WorldWideScience

Sample records for plasma polymer composite

  1. Layered plasma polymer composite membranes

    Science.gov (United States)

    Babcock, Walter C.

    1994-01-01

    Layered plasma polymer composite fluid separation membranes are disclosed, which comprise alternating selective and permeable layers for a total of at least 2n layers, where n is .gtoreq.2 and is the number of selective layers.

  2. Solid polymer electrolyte composite membrane comprising plasma etched porous support

    Science.gov (United States)

    Liu, Han; LaConti, Anthony B.

    2010-10-05

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 0.1 to 5 microns, are made by plasma etching and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  3. Study of Organosilicon Plasma Polymer Used in Composite Layers with Biomedical Application

    International Nuclear Information System (INIS)

    Radeva, E.; Pramatarova, L.; Pecheva, E.; Hikov, T.; Fingarova, D.; Iacob, E.; Vanzetti, L.; Dimitrova, R.; Krasteva, N.; Spassov, T.

    2010-01-01

    In this work we study the ability of plasma polymer (PP) films obtained from hexamethyldisiloxane (HMDS) on silica glass (SG) to induce hydroxyapatite (HA)-based composite layers from a mixture of simulated body fluid (SBF) and clear solution of detonation nanodiamond (DND) by a biomimetic process. The grown composites (PPHMDS/HADND) were studied by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and Rutherford backscattering (RBS) techniques. FTIR spectra of the PPHMDS indicated diminishing of the polymer characteristic bands when the polymer is immersed in DND clear solution. Furthermore, after sample immersion in the SBF-DND mixture, the FTIR spectra showed the presence of carbonate-containing HA through the characteristic vibration modes of P-O in the phosphate group and C-O in the carbonate group. The formation of HA layers, rich in silica and/or carbon was confirmed by RBS and SEM. The cell viability measured after 7 days on the polymer surface is more then 95% for all samples. The results show that the PPHMDS is promising as a substrate for growing HA/DND layers and that the materials obtained are biocompatible. The variations of plasma polymerization conditions and modification of the composite layers will aid in using such materials for biomedical applications.

  4. Low-temperature oxidizing plasma surface modification and composite polymer thin-film fabrication techniques for tailoring the composition and behavior of polymer surfaces

    Science.gov (United States)

    Tompkins, Brendan D.

    This dissertation examines methods for modifying the composition and behavior of polymer material surfaces. This is accomplished using (1) low-temperature low-density oxidizing plasmas to etch and implant new functionality on polymers, and (2) plasma enhanced chemical vapor deposition (PECVD) techniques to fabricate composite polymer materials. Emphases are placed on the structure of modified polymer surfaces, the evolution of polymer surfaces after treatment, and the species responsible for modifying polymers during plasma processing. H2O vapor plasma modification of high-density polyethylene (HDPE), low-density polyethylene (LDPE), polypropylene (PP), polystyrene (PS), polycarbonate (PC), and 75A polyurethane (PU) was examined to further our understanding of polymer surface reorganization leading to hydrophobic recovery. Water contact angles (wCA) measurements showed that PP and PS were the most susceptible to hydrophobic recovery, while PC and HDPE were the most stable. X-ray photoelectron spectroscopy (XPS) revealed a significant quantity of polar functional groups on the surface of all treated polymer samples. Shifts in the C1s binding energies (BE) with sample age were measured on PP and PS, revealing that surface reorganization was responsible for hydrophobic recovery on these materials. Differential scanning calorimetry (DSC) was used to rule out the intrinsic thermal properties as the cause of reorganization and hydrophobic recovery on HDPE, LDPE, and PP. The different contributions that polymer cross-linking and chain scission mechanisms make to polymer aging effects are considered. The H2O plasma treatment technique was extended to the modification of 0.2 microm and 3.0 microm track-etched polycarbonate (PC-TE) and track-etched polyethylene terephthalate (PET-TE) membranes with the goal of permanently increasing the hydrophilicity of the membrane surfaces. Contact angle measurements on freshly treated and aged samples confirmed the wettability of the

  5. Scanning probe microscopy for the analysis of composite Ti/hydrocarbon plasma polymer thin films

    Science.gov (United States)

    Choukourov, A.; Grinevich, A.; Slavinska, D.; Biederman, H.; Saito, N.; Takai, O.

    2008-03-01

    Composite Ti/hydrocarbon plasma polymer films with different Ti concentration were deposited on silicon by dc magnetron sputtering of titanium in an atmosphere of argon and hexane. As measured by Kelvin force microscopy and visco-elastic atomic force microscopy, respectively, surface potential and hardness increase with increasing Ti content. Adhesion force to silicon and to fibrinogen molecules was stronger for the Ti-rich films as evaluated from the AFM force-distance curves. Fibrinogen forms a very soft layer on these composites with part of the protein molecules embedded in the outermost region of the plasma polymer. An increase of the surface charge due to fibrinogen adsorption has been observed and attributed to positively charged αC domains of fibrinogen molecule.

  6. Oxygen plasma treatment and deposition of CNx on a fluorinated polymer matrix composite for improved erosion resistance

    International Nuclear Information System (INIS)

    Muratore, C.; Korenyi-Both, A.; Bultman, J. E.; Waite, A. R.; Jones, J. G.; Storage, T. M.; Voevodin, A. A.

    2007-01-01

    The use of polymer matrix composites in aerospace propulsion applications is currently limited by insufficient resistance to erosion by abrasive media. Erosion resistant coatings may provide necessary protection; however, adhesion to many high temperature polymer matrix composite (PMC) materials is poor. A low pressure oxygen plasma treatment process was developed to improve adhesion of CN x coatings to a carbon reinforced, fluorinated polymer matrix composite. Fullerene-like CN x was selected as an erosion resistant coating for its high hardness-to-elastic modulus ratio and elastic resilience which were expected to reduce erosion from media incident at different angles (normal or glancing) relative to the surface. In situ x-ray photoelectron spectroscopy was used to evaluate the effect of the plasma treatment on surface chemistry, and electron microscopy was used to identify changes in the surface morphology of the PMC substrate after plasma exposure. The fluorine concentration at the surface was significantly reduced and the carbon fibers were exposed after plasma treatment. CN x coatings were then deposited on oxygen treated PMC substrates. Qualitative tests demonstrated that plasma treatment improved coating adhesion resulting in an erosion resistance improvement of a factor of 2 compared to untreated coated composite substrates. The combination of PMC pretreatment and coating with CN x reduced the erosion rate by an order of magnitude for normally incident particles

  7. Tailoring of the morphology and chemical composition of thin organosilane microwave plasma polymer layers on metal substrates

    Energy Technology Data Exchange (ETDEWEB)

    Grundmeier, G.; Thiemann, P.; Carpentier, J.; Shirtcliffe, N.; Stratmann, M

    2004-01-01

    The growth of thin microwave organosilicon plasma polymers on model zinc surfaces was investigated as a function of the film thickness and the oxygen partial pressure during film deposition. The evolution of the topology of the film was studied by atomic force microscopy (AFM). The nano- and micro-roughness was investigated at the inner and the outer surfaces of the plasma polymers. A special etching procedure was developed to reveal the underside of the plasma polymer and thereby its inner surface. Rough films contained voids at the interface, which reduced the polymer/metal contact area. The increase in oxygen partial pressure led to a smoother film growth with a perfect imitation of the substrate topography at the interface. The chemical structure of the films was determined by infrared reflection absorption spectroscopy (IRRAS), X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectroscopy (ToF-SIMS). ToF-SIMS at the outer and the inner surface of the plasma polymers showed that the density of methylsilyl groups increases in the outer surface layer of the plasma polymer and depends on the oxygen partial pressure. The chemical composition of the films could be altered to pure SiO{sub 2} without changing the morphology by using oxygen-plasma post-treatment. This was proved by means of IRRAS and AFM. Chemistry and topology of the films were correlated with the apparent water contact angle. It was found that a linear relationship exists between the nanoscopic roughness of the plasma polymer and the static contact angle of water. Superposition of a nanoscopic roughness of the metal surface and the nanoscopic roughness of methylsilyl-rich films led to ultra-hydrophobic films with water contact angles up to 160 deg.

  8. Composite materials obtained by the ion-plasma sputtering of metal compound coatings on polymer films

    Science.gov (United States)

    Khlebnikov, Nikolai; Polyakov, Evgenii; Borisov, Sergei; Barashev, Nikolai; Biramov, Emir; Maltceva, Anastasia; Vereshchagin, Artem; Khartov, Stas; Voronin, Anton

    2016-01-01

    In this article, the principle and examples composite materials obtained by deposition of metal compound coatings on polymer film substrates by the ion-plasma sputtering method are presented. A synergistic effect is to obtain the materials with structural properties of the polymer substrate and the surface properties of the metal deposited coatings. The technology of sputtering of TiN coatings of various thicknesses on polyethylene terephthalate films is discussed. The obtained composites are characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), and scanning tunneling microscopy (STM) is shown. The examples of application of this method, such as receiving nanocomposite track membranes and flexible transparent electrodes, are considered.

  9. Apparent Surface Free Energy of Polymer/Paper Composite Material Treated by Air Plasma

    Directory of Open Access Journals (Sweden)

    Konrad Terpiłowski

    2017-01-01

    Full Text Available Surface plasma treatment consists in changes of surface properties without changing internal properties. In this paper composite polymer/paper material is used for production of packaging in cosmetic industry. There are problems with bonding this material at the time of packaging production due to its properties. Composite surface was treated by air plasma for 1, 10, 20, and 30 s. The advancing and receding contact angles of water, formamide, and diiodomethane were measured using both treated and untreated samples. Apparent surface free energy was estimated using the hysteresis (CAH and Van Oss, Good, Chaudhury approaches (LWAB. Surface roughness was investigated using optical profilometry and identification of after plasma treatment emerging chemical groups was made by means of the XPS (X-ray photoelectron spectroscopy technique. After plasma treatment the values of contact angles decreased which is particularly evident for polar liquids. Apparent surface free energy increased compared to that of untreated samples. Changes of energy value are due to the electron-donor parameter of energy. This parameter increases as a result of adding polar groups at the time of surface plasma activation. Changes of surface properties are combination of increase of polar chemical functional groups, increase on the surface, and surface roughness increase.

  10. Nanoscale morphogenesis of nylon-sputtered plasma polymer particles

    Science.gov (United States)

    Choukourov, Andrei; Shelemin, Artem; Pleskunov, Pavel; Nikitin, Daniil; Khalakhan, Ivan; Hanuš, Jan

    2018-05-01

    Sub-micron polymer particles are highly important in various fields including astrophysics, thermonuclear fusion and nanomedicine. Plasma polymerization offers the possibility to produce particles with tailor-made size, crosslink density and chemical composition to meet the requirements of a particular application. However, the mechanism of nucleation and growth of plasma polymer particles as well as diversity of their morphology remain far from being clear. Here, we prepared nitrogen-containing plasma polymer particles by rf magnetron sputtering of nylon in a gas aggregation cluster source with variable length. The method allowed the production of particles with roughly constant chemical composition and number density but with the mean size changing from 80 to 320 nm. Atomic Force Microscopy with super-sharp probes was applied to study the evolution of the particle surface topography as they grow in size. Height–height correlation and power spectral density functions were obtained to quantify the roughness exponent α  =  0.78, the growth exponent β  =  0.35, and the dynamic exponent 1/z  =  0.50. The set of critical exponents indicates that the particle surface evolves in a self-affine mode and the overall particle growth is caused by the accretion of polymer-forming species from the gas phase and not by coagulation. Redistribution of the incoming material over the surface coupled with the inhomogeneous distribution of inner stress is suggested as the main factor that determines the morphogenesis of the plasma polymer particles.

  11. Synthesis by plasma of polymer-metal materials

    International Nuclear Information System (INIS)

    Fernandez R, G.

    2004-01-01

    The objective of this work is the design of an experimental set-up to synthesize polymer- metal composites by plasma with versatility in the conditions of synthesis. The main components are a vacuum system capable to reach up to 10 -2 mbar and valves and accessories to control the pressure in the system. In order to generate the electrical discharges and the plasma, an electrical circuit with an inductive connection at 13.56 MHz of frequency was constructed. The electric field partially ionizes the reactor atmosphere where the polymer-metal composites were synthesized. The reactor has two metallic electrodes, one in front of the other, where the particles electrically charged collide against the electrodes producing ablation on them. The polymer-metal composites were synthesized by means of an inductive connection at 13.56 MHz. Aniline, 3-chlorine-ethylene and electrodes of silver (Ag) and copper (Cu) were used in a cylindrical reactor coupled with an external coil to generate glow discharges. The average pressures were 6.15 X 10 -1 and 5.2 X 10 -1 mbar for the synthesis of Poly aniline (P An) and Poly chloroethylene (PE-CI), respectively. The synthesis was performed during 60 and 180 minutes for P An and PE-CI, respectively. The polymers were formed, as films, with an average thickness of 6.42 μm for P An and, in the case of PE-CI, with an approximately growing rate of 14 ηm/W. The power in the syntheses was 30, 50, 70 and 90 W for P An and 50, 100, 120, 140 170, and 200 W for PE-CI. The characterization of the polymer-metal composites was done by energy dispersive spectroscopy to study the composition and the relation of the elements involved in the synthesis. The morphology of the films was studied by means of scanning electron microscopy. The infrared analysis (IR) was done to study the chemicals bonds and the structure of these polymers. Another important study in these materials was the behavior of the electrical conductivity (σ), which was complemented

  12. Preparation and Performance of Plasma/Polymer Composite Coatings on Magnesium Alloy

    DEFF Research Database (Denmark)

    Bakhsheshi-Rad, H. R.; Hamzah, E.; Bagheriyan, S.

    2016-01-01

    ) that homogeneously covered the surface of the plasma layers. Contact angle measurement showed that polymer coating over plasma layers significantly decreased surface wettability. The corrosion current density (icorr) of an uncoated sample (262.7 µA/cm2) decreased to 76.9 µA/cm2 after plasma coatings were applied...

  13. Optical characterization of composite layers prepared by plasma polymerization

    International Nuclear Information System (INIS)

    Radeva, E; Hikov, T; Mitev, D; Pramatarova, L; Stroescu, H; Nicolescu, M; Gartner, M; Presker, R

    2016-01-01

    Thin composite layers from polymer/nanoparticles (Ag-nanoparticles and detonation nanodiamonds) were prepared by plasma polymerization process on the base of hexamethyldisiloxane. The variation of the layer composition was achieved by changing the type of nanoparticles. The optical measurement techniques used were UV-VIS-NIR ellipsometry (SE), Fourier-transformed infrared spectroscopy (FTIR) and Raman spectroscopy. The values of the refractive index determined are in the range 1.30 to 1.42. All samples are transparent with transmission between 85-95% and very smooth. The change in Raman and FTIR spectra of the composites verify the expected bonding between polymer and diamond nanoparticles due to the penetration of the fillers in the polymer matrix. The comparison of the spectra of the corresponding NH3 plasma treated composites revealed that the composite surface becomes more hydrophilic. The obtained results indicate that preparation of layers with desired compositions is possible at a precise control of the detonation nanodiamond materials. (paper)

  14. Characteristics of polyimide-based composite membranes fabricated by low-temperature plasma polymerization

    International Nuclear Information System (INIS)

    Dung Thi Tran; Mori, Shinsuke; Suzuki, Masaaki

    2008-01-01

    Composite membranes were prepared by the deposition of plasma-polymerized allylamine films onto a porous polyimide substrate. The relationship between the plasma conditions and the membrane characteristics was described in terms of monomer flow rate, plasma discharge power, plasma polymerization time, and so on. Scanning electron microscope (SEM) images indicate that the thickness of the plasma polymer layer increased and the membrane skin pore size decreased gradually with the increasing of plasma polymerization time. Fourier transform infrared (FTIR) spectra demonstrate the appearance of amine groups in the plasma deposited polymer and the contact angle measurements indicate that the hydrophilicity of the membrane surfaces increased significantly after plasma polymerization. The composite membranes can reject salt from sodium chloride feed solution, and membrane separation performance depends strongly on the plasma conditions applied during the preparation of the plasma deposited polymer films

  15. Correlation of morphology and barrier properties of thin microwave plasma polymer films on metal substrate

    International Nuclear Information System (INIS)

    Barranco, V.; Carpentier, J.; Grundmeier, G.

    2004-01-01

    The barrier properties of thin model organosilicon plasma polymers layers on iron are characterised by means of electrochemical impedance spectroscopy (EIS). Tailored thin plasma polymers of controlled morphology and chemical composition were deposited from a microwave discharge. By the analysis of the obtained impedance diagrams, the evolution of the water uptake φ, coating resistance and polymer capacitance with immersion time were monitored and the diffusion coefficients of the water through the films were calculated. The impedance data correlated well with the chemical structure and morphology of the plasma polymer films with a thickness of less than 100 nm. The composition of the films were determined by means of infrared reflection absorption spectroscopy (IRRAS), X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The morphology of the plasma polymer surface and the interface between the plasma polymer and the metal were characterised using atomic force microscopy (AFM). It could be shown that, at higher pressure, the film roughness increases which is probably due to the adsorption of plasma polymer nanoparticles formed in the plasma bulk and the faster film growth. This leads to voids with a size of a few tens of nanometers at the polymer/metal interface. The film roughness increases from the interface to the outer surface of the film. By lowering the pressure and thereby slowing the deposition rate, the plasma polymers perfectly imitate the substrate topography and lead to an excellent blocking of the metal surface. Moreover, the ratio of siloxane bonds to methyl-silyl groups increases which implies that the crosslink density is higher at lower deposition rate. The EIS data consistently showed higher coating resistance as well as lower interfacial capacitance values and a better stability over time for the film deposited at slower pressure. The diffusion coefficient of water in thin and ultra-thin plasma

  16. Correlation between the plasma characteristics and the surface chemistry of plasma-treated polymers through partial least-squares analysis.

    Science.gov (United States)

    Mavadat, Maryam; Ghasemzadeh-Barvarz, Massoud; Turgeon, Stéphane; Duchesne, Carl; Laroche, Gaétan

    2013-12-23

    We investigated the effect of various plasma parameters (relative density of atomic N and H, plasma temperature, and vibrational temperature) and process conditions (pressure and H2/(N2 + H2) ratio) on the chemical composition of modified poly(tetrafluoroethylene) (PTFE). The plasma parameters were measured by means of near-infrared (NIR) and UV-visible emission spectroscopy with and without actinometry. The process conditions of the N2-H2 microwave discharges were set at various pressures ranging from 100 to 2000 mTorr and H2/(N2+H2) gas mixture ratios between 0 and 0.4. The surface chemical composition of the modified polymers was determined by X-ray photoelectron spectroscopy (XPS). A mathematical model was constructed using the partial least-squares regression algorithm to correlate the plasma information (process condition and plasma parameters as determined by emission spectroscopy) with the modified surface characteristics. To construct the model, a set of data input variables containing process conditions and plasma parameters were generated, as well as a response matrix containing the surface composition of the polymer. This model was used to predict the composition of PTFE surfaces subjected to N2-H2 plasma treatment. Contrary to what is generally accepted in the literature, the present data demonstrate that hydrogen is not directly involved in the defluorination of the surface but rather produces atomic nitrogen and/or NH radicals that are shown to be at the origin of fluorine atom removal from the polymer surface. The results show that process conditions alone do not suffice in predicting the surface chemical composition and that the plasma characteristics, which cannot be easily correlated with these conditions, should be considered. Process optimization and control would benefit from plasma diagnostics, particularly infrared emission spectroscopy.

  17. Study on hydrophilicity of polymer surfaces improved by plasma treatment

    International Nuclear Information System (INIS)

    Lai Jiangnan; Sunderland, Bob; Xue Jianming; Yan, Sha; Zhao Weijiang; Folkard, Melvyn; Michael, Barry D.; Wang Yugang

    2006-01-01

    Surface properties of polycarbonate (PC), polypropylene (PP), polyethylene terephthalate (PET) samples treated by microwave-induced argon plasma have been studied with contact angle measurement, X-ray photoelectron spectroscopy (XPS) and scanned electron microscopy (SEM). It is found that plasma treatment modified the surfaces both in composition and roughness. Modification of composition makes polymer surfaces tend to be highly hydrophilic, which mainly depended on the increase of ratio of oxygen-containing group as same as other papers reported. And this experiment further revealed that C=O bond is Key factor to the improvement of the hydrophilicity of polymer surfaces. Our SEM observation on PET shown that the roughness of the surface has also been improved in micron scale and it has influence on the surface hydrophilicity

  18. Microgel polymer composite fibres

    OpenAIRE

    Kehren, Dominic

    2014-01-01

    In this thesis some novel ideas and advancements in the field of polymer composite fibres, specifically microgel-based polymer composite fibres have been achieved. The main task was to investigate and understand the electrospinning process of microgels and polymers and the interplay of parameter influences, in order to fabricate reproducible and continuously homogenous composite fibres. The main aim was to fabricate a composite material which combines the special properties of polymer fibres ...

  19. Synthesis by plasma of polymer-metal materials; Sintesis por plasma de materiales polimero-metal

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez R, G

    2004-07-01

    The objective of this work is the design of an experimental set-up to synthesize polymer- metal composites by plasma with versatility in the conditions of synthesis. The main components are a vacuum system capable to reach up to 10{sup -2} mbar and valves and accessories to control the pressure in the system. In order to generate the electrical discharges and the plasma, an electrical circuit with an inductive connection at 13.56 MHz of frequency was constructed. The electric field partially ionizes the reactor atmosphere where the polymer-metal composites were synthesized. The reactor has two metallic electrodes, one in front of the other, where the particles electrically charged collide against the electrodes producing ablation on them. The polymer-metal composites were synthesized by means of an inductive connection at 13.56 MHz. Aniline, 3-chlorine-ethylene and electrodes of silver (Ag) and copper (Cu) were used in a cylindrical reactor coupled with an external coil to generate glow discharges. The average pressures were 6.15 X 10{sup -1} and 5.2 X 10{sup -1} mbar for the synthesis of Poly aniline (P An) and Poly chloroethylene (PE-CI), respectively. The synthesis was performed during 60 and 180 minutes for P An and PE-CI, respectively. The polymers were formed, as films, with an average thickness of 6.42 {mu}m for P An and, in the case of PE-CI, with an approximately growing rate of 14 {eta}m/W. The power in the syntheses was 30, 50, 70 and 90 W for P An and 50, 100, 120, 140 170, and 200 W for PE-CI. The characterization of the polymer-metal composites was done by energy dispersive spectroscopy to study the composition and the relation of the elements involved in the synthesis. The morphology of the films was studied by means of scanning electron microscopy. The infrared analysis (IR) was done to study the chemicals bonds and the structure of these polymers. Another important study in these materials was the behavior of the electrical conductivity ({sigma

  20. Precursor polymer compositions comprising polybenzimidazole

    Science.gov (United States)

    Klaehn, John R.; Peterson, Eric S.; Orme, Christopher J.

    2015-07-14

    Stable, high performance polymer compositions including polybenzimidazole (PBI) and a melamine-formaldehyde polymer, such as methylated, poly(melamine-co-formaldehyde), for forming structures such as films, fibers and bulky structures. The polymer compositions may be formed by combining polybenzimidazole with the melamine-formaldehyde polymer to form a precursor. The polybenzimidazole may be reacted and/or intertwined with the melamine-formaldehyde polymer to form the polymer composition. For example, a stable, free-standing film having a thickness of, for example, between about 5 .mu.m and about 30 .mu.m may be formed from the polymer composition. Such films may be used as gas separation membranes and may be submerged into water for extended periods without crazing and cracking. The polymer composition may also be used as a coating on substrates, such as metal and ceramics, or may be used for spinning fibers. Precursors for forming such polymer compositions are also disclosed.

  1. Stages of polymer transformation during remote plasma oxidation (RPO) at atmospheric pressure

    Science.gov (United States)

    Luan, P.; Oehrlein, G. S.

    2018-04-01

    The interaction of cold temperature plasma sources with materials can be separated into two types: ‘direct’ and ‘remote’ treatments. Compared to the ‘direct’ treatment which involves energetic charged species along with short-lived, strongly oxidative neutral species, ‘remote’ treatment by the long-lived weakly oxidative species is less invasive and better for producing uniformly treated surfaces. In this paper, we examine the prototypical case of remote plasma oxidation (RPO) of polymer materials by employing a surface micro-discharge (in a N2/O2 mixture environment) treatment on polystyrene. Using material characterization techniques including real-time ellipsometry, x-ray photoelectron spectroscopy, and Fourier-transform infrared spectroscopy, the time evolution of polymer film thickness, refractive index, surface, and bulk chemical composition were evaluated. These measurements revealed three consecutive stages of polymer transformation, i.e. surface adsorption and oxidation, bulk film permeation and thickness expansion followed by the material removal as a result of RPO. By correlating the observed film thickness changes with simultaneously obtained chemical information, we found that the three stages were due to the three effects of weakly oxidative species on polymers: (1) surface oxidation and nitrate (R-ONO2) chemisorption, (2) bulk oxidation, and (3) etching. Our results demonstrate that surface adsorption and oxidation, bulk oxidation, and etching can all happen during one continuous plasma treatment. We show that surface nitrate is only adsorbed on the top few nanometers of the polymer surface. The polymer film expansion also provided evidence for the diffusion and reaction of long-lived plasma species in the polymer bulk. Besides, we found that the remote plasma etched surface was relatively rich in O-C=O (ester or carboxylic acid). These findings clarify the roles of long-lived weakly oxidative plasma species on polymers and advance

  2. Aerogel / Polymer Composite Materials

    Science.gov (United States)

    Williams, Martha K. (Inventor); Smith, Trent M. (Inventor); Fesmire, James E. (Inventor); Roberson, Luke B. (Inventor); Clayton, LaNetra M. (Inventor)

    2017-01-01

    The invention provides new composite materials containing aerogels blended with thermoplastic polymer materials at a weight ratio of aerogel to thermoplastic polymer of less than 20:100. The composite materials have improved thermal insulation ability. The composite materials also have better flexibility and less brittleness at low temperatures than the parent thermoplastic polymer materials.

  3. Single-step generation of metal-plasma polymer multicore@shell nanoparticles from the gas phase.

    Science.gov (United States)

    Solař, Pavel; Polonskyi, Oleksandr; Olbricht, Ansgar; Hinz, Alexander; Shelemin, Artem; Kylián, Ondřej; Choukourov, Andrei; Faupel, Franz; Biederman, Hynek

    2017-08-17

    Nanoparticles composed of multiple silver cores and a plasma polymer shell (multicore@shell) were prepared in a single step with a gas aggregation cluster source operating with Ar/hexamethyldisiloxane mixtures and optionally oxygen. The size distribution of the metal inclusions as well as the chemical composition and the thickness of the shells were found to be controlled by the composition of the working gas mixture. Shell matrices ranging from organosilicon plasma polymer to nearly stoichiometric SiO 2 were obtained. The method allows facile fabrication of multicore@shell nanoparticles with tailored functional properties, as demonstrated here with the optical response.

  4. Plasma deposition of polymer composite films incorporating nanocellulose whiskers

    Science.gov (United States)

    Samyn, P.; Airoudj, A.; Laborie, M.-P.; Mathew, A. P.; Roucoules, V.

    2011-11-01

    In a trend for sustainable engineering and functionalization of surfaces, we explore the possibilities of gas phase processes to deposit nanocomposite films. From an analysis of pulsed plasma polymerization of maleic anhydride in the presence of nanocellulose whiskers, it seems that thin nanocomposite films can be deposited with various patterns. By specifically modifying plasma parameters such as total power, duty cycle, and monomer gas pressure, the nanocellulose whiskers are either incorporated into a buckled polymer film or single nanocellulose whiskers are deposited on top of a polymeric film. The density of the latter can be controlled by modifying the exact positioning of the substrate in the reactor. The resulting morphologies are evaluated by optical microscopy, AFM, contact angle measurements and ellipsometry.

  5. Model polymer etching and surface modification by a time modulated RF plasma jet: role of atomic oxygen and water vapor

    Science.gov (United States)

    Luan, P.; Knoll, A. J.; Wang, H.; Kondeti, V. S. S. K.; Bruggeman, P. J.; Oehrlein, G. S.

    2017-01-01

    The surface interaction of a well-characterized time modulated radio frequency (RF) plasma jet with polystyrene, poly(methyl methacrylate) and poly(vinyl alcohol) as model polymers is investigated. The RF plasma jet shows fast polymer etching but mild chemical modification with a characteristic carbonate ester and NO formation on the etched surface. By varying the plasma treatment conditions including feed gas composition, environment gaseous composition, and treatment distance, we find that short lived species, especially atomic O for Ar/1% O2 and 1% air plasma and OH for Ar/1% H2O plasma, play an essential role for polymer etching. For O2 containing plasma, we find that atomic O initiates polymer etching and the etching depth mirrors the measured decay of O atoms in the gas phase as the nozzle-surface distance increases. The etching reaction probability of an O atom ranging from 10-4 to 10-3 is consistent with low pressure plasma research. We also find that adding O2 and H2O simultaneously into Ar feed gas quenches polymer etching compared to adding them separately which suggests the reduction of O and OH density in Ar/O2/H2O plasma.

  6. Surface temperature: A key parameter to control the propanethiol plasma polymer chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Thiry, Damien, E-mail: damien.thiry@umons.ac.be; Aparicio, Francisco J. [Chimie des Interactions Plasma Surface (ChIPS), CIRMAP, Université de Mons, 23 Place du Parc, B-7000 Mons (Belgium); Laha, Priya; Terryn, Herman [Research Group Electrochemical and Surface Engineering (SURF), Department of Materials and Chemistry (MACH), Pleinlaan 2, 1050 Brussel (Belgium); Snyders, Rony [Chimie des Interactions Plasma Surface (ChIPS), CIRMAP, Université de Mons, 23 Place du Parc, B-7000 Mons, Belgium and Materia Nova Research Center, Parc Initialis, B-7000 Mons (Belgium)

    2014-09-01

    In this work, the influence of the substrate temperature (T{sub s}) on the chemical composition of propanethiol plasma polymers was investigated for a given set of plasma conditions. In a first study, a decrease in the atomic sulfur content (at. %S) with the deposition time (t{sub d}) was observed. This behavior is explained by the heating of the growing film during deposition process, limiting the incorporation of stable sulfur-based molecules produced in the plasma. Experiments carried out by controlling the substrate temperature support this hypothesis. On the other hand, an empirical law relating the T{sub s} and the at. %S was established. This allows for the formation of gradient layer presenting a heterogeneous chemical composition along the thickness, as determined by depth profile analysis combining X-ray photoelectron spectroscopy and C{sub 60} ion gun sputtering. The experimental data fit with the one predicted from our empiric description. The whole set of our results provide new insights in the relationship between the substrate temperature and the sulfur content in sulfur-based plasma polymers, essential for future developments.

  7. Polymer compositions, polymer films and methods and precursors for forming same

    Science.gov (United States)

    Klaehn, John R; Peterson, Eric S; Orme, Christopher J

    2013-09-24

    Stable, high performance polymer compositions including polybenzimidazole (PBI) and a melamine-formaldehyde polymer, such as methylated, poly(melamine-co-formaldehyde), for forming structures such as films, fibers and bulky structures. The polymer compositions may be formed by combining polybenzimidazole with the melamine-formaldehyde polymer to form a precursor. The polybenzimidazole may be reacted and/or intertwined with the melamine-formaldehyde polymer to form the polymer composition. For example, a stable, free-standing film having a thickness of, for example, between about 5 .mu.m and about 30 .mu.m may be formed from the polymer composition. Such films may be used as gas separation membranes and may be submerged into water for extended periods without crazing and cracking. The polymer composition may also be used as a coating on substrates, such as metal and ceramics, or may be used for spinning fibers. Precursors for forming such polymer compositions are also disclosed.

  8. Model polymer etching and surface modification by a time modulated RF plasma jet: role of atomic oxygen and water vapor

    International Nuclear Information System (INIS)

    Luan, P; Knoll, A J; Wang, H; Oehrlein, G S; Kondeti, V S S K; Bruggeman, P J

    2017-01-01

    The surface interaction of a well-characterized time modulated radio frequency (RF) plasma jet with polystyrene, poly(methyl methacrylate) and poly(vinyl alcohol) as model polymers is investigated. The RF plasma jet shows fast polymer etching but mild chemical modification with a characteristic carbonate ester and NO formation on the etched surface. By varying the plasma treatment conditions including feed gas composition, environment gaseous composition, and treatment distance, we find that short lived species, especially atomic O for Ar/1% O 2 and 1% air plasma and OH for Ar/1% H 2 O plasma, play an essential role for polymer etching. For O 2 containing plasma, we find that atomic O initiates polymer etching and the etching depth mirrors the measured decay of O atoms in the gas phase as the nozzle-surface distance increases. The etching reaction probability of an O atom ranging from 10 −4 to 10 −3 is consistent with low pressure plasma research. We also find that adding O 2 and H 2 O simultaneously into Ar feed gas quenches polymer etching compared to adding them separately which suggests the reduction of O and OH density in Ar/O 2 /H 2 O plasma. (letter)

  9. Fluorocarbon polymer formation, characterization, and reduction in polycrystalline-silicon etching with CF4-added plasma

    International Nuclear Information System (INIS)

    Xu Songlin; Sun Zhiwen; Chen Arthur; Qian Xueyu; Podlesnik, Dragan

    2001-01-01

    Addition of CF 4 into HBr-based plasma for polycrystalline-silicon gate etching reduces the deposition of an etch byproduct, silicon oxide, onto the chamber wall but tends to generate organic polymer. In this work, a detailed study has been carried out to analyze the mechanism of polymerization and to characterize the polymer composition and quantity. The study has shown that the polymer formation is due to the F-radical depletion by H atoms dissociated from HBr. The composition of the polymer changes significantly with CF 4 concentration in the gas feed, and the polymer deposition rate depends on CF 4 % and other process conditions such as source power, bias power, and pressure. Surface temperature also affects the polymer deposition rate. Adding O 2 into the plasma can clean the organic polymer, but the O 2 amount has to be well controlled in order to prevent the formation of silicon oxide. Based on a series of tests to evaluate polymer deposition and oxide cleaning with O 2 addition, an optimized process regime in terms of O 2 -to-CF 4 ratio has been identified to simultaneously suppress the polymer and oxide deposition so that the etch process becomes self-cleaning

  10. Polymers preparation under methane plasma environment

    International Nuclear Information System (INIS)

    Yang Wubao; Cai Zeyong; Zhao Zhen; Qi Lu

    2008-01-01

    Polymers are prepared under methane plasma environment, and appear to be white, slightly yellow, soft thread-like powders and floc under optical microscope. The polymers contain --CH 3 , -CH 2 , C-O, -C=C-,-OH etc. functional groups, but no simplex carbons. It is found that the solubility of this polymer is less than 0.1mg·ml -1 in different organic solvent. The productivity of the polymers is higher under a plasma environment with higher ionization, higher polarization of neutral gas, lower environment temperature and less permittivity. (authors)

  11. Asphaltenes-based polymer nano-composites

    Science.gov (United States)

    Bowen, III, Daniel E

    2013-12-17

    Inventive composite materials are provided. The composite is preferably a nano-composite, and comprises an asphaltene, or a mixture of asphaltenes, blended with a polymer. The polymer can be any polymer in need of altered properties, including those selected from the group consisting of epoxies, acrylics, urethanes, silicones, cyanoacrylates, vulcanized rubber, phenol-formaldehyde, melamine-formaldehyde, urea-formaldehyde, imides, esters, cyanate esters, allyl resins.

  12. Plasma-activated multi-walled carbon nanotube-polystyrene composite substrates for biosensing

    International Nuclear Information System (INIS)

    Fernandez-Sanchez, Cesar; Orozco, Jahir; Jimenez-Jorquera, Cecilia; Pellicer, Eva; Lechuga, Laura M; Mendoza, Ernest

    2009-01-01

    Carbon nanotube-polymer composites have shown to be suitable materials for the fabrication of electrochemical transducers. The exposed surface of these materials is commonly passivated by a very thin layer of the polymer component that buries the conductive carbon particles. Working with multi-walled carbon nanotube-polystyrene (MWCNT-PS) composite structures, it was previously described how a simple low power oxygen plasma process produced an effective etching of the composite surface, thereby exposing the conductive surface of CNTs. This work shows how this plasma process not only gave rise to a suitable composite conductive surface for electrochemical sensing but simultaneously exposed and created a high density of oxygen-containing functional groups at both the CNT and the PS components, without affecting the material's mechanical stability. These chemical groups could be effectively modified for the stable immobilization of biological receptors. A detailed chemical characterization of the plasma-activated composite surface was possible using x-ray photoelectron spectroscopy. The material reactivity towards the tethering of a protein was studied and protein-protein interactions were then evaluated on the modified composite transducers by scanning electron microscopy. Finally, an amperometric immunosensor approach for the detection of rabbit Immunoglobulin G target analyte was described and a minimum concentration of 3 ng ml -1 was easily measured.

  13. Plasma-activated multi-walled carbon nanotube-polystyrene composite substrates for biosensing

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Sanchez, Cesar; Orozco, Jahir; Jimenez-Jorquera, Cecilia [Instituto de Microelectronica de Barcelona, IMB-CNM (CSIC), Campus UAB, E-08193 Bellaterra, Barcelona (Spain); Pellicer, Eva; Lechuga, Laura M; Mendoza, Ernest, E-mail: cesar.fernandez@imb-cnm.csic.e [Nanobiosensors and Molecular Nanobiophysics Group, Research Center on Nanoscience and Nanotechnology (CIN2) CSIC-ICN, ETSE, Campus UAB-Edificio Q, E-08193 Bellaterra, Barcelona (Spain)

    2009-08-19

    Carbon nanotube-polymer composites have shown to be suitable materials for the fabrication of electrochemical transducers. The exposed surface of these materials is commonly passivated by a very thin layer of the polymer component that buries the conductive carbon particles. Working with multi-walled carbon nanotube-polystyrene (MWCNT-PS) composite structures, it was previously described how a simple low power oxygen plasma process produced an effective etching of the composite surface, thereby exposing the conductive surface of CNTs. This work shows how this plasma process not only gave rise to a suitable composite conductive surface for electrochemical sensing but simultaneously exposed and created a high density of oxygen-containing functional groups at both the CNT and the PS components, without affecting the material's mechanical stability. These chemical groups could be effectively modified for the stable immobilization of biological receptors. A detailed chemical characterization of the plasma-activated composite surface was possible using x-ray photoelectron spectroscopy. The material reactivity towards the tethering of a protein was studied and protein-protein interactions were then evaluated on the modified composite transducers by scanning electron microscopy. Finally, an amperometric immunosensor approach for the detection of rabbit Immunoglobulin G target analyte was described and a minimum concentration of 3 ng ml{sup -1} was easily measured.

  14. Wear of polymers and composites

    CERN Document Server

    Abdelbary, Ahmed

    2015-01-01

    In the field of tribology, the wear behaviour of polymers and composite materials is considered a highly non-linear phenomenon. Wear of Polymers and Composites introduces fundamentals of polymers and composites tribology. The book suggests a new approach to explore the effect of applied load and surface defects on the fatigue wear behaviour of polymers, using a new tribometer and thorough experiments. It discusses effects of surface cracks, under different static and cyclic loading parameters on wear, and presents an intelligent algorithm, in the form of a neural network, to map the relations

  15. Study of detonation nanodiamond - plasma polymerized hexamethildisiloxan composites for medical application

    International Nuclear Information System (INIS)

    Pramatarova, L D; Krasteva, N A; Radeva, E I; Pecheva, E V; Dimitrova, R P; Hikov, T A; Mitev, D P; Hristova, K T; Altankov, G

    2010-01-01

    The present study reports on how detonation nanodiamond (DND) - plasma poly(hexamethyldisiloxane) composites (PPHMDS) affect osteoblast cell behavior. It has been established that various modified DND nanoparticles (Ag-DND and Si-DND) can be readily integrated into virtually all polymer matrices. In particular, PPHDMS composites have been developed over the past few years because of the variety of their application as medical devices and implants. By incubation of MG-63 osteoblast-like cells on the surface of DND (Ag-DND and Si-DND) - PPHMDS composite, we tested the hypothesis that DND-based polymer composites can influence the adhesion behavior of MG-63 osteoblast-like cells. Morphological and structural characterization of DND, Ag-DND and Si-DND powders was carried out by XRD, HRTEM and EDS. For the study of the composite layers, deposited on cover glass (CG), FTIR spectroscopy has been performed in order to determine if the DND nanofiller can potentially modify the structural and chemical dynamics of the polymer matrix. The kinetic of static water contact angle of composite surfaces as a function of the as-used nanofiller DND's in polymer matrix was measured The results with MG-63 osteoblast-like cells suggest the potential of using DND-based polymer composites for application in engineering implantable scaffolds and devices.

  16. Study of detonation nanodiamond - plasma polymerized hexamethildisiloxan composites for medical application

    Energy Technology Data Exchange (ETDEWEB)

    Pramatarova, L D; Krasteva, N A; Radeva, E I; Pecheva, E V; Dimitrova, R P; Hikov, T A; Mitev, D P; Hristova, K T; Altankov, G, E-mail: lpramat@issp.bas.b

    2010-11-01

    The present study reports on how detonation nanodiamond (DND) - plasma poly(hexamethyldisiloxane) composites (PPHMDS) affect osteoblast cell behavior. It has been established that various modified DND nanoparticles (Ag-DND and Si-DND) can be readily integrated into virtually all polymer matrices. In particular, PPHDMS composites have been developed over the past few years because of the variety of their application as medical devices and implants. By incubation of MG-63 osteoblast-like cells on the surface of DND (Ag-DND and Si-DND) - PPHMDS composite, we tested the hypothesis that DND-based polymer composites can influence the adhesion behavior of MG-63 osteoblast-like cells. Morphological and structural characterization of DND, Ag-DND and Si-DND powders was carried out by XRD, HRTEM and EDS. For the study of the composite layers, deposited on cover glass (CG), FTIR spectroscopy has been performed in order to determine if the DND nanofiller can potentially modify the structural and chemical dynamics of the polymer matrix. The kinetic of static water contact angle of composite surfaces as a function of the as-used nanofiller DND's in polymer matrix was measured The results with MG-63 osteoblast-like cells suggest the potential of using DND-based polymer composites for application in engineering implantable scaffolds and devices.

  17. Plasma functionalized surface of commodity polymers for dopamine detection

    Energy Technology Data Exchange (ETDEWEB)

    Fabregat, Georgina [Departament d’Enginyeria Química, E.T.S. d’Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, 08028, Barcelona (Spain); Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici C’, C/Pasqual i Vila s/n, Barcelona, E-08028 (Spain); Osorio, Joaquin [Departament d’Enginyeria Química, E.T.S. d’Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, 08028, Barcelona (Spain); Castedo, Alejandra [Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici C’, C/Pasqual i Vila s/n, Barcelona, E-08028 (Spain); Institut de Tècniques Energètiques, E.T.S. d’Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, 08028, Barcelona (Spain); Armelin, Elaine [Departament d’Enginyeria Química, E.T.S. d’Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, 08028, Barcelona (Spain); Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici C’, C/Pasqual i Vila s/n, Barcelona, E-08028 (Spain); and others

    2017-03-31

    Highlights: • Electrochemically inert polymers become electroactive after plasma functionalization. • Selective dopamine detection has been achieved functionalizing polymers with plasma. • Plasma-functionalized polymers are sensitive dopamine detectors. • XPS analyses reflect the transformation of inert polymers into electrosensors. - Abstract: We have fabricated potentially generalizable sensors based on polymeric-modified electrodes for the electrochemical detection of dopamine. Sensitive and selective sensors have been successfully obtained by applying a cold-plasma treatment during 1–2 min not only to conducting polymers but also to electrochemically inert polymers, such as polyethylene, polypropylene, polyvinylpyrrolidone, polycaprolactone and polystyrene. The effects of the plasma in the electrode surface activation, which is an essential requirement for the dopamine detection when inert polymers are used, have been investigated using X-ray photoelectron spectroscopy. Results indicate that exposure of polymer-modified electrodes to cold-plasma produces the formation of a large variety of reactive species adsorbed on the electrode surface, which catalyse the dopamine oxidation. With this technology, which is based on the application of a very simple physical functionalization, we have defined a paradox-based paradigm for the fabrication of electrochemical sensors by using inert and cheap plastics.

  18. Advances and challenges in the field of plasma polymer nanoparticles

    Directory of Open Access Journals (Sweden)

    Andrei Choukourov

    2017-09-01

    Full Text Available This contribution reviews plasma polymer nanoparticles produced by gas aggregation cluster sources either via plasma polymerization of volatile monomers or via radio frequency (RF magnetron sputtering of conventional polymers. The formation of hydrocarbon, fluorocarbon, silicon- and nitrogen-containing plasma polymer nanoparticles as well as core@shell nanoparticles based on plasma polymers is discussed with a focus on the development of novel nanostructured surfaces.

  19. Multilayer Electroactive Polymer Composite Material

    Science.gov (United States)

    Harrison, Joycelyn S. (Inventor); Holloway, Nancy M. (Inventor); Park, Cheol (Inventor); Draughon, Gregory K. (Inventor); Ounaies, Zoubeida (Inventor)

    2011-01-01

    An electroactive material comprises multiple layers of electroactive composite with each layer having unique dielectric, electrical and mechanical properties that define an electromechanical operation thereof when affected by an external stimulus. For example, each layer can be (i) a 2-phase composite made from a polymer with polarizable moieties and an effective amount of carbon nanotubes incorporated in the polymer for a predetermined electromechanical operation, or (ii) a 3-phase composite having the elements of the 2-phase composite and further including a third component of micro-sized to nano-sized particles of an electroactive ceramic incorporated in the polymer matrix.

  20. Osteoblast response to oxygen functionalised plasma polymer surfaces

    International Nuclear Information System (INIS)

    Kelly, Jonathan M.

    2001-01-01

    Thin organic films with oxygen-carbon functionalities were deposited from plasmas containing vapour of the small organic compounds: allyI alcohol, methyl vinyl ketone and acrylic acid with octadiene. Characterisation of the deposits was carried out using X-ray photoelectron spectroscopy, in conjunction with chemical derivatisation, and this showed that plasma polymers retained high levels of original monomer functionality when the plasmas were sustained at low power for a given monomer vapour flow rate. High levels of attachment of rat osteosarcoma (ROS 17/2.8) cells were observed on surfaces that had high concentrations of hydroxyl and carbonyl functionalities and intermediate concentrations of carboxyl functionality. Cells did not attach to the octadiene plasma polymer. Cell attachment to carboxyl and methyl functionalised self-assembled monolayers increased with increasing concentration of surface carboxyl groups. Adsorption of the extracellular matrix protein fibronectin to acrylic acid/octadiene plasma copolymers was studied by enzyme linked immunosorbent assays and by I 125 radiolabelling. Fibronectin adsorbed in largest amounts to surfaces with intermediate concentrations of carboxyl functionality. Spreading of ROS cells and rat bone marrow stromal cells (BMSC) was characterised by computer image analysis. Cell spreading in media containing 10% serum, on a surface deposited from a plasma of 5 O/o acrylic acid was much greater than on the octadiene plasma polymer while most extensive cell spreading was observed on these surfaces when preadsorbed with fibronectin. Growth (proliferation) of BMSC was assessed over nine days and was found to be faster on an 50% acrylic acid plasma polymer than on tissue culture polystyrene or a hydrocarbon plasma polymer, though cell growth was fastest on fibronectin precoated substrates. Expression of cellular alkaline phosphatase, collagen and calcium reached similar levels on the 50% acrylic acid plasma polymer, tissue culture

  1. Osteoblast response to oxygen functionalised plasma polymer surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Jonathan M

    2001-07-01

    Thin organic films with oxygen-carbon functionalities were deposited from plasmas containing vapour of the small organic compounds: allyI alcohol, methyl vinyl ketone and acrylic acid with octadiene. Characterisation of the deposits was carried out using X-ray photoelectron spectroscopy, in conjunction with chemical derivatisation, and this showed that plasma polymers retained high levels of original monomer functionality when the plasmas were sustained at low power for a given monomer vapour flow rate. High levels of attachment of rat osteosarcoma (ROS 17/2.8) cells were observed on surfaces that had high concentrations of hydroxyl and carbonyl functionalities and intermediate concentrations of carboxyl functionality. Cells did not attach to the octadiene plasma polymer. Cell attachment to carboxyl and methyl functionalised self-assembled monolayers increased with increasing concentration of surface carboxyl groups. Adsorption of the extracellular matrix protein fibronectin to acrylic acid/octadiene plasma copolymers was studied by enzyme linked immunosorbent assays and by I{sup 125} radiolabelling. Fibronectin adsorbed in largest amounts to surfaces with intermediate concentrations of carboxyl functionality. Spreading of ROS cells and rat bone marrow stromal cells (BMSC) was characterised by computer image analysis. Cell spreading in media containing 10% serum, on a surface deposited from a plasma of 5 O/o acrylic acid was much greater than on the octadiene plasma polymer while most extensive cell spreading was observed on these surfaces when preadsorbed with fibronectin. Growth (proliferation) of BMSC was assessed over nine days and was found to be faster on an 50% acrylic acid plasma polymer than on tissue culture polystyrene or a hydrocarbon plasma polymer, though cell growth was fastest on fibronectin precoated substrates. Expression of cellular alkaline phosphatase, collagen and calcium reached similar levels on the 50% acrylic acid plasma polymer, tissue

  2. Plasma-modified graphene nanoplatelets and multiwalled carbon nanotubes as fillers for advanced rubber composites

    International Nuclear Information System (INIS)

    Sicinski, M; Gozdek, T; Bielinski, D M; Kleczewska, J; Szymanowski, H; Piatkowska, A

    2015-01-01

    In modern rubber industry, there still is a room for new fillers, which can improve the mechanical properties of the composites, or introduce a new function to the material. Modern fillers like carbon nanotubes or graphene nanoplatelets (GnP), are increasingly applied in advanced polymer composites technology. However, it might be hard to obtain a well dispersed system for such systems. The polymer matrix often exhibits higher surface free energy (SFE) level with the filler, which can cause problems with polymer-filler interphase adhesion. Filler particles are not wet properly by the polymer, and thus are easier to agglomerate. As a consequence, improvement in the mechanical properties is lower than expected. In this work, multi-walled carbon nanotubes (MWCNT) and GnP surface were modified with low-temperature plasma. Attempts were made to graft some functionalizing species on plasma-activated filler surface. The analysis of virgin and modified fillers’ SFE was carried out. MWCNT and GnP rubber composites were produced, and ultimately, their morphology and mechanical properties were studied. (paper)

  3. The hidden radiation chemistry in plasma modification and XPS analysis of polymer surfaces

    International Nuclear Information System (INIS)

    George, G.A.; Le, T.T.; Elms, F.M.; Wood, B.J.

    1996-01-01

    Full text: The surface modification of polymers using plasma treatments is being widely researched to achieve changes in the surface energetics and consequent wetting and reactivity for a range of applications. These include i) adhesion for polymer bonding and composite material fabrication and ii) biocompatibility of polymers when used as orthopedic implants, catheters and prosthetics. A low pressure rf plasma produces a variety of species from the introduced gas which may react with the surface of a hydrocarbon polymer, such as polyethylene. In the case of 0 2 and H 2 0, these species include oxygen atoms, singlet molecular oxygen and hydroxyl radicals, all of which may oxidise and, depending on their energy, ablate the polymer surface. In order to better understand the reactive species formed both in and downstream from a plasma and the relative contributions of oxidation and ablation, self-assembled monolayers of n-alkane thiols on gold are being used as well characterised substrates for quantitative X-ray photoelectron spectroscopy (XPS). The identification and quantification of oxidised carbon species on plasma treated polymers from broad, asymmetric XPS signals is difficult, so derivatisation is often used to enhance sensitivity and specificity. For example, trifluoroacetic anhydride (TFAA) selectively labels hydroxyl functionality. The surface analysis of a modified polymer surface may be confounded by high energy radiation chemistry which may occur during XPS analysis. Examples include scission of carbon-halogen bonds (as in TFM adducts), decarboxylation and main-chain polyene formation. The extent of free-radical chemistry occurring in polyethylene while undergoing XPS analysis may be seen by both ESR and FT-IR analysis

  4. Composite polymer-containing coatings on Mg alloys perspective for industry and implant surgery

    Science.gov (United States)

    Gnedenkov, S. V.; Sinebryukhov, S. L.; Mashtalyar, D. V.; Imshinetskiy, I. M.; Gnedenkov, A. S.; Minaev, A. N.

    2017-09-01

    In order to improve the corrosion resistance of magnesium alloys the ways of composite protective coating formation were developed by means of plasma electrolytic oxidation (PEO) as well as electrophoretic deposition methods. Electrochemical, corrosion, tribological, and morphological properties of the MAS magnesium alloy composite coatings were studied. The composite polymer-containing coating decrease the corrosion current density values by three orders of magnitude (Ic = 2.0 . 10-10 A/cm2), in comparison with the base PEO-layer. These polymer-containing layers enable one to expand the practical usage area of Mg alloys. The application of such coatings provides the increasing the bioactivity and regulate the corrosion rate of resorbable magnesium implants.

  5. Plasma treatment of polymers for improved adhesion

    International Nuclear Information System (INIS)

    Kelber, J.A.

    1988-01-01

    A variety of plasma treatments of polymer sufaces for improved adhesion are reviewed: noble and reactive has treatment of fluoropolymers; noble and reactive treatment of polyolefins, and plasma-induced amination of polymer fibers. The plasma induced surface chemical and morphological changer are discussed, as are the mechanisms of adhersion to polymeric adhesives, particularly epoxy. Noble has plasma eching of fluoropolymers produces a partially defluorinated, textured surface. The mechanical interlocking of this textured surface is the primary cause of improved adhsion to epoxy. Reactive has plasma also induce defluorination, but oxygen containing gases cause continual ablation of the fluoropolymer surface. Noble and reactive gas (except for hydrogen) etching of polyolefins results in surface oxidation and imrprove adhesion via hydrogen bonding of these exygen containing groups across the interface. The introduction of amine groups to a polymer surface by ammonia or amine plasma treatment generally results in improved adhesion to epoxy. However, amine-epoxy ring interactions can be severely effected by steric factors due to chemical group surrounding the amine

  6. Surface modification of polymer nanofibres by plasma treatment

    International Nuclear Information System (INIS)

    Wei, Q.F.; Gao, W.D.; Hou, D.Y.; Wang, X.Q.

    2005-01-01

    Polymer nanofibres have great potential for technical applications in biomaterials, filtration, composites and electronics. The surface properties of nanofibres are of importance in these applications. In this study, cold gas plasma treatment was used to modify the surface of polyamide 6 nanofibres prepared by electrospinning. The chemical nature of the nanofibre surfaces was examined by X-ray photoelectron spectroscopy (XPS). Atomic force microscopy (AFM) was employed to study the surface characteristics of the fibres. The AFM results indicate a significant change in the morphology of the fibre surface before and after plasma treatment. A Philips Environmental Scanning Electron Microscopy (ESEM) was also used to study the wetting behaviour of the fibres. In the ESEM, relative humidity was raised to 100% to facilitate the water condensation onto fibre surfaces for wetting observation. The ESEM observation revealed that the plasma treatment significantly altered the surface wettability of the polyamide 6 nanofibres

  7. Wood and concrete polymer composites

    International Nuclear Information System (INIS)

    Singer, K.

    1974-01-01

    There are several ways to prepare and use wood and concrete polymer composites. The most important improvements in the case of concrete polymer composites are obtained for compressive and tensile strengths. The progress in this field in United States and other countries is discussed in this rview. (M.S.)

  8. Effect of sterilization procedures on properties of plasma polymers relevant to biomedical applications

    International Nuclear Information System (INIS)

    Artemenko, A.; Kylián, O.; Choukourov, A.; Gordeev, I.; Petr, M.; Vandrovcová, M.; Polonskyi, O.; Bačáková, L.; Slavinska, D.; Biederman, H.

    2012-01-01

    This study is focused on the evaluation of resistance of plasma polymers toward common sterilization techniques, i.e. property important for possible use of such materials in biomedical applications. Three kinds of plasma polymers having different bioadhesive natures were studied: plasma polymerized poly(ethylene oxide), fluorocarbon plasma polymers, and nitrogen-rich plasma polymers. These plasma polymers were subjected to dry heat, autoclave and UV radiation treatment. Their physical, chemical and bioresponsive properties were determined by means of different techniques (ellipsometry, atomic force microscopy, wettability measurements, X-ray photoelectron spectroscopy and biological tests with osteoblast-like cells MG63). The results clearly show that properties of thin films of plasma polymers may be significantly altered by a sterilization process. Moreover, observed changes induced by selected sterilization methods were found to depend strongly on the sterilized plasma polymer. - Highlights: ► Effect of common sterilization methods on three kinds of plasma polymers is studied. ► Physical, chemical and bioresponsive properties of plasma polymers are analyzed. ► Changes induced by sterilization depend strongly on type of the plasma polymer.

  9. Effect of sterilization procedures on properties of plasma polymers relevant to biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Artemenko, A. [Charles University in Prague, Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holesovickach 2, 180 00 Prague (Czech Republic); Kylian, O., E-mail: ondrej.kylian@gmail.com [Charles University in Prague, Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holesovickach 2, 180 00 Prague (Czech Republic); Choukourov, A.; Gordeev, I.; Petr, M. [Charles University in Prague, Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holesovickach 2, 180 00 Prague (Czech Republic); Vandrovcova, M. [Institute of Physiology, Academy of Sciences of the Czech Republic, Department of Growth and Differentiation of Cell Populations, Videnska 1083, 142 20, Prague 4 (Czech Republic); Polonskyi, O. [Charles University in Prague, Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holesovickach 2, 180 00 Prague (Czech Republic); Bacakova, L. [Institute of Physiology, Academy of Sciences of the Czech Republic, Department of Growth and Differentiation of Cell Populations, Videnska 1083, 142 20, Prague 4 (Czech Republic); Slavinska, D.; Biederman, H. [Charles University in Prague, Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holesovickach 2, 180 00 Prague (Czech Republic)

    2012-10-01

    This study is focused on the evaluation of resistance of plasma polymers toward common sterilization techniques, i.e. property important for possible use of such materials in biomedical applications. Three kinds of plasma polymers having different bioadhesive natures were studied: plasma polymerized poly(ethylene oxide), fluorocarbon plasma polymers, and nitrogen-rich plasma polymers. These plasma polymers were subjected to dry heat, autoclave and UV radiation treatment. Their physical, chemical and bioresponsive properties were determined by means of different techniques (ellipsometry, atomic force microscopy, wettability measurements, X-ray photoelectron spectroscopy and biological tests with osteoblast-like cells MG63). The results clearly show that properties of thin films of plasma polymers may be significantly altered by a sterilization process. Moreover, observed changes induced by selected sterilization methods were found to depend strongly on the sterilized plasma polymer. - Highlights: Black-Right-Pointing-Pointer Effect of common sterilization methods on three kinds of plasma polymers is studied. Black-Right-Pointing-Pointer Physical, chemical and bioresponsive properties of plasma polymers are analyzed. Black-Right-Pointing-Pointer Changes induced by sterilization depend strongly on type of the plasma polymer.

  10. Polymer/Layered Silicate Nano composites

    International Nuclear Information System (INIS)

    Bakhit, M.E.E.H.

    2012-01-01

    Polymer–clay nano composites have attracted the attention of many researchers and experimental results are presented in a large number of recent papers and patents because of the outstanding mechanical properties and low gas permeabilities that are achieved in many cases. Polymer-clay nano composites are a new class of mineral-field polymer that contain relatively small amounts (<10%) of nanometer-sized clay particles. Polymer/clay nano composites have their origin in the pioneering research conducted at Toyota Central Research Laboratories and the first historical record goes back to 1987. The matrix was nylon-6 and the filler MMT. Because of its many advantages such as high mechanical properties, good gas barrier, flame retardation, etc. polymer/clay nano composites have been intensely investigated and is currently the subject of many research programs. Nano composite materials are commercially important and several types of products with different shapes and applications including food packaging films and containers, engine parts, dental materials, etc. are now available in markets. A number of synthesis routes have been developed in the recent years to prepare these materials, which include intercalation of polymers or prepolymers from solution, in-situ polymerization, melt intercalation etc. In this study, new nano composite materials were produced from the components of rubber (Nbr, SBR and EPDM) as the polymeric matrix and organically modified quaternary alkylammonium montmorillonite in different contents (3, 5, 7, and 10 phr) as the filler by using an extruder then, the rubber nano composite sheets were irradiated at a dose of 0, 50, 75, 100 and 150 KGy using Electron beam Irradiation technique as a crosslinking agent. These new materials can be characterized by using various analytical techniques including X-ray diffractometer XRD, Thermogravimetric analyzer TGA, scanning electron microscope (SEM), transmission electron microscope (TEM),Fourier transform

  11. Technology and development of self-reinforced polymer composites

    NARCIS (Netherlands)

    Alcock, B.; Peijs, T.

    2013-01-01

    In recent years there has been an increasing amount of interest, both commercially and scientifically, in the emerging field of "self-reinforced polymer composites". These materials, which are sometimes also referred to as "single polymer composites", or "all-polymer composites", were first

  12. Technology and Development of Self-Reinforced Polymer Composites

    Science.gov (United States)

    Alcock, Ben; Peijs, Ton

    In recent years there has been an increasing amount of interest, both commercially and scientifically, in the emerging field of "self-reinforced polymer composites". These materials, which are sometimes also referred to as "single polymer composites", or "all-polymer composites", were first conceived in the 1970s, and are now beginning to appear in a range of commercial products. While high mechanical performance polymer fibres or tapes are an obvious precursor for composite development, various different technologies have been developed to consolidate these into two- or three-dimensional structures. This paper presents a review of the various processing techniques that have been reported in the literature for the manufacture of self-reinforced polymer composites from fibres or tapes of different polymers, and so exploit the fibre or tape performance in a commercial material or product.

  13. Durable polymer-aerogel based superhydrophobic coatings, a composite material

    Science.gov (United States)

    Kissel, David J; Brinker, Charles Jeffrey

    2014-03-04

    Provided are polymer-aerogel composite coatings, devices and articles including polymer-aerogel composite coatings, and methods for preparing the polymer-aerogel composite. The exemplary article can include a surface, wherein the surface includes at least one region and a polymer-aerogel composite coating disposed over the at least one region, wherein the polymer-aerogel composite coating has a water contact angle of at least about 140.degree. and a contact angle hysteresis of less than about 1.degree.. The polymer-aerogel composite coating can include a polymer and an ultra high water content catalyzed polysilicate aerogel, the polysilicate aerogel including a three dimensional network of silica particles having surface functional groups derivatized with a silylating agent and a plurality of pores.

  14. Durable polymer-aerogel based superhydrophobic coatings: a composite material

    Science.gov (United States)

    Kissel, David J.; Brinker, Charles Jeffrey

    2016-02-02

    Provided are polymer-aerogel composite coatings, devices and articles including polymer-aerogel composite coatings, and methods for preparing the polymer-aerogel composite. The exemplary article can include a surface, wherein the surface includes at least one region and a polymer-aerogel composite coating disposed over the at least one region, wherein the polymer-aerogel composite coating has a water contact angle of at least about 140.degree. and a contact angle hysteresis of less than about 1.degree.. The polymer-aerogel composite coating can include a polymer and an ultra high water content catalyzed polysilicate aerogel, the polysilicate aerogel including a three dimensional network of silica particles having surface functional groups derivatized with a silylating agent and a plurality of pores.

  15. Modelling anisotropic water transport in polymer composite

    Indian Academy of Sciences (India)

    This work reports anisotropic water transport in a polymer composite consisting of an epoxy matrix reinforced with aligned triangular bars made of vinyl ester. By gravimetric experiments, water diffusion in resin and polymer composites were characterized. Parameters for Fickian diffusion and polymer relaxation models were ...

  16. High temperature performance of polymer composites

    CERN Document Server

    Keller, Thomas

    2014-01-01

    The authors explain the changes in the thermophysical and thermomechanical properties of polymer composites under elevated temperatures and fire conditions. Using microscale physical and chemical concepts they allow researchers to find reliable solutions to their engineering needs on the macroscale. In a unique combination of experimental results and quantitative models, a framework is developed to realistically predict the behavior of a variety of polymer composite materials over a wide range of thermal and mechanical loads. In addition, the authors treat extreme fire scenarios up to more than 1000°C for two hours, presenting heat-protection methods to improve the fire resistance of composite materials and full-scale structural members, and discuss their performance after fire exposure. Thanks to the microscopic approach, the developed models are valid for a variety of polymer composites and structural members, making this work applicable to a wide audience, including materials scientists, polymer chemist...

  17. Graphene-Reinforced Metal and Polymer Matrix Composites

    Science.gov (United States)

    Kasar, Ashish K.; Xiong, Guoping; Menezes, Pradeep L.

    2018-06-01

    Composites have tremendous applicability due to their excellent capabilities. The performance of composites mainly depends on the reinforcing material applied. Graphene is successful as an efficient reinforcing material due to its versatile as well as superior properties. Even at very low content, graphene can dramatically improve the properties of polymer and metal matrix composites. This article reviews the fabrication followed by mechanical and tribological properties of metal and polymer matrix composites filled with different kinds of graphene, including single-layer, multilayer, and functionalized graphene. Results reported to date in literature indicate that functionalized graphene or graphene oxide-polymer composites are promising materials offering significantly improved strength and frictional properties. A similar trend of improved properties has been observed in case of graphene-metal matrix composites. However, achieving higher graphene loading with uniform dispersion in metal matrix composites remains a challenge. Although graphene-reinforced composites face some challenges, such as understanding the graphene-matrix interaction or fabrication techniques, graphene-reinforced polymer and metal matrix composites have great potential for application in various fields due to their outstanding properties.

  18. Preparation of polymer composite nanomembranes with a conductivity asymmetry

    International Nuclear Information System (INIS)

    Kravets, L.I.; Dmitriev, S.N.; Satulu, B.; Mitu, B.; Dinescu, G.

    2009-01-01

    The structure and charge transport properties of the poly(ethylene terephthalate) track membrane modified by a pyrrole plasma have been studied. It was found that polymer deposition on the surface of a track membrane via the plasma polymerization of pyrrole results in the creation of a composite nanomembrane that, in the case of the formation of a semipermeable layer covering the pores, possesses conductivity asymmetry in electrolyte solutions - a rectification effect similar to that of a p-n junction in semiconductors. It is caused by presence in the membrane of two layers with different functional groups and also by the pore geometry. Such a type of membranes can be used for creation of chemical and biochemical sensors

  19. Processing and characterization of ceramic superconductor/polymer composites

    International Nuclear Information System (INIS)

    Kander, R.G.; Namboodri, S.L.

    1993-01-01

    One way to more easily process a brittle high-temperature ceramic superconductor into a useful structure is to combine it with a polymer to form a composite material. Processing of polymer-based composites into complex shapes is well established and relatively easy when compared with traditional ceramic processing unit operations. In addition, incorporating a ceramic superconductor into a polymer matrix can improve mechanical performance as compared with a monolithic ceramic. Finally, because ceramic superconductors are susceptible to attack by moisture, a polymer-based composite structure can also provide protection from deleterious environmental effects. This paper focuses on the processing and subsequent characterization of ceramic superconductor/polymer composites designed primarily for electromagnetic shielding and diamagnetic applications. YBa 2 Cu 3 O 7-x [YBCO] ceramic superconductor is combined with poly(methyl methacrylate) [PMMA] to form novel composite structures. Composite structures have been molded with both a discontinuous superconducting phase (i.e., ceramic particulate reinforced polymers) and with a continuous superconducting phase (i.e., polymer infiltrated porous ceramics). Characterization of these composite structures includes the determination of diamagnetic strength, electromagnetic shielding effectiveness, mechanical performance, and environmental resistance. The goal of this program is to produce a composite structure with increased mechanical integrity and environmental resistance at liquid nitrogen temperatures without compromising the electromagnetic shielding and diamagnetic properties of the superconducting phase. Composites structures of this type are potentially useful in numerous magnetic applications including electromagnetic shielding, magnetic sensors, energy storage, magnetic levitation, and motor windings

  20. Extrudable polymer-polymer composites based on ultra-high molecular weight polyethylene

    Science.gov (United States)

    Panin, S. V.; Kornienko, L. A.; Alexenko, V. O.; Buslovich, D. G.; Dontsov, Yu. V.

    2017-12-01

    Mechanical and tribotechnical characteristics of polymer-polymeric composites of UHMWPE are studied with the aim of developing extrudable, wear-resistant, self-lubricant polymer mixtures for Additive Manufacturing (AM). The motivation of the study is their further application as feedstocks for 3D printing. Blends of UHMWPE with graft- and block copolymers of low-density polyethylene (HDPE-g-VTMS, HDPE-g-SMA, HDPE-b-EVA), polypropylene (PP), block copolymers of polypropylene and polyamide with linear low density polyethylene (PP-b-LLDPE, PA-b-LLDPE), as well as cross-linked polyethylene (PEX-b), are examined. The choice of compatible polymer components for an ultra- high molecular weight matrix for increasing processability (extrudability) is motivated by the search for commercially available and efficient additives aimed at developing wear-resistant extrudable polymer composites for additive manufacturing. The extrudability, mechanical properties and wear resistance of UHMWPE-based polymer-polymeric composites under sliding friction with different velocities and loads are studied.

  1. Stress-tuned conductor-polymer composite for use in sensors

    Science.gov (United States)

    Martin, James E; Read, Douglas H

    2013-10-22

    A method for making a composite polymeric material with electrical conductivity determined by stress-tuning of the conductor-polymer composite, and sensors made with the stress-tuned conductor-polymer composite made by this method. Stress tuning is achieved by mixing a miscible liquid into the polymer precursor solution or by absorbing into the precursor solution a soluble compound from vapor in contact with the polymer precursor solution. The conductor may or may not be ordered by application of a magnetic field. The composite is formed by polymerization with the stress-tuning agent in the polymer matrix. The stress-tuning agent is removed following polymerization to produce a conductor-polymer composite with a stress field that depends on the amount of stress-tuning agent employed.

  2. Impact of plasma treatment under atmospheric pressure on surface chemistry and surface morphology of extruded and injection-molded wood-polymer composites (WPC)

    Science.gov (United States)

    Hünnekens, Benedikt; Avramidis, Georg; Ohms, Gisela; Krause, Andreas; Viöl, Wolfgang; Militz, Holger

    2018-05-01

    The influence of plasma treatment performed at atmospheric pressure and ambient air as process gas by a dielectric barrier discharge (DBD) on the morphological and chemical surface characteristics of wood-polymer composites (WPC) was investigated by applying several surface-sensitive analytical methods. The surface free energy showed a distinct increase after plasma treatment for all tested materials. The analyzing methods for surface topography-laser scanning microscopy (LSM) and atomic force microscopy (AFM)-revealed a roughening induced by the treatment which is likely due to a degradation of the polymeric surface. This was accompanied by the formation of low-molecular-weight oxidized materials (LMWOMs), appearing as small globular structures. With increasing discharge time, the nodules increase in size and the material degradation proceeds. The surface degradation seems to be more serious for injection-molded samples, whereas the formation of nodules became more apparent and were evenly distributed on extruded surfaces. These phenomena could also be confirmed by scanning electron microscopy (SEM). In addition, differences between extruded and injection-molded surfaces could be observed. Besides the morphological changes, the chemical composition of the substrates' surfaces was affected by the plasma discharge. Infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS) indicated the formation of new oxygen containing polar groups on the modified surfaces.

  3. Nanocomposite coatings of Ti/C:H plasma polymer particles providing a surface with variable nanoroughness

    Czech Academy of Sciences Publication Activity Database

    Solař, P.; Kylián, O.; Polonskyi, O.; Artemenko, A.; Arzhakov, D.; Drábik, M.; Slavínská, D.; Vandrovcová, Marta; Bačáková, Lucie; Biederman, H.

    2012-01-01

    Roč. 206, č. 21 (2012), s. 4335-4342 ISSN 0257-8972 R&D Projects: GA AV ČR(CZ) KAN101120701 Institutional research plan: CEZ:AV0Z50110509 Keywords : plasma polymer particles * composite film * cell adhesion Subject RIV: EI - Biotechnology ; Bionics Impact factor: 1.941, year: 2012

  4. Reversible switching of wetting properties and erasable patterning of polymer surfaces using plasma oxidation and thermal treatment

    Science.gov (United States)

    Rashid, Zeeshan; Atay, Ipek; Soydan, Seren; Yagci, M. Baris; Jonáš, Alexandr; Yilgor, Emel; Kiraz, Alper; Yilgor, Iskender

    2018-05-01

    Polymer surfaces reversibly switchable from superhydrophobic to superhydrophilic by exposure to oxygen plasma and subsequent thermal treatment are demonstrated. Two inherently different polymers, hydrophobic segmented polydimethylsiloxane-urea copolymer (TPSC) and hydrophilic poly(methyl methacrylate) (PMMA) are modified with fumed silica nanoparticles to prepare superhydrophobic surfaces with roughness on nanometer to micrometer scale. Smooth TPSC and PMMA surfaces are also used as control samples. Regardless of their chemical structure and surface topography, all surfaces display completely reversible wetting behavior changing from hydrophobic to hydrophilic and back for many cycles upon plasma oxidation followed by thermal annealing. Influence of plasma power, plasma exposure time, annealing temperature and annealing time on the wetting behavior of polymeric surfaces are investigated. Surface compositions, textures and topographies are characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and white light interferometry (WLI), before and after oxidation and thermal annealing. Wetting properties of the surfaces are determined by measuring their static, advancing and receding water contact angle. We conclude that the chemical structure and surface topography of the polymers play a relatively minor role in reversible wetting behavior, where the essential factors are surface oxidation and migration of polymer molecules to the surface upon thermal annealing. Reconfigurable water channels on polymer surfaces are produced by plasma treatment using a mask and thermal annealing cycles. Such patterned reconfigurable hydrophilic regions can find use in surface microfluidics and optofluidics applications.

  5. Fluid Effects in Polymers and Polymeric Composites

    CERN Document Server

    Weitsman, Y Jack

    2012-01-01

    Fluid Effects in Polymers and Polymeric Composites, written by the late Dr. Y. Jack Weitsman, addresses the wide range of parameters that affect the interaction of fluids with polymers and polymeric composites. The book aims at broadening the scope of available data, mostly limited up to this time to weight-gain recordings of fluid ingress into polymers and composites, to the practical circumstances of fluctuating exposure. Various forms of experimental data are given, in conjunction with theoretical models derived from basic scientific principles, and correlated with severity of exposure conditions and interpreted by means of rationally based theoretical models. The practical implications of the effects of fluids are discussed. The issue of fluid effects on polymers and polymeric composites is of concern to engineers and scientists active in aerospace and naval structures, as an increasing portion of these structures are made of polymeric composites and employ polymeric adhesives as a joining device. While...

  6. Inorganic-whisker-reinforced polymer composites synthesis, properties and applications

    CERN Document Server

    Sun, Qiuju

    2015-01-01

    Inorganic-Whisker-Reinforced Polymer Composites: Synthesis, Properties and Applications gives a comprehensive presentation of inorganic microcrystalline fibers, or whiskers, a polymer composite filler. It covers whisker synthesis, surface modification, applications for reinforcing polymer-matrix composites, and analysis of resulting filled polymer composites. It focuses on calcium carbonate whiskers as a primary case study, introducing surface treatment methods for calcium carbonate whiskers and factors that influence them. Along with calcium carbonate, the book discusses potassium titanate and aluminum borate whiskers, which also comprise the new generation of inorganic whiskers. According to research results, composites filled by inorganic whiskers show improved strength, wear-resistance, thermal conductivity, and antistatic properties. It explains the importance of modifying polymer materials for use with inorganic whiskers and describes preparation and evaluation methods of polymers filled with inorganic ...

  7. Tribology of natural fiber polymer composites

    CERN Document Server

    Chand, N

    2008-01-01

    Environmental concerns are driving demand for bio-degradable materials such as plant-based natural fiber reinforced polymer composites. These composites are fast replacing conventional materials in many applications, especially in automobiles, where tribology (friction, lubrication and wear) is important. This book covers the availability and processing of natural fiber polymer composites and their structural, thermal, mechanical and, in particular, tribological properties.Chapter 1 discusses sources of natural fibers, their extraction and surface modification. It also reviews the ther

  8. Developing polymer composite materials: carbon nanotubes or graphene?

    Science.gov (United States)

    Sun, Xuemei; Sun, Hao; Li, Houpu; Peng, Huisheng

    2013-10-04

    The formation of composite materials represents an efficient route to improve the performances of polymers and expand their application scopes. Due to the unique structure and remarkable mechanical, electrical, thermal, optical and catalytic properties, carbon nanotube and graphene have been mostly studied as a second phase to produce high performance polymer composites. Although carbon nanotube and graphene share some advantages in both structure and property, they are also different in many aspects including synthesis of composite material, control in composite structure and interaction with polymer molecule. The resulting composite materials are distinguished in property to meet different applications. This review article mainly describes the preparation, structure, property and application of the two families of composite materials with an emphasis on the difference between them. Some general and effective strategies are summarized for the development of polymer composite materials based on carbon nanotube and graphene. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The analysis of thermoplastic characteristics of special polymer sulfur composite

    Science.gov (United States)

    Książek, Mariusz

    2017-01-01

    Specific chemical environments step out in the industry objects. Portland cement composites (concrete and mortar) were impregnated by using the special polymerized sulfur and technical soot as a filler (polymer sulfur composite). Sulfur and technical soot was applied as the industrial waste. Portland cement composites were made of the same aggregate, cement and water. The process of special polymer sulfur composite applied as the industrial waste is a thermal treatment process in the temperature of about 150-155°C. The result of such treatment is special polymer sulfur composite in a liquid state. This paper presents the plastic constants and coefficients of thermal expansion of special polymer sulfur composites, with isotropic porous matrix, reinforced by disoriented ellipsoidal inclusions with orthotropic symmetry of the thermoplastic properties. The investigations are based on the stochastic differential equations of solid mechanics. A model and algorithm for calculating the effective characteristics of special polymer sulfur composites are suggested. The effective thermoplastic characteristics of special polymer sulfur composites, with disoriented ellipsoidal inclusions, are calculated in two stages: First, the properties of materials with oriented inclusions are determined, and then effective constants of a composite with disoriented inclusions are determined on the basis of the Voigt or Rice scheme. A brief summary of new products related to special polymer sulfur composites is given as follows: Impregnation, repair, overlays and precast polymer concrete will be presented. Special polymer sulfur as polymer coating impregnation, which has received little attention in recent years, currently has some very interesting applications.

  10. Combined use of polymer composites and metals in engineering structures

    International Nuclear Information System (INIS)

    Hoa, S.V.

    2002-01-01

    Polymer matrix composites have found many applications in the construction of light weight structures such as those in aircrafts, automobiles, sports equipment etc. This is because these materials possess high stiffness, high strength and low densities. In applications of polymer matrix composites in the light weight structures, the polymer composites are however, not used by themselves alone in most cases. Usually the polymer composites are used in conjunction with some metal components. The metal components are used either to provide means for joining the composite components or the composites are used to repair the cracked metal structures. The synergistic effect of both metals and composites can provide excellent performance with good economy. This paper presents a few applications where polymer composites are used in conjunction with metals in engineering structures. (author)

  11. A review of electrohydrodynamic casting energy conversion polymer composites

    Directory of Open Access Journals (Sweden)

    Yong X. Gan

    2018-03-01

    Full Text Available This paper provides a brief review on manufacturing polymer composite materials through the nontraditional electrohydrodynamic (EHD casting approach. First, the EHD technology will be introduced. Then, typical functional polymer composite materials including thermoelectric and photoelectric energy conversion polymers and their composites will be presented. Specifically, how to make composite materials containing functional nanoparticles will be discussed. Converting polymeric fibers into partially carbonized fiber composites will also be shown. The latest research results of polymeric composite materials with energy conversion and sensing functions will be given.

  12. Conductive polymer composition

    NARCIS (Netherlands)

    2010-01-01

    The present invention relates to a process for the preparation of a conductive polymer composition comprising graphene and the articles obtained by this process. The process comprises the following steps: A) contacting graphite oxide in an aqueous medium with a water-soluble or dispersible

  13. Multilayer Electroactive Polymer Composite Material Comprising Carbon Nanotubes

    Science.gov (United States)

    Ounaies, Zoubeida (Inventor); Park, Cheol (Inventor); Harrison, Joycelyn S. (Inventor); Holloway, Nancy M. (Inventor); Draughon, Gregory K. (Inventor)

    2009-01-01

    An electroactive material comprises multiple layers of electroactive composite with each layer having unique dielectric, electrical and mechanical properties that define an electromechanical operation thereof when affected by an external stimulus. For example, each layer can be (i) a 2-phase composite made from a polymer with polarizable moieties and an effective amount of carbon nanotubes incorporated in the polymer for a predetermined electromechanical operation, or (ii) a 3-phase composite having the elements of the 2-phase composite and further including a third component of micro-sized to nano-sized particles of an electroactive ceramic incorporated in the polymer matrix.

  14. Surface characterization of plasma treated polymers for applications as biocompatible carriers

    Directory of Open Access Journals (Sweden)

    L. Bacakova

    2013-06-01

    Full Text Available The objective of this work was to determine surface properties of polymer surfaces after plasma treatment with the aim of further cytocompatibility tests. Examined polymers were poly(ethyleneterephthalate (PET, high-density polyethylene (HDPE, poly(tetrafluoro-ethylene (PTFE and poly(L-lactic acid (PLLA. Goniometry has shown that the plasma treatment was immediately followed by a sharp decrease of contact angle of the surface. In the course of ageing the contact angle increased due to the reorientation of polar groups into the surface layer of polymer. Ablation of polymer surfaces was observed during the degradation. Decrease of weight of polymer samples was measured by gravimetry. Surface morphology and roughness was studied by atomic force microscopy (AFM. The PLLA samples exhibited saturation of wettability (aged surface after approximately 100 hours, while the PET and PTFE achieved constant values of contact angle after 336 hours. Irradiation by plasma leads to polymer ablation, the highest mass loss being observed for PLLA. The changes in the surface roughness and morphology were observed, a lamellar structure being induced on PTFE. Selected polymer samples were seeded with VSMC (vascular smooth muscle cells and the adhesion and proliferation of cells was studied. It was proved that certain combination of input treatment parameters led to improvement of polymer cytocompatibility. The plasma exposure was confirmed to significantly improve the PTFE biocompatibility.

  15. Properties of a-C:H:O plasma polymer films deposited from acetone vapors

    Energy Technology Data Exchange (ETDEWEB)

    Drabik, M., E-mail: martin.drabik@gmail.com [Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen (Switzerland); Celma, C. [Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen (Switzerland); Kousal, J.; Biederman, H. [Charles University in Prague, Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holešovičkách 2, 180 00 Prague 8 (Czech Republic); Hegemann, D. [Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen (Switzerland)

    2014-12-31

    To gain insight into the deposition and stability of oxygen-containing plasma polymer films, the properties of amorphous oxygenated hydrocarbon (a-C:H:O) plasma polymer coatings deposited from acetone vapors under various experimental conditions are investigated. Apart from the discharge power, the influence of the reactive carbon dioxide (CO{sub 2}) gas on the structure of the resulting films is studied. It is found by characterization using X-ray Photoelectron Spectroscopy and Fourier-Transform Infrared Spectroscopy that the experimental conditions particularly influence the amount of oxygen in the deposited a-C:H:O plasma polymer films. The O/C elemental ratio increases with increasing amount of CO{sub 2} in the working gas mixture (up to 0.2 for 24 sccm of CO{sub 2} at 30 W) and decreases with increasing RF discharge power (down to 0.17 for 50 W). Furthermore, the nature of bonds between the oxygen and carbon atoms has been examined. Only low amounts of double and triple bonded carbon are observed. This has a particular influence on the aging of the plasma polymer films which is studied both in ambient air and in distilled water for up to 4 months. Overall, stable a-C:H:O plasma polymer films are deposited comprising low amounts (up to about 5%) of ester/carboxyl groups. - Highlights: • Hydrocarbon plasma polymer films with variable oxygen content can be prepared. • Stable oxygenated hydrocarbon plasma polymers contain max 5% of ester/carboxyl groups. • Acetone-derived plasma polymer films can be used as permanent hydrophilic surfaces.

  16. The free radical process for the polymer surface treated by radio frequency plasma

    International Nuclear Information System (INIS)

    Ma Yuguang; Yang Meiling; Shen Jiacong; Zheng Yingguang

    1992-01-01

    The formation and translation of the free radicals on the polymer surface treated by plasmas were studied and observed by ESR measurement. The results show that C-C bond split was main reaction in the process of the polymer irradiated by plasma, by which a stable alkyl free radical was formed. When alkyl free radical contacted with air, they translate into peroxide radical instantaneously. The peroxide radical was not as stable as radical in vacuum, they can react each other to form some polar-groups on polymer surface. The interaction between the peroxide free radical and polymer chain was correlative not only to the structure of polymer but also to the molecular motion of the polymer chain. The nature of plasma treating polymer surface was that the peroxide radicals were led onto polymer surface

  17. Anion-conducting polymer, composition, and membrane

    Science.gov (United States)

    Pivovar, Bryan S [Los Alamos, NM; Thorn, David L [Los Alamos, NM

    2009-09-01

    Anion-conducing polymers and membranes with enhanced stability to aqueous alkali include a polymer backbone with attached sulfonium, phosphazenium, phosphazene, and guanidinium residues. Compositions also with enhanced stability to aqueous alkali include a support embedded with sulfonium, phosphazenium, and guanidinium salts.

  18. Mechanically stiff, electrically conductive composites of polymers and carbon nanotubes

    Science.gov (United States)

    Worsley, Marcus A.; Kucheyev, Sergei O.; Baumann, Theodore F.; Kuntz, Joshua D.; Satcher, Jr., Joe H.; Hamza, Alex V.

    2015-07-21

    Using SWNT-CA as scaffolds to fabricate stiff, highly conductive polymer (PDMS) composites. The SWNT-CA is immersing in a polymer resin to produce a SWNT-CA infiltrated with a polymer resin. The SWNT-CA infiltrated with a polymer resin is cured to produce the stiff and electrically conductive composite of carbon nanotube aerogel and polymer.

  19. Mechanically stiff, electrically conductive composites of polymers and carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Worsley, Marcus A.; Kucheyev, Sergei O.; Baumann, Theodore F.; Kuntz, Joshua D.; Satcher, Jr., Joe H.; Hamza, Alex V.

    2017-10-17

    Using SWNT-CA as scaffolds to fabricate stiff, highly conductive polymer (PDMS) composites. The SWNT-CA is immersing in a polymer resin to produce a SWNT-CA infiltrated with a polymer resin. The SWNT-CA infiltrated with a polymer resin is cured to produce the stiff and electrically conductive composite of carbon nanotube aerogel and polymer.

  20. Methods of enhancing conductivity of a polymer-ceramic composite electrolyte

    Science.gov (United States)

    Kumar, Binod

    2003-12-02

    Methods for enhancing conductivity of polymer-ceramic composite electrolytes are provided which include forming a polymer-ceramic composite electrolyte film by a melt casting technique and uniaxially stretching the film from about 5 to 15% in length. The polymer-ceramic composite electrolyte is also preferably annealed after stretching such that it has a room temperature conductivity of from 10.sup.-4 S cm.sup.-1 to 10.sup.-3 S cm.sup.-1. The polymer-ceramic composite electrolyte formed by the methods of the present invention may be used in lithium rechargeable batteries.

  1. Polymer Composites Corrosive Degradation: A Computational Simulation

    Science.gov (United States)

    Chamis, Christos C.; Minnetyan, Levon

    2007-01-01

    A computational simulation of polymer composites corrosive durability is presented. The corrosive environment is assumed to manage the polymer composite degradation on a ply-by-ply basis. The degradation is correlated with a measured pH factor and is represented by voids, temperature and moisture which vary parabolically for voids and linearly for temperature and moisture through the laminate thickness. The simulation is performed by a computational composite mechanics computer code which includes micro, macro, combined stress failure and laminate theories. This accounts for starting the simulation from constitutive material properties and up to the laminate scale which exposes the laminate to the corrosive environment. Results obtained for one laminate indicate that the ply-by-ply degradation degrades the laminate to the last one or the last several plies. Results also demonstrate that the simulation is applicable to other polymer composite systems as well.

  2. Synthesis of semiconductor polymers by inductive plasma; Sintesis de polimeros semiconductores por plasmas inductivos

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, G.; Cruz, G.; Olayo, M.G. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Morales, J. [UAM-I, 09340 Mexico D.F. (Mexico)

    2003-07-01

    When carrying out the synthesis of semiconductor polymers by plasma it is important to consider the electric arrangement of the discharge since this it influences in the distribution of the energy of the particles in the reactor. The main electric arrangements in those that are developed the brightness discharges of radio frequency are resistive, capacitive and inductive. In the Laboratory of Materials processing by plasma of the ININ its have been worked different synthesis of polymers with resistive arrangements with good results. In this work the results of the synthesis and characterization of poly aniline and chlorate polyethylene by inductive plasma are presented. (Author)

  3. Tethered Nanoparticle–Polymer Composites: Phase Stability and Curvature

    KAUST Repository

    Srivastava, Samanvaya

    2012-04-17

    Phase behavior of poly(ethylene glycol) (PEG) tethered silica nanoparticles dispersed in PEG hosts is investigated using small-angle X-ray scattering. Phase separation in dispersions of densely grafted nanoparticles is found to display strikingly different small-angle X-ray scattering signatures in comparison to phase-separated composites comprised of bare or sparsely grafted nanoparticles. A general diagram for the dispersion state and phase stability of polymer tethered nanoparticle-polymer composites incorporating results from this as well as various other contemporary studies is presented. We show that in the range of moderate to high grafting densities the dispersion state of nanoparticles in composites is largely insensitive to the grafting density of the tethered chains and chemistry of the polymer host. Instead, the ratio of the particle diameter to the size of the tethered chain and the ratio of the molecular weights of the host and tethered polymer chains (P/N) are shown to play a dominant role. Additionally, we find that well-functionalized nanoparticles form stable dispersions in their polymer host beyond the P/N limit that demarcates the wetting/dewetting transition in polymer brushes on flat substrates interacting with polymer melts. A general strategy for achieving uniform nanoparticle dispersion in polymers is proposed. © 2012 American Chemical Society.

  4. Multifunctional Hybrid Carbon Nanotube/Carbon Fiber Polymer Composites

    Science.gov (United States)

    Kang, Jin Ho; Cano, Roberto J.; Ratcliffe, James G.; Luong, Hoa; Grimsley, Brian W.; Siochi, Emilie J.

    2016-01-01

    For aircraft primary structures, carbon fiber reinforced polymer (CFRP) composites possess many advantages over conventional aluminum alloys due to their light weight, higher strengthand stiffness-to-weight ratio, and low life-cycle maintenance costs. However, the relatively low electrical and thermal conductivities of CFRP composites fail to provide structural safety in certain operational conditions such as lightning strikes. Despite several attempts to solve these issues with the addition of carbon nanotubes (CNT) into polymer matrices, and/or by interleaving CNT sheets between conventional carbon fiber (CF) composite layers, there are still interfacial problems that exist between CNTs (or CF) and the resin. In this study, hybrid CNT/CF polymer composites were fabricated by interleaving layers of CNT sheets with Hexcel® IM7/8852 prepreg. Resin concentrations from 1 wt% to 50 wt% were used to infuse the CNT sheets prior to composite fabrication. The interlaminar properties of the resulting hybrid composites were characterized by mode I and II fracture toughness testing (double cantilever beam and end-notched flexure test). Fractographical analysis was performed to study the effect of resin concentration. In addition, multi-directional physical properties like thermal conductivity of the orthotropic hybrid polymer composite were evaluated. Interleaving CNT sheets significantly improved the in-plane (axial and perpendicular direction of CF alignment) thermal conductivity of the hybrid composite laminates by 50 - 400%.

  5. Thermal Protective Coating for High Temperature Polymer Composites

    Science.gov (United States)

    Barron, Andrew R.

    1999-01-01

    The central theme of this research is the application of carboxylate-alumoxane nanoparticles as precursors to thermally protective coatings for high temperature polymer composites. In addition, we will investigate the application of carboxylate-alumoxane nanoparticle as a component to polymer composites. The objective of this research was the high temperature protection of polymer composites via novel chemistry. The significance of this research is the development of a low cost and highly flexible synthetic methodology, with a compatible processing technique, for the fabrication of high temperature polymer composites. We proposed to accomplish this broad goal through the use of a class of ceramic precursor material, alumoxanes. Alumoxanes are nano-particles with a boehmite-like structure and an organic periphery. The technical goals of this program are to prepare and evaluate water soluble carboxylate-alumoxane for the preparation of ceramic coatings on polymer substrates. Our proposed approach is attractive since proof of concept has been demonstrated under the NRA 96-LeRC-1 Technology for Advanced High Temperature Gas Turbine Engines, HITEMP Program. For example, carbon and Kevlar(tm) fibers and matting have been successfully coated with ceramic thermally protective layers.

  6. Advanced research and development for plasma processing of polymers with combinatorial plasma-process analyzer

    International Nuclear Information System (INIS)

    Setsuhara, Yuichi; Cho, Ken; Takenaka, Kosuke; Shiratani, Masaharu; Sekine, Makoto; Hori, Masaru

    2010-01-01

    A plasma-process analyzer has been developed on the basis of combinatorial method, in which process examinations with continuous variations of plasma-process conditions can be carried out on a substrate holder with an inclined distribution of process parameters. Combinatorial plasma-process analyses have been demonstrated for examinations of plasma-polymer interactions in terms of etching characteristics and surface morphologies in order to show feasibility and effectiveness of the methodology as advanced research and development for next-generation plasma nano processes. The etching properties and surface morphologies have been investigated for polyethylene terephthalate (PET) films exposed to argon-oxygen mixture plasmas. The etching depth data obtained from three independent batches of the experiments showed universal and almost linear dependence with increasing product of (ion saturation current) x (exposure time); i.e. ion dose. Surface roughness of the polymer slightly increased with increasing ion dose, while the mean spacing after plasma exposure was found to decrease monotonically with increasing ion dose but was saturated at the level of approximately 250 nm.

  7. Large Dielectric Constant Enhancement in MXene Percolative Polymer Composites

    KAUST Repository

    Tu, Shao Bo

    2018-04-06

    near the percolation limit of about 15.0 wt % MXene loading, which surpasses all previously reported composites made of carbon-based fillers in the same polymer. With up to 10 wt % MXene loading, the dielectric loss of the MXene/P(VDF-TrFE-CFE) composite indicates only an approximately 5-fold increase (from 0.06 to 0.35), while the dielectric constant increased by 25 times over the same composition range. Furthermore, the ratio of permittivity to loss factor of the MXene-polymer composite is superior to that of all previously reported fillers in this same polymer. The dielectric constant enhancement effect is demonstrated to exist in other polymers as well when loaded with MXene. We show that the dielectric constant enhancement is largely due to the charge accumulation caused by the formation of microscopic dipoles at the surfaces between the MXene sheets and the polymer matrix under an external applied electric field.

  8. Application of Composite Polymer Electrolytes

    National Research Council Canada - National Science Library

    Scrosati, Bruno

    2001-01-01

    ...)PEO-based composite polymer electrolytes, by a series of specifically addressed electrochemical tests which included the determination of the conductivity and of the lithium transference number...

  9. Novel polymer coatings based on plasma polymerized 2-methoxyethyl acrylate

    DEFF Research Database (Denmark)

    Wu, Zhenning; Jiang, Juan; Benter, Maike

    2008-01-01

    plasma system[4]. The system named SoftPlasma™ is equipped with unique three-phase pulsed AC voltage. Low energy plasma polymerization has almost no thermal load for sensitive polymer materials[5]. Plasma polymerized coatings are highly cross-linked, pin-hole free and provide hydrophilic or hydrophobic...... properties[4-6]. We have exploited these possibilities and prepared plasma polymerized 2-methoxyethyl acrylate (PPMEA) coatings on various polymer substrates. The PPMEA coatings were optimized using various plasma polymerization conditions and characterized by X-ray photoelectron spectroscopy......, Fouriertransform infrared spectroscopy, Atomic force spectroscopy and Water contact-angle measurements. The microstructures ofPPMEA coatings with different thicknesses were also studied. For practical applications in mind, the coating stability was tested in different media (air, water, acetone, phosphate...

  10. Use of Atmospheric-Pressure Plasma Jet for Polymer Surface Modification: An Overview

    Energy Technology Data Exchange (ETDEWEB)

    Kuettner, Lindsey A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-16

    Atmospheric-pressure plasma jets (APPJs) are playing an increasingly important role in materials processing procedures. Plasma treatment is a useful tool to modify surface properties of materials, especially polymers. Plasma reacts with polymer surfaces in numerous ways thus the type of process gas and plasma conditions must be explored for chosen substrates and materials to maximize desired properties. This report discusses plasma treatments and looks further into atmospheric-pressure plasma jets and the effects of gases and plasma conditions. Following the short literature review, a general overview of the future work and research at Los Alamos National Laboratory (LANL) is discussed.

  11. Synthesis of biocompatible polymers by plasma

    International Nuclear Information System (INIS)

    Colin O, E.

    2007-01-01

    In this work biocompatible polymers were synthesized by plasma based on pyrrole, ethyleneglycol and allylamine. These monomers are biologically important because they contain oxygen and nitrogen in their structure and they form bonding like; N-H, C-N, C-O and O-H that are also in the human system. The polymers were synthesized with splendor electric discharges to 13.5 MHz, among 10 and 100 W, resistive coupling, pressure of 10 -1 mbar and 180 minutes of reaction. The interaction of the biological systems with biomaterials depends in many cases of the properties that present the surfaces, because the rough and/or porous surfaces favor the adherence of cells. The results indicate that the ruggedness of the polymers can be controlled with the synthesis energy, since when modifying it flat and/or rough surfaces they are obtained. The compatibility of water with other solutions that it is a form of increasing the adhesion of cells with biopolymers. The affinity with water and solutions is evaluated calculating the contact angle of the polymers surface with drops of concentration solutions and similar composition to the extracellular liquid of the spinal marrow of the human body. The solutions that were proven were based on NaCl, NaCl-MgSO 4 , and a mixture Krebs-Ringer that has chemical composition and similar concentration to that of the fluids of the spinal marrow. In the Poly pyrrole (PPy)/Polyethyleneglycol (PEG) copolymer, the biggest angles corresponded to the Krebs-Ringer solution, in the interval of 18 to 14 degrees and those lowest to the NaCl solution, of 14.5 at 11 degrees. The Poly allylamine had the more high values with water in the interval of 16.5 to 12.5 degrees and those lowest with the NaCl solution, of 13 at 9.5 degrees. On the other hand, in the derived polymers of pyrrole the more high values corresponded to the treatment with water, until 37, and those lowest to the NaCl-MgSO 4 solution, up to 10. The solutions where participated NaCl its produced

  12. Modelling anisotropic water transport in polymer composite ...

    Indian Academy of Sciences (India)

    Parameters for Fickian diffusion and polymer relaxation models were determined by .... Water transport process of resin and polymer composite specimens at ..... simulation. ... Kwon Y W and Bang H 1997 Finite element method using matlab.

  13. Argon ion implantation inducing modifications in the properties of benzene plasma polymers

    International Nuclear Information System (INIS)

    Rangel, E.C.; Cruz, N.C.; Santos, D.C.R.; Algatti, M.A.; Mota, R.P.; Honda, R.Y.; Silva, P.A.F.; Costa, M.S.; Tabacniks, M.H.

    2002-01-01

    Benzene plasma polymer films were bombarded with Ar ions by plasma immersion ion implantation. The treatments were performed using argon pressure of 3 Pa and 70 W of applied power. The substrate holder was polarized with high voltage negative pulses (25 kV, 3 Hz). Exposure time to the immersion plasma, t, was varied from 0 to 9000 s. Optical gap and chemical composition of the samples were determined by ultraviolet-visible and Rutherford backscattering spectroscopies, respectively. Film wettability was investigated by the contact angle between a water drop and the film surface. Nanoindentation technique was employed in the hardness measurements. It was observed growth in carbon and oxygen concentrations while there was decrease in the concentration of H atoms with increasing t. Furthermore, film hardness and wettability increased and the optical gap decreased with t. Interpretation of these results is proposed in terms of the chain crosslinking and unsaturation

  14. A new material for chemical industry - wood polymer composites

    International Nuclear Information System (INIS)

    Majali, A.B.; Patil, N.D.

    1979-01-01

    The paper outlines the advantages of the radiation cured wood-polymer composites (WPC) for application in certain critical areas of chemical industry. The wood-polymer composite made filterpress frames and plates were tested in a chemical plant. The entire exercise is elaborated. The radiation cured wood exhibited a considerably extended useful life in alkaline and acidic solutions. Composites based on teak wood showed a remarkable improvement with a nominal polymer loading of 10%. The reports of accelerated aging test of WPC are also presented. (auth.)

  15. 3D optical printing of piezoelectric nanoparticle-polymer composite materials.

    Science.gov (United States)

    Kim, Kanguk; Zhu, Wei; Qu, Xin; Aaronson, Chase; McCall, William R; Chen, Shaochen; Sirbuly, Donald J

    2014-10-28

    Here we demonstrate that efficient piezoelectric nanoparticle-polymer composite materials can be optically printed into three-dimensional (3D) microstructures using digital projection printing. Piezoelectric polymers were fabricated by incorporating barium titanate (BaTiO3, BTO) nanoparticles into photoliable polymer solutions such as polyethylene glycol diacrylate and exposing to digital optical masks that could be dynamically altered to generate user-defined 3D microstructures. To enhance the mechanical-to-electrical conversion efficiency of the composites, the BTO nanoparticles were chemically modified with acrylate surface groups, which formed direct covalent linkages with the polymer matrix under light exposure. The composites with a 10% mass loading of the chemically modified BTO nanoparticles showed piezoelectric coefficients (d(33)) of ∼ 40 pC/N, which were over 10 times larger than composites synthesized with unmodified BTO nanoparticles and over 2 times larger than composites containing unmodified BTO nanoparticles and carbon nanotubes to boost mechanical stress transfer efficiencies. These results not only provide a tool for fabricating 3D piezoelectric polymers but lay the groundwork for creating highly efficient piezoelectric polymer materials via nanointerfacial tuning.

  16. Phase stability and dynamics of entangled polymer-nanoparticle composites.

    KAUST Repository

    Mangal, Rahul

    2015-06-05

    Nanoparticle-polymer composites, or polymer-nanoparticle composites (PNCs), exhibit unusual mechanical and dynamical features when the particle size approaches the random coil dimensions of the host polymer. Here, we harness favourable enthalpic interactions between particle-tethered and free, host polymer chains to create model PNCs, in which spherical nanoparticles are uniformly dispersed in high molecular weight entangled polymers. Investigation of the mechanical properties of these model PNCs reveals that the nanoparticles have profound effects on the host polymer motions on all timescales. On short timescales, nanoparticles slow-down local dynamics of the host polymer segments and lower the glass transition temperature. On intermediate timescales, where polymer chain motion is typically constrained by entanglements with surrounding molecules, nanoparticles provide additional constraints, which lead to an early onset of entangled polymer dynamics. Finally, on long timescales, nanoparticles produce an apparent speeding up of relaxation of their polymer host.

  17. Phase stability and dynamics of entangled polymer-nanoparticle composites.

    KAUST Repository

    Mangal, Rahul; Srivastava, Samanvaya; Archer, Lynden A

    2015-01-01

    Nanoparticle-polymer composites, or polymer-nanoparticle composites (PNCs), exhibit unusual mechanical and dynamical features when the particle size approaches the random coil dimensions of the host polymer. Here, we harness favourable enthalpic interactions between particle-tethered and free, host polymer chains to create model PNCs, in which spherical nanoparticles are uniformly dispersed in high molecular weight entangled polymers. Investigation of the mechanical properties of these model PNCs reveals that the nanoparticles have profound effects on the host polymer motions on all timescales. On short timescales, nanoparticles slow-down local dynamics of the host polymer segments and lower the glass transition temperature. On intermediate timescales, where polymer chain motion is typically constrained by entanglements with surrounding molecules, nanoparticles provide additional constraints, which lead to an early onset of entangled polymer dynamics. Finally, on long timescales, nanoparticles produce an apparent speeding up of relaxation of their polymer host.

  18. Bamboo reinforced polymer composite - A comprehensive review

    Science.gov (United States)

    Roslan, S. A. H.; Rasid, Z. A.; Hassan, M. Z.

    2018-04-01

    Bamboo has greatly attention of researchers due to their advantages over synthetic polymers. It is entirely renewable, environmentally-friendly, non-toxic, cheap, non-abrasive and fully biodegradable. This review paper summarized an oveview of the bamboo, fiber extraction and mechanical behavior of bamboo reinforced composites. A number of studies proved that mechanical properties of bamboo fibers reinforced reinforced polymer composites are excellent and competent to be utilized in high-tech applications. The properties of the laminate are influenced by the fiber loading, fibre orientation, physical and interlaminar adhesion between fibre and matrix. In contrast, the presence of chemical constituents such as cellulose, lignin, hemicellulose and wax substances in natural fibres preventing them from firmly binding with polymer resin. Thus, led to poor mechanical properties for composites. Many attempt has been made in order to overcome this issue by using the chemical treatment.

  19. Atmospheric Pressure Plasma Jet Treatment of Poly-ε-caprolactone Polymer Solutions To Improve Electrospinning.

    Science.gov (United States)

    Grande, Silvia; Van Guyse, Joachim; Nikiforov, Anton Y; Onyshchenko, Iuliia; Asadian, Mahtab; Morent, Rino; Hoogenboom, Richard; De Geyter, Nathalie

    2017-09-27

    An atmospheric pressure plasma jet (APPJ) specifically designed for liquid treatment has been used in this work to improve the electrospinnability of a 5 w/v % solution of poly-ε-caprolactone (PCL) in a mixture of chloroform and N,N-dimethylformamide. Untreated PCL solutions were found to result in nonuniform fibers containing a large number of beads, whereas plasma-treated solutions (exposure time of 2-5 min) enabled the generation of beadless, uniform nanofibers with an average diameter of 450 nm. This enhanced electrospinnability was found to be mainly due to the highly increased conductivity of the plasma-modified PCL solutions. Consequently, more stretching of the polymer jet occurred during electrospinning, leading to the generation of bead-free fibers. Plasma treatment also results in an increased viscosity and decreased pH values. To explain these observed changes, optical emission spectroscopy (OES) has been used to examine the excited species present in the APPJ in contact with the PCL solution. This study revealed that the peaks attributed to H, CH, CH 2 , and C 2 species could be responsible for the degradation of solvent molecules and/or PCL structures during the plasma treatment. Size exclusion chromatography and X-ray photoelectron spectroscopy results showed that the molecular weight and the chemical composition of PCL were not significantly affected by the APPJ treatment. Plasma exposure mainly results in the degradation of the solvent molecules instead of modifying the PCL macromolecules, preserving the original polymer as much as possible. A hypothesis for the observed macroscopic changes in viscosity and pH values could be the generation of new chemical species such as HCl and/or HNO 3 . These species are characterized by their high conductivity, low pH values, and strong polarity and could enhance the solvent quality for PCL, leading to the expansion of the polymer coil, which could in turn explain the observed enhanced viscosity after plasma

  20. Atmospheric Pressure Plasma Processing for Polymer Adhesion: A Review

    DEFF Research Database (Denmark)

    Kusano, Yukihiro

    2014-01-01

    Atmospheric pressure plasma processing has attracted significant interests over decades due to its usefulness and a variety of applications. Adhesion improvement of polymer surfaces is among the most important applications of atmospheric pressure plasma treatment. Reflecting recent significant de...

  1. Polymer - (BEDT-TTF) polyiodide composites

    Energy Technology Data Exchange (ETDEWEB)

    Ulanski, J [Polymer Inst., Technical Univ. of Lodz (Poland); Glowacki, I [Polymer Inst., Technical Univ. of Lodz (Poland); Kryszewski, M [Polymer Inst., Technical Univ. of Lodz (Poland); Jeszka, J K [Center of Molecular and Macromolecular Studies, Lodz (Poland); Tracz, A [Center of Molecular and Macromolecular Studies, Lodz (Poland); Laukhina, E [Inst. of Chemical Physics, Chernogolovka (Russian Federation)

    1993-03-29

    Preparation and properties of reticulate doped polymers containing BEDT-TTF polyiodide crystalline network are discussed. The highly conducting films are obtained using different methods, including recently developed one in which oxidation of the donor with iodine and crystallization of the resulting salt take place simultaneously in situ, in the swollen polymer matrix. It was found that the temperature dependence of conductivity of the separated microcrystal grown in the film exhibits metallic character with a maximum around 100K. The conductivity of the as-obtained composite increases with temperature up to ca. 120K with an activation energy of ca. 50 meV, then levels off. Annealing of the composites in order to transform the BEDT-TTF polyiodide crystalites into superconducting [beta][sup *]-phase causes dramatic changes in the conductivity behaviour; the [sigma](T) dependence of the composite switches from semiconductor- to metal-like. Stability of the films at ambient conditions is good. (orig.)

  2. A review of mechanical and tribological behaviour of polymer composite materials

    Science.gov (United States)

    Prabhakar, K.; Debnath, S.; Ganesan, R.; Palanikumar, K.

    2018-04-01

    Composite materials are finding increased applications in many industrial applications. A nano-composite is a matrix to which nanosized particles have been incorporated to drastically improve the mechanical performance of the original material. The structural components produced using nano-composites will exhibit a high strength-to-weight ratio. The properties of nano-composites have caused researchers and industries to consider using this material in several fields. Polymer nanocomposites consists of a polymer material having nano-particles or nano-fillers dispersed in the polymer matrix which may be of different shapes with at least one of the dimensions less than 100nm. In this paper, comprehensive review of polymer nanocomposites was done majorly in three different areas. First, mechanical behaviour of polymer nanocomposites which focuses on the mechanical property evaluation such as tensile strength, impact strength and modulus of elasticity based on the different combination of filler materials and nanoparticle inclusion. Second, wear behavior of Polymer composite materials with respect to different impingement angles and variation of filler composition using different processing techniques. Third, tribological (Friction and Wear) behaviour of nanocomposites using various combination of nanoparticle inclusion and time. Finally, it summarized the challenges and prospects of polymer nanocomposites.

  3. Composite plasma polymerized sulfonated polystyrene membrane for PEMFC

    Energy Technology Data Exchange (ETDEWEB)

    Nath, Bhabesh Kumar; Khan, Aziz; Chutia, Joyanti, E-mail: jchutiaiasst@gmail.com

    2015-10-15

    Highlights: • Methyl methane sulfonate (MMS) is used as the sulfonating agent. • The proton conductivity of the membrane is found to be 0.141 S cm{sup −1}. • Power density of fuel cell with styrene/MMS membrane is 0.5 W cm{sup −2}. • The membrane exhibits thermal stability up to 140 °C. - Abstract: This work presents the introduction of an organic compound methyl methane sulfonate (MMS) for the first time in fabrication of polystyrene based proton exchange membrane (PEM) by plasma polymerization process. The membrane is fabricated by co-polymerizing styrene and MMS in capacitively coupled continuous RF plasma. The chemical composition of the plasma polymerized polymer membrane is investigated using Fourier Transform Infrared Spectroscopy which reveals the formation of composite structure of styrene and MMS. The surface morphology studied using AFM and SEM depicts the effect of higher partial pressure of MMS on surface topography of the membrane. The proton transport property of the membrane studied using electrochemical impedance spectroscopy shows the achievement of maximum proton conductivity of 0.141 S cm{sup −1} which is comparable to Nafion 117 membrane. Fuel cell performance test of the synthesized membrane shows a maximum power density of 500 mW cm{sup −2} and current density of 0.62 A cm{sup −2} at 0.6 V.

  4. Polymer powder adhesion to metallic surface improvement with plasma

    International Nuclear Information System (INIS)

    Hladik, J.; Pichal, J.; Spatenka, P.; Pichal, J.; Spatenka, P.

    2008-01-01

    Useful method for corrosion prevention is coating of a base material with a suitable substance. It performs a barrier between the base material and its environment. Great attractions in this field have found polymers, among them polyethylenes (PE). Due to the low adhesion grade of unmodified polymer powder or granules the application of any modification process increasing the adhesion grade is crucial. At present there is no universal approach to polymer adhesion improvement and there have been employed various quite different techniques. Our research employed the PE adhesion improvement by plasma modification. There were used two plasma reactors - the microwave low pressure reactor and the atmospheric reactor employing dielectric barrier discharge (DBD). The adhesion of the powder was determined by measurement of strength force demanded for displacement of the PE-metal joint

  5. Electro-optics of novel polymer-liquid crystalline composites

    International Nuclear Information System (INIS)

    Ibragimov, T.D.; Bayramov, G.M.; Imamaliyev, A.R.; Bayramov, G.M.

    2014-01-01

    The polymer network liquid crystals based on the liquid crystals H37 and 5CB with PMVP and PEG have been developed. Mesogene substance HOBA is served for stabilization of obtaining composites. Kinetics of network formation is investigated by methods of polarization microscopy and integrated small-angle scattering. It is shown that gel-like states of the composite H-37+PMVP+HOBA and 5CB+PEG+HOBA are formed at polymer concentration above 7 percent and 9 percent, correspondingly. The basic electro-optic parameters of the obtained composites are determined at room temperature. Experimental results are explained by phase separation of the system, diminution of a working area of electro-optical effects and influence of areas with high polymer concentration on areas with their low concentration

  6. On the mechanical behaviours of a craze in particulate-polymer composites

    Science.gov (United States)

    Zhang, Y. M.; Zhang, W. G.; Fan, M.; Xiao, Z. M.

    2018-05-01

    In polymeric composites, well-defined inclusions are incorporated into the polymer matrix to alleviate the brittleness of polymers. When a craze is initiated in such a composite, the interaction between the craze and the surrounding inclusions will greatly affect the composite's mechanical behaviours and toughness. To the best knowledge of the authors, only little research work has been found so far on the interaction between a craze and the near-by inclusions in particulate-polymer composites. In the current study, the first time, the influences of the surrounding inclusions on the craze are investigated in particulate-polymer composites. The three-phase model is adopted to study the fracture behaviours of the craze affected by multiple inclusions. An iterative procedure is proposed to solve the stress intensity factors. Parametric studies are performed to investigate the influences of the reinforcing particle volume fraction and the shear modulus ratio on fracture behaviours of particulate-polymer composites.

  7. Mechanical Behavior of Polymer Nano Bio Composite for Orthopedic Implants

    Science.gov (United States)

    Marimuthu, K., Dr.; Rajan, Sankar

    2018-04-01

    The bio-based polymer composites have been the focus of many scientific and research projects, as well as many commercial programs. In recent years, scientists and engineers have been working together to use the inherent strength and performance of the new class of bio-based composites which is compactable with human body and can act as a substitute for living cells. In this stage the polymer composites also stepped into human bone implants as a replacement for metallic implants which was problems like corrosion resistance and high cost. The polymer composite have the advantage that it can be molded to the required shape, the polymers have high corrosion resistance, less weight and low cost. The aim of this research is to develop and analyze the suitable bio compactable polymer composite for human implants. The nano particles reinforced polymer composites provides good mechanical properties and shows good tribological properties especially in the total hip and knee replacements. The graphene oxide powders are bio compactable and acts as anti biotic. GO nano powder where reinforced into High-density polyethylene in various weight percentage of 0.5% to 2%. The performance of GO nano powder shows better tribological properties. The material produced does not cause any pollution to the environment and at the same time it can be bio compactable and sustainable. The product will act environmentally friendly.

  8. Treatment of polymer surfaces in plasma Part I. Kinetic model

    International Nuclear Information System (INIS)

    Tabaliov, N A; Svirachev, D M

    2006-01-01

    The surface tension of the polymer materials depends on functional groups over its surface. As a result from the plasma treatment the kind and concentration of the functional groups can be changed. In the present work, the possible kinetic reactions are defined. They describe the interaction between the plasma and the polymer surface of polyethylene terephthalate (PET). Basing on these reactions, the systems of differential kinetic equations are suggested. The solutions are obtained analytically for the system kinetic equations at defined circumstances

  9. Self-healing in single and multiple fiber(s reinforced polymer composites

    Directory of Open Access Journals (Sweden)

    Woldesenbet E.

    2010-06-01

    Full Text Available You Polymer composites have been attractive medium to introduce the autonomic healing concept into modern day engineering materials. To date, there has been significant research in self-healing polymeric materials including several studies specifically in fiber reinforced polymers. Even though several methods have been suggested in autonomic healing materials, the concept of repair by bleeding of enclosed functional agents has garnered wide attention by the scientific community. A self-healing fiber reinforced polymer composite has been developed. Tensile tests are carried out on specimens that are fabricated by using the following components: hollow and solid glass fibers, healing agent, catalysts, multi-walled carbon nanotubes, and a polymer resin matrix. The test results have demonstrated that single fiber polymer composites and multiple fiber reinforced polymer matrix composites with healing agents and catalysts have provided 90.7% and 76.55% restoration of the original tensile strength, respectively. Incorporation of functionalized multi-walled carbon nanotubes in the healing medium of the single fiber polymer composite has provided additional efficiency. Healing is found to be localized, allowing multiple healing in the presence of several cracks.

  10. Investigating accidents involving aircraft manufactured from polymer composite materials

    Science.gov (United States)

    Dunn, Leigh

    This study looks into the examination of polymer composite wreckage from the perspective of the aircraft accident investigator. It develops an understanding of the process of wreckage examination as well as identifying the potential for visual and macroscopic interpretation of polymer composite aircraft wreckage. The in-field examination of aircraft wreckage, and subsequent interpretations of material failures, can be a significant part of an aircraft accident investigation. As the use of composite materials in aircraft construction increases, the understanding of how macroscopic failure characteristics of composite materials may aid the field investigator is becoming of increasing importance.. The first phase of this research project was to explore how investigation practitioners conduct wreckage examinations. Four accident investigation case studies were examined. The analysis of the case studies provided a framework of the wreckage examination process. Subsequently, a literature survey was conducted to establish the current level of knowledge on the visual and macroscopic interpretation of polymer composite failures. Relevant literature was identified and a compendium of visual and macroscopic characteristics was created. Two full-scale polymer composite wing structures were loaded statically, in an upward bending direction, until each wing structure fractured and separated. The wing structures were subsequently examined for the existence of failure characteristics. The examination revealed that whilst characteristics were present, the fragmentation of the structure destroyed valuable evidence. A hypothetical accident scenario utilising the fractured wing structures was developed, which UK government accident investigators subsequently investigated. This provided refinement to the investigative framework and suggested further guidance on the interpretation of polymer composite failures by accident investigators..

  11. Fabrication of an Electrically-Resistive, Varistor-Polymer Composite

    Directory of Open Access Journals (Sweden)

    Sanaz A. Mohammadi

    2012-11-01

    Full Text Available This study focuses on the fabrication and electrical characterization of a polymer composite based on nano-sized varistor powder. The polymer composite was fabricated by the melt-blending method. The developed nano-composite was characterized by X-ray diffraction (XRD, transmission electron microscopy (TEM, field emission scanning electron microscopy (FeSEM, and energy-dispersive X-ray spectroscopy (EDAX. The XRD pattern revealed the crystallinity of the composite. The XRD study also showed the presence of secondary phases due to the substitution of zinc by other cations, such as bismuth and manganese. The TEM picture of the sample revealed the distribution of the spherical, nano-sized, filler particles throughout the matrix, which were in the 10–50 nm range with an average of approximately 11 nm. The presence of a bismuth-rich phase and a ZnO matrix phase in the ZnO-based varistor powder was confirmed by FeSEM images and EDX spectra. From the current-voltage curves, the non-linear coefficient of the varistor polymer composite with 70 wt% of nano filler was 3.57, and its electrical resistivity after the onset point was 861 KΩ. The non-linear coefficient was 1.11 in the sample with 100 wt% polymer content. Thus, it was concluded that the composites established a better electrical non-linearity at higher filler amounts due to the nano-metric structure and closer particle linkages.

  12. Self-Healing Composite of Thermoset Polymer and Programmed Super Contraction Fibers

    Science.gov (United States)

    Li, Guoqiang (Inventor); Meng, Harper (Inventor)

    2016-01-01

    A composition comprising thermoset polymer, shape memory polymer to facilitate macro scale damage closure, and a thermoplastic polymer for molecular scale healing is disclosed; the composition has the ability to resolve structural defects by a bio-mimetic close-then heal process. In use, the shape memory polymer serves to bring surfaces of a structural defect into approximation, whereafter use of the thermoplastic polymer for molecular scale healing allowed for movement of the thermoplastic polymer into the defect and thus obtain molecular scale healing. The thermoplastic can be fibers, particles or spheres which are used by heating to a level at or above the thermoplastic's melting point, then cooling of the composition below the melting temperature of the thermoplastic. Compositions of the invention have the ability to not only close macroscopic defects, but also to do so repeatedly even if another wound/damage occurs in a previously healed/repaired area.

  13. Study on surface modification of polymer films by using atmospheric plasma jet source

    International Nuclear Information System (INIS)

    Takemura, Yuichiro; Hara, Tamio; Yamaguchi, Naohiro

    2008-01-01

    Reactive gas plasma treatments of poly(ethylene terephthalate) (PET) and polyimide (Kapton) have been performed using an atmospheric plasmas jet source. Characteristics of surface modification have been examined by changing the distance between the plasma jet source and the treated sample, and by changing the working gas spaces. Simultaneously, each plasma jet source has been investigated by space-resolving spectroscopy in the UV/visible region. Polymer surfaces have been analyzed by X-ray photoelectron spectroscopy (XPS). A marked improvement in the hydrophilicity of the polymer surfaces has been made by using N 2 or O 2 plasma jet source with a very short exposure time of about 0.01 s, whereas the less improvement has been obtained using on air plasma jet source because of NO x compound production. Changes in the chemical states of C of the polymer surfaces have been observed in XPS spectra after N 2 plasma jet spraying. (author)

  14. Plasma-modified polyethylene membrane as a separator for lithium-ion polymer battery

    International Nuclear Information System (INIS)

    Kim, Jun Young; Lee, Yongbeom; Lim, Dae Young

    2009-01-01

    The surface of polyethylene (PE) membranes as a separator for lithium-ion polymer battery was modified with acrylonitrile (AN) using the plasma technology. The plasma-induced acrylonitrile coated PE (PiAN-PE) membrane was characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and contact angle measurement. The electrochemical performance of the lithium-ion polymer cell fabricated with the PE and the PiAN-PE membranes were also analyzed. The surface characterization demonstrates that the enhanced adhesion of the PiAN-PE membrane resulted from the increased polar component of surface energy for the PiAN-PE membrane. The presence of the PiAN induced onto the surface of the membrane via the plasma modification plays a critical role in improving the wettability and electrolyte retention, the interfacial adhesion between the electrodes and the separator, the cycle performance of the resulting lithium-ion polymer cell assembly. The PiAN-PE membrane modified by the plasma treatment holds a great potential to be used as a high-performance and cost-effective separator for lithium-ion polymer battery.

  15. Method for producing nanowire-polymer composite electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Qibing; Yu, Zhibin

    2017-11-21

    A method for producing flexible, nanoparticle-polymer composite electrodes is described. Conductive nanoparticles, preferably metal nanowires or nanotubes, are deposited on a smooth surface of a platform to produce a porous conductive layer. A second application of conductive nanoparticles or a mixture of nanoparticles can also be deposited to form a porous conductive layer. The conductive layer is then coated with at least one coating of monomers that is polymerized to form a conductive layer-polymer composite film. Optionally, a protective coating can be applied to the top of the composite film. In one embodiment, the monomer coating includes light transducing particles to reduce the total internal reflection of light through the composite film or pigments that absorb light at one wavelength and re-emit light at a longer wavelength. The resulting composite film has an active side that is smooth with surface height variations of 100 nm or less.

  16. Self healing in polymers and polymer composites. Concepts, realization and outlook: A review

    Directory of Open Access Journals (Sweden)

    2008-04-01

    Full Text Available Formation of microcracks is a critical problem in polymers and polymer composites during their service in structural applications. Development and coalescence of microcracks would bring about catastrophic failure of the materials and then reduce their lifetimes. Therefore, early sensing, diagnosis and repair of microcracks become necessary for removing the latent perils. In this context, the materials possessing self-healing function are ideal for long-term operation. Self-repairing polymers and polymer composites have attracted increasing research interests. Attempts have been made to develop solutions in this field. The present article reviews state-of-art of the achievements on the topic. According to the ways of healing, the smart materials are classified into two categories: (i intrinsic self-healing ones that are able to heal cracks by the polymers themselves, and (ii extrinsic in which healing agent has to be pre-embedded. The advances in this field show that selection and optimization of proper repair mechanisms are prerequisites for high healing efficiency. It is a challenging job to either invent new polymers with inherent crack repair capability or integrate existing materials with novel healing system.

  17. Chemical microsensors based on polymer fiber composites

    Science.gov (United States)

    Kessick, Royal F.; Levit, Natalia; Tepper, Gary C.

    2005-05-01

    There is an urgent need for new chemical sensors for defense and security applications. In particular, sensors are required that can provide higher sensitivity and faster response in the field than existing baseline technologies. We have been developing a new solid-state chemical sensor technology based on microscale polymer composite fiber arrays. The fibers consist of an insulating polymer doped with conducting particles and are electrospun directly onto the surface of an interdigitated microelectrode. The concentration of the conducting particles within the fiber is controlled and is near the percolation threshold. Thus, the electrical resistance of the polymer fiber composite is very sensitive to volumetric changes produced in the polymer by vapor absorption. Preliminary results are presented on the fabrication and testing of the new microsensor. The objective is to take advantage of the very high surface to volume ratio, low thermal mass and linear geometry of the composite fibers to produce sensors exhibiting an extremely high vapor sensitivity and rapid response. The simplicity and low cost of a resistance-based chemical microsensor makes this sensing approach an attractive alternative to devices requiring RF electronics or time-of-flight analysis. Potential applications of this technology include battlespace awareness, homeland security, environmental surveillance, medical diagnostics and food process monitoring.

  18. Thermoresistive mechanisms of carbon nanotube/polymer composites

    Science.gov (United States)

    Cen-Puc, M.; Oliva-Avilés, A. I.; Avilés, F.

    2018-01-01

    The mechanisms governing thermoresistivity of carbon nanotube (CNT)/polymer composites are theoretically and experimentally investigated. Two modeling approaches are proposed to this aim considering a broad range of CNT concentrations (0.5-50 wt%). In the first model, thermal expansion of the polymer composite is predicted using a finite element model; the resulting CNT-to-CNT separation distance feeds a classical tunneling model to predict the dependence of the electrical resistance with temperature. The second approach uses the general effective medium considering the dilution of the CNT volume fraction due to the thermal expansion of the polymer. Both models predict that the electrical resistance increases with increased temperature (i.e. a positive temperature coefficient of resistance, TCR) for all investigated CNT concentrations, with higher TCRs for lower CNT concentrations. Comparison between modeling outcomes and experimental data suggests that polymer thermal expansion (and tunneling) play a dominant role for low CNT concentrations (≤ 10 wt%) heated above room temperature. On the other hand, for composites at high CNT concentrations (50 wt%) or for freezing temperatures (-110 °C), a negative TCR was experimentally obtained, suggesting that for those conditions the CNT intrinsic thermoresistivity and the electronic conduction between CNTs by thermal activation may play a paramount role.

  19. Irradiatable polymer composition with improved oxidation resistance

    International Nuclear Information System (INIS)

    Lyons, B.J.

    1977-01-01

    A method is described for the incorporation of a substantially insoluble organic phosphite into a polymer composition such as polyolefin polymers or ethylene copolymers to prevent oxidation of the polymer at elevated temperatures after radiation-induced crosslinking. The crosslinking is readily achieved without affecting the antioxidant properties of the organic phosphite. Particularly suitable organic compounds are derivatives of pentaerythritol, dipentaerythritol, and tripentaerythritol in cooncentrations of 1 to 3% of the mixture to be irradiated

  20. Antibacterial Properties of Silver-Loaded Plasma Polymer Coatings

    International Nuclear Information System (INIS)

    Ploux, L.; Mateescu, M.; Anselme, K.; Vasilev, K.

    2012-01-01

    In a previous paper, we proposed new silver nanoparticles (SNPs) based antibacterial coatings able to protect eukaryotic cells from SNPs related toxic effects, while preserving antibacterial efficiency. A SNPs containing n-heptylamine (HA) polymer matrix was deposited by plasma polymerization and coated by a second HA layer. In this paper, we elucidate the antibacterial action of these new coatings. We demonstrated that SNPs-loaded material can be covered by thin HA polymer layer without losing the antibacterial activity to planktonic bacteria living in the near surroundings of the material. SNPs-containing materials also revealed antibacterial effect on adhered bacteria. Adhered bacteria number was significantly reduced compared to pure HA plasma polymer and the physiology of the bacteria was affected. The number of adhered bacteria directly decreased with thickness of the second HA layer. Surprisingly, the quantity of cultivable bacteria harvested by transfer to nutritive agar decreased not only with the presence of SNPs, but also in relation to the covering HA layer thickness, that is, oppositely to the increase in adhered bacteria number. Two hypotheses are proposed for this surprising result (stronger attachment or weaker vitality), which raises the question of the diverse potential ways of action of SNPs entrapped in a polymer matrix.

  1. Tethered Nanoparticle–Polymer Composites: Phase Stability and Curvature

    KAUST Repository

    Srivastava, Samanvaya; Agarwal, Praveen; Archer, Lynden A.

    2012-01-01

    different small-angle X-ray scattering signatures in comparison to phase-separated composites comprised of bare or sparsely grafted nanoparticles. A general diagram for the dispersion state and phase stability of polymer tethered nanoparticle-polymer

  2. Processing considerations with plasma-based ion implantation of polymers: theoretical aspects, limitations, and experimental results

    International Nuclear Information System (INIS)

    Lacoste, A.; Pelletier, J.

    2003-01-01

    Processing of polymers using plasma-based ion implantation techniques (PBII) has general implications in terms of plasma specifications and pulse characteristics. In particular, the different aspects of the processing of polymer layers are discussed as functions of plasma density, pulse duration, and layer characteristics (thickness and permittivity). Clearly, severe limitations (true implantation energy, arcing) may appear for high-density plasmas as well as for long pulse durations, when processing polymer layers with thickness in the mm range. A review of the experimental results of ion implantation in polymeric materials via PBII processing is presented. The experimental results demonstrate the possibility of processing polymer layers with the PBII technique, but with severe limitations resulting from the process itself

  3. The application of radiothermoluminescence method to the analysis of polymers and polymer composites

    International Nuclear Information System (INIS)

    Nikol'skii, V.G.

    1982-01-01

    The basic results concerning the examination of copolymers, cross-linked polymers and polyblends structure, obtained by means of radiothermoluminescence method, are reviewed. The main emphasis is on the glow curve shape analysis that allows: a) to determine quantitatively the random copolymer composition; b) to reveal the existence of blocks in macromolecules; c) to examine the grafted copolymer distribution in polymer matrix; d) to estimate the degree of cross-linking both for individual polymers and heterogeneous polyblends; e) to study the mutual solubility of polymers. (author)

  4. Application of plasma technology for the modification of polymer and textile materials

    Directory of Open Access Journals (Sweden)

    Radetić Maja M.

    2004-01-01

    Full Text Available Plasma treatment is based on the physico-chemical changes of the material surface and as an ecologically and economically acceptable process it can be an attractive alternative to conventional modifications. The possibilities of plasma technology application to the modification of polymer and textile materials are discussed. Different specific properties of the material can be achieved by plasma cleaning, etching, functionalization or polymerization. The final effects are strongly influenced by the treatment parameters (treatment time, pressure, power, gas flow, the applied gas and nature of the material. The plasma treatment of polymers is predominantly focused on cleaning and activation of the surfaces to increase adhesion, binding, wettability, dye ability and printability. Current studies deal more with plasma polymerization where an ultra thin film of plasma polymer is deposited on the material surface and, depending on the applied monomer, different specific properties can be obtained (i.e. chemical and thermal resistance, abrasion resistance, antireflexion, water repellence, etc.. Plasma application to textiles is mostly oriented toward wool and synthetic fibres, though some studies also consider cotton, hemp, flax and silk. The main goal of plasma treatment is to impart a more hydrophilic fibre surface and accordingly increase wettability, dye ability, printability and particularly, shrink resistance in the case of wool. Recent studies have favored technical textiles, where plasma polymerization can offer a wide range of opportunities.

  5. Studying the influence of nanodiamonds over the elasticity of polymer/nanodiamond composites for biomedical application

    Science.gov (United States)

    Hikov, T.; Mitev, D.; Radeva, E.; Iglic, A.; Presker, R.; Daniel, M.; Sepitka, J.; Krasteva, N.; Keremidarska, M.; Cvetanov, I.; Pramatarova, L.

    2014-12-01

    The combined unique properties offered by organic and inorganic constituents within a single material on a nanoscale level make nanocomposites attractive for the next generation of biocompatible materials. The composite materials of the detonation nanodiamond/polymer type possess spatial organization of components with new structural features and physical properties, as well as complex functions due to the strong synergistic effects between the nanoparticles and the polymer [1]. The plasma polymerization (PP) method was chosen to obtain composites of silicon-based polymers, in which detonation generated nanodiamond (DND) particles were incorporated. The composite layers are homogeneous, chemically resistant, thermally and mechanically stable, thus allowing a large amount of biological components to be loaded onto their surface and to be used in tissue engineering, regenerative medicine, implants, stents, biosensors and other medical and biological devices. Mesenchymal stem cells (MSCs) are the main focus of research in regenerative medicine due to their extraordinary potential to differentiate into different kinds of cells including osteoblasts, which are needed for various bone disease treatments. However, for optimal usage of MSCs knowledge about the factors that influence their initial distribution in the human system, tissue-specific activation and afterwards differentiation into osteoblasts is required. In recent studies it was found that one of these factors is the elasticity of the substrates [2]. The choice of the proper material which specifically guides the differentiation of stem cells even in the absence of growth factors is very important when building modern strategy for bone regeneration. One of the reasons for there not being many studies in this area worldwide is the lack of suitable biomaterials which support these kinds of experiments. The goal of this study is to create substrates suitable for cell culture with a range of mechanical properties

  6. Studying the influence of nanodiamonds over the elasticity of polymer/nanodiamond composites for biomedical application

    International Nuclear Information System (INIS)

    Hikov, T; Iglic, A; Presker, R; Daniel, M; Sepitka, J; Krasteva, N; Keremidarska, M; Mitev, D; Radeva, E; Cvetanov, I; Pramatarova, L

    2014-01-01

    The combined unique properties offered by organic and inorganic constituents within a single material on a nanoscale level make nanocomposites attractive for the next generation of biocompatible materials. The composite materials of the detonation nanodiamond/polymer type possess spatial organization of components with new structural features and physical properties, as well as complex functions due to the strong synergistic effects between the nanoparticles and the polymer [1]. The plasma polymerization (PP) method was chosen to obtain composites of silicon-based polymers, in which detonation generated nanodiamond (DND) particles were incorporated. The composite layers are homogeneous, chemically resistant, thermally and mechanically stable, thus allowing a large amount of biological components to be loaded onto their surface and to be used in tissue engineering, regenerative medicine, implants, stents, biosensors and other medical and biological devices. Mesenchymal stem cells (MSCs) are the main focus of research in regenerative medicine due to their extraordinary potential to differentiate into different kinds of cells including osteoblasts, which are needed for various bone disease treatments. However, for optimal usage of MSCs knowledge about the factors that influence their initial distribution in the human system, tissue-specific activation and afterwards differentiation into osteoblasts is required. In recent studies it was found that one of these factors is the elasticity of the substrates [2]. The choice of the proper material which specifically guides the differentiation of stem cells even in the absence of growth factors is very important when building modern strategy for bone regeneration. One of the reasons for there not being many studies in this area worldwide is the lack of suitable biomaterials which support these kinds of experiments. The goal of this study is to create substrates suitable for cell culture with a range of mechanical properties

  7. Preparation of pinewood/polymer/composites using gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ajji, Zaki [Polymer Technology Division, Department of Radiation Technology, Atomic Energy Commission, P.O. Box 6091, Damascus (Syrian Arab Republic)]. E-mail: atomic@aec.org.sy

    2006-09-15

    Wood/polymer composites (WPC) have been prepared from pinewood with different compounds using gamma irradiation: butyl acrylate, butyl methacrylate, styrene, acrylamide, acrylonitrile, and unsaturated polyester styrene resin. The polymer loading was determined with respect to the compound concentration and the irradiation dose. The polymer loading increases generally with increase in the monomer or polymer concentration. Tensile and compression strength have been improved in the four cases, but no improvement was observed using unsaturated polyester styrene resin or acrylamide.

  8. Plasma etching of polymers like SU8 and BCB

    Science.gov (United States)

    Mischke, Helge; Gruetzner, Gabi; Shaw, Mark

    2003-01-01

    Polymers with high viscosity, like SU8 and BCB, play a dominant role in MEMS application. Their behavior in a well defined etching plasma environment in a RIE mode was investigated. The 40.68 MHz driven bottom electrode generates higher etch rates combined with much lower bias voltages by a factor of ten or a higher efficiency of the plasma with lower damaging of the probe material. The goal was to obtain a well-defined process for the removal and structuring of SU8 and BCB using fluorine/oxygen chemistry, defined using variables like electron density and collision rate. The plasma parameters are measured and varied using a production proven technology called SEERS (Self Excited Electron Resonance Spectroscopy). Depending on application and on Polymer several metals are possible (e.g., gold, aluminum). The characteristic of SU8 and BCB was examined in the case of patterning by dry etching in a CF4/O2 chemistry. Etch profile and etch rate correlate surprisingly well with plasma parameters like electron density and electron collision rate, thus allowing to define to adjust etch structure in situ with the help of plasma parameters.

  9. Molecular modeling of polymer composite-analyte interactions in electronic nose sensors

    Science.gov (United States)

    Shevade, A. V.; Ryan, M. A.; Homer, M. L.; Manfreda, A. M.; Zhou, H.; Manatt, K. S.

    2003-01-01

    We report a molecular modeling study to investigate the polymer-carbon black (CB) composite-analyte interactions in resistive sensors. These sensors comprise the JPL electronic nose (ENose) sensing array developed for monitoring breathing air in human habitats. The polymer in the composite is modeled based on its stereoisomerism and sequence isomerism, while the CB is modeled as uncharged naphthalene rings with no hydrogens. The Dreiding 2.21 force field is used for the polymer, solvent molecules and graphite parameters are assigned to the carbon black atoms. A combination of molecular mechanics (MM) and molecular dynamics (NPT-MD and NVT-MD) techniques are used to obtain the equilibrium composite structure by inserting naphthalene rings in the polymer matrix. Polymers considered for this work include poly(4-vinylphenol), polyethylene oxide, and ethyl cellulose. Analytes studied are representative of both inorganic and organic compounds. The results are analyzed for the composite microstructure by calculating the radial distribution profiles as well as for the sensor response by predicting the interaction energies of the analytes with the composites. c2003 Elsevier Science B.V. All rights reserved.

  10. Method of Making an Electroactive Sensing/Actuating Material for Carbon Nanotube Polymer Composite

    Science.gov (United States)

    Ounaies, Zoubeida (Inventor); Park, Cheol (Inventor); Harrison, Joycelyn S. (Inventor); Holloway, Nancy M. (Inventor); Draughon, Gregory K. (Inventor)

    2009-01-01

    An electroactive sensing or actuating material comprises a composite made from a polymer with polarizable moieties and an effective amount of carbon nanotubes incorporated in the polymer for a predetermined electromechanical operation of the composite when such composite is affected by an external stimulus. In another embodiment, the composite comprises a, third component of micro -sized to nano-sized particles of an electroactive ceramic that is also incorporated in the polymer matrix. The method for making the three-phase composite comprises either incorporating the carbon nanotubes in the polymer matrix before incorporation of the particles of ceramic or mixing the carbon nanotubes and particles of ceramic together in a solution before incorporation in the polymer matrix.

  11. Preparation and characterization of beryllium doped organic plasma polymer coatings

    International Nuclear Information System (INIS)

    Brusasco, R.; Letts, S.; Miller, P.; Saculla, M.; Cook, R.

    1995-01-01

    We report the formation of beryllium doped plasma polymerized coatings derived from a helical resonator deposition apparatus, using diethylberyllium as the organometaric source. These coatings had an appearance not unlike plain plasma polymer and were relatively stable to ambient exposure. The coatings were characterized by Inductively Coupled Plasma Mass Spectrometry and X-Ray Photoelectron Spectroscopy. Coating rates approaching 0.7 μm hr -1 were obtained with a beryllium-to-carbon ratio of 1:1.3. There is also a significant oxygen presence in the coating as well which is attributed to oxidation upon exposure of the coating to air. The XPS data show only one peak for beryllium with the preponderance of the XPS data suggesting that the beryllium exists as BeO. Diethylberyllium was found to be inadequate as a source for beryllium doped plasma polymer, due to thermal decomposition and low vapor recovery rates

  12. Investigation of a nanoconfined, ceramic composite, solid polymer electrolyte

    International Nuclear Information System (INIS)

    Jayasekara, Indumini; Poyner, Mark; Teeters, Dale

    2017-01-01

    The challenges for further development of lithium rechargeable batteries are finding electrolyte materials that are safe, have mechanical and thermal stability and have sufficiently high ionic conduction. Polymer electrolytes have many of these advantages, but suffer with low ionic conduction. This study involves the use of anodic aluminum oxide (AAO) membranes having nanochannels filled with polymer electrolyte to make composite solid electrolytes having ionic conductivity several orders of magnitude higher (10 −4 Ω ‐1 cm −1 ) than non-confined polymer. SEM, ac impedance spectroscopy, temperature dependence studies, XRD, ATR- FTIR and DSC studies were done in order to characterize and understand the behavior of nanoconfined polymer electrolytes. The composite polymer electrolyte was found to be more amorphous with polymer chains aligned in the direction of the nanochannels, which is felt to promote ion conduction. The electrolyte systems, confined in nanoporous membranes, can be used as electrolytes for the fabrication of a room temperature all solid state battery.

  13. Chemical and microstructural characterizations of plasma polymer films by time-of-flight secondary ion mass spectrometry and principal component analysis

    International Nuclear Information System (INIS)

    Cossement, Damien; Renaux, Fabian; Thiry, Damien; Ligot, Sylvie; Francq, Rémy; Snyders, Rony

    2015-01-01

    Graphical abstract: - Highlights: • Plasma polymer films have a chemical selectivity and a cross-linking degree which are known to vary in opposite trends. • Three plasma polymers families were used as model organic layers for cross-linking evaluation by ToF-SIMS and principal component analysis. • The data were cross-checked with related functional properties that are known to depend on the cross-linking degree (stability in solvent, mechanical properties, …). • The suggested cross-linking evaluation method was validated for different families of plasma polymers demonstrating that it can be seen as a “general” method. - Abstract: It is accepted that the macroscopic properties of functional plasma polymer films (PPF) are defined by their functional density and their crosslinking degree (χ) which are quantities that most of the time behave in opposite trends. If the PPF chemistry is relatively easy to evaluate, it is much more challenging for χ. This paper reviews the recent work developed in our group on the application of principal component analysis (PCA) to time-of-flight secondary ion mass spectrometric (ToF-SIMS) positive spectra data in order to extract the relative cross-linking degree (χ) of PPF. NH_2-, COOR- and SH-containing PPF synthesized in our group by plasma enhanced chemical vapor deposition (PECVD) varying the applied radiofrequency power (P_R_F), have been used as model surfaces. For the three plasma polymer families, the scores of the first computed principal component (PC1) highlighted significant differences in the chemical composition supported by X-Ray photoelectron spectroscopy (XPS) data. The most important fragments contributing to PC1 (loadings > 90%) were used to compute an average C/H ratio index for samples synthesized at low and high P_R_F. This ratio being an evaluation of χ, these data, accordingly to the literature, indicates an increase of χ with P_R_F excepted for the SH-PPF. These results have been cross

  14. Chemical and microstructural characterizations of plasma polymer films by time-of-flight secondary ion mass spectrometry and principal component analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cossement, Damien, E-mail: damien.cossement@materianova.be [Materia Nova Research Center, Parc Initialis, 1, Avenue Nicolas Copernic, B-7000 Mons (Belgium); Renaux, Fabian [Materia Nova Research Center, Parc Initialis, 1, Avenue Nicolas Copernic, B-7000 Mons (Belgium); Thiry, Damien; Ligot, Sylvie [Chimie des Interactions Plasma-Surface (ChIPS), CIRMAP, Université de Mons, 23 Place du Parc, B-7000 Mons (Belgium); Francq, Rémy; Snyders, Rony [Materia Nova Research Center, Parc Initialis, 1, Avenue Nicolas Copernic, B-7000 Mons (Belgium); Chimie des Interactions Plasma-Surface (ChIPS), CIRMAP, Université de Mons, 23 Place du Parc, B-7000 Mons (Belgium)

    2015-11-15

    Graphical abstract: - Highlights: • Plasma polymer films have a chemical selectivity and a cross-linking degree which are known to vary in opposite trends. • Three plasma polymers families were used as model organic layers for cross-linking evaluation by ToF-SIMS and principal component analysis. • The data were cross-checked with related functional properties that are known to depend on the cross-linking degree (stability in solvent, mechanical properties, …). • The suggested cross-linking evaluation method was validated for different families of plasma polymers demonstrating that it can be seen as a “general” method. - Abstract: It is accepted that the macroscopic properties of functional plasma polymer films (PPF) are defined by their functional density and their crosslinking degree (χ) which are quantities that most of the time behave in opposite trends. If the PPF chemistry is relatively easy to evaluate, it is much more challenging for χ. This paper reviews the recent work developed in our group on the application of principal component analysis (PCA) to time-of-flight secondary ion mass spectrometric (ToF-SIMS) positive spectra data in order to extract the relative cross-linking degree (χ) of PPF. NH{sub 2}-, COOR- and SH-containing PPF synthesized in our group by plasma enhanced chemical vapor deposition (PECVD) varying the applied radiofrequency power (P{sub RF}), have been used as model surfaces. For the three plasma polymer families, the scores of the first computed principal component (PC1) highlighted significant differences in the chemical composition supported by X-Ray photoelectron spectroscopy (XPS) data. The most important fragments contributing to PC1 (loadings > 90%) were used to compute an average C/H ratio index for samples synthesized at low and high P{sub RF}. This ratio being an evaluation of χ, these data, accordingly to the literature, indicates an increase of χ with P{sub RF} excepted for the SH-PPF. These results have

  15. High temperature polymer concrete compositions

    Science.gov (United States)

    Fontana, Jack J.; Reams, Walter

    1985-01-01

    This invention is concerned with a polymer concrete composition, which is a two-component composition useful with many bases including metal. Component A, the aggregate composition, is broadly composed of silica, silica flour, portland cement, and acrylamide, whereas Component B, which is primarily vinyl and acrylyl reactive monomers, is a liquid system. A preferred formulation emphasizing the major necessary components is as follows: ______________________________________ Component A: Silica sand 60-77 wt. % Silica flour 5-10 wt. % Portland cement 15-25 wt. % Acrylamide 1-5 wt. % Component B: Styrene 50-60 wt. % Trimethylolpropane 35-40 wt. % trimethacrylate ______________________________________ and necessary initiators, accelerators, and surfactants.

  16. Synthesis of biocompatible polymers by plasma; Sintesis de polimeros biocompatibles por plasma

    Energy Technology Data Exchange (ETDEWEB)

    Colin O, E

    2007-07-01

    In this work biocompatible polymers were synthesized by plasma based on pyrrole, ethyleneglycol and allylamine. These monomers are biologically important because they contain oxygen and nitrogen in their structure and they form bonding like; N-H, C-N, C-O and O-H that are also in the human system. The polymers were synthesized with splendor electric discharges to 13.5 MHz, among 10 and 100 W, resistive coupling, pressure of 10{sup -1} mbar and 180 minutes of reaction. The interaction of the biological systems with biomaterials depends in many cases of the properties that present the surfaces, because the rough and/or porous surfaces favor the adherence of cells. The results indicate that the ruggedness of the polymers can be controlled with the synthesis energy, since when modifying it flat and/or rough surfaces they are obtained. The compatibility of water with other solutions that it is a form of increasing the adhesion of cells with biopolymers. The affinity with water and solutions is evaluated calculating the contact angle of the polymers surface with drops of concentration solutions and similar composition to the extracellular liquid of the spinal marrow of the human body. The solutions that were proven were based on NaCl, NaCl-MgSO{sub 4}, and a mixture Krebs-Ringer that has chemical composition and similar concentration to that of the fluids of the spinal marrow. In the Poly pyrrole (PPy)/Polyethyleneglycol (PEG) copolymer, the biggest angles corresponded to the Krebs-Ringer solution, in the interval of 18 to 14 degrees and those lowest to the NaCl solution, of 14.5 at 11 degrees. The Poly allylamine had the more high values with water in the interval of 16.5 to 12.5 degrees and those lowest with the NaCl solution, of 13 at 9.5 degrees. On the other hand, in the derived polymers of pyrrole the more high values corresponded to the treatment with water, until 37, and those lowest to the NaCl-MgSO{sub 4} solution, up to 10. The solutions where participated Na

  17. Study of photoconductor polymers synthesized by plasma

    International Nuclear Information System (INIS)

    Enriquez P, M.A.

    2007-01-01

    In this work the photoconductivity in poly thiophene (PTh), poly pyrrole (PPy) and doped poly pyrrole with iodine (PPy/I) is studied, whose structures depend of the intensity of the electric field applied during the synthesis by plasma. The conjugated organic polymers possess double alternated bonds in its chemical structure that its allow the one movement of π electrons through the polymeric chains. The plasma is produced by means of splendor discharges to 13.5 MHz, resistive coupling, at one pressure that oscillates in the interval from 2 to 3x10 -1 mbar, 180 min and powers of 10, 24, 40, 60 , 80 and 100 W. Its were used heteroaromatic polymers like PTh and PPy/I, due to their potential applications in optoelectronics. The influence of the iodine is evaluated as dopant in PPy and it is compared with their similar one without doping in the light absorption/emission processes. The polymers synthesized by plasma can ramify or to intersect due to the energy applied during the synthesis. However, if the polymer intersects, the aromaticity can continue through the polymeric chains. The absorptions obtained by infrared spectroscopy, suggest that the polymer conserves the aromatic structure of the monomer fundamentally with substitutions that indicate inter crossing and partial fragmentation. The structure of most of the polymers spreads to be amorphous because they don't possess any classification. However, the PPy/I and PTh synthesized by this technique present crystalline segments whose intensity diminishes with the power of the discharge. In PTh, the average crystallinity diminishes from 19.8% to 9.9%, and in PPy/I of 15.9% to 13.3% in the interval of 10 to 100 W of power. In this work, however, its were crystalline arrangements in all the studied powers. The classification of the polymeric structure favors the formation of trajectories of transfer of electric loads among the chains, that which influences in the global electric conductivity of the material. In UV

  18. Fluid Structure Interaction Analysis in Manufacturing Metal/Polymer Macro-Composites

    International Nuclear Information System (INIS)

    Baesso, R.; Lucchetta, G.

    2007-01-01

    Polymer Injection Forming (PIF) is a new manufacturing technology for sheet metal-polymer macro-composites, which results from the combination of injection moulding and sheet metal forming. This process consists on forming the sheet metal according to the boundary of the mould cavity by means of the injected polymer. After cooling, the polymer bonds permanently to the metal resulting in a sheet metal-polymer macro-composite product. Comparing this process to traditional ones (where the polymeric and metal parts are joined together after separate forming) the main advantages are both reduction of production costs and increase of part quality. This paper presents a multi-physics numerical simulation of the process performed in the Ansys/CFX environment

  19. Grafting of molecularly imprinted polymer to porous polyethylene filtration membranes by plasma polymerization.

    Science.gov (United States)

    Cowieson, D; Piletska, E; Moczko, E; Piletsky, S

    2013-08-01

    An application of plasma-induced grafting of polyethylene membranes with a thin layer of molecularly imprinted polymer (MIP) was presented. High-density polyethylene (HDPE) membranes, "Vyon," were used as a substrate for plasma grafting modification. The herbicide atrazine, one of the most popular targets of the molecular imprinting, was chosen as a template. The parameters of the plasma treatment were optimized in order to achieve a good balance between polymerization and ablation processes. Modified HDPE membranes were characterized, and the presence of the grafted polymeric layer was confirmed based on the observed weight gain, pore size measurements, and infrared spectrometry. Since there was no significant change in the porosity of the modified membranes, it was assumed that only a thin layer of the polymer was introduced on the surface. The experiments on the re-binding of the template atrazine to the membranes modified with MIP and blank polymers were performed. HDPE membranes which were grafted with polymer using continuous plasma polymerization demonstrated the best result which was expressed in an imprinted factor equal to 3, suggesting that molecular imprinting was successfully achieved.

  20. Thermal Degradation of Lead Monoxide Filled Polymer Composite Radiation Shields

    International Nuclear Information System (INIS)

    Harish, V.; Nagaiah, N.

    2011-01-01

    Lead monoxide filled Isophthalate resin particulate polymer composites were prepared with different filler concentrations and investigated for physical, thermal, mechanical and gamma radiation shielding characteristics. This paper discusses about the thermo gravimetric analysis of the composites done to understand their thermal properties especially the effect of filler concentration on the thermal stability and degradation rate of composites. Pristine polymer exhibits single stage degradation whereas filled composites exhibit two stage degradation processes. Further, the IDT values as well as degradation rates decrease with the increased filler content in the composite.

  1. Electrochemical properties of polypyrrole/polyfuran polymer composite electrode

    International Nuclear Information System (INIS)

    Cha, Seong Keuck

    1998-01-01

    Poly pyrrole polymer(ppy) has an excellent electrical conductivity and can be easily polymerized on anode to give various morphology according to doped anion on electroactive sites. To improve the properties of brittleness, ageing and hydrophobicity, poly furan polymer(pfu) having a high initiation potential was anodically implanted in this porous ppy film matrix to get the Pt/ppy/pfu(x)type of polymer campsite electrode. Cyclic voltammetry and electrochemical impedance methods were used to these electrode, where PF 6 - , BF 4 - , and ClO 4 - ions were employed as dopants. The composition of the pfu(x) at the electrode was changed from 0 to 1.10, but the range was useful only at 0.1 to 0.2 as the redox electrode. The polymer composite electrode doped with PF 6 - was better in charge transfer resistance by a factor of 40 times and in double layer capacitance by a factor of 20 times than others. The charge transfer in the polymer film of the electrode was influenced on frequency change and equivalent circuit of this electrode had Warburg impedance including mass transfer

  2. Cement-Polymer Composite Containers for Radioactive Wastes Disposal

    International Nuclear Information System (INIS)

    Ghattas, N.K.; Eskander, S.B.; Bayoumi, T.A.; Saleh, H.M.

    2009-01-01

    Improving cement-composite containers using polymer as organic additives was studied extensively. Both unsaturated styrenated polyester (SPE) and polymethyl methacrylate (PMMA) were used to fill the pores in cement containers that used for disposal of radioactive wastes. Two different techniques were adopted for the addition of organic polymers based on their viscosity. The low density PMMA was added using impregnation technique. On the other hand high density SPE was mixed with cement paste as a premix process. Predetermined weight of dried borate radioactive powder waste simulate was introduced into the Cement-polymer composite (CPC) container and then closed before subjecting it to leaching characterization. The effect of the organic polymers on the hydration of cement matrix and on the properties of the obtained CPC container has been studied using X-ray diffraction, IR-analysis, thermal effects and weight loss. Porosity, pore parameters and rate of release were also determined. The results obtained showed that for the candidate CPC container positive effect of polymer dominates and an improvement in the retardation rate of PMMA release radionuclides was observed

  3. Composite gel polymer electrolyte for lithium ion batteries

    Science.gov (United States)

    Naderi, Roya

    Composite gel polymer electrolyte (CGPE) films, consisting of poly (vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) as the membrane, DMF and PC as solvent and plasticizing agent, mixture of charge modified TiO2 and SiO 2 nano particles as ionic conductors, and LiClO4+LiPF 6 as lithium salts were fabricated. Following the work done by Li et al., CGPE was coated on an O2-plasma treated trilayer polypropylene-polyethylene-polypropylene membrane separator using solution casting technique in order to improve the adhesive properties of gel polymer electrolyte to the separator membrane and its respective ionic conductivity due to decreasing the bulk resistance. In acidic CGPE with, the mixture of acid treated TiO2 and neutral SiO2 nano particles played the role of the charge modified nano fillers with enhanced hydroxyl groups. Likely, the mixture of neutral TiO 2 nano particles with basic SiO2 prepared through the hydrolization of tetraethyl orthosilicate (TEOS) provided a more basic environment due to the residues of NH4OH (Ammonium hydroxide) catalyst. The O2 plasma treated separator was coated with the solution of PVDF-HFP: modified nano fillers: Organic solvents with the mixture ratio of 0.1:0.01:1. After the evaporation of the organic solvents, the dried coated separator was soaked in PC-LiClO4+LiPF6 in EC: DMC:DEC (4:2:4 in volume) solution (300% wt. of PVDF-HFP) to form the final CGPE. Lim et al. has reported the enhanced ionic conductivity of 9.78*10-5 Scm-1 in an acidic composite polystyrene-Al2O3 solid electrolyte system with compared to that of basic and neutral in which the ionic conductivity undergoes an ion hopping process in solid interface rather than a segmental movement of ions through the plasticized polymer chain . Half-cells with graphite anode and Li metal as reference electrode were then assembled and the electrochemical measurements and morphology examinations were successfully carried out. Half cells demonstrated a considerable change in their

  4. Polymer-ceramic piezoelectric composites (PZT)

    International Nuclear Information System (INIS)

    Bassora, L.A.; Eiras, J.A.

    1992-01-01

    Polymer-ceramic piezoelectric transducers, with 1-3 of connectivity were prepared with different concentration of ceramic material. Piezoelectric composites, with equal electromechanical coupling factor and acoustic impedance of one third from that ceramic transducer, were obtained when the fractionary volume of PZT reach 30%. (C.G.C.)

  5. Effect of Biomass Waste Filler on the Dielectric Properties of Polymer Composites

    Directory of Open Access Journals (Sweden)

    Yew Been Seok

    2016-07-01

    Full Text Available The effect of biomass waste fillers, namely coconut shell (CS and sugarcane bagasse (SCB on the dielectric properties of polymer composite was investigated. The aim of this study is to investigate the potential of CS and SCB to be used as conductive filler (natural source of carbon in the polymer composite. The purpose of the conductive filler is to increase the dielectric properties of the polymer composite. The carbon composition the CS and SCB was determine through carbon, hydrogen, nitrogen and sulphur (CHNS elemental analysis whereas the structural morphology of CS and SCB particles was examined by using scanning electron microscope. Room temperature open-ended coaxial line method was used to determine the dielectric constant and dielectric loss factor over broad band frequency range of 200 MHz-20 GHz. Based on this study, the results found that CS and SCB contain 48% and 44% of carbon, which is potentially useful to be used as conductive elements in the polymer composite. From SEM morphology, presence of irregular shape particles (size ≈ 200 μm and macroporous structure (size ≈ 2.5 μm were detected on CS and SCB. For dielectric properties measurement, it was measured that the average dielectric constant (ε' is 3.062 and 3.007 whereas the average dielectric loss factor (ε" is 0.282 and 0.273 respectively for CS/polymer and SCB/polymer composites. The presence of the biomass waste fillers have improved the dielectric properties of the polymer based composite (ε' = 2.920, ε" = 0.231. However, the increased in the dielectric properties is not highly significant, i.e. up to 4.86 % increase in ε' and 20% increase in ε". The biomass waste filler reinforced polymer composites show typical dielectric relaxation characteristic at frequency of 10 GHz - 20 GHz and could be used as conducting polymer composite for suppressing EMI at high frequency range.

  6. Investigating accidents involving aircraft manufactured from polymer composite materials

    OpenAIRE

    Dunn, Leigh

    2013-01-01

    This thesis looks into the examination of polymer composite wreckage from the perspective of the aircraft accident investigator. It develops an understanding of the process of wreckage examination as well as identifying the potential for visual and macroscopic interpretation of polymer composite aircraft wreckage. The in-field examination of aircraft wreckage, and subsequent interpretations of material failures, can be a significant part of an aircraft accident investigation. ...

  7. Chemical and microstructural characterizations of plasma polymer films by time-of-flight secondary ion mass spectrometry and principal component analysis

    Science.gov (United States)

    Cossement, Damien; Renaux, Fabian; Thiry, Damien; Ligot, Sylvie; Francq, Rémy; Snyders, Rony

    2015-11-01

    It is accepted that the macroscopic properties of functional plasma polymer films (PPF) are defined by their functional density and their crosslinking degree (χ) which are quantities that most of the time behave in opposite trends. If the PPF chemistry is relatively easy to evaluate, it is much more challenging for χ. This paper reviews the recent work developed in our group on the application of principal component analysis (PCA) to time-of-flight secondary ion mass spectrometric (ToF-SIMS) positive spectra data in order to extract the relative cross-linking degree (χ) of PPF. NH2-, COOR- and SH-containing PPF synthesized in our group by plasma enhanced chemical vapor deposition (PECVD) varying the applied radiofrequency power (PRF), have been used as model surfaces. For the three plasma polymer families, the scores of the first computed principal component (PC1) highlighted significant differences in the chemical composition supported by X-Ray photoelectron spectroscopy (XPS) data. The most important fragments contributing to PC1 (loadings > 90%) were used to compute an average C/H ratio index for samples synthesized at low and high PRF. This ratio being an evaluation of χ, these data, accordingly to the literature, indicates an increase of χ with PRF excepted for the SH-PPF. These results have been cross-checked by the evaluation of functional properties of the plasma polymers namely a linear correlation with the stability of NH2-PPF in ethanol and a correlation with the mechanical properties of the COOR-PPF. For the SH-PPF family, the peculiar evolution of χ is supported by the understanding of the growth mechanism of the PPF from plasma diagnostic. The whole set of data clearly demonstrates the potential of the PCA method for extracting information on the microstructure of plasma polymers from ToF-SIMS measurements.

  8. Atomic Origins of the Self-Healing Function in Cement–Polymer Composites

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Manh Thuong; Wang, Zheming; Rod, Kenton A.; Childers, Matthew I.; Fernandez, Carlos A.; Koech, Phillip K.; Bennett, Wendy D.; Rousseau, Roger J.; Glezakou, Vassiliki-Alexandra

    2018-01-09

    Motivated by recent advances in self-healing cement and epoxy polymer composites, we present a combined ab initio molecular dynamics and sum frequency generation (SFG) spectroscopy study of a calcium-silicate-hydrate/polymer interface. On stable, low-defect surfaces, the polymer only weakly adheres through coordination and hydrogen bonding interactions and can be easily mobilized towards defected surfaces. Conversely, on fractured surfaces, the polymer strongly anchors through ionic Ca-O bonds resulting from the deprotonation of polymer hydroxyl groups. In addition, polymer S-S groups are turned away from the cement/polymer interface, allowing for the self-healing function within the polymer. The overall elasticity and healing properties of these composites stem from a flexible hydrogen bonding network that can readily adapt to surface morphology. The theoretical vibrational signals associated with the proposed cement-polymer interfacial chemistry were confirmed experimentally by SFG spectroscopy.

  9. Manufacturing Technology of Composite Materials-Principles of Modification of Polymer Composite Materials Technology Based on Polytetrafluoroethylene.

    Science.gov (United States)

    Panda, Anton; Dyadyura, Kostiantyn; Valíček, Jan; Harničárová, Marta; Zajac, Jozef; Modrák, Vladimír; Pandová, Iveta; Vrábel, Peter; Nováková-Marcinčínová, Ema; Pavelek, Zdeněk

    2017-03-31

    The results of the investigations into the technological formation of new wear-resistant polymer composites based on polytetrafluoroethylene (PTFE) filled with disperse synthetic and natural compounds are presented. The efficiency of using PTFE composites reinforced with carbon fibers depends on many factors, which influence the significant improvement of physicomechanical characteristics. The results of this research allow stating that interfacial and surface phenomena of the polymer-solid interface and composition play a decisive role in PTFE composites properties. Fillers hinder the relative movement of the PTFE molecules past one another and, in this way, reduce creep or deformation of the parts, reducing the wear rate of parts used in dynamic applications as well as the coefficient of thermal expansion. The necessary structural parameters of such polymer composites are provided by regimes of process equipment.

  10. Stabilization of Resveratrol in Blood Circulation by Conjugation to mPEG and mPEG-PLA Polymers: Investigation of Conjugate Linker and Polymer Composition on Stability, Metabolism, Antioxidant Activity and Pharmacokinetic Profile

    Science.gov (United States)

    Siddalingappa, Basavaraj; Benson, Heather A. E.; Brown, David H.; Batty, Kevin T.; Chen, Yan

    2015-01-01

    Resveratrol is naturally occurring phytochemical with diverse biological activities such as chemoprevention, anti-inflammatory, anti-cancer, anti-oxidant. But undergoes rapid metabolism in the body (half life 0.13h). Hence Polymer conjugation utilizing different chemical linkers and polymer compositions was investigated for enhanced pharmacokinetic profile of resveratrol. Ester conjugates such as α-methoxy-ω-carboxylic acid poly(ethylene glycol) succinylamide resveratrol (MeO-PEGN-Succ-RSV) (2 and 20 kDa); MeO-PEG succinyl ester resveratrol (MeO-PEGO-Succ-RSV) (2 kDa); α-methoxy poly(ethylene glycol)-co-polylactide succinyl ester resveratrol (MeO-PEG-PLAO-Succ-RSV) (2 and 6.6kDa) were prepared by carbodiimide coupling reactions. Resveratrol-PEG ethers (2 and 5 kDa) were synthesized by alkali-mediated etherification. All polymer conjugates were fully characterized in vitro and the pharmacokinetic profile of selected conjugates was characterized in rats. Buffer and plasma stability of conjugates was dependent on polymer hydrophobicity, aggregation behavior and PEG corona, with MeO-PEG-PLAO-Succ-RSV (2 kDa) showing a 3h half-life in rat plasma in vitro. Polymer conjugates irrespective of linker chemistry protected resveratrol against metabolism in vitro. MeO-PEG-PLAO-Succ-RSV (2 kDa), Resveratrol-PEG ether (2 and 5 kDa) displayed improved pharmacokinetic profiles with significantly higher plasma area under curve (AUC), slower clearance and smaller volume of distribution, compared to resveratrol. PMID:25799413

  11. Effect of Polymer Matrix on the Structure and Electric Properties of Piezoelectric Lead Zirconatetitanate/Polymer Composites

    Directory of Open Access Journals (Sweden)

    Rui Li

    2017-08-01

    Full Text Available Piezoelectric lead zirconatetitanate (PZT/polymer composites were prepared by two typical polymer matrixes using the hot-press method. The micromorphology, microstructure, dielectric properties, and piezoelectric properties of the PZT/polymer composites were characterized and investigated. The results showed that when the condition of frequency is 103 Hz, the dielectric and piezoelectric properties of PZT/poly(vinylidene fluoride were both better than that of PZT/polyvinyl chloride (PVC. When the volume fraction of PZT was 50%, PZT/PVDF prepared by the hot-press method had better comprehensive electric property.

  12. Highly ductile UV-shielding polymer composites with boron nitride nanospheres as fillers.

    Science.gov (United States)

    Fu, Yuqiao; Huang, Yan; Meng, Wenjun; Wang, Zifeng; Bando, Yoshio; Golberg, Dmitri; Tang, Chengchun; Zhi, Chunyi

    2015-03-20

    Polymer composites with enhanced mechanical, thermal or optical performance usually suffer from poor ductility induced by confined mobility of polymer chains. Herein, highly ductile UV-shielding polymer composites are successfully fabricated. Boron nitride (BN) materials, with a wide band gap of around ∼6.0 eV, are used as fillers to achieve the remarkably improved UV-shielding performance of a polymer matrix. In addition, it is found that spherical morphology BN as a filler can keep the excellent ductility of the composites. For a comparison, it is demonstrated that traditional fillers, including conventional BN powders can achieve the similar UV-shielding performance but dramatically decrease the composite ductility. The mechanism behind this phenomenon is believed to be lubricant effects of BN nanospheres for sliding of polymer chains, which is in consistent with the thermal analyses. This study provides a new design to fabricate UV-shielding composite films with well-preserved ductility.

  13. Continuous cellularization of calcium phosphate hybrid scaffolds induced by plasma polymer activation

    Energy Technology Data Exchange (ETDEWEB)

    Bergemann, Claudia [University Medical Center Rostock, Cell Biology, Schillingallee 69, D-18057 Rostock (Germany); Cornelsen, Matthias [University of Rostock, Fluid Technology and Microfluidics, Justus-von-Liebig Weg 6, D-18059 Rostock (Germany); Quade, Antje [Leibniz-Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, D-17489 Greifswald (Germany); Laube, Thorsten; Schnabelrauch, Matthias [INNOVENT e.V., Biomaterials Department, Pruessingstrasse 27B, D-07745 Jena (Germany); Rebl, Henrike [University Medical Center Rostock, Cell Biology, Schillingallee 69, D-18057 Rostock (Germany); Weißmann, Volker [Institute for Polymer Technologies (IPT) e.V., Alter Holzhafen 19, D-23966 Wismar (Germany); Seitz, Hermann [University of Rostock, Fluid Technology and Microfluidics, Justus-von-Liebig Weg 6, D-18059 Rostock (Germany); Nebe, Barbara, E-mail: barbara.nebe@med.uni-rostock.de [University Medical Center Rostock, Cell Biology, Schillingallee 69, D-18057 Rostock (Germany)

    2016-02-01

    The generation of hybrid materials based on β-tricalcium phosphate (TCP) and various biodegradable polymers like poly(L-lactide-co-D,L-lactide) (PLA) represents a common approach to overcoming the disadvantages of pure TCP devices. These disadvantages lie in TCP's mechanical properties, such as brittleness. The positive characteristic of PLA — improvement of compressive strength of calcium phosphate scaffolds – is diametrically opposed to its cell attractiveness. Therefore, the objective of this work was to optimize osteoblast migration and cellularization inside a three-dimensionally (3D) printed, PLA polymer stabilized TCP hybrid scaffold by a plasma polymer process depositing amino groups via allylamine. MG-63 osteoblastic cells inside the 10 mm hybrid scaffold were dynamically cultivated for 14 days in a 3D model system integrated in a perfusion reactor. The whole TCP/PLA hybrid scaffold was continuously colonized due to plasma polymerized allylamine activation inducing the migration potential of osteoblasts. - Highlights: • Mechanical stabilization of β-tricalcium phosphate scaffolds by PLA infiltration • Hybrid scaffolds with higher cell attraction due to plasma polymerized allylamine • 3D perfusion in vitro model for observation of cell migration inside scaffolds • Enhanced cell migration within plasma polymer coated TCP hybrid scaffolds.

  14. Continuous cellularization of calcium phosphate hybrid scaffolds induced by plasma polymer activation

    International Nuclear Information System (INIS)

    Bergemann, Claudia; Cornelsen, Matthias; Quade, Antje; Laube, Thorsten; Schnabelrauch, Matthias; Rebl, Henrike; Weißmann, Volker; Seitz, Hermann; Nebe, Barbara

    2016-01-01

    The generation of hybrid materials based on β-tricalcium phosphate (TCP) and various biodegradable polymers like poly(L-lactide-co-D,L-lactide) (PLA) represents a common approach to overcoming the disadvantages of pure TCP devices. These disadvantages lie in TCP's mechanical properties, such as brittleness. The positive characteristic of PLA — improvement of compressive strength of calcium phosphate scaffolds – is diametrically opposed to its cell attractiveness. Therefore, the objective of this work was to optimize osteoblast migration and cellularization inside a three-dimensionally (3D) printed, PLA polymer stabilized TCP hybrid scaffold by a plasma polymer process depositing amino groups via allylamine. MG-63 osteoblastic cells inside the 10 mm hybrid scaffold were dynamically cultivated for 14 days in a 3D model system integrated in a perfusion reactor. The whole TCP/PLA hybrid scaffold was continuously colonized due to plasma polymerized allylamine activation inducing the migration potential of osteoblasts. - Highlights: • Mechanical stabilization of β-tricalcium phosphate scaffolds by PLA infiltration • Hybrid scaffolds with higher cell attraction due to plasma polymerized allylamine • 3D perfusion in vitro model for observation of cell migration inside scaffolds • Enhanced cell migration within plasma polymer coated TCP hybrid scaffolds

  15. Standard Guide for Testing Polymer Matrix Composite Materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This guide summarizes the application of ASTM standard test methods (and other supporting standards) to continuous-fiber reinforced polymer matrix composite materials. The most commonly used or most applicable ASTM standards are included, emphasizing use of standards of Committee D30 on Composite Materials. 1.2 This guide does not cover all possible standards that could apply to polymer matrix composites and restricts discussion to the documented scope. Commonly used but non-standard industry extensions of test method scopes, such as application of static test methods to fatigue testing, are not discussed. A more complete summary of general composite testing standards, including non-ASTM test methods, is included in the Composite Materials Handbook (MIL-HDBK-17). Additional specific recommendations for testing textile (fabric, braided) composites are contained in Guide D6856. 1.3 This guide does not specify a system of measurement; the systems specified within each of the referenced standards shall appl...

  16. Heating of polymer substrate by discharge plasma in radiofrequency magnetron sputtering deposition

    International Nuclear Information System (INIS)

    Sirghi, Lucel; Popa, Gheorghe; Hatanaka, Yoshinori

    2006-01-01

    The substrate used for the thin film deposition in a radiofrequency magnetron sputtering deposition system is heated by the deposition plasma. This may change drastically the surface properties of the polymer substrates. Deposition of titanium dioxide thin films on polymethyl methacrylate and polycarbonate substrates resulted in buckling of the substrate surfaces. This effect was evaluated by analysis of atomic force microscopy topography images of the deposited films. The amount of energy received by the substrate surface during the film deposition was determined by a thermal probe. Then, the results of the thermal probe measurements were used to compute the surface temperature of the polymer substrate. The computation revealed that the substrate surface temperature depends on the substrate thickness, discharge power and substrate holder temperature. For the case of the TiO 2 film depositions in the radiofrequency magnetron plasma, the computation indicated substrate surface temperature values under the polymer melting temperature. Therefore, the buckling of polymer substrate surface in the deposition plasma may not be regarded as a temperature driven surface instability, but more as an effect of argon ion bombardment

  17. Microbuckling compression failure of a radiation-induced wood/polymer composite

    International Nuclear Information System (INIS)

    Boey, F.Y.C.

    1990-01-01

    A wood/polymer composite was produced by impregnating Ramin wood with methyl methacrylate monomer and subsequently polymerizing it by gamma irradiation. To assess the improvement in compression strength of the wood caused by the polymer impregnation, a microbuckling compression failure mechanism was used to model the compression failure of the composite. Such a mechanism was found to predict a linear relationship between the compression strength and the percentage polymer impregnation (by weight). Uniaxial compression test results at 45(±5)% and 90(±5)% relative humidity levels, after being statistically analysed, showed that such a linear relationship was valid for up to 100% polymer impregnation. (author)

  18. Quantitative radiographic analysis of fiber reinforced polymer composites.

    Science.gov (United States)

    Baidya, K P; Ramakrishna, S; Rahman, M; Ritchie, A

    2001-01-01

    X-ray radiographic examination of the bone fracture healing process is a widely used method in the treatment and management of patients. Medical devices made of metallic alloys reportedly produce considerable artifacts that make the interpretation of radiographs difficult. Fiber reinforced polymer composite materials have been proposed to replace metallic alloys in certain medical devices because of their radiolucency, light weight, and tailorable mechanical properties. The primary objective of this paper is to provide a comparable radiographic analysis of different fiber reinforced polymer composites that are considered suitable for biomedical applications. Composite materials investigated consist of glass, aramid (Kevlar-29), and carbon reinforcement fibers, and epoxy and polyether-ether-ketone (PEEK) matrices. The total mass attenuation coefficient of each material was measured using clinical X-rays (50 kev). The carbon fiber reinforced composites were found to be more radiolucent than the glass and kevlar fiber reinforced composites.

  19. Nanomodified polymer composites: Thermophysical and physico-mechanical properties

    Science.gov (United States)

    Shchegolkov, Alexander; Shchegolkov, Alexey; Dyachkova, Tatyana; Borovskikh, Pavel

    2017-11-01

    The paper presents the results of investigation of thermophysical and physicomechanical properties of polymer-based composites modified with paraffin and carbon nanotubes (CNTs) mixture. Thermal conductivity of composites based on polyethylene, fluoroplastic, polyvinyl chloride (PVC) is 0.48, 0.42 and 0.36 W/(m.°C), respectively, compared to thermal conductivity of pure paraffin - 0.25 W/(m.°C). It has been revealed that for materials heat capacity the polymer matrix determines the position of the maximum point on temperature dependence having extreme nature. Temperature changes in composites volume do not exceed 3% from the initial state to the phase transition, that allows them to be used in a combination with other materials.

  20. Compositions, methods, and systems comprising fluorous-soluble polymers

    Science.gov (United States)

    Swager, Timothy M.; Lim, Jeewoo; Takeda, Yohei

    2015-10-13

    The present invention generally relates to compositions, methods, and systems comprising polymers that are fluorous-soluble and/or organize at interfaces between a fluorous phase and a non-fluorous phase. In some embodiments, emulsions or films are provided comprising a polymer. The polymers, emulsions, and films can be used in many applications, including for determining, treating, and/or imaging a condition and/or disease in a subject. The polymer may also be incorporated into various optoelectronic device such as photovoltaic cells, organic light-emitting diodes, organic field effect transistors, or the like. In some embodiments, the polymers comprise pi-conjugated backbones, and in some cases, are highly emissive.

  1. Processing and properties of ceramic matrix-polymer composites for dental applications

    Science.gov (United States)

    Huang, Hsuan Yao

    The basic composite structure of natural hard tissue was used to guide the design and processing of dental restorative materials. The design incorporates the methodology of using inorganic minerals as the main structural phase reinforced with a more ductile but tougher organic phase. Ceramic-polymer composites were prepared by slip casting a porous ceramic structure, heating and chemical treating the porous preform, infiltrating with monomer and then curing. The three factors that determined the mechanical properties of alumina-polymer composites were the type of polymer used, the method of silane treatments, and the type of bond between particles in the porous preforms. Without the use of silane coupling agents, the composites were measured to have a lower strength. The composite with a more "flexible" porous alumina network had a greater ability to plastically dissipate the energy of propagating cracks. However, the aggressive nature of the alumina particles on opposing enamel requires that these alumina-polymer composites have a wear compatible coating for practical application. A route to dense bioactive apatite wollastonite glass ceramics (AWGC)-polymer composites was developed. The problems associated with glass dissolution into the aqueous medium for slip casting were overcome with the use of silane. The role of heating rate and development of ceramic compact microstructure on composite properties was explored. In general, if isothermal heating was not applied, decreasing heating rate increased glass crystallinity and particle-particle fusion, but decreased pore volume. Also composite strength and fracture toughness decreased while modulus and hardness increased with decreasing heating rate. If isothermal heating was applied, glass crystallinity, pore content, and composite mechanical properties showed relatively little change regardless of the initial heating rate. The potential of AWGC-polymer composites for dental and implant applications was explored

  2. Quickly updatable hologram images with high performance photorefractive polymer composites

    Science.gov (United States)

    Tsutsumi, Naoto; Kinashi, Kenji; Nonomura, Asato; Sakai, Wataru

    2012-02-01

    We present here quickly updatable hologram images using high performance photorefractive (PR) polymer composite based on poly(N-vinyl carbazole) (PVCz). PVCz is one of the pioneer materials for photoconductive polymer. PVCz/7- DCST/CzEPA/TNF (44/35/20/1 by wt) gives high diffraction efficiency of 68 % at E = 45 V/μm with fast response speed. Response speed of optical diffraction is the key parameter for real-time 3D holographic display. Key parameter for obtaining quickly updatable hologram images is to control the glass transition temperature lower enough to enhance chromophore orientation. Object image of the reflected coin surface recorded with reference beam at 532 nm (green beam) in the PR polymer composite is simultaneously reconstructed using a red probe beam at 642 nm. Instead of using coin object, object image produced by a computer was displayed on a spatial light modulator (SLM) is used as an object for hologram. Reflected object beam from a SLM interfered with reference beam on PR polymer composite to record a hologram and simultaneously reconstructed by a red probe beam. Movie produced in a computer was recorded as a realtime hologram in the PR polymer composite and simultaneously clearly reconstructed with a video rate.

  3. The conductivity and stability of polymer composite solid electrolyte upon addition of graphene

    Science.gov (United States)

    Hamid, Farzana Abd.; Salleh, Fauzani Md.; Mohamed, Nor Sabirin

    2017-12-01

    The effect of graphene composition on the conductivity and stability of polymer composite solid electrolyte was studied. These polymer composite solid electrolytes were synthesized by sol gel method and prepared via the solution-casting technique. The compositions of graphene were varied between 10 wt% to 70 wt%. The changes in the functional group of polymer composite after the addition of graphene were characterized by Fourier Transform InfraRed spectroscopy. Electrochemical impedance spectroscopy was conducted at ambient temperature in the frequency range of 10 Hz to 1 MHz to study the conductivity of the polymer composite. The highest conductivity was obtained at 60 wt% graphene with the value of 2.85×10-4 Scm-1. Sample without the addition of graphene showed the lowest conductivity value of 1.77×10-7 Scm-1 and acts as an insulator. The high conductivity at 60 wt% graphene loading is related to dehydration of cellulose. This is supported by the FTIR spectrum where the absorption peaks of C-O stretching vibrations of polymer composite is weakened and the hydroxyl group is slightly shifted compared to the FTIR spectrum without the addition of graphene. Linear sweep voltammetry results demonstrated that the polymer composite solid electrolyte exhibited electrochemical stability up to 3.2 V.

  4. Influence of non-thermal plasma on structural and electrical properties of globular and nanostructured conductive polymer polypyrrole in water suspension.

    Science.gov (United States)

    Galář, Pavel; Khun, Josef; Kopecký, Dušan; Scholtz, Vladimír; Trchová, Miroslava; Fučíková, Anna; Jirešová, Jana; Fišer, Ladislav

    2017-11-08

    Non-thermal plasma has proved its benefits in medicine, plasma assisted polymerization, food industry and many other fields. Even though, the ability of non-thermal plasma to modify surface properties of various materials is generally known, only limited attention has been given to exploitations of this treatment on conductive polymers. Here, we show study of non-thermal plasma treatment on properties of globular and nanostructured polypyrrole in the distilled water. We observe that plasma presence over the suspension level doesn't change morphology of the polymer (shape), but significantly influences its elemental composition and physical properties. After 60 min of treatment, the relative concentration of chloride counter ions decreased approximately 3 and 4 times for nanostructured and globular form, respectively and concentration of oxygen increased approximately 3 times for both forms. Simultaneously, conductivity decrease (14 times for globular and 2 times for nanostructured one) and changes in zeta potential characteristics of both samples were observed. The modification evolution was dominated by multi-exponential function with time constants having values approximately 1 and 10 min for both samples. It is expected that these time constants are related to two modification processes connected to direct presence of the spark and to long-lived species generated by the plasma.

  5. Direct strain energy harvesting in automobile tires using piezoelectric PZT–polymer composites

    International Nuclear Information System (INIS)

    Van den Ende, D A; Van de Wiel, H J; Groen, W A; Van der Zwaag, S

    2012-01-01

    Direct piezoelectric strain energy harvesting can be used to power wireless autonomous sensors in environments where low frequency, high strains are present, such as in automobile tires during operation. However, these high strains place stringent demands on the materials with respect to mechanical failure or depolarization, especially at elevated temperatures. In this work, three kinds of ceramic–polymer composite piezoelectric materials were evaluated and compared against state-of-the-art piezoelectric materials. The new composites are unstructured and structured composites containing granular lead zirconate titanate (PZT) particles or PZT fibers in a polyurethane matrix. The composites were used to build energy harvesting patches which were attached to a tire and tested under simulated rolling conditions. The energy density of the piezoelectric ceramic–polymer composite materials is initially not as high as that of the reference materials (a macro-fiber composite and a polyvinylidene fluoride polymer). However, the area normalized power output of the composites after temperature and strain cycling is comparable to that of the reference devices because the piezoelectric ceramic–polymer composites did not degrade during operation. (paper)

  6. Metal-polymer composites comprising nanostructures and applications thereof

    Science.gov (United States)

    Wang, Hsing-Lin [Los Alamos, NM; Jeon, Sea Ho [Dracut, MA; Mack, Nathan H [Los Alamos, NM

    2011-08-02

    Metal-polymer composites, and methods of making and use thereof, said composites comprising a thermally-cured dense polyaniline substrate; an acid dopant; and, metal nanostructure deposits wherein the deposits have a morphology dependent upon the acid dopant.

  7. 3D Printing of Biocompatible Supramolecular Polymers and their Composites.

    Science.gov (United States)

    Hart, Lewis R; Li, Siwei; Sturgess, Craig; Wildman, Ricky; Jones, Julian R; Hayes, Wayne

    2016-02-10

    A series of polymers capable of self-assembling into infinite networks via supramolecular interactions have been designed, synthesized, and characterized for use in 3D printing applications. The biocompatible polymers and their composites with silica nanoparticles were successfully utilized to deposit both simple cubic structures, as well as a more complex twisted pyramidal feature. The polymers were found to be not toxic to a chondrogenic cell line, according to ISO 10993-5 and 10993-12 standard tests and the cells attached to the supramolecular polymers as demonstrated by confocal microscopy. Silica nanoparticles were then dispersed within the polymer matrix, yielding a composite material which was optimized for inkjet printing. The hybrid material showed promise in preliminary tests to facilitate the 3D deposition of a more complex structure.

  8. Bisphenyl-Polymer/Carbon-Fiber-Reinforced Composite Compared to Titanium Alloy Bone Implant.

    Science.gov (United States)

    Petersen, Richard C

    2011-05-03

    Aerospace/aeronautical thermoset bisphenyl-polymer/carbon-fiber-reinforced composites are considered as new advanced materials to replace metal bone implants. In addition to well-recognized nonpolar chemistry with related bisphenol-polymer estrogenic factors, carbon-fiber-reinforced composites can offer densities and electrical conductivity/resistivity properties close to bone with strengths much higher than metals on a per-weight basis. In vivo bone-marrow tests with Sprague-Dawley rats revealed far-reaching significant osseoconductivity increases from bisphenyl-polymer/carbon-fiber composites when compared to state-of-the-art titanium-6-4 alloy controls. Midtibial percent bone area measured from the implant surface increased when comparing the titanium alloy to the polymer composite from 10.5% to 41.6% at 0.8 mm, P engineering potential.

  9. Addition of magnetic markers for non-destructive evaluation of polymer composites

    Directory of Open Access Journals (Sweden)

    Ana Paula Pereira Fulco

    2011-12-01

    Full Text Available Polymer composite pipes are an appealing option as a substitute for conventional steel pipes, particularly due to their inherent corrosion resistance. However, the composite pipes currently used do not allow non-destructive evaluation (NDE using instrumented devices which operate with magnetic sensors. The present work aims at the development of polymer composites with the addition magnetic markers to allow the application non-destructive evaluation techniques which use magnetic sensors. Glass-polyester composite flat, circular plates were fabricated with the addition of ferrite particles (barium ferrite and strontium ferrite and four types of notches were introduced on the plates' surfaces. The influence of these notches on the measured magnetic properties of each material was measured. X-ray diffraction (XRD, X-ray fluorescence (XRF and Brunauer, Emmett, and Teller (BET nitrogen adsorption were used for the characterization of the ferrite particles. Particle dispersion in the polymer matrix was analyzed by scanning electron microscopy (SEM. According to the results, a particular variation in magnetic field was detected over the region surrounding each type of notch. The results suggest that the proposed technique has great potential for damage detection in polymer composites using magnetic sensors and thus constitute a valuable contribution which may ultimately lead to the development of non-destructive evaluation techniques for assessing the structural integrity polymer composite pipes.

  10. Basalt fiber reinforced polymer composites: Processing and properties

    Science.gov (United States)

    Liu, Qiang

    A high efficiency rig was designed and built for in-plane permeability measurement of fabric materials. A new data derivation procedure to acquire the flow fluid pattern in the experiment was developed. The measurement results of the in-plane permeability for basalt twill 31 fabric material showed that a high correlation exists between the two principal permeability values for this fabric at 35% fiber volume fraction. This may be the most important scientific contribution made in this thesis. The results from radial measurements corresponded quite well with those from Unidirectional (UD) measurements, which is a well-established technique. No significant differences in mechanical properties were found between basalt fabric reinforced polymer composites and glass composites reinforced by a fabric of similar weave pattern. Aging results indicate that the interfacial region in basalt composites may be more vulnerable to environmental damage than that in glass composites. However, the basalt/epoxy interface may have been more durable than the glass/epoxy interface in tension-tension fatigue because the basalt composites have significantly longer fatigue life. In this thesis, chapter I reviews the literature on fiber reinforced polymer composites, with concentration on permeability measurement, mechanical properties and durability. Chapter II discusses the design of the new rig for in-plane permeability measurement, the new derivation procedure for monitoring of the fluid flow pattern, and the permeability measurement results. Chapter III compares the mechanical properties and durability between basalt fiber and glass fiber reinforced polymer composites. Lastly, chapter IV gives some suggestions and recommendations for future work.

  11. Conductive polymer/metal composites for interconnect of flexible devices

    Science.gov (United States)

    Kawakita, Jin; Hashimoto Shinoda, Yasuo; Shuto, Takanori; Chikyow, Toyohiro

    2015-06-01

    An interconnect of flexible and foldable devices based on advanced electronics requires high electrical conductivity, flexibility, adhesiveness on a plastic substrate, and efficient productivity. In this study, we investigated the applicability of a conductive polymer/metal composite to the interconnect of flexible devices. By combining an inkjet process and a photochemical reaction, micropatterns of a polypyrrole/silver composite were formed on flexible plastic substrates with an average linewidth of approximately 70 µm within 10 min. The conductivity of the composite was improved to 6.0 × 102 Ω-1·cm-1. From these results, it is expected that the conducting polymer/metal composite can be applied to the microwiring of flexible electronic devices.

  12. Performance enhancement of quantum dot-sensitized solar cells based on polymer nano-composite catalyst

    International Nuclear Information System (INIS)

    Seo, Hyunwoong; Gopi, Chandu V.V.M.; Kim, Hee-Je; Itagaki, Naho; Koga, Kazunori; Shiratani, Masaharu

    2017-01-01

    Highlights: •We studied polymer nano-composite containing TiO 2 nano-particles as a catalyst. •Polymer nano-composite was applied for quantum dot-sensitized solar cells. •Polymer nano-composite catalyst was considerably improved with TiO 2 nano-particles. •Polymer nano-composite showed higher photovoltaic performance than conventional Au. -- Abstract: Polymer nano-composite composed of poly(3,4-ethylenedioxythiophene):poly (styrenesulfonate) and TiO 2 nano-particles was deposited on fluorine-doped tin oxide substrate and applied as an alternative to Au counter electrode of quantum dot-sensitized solar cell (QDSC). It became surface-richer with the increase in nano-particle amount so that catalytic reaction was increased by widened catalytic interface. Electrochemical impedance spectroscopy and cyclic voltammetry clearly demonstrated the enhancement of polymer nano-composite counter electrode. A QDSC based on polymer nano-composite counter electrode showed 0.56 V of V OC , 12.24 mA cm −2 of J SC , 0.57 of FF, and 3.87% of efficiency and this photovoltaic performance was higher than that of QDSC based on Au counter electrode (3.75%).

  13. Solid particle erosion of polymers and composites

    Science.gov (United States)

    Friedrich, K.; Almajid, A. A.

    2014-05-01

    After a general introduction to the subject of solid particle erosion of polymers and composites, the presentation focusses more specifically on the behavior of unidirectional carbon fiber (CF) reinforced polyetheretherketone (PEEK) composites under such loadings, using different impact conditions and erodents. The data were analyzed on the basis of a newly defined specific erosive wear rate, allowing a better comparison of erosion data achieved under various testing conditions. Characteristic wear mechanisms of the CF/PEEK composites consisted of fiber fracture, matrix cutting and plastic matrix deformation, the relative contribution of which depended on the impingement angles and the CF orientation. The highest wear rates were measured for impingement angles between 45 and 60°. Using abrasion resistant neat polymer films (in this case PEEK or thermoplastic polyurethane (TPU) ones) on the surface of a harder substrate (e.g. a CF/PEEK composite plate) resulted in much lower specific erosive wear rates. The use of such polymeric films can be considered as a possible method to protect composite surfaces from damage caused by minor impacts and erosion. In fact, they are nowadays already successfully applied as protections for wind energy rotor blades.

  14. Argon plasma treated electrospun P(Hola-E-Cl) Clay nanofiber composite: Effect on its antibacterial activity against S. Aureus and E.Coli

    International Nuclear Information System (INIS)

    Monserate, Juvy J.; Sumera, Florentino C.; Ramos, Henry J.; Daseco, Joanna Abigael

    2015-01-01

    In this work, the effects of argon plasma surface modification have been studied on electrospun P(HOLA-e-CL) Clay Nanofiber Composites in order to investigate the imposed limitation and possibilities to improve surface characteristics on fibrous assemblies. These assemblies were characterized using Scanning Electron Microscopy to determine the surface morphology and diameter size of the fiber. Fourier Transform Infrared Spectroscopy (FTIR) was employed to find out the positions of peaks similar to the constituent components incorporated during the process of polymerization which implied that the IR spectra illustrated the evidence of an interaction between clay and the polymer matrix. XRD peaks on increasing d-spacing going to the left 2?<20 0 verifies the results of interaction between the polymer and the ALA-MMT nanoclay. Thus this also suggested that the polymer was intercalated into the ALA-MMT. The Argon Plasma electrospun nanofiber was subjected to its antibacterial property against S. aureaus (gram positive) and E. coli (gram negative) bacteria. DMRT statistically revealed significantly at 5% level of significance shows that all treatments at increasing clay loading inhibit the growth of S. Aureus and E. Coli. Thus, Argon Plasma treated electrospun P(HOLA-e-CL) Clay Nanofiber Composites can be an excellent scaffold material for wound dressing applications. (author)

  15. Solid polymer electrolyte composite membrane comprising laser micromachined porous support

    Science.gov (United States)

    Liu, Han [Waltham, MA; LaConti, Anthony B [Lynnfield, MA; Mittelsteadt, Cortney K [Natick, MA; McCallum, Thomas J [Ashland, MA

    2011-01-11

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 5 microns, are made by laser micromachining and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  16. Thermosetting Polymer-Matrix Composites for Strucutral Repair Applications

    Energy Technology Data Exchange (ETDEWEB)

    Goertzen, William Kirby [Iowa State Univ., Ames, IA (United States)

    2007-12-01

    Several classes of thermosetting polymer matrix composites were evaluated for use in structural repair applications. Initial work involved the characterization and evaluation of woven carbon fiber/epoxy matrix composites for structural pipeline repair. Cyanate ester resins were evaluated as a replacement for epoxy in composites for high-temperature pipe repair applications, and as the basis for adhesives for resin infusion repair of high-temperature composite materials. Carbon fiber/cyanate ester matrix composites and fumed silica/cyanate ester nanocomposites were evaluated for their thermal, mechanical, viscoelastic, and rheological properties as they relate to their structure, chemistry, and processing characteristics. The bisphenol E cyanate ester under investigation possesses a high glass transition temperature, excellent mechanical properties, and unique ambient temperature processability. The incorporate of fumed silica served to enhance the mechanical and rheological properties of the polymer and reduce thermal expansion without sacrificing glass transition or drastically altering curing kinetics. Characterization of the composites included dynamic mechanical analysis, thermomechanical analysis, differential scanning calorimetry, thermogravimetric analysis, rheological and rheokinetic evaluation, and transmission electron microscopy.

  17. Study of optical properties of Erbium doped Tellurite glass-polymer composite

    Science.gov (United States)

    Sushama, D.

    2014-10-01

    Chalcogenide glasses have wide applications in optical device technology. But it has some disadvantages like thermal instability. Among them Tellurite glasses exhibits high thermal Stability. Doping of rare earth elements into the Tellurite glasses improve its optical properties. To improve its mechanical properties composites of this Tellurite glasses with polymer are prepared. Bulk samples of Er2O3 doped TeO2-WO3-La2O3 Tellurite glasses are prepared from high purity oxide mixtures, melting in an alumina crucible in air atmosphere. Composites of this Tellurite glasses with polymer are prepared by powder mixing method and the thin films of these composites are prepared using polymer press. Variations in band gap of these composites are studied from the UV/Vis/NIR absorption.

  18. Polymer-Ceramic Composite Materials for Pyroelectric Infrared Detectors: An Overview

    Science.gov (United States)

    Aggarwal, M. D; Currie, J. R.; Penn, B. G.; Batra, A. K.; Lal, R. B.

    2007-01-01

    Ferroelectrics:Polymer composites can be considered an established substitute for conventional electroceramics and ferroelectric polymers. The composites have a unique blend of polymeric properties such as mechanical flexibility, high strength, formability, and low cost, with the high electro-active properties of ceramic materials. They have attracted considerable interest because of their potential use in pyroelectric infrared detecting devices and piezoelectric transducers. These flexible sensors and transducers may eventually be useful for their health monitoring applications for NASA crew launch vehicles and crew exploration vehicles being developed. In the light of many technologically important applications in this field, it is worthwhile to present an overview of the pyroelectric infrared detector theory, models to predict dielectric behavior and pyroelectric coefficient, and the concept of connectivity and fabrication techniques of biphasic composites. An elaborate review of Pyroelectric-Polymer composite materials investigated to date for their potential use in pyroelectric infrared detectors is presented.

  19. Sol-gel derived polymer composites for energy storage and conversion

    Science.gov (United States)

    Han, Kuo

    Sol-gel process is a simple chemistry to convert the small precursor molecules into an inorganic polymer, which could be applied to synthesize inorganic materials, modify the interface of materials, bridge the organic and inorganic materials, etc. In this dissertation, novel sol-gel derived composites have been developed for high dielectric breakdown capacitors, low high frequency loss capacitors and flexible piezoelectrics. Numerous efforts have been made in the past decades to improve the energy storage capability of composite materials by incorporating nanometer scale ceramic addictives with high dielectric permittivity into dielectric polymers with high breakdown strength. However, most composites suffer from the low breakdown strength and make the potential gain in energy density small. Here, a new chemical strategy is proposed that, through sol-gel reactions between ceramic precursors and functional groups at the end of the functionalized Poly(vinylidene fluoride -co-chlorotrifluoroethylene) chains, amorphous low permittivity ceramics was in-situ generated in the polymer matrix and cross-linked the polymer chains simultaneously. By carefully tuning precursors, the polymer/precursors feeding ratios, a series of nanocomposites were systematically designed. All the samples are comprehensively characterized and the structure-property correlations are well investigated. The optimal samples exhibit higher breakdown strength than the pristine polymer. The enhanced breakdown strength ascribed to low contrast in permittivity, great dispersion and improved electrical and mechanical properties. This newly developed approach has shown great promise for new composite capacitors. The percolative polymer composites have recently exhibited great potential in energy storage due to their high dielectric permittivities at the neighborhood of the percolation threshold. Yet high energy dissipation and poor voltage endurance of the percolative composites resulted from electrical

  20. Direct covalent coupling of proteins to nanostructured plasma polymers: a route to tunable cell adhesion

    International Nuclear Information System (INIS)

    Melnichuk, Iurii; Choukourov, Andrei; Bilek, Marcela; Weiss, Anthony; Vandrovcová, Marta; Bačáková, Lucie; Hanuš, Jan; Kousal, Jaroslav; Shelemin, Artem; Solař, Pavel

    2015-01-01

    Highlights: • Flat and nanostructured interfaces were overcoated by hydrocarbon plasma polymer. • Linker-free covalent attachment of proteins to resultant surfaces was validated. • Ultra-thin hydrocarbon overcoat (<2 nm) secured prolonged effective binding. • Pre-adsorbed tropoelastin promoted proliferation of osteoblast-like MG-63 cells. • Nanostructured films were multi-affine and impeded cell adhesion. - Abstract: Flat and nanostructured thin films were fabricated by deposition of ultra-thin (<2 nm) layer of hydrocarbon plasma polymer over polished silicon and over a pattern of 8 nm-thick poly(ethylene) islands on silicon. Linker-free radical-based covalent binding of bovine serum albumin and tropoelastin was confirmed for both types of films. The binding capability of albumin was found to be stable over many days of ambient air storage time. Tropoelastin-mediated flat plasma polymers favored adhesion and proliferation of osteoblast-like MG-63 cells. Nanostructured plasma polymers were multi-affine and their hierarchical surface represented an additional barrier for cell attachment

  1. A novel polymer nanotube composite for photovoltaic packaging applications

    International Nuclear Information System (INIS)

    Ravichandran, J; Manna, I; Manoj, A G; Liu, J; Carroll, D L

    2008-01-01

    Packaging of organic photovoltaic (OPV) devices is an important issue which has been rarely addressed in the past. With the recent reports of high efficiency organic photovoltaics (6%), the need to produce materials which can effectively protect the device from degradation due to exposure to oxygen, moisture and radiation is pressing. We report a novel Saran (a co-polymer of vinylidene chloride and acrylonitrile) based polymer nanotube composite, which shows high transparency in the visible region, good barrier properties and thermal stability, for use as an encapsulant for OPV devices. Different loadings of Saran and boron nitride nanotubes were taken and the composites were prepared to optimize the composition of the composite. UV-visible spectroscopy, infra-red spectroscopy and thermal analysis were used to characterize the composite. The barrier properties of the composite were tested on poly(3-hexylthiophene), which is used in high efficiency OPV devices

  2. Molecular and structural properties of polymer composites filled with activated charcoal particles

    Energy Technology Data Exchange (ETDEWEB)

    Tahir, Dahlang, E-mail: dtahir@fmipa.unhas.ac.id; Bakri, Fahrul [Department of Physics, Hasanuddin University, Makassar 90245 Indonesia (Indonesia); Liong, Syarifuddin [Department of Chemistry, Hasanuddin University, Makassar 90245 Indonesia (Indonesia)

    2016-03-11

    We have studied the molecular properties, structural properties, and chemical composition of composites by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) spectroscopy, and X-ray fluorescence (XRF) spectroscopy, respectively. FTIR spectra shows absorption band of hydroxyl group (-OH), methyl group (-CH{sub 3}) and aromatic group (C-C). The absorption band for aromatic group (C-C) shows the formation of carbonaceous in composites. XRF shows chemical composition of composites, which the main chemicals are SO{sub 3}, Cl, and ZnO. The loss on ignition value (LOI) of activated charcoal indicates high carbonaceous matter. The crystallite size for diffraction pattern from hydrogel polymer is about 17 nm and for activated charcoal are about 19 nm. The crystallite size of the polymer is lower than that of activated charcoal, which make possible of the particle from filler in contact with each other to form continuous conducting polymer through polymer matrix.

  3. High field dielectric properties of anisotropic polymer-ceramic composites

    International Nuclear Information System (INIS)

    Tomer, V.; Randall, C. A.

    2008-01-01

    Using dielectrophoretic assembly, we create anisotropic composites of BaTiO 3 particles in a silicone elastomer thermoset polymer. We study a variety of electrical properties in these composites, i.e., permittivity, dielectric breakdown, and energy density as function of ceramic volume fraction and connectivity. The recoverable energy density of these electric-field-structured composites is found to be highly dependent on the anisotropy present in the system. Our results indicate that x-y-aligned composites exhibit higher breakdown strengths along with large recoverable energy densities when compared to 0-3 composites. This demonstrates that engineered anisotropy can be employed to control dielectric breakdown strengths and nonlinear conduction at high fields in heterogeneous systems. Consequently, manipulation of anisotropy in high-field dielectric properties can be exploited for the development of high energy density polymer-ceramic systems

  4. Controlling hydrophilicity of polymer film by altering gas flow rate in atmospheric-pressure homogeneous plasma

    International Nuclear Information System (INIS)

    Kang, Woo Seok; Hur, Min; Lee, Jae-Ok; Song, Young-Hoon

    2014-01-01

    Graphical abstract: - Highlights: • Controlling hydrophilicity of polymer film by varying gas flow rate is proposed in atmospheric-pressure homogeneous plasma treatment. • Without employing additional reactive gas, requiring more plasma power and longer treatment time, hydrophilicity of polyimide films was improved after the low-gas-flow plasma treatment. • The gas flow rate affects the hydrophilic properties of polymer surface by changing the discharge atmosphere in the particular geometry of the reactor developed. • Low-gas-flow induced wettability control suggests effective and economical plasma treatment. - Abstract: This paper reports on controlling the hydrophilicity of polyimide films using atmospheric-pressure homogeneous plasmas by changing only the gas flow rate. The gas flow changed the discharge atmosphere by mixing the feed gas with ambient air because of the particular geometry of the reactor developed for the study, and a low gas flow rate was found to be favorable because it generated abundant nitrogen or oxygen species that served as sources of hydrophilic functional groups over the polymer surface. After low-gas-flow plasma treatment, the polymer surface exhibited hydrophilic characteristics with increased surface roughness and enhanced chemical properties owing to the surface addition of functional groups. Without adding any reactive gases or requiring high plasma power and longer treatment time, the developed reactor with low-gas-flow operation offered effective and economical wettability control of polyimide films

  5. Study of optical properties of Erbium doped Tellurite glass-polymer composite

    Energy Technology Data Exchange (ETDEWEB)

    Sushama, D., E-mail: sushasukumar@gmail.com [Research Awardee, LAMP, Dept. of Physics, Nit, Calicut, India and Dept. of Physics, M.S.M. College, Kayamkulam, Kerala (India)

    2014-10-15

    Chalcogenide glasses have wide applications in optical device technology. But it has some disadvantages like thermal instability. Among them Tellurite glasses exhibits high thermal Stability. Doping of rare earth elements into the Tellurite glasses improve its optical properties. To improve its mechanical properties composites of this Tellurite glasses with polymer are prepared. Bulk samples of Er{sub 2}O{sub 3} doped TeO{sub 2}‐WO{sub 3}‐La{sub 2}O{sub 3} Tellurite glasses are prepared from high purity oxide mixtures, melting in an alumina crucible in air atmosphere. Composites of this Tellurite glasses with polymer are prepared by powder mixing method and the thin films of these composites are prepared using polymer press. Variations in band gap of these composites are studied from the UV/Vis/NIR absorption.

  6. Study of optical properties of Erbium doped Tellurite glass-polymer composite

    International Nuclear Information System (INIS)

    Sushama, D.

    2014-01-01

    Chalcogenide glasses have wide applications in optical device technology. But it has some disadvantages like thermal instability. Among them Tellurite glasses exhibits high thermal Stability. Doping of rare earth elements into the Tellurite glasses improve its optical properties. To improve its mechanical properties composites of this Tellurite glasses with polymer are prepared. Bulk samples of Er 2 O 3 doped TeO 2 ‐WO 3 ‐La 2 O 3 Tellurite glasses are prepared from high purity oxide mixtures, melting in an alumina crucible in air atmosphere. Composites of this Tellurite glasses with polymer are prepared by powder mixing method and the thin films of these composites are prepared using polymer press. Variations in band gap of these composites are studied from the UV/Vis/NIR absorption

  7. On Healable Polymers and Fiber-Reinforced Composites

    Science.gov (United States)

    Nielsen, Christian Eric

    Polymeric materials capable of healing damage would be valuable in structural applications where access for repair is limited. Approaches to creating such materials are reviewed, with the present work focusing on polymers with thermally reversible covalent cross-links. These special cross-links are Diels-Alder (DA) adducts, which can be separated and re-formed, enabling healing of mechanical damage at the molecular level. Several DA-based polymers, including 2MEP4FS, are mechanically and thermally characterized. The polymerization reaction of 2MEP4FS is modeled and the number of established DA adducts is associated with the glass transition temperature of the polymer. The models are applied to concentric cylinder rotational measurements of 2MEP4FS prepolymer at room and elevated temperatures to describe the viscosity as a function of time, temperature, and conversion. Mechanical damage including cracks and scratches are imparted in cured polymer samples and subsequently healed. Damage due to high temperature thermal degradation is observed to not be reversible. The ability to repair damage without flowing polymer chains makes DA-based healable polymers particularly well-suited for crack healing. The double cleavage drilled compression (DCDC) fracture test is investigated as a useful method of creating and incrementally growing cracks in a sample. The effect of sample geometry on the fracture behavior is experimentally and computationally studied. Computational and empirical models are developed to estimate critical stress intensity factors from DCDC results. Glass and carbon fiber-reinforced composites are fabricated with 2MEP4FS as the matrix material. A prepreg process is developed that uses temperature to control the polymerization rate of the monomers and produce homogeneous prepolymer for integration with a layer of unidirectional fiber. Multiple prepreg layers are laminated to form multi-layered cross-ply healable composites, which are characterized in

  8. Conducting polymer/carbon nanocoil composite electrodes for efficient supercapacitors

    KAUST Repository

    Baby, Rakhi Raghavan

    2012-01-01

    Herein, we report for the first time, conducting polymer (polyaniline (PANI) and polypyrrole (PPY)) coated carbon nanocoils (CNCs) as efficient binder-free electrode materials for supercapacitors. CNCs act as a perfect backbone for the uniform distribution of the conducting polymers in the composites. In two electrode configuration, the samples exhibited high specific capacitance with the values reaching up to 360 and 202 F g -1 for PANI/CNCs and PPY/CNCs respectively. The values obtained for specific capacitance and maximum storage energy per unit mass of the composites were found to be comparable to one of the best reported values for polymer coated multi-walled carbon nanotubes. In addition, the fabricated PANI/CNC based supercapacitors exhibited a high value of 44.61 Wh kg -1 for maximum storage energy per unit mass. Although the devices exhibit an initial capacitance loss due to the instability of the polymer, the specific capacitance stabilizes at a fixed value after 500 charge-discharge cycles. © 2012 The Royal Society of Chemistry.

  9. General overview of graphene: Production, properties and application in polymer composites

    International Nuclear Information System (INIS)

    Phiri, Josphat; Gane, Patrick; Maloney, Thad C.

    2017-01-01

    Highlights: • Three aspects of graphene have been reviewed: properties, fabrication and polymer composites. • Scalability potential of graphite based exfoliation methods is discussed. • Graphene produced via GO and LPE methods is compared in polymer composite applications. - Abstract: Graphene is a new and exciting material that has attracted much attention in the last decade and is being extensively explored because of its properties, which have been described with so many superlatives. Production of graphene for large scale application is still a major challenge. Top-down graphene exfoliation methods from graphite, such as liquid-phase exfoliation which is promising because of low cost and high scalability potential will be briefly discussed. We also analyze the challenges and possibilities of using graphene as a nanofiller in polymer composites which has resulted in enhanced electrical, mechanical and thermal properties. In this review, we take a panoramic approach to give insight on the different aspects of graphene such as properties, graphite-based production methods and also examples of graphene application in polymer composites and which will be beneficial to both novice and experts.

  10. General overview of graphene: Production, properties and application in polymer composites

    Energy Technology Data Exchange (ETDEWEB)

    Phiri, Josphat, E-mail: josphat.phiri@aalto.fi [School of Chemical Technology, Department of Forest Products Technology, Aalto University, P.O. Box 16300, 00076 Aalto (Finland); Gane, Patrick [School of Chemical Technology, Department of Forest Products Technology, Aalto University, P.O. Box 16300, 00076 Aalto (Finland); Omya International AG, CH-4665 Oftringen (Switzerland); Maloney, Thad C., E-mail: thaddeus.maloney@aalto.fi [School of Chemical Technology, Department of Forest Products Technology, Aalto University, P.O. Box 16300, 00076 Aalto (Finland)

    2017-01-15

    Highlights: • Three aspects of graphene have been reviewed: properties, fabrication and polymer composites. • Scalability potential of graphite based exfoliation methods is discussed. • Graphene produced via GO and LPE methods is compared in polymer composite applications. - Abstract: Graphene is a new and exciting material that has attracted much attention in the last decade and is being extensively explored because of its properties, which have been described with so many superlatives. Production of graphene for large scale application is still a major challenge. Top-down graphene exfoliation methods from graphite, such as liquid-phase exfoliation which is promising because of low cost and high scalability potential will be briefly discussed. We also analyze the challenges and possibilities of using graphene as a nanofiller in polymer composites which has resulted in enhanced electrical, mechanical and thermal properties. In this review, we take a panoramic approach to give insight on the different aspects of graphene such as properties, graphite-based production methods and also examples of graphene application in polymer composites and which will be beneficial to both novice and experts.

  11. The effect of water on thermal stresses in polymer composites

    Science.gov (United States)

    Sullivan, Roy M.

    1994-01-01

    The fundamentals of the thermodynamic theory of mixtures and continuum thermochemistry are reviewed for a mixture of condensed water and polymer. A specific mixture which is mechanically elastic with temperature and water concentration gradients present is considered. An expression for the partial pressure of water in the mixture is obtained based on certain assumptions regarding the thermodynamic state of the water in the mixture. Along with a simple diffusion equation, this partial pressure expression may be used to simulate the thermostructural behavior of polymer composite materials due to water in the free volumes of the polymer. These equations are applied to a specific polymer composite material during isothermal heating conditions. The thermal stresses obtained by the application of the theory are compared to measured results to verify the accuracy of the approach.

  12. Improvement of acoustical characteristics : wideband bamboo based polymer composite

    Science.gov (United States)

    Farid, M.; Purniawan, A.; Rasyida, A.; Ramadhani, M.; Komariyah, S.

    2017-07-01

    Environmental friendly and comfortable materials are desirable for applications in the automobile interior. The objective of this research was to examine and develop bamboo based polymer composites applied to the sound absorption materials of automobile door panels. Morphological analysis of the polyurethane/bamboo powder composite materials was carried out using scanning electron microscope to reveal the microscopic material behavior and followed by the FTIR and TGA testing. The finding demonstrated that this acoustical polymer composite materials provided a potential wideband sound absorption material. The range of frequency can be controlled between 500 and 4000 Hz with an average of sound absorption coefficient around 0.411 and it met to the door panels criteria.

  13. Bio-mineralisation on the composites of silicon-based polymer and nanodiamond particles by a species of Serratia Bacteria

    International Nuclear Information System (INIS)

    Sammon, R.; Mitev, D.; Pramatarova, L.; Hikov, T.; Radeva, E.; Presker, R.

    2014-01-01

    Serratia sp. NCIMB 40259 is a non-pathogenic Gram-negative bacterium that is able to produce hydroxyapatite by a mechanism involving enzymic cleavage of organic phosphates. Serratia bacteria can attach and form a biofilm on glass, plastics, ceramics and metals and the method can be used to form three dimensional porous scaffolds and for coating 3D structures with hydroxyapatite. The production of calcium phosphate is driven by an acid phosphatase enzyme located in the bacterial cell wall, on fimbriae and within the bacterial extracellular polymeric matrix. Calcium phosphate ceramic may be obtained by two methods: In the first, crystals of calcium phosphate are formed extracellularly within the pre-formed bacterial biofilm grown on the substrata. In the second method, planktonic bacteria catalyse the formation of CaP in suspension and on solid substrata placed in the same container. Composite thin layer of silicon-based polymer and detonated nanodiamond (DND) particles was used as substrate for the process of biomineralization by a species of Serratia. The plasma polymerization (PP) method was chosen to obtain composites of silicon-based polymer, in which DND particles were incorporated. Over the past decades carbon-based nanostructures have been the focus of intense research due to their unique chemical and physical properties. Recently it was shown that the incorporation of the DND particles in a polymer matrix (an organosilicon polymer) changes their physico-chemical properties. The composite films are homogeneous, chemically resistant, thermally and mechanically stable, thus allowing a large amount of biological components to be loaded onto their surface and to be used in tissue engineering, regenerative medicine, implants, stents, biosensors and other medical and biological devices. The aim of this study was to investigate the process of biomineralisation by Serratia bacteria on various composites of silicon-based polymer and detonated nanodiamond particles

  14. Smooth Nanowire/Polymer Composite Transparent Electrodes

    KAUST Repository

    Gaynor, Whitney; Burkhard, George F.; McGehee, Michael D.; Peumans, Peter

    2011-01-01

    Smooth composite transparent electrodes are fabricated via lamination of silver nanowires into the polymer poly-(4,3-ethylene dioxythiophene): poly(styrene-sulfonate) (PEDOT:PSS). The surface roughness is dramatically reduced compared to bare nanowires. High-efficiency P3HT:PCBM organic photovoltaic cells can be fabricated using these composites, reproducing the performance of cells on indium tin oxide (ITO) on glass and improving the performance of cells on ITO on plastic. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Smooth Nanowire/Polymer Composite Transparent Electrodes

    KAUST Repository

    Gaynor, Whitney

    2011-04-29

    Smooth composite transparent electrodes are fabricated via lamination of silver nanowires into the polymer poly-(4,3-ethylene dioxythiophene): poly(styrene-sulfonate) (PEDOT:PSS). The surface roughness is dramatically reduced compared to bare nanowires. High-efficiency P3HT:PCBM organic photovoltaic cells can be fabricated using these composites, reproducing the performance of cells on indium tin oxide (ITO) on glass and improving the performance of cells on ITO on plastic. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Role of the polymer phase in the mechanics of nacre-like composites

    Science.gov (United States)

    Niebel, Tobias P.; Bouville, Florian; Kokkinis, Dimitri; Studart, André R.

    2016-11-01

    Although strength and toughness are often mutually exclusive properties in man-made structural materials, nature is full of examples of composite materials that combine these properties in a remarkable way through sophisticated multiscale architectures. Understanding the contributions of the different constituents to the energy dissipating toughening mechanisms active in these natural materials is crucial for the development of strong artificial composites with a high resistance to fracture. Here, we systematically study the influence of the polymer properties on the mechanics of nacre-like composites containing an intermediate fraction of mineral phase (57 vol%). To this end, we infiltrate ceramic scaffolds prepared by magnetically assisted slip casting (MASC) with monomers that are subsequently cured to yield three drastically different polymers: (i) poly(lauryl methacrylate) (PLMA), a soft and weak elastomer; (ii) poly(methyl methacrylate) (PMMA), a strong, stiff and brittle thermoplastic; and (iii) polyether urethane diacrylate-co-poly(2-hydroxyethyl methacrylate) (PUA-PHEMA), a tough polymer of intermediate strength and stiffness. By combining our experimental data with finite element modeling, we find that stiffer polymers can increase the strength of the composite by reducing stress concentrations in the inorganic scaffold. Moreover, infiltrating the scaffolds with tough polymers leads to composites with high crack initiation toughness KIC. An organic phase with a minimum strength and toughness is also required to fully activate the mechanisms programmed within the ceramic structure for a rising R-curve behavior. Our results indicate that a high modulus of toughness is a key parameter for the selection of polymers leading to strong and tough bioinspired nacre-like composites.

  17. Large energy absorption in Ni-Mn-Ga/polymer composites

    International Nuclear Information System (INIS)

    Feuchtwanger, Jorge; Richard, Marc L.; Tang, Yun J.; Berkowitz, Ami E.; O'Handley, Robert C.; Allen, Samuel M.

    2005-01-01

    Ferromagnetic shape memory alloys can respond to a magnetic field or applied stress by the motion of twin boundaries and hence they show large hysteresis or energy loss. Ni-Mn-Ga particles made by spark erosion have been dispersed and oriented in a polymer matrix to form pseudo 3:1 composites which are studied under applied stress. Loss ratios have been determined from the stress-strain data. The loss ratios of the composites range from 63% to 67% compared to only about 17% for the pure, unfilled polymer samples

  18. Assessment of nanoparticle release and associated health effect of polymer-silicon composites

    International Nuclear Information System (INIS)

    Zhu, H; Irfan, A; Sachse, S; Njuguna, J

    2012-01-01

    Little information is currently available on possible release of nanomaterials or/and nanoparticles (NP) from conventional and novel products and associated health effect. This study aimed to assess the possible release of NP during the application stage of conventional and nanoproducts. NP release was monitored during physical processing of polymer-silicon composites, and the toxicity of both the released NP and the raw silica nanomaterials that were used as fillers in the nanocomposites was assessed in vitro using human lung epithelial A549 cells. This study suggests that 1) NP can be released from the conventional and novel polymer-silicon composites under certain application scenario; 2) the level of NP release from polymer composites could be altered by different reinforcement materials; e.g. nanostructured MMT could reduce the release while SiO2 NP could increase the release; 3) working with polymer composites under certain conditions could risk inhalation of high level of polymer NP; 4) raw nanomaterials appeared to be toxic in the chosen in vitro system. Further study of the effect of novel filler materials on NP release from final polymer products and the effect of released NP on environment and human health will inform design of safe materials and minimization of negative impact on the environment and human health.

  19. Transparent Nanoporous Glass-Polymer Composite for U.S. Army Applications

    Science.gov (United States)

    2008-10-01

    material is created by infiltrating nanoporous glass (Vycor, Corning Inc.) with different polymers. The Vycor pores (4–6 nm) are much smaller than the...glass-polymer composite to a carbon-silica composite through pyrolysis . Sotomayor et al. (12) used polyanaline-infused Vycor to produce a pH sensor...Vycor is a registered trademark of Corning , Inc., Corning , NY. 3 In this report, we will explore the processing and mechanical behavior of

  20. Functionalization of polymer surfaces by medium frequency non-thermal plasma

    Science.gov (United States)

    Felix, T.; Trigueiro, J. S.; Bundaleski, N.; Teodoro, O. M. N. D.; Sério, S.; Debacher, N. A.

    2018-01-01

    This work addresses the surface modification of different polymers by argon dielectric barrier discharge, using bromoform vapours. Atomic Force Microscopy and Scanning Electron Microscopy showed that plasma etching occurs in stages and may be related to the reach of the species generated and obviously the gap between the electrodes. In addition, the stages of flatten surface or homogeneity may be the result of the transient crosslinking promoted by the intense UV radiation generated by the non- thermal plasma. X-ray Photoelectron Spectroscopy analysis showed that bromine was inserted on the polymer surface as Csbnd Br bonds and as adsorbed HBr. The obtained results demonstrate that the highest degree of bromofunctionalization was achieved on polypropylene surface, which contains about 8,5% of Br. After its derivatization in ammonia, Br disappeared and about 6% of nitrogen in the form of amine group was incorporated at the surface. This result can be considered as a clear fingerprint of the Br substitution by the amine group, thus illustrating the efficiency of the proposed method for functionalization of polymer surfaces.

  1. Fabrication of carbon-polymer composite bipolar plates for polymer electrolyte membrane fuel cells by compression moulding

    International Nuclear Information System (INIS)

    Raza, M.A.; Ahmed, R.; Saleem, A.; Din, R.U.

    2009-01-01

    Fuel cells are considered as one of the most important technologies to address the future energy and environmental pollution problems. These are the most promising power sources for road transportation and portable devices. A fuel cell is an electrochemical device that converts chemical energy into electrical energy. A fuel cell stack consists of bipolar plates and membrane electrode assemblies (MEA). The bipolar plate is by weight, volume and cost one of the most significant components of a fuel cell stack. Major functions of bipolar plates are to separate oxidant and fuel gas, provide flow channels, conduct electricity and provide heat transfer. Bipolar plates can be made from various materials including graphite, metals, carbon / carbon and carbon/ polymer composites. Materials for carbon-polymer composites are relatively inexpensive, less corrosive, strong and channels can be formed by means of a moulding process. Carbon-polymer composites are of two type i.e; thermosetting and thermoplastic. For thermosetting composite a bulk molding compound (BMC) was prepared by adding graphite, vinyl ester resin, methyl ethyl ketone peroxide and cobalt naphthalate. The BMC was thoroughly mixed, poured into a die mould of a bipolar plate with channels and hot pressed at a specific temperature and pressure. A bipolar plate was formed according to the die mould. Design of the mould is also discussed. Conducting polymers were also added to BMC to increase the conductivity of bipolar plates. Particle size of the graphite has also a significant effect on the conductivity of the bipolar plates. Thermoplastic composites were also prepared using polypropylene and graphite.

  2. Characteristic of Polymer-Impregnated Cement Mortar: Composites: Bulk Density and Microstructure

    International Nuclear Information System (INIS)

    Younes, M.M.; Abo-El-Enein, S.A.; El-Saft, M.M.; Sadek, M.A.; Zohdy, K.M.

    2010-01-01

    The effect of radiation initiated polymerization of some monomers on the physical properties of polymer-incorporated mortar was studied. The monomers used were: castor oil (C.O.), 4, 4'-diphenylmethane diisocyanate (MDI) and methyl methacrylate (MMA). Polymerization was carried out by subjecting the monomer-impregnated mortar specimens to different doses of gamma radiation. Where polyurethane (pu) and polyurethane -methyl methacrylate copolymers were formed within the pore system. The influence of polymer impregnation on the various physico-mechanical characteristics of the resulting composites was studied with respect to bulk density and polymer loading. Scanning electron microscopy (SEM) was employed to study the micro-structural characteristics of the neat hardened Ordinary Portland Cement (OPC) mortar pastes and their polymer-impregnated composites

  3. Photocatalytic activity of PANI loaded coordination polymer composite materials: Photoresponse region extension and quantum yields enhancement via the loading of PANI nanofibers on surface of coordination polymer

    International Nuclear Information System (INIS)

    Cui, Zhongping; Qi, Ji; Xu, Xinxin; Liu, Lu; Wang, Yi

    2013-01-01

    To enhance photocatalytic property of coordination polymer in visible light region, polyaniline (PANI) loaded coordination polymer photocatalyst was synthesized through in-situ chemical oxidation of aniline on the surface of coordination polymer. The photocatalytic activity of PANI loaded coordination polymer composite material for degradation of Rhodamine B (RhB) was investigated. Compared with pure coordination polymer photocatalyst, which can decompose RhB merely under UV light irradiation, PANI loaded coordination polymer photocatalyst displays more excellent photocatalytic activity in visible light region. Furthermore, PANI loaded coordination polymer photocatalyst exhibits outstanding stability during the degradation of RhB. - Graphical abstract: PANI loaded coordination polymer composite material, which displays excellent photocatalytic activity under visible light was firstly synthesized through in-situ chemical oxidation of aniline on surface of coordination polymer. Display Omitted - Highlights: • This PANI loaded coordination polymer composite material represents the first conductive polymer loaded coordination polymer composite material. • PANI/coordination polymer composite material displays more excellent photocatalytic activity for the degradation of MO in visible light region. • The “combination” of coordination polymer and PANI will enable us to design high-activity, high-stability and visible light driven photocatalyst in the future

  4. Mechanisms of polymer degradation using an oxygen plasma generator

    Science.gov (United States)

    Colony, Joe A.; Sanford, Edward L.

    1987-01-01

    An RF oxygen plasma generator was used to produce polymer degradation which appears to be similar to that which has been observed in low Earth orbit. Mechanisms of this type of degradation were studied by collecting the reaction products in a cryogenic trap and identifying the molecular species using infrared, mass spectral, and X-ray diffraction techniques. No structurally dependent species were found from Kapton, Teflon, or Saran polymers. However, very reactive free radical entities are produced during the polymer degradation, as well as carbon dioxide and water. Reactions of the free radicals with the glass reaction vessel, with copper metal in the cold trap, and with a triphenyl phosphate scavenger in the cold trap, demonstrated the reactivity of the primary products.

  5. A novel approach in preparing polymer/nano-CaCO3 composites

    Institute of Scientific and Technical Information of China (English)

    Zhengying LIU; Runze YU; Mingbo YANG; Jianmin FENG; Wei YANG; Bo YIN

    2008-01-01

    An novel compounding process using nano-CaCO3 aqueous suspension for preparing polymer/ nano-CaCO3 composites with nanoparticles dispersed at the nanoscale is reported. The process is called the mild mixing method. In this method, the pre-dispersed nano-particle suspensions are blended with melting polymers in a weak shearing field using an extruder, followed by removing the water from the vent. The four typical poly-meric nanocomposites were prepared by mild mixing method. The dispersion of nano-CaCO3 in the matrix of the polymer at the nanoscale was confirmed by scanning electron microscopy (SEM). The molecular weights of polycarbonate (PC) and its nanocomposite showed that the degradation had not occurred during the mild mixing processing. The mechanical properties of the composite with 1.5 wt-% nano-CaCO3 improve slightly. It proved that this approach is suitable for the preparation of nano-composites based on both polar and non-polar polymers.

  6. Plasma deposited composite coatings to control biological response of osteoblast-like MG-63 cells

    Science.gov (United States)

    Keremidarska, M.; Radeva, E.; Eleršič, K.; Iglič, A.; Pramatarova, L.; Krasteva, N.

    2014-12-01

    The successful osseointegration of a bone implant is greatly dependent on its ability to support cellular adhesion and functions. Deposition of thin composite coatings onto the implant surface is a promising approach to improve interactions with cells without compromising implant bulk properties. In this work, we have developed composite coatings, based on hexamethyldisiloxane (HMDS) and detonation nanodiamond (DND) particles and have studied adhesion, growth and function of osteoblast-like MG-63 cells. PPHMDS/DND composites are of interest for orthopedics because they combine superior mechanical properties and good biocompatibility of DND with high adherence of HMDS to different substrata including glass, metals and plastics. We have used two approaches of the implementation of DND particles into a polymer matrix: pre-mixture of both components followed by plasma polymerization and layer-by-layer deposition of HMDS and DND particles and found that the deposition approach affects significantly the surface properties of the resulting layers and cell behaviour. The composite, prepared by subsequent deposition of monomer and DND particles was hydrophilic, with a rougher surface and MG-63 cells demonstrated better spreading, growth and function compared to the other composite which was hydrophobic with a smooth surface similarly to unmodified polymer. Thus, by varying the deposition approach, different PPHMDS/DND composite coatings, enhancing or inhibiting osteoblast adhesion and functions, can be obtained. In addition, the effect of fibronectin pre-adsorption was studied and was found to increase greatly MG-63 cell spreading.

  7. Solid polymer composite electrolytes for PEMFC

    Energy Technology Data Exchange (ETDEWEB)

    Zaidi, S M.J.; Mikhailenko, S D; Kaliaguine, S

    1998-07-01

    Composite electrolyte membranes for fuel cell technology were prepared from solid state proton conductors and polymer binders. The polymers were partially sulfonated and non-sulfonated polysulfone (PS), porous polyetherimide (PEI) and polymethylmethacrylate (PMMA). As proton conductors H-chabazite, tungstophosphoric acid and its Na-salt and non-stoichiometric boron phosphate were employed. All membranes prepared using sulfonated PS as a binder with sulfonation degree higher than 50% were found to be mechanically unstable. They possess however reasonably high conductivity up to 6{times}10{sup {minus}3} S/cm. Introducing the tungstophosphoric acid (TPA) into the nonsulfonated porous PS makes possible to obtain strong and flexible membranes with s=4{times}10{sup {minus}3} S/cm, while use of boron phosphate in that case results in the conductivity of about 10{sup {minus}5} S/cm. Porous PEI impregnated with aqueous solution of TPA retains its original tensile strength and exhibited the conductivity s=2{times}10{sup {minus}4} S/cm. It however fell to 3{times}10{sup {minus}5} S/cm when the binder was modified with 2% of propionic acid, which caused a decrease in polymer pore size. Incorporation of the sodium acid salt of TPA into PEI allows one to obtain a composite with reasonably good mechanical properties and a conductivity of ca 10{sup {minus}5} S/cm for membranes prepared by the cast method. Using the phase inversion technique for preparation of the membranes of the same composition makes possible to increase their conductivity up to 10{sup {minus}4} S/cm. When boron phosphate was used in lieu of TPA salt the conductivity obtained is still higher reaching 3{times}10{sup {minus}5} and 3{times}10{sup {minus}4} S/cm for membranes prepared by cast and phase inversion techniques respectively. The PMMA based membranes were mechanically stable even when a solid content reached 55wt.%. Among PMMA membranes the highest conductivity of 10{sup {minus}3} S/cm was registered for

  8. Bisphenyl-Polymer/Carbon-Fiber-Reinforced Composite Compared to Titanium Alloy Bone Implant

    Directory of Open Access Journals (Sweden)

    Richard C. Petersen

    2011-01-01

    Full Text Available Aerospace/aeronautical thermoset bisphenyl-polymer/carbon-fiber-reinforced composites are considered as new advanced materials to replace metal bone implants. In addition to well-recognized nonpolar chemistry with related bisphenol-polymer estrogenic factors, carbon-fiber-reinforced composites can offer densities and electrical conductivity/resistivity properties close to bone with strengths much higher than metals on a per-weight basis. In vivo bone-marrow tests with Sprague-Dawley rats revealed far-reaching significant osseoconductivity increases from bisphenyl-polymer/carbon-fiber composites when compared to state-of-the-art titanium-6-4 alloy controls. Midtibial percent bone area measured from the implant surface increased when comparing the titanium alloy to the polymer composite from 10.5% to 41.6% at 0.8 mm, P<10−4, and 19.3% to 77.7% at 0.1 mm, P<10−8. Carbon-fiber fragments planned to occur in the test designs, instead of producing an inflammation, stimulated bone formation and increased bone integration to the implant. In addition, low-thermal polymer processing allows incorporation of minerals and pharmaceuticals for future major tissue-engineering potential.

  9. Porous polymer networks and ion-exchange media and metal-polymer composites made therefrom

    Energy Technology Data Exchange (ETDEWEB)

    Kanatzidis, Mercouri G.; Katsoulidis, Alexandros

    2016-10-18

    Porous polymeric networks and composite materials comprising metal nanoparticles distributed in the polymeric networks are provided. Also provided are methods for using the polymeric networks and the composite materials in liquid- and vapor-phase waste remediation applications. The porous polymeric networks, are highly porous, three-dimensional structures characterized by high surface areas. The polymeric networks comprise polymers polymerized from aldehydes and phenolic molecules.

  10. Polymer-Nanoparticle Composites: From Synthesis to Modern Applications

    Directory of Open Access Journals (Sweden)

    Thomas Hanemann

    2010-05-01

    Full Text Available The addition of inorganic spherical nanoparticles to polymers allows the modification of the polymers physical properties as well as the implementation of new features in the polymer matrix. This review article covers considerations on special features of inorganic nanoparticles, the most important synthesis methods for ceramic nanoparticles and nanocomposites, nanoparticle surface modification, and composite formation, including drawbacks. Classical nanocomposite properties, as thermomechanical, dielectric, conductive, magnetic, as well as optical properties, will be summarized. Finally, typical existing and potential applications will be shown with the focus on new and innovative applications, like in energy storage systems.

  11. Thin polymer films prepared by plasma immersion ion implantation and deposition

    International Nuclear Information System (INIS)

    Rangel, Elidiane C.; Silva, Paulo A.F.; Mota, Rogerio P.; Schreiner, Wido H.; Cruz, Nilson C.

    2005-01-01

    This work describes an investigation of the properties of polymer films prepared by plasma immersion ion implantation and deposition. Films were synthesized from low pressure benzene glow discharges, biasing the samples with 25 kV negative pulses. The total energy deposited in the growing layer was varied tailoring simultaneously pulse frequency and duty cycle. The effect of the pulse characteristics on the chemical composition and mechanical properties of the films was studied by X-ray photoelectron spectroscopy (XPS) and nanoindentation, respectively. Analysis of the deconvoluted C 1s XPS peaks demonstrated that oxygen was incorporated in all the samples. The chemical modifications induced structural reorganization, characterized by chain cross-linking and unsaturation, affecting material properties. Hardness and plastic resistance parameter increased under certain bombardment conditions. An interpretation is proposed in terms of the total energy delivered to the growing layer

  12. Magnetic polymer-silica composites as bioluminescent sensors for bilirubin detection

    Energy Technology Data Exchange (ETDEWEB)

    Timin, Alexander S., E-mail: a_timin@mail.ru [Inorganic Chemistry Department, Ivanovo State University of Chemistry and Technology (ISUCT), 7, Sheremetevsky prosp., 153000, Ivanovo (Russian Federation); RASA Center in Tomsk, Tomsk Polytechnic University, pros. Lenina, 30, Tomsk (Russian Federation); Solomonov, Alexey V. [Inorganic Chemistry Department, Ivanovo State University of Chemistry and Technology (ISUCT), 7, Sheremetevsky prosp., 153000, Ivanovo (Russian Federation); Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 7610001 (Israel); Kumagai, Akiko; Miyawaki, Atsushi [Cell Function Dynamics, Brain Science Institute RIKEN, 2-1 Hirosawa, Wako-city, Saitama, 351-0198 (Japan); Khashirova, Svetlana Yu; Zhansitov, Azamat [Kabardino-Balkar State University, 173 Chernyshevskogo St., Nal' chik, 360004, Kabardino-Balkaria (Russian Federation); Rumyantsev, Evgeniy V. [Inorganic Chemistry Department, Ivanovo State University of Chemistry and Technology (ISUCT), 7, Sheremetevsky prosp., 153000, Ivanovo (Russian Federation)

    2016-11-01

    The synthesis of multifunctional nano-sized materials is leading to the rapid development of key application, including improved drug delivery, bioimaging and protein separation. In this work, magnetic silica particles modified with novel guanidine containing co-polymers were manufactured via sol-gel method. To evaluate the chemical composition of our prepared samples, FT-IR spectroscopy and thermogravimetry were conducted. Scanning electron microscopy was used in order to investigate the morphology of final products after modification by guanidine containing co-polymers and iron nanoparticles. In addition, the surface of polymer-silica composites was functionalized by the novel bilirubin-inducible fluorescent protein UnaG. In an aqueous bilirubin solution, the silica particles decorated with the polymer-UnaG have showed bright fluorescence. Synthesis and characterization of these hybrid materials allow developing of new multifunctional nano-sized materials, which will be used for detection and separation of bilirubin, a lipophilic heme catabolite that is a clinical diagnostic for liver function. - Highlights: • Novel magnetic silicas grafted by guanidine containing co-polymers were prepared. • Unag protein was effectively loaded into polymer coated silicas. • The fluorescent properties depend on content of bilirubin.

  13. Magnetic polymer-silica composites as bioluminescent sensors for bilirubin detection

    International Nuclear Information System (INIS)

    Timin, Alexander S.; Solomonov, Alexey V.; Kumagai, Akiko; Miyawaki, Atsushi; Khashirova, Svetlana Yu; Zhansitov, Azamat; Rumyantsev, Evgeniy V.

    2016-01-01

    The synthesis of multifunctional nano-sized materials is leading to the rapid development of key application, including improved drug delivery, bioimaging and protein separation. In this work, magnetic silica particles modified with novel guanidine containing co-polymers were manufactured via sol-gel method. To evaluate the chemical composition of our prepared samples, FT-IR spectroscopy and thermogravimetry were conducted. Scanning electron microscopy was used in order to investigate the morphology of final products after modification by guanidine containing co-polymers and iron nanoparticles. In addition, the surface of polymer-silica composites was functionalized by the novel bilirubin-inducible fluorescent protein UnaG. In an aqueous bilirubin solution, the silica particles decorated with the polymer-UnaG have showed bright fluorescence. Synthesis and characterization of these hybrid materials allow developing of new multifunctional nano-sized materials, which will be used for detection and separation of bilirubin, a lipophilic heme catabolite that is a clinical diagnostic for liver function. - Highlights: • Novel magnetic silicas grafted by guanidine containing co-polymers were prepared. • Unag protein was effectively loaded into polymer coated silicas. • The fluorescent properties depend on content of bilirubin.

  14. Influence of composition of functional additives and deformation modes on flow behavior of polymer composite materials

    Science.gov (United States)

    Onoprienko, N. N.; Rahimbaev, Sh M.

    2018-03-01

    The paper presents the results of the influence of composition of functional water-soluble polymers and viscosity of domestic and foreign one-percent water solution polymer on flow parameters of cement and polymer test. It also gives the results of rheogoniometry of Eunice Granit tile adhesive used for large-size plates from natural stone and ceramic granite.

  15. Glass transition temperature of polymer nano-composites with polymer and filler interactions

    Science.gov (United States)

    Hagita, Katsumi; Takano, Hiroshi; Doi, Masao; Morita, Hiroshi

    2012-02-01

    We systematically studied versatile coarse-grained model (bead spring model) to describe filled polymer nano-composites for coarse-grained (Kremer-Grest model) molecular dynamics simulations. This model consists of long polymers, crosslink, and fillers. We used the hollow structure as the filler to describe rigid spherical fillers with small computing costs. Our filler model consists of surface particles of icosahedra fullerene structure C320 and a repulsive force from the center of the filler is applied to the surface particles in order to make a sphere and rigid. The filler's diameter is 12 times of beads of the polymers. As the first test of our model, we study temperature dependence of volumes of periodic boundary conditions under constant pressures through NPT constant Andersen algorithm. It is found that Glass transition temperature (Tg) decrease with increasing filler's volume fraction for the case of repulsive interaction between polymer and fillers and Tg weakly increase for attractive interaction.

  16. Surface modification of polyacrylonitrile co-polymer membranes using pulsed direct current nitrogen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Dipankar; Neogi, Sudarsan; De, Sirshendu, E-mail: sde@che.iitkgp.ernet.in

    2015-12-31

    Low temperature plasma treatment using pulsed direct current discharge of nitrogen gas was employed to enhance hydrophilicity of the polyacrylonitrile co-polymer membranes. The membranes were characterized in terms of morphology, structure, hydrophilicity, and membrane performance. Properties and functional groups on the surface of polyacrylonitrile co-polymer membranes were investigated by contact angle, scanning electron microscopy, Fourier transform infrared and X-ray photoelectron spectroscopy. Effects of plasma conditions, namely, pulsed voltage, duty cycle and treatment time on increase in membrane hydrophilicity were studied. Permeability of treated membrane was increased by 47% and it was retained up to 70 days. Surface etching due to plasma treatment was confirmed by weight loss of the treated membranes. Due to surface etching, average pore size increased and rejection of 200 kDa polyethylene glycol decreased to about 70% for the treated membrane. Oxygen and nitrogen functional groups were responsible for surface hydrophilicity. - Highlights: • Surface modification of polyacrylonitrile co-polymer membranes by pulsed direct current nitrogen plasma • Hydrophilic functional groups incorporated on the membrane surface • Significant enhancement of the permeability and wettability of the membranes • Water contact angle increased with storage time and finally stabilized.

  17. Surface modification of polyacrylonitrile co-polymer membranes using pulsed direct current nitrogen plasma

    International Nuclear Information System (INIS)

    Pal, Dipankar; Neogi, Sudarsan; De, Sirshendu

    2015-01-01

    Low temperature plasma treatment using pulsed direct current discharge of nitrogen gas was employed to enhance hydrophilicity of the polyacrylonitrile co-polymer membranes. The membranes were characterized in terms of morphology, structure, hydrophilicity, and membrane performance. Properties and functional groups on the surface of polyacrylonitrile co-polymer membranes were investigated by contact angle, scanning electron microscopy, Fourier transform infrared and X-ray photoelectron spectroscopy. Effects of plasma conditions, namely, pulsed voltage, duty cycle and treatment time on increase in membrane hydrophilicity were studied. Permeability of treated membrane was increased by 47% and it was retained up to 70 days. Surface etching due to plasma treatment was confirmed by weight loss of the treated membranes. Due to surface etching, average pore size increased and rejection of 200 kDa polyethylene glycol decreased to about 70% for the treated membrane. Oxygen and nitrogen functional groups were responsible for surface hydrophilicity. - Highlights: • Surface modification of polyacrylonitrile co-polymer membranes by pulsed direct current nitrogen plasma • Hydrophilic functional groups incorporated on the membrane surface • Significant enhancement of the permeability and wettability of the membranes • Water contact angle increased with storage time and finally stabilized.

  18. Layer-by-Layer technique employed to construct multitask interfaces in polymer composites

    Directory of Open Access Journals (Sweden)

    Luísa Sá Vitorino

    Full Text Available Abstract The properties of glass fiber-reinforced polymer composites are closely related to the fiber-matrix interface. Interfacial treatments to improve mechanical properties are usually limited to enhance interfacial adhesion. In this work, Layer-by-Layer (LbL technique was introduced to build a novel interface in polymer composites. Different numbers of bilayers of poly(diallyldimethylammonium chloride and poly(sodium 4-styrenesulfonate with carbon nanotubes were deposited through LbL on the surface of woven glass fibers (GFs. Polypropylene composites containing the modified GFs were prepared by compression molding. Thermogravimetric analysis, scanning electron microscopy and Raman spectroscopy proved that multilayers of polymers with carbon nanotubes could be deposited on GFs surface. Mechanical tests on composites with modified GFs revealed an increase in Flexural Modulus and toughness. The overall results attested that the LbL technique can be used to design interfaces with different compositions to perform diverse tasks, such as to improve the stiffness of composites and to encapsulate active nanocomponents.

  19. Surface DBD for deposition of the PEO-like plasma polymers

    Czech Academy of Sciences Publication Activity Database

    Gordeev, Ivan; Šimek, Milan; Prukner, Václav; Choukourov, A.; Biederman, H.

    2012-01-01

    Roč. 9, č. 1 (2012), s. 83-89 ISSN 1612-8850 R&D Projects: GA ČR(CZ) GD104/09/H080 Institutional research plan: CEZ:AV0Z20430508 Keywords : AC barrier discharges * surface discharges * plasma polymers * poly(ethylene oxide) (PEO) * UV-vis spectroscopy Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.730, year: 2012 http://onlinelibrary.wiley.com/doi/10.1002/ppap.201100051/pdf

  20. Nanoclay/Polymer Composite Powders for Use in Laser Sintering Applications: Effects of Nanoclay Plasma Treatment

    Science.gov (United States)

    Almansoori, Alaa; Majewski, Candice; Rodenburg, Cornelia

    2017-11-01

    Plasma-etched nanoclay-reinforced Polyamide 12 (PA12) powder is prepared with its intended use in selective laser sintering (LS) applications. To replicate the LS process we present a downward heat sintering (DHS) process, carried out in a hot press, to fabricate tensile test specimens from the composite powders. The DHS parameters are optimized through hot stage microscopy, which reveal that the etched clay (EC)-based PA12 (EC/PA12) nanocomposite powder melts at a temperature 2°C higher than that of neat PA12, and 1-3°C lower than that of the nonetched clay-based nanocompsite (NEC/PA12 composite). We show that these temperature differences are critical to successful LS. The distribution of EC and NEC onto PA12 is investigated by scanning electron microscopy (SEM). SEM images show clearly that the plasma treatment prevents the micron-scale aggregation of the nanoclay, resulting in an improved elastic modulus of EC/PA12 when compared with neat PA12 and NEC/PA12. Moreover, the reduction in elongation at break for EC/PA12 is less pronounced than for NEC/PA12.

  1. Development of radiation processes wood-polymer composites based on tropical hardwoods

    International Nuclear Information System (INIS)

    Iya, V.K.; Majali, A.B.

    1978-01-01

    The wood-polymer composites based on tropical hardwoods were prepared with three monomer systems. Use of chlorinated paraffin oil as an additive imparted fire resistance to the composites and also brought down the gamma dose requirement for total polymerisation. A number of tropical hardwoods can be upgraded by radiation curing, but for cost optimisation, hardwoods with high improvement per unit polymer should be selected. (author)

  2. Process for the preparation of a vinylidene chloride polymer composite

    NARCIS (Netherlands)

    2013-01-01

    Process for the preparation of a vinylidene chloride polymer composite comprising a solid particulate encapsulated in the vinylidene chloride polymer. The process comprises providing a dispersion of a solid particulate material in a liquid phase, said dispersion comprising a RAFT/MADIX agent;

  3. Development of Novel Nano Polymer Composite Material for Solar Energy Conversion

    International Nuclear Information System (INIS)

    Sheha, E.; Elrasasi, T.Y.; El mansy, M.K.; Abdallah, B.

    2014-01-01

    PVA: Co 5 (OH) 8 (NO 3 ) 2 •2H 2 O polymer composite has been produced by casting of aqueous solution of mixed composite component. The nano polymer composites were characterized using structure techniques; XRD, SEM, FT-IR and TGA. The results indicated the formation composite without PVA degree of crystallinity variation. The measurements of electrical conductivity for the composites illustrated domination of ion conduction with activation energy (0.65-0.90) eV. The optical absorption illustrated an absorption peak around (530-540) nm which suggest electronic direct transition via energy gap width (1.90-2.16) eV. The electrochemical illustrated electrochemical band gap (1.97-3.26) eV

  4. Study of microporous PVA/PVC composite polymer membrane and it application to MnO2 capacitors

    International Nuclear Information System (INIS)

    Yang, C.-C.; Wu, G.M.

    2009-01-01

    A microporous poly(vinyl alcohol)/poly(vinyl chloride) (PVA/PVC) composite polymer membrane was successfully synthesized by a solution casting method and a preferential dissolution method. The characteristic properties of PVA/PVC composite polymer membranes were systematically studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), micro-Raman spectroscopy and AC impedance spectroscopy. The PVA/PVC composite polymer membrane shows excellent thermal property, dimensional stability, and the ionic conductivity; it is due to the addition of secondary PVC polymer fillers. The MnO 2 capacitors with the PVA/PVC composite polymer membrane with 1 M Na 2 SO 4 was assembled and examined. It was found that the MnO 2 capacitor based on a microporous PVA/5 wt.%PVC composite polymer electrolyte membrane exhibited the maximum specific capacitance of 238 F g -1 and the current efficiency of 99% at 25 mV s -1 after 1000 cycle test. The result demonstrates that the novel microporous PVA/PVC composite polymer membrane is a potential candidate for use on the capacitors

  5. Analytical Modeling of the High Strain Rate Deformation of Polymer Matrix Composites

    Science.gov (United States)

    Goldberg, Robert K.; Roberts, Gary D.; Gilat, Amos

    2003-01-01

    The results presented here are part of an ongoing research program to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to high strain rate impact loads. State variable constitutive equations originally developed for metals have been modified in order to model the nonlinear, strain rate dependent deformation of polymeric matrix materials. To account for the effects of hydrostatic stresses, which are significant in polymers, the classical 5 plasticity theory definitions of effective stress and effective plastic strain are modified by applying variations of the Drucker-Prager yield criterion. To verify the revised formulation, the shear and tensile deformation of a representative toughened epoxy is analyzed across a wide range of strain rates (from quasi-static to high strain rates) and the results are compared to experimentally obtained values. For the analyzed polymers, both the tensile and shear stress-strain curves computed using the analytical model correlate well with values obtained through experimental tests. The polymer constitutive equations are implemented within a strength of materials based micromechanics method to predict the nonlinear, strain rate dependent deformation of polymer matrix composites. In the micromechanics, the unit cell is divided up into a number of independently analyzed slices, and laminate theory is then applied to obtain the effective deformation of the unit cell. The composite mechanics are verified by analyzing the deformation of a representative polymer matrix composite (composed using the representative polymer analyzed for the correlation of the polymer constitutive equations) for several fiber orientation angles across a variety of strain rates. The computed values compare favorably to experimentally obtained results.

  6. Bio composites from polypropylene/ clay/eva polymers and kenaf natural fiber

    International Nuclear Information System (INIS)

    Siti Hasnah Kamarudin; Khalina Abdan; Bernard Maringgal; Wan Mohd Zin Wan Yunus

    2009-01-01

    Full text: There is an increasing need to investigate more environmental friendly, sustainable materials to replace existing materials as industry attempts to lessen dependence on petroleum based fuels and products. The natural fiber composites offer specific properties comparable to those of conventional fiber composites. In this experiment, mixing process of polymer/nano clay composites from polypropylene, organo clay and ethylene vinyl acetate were prepared using a Brabender twin screw compounder. The composites sheets were then laminated with kenaf fibers and subjected to hot and cold press machine to form a bio composite. The mechanical properties such as flexural and impact strength are compare favourably between polymers reinforced kenaf fiber and polymers without kenaf fiber. In addition, various analysis techniques were used to characterize the dispersion and the properties of nano composites, using scanning electron micrograph (SEM), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). These results suggest that kenaf fibers are a viable alternative to inorganic mineral-based reinforcing fibers as long as the right processing conditions are used and they are used in applications where the higher water absorption is not critical. (author)

  7. Adaptive neuro-fuzzy control of ionic polymer metal composite actuators

    International Nuclear Information System (INIS)

    Thinh, Nguyen Truong; Yang, Young-Soo; Oh, Il-Kwon

    2009-01-01

    An adaptive neuro-fuzzy controller was newly designed to overcome the degradation of the actuation performance of ionic polymer metal composite actuators that show highly nonlinear responses such as a straightening-back problem under a step excitation. An adaptive control algorithm with the merits of fuzzy logic and neural networks was applied for controlling the tip displacement of the ionic polymer metal composite actuators. The reference and actual displacements and the change of the error with the electrical inputs were recorded to generate the training data. These data were used for training the adaptive neuro-fuzzy controller to find the membership functions in the fuzzy control algorithm. Software simulation and real-time experiments were conducted by using the Simulink and dSPACE environments. Present results show that the current adaptive neuro-fuzzy controller can be successfully applied to the reliable control of the ionic polymer metal composite actuator for which the performance degrades under long-time actuation

  8. Absorption-desorption of drugs in porous polymers obtained by plasma

    International Nuclear Information System (INIS)

    Gonzalez T, M.

    2016-01-01

    A study about drug absorption and release in plasma polymers is presented in this work, these materials can be used as implants in the human body. In these applications the polymer should be biocompatible and/or biodegradable. Poly pyrroles and poly allylamine s synthesized by plasma have amine groups in their structure which makes them biocompatible with potential as drug carriers. In this function, the polymers were lyophilized to induce pores where the drug can be hosted. Drug-polymer mixtures with 1:10 ratio were prepared. The mixture morphology was studied by Scanning Electron Microscopy while their chemical structure was studied by Infrared Spectroscopy and X-ray Photoelectron Spectroscopy. Two models were studied to assess drug release, dynamic and static, in two solutions: water and Krebs Ringer (Kr) using the UV characteristic absorbance of each drug. In the static model release, 5 mg of the mixture were placed in 10 ml of solution. In the dynamic model, the release was performed with 5 mg of the mixture in 10 ml of solution, 1.5 ml of release medium was removed for UV analysis and replaced with an equal volume of fresh medium. The results indicate that the morphology of the polymers was modified with the lyophilization, in Poly pyrrole pores were induced with diameter in the range of 0.7 to 19 μm, while in Polyallyl amine the surface changed from smooth to rough. Drugs were absorbed in Poly pyrrole by filling the pores first and then coating the polymer with a drug layer. In Poly allylamine the drugs adhered to the polymer surface. Analyzing the atomic orbitals of the mixtures, it was found that the drugs interacted with the polymer. The most affected orbital was S2p, whose separation between 1/2 and 3/2 sub orbitals increased from 0.9 eV in Dapsone and Heparin to 4 eV in the mixtures, where the oxidation state changed from valence 6 to 6 and 2 in the mixtures. This suggests physicochemical interaction between drug and polymer. The drugs were released

  9. Metal doped fluorocarbon polymer films prepared by plasma polymerization using an RF planar magnetron target

    International Nuclear Information System (INIS)

    Biederman, H.; Holland, L.

    1983-01-01

    Fluorocarbon films have been prepared by plasma polymerization of CF 4 using an RF planar magnetron with an aluminium target. More than one order of magnitude higher deposition rate has been achieved in comparison with an r.f. diode system operated under similar conditions of monomer pressure and flow rate and power input. A glow discharge in a CF 4 [25%]-argon[75%] mixture was used to incorporate aluminium from a target electrode into the polymer films. The foregoing mixture and another based on CF 4 [87%]-argon[13%] were used in the RF discharge with a copper target. Some experiments with a gold target and pure CF 4 as the inlet gas were also made. The film structure was examined by SEM and TEM and characteristic micrographs are presented here. The composition of the films was estimated from an EAS study. The sheet resistivity of the metal/polymer film complexes was determined. (orig.)

  10. Metal doped fluorocarbon polymer films prepared by plasma polymerization using an RF planar magnetron target

    Energy Technology Data Exchange (ETDEWEB)

    Biederman, H.; Holland, L. (Sussex Univ., Brighton (UK). Lab. for Plasma Materials Processing)

    1983-07-01

    Fluorocarbon films have been prepared by plasma polymerization of CF/sub 4/ using an RF planar magnetron with an aluminium target. More than one order of magnitude higher deposition rate has been achieved in comparison with an R.F. diode system operated under similar conditions of monomer pressure and flow rate and power input. A glow discharge in a CF/sub 4/(25%)-argon(75%) mixture was used to incorporate aluminium from a target electrode into the polymer films. The foregoing mixture and another based on CF/sub 4/(87%)-argon(13%) were used in the RF discharge with a copper target. Some experiments with a gold target and pure CF/sub 4/ as the inlet gas were also made. The film structure was examined by SEM and TEM and characteristic micrographs are presented here. The composition of the films was estimated from an EAS study. The sheet resistivity of the metal/polymer film complexes was determined.

  11. The radiation chemistry of polymer composites

    International Nuclear Information System (INIS)

    Dole, M.

    1991-01-01

    With the use of plastics in the construction of space satellites which may be exposed in geosynchronous orbit to 100 MGy (10,000 Mrad) of high-energy radiation in 30 years of use, the effect of these radiations on the polymer becomes of practical importance. To understand the effects we consider first various radiation-resistant groups that are incorporated into the polymer and their relative effectiveness in reducing molecular scissions due to the radiation. The location of such groups in the polymer is also discussed. Next the chemical structures of a number of resins such as epoxies, polyimides, etc. are described followed by a detailed account of methods of improving the radiation resistance of plastics by the incorporation of carbon or glass fibers. Finally, the role of oxygen in causing chain scissions and other effects during irradiation which reduce the mechanical strength of the plastics and the fiber resin composites are also considered. (author)

  12. Experimental study on the thermal and mechanical properties of MWCNT/polymer and Cu/polymer composites

    International Nuclear Information System (INIS)

    Park, Hyeon Jeong; Badakhsh, Arash; Im, Ik Tae; Kim, Min-Soo; Park, Chan Woo

    2016-01-01

    Highlights: • MWCNTs and Cu were ball milled with a variation of milling times. • Thermal conductivity and tensile strength of the PMCs were measured. • Cu reinforced HDPE showed thermal conductivity improvement ratios of up to 2.7. • MWCNT/HDPE showed higher thermal conductivity than MWCNT/PP. • MWCNT/HDPE was found to be mechanically stronger than Cu/HDPE. - Abstract: In this study, the influence of the different conditions of powder treatment on the thermal conductivity of nanocomposites was investigated. Carbon and metal-based polymer composite materials were produced and their thermal and mechanical characteristics were studied. For the fabrication of the composites, the study has explored and proposed the use of MWCNT and Cu as fillers in a polymer matrix. The polymer matrices were thermoplastic resins-polypropylene (PP) and high density polyethylene (HDPE). Ball milling was used as the mechanical method in order to enhance the dispersion of MWCNT and the transformation of the Cu particles. The ball milled MWCNT and Cu powder were examined by field emission scanning electron microscopy (FE-SEM). The thermal conductivity values of the resultant nanocomposites were determined by laser flash method (LFM), indicating the highest thermal conductivity is possessed by the polymer composite reinforced by the highest amount of 60 min-treated powder in every case studied. Comparing the obtained values for thermal conductivity with that of pure polymer the maximum improvements were found to be 105.1%, 79% and 271.5% for MWCNT/PP, MWCNT/HDPE and Cu/HDPE, respectively. Furthermore, experimental results were validated using the Agari-Uno and Nielsen-Lewis thermal conductivity models considering the shape of the filler. The results of deviation were found to be within the maximum 5% of the exact value implying a fine agreement between experimental and modeling data. Also, the tensile strength test was performed to evaluate the tensile strength of thermally

  13. Micro- and Nanoprocessing of Polymers Using a Laser Plasma Extreme Ultraviolet Source

    International Nuclear Information System (INIS)

    Bartnik, A.; Fiedorowicz, H.; Jarocki, R.; Kostecki, J.; Rakowski, R.; Szczurek, A.; Szczurek, M.

    2010-01-01

    Laser plasma with temperature of the order of tens eV can be an efficient source of extreme ultraviolet (EUV). The radiation can be focused using different kind of optics, giving sufficient fluence for some applications. In this work we present results of investigations concerning applications of a laser plasma EUV source based on a double stream gas puff target. The source was equipped with two different grazing incidence collectors. One of them was a multifoil collector, the second one was an axisymmetrical ellipsoidal collector. The multifoil mirror was used mainly in experiments concerning micromachining of organic polymers by direct photo-etching. The experiments were performed for different polymers that were irradiated through a fine metal grid as a contact mask. The smallest element of a pattern structure obtained in this way was 5 μm, while the structure height was 50 μm giving an aspect ratio about 10. The laser-plasma EUV source equipped with the axisymmetrical ellipsoidal collector was used for surface modification of organic polymers and inorganic solids. The surface morphology after irradiation was investigated. Different forms of micro- and nanostructures were obtained depending on material and irradiation conditions. (author)

  14. A new type of magnetocaloric composite based on conductive polymer and magnetocaloric compound

    Energy Technology Data Exchange (ETDEWEB)

    Imamura, W., E-mail: williamimamura@yahoo.com.br [State University of Maringá (UEM)/Department of Mechanical Engineering (DEM-PEM), 87020-900 Maringá, PR (Brazil); Coelho, A.A. [State University of Campinas (Unicamp)/Department of Applied Physics (DFA-IFGW), 13083-859 Campinas, SP (Brazil); Kupfer, V.L. [State University of Maringá (UEM)/Department of Chemistry (DQI-LMSen), 87020-900 Maringá, PR (Brazil); Carvalho, A.M.G. [Brazilian Synchrotron Light Laboratory (LNLS)/Brazilian Center for Research in Energy and Materials (CNPEM), C. P. 6192, 13083-970 Campinas, SP (Brazil); Zago, J.G. [State University of Maringá (UEM)/Department of Mechanical Engineering (DEM-PEM), 87020-900 Maringá, PR (Brazil); Rinaldi, A.W. [State University of Maringá (UEM)/Department of Chemistry (DQI-LMSen), 87020-900 Maringá, PR (Brazil); Favaro, S.L.; Alves, C.S. [State University of Maringá (UEM)/Department of Mechanical Engineering (DEM-PEM), 87020-900 Maringá, PR (Brazil)

    2017-03-01

    We introduce a processing route of the first magnetocaloric composite with conductive polymer – wherein the magnetocaloric reinforcement is a compound Gd{sub 5.09}Ge{sub 2.03}Si{sub 1.88} and the ductile matrix is a conductive polymer polyaniline doped by camphorsulfonic acid (PAni-CSA). This new type of composite combines mechanical, electrical and magnetocaloric properties that can be applied in thermomagnetic machines. - Highlights: • We developed a new type of magnetocaloric composite: PAni-CSA/Gd5.09Ge2.03Si1.88. • We presented a processing route which use a conductive polymer instead of epoxy resins or thermoplastic polymers. • We varied the concentration of PAni-CSA (numerical type) and sintering (categorical type). • We analyzed the matrix (PAni-CSA), the magnetocaloric reinforcement (Gd5.09Ge2.03Si1.88) and the composites. • We presented and discussed mechanical, electrical and magnetocaloric properties.

  15. A new type of magnetocaloric composite based on conductive polymer and magnetocaloric compound

    International Nuclear Information System (INIS)

    Imamura, W.; Coelho, A.A.; Kupfer, V.L.; Carvalho, A.M.G.; Zago, J.G.; Rinaldi, A.W.; Favaro, S.L.; Alves, C.S.

    2017-01-01

    We introduce a processing route of the first magnetocaloric composite with conductive polymer – wherein the magnetocaloric reinforcement is a compound Gd_5_._0_9Ge_2_._0_3Si_1_._8_8 and the ductile matrix is a conductive polymer polyaniline doped by camphorsulfonic acid (PAni-CSA). This new type of composite combines mechanical, electrical and magnetocaloric properties that can be applied in thermomagnetic machines. - Highlights: • We developed a new type of magnetocaloric composite: PAni-CSA/Gd5.09Ge2.03Si1.88. • We presented a processing route which use a conductive polymer instead of epoxy resins or thermoplastic polymers. • We varied the concentration of PAni-CSA (numerical type) and sintering (categorical type). • We analyzed the matrix (PAni-CSA), the magnetocaloric reinforcement (Gd5.09Ge2.03Si1.88) and the composites. • We presented and discussed mechanical, electrical and magnetocaloric properties.

  16. Sensing of environmental pollutant by conductive composite from prepared from hyperbranched polymer-grafted carbon black and crystalline polymer

    International Nuclear Information System (INIS)

    Taniguchi, Y.; Chen, J.; Ogawa, M.; Yokoyama, K.; Shimizu, H.; Tsubokawa, N.; Maekawa, Y.; Yoshida, M.

    2002-01-01

    Complete text of publication follows. The hyperbranched (HB) polymer-grafted (PG) carbon blacks (CB) have the possibility of utilizing as a support of catalyst and enzyme, and a curing agent of epoxy resin, because they have much terminal amino or hydroxyl groups. The postgrafting of crystalline polymer onto HB PG CB and the sensing of environmental pollutant by the conductive composite prepared from the polymer-postgrafted CB was discussed. The grafting of poly(amidoamide) onto CB surface was achieved by repeating either Michael addition of methyl acrylate to amino group on the surface or the amidation of the resulting terminal methyl ester group with ethylene diamine. HB polyester onto CB surface was grafted by stepwise growth of 2,2-bis(hydroxymethyl)propionic acid (bis-MPA) from surface carboxyl and hydroxyl groups on CB as a core in the presence of p-toluenesulfonic acid (p-TSA). The one-pot grafting of HB polyester onto CB as core was also achieved by the polycondensation of bis-MPA in the presence of p-TSA. Postgrafting of crystalline polymer onto HB polymer-grafted CB was achieved by the reaction of terminal amino or hydroxyl groups of grafted chain with COCl-terminated crystalline polymer. The electric resistance of the composite prepared from crystalline polymer-postgrafted CB was found to increase drastically in hexane, containing environmental pollutant, such as chloroform and trichloroethane, and returned immediately to the initial resistance when it was transferred into pure hexane. Based on the above results, it is concluded that the composite can be used as a novel sensor for environmental pollutant in solution

  17. Creep of plain weave polymer matrix composites

    Science.gov (United States)

    Gupta, Abhishek

    Polymer matrix composites are increasingly used in various industrial sectors to reduce structural weight and improve performance. Woven (also known as textile) composites are one class of polymer matrix composites with increasing market share mostly due to their lightweight, their flexibility to form into desired shape, their mechanical properties and toughness. Due to the viscoelasticity of the polymer matrix, time-dependent degradation in modulus (creep) and strength (creep rupture) are two of the major mechanical properties required by engineers to design a structure reliably when using these materials. Unfortunately, creep and creep rupture of woven composites have received little attention by the research community and thus, there is a dire need to generate additional knowledge and prediction models, given the increasing market share of woven composites in load bearing structural applications. Currently, available creep models are limited in scope and have not been validated for any loading orientation and time period beyond the experimental time window. In this thesis, an analytical creep model, namely the Modified Equivalent Laminate Model (MELM), was developed to predict tensile creep of plain weave composites for any orientation of the load with respect to the orientation of the fill and warp fibers, using creep of unidirectional composites. The ability of the model to predict creep for any orientation of the load is a "first" in this area. The model was validated using an extensive experimental involving the tensile creep of plain weave composites under varying loading orientation and service conditions. Plain weave epoxy (F263)/ carbon fiber (T300) composite, currently used in aerospace applications, was procured as fabrics from Hexcel Corporation. Creep tests were conducted under two loading conditions: on-axis loading (0°) and off-axis loading (45°). Constant load creep, in the temperature range of 80-240°C and stress range of 1-70% UTS of the

  18. The Usage Of Nutshell In The Production of Polypropylene Based on Polymer Composite Panels

    Directory of Open Access Journals (Sweden)

    Selçuk Akbaş

    2013-04-01

    Full Text Available Natural fibers have been commonly utilized to reinforced materials for many years. Recently due to advantages of natural fibers such as low cost, high physical and mechanical resistance are produced plastic-composite materials by mixing various proportions. In addition, plastic composites are used natural fibers include agricultural wastes (wheat straw, rice straw, hemp fiber, shells of various dry fruits, etc.. In this study, polymer composites were manufactured using waste nutshell flour as filler and polypropylene (PP as polymer matrix. The nutshell-PP composites were manufactured via extrusion and compression methods. The final product tested to determine their tensile, flexural, impact strength properties as well as some physical features such as thickness swelling and water absorptions. The best results were obtained composites containing 30% nutshell flour. In addition, composites which were produced nutshell provided the values of ASTM D6662 standard. The data collected in our country which waste a large portion of nutshell allows for the evaluation of the production polymer composites. The incorporation of nutshell flour feasible to produce plastic composites when appropriate formulations were used. As a result hazelnut shell which was considered agricultural waste can be utilized in polymer composite production.

  19. Cross-linked Composite Gel Polymer Electrolyte using Mesoporous Methacrylate-Functionalized SiO2 Nanoparticles for Lithium-Ion Polymer Batteries

    Science.gov (United States)

    Shin, Won-Kyung; Cho, Jinhyun; Kannan, Aravindaraj G.; Lee, Yoon-Sung; Kim, Dong-Won

    2016-01-01

    Liquid electrolytes composed of lithium salt in a mixture of organic solvents have been widely used for lithium-ion batteries. However, the high flammability of the organic solvents can lead to thermal runaway and explosions if the system is accidentally subjected to a short circuit or experiences local overheating. In this work, a cross-linked composite gel polymer electrolyte was prepared and applied to lithium-ion polymer cells as a safer and more reliable electrolyte. Mesoporous SiO2 nanoparticles containing reactive methacrylate groups as cross-linking sites were synthesized and dispersed into the fibrous polyacrylonitrile membrane. They directly reacted with gel electrolyte precursors containing tri(ethylene glycol) diacrylate, resulting in the formation of a cross-linked composite gel polymer electrolyte with high ionic conductivity and favorable interfacial characteristics. The mesoporous SiO2 particles also served as HF scavengers to reduce the HF content in the electrolyte at high temperature. As a result, the cycling performance of the lithium-ion polymer cells with cross-linked composite gel polymer electrolytes employing methacrylate-functionalized mesoporous SiO2 nanoparticles was remarkably improved at elevated temperatures. PMID:27189842

  20. All-solid state flexible supercapacitors based on graphene/polymer composites

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Won; Choi, Bong Gill, E-mail: bgchoi@kangwon.ac.kr

    2015-06-01

    Recent advances in lightweight, flexible, and wearable electronic equipment has led to advancements in the development of sufficiently compact and flexible energy storage. A challenge remains to integrate the storage elements as closely as possible within a fully flexible device. Here, we demonstrate the fabrication of all-solid state flexible supercapacitors with the integration of two electrodes that consist of graphene/polymer composites. Robust conductive free-standing thin graphene/polymer composite electrodes were prepared through a simple “physical grinding” process. As-prepared composite electrodes store energy up to a reversible gravimetric capacitance of 90.6 F/g, at a constant current density of 0.5 A/g while also delivering long-term durability (90% retention) for excess of five-thousands of cycles. Notably, the enhancement of mechanical properties of supercapacitors enables them to maintain their electrochemical performance even when twisted or folded. This straightforward approach to the fabrication of fully flexible supercapacitors provides new design opportunities within wearable electronics and electrochemical applications. - Highlights: • All solid-sate supercapacitors were fabricated using graphene/polymer composite electrodes. • Supercapacitor devices show an excellent mechanical flexibility. • High electrochemical performances were demonstrated.

  1. All-solid state flexible supercapacitors based on graphene/polymer composites

    International Nuclear Information System (INIS)

    Kim, Jung Won; Choi, Bong Gill

    2015-01-01

    Recent advances in lightweight, flexible, and wearable electronic equipment has led to advancements in the development of sufficiently compact and flexible energy storage. A challenge remains to integrate the storage elements as closely as possible within a fully flexible device. Here, we demonstrate the fabrication of all-solid state flexible supercapacitors with the integration of two electrodes that consist of graphene/polymer composites. Robust conductive free-standing thin graphene/polymer composite electrodes were prepared through a simple “physical grinding” process. As-prepared composite electrodes store energy up to a reversible gravimetric capacitance of 90.6 F/g, at a constant current density of 0.5 A/g while also delivering long-term durability (90% retention) for excess of five-thousands of cycles. Notably, the enhancement of mechanical properties of supercapacitors enables them to maintain their electrochemical performance even when twisted or folded. This straightforward approach to the fabrication of fully flexible supercapacitors provides new design opportunities within wearable electronics and electrochemical applications. - Highlights: • All solid-sate supercapacitors were fabricated using graphene/polymer composite electrodes. • Supercapacitor devices show an excellent mechanical flexibility. • High electrochemical performances were demonstrated

  2. Fundamental studies of low velocity impact resistance of graphite fiber reinforced polymer matrix composites

    International Nuclear Information System (INIS)

    Bowles, K.J.

    1985-01-01

    A study was conducted to relate the impact resistance of graphite fiber reinforced composites with matrix properties through gaining an understanding of the basic mechanics involved in the deformation and fracture process, and the effect of the polymer matrix structure on these mechanisms. It was found that the resin matrix structure influences the composite impact resistance in at least two ways. The integration of flexibilizers into the polymer chain structure tends to reduce the T/sub G/ and the mechanical properties of the polymer. The reduction in the mechanical properties of the matrix does not enhance the composite impact resistance because it allows matrix controlled failure to initiate impact damage. Linear polymers, which contain no active groups for cross-linking, do not toughen composites because the fiber-matrix interfacial bond is not of sufficient strength to prevent interfacial failure from occurring. Toughness must be built into the basic polymer backbone and cross-linking structure

  3. Exploring the Effects of Argon Plasma Treatment on Plasmon Frequency and the Chemiresistive Properties of Polymer-Carbon Nanotube Metacomposite

    Directory of Open Access Journals (Sweden)

    Manuel Rivera

    2017-08-01

    Full Text Available Metacomposites, composite materials exhibiting negative permittivity, represent an opportunity to create materials with depressed plasmon frequency without the need to create complex structural geometries. Although many reports exist on the synthesis and characterizations of metacomposites, very few have ventured into exploring possible applications that could take advantage of the unique electrical properties of these materials. In this article, we report on the chemiresistive properties of a polymer-CNT metacomposite and explore how these are affected by Argon plasma treatment.

  4. Properties of Polymer Composites Used in High-Voltage Applications

    Directory of Open Access Journals (Sweden)

    Ilona Pleşa

    2016-04-01

    Full Text Available The present review article represents a comprehensive study on polymer micro/nanocomposites that are used in high-voltage applications. Particular focus is on the structure-property relationship of composite materials used in power engineering, by exploiting fundamental theory as well as numerical/analytical models and the influence of material design on electrical, mechanical and thermal properties. In addition to describing the scientific development of micro/nanocomposites electrical features desired in power engineering, the study is mainly focused on the electrical properties of insulating materials, particularly cross-linked polyethylene (XLPE and epoxy resins, unfilled and filled with different types of filler. Polymer micro/nanocomposites based on XLPE and epoxy resins are usually used as insulating systems for high-voltage applications, such as: cables, generators, motors, cast resin dry-type transformers, etc. Furthermore, this paper includes ample discussions regarding the advantages and disadvantages resulting in the electrical, mechanical and thermal properties by the addition of micro- and nanofillers into the base polymer. The study goals are to determine the impact of filler size, type and distribution of the particles into the polymer matrix on the electrical, mechanical and thermal properties of the polymer micro/nanocomposites compared to the neat polymer and traditionally materials used as insulation systems in high-voltage engineering. Properties such as electrical conductivity, relative permittivity, dielectric losses, partial discharges, erosion resistance, space charge behavior, electric breakdown, tracking and electrical tree resistance, thermal conductivity, tensile strength and modulus, elongation at break of micro- and nanocomposites based on epoxy resin and XLPE are analyzed. Finally, it was concluded that the use of polymer micro/nanocomposites in electrical engineering is very promising and further research work

  5. Manufacturing Technology of Composite Materials—Principles of Modification of Polymer Composite Materials Technology Based on Polytetrafluoroethylene

    Directory of Open Access Journals (Sweden)

    Anton Panda

    2017-03-01

    Full Text Available The results of the investigations into the technological formation of new wear-resistant polymer composites based on polytetrafluoroethylene (PTFE filled with disperse synthetic and natural compounds are presented. The efficiency of using PTFE composites reinforced with carbon fibers depends on many factors, which influence the significant improvement of physicomechanical characteristics. The results of this research allow stating that interfacial and surface phenomena of the polymer–solid interface and composition play a decisive role in PTFE composites properties. Fillers hinder the relative movement of the PTFE molecules past one another and, in this way, reduce creep or deformation of the parts, reducing the wear rate of parts used in dynamic applications as well as the coefficient of thermal expansion. The necessary structural parameters of such polymer composites are provided by regimes of process equipment.

  6. An applied investigation of kenaf-based fiber/polymer composites as potential lightweight materials for automotive components

    Science.gov (United States)

    Du, Yicheng

    Natural fibers have the potential to replace glass fibers in fiber-reinforced composite applications. However, the natural fibers' intrinsic properties cause these issues: (1) the mechanical property variation; (2) moisture uptake by natural fibers and their composites; (3) lack of sound, cost-effective, environment-friendly fiber-matrix compounding processes; (4) incompatibility between natural fibers and polymer matrices; and (5) low heat-resistance of natural fibers and their composites. This dissertation systematically studied the use of kenaf bast fiber bundles, obtained via a mechanical retting method, as a light-weight reinforcement material for fiber-reinforced thermoset polymer composites for automotive applications. Kenaf bast fiber bundle tensile properties were tested, and the effects of locations in the kenaf plant, loading rates, retting methods, and high temperature treatments and their durations on kenaf bast fiber bundle tensile properties were evaluated. A process has been developed for fabricating high fiber loading kenaf bast fiber bundle-reinforced unsaturated polyester composites. The generated composites possessed high elastic moduli and their tensile strengths were close to specification requirements for glass fiber-reinforced sheet molding compounds. Effects of fiber loadings and lengths on resultant composite's tensile properties were evaluated. Fiber loadings were very important for composite tensile modulus. Both fiber loadings and fiber lengths were important for composite tensile strengths. The distributions of composite tensile, flexural and impact strengths were analyzed. The 2-parameter Weibull model was found to be the most appropriate for describing the composite strength distributions and provided the most conservative design values. Kenaf-reinforced unsaturated polyester composites were also proved to be more cost-effective than glass fiber-reinforced SMCs at high fiber loadings. Kenaf bast fiber bundle-reinforced composite

  7. Nanocellulose in Polymer Composites and Biomedical: Research and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yuan [ORNL; Tekinalp, Halil L [ORNL; Peter, William H [ORNL; Eberle, Cliff [ORNL; Naskar, Amit K [ORNL; Ozcan, Soydan [ORNL

    2014-01-01

    Nanocellulose materials are nano-sized cellulose fibers or crystals that are produced by bacteria or derived from plants. These materials exhibit exceptional strength characteristics, light weight, transparency, and excellent biocompatibility. Compared to some other nanomaterials, nanocellulose is renewable and less expensive to produce. As such, a wide range of applications for nanocellulose has been envisioned. Most extensively studied areas include polymer composites and biomedical applications. Cellulose nanofibrils and nanocrystals have been used to reinforce both thermoplastic and thermoset polymers. Given the hydrophilic nature of these materials, the interfacial properties with most polymers are often poor. Various surface modification procedures have thus been adopted to improve the interaction between polymer matrix and cellulose nanofibrils or nanocrystals. In addition, the applications of nanocellulose as biomaterials have been explored including wound dressing, tissue repair, and medical implants. Nanocellulose materials for wound healing and periodontal tissue recovery have become commercially available, demonstrating the great potential of nanocellulose as a new generation of biomaterials. In this review, we highlight the applications of nanocellulose as reinforcing fillers for composites and the effect of surface modification on the mechanical properties as well as the application as biomaterials.

  8. Study of photoconductor polymers synthesized by plasma; Estudio de polimeros fotoconductores sintetizados por plasma

    Energy Technology Data Exchange (ETDEWEB)

    Enriquez P, M.A

    2007-07-01

    In this work the photoconductivity in poly thiophene (PTh), poly pyrrole (PPy) and doped poly pyrrole with iodine (PPy/I) is studied, whose structures depend of the intensity of the electric field applied during the synthesis by plasma. The conjugated organic polymers possess double alternated bonds in its chemical structure that its allow the one movement of {pi} electrons through the polymeric chains. The plasma is produced by means of splendor discharges to 13.5 MHz, resistive coupling, at one pressure that oscillates in the interval from 2 to 3x10{sup -1} mbar, 180 min and powers of 10, 24, 40, {sup 60}, 80 and 100 W. Its were used heteroaromatic polymers like PTh and PPy/I, due to their potential applications in optoelectronics. The influence of the iodine is evaluated as dopant in PPy and it is compared with their similar one without doping in the light absorption/emission processes. The polymers synthesized by plasma can ramify or to intersect due to the energy applied during the synthesis. However, if the polymer intersects, the aromaticity can continue through the polymeric chains. The absorptions obtained by infrared spectroscopy, suggest that the polymer conserves the aromatic structure of the monomer fundamentally with substitutions that indicate inter crossing and partial fragmentation. The structure of most of the polymers spreads to be amorphous because they don't possess any classification. However, the PPy/I and PTh synthesized by this technique present crystalline segments whose intensity diminishes with the power of the discharge. In PTh, the average crystallinity diminishes from 19.8% to 9.9%, and in PPy/I of 15.9% to 13.3% in the interval of 10 to 100 W of power. In this work, however, its were crystalline arrangements in all the studied powers. The classification of the polymeric structure favors the formation of trajectories of transfer of electric loads among the chains, that which influences in the global electric conductivity of the

  9. Polymer-Cement Composites Containing Waste Perlite Powder

    Directory of Open Access Journals (Sweden)

    Paweł Łukowski

    2016-10-01

    Full Text Available Polymer-cement composites (PCCs are materials in which the polymer and mineral binder create an interpenetrating network and co-operate, significantly improving the performance of the material. On the other hand, the need for the utilization of waste materials is a demand of sustainable construction. Various mineral powders, such as fly ash or blast-furnace slag, are successfully used for the production of cement and concrete. This paper deals with the use of perlite powder, which is a burdensome waste from the process of thermal expansion of the raw perlite, as a component of PCCs. The results of the testing of the mechanical properties of the composite and some microscopic observations are presented, indicating that there is a possibility to rationally and efficiently utilize waste perlite powder as a component of the PCC. This would lead to creating a new type of building material that successfully meets the requirements of sustainable construction.

  10. Towards understanding hydrophobic recovery of plasma treated polymers: Storing in high polarity liquids suppresses hydrophobic recovery

    International Nuclear Information System (INIS)

    Bormashenko, Edward; Chaniel, Gilad; Grynyov, Roman

    2013-01-01

    The phenomenon of hydrophobic recovery was studied for cold air plasma treated polyethylene films. Plasma-treated polymer films were immersed into liquids with very different polarities such as ethanol, acetone, carbon tetrachloride, benzene and carbon disulphide. Hydrophobic recovery was studied by measurement of contact angles. Immersion into high polarity liquids slows markedly the hydrophobic recovery. We relate this slowing to dipole–dipole interaction of polar groups of the polymer with those of the liquids. This kind of interaction becomes decisive when polar groups of polymer chains are at least partially spatially fixed.

  11. Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires

    Science.gov (United States)

    Liu, Wei; Lee, Seok Woo; Lin, Dingchang; Shi, Feifei; Wang, Shuang; Sendek, Austin D.; Cui, Yi

    2017-04-01

    In contrast to conventional organic liquid electrolytes that have leakage, flammability and chemical stability issues, solid electrolytes are widely considered as a promising candidate for the development of next-generation safe lithium-ion batteries. In solid polymer electrolytes that contain polymers and lithium salts, inorganic nanoparticles are often used as fillers to improve electrochemical performance, structure stability, and mechanical strength. However, such composite polymer electrolytes generally have low ionic conductivity. Here we report that a composite polymer electrolyte with well-aligned inorganic Li+-conductive nanowires exhibits an ionic conductivity of 6.05 × 10-5 S cm-1 at 30 ∘C, which is one order of magnitude higher than previous polymer electrolytes with randomly aligned nanowires. The large conductivity enhancement is ascribed to a fast ion-conducting pathway without crossing junctions on the surfaces of the aligned nanowires. Moreover, the long-term structural stability of the polymer electrolyte is also improved by the use of nanowires.

  12. Gamma and electron beam curing of polymers and composites

    International Nuclear Information System (INIS)

    Saunders, C.B.; Dickson, L.W.; Singh, A.

    1987-01-01

    Radiation polymerization has helped us understand polymer chemistry, and is also playing an increasing role in the field of practical applications. Radiation curing has a present market share of about 5% of the total market for curing of polymers and composites and the annual growth rate of the radiation curing market is ≥20% per year. Advantages of radiation curing over thermal or chemical curing methods include: improved control of the curing rate, reduced curing times, curing at ambient temperatures, curing without the need for chemical initiators, and complete (100%) curing with minimal toxic chemical emissions. Radiation treatment may also be used to effect crosslinking and grafting of polymer and composite materials. The major advantage in these cases is the ability to process products in their final shape. Cable insulation, automotive and aircraft components, and improved construction materials are some of the current and near-future industrial applications of radiation curing and crosslinking. 19 refs

  13. Decoration of multi-walled carbon nanotubes by polymer wrapping and its application in MWCNT/polyethylene composites.

    Science.gov (United States)

    Hsiao, An-En; Tsai, Shu-Ya; Hsu, Mei-Wen; Chang, Shinn-Jen

    2012-05-06

    We dispersed the non-covalent functionalization of multi-walled carbon nanotubes (CNTs) with a polymer dispersant and obtained a powder of polymer-wrapped CNTs. The UV-vis absorption spectrum was used to investigate the optimal weight ratio of the CNTs and polymer dispersant. The powder of polymer-wrapped CNTs had improved the drawbacks of CNTs of being lightweight and difficult to process, and it can re-disperse in a solvent. Then, we blended the polymer-wrapped CNTs and polyethylene (PE) by melt-mixing and produced a conductive masterbatch and CNT/PE composites. The polymer-wrapped CNTs showed lower surface resistivity in composites than the raw CNTs. The scanning electron microscopy images also showed that the polymer-wrapped CNTs can disperse well in composites than the raw CNTs.

  14. Plasma technology of the surface polymer activation

    International Nuclear Information System (INIS)

    Dutra, Jorge C.N.; Mello, Sandra C.; Massi, Marcos; Otani, Choyu; Maciel, Homero S.; Bittencourt, Edison

    2005-01-01

    A number of polymers, especially rubbers, require surface treatment to achieve a satisfactory level of adhesion. The surface of EPDM rubber vulcanized is high hydrophobicity and is not suited for a number of potential applications, in particular, for adhering to the polyurethane liner of solid rocket propellants. In this case, plasma treatment can be a very attractive process because it can efficiently increase the surface energy attributed to surface oxidation with the introduction of polar groups 1, 2. In order to investigate the influence of the parameters on the modifications of the treated surface samples of EPDM rubber by plasma generated by gas oxygen and argon, the water and methylene iodide contact angles were measured at room temperature with an image analyzing using the sessile drop technique 3 - 6 . (author)

  15. Fluorescent Pressure Response of Protein-Nanocluster Polymer Composites

    Science.gov (United States)

    2016-05-01

    composites as pressure sensitive indicators of brain damage. The PNC composites are made up of protein coated gold nanoclusters and a styrene-ethylene...enhancement of the BSA- protected gold nanoclusters and the corresponding conformational changes of protein, J Phys Chem C. 2013;117:639–647...public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT This research focuses on the uses of polymer gold nanocluster (PNC

  16. Multiscale Polymer Composites: A Review of the Interlaminar Fracture Toughness Improvement

    Directory of Open Access Journals (Sweden)

    Vishwesh Dikshit

    2017-10-01

    Full Text Available Composite materials are prone to delamination as they are weaker in the thickness direction. Carbon nanotubes (CNTs are introduced as a multiscale reinforcement into the fiber reinforced polymer composites to suppress the delamination phenomenon. This review paper presents the detailed progress made by the scientific and research community to-date in improving the Mode I and Mode II interlaminar fracture toughness (ILFT by various methodologies including the effect of multiscale reinforcement. Methods of measuring the Mode I and Mode II fracture toughness of the composites along with the solutions to improve them are presented. The use of different methodologies and approaches along with their performance in enhancing the fracture toughness of the composites is summarized. The current state of polymer-fiber-nanotube composites and their future perspective are also deliberated.

  17. Polymer sol-gel composite inverse opal structures.

    Science.gov (United States)

    Zhang, Xiaoran; Blanchard, G J

    2015-03-25

    We report on the formation of composite inverse opal structures where the matrix used to form the inverse opal contains both silica, formed using sol-gel chemistry, and poly(ethylene glycol), PEG. We find that the morphology of the inverse opal structure depends on both the amount of PEG incorporated into the matrix and its molecular weight. The extent of organization in the inverse opal structure, which is characterized by scanning electron microscopy and optical reflectance data, is mediated by the chemical bonding interactions between the silica and PEG constituents in the hybrid matrix. Both polymer chain terminus Si-O-C bonding and hydrogen bonding between the polymer backbone oxygens and silanol functionalities can contribute, with the polymer mediating the extent to which Si-O-Si bonds can form within the silica regions of the matrix due to hydrogen-bonding interactions.

  18. Effect of fabric structure and polymer matrix on flexural strength, interlaminar shear stress, and energy dissipation of glass fiber-reinforced polymer composites

    Science.gov (United States)

    We report the effect of glass fiber structure and the epoxy polymer system on the flexural strength, interlaminar shear stress (ILSS), and energy absorption properties of glass fiber-reinforced polymer (GFRP) composites. Four different GFRP composites were fabricated from two glass fiber textiles of...

  19. Stimuli-responsive transformation in carbon nanotube/expanding microsphere–polymer composites

    International Nuclear Information System (INIS)

    Loomis, James; Xu Peng; Panchapakesan, Balaji

    2013-01-01

    Our work introduces a class of stimuli-responsive expanding polymer composites with the ability to unidirectionally transform their physical dimensions, elastic modulus, density, and electrical resistance. Carbon nanotubes and core–shell acrylic microspheres were dispersed in polydimethylsiloxane, resulting in composites that exhibit a binary set of material properties. Upon thermal or infrared stimuli, the liquid cores encapsulated within the microspheres vaporize, expanding the surrounding shells and stretching the matrix. The microsphere expansion results in visible dimensional changes, regions of reduced polymeric chain mobility, nanotube tensioning, and overall elastic to plastic-like transformation of the composite. Here, we show composite transformations including macroscopic volume expansion (>500%), density reduction (>80%), and elastic modulus increase (>675%). Additionally, conductive nanotubes allow for remote expansion monitoring and exhibit distinct loading-dependent electrical responses. With the ability to pattern regions of tailorable expansion, strength, and electrical resistance into a single polymer skin, these composites present opportunities as structural and electrical building blocks in smart systems. (paper)

  20. Mechanical stability of titanium and plasma polymer nanoclusters in nanocomposite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Palesch, E. [Institute of Materials Chemistry, Brno University of Technology, Brno (Czech Republic); Marek, A. [HVM Plasma, spol. s r.o., Prague (Czech Republic); Solar, P.; Kylian, O. [Faculty of Mathematics and Physics, Charles University, Prague (Czech Republic); Vyskocil, J. [HVM Plasma, spol. s r.o., Prague (Czech Republic); Biederman, H. [Faculty of Mathematics and Physics, Charles University, Prague (Czech Republic); Cech, V., E-mail: cech@fch.vutbr.cz [Institute of Materials Chemistry, Brno University of Technology, Brno (Czech Republic)

    2013-10-01

    The mechanical stability of nanoclusters embedded in nanocomposite coatings was investigated by scratch and wear tests supported by atomic force microscopy using surface topography mode. Titanium and plasma polymer nanoclusters were deposited on planar substrates (glass, titanium) using a magnetron-based gas aggregation cluster source. The deposited clusters were overcoated with a thin titanium film of different thicknesses to stabilize the position of the clusters in the nanocomposite coating. Nanotribological measurements were carried out to optimize the thickness of the overcoating film for sufficient interfacial adhesion of the cluster/film system. - Highlights: ► Titanium and plasma polymer nanoclusters were overcoated with thin titanium film. ► The mechanical stability of nanoclusters was characterized by nanotribological tests. ► The film thickness was optimized to stabilize the position of the clusters in coating.

  1. Application of capacitively coupled rf discharge plasma for sterilization of polymer materials used in ophthalmology

    International Nuclear Information System (INIS)

    Abdullin, I.Sh.; Avetisov, S.E.; Lipatov, D.V.; Rybakova, E.G.; Bragin, V.E.; Bykanov, A.N.; Kamarentsev, E.N.

    1996-01-01

    The sterilization effect of capacitively coupled rf discharge plasma treatment of contact lenses was investigated. There were used two types of polymer: highly hydrophilic polymer with water content 76% (Navelen-76) and poly-methylmethacrylate (PMMA). There was demonstrated the possibility of effective sterilization by RF discharge plasma of a set of polymer materials used in ophthalmology. The best results were obtained for hard contact lenses. There was perfect sterilization in this case. There were not perfect sterilization in some cases of soft contact lenses treatment. It may be caused by porous structure of the external layers of this material and limited thickness of the sterilization layer. (author)

  2. Self-healing polymer cement composites for geothermal wellbore applications

    Science.gov (United States)

    Rod, K. A.; Fernandez, C.; Childers, I.; Koech, P.; Um, W.; Roosendaal, T.; Nguyen, M.; Huerta, N. J.; Chun, J.; Glezakou, V. A.

    2017-12-01

    Cement is vital for controlling leaks from wellbores employed in oil, gas, and geothermal operations by sealing the annulus between the wellbore casing and geologic formation. Wellbore cement failure due to physical and chemical stresses is common and can result in significant environmental consequences and ultimately significant financial costs due to remediation efforts. To date numerous alternative cement blends have been proposed for the oil and gas industry. Most of these possess poor mechanical properties, or are not designed to work in high temperature environments. This research investigates novel polymer-cement composites which could function at most geothermal temperatures. Thermal stability and mechanical strength of the polymer is attributed to the formation of a number of chemical interactions between the polymer and cement matrix including covalent bonds, hydrogen bonding, and van der Waals interactions. It has been demonstrated that the bonding between cement and casing is more predictable when polymer is added to cement and can even improve healing of adhesion break when subjected to stresses such as thermal shock. Fractures have also been healed, effectively reducing permeability with fractures up to 0.3-0.5mm apertures, which is two orders of magnitude larger than typical wellbore fractures. Additionally, tomography analysis was used to determine internal structure of the cement polymer composite and imaging reveals that polymers fill fractures in the cement and between the cement and casing. By plugging fractures that occur in wellbore cement, reducing permeability of fractures, both environmental safety and economics of subsurface operations will be improved for geothermal energy and oil and gas production.

  3. XPS and surface resistivity measurements of plasma - treated FEP co-polymer

    International Nuclear Information System (INIS)

    Pitrus, R.K.; Brack, N.; Liesegang, J.; Pigram, P.J.

    2002-01-01

    Full text: Fluorinated polymers such as fluorinated ethylene propylene (FEP) and poly(tetrafluoroethylene) (PTFE) play an important role in many applications due to their many desirable properties such as chemical resistivity, inertness, electrical stability and low dielectric constant; however, one disadvantage of fluorinated polymers is their extreme surface hydrophobicity. Previous studies show that plasma treatment will modify the surface by increasing the surface free energy and also offer a rapid and convenient method for pre-treating the polymers for many purposes. This paper, through resistivity and XPS (x-ray photoelectron spectroscopy) measurements, attempts to discover basic effects of such plasma treatment. Fluorinated ethylene propylene (FEP) co-polymer film of (0.05) mm thickness (obtained commercially) and with the following structure (CF 2 -CF 2 )-(CF(CF 3 )CF 2 )- was used. A suitable cleaning procedure was used to remove adventitious carbon from the surface. XPS has been used to study FEP film properties. The spectra of XPS were analyzed with the main focus on carbon and fluorine as they compose the elemental component of FEP film. A value of 2.05 was obtained for the F/C ratio, which is slightly higher than the theoretical F/C value estimated from the chemical structure of FEP (F/C 2). The clean film was then air plasma treated (pressure 10 -1 torr and power 30W) for various treatment times to produce a higher energy fluoropolymer surface. XPS studies investigated changes to the polymer surface and determined that oxidation occurs on the FEP surface. The oxidation reactions on the FEP surface form oxygen functional groups such as C-O and C=O groups. The results also show that the percentage of CF 2 and CF 3 in the co-polymer surface decreased with exposure time and the percentage of CF, C-C, C-O and C=O increased. There is a sharp decrease in F/C ratio and increase in O/C ratio. In addition to XPS, the resistivity of FEP-film was measured by a

  4. Polymer-inorganic composite resins for recovery of radioactive cesium from acidic media

    International Nuclear Information System (INIS)

    Park, J.I.; Kim, J.S.; Jo, A.; Jang, E.; Park, Y.J.

    2014-01-01

    In this work, our objectives are as follow: i) the development of a method to produce polymer-ammonium molybdophosphate composite resins with the size range ideal for column operations, ii) the preparation of a different type of polymer-AMP granules, other than polyacrylonitrile, with good physical and chemical stability, and iii) the investigation of sorption and recovery properties of the composite potentially useful for radioactive cesium. (author)

  5. Repairability of CAD/CAM high-density PMMA- and composite-based polymers.

    Science.gov (United States)

    Wiegand, Annette; Stucki, Lukas; Hoffmann, Robin; Attin, Thomas; Stawarczyk, Bogna

    2015-11-01

    The study aimed to analyse the shear bond strength of computer-aided design and computer-aided manufacturing (CAD/CAM) polymethyl methacrylate (PMMA)- and composite-based polymer materials repaired with a conventional methacrylate-based composite after different surface pretreatments. Each 48 specimens was prepared from six different CAD/CAM polymer materials (Ambarino high-class, artBloc Temp, CAD-Temp, Lava Ultimate, Telio CAD, Everest C-Temp) and a conventional dimethacrylate-based composite (Filtek Supreme XTE, control) and aged by thermal cycling (5000 cycles, 5-55 °C). The surfaces were left untreated or were pretreated by mechanical roughening, aluminium oxide air abrasion or silica coating/silanization (each subgroup n = 12). The surfaces were further conditioned with an etch&rinse adhesive (OptiBond FL) before the repair composite (Filtek Supreme XTE) was adhered to the surface. After further thermal cycling, shear bond strength was tested, and failure modes were assessed. Shear bond strength was statistically analysed by two- and one-way ANOVAs and Weibull statistics, failure mode by chi(2) test (p ≤ 0.05). Shear bond strength was highest for silica coating/silanization > aluminium oxide air abrasion = mechanical roughening > no surface pretreatment. Independently of the repair pretreatment, highest bond strength values were observed in the control group and for the composite-based Everest C-Temp and Ambarino high-class, while PMMA-based materials (artBloc Temp, CAD-Temp and Telio CAD) presented significantly lowest values. For all materials, repair without any surface pretreatment resulted in adhesive failures only, which mostly were reduced when surface pretreatment was performed. Repair of CAD/CAM high-density polymers requires surface pretreatment prior to adhesive and composite application. However, four out of six of the tested CAD/CAM materials did not achieve the repair bond strength of a conventional dimethacrylate

  6. Effect of plasma fluorination variables on the deposition and growth of partially fluorinated polymer over PMMA films

    Directory of Open Access Journals (Sweden)

    Giovana da Silva Padilha

    2013-01-01

    Full Text Available In this work, an investigation was made of the modification of film surface of Poly(methylmethacrylate (PMMA using the plasma polymerization technique. PMMA films 10 µm thick were obtained by Spin-Coating starting from a chloroform solution (15.36% w/w. The films were exposed to the plasma of CHF3 at different gas pressures and exposure times to increase the thickness of fluorinated polymers onto PMMA films. The plasma fluorinated optical films were characterized by gravimetry, FTIR-ATR, contact angle of wetting, SEM and AFM. The surface fluorination of PMMA films can be inferred by the increase in contact angle under all experimental conditions, and confirmed with FTIR-ATR analysis. Gravimetry showed an increase of the fluorinated polymer layer over PMMA films, being 1.55 µm thick at 0.7 torr and 40 minutes of plasma exposure. The SEM analysis showed a well-defined layer of fluorinated polymer, with fluorine being detected in the EDS analysis. The film roughness for the fluorinated polymers was around of 200 Å, quite satisfactory for a 1.55 µm cladding.

  7. Functionalization of polymer powders for SLS-processes using an atmospheric plasma jet in a fluidized bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sachs, Marius; Schmitt, Adeliene; Schmidt, Jochen; Peukert, Wolfgang; Wirth, Karl-Ernst [Institute of Particle Technology, Friedrich-Alexander-University Erlangen-Nuremberg (Germany)

    2015-05-22

    Recently additive manufacturing processes such as selective laser sintering (SLS) of polymers have gained more importance for industrial applications [1]. Tailor-made modification of polymers is essential in order to make these processes more efficient and to cover the industrial demands. The so far used polymer materials show weak performance regarding the mechanical stability of processed parts. To overcome this limitation, a new route to functionalize the surface of commercially available polymer particles (PA12; PE-HD; PP) using an atmospheric plasma jet in combination with a fluidized bed reactor has been investigated. Consequently, an improvement of adhesion and wettability [2] of the polymer surface without restraining the bulk properties of the powder is achieved. The atmospheric plasma jet process can provide reactive species at moderate temperatures which are suitable for polymer material. The functionalization of the polymer powders improves the quality of the devices build in a SLS-process.

  8. Magnetoimpedance of cobalt-based amorphous ribbons/polymer composites

    Energy Technology Data Exchange (ETDEWEB)

    Semirov, A.V., E-mail: semirov@mail.ru [Irkutsk State University, Irkutsk (Russian Federation); Derevyanko, M.S.; Bukreev, D.A.; Moiseev, A.A.; Kudryavtsev, V.O. [Irkutsk State University, Irkutsk (Russian Federation); Safronov, A.P. [Ural Federal University, Yekaterinburg (Russian Federation)

    2016-10-01

    The combined influence of the temperature, the elastic tensile stress and the external magnetic field on the total impedance and impedance components were studied for rapidly quenched amorphous Co{sub 75}Fe{sub 5}Si{sub 4}B{sub 16} ribbons. Both as-cast amorphous ribbons and Co{sub 75}Fe{sub 5}Si{sub 4}B{sub 16}/polymer amorphous ribbon based composites were considered. Following polymer coverings were studied: modified rubber solution in o-xylene, solution of butyl methacrylate and methacrylic acid copolymer in isopropanol and solution of polymethylphenylsiloxane resin in toluene. All selected composites showed very good adhesion of the coverings and allowed to provide temperature measurements from 163 K up to 383 K under the applied deforming tensile force up to 30 N. The dependence of the modulus of the impedance and its components on the external magnetic field was influenced by the elastic tensile stresses and was affected by the temperature of the samples. It was shown that maximal sensitivity of the impedance and its components to the external magnetic field was observed at minimal temperature and maximal deforming force depended on the frequency of an alternating current. - Highlights: • Impedance and its components of amorphous Co{sub 75}Fe{sub 5}Si{sub 4}B{sub 16} ribbons were studied. • MI sensitivity to the magnetic field depends on a temperature and a deforming force. • Polymer covering can affect the functional properties of the composite.

  9. Diamond structures grown from polymer composite nanofibers

    Czech Academy of Sciences Publication Activity Database

    Potocký, Štěpán; Kromka, Alexander; Babchenko, Oleg; Rezek, Bohuslav; Martinová, L.; Pokorný, P.

    2013-01-01

    Roč. 5, č. 6 (2013), s. 519-521 ISSN 2164-6627 R&D Projects: GA ČR GAP108/12/0910; GA ČR GAP205/12/0908 Institutional support: RVO:68378271 Keywords : chemical vapour deposition * composite polymer * nanocrystalline diamond * nanofiber sheet * SEM Subject RIV: BM - Solid Matter Physics ; Magnetism

  10. Wood-Polymer composites obtained by gamma irradiation

    International Nuclear Information System (INIS)

    Gago, J.; Lopez, A.; Rodriguez, J.; Santiago, J.; Acevedo, M.

    2007-01-01

    In this work we impregnate three Peruvian woods (Calycophy spruceanum Be, Aniba amazonica Meiz and Hura crepitans L) with styrene-polyester resin and methyl methacrylate. The polymerization of the system was promoted by gamma radiation and the experimental optimal condition was obtained with styrene-polyester 1:1 and 15 kGy. The obtained composites show reduced water absorption and better mechanical properties compared to the original wood. The structure of the wood-polymer composites was studied by light microscopy. Water absorption and hardness were also obtained

  11. Wood-Polymer composites obtained by gamma irradiation

    Science.gov (United States)

    Gago, J.; López, A.; Santiago, J.; Acevedo, M.; Rodríguez, J.

    2007-10-01

    In this work we impregnate three Peruvian woods (Calycophy spruceanum Be, Aniba amazonica Meiz and Hura crepitans L) with styrene-polyester resin and methyl methacrylate. The polymerization of the system was promoted by gamma radiation and the experimental optimal condition was obtained with styrene-polyester 1:1 and 15 kGy. The obtained composites show reduced water absorption and better mechanical properties compared to the original wood. The structure of the wood-polymer composites was studied by light microscopy. Water absorption and hardness were also obtained.

  12. Electrosynthesis and catalytic activity of polymer-nickel particles composite electrode materials

    International Nuclear Information System (INIS)

    Melki, Tahar; Zouaoui, Ahmed; Bendemagh, Barkahoum; Oliveira, Ione M.F. de; Oliveira, Gilver F. de; Lepretre, Jean-Claude; Bucher, Christophe; Mou tet, Jean-Claude

    2009-01-01

    Nickel-polymer composite electrode materials have been synthesized using various strategies, all comprising the electrochemical reduction of nickel(II) cations or complexes, incorporated by either ion-exchange or complexation into various poly(pyrrole-carboxylate) thin films coated by oxidative electropolymerization onto carbon electrodes. The electrocatalytic activity and the stability of the different composites have been then evaluated in the course of the electrocatalytic hydrogenation of ketones and enones in aqueous electrolytes. The best results were obtained using nickel-polymer composites synthesized by electroreduction of nickel(II) ions complexed into polycarboxylate films, which are characterized by a high catalytic activity and a good operational stability. (author)

  13. Electrosynthesis and catalytic activity of polymer-nickel particles composite electrode materials

    Energy Technology Data Exchange (ETDEWEB)

    Melki, Tahar; Zouaoui, Ahmed; Bendemagh, Barkahoum [Universite Ferhat Abbas, Setif (Algeria). Faculte des Sciences de l' Ingenieur. Dept. du Tronc Commun; Oliveira, Ione M.F. de; Oliveira, Gilver F. de [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Quimica; Lepretre, Jean-Claude [UMR-5631 CNRS-INPG-UJF, St. Martin d' Heres Cedex (France). Lab. d' Electrochimie et de Physicochimie des Materiaux et Interfaces; Bucher, Christophe; Mou tet, Jean-Claude [Universite Joseph Fourier Grenoble 1 (France). Dept. de Chimie Moleculaire], e-mail: Jean-Claude.Moutet@ujf-grenoble.fr

    2009-07-01

    Nickel-polymer composite electrode materials have been synthesized using various strategies, all comprising the electrochemical reduction of nickel(II) cations or complexes, incorporated by either ion-exchange or complexation into various poly(pyrrole-carboxylate) thin films coated by oxidative electropolymerization onto carbon electrodes. The electrocatalytic activity and the stability of the different composites have been then evaluated in the course of the electrocatalytic hydrogenation of ketones and enones in aqueous electrolytes. The best results were obtained using nickel-polymer composites synthesized by electroreduction of nickel(II) ions complexed into polycarboxylate films, which are characterized by a high catalytic activity and a good operational stability. (author)

  14. Characteristics of porous polymer composite columns prepared by radiation cast-polymerization

    International Nuclear Information System (INIS)

    Kumakura, Minoru; Kaetsu, Isao; Asami, Kazuhiro; Suzuki, Shuichi

    1989-01-01

    Porous polymer composite columns having porous structure were prepared by radiation cast-polymerization of hydrophilic monomers at low temperature and their characteristics were studied. The porosity of the polymer increased with decreasing monomer concentration. The elution time of water in the polymer column increased with increasing monomer concentration and with decreasing irradiation temperature. The elution time was dependent on the degree of hydration of the polymer. The polymer with a degree of hydration of 0.2 to 0.4 gave the minimum elution time. The elution time decreased with the addition of porous inorganic substances. (author)

  15. Studies on conducting polymer and conducting polymerinorganic composite electrodes prepared via a new cathodic polymerization method

    Science.gov (United States)

    Singh, Nikhilendra

    A novel approach for the electrodeposition of conducting polymers and conducting polymer-inorganic composite materials is presented. The approach shows that conducting polymers, such as polypyrrole (PPy) and poly(3,4-ethylenedioxythiophene) (PEDOT) can be electrodeposited by the application of a cathodic bias that generates an oxidizing agent, NO+, via the in-situ reduction of nitrate anions. This new cathodic polymerization method allows for the deposition of PPy and PEDOT as three dimensional, porous films composed of spherical polymer particles. The method is also suitable for the co-deposition of inorganic species producing conducting polymer-inorganic composite electrodes. Such composites are used as high surface area electrodes in Li-ion batteries, electrochemical hydrogen evolution and in the development of various other conducting polymer-inorganic composite electrodes. New Sn-PPy and Sb-PPy composite electrodes where Sn and Sb nanoparticles are well dispersed among the PPy framework are reported. These structures allow for decreased stress during expansion and contraction of the active material (Sn, Sb) during the alloying and de-alloying processes of a Li-ion battery anode, significantly alleviating the loss of active material due to pulverization processes. The new electrochemical synthesis mechanism allows for the fabrication of Sn-PPy and Sb-PPy composite electrodes directly from a conducting substrate and eliminates the use of binding materials and conducting carbon used in modern battery anodes, which significantly simplifies their fabrication procedures. Platinum (Pt) has long been identified as the most efficient catalyst for electrochemical water splitting, while nickel (Ni) is a cheaper, though less efficient alternative to Pt. A new morphology of PPy attained via the aforementioned cathodic deposition method allows for the use of minimal quantities of Pt and Ni dispersed over a very high surface area PPy substrate. These composite electrodes

  16. Conductive polymer composites with carbonic fillers: Shear induced electrical behaviour

    Czech Academy of Sciences Publication Activity Database

    Starý, Zdeněk; Krückel, J.

    2018-01-01

    Roč. 139, 14 March (2018), s. 52-59 ISSN 0032-3861 R&D Projects: GA ČR(CZ) GA17-05654S; GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : polymer-matrix composites * carbon fibres * electrical properties Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer sci ence Impact factor: 3.684, year: 2016

  17. Bisphenyl-Polymer/Carbon-Fiber-Reinforced Composite Compared to Titanium Alloy Bone Implant

    OpenAIRE

    Petersen, Richard C.

    2011-01-01

    Aerospace/aeronautical thermoset bisphenyl-polymer/carbon-fiber-reinforced composites are considered as new advanced materials to replace metal bone implants. In addition to well-recognized nonpolar chemistry with related bisphenol-polymer estrogenic factors, carbon-fiber-reinforced composites can offer densities and electrical conductivity/resistivity properties close to bone with strengths much higher than metals on a per-weight basis. In vivo bone-marrow tests with Sprague-Dawley rats reve...

  18. Nano-structured polymer composites and process for preparing same

    Science.gov (United States)

    Hillmyer, Marc; Chen, Liang

    2013-04-16

    A process for preparing a polymer composite that includes reacting (a) a multi-functional monomer and (b) a block copolymer comprising (i) a first block and (ii) a second block that includes a functional group capable of reacting with the multi-functional monomer, to form a crosslinked, nano-structured, bi-continuous composite. The composite includes a continuous matrix phase and a second continuous phase comprising the first block of the block copolymer.

  19. Reverse-osmosis membranes by plasma polymerization

    Science.gov (United States)

    Hollahan, J. R.; Wydeven, T.

    1972-01-01

    Thin allyl amine polymer films were developed using plasma polymerization. Resulting dry composite membranes effectively reject sodium chloride during reverse osmosis. Films are 98% sodium chloride rejective, and 46% urea rejective.

  20. A numerical investigation on piezoresistive behaviour of carbon nanotube/polymer composites: mechanism and optimizing principle

    International Nuclear Information System (INIS)

    Wang Zhifeng; Ye Xiongying

    2013-01-01

    Carbon nanotubes (CNTs) filled polymeric composites can be used as a kind of flexible piezoresistive material in potentially many fields. Due to the diversity of CNTs and polymers, the mechanism and features of their piezoresistive behaviour is still not fully understood. This paper reports our investigations into the mechanism and optimization of piezoresistive CNT/polymer composites. Numerical simulation results showed that the junction resistances between CNTs are a major component of the network conductance of the composite as well as the piezoresistive behaviour. Average junction gap variation (AJGV) was introduced as a quantitative description of the conductance variation of a CNT network caused by strain and the conductance variation of the CNT network was found to be dominated by AJGV. Numerical simulation and analytical results indicated that the key parameters affecting AJGV include the orientation and diameter of CNTs, Poisson’s ratio of the polymer, and the concentration of CNTs in the polymer matrix. An optimizing principle was then given for piezoresistive CNT/polymer composites. (paper)

  1. POLYMER COMPOSITE FILMS WITH SIZE-SELECTED METAL NANOPARTICLES FABRICATED BY CLUSTER BEAM TECHNIQUE

    DEFF Research Database (Denmark)

    Ceynowa, F. A.; Chirumamilla, Manohar; Popok, Vladimir

    2017-01-01

    Formation of polymer films with size-selected silver and copper nanoparticles (NPs) is studied. Polymers are prepared by spin coating while NPs are fabricated and deposited utilizing a magnetron sputtering cluster apparatus. The particle embedding into the films is provided by thermal annealing...... after the deposition. The degree of immersion can be controlled by the annealing temperature and time. Together with control of cluster coverage the described approach represents an efficient method for the synthesis of thin polymer composite layers with either partially or fully embedded metal NPs....... Combining electron beam lithography, cluster beam deposition and thermal annealing allows to form ordered arrays of metal NPs on polymer films. Plasticity and flexibility of polymer host and specific properties added by coinage metal NPs open a way for different applications of such composite materials...

  2. Development of Composite Made of HDPE and Fiber Reinforced Polymer Dust

    International Nuclear Information System (INIS)

    Muhamad Noor Izwan Ishak; Ismail Mustapha; Mohd Reusmazran Yusof; Yusof Abdullah; Nor Pai'za Mohamad Hasan; Mohamad Ridzuan Ahamad; Md Fakarudin Ab Rahman; Hafizal Yazid; Ainul Mardhiah Terry; Airwan Affandi Mahmood; Nurliyana Abdullah

    2016-01-01

    Full text: Composite of High Density Polyethylene and Fiber Reinforced Polymer Dust (HDPE/ FRPD) were prepared by melt mixing technique. The blend was mixed and compression molded by hydraulic press at 150 degree Celsius. Effect of blend ratio on mechanical properties of the developed composite was determined. Tensile properties of the blends found to show decreasing trend with addition of FRPD. While impact strength and hardness properties showed promising result. Reuse of ' Fiber Reinforced Polymer ' dust can be improved by the present invention. (author)

  3. Compact laser-produced plasma EUV sources for processing polymers and nanoimaging

    International Nuclear Information System (INIS)

    Fiedorowicz, H.; Bartnik, A.; Jarocki, R.; Kostecki, J.; Szczurek, M.; Wachulak, P.

    2010-01-01

    Complete text of publication follows. Extreme ultraviolet (EUV) can be produced form a high-temperature plasma generated by interaction of high power laser pulses with matter. Laser plasma EUV sources are considered to be used in various applications in physics, material science, biomedicine, and technology. In the paper new compact laser plasma EUV sources developed for processing polymers and imaging are presented. The sources are based on a gas puff target formed by pulsed injection of a small amount of gas under high-pressure into a laser focus region. The use of the gas puff target instead of a solid target allows for efficient generation of EUV radiation without debris production. The compact laser plasma EUV source based on a gas puff target was developed for metrology applications. The EUV source developed for processing polymers is equipped with a grazing incidence axisymmetrical ellipsoidal mirror to focus EUV radiation in the relatively broad spectral range with the strong maximum near 10 nm. The size of the focal spot is about 1.3 mm in diameter with the maximum fluence up to 70 mJ/cm 2 . EUV radiation in the wavelength range of about 5 to 50 nm is produced by irradiation of xenon or krypton gas puff target with a Nd:YAG laser operating at 10 Hz and delivering 4 ns pulses of energy up to 0.8 J per pulse. The experiments on EUV irradiation of various polymers have been performed. Modification of polymer surfaces was achieved, primarily due to direct photo-etching with EUV photons and formation of micro- and nanostructures onto the surface. The mechanism of the interaction is similar to the UV laser ablation where energetic photons cause chemical bonds of the polymer chain to be broken. However, because of very low penetration depth of EUV radiation, the interaction region is limited to a very thin surface layer (<100 nm). This makes it possible to avoid degradation of bulk material caused by deeply penetrating UV radiation. The results of the studies

  4. The Effects of Gas Composition on the Atmospheric Pressure Plasma Jet Modification of Polyethylene Films

    International Nuclear Information System (INIS)

    Sun Jie; Qiu Yiping

    2015-01-01

    Polyethylene (PE) films are treated using an atmospheric pressure plasma jet (APPJ) with He or He/O 2 gas for different periods of time. The influence of gas type on the plasma-polymer interactions is studied. The surface contact angle of the PE film can be effectively lowered to 58° after 20 s of He/O 2 plasma treatment and then remains almost unchanged for longer treatment durations, while, for He plasma treatment, the film surface contact angle drops gradually to 47° when the time reaches 120 s. Atomic force microscopy (AFM) results show that the root mean square (RMS) roughness was significantly higher for the He/O 2 plasma treated samples than for the He plasma treated counterparts, and the surface topography of the He/O 2 plasma treated PE films displays evenly distributed dome-shaped small protuberances. Chemical composition analysis reveals that the He plasma treated samples have a higher oxygen content but a clearly lower percentage of −COO than the comparable He/O 2 treated samples, suggesting that differences exist in the mode of incorporating oxygen between the two gas condition plasma treatments. Electron spin resonance (ESR) results show that the free radical concentrations of the He plasma treated samples were clearly higher than those of the He/O 2 plasma treated ones with other conditions unchanged. (paper)

  5. Corrosive effect of environmental change on selected properties of polymer composites

    Science.gov (United States)

    Markovičová, L.; Zatkalíková, V.

    2017-11-01

    The development of composite materials and the related design and manufacturing technologies is one of the most important advances in the history of materials. Composites are multifunctional materials having unprecedented mechanical and physical properties that can be tailored to meet the requirements of a particular application. Ageing is also important and it is defined as the process of deterioration of engineering materials resulting from the combined effects of atmospheric radiation, heat, oxygen, water, micro-organisms and other atmospheric factors. The present article deals with monitoring the changes in the mechanical properties of composites with polymer matrix. The composite was formed from the PA matrix and glass fibers (GF). The composite contains 10, 20 and 30 % of glass fibers. The mechanical properties were evaluated on samples of the composite before and after UV radiation on the sample. Light microscopy was evaluated distribution of glass fibers in the polymer matrix and the presence of cracks caused by UV radiation.

  6. Shape memory-based tunable resistivity of polymer composites

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Hongsheng, E-mail: hongshengluo@163.com [Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006 (China); Zhou, Xingdong; Ma, Yuanyuan [Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006 (China); Yi, Guobin, E-mail: ygb116@163.com [Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006 (China); Cheng, Xiaoling [Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006 (China); Zhu, Yong [Shanghai Hiend Polyurethane Inc., No. 389, Jinshan District, Shanghai (China); Zu, Xihong; Zhang, Nanjun; Huang, Binghao; Yu, Lifang [Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006 (China)

    2016-02-15

    Graphical abstract: Hybrid nanofillers of the CNTs and AgNPs were embedded into a shape memory polyurethane. The composites exhibited tunable conduction, which could be facially tailored by the compositions and the thermal–mechanical programming. - Highlights: • Electrically conductive polymer composites in bi-layer structure were fabricated. • The CNTs/AgNPs layer had influence on the mechanics and thermal transitions. • The conductivity could be facially tailored via a thermo-mechanical programming. • The AgNPs contents enlarged the gauge factor of the resistivity–strain curves. • Tunneling theory was suitable for simulating the strain-dependent behaviors. - Abstract: A conductive composite in bi-layer structure was fabricated by embedding hybrid nanofillers, namely carbon nanotubes (CNTs) and silver nanoparticles (AgNPs), into a shape memory polyurethane (SMPU). The CNT/AgNP-SMPU composites exhibited a novel tunable conductivity which could be facially tailored in wide range via the compositions or a specifically designed thermo-mechanical shape memory programming. The morphologies of the conductive fillers and the composites were investigated by scanning electron microscope (SEM). The mechanical and thermal measurements were performed by tensile tests and differential scanning calorimetry (DSC). By virtue of a specifically explored shape memory programming, the composites were stretched and fixed into different temporary states. The electrical resistivity (R{sub s}) varied accordingly, which was able to be stabilized along with the shape fixing. Theoretical prediction based upon the tunneling model was performed. The R{sub s}–strain curves of the composites with different compositions were well fitted. Furthermore, the relative resistivity and the Gauge factor along with the elongation were calculated. The influence of the compositions on the strain-dependent R{sub s} was disclosed. The findings provided a new avenue to tailor the conductivity

  7. Modelling of a multi-temperature plasma composition

    International Nuclear Information System (INIS)

    Liani, B.; Benallal, R.; Bentalha, Z.

    2005-01-01

    Knowledge of plasma composition is very important for various plasma applications and prediction of plasma properties. The authors use the Saha equation and Debye length equation to calculate the non-local thermodynamic-equilibrium plasma composition. It has been shown that the model to 2T with T representing the temperature (electron temperature and heavy-particle temperature) described by Chen and Han [J. Phys. D 32(1999)1711] can be applied for a mixture of gases, where each atomic species has its own temperature, but the model to 4T is more general because it can be applicable to temperatures distant enough of the heavy particles. This can occur in a plasma composed of big- or macro-molecules. The electron temperature T e varies in the range 8000∼20000 K at atmospheric pressure. (authors)

  8. Study of the chlorine as dopant in synthesized polymers by plasma

    International Nuclear Information System (INIS)

    Vasquez, M.; Cruz, G.; Olayo, M.G.; Timoshina, T.; Morales, J.; Olayo, R.

    2003-01-01

    In the search of new and better dopants for semiconductor polymers, in this work the synthesis by plasma and the characterization of two doped polymers with chlorine, Pyrrole (PPy) and Thiophene (PTh) is presented. The characterization of the polymers it was carried out by FT-lR, it shows the C-Cl vibration that it is confirmed with the X-ray photoelectron spectroscopy technique (XPS). The elementary analysis shows a greater quantity of Cl in the PTh-CI compared with PPy-CI. However, this effect is not reflected in the electric conductivity since the PTh-Cl presents a lightly greater conductivity than the PPy-CI. SEM shows a formed structure of small agglomerated spheres of different size. (Author)

  9. Characteristics of 1–3-type ferroelectric ceramic/auxetic polymer composites

    International Nuclear Information System (INIS)

    Topolov, V Yu; Bowen, C R

    2008-01-01

    This paper presents modelling and simulation results on 1–3 piezoactive composites comprising a range of ferroelectric ceramics, which are assumed to have variable properties and an auxetic polymer (i.e. a material with a negative Poisson ratio) that improves the hydrostatic piezoelectric response of the composite. Dependences of the effective piezoelectric coefficients and related parameters of the 1–3 composites on the degree of poling, mobility of the 90° domain walls within ceramic grains, on the volume fraction of the ceramic component and on the Poisson ratio of the polymer component have been calculated and analysed. The role of the piezoelectric anisotropy and domain-orientation processes in improving and optimising the effective parameters, piezoelectric activity and sensitivity of 1–3 ferroelectric ceramic/auxetic composites is discussed

  10. Thinking Outside the 'Block': Alternative Polymer Compositions for Micellar Drug Delivery.

    Science.gov (United States)

    Jones, Marie-Christine

    2015-01-01

    With a number of formulations currently in clinical trials, the interest in polymer micelles as drug carriers in unlikely to subside. Historically, linear diblock copolymers have been used as the building blocks for micelle preparation. Yet, recent advances in polymer chemistry have meant that a wider variety of polymer architectures and compositions have become available and been trialed for pharmaceutical applications. This mini-review aims to provide an overview of recent, exciting developments in triblock, graft and hyperbranched polymer chemistries that may change the way polymeric micelles drug formulations are prepared.

  11. Effects of γ-rays on electrical conductivity of polyvinyl alcohol-polypyrrole composite polymer films

    International Nuclear Information System (INIS)

    Mohd Hamzah Harun; Elias Saion; Noorhana Yahya; Anuar Kassim; Ekramul Mahmud; Muhammad Yousuf Hussain; Iskandar Shahrim Mustafa; Azian Othman; Norazimah Mohd Yusof; Mohd Ahmad Ali Omer

    2007-01-01

    The composite polymer films of polyvinyl alcohol/polypyrrole/chloral hydrate (PVA-PPy-CH) had been prepared. Effects of γ-rays on the electrical conductivity of the composite polymer films had been investigated by using Inductance Resistance meter (LCR) meter at a frequency ranging from 20 Hz to 1 MHz. With the incorporation of choloral hydrate in the polymer sample, the conductivity increased indicates that it is capable to be used as dopant for polymerizing conjugated polymer. The electrical conductivity obtained increased as the dose increased, which is in the order of 10 -5 Scm -1 indicates that γ-ray is capable to enhance the electrical conductivity of the composite polymer films. The parameter of s is in the range of 0.31 ≤ S ≤ 0.49 and obeyed simple power law dispersion ω S . The Scanning Electron Microscopy (SEM) micrographs reveal the formation of polypyrrole globules in polyvinyl alcohol matrix which increased as the irradiation dose was increased. (Author)

  12. A Review on Artificial Aging Behaviors of Fiber Reinforced Polymer-matrix Composites

    OpenAIRE

    Meng Jiangyan; Wang Yunying

    2016-01-01

    As is known, factors in climate environment such as hygrothermal effect and UV may have a negative effect on the mechanical properties of fiber reinforced polymer-matrix composites, resulting in their strength and stiffness degraded. In this review, we summarize all the recent studies on the artificial climate aging, hygrothermal aging, and thermal-oxidation aging of fiber reinforced polymer-matrix composites, as well as their artificial accelerated aging and natural aging. In addition, studi...

  13. Thermal Conductivity of Polymer Composite poypropilene-Sand

    International Nuclear Information System (INIS)

    Betha; Mashuri; Sudirman; Karo Karo, Aloma

    2001-01-01

    Thermal conductivity composite materials polypropylene (PP)-sand have been investigated. PP composite with sand to increase thermal conductivity from the polymer. The composite in this observation is done by mixing matrix (PP melt flow 2/10)and filler sand)by means tool labo plastomil. The result of thermal conductivity is composite of PP-sand which is obtained increase and followed by the raising of filler particle volume fraction. The analysis of thermal conductivity based on the model Cheng and Vachon, model Lewis and Nielsen where this model has the function to support experiment finding. It is proved that Lewis' and Nielsen's model almost approach experiment result. And then thermal conductivity raising will be analyzed by the model of pararel-series conductive with the two (2)phases system. It is showed that sand in PP MF 2 composite have the big role to increase the thermal conductivity than sand in PP MF 10 composition, but it is not easy to shape conductive medium

  14. Influence of Water on Tribological Properties of Wood-Polymer Composites

    Science.gov (United States)

    Mysiukiewicz, Olga; Sterzyński, Tomasz

    2017-08-01

    Utilization of ecological materials for appliances and products is one of the ways to achieve the goal of sustainability.Wood-polymer composites as a cheap, lightweight, durable and esthetic material has gained attention of scientists, engineers and consumers alike. Different kinds of polymeric matrices, plants used as the fillers, chemical of physical modifiers and processing technologies have already been widely studied. Nonetheless, surprisingly few information on Wood-Polymer Composites' tribology can be found. This paper is an attempt to fill this gap. Polypropylene-and poly(lactic acid)-based composites with varying wood flour content have been analyzed. The Brinell's hardness and coefficient of friction of the samples have been determined. In order to evaluate the influence of the moisture content on the tribological and mechanical properties of the composites, the samples have also been aged in water. The investigation revealed that polymeric composites filled with wood flour can present favorable coefficient of friction, compared to the neat resins. The results of our study can establish a good starting point for further investigation.

  15. Mechanical Property Evaluation of Palm/Glass Sandwiched Fiber Reinforced Polymer Composite in Comparison with few natural composites

    Science.gov (United States)

    Raja Dhas, J. Edwin; Pradeep, P.

    2017-10-01

    Natural fibers available plenty can be used as reinforcements in development of eco friendly polymer composites. The less utilized palm leaf stalk fibers sandwiched with artificial glass fibers was researched in this work to have a better reinforcement in preparing a green composite. The commercially available polyester resin blend with coconut shell filler in nano form was used as matrix to sandwich these composites. Naturally available Fibers of palm leaf stalk, coconut leaf stalk, raffia and oil palm were extracted and treated with potassium permanganate solution which enhances the properties. For experimentation four different plates were fabricated using these fibers adopting hand lay-up method. These sandwiched composite plates are further machined to obtain ASTM standards Specimens which are mechanically tested as per standards. Experimental results reveal that the alkali treated palm leaf stalk fiber based polymer composite shows appreciable results than the others. Hence the developed composite can be recommended for fabrication of automobile parts.

  16. Composite Polymer Electrolytes: Nanoparticles Affect Structure and Properties

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2016-11-01

    Full Text Available Composite polymer electrolytes (CPEs can significantly improve the performance in electrochemical devices such as lithium-ion batteries. This review summarizes property/performance relationships in the case where nanoparticles are introduced to polymer electrolytes. It is the aim of this review to provide a knowledge network that elucidates the role of nano-additives in the CPEs. Central to the discussion is the impact on the CPE performance of properties such as crystalline/amorphous structure, dielectric behavior, and interactions within the CPE. The amorphous domains of semi-crystalline polymer facilitate the ion transport, while an enhanced mobility of polymer chains contributes to high ionic conductivity. Dielectric properties reflect the relaxation behavior of polymer chains as an important factor in ion conduction. Further, the dielectric constant (ε determines the capability of the polymer to dissolve salt. The atom/ion/nanoparticle interactions within CPEs suggest ways to enhance the CPE conductivity by generating more free lithium ions. Certain properties can be improved simultaneously by nanoparticle addition in order to optimize the overall performance of the electrolyte. The effects of nano-additives on thermal and mechanical properties of CPEs are also presented in order to evaluate the electrolyte competence for lithium-ion battery applications.

  17. Enhanced Nanotribology and Optimal Self-lubrication in Novel Polymer-Metal Composites

    Science.gov (United States)

    Seam, Alisha; Brostow, Witold; Olea-Mejia, Oscar

    2006-10-01

    Cheaper to produce, light-weight polymeric materials with improved micro and nano-scale tribological characteristics ar gradually replacing the heavier metals in gears, cams, ball-bearings, chains, and other critical machine components which operate under high stress, experience substantial sliding friction and wear, and require external lubrication regimes. Application of such high-performance synthetic materials in a whole range of machinery, manufacturing, aerospace and transportation industries would produce far reaching economic, energy conservation and environmental benefits. This paper devises and investigates a novel and previously untested method of developing self-lubricating and wear-resistant polymer based materials (PBMs) by blending a polymer with small proportions of a metallic additive. Tribological experiments establish that as increasing proportions of the metallic additive Iron (Fe) are added to the polymeric base polyethylene (PE), the friction and wear of the resulting composite (PE-Fe) experiences significant decline until an optimal value of 3 to 5 % Iron and then stabilize. Theoretical analysis reveals this phenomenon to likely be a result of the nano-structural formation of a lubricating oxide layer on surface of the polymer-metal composite. Furthermore, the oxide layer prevented significant degradation of the viscoelastic scratch-recovery of the base polymer, even with 10 percent metal additive (Fe) in the composite samples.

  18. Formation of compositional gradient profiles by using shear-induced polymer migration phenomenon under Couette flow field

    Energy Technology Data Exchange (ETDEWEB)

    Im, Sang Hyuk; Lee, Su Jin [Kyung Hee University, Yongin (Korea, Republic of); Suh, Duck Jong; Park, O Ok [Korea Advanced Institute of Science and Technology (KAIST), Daejeon (Korea, Republic of); Kwon, Moo Hyun [Woosuk University, Wanju (Korea, Republic of)

    2015-07-15

    We investigated whether a graded-index profile, specified by the polymer compositional gradient, could be formed using shear-induced polymer migration phenomenon in a polymer solution. For the presented model system, we generated a shear flow by rotating a glass rod at the center of a polystyrene/methylmethacrylate (PS/MMA) solution and measured the degree of polymer migration by the shear flow field by examining the concentration of polymer solution along the radial direction from the rotating axis to the periphery. Through model experiments, we formed a compositional gradient and controlled its profile in the solution by varying the concentration of polymer solution, molecular weight of polymer, and shear rate. Finally, we solidified the gradient profiles by the polymerization of the PS/MMA solution and confirmed that the gradient profiles were maintained with a compositional gradient twice larger than the mother PS/MMA solution.

  19. Composite SiOx/hydrocarbon plasma polymer films prepared by RF magnetron sputtering of SiO2 and polyimide

    Czech Academy of Sciences Publication Activity Database

    Drabik, M.; Kousal, J.; Pinosh, Y.; Choukourov, A.; Biederman, H.; Slavínská, D.; Macková, Anna; Boldyryeva, Hanna; Pešička, J.

    2007-01-01

    Roč. 81, č. 7 (2007), s. 920-927 ISSN 0042-207X Institutional research plan: CEZ:AV0Z10480505 Keywords : composite films * magnetron * sputtering * polyimide * SiO2 Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.881, year: 2007

  20. Ultra-high polarity ceramics induced extrinsic high permittivity of polymers contributing to high permittivity of 2-2 series composites

    Science.gov (United States)

    Feng, Yefeng; Zhang, Jianxiong; Hu, Jianbing; Peng, Cheng; He, Renqi

    2018-01-01

    Induced polarization at interface has been confirmed to have significant impact on the dielectric properties of 2-2 series composites bearing Si-based semi-conductor sheet and polymer layer. By compositing, the significantly elevated high permittivity in Si-based semi-conductor sheet should be responsible for the obtained high permittivity in composites. In that case, interface interaction could include two aspects namely a strong electrostatic force from high polarity polymeric layer and a newborn high polarity induced in Si-based ceramic sheet. In this work, this class of interface induced polarization was successfully extended into another 2-2 series composite system made up of ultra-high polarity ceramic sheet and high polarity polymer layer. By compositing, the greatly improved high permittivity in high polarity polymer layer was confirmed to strongly contribute to the high permittivity achieved in composites. In this case, interface interaction should consist of a rather large electrostatic force from ultra-high polarity ceramic sheet with ionic crystal structure and an enhanced high polarity induced in polymer layer based on a large polarizability of high polarity covalent dipoles in polymer. The dielectric and conductive properties of four designed 2-2 series composites and their components have been detailedly investigated. Increasing of polymer inborn polarity would lead to a significant elevating of polymer overall polarity in composite. Decline of inherent polarities in two components would result in a mild improving of polymer total polarity in composite. Introducing of non-polarity polymeric layer would give rise to a hardly unaltered polymer overall polarity in composite. The best 2-2 composite could possess a permittivity of ˜463 at 100 Hz 25.7 times of the original permittivity of polymer in it. This work might offer a facile route for achieving the promising composite dielectrics by constructing the 2-2 series samples from two high polarity

  1. Polymer electrolytes: an investigation of some poly (N-propylaziridine)/lithium salt compositions

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, K R; Golder, A J; Knight, J

    1984-04-01

    Poly (N-propylaziridine)/lithium salt compositions were synthesized and their electrical conductivities were measured to assess their suitability as electrolytes in safe, leakproof, high energy-density lithium batteries operating at ambient temperature. The effects on conductivity of temperature, and the nature and concentration of the salt were studied. The salts markedly improve conductivity of the compositions over that of the undoped polymer but they are insufficiently conducting to be considered as battery electrolytes, due possibly to ion pairing. Their creep resistance is also low. Less fluid compositions containing higher molecular weight polymers better able to promote ion separation are more suitable. (ESA)

  2. Green Route Fabrication of Graphene Oxide Reinforced Polymer Composites with Enhanced Mechanical Properties

    International Nuclear Information System (INIS)

    Mahendran, R.; Sridharan, D.; Santhakumar, K.; Gnanasekaran, G.

    2016-01-01

    A facile and “Green” route has been applied to fabricate graphene oxide (GO) reinforced polymer composites utilizing “deionized water” as solvent. The GO was reinforced into water soluble poly(vinyl alcohol) (PVA) and poly-2-acrylamido-2-methyl-1-propanesulfonic acid (PAMPS) matrix by ultrasonication followed by mechanical stirring. The incorporation and dispersion of the GO in the polymer matrix were analyzed by XRD, FE-SEM, AFM, FT-IR, and TGA. Further, the FE-SEM and AFM images revealed that the surface roughness and agglomeration of the GO in the polymer matrix increased by increasing its concentration. Ionic exchange capacity, proton conductivity, and tensile texture results showed that the reinforcement of GO in the polymer matrix enhances the physicochemical properties of the host polymer. These PVA/PAMPS/GO nano composites showed improved mechanical stability compared to the pristine polymer, because of strong interfacial interactions within the components and homogeneous dispersion of the GO sheets in the PVA/PAMPS matrix.

  3. Radiation chemical treatment of cement mortar - polymer composites

    International Nuclear Information System (INIS)

    Younes, M.M.

    1994-01-01

    The development of the hardened cement pastes,mortars and concretes which contain polymers has progressed rapidly in years. Developmental work has identified a number of applications where the high strength and excellent durability of the composite materials will provide definite advantages over conventional mortars and concretes. The first investigations of polymer - impregnated concrete tried mainly to increase the quantity of absorbed and polymerised monomer because this gave a greater decrease in the original of concrete and a subsequent improvement in physico - mechanical properties. However, the production costs which is due mainly to the organic polymer, becomes the most important item. In this respect recent research showed the possibility of obtaining with a very compact concrete, of relative low porosity, a compound material with high performances after impregnation 26 tabs.,28 figs.,109 refs

  4. SiC/SiC composites by preceramic polymer infiltration and pyrolysis

    International Nuclear Information System (INIS)

    Schiroky, G.H.

    1997-01-01

    Lanxide Corporation has been developing fiber-reinforced silicon carbide matrix composites using the technique of preceramic polymer infiltration and pyrolysis, commonly referred to as the PIP-process. In this method, liquid CERASET TM preceramic polymer is being infiltrated into lay-ups of ceramic fibers, thermoset, and pyrolized at elevated temperatures for conversion into a SiC matrix. Several cycles of reinfiltration and pyrolysis must be performed to build up the SiC matrix because of the increase in density during pyrolysis from 1.0 g/cm 3 for the liquid polymer to between 2.2 and 3.2 g/cm 3 for the ceramic matrix. Composites have been fabricated using three different approaches: first, polymer infiltration of free-standing fiber preforms in which the fiber plies are being held together with a C/SiC duplex coating applied by chemical vapor infiltration; second, infiltration of individually coated fiber plies contained in a mold using the resin transfer molding method; and third, infiltration of vacuum-bagged, individually coated fiber plies using the vacuum assisted resin infiltration technique. Very good mechanical properties of Nicalon TM /SiC and Hi-Nicalon TM /SiC composites have been obtained, with four-point flexural strengths exceeding 400 MPa and toughnesses in the 20 to 30 MPa·m 1/2 range. The thermal conductivity of the fabricated composites is low (below 5 W/m·K) and must be improved substantially to meet the requirements for fusion structural applications. The fabricated components are relatively dense and impermeable to nitrogen, however, are readily permeated by helium. Chemical analysis has indicated the presence of a small amount of nitrogen (ca. 1 wt%) in the SiC material after pyrolysis of the CERASET preceramic polymer at 1600degC. (author)

  5. SiC/SiC composites by preceramic polymer infiltration and pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Schiroky, G.H. [Lanxide Corporation, Newark, DE (United States)

    1997-12-31

    Lanxide Corporation has been developing fiber-reinforced silicon carbide matrix composites using the technique of preceramic polymer infiltration and pyrolysis, commonly referred to as the PIP-process. In this method, liquid CERASET{sup TM} preceramic polymer is being infiltrated into lay-ups of ceramic fibers, thermoset, and pyrolized at elevated temperatures for conversion into a SiC matrix. Several cycles of reinfiltration and pyrolysis must be performed to build up the SiC matrix because of the increase in density during pyrolysis from 1.0 g/cm{sup 3} for the liquid polymer to between 2.2 and 3.2 g/cm{sup 3} for the ceramic matrix. Composites have been fabricated using three different approaches: first, polymer infiltration of free-standing fiber preforms in which the fiber plies are being held together with a C/SiC duplex coating applied by chemical vapor infiltration; second, infiltration of individually coated fiber plies contained in a mold using the resin transfer molding method; and third, infiltration of vacuum-bagged, individually coated fiber plies using the vacuum assisted resin infiltration technique. Very good mechanical properties of Nicalon{sup TM}/SiC and Hi-Nicalon{sup TM}/SiC composites have been obtained, with four-point flexural strengths exceeding 400 MPa and toughnesses in the 20 to 30 MPa{center_dot}m{sup 1/2} range. The thermal conductivity of the fabricated composites is low (below 5 W/m{center_dot}K) and must be improved substantially to meet the requirements for fusion structural applications. The fabricated components are relatively dense and impermeable to nitrogen, however, are readily permeated by helium. Chemical analysis has indicated the presence of a small amount of nitrogen (ca. 1 wt%) in the SiC material after pyrolysis of the CERASET preceramic polymer at 1600degC. (author)

  6. Flexible and conductive waste tire-derived carbon/polymer composite paper as pseudocapacitive electrode

    Science.gov (United States)

    Naskar, Amit K.; Paranthaman, Mariappan Parans; Boota, Muhammad; Gogotsi, Yury

    2018-04-10

    A method of making a supercapacitor from waste tires, includes the steps of providing rubber pieces and contacting the rubber pieces with a sulfonation bath to produce sulfonated rubber; pyrolyzing the sulfonated rubber to produce a tire-derived carbon composite comprising carbon black embedded in rubber-derived carbon matrix comprising graphitized interface portions; activating the tire-derived carbon composite by contacting the tire-derived carbon composite with a specific surface area-increasing composition to increase the specific surface area of the carbon composite to provide an activated tire-derived carbon composite; and, mixing the activated tire-derived carbon composite with a monomer and polymerizing the monomer to produce a redox-active polymer coated, activated tire-derived carbon composite. The redox-active polymer coated, activated tire-derived carbon composite can be formed into a film. An electrode and a supercapacitor are also disclosed.

  7. Temporal development of the plasma composition of a pulsed aluminum plasma stream in the presence of oxygen

    International Nuclear Information System (INIS)

    Schneider, J.M.; Anders, A.; Brown, I.G.; Hjoervarsson, B.; Hultman, L.

    1999-01-01

    We describe the temporal development of the plasma composition of pulsed aluminum plasma streams at various oxygen pressures. The plasma was formed with a vacuum arc plasma source and the time resolved plasma composition was measured with time-of-flight charge-to-mass spectrometry. The temporal development of the plasma composition as well as the Al average ion charge state was found to be a strong function of the oxygen pressure. Oxygen and hydrogen concentrations of up to 0.36 and 0.32, respectively, were found in the first 50 μs of the pulse at oxygen pressures of ≥5x10 -5 Torr. The average charge state of aluminum ions was found to vary from +1.2 to +2.5 depending on the oxygen pressure and the time elapsed after ignition of the arc. These results are of fundamental importance for the understanding of the evolution of the composition (through the plasma composition) and microstructure (through the Al ion flux energy) of alumina thin films produced by pulsed, reactive aluminum plasmas. copyright 1999 American Institute of Physics

  8. Modification of surface characteristic and tribo-electric properties of polymers by DBD plasma in atmospheric air

    Science.gov (United States)

    Bekkara, Mohammed Fethi; Dascalescu, Lucien; Benmimoun, Youcef; Zeghloul, Thami; Tilmatine, Amar; Zouzou, Noureddine

    2018-01-01

    The aim of this paper is to quantify the effects of dielectric barrier discharge (DBD) exposure on the physico-chemical and tribo-electric properties of polymers. The study was conducted in atmospheric air on polypropylene, polyethylene and polyvinyl-chloride. These three types of polymers are widely used in industry. The polymers were characterized by means of an optical profilometer, a fourier-transform infrared (FTIR) spectrometer and an electric charge measurement system. The latter is composed of a Faraday pail connected to an electrometer. The profilometer analyses showed that the DBD plasma treatment has increased the surface roughness of the three polymers. FTIR revealed that oxygen atoms and polar groups were grafted on their surfaces, thereby conferring them a hydrophilic character. The short (2 sec) DBD plasma treatment has considerably improved the electrostatic charge acquired by the polymers during electrostatic tribo-charging, while longer exposures conferred the polymer anti-static properties and decreased its tribo-charging capability. The correlation between the results of the physico-chemical analyses and the tribo-electric behavior has been discussed.

  9. Biopolymer nanostructures induced by plasma irradiation and metal sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Slepička, P., E-mail: petr.slepicka@vscht.cz [Department of Solid State Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic); Juřík, P. [Department of Solid State Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic); Malinský, P.; Macková, A. [Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Rez, Prague 25068 (Czech Republic); Faculty of Science, J.E. Purkyně University, Ústí nad Labem (Czech Republic); Kasálková, N. Slepičková; Švorčík, V. [Department of Solid State Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic)

    2014-08-01

    Modification based on polymer surface exposure to plasma treatment exhibits an easy and cheap technique for polymer surface nanostructuring. The influence of argon plasma treatment on biopolymer poly(L-lactide acid (PLLA) will be presented in this paper. The combination of Ar{sup +} ion irradiation, consequent sputter metallization (platinum) and thermal annealing of polymer surface will be summarized. The surface morphology was studied using atomic force microscopy. The Rutherford Backscattering Spectroscopy and X-ray Photoelectron Spectroscopy were used as analytical methods. The combination of plasma treatment with consequent thermal annealing and/or metal sputtering led to the change of surface morphology and its elemental ratio. The surface roughness and composition has been strongly influenced by the modification parameters and metal layer thickness. By plasma treatment of polymer surface combined with consequent annealing or metal deposition can be prepared materials applicable both in tissue engineering as cell carriers, but also in integrated circuit manufacturing.

  10. Surface modification of nanoporous alumina membranes by plasma polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Losic, Dusan; Cole, Martin A; Dollmann, Bjoern; Vasilev, Krasimir; Griesser, Hans J [Ian Wark Research Institute, University of South Australia, Mawson Lakes, Adelaide, SA 5095 (Australia)], E-mail: dusan.losic@unisa.edu.au

    2008-06-18

    The deposition of plasma polymer coatings onto porous alumina (PA) membranes was investigated with the aim of adjusting the surface chemistry and the pore size of the membranes. PA membranes from commercial sources with a range of pore diameters (20, 100 and 200 nm) were used and modified by plasma polymerization using n-heptylamine (HA) monomer, which resulted in a chemically reactive polymer surface with amino groups. Heptylamine plasma polymer (HAPP) layers with a thickness less than the pore diameter do not span the pores but reduce their diameter. Accordingly, by adjusting the deposition time and thus the thickness of the plasma polymer coating, it is feasible to produce any desired pore diameter. The structural and chemical properties of modified membranes were studied by scanning electron microscopy (SEM), atomic force microscopy (AFM) and x-ray electron spectroscopy (XPS). The resultant PA membranes with specific surface chemistry and controlled pore size are applicable for molecular separation, cell culture, bioreactors, biosensing, drug delivery, and engineering complex composite membranes.

  11. Surface modification of nanoporous alumina membranes by plasma polymerization

    International Nuclear Information System (INIS)

    Losic, Dusan; Cole, Martin A; Dollmann, Bjoern; Vasilev, Krasimir; Griesser, Hans J

    2008-01-01

    The deposition of plasma polymer coatings onto porous alumina (PA) membranes was investigated with the aim of adjusting the surface chemistry and the pore size of the membranes. PA membranes from commercial sources with a range of pore diameters (20, 100 and 200 nm) were used and modified by plasma polymerization using n-heptylamine (HA) monomer, which resulted in a chemically reactive polymer surface with amino groups. Heptylamine plasma polymer (HAPP) layers with a thickness less than the pore diameter do not span the pores but reduce their diameter. Accordingly, by adjusting the deposition time and thus the thickness of the plasma polymer coating, it is feasible to produce any desired pore diameter. The structural and chemical properties of modified membranes were studied by scanning electron microscopy (SEM), atomic force microscopy (AFM) and x-ray electron spectroscopy (XPS). The resultant PA membranes with specific surface chemistry and controlled pore size are applicable for molecular separation, cell culture, bioreactors, biosensing, drug delivery, and engineering complex composite membranes

  12. Polymer composite adsorbents using particles of molecularly imprinted polymers or aluminium oxide nanoparticles for treatment of arsenic contaminated waters.

    Science.gov (United States)

    Önnby, L; Pakade, V; Mattiasson, B; Kirsebom, H

    2012-09-01

    Removal of As(V) by adsorption from water solutions was studied using three different synthetic adsorbents. The adsorbents, (a) aluminium nanoparticles (Alu-NPs, polymers (polymer backbones of pure polyacrylamide (MIP-cryo) were of better stability than the amine containing polymer backbone (Alu-cryo). Both composites worked well in the studied pH range of pH 2-8. Adsorption tested in real wastewater spiked with arsenic showed that co-ions (nitrate, sulphate and phosphate) affected arsenic removal for Alu-cryo more than for MIP-cryo. Both composites still adsorbed well in the presence of counter-ions (copper and zinc) present at low concentrations (μg/l). The unchanged and selective adsorption in realistic water observed for MIP-cryo was concluded to be due to a successful imprinting, here controlled using a non-imprinted polymer (NIP). A development of MIP-cryo is needed, considering its low adsorption capacity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Structure and properties of nanocrystalline soft magnetic composite materials with silicon polymer matrix

    International Nuclear Information System (INIS)

    Dobrzanski, L.A.; Nowosielski, R.; Konieczny, J.; PrzybyI, A.; WysIocki, J.

    2005-01-01

    The paper concerns investigation of nanocrystalline composites technology preparation. The composites in the form of rings with rectangular transverse section, and with polymer matrix and nanocrystalline metallic powders fulfillment were made, for obtaining good ferromagnetic properties. The nanocrystalline ferromagnetic powders were manufactured by high-energy ball milling of metallic glasses strips in an as-quenched state. Generally for investigation, Co matrix alloys with the silicon polymer were used. Magnetic properties in the form of hysteresis loop by rings method were measured. Generally composite cores showed lower soft ferromagnetic properties than winded cores of nanocrystalline strips, but composite cores showed interesting mechanical properties. Furthermore, the structure of strips and powders on properties of composites were investigated

  14. Tribological performance of polymer composites used in electrical ...

    Indian Academy of Sciences (India)

    engineering applications. ZAFER DEMIR. Anadolu University, Eskisehir, Turkey. MS received 28 December 2011; revised 13 March 2012. Abstract. Sliding wear performance of 20% mica-filled polyamide 6 (PA6 + 20% mica) and 20% short glass fibre- reinforced polysulphone (PSU + 20 GFR) polymer composites used in ...

  15. Mechanical properties of natural fibre reinforced polymer composites

    Indian Academy of Sciences (India)

    In the present communication, a study on the synthesis and mechanical properties of new series of green composites involving Hibiscus sabdariffa fibre as a reinforcing material in urea–formaldehyde (UF) resin based polymer matrix has been reported. Static mechanical properties of randomly oriented intimately mixed ...

  16. Shrinkage Characteristics of Experimental Polymer Containing Composites under Controlled Light Curing Modes

    Directory of Open Access Journals (Sweden)

    Alain Pefferkorn

    2012-01-01

    Full Text Available The adsorption of polymethylmethacrylate polymer of different molecular weight at the aerosil/ethyleneglycol- or 1,3 butanediol-dimethacrylate interfaces was determined to provide microstructured networks. Their structural characteristics were determined to be controlled by the amount of polymer initially supplied to the system. The sediment (the settled phase characteristics, determined as a function of the polymer concentration and the rate of the polymerization shrinkage determined for composite resins, obtained by extrusion of the sediment after centrifugation, were found to be correlated. The specific role of the adsorbed polymer was found to be differently perturbed with the supplementary supply of dimethacrylate based monomer additives. Particularly, the bisphenol A dimethacrylate that generated crystals within the sediment was found to impede the shrinkage along the crystal lateral faces and strongly limit the shrinkage along its basal faces. Addition of ethyleneglycol- or polyethylene-glycoldimethacrylate monomers was determined to modify the sedimentation characteristics of the aerosil suspension and the shrinkage properties of the composites. Finally, the effects of stepwise light curing methods with prolonged lighting-off periods were investigated and found to modify the development and the final values of the composite shrinkage.

  17. Development of a wood-polymer composite by electron beam hardening

    International Nuclear Information System (INIS)

    Gotoda, Masao

    1974-01-01

    An incombustible wood-polymer composite (WPC) was studied. The dimensional stability was also tested. The comparison of conversion ratio was made between gamma-ray and electron beam and between a vinylidene chloride 100% impregnated beech composite and bulk. In the case of gamma-ray of low dose rate, the conversion ratio in the vinylidene chloride beech composite was lower than the bulk. In the case of electron beam, though dose rate was higher than that of gamma-ray, the conversion ratio was low, and was influenced by the moisture content of wood. The conversion ratio markedly decreased with the increase of the dose rate of electron beam. Roughly 50% polymer loading can be obtained when the dose rate of electron beam is low. In the case of gamma-ray, the effect of dimensional stability was approximately none with small polymer loading, whereas in the case of electron beam irradiation of moist wood, marked effect of dimensional stability was shown. Incombustibility effect was tested by burning a 150 mm long piece, in which three small pieces of 5 x 10 x 50 mm were connected with epoxy resin adhesive, with a Bunsen burner for 30 seconds. After the completion of burning, the long piece was separated back into three small pieces, and the char length, weight loss and after glow time were tested. The beech composite was expected to become incombustible at 40% polymer loading. The vinyl monomer solution of chlorinated aryl chloride oligomer can be easily hardened by electron beam irradiation. Addition of crosslinking agent such as trimethylol propane trimethracrylate prevents the dissolution of hardened methyl acrylate and methyl methacrylate by acetone. The electron beam hardening of aryl resin compound is possible, using benzen peroxide as a catalyst. Floor material can be produced by this process from low density, low price wood. (Iwakiri, K.)

  18. Argon plasma sintering of inkjet printed silver tracks on polymer substrates

    NARCIS (Netherlands)

    Reinhold, I.; Hendriks, C.E.; Eckardt, R.; Kranenburg, J.M.; Perelaer, J.; Baumann, R.; Schubert, U.S.

    2009-01-01

    An alternative and selective sintering method for the fabrication of conductive silver tracks on common polymer substrates is presented, by exposure to low-pressure argon plasma. Inkjet printing has been used to pattern a silver nanoparticle ink. This resulted in conductive features with a

  19. An experimental study of mechanical behavior of natural fiber reinforced polymer matrix composites

    Science.gov (United States)

    Ratna, Sanatan; Misra, Sheelam

    2018-05-01

    Fibre-reinforced polymer composites have played a dominant role for a long time in a variety of applications for their high specific strength and modulus. The fibre which serves as a reinforcement in reinforced plastics may be synthetic or natural. Past studies show that only synthetic fibres such as glass, carbon etc., have been used in fibre reinforced plastics. Although glass and other synthetic fibre-reinforced plastics possess high specific strength, their fields of application are very limited because of their inherent higher cost of production. In this connection, an investigation has been carried out to make use of horse hair, an animal fibre abundantly available in India. Animal fibres are not only strong and lightweight but also relatively very cheaper than mineral fibre. The present work describes the development and characterization of a new set of animal fiber based polymer composites consisting of horse hair as reinforcement and epoxy resin. The newly developed composites are characterized with respect to their mechanical characteristics. Experiments are carried out to study the effect of fibre length on mechanical behavior of these epoxy based polymer composites. Composite made form horse hair can be used as a potential reinforcing material for many structural and non-structural applications. This work can be further extended to study other aspects of such composites like effect of fiber content, loading pattern, fibre treatment on mechanical behavior of horse hair based polymer horse hair.

  20. Thermal conductivity of polymer composites with oriented boron nitride

    International Nuclear Information System (INIS)

    Ahn, Hong Jun; Eoh, Young Jun; Park, Sung Dae; Kim, Eung Soo

    2014-01-01

    Highlights: • Thermal conductivity depended on the orientation of BN in the polymer matrices. • Hexagonal boron nitride (BN) particles were treated by C 27 H 27 N 3 O 2 and C 14 H 6 O 8 . • Amphiphilic-agent-treated BN particles are more easily oriented in the composite. • BN/PVA composites with C 14 H 6 O 8 -treated BN showed the highest thermal conductivity. • Thermal conductivity of the composites was compared with several theoretical models. - Abstract: Thermal conductivity of boron nitride (BN) with polyvinyl alcohol (PVA) and/or polyvinyl butyral (PVB) was investigated as a function of the degree of BN orientation, the numbers of hydroxyl groups in the polymer matrices and the amphiphilic agents used. The composites with in-plane orientation of BN showed a higher thermal conductivity than the composites with out-of-plane orientation of BN due to the increase of thermal pathway. For a given BN content, the composites with in-plane orientation of BN/PVA showed higher thermal conductivity than the composites with in-plane orientation of BN/PVB. This result could be attributed to the improved degree of orientation of BN, caused by a larger number of hydroxyl groups being present. Those treated with C 14 H 6 O 8 amphiphilic agent demonstrated a higher thermal conductivity than those treated by C 27 H 27 N 3 O 2 . The measured thermal conductivity of the composites was compared with that predicted by the several theoretical models

  1. Numerical Modeling of Macroscopic Behavior of Particulate Composite with Crosslinked Polymer Matrix

    Czech Academy of Sciences Publication Activity Database

    Náhlík, Luboš; Máša, B.; Hutař, Pavel

    2011-01-01

    Roč. 465, - (2011), s. 129-132 ISSN 1013-9826 R&D Projects: GA ČR GA106/08/1409 Institutional research plan: CEZ:AV0Z20410507 Keywords : Particle reinforced composites * polymer matrix composite * mechanical response Subject RIV: JI - Composite Materials

  2. Nanoparticle and gelation stabilized functional composites of an ionic salt in a hydrophobic polymer matrix.

    Directory of Open Access Journals (Sweden)

    Selin Kanyas

    Full Text Available Polymer composites consisted of small hydrophilic pockets homogeneously dispersed in a hydrophobic polymer matrix are important in many applications where controlled release of the functional agent from the hydrophilic phase is needed. As an example, a release of biomolecules or drugs from therapeutic formulations or release of salt in anti-icing application can be mentioned. Here, we report a method for preparation of such a composite material consisted of small KCOOH salt pockets distributed in the styrene-butadiene-styrene (SBS polymer matrix and demonstrate its effectiveness in anti-icing coatings. The mixtures of the aqueous KCOOH and SBS-cyclohexane solutions were firstly stabilized by adding silica nanoparticles to the emulsions and, even more, by gelation of the aqueous phase by agarose. The emulsions were observed in optical microscope to check its stability in time and characterized by rheological measurements. The dry composite materials were obtained via casting the emulsions onto the glass substrates and evaporations of the organic solvent. Composite polymer films were characterized by water contact angle (WCA measurements. The release of KCOOH salt into water and the freezing delay experiments of water droplets on dry composite films demonstrated their anti-icing properties. It has been concluded that hydrophobic and thermoplastic SBS polymer allows incorporation of the hydrophilic pockets/phases through our technique that opens the possibility for controlled delivering of anti-icing agents from the composite.

  3. Resin bond to indirect composite and new ceramic/polymer materials: a review of the literature.

    Science.gov (United States)

    Spitznagel, Frank A; Horvath, Sebastian D; Guess, Petra C; Blatz, Markus B

    2014-01-01

    Resin bonding is essential for clinical longevity of indirect restorations. Especially in light of the increasing popularity of computer-aided design/computer-aided manufacturing-fabricated indirect restorations, there is a need to assess optimal bonding protocols for new ceramic/polymer materials and indirect composites. The aim of this article was to review and assess the current scientific evidence on the resin bond to indirect composite and new ceramic/polymer materials. An electronic PubMed database search was conducted from 1966 to September 2013 for in vitro studies pertaining the resin bond to indirect composite and new ceramic/polymer materials. The search revealed 198 titles. Full-text screening was carried out for 43 studies, yielding 18 relevant articles that complied with inclusion criteria. No relevant studies could be identified regarding new ceramic/polymer materials. Most common surface treatments are aluminum-oxide air-abrasion, silane treatment, and hydrofluoric acid-etching for indirect composite restoration. Self-adhesive cements achieve lower bond strengths in comparison with etch-and-rinse systems. Thermocycling has a greater impact on bonding behavior than water storage. Air-particle abrasion and additional silane treatment should be applied to enhance the resin bond to laboratory-processed composites. However, there is an urgent need for in vitro studies that evaluate the bond strength to new ceramic/polymer materials. This article reviews the available dental literature on resin bond of laboratory composites and gives scientifically based guidance for their successful placement. Furthermore, this review demonstrated that future research for new ceramic/polymer materials is required. © 2014 Wiley Periodicals, Inc.

  4. Preparation and application of PVDF-HFP composite polymer electrolytes in LiNi0.5Co0.2Mn0.3O2 lithium-polymer batteries

    International Nuclear Information System (INIS)

    Yang, Chun-Chen; Lian, Zuo-Yu; Lin, S.J.; Shih, Jeng-Ywan; Chen, Wei-Houng

    2014-01-01

    Graphical abstract: - Highlights: • PVDF-HFP/SBA15 membrane and NCM cathode material were prepared for Li ion battery. • SBA15 fillers can trap more liquid electrolytes to enhance the ionic conductivity. • Modified fillers with functional groups play a key role in reducing impedance. • LiNi 0.5 Co 0.2 Mn 0.3 O 2 polymer battery showed excellent electrochemical performance. - Abstract: This study reports the preparation of a composite polymer electrolyte for application in LiNi 0.5 Co 0.2 Mn 0.3 O 2 lithium-polymer batteries. Poly(vinylidiene fluoride-hexafluoropropylene) (denoted as PVDF-HFP) was used as the polymer host and mesoporous modified-silica fillers (denoted as m-SBA15) used as the solid plasticizer were added into the polymer matrix. The characteristic properties of the composite polymer membranes were examined using Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), and an AC impedance method. The discharge capacities of LiNi 0.5 Co 0.2 Mn 0.3 O 2 polymer batteries with a PE separator, pure PVDF-HFP polymer membrane, or a PVDF-HFP/10 wt.%m-SBA15 composite at 0.1 C were determined to be 155.5, 159.5, and 198.6 mAh g −1 , respectively. The LiNi 0.5 Co 0.2 Mn 0.3 O 2 polymer battery containing the PVDF-HFP/10 wt.%m-SBA15 composite achieved discharge capacities of 194, 170, 161, 150, 129, 115, and 87 mAh g −1 at 0.1, 0.2, 0.5, 1, 3, 5, and 10 C, respectively. The lithium-polymer battery demonstrated a high coulomb efficiency of ca. 99%. The PVDF-HFP/m-SBA15 composite membrane is a strong candidate for application in LiNi 0.5 Co 0.2 Mn 0.3 O 2 lithium-polymer batteries

  5. Process and Microstructure to Achieve Ultra-high Dielectric Constant in Ceramic-Polymer Composites

    Science.gov (United States)

    Zhang, Lin; Shan, Xiaobing; Bass, Patrick; Tong, Yang; Rolin, Terry D.; Hill, Curtis W.; Brewer, Jeffrey C.; Tucker, Dennis S.; Cheng, Z.-Y.

    2016-01-01

    Influences of process conditions on microstructure and dielectric properties of ceramic-polymer composites are systematically studied using CaCu3Ti4O12 (CCTO) as filler and P(VDF-TrFE) 55/45 mol.% copolymer as the matrix by combining solution-cast and hot-pressing processes. It is found that the dielectric constant of the composites can be significantly enhanced–up to about 10 times – by using proper processing conditions. The dielectric constant of the composites can reach more than 1,000 over a wide temperature range with a low loss (tan δ ~ 10−1). It is concluded that besides the dense structure of composites, the uniform distribution of the CCTO particles in the matrix plays a key role on the dielectric enhancement. Due to the influence of the CCTO on the microstructure of the polymer matrix, the composites exhibit a weaker temperature dependence of the dielectric constant than the polymer matrix. Based on the results, it is also found that the loss of the composites at low temperatures, including room temperature, is determined by the real dielectric relaxation processes including the relaxation process induced by the mixing. PMID:27767184

  6. Silver-containing polymer composition used in spacecraft and semiconductor optoelectronics control systems

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, A. A., E-mail: alexchemtsu@rambler.ru; Tuev, V. I., E-mail: tvi-retem@main.tusur.ru [Tomsk State University of Control Systems and Radioelectronics, Tomsk, 634050 (Russian Federation)

    2015-10-27

    The copolymer of the vinyl chloride-maleic anhydride and silver nano- and microparticle (70 wt %) composition is offered as a conductive adhesive for fixing various chips on the dielectric substrate. The wiring volume resistivity is up to 3.1×10{sup −8} Ohm×m. The adhesive strength of the silver-containing polymer composition (70% of Ag) applied under a shear on the dielectric substrate is 106 N/mm{sup 2}. Adhesive layers obtained from these substances have a high thermal conductivity up to λ = 199.93 W/m×K that depends on the amount of Ag in the polymer composition.

  7. A possible recycling method for high grade steels EAFD in polymer composites.

    Science.gov (United States)

    Niubó, M; Fernández, A I; Chimenos, J M; Haurie, L

    2009-11-15

    This work evaluates the feasibility of incorporating electric arc furnace dust (EAFD), as filler in a polymer matrix, to obtain a moldable heavyweight sheet, useful for acoustic insulation in automotive industry. For this purpose EAFD from a steel factory that manufactures high quality steels, was characterized and different formulations of composites were prepared. Physical and mechanical properties, as well as fire behaviour were tested and compared with a polymer composite compounded with common mineral fillers. Optimum formulation with 25% EAFD fulfils the RoHs Directive used by automotive industry to regulate heavy metals content. Leaching test was also performed on prepared composites to classify the material after use.

  8. Fabrication of submicron structures in nanoparticle/polymer composite by holographic lithography and reactive ion etching

    Science.gov (United States)

    Zhang, A. Ping; He, Sailing; Kim, Kyoung Tae; Yoon, Yong-Kyu; Burzynski, Ryszard; Samoc, Marek; Prasad, Paras N.

    2008-11-01

    We report on the fabrication of nanoparticle/polymer submicron structures by combining holographic lithography and reactive ion etching. Silica nanoparticles are uniformly dispersed in a (SU8) polymer matrix at a high concentration, and in situ polymerization (cross-linking) is used to form a nanoparticle/polymer composite. Another photosensitive SU8 layer cast upon the nanoparticle/SU8 composite layer is structured through holographic lithography, whose pattern is finally transferred to the nanoparticle/SU8 layer by the reactive ion etching process. Honeycomb structures in a submicron scale are experimentally realized in the nanoparticle/SU8 composite.

  9. Etching of polymers, proteins and bacterial spores by atmospheric pressure DBD plasma in air

    Science.gov (United States)

    Kuzminova, A.; Kretková, T.; Kylián, O.; Hanuš, J.; Khalakhan, I.; Prukner, V.; Doležalová, E.; Šimek, M.; Biederman, H.

    2017-04-01

    Many studies proved that non-equilibrium discharges generated at atmospheric pressure are highly effective for the bio-decontamination of surfaces of various materials. One of the key processes that leads to a desired result is plasma etching and thus the evaluation of etching rates of organic materials is of high importance. However, the comparison of reported results is rather difficult if impossible as different authors use diverse sources of atmospheric plasma that are operated at significantly different operational parameters. Therefore, we report here on the systematic study of the etching of nine different common polymers that mimic the different structures of more complicated biological systems, bovine serum albumin (BSA) selected as the model protein and spores of Bacillus subtilis taken as a representative of highly resistant micro-organisms. The treatment of these materials was performed by means of atmospheric pressure dielectric barrier discharge (DBD) sustained in open air at constant conditions. All tested polymers, BSA and spores, were readily etched by DBD plasma. However, the measured etching rates were found to be dependent on the chemical structure of treated materials, namely on the presence of oxygen in the structure of polymers.

  10. The material balance of process of plasma-chemical conversion of polymer wastes into synthesis gas

    International Nuclear Information System (INIS)

    Tazmeev, A Kh; Tazmeeva, R N

    2017-01-01

    The process of conversion of polymer wastes in the flow of water-steam plasma which are created by the liquid electrodes plasma generators was experimentally studied. The material balance was calculated. The regularities of the participating of hydrogen and oxygen which contained in the water-steam plasma, in formation of chemical compounds in the final products were revealed. (paper)

  11. The material balance of process of plasma-chemical conversion of polymer wastes into synthesis gas

    Science.gov (United States)

    Tazmeev, A. Kh; Tazmeeva, R. N.

    2017-01-01

    The process of conversion of polymer wastes in the flow of water-steam plasma which are created by the liquid electrodes plasma generators was experimentally studied. The material balance was calculated. The regularities of the participating of hydrogen and oxygen which contained in the water-steam plasma, in formation of chemical compounds in the final products were revealed.

  12. Microstructure and Mechanical Properties of Heterogeneous Ceramic-Polymer Composite Using Interpenetrating Network

    International Nuclear Information System (INIS)

    Eun-Hee, K.; Yeon-Gil, J.; Chang-Yong, J.

    2012-01-01

    Prepolymer, which can be polymerized by a photo, has been infiltrated into a porous ceramic to improve the addition effect of polymer into the ceramic, as a function of the functionality of prepolymer. It induces the increase in the mechanical properties of the ceramic. The porous alumina (Al 2 O 3 ) and the polyurethane acrylate (PUA) with a network structure by photo-polymerization were used as the matrix and infiltration materials, respectively. The porous Al 2 O 3 matrix without the polymer shows lower values in fracture strength than the composites, since the stress is transmitted more quickly via propagation of cracks from intrinsic defects in the porous matrix. However, in the case of composites, the distribution of stress between hetero phases results in the improved mechanical properties. In addition, the mechanical properties of composites, such as elastic modulus and fracture strength, are enhanced with increasing the functionality of prepolymer attributed to the crosslinking density of polymer.

  13. Ceramic matrix composites using polymer pyrolysis and liquid densification processing

    International Nuclear Information System (INIS)

    Davis, H.O.; Petrak, D.R.

    1995-01-01

    The polymer precursor approach for manufacture of ceramic matrix composites (CMCs) is both flexible and tailorable to shape and engineering requirements. The tailorability includes a wide range of reinforcements, polymer matrix precursors and fillers. Processing is selected based on cure/pressure requirements to best produce the required shape, radii, fiber volume and fiber orientation. Combinations of tooling used for cure/pressure applications are discussed and fabricated components are shown. ((orig.))

  14. "Thunderstruck": Plasma-Polymer-Coated Porous Silicon Microparticles As a Controlled Drug Delivery System.

    Science.gov (United States)

    McInnes, Steven J P; Michl, Thomas D; Delalat, Bahman; Al-Bataineh, Sameer A; Coad, Bryan R; Vasilev, Krasimir; Griesser, Hans J; Voelcker, Nicolas H

    2016-02-01

    Controlling the release kinetics from a drug carrier is crucial to maintain a drug's therapeutic window. We report the use of biodegradable porous silicon microparticles (pSi MPs) loaded with the anticancer drug camphothecin, followed by a plasma polymer overcoating using a loudspeaker plasma reactor. Homogenous "Teflon-like" coatings were achieved by tumbling the particles by playing AC/DC's song "Thunderstruck". The overcoating resulted in a markedly slower release of the cytotoxic drug, and this effect correlated positively with the plasma polymer coating times, ranging from 2-fold up to more than 100-fold. Ultimately, upon characterizing and verifying pSi MP production, loading, and coating with analytical methods such as time-of-flight secondary ion mass spectrometry, scanning electron microscopy, thermal gravimetry, water contact angle measurements, and fluorescence microscopy, human neuroblastoma cells were challenged with pSi MPs in an in vitro assay, revealing a significant time delay in cell death onset.

  15. 25th Anniversary Article: Polymer-Particle Composites: Phase Stability and Applications in Electrochemical Energy Storage

    KAUST Repository

    Srivastava, Samanvaya

    2013-12-09

    Polymer-particle composites are used in virtually every field of technology. When the particles approach nanometer dimensions, large interfacial regions are created. In favorable situations, the spatial distribution of these interfaces can be controlled to create new hybrid materials with physical and transport properties inaccessible in their constituents or poorly prepared mixtures. This review surveys progress in the last decade in understanding phase behavior, structure, and properties of nanoparticle-polymer composites. The review takes a decidedly polymers perspective and explores how physical and chemical approaches may be employed to create hybrids with controlled distribution of particles. Applications are studied in two contexts of contemporary interest: battery electrolytes and electrodes. In the former, the role of dispersed and aggregated particles on ion-transport is considered. In the latter, the polymer is employed in such small quantities that it has been historically given titles such as binder and carbon precursor that underscore its perceived secondary role. Considering the myriad functions the binder plays in an electrode, it is surprising that highly filled composites have not received more attention. Opportunities in this and related areas are highlighted where recent advances in synthesis and polymer science are inspiring new approaches, and where newcomers to the field could make important contributions. Polymer-particle composites are used in virtually every field of technology. When the particles approach nanometer dimensions, large interfacial regions are created that can be exploited for applications. The fundamental approaches and bottom-up synthesis strategies for understanding and controlling nanoparticle dispersion in polymers are reviewed. Applications of these approaches for creating polymer-particle composite electrolytes and electrodes for energy storage are also considered. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Physical, mechanical, and biodegradable properties of meranti wood polymer composites

    International Nuclear Information System (INIS)

    Enamul Hoque, M.; Aminudin, M.A.M.; Jawaid, M.; Islam, M.S.; Saba, N.; Paridah, M.T.

    2014-01-01

    Highlights: • In-situ polymerization and solution casting method used to manufacture WPC. • In-situ WPC exhibited better properties compared to pure wood, 5% WPC and 20% WPC. • Lowest water absorption and least biodegradability shown by In-situ wood. - Abstract: In-situ polymerization and solution casting techniques are two effective methods to manufacture wood polymer composites (WPCs). In this study, wood polymer composites (WPCs) were manufactured from meranti sapwood by solution casting and in-situ polymerization process using methyl methacrylate (MMA) and epoxy matrix respectively. Physical, mechanical, and morphological characterizations of fabricated WPCs were then carried out to analyse their properties. Morphological properties of composites samples were analyzed through scanning electron microscopy (SEM). The result reveals that in-situ wood composite exhibited better properties compared to pure wood, 5% WPC and 20% WPC. Moreover, in-situ WPC had lowest water absorption and least biodegraded. Conversely, pure wood shown moderate mechanical strength, high biodegradation and water absorption rate. In term of biodegradation, earth-medium brought more severe effect than water in deteriorating the properties of the specimens

  17. The Impact Resistance of Fiber-Reinforced Polymer Composites: A Review

    Directory of Open Access Journals (Sweden)

    Mahmood Mehrdad Shokrieh

    2012-12-01

    Full Text Available Fiber reinforced composites are widely used instead of traditional materials in various technological applications. Therefore, by considering the extensive applications of these materials, a proper knowledge of their impact behavior (from low- to high-velocity as well as their static behavior is necessary. In order to study the effects of strain rates on the behavior of these materials, special testing machines are needed. Most of the research efforts in this feld are focused on application of real loading and gripping boundary conditions on the testing specimens. In this paper, a detailed review of different types of impact testing techniques and the strain rate dependence of mechanical and strength properties of polymer composite materials  are presented. In this respect, an attempt is made to present and summarize the methods of impact tests and the strain rate effects on the tensile, compressive, shear and bending properties of the fber-reinforced polymer composite materials. Moreover, a classifcation of the state-of-the-art of the testing techniques to characterize composite material properties in a wide range of strain rates are also given.

  18. The dynamic response of carbon fiber-filled polymer composites

    Directory of Open Access Journals (Sweden)

    Patterson B.

    2012-08-01

    Full Text Available The dynamic (shock responses of two carbon fiber-filled polymer composites have been quantified using gas gun-driven plate impact experimentation. The first composite is a filament-wound, highly unidirectional carbon fiber-filled epoxy with a high degree of porosity. The second composite is a chopped carbon fiber- and graphite-filled phenolic resin with little-to-no porosity. Hugoniot data are presented for the carbon fiber-epoxy (CE composite to 18.6 GPa in the through-thickness direction, in which the shock propagates normal to the fibers. The data are best represented by a linear Rankine-Hugoniot fit: Us = 2.87 + 1.17 ×up(ρ0 = 1.536g/cm3. The shock wave structures were found to be highly heterogeneous, both due to the anisotropic nature of the fiber-epoxy microstructure, and the high degree of void volume. Plate impact experiments were also performed on a carbon fiber-filled phenolic (CP composite to much higher shock input pressures, exceeding the reactants-to-products transition common to polymers. The CP was found to be stiffer than the filament-wound CE in the unreacted Hugoniot regime, and transformed to products near the shock-driven reaction threshold on the principal Hugoniot previously shown for the phenolic binder itself. [19] On-going research is focused on interrogating the direction-dependent dyanamic response and dynamic failure strength (spall for the CE composite in the TT and 0∘ (fiber directions.

  19. Polymer-carbon black composite sensors in an electronic nose for air-quality monitoring

    Science.gov (United States)

    Ryan, M. A.; Shevade, A. V.; Zhou, H.; Homer, M. L.

    2004-01-01

    An electronic nose that uses an array of 32 polymer-carbon black composite sensors has been developed, trained, and tested. By selecting a variety of chemical functionalities in the polymers used to make sensors, it is possible to construct an array capable of identifying and quantifying a broad range of target compounds, such as alcohols and aromatics, and distinguishing isomers and enantiomers (mirror-image isomers). A model of the interaction between target molecules and the polymer-carbon black composite sensors is under development to aid in selecting the array members and to enable identification of compounds with responses not stored in the analysis library.

  20. Synthesis and characterization of new oxalate ester-polymer composites for practical applications

    Energy Technology Data Exchange (ETDEWEB)

    Petre, Razvan [Scientific Research Centre for CBRN Defense and Ecology, 225 Sos. Oltenitei, Bucharest 041309 (Romania); University POLITEHNICA of Bucharest, 149 Calea Victoriei, Bucharest 010072 (Romania); Zecheru, Teodora, E-mail: teodora.zecheru@yahoo.com [Scientific Research Centre for CBRN Defense and Ecology, 225 Sos. Oltenitei, Bucharest 041309 (Romania)

    2013-03-15

    The present study focused on the synthesis of high purity oxalate esters: bis(2,4,6-trichlorophenyl) oxalate (TCPO) and bis(2,4,5-trichloro-6-carbobutoxyphenyl) oxalate (TCCBPO), and further on their incorporation into potentially applicative polymer composites. The organic compounds were characterized through NMR and the composites obtained were evaluated for light capacity availability at room temperature and low temperatures. The concentrations of the peroxide, fluorescer, catalyst, and polymer additives were optimized. The chemiluminescent composites' performances were evaluated after 360 days and returned satisfactory results. - Highlights: Black-Right-Pointing-Pointer bis(2,4,6-Trichlorophenyl)-oxalate (TCPO) was synthesized. Black-Right-Pointing-Pointer bis(2,4,5-Trichloro-6-carbobutoxiphenyl)-oxalate (TCCBPO) was synthesized. Black-Right-Pointing-Pointer TCPO and TCCBPO-based composites were obtained. Black-Right-Pointing-Pointer The composites light emission was evaluated versus scotopic visual sensitivity. Black-Right-Pointing-Pointer The new compositions present superior performances within extensive emission time.

  1. Effect of the type of radiation on the degradation behavior of polymer matrix composites

    International Nuclear Information System (INIS)

    Egusa, Shigenori

    1992-01-01

    Four kinds of polymer matrix composites (filler: E-glass or carbon fiber cloth; matrix; epoxy or polyimide resin) were irradiated with neutrons and 60 Co γ-rays at room temperature or at 5 K. Three-point bend tests were then carried out at 77 K. Comparison of the neutron and γ-ray irradiation effects shows that the radiation sensitivity of the glass/epoxy and glass/polyimide composites is 1.8-2.6 times higher to neutrons than to γ-rays, indicating a higher sensitivity of the epoxy and polyimide matrix resins to recoil protons than to γ-rays. Absorbed dose calculations, on the other hand, show that the spatial distribution of the microscopic energy deposition in polymer matrix composites is inhomogeneous for neutrons, although almost homogeneous for γ-rays. In addition, the neutron irradiation of boron-containing E-glass fiber composites produces additional radiation damage due to a 10 B(n,α) 7 Li reaction in the glass fibers, thus significantly enhancing a decrease in the composite strength. These facts indicate that as far as polymer matrix composites are concerned, the irradiation effects of neutrons will be rather difficult to simulate with different types of radiation such as protons and carbon ions from an ion accelerator. Thus, it may be prudent that such simulation irradiation be carried out mainly for pure resins to be used as matrix in polymer matrix composites. (author)

  2. Large Dielectric Constant Enhancement in MXene Percolative Polymer Composites

    KAUST Repository

    Tu, Shao Bo; Jiang, Qiu; Zhang, Xixiang; Alshareef, Husam N.

    2018-01-01

    near the percolation limit of about 15.0 wt % MXene loading, which surpasses all previously reported composites made of carbon-based fillers in the same polymer. With up to 10 wt % MXene loading, the dielectric loss of the MXene

  3. Characterization of polymer composites during autoclave manufacturing by Fourier transform Raman spectroscopy

    Science.gov (United States)

    Farquharson, Stuart; Smith, Wayne W.; Rigas, Elias J.; Granville, Dana

    2001-02-01

    12 The superior engineering properties of fiber reinforced polymer matrix composites, primarily the high strength-to- weight ratio, make them suitable to applications ranging from sporting goods to aircraft components (e.g. helicopter blades). Unfortunately, consistent fabrication of components with desired mechanical properties has proven difficult, and has led to high production costs. This is largely due to the inability to monitor and control polymer cure, loosely defined as the process of polymer chain extension and cross- linking. Even with stringent process control, slight variations in the pre-polymer formulations (e.g. prepreg) can influence reaction rates, reaction mechanisms, and ultimately, product properties. In an effort to optimize the performance of thermoset composite, we have integrated fiber optic probes between the plies of laminates and monitored cure by Raman spectroscopy, with the eventual goal of process control. Here we present real-time measurements of two high performance aerospace companies cured within an industrial autoclave.

  4. Luminescent Polymer Electrolyte Composites Using Silica Coated-Y2O3:Eu as Fillers

    Directory of Open Access Journals (Sweden)

    Mikrajuddin Abdullah

    2003-05-01

    Full Text Available Luminescent polymer electrolyte composites composed of silica coated Y2O3:Eu in polyethylene glycol (PEG matrix has been produced by initially synthesizing silica coated Y2O3:Eu and mixing with polyethylene glycol in a lithium salt solution. High luminescence intensity at round 600 nm contributed by electron transitions in Eu3+ (5D0 -> 7F0, 5D0 -> 7F1, and 5D0 -> 7F3 transitions were observed. The measured electrical conductivity was comparable to that reported for polymer electrolyte composites prepared using passive fillers (non luminescent. This approach is therefore promising for production of high intensity luminescent polymer electrolyte composites for use in development of hybrid battery/display.

  5. The effect of platelet-rich plasma on composite graft survival.

    Science.gov (United States)

    Jeon, Yeo Reum; Kang, Eun Hye; Yang, Chae Eun; Yun, In Sik; Lee, Won Jai; Lew, Dae Hyun

    2014-08-01

    Composite grafts are suitable for facial reconstruction because of good color matching, low donor-site morbidity, acceptable texture, and easy surgical techniques. However, their use is limited to small defects and by unpredictable survival rates. As platelet-rich plasma contains large numbers of growth factors and has been widely used for tissue regeneration, this study aimed to investigate platelet-rich plasma as an adjuvant to enhance composite graft survival. Twenty New Zealand White rabbits were used, and chondrocutaneous composite grafts were applied to their ears. The grafts were then returned to their original positions after rotation to block the original circulation from the base of the graft. Each of the individual ears was assigned randomly into one of two groups: experimental (n=20; platelet-rich plasma group) or control (n=20; control group). The surrounding skin of the composite graft was injected with either 1.0 ml of platelet-rich plasma derived from autologous whole blood in the platelet-rich plasma group or normal saline in the control group. Graft survival, cutaneous blood flow, CD31-stained vessels, and vascular endothelial growth factor protein levels were examined. Twelve days after surgery, graft viability in the platelet-rich plasma group was higher than in the control group. Blood perfusion was also higher in the platelet-rich plasma group. Compared with the control group, the number of CD31 blood vessels and vascular endothelial growth factor expression levels were significantly increased in the platelet-rich plasma group. The authors' results suggest that platelet-rich plasma restores the perfusion of composite grafts by enhancing revascularization and may exert therapeutic effects on the survival of composite grafts.

  6. Preparation of polymer-organo clay nano composites through the spray drying process

    International Nuclear Information System (INIS)

    Bernardo, Paulo R.A.; Pessan, Luiz A.; Carvalho, Antonio J.F. de; Vidotti, Suel E.

    2011-01-01

    The objective of the work was the study and preparation of polymer nano composites with montmorillonite organo clays (MMT) through the spray drying process. A new technique was proposed and tested to obtaining polymer nano composites, based on the use of the spray drying process to produce a nano composite with high clay content. The process consisted of the following stages: clay intercalation in water solution, with after addition of polyvinyl alcohol (PVOH) and a hydro soluble polyester ionomer (GEROLPS20) as exfoliation agents; spray drying the mixture obtained; incorporation powder in EVOH, PET e PP matrix. The effects of exfoliation agent on morphological and thermal properties of the nano composites were studied by XRD, transmission electron microscopy (TEM) and TGA. The results demonstrate that the process of spray drying is an innovative way to obtain a nano composite with high clay content. (author)

  7. Full factorial design analysis of carbon nanotube polymer-cement composites

    Directory of Open Access Journals (Sweden)

    Fábio de Paiva Cota

    2012-08-01

    Full Text Available The work described in this paper is related to the effect of adding carbon nanotubes (CNT on the mechanical properties of polymer-cement composites. A full factorial design has been performed on 160 samples to identify the contribution provided by the following factors: polymeric phase addition, CNT weight addition and water/cement ratio. The response parameters of the full factorial design were the bulk density, apparent porosity, compressive strength and elastic modulus of the polymer-cement-based nanocomposites. All the factors considered in this analysis affected significantly the bulk density and apparent porosity of the composites. The compressive strength and elastic modulus were affected primarily by the cross-interactions between polymeric phase and CNT additions, and the water/cement ratio with polymeric phase factors.

  8. Effect of Material Parameters on Mechanical Properties of Biodegradable Polymers/Nanofibrillated Cellulose (NFC) Nano Composites

    Science.gov (United States)

    Yottha Srithep; Ronald Sabo; Craig Clemons; Lih-Sheng Turng; Srikanth Pilla; Jun Peng

    2012-01-01

    Using natural cellulosic fibers as fillers for biodegradable polymers can result in fully biodegradable composites. Biodegradable composites were prepared using nanofibrillated cellulose (NFC) as the reinforcement and poly (3-hydroxybutyrate-co-3-hydroxyvalerate, PHBV) as the polymer matrix. The objective of this study was to determine how various additives (i.e.,...

  9. A Review on Natural Fiber Reinforced Polymer Composite and Its Applications

    Directory of Open Access Journals (Sweden)

    Layth Mohammed

    2015-01-01

    Full Text Available Natural fibers are getting attention from researchers and academician to utilize in polymer composites due to their ecofriendly nature and sustainability. The aim of this review article is to provide a comprehensive review of the foremost appropriate as well as widely used natural fiber reinforced polymer composites (NFPCs and their applications. In addition, it presents summary of various surface treatments applied to natural fibers and their effect on NFPCs properties. The properties of NFPCs vary with fiber type and fiber source as well as fiber structure. The effects of various chemical treatments on the mechanical and thermal properties of natural fibers reinforcements thermosetting and thermoplastics composites were studied. A number of drawbacks of NFPCs like higher water absorption, inferior fire resistance, and lower mechanical properties limited its applications. Impacts of chemical treatment on the water absorption, tribology, viscoelastic behavior, relaxation behavior, energy absorption flames retardancy, and biodegradability properties of NFPCs were also highlighted. The applications of NFPCs in automobile and construction industry and other applications are demonstrated. It concluded that chemical treatment of the natural fiber improved adhesion between the fiber surface and the polymer matrix which ultimately enhanced physicomechanical and thermochemical properties of the NFPCs.

  10. Solid polymer electrolyte composite membrane comprising a porous support and a solid polymer electrolyte including a dispersed reduced noble metal or noble metal oxide

    Science.gov (United States)

    Liu, Han; Mittelsteadt, Cortney K; Norman, Timothy J; Griffith, Arthur E; LaConti, Anthony B

    2015-02-24

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a thin, rigid, dimensionally-stable, non-electrically-conducting support, the support having a plurality of cylindrical, straight-through pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores are unevenly distributed, with some or no pores located along the periphery and more pores located centrally. The pores are completely filled with a solid polymer electrolyte, the solid polymer electrolyte including a dispersed reduced noble metal or noble metal oxide. The solid polymer electrolyte may also be deposited over the top and/or bottom surfaces of the support.

  11. Quickly Updatable Hologram Images Using Poly(N-vinyl Carbazole (PVCz Photorefractive Polymer Composite

    Directory of Open Access Journals (Sweden)

    Wataru Sakai

    2012-08-01

    Full Text Available Quickly updatable hologram images using photorefractive (PR polymer composite based on poly(N-vinyl carbazole (PVCz is presented. PVCz is one of the pioneer materials of photoconductive polymers. PR polymer composite consists of 44 wt % of PVCz, 35 wt % of 4-azacycloheptylbenzylidene-malonitrile (7-DCST as a nonlinear optical dye, 20 wt % of carbazolylethylpropionate (CzEPA as a photoconductive plasticizer and 1 wt % of 2,4,7-trinitro-9-fluorenone (TNF as a sensitizer. PR composite gives high diffraction efficiency of 68% at E = 45 V μm−1. Response speed of optical diffraction is the key parameter for real-time 3D holographic display. The key parameter for obtaining quickly updatable holographic images is to control the glass transition temperature lower enough to enhance chromophore orientation. Object image of the reflected coin surface recorded with reference beam at 532 nm (green beam in the PR polymer composite is simultaneously reconstructed using a red probe beam at 642 nm. Instead of using a coin object, an object image produced by a computer was displayed on a spatial light modulator (SLM and used for the hologram. The reflected object beam from an SLM was interfered with a reference beam on PR polymer composite to record a hologram and simultaneously reconstructed by a red probe beam.

  12. Experimental Investigation on the Durability of Glass Fiber-Reinforced Polymer Composites Containing Nanocomposite

    Directory of Open Access Journals (Sweden)

    Weiwen Li

    2013-01-01

    Full Text Available Nanoclay layers incorporated into polymer/clay nanocomposites can inhibit the harmful penetration of water and chemicals into the material, and thus the durability of glass fiber-reinforced polymer (GFRP composites should be enhanced by using polymer/clay nanocomposite as the matrix material. In this study, 1.5 wt% vinyl ester (VE/organoclay and 2 wt% epoxy (EP/organoclay nanocomposites were prepared by an in situ polymerization method. The dispersion states of clay in the nanocomposites were studied by performing XRD analysis. GFRP composites were then fabricated with the prepared 1.5 wt% VE/clay and 2.0 wt% EP/clay nanocomposites to investigate the effects of a nanocomposite matrix on the durability of GFRP composites. The durability of the two kinds of GFRP composites was characterized by monitoring tensile properties following degradation of GFRP specimens aged in water and alkaline solution at 60°C, and SEM was employed to study fracture behaviors of aged GFRP composites under tension. The results show that tensile properties of the two types of GFRP composites with and without clay degrade significantly with aging time. However, the GFRP composites with nanoclay show a lower degradation rate compared with those without nanoclay, supporting the aforementioned hypothesis. And the modification of EP/GFRP enhanced the durability more effectively.

  13. HfC plasma coating of C/C composites

    International Nuclear Information System (INIS)

    Boncoeur, M.; Schnedecker, G.; Lulewicz, J.D.

    1992-01-01

    The surface properties of C/C composites such as hardness and corrosion or erosion resistance can be modified by a ceramic coating applied by plasma torch. The technique of plasma spraying in controlled temperature and atmosphere, that was developed and patented by the CEA, makes it possible to apply coatings to the majority of metals and ceramics without affecting the characteristics of the composite. An example of hard deposit of HfC on a C/C composite is described. The characteristics of the deposit and of the bonding with the C/C composite were studied before and after a heat treatment under vacuum for 2 hours at 1000 C. 2 refs

  14. Partial-impregnation techniques in the production of wood-polymer composites through gamma irradiation

    International Nuclear Information System (INIS)

    Du Plessis, T.A.; Du Toit, G.S.; Jurriaanse, A.

    1977-04-01

    Radiation-processed wood-polymer composites produced from various partially impregnated Pinus species grown in South Africa were investigated and compared to a number of locally available noble hardwoods in respect of dimensional stability, hardness, homogeneity and weathering properties. This investigation clearly demonstrates that, through partial-impregnation techniques, wood-polymer composites can be formed from the locally grown Pinus species with a considerable saving in monomer costs without sacrificing most of the important physical properties of these materials [af

  15. Microwave Measurements of Ferrite Polymer Composite Materials

    Directory of Open Access Journals (Sweden)

    Rastislav Dosoudil

    2004-01-01

    Full Text Available The article focuses on the microwave measurements performed on the nickel-zinc sintered ferrite with the chemical formula Ni0.3Zn0.7Fe2O4 produced by the ceramic technique and composite materials based on this ferrite and a non-magnetic polymer (polyvinyl chloride matrix. The prepared composite samples had the same particle size distribution 0-250um but different ferrite particle concentrations between 23 vol% and 80 vol%. The apparatus for measurement of the signal proportional to the absolute value of scattering parameter S11 (reflexion coefficient is described and the dependence of measured reflected signal on a bias magnetic field has been studied. By means of experiments, the resonances to be connected with the geometry of microwave experimental set-up were distinguished from ferromagnetic resonance arising in ferrite particles of composite structure. The role of local interaction fields of ferrite particles in composite material has been discussed.

  16. Nano-Fiber Reinforced Enhancements in Composite Polymer Matrices

    Science.gov (United States)

    Chamis, Christos C.

    2009-01-01

    Nano-fibers are used to reinforce polymer matrices to enhance the matrix dependent properties that are subsequently used in conventional structural composites. A quasi isotropic configuration is used in arranging like nano-fibers through the thickness to ascertain equiaxial enhanced matrix behavior. The nano-fiber volume ratios are used to obtain the enhanced matrix strength properties for 0.01,0.03, and 0.05 nano-fiber volume rates. These enhanced nano-fiber matrices are used with conventional fiber volume ratios of 0.3 and 0.5 to obtain the composite properties. Results show that nano-fiber enhanced matrices of higher than 0.3 nano-fiber volume ratio are degrading the composite properties.

  17. Dissolution of artemisinin/polymer composite nanoparticles fabricated by evaporative precipitation of nanosuspension.

    Science.gov (United States)

    Kakran, Mitali; Sahoo, Nanda Gopal; Li, Lin; Judeh, Zaher

    2010-04-01

    An evaporative precipitation of nanosuspension (EPN) method was used to fabricate composite particles of a poorly water-soluble antimalarial drug, artemisinin, with a hydrophilic polymer, polyethylene glycol (PEG), with the aim of enhancing the dissolution rate of artemisinin. We investigated the effect of polymer concentration on the physical, morphological and dissolution properties of the EPN-prepared artemisinin/PEG composites. The original artemisinin powder, EPN-prepared artemisinin nanoparticles and artemisinin/PEG composites were characterised by scanning electron microscopy, Fourier-transform infrared spectroscopy, differential scanning calorimetry (DSC), X-ray diffraction (XRD), dissolution testing and HPLC. The percentage dissolution efficiency, relative dissolution, time to 75% dissolution and mean dissolution time were calculated. The experimental drug dissolution data were fitted to various mathematical models (Weibull, first-order, Korsemeyer-Peppas, Hixson-Crowell cube root and Higuchi models) in order to analyse the release mechanism. The DSC and XRD studies suggest that the crystallinity of the EPN-prepared artemisinin decreased with increasing polymer concentration. The phase-solubility studies revealed an A(L)-type curve, indicating a linear increase in drug solubility with PEG concentration. The dissolution rate of the EPN-prepared artemisinin and artemisinin/PEG composites increased markedly compared with the original artemisinin powder. EPN can be used to prepare artemisinin nanoparticles and artemisinin/PEG composite particles that have a significantly enhanced dissolution rate. The mechanism of drug release involved diffusion and erosion.

  18. Surface Modification of Polymer Substrates for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Oldřich Neděla

    2017-09-01

    Full Text Available While polymers are widely utilized materials in the biomedical industry, they are rarely used in an unmodified state. Some kind of a surface treatment is often necessary to achieve properties suitable for specific applications. There are multiple methods of surface treatment, each with their own pros and cons, such as plasma and laser treatment, UV lamp modification, etching, grafting, metallization, ion sputtering and others. An appropriate treatment can change the physico-chemical properties of the surface of a polymer in a way that makes it attractive for a variety of biological compounds, or, on the contrary, makes the polymer exhibit antibacterial or cytotoxic properties, thus making the polymer usable in a variety of biomedical applications. This review examines four popular methods of polymer surface modification: laser treatment, ion implantation, plasma treatment and nanoparticle grafting. Surface treatment-induced changes of the physico-chemical properties, morphology, chemical composition and biocompatibility of a variety of polymer substrates are studied. Relevant biological methods are used to determine the influence of various surface treatments and grafting processes on the biocompatibility of the new surfaces—mammalian cell adhesion and proliferation is studied as well as other potential applications of the surface-treated polymer substrates in the biomedical industry.

  19. Study on property-gradient polymer electrolyte for rechargeable lithium batteries; Lithium niji denchi no tame no keisha tokusei kobunshi denkaishitsu no sosei ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Kokumi, Z; Kanemura, S; Inaba, M; Takehara, Z; Yao, K; Uchimoto, Y [Kyoto University, Kyoto (Japan)

    1997-02-01

    This paper describes the fundamental experiments for creating property-gradient polymer electrolyte for rechargeable lithium batteries. The rechargeable lithium battery is composed of an anodic composite agent section with high ion conductivity, a separator equivalent section with high mechanical strength (high bridging degree), and a section surpressing the precipitation of metal lithium by contacting with it. The continuous property-gradient polymer electrolyte was tried to be synthesized by means of the plasma polymerization method. As a result, plasma polymerization electrolyte with high ion conductivity could be prepared from the liquid phase by using a monomer with low vapor pressure. Porous material simulating the anodic composite agent was impregnated by the monomer, which was plasma-polymerized. As a result, it was found that the bridging degree decreased from the surface towards the inside of the plasma-polymerized porous material. In addition, polymer was prepared using fluorine-base monomer. Thus, LiF thin film could be prepared through the reaction between the polymer and metal lithium. 3 figs.

  20. Conductive polymer and Si nanoparticles composite secondary particles and structured current collectors for high loading lithium ion negative electrode application

    Science.gov (United States)

    Liu, Gao

    2017-07-11

    Embodiments of the present invention disclose a composition of matter comprising a silicon (Si) nanoparticle coated with a conductive polymer. Another embodiment discloses a method for preparing a composition of matter comprising a plurality of silicon (Si) nanoparticles coated with a conductive polymer comprising providing Si nanoparticles, providing a conductive polymer, preparing a Si nanoparticle, conductive polymer, and solvent slurry, spraying the slurry into a liquid medium that is a non-solvent of the conductive polymer, and precipitating the silicon (Si) nanoparticles coated with the conductive polymer. Another embodiment discloses an anode comprising a current collector, and a composition of matter comprising a silicon (Si) nanoparticle coated with a conductive polymer.

  1. Effects of rf power on chemical composition and surface roughness of glow discharge polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ling; He, Xiaoshan; Chen, Guo; Wang, Tao; Tang, Yongjian; He, Zhibing, E-mail: hezhibing802@163.com

    2016-03-15

    Graphical abstract: - Highlights: • The growth mechanism of defects in GDP films was studied upon plasma diagnosis. • Increasing rf power enhanced the etching effects of smaller-mass species. • The “void” defect was caused by high energy hydrocarbons bombardment on the surface. • The surface roughness was only 12.76 nm, and no “void” defect was observed at 30 W. - Abstract: The glow discharge polymer (GDP) films for laser fusion targets were successfully fabricated by plasma enhanced chemical vapor deposition (PECVD) at different radio frequency (rf) powers. The films were deposited using trans-2-butene (T{sub 2}B) mixed with hydrogen as gas sources. The composition and state of plasma were diagnosed by quadrupole mass spectrometer (QMS) and Langmuir probe during the deposition process. The composition, surface morphology and roughness were investigated by Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and white-light interferometer (WLI), respectively. Based on these observation and analyses, the growth mechanism of defects in GDP films were studied. The results show that, at low rf power, there is a larger probability for secondary polymerization and formation of multi-carbon C-H species in the plasma. In this case, the surface of GDP film turns to be cauliflower-like. With the increase of rf power, the degree of ionization is high, the relative concentration of smaller-mass hydrocarbon species increases, while the relative concentration of larger-mass hydrocarbon species decreases. At higher rf power, the energy of smaller-mass species are high and the etching effects are strong correspondingly. The GDP film's surface roughness shows a trend of decrease firstly and then increase with the increasing rf power. At rf power of 30 W, the surface root-mean-square roughness (Rq) drops to the lowest value of 12.8 nm, and no “void” defect was observed.

  2. Comparison of Properties of Polymer Composite Materials Reinforced with Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Zygoń P.

    2015-04-01

    Full Text Available Carbon nanotubes because of their high mechanical, optical or electrical properties, have found use as semiconducting materials constituting the reinforcing phase in composite materials. The paper presents the results of the studies on the mechanical properties of polymer composites reinforced with carbon nanotubes (CNT. Three-point bending tests were carried out on the composites. The density of each obtained composite was determined as well as the surface roughness and the resistivity at room temperature.

  3. X-Ray photoelectron spectroscopy analysis of plasma-polymer interactions for development of low-damage plasma processing of soft materials

    International Nuclear Information System (INIS)

    Setsuhara, Yuichi; Cho, Ken; Shiratani, Masaharu; Sekine, Makoto; Hori, Masaru

    2010-01-01

    Plasma-polymer interactions have been investigated using atomic force microscopy (AFM) and x-ray photoelectron spectroscopy (XPS) of polyethyleneterephthalate (PET) films, which have been exposed to argon plasmas driven by low-inductance antenna modules as a parameter of ion energy. The AFM images indicated that the argon plasma exposure exhibited a significant change in surface roughness. The XPS analyses suggested that the degradation of chemical bonding structure and/or bond scission of PET could be effectively suppressed in the plasma exposures with ion energies below 6 eV. However, significant degradations of O = C-O bond, C-O bond and phenyl group were observed with increasing ion energy above 6 eV.

  4. Mechanism of radiation-induced degradation in mechanical properties of polymer matrix composites

    International Nuclear Information System (INIS)

    Egusa, Shigenori

    1988-01-01

    Four kinds of polymer matrix composites (filler, E-glass or carbon fibre cloth; matrix, epoxy or polyimide resin) and pure epoxy and polyimide resins were irradiated with 60 Co γ-rays or 2 MeV electrons at room temperature. Mechanical tests were then carried out at 77K and at room temperature. Following irradiation, the Young's (tensile) modulus of these composites and pure resins remains practically unchanged even at 170 MGy for both test temperatures. The ultimate strength, however, decreases appreciably with increasing dose. The dose dependence of the composite strength depends not only on the combination of fibre and matrix in the composite but also on the test temperature. A relationship is found between the composite ultimate strain and the matrix ultimate strain, thus indicating that the dose dependence of the composite strength is virtually determined by a change in the matrix ultimate strain due to irradiation. Based on this finding, we propose a mechanism of radiation-induced degradation of a polymer matrix composite in order to explain the dose dependence of the composite strength measured at 77 K and at room temperature. (author)

  5. Porous silicon-cyclodextrin based polymer composites for drug delivery applications.

    Science.gov (United States)

    Hernandez-Montelongo, J; Naveas, N; Degoutin, S; Tabary, N; Chai, F; Spampinato, V; Ceccone, G; Rossi, F; Torres-Costa, V; Manso-Silvan, M; Martel, B

    2014-09-22

    One of the main applications of porous silicon (PSi) in biomedicine is drug release, either as a single material or as a part of a composite. PSi composites are attractive candidates for drug delivery systems because they can display new chemical and physical characteristics, which are not exhibited by the individual constituents alone. Since cyclodextrin-based polymers have been proven efficient materials for drug delivery, in this work β-cyclodextrin-citric acid in-situ polymerization was used to functionalize two kinds of PSi (nanoporous and macroporous). The synthesized composites were characterized by microscopy techniques (SEM and AFM), physicochemical methods (ATR-FTIR, XPS, water contact angle, TGA and TBO titration) and a preliminary biological assay was performed. Both systems were tested as drug delivery platforms with two different model drugs, namely, ciprofloxacin (an antibiotic) and prednisolone (an anti-inflammatory), in two different media: pure water and PBS solution. Results show that both kinds of PSi/β-cyclodextrin-citric acid polymer composites, nano- and macro-, provide enhanced release control for drug delivery applications than non-functionalized PSi samples. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Nanocomposite metal/plasma polymer films prepared by means of gas aggregation cluster source

    Energy Technology Data Exchange (ETDEWEB)

    Polonskyi, O.; Solar, P.; Kylian, O.; Drabik, M.; Artemenko, A.; Kousal, J.; Hanus, J.; Pesicka, J.; Matolinova, I. [Charles University in Prague, Faculty of Mathematics and Physics, V Holesovickach 2, 18000 Prague 8 (Czech Republic); Kolibalova, E. [Tescan, Libusina trida 21, 632 00 Brno (Czech Republic); Slavinska, D. [Charles University in Prague, Faculty of Mathematics and Physics, V Holesovickach 2, 18000 Prague 8 (Czech Republic); Biederman, H., E-mail: bieder@kmf.troja.mff.cuni.cz [Charles University in Prague, Faculty of Mathematics and Physics, V Holesovickach 2, 18000 Prague 8 (Czech Republic)

    2012-04-02

    Nanocomposite metal/plasma polymer films have been prepared by simultaneous plasma polymerization using a mixture of Ar/n-hexane and metal cluster beams. A simple compact cluster gas aggregation source is described and characterized with emphasis on the determination of the amount of charged clusters and their size distribution. It is shown that the fraction of neutral, positively and negatively charged nanoclusters leaving the gas aggregation source is largely influenced by used operational conditions. In addition, it is demonstrated that a large portion of Ag clusters is positively charged, especially when higher currents are used for their production. Deposition of nanocomposite Ag/C:H plasma polymer films is described in detail by means of cluster gas aggregation source. Basic characterization of the films is performed using transmission electron microscopy, ultraviolet-visible and Fourier-transform infrared spectroscopies. It is shown that the morphology, structure and optical properties of such prepared nanocomposites differ significantly from the ones fabricated by means of magnetron sputtering of Ag target in Ar/n-hexane mixture.

  7. Hydrogen diffusion between plasma-deposited silicon nitride-polyimide polymer interfaces

    International Nuclear Information System (INIS)

    Nguyen, S.V.; Kerbaugh, M.

    1988-01-01

    This paper reports a nuclear reaction analysis (NRA) for hydrogen technique used to analyze the hydrogen concentration near plasma enhanced chemical vapor deposition (PECVD) silicon nitride-polyimide interfaces at various nitride-deposition and polyimide-polymer-curing temperatures. The CF 4 + O 2 (8% O 2 ) plasma-etch-rate variation of PECVD silicon nitride films deposited on polyimide appeared to correlate well with the variation of hydrogen-depth profiles in the nitride films. The NRA data indicate that hydrogen-depth-profile fluctuation in the nitride films is due to hydrogen diffusion between the nitride-polyimide interfaces during deposition. Annealing treatment of polyimide films in a hydrogen atmosphere prior to the nitride film deposition tends to enhance the hydrogen-depth-profile uniformity in the nitride films, and thus substantially reduces or eliminates variation in the nitride plasma-etch rate

  8. The optical and electrical properties of graphene oxide with water-soluble conjugated polymer composites by radiation.

    Science.gov (United States)

    Jungo, Seung Tae; Oh, Seung-Hwan; Kim, Hyun Bin; Jeun, Joon-Pyo; Lee, Bum-Jae; Kang, Phil-Hyun

    2013-11-01

    In order to overcome the difficulty of dispersion and low conductivity in composite containing graphene, graphene oxide (GO) has been used instead of neat graphene. And the GO treated by radiation, could give improved conductivity of the GO-containing polymer composite. In this study, fluorene based water-soluble conjugated polymer (WPF-6-oxy-F) was introduced in GO solution to investigate the change of optical and electrical properties through radiation process. UV-Vis absorption of irradiated WPF-6-oxy-F-GO composite was red shifted and I(D)/I(G) ratio of Raman spectra decreased. XPS analysis showed that C-N bonds was formed after the irradiation and confirmed the increased bonds between the GO and the water-soluble conjugated polymer matrix. From the AFM and XPS analysis, it was found that the water-soluble conjugated polymer matrix was stacked between the modified GO in the morphology of irradiated WPF-6-oxy-F-GO composite was increased after gamma ray irradiation up to 10(-2) S/cm.

  9. Inorganic Polymer Matrix Composite Strength Related to Interface Condition

    Directory of Open Access Journals (Sweden)

    John Bridge

    2009-12-01

    Full Text Available Resin transfer molding of an inorganic polymer binder was successfully demonstrated in the preparation of ceramic fiber reinforced engine exhaust valves. Unfortunately, in the preliminary processing trials, the resulting composite valves were too brittle for in-engine evaluation. To address this limited toughness, the effectiveness of a modified fiber-matrix interface is investigated through the use of carbon as a model material fiber coating. After sequential heat treatments composites molded from uncoated and carbon coated fibers are compared using room temperature 3-point bend testing. Carbon coated Nextel fiber reinforced geopolymer composites demonstrated a 50% improvement in strength, versus that of the uncoated fiber reinforced composites, after the 250 °C postcure.

  10. Hybrid waste filler filled bio-polymer foam composites for sound absorbent materials

    Science.gov (United States)

    Rus, Anika Zafiah M.; Azahari, M. Shafiq M.; Kormin, Shaharuddin; Soon, Leong Bong; Zaliran, M. Taufiq; Ahraz Sadrina M. F., L.

    2017-09-01

    Sound absorption materials are one of the major requirements in many industries with regards to the sound insulation developed should be efficient to reduce sound. This is also important to contribute in economically ways of producing sound absorbing materials which is cheaper and user friendly. Thus, in this research, the sound absorbent properties of bio-polymer foam filled with hybrid fillers of wood dust and waste tire rubber has been investigated. Waste cooking oil from crisp industries was converted into bio-monomer, filled with different proportion ratio of fillers and fabricated into bio-polymer foam composite. Two fabrication methods is applied which is the Close Mold Method (CMM) and Open Mold Method (OMM). A total of four bio-polymer foam composite samples were produce for each method used. The percentage of hybrid fillers; mixture of wood dust and waste tire rubber of 2.5 %, 5.0%, 7.5% and 10% weight to weight ration with bio-monomer. The sound absorption of the bio-polymer foam composites samples were tested by using the impedance tube test according to the ASTM E-1050 and Scanning Electron Microscope to determine the morphology and porosity of the samples. The sound absorption coefficient (α) at different frequency range revealed that the polymer foam of 10.0 % hybrid fillers shows highest α of 0.963. The highest hybrid filler loading contributing to smallest pore sizes but highest interconnected pores. This also revealed that when highly porous material is exposed to incident sound waves, the air molecules at the surface of the material and within the pores of the material are forced to vibrate and loses some of their original energy. This is concluded that the suitability of bio-polymer foam filled with hybrid fillers to be used in acoustic application of automotive components such as dashboards, door panels, cushion and etc.

  11. Accelerated Aging of Polymer Composite Bridge Materials

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Nancy Margaret; Blackwood, Larry Gene; Torres, Lucinda Laine; Rodriguez, Julio Gallardo; Yoder, Timothy Scott

    1999-03-01

    Accelerated aging research on samples of composite material and candidate ultraviolet (UV) protective coatings is determining the effects of six environmental factors on material durability. Candidate fastener materials are being evaluated to determine corrosion rates and crevice corrosion effects at load-bearing joints. This work supports field testing of a 30-ft long, 18-ft wide polymer matrix composite (PMC) bridge at the Idaho National Engineering and Environmental Laboratory (INEEL). Durability results and sensor data from tests with live loads provide information required for determining the cost/benefit measures to use in life-cycle planning, determining a maintenance strategy, establishing applicable inspection techniques, and establishing guidelines, standards, and acceptance criteria for PMC bridges for use in the transportation infrastructure.

  12. Significantly Elevated Dielectric and Energy Storage Traits in Boron Nitride Filled Polymer Nano-composites with Topological Structure

    Science.gov (United States)

    Feng, Yefeng; Zhang, Jianxiong; Hu, Jianbing; Li, Shichun; Peng, Cheng

    2018-03-01

    Interface induced polarization has a prominent influence on dielectric properties of 0-3 type polymer based composites containing Si-based semi-conductors. The disadvantages of composites were higher dielectric loss, lower breakdown strength and energy storage density, although higher permittivity was achieved. In this work, dielectric, conductive, breakdown and energy storage properties of four nano-composites have been researched. Based on the cooperation of fluoropolymer/alpha-SiC layer and fluoropolymer/hexagonal-BN layer, it was confirmed constructing the heterogeneous layer-by-layer composite structure rather than homogeneous mono-layer structure could significantly reduce dielectric loss, promote breakdown strength and increase energy storage density. The former worked for a larger dielectric response and the latter layer acted as a robust barrier of charge carrier transfer. The best nano-composite could possess a permittivity of 43@100 Hz ( 3.3 times of polymer), loss of 0.07@100 Hz ( 37% of polymer), discharged energy density of 2.23 J/cm3@249 kV/cm ( 10 times of polymer) and discharged energy efficiency of 54%@249 kV/cm ( 5 times of polymer). This work might enlighten a facile route to achieve the promising high energy storage composite dielectrics by constructing the layer-by-layer topological structure.

  13. Comparative Experimental Study on Ionic Polymer Mental Composite based on Nafion and Aquivion Membrane as Actuators

    Science.gov (United States)

    Luo, B.; Chen, Z.

    2017-11-01

    Most ionic polymer mental composites employ Nafion as the polymer matrix, Aquivion can also manufactured as ionic polymer mental composite while research was little. This paper researched on two kinds of ionic polymer mental composite based on Aquivion and Nafion matrix with palladium electrode called Aquivion-IPMC and Nafion-IPMC. The samples were fabricated by the same preparation process. The current and deformation responses of the samples were measured at voltage to characterize the mechano-electrical properties. The experimental observations revealed that shorter flexible side chains in Aquivion-IPMC provide a larger force than Nafion-IPMC, while the displacement properties were similar in two different samples. The results also showed that Aquivion membrane can also replace Nafion to reproduce IPMC application in soft robots, MEMS, and so on.

  14. A study of water electrolysis using ionic polymer-metal composite for solar energy storage

    Science.gov (United States)

    Keow, Alicia; Chen, Zheng

    2017-04-01

    Hydrogen gas can be harvested via the electrolysis of water. The gas is then fed into a proton exchange membrane fuel cell (PEMFC) to produce electricity with clean emission. Ionic polymer-metal composite (IPMC), which is made from electroplating a proton-conductive polymer film called Nafion encourages ion migration and dissociation of water under application of external voltage. This property has been proven to be able to act as catalyst for the electrolysis of pure water. This renewable energy system is inspired by photosynthesis. By using solar panels to gather sunlight as the source of energy, the generation of electricity required to activate the IPMC electrolyser is acquired. The hydrogen gas is collected as storable fuel and can be converted back into energy using a commercial fuel cell. The goal of this research is to create a round-trip energy efficient system which can harvest solar energy, store them in the form of hydrogen gas and convert the stored hydrogen back to electricity through the use of fuel cell with minimal overall losses. The effect of increasing the surface area of contact is explored through etching of the polymer electrolyte membrane (PEM) with argon plasma or manually sanding the surface and how it affects the increase of energy conversion efficiency of the electrolyser. In addition, the relationship between temperature and the IPMC is studied. Experimental results demonstrated that increases in temperature of water and changes in surface area contact correlate with gas generation.

  15. Composite hydrogels of bio-inspired protein polymers : mechanical and structural characterization

    NARCIS (Netherlands)

    Rombouts, W.H.

    2015-01-01

    In this thesis we presented various combinations of custom-designed protein polymers that formed composite hydrogels. In chapter 2, composite hydrogels were prepared by mixing silk-like block copolymers (CP2SE48CP2) with collagen-like block copolymers (T9CR4T9). We found that by

  16. Effects of Operating Temperature on Droplet Casting of Flexible Polymer/Multi-Walled Carbon Nanotube Composite Gas Sensors

    Directory of Open Access Journals (Sweden)

    Jin-Chern Chiou

    2016-12-01

    Full Text Available This study examined the performance of a flexible polymer/multi-walled carbon nanotube (MWCNT composite sensor array as a function of operating temperature. The response magnitudes of a cost-effective flexible gas sensor array equipped with a heater were measured with respect to five different operating temperatures (room temperature, 40 °C, 50 °C, 60 °C, and 70 °C via impedance spectrum measurement and sensing response experiments. The selected polymers that were droplet cast to coat a MWCNT conductive layer to form two-layer polymer/MWCNT composite sensing films included ethyl cellulose (EC, polyethylene oxide (PEO, and polyvinylpyrrolidone (PVP. Electrical characterization of impedance, sensing response magnitude, and scanning electron microscope (SEM morphology of each type of polymer/MWCNT composite film was performed at different operating temperatures. With respect to ethanol, the response magnitude of the sensor decreased with increasing operating temperatures. The results indicated that the higher operating temperature could reduce the response and influence the sensitivity of the polymer/MWCNT gas sensor array. The morphology of polymer/MWCNT composite films revealed that there were changes in the porous film after volatile organic compound (VOC testing.

  17. Plasma penetration depth and mechanical properties of atmospheric plasma-treated 3D aramid woven composites

    International Nuclear Information System (INIS)

    Chen, X.; Yao, L.; Xue, J.; Zhao, D.; Lan, Y.; Qian, X.; Wang, C.X.; Qiu, Y.

    2008-01-01

    Three-dimensional aramid woven fabrics were treated with atmospheric pressure plasmas, on one side or both sides to determine the plasma penetration depth in the 3D fabrics and the influences on final composite mechanical properties. The properties of the fibers from different layers of the single side treated fabrics, including surface morphology, chemical composition, wettability and adhesion properties were investigated using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), contact angle measurement and microbond tests. Meanwhile, flexural properties of the composites reinforced with the fabrics untreated and treated on both sides were compared using three-point bending tests. The results showed that the fibers from the outer most surface layer of the fabric had a significant improvement in their surface roughness, chemical bonding, wettability and adhesion properties after plasma treatment; the treatment effect gradually diminished for the fibers in the inner layers. In the third layer, the fiber properties remained approximately the same to those of the control. In addition, three-point bending tests indicated that the 3D aramid composite had an increase of 11% in flexural strength and 12% in flexural modulus after the plasma treatment. These results indicate that composite mechanical properties can be improved by the direct fabric treatment instead of fiber treatment with plasmas if the fabric is less than four layers thick

  18. Enhanced non-volatile and updatable holography using a polymer composite system.

    Science.gov (United States)

    Wu, Pengfei; Sun, Sam Q; Baig, Sarfaraz; Wang, Michael R

    2012-03-12

    Updatable holography is considered as the ultimate technique for true 3D information recording and display. However, there is no practical solution to preserve the required features of both non-volatility and reversibility which conflict with each other when the reading has the same wavelength as the recording. We demonstrate a non-volatile and updatable holographic approach by exploiting new features of molecular transformations in a polymer recording system. In addition, by using a new composite recording film containing photo-reconfigurable liquid-crystal (LC) polymer, the holographic recording is enhanced due to the collective reorientation of LC molecules around the reconfigured polymer chains.

  19. Development of ceramic composites from mixture of alumina and ceramic precursor polymer poly (silsesquioxane))

    International Nuclear Information System (INIS)

    Machado, Glauson Aparecido Ferreira

    2009-01-01

    Processing of ceramics materials, by polymer precursors pyrolysis, has been intensively researched over the past decades, due to advantages that this path provides, such as: lower temperature process compared to conventional techniques; structure control at molecular level; synthesis possibility of a wide range of ceramic compounds; obtaining parts with dimensions of the final product etc. The active filler controlled polymer pyrolysis (AFCOP) process, enables the synthesis of ceramic composites, by reaction between added filler (oxides, metals, intermetallic etc.) and solid and gaseous products, from polymer decomposition. In this study, based on this process, samples of alumina, with addition of 10 and 20 mass% of poly silsesquioxane polymer precursor, were manufactured. These samples were pyrolyzed at 900 degree C and thermal treated at temperatures of 1100, 1300 and 1500 degree C. The samples were characterized for bulk density, porosity and hardness, after each stage of thermal treatment. Structural transformations were analyzed by X-ray diffraction, scanning electron microscopy and infrared spectroscopy. Samples treated until 1300 degree C resulted in composites of alumina and silicon oxycarbide, while those treated at 1500 degree C, formed composites of mullite and alumina. The samples with 20% of polymer added started to density around 800 degree C and high retraction rate was observed at 1400 degree C. (author)

  20. Facile and scalable fabrication of polymer-ceramic composite electrolyte with high ceramic loadings

    Science.gov (United States)

    Pandian, Amaresh Samuthira; Chen, X. Chelsea; Chen, Jihua; Lokitz, Bradley S.; Ruther, Rose E.; Yang, Guang; Lou, Kun; Nanda, Jagjit; Delnick, Frank M.; Dudney, Nancy J.

    2018-06-01

    Solid state electrolytes are a promising alternative to flammable liquid electrolytes for high-energy lithium battery applications. In this work polymer-ceramic composite electrolyte membrane with high ceramic loading (greater than 60 vol%) is fabricated using a model polymer electrolyte poly(ethylene oxide) + lithium trifluoromethane sulfonate and a lithium-conducting ceramic powder. The effects of processing methods, choice of plasticizer and varying composition on ionic conductivity of the composite electrolyte are thoroughly investigated. The physical, structural and thermal properties of the composites are exhaustively characterized. We demonstrate that aqueous spray coating followed by hot pressing is a scalable and inexpensive technique to obtain composite membranes that are amazingly dense and uniform. The ionic conductivity of composites fabricated using this protocol is at least one order of magnitude higher than those made by dry milling and solution casting. The introduction of tetraethylene glycol dimethyl ether further increases the ionic conductivity. The composite electrolyte's interfacial compatibility with metallic lithium and good cyclability is verified by constructing lithium symmetrical cells. A remarkable Li+ transference number of 0.79 is discovered for the composite electrolyte.

  1. Absorption-desorption of drugs in porous polymers obtained by plasma; Absorcion-desorcion de farmacos en polimeros porosos obtenidos por plasma

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez T, M.

    2016-07-01

    A study about drug absorption and release in plasma polymers is presented in this work, these materials can be used as implants in the human body. In these applications the polymer should be biocompatible and/or biodegradable. Poly pyrroles and poly allylamine s synthesized by plasma have amine groups in their structure which makes them biocompatible with potential as drug carriers. In this function, the polymers were lyophilized to induce pores where the drug can be hosted. Drug-polymer mixtures with 1:10 ratio were prepared. The mixture morphology was studied by Scanning Electron Microscopy while their chemical structure was studied by Infrared Spectroscopy and X-ray Photoelectron Spectroscopy. Two models were studied to assess drug release, dynamic and static, in two solutions: water and Krebs Ringer (Kr) using the UV characteristic absorbance of each drug. In the static model release, 5 mg of the mixture were placed in 10 ml of solution. In the dynamic model, the release was performed with 5 mg of the mixture in 10 ml of solution, 1.5 ml of release medium was removed for UV analysis and replaced with an equal volume of fresh medium. The results indicate that the morphology of the polymers was modified with the lyophilization, in Poly pyrrole pores were induced with diameter in the range of 0.7 to 19 μm, while in Polyallyl amine the surface changed from smooth to rough. Drugs were absorbed in Poly pyrrole by filling the pores first and then coating the polymer with a drug layer. In Poly allylamine the drugs adhered to the polymer surface. Analyzing the atomic orbitals of the mixtures, it was found that the drugs interacted with the polymer. The most affected orbital was S2p, whose separation between 1/2 and 3/2 sub orbitals increased from 0.9 eV in Dapsone and Heparin to 4 eV in the mixtures, where the oxidation state changed from valence 6 to 6 and 2 in the mixtures. This suggests physicochemical interaction between drug and polymer. The drugs were released

  2. Implication of multi-walled carbon nanotubes on polymer/graphene composites

    International Nuclear Information System (INIS)

    Araby, Sherif; Saber, Nasser; Ma, Xing; Kawashima, Nobuyuki; Kang, Hailan; Shen, Heng; Zhang, Liqun; Xu, Jian; Majewski, Peter; Ma, Jun

    2015-01-01

    Highlights: • Influence of adding carbon nanotubes (CNTs) into elastomer/graphene composites. • Multi-walled CNTs work supplementally to GnPs by forming conductive networks. • The findings illuminate marked synergistic effect between MWCNTs and graphene sheets. - Abstract: Graphene sheets stack in polymer matrices while multi-walled carbon nanotubes (MWCNTs) entangle themselves, forming two daunting challenges in the design and fabrication of polymer composites. Both challenges have been simultaneously addressed in this study by hybridizing the two nanomaterials through melt compounding to develop elastomer/graphene platelet/MWCNT (3-phase) composites, where MWCNTs were fixed at 2.8 vol% (5 wt%) for all fractions. We investigated the composites’ structure and properties, and compared the 3-phase composites with elastomer/graphene platelet (2-phase) composites. MWCNTs may bridge graphene platelets (GnPs) and promote their dispersion in the matrix, which would provide more interface area between the matrix and the fillers. MWCNTs worked supplementally to GnPs by forming conductive networks, where MWCNTs acted as long nanocables to transport electrons and stress while GnPs served as interconnection sites between the tubes forming local conductive paths. This produced a percolation threshold of electrical conductivity at 2.3 vol% for 3-phase composites, 88% lower than that of 2-phase composites. At 26.7 vol% of total filler content (MWCNTs + GnPs), tensile strength, Young’s modulus and tear strength showed respectively 303%, 115%, 155% further improvements over those of 2-phase composites. These improvements are originated from the synergistic effect between GnPs and MWCNTs. The conducting elastomeric composites developed would potentially open the door for applications in automotive and aerospace industries

  3. Cryogenic EBSD reveals structure of directionally solidified ice–polymer composite

    Energy Technology Data Exchange (ETDEWEB)

    Donius, Amalie E., E-mail: amalie.donius@gmail.com [Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 (United States); Department of Materials Science and Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Obbard, Rachel W., E-mail: Rachel.W.Obbard@dartmouth.edu [Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 (United States); Burger, Joan N., E-mail: ridge.of.the.ancients@gmail.com [Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 (United States); Department of Materials Science and Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Hunger, Philipp M., E-mail: philipp.m.hunger@gmail.com [Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 (United States); Department of Materials Science and Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Baker, Ian, E-mail: Ian.Baker@dartmouth.edu [Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 (United States); Doherty, Roger D., E-mail: dohertrd@drexel.edu [Department of Materials Science and Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Wegst, Ulrike G.K., E-mail: ulrike.wegst@dartmouth.edu [Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 (United States)

    2014-07-01

    Despite considerable research efforts on directionally solidified or freeze-cast materials in recent years, little fundamental knowledge has been gained that links model with experiment. In this contribution, the cryogenic characterization of directionally solidified polymer solutions illustrates, how powerful cryo-scanning electron microscopy combined with electron backscatter diffraction is for the structural characterization of ice–polymer composite materials. Under controlled sublimation, the freeze-cast polymer scaffold structure is revealed and imaged with secondary electrons. Electron backscatter diffraction fabric analysis shows that the ice crystals, which template the polymer scaffold and create the lamellar structure, have a-axes oriented parallel to the direction of solidification and the c-axes perpendicular to it. These results indicate the great potential of both cryo-scanning electron microscopy and cryo-electron backscatter diffraction in gaining fundamental knowledge of structure–property–processing correlations. - Highlights: • Cryo-SEM of freeze-cast polymer solution reveals an ice-templated structure. • Cryo-EBSD reveals the ice crystal a-axis to parallel the solidification direction. • The honeycomb-like polymer phase favors columnar ridges only on one side. • Combining cryo-SEM with EBSD links solidification theory with experiment.

  4. Cryogenic EBSD reveals structure of directionally solidified ice–polymer composite

    International Nuclear Information System (INIS)

    Donius, Amalie E.; Obbard, Rachel W.; Burger, Joan N.; Hunger, Philipp M.; Baker, Ian; Doherty, Roger D.; Wegst, Ulrike G.K.

    2014-01-01

    Despite considerable research efforts on directionally solidified or freeze-cast materials in recent years, little fundamental knowledge has been gained that links model with experiment. In this contribution, the cryogenic characterization of directionally solidified polymer solutions illustrates, how powerful cryo-scanning electron microscopy combined with electron backscatter diffraction is for the structural characterization of ice–polymer composite materials. Under controlled sublimation, the freeze-cast polymer scaffold structure is revealed and imaged with secondary electrons. Electron backscatter diffraction fabric analysis shows that the ice crystals, which template the polymer scaffold and create the lamellar structure, have a-axes oriented parallel to the direction of solidification and the c-axes perpendicular to it. These results indicate the great potential of both cryo-scanning electron microscopy and cryo-electron backscatter diffraction in gaining fundamental knowledge of structure–property–processing correlations. - Highlights: • Cryo-SEM of freeze-cast polymer solution reveals an ice-templated structure. • Cryo-EBSD reveals the ice crystal a-axis to parallel the solidification direction. • The honeycomb-like polymer phase favors columnar ridges only on one side. • Combining cryo-SEM with EBSD links solidification theory with experiment

  5. Self-formation of polymer nanostructures in plasma etching: mechanisms and applications

    Science.gov (United States)

    Du, Ke; Jiang, Youhua; Huang, Po-Shun; Ding, Junjun; Gao, Tongchuan; Choi, Chang-Hwan

    2018-01-01

    In recent years, plasma-induced self-formation of polymer nanostructures has emerged as a simple, scalable and rapid nanomanufacturing technique to pattern sub-100 nm nanostructures. High-aspect-ratio nanostructures (>20:1) are fabricated on a variety of polymer surfaces such as poly(methylmethacrylate) (PMMA), polystyrene (PS), polydimethylsiloxane (PDMS), and fluorinated ethylene propylene (FEP). Sub-100 nm nanostructures (i.e. diameter  ⩽  50 nm) are fabricated in this one-step process without relying on slow and expensive nanolithography techniques. This review starts with discussion of the self-formation mechanisms including surface modulation, random masks, and materials impurities. Emphasis is put on the applications of polymer nanostructures in the fields of hierarchical nanostructures, liquid repellence, adhesion, lab-on-a-chip, surface enhanced Raman scattering (SERS), organic light emitting diode (OLED), and energy harvesting. The unique advantages of this nanomanufacturing technique are illustrated, followed by prospects.

  6. Study of SiO2/PMMA/CE tri-component interpenetrating polymer network composites

    International Nuclear Information System (INIS)

    Wang Junlong; Wang Chuang; Jiao Gengsheng; Wang Qiuya

    2010-01-01

    A technology of conjugated tri-component interpenetrating polymer networks was applied to synthesize a nano-SiO 2 /polymethylmethacrylate (PMMA)/cyanate (CE) composite through an asynchronous synthesis way. The microstructure of the composite was characterized using infrared spectroscopy (IR) and transmission electron microscopy (TEM). The mechanical properties were measured in German-made DL-1000B and XCL-40 universal material test machines, respectively. Results showed that both the impact strength and the flexural strength were in the optimum status when 3% SiO 2 /PMMA/CE was chosen as a sample with the PMMA/CE ratio of 20/80. Compared with the strengths of pure cyanate, those of the composite were raised by 137.28% and 31.29%, respectively. When 3% nano-SiO 2 was added, the impact strength was increased by 29.96% and the flexural strength by 20.05%, compared with the strengths of polymers without SiO 2 . Analysis and measurements by IR and TEM indicated that no chemical reactions took place among components in the composite. The interpenetration of the conjugated tri-component improved the loading capacity of the polymer, hence the toughness enhancement of cyanate.

  7. Composition inversion in mixtures of binary colloids and polymer

    Science.gov (United States)

    Zhang, Isla; Pinchaipat, Rattachai; Wilding, Nigel B.; Faers, Malcolm A.; Bartlett, Paul; Evans, Robert; Royall, C. Patrick

    2018-05-01

    Understanding the phase behaviour of mixtures continues to pose challenges, even for systems that might be considered "simple." Here, we consider a very simple mixture of two colloidal and one non-adsorbing polymer species, which can be simplified even further to a size-asymmetrical binary mixture, in which the effective colloid-colloid interactions depend on the polymer concentration. We show that this basic system exhibits surprisingly rich phase behaviour. In particular, we enquire whether such a system features only a liquid-vapor phase separation (as in one-component colloid-polymer mixtures) or whether, additionally, liquid-liquid demixing of two colloidal phases can occur. Particle-resolved experiments show demixing-like behaviour, but when combined with bespoke Monte Carlo simulations, this proves illusory, and we reveal that only a single liquid-vapor transition occurs. Progressive migration of the small particles to the liquid phase as the polymer concentration increases gives rise to composition inversion—a maximum in the large particle concentration in the liquid phase. Close to criticality, the density fluctuations are found to be dominated by the larger colloids.

  8. Polymer-based composites for aerospace: An overview of IMAST results

    Science.gov (United States)

    Milella, Eva; Cammarano, Aniello

    2016-05-01

    This paper gives an overview of technological results, achieved by IMAST, the Technological Cluster on Engineering of Polymeric Composite Materials and Structures, in the completed Research Projects in the aerospace field. In this sector, the Cluster developed different solutions: lightweight multifunctional fiber-reinforced polymer composites for aeronautic structures, advanced manufacturing processes (for the optimization of energy consumption and waste reduction) and multifunctional components (e.g., thermal, electrical, acoustic and fire resistance).

  9. Properties analysis of tensile strength, crystallinity degree and microstructure of polymer composite polypropylene-sand

    International Nuclear Information System (INIS)

    Sudirman; Karo-Karo, Aloma; Ari-Handayani; Bambang-Sugeng; Rukihati; Mashuri

    2004-01-01

    Materials modification base on polymer toward polymer composite is needed by addition of filler. Mechanical properties such as tensile strength, crystallinity degree and microstructure of polymer composite based on polypropylene with sand filler have been investigated. In this work, the polymer composite has been made by mixing the matrix of polypropylene melt flow 2 (PP MF2) or polypropylene melt flow 10 (PP MF 10) with sand filler in a labo plastomill. The composition of sand filler was varied to 10, 30, 40 and 50 % v/v, a then the composite were casted to the film sheets form. The sheets were characterized mechanically i.e tensile strength, crystallinity degree and microstructure. The result showed that the tensile strength decreased by increasing the volume fraction of sand filler, in accordance with microstructure investigation that the matrix area under zone plastic deformation (more cracks), while the filler experienced elastic deformation, so that the strength mechanism of filler did not achieved with expectation (Danusso and Tieghi theory). For filler more than 30 % of volume fraction, the tensile strength of polypropylene melt flow 10 (PP MF 10) was greater than that polypropylene melt flow 2 (PP MF2). It was caused by plasticities in PP MF 10. The tensile strength of PP MF2 was greater than that PP MF 10 for volume fraction of sand filler less than 30 %. It was caused by PP MF2 to be have more degree of crystallinity

  10. Ablation behavior and mechanism of 3D Cf/ZrC-SiC composites in a plasma wind tunnel environment

    Directory of Open Access Journals (Sweden)

    Qinggang Li

    2015-12-01

    Full Text Available Three-dimensional needle-like Cf/ZrC-SiC composites were successfully fabricated by polymer infiltration and pyrolysis combined with ZrC precursor impregnation. The ablation properties of the composites were tested in a plasma wind tunnel environment at different temperatures and different times. The microstructure and morphology of the composites were examined after ablation by scanning electron microscopy, and their composition was confirmed by energy dispersive spectroscopy. The composites exhibited good configurational stability with a surface temperature of greater than 2273 K over a 300–1000 s period. The formation of ZrSiO4 and SiO2 melts on the surface of the 3D Cf/ZrC-SiC composites contributed significantly to improvement in their ablation properties. However, these composites exhibited serious ablation when the temperature was increased to 2800 K. The 3D Cf/ZrC-SiC composites obtained after ablation showed three different layers attributed to the temperature and pressure gradients: the ablation central region, the ablation transition region, and the unablation region.

  11. Modeling CO2 laser ablation impulse of polymers in vapor and plasma regimes

    International Nuclear Information System (INIS)

    Sinko, John E.; Phipps, Claude R.

    2009-01-01

    An improved model for CO 2 laser ablation impulse in polyoxymethylene and similar polymers is presented that describes the transition effects from the onset of vaporization to the plasma regime in a continuous fashion. Several predictions are made for ablation behavior.

  12. Mechanical Evaluation of Polymer Composite Hip Protectors

    Directory of Open Access Journals (Sweden)

    Jose Daniel Diniz Melo

    2010-01-01

    Full Text Available Hip fractures often result in serious health implications, particularly in the geriatric population, and have been related to long-term morbidity and death. In most cases, these fractures are caused by impact loads in the area of the greater trochanter, which are produced in a fall. This work is aimed at developing hip protectors using composite materials and evaluating their effectiveness in preventing hip fractures under high impact energy (120 J. The hip protectors were developed with an inner layer of energy absorbing soft material and an outer rigid shell of fiberglass-reinforced polymer composite. According to the experimental results, all tested configurations proved to be effective at reducing the impact load to below the average fracture threshold of proximal femur. Furthermore, an addition of Ethylene Vinyl Acetate (EVA to the impacted area of the composite shell proved to be beneficial to increase impact strength of the hip protectors. Thus, composite hip protectors proved to be a viable alternative for a mechanically efficient and cost-effective solution to prevent hip fractures.

  13. Fabrication of amorphous silica nanowires via oxygen plasma treatment of polymers on silicon

    Science.gov (United States)

    Chen, Zhuojie; She, Didi; Chen, Qinghua; Li, Yanmei; Wu, Wengang

    2018-02-01

    We demonstrate a facile non-catalytic method of fabricating silica nanowires at room temperature. Different polymers including photoresists, parylene C and polystyrene are patterned into pedestals on the silicon substrates. The silica nanowires are obtained via the oxygen plasma treatment on those pedestals. Compared to traditional strategies of silica nanowire fabrication, this method is much simpler and low-cost. Through designing the proper initial patterns and plasma process parameters, the method can be used to fabricate various regiment nano-scale silica structure arrays in any laboratory with a regular oxygen-plasma-based cleaner or reactive-ion-etching equipment.

  14. Self Healing Fibre-reinforced Polymer Composites: an Overview

    Science.gov (United States)

    Bond, Ian P.; Trask, Richard S.; Williams, Hugo R.; Williams, Gareth J.

    Lightweight, high-strength, high-stiffness fibre-reinforced polymer composite materials are leading contenders as component materials to improve the efficiency and sustainability of many forms of transport. For example, their widespread use is critical to the success of advanced engineering applications, such as the Boeing 787 and Airbus A380. Such materials typically comprise complex architectures of fine fibrous reinforcement e.g. carbon or glass, dispersed within a bulk polymer matrix, e.g. epoxy. This can provide exceptionally strong, stiff, and lightweight materials which are inherently anisotropic, as the fibres are usually arranged at a multitude of predetermined angles within discrete stacked 2D layers. The direction orthogonal to the 2D layers is usually without reinforcement to avoid compromising in-plane performance, which results in a vulnerability to damage in the polymer matrix caused by out-of-plane loading, i.e. impact. Their inability to plastically deform leaves only energy absorption via damage creation. This damage often manifests itself internally within the material as intra-ply matrix cracks and inter-ply delaminations, and can thus be difficult to detect visually. Since relatively minor damage can lead to a significant reduction in strength, stiffness and stability, there has been some reticence by designers for their use in safety critical applications, and the adoption of a `no growth' approach (i.e. damage propagation from a defect constitutes failure) is now the mindset of the composites industry. This has led to excessively heavy components, shackling of innovative design, and a need for frequent inspection during service (Richardson 1996; Abrate 1998).

  15. Composite polymer electrolytes based on MG49 and carboxymethyl cellulose from kenaf

    International Nuclear Information System (INIS)

    Jafirin, Serawati; Ahmad, Ishak; Ahmad, Azizan

    2013-01-01

    The development of 49% poly(methyl methacrylate)-grafted natural rubber (MG49) and carboxymethyl cellulose as a composite polymer electrolyte film incorporating LiCF 3 SO 3 were explored. Carboxymethyl cellulose was synthesized from kenaf bast fibres via carboxymethylation process by alkali catalyzed reaction of cellulose with sodium chloroacetate. Reflection fourier transform infrared (ATR-FTIR) spectroscopy showed the presence of carboxyl peak after modification of cellulose with sodium chloroacetate. X-ray diffraction (XRD) analysis revealed that the crystallinity of cellulose was decrease after synthesis. High performance composite polymer electrolytes were prepared with various composition of carboxymethyl cellulose (2–10 wt%) via solution-casting method. The conductivity was increased with carboxymethyl cellulose loading. The highest conductivity value achieved was 3.3 × 10 −7 Scm −1 upon addition of 6% wt carboxymethyl cellulose. 6% wt carboxymethyl cellulose composition showed the highest tensile strength value of 7.9 MPa and 273 MPa of modulus value which demonstrated high mechanical performance with accepatable level of ionic conductivity

  16. Composite polymer electrolytes based on MG49 and carboxymethyl cellulose from kenaf

    Science.gov (United States)

    Jafirin, Serawati; Ahmad, Ishak; Ahmad, Azizan

    2013-11-01

    The development of 49% poly(methyl methacrylate)-grafted natural rubber (MG49) and carboxymethyl cellulose as a composite polymer electrolyte film incorporating LiCF3SO3 were explored. Carboxymethyl cellulose was synthesized from kenaf bast fibres via carboxymethylation process by alkali catalyzed reaction of cellulose with sodium chloroacetate. Reflection fourier transform infrared (ATR-FTIR) spectroscopy showed the presence of carboxyl peak after modification of cellulose with sodium chloroacetate. X-ray diffraction (XRD) analysis revealed that the crystallinity of cellulose was decrease after synthesis. High performance composite polymer electrolytes were prepared with various composition of carboxymethyl cellulose (2-10 wt%) via solution-casting method. The conductivity was increased with carboxymethyl cellulose loading. The highest conductivity value achieved was 3.3 × 10-7 Scm-1 upon addition of 6% wt carboxymethyl cellulose. 6% wt carboxymethyl cellulose composition showed the highest tensile strength value of 7.9 MPa and 273 MPa of modulus value which demonstrated high mechanical performance with accepatable level of ionic conductivity.

  17. Piezoelectric and dielectric properties of polymer-ceramic composites for sensors

    NARCIS (Netherlands)

    James, N.K.

    2015-01-01

    The main objective of this PhD thesis is to develop new routes and concepts for manufacturing piezoelectric ceramic-polymer composites with adequate piezoelectric properties while retaining ease of manufacturing and mechanical flexibility and explore new possibilities to maximize especially the

  18. Dynamics of nanomaterials released from polymer composites in the pelletizing process

    International Nuclear Information System (INIS)

    Kato, Nobuyuki; Yoneda, Minoru; Matsui, Yasuto

    2017-01-01

    Measures against exposure to carbon nanotubes (CNT) are necessary, especially in workplaces that handle nanomaterials, because adverse health effects are a concern. This study focuses on the dynamics of CNT released from CNT/polymer composites during the pelletizing process at a pilot factory. It is difficult to identify CNT and the base resin. By characterizing the possibility of separating CNT from the composite with a kinetic weighting coefficient, estimation can be carried out using a Computational Fluid Dynamics (CFD) simulation. The mass concentration of black carbon and the particle number concentration by diameter were measured using two different measurement apparatuses. The simulation results were then compared to the measured data. The model was verified by the correlation between the simulation and measured results. The model provided a strong correlation, indicating that the dynamics of CNT and the base resin released from the polymer composite can be simulated. It is expected that the model using the CFD simulation can be applied to the occupational health field. (paper)

  19. Composite SiOx/fluorocarbon plasma polymer films prepared by r.f. magnetron sputtering of SiO2 and PTFE

    Czech Academy of Sciences Publication Activity Database

    Pihosh, Y.; Biederman, H.; Slavínská, D.; Kousal, J.; Choukourov, A.; Trchová, Miroslava; Macková, Anna; Boldyryeva, Hanna

    2006-01-01

    Roč. 81, 1-4 (2006), s. 38-44 ISSN 0042-207X R&D Projects: GA MŠk OC 527.10; GA MŠk ME 553 Institutional research plan: CEZ:AV0Z40500505; CEZ:AV0Z10480505 Keywords : composite films * magnetron * sputtering Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.834, year: 2006

  20. Anisotropic Dielectric Properties of Carbon Fiber Reinforced Polymer Composites during Microwave Curing

    Science.gov (United States)

    Zhang, Linglin; Li, Yingguang; Zhou, Jing

    2018-01-01

    Microwave cuing technology is a promising alternative to conventional autoclave curing technology in high efficient and energy saving processing of polymer composites. Dielectric properties of composites are key parameters related to the energy conversion efficiency during the microwave curing process. However, existing methods of dielectric measurement cannot be applied to the microwave curing process. This paper presented an offline test method to solve this problem. Firstly, a kinetics model of the polymer composites under microwave curing was established based on differential scanning calorimetry to describe the whole curing process. Then several specially designed samples of different feature cure degrees were prepared and used to reflect the dielectric properties of the composite during microwave curing. It was demonstrated to be a feasible plan for both test accuracy and efficiency through extensive experimental research. Based on this method, the anisotropic complex permittivity of a carbon fiber/epoxy composite during microwave curing was accurately determined. Statistical results indicated that both the dielectric constant and dielectric loss of the composite increased at the initial curing stage, peaked at the maximum reaction rate point and decreased finally during the microwave curing process. Corresponding mechanism has also been systematically investigated in this work.

  1. Structure and Dynamics of Polymer/Polymer grafted nanoparticle composite

    Science.gov (United States)

    Archer, Lynden

    Addition of nanoparticles to polymers is a well-practiced methodology for augmenting various properties of the polymer host, including mechanical strength, thermal stability, barrier properties, dimensional stability and wear resistance. Many of these property changes are known to arise from nanoparticle-induced modification of polymer structure and chain dynamics, which are strong functions of the dispersion state of the nanoparticles' and on their relative size (D) to polymer chain dimensions (e.g. Random coil radius Rg or entanglement mesh size a) . This talk will discuss polymer nanocomposites (PNCs) comprised of Polyethylene Glycol (PEG) tethered silica nanoparticles (SiO2-PEG) dispersed in polymers as model systems for investigating phase stability and dynamics of PNCs. On the basis of small-angle X-ray Scattering, it will be shown that favorable enthalpic interactions between particle-tethered chains and a polymer host provides an important mechanism for creating PNCs in which particle aggregation is avoided. The talk will report on polymer and particle scale dynamics in these materials and will show that grafted nanoparticles well dispersed in a polymer host strongly influence the host polymer relaxation dynamics on all timescales and the polymers in turn produce dramatic changes in the nature (from diffusive to hyperdiffusive) and speed of nano particle decorrelation dynamics at the polymer entanglement threshold. A local viscosity model capable of explaining these observations is discussed and the results compared with scaling theories for NP motions in polymers This material is based on work supported by the National Science Foundation Award Nos. DMR-1609125 and CBET-1512297.

  2. Progressive delamination in polymer matrix composite laminates: A new approach

    Science.gov (United States)

    Chamis, C. C.; Murthy, P. L. N.; Minnetyan, L.

    1992-01-01

    A new approach independent of stress intensity factors and fracture toughness parameters has been developed and is described for the computational simulation of progressive delamination in polymer matrix composite laminates. The damage stages are quantified based on physics via composite mechanics while the degradation of the laminate behavior is quantified via the finite element method. The approach accounts for all types of composite behavior, laminate configuration, load conditions, and delamination processes starting from damage initiation, to unstable propagation, and to laminate fracture. Results of laminate fracture in composite beams, panels, plates, and shells are presented to demonstrate the effectiveness and versatility of this new approach.

  3. Effect of sterilization procedures on properties of plasma polymers relevant to biomedical applications

    Czech Academy of Sciences Publication Activity Database

    Artemenko, A.; Kylián, O.; Choukourov, A.; Gordeev, I.; Petr, M.; Vandrovcová, Marta; Polonskyi, O.; Bačáková, Lucie; Slavínská, D.; Biederman, H.

    2012-01-01

    Roč. 520, č. 24 (2012), s. 7115-7124 ISSN 0040-6090 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : plasma polymers * cell adhesion * effect of sterilization Subject RIV: EI - Biotechnology ; Bionics Impact factor: 1.604, year: 2012

  4. Fabrication and characterisation of a novel biomimetic anisotropic ceramic/polymer-infiltrated composite material.

    Science.gov (United States)

    Al-Jawoosh, Sara; Ireland, Anthony; Su, Bo

    2018-04-10

    To fabricate and characterise a novel biomimetic composite material consisting of aligned porous ceramic preforms infiltrated with polymer. Freeze-casting was used to fabricate and control the microstructure and porosity of ceramic preforms, which were subsequently infiltrated with 40-50% by volume UDMA-TEGDMA polymer. The composite materials were then subjected to characterisation, namely density, compression, three-point bend, hardness and fracture toughness testing. Samples were also subjected to scanning electron microscopy and computerised tomography (Micro-CT). Three-dimensional aligned honeycomb-like ceramic structures were produced and full interpenetration of the polymer phase was observed using micro-CT. Depending on the volume fraction of the ceramic preform, the density of the final composite ranged from 2.92 to 3.36g/cm 3 , compressive strength ranged from 206.26 to 253.97MPa, flexural strength from 97.73 to 145.65MPa, hardness ranged from 1.46 to 1.62GPa, and fracture toughness from 3.91 to 4.86MPam 1/2 . Freeze-casting provides a novel method to engineer composite materials with a unique aligned honeycomb-like interpenetrating structure, consisting of two continuous phases, inorganic and organic. There was a correlation between the ceramic fraction and the subsequent, density, strength, hardness and fracture toughness of the composite material. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.

  5. The effect of coumaryl alcohol incorporation on the structure and composition of lignin dehydrogenation polymers.

    Science.gov (United States)

    Harman-Ware, Anne E; Happs, Renee M; Davison, Brian H; Davis, Mark F

    2017-01-01

    Lignin dehydrogenation polymers (DHPs) are polymers generated from phenolic precursors for the purpose of studying lignin structure and polymerization processes. Here, DHPs were synthesized using a Zutropfverfahren method with horseradish peroxidase and three lignin monomers, sinapyl (S), coumaryl (H), and coniferyl (G) alcohols, in the presence of hydrogen peroxide. The H monomer was reacted with G and a 1:1 molar mixture of S:G monomers at H molar compositions of 0, 5, 10, and 20 mol% to study how the presence of the H monomer affected the structure and composition of the recovered polymers. At low H concentrations, solid-state NMR spectra suggest that the H and G monomers interact to form G:H polymers that have a lower average molecular weight than the solely G-based polymer or the G:H polymer produced at higher H concentrations. Solid-state NMR and pyrolysis-MBMS analyses suggest that at higher H concentrations, the H monomer primarily self-polymerizes to produce clusters of H-based polymer that are segregated from clusters of G- or S:G-based polymers. Thioacidolysis generally showed higher recoveries of thioethylated products from S:G or S:G:H polymers made with higher H content, indicating an increase in the linear ether linkages. Overall, the experimental results support theoretical predictions for the reactivity and structural influences of the H monomer on the formation of lignin-like polymers.

  6. Damping behavior of polymer composites with high volume fraction of NiMnGa powders

    Science.gov (United States)

    Sun, Xiaogang; Song, Jie; Jiang, Hong; Zhang, Xiaoning; Xie, Chaoying

    2011-03-01

    Polymer composites inserted with high volume fraction (up to 70 Vol%) of NiMnGa powders were fabricated and their damping behavior was investigated by dynamic mechanical analysis. It is found that the polymer matrix has little influence on the transformation temperatures of NiMnGa powders. A damping peak appears for NiMnGa/epoxy resin (EP) composites accompanying with the martensitic transformation or reverse martensitic transformation of NiMnGa powders during cooling or heating. The damping capacity for NiMnGa/EP composites increases linearly with the increase of volume fraction of NiMnGa powders and, decreases dramatically as the test frequency increases. The fracture strain of NiMnGa/EP composites decrease with the increase of NiMnGa powders.

  7. Analysis physical properties of composites polymer from cocofiber and polypropylene plastic waste with maleic anhydrate as crosslinking agent

    Science.gov (United States)

    Pelita, E.; Hidayani, T. R.; Akbar, A.

    2017-07-01

    This research was conducted with the aim to produce composites polymer with polypropylene plastic waste materials and cocofiber which aims to produce wood replacement material in the home furnishings industry. This research was conducted with several stages. The first stage is the process of soaking coco fiber with detergent to remove oil and 2% NaOH. The second stage is to combine the polypropylene plastic waste with cocofiber is a chemical bond, modification by adding maleic anhydride as a crosslinking agent and benzoyl peroxide as an initiator each as much as 1%. Mixing materials done by reflux method using xylene solvent. In this study, carried out a wide range of weight variation of coco fiber are added to the 10, 20, 30, 40 and 50%. The third stage is a polymer composite molding process using hot press at a temperature of 158°C. The results of polymer composites Showed optimum condition on the addition of 40% cocofiber with supple tensile strength value of 90.800 kgf /cm2 and value of elongation break at 3.6726 x 104 (kgf/cm2), melting point at 160.02°C, burning point 463.43°C, residue of TGA is 19%, the density of 0.84 g/mL. From these data, conclude that the resulting polymer composites meet the SNI 03-2105-2006 about ordinary composite polymer and polymer composite structural type 8 regular types from 17.5 to 10.5.

  8. Effects of photoirradiation in UV and VUV regions during plasma exposure to polymers

    International Nuclear Information System (INIS)

    Cho, Ken; Setsuhara, Yuichi; Takenaka, Kosuke; Shiratani, Masaharu; Sekine, Makoto; Hori, Masaru

    2011-01-01

    Interactions between photons irradiated from Ar-O 2 mixture plasmas and polymer surfaces were investigated on the basis of depth analyses of chemical bonding states in the nano-surface layer of polyethylene terephthalate (PET) films via hard X-ray photoelectron spectroscopy (HXPES) and conventional X-ray photoelectron spectroscopy (XPS). The PET films were exposed to photons from the Ar-O 2 mixture plasmas by covering the PET samples with MgF 2 and quartz windows as optical filters for evaluation of photoirradiation effects in ultraviolet (UV) and vacuum ultraviolet (VUV) regions. The HXPES results indicated that the degradation of the chemical bonding states due to photoirradiation in regions was insignificant in deeper regions up to about 50 nm from the surface. Whereas, conventional XPS analysis showed that C-O bond, O=C-O bond and C=O bond increased after photoirradiation in UV and VUV regions. These results suggest that the increase in oxygen functionalities (C-O bond, O=C-O bond and C=O bond) may be attributed to chemical reactions and/or terminations of scissed bonds via photodecompositions of the polymer with oxygen and/or OH species (oxygen molecules and radicals during plasma exposure and/or oxygen molecules and moisture after taking the PET samples out of the plasma reactor to the ambient air) in the vicinity of the sample surface.

  9. Chemical composition dependence of exposure buildup factors for some polymers

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Tejbir [Department of Physics, S.D.D.I.E.T., Barwala, District Panchkula, Haryana 134 118 (India)], E-mail: tejbir.s@rediffmail.com; Kumar, Naresh [Department of Physics, Lovely Professional University, Phagwara 144 402 (India)], E-mail: naresh20dhiman@yahoo.com; Singh, Parjit S. [Department of Physics, Punjabi University, Patiala 147 002 (India)], E-mail: dr_parjit@hotmail.com

    2009-01-15

    Exposure buildup factors for some polymers such as poly-acrylo-nitrile (PAN), poly-methyl-acrylate (PMA), poly-vinyl-chloride (PVC), synthetic rubber (SR), tetra-fluro-ethylene (Teflon) have been computed using the G.P. fitting method in the energy range of 0.015-15.0 MeV, up to the penetration of 40 mean free paths (mfp). The variation of exposure buildup factors for all the selected polymers with incident photon energy at the fixed penetration depths has been studied, mainly emphasizing on chemical composition (equivalent atomic number) of the selected polymers. It has been observed that for the lower penetration depths (below 10 mfp), the exposure buildup factor decreases with the increase in equivalent atomic number of the selected polymers at all the incident photon energies. However, at the penetration depth of 10 mfp and incident photon energy above 3 MeV, the exposure buildup factor becomes almost independent of the equivalent atomic number of the selected polymers. Further, above the fixed penetration depth of 15 mfp of the selected polymers and above the incident photon energy of 3 MeV, reversal in the trend has been observed, i.e., the exposure buildup factor increases with the increase in equivalent atomic number.

  10. Chemical composition dependence of exposure buildup factors for some polymers

    International Nuclear Information System (INIS)

    Singh, Tejbir; Kumar, Naresh; Singh, Parjit S.

    2009-01-01

    Exposure buildup factors for some polymers such as poly-acrylo-nitrile (PAN), poly-methyl-acrylate (PMA), poly-vinyl-chloride (PVC), synthetic rubber (SR), tetra-fluro-ethylene (Teflon) have been computed using the G.P. fitting method in the energy range of 0.015-15.0 MeV, up to the penetration of 40 mean free paths (mfp). The variation of exposure buildup factors for all the selected polymers with incident photon energy at the fixed penetration depths has been studied, mainly emphasizing on chemical composition (equivalent atomic number) of the selected polymers. It has been observed that for the lower penetration depths (below 10 mfp), the exposure buildup factor decreases with the increase in equivalent atomic number of the selected polymers at all the incident photon energies. However, at the penetration depth of 10 mfp and incident photon energy above 3 MeV, the exposure buildup factor becomes almost independent of the equivalent atomic number of the selected polymers. Further, above the fixed penetration depth of 15 mfp of the selected polymers and above the incident photon energy of 3 MeV, reversal in the trend has been observed, i.e., the exposure buildup factor increases with the increase in equivalent atomic number

  11. In-process, non-destructive, dynamic testing of high-speed polymer composite rotors

    Science.gov (United States)

    Kuschmierz, Robert; Filippatos, Angelos; Günther, Philipp; Langkamp, Albert; Hufenbach, Werner; Czarske, Jürgen; Fischer, Andreas

    2015-03-01

    Polymer composite rotors are lightweight and offer great perspectives in high-speed applications such as turbo machinery. Currently, novel rotor structures and materials are investigated for the purpose of increasing machine efficiency and lifetime, as well as allowing for higher dynamic loads. However, due to the complexity of the composite materials an in-process measurement system is required. This allows for monitoring the evolution of damages under dynamic loads, for testing and predicting the structural integrity of composite rotors in process. In rotor design, it can be used for calibrating and improving models, simulating the dynamic behaviour of polymer composite rotors. The measurement system is to work non-invasive, offer micron uncertainty, as well as a high measurement rate of several tens of kHz. Furthermore, it must be applicable at high surface speeds and under technical vacuum. In order to fulfil these demands a novel laser distance measurement system was developed. It provides the angle resolved measurement of the biaxial deformation of a fibre-reinforced polymer composite rotor with micron uncertainty at surface speeds of more than 300 m/s. Furthermore, a simulation procedure combining a finite element model and a damage mechanics model is applied. A comparison of the measured data and the numerically calculated data is performed to validate the simulation towards rotor expansion. This validating procedure can be used for a model calibration in the future. The simulation procedure could be used to investigate different damage-test cases of the rotor, in order to define its structural behaviour without further experiments.

  12. Hybrid and hierarchical nanoreinforced polymer composites: Computational modelling of structure–properties relationships

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Dai, Gaoming

    2014-01-01

    by using computational micromechanical models. It is shown that while glass/carbon fibers hybrid composites clearly demonstrate higher stiffness and lower weight with increasing the carbon content, they can have lower strength as compared with usual glass fiber polymer composites. Secondary...... nanoreinforcement can drastically increase the fatigue lifetime of composites. Especially, composites with the nanoplatelets localized in the fiber/matrix interface layer (fiber sizing) ensure much higher fatigue lifetime than those with the nanoplatelets in the matrix....

  13. Fabrication of a PANI/CPs composite material: a feasible method to enhance the photocatalytic activity of coordination polymers.

    Science.gov (United States)

    Xu, Xin-Xin; Cui, Zhong-Ping; Qi, Ji; Liu, Xiao-Xia

    2013-03-21

    To improve the photocatalytic activity of a coordination polymer in the visible light region, polyaniline (PANI) was loaded onto its surface through a facile in situ chemical oxidation polymerization process. The resulting PANI loaded coordination polymer composite materials with excellent stability exhibit significantly higher photocatalytic activities than the pure coordination polymer photocatalyst on the degradation of methyl orange (MO) under visible light irradiation. This enhancement can be ascribed to the introduction of PANI on the surface of the coordination polymer, which leads to efficient separation of photogenerated electron-hole pairs as well as a significant expansion of the photoresponse region. Finally, we discussed the influence of acidity on the morphology and photocatalytic activity of the composite material. An optimal condition to obtain the PANI loaded coordination polymer composite material with excellent photocatalytic activity has been obtained.

  14. Fabrication of mesoporous silica/polymer composites through solvent evaporation process and investigation of their excellent low thermal expansion property.

    Science.gov (United States)

    Suzuki, Norihiro; Kiba, Shosuke; Yamauchi, Yusuke

    2011-03-21

    We fabricate mesoporous silica/epoxy polymer composites through a solvent evaporation process. The easy penetration of the epoxy polymers into mesopores is achieved by using a diluted polymer solution including a volatile organic solvent. After the complete solvent evaporation, around 90% of the mesopores are estimated to be filled with the epoxy polymer chains. Here we carefully investigate the thermal expansion behavior of the obtained mesoporous silica/polymer composites. Thermal mechanical analysis (TMA) charts revealed that coefficient of linear thermal expansion (CTE) gradually decreases, as the amount of the doped mesoporous silica increases. Compared with spherical silica particle without mesopores, mesoporous silica particles show a greater effect on lowering the CTE values. Interestingly, it is found that the CTE values are proportionally decreased with the decrease of the total amount of the polymers outside the mesopores. These data demonstrate that polymers embedded inside the mesopores become thermally stable, and do not greatly contribute to the thermal expansion behavior of the composites.

  15. Density-tunable lightweight polymer composites with dual-functional ability of efficient EMI shielding and heat dissipation.

    Science.gov (United States)

    Lee, Seung Hwan; Yu, Seunggun; Shahzad, Faisal; Kim, Woo Nyon; Park, Cheolmin; Hong, Soon Man; Koo, Chong Min

    2017-09-21

    Lightweight dual-functional materials with high EMI shielding performance and thermal conductivity are of great importance in modern cutting-edge applications, such as mobile electronics, automotive, aerospace, and military. Unfortunately, a clear material solution has not emerged yet. Herein, we demonstrate a simple and effective way to fabricate lightweight metal-based polymer composites with dual-functional ability of excellent EMI shielding effectiveness and thermal conductivity using expandable polymer bead-templated Cu hollow beads. The low-density Cu hollow beads (ρ ∼ 0.44 g cm -3 ) were fabricated through electroless plating of Cu on the expanded polymer beads with ultralow density (ρ ∼ 0.02 g cm -3 ). The resulting composites that formed a continuous 3D Cu network with a very small Cu content (∼9.8 vol%) exhibited excellent EMI shielding (110.7 dB at 7 GHz) and thermal conductivity (7.0 W m -1 K -1 ) with isotropic features. Moreover, the densities of the composites are tunable from 1.28 to 0.59 g cm -3 in accordance with the purpose of their applications. To the best of our knowledge, the resulting composites are the best lightweight dual-functional materials with exceptionally high EMI SE and thermal conductivity performance among synthetic polymer composites.

  16. Tungsten-microdiamond composites for plasma facing components

    International Nuclear Information System (INIS)

    Livramento, V.; Nunes, D.; Correia, J.B.; Carvalho, P.A.; Mardolcar, U.; Mateus, R.; Hanada, K.; Shohoji, N.; Fernandes, H.; Silva, C.; Alves, E.

    2011-01-01

    Tungsten is considered as one of promising candidate materials for plasma facing component in nuclear fusion reactors due to its resistance to sputtering and high melting point. High thermal conductivity is also a prerequisite for plasma facing components under the unique service environment of fusion reactor characterised by the massive heat load, especially in the divertor area. The feasibility of mechanical alloying of nanodiamond and tungsten, and the consolidation of the composite powders with Spark Plasma Sintering (SPS) was previously demonstrated. In the present research we report on the use of microdiamond instead of nanodiamond in such composites. Microdiamond is more favourable than nanodiamond in view of phonon transport performance leading to better thermal conductivity. However, there is a trade off between densification and thermal conductivity as the SPS temperature increases tungsten carbide formation from microdiamond is accelerated inevitably while the consolidation density would rise.

  17. Biodegradation of New Polymer Foundry Binders for the Example of the Composition Polyacrylic Acid/Starch

    Directory of Open Access Journals (Sweden)

    Beata Grabowska

    2011-04-01

    Full Text Available The investigations on the biodegradation process pathway of the new polymer binders for the example of water soluble compositionpolyacrylic acid/starch are presented in the hereby paper. Degradation was carried out in water environment and in a soil. Thedetermination of the total oxidation biodegradation in water environment was performed under laboratory conditions in accordance with the static water test system (Zahn-Wellens method, in which the mixture undergoing biodecomposition contained inorganic nutrient,activated sludge and the polymer composition, as the only carbon and energy source. The biodecomposition progress of the polymercomposition sample in water environment was estimated on the basis of the chemical oxygen demand (COD measurements and thedetermination the biodegradation degree, Rt, during the test. These investigations indicated that the composition polyacrylic acid/starchconstitutes the fully biodegradable material in water environment. The biodegradation degree Rt determined in the last 29th day of the test duration achieved 65%, which means that the investigated polymer composition can be considered to be fully biodegradable.During the 6 months biodegradation process of the cross-linked sample of the polymer composition in a garden soil several analysis ofsurface and structural changes, resulting from the sample decomposition, were performed. Those were: thermal analyses (TG-DSC,structural analyses (Raman spectroscopy and microscopic analyses (optical microscopy, AFM.

  18. Effect of plasma nitriding on electrodeposited Ni–Al composite coating

    DEFF Research Database (Denmark)

    Daemi, N.; Mahboubi, F.; Alimadadi, Hossein

    2011-01-01

    In this study plasma nitriding is applied on nickel–aluminum composite coating, deposited on steel substrate. Ni–Al composite layers were fabricated by electro-deposition process in Watt’s bath containing Al particles. Electrodeposited specimens were subjected to plasma atmosphere comprising of N2......–20% H2, at 500°C, for 5h. The surface morphology investigated, using a scanning electron microscope (SEM) and the surface roughness was measured by use of contact method. Chemical composition was analyzed by X-ray fluorescence spectroscopy and formation of AlN phase was confirmed by X-ray diffraction....... The corrosion resistance of composite coatings was measured by potentiodynamic polarization in 3.5% NaCl solution. The obtained results show that plasma nitriding process leads to an increase in microhardness and corrosion resistance, simultaneously....

  19. RF electromagnetic wave absorbing properties of ferrite polymer composite materials

    International Nuclear Information System (INIS)

    Dosoudil, Rastislav; Usakova, Marianna; Franek, Jaroslav; Slama, Jozef; Olah, Vladimir

    2006-01-01

    The frequency dispersion of complex initial (relative) permeability (μ * =μ ' -jμ ' ') and the electromagnetic wave absorbing properties of composite materials based on NiZn sintered ferrite and a polyvinylchloride (PVC) polymer matrix have been studied in frequency range from 1MHz to 1GHz. The complex permeability of the composites was found to increase as the ferrite content increased, and was characterized by frequency dispersion localized above 50MHz. The variation of return loss (RL) of single-layer RF absorbers using the prepared composite materials has been investigated as a function of frequency, ferrite content and the thickness of the absorbers

  20. PREPARATION AND CHARACTERIZATION OF COMPOSITES COMPRISING MODIFIED HARDWOOD AND WOOD POLYMERS/POLY(VINYL CHLORIDE

    Directory of Open Access Journals (Sweden)

    Ruxanda Bodîrlău

    Full Text Available Chemical modification of hardwood sawdust from ash-tree species was carried out with a solution of maleic anhydride in acetone. Wood polymers, lignin, and cellulose were isolated from the wood sawdust and modified by the same method. Samples were characterized by Fourier transform infrared spectroscopy (FTIR, providing evidence that maleic anhydride esterifies the free hydroxyl groups of the wood polymer components. Composites comprising chemically modified wood sawdust and wood polymers (cellulose, lignin-as variable weight percentages-, and poly (vinyl chloride were obtained and further characterized by using FTIR spectroscopy and scanning electron microscopy (SEM. The thermal behavior of composites was investigated by using the thermogravimetric analysis (TGA. In all cases, thermal properties were affected by fillers addition.

  1. Study of the chlorine as dopant in synthesized polymers by plasma; Estudio del cloro como dopante en polimeros sintetizados por plasma

    Energy Technology Data Exchange (ETDEWEB)

    Vasquez, M.; Cruz, G.; Olayo, M.G. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Timoshina, T. [ESIQIE, IPN, 07738 Mexico D.F. (Mexico); Morales, J.; Olayo, R. [UAM-I, 09340 Mexico D.F. (Mexico)

    2003-07-01

    In the search of new and better dopants for semiconductor polymers, in this work the synthesis by plasma and the characterization of two doped polymers with chlorine, Pyrrole (PPy) and Thiophene (PTh) is presented. The characterization of the polymers it was carried out by FT-lR, it shows the C-Cl vibration that it is confirmed with the X-ray photoelectron spectroscopy technique (XPS). The elementary analysis shows a greater quantity of Cl in the PTh-CI compared with PPy-CI. However, this effect is not reflected in the electric conductivity since the PTh-Cl presents a lightly greater conductivity than the PPy-CI. SEM shows a formed structure of small agglomerated spheres of different size. (Author)

  2. A comparison of plasma and electron beam-sterilization of PU catheters

    Energy Technology Data Exchange (ETDEWEB)

    Mrad, O. [Univ Paris-Sud 11, EA 401, IFR 141, Faculte de pharmacie, F-92296 Chatenay Malabry (France); Saunier, J., E-mail: johanna.saunier@u-psud.f [Univ Paris-Sud 11, EA 401, IFR 141, Faculte de pharmacie, F-92296 Chatenay Malabry (France); Aymes Chodur, C. [Univ Paris-Sud 11, EA 401, IFR 141, Faculte de pharmacie, F-92296 Chatenay Malabry (France); Rosilio, V.; Agnely, F. [Univ Paris-Sud 11, UMR 8612, Faculte de pharmacie, F-92296 Chatenay Malabry (France); CNRS, UMR 8612, Faculte de pharmacie, F-92296 Chatenay Malabry (France); Aubert, P. [Univ Evry Val d' Essonne, LMN, F-91025 Evry (France); Vigneron, J.; Etcheberry, A. [Univ Versailles, ILV CNRS UMR 8180, Institut Lavoisier de Versailles, F-78035 Versailles (France); Yagoubi, N. [Univ Paris-Sud 11, EA 401, IFR 141, Faculte de pharmacie, F-92296 Chatenay Malabry (France)

    2010-01-15

    Polyurethane (PU) catheters made of Pellethane 2363-80AE were treated in two different ways: a new treatment with low temperature plasma that could be used to decontaminate reusable polymer devices in hospitals, and an e-beam (EB) irradiation. Polymer structure and bulk properties were studied by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), infrared spectroscopy (FTIR) and size exclusion chromatography (SEC). Although PU was strongly modified by the e-beam irradiation leading to branching of polymer chains, it had no or little impact on the thermo-mechanical properties of the catheters and on the hard/soft segment organization of PU. For plasma-treated samples, no modification in the polymer bulk was observed, confirming that plasma treatment might be considered as an alternative to e-beam irradiation. The analysis of surface modifications showed an evolution of superficial topology and chemical composition (grafting of oxygen and nitrogen species) of the catheters after treatment, with a more polar and hydrophilic surface.

  3. A comparison of plasma and electron beam-sterilization of PU catheters

    International Nuclear Information System (INIS)

    Mrad, O.; Saunier, J.; Aymes Chodur, C.; Rosilio, V.; Agnely, F.; Aubert, P.; Vigneron, J.; Etcheberry, A.; Yagoubi, N.

    2010-01-01

    Polyurethane (PU) catheters made of Pellethane 2363-80AE were treated in two different ways: a new treatment with low temperature plasma that could be used to decontaminate reusable polymer devices in hospitals, and an e-beam (EB) irradiation. Polymer structure and bulk properties were studied by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), infrared spectroscopy (FTIR) and size exclusion chromatography (SEC). Although PU was strongly modified by the e-beam irradiation leading to branching of polymer chains, it had no or little impact on the thermo-mechanical properties of the catheters and on the hard/soft segment organization of PU. For plasma-treated samples, no modification in the polymer bulk was observed, confirming that plasma treatment might be considered as an alternative to e-beam irradiation. The analysis of surface modifications showed an evolution of superficial topology and chemical composition (grafting of oxygen and nitrogen species) of the catheters after treatment, with a more polar and hydrophilic surface.

  4. Thermal conductivity of plasma modified polyethylene terephthalate and polyamide-6 layers

    Directory of Open Access Journals (Sweden)

    G. Kalacska

    2016-05-01

    Full Text Available Tribological performance of the materials greatly depends on the temperature of the contacting zones and surfaces and hence on the heat conducting behaviour of the materials. Heat conduction of polymers is, however, greatly affected even by a very narrow (few tens of nm modified layer formed on the surface after subjecting the polymer to plasma treatment. In this article the heat flow inhibiting properties of plasma modified surface layers were investigated on polyethylene terephthalate (PET and polyamide-6 (PA6 engineering polymers. Nitrogen Plasma Immersion Ion Implantation gave rise to compositional and structural changes of the polymers in a depth of 110 nm. It was found that even this thin layer exhibited significant heat flow inhibiting effect. The modified layer considerably decreased the thermal conductivity coefficient of the treated polymer and resulted in a reduced heat transmission for PET and PA6 by 33 and 28%, respectively. This new information supports and is in accordance with the former tribological results about extra friction heat generation experienced under NPIII surface layer of PA6 and PET during dry sliding.

  5. Carbon fiber polymer-matrix structural composites tailored for multifunctionality by filler incorporation

    Science.gov (United States)

    Han, Seungjin

    This dissertation provides multifunctional carbon fiber polymer-matrix structural composites for vibration damping, thermal conduction and thermoelectricity. Specifically, (i) it has strengthened and stiffened carbon fiber polymer-matrix structural composites by the incorporation of halloysite nanotubes, carbon nanotubes and silicon carbide whiskers, (ii) it has improved mechanical energy dissipation using carbon fiber polymer-matrix structural composites with filler incorporation, (iii) it has increased the through-thickness thermal conductivity of carbon fiber polymer-matrix composite by curing pressure increase and filler incorporation, and (iv) it has enhanced the thermoelectric behavior of carbon fiber polymer-matrix structural composites. Low-cost natural halloysite nanotubes (0.1 microm diameter) were effective for strengthening and stiffening continuous fiber polymer-matrix composites, as shown for crossply carbon fiber (5 microm diameter, ˜59 vol.%) epoxy-matrix composites under flexure, giving 17% increase in strength, 11% increase in modulus and 21% decrease in ductility. They were less effective than expensive multiwalled carbon nanotubes (0.02 microm diameter), which gave 25% increase in strength, 11% increase in modulus and 14% decrease in ductility. However, they were more effective than expensive silicon carbide whiskers (1 microm diameter), which gave 15% increase in strength, 9% increase in modulus and 20% decrease in ductility. Each filler, at ˜2 vol.%, was incorporated in the composite at every interlaminar interface by fiber prepreg surface modification. The flexural strength increase due to halloysite nanotubes incorporation related to the interlaminar shear strength increase. The measured values of the composite modulus agreed roughly with the calculated values based on the Rule of Mixtures. Continuous carbon fiber composites with enhanced vibration damping under flexure are provided by incorporation of fillers between the laminae

  6. Tridimensional ionic polymer metal composites: optimization of the manufacturing techniques

    International Nuclear Information System (INIS)

    Bonomo, C; Brunetto, P; Fortuna, L; Graziani, S; Bottino, M; Di Pasquale, G; Pollicino, A

    2010-01-01

    Ionic polymer metal composites (IPMCs) belong to electroactive polymers (EAPs) and have been suggested for various applications due to their light weight and to the fact that they react mechanically when stimulated by an electrical signal and vice versa. Thick IPMCs (3D-IPMCs) have been fabricated by hot pressing several Nafion ® 117 films. Additional post-processes (more cycles of Pt electroless plating and dispersing agents) have been applied to improve the 3D-IPMC performance. The electromechanical response of 3D-IPMCs has been examined by applying electrical signals and measuring the displacement and blocking force produced

  7. Kinetics of radiation-induced structural alterations in electron-irradiated polymer-based composites

    International Nuclear Information System (INIS)

    Zaikin, Yu.A.; Potanin, A.S.; Koztaeva, U.P.

    2002-01-01

    Complete text of publication follows. In our previous studies measurements of internal friction temperature dependence were used for characterization of thermally activated and radiation-induced structural evolution in different types of polymer-based composites. This paper supplements these measurements with kinetic studies of internal friction (IF) parameters and EPR signals in a glass-cloth epoxy-filled laminate ST-ETF after electron irradiation up to doses of 1-10 MGy. Experiment have shown that the lifetime of free radicals in this composite considerably exceeds the characteristic time of molecular structural rearrangement due to scission and cross-linking after irradiation, as determined from IF measurements. This result is explained by slow proceeding of sterically hindered disproportionation reactions that stabilize the end groups of the macro-chain disrupt during irradiation and finally fix the act of scission. A mathematical model is formulated for description of structural evolution and alterations of IF parameters in polymer-based composites during and after electron irradiation. The description is based on the track model of radiation damage in polymers and phenomenological theory of radiation-induced structural transformations. General description does not give details of radiation-chemical conversion in different structural components of composites but indicates the direction of their structural evolution. In the model considered a composite material was divided into three parts (binder, filler, and a boundary layer). It was supposed that after primary distribution of radiation energy radiation-chemical conversion proceeds independently in each of these regions. It was also suggested that all the radical reactions were of the second order. On the example of glass-cloth laminate ST-ETF it is shown that this model allows to describe alterations in composite structural characteristics during irradiation and in the course of their self-organization after

  8. Low Velocity Impact Behavior of Basalt Fiber-Reinforced Polymer Composites

    Science.gov (United States)

    Shishevan, Farzin Azimpour; Akbulut, Hamid; Mohtadi-Bonab, M. A.

    2017-06-01

    In this research, we studied low velocity impact response of homogenous basalt fiber-reinforced polymer (BFRP) composites and then compared the impact key parameters with carbon fiber-reinforced polymer (CFRP) homogenous composites. BFRPs and CFRPs were fabricated by vacuum-assisted resin transfer molding (VARTM) method. Fabricated composites included 60% fiber and 40% epoxy matrix. Basalt and carbon fibers used as reinforcement materials were weaved in 2/2 twill textile tip in the structures of BFRP and CFRP composites. We also utilized the energy profile method to determine penetration and perforation threshold energies. The low velocity impact tests were carried out in 30, 60, 80, 100, 120 and 160 J energy magnitudes, and impact response of BFRPs was investigated by related force-deflection, force-time, deflection-time and absorbed energy-time graphics. The related impact key parameters such as maximum contact force, absorbed energy, deflection and duration time were compared with CFRPs for various impact energy levels. As a result, due to the higher toughness of basalt fibers, a better low velocity impact performance of BFRP than that of CFRP was observed. The effects of fabrication parameters, such as curing process, were studied on the low velocity impact behavior of BFRP. The results of tested new fabricated materials show that the change of fabrication process and curing conditions improves the impact behavior of BFRPs up to 13%.

  9. Plasma coatings of nitrogen polymers on metal prostheses of the circulatory system

    International Nuclear Information System (INIS)

    Gomez J, L. M.

    2016-01-01

    This work has a study about the synthesis of poly aniline, poly allylamine and poly pyrrole doped with iodine onto metallic surfaces similar to stents for the circulatory system. Ar, water and hydrogen peroxide plasmas were used for eroding, conditioning and synthesizing polymers that potentially reduce some rejection reactions when stents are implanted in the human body. Stents are small metallic meshes that applied inside collapsed arteries or veins enlarge the diameter and restore the blood flow, however the metallic surfaces usually cause rejection reactions that obstruct the veins again. To give solutions to this problem, in this work is studied the synthesis of biocompatible polymer coatings on the stents that resist the blood flow forming a biocompatible interface between metal and blood. The metallic substrates were eroded and chemically prepared with Ar, H_2O and/or H_2O_2 glow discharges on which the polymers were synthesized by plasma. The coatings were morphologically characterized by optical, scanning electron and atomic force microscopy, the chemical structure was studied by infrared and photoelectron X-ray spectroscopy. The hydrophilicity was studied measuring the advance static contact angle and the adhesion was evaluated indirectly with scanning electron microscopy after two months submerged in buffered phosphate solutions. The results indicate that the polymers grew following the superficial morphology; that the conditioning with Ar ions erode the substrates and that the conditioning with H_2O or H_2O_2 erodes and activates the surface generating oxygen bridges which help in the polymer-metal adhesion. The chemical structure of the polymeric coatings contain crosslinked structures that correspond to links between monomers with the participation of all atoms, states that suggest monomer fragmentation and oxidation and states that indicate oxygen bridges in the polymers. The coatings had contact angles close to 90 degrees where is located the line

  10. Molybdenum disilicide composites produced by plasma spraying

    International Nuclear Information System (INIS)

    Castro, R.G.; Hollis, K.J.; Kung, H.H.; Bartlett, A.H.

    1998-01-01

    The intermetallic compound, molybdenum disilicide (MoSi 2 ) is being considered for high temperature structural applications because of its high melting point and superior oxidation resistance at elevated temperatures. The lack of high temperature strength, creep resistance and low temperature ductility has hindered its progress for structural applications. Plasma spraying of coatings and structural components of MoSi 2 -based composites offers an exciting processing alternative to conventional powder processing methods due to superior flexibility and the ability to tailor properties. Laminate, discontinuous and in situ reinforced composites have been produced with secondary reinforcements of Ta, Al 2 O 3 , SiC, Si 3 N 4 and Mo 5 Si 3 . Laminate composites, in particular, have been shown to improve the damage tolerance of MoSi 2 during high temperature melting operations. A review of research which as been performed at Los Alamos National Laboratory on plasma spraying of MoSi 2 -based composites to improve low temperature fracture toughness, thermal shock resistance, high temperature strength and creep resistance will be discussed

  11. Electro-mechanical properties of free standing micro- and nano-scale polymer-ceramic composites for energy density capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Paritosh; Borkar, Hitesh [CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi, 110012 (India); Academy of Scientific and Innovative Research (AcSIR), CSIR-National Physical Laboratory (CSIR-NPL) Campus, Dr. K. S. Krishnan Road, New Delhi, 110012 (India); Singh, B.P.; Singh, V.N. [CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi, 110012 (India); Kumar, Ashok, E-mail: ashok553@nplindia.org [CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi, 110012 (India); Academy of Scientific and Innovative Research (AcSIR), CSIR-National Physical Laboratory (CSIR-NPL) Campus, Dr. K. S. Krishnan Road, New Delhi, 110012 (India)

    2015-11-05

    The integration of inorganic fillers in polymer matrix is useful for superior mechanical strength and functional properties of polymer-ceramic composites. We report the fabrication and characterization of polyvinylidene fluoride-CoFe{sub 2}O{sub 4} (PVDF-CFO) (wt% 80:20, respectively) and PVDF-Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3}–CoFe{sub 2}O{sub 4} (PVDF-PZT-CFO) (wt% 80:10:10, respectively) free standing 50 μm thick ferroelectric-polymer-ceramic composites films. X-ray diffraction (XRD) patterns and Raman spectra revealed the presence of major semi-crystalline β-PVDF along with α-phase which is responsible for ferroelectric nature in both the composite systems. Ferroelectric, dielectric and mechanical strength measurements were performed in order to evaluate the effects of CFO and PZT inorganic fillers in PVDF matrix. The inclusion of CFO and PZT micro-/nano-particles in PVDF polymer matrix improved the polarization behavior, dielectric properties and mechanical strength. The energy density was calculated by polarization-electric field hysteresis loop and found in the range of 6–8 J/cm{sup 3} may be useful for microelectronics. - Graphical abstract: Large area PVDF-PZT-CFO nano- and micro-composite films have been fabricated for high energy density storage flexible capacitor. Presence of nanocrystalline PZT and CFO particles in polymer matrix significantly enhanced their energy density capacity. - Highlights: • Physical interaction of cobalt iron oxide with polymer matrix results β-PVDF phase. • Evidence of Micro and Nano crystalline CFO and PZT fillers in polymer matrix. • The CFO and PZT fillers provide better mechanical strength to composite films. • PVDF-ceramic nanocomposites show low leakage behavior for high electric field.

  12. Composite polymer electrolytes based on MG49 and carboxymethyl cellulose from kenaf

    Energy Technology Data Exchange (ETDEWEB)

    Jafirin, Serawati; Ahmad, Ishak; Ahmad, Azizan [Polymer Research Centre (PORCE), School of Chemical Science and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan (Malaysia)

    2013-11-27

    The development of 49% poly(methyl methacrylate)-grafted natural rubber (MG49) and carboxymethyl cellulose as a composite polymer electrolyte film incorporating LiCF{sub 3}SO{sub 3} were explored. Carboxymethyl cellulose was synthesized from kenaf bast fibres via carboxymethylation process by alkali catalyzed reaction of cellulose with sodium chloroacetate. Reflection fourier transform infrared (ATR-FTIR) spectroscopy showed the presence of carboxyl peak after modification of cellulose with sodium chloroacetate. X-ray diffraction (XRD) analysis revealed that the crystallinity of cellulose was decrease after synthesis. High performance composite polymer electrolytes were prepared with various composition of carboxymethyl cellulose (2–10 wt%) via solution-casting method. The conductivity was increased with carboxymethyl cellulose loading. The highest conductivity value achieved was 3.3 × 10{sup −7} Scm{sup −1} upon addition of 6% wt carboxymethyl cellulose. 6% wt carboxymethyl cellulose composition showed the highest tensile strength value of 7.9 MPa and 273 MPa of modulus value which demonstrated high mechanical performance with accepatable level of ionic conductivity.

  13. Computational modeling of biodegradable starch based polymer composites

    Science.gov (United States)

    Joshi, Sachin Sudhakar

    2007-12-01

    Purpose. The goal of this study is to improve the favorable molecular interactions between starch and PPC by addition of grafting monomers MA and ROM as compatibilizers, which would advance the mechanical properties of starch/PPC composites. Methodology. DFT and semi-empirical methods based calculations were performed on three systems: (a) starch/PPC, (b) starch/PPC-MA, and (c) starch-ROM/PPC. Theoretical computations involved the determination of optimal geometries, binding-energies and vibrational frequencies of the blended polymers. Findings. Calculations performed on five starch/PPC composites revealed hydrogen bond formation as the driving force behind stable composite formation, also confirmed by the negative relative energies of the composites indicating the existence of binding forces between the constituent co-polymers. The interaction between starch and PPC is also confirmed by the computed decrease in stretching CO and OH group frequencies participating in hydrogen bond formation, which agree qualitatively with the experimental values. A three-step mechanism of grafting MA on PPC was proposed to improve the compatibility of PPC with starch. Nine types of 'blends' produced by covalent bond formation between starch and MA-grafted PPC were found to be energetically stable, with blends involving MA grafted at the 'B' and 'C' positions of PPC indicating a binding-energy increase of 6.8 and 6.2 kcal/mol, respectively, as compared to the non-grafted starch/PPC composites. A similar increase in binding-energies was also observed for three types of 'composites' formed by hydrogen bond formation between starch and MA-grafted PPC. Next, grafting of ROM on starch and subsequent blend formation with PPC was studied. All four types of blends formed by the reaction of ROM-grafted starch with PPC were found to be more energetically stable as compared to the starch/PPC composite and starch/PPC-MA composites and blends. A blend of PPC and ROM grafted at the '

  14. Polymer electrolytes: an investigation of some poly (n-propylaziridine)/lithium salt compositions. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, K R; Golder, A J; Knight, J

    1984-04-01

    Some poly(N-propylaziridine)/lithium salt compositions have been synthesized and their electrical conductivities have been measured in order to assess their suitability as electrolytes in safe, leakproof, high energy-density lithium batteries operating at ambient temperature. The effects on conductivity of temperature, and the nature and concentration of the salt have also been studied. The presence of the salts markedly improved the conductivity of the compositions over that of the undoped polymer but they were insufficiently conducting to be considered as battery electrolytes, due possibly to ion-pairing. Their creep resistance was also low. It was concluded that less fluid compositions containing higher molecular weight polymers better able to promote ion separation would be more suitable.

  15. Novel Lead dioxide-Graphite-Polymer composite anode for electrochemical chlorine generation

    Czech Academy of Sciences Publication Activity Database

    Gedam, N.; Neti, R.N.; Kormunda, M.; Šubrt, Jan; Bakardjieva, Snejana

    2015-01-01

    Roč. 169, JUL (2015), s. 109-116 ISSN 0013-4686 Institutional support: RVO:61388980 Keywords : beta-Lead dioxide * Graphite * Polymer composite anode * Chlorine generation * Cyclic voltammetry Subject RIV: CG - Electrochemistry Impact factor: 4.803, year: 2015

  16. On methods of measuring the relative plasma composition by active charge exchange

    International Nuclear Information System (INIS)

    Herrmann, W.

    1991-04-01

    Two methods of measuring the hydrogenic composition of plasma with an active diagnostic beam are discussed: Evaluation at equal energies of the neutrals leaving the plasma and at equal velocities. Evaluation at equal velocity has the advantage that the plasma composition, particle penetration and stripping efficiency of the analyzer do not enter the evaluation. The only plasma parameter that has to be known is the plasma temperature. If measurement at two different velocities is possible, the temperature can also be evaluated from the corresponding four fluxes without any further knowledge of plasma or beam parameters. It is discussed under what circumstances evaluation of the plasma composition is possible for non-Maxwellian distribution functions. As the halo effect may be the main source of error, it is shown that the application of a helium beam may considerably reduce this problem. (orig.)

  17. Fique Fabric: A Promising Reinforcement for Polymer Composites

    Directory of Open Access Journals (Sweden)

    Sergio Neves Monteiro

    2018-02-01

    Full Text Available A relatively unknown natural fiber extracted from the leaves of the fique plant, native of the South American Andes, has recently shown potential as reinforcement of polymer composites for engineering applications. Preliminary investigations indicated a promising substitute for synthetic fibers, competing with other well-known natural fibers. The fabric made from fique fibers have not yet been investigated as possible composite reinforcement. Therefore, in the present work a more thorough characterization of fique fabric as a reinforcement of composites with a polyester matrix was performed. Thermal mechanical properties of fique fabric composites were determined by dynamic mechanical analysis (DMA. The ballistic performance of plain woven fique fabric-reinforced polyester matrix composites was investigated as a second layer in a multilayered armor system (MAS. The results revealed a sensible improvement in thermal dynamic mechanical behavior. Both viscoelastic stiffness and glass transition temperature were increased with the amount of incorporated fique fabric. In terms of ballistic results, the fique fabric composites present a performance similar to that of the much stronger KevlarTM as an MAS second layer with the same thickness. A cost analysis indicated that armor vests with fique fabric composites as an MAS second layer would be 13 times less expensive than a similar creation made with Kevlar™.

  18. AC Electric Field Activated Shape Memory Polymer Composite

    Science.gov (United States)

    Kang, Jin Ho; Siochi, Emilie J.; Penner, Ronald K.; Turner, Travis L.

    2011-01-01

    Shape memory materials have drawn interest for applications like intelligent medical devices, deployable space structures and morphing structures. Compared to other shape memory materials like shape memory alloys (SMAs) or shape memory ceramics (SMCs), shape memory polymers (SMPs) have high elastic deformation that is amenable to tailored of mechanical properties, have lower density, and are easily processed. However, SMPs have low recovery stress and long response times. A new shape memory thermosetting polymer nanocomposite (LaRC-SMPC) was synthesized with conductive fillers to enhance its thermo-mechanical characteristics. A new composition of shape memory thermosetting polymer nanocomposite (LaRC-SMPC) was synthesized with conductive functionalized graphene sheets (FGS) to enhance its thermo-mechanical characteristics. The elastic modulus of LaRC-SMPC is approximately 2.7 GPa at room temperature and 4.3 MPa above its glass transition temperature. Conductive FGSs-doped LaRC-SMPC exhibited higher conductivity compared to pristine LaRC SMP. Applying an electric field at between 0.1 Hz and 1 kHz induced faster heating to activate the LaRC-SMPC s shape memory effect relative to applying DC electric field or AC electric field at frequencies exceeding1 kHz.

  19. Effect of monomer composition on the properties of high temperature polymer concretes

    Energy Technology Data Exchange (ETDEWEB)

    Zeldin, A.; Kukacka, L.E.; Carciello, N.

    1980-01-01

    The effects of organic monomer composition on the thermomechanical properties of polymer concrete (PC) containing sand-cement mixtures as an agregate filler were investigated. The effects of various monomer mixtures on compressive strength and hydrolytic stability are discussed. Composites were fabricated in the same way as ordinary concrete, with monomer solutions of various compositions and concentrations used to bind the sand-cement mixture. The compressive strengths of th composites before and after exposure to air and to brine solutions at 240/sup 0/C are discussed.

  20. Plasma etching a ceramic composite. [evaluating microstructure

    Science.gov (United States)

    Hull, David R.; Leonhardt, Todd A.; Sanders, William A.

    1992-01-01

    Plasma etching is found to be a superior metallographic technique for evaluating the microstructure of a ceramic matrix composite. The ceramic composite studied is composed of silicon carbide whiskers (SiC(sub W)) in a matrix of silicon nitride (Si3N4), glass, and pores. All four constituents are important in evaluating the microstructure of the composite. Conventionally prepared samples, both as-polished or polished and etched with molten salt, do not allow all four constituents to be observed in one specimen. As-polished specimens allow examination of the glass phase and porosity, while molten salt etching reveals the Si3N4 grain size by removing the glass phase. However, the latter obscures the porosity. Neither technique allows the SiC(sub W) to be distinguished from the Si3N4. Plasma etching with CF4 + 4 percent O2 selectively attacks the Si3N4 grains, leaving SiC(sub W) and glass in relief, while not disturbing the pores. An artifact of the plasma etching reaction is the deposition of a thin layer of carbon on Si3N4, allowing Si3N4 grains to be distinguished from SiC(sub W) by back scattered electron imaging.

  1. Performance of polymer nano composite membrane electrode assembly using Alginate as a dopant in polymer electrolyte membrane fuel cell [Journal of Physics. Conference Series (Online), v. 795(1)

    International Nuclear Information System (INIS)

    Mulijani, S.

    2017-01-01

    Polymer membrane and composite polymer for membrane electrode assembly (MEAs) are synthesized and studied for usage in direct methanol fuel cell (DMFC). In this study, we prepared 3 type of MEAs, polystyrene (PS), sulfonated polystyrene (SPS) and composite polymer SPS-alginat membrane via catalyst hot pressed method. The performance and properties of prepared MEAs were evaluated and analyzed by impedance spectrometry and scanning electron microscopy (SEM). The result showed that, water up take of MEA composite polymer SPS-alginate was obtained higher than that in SPS and PS. The proton conductivity of MEA-SPS-alginate was also higher than that PS and PSS. SEM characterization revealed that the intimate contact between the carbon catalyst layers (CL) and the membranes, and the uniformly porous structure correlate positively with the MEAs prepared by hot pressed method, exhibiting high performances for DMFC. (paper)

  2. Electrochemical performance of an air-breathing direct methanol fuel cell using poly(vinyl alcohol)/hydroxyapatite composite polymer membrane

    Science.gov (United States)

    Yang, Chun-Chen; Chiu, Shwu-Jer; Lin, Che-Tseng

    A novel composite polymer membrane based on poly(vinyl alcohol)/hydroxyapatite (PVA/HAP) was successfully prepared by a solution casting method. The characteristic properties of the PVA/HAP composite polymer membranes were examined by thermal gravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), micro-Raman spectroscopy and AC impedance method. An air-breathing DMFC, comprised of an air cathode electrode with MnO 2/BP2000 carbon inks on Ni-foam, an anode electrode with PtRu black on Ti-mesh, and the PVA/HAP composite polymer membrane, was assembled and studied. It was found that this alkaline DMFC showed an improved electrochemical performance at ambient temperature and pressure; the maximum peak power density of an air-breathing DMFC in 8 M KOH + 2 M CH 3OH solution is about 11.48 mW cm -2. From the application point of view, these composite polymer membranes show a high potential for the DMFC applications.

  3. Electrochemical performance of an air-breathing direct methanol fuel cell using poly(vinyl alcohol)/hydroxyapatite composite polymer membrane

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chun-Chen; Chiu, Shwu-Jer; Lin, Che-Tseng [Department of Chemical Engineering, Mingchi University of Technology, Taipei Hsien 243 (China)

    2008-02-15

    A novel composite polymer membrane based on poly(vinyl alcohol)/hydroxyapatite (PVA/HAP) was successfully prepared by a solution casting method. The characteristic properties of the PVA/HAP composite polymer membranes were examined by thermal gravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), micro-Raman spectroscopy and AC impedance method. An air-breathing DMFC, comprised of an air cathode electrode with MnO{sub 2}/BP2000 carbon inks on Ni-foam, an anode electrode with PtRu black on Ti-mesh, and the PVA/HAP composite polymer membrane, was assembled and studied. It was found that this alkaline DMFC showed an improved electrochemical performance at ambient temperature and pressure; the maximum peak power density of an air-breathing DMFC in 8 M KOH + 2 M CH{sub 3}OH solution is about 11.48 mW cm{sup -2}. From the application point of view, these composite polymer membranes show a high potential for the DMFC applications. (author)

  4. Measurements of plasma composition in the TEXTOR tokamak by collective Thomson scattering

    DEFF Research Database (Denmark)

    Stejner Pedersen, Morten; Korsholm, Søren Bang; Nielsen, Stefan Kragh

    2012-01-01

    We demonstrate the use of collective Thomson scattering (CTS) for spatially localized measurements of the isotopic composition of magnetically confined fusion plasmas. The experiments were conducted in the TEXTOR tokamak by scattering millimeter-wave probe radiation off plasma fluctuations...... with wave vector components nearly perpendicular to the magnetic field. Under such conditions the sensitivity of the CTS spectrum to plasma composition is enhanced by the spectral signatures of the ion cyclotron motion and of weakly damped ion Bernstein waves. Recent experiments on TEXTOR demonstrated...... the ability to resolve these signatures in the CTS spectrum as well as their sensitivity to the ion species mix in the plasma. This paper shows that the plasma composition can be inferred from the measurements through forward modeling of the CTS spectrum. We demonstrate that spectra measured in plasmas...

  5. Shape memory polymers

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Thomas S.; Bearinger, Jane P.

    2017-08-29

    New shape memory polymer compositions, methods for synthesizing new shape memory polymers, and apparatus comprising an actuator and a shape memory polymer wherein the shape memory polymer comprises at least a portion of the actuator. A shape memory polymer comprising a polymer composition which physically forms a network structure wherein the polymer composition has shape-memory behavior and can be formed into a permanent primary shape, re-formed into a stable secondary shape, and controllably actuated to recover the permanent primary shape. Polymers have optimal aliphatic network structures due to minimization of dangling chains by using monomers that are symmetrical and that have matching amine and hydroxl groups providing polymers and polymer foams with clarity, tight (narrow temperature range) single transitions, and high shape recovery and recovery force that are especially useful for implanting in the human body.

  6. Shape memory polymers

    Science.gov (United States)

    Wilson, Thomas S.; Bearinger, Jane P.

    2015-06-09

    New shape memory polymer compositions, methods for synthesizing new shape memory polymers, and apparatus comprising an actuator and a shape memory polymer wherein the shape memory polymer comprises at least a portion of the actuator. A shape memory polymer comprising a polymer composition which physically forms a network structure wherein the polymer composition has shape-memory behavior and can be formed into a permanent primary shape, re-formed into a stable secondary shape, and controllably actuated to recover the permanent primary shape. Polymers have optimal aliphatic network structures due to minimization of dangling chains by using monomers that are symmetrical and that have matching amine and hydroxyl groups providing polymers and polymer foams with clarity, tight (narrow temperature range) single transitions, and high shape recovery and recovery force that are especially useful for implanting in the human body.

  7. Water desorption kinetics of polymer composites with cellulose fibers as filler

    Czech Academy of Sciences Publication Activity Database

    Vacková, Taťana; Kroisová, D.; Špatenka, P.

    2009-01-01

    Roč. 48, č. 1 (2009), s. 68-76 ISSN 0022-2348 Institutional research plan: CEZ:AV0Z40500505 Keywords : polymer composites * water desorption kinetics * thermoplastic matrix Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.716, year: 2009

  8. Geometric optimization of a neutron detector based on a lithium glass–polymer composite

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, M., E-mail: mike.f.mayer@gmail.com [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Nattress, J. [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Trivelpiece, C. [Materials Research Institute, The Pennsylvania State University, University Park, PA 16802 (United States); Jovanovic, I. [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States)

    2015-06-01

    We report on the simulation and optimization of a neutron detector based on a glass–polymer composite that achieves high gamma rejection. Lithium glass is embedded in polyvinyltoluene in three geometric forms: disks, rods, and spheres. Optimal shape, geometric configuration, and size of the lithium glass fragments are determined using Geant4 simulations. All geometrical configurations maintain an approximate 7% glass to polymer mass ratio. Results indicate a 125-mm diameter as the optimal detector size for initial prototype design achieving a 10% efficiency for the thermalization of incident fission neutrons from {sup 252}Cf. The geometrical features of a composite detector are shown to have little effect on the intrinsic neutron efficiency, but a significant effect on the gamma rejection is observed. The sphere geometry showed the best overall performance with an intrinsic neutron efficiency of approximately 6% with a gamma rejection better than 10{sup −7} for 280-μm diameter spheres. These promising results provide a motivation for prototype composite detector development based on the simulated designs. - Highlights: • Composite polymer–lithium glass scintillation detector is simulated. • Polymer is considered to be non-scintillating in the simulation. • Three forms of lithium glass are considered: disks, rods, and spheres. • Glass shape has a small effect on neutron efficiency. • Glass shape has a significant effect on gamma rejection.

  9. Flexible nano-GFO/PVDF piezoelectric-polymer nano-composite films for mechanical energy harvesting

    Science.gov (United States)

    Mishra, Monali; Roy, Amritendu; Dash, Sukalyan; Mukherjee, Somdutta

    2018-03-01

    Owing to the persistent quest of renewable energy technology, piezoelectric energy harvesters are gathering considerable research interest due to their potential in driving microelectronic devices with small power requirement. Electrical energy (milli to microwatt range) is generated from mechanical counterparts such as vibrations of machines, human motion, flowing water etc. based on the principles of piezoelectricity. Flexible high piezoelectric constant (d33) ceramic/polymer composites are crucial components for fabricating these energy harvesters. The polymer composites composed of gallium ferrite nanoparticles and polyvinylidene fluoride (PVDF) as the matrix have been synthesized by solvent casting method. First, 8 wt. % PVDF was dissolved in DMF and then different compositions of GaFeO3 or GFO (10, 20, 30 wt. %) (with respect to PVDF only) nanocomposites were synthesized. The phase of the synthesized nanocomposites were studied by X- Ray diffraction which shows that with the increase in the GFO concentration, the intensity of diffraction peaks of PVDF steadily decreased and GFO peaks became increasingly sharp. As the concentration of GFO increases in the PVDF polymer matrix, band gap is also increased albeit to a small extent. The maximum measured output voltage and current during mechanical pressing and releasing conditions were found to be ~ 3.5 volt and 4 nA, respectively in 30 wt % GFO-PVDF composite, comparable to the available literature.

  10. Gamma irradiation effect on polymers derived of pyrrole synthesized by plasma

    International Nuclear Information System (INIS)

    Lopez G, O. G.

    2013-01-01

    This work studies the effect of gamma irradiation at doses of 50, 100, 200, 400 and 800 kGy on polymers obtained from pyrrole synthesized by plasma. The evolution of the structure was studied by Fourier transform infrared spectroscopy (Ftir) and X-ray photoelectron spectroscopy (XPS). The Ftir spectra show that poly pyrroles have N-H, C-H, C=O, triple and consecutive double bonds in their structure. The irradiated polymers show the same chemical groups in their structure without significant changes. Nevertheless, a more detailed analysis by XPS allows the identification of superficial chemical states, such as: C=CH-C, C=CC-C, C-NH-C, C-NC-C, etc., and shows that most of these states are present in all polymers but with different participation. One possible mechanism indicates that as the irradiation dose increases, dehydrogenation processes are performed increasing fragmentation, crosslinking and formation of multiple bonds. The fragmentation and thermal degradation were studied by thermogravimetric analysis, indicating that the loss of moisture and light compounds formed during gamma irradiation occurs in the firsts 100 grades C. The main degradation of all polymers occurs from 150 to 700 grades C, suggesting that the thermal stability is independent of the irradiation dose in the interval studied. Morphology was studied using scanning electron microscopy techniques. Before irradiation, the polymer presented a uniform and practically smooth surface, however, after gamma irradiation, the applied energy increased roughness and macro fragmentation. The roughness and functional groups on the surface reduced the contact angle with water as the irradiation dose increased. However, the polymers are hydrophilic, because for all doses that contact angle is smaller than 90 grades C. Electrical conductivity was calculated respect to temperature in the interval from 25 to 100 grades C. Conductivity increases with temperature and is slightly greater in the irradiated polymers

  11. Temporal development of the plasma composition of Zr and Cr metal plasma streams in a N2 environment

    International Nuclear Information System (INIS)

    Rosen, Johanna; Anders, Andre; Hultman, Lars; Schneider, Jochen M.

    2003-01-01

    We describe the temporal development of the plasma composition in a pulsed plasma stream generated by cathodic arc. Cathodes of Zr and Cr were operated at various nitrogen pressures. The time resolved plasma composition for the cathode materials was analyzed with time-of-flight charge-to-mass spectrometry, and was found to be a strong function of the nitrogen pressure. Large plasma composition gradients were detected within the first 60 (micro)s of the pulse, the nitrogen ion concentration increasing with increasing pressure. The results are explained by the formation and erosion of a compound layer formed at the cathode surface in the presence of a reactive gas. The average charge state was also found to be affected by the reactive gas pressure as well as by the time after ignition. The charge states were highest in the beginning of the pulse at low nitrogen pressure, decreasing to a steady-state value at higher pressure. These results are of importance for reactive plasma processing and for controlling of the evolution of thin film composition and microstructure

  12. Construction of 3D Skeleton for Polymer Composites Achieving a High Thermal Conductivity.

    Science.gov (United States)

    Yao, Yimin; Sun, Jiajia; Zeng, Xiaoliang; Sun, Rong; Xu, Jian-Bin; Wong, Ching-Ping

    2018-03-01

    Owing to the growing heat removal issue in modern electronic devices, electrically insulating polymer composites with high thermal conductivity have drawn much attention during the past decade. However, the conventional method to improve through-plane thermal conductivity of these polymer composites usually yields an undesired value (below 3.0 Wm -1 K -1 ). Here, construction of a 3D phonon skeleton is reported composed of stacked boron nitride (BN) platelets reinforced with reduced graphene oxide (rGO) for epoxy composites by the combination of ice-templated and infiltrating methods. At a low filler loading of 13.16 vol%, the resulting 3D BN-rGO/epoxy composites exhibit an ultrahigh through-plane thermal conductivity of 5.05 Wm -1 K -1 as the best thermal-conduction performance reported so far for BN sheet-based composites. Theoretical models qualitatively demonstrate that this enhancement results from the formation of phonon-matching 3D BN-rGO networks, leading to high rates of phonon transport. The strong potential application for thermal management has been demonstrated by the surface temperature variations of the composites with time during heating and cooling. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Summary abstract: microspot target development with seeded and patterned plasma polymers

    International Nuclear Information System (INIS)

    Letts, S.A.; Miller, D.E.; Corley, R.A.; Tillotson, T.M.; Witt, L.A.

    1985-01-01

    In inertial confinement fusion (ICF) energy is transferred from the laser to the target through the interaction of extremely high intensity laser light with the target plasma. To better understand laser-plasma interactions, a new class of targets was designed to study long scale-length plasmas (many hundred times the laser wavelength) by measurement of the temperature and density of the plasma as a function of time. The specifications for the target called for a freestanding hydrocarbon polymer (CH) film with a sharply defined spot (microspot) in the center seeded with either silicon or sulfur. The target film was fabricated using a three-step procedure which consisted of deposition of the hydrocarbon film, definition of the microspot, and then deposition of a seeded spot through a mask. In the final assembly step, the film containing the microspot was mounted over a 1.5 mm diam hole in a support. The support was either a plastic ring or a copper foil electroplated with 3 μm of gold. The fabrication of this type of target is described

  14. Physical properties of wood-polymer composites prepared by an electron beam accelerator

    International Nuclear Information System (INIS)

    Yoshizawa, S.; Handa, T.; Fukuoka, M.; Hashizume, Y.; Nakamura, T.

    1981-01-01

    The dual characteristics in the performance of polymers in wood-polymer composites systems have been pursued with regard to the resolution of mechanical anisotropy of wood and the improvement in dimensional stability. The objective of the present study is to pursue the polymerization mechanism in wood under electron beam irradiation and the temperature dependence of polymer-wood interactions induced at various levels of higher order structure of wood in order to understand the polymer performance. Veneers used in the study were of rotary-cut beech (Fagus crenata Blume) 0.65 mm thick. All samples were oven-dried in vacuo at 80 0 C for 30 hr. The monomers used in the study were methyl methacrylate, styrene, acrylic acid, acrylonitrile, and unsaturated polyester. Experimental details are given. Results are given and discussed. (U.K.)

  15. Low temperature atmospheric microplasma jet array for uniform treatment of polymer surface for flexible electronics

    Science.gov (United States)

    Wang, Tao; Wang, Xiaolin; Yang, Bin; Chen, Xiang; Yang, Chunsheng; Liu, Jingquan

    2017-07-01

    In this paper, the uniformity of polymer film etching by an atmospheric pressure He/O2 microplasma jet array (μPJA) is first investigated with different applied voltage. Plasma characteristics of μPJA were recorded by optical discharge images. Morphologies and chemical compositions of polymer film etched by μPJA were analyzed by optical microscopy, scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDS) and x-ray photoelectron spectroscopy (XPS). By increasing the applied voltage from 8.5 kV to 16.4 kV, the non-uniformity of the luminous intensity of the plasma jets increases. It is interesting that the plasma treated regions are actually composed of an etched region and modification region, with distinct morphologies and chemical compositions. The diameters of the etched parylene-C film show the increase of non-uniformity with higher applied voltage. SEM results show that the non-uniformity of surface morphologies of both the modification regions and etched regions increases with the increase of applied voltage. EDS and XPS results also present the significant effect of higher applied voltage on the non-uniformity of surface chemical compositions of both modification and etched regions. The Coulomb interaction of the streamer heads and the hydrodynamic interaction between the plasma jets and the surrounding air are considered to be responsible for this phenomenon. The results shown in this work can help improve the processing quality of polymer film etched by an atmospheric pressure microplasma jet array and two applications are demonstrated to illustrate the uniform downstream surface treatment.

  16. Spin coating and plasma process for 2.5D integrated photonics on multilayer polymers

    International Nuclear Information System (INIS)

    Zebda, A.; Camberlein, L.; Beche, B.; Gaviot, E.; Beche, E.; Duval, D.; Zyss, J.; Jezequel, G.; Solal, F.; Godet, C.

    2008-01-01

    Polymer spin coating, surface plasma treatment and selective UV-lithography processes have been developed to realize 2.5D photonic micro-resonators, made of disk- or ring-shaped upper rib waveguides, using common polymers such as SU8 (biphenol A ether glycidyl), PS233 (polymeric silane) and SOG (siloxane Spin on Glass). Both oxygen and argon plasma treatments, applied to PS233 and SOG before spin-coating the SU8, improve substantially the grip of multilayer devices (SU8 / PS233 or SU8 / SOG). Surface energy components derived from contact angle measurements have been used to optimize the processing conditions. In such integrated photonic devices, the both single-electromagnetic-modes called transverse electric (TE 00 ) and transverse magnetic (TM 00 ) have been excited in a SU8 micro-disk, with a single mode propagation strongly localized near the edge of the disk (i.e. the so called whispering gallery modes)

  17. Modulatory effect of polymer type and composition on drug release ...

    African Journals Online (AJOL)

    The purpose of this study was to investigate the effects of polymer type and composition on drug release from the matrix of diclofenac sodium sustained release tablets formulated using three different granulation methods. Ten (10) batches of diclofenac sodium tablets (F01 - F10) were prepared by melt granulation, ...

  18. Damping mathematical modelling and dynamic responses for FRP laminated composite plates with polymer matrix

    Science.gov (United States)

    Liu, Qimao

    2018-02-01

    This paper proposes an assumption that the fibre is elastic material and polymer matrix is viscoelastic material so that the energy dissipation depends only on the polymer matrix in dynamic response process. The damping force vectors in frequency and time domains, of FRP (Fibre-Reinforced Polymer matrix) laminated composite plates, are derived based on this assumption. The governing equations of FRP laminated composite plates are formulated in both frequency and time domains. The direct inversion method and direct time integration method for nonviscously damped systems are employed to solve the governing equations and achieve the dynamic responses in frequency and time domains, respectively. The computational procedure is given in detail. Finally, dynamic responses (frequency responses with nonzero and zero initial conditions, free vibration, forced vibrations with nonzero and zero initial conditions) of a FRP laminated composite plate are computed using the proposed methodology. The proposed methodology in this paper is easy to be inserted into the commercial finite element analysis software. The proposed assumption, based on the theory of material mechanics, needs to be further proved by experiment technique in the future.

  19. Oxygen plasma treatments of jute fibers in improving the mechanical properties of jute/HDPE composites

    Energy Technology Data Exchange (ETDEWEB)

    Sever, K. [Department of Mechanical Engineering, Dokuz Eylul University, 35100, Izmir (Turkey); Erden, S. [Department of Mechanical Engineering, Ege University, 35100, Izmir (Turkey); Guelec, H.A. [Department of Food Engineering, Yuzuncu Yil University, 65250, Van (Turkey); Seki, Y., E-mail: yoldas.seki@deu.edu.tr [Department of Chemistry, Dokuz Eylul University, 35160, Buca, Izmir (Turkey); Sarikanat, M. [Department of Mechanical Engineering, Ege University, 35100, Izmir (Turkey)

    2011-09-15

    Highlights: {yields} To improve mechanical properties of jute/HDPE composites, jute fabric was subjected to oxygen plasma treatment. {yields} LF and RF plasma systems at different plasma powers were used for treatment. {yields} In LF system, interlaminar shear strength, tensile and flexure strengths showed a tendency to increase at plasma powers of 30 and 60 W. - Abstract: The surfaces of jute fabrics have been oxygen plasma treated using low frequency (LF) and radio frequency (RF) plasma systems at different plasma powers (30, 60, and 90 W) for 15 min to improve the mechanical properties of jute fiber/HDPE (high density polyethylene) composites. The effect of oxygen plasma treatment on the functional groups of jute fibers was examined by X-ray photoelectron spectroscopy (XPS) analysis. Effects of oxygen plasma treatments on the mechanical properties of jute fiber/HDPE composites were investigated by means of tensile, flexure, and short-beam shear tests. Surface morphology of the fractured surfaces of composites was observed by using scanning electron microscopy (SEM). When RF plasma system was used, the interlaminar shear strength (ILSS) values of the composites increased with increasing plasma power. Similarly, in LF plasma system, ILSS values showed a tendency to increase at plasma powers of 30 and 60 W. However, increasing of plasma power to 90 W decreased the ILSS value of jute/HDPE composite. Also, tensile and flexure strengths of the composites showed similar trends.

  20. Oxygen plasma treatments of jute fibers in improving the mechanical properties of jute/HDPE composites

    International Nuclear Information System (INIS)

    Sever, K.; Erden, S.; Guelec, H.A.; Seki, Y.; Sarikanat, M.

    2011-01-01

    Highlights: → To improve mechanical properties of jute/HDPE composites, jute fabric was subjected to oxygen plasma treatment. → LF and RF plasma systems at different plasma powers were used for treatment. → In LF system, interlaminar shear strength, tensile and flexure strengths showed a tendency to increase at plasma powers of 30 and 60 W. - Abstract: The surfaces of jute fabrics have been oxygen plasma treated using low frequency (LF) and radio frequency (RF) plasma systems at different plasma powers (30, 60, and 90 W) for 15 min to improve the mechanical properties of jute fiber/HDPE (high density polyethylene) composites. The effect of oxygen plasma treatment on the functional groups of jute fibers was examined by X-ray photoelectron spectroscopy (XPS) analysis. Effects of oxygen plasma treatments on the mechanical properties of jute fiber/HDPE composites were investigated by means of tensile, flexure, and short-beam shear tests. Surface morphology of the fractured surfaces of composites was observed by using scanning electron microscopy (SEM). When RF plasma system was used, the interlaminar shear strength (ILSS) values of the composites increased with increasing plasma power. Similarly, in LF plasma system, ILSS values showed a tendency to increase at plasma powers of 30 and 60 W. However, increasing of plasma power to 90 W decreased the ILSS value of jute/HDPE composite. Also, tensile and flexure strengths of the composites showed similar trends.

  1. Compositional and sensory characterization of red wine polymers.

    Science.gov (United States)

    Wollmann, Nadine; Hofmann, Thomas

    2013-03-06

    After isolation from red wine by means of ultrafiltration and gel adsorption chromatography, the composition of the highly astringent tasting high-molecular weight polymers was analyzed by means of HPLC-MS/MS, HPLC-UV/vis, and ion chromatography after thiolytic, alkaline, and acidic depolymerization and, on the basis of the quantitative data obtained as well as model incubation experiments, key structural features of the red wine polymers were proposed. The structural backbone of the polymers seems to be comprised of a procyanidin chain with (-)-epicatechin, (+)-catechin, (-)-epicatechin-3-O-gallate units as extension and terminal units as well as (-)-epigallocatechin as extension units. In addition, acetaldehyde was shown to link different procyanidins at the A-ring via an 1,1-ethylene bridge and anthocyanins and pyranoanthocyanins were found to be linked to the procyanidin backbone via a C-C-linkage at position C(6) or C(8), respectively. Alkaline hydrolysis demonstrated the polymeric procyanidins to be esterified with various organic acids and phenolic acids, respectively. In addition, the major part of the polysaccharides present in the red wine polymeric fraction were found not to be covalently linked to procyanidins. Interestingly, sensory evaluation of individual fractions of the red wine polymers did not show any significant difference in the astringent threshold concentrations, nor in the astringency intensity in supra-threshold concentrations and demonstrated the mean degree of polymerization as well as the galloylation degree not to have an significant influence on the astringency perception.

  2. Effects of atmospheric air plasma treatment on interfacial properties of PBO fiber reinforced composites

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chengshuang, E-mail: cszhang83@163.com; Li, Cuiyun; Wang, Baiya; Wang, Bin; Cui, Hong

    2013-07-01

    Poly(p-phenylene benzobisoxazole) (PBO) fiber was modified by atmospheric air plasma treatment. The effects of plasma treatment power and speed on both surface properties of PBO fibers and interfacial properties of PBO/epoxy composites were investigated. Surface chemical composition of PBO fibers were analyzed by X-ray photoelectron spectroscopy (XPS). Surface morphologies of the fibers and interface structures of the composites were examined using scanning electron microscopy (SEM). Interfacial adhesion property of the composites was evaluated by interlaminar shear strength (ILSS). Mechanical properties of PBO multifilament were measured by universal testing machine. The results indicate that atmospheric air plasma treatment introduced some polar or oxygen-containing groups to PBO fiber surfaces, enhanced surface roughness and changed surface morphologies of PBO fibers by plasma etching and oxidative reactions. The plasma treatment also improved interfacial adhesion of PBO/epoxy composites but has little effect on tensile properties of PBO multifilament. The ILSS of PBO/epoxy composites increased to 40.0 MPa after atmospheric air plasma treatment with plasma treatment power of 300 W and treatment speed of 6 m/min.

  3. Polymer-encapsulated metal nanoparticles: optical, structural, micro-analytical and hydrogenation studies of a composite material

    International Nuclear Information System (INIS)

    Scalzullo, Stefania; Mondal, Kartick; Deshmukh, Amit; Scurrell, Mike; Mallick, Kaushik; Witcomb, Mike

    2008-01-01

    A single-step synthesis route is described for the preparation of a metal-polymer composite in which palladium acetate and meta-amino benzoic acid were used as the precursors for palladium nanoparticles and poly(meta-amino benzoic acid) (PABA). The palladium nanoparticles were found to be uniformly dispersed and highly stabilized throughout the macromolecule matrix. The resultant composite material was characterized by means of different techniques, such as IR and Raman spectroscopy, which provided information regarding the chemical structure of the polymer, whereas electron microscopy images yielded information regarding the morphology of the composite material and the distribution of the metal particles in the composite material. The composite material was used as a catalyst for the ethylene hydrogenation reaction and showed catalytic activity at higher temperatures. TEM studies confirmed the changed environment of the nanoparticles at these temperatures

  4. Bioinspired phospholipid polymer biomaterials for making high performance artificial organs

    Directory of Open Access Journals (Sweden)

    K Ishihara

    2000-01-01

    Full Text Available Novel polymer biomaterials, which can be used in contact with blood, are prepared with strong inspiration from the surface structure of biomembrane. That is, the polymers with a phospholipid polar group in the side chain, 2-methacrylooyloxyethyl phosphorylcholine (MPC polymers were synthesized. The MPC polymers can inhibit surface-induced clot formation effectively, when they are in contact with blood even in the absence of an anticoagulant. This phenomenon was due to the reduction of plasma protein and suppression of denaturation of adsorbed proteins, that is the MPC polymers interact with blood components very mildly. As the molecular structure of the MPC polymer was easily designed by changing the monomer units and their composition, it could be applied to surface modification of artificial organs and biomedical devices for improving blood and tissue compatibility. Thus, the MPC polymers are useful polymer biomaterials for manufacturing high performance artificial organs and biomedical devices to provide safe medical treatments.

  5. Distinct positive temperature coefficient effect of polymer-carbon fiber composites evaluated in terms of polymer absorption on fiber surface.

    Science.gov (United States)

    Zhang, Xi; Zheng, Shaodi; Zheng, Xiaofang; Liu, Zhengying; Yang, Wei; Yang, Mingbo

    2016-03-21

    In this article, the positive temperature coefficient (PTC) effect was studied for high-density polyethylene (HDPE)/carbon fiber (CF) composites. All of the samples showed a significant PTC effect during the heating processes without a negative temperature coefficient (NTC) effect, even at a temperature much higher than the melting point of the polymer matrix. An ever-increasing PTC intensity with increasing thermal cycles was observed in our study that had never been reported in previous research. The absence of a NTC effect resulted from the increased binding force between the matrix and fillers that contributed to the very special structure of CF surface. We incorporated thermal expansion theory and quantum tunneling effects to explain PTC effect. From the SEM micrographs for the HDPE/CF composites before and after the different thermal cycles, we found that the surface of CF was covered with a layer of polymer which resulted in a change in the gap length between CF and HDPE and its distribution. We believed that the gap change induced by polymer absorption on the fiber surface had a great effect on the PTC effect.

  6. Plasma polymer films rf sputtered from PTFE under various argon pressures

    Czech Academy of Sciences Publication Activity Database

    Stelmashuk, Vitaliy; Biederman, H.; Slavinská, D.; Zemek, Josef; Trchová, Miroslava

    2005-01-01

    Roč. 77, č. 2 (2005), s. 131-137 ISSN 0042-207X R&D Projects: GA MŠk(CZ) OC 527.10; GA MŠk(CZ) OC 527.90 Grant - others:EUREKAΣ2080(XE) OE57 Institutional research plan: CEZ:AV0Z10100521; CEZ:AV0Z20430508 Keywords : RF sputtering * PTFE * fluorcarbon plasma polymers * thin film * teflon * deposition Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.909, year: 2005

  7. Machining of Machine Elements Made of Polymer Composite Materials

    Science.gov (United States)

    Baurova, N. I.; Makarov, K. A.

    2017-12-01

    The machining of the machine elements that are made of polymer composite materials (PCMs) or are repaired using them is considered. Turning, milling, and drilling are shown to be most widely used among all methods of cutting PCMs. Cutting conditions for the machining of PCMs are presented. The factors that most strongly affect the roughness parameters and the accuracy of cutting PCMs are considered.

  8. Gas Phase Sensing of Alcohols by Metal Organic Framework–Polymer Composite Materials

    Science.gov (United States)

    2017-01-01

    Affinity layers play a crucial role in chemical sensors for the selective and sensitive detection of analytes. Here, we report the use of composite affinity layers containing Metal Organic Frameworks (MOFs) in a polymeric matrix for sensing purposes. Nanoparticles of NH2-MIL-53(Al) were dispersed in a Matrimid polymer matrix with different weight ratios (0–100 wt %) and drop-casted on planar capacitive transducer devices. These coated devices were electrically analyzed using impedance spectroscopy and investigated for their sensing properties toward the detection of a series of alcohols and water in the gas phase. The measurements indicated a reversible and reproducible response in all devices. Sensor devices containing 40 wt % NH2-MIL-53(Al) in Matrimid showed a maximum response for methanol and water. The sensor response time slowed down with increasing MOF concentration until 40 wt %. The half time of saturation response (τ0.5) increased by ∼1.75 times for the 40 wt % composition compared to devices coated with Matrimid only. This is attributed to polymer rigidification near the MOF/polymer interface. Higher MOF loadings (≥50 wt %) resulted in brittle coatings with a response similar to the 100 wt % MOF coating. Cross-sensitivity studies showed the ability to kinetically distinguish between the different alcohols with a faster response for methanol and water compared to ethanol and 2-propanol. The observed higher affinity of the pure Matrimid polymer toward methanol compared to water allows also for a higher uptake of methanol in the composite matrices. Also, as indicated by the sensing studies with a mixture of water and methanol, the methanol uptake is independent of the presence of water up to 6000 ppm of water. The NH2-MIL-53(Al) MOFs dispersed in the Matrimid matrix show a sensitive and reversible capacitive response, even in the presence of water. By tuning the precise compositions, the affinity kinetics and overall affinity can be tuned, showing

  9. Charge Transport in Carbon Nanotubes-Polymer Composite Photovoltaic Cells

    Science.gov (United States)

    Ltaief, Adnen; Bouazizi, Abdelaziz; Davenas, Joel

    2009-01-01

    We investigate the dark and illuminated current density-voltage (J/V) characteristics of poly(2-methoxy-5-(2’-ethylhexyloxy)1-4-phenylenevinylene) (MEH-PPV)/single-walled carbon nanotubes (SWNTs) composite photovoltaic cells. Using an exponential band tail model, the conduction mechanism has been analysed for polymer only devices and composite devices, in terms of space charge limited current (SCLC) conduction mechanism, where we determine the power parameters and the threshold voltages. Elaborated devices for MEH-PPV:SWNTs (1:1) composites showed a photoresponse with an open-circuit voltage Voc of 0.4 V, a short-circuit current density JSC of 1 µA/cm² and a fill factor FF of 43%. We have modelised the organic photovoltaic devices with an equivalent circuit, where we calculated the series and shunt resistances.

  10. Plasma immersion ion implantation of polyurethane shape memory polymer: Surface properties and protein immobilization

    Science.gov (United States)

    Cheng, Xinying; Kondyurin, Alexey; Bao, Shisan; Bilek, Marcela M. M.; Ye, Lin

    2017-09-01

    Polyurethane-type shape memory polymers (SMPU) are promising biomedical implant materials due to their ability to recover to a predetermined shape from a temporary shape induced by thermal activation close to human body temperature and their advantageous mechanical properties including large recovery strains and low recovery stresses. Plasma Immersion Ion Implantation (PIII) is a surface modification process using energetic ions that generates radicals in polymer surfaces leading to carbonisation and oxidation and the ability to covalently immobilise proteins without the need for wet chemistry. Here we show that PIII treatment of SMPU significantly enhances its bioactivity making SMPU suitable for applications in permanent implantable biomedical devices. Scanning Electron Microscopy (SEM), contact angle measurements, surface energy measurements, attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) were used to characterise the PIII modified surface, including its after treatment aging kinetics and its capability to covalently immobilise protein directly from solution. The results show a substantial improvement in wettability and dramatic changes of surface chemical composition dependent on treatment duration, due to the generation of radicals and subsequent oxidation. The SMPU surface, PIII treated for 200s, achieved a saturated level of covalently immobilized protein indicating that a full monolayer coverage was achieved. We conclude that PIII is a promising and efficient surface modification method to enhance the biocompatibility of SMPU for use in medical applications that demand bioactivity for tissue integration and stability in vivo.

  11. Durability of polymer matrix composites for infrastructure: The role of the interphase

    Science.gov (United States)

    Verghese, Kandathil Nikhil Eapen

    1999-12-01

    As fiber reinforced polymer matrix composites find greater use in markets such as civil infrastructure and ground transportation, the expectations placed on these materials are ever increasing. The overall cost and reliability have become the drivers of these high performance materials and have led to the disappearance of resins such as bismaleimides (BMI). cyanate esters and other high performance polyimides and epoxys. In their place polymers, such polyester and vinylester have arisen. The reinforcing fiber scenario has also undergone changes from the high quality and performance assured IM7 and AS4 to cheaper and hybrid systems consisting of both glass and low cost carbon. Manufacturing processes have had their share of changes too with processes such as pultrusion and other mass production techniques replacing hand lay-up and resin transfer molding. All of this has however come with little or no concession on material performance. The motivation of the present research has therefore been to try to improve the properties of these low cost composites by better understanding the constituent materials (fiber and matrix) and the region that lies in-between them namely the interphase. In order to achieve this. working with controls is necessary and the present discourse therefore deals with the AS4 fiber system from Hexcel Corporation and the vinyl ester resin, Derakane 441-400 from The Dow Chemical Company. The following eight chapters sum up the work done thus far on composites made with sized fibers and the above mentioned resin and fiber systems. They are in the form of publications that have either been accepted. submitted or going to be submitted to various peer reviewed journals. The sizings used have been poly(vinylpyrrolidone) PVP and Polyhydroxyether (Phenoxy) thermoplastic polymers and G' an industrial sizing material supplied by Hexcel. A number of issues have been addressed ranging from viscoelastic relaxation to enviro-mechanical durability. Chapter 1

  12. Microstructural characterization of PAN based carbon fiber reinforced nylon 6 polymer composites

    Science.gov (United States)

    Munirathnamma, L. M.; Ningaraju, S.; Kumar, K. V. Aneesh; Ravikumar, H. B.

    2018-04-01

    Microstructural characterization of nylon 6/polyacrolonitrile based carbon fibers (PAN-CFs) of 10 to 40 wt% has been performed by positron lifetime technique (PLT). The positron lifetime parameters viz., o-Ps lifetime (τ3), o-Ps intensity (I3) and fractional free volume (Fv) of nylon 6/PAN-CF composites are correlated with the mechanical properties viz., Tensile strength and Young's modulus. The Fv show negative deviation with the reinforcement of 10 to 40 wt% of PAN-CF from the linear additivity relation. The negative deviation in nylon 6/PAN-CF composite suggests the induced molecular packing due to the chemical interaction between the polymeric chains of nylon 6 and PAN-CF. This is evident from Fourier Transform Infrared Spectrometry (FTIR) studies. The FTIR results suggests that observed negative deviation in PALS results of nylon 6/PAN-CF reinforced polymer composites is due to the induced chemical interaction at N-H-O sites. The improved tensile strength (TS) and Young's modulus (YM) in nylon 6/PAN-CF reinforced polymer composites is due to AS4C (surface treated and epoxy coated) PAN-CF has shown highest adhesion level due to better stress transfer between nylon 6 and PAN-CF.

  13. Two-way actuation behavior of shape memory polymer/elastomer core/shell composites

    International Nuclear Information System (INIS)

    Kang, Tae-Hyung; Lee, Jeong-Min; Yu, Woong-Ryeol; Youk, Ji Ho; Ryu, Hee Wook

    2012-01-01

    Semi-crystalline shape memory polymers (SMPs) show net two-way shape memory (2W-SM) behavior under constant stresses by the recoverable creep strain upon heating and stress-induced crystallization under the application of creep stress upon cooling. The applied constant stress is the key factor in this 2W-SM behavior. A core/shell structure is manufactured for the purpose of imparting a constant stress upon SMPs. An SMP in film or fiber form is dipped into a solution of an elastomer, photoinitiator, and curing agent and then dried out. After this dip coating process is repeatedly carried out, the SMP/elastomer core/shell composite is deformed into a temporary shape after being heated up above the transition temperature of the SMP. Under constant strain conditions, the composite is cooled down, after which the shell elastomer is cured using ultraviolet light. Then, the SMP/elastomer core/shell composite extends and contracts upon cooling and heating, respectively, without any external load. This cyclic deformation behavior is characterized, demonstrating that the current method offers a simple macroscopic processing technique to manufacture 2W-SM polymer composites. (paper)

  14. Multifunctional fiber reinforced polymer composites using carbon and boron nitride nanotubes

    Science.gov (United States)

    Ashrafi, Behnam; Jakubinek, Michael B.; Martinez-Rubi, Yadienka; Rahmat, Meysam; Djokic, Drazen; Laqua, Kurtis; Park, Daesun; Kim, Keun-Su; Simard, Benoit; Yousefpour, Ali

    2017-12-01

    Recent progress in nanotechnology has made several nano-based materials available with the potential to address limitations of conventional fiber reinforced polymer composites, particularly in reference to multifunctional structures. Carbon nanotubes (CNTs) are the most prevalent case and offer amazing properties at the individual nanotube level. There are already a few high-profile examples of the use of CNTs in space structures to provide added electrical conductivity for static dissipation and electromagnetic shielding. Boron nitride nanotubes (BNNTs), which are structurally analogous to CNTs, also present a range of attractive properties. Like the more widely explored CNTs, individual BNNTs display remarkable mechanical properties and high thermal conductivity but with contrasting functional attributes including substantially higher thermal stability, high electrical insulation, polarizability, high neutron absorption and transparency to visible light. This presents the potential of employing either or both BNNTs and CNTs to achieve a range of lightweight, functional composites for space structures. Here we present the case for application of BNNTs, in addition to CNTs, in space structures and describe recent advances in BNNT production at the National Research Council Canada (NRC) that have, for the first time, provided sufficiently large quantities to enable commercialization of high-quality BNNTs and accelerate development of chemistry, composites and applications based on BNNTs. Early demonstrations showing the fabrication and limited structural testing of polymer matrix composites, including glass fiber-reinforced composite panels containing BNNTs will be discussed.

  15. Synthesis of polymer-derived ceramic Si(B)CN-carbon nanotube composite by microwave-induced interfacial polarization.

    Science.gov (United States)

    Bhandavat, R; Kuhn, W; Mansfield, E; Lehman, J; Singh, G

    2012-01-01

    We demonstrate synthesis of a polymer-derived ceramic (PDC)-multiwall carbon nanotube (MWCNT) composite using microwave irradiation at 2.45 GHz. The process takes about 10 min of microwave irradiation for the polymer-to-ceramic conversion. The successful conversion of polymer coated carbon nanotubes to ceramic composite is chemically ascertained by Fourier transform-infrared and X-ray photoelectron spectroscopy and physically by thermogravimetric analysis and transmission electron microscopy characterization. Frequency dependent dielectric measurements in the S-Band (300 MHz to 3 GHz) were studied to quantify the extent of microwave-CNT interaction and the degree of selective heating available at the MWCNT-polymer interface. Experimentally obtained return loss of the incident microwaves in the specimen explains the reason for heat generation. The temperature-dependent permittivity of polar molecules further strengthens the argument of internal heat generation. © 2011 American Chemical Society

  16. Oxadiazole-carbazole polymer (POC)-Ir(ppy)3 tunable emitting composites

    Science.gov (United States)

    Bruno, Annalisa; Borriello, Carmela; Di Luccio, Tiziana; Sessa, Lucia; Concilio, Simona; Haque, Saif A.; Minarini, Carla

    2017-04-01

    POC polymer is an oxadiazole-carbazole copolymer we have previously synthetized and established as light emitting material in Organic Light Emitting Devices (OLEDs), although POC quantum yield emission efficiency and color purity still need to be enhanced. On the other hand, tris[2-phenylpyridinato-C2,N]iridium(III) (Ir(ppy)3) complexes, namely Ir(ppy)3 are among the brightest luminophores employed in green light emitting devices. Our aim, in this work, is to take advantage of Ir(ppy)3 bright emission by combining the Ir complex with blue emitting POC to obtain tunable light emitting composites over a wide range of the visible spectrum. Here we have investigated the optical proprieties POC based nanocomposites with different concentrations of Ir(ppy)3, ranging from 1 to 10 wt%. Both spectral and time resolved fluorescence measurements show an efficient energy transfer from the polymer to the dopants, resulting in white-emitting composites. The most intense and stable emission has been found when POC was doped with about 5 wt% concentration of Ir(ppy)3.

  17. Mechanical properties of polymer-infiltrated-ceramic (sodium aluminum silicate) composites for dental restoration.

    Science.gov (United States)

    Cui, Bencang; Li, Jing; Wang, Huining; Lin, Yuanhua; Shen, Yang; Li, Ming; Deng, Xuliang; Nan, Cewen

    2017-07-01

    To fabricate indirect restorative composites for CAD/CAM applications and evaluate the mechanical properties. Polymer-infiltrated-ceramic composites were prepared through infiltrating polymer into partially sintered sodium aluminum silicate ceramic blocks and curing. The corresponding samples were fabricated according to standard ISO-4049 using for mechanical properties measurement. The flexural strength and fracture toughness were measured using a mechanical property testing machine. The Vickers hardness and elastic modulus were calculated from the results of nano-indentation. The microstructures were investigated using secondary electron detector. The density of the porous ceramic blocks was obtained through TG-DTA. The conversion degrees were calculated from the results of mid-infrared spectroscopy. The obtained polymer infiltrated composites have a maximum flexural strength value of 214±6.5MPa, Vickers hardness of 1.76-2.30GPa, elastic modulus of 22.63-27.31GPa, fracture toughness of 1.76-2.35MPam 1/2 and brittleness index of 0.75-1.32μm -1/2 . These results were compared with those of commercial CAD/CAM blocks. Our results suggest that these materials with good mechanical properties are comparable to two commercial CAD/CAM blocks. The sintering temperature could dramatically influence the mechanical properties. Restorative composites with superior mechanical properties were produced. These materials mimic the properties of natural dentin and could be a promising candidate for CAD/CAM applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. A comparative study on electrochemical co-deposition and capacitance of composite films of conducting polymers and carbon nanotubes

    International Nuclear Information System (INIS)

    Peng Chuang; Jin Jun; Chen, George Z.

    2007-01-01

    Composite films of carbon nanotubes (CNTs) with polyaniline (PANI), polypyrrole (PPY) or poly[3,4-ethylenedioxythiophene] (PEDOT) were prepared via electrochemical co-deposition from solutions containing acid treated CNTs and the corresponding monomer. In the cases of PPY and PEDOT, CNTs served as the charge carriers during electro-deposition, and also acted as both the backbone of a three-dimensional micro- and nano-porous structure and the effective charge-balancing dopant within the polymer. All the composites showed improved mechanical integrity, higher electronic and ionic conductivity (even when the polymer was reduced), and exhibited larger electrode specific capacitance than the polymer alone. Under similar conditions, the capacitance was enhanced significantly in as-prepared PPY-CNT and PEDOT-CNT films. However, the fresh PANI-CNT film was electrochemically similar to PANI, but PPY-CNT and PEDOT-CNT differed noticeably from the respective polymers alone. In continuous potential cycling tests, unlike the pure polymer and other composite films, PANI-CNT performed much better in retaining the capacitance of the as-prepared film, and the possible cause is analysed

  19. Mechanical properties, microstructure and magnetic properties of composite magnet base on SrO.6Fe_2O_3 (SRM)-thermoplastic and thermoset polymer

    International Nuclear Information System (INIS)

    Grace Tj Sulungbudi; Aloma Karo Karo; Mujamilah; Sudirman

    2010-01-01

    The use of magnets in industrial applications do not always require high magnetic properties. Therefore, the use of polymer as a matrix that serves as a binder can be applied to obtain lightweight, flexible and cheap composite magnet. This report discuss composite magnet base on SrO.6Fe_2O_3(SRM)-thermoplastic and thermoset polymer. Thermoplastic polymer consist of polypropylene (PP) type of PP2 and PP10 and polyethylene (PE) type of LDPE were used. For thermoset polymer, epoxy and polyester were used. Synthesis of composite magnet based on thermoplastic polymer (PP2, PP10, LDPE) were carried using the blending method, while the thermoset composites magnet using casting method. Thermoplastic composite magnets were prepared with compositions of 50, 41, 38, 33 and 29 % weight of SRM with the blending temperature of 160 °C for LDPE and 180 °C for PP2 and PP10. For thermoset composite magnets, the compositions were 30, 40, 50 and 60 % by weight of SRM. The mechanical test conducted include tensile strength and elongation at break. Microstructure on the surface of the composite materials were observed using SEM (Scanning Electron Microscope) and the magnetic properties were measured using VSM (Vibrating Sample Magnetometer). The SEM results showed the formation of flat shape powder particle with size of 1.6 µm. In general, the mechanical properties of polypropylene polymer composite magnet are better than that using polyethylene (LDPE) binder. For polypropylene binder PP10 is better than PP2. Magnetic properties are not significantly affected by the change of polymer or binder types. (author)

  20. Optimization of Polymer-ECM Composite Scaffolds for Tissue Engineering: Effect of Cells and Culture Conditions on Polymeric Nanofiber Mats

    Directory of Open Access Journals (Sweden)

    Ritu Goyal

    2017-01-01

    Full Text Available The design of composite tissue scaffolds containing an extracellular matrix (ECM and synthetic polymer fibers is a new approach to create bioactive scaffolds that can enhance cell function. Currently, studies investigating the effects of ECM-deposition and decellularization on polymer degradation are still lacking, as are data on optimizing the stability of the ECM-containing composite scaffolds during prolonged cell culture. In this study, we develop fibrous scaffolds using three polymer compositions, representing slow (E0000, medium (E0500, and fast (E1000 degrading materials, to investigate the stability, degradation, and mechanics of the scaffolds during ECM deposition and decellularization, and during the complete cellularization-decell-recell cycle. We report data on percent molecular weight (% Mw retention of polymeric fiber mats, changes in scaffold stiffness, ECM deposition, and the presence of fibronectin after decellularization. We concluded that the fast degrading E1000 (Mw retention ≤ 50% after 28 days was not sufficiently stable to allow scaffold handling after 28 days in culture, while the slow degradation of E0000 (Mw retention ≥ 80% in 28 days did not allow deposited ECM to replace the polymer support. The scaffolds made from medium degrading E0500 (Mw retention about 60% at 28 days allowed the gradual replacement of the polymer network with cell-derived ECM while maintaining the polymer network support. Thus, polymers with an intermediate rate of degradation, maintaining good scaffold handling properties after 28 days in culture, seem best suited for creating ECM-polymer composite scaffolds.

  1. P(AN-MMA)/TiO_2 Nano-composite Polymer Electrolyte by in-situ Polymerization

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    1 Introduction With the development of portable electric devices,polymer lithium ion batteries (PLiBs) have been widely used as the power sources because of their high energy density and safe property[1].P(AN-MMA) copolymer is a kind of cheap macromolecules easily dissolving in the polar solvents such as carbonate,it has been applied as gel polymer electrolyte in PLiBs.Here we prepare a kind of highly conductive nano-composite polymer electrolytes using the P(AN-MMA) copolymer incorporated with TiO2 nan...

  2. Effect of degree of crosslinking and polymerization of 3D printable polymer/ionic liquid composites on performance of stretchable piezoresistive sensors

    Science.gov (United States)

    Lee, Jeongwoo; Faruk Emon, Md Omar; Vatani, Morteza; Choi, Jae-Won

    2017-03-01

    Ionic liquid (IL)/polymer composites (1-ethyl-3-methyl-imidazolium tetrafluoroborate (EMIMBF4)/2-[[(butylamino)carbonyl]oxy]ethyl acrylate (BACOEA)) were fabricated to use as sensing materials for stretchable piezoresistive tactile sensors. The detectability of the IL/polymer composites was enhanced because the ionic transport properties of EMIMBF4 in the composites were improved by the synergic actions between the coordinate sites generated by the local motion of BACOEA chain segments under enough activation energy. The performance of the piezoresistive sensors was investigated with the degree of crosslinking and polymerization of the IL/polymer composites. As the compressive strain was increased, the distance between two electrodes decreased, and the motion of polymer chains and IL occurred, resulting in a decrease in the electrical resistance of the sensors. We have confirmed that the sensitivity of the sensors are affected by the degree of crosslink and polymerization of the IL/polymer composites. In addition, all of the materials (skins, sensing material, and electrode) used in this study are photo-curable, and thus the stretchable piezoresistive tactile sensors can be successfully fabricated by 3D printing.

  3. A novel and facile strategy for highly flame retardant polymer foam composite materials: Transforming silicone resin coating into silica self-extinguishing layer.

    Science.gov (United States)

    Wu, Qian; Zhang, Qian; Zhao, Li; Li, Shi-Neng; Wu, Lian-Bin; Jiang, Jian-Xiong; Tang, Long-Cheng

    2017-08-15

    In this study, a novel strategy was developed to fabricate highly flame retardant polymer foam composite materials coated by synthesized silicone resin (SiR) polymer via a facile dip-coating processing. Applying the SiR polymer coating, the mechanical property and thermal stability of SiR-coated polymer foam (PSiR) composites are greatly enhanced without significantly altering their structure and morphology. The minimum oxygen concentration to support the combustion of foam materials is greatly increased, i.e. from LOI 14.6% for pure foam to LOI 26-29% for the PSiR composites studied. Especially, adjusting pendant group to SiOSi group ratio (R/Si ratio) of SiRs produces highly flame retardant PSiR composites with low smoke toxicity. Cone calorimetry results demonstrate that 44-68% reduction in the peak heat release rate for the PSiR composites containing different R/Si ratios over pure foam is achieved by the presence of appropriate SiR coating. Digital and SEM images of post-burn chars indicate that the SiR polymer coating can be transformed into silica self-extinguishing porous layer as effective inorganic barrier effect, thus preserving the polymer foam structure from fire. Our results show that the SiR dip-coating technique is a promising strategy for producing flame retardant polymer foam composite materials with improved mechanical properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Electrostatically Induced Carbon Nanotube Alignment for Polymer Composite Applications

    Science.gov (United States)

    Chapkin, Wesley Aaron

    We have developed a non-invasive technique utilizing polarized Raman spectroscopy to measure changes in carbon nanotube (CNT) alignment in situ and in real time in a polymer matrix. With this technique, we have confirmed the prediction of faster alignment for CNTs in higher electric fields. Real-time polarized Raman spectroscopy also allows us to demonstrate the loss of CNT alignment that occurs after the electric field is removed, which reveals the need for fast polymerization steps or the continued application of the aligning force during polymerization to lock in CNT alignment. Through a study on the effect of polymer viscosity on the rate of CNT alignment, we have determined that shear viscosity serves as the controlling mechanism for CNT rotation. This finding matches literature modeling of rigid rod mobility in a polymer melt and demonstrates that the rotational mobility of CNTs can be explained by a continuum model even though the diameters of single-walled CNTs are 1-2 nm. The viscosity dependence indicates that the manipulation of temperature (and indirectly viscosity) will have a direct effect on the rate of CNT alignment, which could prove useful in expediting the manufacturing of CNT-reinforced composites cured at elevated temperatures. Using real-time polarized Raman spectroscopy, we also demonstrate that electric fields of various strengths lead not only to different speeds of CNT rotation but also to different degrees of alignment. We hypothesize that this difference in achievable alignment results from discrete populations of nanotubes based on their length. The results are then explained by balancing the alignment energy for a given electric field strength with the randomizing thermal energy of the system. By studying the alignment dynamics of different CNT length distributions, we show that different degrees of alignment achieved as a function of the applied electric field strength are directly related to the square of the nanotube length. This

  5. Association of plasma fatty acid composition with plasma irisin levels in normal weight and overweight/obese children.

    Science.gov (United States)

    Viitasalo, A; Ågren, J; Venäläinen, T; Pihlajamäki, J; Jääskeläinen, J; Korkmaz, A; Atalay, M; Lakka, T A

    2016-08-01

    Irisin has been suggested to protect against overweight. There are no previous data on the association of plasma fatty acid (FA) composition with plasma irisin. We studied the association of FA composition with plasma irisin in normal weight and overweight/obese children. This cross-sectional study included pre-pubertal children (388 normal weight children and 55 overweight/obese children); 6-9 years of age, taking part in the Physical Activity and Nutrition in Children Study. After an overnight fast, we measured plasma FA composition by gas chromatography and plasma irisin levels by enzyme-linked immunosorbent assay. Higher proportion of total monounsaturated fatty acids in plasma cholesteryl esters (CEs) (β = 0.139, P = 0.003) and phospholipids (PLs) (β = 0.147, P = 0.002) and lower proportion of total polyunsaturated fatty acids in plasma CE (β = -0.130, P = 0.006) and PL (β = -0.165, P overweight/obese children compared to normal weight children. Higher proportion of γ-linolenic acid (β = 0.324, P = 0.017) and lower proportion of linoleic acid (β = -0.397, P = 0.005) in plasma CE were related to higher plasma irisin level among overweight/obese children, indicating the direct association of estimated D6D activity in plasma CE (β = 0.343, P = 0.011) with plasma irisin. Furthermore, higher proportion of oleic acid in plasma CE (β = 0.345, P = 0.012) and PL (β = 0.292, P = 0.033) and higher proportion of adrenic acid (β = 0.366, P = 0.008) and docosapentaenoic acid (β = 0.351, P = 0.010) in plasma PL were associated with higher plasma irisin level among overweight/obese children. Metabolically unfavourable plasma FA profile was associated with higher plasma irisin level especially in overweight/obese children, suggesting that excess body fat might modulate these relationships. © 2015 World Obesity.

  6. Damping mathematical modelling and dynamic responses for FRP laminated composite plates with polymer matrix

    Directory of Open Access Journals (Sweden)

    Liu Qimao

    2018-02-01

    Full Text Available This paper proposes an assumption that the fibre is elastic material and polymer matrix is viscoelastic material so that the energy dissipation depends only on the polymer matrix in dynamic response process. The damping force vectors in frequency and time domains, of FRP (Fibre-Reinforced Polymer matrix laminated composite plates, are derived based on this assumption. The governing equations of FRP laminated composite plates are formulated in both frequency and time domains. The direct inversion method and direct time integration method for nonviscously damped systems are employed to solve the governing equations and achieve the dynamic responses in frequency and time domains, respectively. The computational procedure is given in detail. Finally, dynamic responses (frequency responses with nonzero and zero initial conditions, free vibration, forced vibrations with nonzero and zero initial conditions of a FRP laminated composite plate are computed using the proposed methodology. The proposed methodology in this paper is easy to be inserted into the commercial finite element analysis software. The proposed assumption, based on the theory of material mechanics, needs to be further proved by experiment technique in the future.

  7. Analysis of cerium-composite polymer-electrolyte membranes during and after accelerated oxidative-stability test

    Science.gov (United States)

    Shin, Dongwon; Han, Myungseong; Shul, Yong-Gun; Lee, Hyejin; Bae, Byungchan

    2018-02-01

    The oxidative stability of membranes constructed from a composite of pristine sulfonated poly(arylene ether sulfone) and cerium was investigated by conducting an accelerated oxidative-stability test at the open-circuit voltage (OCV). The membranes were analyzed in situ through OCV and impedance measurements, cyclic voltammetry, and linear-sweep voltammetry to monitor the electrochemical properties during the stability test. Although the high-frequency resistance of a composite membrane was slightly higher than that of a pristine membrane because of the exchange of protons from the sulfonic acid with cerium ions, the composite membrane maintained its potential for much longer than the pristine membrane. The effect of the cerium ions as radical scavengers was confirmed by analyzing the drain water and chemical structure after operation. These post-operation analyses confirmed that cerium ions improved the oxidative stability of the hydrocarbon-based polymer during fuel-cell operation. It is clear that the cerium-based radical scavengers prevented chemical degradation of the polymer membrane as well as the electrode in terms of hydrogen cross-over, polymer-chain scission, and the electrochemical surface area, while they rarely diffused outward from the membrane.

  8. Polymer-Silica nanoparticles composite films as protective coatings for stone-based monuments

    Energy Technology Data Exchange (ETDEWEB)

    Manoudis, P [Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124, Thessaloniki (Greece); Papadopoulou, S [Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124, Thessaloniki (Greece); Karapanagiotis, I [' Ormylia' Art Diagnosis Centre, Ormylia, Chalkidiki, 63071 (Greece); Tsakalof, A [Medical Department, University of Thessaly, Larissa, 41222 (Greece); Zuburtikudis, I [Department of Industrial Design Engineering, TEI of Western Macedonia, Kozani, 50100 (Greece); Panayiotou, C [Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124, Thessaloniki (Greece)

    2007-04-15

    The decrease of surface energy of mineral substrates similar to those used in many stone monuments of cultural heritage by the application of protective polymer coatings along with the simultaneous increase of their surface roughness can increase their ability to repel water substantially. In this work, the effect of artificially induced roughness on the water repellency of mineral substrates coated with protective polymer films was investigated. Natural marble samples or home made calcium carbonate blocks were tried as the mineral substrates. The roughness increase was achieved by mineral chemical etching or by creation of nanoscale binary composition film on the substrate surface. PMMA and PFPE were the polymers used, while different-sized silica nanoparticles were employed for the production of the nanocomposite films. Examination of the coated and uncoated surfaces with profilometry and AFM and measurements of water contact angles reveal a pronounced effect of the surface roughness on water repellency. Especially in the case of nanocomposite coatings, the surfaces become super-hydrophobic. This result indicates that the nanoscale binary composition film scheme, which is characterized by its simplicity and low cost, is a suitable candidate for the water protection of stone-based monuments on large scale.

  9. Polymer-Silica nanoparticles composite films as protective coatings for stone-based monuments

    International Nuclear Information System (INIS)

    Manoudis, P; Papadopoulou, S; Karapanagiotis, I; Tsakalof, A; Zuburtikudis, I; Panayiotou, C

    2007-01-01

    The decrease of surface energy of mineral substrates similar to those used in many stone monuments of cultural heritage by the application of protective polymer coatings along with the simultaneous increase of their surface roughness can increase their ability to repel water substantially. In this work, the effect of artificially induced roughness on the water repellency of mineral substrates coated with protective polymer films was investigated. Natural marble samples or home made calcium carbonate blocks were tried as the mineral substrates. The roughness increase was achieved by mineral chemical etching or by creation of nanoscale binary composition film on the substrate surface. PMMA and PFPE were the polymers used, while different-sized silica nanoparticles were employed for the production of the nanocomposite films. Examination of the coated and uncoated surfaces with profilometry and AFM and measurements of water contact angles reveal a pronounced effect of the surface roughness on water repellency. Especially in the case of nanocomposite coatings, the surfaces become super-hydrophobic. This result indicates that the nanoscale binary composition film scheme, which is characterized by its simplicity and low cost, is a suitable candidate for the water protection of stone-based monuments on large scale

  10. Ion conducting polymers and polymer blends for alkali metal ion batteries

    Science.gov (United States)

    DeSimone, Joseph M.; Pandya, Ashish; Wong, Dominica; Vitale, Alessandra

    2017-08-29

    Electrolyte compositions for batteries such as lithium ion and lithium air batteries are described. In some embodiments the compositions are liquid compositions comprising (a) a homogeneous solvent system, said solvent system comprising a perfluropolyether (PFPE) and polyethylene oxide (PEO); and (b) an alkali metal salt dissolved in said solvent system. In other embodiments the compositions are solid electrolyte compositions comprising: (a) a solid polymer, said polymer comprising a crosslinked product of a crosslinkable perfluropolyether (PFPE) and a crosslinkable polyethylene oxide (PEO); and (b) an alkali metal ion salt dissolved in said polymer. Batteries containing such compositions as electrolytes are also described.

  11. Chemical interaction and adhesion characteristics at the interface of metals (Cu, Ta) and low-k cyclohexane-based plasma polymer (CHexPP) films

    International Nuclear Information System (INIS)

    Kim, K.J.; Kim, K.S.; Lee, N.-E.; Choi, J.; Jung, D.

    2001-01-01

    Chemical interaction and adhesion characteristics between metals (Cu, Ta) and low-k plasma-treated cyclohexane-based plasma polymer (CHexPP) films were studied. In order to generate new functional groups that may contribute to the improvement of adhesion between metal and plasma polymer, we performed O 2 , N 2 , and H 2 /He mixture plasma treatment on the surfaces of CHexPP films. Chemical interactions at the interface between metals (Cu, Ta) and plasma-treated CHexPP films were analyzed by x-ray photoelectron spectroscopy. The effect of plasma treatment and thermal annealing on the adhesion characteristics was measured by a tape test and scratch test. The formation of new binding states on the surface of plasma-treated CHexPP films improved adhesion characteristics between metals and CHexPP films. Thermal annealing improves the adhesion property of Cu/CHexPP films, but degrades the adhesion property of Ta/CHexPP films

  12. Deformation analysis of polymers composites: rheological model involving time-based fractional derivative

    DEFF Research Database (Denmark)

    Zhou, H. W.; Yi, H. Y.; Mishnaevsky, Leon

    2017-01-01

    A modeling approach to time-dependent property of Glass Fiber Reinforced Polymers (GFRP) composites is of special interest for quantitative description of long-term behavior. An electronic creep machine is employed to investigate the time-dependent deformation of four specimens of dog-bond-shaped......A modeling approach to time-dependent property of Glass Fiber Reinforced Polymers (GFRP) composites is of special interest for quantitative description of long-term behavior. An electronic creep machine is employed to investigate the time-dependent deformation of four specimens of dog......-bond-shaped GFRP composites at various stress level. A negative exponent function based on structural changes is introduced to describe the damage evolution of material properties in the process of creep test. Accordingly, a new creep constitutive equation, referred to fractional derivative Maxwell model...... by the fractional derivative Maxwell model proposed in the paper are in a good agreement with the experimental data. It is shown that the new creep constitutive model proposed in the paper needs few parameters to represent various time-dependent behaviors....

  13. Strain-dependent electrical resistance of multi-walled carbon nanotube/polymer composite films

    International Nuclear Information System (INIS)

    Park, Myounggu; Kim, Hyonny; Youngblood, Jeffrey P

    2008-01-01

    The strain-dependent electrical resistance characteristics of multi-walled carbon nanotube (MWCNT)/polymer composite films were investigated. In this research, polyethylene oxide (PEO) is used as the polymer matrix. Two representative volume fractions of MWCNT/PEO composite films were selected: 0.56 vol% (near the percolation threshold) and 1.44 vol% (away from the percolation threshold) of MWCNT. An experimental setup which can measure electrical resistance and strain simultaneously and continuously has been developed. Unique and repeatable relationships in resistance versus strain were obtained for multiple specimens with different volume fractions of MWCNT. The overall pattern of electrical resistance change versus strain for the specimens tested consists of linear and nonlinear regions. A resistance change model to describe the combination of linear and nonlinear modes of electrical resistance change as a function of strain is suggested. The unique characteristics in electrical resistance change for different volume fractions imply that MWCNT/PEO composite films can be used as tunable strain sensors and for application into embedded sensor systems in structures

  14. Learning from Natural Nacre: Constructing Layered Polymer Composites with High Thermal Conductivity.

    Science.gov (United States)

    Pan, Guiran; Yao, Yimin; Zeng, Xiaoliang; Sun, Jiajia; Hu, Jiantao; Sun, Rong; Xu, Jian-Bin; Wong, Ching-Ping

    2017-09-27

    Inspired by the microstructures of naturally layered and highly oriented materials, such as natural nacre, we report a thermally conductive polymer composite that consists of epoxy resin and Al 2 O 3 platelets deposited with silver nanoparticles (AgNPs). Owing to their unique two-dimensional structure, Al 2 O 3 platelets are stacked together via a hot-pressing technique, resulting in a brick-and-mortar structure, which is similar to the one of natural nacre. Moreover, the AgNPs deposited on the surfaces of the Al 2 O 3 platelets act as bridges that link the adjacent Al 2 O 3 platelets due to the reduced melting point of the AgNPs. As a result, the polymer composite with 50 wt % filler achieves a maximum thermal conductivity of 6.71 W m -1 K -1 . In addition, the small addition of AgNPs (0.6 wt %) minimally affects the electrical insulation of the composites. Our bioinspired approach will find uses in the design and fabrication of thermally conductive materials for thermal management in modern electronics.

  15. Direct covalent coupling of proteins to nanostructured plasma polymers: a route to tunable cell adhesion

    Czech Academy of Sciences Publication Activity Database

    Melnichuk, I.; Choukourov, A.; Bilek, M.; Weiss, A.; Vandrovcová, Marta; Bačáková, Lucie; Hanuš, J.; Kousal, J.; Shelemin, A.; Solař, P.; Slavínská, D.; Biederman, H.

    2015-01-01

    Roč. 351, Oct 1 (2015), s. 537-545 ISSN 0169-4332 R&D Projects: GA MZd(CZ) NT13297 Institutional support: RVO:67985823 Keywords : covalent binding * plasma polymers * MG-63 osteoblasts Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.150, year: 2015

  16. Measurement of radiation shielding properties of polymer composites by using HPGe detector

    International Nuclear Information System (INIS)

    Gupta, Anil; Pillay, H.C.M.; Kale, P.K.; Datta, D.; Suman, S.K.; Gover, V.

    2014-01-01

    Lead is the most common radiation shield and its composite with polymers can be used as flexible radiation shields for different applications. However, lead is very hazardous and has been found to be associated with neurological disorders, kidney failure and hematotoxicity. Lead free radiation shield material has been developed by synthesizing radiation cross linked PDMS/Bi 2 O 3 polymer composites. In order to have a lead free radiation shield the relevant shielding properties such as linear attenuation, half value thickness (HVT) and tenth value thickness (TVT) have been measured by using HPGe detector. The present study describes the methodology of measurement of the shielding properties of the lead free shield material. In the measurement gamma energies such as 59.537 keV ( 241 Am), 122.061 keV and 136.474 keV ( 57 Co) are taken into consideration

  17. Structural, Magnetic, and Transport Properties of Polymer-Nano ferrite Composites

    International Nuclear Information System (INIS)

    Imam, N.G.G.

    2013-01-01

    In this work, a series of (x) BaTiO 3 / (1-x) Ni 0.5 Zn 0.5 Fe 2 O 4 nano composite samples were prepared using citrate auto combustion and the samples were classified into three groups.In first group: A series of (x) BaTiO 3 / (1-x) Ni 0.5 Zn 0.5 Fe 2 O 4 ; 0.0≤ x ≤ 1.0 were prepared by double sintering technique and citrate auto combustion method in comparison study due to different characterization analysis. The comparison reveals that from X-ray diffraction; all the samples from the two methods formed in single phase in both; cubic spinel structure NiZnFe 2 O 4 (NZF) ferrite and perovskite tetragonal structure BaTiO 3 (BTO).In group two, in another compassion, multiferroic hybrid nano composites based on different polymers as a matrix for the prepared magnetoelectric biferroic nano composite system 0.5 BaTiO 3 / 0.5Ni 0.5 Zn 0.5 Fe 2 O 4 that has been prepared by citrate auto combustion method. Four different polymers namely poly aniline (PANI), polyvinyl acetate (PVAc), Polyvinyl pyrrolidone (PVP), and polyethylene glycol (PEG), with fixed ration (1:1) with respect to the dispersed magnetoelectric nano composite.In group three, the nano composites materials with formula (1-y) [0.5 BaTiO 3 / 0.5 Ni 0.5 Zn 0.5 Fe 2 O 4 ] / (y) (PEG); 0.0 ≤y ≤+ 1.0, have been prepared at room temperature by weight mixing and cold pressing. Physical properties of nano composite materials consisting different ratios of polyethylene glycol were investigated. With the variation of y content, typical magnetic hysteresis loops of nano composites have been observed in the nano composites at room temperature. When PEG content increase, the saturation magnetization decrease. Meanwhile, the coercive force tends to stable. Additionally, the dielectric constant (ε ' ) and dielectric loss factor (ε '' ) of nano composites materials shift toward higher frequency. The value of (ε ' ) decreased with increasing frequency, which indicates that the major contribution

  18. Synthesis of organic liquids/geo-polymer composites for the immobilization of nuclear wastes

    International Nuclear Information System (INIS)

    Cantarel, Vincent

    2016-01-01

    This work is included in the management of radioactive organic liquids research field. The process is based on an emulsification of organic liquid in an alkali silicate solution allowing the synthesis of a geo-polymer matrix. The first part of this work consists in carrying out a screening on different organic liquids. A model system representative of the various oils and a geo-polymer reference formulation are then defined. The second part deals with the structuration of the organic liquid/geo-polymer structuration, from the mixture of the reactants to the final material. It aims at determining the phenomena allowing the synthesis of a homogeneous composite. The last two parts aim at characterizing the composite by studying its structure (chemical structure, porosity of the geo-polymer and dispersion of the oil) and its properties with respect to the application to the immobilization of radioactive waste. Unlike calcium silicate-based cementitious matrices, the structure of the geo-polymer is not affected by the chemical nature of the organic liquids. Only acid oils inhibit or slow down the geo-polymerization reaction. In order to obtain a homogeneous material, the presence of surfactant molecules is necessary. The emulsion stabilization mechanism at the base of the process is relying on a synergy between the surfactant molecules and the aluminosilicate particles present in the geo-polymer paste. The kinetics (chemical and mechanical) of the geo-polymerization are not impacted by the presence of oil or surfactants. Only an increase in the viscoelastic moduli and the elastic character of the pastes can be observed. This difference in rheological behavior is mainly due to the presence of surfactant. The structure of the matrix is identical to that of a pure geo-polymer of the same formulation. The organic liquid is dispersed in spherical inclusions whose radius is between 5 and 15 μm. These droplets are separated from each other, and from the environment by the

  19. The Evolution of Polymer Composition during PHA Accumulation: The Significance of Reducing Equivalents

    Directory of Open Access Journals (Sweden)

    Liliana Montano-Herrera

    2017-03-01

    Full Text Available This paper presents a systematic investigation into monomer development during mixed culture Polyhydroxyalkanoates (PHA accumulation involving concurrent active biomass growth and polymer storage. A series of mixed culture PHA accumulation experiments, using several different substrate-feeding strategies, was carried out. The feedstock comprised volatile fatty acids, which were applied as single carbon sources, as mixtures, or in series, using a fed-batch feed-on-demand controlled bioprocess. A dynamic trend in active biomass growth as well as polymer composition was observed. The observations were consistent over replicate accumulations. Metabolic flux analysis (MFA was used to investigate metabolic activity through time. It was concluded that carbon flux, and consequently copolymer composition, could be linked with how reducing equivalents are generated.

  20. New Insights on Subsurface Imaging of Carbon Nanotubes in Polymer Composites via Scanning Electron Microscopy

    Science.gov (United States)

    Zhao, Minhua; Ming, Bin; Kim, Jae-Woo; Gibbons, Luke J.; Gu, Xiaohong; Nguyen, Tinh; Park, Cheol; Lillehei, Peter T.; Villarrubia, J. S.; Vladar, Andras E.; hide

    2015-01-01

    Despite many studies of subsurface imaging of carbon nanotube (CNT)-polymer composites via scanning electron microscopy (SEM), significant controversy exists concerning the imaging depth and contrast mechanisms. We studied CNT-polyimide composites and, by threedimensional reconstructions of captured stereo-pair images, determined that the maximum SEM imaging depth was typically hundreds of nanometers. The contrast mechanisms were investigated over a broad range of beam accelerating voltages from 0.3 to 30 kV, and ascribed to modulation by embedded CNTs of the effective secondary electron (SE) emission yield at the polymer surface. This modulation of the SE yield is due to non-uniform surface potential distribution resulting from current flows due to leakage and electron beam induced current. The importance of an external electric field on SEM subsurface imaging was also demonstrated. The insights gained from this study can be generally applied to SEM nondestructive subsurface imaging of conducting nanostructures embedded in dielectric matrices such as graphene-polymer composites, silicon-based single electron transistors, high resolution SEM overlay metrology or e-beam lithography, and have significant implications in nanotechnology.