIS)

    Stoneking, M.R.; Hokin, S.A.; Prager, S.C.; Fiksel, G.; Ji, H.; Den Hartog, D.J.

    1994-01-01

    Electron current fluctuations are measured with an electrostatic energy analyzer at the edge of the MST reversed-field pinch plasma. The radial flux of fast electrons (E>T e ) due to parallel streaming along a fluctuating magnetic field is determined locally by measuring the correlated product e B r >. Particle transport is small just inside the last closed flux surface (Γ e,mag e,total ), but can account for all observed particle losses inside r/a=0.8. Electron diffusion is found to increase with parallel velocity, as expected for diffusion in a region of field stochasticity

  11. Status and potential of atmospheric plasma processing of materials

    Energy Technology Data Exchange (ETDEWEB)

    Pappas, Daphne [United States Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005 (United States)

    2011-03-15

    This paper is a review of the current status and potential of atmospheric plasma technology for materials processing. The main focus is the recent developments in the area of dielectric barrier discharges with emphasis in the functionalization of polymers, deposition of organic and inorganic coatings, and plasma processing of biomaterials. A brief overview of both the equipment being used and the physicochemical reactions occurring in the gas phase is also presented. Atmospheric plasma technology offers major industrial, economic, and environmental advantages over other conventional processing methods. At the same time there is also tremendous potential for future research and applications involving both the industrial and academic world.

  12. Status and potential of atmospheric plasma processing of materials

    International Nuclear Information System (INIS)

    Pappas, Daphne

    2011-01-01

    This paper is a review of the current status and potential of atmospheric plasma technology for materials processing. The main focus is the recent developments in the area of dielectric barrier discharges with emphasis in the functionalization of polymers, deposition of organic and inorganic coatings, and plasma processing of biomaterials. A brief overview of both the equipment being used and the physicochemical reactions occurring in the gas phase is also presented. Atmospheric plasma technology offers major industrial, economic, and environmental advantages over other conventional processing methods. At the same time there is also tremendous potential for future research and applications involving both the industrial and academic world.

  13. Electron diffusion in tokamaks due to electromagnetic fluctuations

    International Nuclear Information System (INIS)

    Horton, W.; Choi, D.-I.; Yushmanov, P.N.; Parail, V.V.

    1987-01-01

    Calculations for the stochastic diffusion of electrons in Tokamaks due to a spectrum of electromagnetic drift fluctuations are presented. The parametric dependence of the diffusion coefficient on the amplitude and phase velocity of the spectrum, and the bounce frequency for the electrons is studied. The wavenumber spectrum is taken to be a low order (5 x 5) randomly-phased, isotropic, monotonic spectrum extending from k sub(perpendicular to min) ≅ ωsub(ci)/Csub(s) to k sub(perpendicular to max) ≅ 3ωsub(pe)/C with different power laws of decrease φsub(k) ≅ φ 1 /ksup(m), 1 ≤ m ≤ 3. A nonlinear Ohm's law is derived for the self-consistent relation between the electrostatic and parallel vector potentials. The parallel structure of the fluctuations is taken to be such that ksup(nl)sub(parallel to)Vsub(e) < ωsub(k) due to the nonlinear perpendicular motion of the electrons described in the nonlinear Ohm's law. The diffusion coefficient scales approximately as the neo-Alcator and Merezhkin-Mukhovatov empirical formulas for plasma densities below a critical density. (author)

  14. Inverse scattering problem in turbulent magnetic fluctuations

    Directory of Open Access Journals (Sweden)

    R. A. Treumann

    2016-08-01

    Full Text Available We apply a particular form of the inverse scattering theory to turbulent magnetic fluctuations in a plasma. In the present note we develop the theory, formulate the magnetic fluctuation problem in terms of its electrodynamic turbulent response function, and reduce it to the solution of a special form of the famous Gelfand–Levitan–Marchenko equation of quantum mechanical scattering theory. The last of these applies to transmission and reflection in an active medium. The theory of turbulent magnetic fluctuations does not refer to such quantities. It requires a somewhat different formulation. We reduce the theory to the measurement of the low-frequency electromagnetic fluctuation spectrum, which is not the turbulent spectral energy density. The inverse theory in this form enables obtaining information about the turbulent response function of the medium. The dynamic causes of the electromagnetic fluctuations are implicit to it. Thus, it is of vital interest in low-frequency magnetic turbulence. The theory is developed until presentation of the equations in applicable form to observations of turbulent electromagnetic fluctuations as input from measurements. Solution of the final integral equation should be done by standard numerical methods based on iteration. We point to the possibility of treating power law fluctuation spectra as an example. Formulation of the problem to include observations of spectral power densities in turbulence is not attempted. This leads to severe mathematical problems and requires a reformulation of inverse scattering theory. One particular aspect of the present inverse theory of turbulent fluctuations is that its structure naturally leads to spatial information which is obtained from the temporal information that is inherent to the observation of time series. The Taylor assumption is not needed here. This is a consequence of Maxwell's equations, which couple space and time evolution. The inversion procedure takes

  15. Direct measurements of the plasma potential in ELMy H-mode plasma with ball-pen probes on ASDEX Upgrade tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Adamek, J., E-mail: adamek@ipp.cas.c [Institute of Plasma Physics, Association EURATOM/IPP.CR, Prague, Za Slovankou 3, 182 00, Prague 8 (Czech Republic); Rohde, V.; Mueller, H.W.; Herrmann, A. [Institute of Plasma Physics, Association EURATOM/IPP, Garching (Germany); Ionita, C.; Schrittwieser, R.; Mehlmann, F. [Institute for Ion Physics and Applied Physics, University of Innsbruck, Association EURATOM/OAW (Austria); Stoeckel, J.; Horacek, J.; Brotankova, J. [Institute of Plasma Physics, Association EURATOM/IPP.CR, Prague, Za Slovankou 3, 182 00, Prague 8 (Czech Republic)

    2009-06-15

    Experimental investigations of the plasma potential and electric field were performed for ELMy H-mode plasmas in the vicinity of the limiter shadow of ASDEX Upgrade. A fast reciprocating probe with a probe head containing four ball-pen probes (BPPs) [J. Adamek et al., Czech. J. Phys. 54 (2004) C95 - C99.] was used on the midplane manipulator. Different gradients of the plasma potential were observed during ELMs and in between them. The temporal resolution of the direct plasma potential measurements with BPP was determined by using power-spectra analysis.

  16. Plasma instability of a vacuum arc centrifuge

    International Nuclear Information System (INIS)

    Hole, M.J.; Dallaqua, R.S.; Simpson, S.W.; Del Bosco, E.

    2002-01-01

    Ever since conception of the vacuum arc centrifuge in 1980, periodic fluctuations in the ion saturation current and floating potential have been observed in Langmuir probe measurements in the rotation region of a vacuum arc centrifuge. In this work we develop a linearized theoretical model to describe a range of instabilities in the vacuum arc centrifuge plasma column, and then test the validity of the description through comparison with experiment. We conclude that the observed instability is a 'universal' instability, driven by the density gradient, in a plasma with finite conductivity

  17. Nonlinear correlations in phase-space resolved fluctuations at drift wave frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Skiff, F [Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242 (United States); Uzun, I [Institute for Plasma Research, University of Maryland, College Park, Maryland 20742 (United States); Diallo, A [Centre de Recherches en Physique des Plasams EPF, Lausanne (Switzerland)

    2007-12-15

    In an effort to better understand plasma transport, we measure fluctuations associated with drift instabilities resolved in the ion phase-space. Primary attention is given to fluctuations near the electron drift frequency where there are two general components to the observed fluctuations. From two (spatial) point measurements of the ion distribution function with a variable separation along the magnetic field, a number of statistical measures of the fluctuations are calculated including cross-correlation and cross-bicoherence. Both fluid ({omega}/k >> v{sub ti}) and kinetic ({omega}/k {approx} v{sub ti}) components are observed in the fluctuations. The nonlinear interactions are found to depend strongly on the ion particle velocity.

  18. Electronic zero-point fluctuation forces inside circuit components

    Science.gov (United States)

    Leonhardt, Ulf

    2018-01-01

    One of the most intriguing manifestations of quantum zero-point fluctuations are the van der Waals and Casimir forces, often associated with vacuum fluctuations of the electromagnetic field. We study generalized fluctuation potentials acting on internal degrees of freedom of components in electrical circuits. These electronic Casimir-like potentials are induced by the zero-point current fluctuations of any general conductive circuit. For realistic examples of an electromechanical capacitor and a superconducting qubit, our results reveal the possibility of tunable forces between the capacitor plates, or the level shifts of the qubit, respectively. Our analysis suggests an alternative route toward the exploration of Casimir-like fluctuation potentials, namely, by characterizing and measuring them as a function of parameters of the environment. These tunable potentials may be useful for future nanoelectromechanical and quantum technologies. PMID:29719863

  19. Electronic zero-point fluctuation forces inside circuit components.

    Science.gov (United States)

    Shahmoon, Ephraim; Leonhardt, Ulf

    2018-04-01

    One of the most intriguing manifestations of quantum zero-point fluctuations are the van der Waals and Casimir forces, often associated with vacuum fluctuations of the electromagnetic field. We study generalized fluctuation potentials acting on internal degrees of freedom of components in electrical circuits. These electronic Casimir-like potentials are induced by the zero-point current fluctuations of any general conductive circuit. For realistic examples of an electromechanical capacitor and a superconducting qubit, our results reveal the possibility of tunable forces between the capacitor plates, or the level shifts of the qubit, respectively. Our analysis suggests an alternative route toward the exploration of Casimir-like fluctuation potentials, namely, by characterizing and measuring them as a function of parameters of the environment. These tunable potentials may be useful for future nanoelectromechanical and quantum technologies.

  20. Potential fluctuations due to randomly distributed charges at the semiconductor-insulator interface in mis-structures

    International Nuclear Information System (INIS)

    Yanchev, I; Slavcheva, G.

    1993-01-01

    A new expression for the Fourier transform of the binary correlation function of the random potential near the semiconductor-insulator interface is derived. The screening from the metal electrode in MIS-structure is taken into account introducing an effective insulator thickness. An essential advantage of this correlation function is the finite dispersion of the random potential Γ 2 to which it leads in distinction with the so far known correlation functions leading to divergent dispersion. The important characteristic of the random potential distribution Γ 2 determining the amplitude of the potential fluctuations is calculated. 7 refs. (orig.)

  1. Plasma diagnostics with a retarding potential analyzer

    International Nuclear Information System (INIS)

    Jack, T.M.

    1996-01-01

    The plasma rocket is located at NASA Johnson Space Center. To produce a thrust in space, an inert gas is ionized into a plasma and heated in the linear section of a tokamak fusion device. The magnetic field used to contain the plasma has a magnitude of 2--10 kGauss. The plasma plume has a variable thrust and specific impulse. A high temperature retarding potential analyzer (RPA) is being developed to characterize the plasma in the plume and at the edge of the magnetically contained plasma. The RPA measures the energy and density of ions or electrons entering into its solid angle of collection. An oscilloscope displays the ion flux versus the collected current. All measurements are made relative to the facility ground. Testing of this device involves the determination of its output parameters, sensitivity, and responses to a wide range of energies and densities. Each grid will be tested individually by changing only its voltage and observing the output from the RPA. To verify that the RPA is providing proper output, it is compared to the output from a Langmuir or Faraday probe

  2. Quantum particle-number fluctuations in a two-component Bose gas in a double-well potential

    International Nuclear Information System (INIS)

    Zin, Pawel; Oles, Bartlomiej; Sacha, Krzysztof

    2011-01-01

    A two-component Bose gas in a double-well potential with repulsive interactions may undergo a phase separation transition if the interspecies interactions outweigh the intraspecies ones. We analyze the transition in the strong interaction limit within the two-mode approximation. Numbers of particles in each potential well are equal and constant. However, at the transition point, the ground state of the system reveals huge fluctuations of numbers of particles belonging to the different gas components; that is, the probability for observation of any mixture of particles in each potential well becomes uniform.

  3. Effect of density fluctuations on ECCD in ITER and TCV

    Directory of Open Access Journals (Sweden)

    Coda S.

    2012-09-01

    Full Text Available Density fluctuations near the edge of tokamak plasmas can affect the propagation of electron cyclotron (EC waves. In the present paper, the EC wave propagation in a fluctuating equilibrium is determined using the ray-tracing code C3PO. The evolution of the electron distribution function is calculated self-consistently with the EC wave damping using the 3-D Fokker-Planck solver LUKE. The cumulative effect of fluctuations results in a significant broadening of the current profile combined with a fluctuating power deposition profile. This mechanism improves the simulation of fully non-inductive EC discharges in the TCV tokamaks. Predictive simulations for ITER show that density fluctuations could make the stabilization of NTMs in ITER more challenging.

  4. A reduced model for ion temperature gradient turbulent transport in helical plasmas

    International Nuclear Information System (INIS)

    Nunami, M.; Watanabe, T.-H.; Sugama, H.

    2013-07-01

    A novel reduced model for ion temperature gradient (ITG) turbulent transport in helical plasmas is presented. The model enables one to predict nonlinear gyrokinetic simulation results from linear gyrokinetic analyses. It is shown from nonlinear gyrokinetic simulations of the ITG turbulence in helical plasmas that the transport coefficient can be expressed as a function of the turbulent fluctuation level and the averaged zonal flow amplitude. Then, the reduced model for the turbulent ion heat diffusivity is derived by representing the nonlinear turbulent fluctuations and zonal flow amplitude in terms of the linear growth rate of the ITG instability and the linear response of the zonal flow potentials. It is confirmed that the reduced transport model results are in good agreement with those from nonlinear gyrokinetic simulations for high ion temperature plasmas in the Large Helical Device. (author)

  5. Modified Debye screening potential in a magnetized quantum plasma

    International Nuclear Information System (INIS)

    Salimullah, M.; Hussain, A.; Sara, I.; Murtaza, G.; Shah, H.A.

    2009-01-01

    The effects of quantum mechanical influence and uniform static magnetic field on the Shukla-Nambu-Salimullah potential in an ultracold homogeneous electron-ion Fermi plasma have been examined in detail. It is noticed that the strong quantum effect arising through the Bohm potential and the ion polarization effect can give rise to a new oscillatory behavior of the screening potential beyond the shielding cloud which could explain a new type of possible robust ordered structure formation in the quantum magnetoplasma. However, the magnetic field enhances the Debye length perpendicular to the magnetic field in the weak quantum limit of the quantum plasma.

  6. Fluctuating Thermodynamics for Biological Processes

    Science.gov (United States)

    Ham, Sihyun

    Because biomolecular processes are largely under thermodynamic control, dynamic extension of thermodynamics is necessary to uncover the mechanisms and driving factors of fluctuating processes. The fluctuating thermodynamics technology presented in this talk offers a practical means for the thermodynamic characterization of conformational dynamics in biomolecules. The use of fluctuating thermodynamics has the potential to provide a comprehensive picture of fluctuating phenomena in diverse biological processes. Through the application of fluctuating thermodynamics, we provide a thermodynamic perspective on the misfolding and aggregation of the various proteins associated with human diseases. In this talk, I will present the detailed concepts and applications of the fluctuating thermodynamics technology for elucidating biological processes. This work was supported by Samsung Science and Technology Foundation under Project Number SSTF-BA1401-13.

  7. Potential around a dust grain in collisional plasma

    Energy Technology Data Exchange (ETDEWEB)

    Moulick, R., E-mail: moulick@gmail.com; Goswami, K. S. [Centre of Plasma Physics - Institute for Plasma Research Sonapur, Guwahati, Assam 782402 (India)

    2015-04-15

    The ion neutral collision can lead to interesting phenomena in dust charging, totally different from the expectations based on the traditional orbit motion limited theory. The potential around a dust grain is investigated for the collisional plasma considering the presence of ion neutral collisions. Fluid equations are solved for the one dimensional radial coordinate. It is observed that with the gradual increase in ion neutral collision, the potential structure around the dust grain changes its shape and is different from the usual Debye-Hückel potential. The shift however starts from a certain value of ion neutral collision and the electron-ion density varies accordingly. The potential variation is interesting and reconfirms the fact that there exists a region of attraction for negative charges. The collision modeling is done for the full range of plasma, i.e., considering the bulk and the sheath jointly. The potential variation with collision is also shown explicitly and the variation is found to cope up with the earlier observations.

  8. Effect of magnetic configuration on density fluctuation and particle transport in LHD

    International Nuclear Information System (INIS)

    Tanaka, K.; Michael, C.; Yamagishi, O.; Ida, K.; Yamada, H.; Yoshinuma, M.; Yokoyama, M.; Miyazawa, J.; Morita, S.; Kawahata, K.; Tokzawa, T.; Shoji, M.; Vyacheslavov, L.N.; Sanin, A.L.

    2005-01-01

    The study of fluctuations and particle transport is important issue in heliotron and stellarator devices as well as in tokamaks. A two dimensional phase contrast interferometer (2D PCI) was developed to investigate fluctuation characteristics, which play role in confinement. The current 2D PCI can detect fluctuations for which -1 0.3 -1 and 5< f<500kHz. With the use of magnetic shear and the 2D detector, the spatial resolution around 20% of averaged minor radius is possible presently. The strongest fluctuations are localized in the plasma edge, where density gradients are negative, but fluctuations also exist in the positive density gradient region of the hollow density profile. The phase velocity of fluctuations in the positive gradient region is close to plasma ErxBt rotation. On the other hand, fluctuations in the negative density gradient region propagate in the ion diamagnetic direction in the plasma frame and do not follow ErxBt rotation. This suggests there is a different nature of the fluctuations in the positive and negative density gradient regions. A particle transport was studied by means of density modulation experiments. The systematic study was done at Rax=3.6m, which is so-called standard configuration. The density profiles vary from peaked to hollow with increasing heating power. It was also found that particle diffusion and convection are functions of electron temperature and its gradient respectively. The magnetic configuration is another parameter, which characterizes particle confinement. At more outward shifted configurations, helical ripple becomes larger and the ergodic region becomes thicker, then neoclassical transport becomes larger. However estimated diffusion coefficients are still around one order of magnitude larger than neoclassical values in edge region, where ρ = 0.7 ∼ 1.0 and they are larger at more outward configurations. At the same time the convection velocity is found to be comparable with neoclassical prediction at Rax=3

  9. Multi electron species and shielding potentials in plasmas

    International Nuclear Information System (INIS)

    Khan, Arroj A.; Murtaza, G.; Rasheed, A.; Jamil, M.

    2012-01-01

    The phenomenon of Debye shielding is investigated in electron ion plasmas using the approach of two temperature electrons. We get different profiles of potential for different parameters and observe that the potentials fall very slowly than the standard Coulomb and Debye potentials. The importance of work is pointed out in the introduction.

  10. Electron Temperature Fluctuation Measurements and Transport Model Validation at Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    White, Anne [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2017-06-22

    for studying core turbulence are needed in order to assess the accuracy of gyrokinetic models for turbulent-driven particle, heat and momentum transport. New core turbulence diagnostics at the world-class tokamaks Alcator C-Mod at MIT and ASDEX Upgrade at the Max Planck Institute for Plasma Physics have been designed, developed, and operated over the course of this project. These new instruments are capable of measuring electron temperature fluctuations and the phase angle between density and temperature fluctuations locally and quantitatively. These new data sets from Alcator C-Mod and ASDEX Upgrade are being used to fill key gaps in our understanding of turbulent transport in tokamaks. In particular, this project has results in new results on the topics of the Transport Shortfall, the role of ETG turbulence in tokamak plasmas, profile stiffness, the LOC/SOC transition, and intrinsic rotation reversals. These data are used in a rigorous process of “Transport model validation”, and this group is a world-leader on using turbulence models to design new hardware and new experiments at tokamaks. A correlation electron cyclotron emission (CECE) diagnostic is an instrument used to measure micro-scale fluctuations (mm-scale, compared to the machine size of meters) of electron temperature in magnetically confined fusion plasmas, such as those in tokamaks and stellarators. These micro-scale fluctuations are associated with drift-wave type turbulence, which leads to enhanced cooling and mixing of particles in fusion plasmas and limits achieving the required temperatures and densities for self-sustained fusion reactions. A CECE system can also be coupled with a reflectometer system that measured micro-scale density fluctuations, and from these simultaneous measurements, one can extract the phase between the density (n) and temperature (T) fluctuations, creating an nT phase diagnostic. Measurements of the fluctuations and the phase angle between them are extremely useful for

  11. Experimental and theoretical research in applied plasma physics

    International Nuclear Information System (INIS)

    Porkolab, M.

    1992-01-01

    This report discusses research in the following areas: fusion theory and computations; theory of thermonuclear plasmas; user service center; high poloidal beta studies on PBX-M; fast ECE fluctuation diagnostic for balloning mode studies; x-ray imaging diagnostic; millimeter/submillimeter-wave fusion ion diagnostics; small scale turbulence and nonlinear dynamics in plasmas; plasma turbulence and transport; phase contrast interferometer diagnostic for long wavelength fluctuations in DIII-D; and charged and neutral fusion production for fusio plasmas

  12. Floating potential and sheath thickness for cylindrical and spherical probes in electronegative plasmas

    International Nuclear Information System (INIS)

    Morales Crespo, R.; Fernandez Palop, J.I.; Hernandez, M.A.; Borrego del Pino, S.; Diaz-Cabrera, J.M.; Ballesteros, J.

    2006-01-01

    In this paper, the floating potential, for cylindrical and spherical Langmuir probes immersed into an electronegative plasma, is determined by using a radial model described in a previous paper. This floating potential is determined for several probe radius values and ranks of plasma electronegativity, from almost electropositive plasmas to high electronegative plasmas. The thickness of the positive ion sheath is also determined for this kind of probes in electronegative plasmas, as well as the analytical expressions fitting this thickness, showing its dependence on the probe radius and electric potential

  13. Anomalous high-frequency resistivity of a plasma

    International Nuclear Information System (INIS)

    Kruer, W.L.; Dawson, J.M.

    1971-06-01

    In one- and two-dimensional computer simulations we investigate anomalous high-frequency resistivity in a plasma driven by a large electric field oscillating near the electron plasma frequency. The large field excites the oscillating two-stream and the ion-acoustic decay instabilities in agreement with the linear theory. When the ion and electron fluctuations saturate, a strong anomalous heating of the plasma sets in. This strong heating is due to an efficient coupling of the externally imposed large electric field to the plasma by ion fluctuations. We determine the anomalous collision frequency and the saturation fluctuation amplitudes as a function of the external field amplitude and frequency, and the electron-ion mass ratio. A simple nonlinear theory gives results in reasonable agreement with simulations. 24 refs., 10 figs

  14. Potential formation in the plasma confinement region of a radio-frequency plugged linear device

    International Nuclear Information System (INIS)

    Fujita, Hideki; Kumazawa, Ryuhei; Howald, A.M.; Okamura, Shoichi; Sato, Teruyuki; Adati, Keizo; Garner, H.R.; Nishimura, Kiyohiko.

    1987-08-01

    Plasma potential formation in an open-ended plasma confinement system with RF plugging (the RFC-XX-M device) is investigated. The plasma potential in the central confinement region is measured with a heavy ion beam probe system and potentials at the RF plug section are measured with multi-grid energy analyzers. The measured plasma potential is compared with that deduced from the generalized Pastukhov formula. Results show that the plasma potential develops as an ambipolar potential to equate ion and electron end losses. During RF plugging, electrons are heated by Landau damping, while ions are not heated since adiabatic conditions apply during ion plugging in this experiment. (author)

  15. Stochastic modelling of intermittent fluctuations in the scrape-off layer: Correlations, distributions, level crossings, and moment estimation

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, O. E., E-mail: odd.erik.garcia@uit.no; Kube, R.; Theodorsen, A. [Department of Physics and Technology, UiT The Arctic University of Norway, N-9037 Tromsø (Norway); Pécseli, H. L. [Physics Department, University of Oslo, PO Box 1048 Blindern, N-0316 Oslo (Norway)

    2016-05-15

    A stochastic model is presented for intermittent fluctuations in the scrape-off layer of magnetically confined plasmas. The fluctuations in the plasma density are modeled by a super-position of uncorrelated pulses with fixed shape and duration, describing radial motion of blob-like structures. In the case of an exponential pulse shape and exponentially distributed pulse amplitudes, predictions are given for the lowest order moments, probability density function, auto-correlation function, level crossings, and average times for periods spent above and below a given threshold level. Also, the mean squared errors on estimators of sample mean and variance for realizations of the process by finite time series are obtained. These results are discussed in the context of single-point measurements of fluctuations in the scrape-off layer, broad density profiles, and implications for plasma–wall interactions due to the transient transport events in fusion grade plasmas. The results may also have wide applications for modelling fluctuations in other magnetized plasmas such as basic laboratory experiments and ionospheric irregularities.

  16. Fluctuations of the electron temperature measured by intensity interferometry on the W7-AS stellarator

    International Nuclear Information System (INIS)

    Sattler, S.

    1993-12-01

    Fluctuations of the electron temperature can cause a significant amount of the anomalous electron heat conductivity observed on fusion plasmas, even with relative amplitudes below one per cent. None of the standard diagnostics utilized for measuring the electron temperature in the confinement region of fusion plasmas is provided with sufficient spatial and temporal resolution and the sensitivity for small fluctuation amplitudes. In this work a new diagnostic for the measurement of electron temperature fluctuations in the confinement region of fusion plasmas was developed, built up, tested and successfully applied on the W7-AS Stellarator. Transport relevant fluctuations of the electron temperature can in principle be measured by radiometry of the electron cyclotron emission (ECE), but they might be buried completely in natural fluctuations of the ECE due to the thermal nature of this radiation. Fluctuations with relative amplitudes below one per cent can be measured with a temporal resolution in the μs-range and a spatial resolution of a few cm only with the help of correlation techniques. The intensity interferometry method, developed for radio astronomy, was applied here: two independent but identical radiometers are viewing the same emitting volume along crossed lines of sight. If the angle between the sightlines is chosen above a limiting value, which is determined by the spatial coherence properties of thermal radiation, the thermal noise is uncorrelated while the temperature fluctuations remain correlated. With the help of this technique relative amplitudes below 0.1% are accessible to measurement. (orig.)

  17. Direct measurements of the plasma potential by katsumata-type probes

    Czech Academy of Sciences Publication Activity Database

    Schrittwieser, R.; Ionita, C.; Adámek, Jiří; Stöckel, Jan; Brotánková, Jana; Martines, E.; Popa, G.; Costin, C.; van de Peppel, L.; Van Oost, G.

    2006-01-01

    Roč. 56, 8 suppl.B (2006), s. 145-150 ISSN 0011-4626. [Symposium on Plasma Physics and Technology /22nd./. Praha, 26.6.2006-29.6.2006] R&D Projects: GA AV ČR(CZ) KJB100430601 Institutional research plan: CEZ:AV0Z20430508 Keywords : toroidal plasma system * tokamak * probe diagnostics * plasma potential Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.568, year: 2006

  18. Changes in plasma osmolality and anion gap: potential predictors of ...

    African Journals Online (AJOL)

    Changes in plasma osmolality and anion gap: potential predictors of ... PROMOTING ACCESS TO AFRICAN RESEARCH ... Objective: To determine the relationship of mortality to plasma osmolality and anion gap inpatients on haemodialysis.

  19. Muzzle voltage and contact potential in plasma armature railguns

    International Nuclear Information System (INIS)

    Keefer, D.

    1988-01-01

    The voltages measured at the muzzle of a railgun have values greater than those calculated from the one-dimensional models for railgun plasma armatures. This excess voltage is attributed to the contact potential and has a value of several tens of volts. The use of experimentally measured muzzle voltage to determine plasma properties has required that this contact potential be subtracted in order to obtain meaningful results. A two-dimensional model of the plasma armature has been analyzed which shows that a portion of this excess voltage arises as a result of the reduced conductivity in the thermal boundary layer of the rail. Another portion arises from the speed voltage and is confined to a region near the rails within the velocity boundary layer thickness. The voltage drop in the boundary layer is not constant along the length of the armature, and the implications of this effect of the boundary conditions for one- and two-dimensional models of the railgun plasma armature are discussed

  20. Nonequilibrium Gyrokinetic Fluctuation Theory and Sampling Noise in Gyrokinetic Particle-in-cell Simulations

    International Nuclear Information System (INIS)

    Krommes, John A.

    2007-01-01

    The present state of the theory of fluctuations in gyrokinetic (GK) plasmas and especially its application to sampling noise in GK particle-in-cell (PIC) simulations is reviewed. Topics addressed include the Δf method, the fluctuation-dissipation theorem for both classical and GK many-body plasmas, the Klimontovich formalism, sampling noise in PIC simulations, statistical closure for partial differential equations, the theoretical foundations of spectral balance in the presence of arbitrary noise sources, and the derivation of Kadomtsev-type equations from the general formalism

  1. Nonequilibrium Gyrokinetic Fluctuation Theory and Sampling Noise in Gyrokinetic Particle-in-cell Simulations

    Energy Technology Data Exchange (ETDEWEB)

    John A. Krommes

    2007-10-09

    The present state of the theory of fluctuations in gyrokinetic GK plasmas and especially its application to sampling noise in GK particle-in-cell PIC simulations is reviewed. Topics addressed include the Δf method, the fluctuation-dissipation theorem for both classical and GK many-body plasmas, the Klimontovich formalism, sampling noise in PIC simulations, statistical closure for partial differential equations, the theoretical foundations of spectral balance in the presence of arbitrary noise sources, and the derivation of Kadomtsev-type equations from the general formalism.

  2. Charge Fluctuations in Nanoscale Capacitors

    NARCIS (Netherlands)

    Limmer, D.T.; Merlet, C.; Salanne, M.; Chandler, D.; Madden, P.A.; van Roij, R.H.H.G.; Rotenberg, B.

    2013-01-01

    The fluctuations of the charge on an electrode contain information on the microscopic correlations within the adjacent fluid and their effect on the electronic properties of the interface. We investigate these fluctuations using molecular dynamics simulations in a constant-potential ensemble with

  3. A theoretical study of hot plasma spheroids in the presence of low-frequency electromagnetic waves

    Science.gov (United States)

    Ahmadizadeh, Y.; Jazi, B.; Barjesteh, S.

    2016-07-01

    While taking into account thermal motion of electrons, scattering of electromagnetic waves with low frequency from hot plasma spheroids is investigated. In this theoretical research, ions are heavy to respond to electromagnetic fluctuations. The solution of scalar wave equation in spheroidal coordinates for electric potential inside the plasma spheroids are obtained. The variations of resonance frequencies vs. Debye length are studied and consistency between the obtained results in this paper and the results for the well-known plasma objects such as plasma column and spherical plasma have been proved.

  4. Core fluctuations and current profile dynamics in the MST reversed-field pinch

    International Nuclear Information System (INIS)

    Brower, D.L.; Ding, W.X.; Lei, J.

    2003-01-01

    First measurements of the current density profile, magnetic field fluctuations and electrostatic (e.s.) particle flux in the core of a high-temperature reversed-field pinch (RFP) are presented. We report three new results: (1) The current density peaks during the slow ramp phase of the sawtooth cycle and flattens promptly at the crash. Profile flattening can be linked to magnetic relaxation and the dynamo which is predicted to drive anti-parallel current in the core. Measured core magnetic fluctuations are observed to increases four-fold at the crash. Between sawtooth crashes, measurements indicate the particle flux driven by e.s. fluctuations is too small to account for the total radial particle flux. (2) Core magnetic fluctuations are observed to decrease at least twofold in plasmas where energy confinement time improves ten-fold. In this case, the radial particle flux is also reduced, suggesting core e.s. fluctuation-induced transport may play role in confinement. (3) The parallel current density increases in the outer region of the plasma during high confinement, as expected, due to the applied edge parallel electric field. However, the core current density also increases due to dynamo reduction and the emergence of runaway electrons. (author)

  5. Magnetic fluctuations can contribute to plasma transport, ''self-consistency constraints'' notwithstanding

    International Nuclear Information System (INIS)

    Krommes, J.A.; Kim, Chang-Bae.

    1987-09-01

    The recent conclusion that in a turbulent, collisionless plasma ''magnetic transport including quasilinear magnetic flutter transport ... does not contribute to the relaxation of (f), and thus is not responsible for electron energy or momentum transport'' is shown to be incorrect for a variety of situations of physical interest, including saturation by quasilinear plateau formation, induced scattering, and, most importantly, conventional mode coupling. The well-established theory of the mean infinitesimal response function and the spectral balance equation provides a unifying framework for understanding the above conclusion. In particular, the cancellations which lead to their conclusion are special cases of well-known relationships between the response function, particle propagator, and dielectric function. A more general, concise, and manifestly gauge-invariant algebraic derivation of the cancellations is given. Though the cancellations occur in a certain limit, these conclusions do not follow in general: The picture of steady-state turbulence as consisting of small-scale ''incoherent'' ballistic ''clumps'' shielded by long-wavelength ''coherent'' dielectric response is physically misleading and mathematically incomplete, as it ignores or mistreates the often dominant process of renormalized n-wave coupling. Thus, when ion nonlinearities are considered, formulas for the magnetic contribution to transport emerge which are quite similar to the quasilinear one. Furthermore, limits are possible in which all or part of the noise can be negligible, yet in which the total fluctuation spectrum remains finite. 56 refs

  6. Effective Ohm's law for a magnetohydrodynamic plasma

    International Nuclear Information System (INIS)

    Kayukawa, Naoyuki; Oikawa, Shunichi; Aoki, Yoshiyuki

    1991-01-01

    Considering that the electrical conductivity of a thermally equilibrium MHD plasma is a strong non-linear function of the gas temperature, the authors first pointed out that the statistically averaged conductivity should be evaluated by the mean temperature as =(1+G)σ( ), where G is given by the third order Taylor expansion with respect to the temperature fluctuation T- and is always positive. Next, in order to obtain a statistically averaged Ohm's law for a turbulent plasma, the correlation (σ'E'> between the conductivity and the electric field fluctuations has been numerically investigated for a plasma with a 1/7th-power average temperature distribution and layered one-dimensional fluctuation between parallel electrodes. It was shown that the correlation is always negative and the averaged current density as well as the plasma resistance is to be corrected appreciably from the values based on the mean temperature. Finally, it was shown that the correction factor / can be evaluated approximately by a 4th-order polynomial of the relative rms temperature fluctuation √ 2 >/ and the relationship is practically insensitive to the variation of the electrode temperature, the boundary-layer thickness and also to the spatial distribution of the fluctuation amplitudes. (author)

  7. The origin of fluctuations and cross-field transport in idealized magnetic confinement systems

    International Nuclear Information System (INIS)

    Riviere, A.C.; Ashby, D.E.T.F.; Cordey, J.G.; Edlington, T.; Rusbridge, M.G.

    1981-01-01

    The study of plasma fluctuations and confinement in idealized systems such as octupoles and levitrons has contributed to the understanding of cross-field transport processes. The linear theory of plasma instabilities that cause fluctuations can predict growth rates and wavelengths around lines of force. However, the theoretical prediction of cross-field transport coefficient is restricted to quasilinear estimates which usually far exceed the measured values. A general view of the results from octupole and levitron experiments shows that under collisional conditions the diffusion coefficient scales in the same way as classical collisional diffusion. Agreement is closely approached in many cases, sometimes even in the presence of fluctuations. Under collisionless conditions, Bohm diffusion scaling is found in the few cases where the scaling law has been determined. There is also experimental and theoretical evidence that long-wavelength low-frequency electric fields (convection cells) can be generated nonlinearly from high-frequency fluctuations and can contribute to cross-field transport. (author)

  8. On Debye radius measurement in an unstable gas discharged plasma

    International Nuclear Information System (INIS)

    Shvilkin, B.N.

    1998-01-01

    It is shown that at low concentrations of charged particles conditions can be realized in a magnetized unstable-to-drift plasma for which concentration perturbations are comparable to the concentration itself. The electron temperature is then determined by potential fluctuations, and the drift oscillation wavelength is of the order of the Debye length

  9. Reducing and measuring fluctuations in the MST RFP: Enhancement of energy confinement and measurement of the MHD dynamo

    International Nuclear Information System (INIS)

    Den Hartog, D.J.; Almagri, A.F.

    1996-09-01

    A three- to five-fold enhancement of the energy confinement time in a reversed-field pinch (RFP) has been achieved in the Madison Symmetric Torus (MST) by reducing the amplitude of tearing mode fluctuations responsible for anomalous transport in the core of the RFP. By applying a transient poloidal inductive electric field to flatten the current density profile, the fluctuation amplitude b/B decreases from 1.5% to 0.8%, the electron temperature T e0 increases from 250 eV to 370 eV, the ohmic input power decreases from 4.5 MW to approximately 1.5 MW, the poloidal beta β 0 increases from 6% to 9%, and the energy confinement time τ E increases from 1 ms to ∼5 ms in I φ = 340 kA plasmas with density n = 1 x 10 19 m -3 . Current profile control methods are being developed for the RFP in a program to eliminate transport associated with these current-gradient-driven fluctuations. In addition to controlling the amplitude of the tearing modes, we are vigorously pursuing an understanding of the physics of these fluctuations. In particular, plasma flow, both equilibrium and fluctuating, plays a critical role in a diversity of physical phenomena in MST. The key results: 1) Edge probe measurements show that the MHD dynamo is active in low collisionality plasmas, while at high collisionality a new mechanism, the 'electron diamagnetic dynamo,' is observed. 2) Core spectroscopic measurements show that the toroidal velocity fluctuations of the plasma are coherent with the large-scale magnetic tearing modes; the scalar product of these two fluctuating quantities is similar to that expected for the MHD dynamo electromotive force. 3) Toroidal plasma flow in MST exhibits large radial shear and can be actively controlled, including unlocking locked discharges, by modifying E r with a robust biased probe. 24 refs

  10. Plasma potential formation and measurement in TMX-U and MFTF-B

    International Nuclear Information System (INIS)

    Grubb, D.P.

    1984-01-01

    Tandem mirrors control the axial variation of the plasma potential to create electrostatic plugs that improve the axial confinement of central cell ions and, in a thermal barrier tandem mirror, control the electron axial heat flow. Measurements of the spatial and temporal variations of the plasma potential are, therefore, important to the understanding of confinement in a tandem mirror. In this paper we discuss potential formation in a thermal barrier tandem mirror and examine the diagnostics and data obtained on the TMX-U device, including measurements of the thermal barrier potential profile using a diagnostic neutral beam and charged particle energy-spectroscopy. We then describe the heavy ion beam probe and other new plasma potential diagnostics that are under development for TMX-U and MFTF-B and examine problem areas where additional diagnostic development is desirable

  11. Simultaneous Microwave Imaging System for Density and Temperature Fluctuation Measurements on TEXTOR

    International Nuclear Information System (INIS)

    Park, H.; Mazzucato, E.; Munsat, T.; Domier, C.W.; Johnson, M.; Luhmann, N.C. Jr.; Wang, J.; Xia, Z.; Classen, I.G.J.; Donne, A.J.H.; Pol, M.J. van de

    2004-01-01

    Diagnostic systems for fluctuation measurements in plasmas have, of necessity, evolved from simple 1-D systems to multi-dimensional systems due to the complexity of the MHD and turbulence physics of plasmas illustrated by advanced numerical simulations. Using the recent significant advancements in millimeter wave imaging technology, Microwave Imaging Reflectometry (MIR) and Electron Cyclotron Emission Imaging (ECEI), simultaneously measuring density and temperature fluctuations, are developed for TEXTOR. The MIR system was installed on TEXTOR and the first experiment was performed in September, 2003. Subsequent MIR campaigns have yielded poloidally resolved spectra and assessments of poloidal velocity. The new 2-D ECE Imaging system (with a total of 128 channels), installed on TEXTOR in December, 2003, successfully captured a true 2-D images of Te fluctuations of m=1 oscillation (''sawteeth'') near the q ∼ 1 surface for the first time

  12. Effective Ohm's law for magnetized plasmas with anisotropic inhomogeneities

    International Nuclear Information System (INIS)

    Shamma, S.E.; Martinez-Sanchez, M.; Louis, J.F.

    1978-01-01

    Reduction formulae for the effective, or macroscopic, Ohm's law parameters are derived for inhomogeneous plasmas with anisotropic conductivity fluctuations having two general types of geometry: (a) elongated or shortened in the direction of the magnetic field and (b) two-dimensional, with the direction of constant properties lying in the plane perpendicular to the magnetic field. In each case, two approaches are used: (a) a small perturbation method and (b) an approximate method where each region in the plasma is considered separately, and consistency conditions are used to relate the results corresponding to each separate region to the effective properties of the whole plasma. Both methods are found to agree well when the fluctuations are weak, but differences appear at high fluctuation levels and, for nonuniformities very elongated along B, when the Hall parameter β is high. Comparison with available exact solutions valid at high β and strong fluctuation levels indicates that the self-consistency method gives accurate results even in these cases. The results of these analyses are used to evaluate the performance reduction in magnetohydrodynamic channels with plasma nonuniformities of several geometries, including axial streamers, perfectly isotropic fluctuations, and fluctuations elongated along B; the power density is reduced most strongly when β and the rms of the fluctuations are high, and also when the inhomogeneities are stretched along the magnetic field

  13. Spectroscopic imaging of photopotentials and photoinduced potential fluctuations in a bulk heterojunction solar cell film.

    Science.gov (United States)

    Luria, Justin L; Hoepker, Nikolas; Bruce, Robert; Jacobs, Andrew R; Groves, Chris; Marohn, John A

    2012-11-27

    We present spatially resolved photovoltage spectra of a bulk heterojunction solar cell film composed of phase-separated poly(9,9'-dioctylfluorene-co-benzothiadiazole) (F8BT) and poly(9,9'-dioctylfluorene-co-bis-N,N'-(4-butylphenyl)-bis-N,N'-phenyl-1,4-phenylenediamine) (PFB) polymers prepared on ITO/PEDOT:PSS and aluminum substrates. Over both PFB- and F8BT-rich domains, the photopotential spectra were found to be proportional to a linear combination of the polymers' absorption spectra. Charge trapping in the film was studied using photopotential fluctuation spectroscopy, in which low-frequency photoinduced electrostatic potential fluctuations were measured by observing noise in the oscillation frequency of a nearby charged atomic force microscope cantilever. Over both F8BT- and PFB-rich regions, the magnitude, distance dependence, frequency dependence, and illumination wavelength dependence of the observed cantilever frequency noise are consistent with photopotential fluctuations arising from stochastic light-driven trapping and detrapping of charges in F8BT. Taken together, our findings suggest a microscopic mechanism by which intermixing of phases leads to charge trapping and thereby to suppressed open-circuit voltage and decreased efficiency in this prototypical bulk heterojunction solar cell film.

  14. Electron diffusion in tokamaks due to electromagnetic fluctuations

    International Nuclear Information System (INIS)

    Horton, W.; Choi, D.I.; Yushmanov, P.N.; Parail, V.V.

    1986-05-01

    Calculations for the stochastic diffusion of electrons in tokamaks due to a spectrum of electromagnetic drift fluctuations are presented. The parametric dependence of the diffusion coefficient on the amplitude and phase velocity of the spectrum, and the bounce frequency for the electrons is studied. The wavenumber spectrum is taken to be a low order (5 x 5) randomly-phased, isotropic, Monotonic spectrum extending from k /sub perpendicular min/ approx. = ω/sub ci//c/sub s/ to k/sub perpendicular max/ approx. = 3ω/sub pe//c with different power laws of decrease phi k approx. = phi 1/k/sup m/, 1 less than or equal to m less than or equal to 3. A nonlinear Ohm's law is derived for the self-consistent relation between the electrostatic and parallel vector potentials. The parallel structure of the fluctuations is taken to be such that k parallel/sup nl/upsilon/sub e/ < w/sub k/ due to the nonlinear perpendicular motion of the electrons described in the nonlinear Ohm's law. The diffusion coefficient scales approximately as the neo-Alcator and Merezhkin-Mukhovatoc empirical formulas for plasma densities above a critical density

  15. Turbulence measurements in fusion plasmas

    International Nuclear Information System (INIS)

    Conway, G D

    2008-01-01

    Turbulence measurements in magnetically confined toroidal plasmas have a long history and relevance due to the detrimental role of turbulence induced transport on particle, energy, impurity and momentum confinement. The turbulence-the microscopic random fluctuations in particle density, temperature, potential and magnetic field-is generally driven by radial gradients in the plasma density and temperature. The correlation between the turbulence properties and global confinement, via enhanced diffusion, convection and direct conduction, is now well documented. Theory, together with recent measurements, also indicates that non-linear interactions within the turbulence generate large scale zonal flows and geodesic oscillations, which can feed back onto the turbulence and equilibrium profiles creating a complex interdependence. An overview of the current status and understanding of plasma turbulence measurements in the closed flux surface region of magnetic confinement fusion devices is presented, highlighting some recent developments and outstanding problems.

  16. Recent results on event-by-event fluctuations in ALICE at the LHC

    CERN Document Server

    AUTHOR|(CDS)2083375

    2015-01-01

    Non-statistical event-by-event fluctuations in relativistic heavy-ion collisions have been proposed as a probe of the phase transition of hadronic matter to a deconfined phase of quarks and gluons, the so-called Quark-Gluon Plasma. In a thermodynamical picture of the strongly interacting system formed in heavy-ion collisions, the dynamical fluctuations of net-charge, fluctuations of the mean transverse momentum, mean multiplicity and balance functions are related to the fundamental properties of the system, hence they may reveal information about the QCD phase transition. In this article, recent results on event-by-event measurements of net-charge fluctuations, the measurement of the balance function and mean transverse momentum fluctuations are discussed.

  17. Field experiments and laboratory study of plasma turbulence and effects on EM wave propagation

    International Nuclear Information System (INIS)

    Lee, M.C.; Kuo, S.P.

    1990-01-01

    Both active experiments in space and laboratory experiments with plasma chambers have been planned to investigate plasma turbulence and effects on electromagnetic wave propagation. Plasma turbulence can be generated by intense waves or occur inherently with the production of plasmas. The turbulence effects to be singled out for investigation include nonlinear mode conversion process and turbulence scattering of electromagnetic waves by plasma density fluctuations. The authors have shown theoretically that plasma density fluctuations can render the nonlinear mode conversion of electromagnetic waves into lower hybrid waves, leading to anomalous absorption of waves in magnetoplasmas. The observed spectral broadening of VLF waves is the evidence of the occurrence of this process. Since the density fluctuations may have a broad range of scale lengths, this process is effective in weakening the electromagnetic waves in a wideband. In addition, plasma density fluctuations can scatter waves and diversify the electromagnetic energy. Schemes of generating plasma turbulence and the diagnoses of plasma effects are discussed

  18. Effect of beam-attenuation modulation on fluctuation measurements by heavy-ion beam probe

    International Nuclear Information System (INIS)

    Ross, D.W.; Sloan, M.L.; Wootton, A.J.

    1991-03-01

    Beam-attenuation modulation arising from density fluctuations along the orbit of the heavy-ion beam probe can distort the local amplitude, coherence, and phase derived from one- and two-point correlation measurements. Path-integral expressions for these effects are derived and applications to TEXT data are discussed. The effects depend critically on the ratio of the average fluctuation amplitude, n e , along the beam path to the local n e at the sample volume. Because the fluctuation amplitude is small in the core and rises sharply toward the plasma edge, the contamination effect is negligible in a radial zone near the edge but rises sharply to the interior of a critical radius. With increasing average plasma density, bar n e , the interior contamination increases strongly and the critical radius moves outward. 16 refs., 12 figs

  19. In search of zonal flows using cross-bispectrum analysis in the boundary plasma of the Hefei Tokamak-7

    International Nuclear Information System (INIS)

    Xu, G.S.; Wan, B.N.; Song, M.

    2002-01-01

    Langmuir probes have been used to measure the electrostatic Reynolds stress and the floating potential fluctuation in the boundary plasma of the Hefei Tokamak-7 (HT-7) [J. Li, B. N. Wan, and J. S. Mao, Plasma Phys. Controlled Fusion 42, 135 (2000)]. The cross bispectrum of r V(tilde sign) θ φ(tilde sign) f > indicates the existence of difference-frequency nonlinear phase coupling and the generation of fluctuations near the geodesic acoustic mode frequency. The inverse cascade process might be linked to the generation of zonal flows by small-scale electrostatic drift-wave turbulence

  20. Dust removal in radio-frequency plasmas by a traveling potential modulation

    International Nuclear Information System (INIS)

    Li Yangfang; Jiang Ke; Thomas, Hubertus M.; Morfill, Gregor E.

    2010-01-01

    The dust contamination in plasma deposition processes plays a crucial role in the quality and the yield of the products. To improve the quality and the yield of plasma processing, a favorable way is to remove the dust particles actively from the plasma reactors.Our recent experiments in the striped electrode device show that a traveling plasma modulation allows for a systematic particle removal independent of the reactor size. Besides the rf powered electrode, the striped electrode device includes a segmented electrode that consists of 100 electrically insulated narrow stripes. A traveling potential profile is produced by the modulation of the voltage signals applied on the stripes. The dust particles are trapped in the potential wells and transported with the traveling of the potential profile.The particle-in-cell (PIC) simulation on the potential above the segmented electrode indicates that the traveling potential profile can be realized either by applying low-frequency (0.1-10 Hz) voltage signals with a fixed phase shift between adjacent stripes or high-frequency (10 kHz a circumflex AS 100 MHz) signals with the amplitudes modulated by a low-frequency envelope. The transportation of the dust particles is simulated with a two-dimensional molecular dynamics (MD) code with the potential profile obtained from the PIC simulation. The MD results reproduce the experimental observations successfully.This technology allows for an active removal of the contaminating particles in processing plasmas and it is independent of the reactor size. The removal velocity is controllable by adjusting the parameters for the modulation.

  1. Measurements of fluctuations in the flux of runaway electrons to the PLT limiter

    International Nuclear Information System (INIS)

    Barnes, C.W.; Strachan, J.D.

    1982-07-01

    Fluctuations in the flux of runaway electrons to the limiter have been measured during many PLT discharges. Oscillations at 60, 120, and 720 Hz are driven by variations in the vertical magnetic field which moves the plasma major radius. Fluctuations are seen in the range of 2 → 20 kHz due to MHD magnetic islands which extend to the plasma surface. A continuous spectrum of fluctuations is observed up to 200 kHz which correlates with drift-wave turbulence. The magnitude of the driven fluctuations can be used to measure transport properties of the runaway electrons. The amplitude of electron motion due to the MHD and drift-wave oscillations, and hence a measure of the radial size of the instability, can be determined as a function of frequency. The slope of the frequency power spectrum of the drift-wave-induced fluctuations steepens with increasing runaway electron drift orbit displacement during the current drop at the end of the discharge, and as the power in the MHD oscillations increases. A magnetic probe was used to confirm the presence of oscillating magnetic fields capable of perturbing the electron orbits

  2. Magnetic fluctuations due to thermally excited Alfven waves

    International Nuclear Information System (INIS)

    Agim, Y.Z.; Prager, S.C.

    1990-01-01

    Magnetic fluctuations due to the thermally excited MHD waves are investigated using fluid and kinetic models to describe a stable, uniform, compressible plasma in the range above the drift wave frequency and below the ion cyclotron frequency. It is shown that the fluid model with resistivity yields spectral densities which are roughly Lorentzian, exhibit equipartition with no apparent cutoff in wavenumber space and a Bohm-type diffusion coefficient. Under certain conditions, the ensuing transport may be comparable to classical values. For a phenomenological cutoff imposed on the spectrum, the typical fluctuating-to-equilibrium magnetic field ratio is found to be of the order of 10 -10 . Physical mechanisms to obtain decay profiles of the spectra with increasing wavenumber due to dispersion and/or different forms of damping are investigated analytically in a cold fluid approximation and numerically, with a kinetic model. The mode dispersion due to the finite ion-gyrofrequency is identified as the leading effect determining the spectral profile shapes. It is found that the amplitude of fluctuations may be within a factor of the value suggested by the cold plasma model. The results from both models are presented and compared in low- and high-β regimes. 21 refs., 6 figs

  3. Plasma-cavity ringdown spectroscopy for analytical measurement: Progress and prospectives

    Science.gov (United States)

    Zhang, Sida; Liu, Wei; Zhang, Xiaohe; Duan, Yixiang

    2013-07-01

    Plasma-cavity ringdown spectroscopy is a powerful absorption technique for analytical measurement. It combines the inherent advantages of high sensitivity, absolute measurement, and relative insensitivity to light source intensity fluctuations of the cavity ringdown technique with use of plasma as an atomization/ionization source. In this review, we briefly describe the background and principles of plasma-cavity ringdown spectroscopy(CRDS) technology, the instrumental components, and various applications. The significant developments of the plasma sources, lasers, and cavity optics are illustrated. Analytical applications of plasma-CRDS for elemental detection and isotopic measurement in atomic spectrometry are outlined in this review. Plasma-CRDS is shown to have a promising future for various analytical applications, while some further efforts are still needed in fields such as cavity design, plasma source design, instrumental improvement and integration, as well as potential applications in radical and molecular measurements.

  4. Plasma turbulence imaging using high-power laser Thomson scattering

    Science.gov (United States)

    Zweben, S. J.; Caird, J.; Davis, W.; Johnson, D. W.; Le Blanc, B. P.

    2001-01-01

    The two-dimensional (2D) structure of plasma density turbulence in a magnetically confined plasma can potentially be measured using a Thomson scattering system made from components of the Nova laser of Lawrence Livermore National Laboratory. For a plasma such as the National Spherical Torus Experiment at the Princeton Plasma Physics Laboratory, the laser would form an ≈10-cm-wide plane sheet beam passing vertically through the chamber across the magnetic field. The scattered light would be imaged by a charge coupled device camera viewing along the direction of the magnetic field. The laser energy required to make 2D images of density turbulence is in the range 1-3 kJ, which can potentially be obtained from a set of frequency-doubled Nd:glass amplifiers with diameters in the range of 208-315 mm. A laser pulse width of ⩽100 ns would be short enough to capture the highest frequency components of the expected density fluctuations.

  5. Monte Carlo simulations of ionization potential depression in dense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Stransky, M., E-mail: stransky@fzu.cz [Department of Radiation and Chemical Physics, Institute of Physics ASCR, Na Slovance 2, 182 21 Prague 8 (Czech Republic)

    2016-01-15

    A particle-particle grand canonical Monte Carlo model with Coulomb pair potential interaction was used to simulate modification of ionization potentials by electrostatic microfields. The Barnes-Hut tree algorithm [J. Barnes and P. Hut, Nature 324, 446 (1986)] was used to speed up calculations of electric potential. Atomic levels were approximated to be independent of the microfields as was assumed in the original paper by Ecker and Kröll [Phys. Fluids 6, 62 (1963)]; however, the available levels were limited by the corresponding mean inter-particle distance. The code was tested on hydrogen and dense aluminum plasmas. The amount of depression was up to 50% higher in the Debye-Hückel regime for hydrogen plasmas, in the high density limit, reasonable agreement was found with the Ecker-Kröll model for hydrogen plasmas and with the Stewart-Pyatt model [J. Stewart and K. Pyatt, Jr., Astrophys. J. 144, 1203 (1966)] for aluminum plasmas. Our 3D code is an improvement over the spherically symmetric simplifications of the Ecker-Kröll and Stewart-Pyatt models and is also not limited to high atomic numbers as is the underlying Thomas-Fermi model used in the Stewart-Pyatt model.

  6. Monte Carlo simulations of ionization potential depression in dense plasmas

    International Nuclear Information System (INIS)

    Stransky, M.

    2016-01-01

    A particle-particle grand canonical Monte Carlo model with Coulomb pair potential interaction was used to simulate modification of ionization potentials by electrostatic microfields. The Barnes-Hut tree algorithm [J. Barnes and P. Hut, Nature 324, 446 (1986)] was used to speed up calculations of electric potential. Atomic levels were approximated to be independent of the microfields as was assumed in the original paper by Ecker and Kröll [Phys. Fluids 6, 62 (1963)]; however, the available levels were limited by the corresponding mean inter-particle distance. The code was tested on hydrogen and dense aluminum plasmas. The amount of depression was up to 50% higher in the Debye-Hückel regime for hydrogen plasmas, in the high density limit, reasonable agreement was found with the Ecker-Kröll model for hydrogen plasmas and with the Stewart-Pyatt model [J. Stewart and K. Pyatt, Jr., Astrophys. J. 144, 1203 (1966)] for aluminum plasmas. Our 3D code is an improvement over the spherically symmetric simplifications of the Ecker-Kröll and Stewart-Pyatt models and is also not limited to high atomic numbers as is the underlying Thomas-Fermi model used in the Stewart-Pyatt model

  7. A technique for plasma velocity-space cross-correlation

    Science.gov (United States)

    Mattingly, Sean; Skiff, Fred

    2018-05-01

    An advance in experimental plasma diagnostics is presented and used to make the first measurement of a plasma velocity-space cross-correlation matrix. The velocity space correlation function can detect collective fluctuations of plasmas through a localized measurement. An empirical decomposition, singular value decomposition, is applied to this Hermitian matrix in order to obtain the plasma fluctuation eigenmode structure on the ion distribution function. A basic theory is introduced and compared to the modes obtained by the experiment. A full characterization of these modes is left for future work, but an outline of this endeavor is provided. Finally, the requirements for this experimental technique in other plasma regimes are discussed.

  8. The Chemical Potential of Plasma Membrane Cholesterol: Implications for Cell Biology.

    Science.gov (United States)

    Ayuyan, Artem G; Cohen, Fredric S

    2018-02-27

    Cholesterol is abundant in plasma membranes and exhibits a variety of interactions throughout the membrane. Chemical potential accounts for thermodynamic consequences of molecular interactions, and quantifies the effective concentration (i.e., activity) of any substance participating in a process. We have developed, to our knowledge, the first method to measure cholesterol chemical potential in plasma membranes. This was accomplished by complexing methyl-β-cyclodextrin with cholesterol in an aqueous solution and equilibrating it with an organic solvent containing dissolved cholesterol. The chemical potential of cholesterol was thereby equalized in the two phases. Because cholesterol is dilute in the organic phase, here activity and concentration were equivalent. This equivalence allowed the amount of cholesterol bound to methyl-β-cyclodextrin to be converted to cholesterol chemical potential. Our method was used to determine the chemical potential of cholesterol in erythrocytes and in plasma membranes of nucleated cells in culture. For erythrocytes, the chemical potential did not vary when the concentration was below a critical value. Above this value, the chemical potential progressively increased with concentration. We used standard cancer lines to characterize cholesterol chemical potential in plasma membranes of nucleated cells. This chemical potential was significantly greater for highly metastatic breast cancer cells than for nonmetastatic breast cancer cells. Chemical potential depended on density of the cancer cells. A method to alter and fix the cholesterol chemical potential to any value (i.e., a cholesterol chemical potential clamp) was also developed. Cholesterol content did not change when cells were clamped for 24-48 h. It was found that the level of activation of the transcription factor STAT3 increased with increasing cholesterol chemical potential. The cholesterol chemical potential may regulate signaling pathways. Copyright © 2018. Published by

  9. Potential fluctuations due to the randomly distributed charges at the semiconductor-insulator interface in MIS-structures

    International Nuclear Information System (INIS)

    Slavcheva, G.; Yanchev, I.

    1991-01-01

    A new expression for the Fourier transform of the binary correlation function of the random potential near the semiconductor-insulator interface is derived. The screening due to the image charge with respect to the metal electrode in MIS-structure is taken into account, introducing an effective insulator thickness. An essential advantage of this correlation function is the finite dispersion of the random potential Γ 2 to which it leads in distinction with the so far known correlation functions leading to divergent dispersion. The important characteristic of the random potential distribution Γ 2 determining the amplitude of the potential fluctuations is calculated. (author). 7 refs, 1 fig

  10. Heavy ion beam study of potential formation in bumpy torus plasma

    International Nuclear Information System (INIS)

    Takasugi, Keiichi.

    1985-01-01

    A heavy ion beam probe is constructed for the study of plasma confinement in Nagoya Bumpy Torus (NBT-1/1M). The measurement of the local plasma potential as well as the electron density profile is possible with good spatial (1 -- 2 cm) and temporal (-- 1 msec) resolutions. The feedback controlled detection technique and the time resolved fast detection technique are coupled to use, which enables us to measure local potential reliably even in the pulsed experiments. The process of the devlopment of concentric equipotential surface is observed. The cold and collisional plasma in bumpy torus is not in the equilibrium (C-mode), and the vertically polarized potential profile is produced by the toroidal drift. With the growth of warm collisionless electron component, the polarization is poloidally short-circuited, and the concentric equipotential surface is developed. The concentric negative potential well and its positive rim are observed in the standard operation. The position of the potential boundary (rim) moves with the second harmonic ECRH zone at the midplane of each mirror section, where the hot electron ring exists. The rim potential is formed by the direct loss of warm electrons. It is confirmed that the core electron heating is essential for the negative potential formation. The potential depth is much larger than the ion temperature Tsub(i), and cannot be explained by the existing neoclassical theory. A stable positive potential is observed near T-M transition. The positive potential is also observed in the ion heated plasma. Relating to the growth of the high energy component, the potential formation due to direct loss process is discussed. (author)

  11. Plasma confinement modification and convective transport suppression in the scrape-off layer using additional gas puffing in the STOR-M tokamak

    International Nuclear Information System (INIS)

    Dreval, M; Hubeny, M; Ding, Y; Onchi, T; Liu, Y; Hthu, K; Elgriw, S; Xiao, C; Hirose, A

    2013-01-01

    The influence of short gas puffing (GP) pulses on the scrape-off layer (SOL) transport is studied. Similar responses of ion saturation current and floating potential measured near the GP injection valve and in the 90° toroidally separated cross-section suggest that the GP influence on the SOL region should be global. A drop in plasma temperature and a decrease in the rotational velocity of the plasma are observed in the SOL region immediately after the GP pulse; however, an unexpected increase in electron and ion temperatures is observed in the second stage of the plasma response. The decrease in floating potential fluctuations indicates that the turbulent transport is dumped immediately after the GP pulse. The GP-induced modification of turbulence properties in the SOL points to a convective transport suppression in the STOR-M tokamak. A substantial decrease in the skewness and kurtosis of ion saturation current fluctuations is observed in the SOL region resulting in the probability distribution function (PDF) getting closer to the Gaussian distribution. The plasma potential reduction, the change in plasma rotation and the suppression of turbulent transport in the SOL region indicate that the plasma confinement is modified after the GP injection. Some features of the H-mode-like confinement in the plasma bulk also accompany the SOL observations after application of the additional sharp GP pulse. (paper)

  12. Intermittent electron density and temperature fluctuations and associated fluxes in the Alcator C-Mod scrape-off layer

    Science.gov (United States)

    Kube, R.; Garcia, O. E.; Theodorsen, A.; Brunner, D.; Kuang, A. Q.; LaBombard, B.; Terry, J. L.

    2018-06-01

    The Alcator C-Mod mirror Langmuir probe system has been used to sample data time series of fluctuating plasma parameters in the outboard mid-plane far scrape-off layer. We present a statistical analysis of one second long time series of electron density, temperature, radial electric drift velocity and the corresponding particle and electron heat fluxes. These are sampled during stationary plasma conditions in an ohmically heated, lower single null diverted discharge. The electron density and temperature are strongly correlated and feature fluctuation statistics similar to the ion saturation current. Both electron density and temperature time series are dominated by intermittent, large-amplitude burst with an exponential distribution of both burst amplitudes and waiting times between them. The characteristic time scale of the large-amplitude bursts is approximately 15 μ {{s}}. Large-amplitude velocity fluctuations feature a slightly faster characteristic time scale and appear at a faster rate than electron density and temperature fluctuations. Describing these time series as a superposition of uncorrelated exponential pulses, we find that probability distribution functions, power spectral densities as well as auto-correlation functions of the data time series agree well with predictions from the stochastic model. The electron particle and heat fluxes present large-amplitude fluctuations. For this low-density plasma, the radial electron heat flux is dominated by convection, that is, correlations of fluctuations in the electron density and radial velocity. Hot and dense blobs contribute only a minute fraction of the total fluctuation driven heat flux.

  13. Plasma oscillations and sound waves in collision-dominated two-component plasmas

    International Nuclear Information System (INIS)

    Hansen, J.P.; Sjoegren, L.

    1982-01-01

    Charge, mass, and electron density fluctuation spectra of strongly correlated, fully ionized two-component plasmas within the framework of the Mori--Zwanzig memory function formalism are analyzed. All dynamical correlation functions are expressed in terms of the memory functions of the ion and electron velocity autocorrelation functions by a generalized effective field approximation which preserves the exact initial values (i.e., static correlations). The theory reduces correctly to the mean field (or collisionless Vlasov) results in the weak coupling limit, and yields charge density fluctuation spectra in good agreement with available computer simulation data, as well as reasonable estimates of the transport coefficients. The collisional damping and frequency shift of the plasma oscillation mode are sizeable, even in the long wavelength limit. The theory also predicts the propagation of well-defined sound waves in dense plasmas in thermal equilibrium

  14. Detrended fluctuation analysis of compound action potentials re-corded in the cutaneous nerves of diabetic rats

    International Nuclear Information System (INIS)

    Quiroz-González, Salvador; Rodríguez-Torres, Erika Elizabeth; Segura-Alegría, Bertha; Pereira-Venegas, Javier; Lopez-Gomez, Rosa Estela; Jiménez-Estrada, Ismael

    2016-01-01

    Highlights: • Fractal analysis of compound action potentials (CAP) evoked in diabetic nerves. • Diabetic rats showed an increment in the chaotic behavior of CAP responses. • Diabetes provokes impaired transmission of sensory information in rats. - Abstract: The electrophysiological alterations in nerves due to diabetes are classically studied in relation to their instantaneous frequency, conduction velocity and amplitude. However, analysis of amplitude variability may reflect the occurrence of feedback loop mechanisms that adjust the output as a function of its previous activity could indicate fractal dynamics. We assume that a peripheral neuropathy, such as that evoked by diabetes, the inability to maintain a steady flow of sensory information is reflected as a breakdown of the long range power-law correlation of CAP area fluctuation from cutaneous nerves. To test this, we first explored in normal rats whether fluctuations in the trial-to-trial CAP area showed a self-similar behavior or fractal structure by means of detrended fluctuations analysis (DFA), and Poincare plots. In addition, we determine whether such CAP fluctuations varied by diabetes induction. Results showed that CAP area fluctuation of SU nerves evoked in normal rats present a long term correlation and self-similar organization (fractal behavior) from trial to trial stimulation as evidenced by DFA of CAP areas. However, CAPs recorded in diabetic nerves exhibited significant reductions in area, larger duration and increased area variability and different Poincare plots than control nerves. The Hurst exponent value determined with the DFA method from a series of 2000 CAPs evoked in diabetic SU nerves was smaller than in control nerves. It is proposed that in cutaneous nerves of normal rats variability of the CAP area present a long term correlation and self-similar organization (fractal behavior), and reflect the ability to maintain a steady flow of sensory information through cutaneous nerves

  15. Plasma Turbulence General Topics

    Energy Technology Data Exchange (ETDEWEB)

    Kadomtsev, B. B. [Nuclear Energy Institute, Academy of Sciences of the USSR, Moscow, USSR (Russian Federation)

    1965-06-15

    It is known that under experimental conditions plasma often shows chaotic motion. Such motion, when many degrees of freedom are excited to levels considerably above the thermal level, will be called turbulent. The properties of turbulent plasma in many respects differ from the properties of laminar plasma. It can be said that the appearance of various anomalies in plasma behaviour indicates the presence of turbulence in plasma. In order to verify directly the presence of turbulent motion in plasma we must, however, measure the fluctuation of some microscopic parameters in plasma.

  16. Time evolution of plasma potential in pulsed operation of ECRIS

    International Nuclear Information System (INIS)

    Tarvainen, O.; Koivisto, H.; Ropponen, T.; Toivanen, V.; Higurashi, Y.; Nakagawa, T.

    2012-01-01

    The time evolution of plasma potential has been measured with a retarding field analyzer in pulsed operation mode with electron cyclotron resonance ion sources at JYFL and RIKEN. Three different ion sources with microwave frequencies ranging from 6.4 to 18 GHz were employed for the experiments. The plasma potential was observed to increase 10-75 % during the Pre-glow and 10-30 % during the afterglow compared to steady state. The paper is followed by the slides of the presentation. (authors)

  17. Explanation of L→H mode transition based on gradient stabilization of edge thermal fluctuations

    International Nuclear Information System (INIS)

    Stacey, W.M.

    1996-01-01

    A linear analysis of thermal fluctuations, using a fluid model which treats the large radial gradient related phenomena in the plasma edge, leads to a constraint on the temperature and density gradients for stabilization of edge temperature fluctuations. A temperature gradient, or conductive edge heat flux, threshold is identified. It is proposed that the L→H transition takes place when the conductive heat flux to the edge produces a sufficiently large edge temperature gradient to stabilize the edge thermal fluctuations. The consequences following from this mechanism for the L→H transition are in accord with observed phenomena associated with the L→H transition and with the observed parameter dependences of the power threshold. First, a constraint is established on the edge temperature and density gradients that are sufficient for the stability of edge temperature fluctuations. A slab approximation for the thin plasma edge and a fluid model connected to account for the large radial gradients present in the plasma edge are used. Equilibrium solutions are characterized by the value of the density and of its gradient L n -1 double-bond - n -1 , etc. Temperature fluctuations expanded about the equilibrium value are then used in the energy balance equation summed over plasma ions, electrons and impurities to obtain, after linearization, an expression for the growth rate ω of edge localized thermal fluctuations. Thermal stability of the equilibrium solution requires ω ≤ 0, which establishes a constraint that must be satisfied by L n -1 and L T -1 . The limiting value of the constraint (ω = 0) leads to an expression for the minimum value of that is sufficient for thermal stability, for a given value of L T -1. It is found that there is a minimum value of the temperature gradient, (L T -1 ) min that is necessary for a stable solution to exist for any value of L n -1

  18. Hydrodynamic fluctuations from a weakly coupled scalar field

    Science.gov (United States)

    Jackson, G.; Laine, M.

    2018-04-01

    Studies of non-equilibrium dynamics of first-order cosmological phase transitions may involve a scalar field interacting weakly with the energy-momentum tensor of a thermal plasma. At late times, when the scalar field is approaching equilibrium, it experiences both damping and thermal fluctuations. We show that thermal fluctuations induce a shear viscosity and a gravitational wave production rate, and propose that including this tunable contribution may help in calibrating the measurement of the gravitational wave production rate in hydrodynamic simulations. Furthermore it may enrich their physical scope, permitting in particular for a study of the instability of growing bubbles.

  19. Charge-imbalance fluctuations in superconductors

    International Nuclear Information System (INIS)

    Lemberger, T.R.

    1981-01-01

    We calculate that the mean-square amplitude of the fluctuations of the condensate chemical potential μ/sub s/ due to charge-imbalance fluctuations in the limit Δ/k/sub B/T 2 > = 2(k/sub B/T) 2 /πdeltaΩN(0) in a volume Ω of superconductor. We relate these fluctuations via Nyquist's theorem to measured values of the contribution of self-injected charge imbalance to the dc resistance of SIN tunnel junctions. In this relation the dynamic charge-imbalance relaxation rate is 1/tau/sub E/, the electron-phonon scattering rate

  20. Alfvénic fluctuations in "newborn"' polar solar wind

    Directory of Open Access Journals (Sweden)

    B. Bavassano

    2005-06-01

    Full Text Available The 3-D structure of the solar wind is strongly dependent upon the Sun's activity cycle. At low solar activity a bimodal structure is dominant, with a fast and uniform flow at the high latitudes, and slow and variable flows at low latitudes. Around solar maximum, in sharp contrast, variable flows are observed at all latitudes. This last kind of pattern, however, is a relatively short-lived feature, and quite soon after solar maximum the polar wind tends to regain its role. The plasma parameter distributions for these newborn polar flows appear very similar to those typically observed in polar wind at low solar activity. The point addressed here is about polar wind fluctuations. As is well known, the low-solar-activity polar wind is characterized by a strong flow of Alfvénic fluctuations. Does this hold for the new polar flows too? An answer to this question is given here through a comparative statistical analysis on parameters such as total energy, cross helicity, and residual energy, that are of general use to describe the Alfvénic character of fluctuations. Our results indicate that the main features of the Alfvénic fluctuations observed in low-solar-activity polar wind have been quickly recovered in the new polar flows developed shortly after solar maximum. Keywords. Interplanetary physics (MHD waves and turbulence; Sources of the solar wind – Space plasma physics (Turbulence

  1. Formation and control of plasma potentials in TMX upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Simonen, T.C.; Orzechowski, T.J.; Porkolab, M.; Stallard, B.W.

    1981-05-06

    The methods to be employed to form and control plasma potentials in the TMX Upgrade tandem mirror with thermal barriers are described. ECRH-generated mirror -confined electron plasmas are used to establish a negative potential region to isolate the end-plug and central-cell celectrons. This thermal isolation will allow a higher end-plug electron temperature and an increased central-cell confining potential. Improved axial central-cell ion confinement results since higher temperature central-cell ions can be confined. This paper describes: (1) calculations of the sensitivity of barrier formation to vacuum conditions and to the presence of impurities in the neutral beams, (2) calculations of microwave penetration and absorption used to design the ECRH system, and (3) techniques to limit electron runaway to high energies by localized microwave beams and by relativistic detuning.

  2. Formation and control of plasma potentials in TMX upgrade

    International Nuclear Information System (INIS)

    Simonen, T.C.; Orzechowski, T.J.; Porkolab, M.; Stallard, B.W.

    1981-01-01

    The methods to be employed to form and control plasma potentials in the TMX Upgrade tandem mirror with thermal barriers are described. ECRH-generated mirror -confined electron plasmas are used to establish a negative potential region to isolate the end-plug and central-cell celectrons. This thermal isolation will allow a higher end-plug electron temperature and an increased central-cell confining potential. Improved axial central-cell ion confinement results since higher temperature central-cell ions can be confined. This paper describes: (1) calculations of the sensitivity of barrier formation to vacuum conditions and to the presence of impurities in the neutral beams, (2) calculations of microwave penetration and absorption used to design the ECRH system, and (3) techniques to limit electron runaway to high energies by localized microwave beams and by relativistic detuning

  3. Mathematical Model of Plasma Space for Electronic Technologies

    OpenAIRE

    N.N. Chernyshov; K.T. Umyarov; D.V. Pisarenko

    2014-01-01

    The paper is devoted to studying the plasma used in technologies of the electronic industry. It gives the characteristic of plasma space on the basis of a system of Maxwell-Boltzmann equa-tions. Solving these equations is represented in the form of Fourier transformation and Green functions. Fluctuation-dissipative theorem and method of Longevin sources for calculating electric filed fluctua-tions are used.

  4. A tangential CO{sub 2} laser collective scattering system for measuring short-scale turbulent fluctuations in the EAST superconducting tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Cao, G.M., E-mail: gmcao@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, PO Box 1126, Hefei, Anhui 230031 (China); Li, Y.D. [Institute of Plasma Physics, Chinese Academy of Sciences, PO Box 1126, Hefei, Anhui 230031 (China); Li, Q. [School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Zhang, X.D.; Sun, P.J.; Wu, G.J.; Hu, L.Q. [Institute of Plasma Physics, Chinese Academy of Sciences, PO Box 1126, Hefei, Anhui 230031 (China)

    2014-12-15

    Highlights: • A tangential CO{sub 2} laser collective scattering system was first installed on EAST. • It can measure the short-scale fluctuations in different regions simultaneously. • It can study the broadband fluctuations, QC fluctuations, MHD phenomenon, etc. - Abstract: A tangential CO{sub 2} laser collective scattering system has been first installed on the Experimental Advanced Superconducting Tokamak (EAST) to measure short-scale turbulent fluctuations in EAST plasmas. The system can measure fluctuations with up to four distinct wavenumbers simultaneously ranging from 10 cm{sup −1} to 26 cm{sup −1}, and correspondingly k{sub ⊥}ρ{sub s}∼1.5−4.3. The system is designed based on the oblique propagation of the probe beam with respect to the magnetic field, and thus the enhanced spatial localization can be achieved by taking full advantage of turbulence anisotropy and magnetic field inhomogeneity. The simultaneous measurements of turbulent fluctuations in different regions can be taken by special optical setup. Initial measurements indicate rich short-scale turbulent dynamics in both core and outer regions of EAST plasmas. The system will be a powerful tool for investigating the features of short-scale turbulent fluctuations in EAST plasmas.

  5. Papers presented at the Tenth Topical Conference on High-Temperature Plasma Diagnostics

    International Nuclear Information System (INIS)

    1994-01-01

    This report contains papers on the following topics: Effects of limited spatial resolution on fluctuation measurements; vertical viewing of electron-cyclotron radiation in Text-U; measurement of temperature fluctuations from electron-cyclotron emission; a varying cross section magnetic coil diagnostic used in digital feedback control of plasma position in Text-Upgrade; high-sensitivity, high resolution measurements of radiated power on Text-U; wave launching as a diagnostic tool to investigate plasma turbulence; edge parameters from an energy analyzer and particle transport on Text-U; initial results from a charge exchange q-Diagnostic on Text-U; a method for neutral spectra analysis taking ripple-trapped particle losses into account; application of a three sample volume S(k,ω ) estimate to optical measurements of turbulence on Text; initial operation of the 2D Firsis on Text-Upgrade; horizontal-view interferometer on Text-Upgrade; plasma potential measurements on Text-Upgrade with A 2 MeV heavy ion beam; fluctuation measurements using the 2 MeV heavy ion beam probe on Text-U; the time domain triple probe method; a phase contrast imaging system for Text-U; and development of rugged corner cube detectors for the Text-U-Fir interferometer. These papers have been placed on the database elsewhere

  6. Impact of neutral density fluctuations on gas puff imaging diagnostics

    Science.gov (United States)

    Wersal, C.; Ricci, P.

    2017-11-01

    A three-dimensional turbulence simulation of the SOL and edge regions of a toroidally limited tokamak is carried out. The simulation couples self-consistently the drift-reduced two-fluid Braginskii equations to a kinetic equation for neutral atoms. A diagnostic neutral gas puff on the low-field side midplane is included and the impact of neutral density fluctuations on D_α light emission investigated. We find that neutral density fluctuations affect the D_α emission. In particular, at a radial distance from the gas puff smaller than the neutral mean free path, neutral density fluctuations are anti-correlated with plasma density, electron temperature, and D_α fluctuations. It follows that the neutral fluctuations reduce the D_α emission in most of the observed region and, therefore, have to be taken into account when interpreting the amplitude of the D_α emission. On the other hand, higher order statistical moments (skewness, kurtosis) and turbulence characteristics (such as correlation length, or the autocorrelation time) are not significantly affected by the neutral fluctuations. At distances from the gas puff larger than the neutral mean free path, a non-local shadowing effect influences the neutral density fluctuations. There, the D_α fluctuations are correlated with the neutral density fluctuations, and the high-order statistical moments and measurements of other turbulence properties are strongly affected by the neutral density fluctuations.

  7. Propagation of the lower hybrid wave in a density fluctuating scrape-off layer (SOL)

    International Nuclear Information System (INIS)

    Madi, M; Peysson, Y; Decker, J; Kabalan, K Y

    2015-01-01

    The perturbation of the lower hybrid wave (LH) power spectrum by fluctuations of the plasma in the vicinity of the antenna is investigated by solving the full wave equation in a slab geometry using COMSOL Multiphysics®. The numerical model whose generality allows to study the effect of various types of fluctuations, including those with short characteristic wavelengths is validated against a coupling code in quiescent regimes. When electron density fluctuations along the toroidal direction are incorporated in the dielectric tensor over a thin perturbed layer in front of the grill, the power spectrum may be strongly modified from the antenna mouth to the plasma separatrix as the LH wave propagates. The diffraction effect by density fluctuations leads to the appearance of multiple satellite lobes with randomly varying positions and the averaged perturbation is found to be maximum for the Fourier components of the fluctuating spectrum in the vicinity of the launched LH wavelength. This highlights that fast toroidal inhomogeneities with short characteristics length scales in front of the grill may change significantly the initial LH power spectrum used in coupled ray-tracing and Fokker–Planck calculations. (paper)

  8. Thermodynamic theory of equilibrium fluctuations

    International Nuclear Information System (INIS)

    Mishin, Y.

    2015-01-01

    The postulational basis of classical thermodynamics has been expanded to incorporate equilibrium fluctuations. The main additional elements of the proposed thermodynamic theory are the concept of quasi-equilibrium states, a definition of non-equilibrium entropy, a fundamental equation of state in the entropy representation, and a fluctuation postulate describing the probability distribution of macroscopic parameters of an isolated system. Although these elements introduce a statistical component that does not exist in classical thermodynamics, the logical structure of the theory is different from that of statistical mechanics and represents an expanded version of thermodynamics. Based on this theory, we present a regular procedure for calculations of equilibrium fluctuations of extensive parameters, intensive parameters and densities in systems with any number of fluctuating parameters. The proposed fluctuation formalism is demonstrated by four applications: (1) derivation of the complete set of fluctuation relations for a simple fluid in three different ensembles; (2) fluctuations in finite-reservoir systems interpolating between the canonical and micro-canonical ensembles; (3) derivation of fluctuation relations for excess properties of grain boundaries in binary solid solutions, and (4) derivation of the grain boundary width distribution for pre-melted grain boundaries in alloys. The last two applications offer an efficient fluctuation-based approach to calculations of interface excess properties and extraction of the disjoining potential in pre-melted grain boundaries. Possible future extensions of the theory are outlined.

  9. Plasma transport in the Scrape-off-Layer of magnetically confined plasma and the plasma exhaust

    DEFF Research Database (Denmark)

    Rasmussen, Jens Juul; Naulin, Volker; Nielsen, Anders Henry

    An overview of the plasma dynamics in the Scrape-off-Layer (SOL) of magnetically confined plasma is presented. The SOL is the exhaust channel of the warm plasma from the core, and the understanding of the SOL plasma dynamics is one of the key issues in contemporary fusion research. It is essential...... for operation of fusion experiments and ultimately fusion power plants. Recent results clearly demonstrate that the plasma transport through the SOL is dominated by turbulent intermittent fluctuations organized into filamentary structures convecting particles, energy, and momentum through the SOL region. Thus......, the transport cannot be described and parametrized by simple diffusive type models. The transport leads to strong localized power loads on the first wall and the plasma facing components, which have serious lasting influence....

  10. Measurement of magnetic fluctuations at small spatial scales in the Tokapole II tokamak

    International Nuclear Information System (INIS)

    Haines, E.J.

    1991-08-01

    This thesis is a presentation of the measurements of short-wavelength, high-frequency radial magnetic fluctuations performed on the Tokapole 2 tokamak at the University of Wisconsin-Madison. Theories of electron temperature gradient (η e ) driven turbulence predict the existence of increased magnetic fluctuation power at small spatial scales near the collisionless skin depth c/ω pe and over a wide range of frequencies near and below the electron diamagnetic drift frequency ω* ne . Small magnetic probes of sizes down to 1 m m have been constructed and used to resolve short poloidal and radial wavelength magnetic fluctuations. These probes have been used with larger probes to make comparisons of fluctuation spectra measured in various ranges of wavelength and over the range of frequencies from 10 kHz to 6 MHz in Tokapole 2 plasmas. A calculation of the short-wavelength, high-frequency response of an electrostatically shielded model B r probe has been performed to guide the interpretation of the power comparison measurements. Comparisons of magnetic fluctuation spectra at various positions within the plasma, and for discharges with edge safety factor 1, 2, and 3 are presented. The linear and nonlinear theories and numerical simulations of η e turbulence are reviewed and compared, where possible with the experimental parameters and results

  11. A portable and independent edge fluctuation diagnostic

    International Nuclear Information System (INIS)

    Tsui, H.Y.W.; Ritz, C.P.; Wootton, A.J.

    1991-01-01

    The measurements of fluctuations and its associated transport with Langmuir probes have provided essential experimental information for some understanding of the turbulent transport. While such measurements have been conducted in the edge region of several tokamaks, only limited effort has been devoted to link and to consolidate these results: such effort can provide information for a more global understanding of the transport process. The purpose of this project is to provide a portable diagnostic facility to measure the edge turbulence on different devices, a signal processing package to analyze the data in a systematic manner and a database to consolidate the experimental results. The end product which provides a collection of information for the comparisons with the theoretical models may lead to a more global understanding of the transport process. A compact self contained portable system has been designed and developed to diagnose the edge plasma of devices with a wide range of sizes and configurations. The system is capable of measuring both the mean and the fluctuation quantities of density, temperature and potential from a standardized Langmuir probe array using a fast reciprocating probe drive. The system can also be used for other fluctuation diagnostics, such as magnetic probes, if necessary. The data acquisition and analysis is performed on a Macintosh 2fx which provides a user-friendly environment. The results obtained by the signal processing routines are stored in a tabloid format to allow comparative studies. The database is a core part of the portable signal analysis system. It allows a fast display of shot data versus each other, as well as comparison between different devices

  12. Addendum to ''Density fluctuations in liquid rubidium''

    International Nuclear Information System (INIS)

    Haan, S.W.; Mountain, R.D.; Hsu, C.S.; Rahman, A.

    1980-01-01

    We performed molecular-dynamics simulations of liquid rubidium and the Lennard-Jones fluid at several densities and temperatures, and of a system whose pair potential is the repulsive core of the rubidium potential. In all cases, propagating density fluctuations occurred in the rubidiumlike systems at much shorter wavelengths than in the Lennard-Jones system. This indicates that the repulsive part of the pair potential is the dominant factor in determining the relaxation of short-wavelength density fluctuations

  13. Relaxation of plasma potential and poloidal flows in the boundary of tokamak plasmas

    International Nuclear Information System (INIS)

    Hron, M.; Duran, I.; Stoeckel, J.; Hidalgo, C.; Gunn, J.

    2003-01-01

    The relaxation times of plasma parameters after a sudden change of electrode voltage have been measured in the plasma boundary during polarization experiments on the CASTOR tokamak (R = 0.4 m, a = 75 mm, B t = 1 T, I p ∼ 9 kA, q a ∼ 10). The time evolution of the floating potential after the biasing voltage switch-off can be well fitted by an exponential decay with characteristic time in the range of 10 - 20 μs. The poloidal flow shows a transient behaviour with a time scale of about 10 - 30 μs. These time scales are smaller than the expected damping time based on neoclassical parallel viscosity (which is in the range of 100 νs) and atomic physics via charge exchange (in the range of 100 - 1000 νs). But, they are larger than the correlation time of plasma turbulence (about 5 μs). These findings suggest that anomalous damping rate mechanisms for radial electric fields and poloidal flows may play a role in the boundary of tokamak plasmas. (authors)

  14. Plasma turbulence measured by fast sweep reflectometry on Tore Supra

    International Nuclear Information System (INIS)

    Clairet, F.; Vermare, L.; Leclert, G.

    2004-01-01

    Traditionally devoted to electron density profile measurement we show that fast frequency sweeping reflectometry technique can bring valuable and innovative measurements onto plasma turbulence. While fast frequency sweeping technique is traditionally devoted to electron density radial profile measurements we show in this paper how we can handle the fluctuations of the reflected signal to recover plasma density fluctuation measurements with a high spatial and temporal resolution. Large size turbulence related to magneto-hydrodynamic (MHD) activity and the associated magnetic islands can be detected. The radial profile of the micro-turbulence, which is responsible for plasma anomalous transport processes, is experimentally determined through the fluctuation of the reflected phase signal. (authors)

  15. Plasma turbulence measured by fast sweep reflectometry on Tore Supra

    International Nuclear Information System (INIS)

    Clairet, F.; Vermare, L.; Heuraux, S.; Leclert, G.

    2004-01-01

    Traditionally devoted to electron density profile measurement we show that fast frequency sweeping reflectometry technique can bring valuable and innovative measurements onto plasma turbulence. While fast frequency sweeping technique is traditionally devoted to electron density radial profile measurements we show in this paper how we can handle the fluctuations of the reflected signal to recover plasma density fluctuation measurements with a high spatial and temporal resolution. Large size turbulence related to magneto-hydrodynamic (MHD) activity and the associated magnetic islands can be detected. The radial profile of the micro-turbulence, which is responsible for plasma anomalous transport processes, is experimentally determined through the fluctuation of the reflected phase signal

  16. Universal Probability Distribution Function for Bursty Transport in Plasma Turbulence

    International Nuclear Information System (INIS)

    Sandberg, I.; Benkadda, S.; Garbet, X.; Ropokis, G.; Hizanidis, K.; Castillo-Negrete, D. del

    2009-01-01

    Bursty transport phenomena associated with convective motion present universal statistical characteristics among different physical systems. In this Letter, a stochastic univariate model and the associated probability distribution function for the description of bursty transport in plasma turbulence is presented. The proposed stochastic process recovers the universal distribution of density fluctuations observed in plasma edge of several magnetic confinement devices and the remarkable scaling between their skewness S and kurtosis K. Similar statistical characteristics of variabilities have been also observed in other physical systems that are characterized by convection such as the x-ray fluctuations emitted by the Cygnus X-1 accretion disc plasmas and the sea surface temperature fluctuations.

  17. Plasma-cavity ringdown spectroscopy for analytical measurement: Progress and prospectives

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Sida; Liu, Wei [Research Center of Analytical Instrumentation, Analytical and Testing Center, College of Chemistry, Sichuan University, Chengdu (China); Zhang, Xiaohe [College of Water Resources and Hydropower, Sichuan University, Chengdu (China); Duan, Yixiang, E-mail: yduan@scu.edu.cn [Research Center of Analytical Instrumentation, Analytical and Testing Center, College of Chemistry, Sichuan University, Chengdu (China)

    2013-07-01

    Plasma-cavity ringdown spectroscopy is a powerful absorption technique for analytical measurement. It combines the inherent advantages of high sensitivity, absolute measurement, and relative insensitivity to light source intensity fluctuations of the cavity ringdown technique with use of plasma as an atomization/ionization source. In this review, we briefly describe the background and principles of plasma-cavity ringdown spectroscopy(CRDS) technology, the instrumental components, and various applications. The significant developments of the plasma sources, lasers, and cavity optics are illustrated. Analytical applications of plasma-CRDS for elemental detection and isotopic measurement in atomic spectrometry are outlined in this review. Plasma-CRDS is shown to have a promising future for various analytical applications, while some further efforts are still needed in fields such as cavity design, plasma source design, instrumental improvement and integration, as well as potential applications in radical and molecular measurements. - Highlights: • Plasma-based cavity ringdown spectroscopy • High sensitivity and high resolution • Elemental and isotopic measurements.

  18. Collective scattering of electromagnetic waves from a relativistic magnetized plasma

    International Nuclear Information System (INIS)

    Lu Quankang

    1998-01-01

    Recently, laser and microwave scattering has become one of the important diagnostic means for plasma. Laser and microwave correlative scattering spectrum is determined by particle-density fluctuations in a weak turbulent plasma. In a relativistic plasma, on the basis of complete electromagnetic-interaction between particles, a general expression for particle density fluctuations and spectrums of laser and microwave scattering from a magnetized plasma are derived. The laser and microwave scattering spectrums provide informations on electron density and temperature, ion temperature, resonance and nonresonance effects. (author)

  19. Experimental study of turbulence on Tore Supra by plasma micro-waves interaction; Etude experimentale de la turbulence sur Tore Supra par interaction plasma micro-ondes

    Energy Technology Data Exchange (ETDEWEB)

    Colas, L

    1996-09-23

    Internal small-scale magnetic turbulence is a serious candidate to explain the anomalous heat transport in tokamaks. This turbulence is badly known in the gradient region of large machines. In this work internal magnetic fluctuations are measured on Tore Supra with an original diagnostic : Cross Polarization Scattering (CPS). This experimental tool relies on the Eigenmode change of a probing polarised microwave beam scattered by magnetic fluctuations, close to a cut-off layer for the incident wave. In this work, the diagnostic is first qualified to assess its sensitivity to magnetic fluctuations, and the spatial localisation for its measurements. The magnetic fluctuation behaviour is then analysed over a wide range of plasma current, density and additional power, and interpreted with a simple 1-D scattering model. A scan of the plasma density or magnetic field is used to move the CPS measurement location from r/a = 0.3 to r/a = 0.75. A fluctuation radial profile is obtained by two means. In L-mode discharges, the relation between magnetic fluctuations, temperature profiles and local heat diffusivities is investigated. With all measurements, it is also possible to look for a local parameter correlated to the turbulence in a large domain of plasma conditions. The fluctuation-induced local heat diffusivity expected from the measured fluctuations is estimated using the non-collisional quasi-linear formula: X{sup mag}{sub e} = {pi}qRV{sub te}({delta}B / B){sup 2}. Both the absolute values and the parametric dependence of calculated X{sup mag}{sub e} are close to the electron thermal diffusivities Xe determined by transport analysis. In particular, a threshold is evidenced in the dependence of fluctuation-induced heat fluxes on local {nabla}T{sub e}, which is analogous to the critical gradient for measured heat fluxes. The experimental setup is also sensitive to the Thomson scattering of the probing wave by density fluctuations. Its measurements are analysed as the

  20. Effective potential kinetic theory for strongly coupled plasmas

    Science.gov (United States)

    Baalrud, Scott D.; Daligault, Jérôme

    2016-11-01

    The effective potential theory (EPT) is a recently proposed method for extending traditional plasma kinetic and transport theory into the strongly coupled regime. Validation from experiments and molecular dynamics simulations have shown it to be accurate up to the onset of liquid-like correlation parameters (corresponding to Γ ≃ 10-50 for the one-component plasma, depending on the process of interest). Here, this theory is briefly reviewed along with comparisons between the theory and molecular dynamics simulations for self-diffusivity and viscosity of the one-component plasma. A number of new results are also provided, including calculations of friction coefficients, energy exchange rates, stopping power, and mobility. The theory is also cast in the Landau and Fokker-Planck kinetic forms, which may prove useful for enabling efficient kinetic computations.

  1. Development of an integrated data acquisition and handling system based on digital time series analysis for the measurement of plasma fluctuations

    International Nuclear Information System (INIS)

    Ghayspoor, R.; Roth, J.R.

    1986-01-01

    The nonlinear characteristics of data obtained by many plasma diagnostic systems requires the power of modern computers for on-line data processing and reduction. The objective of this work is to develop an integrated data acquisition and handling system based on digital time series analysis techniques. These techniques make it possible to investigate the nature of plasma fluctuations and the physical processes which give rise to them. The approach is to digitize the data, and to generate various spectra by means of Fast Fourier Transforms (FFT). Of particular interest is the computer generated auto-power spectrum, cross-power spectrum, phase spectrum, and squared coherency spectrum. Software programs based on those developed by Jae. Y. Hong at the University of Texas are utilized for these spectra. The LeCroy 3500-SA signal analyzer and VAX 11/780 are used as the data handling and reduction system in this work. In this report, the software required to link these two systems are described

  2. Interaction of heavy ion beams with a hydrogen plasma: plasma lens effect and stopping power enhancement

    International Nuclear Information System (INIS)

    Gardes, D.; Bimbot, R.; Della-Negra, S.; Dumail, M.; Kubica, B.; Richard, A.; Rivet, M.F.; Servajean, A.; Deutsch, C.; Maynard, G.

    1988-01-01

    By coupling a hydrogen plasma to a Tandem accelerator, transmission and energy losses of 2 MeV/u carbon and sulfur beams passing through a plasma target have been investigated. Fluctuations in beam transmission have been observed and attributed to a plasma lens effect. Moreover, energy loss measurements indicate an enhanced stopping power of the plasma relative to its cold matter equivalent

  3. Plasma equilibria and stationary flows in axisymmetric systems. Pt. 1

    International Nuclear Information System (INIS)

    Zelazny, R.; Stankiewicz, R.; Potempski, S.

    1988-05-01

    During discharges within a tokamak device such as JET fluctuations are observed in the plasma, of plasma density, temperature, electric potential and of the magnetic field. These fluctuations have complicated structure and are linked with different kinds of instabilities. However, it is not clear which instabilities are most important in determining the behaviour of the plasma. A comprehensive numerical theory which can predict the effect of the instabilities on the transport of plasma in axisymmetric systems has been sought using the static Grad-Shafranov-Schlueter (SGSS) equation as a basis. However, the static equation was over simplified for the situation in JET with additional heating giving rise to large toroidal flows, and an extended equation (EGSS) was developed. The results of the study include the discovery of algebraic branches of solutions to the EGSS equation even for very small poloidal flows, solutions to the inverse problem for the SGSS and EGSS equations using Fourier decomposition, classification of the boundary condition at the magnetic axis, demonstration of a visible effect of the poloidal flow on the separation of the density surface and the magnetic surface an indication of the existence of multiple branches of solutions to the EGSS and SGSS equations and their relation to stability properties. (U.K.)

  4. Potential formation and confinement in high density plasma on the GAMMA 10 tandem mirror

    International Nuclear Information System (INIS)

    Yatsu, K.

    2002-01-01

    After the attainment of doubling of the density due to the potential confinement, GAMMA 10 experiments have been directed to realization of a high density plasma and also to study dependence of the confining potential and confinement time on the plasma density. These problems are important to understand the physics of potential formation in tandem mirrors and also for the development of a tandem mirror reactor. We reported high density plasma production by using an ion cyclotron range of frequency heating at a high harmonic frequency in the last IAEA Conference. However, the diamagnetic signal of the high density plasma decreased when electron cyclotron resonance heating (ECRH) was applied due to some instabilities. Recently, the high density plasma production was much improved by adjusting the spacing of the conducting plates installed in the anchor transition regions, which enabled us to produce a high density plasma without degradation of the diamagnetic signal with ECRH and also to study the density dependence. In this paper we report production of a high density plasma and dependence of the confining potential and the confinement time on the density. (author)

  5. Edge fluctuations in the MST [Madison Symmetric Torus] reversed field pinch

    International Nuclear Information System (INIS)

    Almagri, A.; Assadi, S.; Beckstead, J.; Chartas, G.; Crocker, N.; Den Hartog, D.; Dexter, R.; Hokin, S.; Holly, D.; Nilles, E.; Prager, S.; Rempel, T.; Sarff, J.; Scime, E.; Shen, W.; Spragins, C.; Sprott, J.; Starr, G.; Stoneking, M.; Watts, C.

    1990-10-01

    Edge magnetic and electrostatic fluctuations are measured in the Madison Symmetric Torus (MST) reversed field pinch. At low frequency ( e > p e /p e where φ and p e are the fluctuating potential and pressure, respectively). From measurements of the fluctuating density, temperature, and potential we infer that the electrostatic fluctuation induced transport of particles and energy can be substantial. 13 refs., 11 figs

  6. Low-frequency fluctuations in a pure toroidal magnetized plasma

    Indian Academy of Sciences (India)

    A magnetized, low- plasma in pure toroidal configuration is formed and extensively studied with ion mass as control parameter. Xenon, krypton and argon plasmas are formed at a fixed toroidal magnetic field of 0.024 T, with a peak density of ∼ 1011 cm-3, ∼ 4 × 1010 cm-3 and ∼ 2 × 1010 cm−3 respectively.

  7. Relaxation of potential, flows, and density in the edge plasma of Castor tokamak

    International Nuclear Information System (INIS)

    Hron, M.; Weinzettl, V.; Dufkova, E.; Duran, I.; Stoeckel, J.; Hidalgo, C.

    2004-01-01

    Decay times of plasma flows and plasma profiles have been measured after a sudden biasing switch-off in experiments on the Castor tokamak. A biased electrode has been used to polarize the edge plasma. The edge plasma potential and flows have been characterized by means of Langmuir and Mach probes, the radiation was measured using an array of bolometers. Potential profiles and poloidal flows can be well fitted by an exponential decay time in the range of 10 - 30 μs when the electrode biasing is turned off in the Castor tokamak. The radiation shows a slower time scale (about 1 ms), which is linked to the evolution in the plasma density and particle confinement. (authors)

  8. Concepual design of Langmuir probes for the diagnosis of plasma edge of Aditya-U

    International Nuclear Information System (INIS)

    Lachhvani, Lavkesh T.; Pandya, Shwetang N.; Iyer, Ramakrishnan B.; Barot, Akash; Patel, Kaushal M.; Jadeja, Kumarpalsinh; Gautam, Pramila; Joshi, Nishita H.; Ghosh, Joydeep; Raj, Harshita

    2017-01-01

    The role of the Tokamak edge plasma in influencing the fusion energy yield of Tokamaks is now widely recognized and is reflected in the increasing efforts devoted to the experimental and theoretical study of scrape-off layer (SOL) physics. Of particular concern are aspects of the plasma-surface interaction leading to impurity production and the subsequent impurity transport and contamination of the core plasma. The impurity transport depends strongly on the background properties of the SOL plasma, such as the plasma density, potential, electron and ion temperature, ion flows, flow velocity and their fluctuations and transport coefficients. The poster discusses the design considerations and technical details for variety of probes installed on Aditya-U

  9. Dynamic behaviour of dc double anode plasma torch at atmospheric pressure

    International Nuclear Information System (INIS)

    Tu, X; Cheron, B G; Yan, J H; Cen, K F

    2007-01-01

    An original dc double anode plasma torch which provides a long-time and highly stable atmospheric plasma jet has been devised for the purpose of hazardous waste treatment. The arc fluctuations and dynamic behaviour of the argon and argon-nitrogen plasma jets under different operating conditions have been investigated by means of classical tools, such as the statistic method, fast Fourier transform (FFT) and correlation analysis. In our experiments, the takeover mode is identified as the fluctuation characteristic of the argon plasma jet while the restrike mode is typical in the argon-nitrogen plasma dynamic behaviour. In the case of pure argon, the FFT and correlation calculation results of electrical signals exhibit the only characteristic frequency of 150 Hz, which originates from the torch power and is independent of any change in the operating conditions. It indicates that the nature of fluctuations in an argon plasma jet is mainly induced by the undulation of the tri-phase rectified power supply. In contrast, besides the same low frequency bulk fluctuation, the dynamic behaviour of the argon-nitrogen plasma jet at high frequency (4.1 kHz) is ascribed to the rapid motion of both arc roots on the anode surface. In addition, it is found that each arc root attachment is rather diffused than located at a fixed position on the anode wall in the argon plasma jet, while constricted arc roots occur when nitrogen is added into argon as the plasma working gas

  10. STATISTICALLY DETERMINED DISPERSION RELATIONS OF MAGNETIC FIELD FLUCTUATIONS IN THE TERRESTRIAL FORESHOCK

    International Nuclear Information System (INIS)

    Hnat, B.; O’Connell, D.; Nakariakov, V. M.; Sundberg, T.

    2016-01-01

    We obtain dispersion relations of magnetic field fluctuations for two crossings of the terrestrial foreshock by Cluster spacecraft. These crossings cover plasma conditions that differ significantly in their plasma β and in the density of the reflected ion beam, but not in the properties of the encountered ion population, both showing shell-like distribution function. Dispersion relations are reconstructed using two-point instantaneous wave number estimations from pairs of Cluster spacecraft. The accessible range of wave vectors, limited by the available spacecraft separations, extends to ≈2 × 10 4 km. Results show multiple branches of dispersion relations, associated with different powers of magnetic field fluctuations. We find that sunward propagating fast magnetosonic waves and beam resonant modes are dominant for the high plasma β interval with a dense beam, while the dispersions of the interval with low beam density include Alfvén and fast magnetosonic modes propagating sunward and anti-sunward.

  11. STATISTICALLY DETERMINED DISPERSION RELATIONS OF MAGNETIC FIELD FLUCTUATIONS IN THE TERRESTRIAL FORESHOCK

    Energy Technology Data Exchange (ETDEWEB)

    Hnat, B.; O’Connell, D.; Nakariakov, V. M. [Centre for Fusion, Space and Astrophysics, University of Warwick (United Kingdom); Sundberg, T., E-mail: B.Hnat@warwick.ac.uk [School of Physics and Astronomy, Queen Mary University of London (United Kingdom)

    2016-08-20

    We obtain dispersion relations of magnetic field fluctuations for two crossings of the terrestrial foreshock by Cluster spacecraft. These crossings cover plasma conditions that differ significantly in their plasma β and in the density of the reflected ion beam, but not in the properties of the encountered ion population, both showing shell-like distribution function. Dispersion relations are reconstructed using two-point instantaneous wave number estimations from pairs of Cluster spacecraft. The accessible range of wave vectors, limited by the available spacecraft separations, extends to ≈2 × 10{sup 4} km. Results show multiple branches of dispersion relations, associated with different powers of magnetic field fluctuations. We find that sunward propagating fast magnetosonic waves and beam resonant modes are dominant for the high plasma β interval with a dense beam, while the dispersions of the interval with low beam density include Alfvén and fast magnetosonic modes propagating sunward and anti-sunward.

  12. Boundary effects on the MHD dynamo in laboratory plasmas

    International Nuclear Information System (INIS)

    Ho, Y.L.; Prager, S.C.

    1989-07-01

    In recent laboratory experiments, a dynamo-like mechanism has been demonstrated in which a portion of the axisymmetric component of the magnetic field is believed to be sustained by 3D spatial fluctuations in the field and flow. With a conducting shell at the plasma surface, past MHD computation shows that sustainment arises from fluctuations which cause magnetic reconnection. If the conducting wall is retracted from the plasma surface, the fluctuations are amplified and the dynamo sustainment is still active for the times studied, but an increased energy input to the plasma is required through the applied electric field. The retraction of the conducting wall enhances the helicity dissipation rate by the intersection of the fields with the resistive surface which bounds the plasma. This enhanced helicity dissipation is balanced by the helicity injection that accompanies the increased applied electric field. 17 refs., 7 figs., 1 tab

  13. Dynamics of Turbulence Suppression in a Helicon Plasma

    Science.gov (United States)

    Hayes, Tiffany; Gilmore, Mark

    2012-10-01

    Experiments are currently being conducted in the the Helicon-Cathode Device (HelCat) at the University of New Mexico. The goal is to the study in detail the transition from a turbulent to a non-turbulent state in the presence of flow shear. HelCat has intrinsic fluctuations that have been identified as drift-waves. Using simple electrode biasing, it has been found that these fluctuations can be completely suppressed. In some extreme cases, a different instability, possibly the Kelvin-Helmholtz instability, can be excited. Detailed studies are underway in order to understand the characteristics of each mode, and to elucidate the underlying physics that cause the change between an unstable plasma, and an instability-free plasma. Dynamics being observed include changes in flow profiles, both azimuthal and parallel, as well as changes in potential and temperature gradients. Further understanding is being sought using several computer codes developed at EPFL: a linear stability solver (LSS,footnotetextP. Ricci and B.N. Rogers (2009). Phys Plasmas 16, 062303. a one-dimensional PIC code/sheath solver, ODISEE,footnotetextJ. Loizu, P. Ricci, and C. Theiler (2011). Phys Rev E 83, 016406 and a global, 3D Braginski code, GBS.footnotetextRicci, Rogers (2009) A basic overview of results will be presented.

  14. Time resolved measurements of plasma potential across an anode double layer

    International Nuclear Information System (INIS)

    Pohoata, V.; Popa, Gh.; Schrittwieser, R.; Ionita, Codrina

    2002-01-01

    Experimental results are presented on self-sustained oscillations produced by the dynamics of an anode double layer or fireball in a DP-machine. By additional ionisation processes the fireball is formed in front of an additional small plane anode inserted in the diffusive plasma. An annular (ring) electrode surrounds the anode. The thickness of the ion sheath in front of this ring affects the anode current by controlling its effective diameter during the fireball oscillations. The ring potential controls first the oscillation frequency of the anode current, but also other characteristics of the instability. The ring potential was chosen as a pulsed one so that only single anode double layer instability can be excited. The ring signal was used for triggering the data acquisition system. The spatial distribution of the plasma potential in front of the anode is presented as a time resolved measurement one. A negative drop potential was found that controls the charge flux particle across the double layer. Also the plasma density inside the fireball relaxes during the disrupting time controlled by ambipolar diffusion and also by the negative potential drop. (authors)

  15. Density and potential measurements in an intense ion-beam-generated plasma

    International Nuclear Information System (INIS)

    Abt, N.E.

    1982-05-01

    Neutral beams are created by intense large area ion beams which are neutralized in a gas cell. The interaction of the beam with the gas cell creates a plasma. Such a plasma is studied here. The basic plasma parameters, electron temperature, density, and plasma potential, are measured as a function of beam current and neutral gas pressure. These measurements are compared to a model based on the solution of Poisson's equation. Because of the cylindrical geometry the equation cannot be solved analytically. Details of the numerical method are presented

  16. Electron density fluctuation measurements in the TORTUR tokamak

    International Nuclear Information System (INIS)

    Remkes, G.J.J.

    1990-01-01

    This thesis deals with measurements of electron-density fluctuations in the TORTUR tokamak. These measurements are carried out by making use of collective scattering of electromagnetic beams. The choice of the wavelength of the probing beam used in collective scattering experiments has important consequences. in this thesis it is argued that the best choice for a wavelength lies in the region 0.1 - 1 mm. Because sources in this region were not disposable a 2 mm collective scattering apparatus has been used as a fair compromise. The scattering theory, somewhat adapted to the specific TORTUR situation, is discussed in Ch. 2. Large scattering angles are admitted in scattering experiments with 2 mm probing beams. This had consequences for the spatial response functions. Special attention has been paid to the wave number resolution. Expressions for the minimum source power have been determined for two detection techniques. The design and implementation of the scattering apparatus has been described in Ch. 3. The available location of the scattering volume and values of the scattering angle have been determined. The effect of beam deflection due to refraction effects is evaluated. The electronic system is introduced. Ch. 4 presents the results of measurements of density fluctuations in the TORTUR tokamak in the frequency range 1 kHz to 100 MHz end the wave number region 400 - 4000 m -1 in different regions of the plasma. Correlation between density and magnetic fluctuations has been found in a number of cases. During the current decay at the termination of several plasma discharges minor disruptions occurred. The fluctuations during these disruptions have been monitored. Measurements have been performed in hydrogen as well as deuterium. A possible dependence of the wave number on the ion gyroradius has been investigated. The isotropy of the fluctuations in the poloidal plane was investigated. A theoretical discussion of the measured results is given in ch. 5. ( H.W.). 63

  17. Holographic quark–antiquark potential in hot, anisotropic Yang–Mills plasma

    International Nuclear Information System (INIS)

    Chakraborty, Somdeb; Haque, Najmul

    2013-01-01

    Using the gauge/gravity duality we calculate the heavy quark–antiquark potential in a hot, anisotropic and strongly coupled Yang–Mills plasma in (3+1)-dimensions. As the anisotropic medium we take a deformed version of N=4 super Yang–Mills theory at finite temperature following a recent work where the dual type IIB supergravity solution is also proposed. We turn on a small value of the anisotropy parameter, for which the gravity dual is known analytically (perturbatively), and compute the velocity-dependent quark–antiquark interaction potential when the pair is moving through the plasma with a velocity v. By setting v=0 we recover the static quark–antiquark potential. We numerically study how the potential is modified in the presence of anisotropy. We further show numerically how the quark–antiquark separation (both in the static and the velocity-dependent case) and hence, the screening length gets modified by anisotropy. We discuss various cases depending upon the direction of the dipole and the direction of its propagation and make a comparative study of these cases. We are also able to obtain an analytical expression for the screening length of the dipole moving in a hot, anisotropic plasma in a special case

  18. Excitation of short-scale fluctuations by parametric decay of helicon waves into ion-sound and Trivelpiece-Gould waves

    International Nuclear Information System (INIS)

    Lorenz, B; Kraemer, M; Selenin, V L; Aliev, Yu M

    2005-01-01

    The helicon wave field and the excitation of short-scale electrostatic fluctuations in a helicon-produced plasma are closely related as both the helicon wave damping and the fluctuation level are shown to increase with the launched rf power. Correlation methods using electrostatic probes as well as microwave back-scattering at the upper-hybrid resonance are applied to obtain the dispersion relations of the fluctuations in the low-frequency and high-frequency ranges. The frequency and wavenumber spectra measured for all components of the wave vector allow us to identify the fluctuations as ion-sound and Trivelpiece-Gould waves that originate from parametric decay of the helicon pump wave. The growth rates and thresholds inferred from the evolution of the fluctuations in a wide range of helicon plasma parameters are in good agreement with predictions for the parametric decay instability that takes into account realistic damping rates for the decay waves as well as non-vanishing parallel wavenumber of the helicon pump

  19. Fluctuations and correlations of conserved charges near the QCD critical point

    International Nuclear Information System (INIS)

    Fu Weijie; Wu Yueliang

    2010-01-01

    We study the fluctuations and correlations of conserved charges, such as the baryon number, the electric charge and the strangeness, at the finite temperature and the nonzero baryon chemical potential in an effective model. The fluctuations are calculated up to the fourth-order and the correlations to the third-order. We find that the second-order fluctuations and correlations have a peak or valley structure when the chiral phase transition takes place with the increase of the baryon chemical potential; the third-order fluctuations and correlations change their signs during the chiral phase transition; and the fourth-order fluctuations have two maxima and one minimum. We also depict contour plots of various fluctuations and correlations of conserved charges in the plane of temperature and the baryon chemical potential. It is found that higher-order fluctuations and correlations of conserved charges are superior to the second-order ones to be used to search for the critical point in heavy ion collision experiments.

  20. Potential Formation in Front of an Electron Emitting Electrode in a Two-Electron Temperature Plasma

    International Nuclear Information System (INIS)

    Gyergyek, T.; Cercek, M.; Erzen, D.

    2003-01-01

    Plasma potential formation in the pre-sheath region of a floating electron emitting electrode (collector) is studied theoretically in a two-electron-temperature plasma using a static kinetic plasma-sheath model. Dependence of the collector floating potential, the plasma potential in the pre-sheath region, and the critical emission coefficient on the hot electron density and temperature is calculated. It is found that for high hot to cool electron temperature ratio a double layer like solutions exist in a certain range of hot to cool electron densities

  1. Fusion plasma physics

    CERN Document Server

    Stacey, Weston M

    2012-01-01

    This revised and enlarged second edition of the popular textbook and reference contains comprehensive treatments of both the established foundations of magnetic fusion plasma physics and of the newly developing areas of active research. It concludes with a look ahead to fusion power reactors of the future. The well-established topics of fusion plasma physics -- basic plasma phenomena, Coulomb scattering, drifts of charged particles in magnetic and electric fields, plasma confinement by magnetic fields, kinetic and fluid collective plasma theories, plasma equilibria and flux surface geometry, plasma waves and instabilities, classical and neoclassical transport, plasma-materials interactions, radiation, etc. -- are fully developed from first principles through to the computational models employed in modern plasma physics. The new and emerging topics of fusion plasma physics research -- fluctuation-driven plasma transport and gyrokinetic/gyrofluid computational methodology, the physics of the divertor, neutral ...

  2. ICRF experiments and potential formation on the GAMMA 10 tandem mirror

    International Nuclear Information System (INIS)

    Ichimura, M.; Cho, T.; Higaki, H.

    2005-01-01

    Target plasmas, on which the formation of the electrostatic potentials and the improvement of the confinement are studied, are produced with ICRF in the GAMMA 10 tandem mirror. The ion temperature of more than 10 keV has been achieved in relatively low density plasmas. When the strong ICRF heating is applied, it is observed that the high frequency and the low frequency fluctuations are excited and suppress the increase in the plasma parameters. Recently, a new high power gyrotron system has been constructed and the plug ECRH power extends up to 370 kW. The improvement of the confinement due to the formation of the potential in the axial direction and the strong radial electric field shear has been observed. (author)

  3. Potential and electron density calculated for freely expanding plasma by an electron beam

    International Nuclear Information System (INIS)

    Ho, C. Y.; Tsai, Y. H.; Ma, C.; Wen, M. Y.

    2011-01-01

    This paper investigates the radial distributions of potential and electron density in free expansion plasma induced by an electron beam irradiating on the plate. The region of plasma production is assumed to be cylindrical, and the plasma expansion is assumed to be from a cylindrical source. Therefore, the one-dimensional model in cylindrical coordinates is employed in order to analyze the radial distributions of the potential and electron density. The Runge-Kutta method and the perturbation method are utilized in order to obtain the numerical and approximate solutions, respectively. The results reveal that the decrease in the initial ion energy makes most of the ions gather near the plasma production region and reduces the distribution of the average positive potential, electron, and ion density along the radial direction. The oscillation of steady-state plasma along the radial direction is also presented in this paper. The ions induce a larger amplitude of oscillation along the radial direction than do electrons because the electrons oscillate around slowly moving ions due to a far smaller electron mass than ion mass. The radial distributions of the positive potential and electron density predicted from this study are compared with the available experimental data.

  4. Density fluctuation measurements via reflectometry on DIII-D during L- and H-mode operation

    International Nuclear Information System (INIS)

    Doyle, E.J.; Lehecka, T.; Luhmann, N.C. Jr.; Peebles, W.A.; Philipona, R.

    1990-01-01

    The unique ability of reflectometers to provide radial density fluctuation measurements with high spatial resolution (of the order of ≤ centimeters, is ideally suited to the study of the edge plasma modifications associated with H-mode operation. Consequently, attention has been focused on the study of these phenomena since an improved understanding of the physics of H-mode plasmas is essential if a predictive capability for machine performance is to be developed. In addition, DIII-D is ideally suited for such studies since it is a major device noted for its robust H-mode operation and excellent basic plasma profile diagnostic information. The reflectometer system normally used for fluctuation studies is an O-mode, homodyne, system utilizing 7 discrete channels spanning 15-75 GHz, with corresponding critical densities of 2.8x10 18 to 7x10 19 m -3 . The Gunn diode sources in this system are only narrowly tunable in frequency, so the critical densities are essentially fixed. An X-mode system, utilizing a frequency tunable BWO source, has also been used to obtain fluctuation data, and in particular, to 'fill in the gaps' between the discrete O-mode channels. (author) 12 refs., 5 figs

  5. Influence of Plasma Biasing on Coherent Structures in TJ-K

    Science.gov (United States)

    Ramisch, M.; Greiner, F.; Lechte, C.; Mahdizadeh, N.; Rahbarnia, K.; Stroth, U.

    2003-10-01

    Poloidal shear flows play an important role in the improvement of plasma confinement in fusion devices. They limit the radial correlation length via the shear decorrelation mechanism [1] and can trigger transitions into transport barriers. External biasing can be used to drive poloidal shear flows [2] in order to study the decorrelation mechanism. The torsatron TJ-K is operated with low-temperature plasmas produced by ECRH. Coherent and quasi-coherent structures have been observed [3]. Their structure size varies according to the drift scale ρ_s. The influence of biasing on these structures is investigated by means of electrostatic probes. Electron density fluctuations as well as fluctuations of the floating potential tend to decrease in the presence of a positively biased probe. The evolution of radial electric field, poloidal flow and radial transport are investigated for different plasma parameters using a 2D Langmuir probe array with 64 tips in comparison with two-point correlation measurements. First results are presented. [1] H. Biglari et al., Phys. Fluids B 2, p. 1 (1990); [2] R. J. Taylor et al., Phys. Rev. Lett. 63, 21, p. 2365 (1989); [3] C. Lechte, PhD-Thesis, CAU Kiel (2003)

  6. Beneficial effect of post-deposition treatment in high-efficiency Cu(In,Ga)Se{sub 2} solar cells through reduced potential fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, S. A., E-mail: Soren.Jensen@nrel.gov, E-mail: Darius.Kuciauskas@nrel.gov; Glynn, S.; Kanevce, A.; Dippo, P.; Li, J. V.; Levi, D. H.; Kuciauskas, D., E-mail: Soren.Jensen@nrel.gov, E-mail: Darius.Kuciauskas@nrel.gov [National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401 (United States)

    2016-08-14

    World-record power conversion efficiencies for Cu(In,Ga)Se{sub 2} (CIGS) solar cells have been achieved via a post-deposition treatment with alkaline metals, which increases the open-circuit voltage and fill factor. We explore the role of the potassium fluoride (KF) post-deposition treatment in CIGS by employing energy- and time-resolved photoluminescence spectroscopy and electrical characterization combined with numerical modeling. The bulk carrier lifetime is found to increase with post-deposition treatment from 255 ns to 388 ns, which is the longest charge carrier lifetime reported for CIGS, and within ∼40% of the radiative limit. We find evidence that the post-deposition treatment causes a decrease in the electronic potential fluctuations. These potential fluctuations have previously been shown to reduce the open-circuit voltage and the device efficiency in CIGS. Additionally, numerical simulations based on the measured carrier lifetimes and mobilities show a diffusion length of ∼10 μm, which is ∼4 times larger than the film thickness. Thus, carrier collection in the bulk is not a limiting factor for device efficiency. By considering differences in doping, bandgap, and potential fluctuations, we present a possible explanation for the voltage difference between KF-treated and untreated samples.

  7. Cross-field flow and electric potential in a plasma slab

    Directory of Open Access Journals (Sweden)

    J. De Keyser

    2013-08-01

    Full Text Available We consider cross-field plasma flow inside a field-aligned plasma slab embedded in a uniform background in a 1-dimensional geometry. This situation may arise, for instance, when long-lasting reconnection pulses inject plasma into the inner magnetosphere. The present paper presents a detailed analysis of the structure of the interfaces that separate the slab from the background plasma on either side; a fully kinetic model is used to do so. Since the velocity shear across both interfaces has opposite signs, and given the typical gyroradius differences between injected and background ions and electrons, the structure of both interfaces can be very different. The behaviour of the slab and its interfaces depends critically on the flow of the plasma transverse to the magnetic field; in particular, it is shown that there are bounds to the flow speed that can be supported by the magnetised plasma. Further complicating the picture is the effect of the potential difference between the slab and its environment.

  8. Event-by-event multiplicity fluctuations in Pb-Pb collisions in ALICE

    CERN Document Server

    Mukherjee, Maitreyee

    2016-01-01

    Fluctuations of various observables in heavy-ion collisions at ultra-relativistic energies have been extensively studied as they provide important signals regarding the formation of a Quark-Gluon Plasma (QGP). Because of the large number of produced particles in each event, a detailed study of event-by-event multiplicity fluctuations has been proposed as one of the signatures of the phase transition. In addition, the understanding of multiplicity fluctuations is essential for other event-by-event measurements. In the present work, we have calculated the scaled variance ($\\omega_{\\rm ch}=\\sigma^{\\rm 2} / \\mu$) of the charged-particle multiplicity distributions as a function of centrality in Pb-Pb collisions at LHC energies. Here, $\\mu$ and $\\sigma$ denote the mean and the width of the multiplicity distributions, respectively. The trend of scaled variances as a function of centrality is presented and discussed. Volume fluctuations play an important role while measuring the multiplicity fluctuations, which are a...

  9. Raman study of alloy potential fluctuations in MgxZn1-xO nanopowders

    International Nuclear Information System (INIS)

    Pan, C-J; Lin, K-F; Hsu, W-T; Hsieh, W-F

    2007-01-01

    The blueshift of near-band-edge emission and excitonic absorption indicate that Zn 2+ ions are successfully substituted by Mg 2+ ions in Mg x Zn 1-x O nanopowders for 0≤x≤0.14. The changes in Raman spectral linewidth and the asymmetry of the E 2 (high) mode for various Mg contents can be well described by a modified spatial correlation model that considers the grain size distribution. With increasing Mg concentration, the alloy potential fluctuations lead to a decrease in the grain size, which is induced by the surplus Mg 2+ that could form MgO clusters surrounding the crystalline MgZnO

  10. Current limitation and formation of plasma double layers in a non-uniform magnetic field

    International Nuclear Information System (INIS)

    Plamondon, R.; Teichmann, J.; Torven, S.

    1986-07-01

    Formation of strong double layers has been observed experimentally in a magnetised plasma column maintained by a plasma source. The magnetic field is approximately axially homogenous except in a region at the anode where the electric current flows into a magnetic mirror. The double layer has a stationary position only in the region of non-uniform magnetic field or at the aperture separating the source and the plasma column. It is characterized by a negative differential resistance in the current-voltage characteristic of the device. The parameter space,where the double layer exists, has been studied as well as the corresponding potential profiles and fluctuation spectra. The electric current and the axial electric field are oppositely directed between the plasma source and a potential minimum which is formed in the region of inhomogeneous magnetic field. Electron reflection by the resulting potential barrier is found to be an important current limitation mechanism. (authors)

  11. Interwell Radiative Recombination in the Presence of Random Potential Fluctuations in GaAs/AlGaAs Biased Double Quantum Wells

    DEFF Research Database (Denmark)

    Timofeev, V.B.; Larionov, A.V.; Ioselevich, A.S.

    1999-01-01

    The interwell luminescence (PL) of spatially separated e-h pairs exhibits systematic narrowing with temperature increase which are explained in terms of lateral thermo-activated tunneling of e-h pairs localized by random potential fluctuations (RPF). At critical temperatures the quasi-equilibrium......The interwell luminescence (PL) of spatially separated e-h pairs exhibits systematic narrowing with temperature increase which are explained in terms of lateral thermo-activated tunneling of e-h pairs localized by random potential fluctuations (RPF). At critical temperatures the quasi......-equilibrium of carriers, undergoes an abrupt transition. This occurs with significant redistribution of the electrical field inside the structure and give rise to a low frequency noice appearing in the luminescence. Below critical temperature the new steady state results in the accumulation of 2DEG in one of the well....

  12. Final Scientific/Technical Report: Correlations and Fluctuations in Weakly Collisional Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Skiff, Frederick [Univ. of Iowa, Iowa City, IA (United States)

    2017-11-15

    Plasma is a state of matter that exhibits a very rich range of phenomena. To begin with, plasma is both electrical and mechanical - bringing together theories of particle motion and the electromagnetic field. Furthermore, and especially important for this project, a weakly-collisional plasma, such as is found in high-temperature (fusion energy) experiments on earth and the majority of contexts in space and astrophysics, has many moving parts. For example, sitting in earth’s atmosphere we are immersed in a mechanical wave field (sound), a possibly turbulent fluid motion (wind), and an electromagnetic vector wave field with two polarizations (light). This is already enough to produce a rich range of possibilities. In plasma, the electromagnetic field is coupled to the mechanical motion of the medium because it is ionized. Furthermore, a weakly-collisional plasma supports an infinite number of mechanically independent fluids. Thus, plasmas support an infinite number of independent electromechanical waves. Much has been done to describe plasmas with "reduced models" of various kinds. The goal of this project was to both explore the validity of reduced plasma models that are in use, and to propose and validate new models of plasma motion. The primary means to his end was laboratory experiments employing both electrical probes and laser spectroscopy. Laser spectroscopy enables many techniques which can separate the spectrum of independent fluid motions in the ion phase-space. The choice was to focus on low frequency electrostatic waves because the electron motion is relatively simple, the experiments can be on a spatial scale of a few meters, and all the relevant parameters can be measured with a few lasers systems. No study of this kind had previously been undertaken for the study of plasmas. The validation of theories required that the experimental descriptions be compared with theory and simulation in detail. It was found that even multi-fluid theories leave out a

  13. Fluctuations and confinement in ATF

    International Nuclear Information System (INIS)

    Isler, R.C.; Harris, J.H.; Murakami, M.

    1993-01-01

    In the period immediately prior to the suspension of ATF operation in November, 1991, a great deal of emphasis was palced on investigations of the fundamental mechanisms controlling confinement in this device. At that time, measurements of the density fluctuations throughout the plasma volume indicated the existence of theoretically predicted dissipative trapped electron and resistive interchange instabilities. These identifications were supported by results of dynamic configuration scans of the magnetic fields during which the extent of the magnetic well, shear, and fraction of confined trapped particles were changed continuously. Interpretation of the data from these experiments has been an ongoing exercise. Most recently, analysis of discharges employing strong gas puffing to change density gradients and fluctuation levels have strengthened the view that dissipative trapped electron modes may be present but do not play a significant direct role in energy transport. The present paper summarizes the current understanding concerning the identification of instabilities and their relationship to confinement in ATF

  14. Current fluctuations of interacting active Brownian particles

    OpenAIRE

    Pre, Trevor Grand; Limmer, David T.

    2018-01-01

    We derive the distribution function for particle currents for a system of interacting active Brownian particles in the long time limit using large deviation theory and a weighted many body expansion. We find the distribution is non-Gaussian, except in the limit of passive particles. The non-Gaussian fluctuations can be understood from the effective potential the particles experience when conditioned on a given current. This potential suppresses fluctuations of the particle's orientation, and ...

  15. Investigation of plasma potential and pulsed discharge characteristics in enhanced glow discharge plasma immersion ion implantation and deposition

    International Nuclear Information System (INIS)

    Li Liuhe; Lu Qiuyuan; Fu, Ricky K.Y.; Chu, Paul K.

    2009-01-01

    Enhanced glow discharge plasma immersion ion implantation and deposition (EGD-PII and D) does not require external plasma sources. In this technique, the plasma is produced by self-glow discharge when a high negative voltage is applied to the sample. The small-area, pointed-shape hollow anode and large area tabular cathode form an electron-focused electric field. Using a special electric field design, the electrons from either the plasma or target (secondary electrons) are focused to a special hollow anode. As a result of the special electron-focusing field, the self-glow discharge process can be enhanced to achieve effective ion implantation into the substrate. In this work, the plasma potential distribution is investigated in details and the possible pulse discharge mechanism is discussed. The unique characteristics of the pulsed plasma and plasma extinction are studied.

  16. Magnetic fluctuation driven cross-field particle transport in the reversed-field pinch

    International Nuclear Information System (INIS)

    Scheffel, J.; Liu, D.

    1997-01-01

    Electrostatic and electromagnetic fluctuations generally cause cross-field particle transport in confined plasmas. Thus core localized turbulence must be kept at low levels for sufficient energy confinement in magnetic fusion plasmas. Reversed-field pinch (RFP) equilibria can, theoretically, be completely stable to ideal and resistive (tearing) magnetohydrodynamic (MHD) modes at zero beta. Unstable resistive interchange modes are, however, always present at experimentally relevant values of the poloidal beta β θ . An analytical quasilinear, ambipolar diffusion model is here used to model associated particle transport. The results indicate that core density fluctuations should not exceed a level of about 1% for plasmas of fusion interest. Parameters of experimentally relevant stationary states of the RFP were adjusted to minimize growth rates, using a fully resistive linearized MHD stability code. Density gradient effects are included through employing a parabolic density profile. The scaling of particle diffusion [D(r)∝λ 2 n 0.5 T/aB, where λ is the mode width] is such that the effects of particle transport are milder in present day RFP experiments than in future reactor-relevant plasmas. copyright 1997 American Institute of Physics

  17. The effect of longitudinal fluctuations in (3+1)D viscous hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Long-Gang; Karpenko, Yuri [FIAS, Frankfurt (Germany); Petersen, Hannah [FIAS, Frankfurt (Germany); ITP, Goethe University, Frankfurt (Germany); GSI, Darmstadt (Germany); Huovinen, Pasi [ITP, University of Wroclaw (Poland); Wang, Xin-Nian [CCNU, Wuhan (China); LBNL, Berkeley (United States)

    2016-07-01

    The energy density fluctuations of the quark gluon plasma (QGP) in the transverse plane are studied in detail and found to be important to explain the high order harmonic flow v{sub n} at RHIC and LHC. However, the energy density fluctuations along longitudinal direction (space-time rapidity η{sub s}) have not been fully investigated yet, even though they should exist as well. Previous studies show that the longitudinal fluctuations strongly depend on the initial entropy deposition mechanisms. In this work AMPT initial conditions are used where HIJING introduces longitudinal fluctuations originating from the asymmetry between forward and backward going participants, string length fluctuations and finite number of partons at different collision energies. The longitudinal fluctuations have been found to be responsible for the de-correlation of anisotropic flow and twist of event planes along rapidity. We study the effect of longitudinal fluctuations on the QGP expansion in both transverse and longitudinal direction within CLVisc, a (3+1)D viscous hydrodynamic code parallelized on GPU using OpenCL, to check whether the anisotropic flow is affected by longitudinal fluctuations and to determine appropriate shear viscosity over entropy density coefficients η/s in comparison with experiments at RHIC and LHC.

  18. Effects of fueling profiles on plasma transport

    International Nuclear Information System (INIS)

    Mense, A.T.; Houlberg, W.A.; Attenberger, S.E.; Milora, S.L.

    1978-04-01

    A one-dimensional (1-D), multifluid transport model is used to investigate the effects of particle fueling profiles on plasma transport in an ignition-sized tokamak (TNS). Normal diffusive properties of plasmas will likely maintain the density at the center of the discharge even if no active fueling is provided there. This significantly relaxes the requirements for fuel penetration. Not only is lower fuel penetration easier to achieve, but it may have the advantage of reducing or eliminating density gradient-driven trapped particle microinstabilities. Simulation of discrete pellet fueling indicates that relatively low velocity (approximately 10 3 m/sec) pellets may be sufficient to fuel a TNS-sized device (approximately 1.25-m minor radius), to produce a relatively broad, cool edge region of plasma which should reduce the potential for sputtering, and also to reduce the likelihood of trapped particle mode dominated transport. Low penetrating pellets containing up to 10 to 20 percent of the total plasma ions can produce fluctuations in density and temperature at the plasma edge, but the pressure profile and fusion alpha production remain almost constant

  19. Charge Fluctuations of an Uncharged Black Hole

    OpenAIRE

    Schiffer, Marcelo

    2016-01-01

    In this paper we calculate charge fluctuations of a Schwarzschild black-hole of mass $M$ confined within a perfectly reflecting cavity of radius R in thermal equilibrium with various species of radiation and fermions . Charge conservation is constrained by a Lagrange multiplier (the chemical potential). Black hole charge fluctuations are expected owing to continuous absorption and emission of particles by the black hole. For black holes much more massive than $10^{16} g$ , these fluctuations ...

  20. Estimate of electrical potential difference between plasmas with different degrees of ionization

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-12

    The electrical potential difference has been estimated across the mixing region of two plasmas with different degrees of ionization. The estimation has been carried out in two different contexts of a charge neutral mixing region and a charge non-neutral sheath. Ion energy gained due to the potential difference has also been estimated. In both analyses, ion energy gain is proportional to the degree of ionization, and a fairly large ionization appears to be needed for overcoming the potential energy barrier of strongly coupled plasmas.

  1. Plasma-potential diagnostic (PPD) hardware used on the Tandem Mirror Experiment-Upgrade (TMX-U)

    International Nuclear Information System (INIS)

    Steele, D.L.; Hornady, R.S.; Stever, R.D.; Coutts, G.W.; Nelson, D.H.

    1985-01-01

    The PPD is an instrument used to indirectly measure the potential of the center-cell plasma of TMX-U. Thallium ions are injected at energies of about 60 keV from an ion gun capable of 80 kV operation. The singly charged ions collide with plasma electrons and generate double-charged ions. Ions in the higher charge state exit the plasma and are detected in an electrostatic energy analyzer. From measurements of the injected ion energy and the output ion energy one can determine the plasma potential in the ionization region. The absolute potential measurements required careful calibrations of the energy analyzer. Hardware and techniques for calibration of the energy analyzer are discussed. 2 refs., 4 figs

  2. PROBABILISTIC MODEL OF BEAM–PLASMA INTERACTION IN RANDOMLY INHOMOGENEOUS PLASMA

    International Nuclear Information System (INIS)

    Voshchepynets, A.; Krasnoselskikh, V.; Artemyev, A.; Volokitin, A.

    2015-01-01

    We propose a new model that describes beam–plasma interaction in the presence of random density fluctuations with a known probability distribution. We use the property that, for the given frequency, the probability distribution of the density fluctuations uniquely determines the probability distribution of the phase velocity of waves. We present the system as discrete and consisting of small, equal spatial intervals with a linear density profile. This approach allows one to estimate variations in wave energy density and particle velocity, depending on the density gradient on any small spatial interval. Because the characteristic time for the evolution of the electron distribution function and the wave energy is much longer than the time required for a single wave–particle resonant interaction over a small interval, we determine the description for the relaxation process in terms of averaged quantities. We derive a system of equations, similar to the quasi-linear approximation, with the conventional velocity diffusion coefficient D and the wave growth rate γ replaced by the average in phase space, by making use of the probability distribution for phase velocities and by assuming that the interaction in each interval is independent of previous interactions. Functions D and γ are completely determined by the distribution function for the amplitudes of the fluctuations. For the Gaussian distribution of the density fluctuations, we show that the relaxation process is determined by the ratio of beam velocity to plasma thermal velocity, the dispersion of the fluctuations, and the width of the beam in the velocity space

  3. Inhibition of crossed-beam energy transfer induced by expansion-velocity fluctuations

    Science.gov (United States)

    Neuville, C.; Glize, K.; Loiseau, P.; Masson-Laborde, P.-E.; Debayle, A.; Casanova, M.; Baccou, C.; Labaune, C.; Depierreux, S.

    2018-04-01

    Crossed-beam energy transfer between three laser beams has been experimentally investigated in a flowing plasma. Time-evolution measurements of the amplification of a first beam by a second beam highlighted the inhibition of energy transfer by hydrodynamic modifications of the plasma in the crossing volume due to the propagation of a third beam. According to 3D simulations and an analytical model, it appears that the long-wavelength expansion-velocity fluctuations produced by the propagation of the third beam in the crossing volume are responsible for this mitigation of energy transfer. This effect could be a cause of the over-estimation of the amount of the transferred energy in indirect-drive inertial confinement fusion experiments. Besides, tuning such long-wavelength fluctuations could be a way to completely inhibit CBET at the laser entrance holes of hohlraums.

  4. Diagnosing collisionless energy transfer using field-particle correlations: Vlasov-Poisson plasmas

    Science.gov (United States)

    Howes, Gregory G.; Klein, Kristopher G.; Li, Tak Chu

    2017-02-01

    Turbulence plays a key role in the conversion of the energy of large-scale fields and flows to plasma heat, impacting the macroscopic evolution of the heliosphere and other astrophysical plasma systems. Although we have long been able to make direct spacecraft measurements of all aspects of the electromagnetic field and plasma fluctuations in near-Earth space, our understanding of the physical mechanisms responsible for the damping of the turbulent fluctuations in heliospheric plasmas remains incomplete. Here we propose an innovative field-particle correlation technique that can be used to measure directly the secular energy transfer from fields to particles associated with collisionless damping of the turbulent fluctuations. Furthermore, this novel procedure yields information about the collisionless energy transfer as a function of particle velocity, providing vital new information that can help to identify the dominant collisionless mechanism governing the damping of the turbulent fluctuations. Kinetic plasma theory is used to devise the appropriate correlation to diagnose Landau damping, and the field-particle correlation technique is thoroughly illustrated using the simplified case of the Landau damping of Langmuir waves in a 1D-1V (one dimension in physical space and one dimension in velocity space) Vlasov-Poisson plasma. Generalizations necessary to apply the field-particle correlation technique to diagnose the collisionless damping of turbulent fluctuations in the solar wind are discussed, highlighting several caveats. This novel field-particle correlation technique is intended to be used as a primary analysis tool for measurements from current, upcoming and proposed spacecraft missions that are focused on the kinetic microphysics of weakly collisional heliospheric plasmas, including the Magnetospheric Multiscale (MMS), Solar Probe Plus, Solar Orbiter and Turbulence Heating ObserveR (THOR) missions.

  5. The simultaneous measurements of core and outer core density fluctuations in L-H transition using CO2 laser collective scattering diagnostic in the EAST superconducting tokamak

    International Nuclear Information System (INIS)

    Cao, G.M.; Li, Y.D.; Zhang, X.D.; Sun, P.J.; Hu, L.Q.; Li, J.G.; Wu, G.J.

    2013-01-01

    The H-mode is the projected basic operation scenario for the ITER tokamak. The turbulence de-correlation by the synergistic effect of zonal flow and equilibrium ExB flow shear is believed to be the reason for L-H transition, however, the detailed physical mechanism has not been identified so far. Tangential multi-channel CO 2 laser collective scattering diagnostic system (mainly k r measurement) was first installed to investigate electron density fluctuations on EAST tokamak. The measurements in a spontaneous dithering L-H transition show that in core plasma (0 < r/a < 0.5) the low-frequency fluctuations strengthen greatly before L-H transition; meanwhile in outer core plasma (0.2 < r/a < 1) the low-frequency fluctuations strengthen slightly. Bispectral analysis reveals that the coupling strength between low- and high-frequency fluctuations in both core and outer core plasma strengthens greatly before the transition, but the latter is greater than the former. The results indicate that the low-frequency fluctuations of the core and outer core plasma play active, but different, roles in the spontaneous L-H transition. (author)

  6. Net-Charge Fluctuations in Pb-Pb collisions at $\\sqrt{s_{NN}}= 2.76$ TeV

    CERN Document Server

    Abelev, Betty; Adamova, Dagmar; Adare, Andrew Marshall; Aggarwal, Madan; Aglieri Rinella, Gianluca; Agocs, Andras Gabor; Agostinelli, Andrea; Aguilar Salazar, Saul; Ahammed, Zubayer; Ahmad, Arshad; Ahmad, Nazeer; Ahn, Sang Un; Akindinov, Alexander; Aleksandrov, Dmitry; Alessandro, Bruno; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Almaraz Avina, Erick Jonathan; Alme, Johan; Alt, Torsten; Altini, Valerio; Altinpinar, Sedat; Altsybeev, Igor; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshauser, Harald; Arbor, Nicolas; Arcelli, Silvia; Armesto, Nestor; Arnaldi, Roberta; Aronsson, Tomas Robert; Arsene, Ionut Cristian; Arslandok, Mesut; Augustinus, Andre; Averbeck, Ralf Peter; Awes, Terry; Aysto, Juha Heikki; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bailhache, Raphaelle Marie; Bala, Renu; Baldini Ferroli, Rinaldo; Baldisseri, Alberto; Baldit, Alain; Baltasar Dos Santos Pedrosa, Fernando; Ban, Jaroslav; Baral, Rama Chandra; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Barret, Valerie; Bartke, Jerzy Gustaw; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batyunya, Boris; Baumann, Christoph Heinrich; Bearden, Ian Gardner; Beck, Hans; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bellwied, Rene; Belmont-Moreno, Ernesto; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bergognon, Anais Annick Erica; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhati, Ashok Kumar; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Bjelogrlic, Sandro; Blanco, F; Blanco, Francesco; Blau, Dmitry; Blume, Christoph; Bock, Nicolas; Boettger, Stefan; Bogdanov, Alexey; Boggild, Hans; Bogolyubsky, Mikhail; Boldizsar, Laszlo; Bombara, Marek; Book, Julian; Borel, Herve; Borissov, Alexander; Bose, Suvendu Nath; Bossu, Francesco; Botje, Michiel; Boyer, Bruno Alexandre; Braidot, Ermes; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Browning, Tyler Allen; Broz, Michal; Brun, Rene; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Busch, Oliver; Buthelezi, Edith Zinhle; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calvo Villar, Ernesto; Camerini, Paolo; Canoa Roman, Veronica; Cara Romeo, Giovanni; Carena, Francesco; Carena, Wisla; Carminati, Federico; Casanova Diaz, Amaya Ofelia; Castillo Castellanos, Javier Ernesto; Casula, Ester Anna Rita; Catanescu, Vasile; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Charvet, Jean-Luc Fernand; Chattopadhyay, Sukalyan; Chattopadhyay, Subhasis; Chawla, Isha; Cherney, Michael Gerard; Cheshkov, Cvetan; Cheynis, Brigitte; Chiavassa, Emilio; Chibante Barroso, Vasco Miguel; Chinellato, David; Chochula, Peter; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Coccetti, Fabrizio; Colamaria, Fabio; Colella, Domenico; Conesa Balbastre, Gustavo; Conesa del Valle, Zaida; Constantin, Paul; Contin, Giacomo; Contreras, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Cotallo, Manuel Enrique; Crochet, Philippe; Cruz Alaniz, Emilia; Cuautle, Eleazar; Cunqueiro, Leticia; D'Erasmo, Ginevra; Dainese, Andrea; Dalsgaard, Hans Hjersing; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Kushal; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; de Barros, Gabriel; De Caro, Annalisa; de Cataldo, Giacinto; de Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; de Rooij, Raoul Stefan; Delagrange, Hugues; Deloff, Andrzej; Demanov, Vyacheslav; Denes, Ervin; Deppman, Airton; Di Bari, Domenico; Di Giglio, Carmelo; Di Liberto, Sergio; Di Mauro, Antonio; Di Nezza, Pasquale; Diaz Corchero, Miguel Angel; Dietel, Thomas; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Dominguez, Isabel; Donigus, Benjamin; Dordic, Olja; Driga, Olga; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Dutta Majumdar, AK; Dutta Majumdar, Mihir Ranjan; Elia, Domenico; Emschermann, David Philip; Engel, Heiko; Erazmus, Barbara; Erdal, Hege Austrheim; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Evans, David; Eyyubova, Gyulnara; Fabris, Daniela; Faivre, Julien; Falchieri, Davide; Fantoni, Alessandra; Fasel, Markus; Fedunov, Anatoly; Fehlker, Dominik; Feldkamp, Linus; Felea, Daniel; Fenton-Olsen, Bo; Feofilov, Grigory; Fernandez Tellez, Arturo; Ferretti, Alessandro; Ferretti, Roberta; Festanti, Andrea; Figiel, Jan; Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Fusco Girard, Mario; Gaardhoje, Jens Joergen; Gagliardi, Martino; Gago, Alberto; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Garabatos, Jose; Garcia-Solis, Edmundo; Garishvili, Irakli; Gerhard, Jochen; Germain, Marie; Geuna, Claudio; Gheata, Andrei George; Gheata, Mihaela; Ghidini, Bruno; Ghosh, Premomoy; Gianotti, Paola; Girard, Martin Robert; Giubellino, Paolo; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez, Ramon; Gonzalez Ferreiro, Elena; Gonzalez-Trueba, Laura Helena; Gonzalez-Zamora, Pedro; Gorbunov, Sergey; Goswami, Ankita; Gotovac, Sven; Grabski, Varlen; Graczykowski, Lukasz Kamil; Grajcarek, Robert; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoriev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grinyov, Boris; Grion, Nevio; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerra Gutierrez, Cesar; Guerzoni, Barbara; Guilbaud, Maxime Rene Joseph; Gulbrandsen, Kristjan Herlache; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Gutbrod, Hans; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hanratty, Luke David; Hansen, Alexander; Harmanova, Zuzana; Harris, John William; Hartig, Matthias; Hasegan, Dumitru; Hatzifotiadou, Despoina; Hayrapetyan, Arsen; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Herrmann, Norbert; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hicks, Bernard; Hille, Per Thomas; Hippolyte, Boris; Horaguchi, Takuma; Hori, Yasuto; Hristov, Peter Zahariev; Hrivnacova, Ivana; Huang, Meidana; Humanic, Thomas; Hwang, Dae Sung; Ichou, Raphaelle; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Incani, Elisa; Innocenti, Gian Michele; Ippolitov, Mikhail; Irfan, Muhammad; Ivan, Cristian George; Ivanov, Andrey; Ivanov, Marian; Ivanov, Vladimir; Ivanytskyi, Oleksii; Jacobs, Peter; Janik, Malgorzata Anna; Janik, Rudolf; Jayarathna, Sandun; Jena, Satyajit; Jha, Deeptanshu Manu; Jimenez Bustamante, Raul Tonatiuh; Jirden, Lennart; Jones, Peter Graham; Jung, Hyung Taik; Jusko, Anton; Kakoyan, Vanik; Kalcher, Sebastian; Kalinak, Peter; Kalliokoski, Tuomo Esa Aukusti; Kalweit, Alexander Philipp; Kang, Ju Hwan; Kaplin, Vladimir; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karpechev, Evgeny; Kazantsev, Andrey; Kebschull, Udo Wolfgang; Keidel, Ralf; Khan, Mohisin Mohammed; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Beomkyu; Kim, Dong Jo; Kim, Do Won; Kim, Jonghyun; Kim, Jin Sook; Kim, Minwoo; Kim, Mimae; Kim, Se Yong; Kim, Seon Hee; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Klay, Jennifer Lynn; Klein, Jochen; Klein-Bosing, Christian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Koch, Kathrin; Kohler, Markus; Kollegger, Thorsten; Kolojvari, Anatoly; Kondratiev, Valery; Kondratyeva, Natalia; Konevskih, Artem; Korneev, Andrey; Kour, Ravjeet; Kowalski, Marek; Kox, Serge; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kramer, Frederick; Kraus, Ingrid Christine; Krawutschke, Tobias; Krelina, Michal; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Krus, Miroslav; Kryshen, Evgeny; Krzewicki, Mikolaj; Kucheriaev, Yury; Kugathasan, Thanushan; Kuhn, Christian Claude; Kuijer, Paul; Kulakov, Igor; Kumar, Jitendra; Kurashvili, Podist; Kurepin, A; Kurepin, AB; Kuryakin, Alexey; Kushpil, Svetlana; Kushpil, Vasily; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Ladron de Guevara, Pedro; Lakomov, Igor; Langoy, Rune; Lara, Camilo Ernesto; Lardeux, Antoine Xavier; Lazzeroni, Cristina; Le Bornec, Yves; Lea, Ramona; Lechman, Mateusz; Lee, Graham Richard; Lee, Ki Sang; Lee, Sung Chul; Lefevre, Frederic; Lehnert, Joerg Walter; Leistam, Lars; Lemmon, Roy Crawford; Lenti, Vito; Leon Monzon, Ildefonso; Leon Vargas, Hermes; Leoncino, Marco; Levai, Peter; Lien, Jorgen; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Liu, Lijiao; Loggins, Vera; Loginov, Vitaly; Lohn, Stefan Bernhard; Lohner, Daniel; Loizides, Constantinos; Loo, Kai Krister; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lovhoiden, Gunnar; Lu, Xianguo; Luettig, Philipp; Lunardon, Marcello; Luo, Jiebin; Luparello, Grazia; Luquin, Lionel; Luzzi, Cinzia; Ma, Rongrong; Maevskaya, Alla; Mager, Magnus; Mahapatra, Durga Prasad; Maire, Antonin; Mal'Kevich, Dmitry; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Ludmila; Malzacher, Peter; Mamonov, Alexander; Manceau, Loic Henri Antoine; Manko, Vladislav; Manso, Franck; Manzari, Vito; Mao, Yaxian; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Marin, Ana Maria; Marin Tobon, Cesar Augusto; Markert, Christina; Martashvili, Irakli; Martinengo, Paolo; Martinez, Mario Ivan; Martinez Davalos, Arnulfo; Martinez Garcia, Gines; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Mastroserio, Annalisa; Matthews, Zoe Louise; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel; Mazzoni, Alessandra Maria; Meddi, Franco; Menchaca-Rocha, Arturo Alejandro; Mercado Perez, Jorge; Meres, Michal; Miake, Yasuo; Milano, Leonardo; Milosevic, Jovan; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz; Mitu, Ciprian Mihai; Mlynarz, Jocelyn; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Monteno, Marco; Montes, Esther; Moon, Taebong; Morando, Maurizio; Moreira De Godoy, Denise Aparecida; Moretto, Sandra; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhuri, Sanjib; Mukherjee, Maitreyee; Muller, Hans; Munhoz, Marcelo; Musa, Luciano; Musso, Alfredo; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Nattrass, Christine; Naumov, Nikolay; Navin, Sparsh; Nayak, Tapan Kumar; Nazarenko, Sergey; Nazarov, Gleb; Nedosekin, Alexander; Nicassio, Maria; Niculescu, Mihai; Nielsen, Borge Svane; Niida, Takafumi; Nikolaev, Sergey; Nikolic, Vedran; Nikulin, Sergey; Nikulin, Vladimir; Nilsen, Bjorn Steven; Nilsson, Mads Stormo; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Novitzky, Norbert; Nyanin, Alexandre; Nyatha, Anitha; Nygaard, Casper; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Oleniacz, Janusz; Oppedisano, Chiara; Ortona, Giacomo; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Pachmayer, Yvonne Chiara; Pachr, Milos; Padilla, Fatima; Pagano, Paola; Paic, Guy; Painke, Florian; Pajares, Carlos; Pal, Susanta Kumar; Palaha, Arvinder Singh; Palmeri, Armando; Papikyan, Vardanush; Pappalardo, Giuseppe; Park, Woo Jin; Passfeld, Annika; Patalakha, Dmitri Ivanovich; Paticchio, Vincenzo; Pavlinov, Alexei; Pawlak, Tomasz Jan; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitri; Perez Lara, Carlos Eugenio; Perez Lezama, Edgar; Perini, Diego; Perrino, Davide; Peryt, Wiktor Stanislaw; Pesci, Alessandro; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petran, Michal; Petris, Mariana; Petrov, Plamen Rumenov; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Piccotti, Anna; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Pitz, Nora; Piuz, Francois; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polichtchouk, Boris; Pop, Amalia; Porteboeuf-Houssais, Sarah; Pospisil, Vladimir; Potukuchi, Baba; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puchagin, Sergey; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Pulvirenti, Alberto; Punin, Valery; Putis, Marian; Putschke, Jorn Henning; Quercigh, Emanuele; Qvigstad, Henrik; Rachevski, Alexandre; Rademakers, Alphonse; Raiha, Tomi Samuli; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Ramirez Reyes, Abdiel; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Rehman, Attiq Ur; Reichelt, Patrick; Reicher, Martijn; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riccati, Lodovico; Ricci, Renato Angelo; Richert, Tuva; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Rodrigues Fernandes Rabacal, Bartolomeu; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roed, Ketil; Rohr, David; Rohrich, Dieter; Romita, Rosa; Ronchetti, Federico; Rosnet, Philippe; Rossegger, Stefan; Rossi, Andrea; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Rybicki, Andrzej; Sadovsky, Sergey; Safarik, Karel; Sahoo, Raghunath; Sahu, Pradip Kumar; Saini, Jogender; Sakaguchi, Hiroaki; Sakai, Shingo; Sakata, Dosatsu; Salgado, Carlos Albert; Salzwedel, Jai; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Sano, Satoshi; Santo, Rainer; Santoro, Romualdo; Sarkamo, Juho Jaako; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schreiner, Steffen; Schuchmann, Simone; Schukraft, Jurgen; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Patrick Aaron; Scott, Rebecca; Segato, Gianfranco; Selyuzhenkov, Ilya; Senyukov, Serhiy; Seo, Jeewon; Serci, Sergio; Serradilla, Eulogio; Sevcenco, Adrian; Shabetai, Alexandre; Shabratova, Galina; Shahoyan, Ruben; Sharma, Natasha; Sharma, Satish; Shigaki, Kenta; Shimomura, Maya; Shtejer, Katherin; Sibiriak, Yury; Siciliano, Melinda; Sicking, Eva; Siddhanta, Sabyasachi; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Skjerdal, Kyrre; Smakal, Radek; Smirnov, Nikolai; Snellings, Raimond; Sogaard, Carsten; Soltz, Ron Ariel; Son, Hyungsuk; Song, Jihye; Song, Myunggeun; Soos, Csaba; Soramel, Francesca; Sputowska, Iwona; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Stefanini, Giorgio; Steinpreis, Matthew; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Stolpovskiy, Mikhail; Strabykin, Kirill; Strmen, Peter; Suaide, Alexandre Alarcon do Passo; Subieta Vasquez, Martin Alfonso; Sugitate, Toru; Suire, Christophe Pierre; Sukhorukov, Mikhail; Sultanov, Rishat; Sumbera, Michal; Susa, Tatjana; Szanto de Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szostak, Artur Krzysztof; Szymanski, Maciej; Takahashi, Jun; Tapia Takaki, Daniel Jesus; Tarazona Martinez, Alfonso; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terrevoli, Cristina; Thader, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony; Toia, Alberica; Torii, Hisayuki; Tosello, Flavio; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ulery, Jason Glyndwr; Ullaland, Kjetil; Ulrich, Jochen; Uras, Antonio; Urban, Jozef; Urciuoli, Guido Marie; Usai, Gianluca; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; van der Kolk, Naomi; van Leeuwen, Marco; Vande Vyvre, Pierre; Vannucci, Luigi; Vargas, Aurora Diozcora; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vechernin, Vladimir; Veldhoen, Misha; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Vikhlyantsev, Oleg; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Viyogi, Yogendra; Vodopianov, Alexander; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; von Haller, Barthelemy; Vranic, Danilo; Øvrebekk, Gaute; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Vladimir; Wan, Renzhuo; Wang, Dong; Wang, Mengliang; Wang, Yifei; Wang, Yaping; Watanabe, Kengo; Weber, Michael; Wessels, Johannes; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Alexander; Wilk, Grzegorz Andrzej; Williams, Crispin; Windelband, Bernd Stefan; Xaplanteris Karampatsos, Leonidas; Yaldo, Chris G; Yamaguchi, Yorito; Yang, Hongyan; Yang, Shiming; Yasnopolsky, Stanislav; Yi, JunGyu; Yin, Zhongbao; Yoo, In-Kwon; Yoon, Jongik; Yu, Weilin; Yuan, Xianbao; Yushmanov, Igor; Zach, Cenek; Zampolli, Chiara; Zaporozhets, Sergey; Zarochentsev, Andrey; Zavada, Petr; Zaviyalov, Nikolai; Zbroszczyk, Hanna Paulina; Zelnicek, Pierre; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhou, Daicui; Zhou, Fengchu; Zhou, You; Zhu, Jianhui; Zhu, Xiangrong; Zichichi, Antonino; Zimmermann, Alice; Zinovjev, Gennady; Zoccarato, Yannick Denis; Zynovyev, Mykhaylo; Zyzak, Maksym

    2013-04-10

    We report the first measurement of the net-charge fluctuations in Pb-Pb collisions at $\\sqrt{s_{NN}}$ = 2.76 TeV, measured with the ALICE detector at the CERN Large Hadron Collider. The dynamical fluctuations per unit entropy are observed to decrease when going from peripheral to central collisions. An additional reduction in the amount of fluctuations is seen in comparison to the results from lower energies. We examine the dependence of fluctuations on the pseudo-rapidity interval, which may account for the dilution of fluctuations during the evolution of the system. We find that the ALICE data points are between the theoretically predicted values for a hadron gas and a Quark-Gluon Plasma.

  7. One possible method of mathematical modeling of turbulent transport processes in plasma

    International Nuclear Information System (INIS)

    Skvortsova, Nina N.; Batanov, German M.; Petrov, Alexander E.; Pshenichnikov, Anton A.; Sarksyan, Karen A.; Kharchev, Nikolay K.; Bening, Vladimir E.; Korolev, Victor Yu.

    2003-01-01

    It is proposed to use the mathematical modeling of the increments of fluctuating plasma variables to analyzing the probability characteristics of turbulent transport processes in plasma. It is shown that, in plasma of the L-2M stellarator and the TAU-1 linear device, the increments of the process of local fluctuating particle flux are stochastic in nature and their distribution is a scale mixture of Gaussians. (author)

  8. Optical fluctuation measurements of turbulence using a diagnostic beam on Phaedrus-T

    International Nuclear Information System (INIS)

    Evensen, H.; Brouchous, D.; Diebold, D.; Doczy, M.; Fonck, R.J.; Nolan, D.

    1992-01-01

    Plasma density turbulence has been measured with the beam emission spectroscopy (BES) diagnostic system, using a low-power neutral beam with He 0 and H 0 as beam species. In general, He 0 (588 nm) provided the best signal-to-noise ratio due to its lower edge plasma background interference. Simultaneous measurements of edge density fluctuations have been made with BES and Langmuir probes; the spectra are seen to be essentially identical, and the fluctuation amplitudes from both diagnostics are in close agreement. A poloidal coherence length of about 2--4 cm was observed. Radial propagation of modes was not seen, but a lab-frame poloidal phase velocity at r/a=0.77 of about 7x10 5 cm/s in the electron diamagnetic direction was observed, corresponding to m=8--75 kHz

  9. Characterization of the up-down asymmetry of density fluctuations induced by a lower modular limiter in Tore Supra

    International Nuclear Information System (INIS)

    Fenzi, C.; Devynck, P.; Garbet, X.; Antar, G.; Capes, H.; Laviron, C.; Truc, A.; Gervais, F.; Hennequin, P.; Quemeneur, A.

    1999-01-01

    In magnetic fusion devices, the effect of plasma facing components on plasma turbulence is a key issue for several reasons. Firstly, the edge turbulence controls the power deposition on plasma facing components. Secondly, the possible influence of the edge parameters on the core fluctuations is a central question, since the core turbulent transport is responsible for the confinement degradation. It is in practice difficult to determine whether the plasma core influences the edge, or the opposite. We show here that spatial edge asymmetries of density fluctuations, and particularly up-down asymmetries, provide a powerful tool to investigate this problem. In TORE SUPRA, previous scaling analyses with various plasma parameters have emphasized that a very clear effect on the asymmetry level appears when the plasma leans on the lower modular limiter located close to the measurement chord. We present here recent measurement results concerning that specific case. They tend to show that the limiter configuration has some effect on the core turbulence. (authors)

  10. Coherent structures in two-dimensional plasma turbulence

    DEFF Research Database (Denmark)

    Huld, T.; Nielsen, A.H.; Pécseli, H.L.

    1991-01-01

    -band turbulent fluctuations is demonstrated by a conditional sampling technique. Depending on plasma parameters, the dominant structures can appear as monopole or multipole vortices, dipole vortices in particular. The importance of large structures for the turbulent plasma diffusion is discussed. A statistical...... analysis of the randomly varying plasma flux is presented....

  11. The potential around a test charge in magnetized dusty plasmas

    International Nuclear Information System (INIS)

    Shukla, P.K.; Salimullah, M.

    1996-01-01

    The potential of a test dust particle in a magnetized dusty plasma is calculated, taking into account the dielectric constant associated with electrostatic ion-cyclotron waves. Besides the well-known Debye-Hueckel screening potential, an oscillatory potential distribution around a test dust particle is found, which strongly depends on the strength of the external magnetic field. copyright 1996 American Institute of Physics

  12. Topics in high-intensity laser plasma interaction

    International Nuclear Information System (INIS)

    Leemans, W.P.

    1991-01-01

    The interaction of high intensity laser pulses with pre-formed and laser-produced plasmas is studied. Through experiments and simulations we have investigated stimulated Compton scattering in preformed plasmas and the plasma physics aspects of tunnel-ionized gases. A theoretical study is presented on the nonlinear dynamics of relativistic plasma waves driven by colinear optical mixing. The electron density-fluctuation spectra induced by stimulated Compton scattering have been directly observed for the first time. A CO2 laser was focused into pre-formed plasmas with densities n(e) varied from 0.4-6 x 10(exp 16) cu cm. The fluctuations corresponding to backscatter were probed using Thomson scattering. At low n(e), the scattered spectra peak at a frequency shift Delta omega is approximately kv e and appears to be in a linear regime. At the highest n(e), a nonlinear saturation of the SCS instability is observed due to a self-induced perturbation of the electron distribution function. Tunnel-ionized plasmas have been studied through experiments and particle simulations. Experimentally, qualitative evidence for plasma temperature control by varying the laser polarization was obtained by the measurement of stimulated Compton scattering fluctuation spectra and x-ray emission from such plasmas. A higher parallel temperature than expected from the single-particle tunneling model was observed. Simulations indicate that stochastic heating and the Weibel instability play an important role in plasma heating in all directions and isotropization. The non-linear dynamics associated with beatwave (Delta omega, Delta k) excited long wavelength plasma waves in the presence of strong, short wavelength density ripple have been examined, using the relativistic Lagrangian oscillator model. This model shows period doubling that roughly follows Feigenbaum scaling, and a transition to chaos

  13. Plane and hemispherical potential structures in magnetically expanding plasmas

    International Nuclear Information System (INIS)

    Takahashi, Kazunori; Igarashi, Yuichi; Fujiwara, Tamiya

    2010-01-01

    Two-dimensional potential structures are measured for different gas pressure in expanding argon plasma using permanent magnets, where the magnetic field is about 100 G in the source and several gauss in the diffusion chamber. The plane potential drop is observed near the source exit for 0.35 mTorr, while the potential structure becomes hemispherical when increasing up to 1 mTorr; the hemispherical structure results in the radial divergence of the ion beam. It is found that the trajectories of the accelerated ions and the electrons overcoming the potential drop are dominated by the potential structure and magnetic-field lines, respectively.

  14. Dipole plasma in molecular crystals

    International Nuclear Information System (INIS)

    Kotel'nikov, Yu.E.; Kochelaev, B.I.

    1976-01-01

    Collective oscillations in a system of electric dipoles of molecular crystals are investigated. It has been proved in the exciton approximation that in an elementary cell of a molecular crystal with one molecule there may exist energy fluctuations of the ''dipole'' plasma, analogous to plasma oscillations in the charged Fermi liquid

  15. Reduced energy conservation law for magnetized plasma

    International Nuclear Information System (INIS)

    Sosenko, P.P.; Decyk, V.K.

    1994-01-01

    A global energy conservation law for a magnetized plasma is studied within the context of a quasiparticle description. A reduced energy conservation law is derived for low-frequency, as compared to the gyromagnetic frequency, plasma motions with regard to both non-uniform mean flows and fluctuations in the plasma. The mean value of plasma energy is calculated and sufficient stability conditions for non-equilibrium plasmas are derived. (orig.)

  16. Energy Fluctuation of Ideal Fermi Gas Trapped under Generic Power Law Potential U=\\sum_{i=1}^{d} c_i\\vert x_{i}/a_{i}\\vert^{n_{i} } in d Dimensions

    Science.gov (United States)

    Mir, Mehedi Faruk; Muktadir Rahman, Md.; Dwaipayan, Debnath; Sakhawat Hossain Himel, Md.

    2016-04-01

    Energy fluctuation of ideal Fermi gas trapped under generic power law potential U=\\sumi=1d ci \\vertxi/ai \\vert n_i has been calculated in arbitrary dimensions. Energy fluctuation is scrutinized further in the degenerate limit μ ≫ KBT with the help of Sommerfeld expansion. The dependence of energy fluctuation on dimensionality and power law potential is studied in detail. Most importantly our general result can not only exactly reproduce the recently published result regarding free and harmonically trapped ideal Fermi gas in d = 3 but also can describe the outcome for any power law potential in arbitrary dimension.

  17. Coarse Grained Transport Model for Neutrals in Turbulent SOL Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Marandet, Y.; Mekkaoui, A.; Genesio, P.; Rosato, J.; Capes, H.; Godbert-Mouret, L.; Koubiti, M.; Stamm, R., E-mail: yannick.marandet@univ-amu.fr [PIIM, CNRS/Aix-Marseille University, Marseille (France); Reiter, D.; Boerner, P. [IEK4, FZJ, Juelich (Germany)

    2012-09-15

    Full text: Edge plasmas of magnetic fusion devices exhibit strong intermittent turbulence, which governs perpendicular transport of particles and heat. Turbulent fluxes result from the coarse graining procedure used to derive the transport equation, which entails time averaging of the underlying equations governing the turbulent evolution of the electron and ion fluids. In previous works, we have pointed out that this averaging is not carried out on the Boltzmann equation that describes the transport of neutral particles (atoms, molecules) in current edge code suites (such as SOLPS). Since fluctuations in the far SOL are of order unity, calculating the transport of neutral particles, hence the source terms in plasma fluid equations, in the average plasma background might lead to misleading results. In particular, retaining the effects of fluctuations could affect the estimation of the importance of main chamber recycling, hence first wall sputtering by charge exchange atoms, as well as main chamber impurity contamination and transport. In this contribution, we obtain an exact coarse-grained equation for the average neutral density, assuming that density fluctuations are described by multivariate Gamma statistics. This equation is a scattering free Boltzmann equation, where the ionization rate has been renormalized to account for fluctuations. The coarse grained transport model for neutrals has been implemented in the EIRENE code, and applications in 2D geometry with ITER relevant plasma parameters are presented. Our results open the way for the implementation of the effects of turbulent fluctuations on the transport of neutral particles in coupled plasma/neutral edge codes like B2-EIRENE. (author)

  18. A study of the potential of plasma processing in the chemical industry

    International Nuclear Information System (INIS)

    Estey, P.N.; Connolly, T.J.

    1984-01-01

    This work describes a systematic approach to determine the potential for plasma processing in the United States chemical industry. A model was developed that describes the physical inputs and outputs from a plasma based processing system. Based on these mass flows and the energy flows to the processor an economic assessment of the plasma processing system is made. This economic assessment which also includes the capital costs of the processor, can be used to determine if the plasma system is competitive with the conventional system

  19. Fluctuations in three Los Alamos experiments

    International Nuclear Information System (INIS)

    Wright, B.L.

    1983-01-01

    We review results from three magnetic fusion experiments at Los Alamos: the ZT-40M, a reversed-field toroidal pinch; the CTX, a spheromak produced by a magnetized coaxial source; and the FRX-C, a field-reversed configuration generated by theta-pinch techniques. These experiments share the common feature that a major fraction of the confining magnetic field is associated with currents carried by the plasma. We emphasize here the important role that fluctuations play in the maintenance and evolution of these configurations

  20. Thermalization vs. isotropization and azimuthal fluctuations

    International Nuclear Information System (INIS)

    Mrowczynski, Stanislaw

    2005-01-01

    Hydrodynamic description requires a local thermodynamic equilibrium of the system under study but an approximate hydrodynamic behaviour is already manifested when a momentum distribution of liquid components is not of equilibrium form but merely isotropic. While the process of equilibration is relatively slow, the parton system becomes isotropic rather fast due to the plasma instabilities. Azimuthal fluctuations observed in relativistic heavy-ion collisions are argued to distinguish between a fully equilibrated and only isotropic parton system produced in the collision early stage

  1. Effect of confining wall potential on charged collimated dust beam in low-pressure plasma

    International Nuclear Information System (INIS)

    Kausik, S. S.; Kakati, B.; Saikia, B. K.

    2013-01-01

    The effect of confining wall potential on charged collimated dust beam in low-pressure plasma has been studied in a dusty plasma experimental setup by applying electrostatic field to each channel of a multicusp magnetic cage. Argon plasma is produced by hot cathode discharge method at a pressure of 5×10 −4 millibars and is confined by a full line cusped magnetic field confinement system. Silver dust grains are produced by gas-evaporation technique and move upward in the form of a collimated dust beam due to differential pressure maintained between the dust and plasma chambers. The charged grains in the beam after coming out from the plasma column enter into the diagnostic chamber and are deflected by a dc field applied across a pair of deflector plates at different confining potentials. Both from the amount of deflection and the floating potential, the number of charges collected by the dust grains is calculated. Furthermore, the collimated dust beam strikes the Faraday cup, which is placed above the deflector plates, and the current (∼pA) so produced is measured by an electrometer at different confining potentials. The experimental results demonstrate the significant effect of confining wall potential on charging of dust grains

  2. Effect of confining wall potential on charged collimated dust beam in low-pressure plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kausik, S. S.; Kakati, B.; Saikia, B. K. [Centre of Plasma Physics, Institute for Plasma Research, Sonapur 782 402 (India)

    2013-05-15

    The effect of confining wall potential on charged collimated dust beam in low-pressure plasma has been studied in a dusty plasma experimental setup by applying electrostatic field to each channel of a multicusp magnetic cage. Argon plasma is produced by hot cathode discharge method at a pressure of 5×10{sup −4} millibars and is confined by a full line cusped magnetic field confinement system. Silver dust grains are produced by gas-evaporation technique and move upward in the form of a collimated dust beam due to differential pressure maintained between the dust and plasma chambers. The charged grains in the beam after coming out from the plasma column enter into the diagnostic chamber and are deflected by a dc field applied across a pair of deflector plates at different confining potentials. Both from the amount of deflection and the floating potential, the number of charges collected by the dust grains is calculated. Furthermore, the collimated dust beam strikes the Faraday cup, which is placed above the deflector plates, and the current (∼pA) so produced is measured by an electrometer at different confining potentials. The experimental results demonstrate the significant effect of confining wall potential on charging of dust grains.

  3. Effect of confining wall potential on charged collimated dust beam in low-pressure plasma

    Science.gov (United States)

    Kausik, S. S.; Kakati, B.; Saikia, B. K.

    2013-05-01

    The effect of confining wall potential on charged collimated dust beam in low-pressure plasma has been studied in a dusty plasma experimental setup by applying electrostatic field to each channel of a multicusp magnetic cage. Argon plasma is produced by hot cathode discharge method at a pressure of 5×10-4 millibars and is confined by a full line cusped magnetic field confinement system. Silver dust grains are produced by gas-evaporation technique and move upward in the form of a collimated dust beam due to differential pressure maintained between the dust and plasma chambers. The charged grains in the beam after coming out from the plasma column enter into the diagnostic chamber and are deflected by a dc field applied across a pair of deflector plates at different confining potentials. Both from the amount of deflection and the floating potential, the number of charges collected by the dust grains is calculated. Furthermore, the collimated dust beam strikes the Faraday cup, which is placed above the deflector plates, and the current (˜pA) so produced is measured by an electrometer at different confining potentials. The experimental results demonstrate the significant effect of confining wall potential on charging of dust grains.

  4. Instabilities, turbulence and transport in a magnetized plasma; Instabilites, turbulence et transport dans un plasma magnetise

    Energy Technology Data Exchange (ETDEWEB)

    Garbet, X

    2001-06-01

    The purpose of this work is to introduce the main processes that occur in a magnetized plasma. During the last 2 decades, the understanding of turbulence has made great progress but analytical formulas and simulations are far to produce reliable predictions. The values of transport coefficients in a tokamak plasma exceed by far those predicted by the theory of collisional transport. This phenomenon is called abnormal transport and might be due to plasma fluctuations. An estimation of turbulent fluxes derived from the levels of fluctuations, is proposed. A flow description of plasma allows the understanding of most micro-instabilities. The ballooning representation deals with instabilities in a toric geometry. 3 factors play an important role to stabilize plasmas: density pinch, magnetic shear and speed shear. The flow model of plasma gives an erroneous value for the stability threshold, this is due to a bad description of the resonant interaction between wave and particle. As for dynamics, flow models can be improved by adding dissipative terms so that the linear response nears the kinetic response. The kinetic approach is more accurate but is complex because of the great number of dimensions involved. (A.C.)

  5. Sphalerons, small fluctuations, and baryon-number violation in electroweak theory

    International Nuclear Information System (INIS)

    Arnold, P.; McLerran, L.

    1987-01-01

    We study the formalism of the sphaleron approximation to baryon-number violation in the standard model at temperatures near 1 TeV. We investigate small fluctuations of the sphaleron, the competition of large-scale sphalerons with thermal fluctuations, and the damping of the transition rate in the plasma. We find a suppression of the rate due to Landau damping and due to factors arising from zero modes. Our approximations are valid in the regime 2M/sub W/(T) 2 . We find that the rate of baryon-number violation is still significantly larger than the expansion rate of the Universe

  6. Imaging of turbulent structures and tomographic reconstruction of TORPEX plasma emissivity

    International Nuclear Information System (INIS)

    Iraji, D.; Furno, I.; Fasoli, A.; Theiler, C.

    2010-01-01

    In the TORPEX [A. Fasoli et al., Phys. Plasmas 13, 055902 (2006)], a simple magnetized plasma device, low frequency electrostatic fluctuations associated with interchange waves, are routinely measured by means of extensive sets of Langmuir probes. To complement the electrostatic probe measurements of plasma turbulence and study of plasma structures smaller than the spatial resolution of probes array, a nonperturbative direct imaging system has been developed on TORPEX, including a fast framing Photron-APX-RS camera and an image intensifier unit. From the line-integrated camera images, we compute the poloidal emissivity profile of the plasma by applying a tomographic reconstruction technique using a pixel method and solving an overdetermined set of equations by singular value decomposition. This allows comparing statistical, spectral, and spatial properties of visible light radiation with electrostatic fluctuations. The shape and position of the time-averaged reconstructed plasma emissivity are observed to be similar to those of the ion saturation current profile. In the core plasma, excluding the electron cyclotron and upper hybrid resonant layers, the mean value of the plasma emissivity is observed to vary with (T e ) α (n e ) β , in which α=0.25-0.7 and β=0.8-1.4, in agreement with collisional radiative model. The tomographic reconstruction is applied to the fast camera movie acquired with 50 kframes/s rate and 2 μs of exposure time to obtain the temporal evolutions of the emissivity fluctuations. Conditional average sampling is also applied to visualize and measure sizes of structures associated with the interchange mode. The ω-time and the two-dimensional k-space Fourier analysis of the reconstructed emissivity fluctuations show the same interchange mode that is detected in the ω and k spectra of the ion saturation current fluctuations measured by probes. Small scale turbulent plasma structures can be detected and tracked in the reconstructed emissivity

  7. Experimental scaling of fluctuations and confinement with Lundquist number in the RFP

    International Nuclear Information System (INIS)

    Stoneking, M.R.; Chapman, J.T.; Prager, S.C.; Sarff, J.S.

    1997-09-01

    The scaling of the magnetic and velocity fluctuations with Lundquist number (S) is examined experimentally over a range of values from 7 x 10 4 to 10 6 in a reversed field pinch (RFP) plasma. Magnetic fluctuations do not scale uniquely with the Lundquist number. At high (relative) density, fluctuations scale as b∝S -0.18 , and fluctuations are almost independent of S at low relative density, b∝S -0.07 ; however both exponents fall in the range of theoretical and numerical predictions. At high relative density, the scaling of the energy confinement time follows expectations for transport in a stochastic magnetic field. A confinement scaling law (nτ E ∝β 4/5 T -7/10 A -3/5 I φ 2 ) is derived assuming the persistent dominance of stochastic magnetic diffusion in the RFP and on the measured scaling of magnetic fluctuations. The peak velocity fluctuations during a sawtooth cycle scale marginally stronger than magnetic fluctuations but weaker than a simple Ohm's law prediction. The sawtooth period is determined by a resistive-Alfvenic hybrid time (T saw ∝√(τ R τ Alf )) rather than a purely resistive time

  8. Plasma-potentiated small molecules—possible alternative to antibiotics?

    Science.gov (United States)

    Bazaka, Kateryna; Bazaka, Olha; Levchenko, Igor; Xu, Shuyan; Ivanova, Elena P.; Keidar, Michael; (Ken Ostrikov, Kostya

    2017-09-01

    The efficacy of the existing arsenal of antibiotics is continuously compromised by their indiscriminative and often excessive use. The antibiotic arsenal can be expanded with agents that have different mechanisms of activity to conventional drugs, such as plant-derived natural antimicrobial small molecules, yet these often lack sufficient activity and selectivity to fulfill the antibiotics requirements and conventional thermochemical methods of their transient activation may not be compatible with biomedical applications. Here, non-equilibrium conditions of atmospheric-pressure plasma are used for rapid, single-step potentiation of activity of select terpenes without the use of chemicals or heating. Substantial potentiation of activity against Staphylococcus aureus cells in planktonic and biofilm states is observed in both inherently antibacterial terpenes, e.g. terpinen-4-ol, and compounds generally considered to have limited effect against S. aureus, e.g. γ-terpinene. The improved biological activity may arise, at least in part, from the changes in the physico-chemical properties of the terpenes induced by plasma-generated chemical species and physical effects, such as electric fields and UV irradiation. This activation approach is generic, and thus can potentially be applied to other molecules and their mixtures in an effort to expand the range of effective antimicrobial agents for deactivation of pathogenic organisms in hygiene, medical and food applications.

  9. Tomographic Measurements of Temperature Fluctuations in an Air Plasma Cutting Torch

    Czech Academy of Sciences Publication Activity Database

    Hlína, Jan; Šonský, Jiří; Gruber, Jan

    2017-01-01

    Roč. 37, č. 3 (2017), s. 689-699 ISSN 0272-4324 Institutional support: RVO:61388998 Keywords : cutting arc * air plasma * tomography Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.355, year: 2016 http://link.springer.com/ article /10.1007%2Fs11090-017-9794-x

  10. The roles of turbulence on plasma heating

    International Nuclear Information System (INIS)

    Kawamura, Takaichi; Kawabe, Takaya.

    1976-06-01

    In this paper, the characteristic features of the turbulent heating are reviewed, which is considered to be one of the strong candidates of the further heating method in fusion reactor systems, referring to the works in the Institute of Plasma Physics, Nagoya University. The roles of turbulence in plasma heating including toroidal plasma heating are discussed from several points of view. The relation between the heating rate of plasma particles and the thermalization (randomization) frequency is theoretically investigated and the role of plasma turbulence in the fast thermalization is shown. The experimental results on fluctuation and heating of electrons and ions in turbulently heated plasmas are presented. The influence of turbulence, which is responsible for the particle heating, on the diffusion across the confinement magnetic field is considered for the application in the toroidal plasmas. It is pointed out that the turbulent fields in the fast turbulent heating give only a minor effect to the loss of particles across the magnetic field. It can be said that the enhanced fluctuation in turbulent plasma gives its field energy to the plasma particles while it can play the role of the fast thermalization of the ordered motion of particles that is produced in the plasma by some acceleration process. (Kato, T.)

  11. Mode suppression of a two-dimensional potential relaxation instability in a weakly magnetized discharge plasma

    Science.gov (United States)

    Gyergyek, T.; Čerček, M.; Jelić, N.; Stanojević, M.

    1993-05-01

    A potential relaxation instability (PRI) is modulated by an external signal using an additional grid to modulate the radial plasma potential profile in a magnetized plasma column in a linear magnetized discharge plasma device. It is observed that the electrode current oscillations follow the van der Pol equation with an external forcing term, and the linear growth rate of the instability is measured.

  12. A study of passivation/depassivation of carbon steel; electrochemical impedance spectrocopy vs. potential noise fluctuations

    International Nuclear Information System (INIS)

    Roberge, P.R.; Halliop, E.; Sastri, V.S.

    1992-01-01

    A technique based on recording corrosion potential fluctuations generated by corroding electrodes was used under open-circuit conditions to study passivation and depassivation of carbon steel. Quantification of the electrochemical signal in terms of the pitting corrosion rate has been attempted. The amplitude of electrochemical noise signals was analyzed under different pitting conditions and correlated to polarization resistance values obtained from the electrochemical impedance spectra. The automatic statistical data analysis of electrochemical impedance data points has been successfully applied to calculate polarization resistance values and other interesting characteristics of such measurements

  13. Fluctuation relations for anomalous dynamics

    International Nuclear Information System (INIS)

    Chechkin, A V; Klages, R

    2009-01-01

    We consider work fluctuation relations (FRs) for generic types of dynamics generating anomalous diffusion: Lévy flights, long-correlated Gaussian processes and time-fractional kinetics. By combining Langevin and kinetic approaches we calculate the probability distributions of mechanical and thermodynamical work in two paradigmatic nonequilibrium situations, respectively: a particle subject to a constant force and a particle in a harmonic potential dragged by a constant force. We check the transient FR for two models exhibiting superdiffusion, where a fluctuation-dissipation relation does not exist, and for two other models displaying subdiffusion, where there is a fluctuation-dissipation relation. In the two former cases the conventional transient FR is not recovered, whereas in the latter two it holds either exactly or in the long-time limit. (letter)

  14. Active probing of plasma edge turbulence and feedback studies on the Texas Experimental Tokamak (TEXT)

    International Nuclear Information System (INIS)

    Uckan, T.; Carreras, B.A.; Richards, B.; Bengtson, R.D.; Crockett, D.B.; Gentle, K.W.; Li, G.X.; Hurwitz, P.D.; Rowan, W.L.; Tsui, H.Y.W.; Wootton, A.J.

    1993-01-01

    The edge fluctuations play a critical role in the overall tokamak confinement. Experiments on TEXT show that electrostatic fluctuations in the edge plasma are the dominant mechanism for energy and particle transport. The basic mechanisms responsible for the edge turbulence are the subject of ongoing research in fusion devices. To understand the driving forces responsible for edge fluctuations, a novel experiment is underway on TEXT to actively modify the turbulence at the plasma edge by launching waves using electrostatic probes in the shadow of the limiter. This technique permits active probing of the spectral properties of the edge turbulence. This new approach to the study of edge fluctuations can provide more insight into the basic dynamics of the turbulence and may, in turn, enable detailed comparison with the theory. These experiments, which rely on the use of oscillating electric fields at the plasma edge, complement edge fluctuation control studies that are presently limited to the use of applied dc biasing to influence the edge electric field profile. These experiments have been extended to control of the edge plasma fluctuation level, using feedback to explore its effects on the edge turbulence characteristics as well as on confinement

  15. Radioimmunoassay of plasma progesterone

    Energy Technology Data Exchange (ETDEWEB)

    Langer, L; Veleminsky, J [Institute of Clinical Endocrinology, Lubochna (Czechoslovakia); Hampl, R; Starka, L [Vyzkumny Ustav Endokrinologicky, Prague (Czechoslovakia); Holan, J [Comenius Univ., School of Medicine, Martin (Czechoslovakia). Dept. of Physics and Nuclear Medicine

    1978-06-30

    A simple modification of plasma progesterone radioimmunoassay is described. 11..cap alpha..-Hydroxyprogesterone hemisuccinate - BSA conjugate was used as an immunogen. (1,2,6,7-H-3) Progesterone specific radioactivity 82 Ci.mmol/sup -1/ was purchased from Radiochemical Centre Amersham (England). The method has been applied for the analysis of more than 2000 plasma samples. The typical fluctuation of progesterone in plasma during the menstrual cycle, using data obtained with this method is illustrated. The reliability criteria of the method are given.

  16. Study of short wavelength turbulence in dense plasmas. Final technical report, September 8, 1981-August 7, 1983

    International Nuclear Information System (INIS)

    Chen, F.F.; Joshi, C.

    1983-10-01

    The work includes studies of four topics: (1) Thomson scattering from short wavelength density fluctuations from laser excited plasmas from solid targets; (2) studies of SBS driven ion acoustic waves and it's harmonics in underdense plasmas; (3) studies of optical mixing excitation of electron plasma waves (high frequency density fluctuations) in theta pinch plasma; and (4) computational studies of high frequency wave excitation by intense laser beams in plasmas

  17. Measurement of plasma potential and electron temperature by ball-pen probes in RFX-MOD

    International Nuclear Information System (INIS)

    Brotankova, J.; Adamek, J.; Stockel, J.; Martines, E.; Spolaore, M.; Cavazzana, R.; Serianni, G.; Vianello, N.; Zuin, M.

    2009-01-01

    The ball-pen probe (BPP) is an innovative electric probe for direct measurements of the plasma potential. This probe was developed in IPP Prague and it is based on the Katsumata probe concept. Combined measurements of the plasma potential by a BPP and floating potential by a Langmuir probe provide also the value of the electron temperature. First test of the BPP on the RFX-mod reversed field pinch in Padova has been performed in November 2006. The BPP head, made of boron nitride, is equipped with four graphite collectors, which are positioned at four different radial positions h inside four shafts hollow into the probe head. The radial profile of the plasma potential and also the electron temperature were measured

  18. Observation of trapped-electron-mode microturbulence in reversed field pinch plasmas

    Science.gov (United States)

    Duff, J. R.; Williams, Z. R.; Brower, D. L.; Chapman, B. E.; Ding, W. X.; Pueschel, M. J.; Sarff, J. S.; Terry, P. W.

    2018-01-01

    Density fluctuations in the large-density-gradient region of improved confinement Madison Symmetric Torus reversed field pinch (RFP) plasmas exhibit multiple features that are characteristic of the trapped-electron mode (TEM). Core transport in conventional RFP plasmas is governed by magnetic stochasticity stemming from multiple long-wavelength tearing modes. Using inductive current profile control, these tearing modes are reduced, and global confinement is increased to that expected for comparable tokamak plasmas. Under these conditions, new short-wavelength fluctuations distinct from global tearing modes appear in the spectrum at a frequency of f ˜ 50 kHz, which have normalized perpendicular wavenumbers k⊥ρs≲ 0.2 and propagate in the electron diamagnetic drift direction. They exhibit a critical-gradient threshold, and the fluctuation amplitude increases with the local electron density gradient. These characteristics are consistent with predictions from gyrokinetic analysis using the Gene code, including increased TEM turbulence and transport from the interaction of remnant tearing magnetic fluctuations and zonal flow.

  19. Spectral properties of electromagnetic turbulence in plasmas

    Directory of Open Access Journals (Sweden)

    D. Shaikh

    2009-03-01

    Full Text Available We report on the nonlinear turbulent processes associated with electromagnetic waves in plasmas. We focus on low-frequency (in comparison with the electron gyrofrequency nonlinearly interacting electron whistlers and nonlinearly interacting Hall-magnetohydrodynamic (H-MHD fluctuations in a magnetized plasma. Nonlinear whistler mode turbulence study in a magnetized plasma involves incompressible electrons and immobile ions. Two-dimensional turbulent interactions and subsequent energy cascades are critically influenced by the electron whisters that behave distinctly for scales smaller and larger than the electron skin depth. It is found that in whistler mode turbulence there results a dual cascade primarily due to the forward spectral migration of energy that coexists with a backward spectral transfer of mean squared magnetic potential. Finally, inclusion of the ion dynamics, resulting from a two fluid description of the H-MHD plasma, leads to several interesting results that are typically observed in the solar wind plasma. Particularly in the solar wind, the high-time-resolution databases identify a spectral break at the end of the MHD inertial range spectrum that corresponds to a high-frequency regime. In the latter, turbulent cascades cannot be explained by the usual MHD model and a finite frequency effect (in comparison with the ion gyrofrequency arising from the ion inertia is essentially included to discern the dynamics of the smaller length scales (in comparison with the ion skin depth. This leads to a nonlinear H-MHD model, which is presented in this paper. With the help of our 3-D H-MHD code, we find that the characteristic turbulent interactions in the high-frequency regime evolve typically on kinetic-Alfvén time-scales. The turbulent fluctuation associated with kinetic-Alfvén interactions are compressive and anisotropic and possess equipartition of the kinetic and magnetic energies.

  20. Heavy Neutral Beam Probe for Edge Plasma Analysis in Tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Castracane, J.

    2001-01-04

    The Heavy Neutral Beam Probe (HNBP) developed initially with DOE funding under the Small Business Innovation Research (SBIR) program was installed on the Tokamak de Varennes (TdeV) at the CCFM. This diagnostic was designed to perform fundamental measurements of edge plasma properties. The hardware was capable of measuring electron density and potential profiles with high spatial and temporal resolution. Fluctuation spectra for these parameters were obtained with HNBP for transport studies.

  1. Heavy Neutral Beam Probe for Edge Plasma Analysis in Tokamaks

    International Nuclear Information System (INIS)

    Castracane, J.

    2001-01-01

    The Heavy Neutral Beam Probe (HNBP) developed initially with DOE funding under the Small Business Innovation Research (SBIR) program was installed on the Tokamak de Varennes (TdeV) at the CCFM. This diagnostic was designed to perform fundamental measurements of edge plasma properties. The hardware was capable of measuring electron density and potential profiles with high spatial and temporal resolution. Fluctuation spectra for these parameters were obtained with HNBP for transport studies

  2. Plasma scattering measurement using a submillimeter wave gyrotron as a radiation source

    International Nuclear Information System (INIS)

    Ogawa, I.; Idehara, T.; Itakura, Y.; Myodo, M.; Hori, T.; Hatae, T.

    2004-01-01

    Plasma scattering measurement is an effective technique to observe low frequency density fluctuations excited in plasma. The spatial and wave number resolutions and the S/N ratio of measurement depend on the wavelength range, the size and the intensity of a probe beam. A well-collimated, submillimeter wave beam is suitable for improving the spatial and wave number resolutions. Application of high frequency gyrotron is effective in improving the S/N ratio of the measurement because of its capacity to deliver high power. Unlike the molecular vapor lasers, the gyrotrons generate diverging beam of radiation with TE mn mode structure. It is therefore necessary to convert the output radiation into a Gaussian beam. A quasi-optical antenna is a suitable element for the conversion system under consideration since it is applicable to several TE 0n and TE 1n modes. In order to apply the gyrotron to plasma scattering measurement, we have stabilized the output (P = 110 W, f = 354 GHz) of gyrotron up to the level (ΔP/P < 1 %, Δf< 10 kHz). The gyrotron output can be stabilized by decreasing the fluctuation of the cathode potential. (authors)

  3. Intermittent strong transport of the quasi-adiabatic plasma state.

    Science.gov (United States)

    Kim, Chang-Bae; An, Chan-Yong; Min, Byunghoon

    2018-06-05

    The dynamics of the fluctuating electrostatic potential and the plasma density couched in the resistive-drift model at nearly adiabatic state are simulated. The linear modes are unstable if the phase difference between the potential and the density are positive. Exponential growth of the random small perturbations slows down due to the nonlinear E × B flows that work in two ways. They regulate the strength of the fluctuations by transferring the energy from the energy-producing scale to neighboring scales and reduce the cross phase at the same time. During quasi-steady relaxation sporadic appearance of very strong turbulent particle flux is observed that is characterized by the flat energy spectrum and the broad secondary peak in the mesoscale of the order of the gyro-radius. Such boost of the transport is found to be caused by presence of relatively large cross phase as the E × B flows are not effective in cancelling out the cross phase.

  4. Initiation of arcing on tungsten surface exposed to steady state He plasmas

    Science.gov (United States)

    Kajita, Shin; Noiri, Yasuyuki; Ohno, Noriyasu

    2015-09-01

    Arcing was initiated in steady state helium plasmas by negatively biasing a tungsten electrode to around -500 V. On the tungsten electrode, nanostructures were grown by the plasma irradiation. In this study, we characterized the property of the initiated arcing by measuring the temporal evolutions of the electrode potential and the arc current. The ignition frequency and duration of arcing were presented from the potential measurements; the arc duration was in the range of changing the biasing voltage. The behavior of arc spots was observed with a fast framing camera. It was shown that the spots split frequently, and sometimes, they run on the surface independently. From the fluctuation of the arc current, the fractal feature of arcing was revealed.

  5. Measurement of the dynamo effect in a plasma

    International Nuclear Information System (INIS)

    Ji, H.; Prager, S.C.; Almagri, A.F.; Sarff, J.S.; Hirano, Y.; Toyama, H.

    1995-11-01

    A series of the detailed experiments has been conducted in three laboratory plasma devices to measure the dynamo electric field along the equilibrium field line (the α effect) arising from the correlation between the fluctuating flow velocity and magnetic field. The fluctuating flow velocity is obtained from probe measurement of the fluctuating E x B drift and electron diamagnetic drift. The three major findings are (1) the α effect accounts for the dynamo current generation, even in the time dependence through a ''sawtooth'' cycle; (2) at low collisionality the dynamo is explained primarily by the widely studied pressureless Magnetohydrodynamic (MHD) model, i.e., the fluctuating velocity is dominated by the E x B drift; (3) at high collisionality, a new ''electron diamagnetic dynamo'' is observed, in which the fluctuating velocity is dominated by the diamagnetic drift. In addition, direct measurements of the helicity flux indicate that the dynamo activity transports magnetic helicity from one part of the plasma to another, but the total helicity is roughly conserved, verifying J.B. Taylor's conjecture

  6. Large potential change induced by pellet injection in JIPP T-IIU tokamak plasmas

    International Nuclear Information System (INIS)

    Hamada, Y.; Sato, K.N.; Sakakita, H.

    1995-05-01

    A large, rapid change in the local plasma potential is found to be induced by off-axis hydrogen ice-pellet injection into a tokamak plasma. The polarity of the rapid change is reversed when the pellet is injected into the upper and lower halves of the poloidal plasma cross-section. This change can be interpreted as being due to the gradient-B drift of particles in the high-density plasmas of the pellet cloud, before the increase of the plasma density due to the ablation becomes uniform on the magnetic surface. (author)

  7. Gottwald Melborune (0–1 test for chaos in a plasma

    Directory of Open Access Journals (Sweden)

    D. R. Chowdhury

    2012-01-01

    Full Text Available Plasma is a highly complex system exhibiting a rich variety of nonlinear dynamical phenomena. In the last two decades or so there has been a spurt of growth in exploring unconventional nonlinear dynamical methods of analysis, like chaos theory, multi fractal analysis, self organized criticality etc. of experimental data from different plasma systems. Investigation of fluctuating plasma parameters is very important since they are correlated with transport of particles, and energy. In time series analysis, it is considered of key importance to determine whether the data measured from the system is regular, deterministically chaotic, or random. The two important parameters that are in general estimated are the correlation dimension and the Lyapunov exponent. Though correlation dimension helps in determining the complexity of a system, Lyapunov exponent reveals if the system is chaotic or not and also helps in prediction to some extent. In spite of its extensive usage, estimation of Lyapunov exponent can be quite tedious and sometimes suffers from some disadvantages like reliability in the presence of noise, requirement of phase space reconstruction etc., and hence it is necessary to explore other possibilities of estimating the chaoticity of a data. In this paper we have analysed for chaoticity, the nonlinear floating potential fluctuations from a glow discharge plasma system by the 0–1 test and compared it with the results obtained from Lyapunov exponent.

  8. Measurement of local, internal magnetic fluctuations via cross-polarization scattering in the DIII-D tokamak (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Barada, K., E-mail: kshitish@ucla.edu; Rhodes, T. L.; Crocker, N. A.; Peebles, W. A. [University of California-Los Angeles, P.O. Box 957099, Los Angeles, California 90095 (United States)

    2016-11-15

    We present new measurements of internal magnetic fluctuations obtained with a novel eight channel cross polarization scattering (CPS) system installed on the DIII-D tokamak. Measurements of internal, localized magnetic fluctuations provide a window on an important physics quantity that we heretofore have had little information on. Importantly, these measurements provide a new ability to challenge and test linear and nonlinear simulations and basic theory. The CPS method, based upon the scattering of an incident microwave beam into the opposite polarization by magnetic fluctuations, has been significantly extended and improved over the method as originally developed on the Tore Supra tokamak. A new scattering geometry, provided by a unique probe beam, is utilized to improve the spatial localization and wavenumber range. Remotely controllable polarizer and mirror angles allow polarization matching and wavenumber selection for a range of plasma conditions. The quasi-optical system design, its advantages and challenges, as well as important physics validation tests are presented and discussed. Effect of plasma beta (ratio of kinetic to magnetic pressure) on both density and magnetic fluctuations is studied and it is observed that internal magnetic fluctuations increase with beta. During certain quiescent high confinement operational regimes, coherent low frequency modes not detected by magnetic probes are detected locally by CPS diagnostics.

  9. Effects of ion temperature fluctuations on the stability of resistive ballooning modes

    International Nuclear Information System (INIS)

    Singh, R.; Nordman, H.; Jarmen, A.; Weiland, J.

    1996-01-01

    The influence of ion temperature fluctuations on the stability of resistive drift- and ballooning-modes is investigated using a two-fluid model. The Eigenmode equations are derived and solved analytically in a low beta model equilibrium. Parameters relevant to L-mode edge plasmas from the Texas Experimental Tokamak are used. The resistive modes are found to be destabilized by ion temperature fluctuations over a broad range of mode numbers. The scaling of the growth rate with magnetic shear and mode number is elucidated. 13 refs, 4 figs

  10. Direct measurement of the plasma potential in the edge of ASDEX Upgrade using a self emitting probe

    International Nuclear Information System (INIS)

    Rohde, V.; Laux, M.; Bachmann, P.; Herrmann, A.; Weinlich, M.

    1997-01-01

    In this paper we present first measurements of the plasma potential close to the separatrix in ASDEX Upgrade using a self emitting tip. The probe was inserted into the edge plasma of AUG using the midplane manipulator. Assuming Maxwellian plasmas, the observations agree with the predicted voltage drop in the plasma sheath, V pl ps -V fl =2.5T e , where V pl ps is the plasma potential at the presheath boundary and V fl the floating potential. Applying this technique a rapid change of the plasma potential was observed close to the separatrix during Ohmic discharges. From the gradient we derive a radial electric field E r of about -5 kV/m close to separatrix. Further out the field strength changes sign and we find up to +7 kV/m in the SOL. (orig.)

  11. Fluctuations and transport in fusion plasmas. Final report

    International Nuclear Information System (INIS)

    Gould, R.W.; Liewer, P.C.

    1995-01-01

    The energy confinement in tokamaks in thought to be limited by transport caused by plasma turbulence. Three dimensional plasma particle-in-cell (PIC) codes are used to model the turbulent transport in tokamaks to attempt to understand this phenomena so that tokamaks can be made more efficient. Presently, hundreds of hours of Cray time are used to model these experiments and much bigger and longer runs are desired, to model a large tokamak with realistic parameters is beyond the capability of existing sequential supercomputers. Parallel supercomputers might be a cost effect tool for performing such large scale 3D tokamak simulations. The goal of the work was to develop algorithms for performing PIC codes on coarse-grained message passing parallel computers and to evaluate the performance of such parallel computers on PIC codes. This algorithm would be used in a large scale PIC production code such as the UCLA 3D gyrokinetic code

  12. Structure functions and intermittency in ionospheric plasma turbulence

    Directory of Open Access Journals (Sweden)

    L. Dyrud

    2008-11-01

    Full Text Available Low frequency electrostatic turbulence in the ionospheric E-region is studied by means of numerical and experimental methods. We use the structure functions of the electrostatic potential as a diagnostics of the fluctuations. We demonstrate the inherently intermittent nature of the low level turbulence in the collisional ionospheric plasma by using results for the space-time varying electrostatic potential from two dimensional numerical simulations. An instrumented rocket can not directly detect the one-point potential variation, and most measurements rely on records of potential differences between two probes. With reference to the space observations we demonstrate that the results obtained by potential difference measurements can differ significantly from the one-point results. It was found, in particular, that the intermittency signatures become much weaker, when the proper rocket-probe configuration is implemented. We analyze also signals from an actual ionospheric rocket experiment, and find a reasonably good agreement with the appropriate simulation results, demonstrating again that rocket data, obtained as those analyzed here, are unlikely to give an adequate representation of intermittent features of the low frequency ionospheric plasma turbulence for the given conditions.

  13. Ionization potential depression and optical spectra in a Debye plasma model

    Science.gov (United States)

    Lin, Chengliang; Röpke, Gerd; Reinholz, Heidi; Kraeft, Wolf-Dietrich

    2017-11-01

    We show how optical spectra in dense plasmas are determined by the shift of energy levels as well as the broadening owing to collisions with the plasma particles. In lowest approximation, the interaction with the plasma particles is described by the RPA dielectric function, leading to the Debye shift of the continuum edge. The bound states remain nearly un-shifted, their broadening is calculated in Born approximation. The role of ionization potential depression as well as the Inglis-Teller effect are shown. The model calculations have to be improved going beyond the lowest (RPA) approximation when applying to WDM spectra.

  14. Automatic emissive probe apparatus for accurate plasma and vacuum space potential measurements

    Science.gov (United States)

    Jianquan, LI; Wenqi, LU; Jun, XU; Fei, GAO; Younian, WANG

    2018-02-01

    We have developed an automatic emissive probe apparatus based on the improved inflection point method of the emissive probe for accurate measurements of both plasma potential and vacuum space potential. The apparatus consists of a computer controlled data acquisition card, a working circuit composed by a biasing unit and a heating unit, as well as an emissive probe. With the set parameters of the probe scanning bias, the probe heating current and the fitting range, the apparatus can automatically execute the improved inflection point method and give the measured result. The validity of the automatic emissive probe apparatus is demonstrated in a test measurement of vacuum potential distribution between two parallel plates, showing an excellent accuracy of 0.1 V. Plasma potential was also measured, exhibiting high efficiency and convenient use of the apparatus for space potential measurements.

  15. Electron cooling and finite potential drop in a magnetized plasma expansion

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Sanchez, M. [Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 (United States); Navarro-Cavallé, J. [Escuela Técnica Superior de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Plaza Cardenal Cisneros 3, Madrid 28040 (Spain); Ahedo, E. [Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Avda. Universidad 30, Leganés 28911, Madrid (Spain)

    2015-05-15

    The steady, collisionless, slender flow of a magnetized plasma into a surrounding vacuum is considered. The ion component is modeled as mono-energetic, while electrons are assumed Maxwellian upstream. The magnetic field has a convergent-divergent geometry, and attention is restricted to its paraxial region, so that 2D and drift effects are ignored. By using the conservation of energy and magnetic moment of particles and the quasi-neutrality condition, the ambipolar electric field and the distribution functions of both species are calculated self-consistently, paying attention to the existence of effective potential barriers associated to magnetic mirroring. The solution is used to find the total potential drop for a set of upstream conditions, plus the axial evolution of various moments of interest (density, temperatures, and heat fluxes). The results illuminate the behavior of magnetic nozzles, plasma jets, and other configurations of interest, showing, in particular, in the divergent plasma the collisionless cooling of electrons, and the generation of collisionless electron heat fluxes.

  16. Ionization potential depression in an atomic-solid-plasma picture

    Science.gov (United States)

    Rosmej, F. B.

    2018-05-01

    Exotic solid density matter such as heated hollow crystals allow extended material studies while their physical properties and models such as the famous ionization potential depression are presently under renewed controversial discussion. Here we develop an atomic-solid-plasma (ASP) model that permits ionization potential depression studies also for single and multiple core hole states. Numerical calculations show very good agreement with recently available data not only in absolute values but also for Z-scaled properties while currently employed methods fail. For much above solid density compression, the ASP model predicts increased K-edge energies that are related to a Fermi surface rising. This is in good agreement with recent quantum molecular dynamics simulations. For hot dense matter a quantum number dependent optical electron finite temperature ion sphere model is developed that fits well with line shift and line disappearance data from dense laser produced plasma experiments. Finally, the physical transparency of the ASP picture allows a critical discussion of current methods.

  17. Kinetic-Scale Electric and Magnetic Field Fluctuations in the Solar Wind at 1 AU: THEMIS/ARTEMIS Observations

    Science.gov (United States)

    Salem, C. S.; Hanson, E.; Bonnell, J. W.; Chaston, C. C.; Bale, S. D.; Mozer, F.

    2017-12-01

    We present here an analysis of kinetic-scale electromagnetic fluctuations in the solar wind using data from THEMIS and ARTEMIS spacecraft. We use high-time resolution electric and magnetic field measurements, as well as density fluctuations, up to 128 samples per second, as well as particle burst plasma data during carefully selected solar wind intervals. We focus our analysis on a few such intervals spanning different values of plasma beta and angles between the local magnetic field and the radial Sun-Earth direction. We discuss the careful analysis process of characterizing and removing the different instrumental effects and noise sources affecting the electric and magnetic field data at those scales, above 0.1 Hz or so, above the breakpoint marking the start of the so-called dissipation range of solar wind turbulence. We compute parameters such as the electric to magnetic field ratio, the magnetic compressibility, magnetic helicity, and other relevant quantities in order to diagnose the nature of the fluctuations at those scales between the ion and electron cyclotron frequencies, extracting information on the dominant modes composing the fluctuations. We also discuss the presence and role of coherent structures in the measured fluctuations. The nature of the fluctuations in the dissipation or dispersive scales of solar wind turbulence is still debated. This observational study is also highly relevant to the current Turbulent Dissipation Challenge.

  18. Investigation of tenuous plasma environment using Active Spacecraft Potential Control (ASPOC) on Magnetospheric Multiscale (MMS) Mission

    Science.gov (United States)

    Nakamura, Rumi; Jeszenszky, Harald; Torkar, Klaus; Andriopoulou, Maria; Fremuth, Gerhard; Taijmar, Martin; Scharlemann, Carsten; Svenes, Knut; Escoubet, Philippe; Prattes, Gustav; Laky, Gunter; Giner, Franz; Hoelzl, Bernhard

    2015-04-01

    The NASA's Magnetospheric Multiscale (MMS) Mission is planned to be launched on March 12, 2015. The scientific objectives of the MMS mission are to explore and understand the fundamental plasma physics processes of magnetic reconnection, particle acceleration and turbulence in the Earth's magnetosphere. The region of scientific interest of MMS is in a tenuous plasma environment where the positive spacecraft potential reaches an equilibrium at several tens of Volts. An Active Spacecraft Potential Control (ASPOC) instrument neutralizes the spacecraft potential by releasing positive charge produced by indium ion emitters. ASPOC thereby reduces the potential in order to improve the electric field and low-energy particle measurement. The method has been successfully applied on other spacecraft such as Cluster and Double Star. Two ASPOC units are present on each of the MMS spacecraft. Each unit contains four ion emitters, whereby one emitter per instrument is operated at a time. ASPOC for MMS includes new developments in the design of the emitters and the electronics enabling lower spacecraft potentials, higher reliability, and a more uniform potential structure in the spacecraft's sheath compared to previous missions. Model calculations confirm the findings from previous applications that the plasma measurements will not be affected by the beam's space charge. A perfectly stable spacecraft potential precludes the utilization of the spacecraft as a plasma probe, which is a conventional technique used to estimate ambient plasma density from the spacecraft potential. The small residual variations of the potential controlled by ASPOC, however, still allow to determine ambient plasma density by comparing two closely separated spacecraft and thereby reconstructing the uncontrolled potential variation from the controlled potential. Regular intercalibration of controlled and uncontrolled potentials is expected to increase the reliability of this new method.

  19. High plasma rotation velocity and density transitions by biased electrodes in RF produced, magnetized plasma

    International Nuclear Information System (INIS)

    Matsuyama, Shoichiro; Shinohara, Shunjiro

    2001-01-01

    A large density profile modification was successfully obtained by voltage biasing to electrodes inserted in a RF (radio frequency) produced, magnetized plasma, and formation of strong shear of azimuthal plasma rotation velocity in a supersonic regime was found. For the case of biasing to an electrode near the central plasma region, two types of density transitions were observed in the outer plasma region: one was an oscillatory transition between two states, and the other was a transition from high to low density states with a large reduction of density fluctuations. (author)

  20. High plasma rotation velocity and density transitions by biased electrodes in RF produced, magnetized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Matsuyama, Shoichiro; Shinohara, Shunjiro [Kyushu Univ., Interdisciplinary Graduate School of Engineering Sciences, Fukuoka (Japan)

    2001-07-01

    A large density profile modification was successfully obtained by voltage biasing to electrodes inserted in a RF (radio frequency) produced, magnetized plasma, and formation of strong shear of azimuthal plasma rotation velocity in a supersonic regime was found. For the case of biasing to an electrode near the central plasma region, two types of density transitions were observed in the outer plasma region: one was an oscillatory transition between two states, and the other was a transition from high to low density states with a large reduction of density fluctuations. (author)

  1. Multiplicity fluctuations and collective flow in small colliding systems

    Science.gov (United States)

    Kawaguchi, Koji; Murase, Koichi; Hirano, Tetsufumi

    2017-11-01

    Recent observation of collective-flow-like behaviours in small colliding systems attracts significant theoretical and experimental interests. In large colliding systems, large collective flow has been interpreted as manifestation of almost-perfect fluidity of the quark gluon plasma (QGP). So it is quite intriguing to explore how small the QGP can be as a fluid. Multiplicity fluctuations play a crucial role in centrality definition of the events in small colliding systems since the fluctuations are, in general, more important as the system size is getting smaller. To consider the correct multiplicity fluctuations, we employ PYTHIA which naturally describes multiplicity distribution in p+p collisions. We superpose p+p collisions by taking into account the number of participants and that of binary collisions from Monte-Carlo version of Glauber model and evaluate initial entropy density distributions which contain not only multiplicity fluctuations but also fluctuations of longitudinal profiles. Solving hydrodynamic equations followed by the hadronic afterburner, we calculate transverse momentum spectra, elliptic and triangular flow parameters in p+Au, d+Au and 3He+Au collisions at the RHIC energy and p+Pb collisions at the LHC energy. Although a large fraction of final anisotropic flow parameters comes from the fluid-dynamical stage, the effects of hadronic rescatterings turn out to be also important as well in understanding of the flow data in small colliding systems.

  2. Curvature of fluctuation geometry and its implications on Riemannian fluctuation theory

    International Nuclear Information System (INIS)

    Velazquez, L

    2013-01-01

    Fluctuation geometry was recently proposed as a counterpart approach of the Riemannian geometry of inference theory (widely known as information geometry). This theory describes the geometric features of the statistical manifold M of random events that are described by a family of continuous distributions dp(x|θ). A main goal of this work is to clarify the statistical relevance of the Levi-Civita curvature tensor R ijkl (x|θ) of the statistical manifold M. For this purpose, the notion of irreducible statistical correlations is introduced. Specifically, a distribution dp(x|θ) exhibits irreducible statistical correlations if every distribution dp(x-check|θ) obtained from dp(x|θ) by considering a coordinate change x-check = φ(x) cannot be factorized into independent distributions as dp(x-check|θ) = prod i dp (i) (x-check i |θ). It is shown that the curvature tensor R ijkl (x|θ) arises as a direct indicator about the existence of irreducible statistical correlations. Moreover, the curvature scalar R(x|θ) allows us to introduce a criterium for the applicability of the Gaussian approximation of a given distribution function. This type of asymptotic result is obtained in the framework of the second-order geometric expansion of the distribution family dp(x|θ), which appears as a counterpart development of the high-order asymptotic theory of statistical estimation. In physics, fluctuation geometry represents the mathematical apparatus of a Riemannian extension for Einstein’s fluctuation theory of statistical mechanics. Some exact results of fluctuation geometry are now employed to derive the invariant fluctuation theorems. Moreover, the curvature scalar allows us to express some asymptotic formulae that account for the system fluctuating behavior beyond the Gaussian approximation, e.g.: it appears as a second-order correction of the Legendre transformation between thermodynamic potentials, P(θ)=θ i x-bar i -s( x-bar |θ)+k 2 R(x|θ)/6. (paper)

  3. Charge Fluctuations in Nanoscale Capacitors

    Science.gov (United States)

    Limmer, David T.; Merlet, Céline; Salanne, Mathieu; Chandler, David; Madden, Paul A.; van Roij, René; Rotenberg, Benjamin

    2013-09-01

    The fluctuations of the charge on an electrode contain information on the microscopic correlations within the adjacent fluid and their effect on the electronic properties of the interface. We investigate these fluctuations using molecular dynamics simulations in a constant-potential ensemble with histogram reweighting techniques. This approach offers, in particular, an efficient, accurate, and physically insightful route to the differential capacitance that is broadly applicable. We demonstrate these methods with three different capacitors: pure water between platinum electrodes and a pure as well as a solvent-based organic electrolyte each between graphite electrodes. The total charge distributions with the pure solvent and solvent-based electrolytes are remarkably Gaussian, while in the pure ionic liquid the total charge distribution displays distinct non-Gaussian features, suggesting significant potential-driven changes in the organization of the interfacial fluid.

  4. Charge fluctuations in nanoscale capacitors.

    Science.gov (United States)

    Limmer, David T; Merlet, Céline; Salanne, Mathieu; Chandler, David; Madden, Paul A; van Roij, René; Rotenberg, Benjamin

    2013-09-06

    The fluctuations of the charge on an electrode contain information on the microscopic correlations within the adjacent fluid and their effect on the electronic properties of the interface. We investigate these fluctuations using molecular dynamics simulations in a constant-potential ensemble with histogram reweighting techniques. This approach offers, in particular, an efficient, accurate, and physically insightful route to the differential capacitance that is broadly applicable. We demonstrate these methods with three different capacitors: pure water between platinum electrodes and a pure as well as a solvent-based organic electrolyte each between graphite electrodes. The total charge distributions with the pure solvent and solvent-based electrolytes are remarkably Gaussian, while in the pure ionic liquid the total charge distribution displays distinct non-Gaussian features, suggesting significant potential-driven changes in the organization of the interfacial fluid.

  5. Response of the plasma to the size of an anode electrode biased near the plasma potential

    International Nuclear Information System (INIS)

    Barnat, E. V.; Laity, G. R.; Baalrud, S. D.

    2014-01-01

    As the size of a positively biased electrode increases, the nature of the interface formed between the electrode and the host plasma undergoes a transition from an electron-rich structure (electron sheath) to an intermediate structure containing both ion and electron rich regions (double layer) and ultimately forms an electron-depleted structure (ion sheath). In this study, measurements are performed to further test how the size of an electron-collecting electrode impacts the plasma discharge the electrode is immersed in. This is accomplished using a segmented disk electrode in which individual segments are individually biased to change the effective surface area of the anode. Measurements of bulk plasma parameters such as the collected current density, plasma potential, electron density, electron temperature and optical emission are made as both the size and the bias placed on the electrode are varied. Abrupt transitions in the plasma parameters resulting from changing the electrode surface area are identified in both argon and helium discharges and are compared to the interface transitions predicted by global current balance [S. D. Baalrud, N. Hershkowitz, and B. Longmier, Phys. Plasmas 14, 042109 (2007)]. While the size-dependent transitions in argon agree, the size-dependent transitions observed in helium systematically occur at lower electrode sizes than those nominally derived from prediction. The discrepancy in helium is anticipated to be caused by the finite size of the interface that increases the effective area offered to the plasma for electron loss to the electrode

  6. A correlation electron cyclotron emission diagnostic and the importance of multifield fluctuation measurements for testing nonlinear gyrokinetic turbulence simulations.

    Science.gov (United States)

    White, A E; Schmitz, L; Peebles, W A; Carter, T A; Rhodes, T L; Doyle, E J; Gourdain, P A; Hillesheim, J C; Wang, G; Holland, C; Tynan, G R; Austin, M E; McKee, G R; Shafer, M W; Burrell, K H; Candy, J; DeBoo, J C; Prater, R; Staebler, G M; Waltz, R E; Makowski, M A

    2008-10-01

    A correlation electron cyclotron emission (CECE) diagnostic has been used to measure local, turbulent fluctuations of the electron temperature in the core of DIII-D plasmas. This paper describes the hardware and testing of the CECE diagnostic and highlights the importance of measurements of multifield fluctuation profiles for the testing and validation of nonlinear gyrokinetic codes. The process of testing and validating such codes is critical for extrapolation to next-step fusion devices. For the first time, the radial profiles of electron temperature and density fluctuations are compared to nonlinear gyrokinetic simulations. The CECE diagnostic at DIII-D uses correlation radiometry to measure the rms amplitude and spectrum of the electron temperature fluctuations. Gaussian optics are used to produce a poloidal spot size with w(o) approximately 1.75 cm in the plasma. The intermediate frequency filters and the natural linewidth of the EC emission determine the radial resolution of the CECE diagnostic, which can be less than 1 cm. Wavenumbers resolved by the CECE diagnostic are k(theta) < or = 1.8 cm(-1) and k(r) < or = 4 cm(-1), relevant for studies of long-wavelength turbulence associated with the trapped electron mode and the ion temperature gradient mode. In neutral beam heated L-mode plasmas, core electron temperature fluctuations in the region 0.5 < r/a < 0.9, increase with radius from approximately 0.5% to approximately 2%, similar to density fluctuations that are measured simultaneously with beam emission spectroscopy. After incorporating "synthetic diagnostics" to effectively filter the code output, the simulations reproduce the characteristics of the turbulence and transport at one radial location r/a = 0.5, but not at a second location, r/a = 0.75. These results illustrate that measurements of the profiles of multiple fluctuating fields can provide a significant constraint on the turbulence models employed by the code.

  7. Coherent structures and transport in drift wave plasma turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Bang Korsholm, S.

    2011-12-15

    Fusion energy research aims at developing fusion power plants providing safe and clean energy with abundant fuels. Plasma turbulence induced transport of energy and particles is a performance limiting factor for fusion devices. Hence the understanding of plasma turbulence is important for optimization. The present work is a part of the puzzle to understand the basic physics of transport induced by drift wave turbulence in the edge region of a plasma. The basis for the study is the Hasegawa-Wakatani model. Simulation results for 3D periodic and nonperiodic geometries are presented. The Hasegawa-Wakatani model is further expanded to include ion temperature effects. Another expansion of the model is derived from the Braginskii electron temperature equation. The result is a self-consistent set of equations describing the dynamical evolution of the drift wave fluctuations of the electron density, electron temperature and the potential in the presence of density and temperature gradients. 3D simulation results of the models are presented. Finally, the construction and first results from the MAST fluctuation reflectometer is described. The results demonstrate how L- to H-mode transitions as well as edge-localized-modes can be detected by the relatively simple diagnostic system. The present Risoe report is a slightly updated version of my original PhD report which was submitted in April 2002 and defended in August 2002. (Author)

  8. Coherent structures and transport in drift wave plasma turbulence

    International Nuclear Information System (INIS)

    Bang Korsholm, S.

    2011-12-01

    Fusion energy research aims at developing fusion power plants providing safe and clean energy with abundant fuels. Plasma turbulence induced transport of energy and particles is a performance limiting factor for fusion devices. Hence the understanding of plasma turbulence is important for optimization. The present work is a part of the puzzle to understand the basic physics of transport induced by drift wave turbulence in the edge region of a plasma. The basis for the study is the Hasegawa-Wakatani model. Simulation results for 3D periodic and nonperiodic geometries are presented. The Hasegawa-Wakatani model is further expanded to include ion temperature effects. Another expansion of the model is derived from the Braginskii electron temperature equation. The result is a self-consistent set of equations describing the dynamical evolution of the drift wave fluctuations of the electron density, electron temperature and the potential in the presence of density and temperature gradients. 3D simulation results of the models are presented. Finally, the construction and first results from the MAST fluctuation reflectometer is described. The results demonstrate how L- to H-mode transitions as well as edge-localized-modes can be detected by the relatively simple diagnostic system. The present Risoe report is a slightly updated version of my original PhD report which was submitted in April 2002 and defended in August 2002. (Author)

  9. Localization of fluctuation measurement by wave scattering close to a cut off layer

    International Nuclear Information System (INIS)

    Zou, X.L.; Laurent, L.; Rax, J.M.; Lehner, T.

    1990-01-01

    The diagnostic of plasma fluctuations in tokamaks based on the scattering of an electromagnetic wave close to a cut off layer is investigated. A linear density profile is considered. An one-dimensional exact analysis is performed. Spatial and spectral localization of scattering process close to the cut off layer is studied and a modified Bragg rule is derived. The structure of pump and of scattered waves is analyzed. The diagnostic seems to be local and sensitive for low R fluctuations

  10. Active probing of plasma edge turbulence and feedback studies on the Texas Experimental Tokamak (TEXT)

    International Nuclear Information System (INIS)

    Uckan, T.; Richards, B.; Bengtson, R.D.

    1993-01-01

    The edge fluctuations play a critical role in the overall tokamak confinement. Experiments on TEXT show that electrostatic fluctuations in the edge plasma are the dominant mechanism for energy and particle transport. The basic mechanisms responsible for the edge turbulence are the subject of ongoing research in fusion devices. To understand the driving forces responsible for edge fluctuations, a novel experiment is underway on TEXT to actively modify the turbulence at the plasma edge by launching waves using electrostatic probes in the shadow of the limiter. This technique permits active probing of the spectral properties of the edge turbulence. This new approach to the study of edge fluctuations can provide more insight into the basic dynamics of the turbulence and may, in turn, enable detailed comparison with the theory. These experiments, which rely on the use of oscillating electric fields at the plasma edge, complement edge fluctuation control studies that are presently limited to the use of applied dc biasing to influence the edge electric field profile. These experiments have been extended to control of the edge plasma fluctuation level, using feedback to explore its effects on the edge turbulence characteristics as well as on confinement. (author) 8 refs., 7 figs

  11. Quantum-Mechanical Calculation of Ionization-Potential Lowering in Dense Plasmas

    Directory of Open Access Journals (Sweden)

    Sang-Kil Son (손상길

    2014-07-01

    Full Text Available The charged environment within a dense plasma leads to the phenomenon of ionization-potential depression (IPD for ions embedded in the plasma. Accurate predictions of the IPD effect are of crucial importance for modeling atomic processes occurring within dense plasmas. Several theoretical models have been developed to describe the IPD effect, with frequently discrepant predictions. Only recently, first experiments on IPD in Al plasma have been performed with an x-ray free-electron laser, where their results were found to be in disagreement with the widely used IPD model by Stewart and Pyatt. Another experiment on Al, at the Orion laser, showed disagreement with the model by Ecker and Kröll. This controversy shows a strong need for a rigorous and consistent theoretical approach to calculate the IPD effect. Here, we propose such an approach: a two-step Hartree-Fock-Slater model. With this parameter-free model, we can accurately and efficiently describe the experimental Al data and validate the accuracy of standard IPD models. Our model can be a useful tool for calculating atomic properties within dense plasmas with wide-ranging applications to studies on warm dense matter, shock experiments, planetary science, inertial confinement fusion, and nonequilibrium plasmas created with x-ray free-electron lasers.

  12. Edge fluctuation measurements by phase contrast imaging on DIII-D

    International Nuclear Information System (INIS)

    Coda, S.; Porkolab, M.

    1994-05-01

    A novel CO 2 laser phase contrast imaging diagnostic has been developed for the DIII-D tokamak, where it is being employed to investigate density fluctuations at the outer edge of the plasma. This system generates 16-point, 1-D images of a 7.6 cm wide region in the radial direction, and is characterized by long wavelength (7.6 cm) and high frequency (100 MHz) capability, as well as excellent sensitivity (rvec n approx-gt 10 9 cm -3 ). The effects of vertical line integration have been studied in detail, both analytically and numerically with actual flux surface geometries generated by the EFITD magnetic equilibrium code. It is shown that in the present configuration the measurement is mostly sensitive to radial wave vectors. Experimental results on fluctuation suppression at the L- to H-mode transition and on the L-mode wave number spectrum are discussed briefly. Finally, future plans for extending the measurement to the core of the plasma and for investigating externally launched fast waves are presented

  13. Anisotropic power spectrum of refractive-index fluctuation in hypersonic turbulence.

    Science.gov (United States)

    Li, Jiangting; Yang, Shaofei; Guo, Lixin; Cheng, Mingjian

    2016-11-10

    An anisotropic power spectrum of the refractive-index fluctuation in hypersonic turbulence was obtained by processing the experimental image of the hypersonic plasma sheath and transforming the generalized anisotropic von Kármán spectrum. The power spectrum suggested here can provide as good a fit to measured spectrum data for hypersonic turbulence as that recorded from the nano-planar laser scattering image. Based on the newfound anisotropic hypersonic turbulence power spectrum, Rytov approximation was employed to establish the wave structure function and the spatial coherence radius model of electromagnetic beam propagation in hypersonic turbulence. Enhancing the anisotropy characteristics of the hypersonic turbulence led to a significant improvement in the propagation performance of electromagnetic beams in hypersonic plasma sheath. The influence of hypersonic turbulence on electromagnetic beams increases with the increase of variance of the refractive-index fluctuation and the decrease of turbulence outer scale and anisotropy parameters. The spatial coherence radius was much smaller than that in atmospheric turbulence. These results are fundamental to understanding electromagnetic wave propagation in hypersonic turbulence.

  14. Fluctuation-Coupling of Cathode Cavity Pressure and Arc Voltage in a dc Plasma Torch with a Long Inter-Electrode Channel at Reduced Pressure

    International Nuclear Information System (INIS)

    Cao Jin-Wen; Huang He-Ji; Pan Wen-Xia

    2014-01-01

    Fluctuations of cathode cavity pressure and arc voltage are observed experimentally in a dc plasma torch with a long inter-electrode channel. The results show that they have the same frequency of around 4 kHz under typical experimental conditions. The observed phase difference between the pressure and the voltage, which is influenced by the path length between the pressure sensor and the cathode cavity, varies with different input powers. Combined with numerical simulation, the position of the pressure perturbation origin is estimated, and the results show that it is located at 0.01–0.05 m upstream of the inter-electrode channel outlet

  15. Potentials of fissioning plasmas

    International Nuclear Information System (INIS)

    Karlheinz, Thom.

    1979-01-01

    Successful experiments with the nuclear pumping of lasers have demonstrated that in gaseous medium the kinetic energy of fission fragments can be converted directly into non-equilibrium optical radiation. This confirms the concept that the fissioning medium in a gas-phase nuclear reactor shows an internal structure such as a plasma in nearly thermal equilibrium varying up to a state of extreme-non-equilibrium. The accompanying variations of temperatures, pressure and radiative spectrum suggest wide ranges of applications. For example, in the gas-phase fission reactor concept enriched uranium hexafluoride or an uranium plasma replaces conventional fuel elements and permits operation above the melting point of solid materials. This potential has been motivation for the US National Aeronautics and Space Administration (NASA) to conduct relevant research for high specific impulse propulsion in space. The need to separate the high temperature gaseous fuel from the surfaces of a containing vessel and to protect them against thermal radiation has led to the concept of an externally moderated reactor in which the fissioning gaseous material is suspended by fluid dynamic means and the flow of opaque buffer gas removes the power. The gaseous nuclear fuel can slowly be circulated through the reactor for continuous on-site reprocessing including the annihilation of transuranium actinides at fission when being fed back into the reactor. An equilibrium of the generation and destruction of such actinides at fission when being fed back into the reactor. An equilibrium of the generation and destruction of such actinides can thus be achieved. These characteristics and the unique radiative properties led to the expectation that the gas-phase fission reactor could feature improved safety, safeguarding and economy, in addition to new technologies such as processing, photochemistry and the transmission of power over large distances in space

  16. Origin of density fluctuations in extended inflation

    International Nuclear Information System (INIS)

    Kolb, E.W.; Salopek, D.S.; Turner, M.S.

    1990-01-01

    We calculate both the curvature and isocurvature density fluctuations that arise due to quantum fluctuations in a simple model of extended inflation based upon the Jordan-Brans-Dicke theory. The curvature fluctuations that arise due to quantum fluctuations in the Brans-Dicke field in general have a non-scale-invariant spectrum and an amplitude that is cosmologically acceptable and interesting without having to tune any coupling constant to a very small value. The curvature perturbations that arise due to the Higgs field are subdominant. If there are other massless fields in the theory, e.g., an axion or an ilion, then isocurvature fluctuations arise in these fields too. Production of gravitational waves and the massless particles associated with excitations of the Brans-Dicke field are also discussed. Several attempts at more realistic models of extended inflation are also analyzed. The importance of the Einstein conformal frame in calculating curvature fluctuations is emphasized. When viewed in this frame, extended inflation closely resembles slow-rollover inflation with an exponential potential, and the usual formula for the amplitude of curvature perturbations applies directly

  17. Origin of density fluctuations in extended inflation

    International Nuclear Information System (INIS)

    Kolb, E.W.; Salopek, D.S.; Turner, M.S.

    1990-05-01

    The density fluctuations (both curvature and isocurvature) that arise due to quantum fluctuations in a simple model of extended inflation based upon the Jordan-Brans-Dicke theory are calculated. Curvature fluctuations arise due to quantum fluctuations in the Brans-Dicke field, in general have a nonscale-invariant spectrum, and can have an amplitude that is cosmologically acceptable and interesting without having to tune any coupling constant to a very small value. The density perturbations that arise due to the inflation field are subdominant. If there are other massless fields in the theory, e.g., an axion or an ilion, then isocurvature fluctuations arise in these fields too. Production of gravitational waves and the massless particles associated with excitations of the Brans-Dicke field are also discussed. Several attempts at more realistic models of extended inflation are also analyzed. The importance of the Einstein conformal frame in calculating curvature fluctuations is emphasized. When viewed in this frame, extended inflation closely resembles slow-rollover inflation with an exponential potential and the usual formula for the amplitude of curvature perturbations applies

  18. Cold atmospheric plasma as a potential tool for multiple myeloma treatment

    Science.gov (United States)

    Cui, Qingjie; Liu, Dingxin; Liu, Zhijie; Wang, Xiaohua; Yang, Yanjie; Feng, Miaojuan; Liang, Rong; Chen, Hailan; Ye, Kai; Kong, Michael G.

    2018-01-01

    Multiple myeloma (MM) is a fatal and incurable hematological malignancy thus new therapy need to be developed. Cold atmospheric plasma, a new technology that could generate various active species, could efficiently induce various tumor cells apoptosis. More details about the interaction of plasma and tumor cells need to be addressed before the application of gas plasma in clinical cancer treatment. In this study, we demonstrate that He+O2 plasma could efficiently induce myeloma cell apoptosis through the activation of CD95 and downstream caspase cascades. Extracellular and intracellular reactive oxygen species (ROS) accumulation is essential for CD95-mediated cell apoptosis in response to plasma treatment. Furthermore, p53 is shown to be a key transcription factor in activating CD95 and caspase cascades. More importantly, we demonstrate that CD95 expression is higher in tumor cells than in normal cells in both MM cell lines and MM clinical samples, which suggests that CD95 could be a favorable target for plasma treatment as it could selectively inactivate myeloma tumor cells. Our results illustrate the molecular details of plasma induced myeloma cell apoptosis and it shows that gas plasma could be a potential tool for myeloma therapy in the future. PMID:29719586

  19. Plasma diagnostics for tokamaks and stellarators

    International Nuclear Information System (INIS)

    Stott, P.E.; Sanchez, J.

    1994-01-01

    A collection of papers on plasma diagnostics is presented. The papers show the state of the art developments in a series of techniques: magnetic diagnostics, Edge diagnostics, Langmuir probes, Spectroscopy, Microwave and FIR diagnostics as well as Thomson Sattering. Special interest was focused on those diagnostics oriented to fluctuations measurements in the plasma

  20. The Bohm criterion for a dusty plasma sheath

    Indian Academy of Sciences (India)

    undergo temperature fluctuations due to collision, the mean square fluctuation in their temperature is much less than the equilibrium temperature. The problem of sheath dynamics with the plasma–wall interactions is of great importance in a number of areas, viz., plasma ion implantation, high-density com- puter chip ...

  1. Zero-point oscillations, zero-point fluctuations, and fluctuations of zero-point oscillations

    International Nuclear Information System (INIS)

    Khalili, Farit Ya

    2003-01-01

    Several physical effects and methodological issues relating to the ground state of an oscillator are considered. Even in the simplest case of an ideal lossless harmonic oscillator, its ground state exhibits properties that are unusual from the classical point of view. In particular, the mean value of the product of two non-negative observables, kinetic and potential energies, is negative in the ground state. It is shown that semiclassical and rigorous quantum approaches yield substantially different results for the ground state energy fluctuations of an oscillator with finite losses. The dependence of zero-point fluctuations on the boundary conditions is considered. Using this dependence, it is possible to transmit information without emitting electromagnetic quanta. Fluctuations of electromagnetic pressure of zero-point oscillations are analyzed, and the corresponding mechanical friction is considered. This friction can be viewed as the most fundamental mechanism limiting the quality factor of mechanical oscillators. Observation of these effects exceeds the possibilities of contemporary experimental physics but almost undoubtedly will be possible in the near future. (methodological notes)

  2. Structural instability of sheath potential distribution and its possible implications for the L/H transition in tokamak plasmas

    International Nuclear Information System (INIS)

    Yoshida, Zensho; Yamada, Hiroshi.

    1988-07-01

    The Bohm equation of electrostatic potential distributions in one-dimensional plasmas has been studied for various Mach numbers and plasma potentials. Solvability and structural stability have been discussed using the Sagdeev potential. Implications of the structural stability for the L/H transitions in tokamak plasmas has been also discussed. (author)

  3. Experimental evidence of widespread regions of small-scale plasma irregularities in the magnetosphere

    International Nuclear Information System (INIS)

    Holmgren, G.; Kintner, P.M.

    1990-01-01

    Small-scale (≤ 1 km) plasma irregularities have previously been observed in situ from the E region to an altitude of 8,000 km. In this paper the authors report results from the Viking plasma wave experiments which extends the measurements of high-latitude irregularities in two ways: (1) they have acquired electron density fluctuation measurements up to an altitude of 13,500 km and (2) for the first time a measurement technique was used that made a phase velocity deduction possible from in situ measurements. The spacecraft was equipped with two spatially separated Langmuir probes, each with an ability to measure relative probe current fluctuations with frequencies from dc to about 400 Hz. Under certain assumptions the current fluctuations could be interpreted as relative plasma density fluctuations, δn e /n e . Data from this interferometric instrument has been used to infer the distribution and nature of plasma irregularities along Viking orbits. It is demonstrated that the interferometric technique offers great advantages compared to single point measurements in this kind of study. It is shown that the observed small-scale plasma irregularities are nondispersive and convecting with the background plasma. They exhibit a power law frequency spectrum as observed in the satellite reference frame. The spectral index varies with location. An attempt to map source regions by identifying regions of high power and shallow spectrums is made

  4. An extra contribution to the Mikheyev-Smirnov-Wolfenstein potential in a CP-nonsymmetric plasma

    International Nuclear Information System (INIS)

    Horvat, R.

    1991-01-01

    Owing to matter-induced electromagnetic properties of neutrinos, v L e - → v L e - electromagnetic scattering in a plasma becomes possible even in the standard model with massless left-handed neutrinos. Electric-charge screening in a plasma causes the contribution to the external potential for a left-handed neutrino field to be the same as the ordinary Mikheyev-Smirnov-Wolfenstein potential. (orig.)

  5. Diagnostic needs for fluctuations and transport studies

    International Nuclear Information System (INIS)

    Carreras, B.A.

    1992-01-01

    The identification of fundamental transport mechanisms in magnetically confined plasmas is a critical issue for the magnetic fusion program. Recent progress in understanding fluctuations and transport is well correlated with the development and use of new diagnostics, but there a great deal of information is still missing. Some of the required measurements are well beyond our present diagnostic capabilities, but some are within reach and could answer critical questions in this area of research. Some of these critical issues are discussed

  6. Plasma screening effects on the energies of hydrogen atom under the influence of velocity-dependent potential

    International Nuclear Information System (INIS)

    Bahar, M. K.

    2014-01-01

    In order to examine the plasma screening and velocity-dependent potential effects on the hydrogen atom, the Schrödinger equation including a more general exponential cosine screened Coulomb and velocity-dependent potential is solved numerically in the framework asymptotic iteration method. The more general exponential cosine screened Coulomb potential is used to model Debye and quantum plasma for the specific values of the parameters in its structure. However, in order to examine effects of velocity-dependent potential on energy values of hydrogen atom in Debye and quantum plasma, the isotropic form factor of velocity-dependent potential is given as harmonic oscillator type, ρ(r)=ρ o r 2 . Then, the energies of s and p states are calculated numerically without any approximation. In order to investigate thoroughly plasma screening effects and contribution of velocity-dependent potential on energy values of hydrogen atom, the corresponding calculations are carried out by using different values of parameters of more general exponential cosine screened Coulomb potential and isotropic dependence, results of which are discussed

  7. Rates of Thermonuclear Reactions in Dense Plasmas

    International Nuclear Information System (INIS)

    Tsytovich, V.N.; Bornatici, M.

    2000-01-01

    The problem of plasma screening of thermonuclear reactions has attracted considerable scientific interest ever since Salpeter's seminal paper, but it is still faced with controversial statements and without any definite conclusion. It is of relevant importance to thermonuclear reactions in dense astrophysical plasmas, for which charge screening can substantially affect the reaction rates. Whereas Salpeter and a number of subsequent investigations have dealt with static screening, Carraro, Schafer, and Koonin have drawn attention to the fact that plasma screening of thermonuclear reactions is an essentially dynamic effect. In addressing the issue of collective plasma effects on the thermonuclear reaction rates, the first critical overview of most of the work carried out so far is presented and the validity of the test particle approach is assessed. In contrast to previous investigations, we base our description on the kinetic equation for nonequilibrium plasmas, which accounts for the effects on the rates of thermonuclear reactions of both plasma fluctuations and screening and allows one to analyze explicitly the effects of the fluctuations on the reaction rates. Such a kinetic formulation is more general than both Salpeter's approach and the recently developed statistical approaches and makes it possible to obtain a more comprehensive understanding of the problem. A noticeable result of the fluctuation approach is that the static screening, which affects both the interaction and the self-energy of the reacting nuclei, does not affect the reaction rates, in contrast with the results obtained so far. Instead, a reduction of the thermonuclear reaction rates is obtained as a result of the effect of plasma fluctuations related to the free self-energy of the reacting nuclei. A simple physical explanation of the slowing down of the reaction rates is given, and the relation to the dynamically screened test particle approach is discussed. Corrections to the reaction rates

  8. Respondence Between Electrochemical Fluctuations and Phenomenon for Localized Corrosion of Less-Noble Metals

    International Nuclear Information System (INIS)

    Itoi, Yasuhiko; Take, Seisho; Tsuru, Tooru

    2008-01-01

    We have been studying application of electrochemical noise (Fluctuation) analysis for localized corrosion. Foils of Zinc, Aluminum and Magnesium were used as specimens for electrochemical cell simulating localized corrosion. These specimens were dipped in sodium chloride solutions adjusted to each exponent of hydrogen ion concentration (pH) condition of 5.5, 10, 12 respectively. Time variations of potential and current were measured in those solutions, and simultaneously the surfaces of specimens were observed using microscope with television monitor. Two types of electrochemical cells were arranged for experiments simulated localized corrosion. The fluctuations on trendy component of short-circuited potential and short-circuited current were appeared in synchronization. It was seemed that these fluctuations result from hydrogen evolution on the aluminum active site in the crevice from the microscopic observation. In the case of zinc and magnesium, fluctuations appeared on the trendy component of the corrosion potential. Two types fluctuation were detected. First one is the fluctuation varied periodically. The second one is the random fluctuation. It was seemed that these fluctuations result from generation of corrosion products and hydrogen evolution on the active site in the crevice of zinc and magnesium from the microscopic observation

  9. Investigation of RF-enhanced plasma potentials on Alcator C-Mod

    International Nuclear Information System (INIS)

    Ochoukov, R.; Whyte, D.G.; Brunner, D.; Cziegler, I.; LaBombard, B.; Lipschultz, B.; Myra, J.; Terry, J.; Wukitch, S.

    2013-01-01

    Radio frequency (RF) sheath rectification is a leading mechanism suspected of causing anomalously high erosion of plasma facing materials in RF-heated plasmas on Alcator C-Mod. An extensive experimental survey of the plasma potential (Φ P ) in RF-heated discharges on C-Mod reveals that significant Φ P enhancement (>100 V) is found on outboard limiter surfaces, both mapped and not mapped to active RF antennas. Surfaces that magnetically map to active RF antennas show Φ P enhancement that is, in part, consistent with the recently proposed slow wave rectification mechanism. Surfaces that do not map to active RF antennas also experience significant Φ P enhancement, which strongly correlates with the local fast wave intensity. In this case, fast wave rectification is a leading candidate mechanism responsible for the observed enhancement

  10. Finding evidence for density fluctuation effects on electron cyclotron heating deposition profiles on DIII-D

    International Nuclear Information System (INIS)

    Brookman, M. W.; Austin, M. E.; Petty, C. C.

    2015-01-01

    Theoretical work, computation, and results from TCV [J. Decker “Effect of density fluctuations on ECCD in ITER and TCV,” EPJ Web of Conf. 32, 01016 (2012)] suggest that density fluctuations in the edge region of a tokamak plasma can cause broadening of the ECH deposition profile. In this paper, a GUI tool is presented which is used for analysis of ECH deposition as a first step towards looking for this broadening, which could explain effects seen in previous DIII-D ECH transport studies [K.W. Gentle “Electron energy transport inferences from modulated electron cyclotron heating in DIII-D,” Phys. Plasmas 13, 012311 (2006)]. By applying an FFT to the T e measurements from the University of Texas’s 40-channel ECE Radiometer, and using a simplified thermal transport equation, the flux surface extent of ECH deposition is determined. The Fourier method analysis is compared with a Break-In-Slope (BIS) analysis and predictions from the ray-tracing code TORAY. Examination of multiple Fourier harmonics and BIS fitting methods allow an estimation of modulated transport coefficients and thereby the true ECH deposition profile. Correlations between edge fluctuations and ECH deposition in legacy data are also explored as a step towards establishing a link between fluctuations and deposition broadening in DIII-D

  11. Finding evidence for density fluctuation effects on electron cyclotron heating deposition profiles on DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Brookman, M. W., E-mail: brookmanmw@fusion.gat.com; Austin, M. E. [Institute for Fusion Studies, University of Texas at Austin, MS 13-505, 3483 Dunhill St, San Diego, CA 92121-1200 (United States); Petty, C. C. [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States)

    2015-12-10

    Theoretical work, computation, and results from TCV [J. Decker “Effect of density fluctuations on ECCD in ITER and TCV,” EPJ Web of Conf. 32, 01016 (2012)] suggest that density fluctuations in the edge region of a tokamak plasma can cause broadening of the ECH deposition profile. In this paper, a GUI tool is presented which is used for analysis of ECH deposition as a first step towards looking for this broadening, which could explain effects seen in previous DIII-D ECH transport studies [K.W. Gentle “Electron energy transport inferences from modulated electron cyclotron heating in DIII-D,” Phys. Plasmas 13, 012311 (2006)]. By applying an FFT to the T{sub e} measurements from the University of Texas’s 40-channel ECE Radiometer, and using a simplified thermal transport equation, the flux surface extent of ECH deposition is determined. The Fourier method analysis is compared with a Break-In-Slope (BIS) analysis and predictions from the ray-tracing code TORAY. Examination of multiple Fourier harmonics and BIS fitting methods allow an estimation of modulated transport coefficients and thereby the true ECH deposition profile. Correlations between edge fluctuations and ECH deposition in legacy data are also explored as a step towards establishing a link between fluctuations and deposition broadening in DIII-D.

  12. Fluctuations in high βp plasmas in DIII-D

    International Nuclear Information System (INIS)

    Casper, T.A.; Chu, M.S.; Gohil, P.

    1994-07-01

    In our investigation of improved confinement in high poloidal beta (β p = 2 to 4) advanced tokamak experiments, we observe that the internal MHD activity evolves from an m/n = 2/1 to a 3/1 structure coincident with q o rising above 2, and consistent with the GATO code stability analysis. The plasma eventually evolves to a quiescent state at which time the stored energy increases, mostly as a result of improved particle confinement. The bootstrap fraction rises to 80%. The measured plasma pressure profiles during this time are calculated to be stable to high-n ballooning modes consistent with operation of the core in the second stable regime. The sustained improvement in confinement is ultimately limited by our ability to control the toroidal current profile

  13. Observation of floating potential asymmetry in the edge plasma of ...

    Indian Academy of Sciences (India)

    Floating potential; vertical magnetic field; vertical electric field reversal; vertical electric field reversal ... Similar exchange of behavior for bottom probe of figure 1 with top probe of ... In our case rate of rise of plasma currents and also the total ...

  14. Plasma potential in a magnetic mirror with electron-cyclotron-resonance heating

    International Nuclear Information System (INIS)

    Smith, P.K.

    1983-01-01

    Experimental and theoretical studies of the ECRH plasma in the University of Wisconsin DE Machine magnetic mirror have been undertaken. Typical plasma parameters in these experiments were T/sub e/ - 10 to 30 eV, T/sub i/ - 4 eV, V/sub po/ (plasma potential at midplane) - 20 to 50 V, midplane plasma density n 0 - 10 16 m - 3 , B 0 (magnetic field strength on axis at midplane) - .005 to .01 T, mirror ratio R - 5 to 20. The principal experimental findings were the appearance of strong density peaks (approx. 2 x background) and notable V/sub f/ dips (approx. kT/sub e//e) in a narrow (approx. 1 cm) region near the axial positions of cyclotron resonance. The properties of these dips do not change greatly over the range of operating parameters, but are narrower at higher pressures

  15. Electron plasma waves in CO/sub 2/ laser plasma interactions

    International Nuclear Information System (INIS)

    Baldis, H.A.; Villeneuve, D.M.; Walsh, C.J.

    1984-01-01

    During the past few years, the use of Thomson scattering in CO/sub 2/ laser produced plasmas has permitted the identification and study of electron plasma waves and ion waves, driven by various instabilities in the plasma corona, such as Stimulated Raman Scattering (SRS), two plasmon decay, and Stimulated Brillouin Scattering (SBS). Since these instabilities may coexist in the plasma, the density fluctuations associated with one wave may influence the behaviour of one or more of the other instabilities. The authors discuss the experimental evidence of such effects and, in particular, the consequences of a recent experiment in which the ion waves driven by SBS were observed to adversely affect the production of the electron plasma waves driven by SRS. In that experiment, a strong correlation was observed between the onset of SBS and the disappearance of the electron plasma waves driven by SRS at low densities (n/sub e/ n/sub e/ > 0.05 n/sub c/)

  16. ELECTRON TEMPERATURE FLUCTUATIONS AND CROSS-FIELD HEAT TRANSPORT IN THE EDGE OF DIII-D

    International Nuclear Information System (INIS)

    RUDAKOV, DL; BOEDO, JA; MOYER, RA; KRASENINNIKOV, S; MAHDAVI, MA; McKEE, GR; PORTER, GD; STANGEBY, PC; WATKINS, JG; WEST, WP; WHYTE, DG.

    2003-01-01

    OAK-B135 The fluctuating E x B velocity due to electrostatic turbulence is widely accepted as a major contributor to the anomalous cross-field transport of particles and heat in the tokamak edge and scrape-off layer (SOL) plasmas. This has been confirmed by direct measurements of the turbulent E x B transport in a number of experiments. Correlated fluctuations of the plasma radial velocity v r , density n, and temperature T e result in time-average fluxes of particles and heat given by (for electrons): Equation 1--Λ r ES = r > = 1/B varφ θ ; Equation 2--Q r ES = e (tilde v) r > ∼ 3/2 kT e Λ r ES + 3 n e /2 B varφ e (tilde E) θ > Q conv + Q cond . The first term in Equation 2 is referred to as convective and the second term as conductive heat flux. Experimental determination of fluxes given by Equations 1 and 2 requires simultaneous measurements of the density, temperature and poloidal electric field fluctuations with high spatial and temporal resolution. Langmuir probes provide most readily available (if not the only) tool for such measurements. However, fast measurements of electron temperature using probes are non-trivial and are not always performed. Thus, the contribution of the T e fluctuations to the turbulent fluxes is usually neglected. Here they report results of the studies of T e fluctuations and their effect on the cross-field transport in the SOL of DIII-D

  17. Scattering of ECRF waves by edge density fluctuations and blobs

    Directory of Open Access Journals (Sweden)

    Ram Abhay K.

    2015-01-01

    Full Text Available The scattering of electron cyclotron waves by density blobs embedded in the edge region of a fusion plasma is studied using a full-wave model. The full-wave theory is a generalization of the usual approach of geometric optics ray scattering by blobs. While the latter allows for only refraction of waves, the former, more general formulation, includes refraction, reflection, and diffraction of waves. Furthermore, the geometric optics, ray tracing, model is limited to blob densities that are slightly different from the background plasma density. Observations in tokamak experiments show that the fluctuating density differs from the background plasma density by 20% or more. Thus, the geometric optics model is not a physically realistic model of scattering of electron cyclotron waves by plasma blobs. The differences between the ray tracing approach and the full-wave approach to scattering are illustrated in this paper.

  18. Interannual water-level fluctuations and the vegetation of prairie potholes: Potential impacts of climate change

    Science.gov (United States)

    van der Valk, Arnold; Mushet, David M.

    2016-01-01

    Mean water depth and range of interannual water-level fluctuations over wet-dry cycles in precipitation are major drivers of vegetation zone formation in North American prairie potholes. We used harmonic hydrological models, which require only mean interannual water depth and amplitude of water-level fluctuations over a wet–dry cycle, to examine how the vegetation zones in a pothole would respond to small changes in water depth and/or amplitude of water-level fluctuations. Field data from wetlands in Saskatchewan, North Dakota, and South Dakota were used to parameterize harmonic models for four pothole classes. Six scenarios in which small negative or positive changes in either mean water depth, amplitude of interannual fluctuations, or both, were modeled to predict if they would affect the number of zones in each wetland class. The results indicated that, in some cases, even small changes in mean water depth when coupled with a small change in amplitude of water-level fluctuations can shift a prairie pothole wetland from one class to another. Our results suggest that climate change could alter the relative proportion of different wetland classes in the prairie pothole region.

  19. Plasma diagnostics for tokamaks and stellarators

    Energy Technology Data Exchange (ETDEWEB)

    Stott, P E; Sanchez, J

    1994-07-01

    A collection of papers on plasma diagnostics is presented. The papers show the state of the art developments in a series of techniques: Magnetic diagnostics, Edge diagnostics, Langmuir probes, Spectroscopy, Microwave and FIR diagnostics as well as Thomson Scattering. Special interest was focused on those diagnostics oriented to fluctuations measurements in the plasma. (Author) 451 refs.

  20. Rocket measurements within a polar cap arc: Plasma, particle, and electric circuit parameters

    International Nuclear Information System (INIS)

    Weber, E.J.; Ballenthin, J.O.; Basu, S.; Carlson, H.C.; Hardy, D.A.; Maynard, N.C.; Smiddy, M.; Kelley, M.C.; Fleischman, J.R.; Sheehan, R.E.; Pfaff, R.F.; Rodriguez, P.

    1989-01-01

    An instrumented rocket payload was launched into a polar cap F layer aurora to investigate the energetic particle, plasma, and electric circuit parameters of a Sun-aligned arc. On-board instruments measured energetic electron flux, ion composition and density fluctuations, electron density and temperature, electron density fluctuations, and ac and dc electric fields. Real-time all-sky imaging photometer measurements of the location and motion of the aurora, were used to determine the proper geophysical situation for launch. Comparison of the in situ measurements with remote optical measurements shows that the arc was produced by fluxes of low-energy (< 1 keV) electrons. Field-aligned potentials in the arc inferred from the electron spectra had a maximum value of approximately 300 V, and from the spectral shape a parent population of preaccelerated electrons characteristic of the boundary plasma sheet or magnetosheath was inferred. Electric field components along and across the arc show sunward flow within the arc and duskward drift of the arc consistent with the drift direction and speed determined from optical imaging. Thus this arc is drifting duskward under the influence of the convection electric field. Three possible explanations for this (field-aligned currents, chemistry, and transport) are considered. Finally, ionospheric irregularity and electric field fluctuations indicate two different generation mechanisms on the dawnside and duskside of the arc. On the duskside, parameters are suggestive of an interchange process, while on the dawnside, fluctuation parameters are consistent with a velocity shear instability