WorldWideScience

Sample records for plasma polymer coating

  1. Novel polymer coatings based on plasma polymerized 2-methoxyethyl acrylate

    DEFF Research Database (Denmark)

    Wu, Zhenning; Jiang, Juan; Benter, Maike

    2008-01-01

    plasma system[4]. The system named SoftPlasma™ is equipped with unique three-phase pulsed AC voltage. Low energy plasma polymerization has almost no thermal load for sensitive polymer materials[5]. Plasma polymerized coatings are highly cross-linked, pin-hole free and provide hydrophilic or hydrophobic...... properties[4-6]. We have exploited these possibilities and prepared plasma polymerized 2-methoxyethyl acrylate (PPMEA) coatings on various polymer substrates. The PPMEA coatings were optimized using various plasma polymerization conditions and characterized by X-ray photoelectron spectroscopy......, Fouriertransform infrared spectroscopy, Atomic force spectroscopy and Water contact-angle measurements. The microstructures ofPPMEA coatings with different thicknesses were also studied. For practical applications in mind, the coating stability was tested in different media (air, water, acetone, phosphate...

  2. Antibacterial Properties of Silver-Loaded Plasma Polymer Coatings

    Directory of Open Access Journals (Sweden)

    Lydie Ploux

    2012-01-01

    Full Text Available In a previous paper, we proposed new silver nanoparticles (SNPs based antibacterial coatings able to protect eukaryotic cells from SNPs related toxic effects, while preserving antibacterial efficiency. A SNPs containing n-heptylamine (HA polymer matrix was deposited by plasma polymerization and coated by a second HA layer. In this paper, we elucidate the antibacterial action of these new coatings. We demonstrated that SNPs-loaded material can be covered by thin HA polymer layer without losing the antibacterial activity to planktonic bacteria living in the near surroundings of the material. SNPs-containing materials also revealed antibacterial effect on adhered bacteria. Adhered bacteria number was significantly reduced compared to pure HA plasma polymer and the physiology of the bacteria was affected. The number of adhered bacteria directly decreased with thickness of the second HA layer. Surprisingly, the quantity of cultivable bacteria harvested by transfer to nutritive agar decreased not only with the presence of SNPs, but also in relation to the covering HA layer thickness, that is, oppositely to the increase in adhered bacteria number. Two hypotheses are proposed for this surprising result (stronger attachment or weaker vitality, which raises the question of the diverse potential ways of action of SNPs entrapped in a polymer matrix.

  3. Preparation and Performance of Plasma/Polymer Composite Coatings on Magnesium Alloy

    Science.gov (United States)

    Bakhsheshi-Rad, H. R.; Hamzah, E.; Bagheriyan, S.; Daroonparvar, M.; Kasiri-Asgarani, M.; Shah, A. M.; Medraj, M.

    2016-09-01

    A triplex plasma (NiCoCrAlHfYSi/Al2O3·13%TiO2)/polycaprolactone composite coating was successfully deposited on a Mg-1.2Ca alloy by a combination of atmospheric plasma spraying and dip-coating techniques. The NiCoCrAlHfYSi (MCrAlHYS) coating, as the first layer, contained a large number of voids, globular porosities, and micro-cracks with a thickness of 40-50 μm, while the Al2O3·13%TiO2 coating, as the second layer, presented a unique bimodal microstructure with a thickness of 70-80 μm. The top layer was a hydrophobic polymer, which effectively sealed the porosities of plasma layers. The results of micro-hardness and bonding strength tests showed that the plasma coating presented excellent hardness (870 HV) and good bonding strength (14.8 MPa). However, the plasma/polymer coatings interface exhibited low bonding strength (8.6 MPa). The polymer coating formed thick layer (100-110 μm) that homogeneously covered the surface of the plasma layers. Contact angle measurement showed that polymer coating over plasma layers significantly decreased surface wettability. The corrosion current density ( i corr) of an uncoated sample (262.7 µA/cm2) decreased to 76.9 µA/cm2 after plasma coatings were applied. However, it was found that the i corr decreased significantly to 0.002 µA/cm2 after polymer sealing of the porous plasma layers.

  4. Plasma deposition of antimicrobial coating on organic polymer

    Science.gov (United States)

    Rżanek-Boroch, Zenobia; Dziadczyk, Paulina; Czajkowska, Danuta; Krawczyk, Krzysztof; Fabianowski, Wojciech

    2013-02-01

    Organic materials used for packing food products prevent the access of microorganisms or gases, like oxygen or water vapor. To prolong the stability of products, preservatives such as sulfur dioxide, sulfites, benzoates, nitrites and many other chemical compounds are used. To eliminate or limit the amount of preservatives added to food, so-called active packaging is sought for, which would limit the development of microorganisms. Such packaging can be achieved, among others, by plasma modification of a material to deposit on its surface substances inhibiting the growth of bacteria. In this work plasma modification was carried out in barrier discharge under atmospheric pressure. Sulfur dioxide or/and sodium oxide were used as the coating precursors. As a result of bacteriological studies it was found that sulfur containing coatings show a 16% inhibition of Salmonella bacteria growth and 8% inhibition of Staphylococcus aureus bacteria growth. Sodium containing coatings show worse (by 10%) inhibiting properties. Moreover, films with plasma deposited coatings show good sealing properties against water vapor. Contribution to the Topical Issue "13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)", Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.

  5. Preparation and Performance of Plasma/Polymer Composite Coatings on Magnesium Alloy

    DEFF Research Database (Denmark)

    Bakhsheshi-Rad, H. R.; Hamzah, E.; Bagheriyan, S.

    2016-01-01

    , globular porosities, and micro-cracks with a thickness of 40-50 μm, while the Al2O3·13%TiO2 coating, as the second layer, presented a unique bimodal microstructure with a thickness of 70-80 μm. The top layer was a hydrophobic polymer, which effectively sealed the porosities of plasma layers. The results......A triplex plasma (NiCoCrAlHfYSi/Al2O3·13%TiO2)/polycaprolactone composite coating was successfully deposited on a Mg-1.2Ca alloy by a combination of atmospheric plasma spraying and dip-coating techniques. The NiCoCrAlHfYSi (MCrAlHYS) coating, as the first layer, contained a large number of voids...... of micro-hardness and bonding strength tests showed that the plasma coating presented excellent hardness (870 HV) and good bonding strength (14.8 MPa). However, the plasma/polymer coatings interface exhibited low bonding strength (8.6 MPa). The polymer coating formed thick layer (100-110 μm...

  6. "Thunderstruck": Plasma-Polymer-Coated Porous Silicon Microparticles As a Controlled Drug Delivery System.

    Science.gov (United States)

    McInnes, Steven J P; Michl, Thomas D; Delalat, Bahman; Al-Bataineh, Sameer A; Coad, Bryan R; Vasilev, Krasimir; Griesser, Hans J; Voelcker, Nicolas H

    2016-02-01

    Controlling the release kinetics from a drug carrier is crucial to maintain a drug's therapeutic window. We report the use of biodegradable porous silicon microparticles (pSi MPs) loaded with the anticancer drug camphothecin, followed by a plasma polymer overcoating using a loudspeaker plasma reactor. Homogenous "Teflon-like" coatings were achieved by tumbling the particles by playing AC/DC's song "Thunderstruck". The overcoating resulted in a markedly slower release of the cytotoxic drug, and this effect correlated positively with the plasma polymer coating times, ranging from 2-fold up to more than 100-fold. Ultimately, upon characterizing and verifying pSi MP production, loading, and coating with analytical methods such as time-of-flight secondary ion mass spectrometry, scanning electron microscopy, thermal gravimetry, water contact angle measurements, and fluorescence microscopy, human neuroblastoma cells were challenged with pSi MPs in an in vitro assay, revealing a significant time delay in cell death onset.

  7. Composite materials obtained by the ion-plasma sputtering of metal compound coatings on polymer films

    Science.gov (United States)

    Khlebnikov, Nikolai; Polyakov, Evgenii; Borisov, Sergei; Barashev, Nikolai; Biramov, Emir; Maltceva, Anastasia; Vereshchagin, Artem; Khartov, Stas; Voronin, Anton

    2016-01-01

    In this article, the principle and examples composite materials obtained by deposition of metal compound coatings on polymer film substrates by the ion-plasma sputtering method are presented. A synergistic effect is to obtain the materials with structural properties of the polymer substrate and the surface properties of the metal deposited coatings. The technology of sputtering of TiN coatings of various thicknesses on polyethylene terephthalate films is discussed. The obtained composites are characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), and scanning tunneling microscopy (STM) is shown. The examples of application of this method, such as receiving nanocomposite track membranes and flexible transparent electrodes, are considered.

  8. Ultrathin coating of plasma polymer of methane applied on the surface of silicone contact lenses.

    Science.gov (United States)

    Ho, C P; Yasuda, H

    1988-10-01

    Silicone rubber has great advantages as a contact lens material because of its very high oxygen permeability, softness, and excellent mechanical strength and durability. Practical application is hampered by inherent characteristics of elastomers, i.e., high tackiness and highly hydrophobic surface properties. By applying a thin layer, e.g., 5 nm, of plasma polymer of methane, it was found that all these disadvantages can be eliminated without sacrificing high oxygen permeation rate, e.g., less than 15% reduction. Optimization of operational parameters to achieve this task has been investigated. It was also found that under optimum conditions the coating withstood severe and repeated flexing of the contact lens.

  9. Antifungal coatings by caspofungin immobilization onto biomaterials surfaces via a plasma polymer interlayer.

    Science.gov (United States)

    Griesser, Stefani S; Jasieniak, Marek; Coad, Bryan R; Griesser, Hans J

    2015-12-14

    Not only bacteria but also fungal pathogens, particularly Candida species, can lead to biofilm infections on biomedical devices. By covalent grafting of the antifungal drug caspofungin, which targets the fungal cell wall, onto solid biomaterials, a surface layer can be created that might be able to provide long-term protection against fungal biofilm formation. Plasma polymerization of propionaldehyde (propanal) was used to deposit a thin (∼20 nm) interfacial bonding layer bearing aldehyde surface groups that can react with amine groups of caspofungin to form covalent interfacial bonds for immobilization. Surface analyses by x-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry confirmed the intended grafting and uniformity of the coatings, and durability upon extended washing. Testing for fungal cell attachment and ensuing biofilm formation showed that caspofungin retained activity when covalently bound onto surfaces, disrupting colonizing Candida cells. Mammalian cytotoxicity studies using human primary fibroblasts indicated that the caspofungin-grafted surfaces were selective in eliminating fungal cells while allowing attachment and spreading of mammalian cells. These in vitro data suggest promise for use as antifungal coatings, for example, on catheters, and the use of a plasma polymer interlayer enables facile transfer of the coating method onto a wide variety of biomaterials and biomedical devices.

  10. Chlorine-rich plasma polymer coating for the prevention of attachment of pathogenic fungal cells onto materials surfaces

    Science.gov (United States)

    Lamont-Friedrich, Stephanie J.; Michl, Thomas D.; Giles, Carla; Griesser, Hans J.; Coad, Bryan R.

    2016-07-01

    The attachment of pathogenic fungal cells onto materials surfaces, which is often followed by biofilm formation, causes adverse consequences in a wide range of areas. Here we have investigated the ability of thin film coatings from chlorinated molecules to deter fungal colonization of solid materials by contact killing of fungal cells reaching the surface of the coating. Coatings were deposited onto various substrate materials via plasma polymerization, which is a substrate-independent process widely used for industrial coating applications, using 1,1,2-trichloroethane as the process vapour. XPS surface analysis showed that the coatings were characterized by a highly chlorinated hydrocarbon polymer nature, with only a very small amount of oxygen incorporated. The activity of these coatings against human fungal pathogens was quantified using a recently developed, modified yeast assay and excellent antifungal activity was observed against Candida albicans and Candida glabrata. Plasma polymer surface coatings derived from chlorinated hydrocarbon molecules may therefore offer a promising solution to preventing yeast and mould biofilm formation on materials surfaces, for applications such as air conditioners, biomedical devices, food processing equipment, and others.

  11. Plasma surface modification of polymers

    Science.gov (United States)

    Hirotsu, T.

    1980-01-01

    Thin plasma polymerization films are discussed from the viewpoint of simplicity in production stages. The application of selective, absorbent films and films used in selective permeability was tested. The types of surface modification of polymers discussed are: (1) plasma etching, (2) surface coating by plasma polymerized thin films, and (3) plasma activation surface graft polymerization.

  12. Mechanically Invisible Polymer Coatings

    DEFF Research Database (Denmark)

    2014-01-01

    phase comprises particles, said particles comprising a filler material and an encapsulating coating of a second polymeric material, wherein the backbones of the first and second polymeric materials are the same. The composition may be used in electroactive polymers (EAPs) in order to obtain mechanically...... invisible polymer coatings....

  13. Antibacterial polymer coatings.

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Mollye C.; Allen, Ashley N.; Barnhart, Meghan; Tucker, Mark David; Hibbs, Michael R.

    2009-09-01

    A series of poly(sulfone)s with quaternary ammonium groups and another series with aldehyde groups are synthesized and tested for biocidal activity against vegetative bacteria and spores, respectively. The polymers are sprayed onto substrates as coatings which are then exposed to aqueous suspensions of organisms. The coatings are inherently biocidal and do not release any agents into the environment. The coatings adhere well to both glass and CARC-coated coupons and they exhibit significant biotoxicity. The most effective quaternary ammonium polymers kills 99.9% of both gram negative and gram positive bacteria and the best aldehyde coating kills 81% of the spores on its surface.

  14. Chromium functionalized diglyme plasma polymer coating enhances enzyme-linked immunosorbent assay performance.

    Science.gov (United States)

    Welch, Nicholas G; Madiona, Robert M T; Easton, Christopher D; Scoble, Judith A; Jones, Robert T; Muir, Benjamin W; Pigram, Paul J

    2016-11-10

    Ensuring the optimum orientation, conformation, and density of substrate-bound antibodies is critical for the success of sandwich enzyme-linked immunosorbent assays (ELISAs). In this work, the authors utilize a diethylene glycol dimethyl ether plasma polymer (DGpp) coating, functionalized with chromium within a 96 well plate for the enhanced immobilization of a capture antibody. For an equivalent amount of bound antibody, a tenfold improvement in the ELISA signal intensity is obtained on the DGpp after incubation with chromium, indicative of improved orientation on this surface. Time-of-flight secondary-ion-mass-spectrometry (ToF-SIMS) and principal component analysis were used to probe the molecular species at the surface and showed ion fragments related to lysine, methionine, histidine, and arginine coupled to chromium indicating candidate antibody binding sites. A combined x-ray photoelectron spectroscopy and ToF-SIMS analysis provided a surface molecular characterization that demonstrates antibody binding via the chromium complex. The DGpp+Cr surface treatment holds great promise for improving the efficacy of ELISAs.

  15. Radio frequency plasma polymer coatings for affinity capture MALDI mass spectrometry.

    Science.gov (United States)

    Li, Meiling; Timmons, Richard B; Kinsel, Gary R

    2005-01-01

    Surface modification of MALDI probes is an attractive approach for combining bioaffinity isolation of targeted biomolecules with mass spectrometric analysis of the captured species. In this work, we demonstrate that a polymer thin film, produced by pulsed rf plasma polymerization of allylamine and deposited directly on a MALDI probe, can be subsequently biotinylated to develop a bioaffinity capture MALDI probe. The synthesis and characterization of the probe by XPS, FT-IR, and AFM is described, and the selective isolation of avidin from a three-component mixture of avidin, lysozyme, and cytochrome c is presented. These initial results offer encouragement for the further exploration of rf plasma polymer deposition as a novel approach for the development of on-probe affinity capture MALDI probes.

  16. Charged Polymer-Coated Separators by Atmospheric Plasma-Induced Grafting for Lithium-Ion Batteries.

    Science.gov (United States)

    Han, Mina; Kim, Dong-Won; Kim, Yeong-Cheol

    2016-10-05

    A simple and fast method of atmospheric plasma-induced grafting was applied over a polyethylene membrane to enhance its performance as a separator for lithium-ion batteries. The process of grafting has formed a thin, durable, and uniform layer on the surface of the porous membrane. The charges of grafted polymers affected the performance of batteries in many ways besides the change of hydrophilicity. Negative charges in polymers improve the capacity retention of batteries and the uniformity of the SEI layer. On the other hand, the electrostatic attraction between different charges contributed to small increases of thermal stability and mechanical strength of separators. Polyampholyte was grafted by using the mixtures of monomers, and the composition of the grafted layer was optimized. The formation of stable uniform SEI layers and the marked improvement in capacity retention were observed in the full cell tests of the lithium battery with the polyampholyte-grafted separators when the polyampholyte has a negative net charge.

  17. Deposition of Antimicrobial Copper-Rich Coatings on Polymers by Atmospheric Pressure Jet Plasmas

    Directory of Open Access Journals (Sweden)

    Jana Kredl

    2016-04-01

    Full Text Available Inanimate surfaces serve as a permanent reservoir for infectious microorganisms, which is a growing problem in areas in everyday life. Coating of surfaces with inorganic antimicrobials, such as copper, can contribute to reduce the adherence and growth of microorganisms. The use of a DC operated air plasma jet for the deposition of copper thin films on acrylonitrile butadiene styrene (ABS substrates is reported. ABS is a widespread material used in consumer applications, including hospitals. The influence of gas flow rate and input current on thin film characteristics and its bactericidal effect have been studied. Results from X-ray photoelectron spectroscopy (XPS and atomic force microscopy confirmed the presence of thin copper layers on plasma-exposed ABS and the formation of copper particles with a size in the range from 20 to 100 nm, respectively. The bactericidal properties of the copper-coated surfaces were tested against Staphylococcus aureus. A reduction in growth by 93% compared with the attachment of bacteria on untreated samples was observed for coverage of the surface with 7 at. % copper.

  18. Local plasma deposition on polymer components

    NARCIS (Netherlands)

    Bolt, P.J.; Theelen, M.J.; Habets, D.; Winands, G.J.J.; Staemmler, L.

    2011-01-01

    For the modification of the surface energy of polymers, organosilicon coatings provide good optical and mechanical properties and are excellent candidates for the modification of the surface energy of polymers. These coatings can be deposited by plasma polymerization of hexamethyldisiloxane (HMDSO)

  19. Functional Coatings with Polymer Brushes

    OpenAIRE

    König, Meike

    2013-01-01

    The scope of this work is to fathom different possibilities to create functional coatings with polymer brushes. The immobilization of nanoparticles and enzymes is investigated, as well as the affection of their properties by the stimuli-responsiveness of the brushes. Another aspect is the coating of 3D-nanostructures by polymer brushes and the investigation of the resulting functional properties of the hybrid material. The polymer brush coatings are characterized by a variety of microscopic a...

  20. Vacuum plasma spray coating

    Science.gov (United States)

    Holmes, Richard R.; Mckechnie, Timothy N.

    1989-01-01

    Currently, protective plasma spray coatings are applied to space shuttle main engine turbine blades of high-performance nickel alloys by an air plasma spray process. Originally, a ceramic coating of yttria-stabilized zirconia (ZrO2.12Y2O3) was applied for thermal protection, but was removed because of severe spalling. In vacuum plasma spray coating, plasma coatings of nickel-chromium-aluminum-yttrium (NiCrAlY) are applied in a reduced atmosphere of argon/helium. These enhanced coatings showed no spalling after 40 MSFC burner rig thermal shock cycles between 927 C (1700 F) and -253 C (-423 F), while current coatings spalled during 5 to 25 test cycles. Subsequently, a process was developed for applying a durable thermal barrier coating of ZrO2.8Y2O3 to the turbine blades of first-stage high-pressure fuel turbopumps utilizing the enhanced NiCrAlY bond-coating process. NiCrAlY bond coating is applied first, with ZrO2.8Y2O3 added sequentially in increasing amounts until a thermal barrier coating is obtained. The enchanced thermal barrier coating has successfully passed 40 burner rig thermal shock cycles.

  1. Localised plasma deposition of organosilicon layers on polymer substrates

    NARCIS (Netherlands)

    Theelen, M.J.; Habets, D.; Staemmler, L.; Winands, H.; Bolt, P.J.

    2012-01-01

    Organosilicon coatings provide good optical and mechanical properties and are excellent candidates for the modification of the surface energy of polymers. These coatings can be deposited by plasma polymerization of hexamethyldisiloxane (HMDSO) under atmospheric pressure and at room temperature. The

  2. Polyurethane coating with thin polymer films produced by plasma polymerization of diglyme

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, M A; Ramos, A S; Manfredini, M I; Alves, H A; Ramos, E C T [UNIVAP, Sao Jose dos Campos, SP (Brazil); Honda, R Y; Kostov, K G; Lucena, E F; Mota, R P; Algatti, M A; Kayama, M E, E-mail: rmota@feg.unesp.b [FEG-DFQ-UNESP, Av. Ariberto Pereira da Cunha 333, 12516-410 - Guaratingueta, SP (Brazil)

    2009-05-01

    Aqueous-based polyurethane dispersions have been widely utilized as lubricants in textile, shoes, automotive, biomaterial and many other industries because they are less aggressive to surrounding environment. In this work thin films with different thickness were deposited on biocompatible polyurethane by plasma polymerization process using diethylene glycol dimethyl ether (Diglyme) as monomer. Molecular structure of the films was analyzed by Fourier Transform Infrared spectroscopy. The spectra exhibited absorption bands of O-H (3500-3200cm{sup -1}), C-H (3000-2900cm{sup -1}), C=O (1730-1650cm{sup -1}), C-O and C-O-C bonds at 1200-1600cm{sup -1}. The samples wettability was evaluated by measurements of contact angle using different liquids such as water, glycerol, poly-ethane and CMC. The polyurethane surface showed hydrophilic behavior after diglyme plasma-deposition with contact angle dropping from 85 deg. to 22 deg. Scanning Electron Microscopy revealed that diglyme films covered uniformly the polyurethane surfaces ensuring to it a biocompatible characteristic.

  3. Thermal Spray Formation of Polymer Coatings

    Science.gov (United States)

    Coquill, Scott; Galbraith, Stephen L.; Tuss. Darren L.; Ivosevic, Milan

    2008-01-01

    This innovation forms a sprayable polymer film using powdered precursor materials and an in-process heating method. This device directly applies a powdered polymer onto a substrate to form an adherent, mechanically-sound, and thickness-regulated film. The process can be used to lay down both fully dense and porous, e.g., foam, coatings. This system is field-deployable and includes power distribution, heater controls, polymer constituent material bins, flow controls, material transportation functions, and a thermal spray apparatus. The only thing required for operation in the field is a power source. Because this method does not require solvents, it does not release the toxic, volatile organic compounds of previous methods. Also, the sprayed polymer material is not degraded because this method does not use hot combustion gas or hot plasma gas. This keeps the polymer from becoming rough, porous, or poorly bonded.

  4. Plasma polymer coatings to aid retinal pigment epithelial growth for transplantation in the treatment of age related macular degeneration.

    Science.gov (United States)

    Kearns, Victoria; Mistry, Anita; Mason, Sharon; Krishna, Yamini; Sheridan, Carl; Short, Robert; Williams, Rachel L

    2012-08-01

    Subretinal transplantation of functioning retinal pigment epithelial (RPE) cells grown on a synthetic substrate is a potential treatment for age-related macular degeneration (AMD), a common cause of irreversible vision loss in developed countries. Plasma polymers give the opportunity to tailor the surface chemistry of the artificial substrate whilst maintaining the bulk properties. In this study, plasma polymers with different functionalities were investigated in terms of their effect on RPE attachment and growth. Plasma polymers of acrylic acid (AC), allyl amine (AM) and allyl alcohol (AL) were fabricated and characterised using X-ray photoelectron spectroscopy (XPS) and water contact angle measurements. Octadiene (OD) hydrocarbon films and tissue culture polystyrene were used as controls. Wettability varied from hydrophobic OD to relatively hydrophilic AC. XPS demonstrated four very different surfaces with the expected functionalities. Attachment, proliferation and morphological examination of an RPE cell line and primary RPE cells were investigated. Both cell types grew on all surfaces, with the exception of OD, although the proliferation rate of primary cells was low. Good epithelial morphology was also demonstrated. Plasma polymerised films show potential as cell carrier surfaces for RPE cells in the treatment of AMD.

  5. Quantification of Osseointegration of Plasma-Polymer Coated Titanium Alloyed Implants by means of Microcomputed Tomography versus Histomorphometry

    Directory of Open Access Journals (Sweden)

    Carolin Gabler

    2015-01-01

    Full Text Available A common method to derive both qualitative and quantitative data to evaluate osseointegration of implants is histomorphometry. The present study describes a new image reconstruction algorithm comparing the results of bone-to-implant contact (BIC evaluated by means of µCT with histomorphometry data. Custom-made conical titanium alloyed (Ti6Al4V implants were inserted in the distal tibial bone of female Sprague-Dawley rats. Different surface configurations were examined: Ti6Al4V implants with plasma-polymerized allylamine (PPAAm coating and plasma-polymerized ethylenediamine (PPEDA coating as well as implants without surface coating. After six weeks postoperatively, tibiae were explanted and BIC was determined by µCT (3D and afterwards by histomorphometry (2D. In comparison to uncoated Ti6Al4V implants demonstrating low BIC of 32.4% (histomorphometry and 51.3% (µCT, PPAAm and PPEDA coated implants showed a nonsignificant increase in BIC (histomorphometry: 45.7% and 53.5% and µCT: 51.8% and 62.0%, resp.. Mean BIC calculated by µCT was higher for all surface configurations compared to BIC detected by histomorphometry. Overall, a high correlation coefficient of 0.70 (p<0.002 was found between 3D and 2D quantification of BIC. The μCT analysis seems to be suitable as a nondestructive and accurate 3D imaging method for the evaluation of the bone-implant interface.

  6. Cell Adhesion to Plasma-Coated PVC

    OpenAIRE

    Elidiane C. Rangel; Souza,Eduardo S. de; Francine S. de Moraes; Eliana A. R. Duek; Carolina Lucchesi; Schreiner, Wido H.; Durrant, Steven F.; Cruz, Nilson C.

    2014-01-01

    To produce environments suitable for cell culture, thin polymer films were deposited onto commercial PVC plates from radiofrequency acetylene-argon plasmas. The proportion of argon in the plasmas, P-Ar, was varied from 5.3 to 65.8%. The adhesion and growth of Vero cells on the coated surfaces were examined for different incubation times. Cytotoxicity tests were performed using spectroscopic methods. Carbon, O, and N were detected in all the samples using XPS. Roughness remained almost unchang...

  7. PLASMA POLYMERIZED ORGANOSILANES AS A PROTECTIVE COATING ON METAL

    Institute of Scientific and Technical Information of China (English)

    SUN Qiushi; HOU Xiaohua

    1997-01-01

    Polymer-metal oxane bonds (M-O-Si) can be created in the form of tight networks by silane plasma polymerization directly on the metal (e.g. copper) substrates. In this paper the structure and properties of the plasma-deposited organosilane polymers, the corrosion performance of such coating system on copper substrates were investigated.

  8. Coating of fertilizers by degradable polymers.

    Science.gov (United States)

    Devassine, M; Henry, F; Guerin, P; Briand, X

    2002-08-21

    The conventional agriculture leads to some important pollution of ground water (particularly, by nitrates). The solution is the coating of fertilizers by degradable polymers. In this work, we have studied the water vapour and liquid diffusion through polymer films detached from their support. Therefore, we may classify polymers as a function of their properties like water vapour and liquid barrier. We may choose the best polymer(s) for coating.coated fertilizers by chosen polymer(s) with mechanical techniques such as fluidised bed and pan coating. Moreover, the electron microscopy used to see the quality of the wall has showed the presence of pores due to the rapid evaporation of solvent. A drying in air current and an annealing could be done to avoid this problem.followed the ions release of fertilizers immersed in distilled water by conductimetry. The more interesting result was obtained with fertilizers coated by polylactic acid. In effect, the total release reached three weeks.

  9. Nanoparticle/Polymer Nanocomposite Bond Coat or Coating

    Science.gov (United States)

    Miller, Sandi G.

    2011-01-01

    This innovation addresses the problem of coatings (meant to reduce gas permeation) applied to polymer matrix composites spalling off in service due to incompatibility with the polymer matrix. A bond coat/coating has been created that uses chemically functionalized nanoparticles (either clay or graphene) to create a barrier film that bonds well to the matrix resin, and provides an outstanding barrier to gas permeation. There is interest in applying clay nanoparticles as a coating/bond coat to a polymer matrix composite. Often, nanoclays are chemically functionalized with an organic compound intended to facilitate dispersion of the clay in a matrix. That organic modifier generally degrades at the processing temperature of many high-temperature polymers, rendering the clay useless as a nano-additive to high-temperature polymers. However, this innovation includes the use of organic compounds compatible with hightemperature polymer matrix, and is suitable for nanoclay functionalization, the preparation of that clay into a coating/bondcoat for high-temperature polymers, the use of the clay as a coating for composites that do not have a hightemperature requirement, and a comparable approach to the preparation of graphene coatings/bond coats for polymer matrix composites.

  10. The effect of novel nitrogen-rich plasma polymer coatings on the phenotypic profile of notochordal cells

    Directory of Open Access Journals (Sweden)

    Wertheimer Michael R

    2007-09-01

    Full Text Available Abstract Background The loss of the notochordal cells from the nucleus pulposus is associated with ageing and disc degeneration. However, understanding the mechanisms responsible for the loss of these cells has been hampered in part due to the difficulty of culturing and maintaining their phenotype. Furthermore, little is known about the influence of the substratum on the molecular markers of notochordal cells. Methods Notochordal cells were isolated from lumbar spine of non-chondrodystrophoid dogs and cultured on N-rich plasma polymer layers, so-called "PPE:N" (N-doped plasma-polymerised ethylene, containing up to 36% [N] surfaces, for 3, 7 or 14 days. Gene expression of vimentin (VIM, pleiotrophin (PTN, matrix Gla protein (MGP, cartilage oligomeric matrix protein (COMP, keratin 18 (KRT 18, aggrecan (AGG, collagen type 1 (COL1A2, collagen type 2 (COL2A1 was analyzed through semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR. Results Notochordal cells were maintained in culture on PPE:N for up to 14 days with no loss in cell viability. Except for VIM, gene expression varied depending on the culture periods and [N] concentration of the substratum. Generally, PPE:N surfaces altered gene expression significantly when cells were cultured for 3 or 7 days. Conclusion The present study has shown that notochordal cells from dogs can attach to and grow on PPE:N surfaces. Analysis of the expression of different genes in these cells cultured on different N-functionalized surfaces indicates that cellular behaviour is gene-specific and time-dependent. Further studies are required to better understand the roles of specific surface functionalities on receptor sites, and their effects on cellular phenotypes.

  11. Composite layers for barrier coatings on polymers

    Science.gov (United States)

    Brochhagen, Markus; Vorkoetter, Christoph; Boeke, Marc; Benedikt, Jan

    2016-09-01

    Amorphous hydrogenated carbon (a-C:H), amorphous hydrogenated silicon (a-Si:H), and SiO2 thin films are of high interest because they can serve as a gas barrier on polymers. To understand how the coating changes the overall barrier properties of the thin film-polymer system, optical, mechanical, and barrier properties have to be studied. One of the important characteristic of such coatings is their compressive stress, which has beneficial as well as unwanted effects. The stress can cause deformation of the bulk material or de-lamination of the film. The mechanical stability can be improved and it is possible to reduce cracking due to elongation, as the compressive stress can compensate externally applied tensile strain. Stress and mechanical properties of composite layers can be manipulated directly by embedding nanoparticles in an amorphous matrix film. Therefore nanoparticles and amorphous layers are investigated before they can be assembled in a composite layer. Growth rates as well as optical and mechanical properties are explored in this work. An inductively coupled plasma source was used for all amorphous layers and the silicon nanoparticles with diameter around 5 nm were produced in a capacitively coupled plasma reactor. This work is supported by DFG within SFB-TR87.

  12. Spray-Deposited Superconductor/Polymer Coatings

    Science.gov (United States)

    Wise, Stephanie A.; Tran, Sang Q.; Hooker, Matthew W.

    1993-01-01

    Coatings that exhibit the Meissner effect formed at relatively low temperature. High-temperature-superconductor/polymer coatings that exhibit Meissner effect deposited onto components in variety of shapes and materials. Simple, readily available equipment needed in coating process, mean coatings produced economically. Coatings used to keep magnetic fields away from electronic circuits in such cryogenic applications as magnetic resonance imaging and detection of infrared, and in magnetic suspensions to provide levitation and/or damping of vibrations.

  13. Plasma polymer-coated contact lenses for the culture and transfer of corneal epithelial cells in the treatment of limbal stem cell deficiency.

    Science.gov (United States)

    Brown, Karl David; Low, Suet; Mariappan, Indumathi; Abberton, Keren Maree; Short, Robert; Zhang, Hong; Maddileti, Savitri; Sangwan, Virender; Steele, David; Daniell, Mark

    2014-02-01

    Extensive damage to the limbal region of the cornea leads to a severe form of corneal blindness termed as limbal stem cell deficiency (LSCD). Whereas most cases of corneal opacity can be treated with full thickness corneal transplants, LSCD requires stem cell transplantation for successful ocular surface reconstruction. Current treatments for LSCD using limbal stem cell transplantation involve the use of murine NIH 3T3 cells and human amniotic membranes as culture substrates, which pose the threat of transmission of animal-derived pathogens and donor tissue-derived cryptic infections. In this study, we aimed to produce surface modified therapeutic contact lenses for the culture and delivery of corneal epithelial cells for the treatment of LSCD. This approach avoids the possibility of suture-related complications and is completely synthetic. We used plasma polymerization to deposit acid functional groups onto the lenses at various concentrations. Each surface was tested for its suitability to promote corneal epithelial cell adhesion, proliferation, retention of stem cells, and differentiation and found that acid-based chemistries promoted better cell adhesion and proliferation. We also found that the lenses coated with a higher percentage of acid functional groups resulted in a higher number of cells transferred onto the corneal wound bed in rabbit models of LSCD. Immunohistochemistry of the recipient cornea confirmed the presence of autologous, transplanted 5-bromo-2'-deoxyuridine (BrdU)-labeled cells. Hematoxylin staining has also revealed the presence of a stratified epithelium at 26 days post-transplantation. This study provides the first evidence for in vivo transfer and survival of cells transplanted from a contact lens to the wounded corneal surface. It also proposes the possibility of using plasma polymer-coated contact lenses with high acid functional groups as substrates for the culture and transfer of limbal cells in the treatment of LSCD.

  14. Wafer scale coating of polymer cantilever fabricated by nanoimprint lithography

    DEFF Research Database (Denmark)

    Greve, Anders; Dohn, Søren; Keller, Stephan Urs

    2010-01-01

    Microcantilevers can be fabricated in TOPAS by nanoimprint lithography, with the dimensions of 500 ¿m length 4.5 ¿m thickness and 100 ¿m width. By using a plasma polymerization technique it is possible to selectively functionalize individually cantilevers with a polymer coating, on wafer scale...

  15. The Plasma Chemistry of Polymer Surfaces

    CERN Document Server

    Friedrich, Jö

    2012-01-01

    This book illustrates plasma properties, polymer characteristics, surface specifics, and how to purposefully combine plasma and polymer chemistry. In so doing, it covers plasma polymerization, surface functionalization, etching, crosslinking, and deposition of monotype functional-group-bearing plasma polymers. It explains different techniques and plasma types, such as pressure-pulsed, remote, low-wattage plasmas and plasma polymerization in liquids. Finally, among the numerous applications discussed are plasmas for chemical synthesis, industrial processes or the modification of membranes and p

  16. Interfacial Characterization of Rigid Polymer Coatings

    Science.gov (United States)

    DeNolf, Garret C.

    In order to enhance the performance and durability of today's polymer coatings it is pivotal to be able to characterize their mechanical and chemical properties, with emphasized importance on coating-substrate interfaces which are common points of material failure. The purpose of this thesis was to develop and demonstrate novel characterization methods to measure the interfacial and bulk properties of these polymer films and improve the overall understanding of these materials. The first portion of this thesis explores a new peel test technique to measure the adhesion between substrates and coatings. The employed method examines the effect of processing conditions and substrate treatment on the adhesion of polyurethane coatings. This technique successfully quantifies the adhesion of polyurethane coatings to a variety of treated substrates and at multiple curing temperatures. The second thrust of this thesis involves the utilization of a quartz crystal microbalance instrument to characterize the bulk rheological properties of polymer films and coatings in situ. This novel method enables the examination of the effect of temperature and mixing stoichiometry on the rheological properties of curing polyurethane coatings and polymer films. This analysis is extended to measure the curing and aging of paint systems relevant to the art conservation scientific community. The final portion of this thesis focuses on understanding the effect of pH on the interfacial swelling of polymer films in aqueous environments. The quartz crystal microbalance is used to characterize the swelling of interfacial polymer films as water reaches the interface, and the corresponding permeability and osmotic pressure provides insight into the mechanisms of delamination and adhesive failure of coatings attached to metal surfaces. The novel methods and calculations established in this thesis enable precise measurements of coating interfaces and rheological properties and have considerable potential

  17. Plasma Processes : Microwave plasma deposition of diamond like carbon coatings

    Indian Academy of Sciences (India)

    D S Patil; K Ramachandran; N Venkatramani; M Pandey; R D'Cunha

    2000-11-01

    The promising applications of the microwave plasmas have been appearing in the fields of chemical processes and semiconductor manufacturing. Applications include surface deposition of all types including diamond/diamond like carbon (DLC) coatings, etching of semiconductors, promotion of organic reactions, etching of polymers to improve bonding of the other materials etc. With a 2.45 GHz, 700 W, microwave induced plasma chemical vapor deposition (CVD) system set up in our laboratory we have deposited diamond like carbon coatings. The microwave plasma generation was effected using a wave guide single mode applicator. We have deposited DLC coatings on the substrates like stainless steel, Cu–Be, Cu and Si. The deposited coatings have been characterized by FTIR, Raman spectroscopy and ellipsometric techniques. The results show that we have achieved depositing ∼ 95% sp3 bonded carbon in the films. The films are uniform with golden yellow color. The films are found to be excellent insulators. The ellipsometric measurements of optical constant on silicon substrates indicate that the films are transparent above 900 nm.

  18. Modified drug release using atmospheric pressure plasma deposited siloxane coatings

    Science.gov (United States)

    Dowling, D. P.; Maher, S.; Law, V. J.; Ardhaoui, M.; Stallard, C.; Keenan, A.

    2016-09-01

    This pilot study evaluates the potential of atmospheric plasma polymerised coatings to modify the rate of drug release from polymeric substrates. The antibiotic rifampicin was deposited in a prototype multi-layer drug delivery system, consisting of a nebulized layer of active drug between a base layer of TEOS deposited on a plastic substrate (polystyrene) and an overlying layer of plasma polymerised PDMS. The polymerised TEOS and PDMS layers were deposited using a helium atmospheric plasma jet system. Elution of rifampicin was measured using UV-VIS spectroscopy, in addition to a antimicrobial well diffusion assay with an established indicator organism. The multi-layered plasma deposited coatings significantly extended the duration of release of the rifampicin from 24 h for the uncoated polymer to 144 h for the coated polymer.

  19. Nanoscale Reinforced, Polymer Derived Ceramic Matrix Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Rajendra Bordia

    2009-07-31

    The goal of this project was to explore and develop a novel class of nanoscale reinforced ceramic coatings for high temperature (600-1000 C) corrosion protection of metallic components in a coal-fired environment. It was focused on developing coatings that are easy to process and low cost. The approach was to use high-yield preceramic polymers loaded with nano-size fillers. The complex interplay of the particles in the polymer, their role in controlling shrinkage and phase evolution during thermal treatment, resulting densification and microstructural evolution, mechanical properties and effectiveness as corrosion protection coatings were investigated. Fe-and Ni-based alloys currently used in coal-fired environments do not possess the requisite corrosion and oxidation resistance for next generation of advanced power systems. One example of this is the power plants that use ultra supercritical steam as the working fluid. The increase in thermal efficiency of the plant and decrease in pollutant emissions are only possible by changing the properties of steam from supercritical to ultra supercritical. However, the conditions, 650 C and 34.5 MPa, are too severe and result in higher rate of corrosion due to higher metal temperatures. Coating the metallic components with ceramics that are resistant to corrosion, oxidation and erosion, is an economical and immediate solution to this problem. Good high temperature corrosion protection ceramic coatings for metallic structures must have a set of properties that are difficult to achieve using established processing techniques. The required properties include ease of coating complex shapes, low processing temperatures, thermal expansion match with metallic structures and good mechanical and chemical properties. Nanoscale reinforced composite coatings in which the matrix is derived from preceramic polymers have the potential to meet these requirements. The research was focused on developing suitable material systems and

  20. Solid coatings deposited from liquid methyl methacrylate via Plasma Polymerization

    Science.gov (United States)

    Wurlitzer, Lisa; Maus-Friedrichs, Wolfgang; Dahle, Sebastian

    2016-09-01

    The polymerization of methyl methacrylate via plasma discharges is well known today. Usually, plasma-enhanced chemical vapor deposition (PECVD) is used to deposit polymer coatings. Solid coatings are formed out of the liquid phase from methyl methacrylate via dielectric barrier discharge. The formation of the coating proceeds in the gas and the liquid phase. To learn more about the reactions in the two phases, the coatings from MMA monomer will be compared to those from MMA resin. Finally, attenuated total reflection infrared spectroscopy, confocal laser scanning microscopy and X-ray photoelectron spectroscopy are employed to characterize the solid coatings. In conclusion, the plasma enhanced chemical solution deposition is compared to the classical thermal polymerization of MMA.

  1. Antibacterial coating on polymer for space application

    Energy Technology Data Exchange (ETDEWEB)

    Balagna, Cristina, E-mail: cristina.balagna@polito.it [Institute of Materials Physics and Engineering, Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Perero, Sergio; Ferraris, Sara; Miola, Marta [Institute of Materials Physics and Engineering, Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Fucale, Giacomo [Chemical, Clinical and Microbiological Analyses Department C.T.O., Via G. Zuretti 29, 10126 Torino (Italy); Manfredotti, Chiara; Battiato, Alfio [Physics Department, Centre of Excellence ' Nanostructured Interfaces and Surfaces' and CNISM, University of Torino, Via P. Giuria 1, 10125 Torino (Italy); Santella, Daniela [Thales Alenia Space - Italia, Space Infrastructures and Transportation, Engineering - Advanced Projects Unit, Strada Antica di Collegno 253, 10146 Torino (Italy); Verne, Enrica [Institute of Materials Physics and Engineering, Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Vittone, Ettore [Physics Department, Centre of Excellence ' Nanostructured Interfaces and Surfaces' and CNISM, University of Torino, Via P. Giuria 1, 10125 Torino (Italy); Ferraris, Monica [Institute of Materials Physics and Engineering, Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)

    2012-08-15

    The microbiological contamination on board of spacecraft and orbital stations is a relevant problem in prolonged space exploration. For this purpose, an antibacterial silver nanocluster silica composite coating was deposited on a commercial polymer Combitherm{sup Registered-Sign }, suitable for aerospace application, using the radio frequency (RF) co-sputtering technique. The presence of metallic silver nanoclusters and silica was confirmed by energy dispersion spectrometry (EDS), x-ray photoelectron spectroscopy (XPS) and localized surface plasmon resonance (LSPR) detected through UV-visible absorption spectrophotometry (UV-Vis). The atomic force microscope (AFM) evidenced the coating morphology. The slight hydrophobicity of both coated and uncoated samples was revealed through the contact angle measurement. The antimicrobial behavior was verified through evaluation of the inhibition halo against several bacterial and fungal species. The coating enhanced the Combitherm{sup Registered-Sign} nano-hardness and its resistance to tensile and perforation tests; the coating wear resistance was measured by abrasion test against Kevlar. A folding procedure on the coated Combitherm{sup Registered-Sign} and storage in air for three months was also carried out without deterioration of the measured properties. The coating deposition did not influence the air permeability of Combitherm{sup Registered-Sign }. -- Highlights: Black-Right-Pointing-Pointer A silver nanocluster silica composite coating was deposited on a polymeric film. Black-Right-Pointing-Pointer A co-sputtering technique was used for the coating deposition. Black-Right-Pointing-Pointer The coating induced an antibacterial effect on the polymer film. Black-Right-Pointing-Pointer The coating improved the nano-hardness and the resistance to tensile and perforation.

  2. Doctor Blade-Coated Polymer Solar Cells

    KAUST Repository

    Cho, Nam Chul

    2016-10-25

    In this work, we report polymer solar cells based on blade-coated P3HT:PC71BM and PBDTTT-EFT:PC71BM bulk heterojunction photoactive layers. Enhanced power conversion efficiency of 2.75 (conventional structure) and 3.03% (inverted structure) with improved reproducibility was obtained from blade-coated P3HT:PC71BM solar cells, compared to spin-coated ones. Furthermore, by demonstrating 3.10% efficiency flexible solar cells using blade-coated PBDTTT-EFT:PC71BM films on the plastic substrates, we suggest the potential applicability of blade coating technique to the high throughput roll-to-roll fabrication systems.

  3. Degradation of Polymer-Coated Materials

    Science.gov (United States)

    2013-10-01

    the polymer.14 In addition to sunlight, coatings are constantly exposed to different environments that range from immersion in water or burial in soil ...Rudolph, W. W.; Irmer, G.; Hefter, G. T. Raman Spectroscopic Investigation of Speciation in MgSO4(aq). Phys. Chem. Chem. Phys. 5, 5253–5261 (2003

  4. Electrochemical Impedance Spectroscopy of Conductive Polymer Coatings

    Science.gov (United States)

    Calle, Luz Marina; MacDowell, Louis G.

    1996-01-01

    Electrochemical impedance spectroscopy (EIS) was used to investigate the corrosion protection performance of twenty nine proprietary conductive polymer coatings for cold rolled steel under immersion in 3.55 percent NaCl. Corrosion potential as well as Bode plots of the data were obtained for each coating after one hour immersion, All coatings, with the exception of one, have a corrosion potential that is higher in the positive direction than the corrosion potential of bare steel under the same conditions. Group A consisted of twenty one coatings with Bode plots indicative of the capacitive behavior characteristic of barrier coatings. An equivalent circuit consisting of a capacitor in series with a resistor simulated the experimental EIS data for these coatings very well. Group B consisted of eight coatings that exhibited EIS spectra showing an inflection point which indicates that two time constants are present. This may be caused by an electrochemical process taking place which could be indicitive of coating failing. These coatings have a lower impedance that those in Group A.

  5. Thermal Imaging Processes of Polymer Nanocomposite Coatings

    Science.gov (United States)

    Meth, Jeffrey

    2015-03-01

    Laser induced thermal imaging (LITI) is a process whereby infrared radiation impinging on a coating on a donor film transfers that coating to a receiving film to produce a pattern. This talk describes how LITI patterning can print color filters for liquid crystal displays, and details the physical processes that are responsible for transferring the nanocomposite coating in a coherent manner that does not degrade its optical properties. Unique features of this process involve heating rates of 107 K/s, and cooling rates of 104 K/s, which implies that not all of the relaxation modes of the polymer are accessed during the imaging process. On the microsecond time scale, the polymer flow is forced by devolatilization of solvents, followed by deformation akin to the constrained blister test, and then fracture caused by differential thermal expansion. The unique combination of disparate physical processes demonstrates the gamut of physics that contribute to advanced material processing in an industrial setting.

  6. Hybrid high refractive index polymer coatings

    Science.gov (United States)

    Wang, Yubao; Flaim, Tony; Mercado, Ramil; Fowler, Shelly; Holmes, Douglas; Planje, Curtis

    2005-04-01

    Thermally curable hybrid high refractive index polymer solutions have been developed. These solutions are stable up to 6 months under room temperature storage conditions and can be easily spin-coated onto a desired substrate. When cured at elevated temperature, the hybrid polymer coating decomposes to form a metal oxide-rich film that has a high refractive index. The resulting films have refractive indices higher than 1.90 in the entire visible region and achieve film thicknesses of 300-900 nm depending on the level of metal oxide loading, cure temperature being used, and number of coatings. The formed films show greater than 90% internal transmission in the visible wavelength (400-700 nm). These hybrid high refractive index films are mechanically robust, are stable upon exposure to both heat and UV radiation, and are currently being investigated for microlithographic patterning potential.

  7. Polymer-coated quantum dots

    NARCIS (Netherlands)

    Tomczak, Nikodem; Liu, Rongrong; Vancso, Julius G.

    2013-01-01

    Quantum Dots (QDs) are semiconductor nanocrystals with distinct photophysical properties finding applications in biology, biosensing, and optoelectronics. Polymeric coatings of QDs are used primarily to provide long-term colloidal stability to QDs dispersed in solutions and also as a source of addit

  8. Cell adhesion to plasma-coated PVC.

    Science.gov (United States)

    Rangel, Elidiane C; de Souza, Eduardo S; de Moraes, Francine S; Duek, Eliana A R; Lucchesi, Carolina; Schreiner, Wido H; Durrant, Steven F; Cruz, Nilson C

    2014-01-01

    To produce environments suitable for cell culture, thin polymer films were deposited onto commercial PVC plates from radiofrequency acetylene-argon plasmas. The proportion of argon in the plasmas, P(Ar), was varied from 5.3 to 65.8%. The adhesion and growth of Vero cells on the coated surfaces were examined for different incubation times. Cytotoxicity tests were performed using spectroscopic methods. Carbon, O, and N were detected in all the samples using XPS. Roughness remained almost unchanged in the samples prepared with 5.3 and 28.9% but tended to increase for the films deposited with P(Ar) between 28.9 and 55.3%. Surface free energy increased with increasing P(Ar), except for the sample prepared at 28.9% of Ar, which presented the least reactive surface. Cells proliferated on all the samples, including the bare PVC. Independently of the deposition condition there was no evidence of cytotoxicity, indicating the viability of such coatings for designing biocompatible devices.

  9. Cell Adhesion to Plasma-Coated PVC

    Directory of Open Access Journals (Sweden)

    Elidiane C. Rangel

    2014-01-01

    Full Text Available To produce environments suitable for cell culture, thin polymer films were deposited onto commercial PVC plates from radiofrequency acetylene-argon plasmas. The proportion of argon in the plasmas, PAr, was varied from 5.3 to 65.8%. The adhesion and growth of Vero cells on the coated surfaces were examined for different incubation times. Cytotoxicity tests were performed using spectroscopic methods. Carbon, O, and N were detected in all the samples using XPS. Roughness remained almost unchanged in the samples prepared with 5.3 and 28.9% but tended to increase for the films deposited with PAr between 28.9 and 55.3%. Surface free energy increased with increasing PAr, except for the sample prepared at 28.9% of Ar, which presented the least reactive surface. Cells proliferated on all the samples, including the bare PVC. Independently of the deposition condition there was no evidence of cytotoxicity, indicating the viability of such coatings for designing biocompatible devices.

  10. Transparent Aluminium Oxide Coatings of Polymer Brushes.

    Science.gov (United States)

    Micciulla, Samantha; Duan, XiaoFei; Strebe, Julia; Löhmann, Oliver; Lamb, Robert N; von Klitzing, Regine

    2016-04-11

    A novel method for the preparation of transparent Al2O3 coatings of polymers is presented. An environmental-friendly sol-gel method is employed, which implies mild conditions and low costs. A thermoresponsive brush is chosen as a model surface. X-ray photoelectron spectroscopy is used to characterize the samples during the conversion of the precursor Al(OH)3 into oxide and to prove the mildness of the protocol. The study evidences a relation between lateral homogeneity of alumina and the wettability of the polymer surface by the precursor solution, while morphology and elasticity are dominated by the polymer properties. The study of the swelling behavior of the underneath brush reveals the absence of water uptake, proving the impermeability of the alumina layer. The broad chemical and structural variety of polymers, combined with the robustness of transparent alumina films, makes these composites promising as biomedical implants, protective sheets and components for electric and optical devices.

  11. Properties of Plasma and HVOF Sprayed Coatings

    Directory of Open Access Journals (Sweden)

    Wojciech Żórawski

    2012-11-01

    Full Text Available The work compares the properties of plasma and HVOF thermally sprayed coatings obtained by blending the NiCrBSi and Fe2O3 powders. The deposition was performed by means of the Plancer PN-120 and the Diamond Jet guns for plasma spraying and HVOF spraying respectively. The SEM (EDS method was employed to study the microstructure of the produced coatings. Although the blended powders differ in particle size, shape, and distribution, it is possible to obtain composite coatings with an NiCrBSi matrix containing iron oxides. Except for a different microstructure, plasma and HVOF coatings have a different phase composition, which was examined using the Bruker D-8 Advance diffractometer. Studies of the coatings wear and scuffing resistance showed that an optimal content of Fe2O3 is about 26 % for plasma sprayed coatings and 22.5 % for HVOF deposited coatings.

  12. Polymer composite coatings to protect parts of oil field equipment

    Energy Technology Data Exchange (ETDEWEB)

    Kislyy, P.S.; Alekseyenko, A.A.; Dzyadykevich, Yu.V.; Kalba, Ye.N.

    1983-01-01

    A study was made of the possibility of using polymer composite coating for protection from corrosion and wear of working wheels of oil pumping pumps. A study was made of the physicomechanical properties of the polymer matrix. Technology was developed for applying the coating based on a polymer matrix and refractory filler which was introduced at the UMN ''Druzhba.''

  13. Durable polymer-aerogel based superhydrophobic coatings: a composite material

    Energy Technology Data Exchange (ETDEWEB)

    Kissel, David J.; Brinker, Charles Jeffrey

    2016-02-02

    Provided are polymer-aerogel composite coatings, devices and articles including polymer-aerogel composite coatings, and methods for preparing the polymer-aerogel composite. The exemplary article can include a surface, wherein the surface includes at least one region and a polymer-aerogel composite coating disposed over the at least one region, wherein the polymer-aerogel composite coating has a water contact angle of at least about 140.degree. and a contact angle hysteresis of less than about 1.degree.. The polymer-aerogel composite coating can include a polymer and an ultra high water content catalyzed polysilicate aerogel, the polysilicate aerogel including a three dimensional network of silica particles having surface functional groups derivatized with a silylating agent and a plurality of pores.

  14. Durable polymer-aerogel based superhydrophobic coatings, a composite material

    Science.gov (United States)

    Kissel, David J; Brinker, Charles Jeffrey

    2014-03-04

    Provided are polymer-aerogel composite coatings, devices and articles including polymer-aerogel composite coatings, and methods for preparing the polymer-aerogel composite. The exemplary article can include a surface, wherein the surface includes at least one region and a polymer-aerogel composite coating disposed over the at least one region, wherein the polymer-aerogel composite coating has a water contact angle of at least about 140.degree. and a contact angle hysteresis of less than about 1.degree.. The polymer-aerogel composite coating can include a polymer and an ultra high water content catalyzed polysilicate aerogel, the polysilicate aerogel including a three dimensional network of silica particles having surface functional groups derivatized with a silylating agent and a plurality of pores.

  15. Carbon coatings on polymers and their biocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Hubáček, T. [Department of Solid State Engineering, Institute of Chemical Technology, 16628 Prague (Czech Republic); Siegel, J., E-mail: jakub.siegel@vscht.cz [Department of Solid State Engineering, Institute of Chemical Technology, 16628 Prague (Czech Republic); Khalili, R.; Slepičková-Kasálková, N.; Švorčík, V. [Department of Solid State Engineering, Institute of Chemical Technology, 16628 Prague (Czech Republic)

    2013-06-15

    In this paper we modified the surface properties of polymer foils (polyethyleneterephthalate (PET) and polytetrafluoroethylene (PTFE)) by flash evaporation of carbon layers (C-layers). Adhesion and proliferation of vascular smooth muscle cells (VSMC) on carbon coated PTFE and PET were studied in vitro. Chemical composition of deposited C-layers was determined by Raman spectroscopy, surface contact angle was measured by goniometry. Surface morphology of carbon coated samples was studied using atomic force microscopy. Electrical properties of deposited C-layers were determined by measuring its sheet resistance. It was found that the carbon deposition leads to a decrease of surface roughness of PTFE and PET and to a significant increase of sample wettability. Electrical resistance and wettability of deposited C-layers depends significantly on both the thickness of C-layer and the type of polymeric substrate used. It was found that maximal stimulation of the VSMC (adhesion and proliferation) on carbon coated polymers depends on the surface roughness and contact angle of cell carriers used.

  16. Plasma-Spray Metal Coating On Foam

    Science.gov (United States)

    Cranston, J.

    1994-01-01

    Molds, forms, and other substrates made of foams coated with metals by plasma spraying. Foam might be ceramic, carbon, metallic, organic, or inorganic. After coat applied by plasma spraying, foam left intact or removed by acid leaching, conventional machining, water-jet cutting, or another suitable technique. Cores or vessels made of various foam materials plasma-coated with metals according to method useful as thermally insulating containers for foods, liquids, or gases, or as mandrels for making composite-material (matrix/fiber) parts, or making thermally insulating firewalls in automobiles.

  17. Polymer-coated hollow fiber for CO(2) laser delivery.

    Science.gov (United States)

    Abe, Y; Matsuura, Y; Shi, Y W; Wang, Y; Uyama, H; Miyagi, M

    1998-01-15

    Hollow fibers for CO(2) laser light have been fabricated with a cyclic olefin polymer as the inner dielectric. A film of cyclic olefin polymer was coated inside the glass capillary tubing by a simple liquid-flowing process. A polymer-coated fiber with a 700-microm bore showed a loss of 0.06 dB/m for CO(2) laser light because cyclic olefin polymer has low absorption at a 10.6-microm wavelength.

  18. Coat-nitrocarburizing using triazine polymer reagent

    Science.gov (United States)

    Wen, Li.; Shi, J.; Smith, R. W.

    1993-02-01

    A chemico-thermal treatment process, coat-nitrocarburizing, has been developed for use on iron and steel. The process consists of treating the workpiece with a coat that forms on the surface from the gaseous products of sublimation and decomposition of a triazine polymer reagent in a closed volume. The process can be used over a wide range of temperatures, either below the eutectoid transformation temperature in the Fe-N-C system for low-temperature nitrocarburizing, or above this temperature for hightemperature nitrocarburizing in different applications. The process is very simple, easily controlled, and is economic. In addition, it is a nonpolluting process, unlike conventional chemico-thermal treatment processes that discharge harmful gases into the atmosphere.

  19. Protection of alodine coatings from thermal aging by removable polymer coatings.

    Energy Technology Data Exchange (ETDEWEB)

    Wagstaff, Brett R. (.); Bradshaw, Robert W.; Whinnery, LeRoy L., Jr. (.,; .)

    2006-12-01

    Removable polymer coatings were evaluated as a means to suppress dehydration of Alodine chromate conversion coatings during thermal aging and thereby retain the corrosion protection afforded by Alodine. Two types of polymer coatings were applied to Alodine-treated panels of aluminum alloys 7075-T73 and 6061-T6 that were subsequently aged for 15 to 50 hours at temperatures between 135 F to 200 F. The corrosion resistance of the thermally aged panels was evaluated, after stripping the polymer coatings, by exposure to a standard salt-fog corrosion test and the extent of pitting of the polymer-coated and untreated panels compared. Removable polymer coatings mitigated the loss of corrosion resistance due to thermal aging experienced by the untreated alloys. An epoxide coating was more effective than a fluorosilicone coating as a dehydration barrier.

  20. Spin coating of an evaporating polymer solution

    KAUST Repository

    Münch, Andreas

    2011-01-01

    We consider a mathematical model of spin coating of a single polymer blended in a solvent. The model describes the one-dimensional development of a thin layer of the mixture as the layer thins due to flow created by a balance of viscous forces and centrifugal forces and evaporation of the solvent. In the model both the diffusivity of the solvent in the polymer and the viscosity of the mixture are very rapidly varying functions of the solvent mass fraction. Guided by numerical solutions an asymptotic analysis reveals a number of different possible behaviours of the thinning layer dependent on the nondimensional parameters describing the system. The main practical interest is in controlling the appearance and development of a "skin" on the polymer where the solvent concentration reduces rapidly on the outer surface leaving the bulk of the layer still with high concentrations of solvent. In practice, a fast and uniform drying of the film is required. The critical parameters controlling this behaviour are found to be the ratio of the diffusion to advection time scales ε, the ratio of the evaporation to advection time scales δ and the ratio of the diffusivity of the pure polymer and the initial mixture exp(-1/γ). In particular, our analysis shows that for very small evaporation with δ

  1. Corrosion-protective coatings from electrically conducting polymers

    Science.gov (United States)

    Thompson, Karen Gebert; Bryan, Coleman J.; Benicewicz, Brian C.; Wrobleski, Debra A.

    1991-01-01

    In a joint effort between NASA Kennedy and LANL, electrically conductive polymer coatings were developed as corrosion protective coatings for metal surfaces. At NASA Kennedy, the launch environment consist of marine, severe solar, and intermittent high acid and/or elevated temperature conditions. Electrically conductive polymer coatings were developed which impart corrosion resistance to mild steel when exposed to saline and acidic environments. Such coatings also seem to promote corrosion resistance in areas of mild steel where scratches exist in the protective coating. Such coatings appear promising for many commercial applications.

  2. Hydrophobic coating of solid materials by plasma-polymerized thin film using tetrafluoroethylene

    Science.gov (United States)

    Hozumi, K.; Kitamura, K.; Kitade, T.

    1980-01-01

    Glass slides were coated with plasma-polymerized tetrafluoroethylene films of different thickness using the glow discharge technique in a tube-shaped chamber, and the plasma conditions, film growth rates, light permeability of the polymer films, and particle bond strength in the polymer films were studied. Ashed sections of mouse organs and ashed bacillus spores were also coated to give them hydrophobic treatment without damaging their shapes or appearance. The hydrophobic coating of the specimens was successful, and the fine ash patterns were strongly fixed onto the glass slides, making permanent preparations.

  3. Universal hydrophilic coating of thermoplastic polymers currently used in microfluidics.

    Science.gov (United States)

    Zilio, Caterina; Sola, Laura; Damin, Francesco; Faggioni, Lucia; Chiari, Marcella

    2014-02-01

    A number of materials used to fabricate disposable microfluidic devices are hydrophobic in nature with water contact angles on their surface ranging from 80° to over 100°. This characteristic makes them unsuitable for a number of microfluidic applications. Both the wettability and analyte adsorption parameters are highly dependent on the surface hydrophobicity. In this article, we propose a general method to coat the surface of five materials: polydimethylsiloxane (PDMS), cyclic olefin copolymer (COC), polyethylene terephthalate (PET), polycarbonate (PC), and polytetrafluoroethylene (PTFE). This fast and robust process, which is easily implementable in any laboratory including microfabrication clean room facilities, was devised by combining gas-phase and wet chemical modification processes. Two different coatings that improve the surface hydrophilicity were prepared via the "dip and rinse" approach by immersing the plasma oxidized materials into an aqueous solution of two different poly(dimethylacrylamide) copolymers incorporating a silane moiety and functionalized with either N-acryloyloxysuccinimide (NAS) (poly(DMA-NAS-MAPS) or glycidyl methacrylate (GMA) (poly(DMA-GMA-MAPS). The coating formation was confirmed by contact angle (CA) analysis comparing the variation of CAs of uncoated and coated surfaces subjected to different aging treatments. The antifouling character of the polymer was demonstrated by fluorescence and interferometric detection of proteins adsorbed on the surafce. This method is of great interest in microfluidics due to its broad applicability to a number of materials with varying chemical compositions.

  4. Selective laser sintering mechanism of polymer-coated molybdenum powder

    Institute of Scientific and Technical Information of China (English)

    BAI Pei-kang; WANG Wen-feng

    2007-01-01

    A type of polymer-coated molybdenum powder used in selective laser sintering technology was prepared by coating polymer on molybdenum particles and frozen grinding techniques, with the maximum particle diameter of 71 μm. The laser sintering experiments of polymer-coated molybdenum powder were conducted by using the self-developed selective laser sintering machine (HLRP-350I). The method of microscopic analysis was used to investigate the dynamic laser sintering process of polymer-coated molybdenum powder. Based on the study, the laser sintering mechanisms of polymer-coated molybdenum powder were presented. It is found that the mechanism is viscous flow when the laser sintering temperature is between 100 ℃ and 160 ℃, which can be described by a two-sphere model; and the mechanism is melting /solidification when the temperature is above 160 ℃.

  5. Parameters influencing polymer particle layering of the dry coating process.

    Science.gov (United States)

    Kablitz, Caroline Désirée; Kappl, Michael; Urbanetz, Nora Anne

    2008-06-01

    The dry coating process is an emerging coating technology using neither organic solvents nor water. In contrast to liquid-borne coatings, coating material application and film formation are divided into two phases, the coating phase where the powdery coating material is applied together with the liquid plasticizer, and the curing phase. In this study the coating phase was characterized with respect to the forces acting between the polymer particles during material application. Atomic force microscopy was conducted measuring the interparticle forces which were related to the coating efficiency. The influence of different liquid additives on the interparticle forces and the coating efficiency were evaluated. HPMCAS was used as enteric resistant polymer, triethylcitrate (TEC), Myvacet (diacetylated monoglyceride) and a mixture of both as liquid additives. Interparticle forces were found to be similar when using TEC or a mixture of TEC and Myvacet. In contrast, interparticle forces were higher when using solely Myvacet. This is attributed to the fact that Myvacet does not penetrate into the polymer without TEC which is acting as a penetration enhancer. As Myvacet remains predominantly on the particle surface, capillary forces act between the particles explaining high interparticle forces. The highest interparticle force determined by AFM is in accordance to the highest coating efficiency which has been found for the corresponding coating formulation containing HPMCAS and Myvacet. Consequently, it is demonstrated that the ability of the liquid to remain on the surface of the polymer and to build up capillary forces is crucial for the material application.

  6. Microwave plasma deposition of diamond like carbon coatings

    Science.gov (United States)

    Patil, D. S.; Ramachandran, K.; Venkataramani, N.; Pandey, M.; D'Cunha, R.

    2000-11-01

    he promising applications of the microwave plasmas have been appearing in the fields of chemical processes and semiconductor manufacturing. Applications include surface deposition of all types including diamond/diamond like carbon (DLC) coatings, etching of semiconductors, promotion of organic reactions, etching of polymers to improve bonding of the other materials etc. With a 2.45 GHz, 700 W, microwave induced plasma chemical vapor deposition (CVD) system set up in our laboratory we have deposited diamond like carbon coatings. The microwave plasma generation was effected using a wave guide single mode applicator. We have deposited DLC coatings on the substrates like stainless steel, Cu--Be, Cu and Si. The deposited coatings have been characterized by FTIR, Raman spectroscopy and ellipsometric techniques. The results show that we have achieved depositing ~ 95% sp3 bonded carbon in the films. The films are uniform with golden yellow color. The films are found to be excellent insulators. The ellipsometric measurements of optical constant on silicon substrates indicate that the films are transparent above 900 nm.

  7. Application of ultra-thin polymer coating on metallic wires

    OpenAIRE

    Yu, Juan

    1992-01-01

    In this study, the coating of fine wires using hydrodynamic pressure technique has been investigated theoretically and experimentally. One of the principal aims of the project is to establish the minimum possible coating thickness on fine wires which can be applied by means of hydrodynamic technique. Models based on steady, uniform and laminar flow of Newtonian as well as non-Newtonian fluid for polymer coating for the process of plasto-hydrodynamic wire coating in a stepped bore unit have be...

  8. Polymer-coated echogenic lipid nanoparticles with dual release triggers.

    Science.gov (United States)

    Nahire, Rahul; Haldar, Manas K; Paul, Shirshendu; Mergoum, Anaas; Ambre, Avinash H; Katti, Kalpana S; Gange, Kara N; Srivastava, D K; Sarkar, Kausik; Mallik, Sanku

    2013-03-11

    Although lipid nanoparticles are promising drug delivery vehicles, passive release of encapsulated contents at the target site is often slow. Herein, we report contents release from targeted, polymer-coated, echogenic lipid nanoparticles in the cell cytoplasm by redox trigger and simultaneously enhanced by diagnostic frequency ultrasound. The lipid nanoparticles were polymerized on the external leaflet using a disulfide cross-linker. In the presence of cytosolic concentrations of glutathione, the lipid nanoparticles released 76% of encapsulated contents. Plasma concentrations of glutathione failed to release the encapsulated contents. Application of 3 MHz ultrasound for 2 min simultaneously with the reducing agent enhanced the release to 96%. Folic acid conjugated, doxorubicin-loaded nanoparticles showed enhanced uptake and higher cytotoxicity in cancer cells overexpressing the folate receptor (compared to the control). With further developments, these lipid nanoparticles have the potential to be used as multimodal nanocarriers for simultaneous targeted drug delivery and ultrasound imaging.

  9. Modulating Electro-osmotic Flow with Polymer Coatings

    Science.gov (United States)

    Hickey, Owen A.

    Micro- and nano-fluidic devices represent an exciting field with a wide range of possible applications. These devices, typically made of either silica or glass, ionize when placed in contact with water. Upon the application of an electric field parallel to the wall, a flow is produced by the charged walls called the electro-osmotic flow (EOF). Since electric fields are so often used as the driving force in these devices, EOF is an extremely common phenomenon. For this reason it is highly desirable to be able to control EOF in order to optimize the functioning of these devices. One method which is quite common experimentally is the modification of the surface using polymer coatings. These coatings can be either adsorbed or grafted, and charged or neutral. The first part of this thesis looks at the role of neutral adsorbed polymer coatings for the modulation of EOF. Specifically our simulation results show that for adsorbed coatings made from a dilute polymer solution the strongest quenching of EOF is found for an adsorption strength at the phase transition for adsorption of the polymers. Further evidence is presented that shows that by using a high density of polymer solution and a polymer which has a strong attraction to the surface a very thick polymer layer can be created. Next the case of charged grafted polymer coatings is examined. The variation of the EOF with respect to several key parameters which characterize the polymer coating is investigated and compared to theory. The prediction that the electrophoretic velocity of the polymers is the same as the EOF generated by a coating made up of the same polymers is found to be false though the two values are quite close. The last section presents results which show how hydrodynamic interactions in charged polymer systems can be modeled mesoscopically without the use of explicit charges by forcing a slip between monomers and the surrounding fluid. This model is validated by simulating some surprising predictions

  10. Polymer-coated vertical-cavity surface-emitting laser diode vapor sensor

    DEFF Research Database (Denmark)

    Ansbæk, Thor; Nielsen, Claus Højgaard; Larsen, Niels Bent

    2010-01-01

    We report a new method for monitoring vapor concentration of volatile organic compounds using a vertical-cavity surface-emitting laser (VCSEL). The VCSEL is coated with a polymer thin film on the top distributed Bragg reflector (DBR). The analyte absorption is transduced to the electrical domain ...... through modulation of the VCSEL output power as the polymer swell. We have investigated the responsivity of this technique experimentally using a plasma polymerized polystyrene coating and explain the results theoretically as a reflectance modulation of the top DBR.......We report a new method for monitoring vapor concentration of volatile organic compounds using a vertical-cavity surface-emitting laser (VCSEL). The VCSEL is coated with a polymer thin film on the top distributed Bragg reflector (DBR). The analyte absorption is transduced to the electrical domain...

  11. In-situ preparation of polymer-coated alumina nanopowders by chemical vapor synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Schallehn, M.; Winterer, M.; Weirich, T.E.; Hahn, H. [Inst. of Materials Science, Darmstadt Univ. of Technology, Darmstadt (Germany); Keiderling, U. [Hahn-Meitner-Inst., Berlin (Germany)

    2003-01-01

    Nanocrystalline alumina particles coated with polyethylene have been prepared by a two-step chemical vapor synthesis (CVS) process using a hot-wall reactor to synthesize the nanocrystalline alumina core, and a RF plasma reactor for the subsequent polymer coating. The particle radius is about 4 nm, with the radius of the ceramic core being about 2.5 nm and the coating thickness about 1.5 nm. The powders have been characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), small-angle neutron scattering (SANS), and high-resolution transmission electron microscopy (HRTEM). (orig.)

  12. Laser treatment of plasma sprayed HA coatings

    NARCIS (Netherlands)

    Khor, KA; Vreeling, A; Dong, ZL; Cheang, P

    1999-01-01

    Laser treatment was conducted on plasma sprayed hydroxyapatite (HA) coatings using a Nd-YAG pulse laser. Various laser parameters were investigated. The results showed that the HA surface melted when an energy level of greater than or equal to 2 J and a spot size of 2 mm was employed during continuo

  13. Laser treatment of plasma sprayed HA coatings

    NARCIS (Netherlands)

    Khor, KA; Vreeling, A; Dong, ZL; Cheang, P

    1999-01-01

    Laser treatment was conducted on plasma sprayed hydroxyapatite (HA) coatings using a Nd-YAG pulse laser. Various laser parameters were investigated. The results showed that the HA surface melted when an energy level of greater than or equal to 2 J and a spot size of 2 mm was employed during continuo

  14. Plasma sprayed coatings on crankshaft used steels

    Science.gov (United States)

    Mahu, G.; Munteanu, C.; Istrate, B.; Benchea, M.

    2017-08-01

    Plasma spray coatings may be an alternative to conventional heat treatment of main journals and crankpins of the crankshaft. The applications of plasma coatings are various and present multiple advantages compared to electric arc wire spraying or flame spraying. The study examines the layers sprayed with the following powders: Cr3C2- 25(Ni 20Cr), Al2O3- 13TiO2, Cr2O3-SiO2- TiO2 on the surface of steels used in the construction of a crankshaft (C45). The plasma spray coatings were made with the Spray wizard 9MCE facility at atmospheric pressure. The samples were analyzed in terms of micro and morphological using optical microscopy, scanning electron microscopy and X-ray diffraction. Wear tests on samples that have undergone simulates extreme working conditions of the crankshafts. In order to emphasize adherence to the base material sprayed layer, were carried out tests of microscratches and micro-indentation. Results have showed a relatively compact morphological aspect given by the successive coatings with splat-like specific structures. Following the microscratch analysis it can be concluded that Al2O3-13TiO2 coating has a higher purpose in terms of hardness compared to Cr3C2-(Ni 20Cr) and Cr2O3-SiO2- TiO2 powders. Thermal coatings of the deposited powders have increased the mechanical properties of the material. The results stand to confirm that plasma sprayed Al2O3-13TiO2 powder is in fact a efficient solution for preventing mechanical wear, even with a faulty lubrication system.

  15. Polymer Coats Leads on Implantable Medical Device

    Science.gov (United States)

    2008-01-01

    Langley Research Center s Soluble Imide (LaRC-SI) was discovered by accident. While researching resins and adhesives for advanced composites for high-speed aircraft, Robert Bryant, a Langley engineer, noticed that one of the polymers he was working with did not behave as predicted. After putting the compound through a two-stage controlled chemical reaction, expecting it to precipitate as a powder after the second stage, he was surprised to see that the compound remained soluble. This novel characteristic ended up making this polymer a very significant finding, eventually leading Bryant and his team to win several NASA technology awards, and an "R&D 100" award. The unique feature of this compound is the way that it lends itself to easy processing. Most polyimides (members of a group of remarkably strong and incredibly heat- and chemical-resistant polymers) require complex curing cycles before they are usable. LaRC-SI remains soluble in its final form, so no further chemical processing is required to produce final materials, like thin films and varnishes. Since producing LaRC-SI does not require complex manufacturing techniques, it has been processed into useful forms for a variety of applications, including mechanical parts, magnetic components, ceramics, adhesives, composites, flexible circuits, multilayer printed circuits, and coatings on fiber optics, wires, and metals. Bryant s team was, at the time, heavily involved with the aircraft polymer project and could not afford to further develop the polymer resin. Believing it was worth further exploration, though, he developed a plan for funding development and submitted it to Langley s chief scientist, who endorsed the experimentation. Bryant then left the high-speed civil transport project to develop LaRC-SI. The result is an extremely tough, lightweight thermoplastic that is not only solvent-resistant, but also has the ability to withstand temperature ranges from cryogenic levels to above 200 C. The thermoplastic

  16. Plasma Processes : Plasma sprayed alumina coatings for radiation detector development

    Indian Academy of Sciences (India)

    Mary Alex; V Balagi; K R Prasad; K P Sreekumar; P V Ananthapadmanabhan

    2000-11-01

    Conventional design of radiation detectors uses sintered ceramic insulating modules. The major drawback of these ceramic components is their inherent brittleness. Ion chambers, in which these ceramic spacers are replaced by metallic components with plasma spray coated alumina, have been developed in our Research Centre. These components act as thin spacers that have good mechanical strength as well as high electrical insulation and replace alumina insulators with the same dimensions. As a result, the design of the beam loss monitor ion chamber for CAT could be simplified by coating the outer surface of the HT electrode with alumina. One of the chambers developed for isotope calibrator for brachytherapy gamma sources has its outer aluminium electrode (60 mm dia × 220 mm long) coated with 250 thick alumina (97%) + titania (3%). In view of potential applications in neutron-sensitive ion chambers used in reactor control instrumentation, studies were carried out on alumina 100 to 500 thick coatings on copper, aluminium and SS components. The electrical insulation varied from 108 ohms to 1012 ohms for coating thicknesses above 200 . The porosity in the coating resulted in some fall in electrical insulation due to moisture absorption. An improvement could be achieved by providing the ceramic surface with moisture-repellent silicone oil coating. Irradiation at Apsara reactor core location showed that the coating on aluminium was found to be unaffected after exposure to 1017 nvt fluence.

  17. Liquid crystalline thermosetting polymers as protective coatings for aerospace

    NARCIS (Netherlands)

    Guerriero, G.L.

    2012-01-01

    Environmental regulations are driving the development of new aerospace coating systems, mainly to eliminate chromates and reduce volatile organic compound (VOC) emissions. Among the various potential options for new coating materials, liquid crystalline polymers (LCPs) are attractive due to their un

  18. Quantitative fabrication, performance optimization and comparison of PEG and zwitterionic polymer antifouling coatings.

    Science.gov (United States)

    Xing, Cheng-Mei; Meng, Fan-Ning; Quan, Miao; Ding, Kai; Dang, Yuan; Gong, Yong-Kuan

    2017-09-01

    A versatile fabrication and performance optimization strategy of PEG and zwitterionic polymer coatings is developed on the sensor chip of surface plasma resonance (SPR) instrument. A random copolymer bearing phosphorylcholine zwitterion and active ester side chains (PMEN) and carboxylic PEG coatings with comparable thicknesses were deposited on SPR sensor chips via amidation coupling on the precoated polydopamine (PDA) intermediate layer. The PMEN coating showed much stronger resistance to bovine serum albumin (BSA) adsorption than PEG coating at very thin thickness (∼1nm). However, the BSA resistant efficacy of PEG coating could exceed that of PMEN due to stronger steric repelling effect when the thickness increased to 1.5∼3.3nm. Interestingly, both the PEG and PMEN thick coatings (≈3.6nm) showed ultralow fouling by BSA and bovine plasma fibrinogen (Fg). Moreover, changes in the PEG end group from -OH to -COOH, protein adsorption amount could increase by 10-fold. Importantly, the optimized PMEN and PEG-OH coatings were easily duplicated on other substrates due to universal adhesion of the PDA layer, showed excellent resistance to platelet, bacteria and proteins, and no significant difference in the antifouling performances was observed. These detailed results can explain the reported discrepancy in performances between PEG and zwitterionic polymer coatings by thickness. This facile and substrate-independent coating strategy may benefit the design and manufacture of advanced antifouling biomedical devices and long circulating nanocarriers. Prevention of biofouling is one of the biggest challenges for all biomedical applications. However, it is very difficult to fabricate a highly hydrophilic antifouling coating on inert materials or large devices. In this study, PEG and zwitterion polymers, the most widely investigated polymers with best antifouling performance, are conveniently immobilized on different kinds of substrates from their aqueous solutions by

  19. Design of Polymer Coatings in Automotive Engines

    Institute of Scientific and Technical Information of China (English)

    LIAO Han-lin; ZHANG Ga; BORDES Jean-Michel; CHRISTIAN Coddet

    2004-01-01

    Driven by economical and ecological reasons, thermoplastics based coatings were more and more used in automotive engines. Two design concepts, flame spraying and serigraphy PEEK coatings on light metal substrate, were introduced in this paper. The friction and wear behavior of PEEK based coatings were investigated systematically. Coatings with different crystallinities can be obtained when cooling speed is controlled. Among three sprayed coatings considered with different crystallinities, the one with highest crystallinity exhibits best friction and wear behavior under dry sliding condition. Under lubricated sliding condition, however, the amorphous coating gives lower friction coefficient. The micron particles such as SiC,MoS2 and graphite in composite coatings can improve significantly the coating wear resistance and have a impact on coating friction behavior.

  20. Graphene–polymer coating for the realization of strain sensors

    Directory of Open Access Journals (Sweden)

    Carmela Bonavolontà

    2017-01-01

    Full Text Available In this work we present a novel route to produce a graphene-based film on a polymer substrate. A transparent graphite colloidal suspension was applied to a slat of poly(methyl methacrylate (PMMA. The good adhesion to the PMMA surface, combined with the shear stress, allows a uniform and continuous spreading of the graphite nanocrystals, resulting in a very uniform graphene multilayer coating on the substrate surface. The fabrication process is simple and yields thin coatings characterized by high optical transparency and large electrical piezoresitivity. Such properties envisage potential applications of this polymer-supported coating for use in strain sensing. The electrical and mechanical properties of these PMMA/graphene coatings were characterized by bending tests. The electrical transport was investigated as a function of the applied stress. The structural and strain properties of the polymer composite material were studied under stress by infrared thermography and micro-Raman spectroscopy.

  1. Molecular Dynamics Simulations of Nanoparticles Coated with Charged Polymers

    Science.gov (United States)

    Wen, Chengyuan; Cheng, Shengfeng

    Polymer coating is frequently used to stabilize colloidal and nano-sized particles. We employ molecular dynamics simulations to study nanoparticles coated with polymer chains that contain ionizable groups. In a polar solvent, the chains become charged with counterions dissociated. In the computational model, we treat the solvent as a uniform dielectric background and use the bead-spring model for the polymer chains. Counterions are explicitly included as mobile beads. The nanoparticle is modeled as a layer of sites uniformly distributed on a spherical surface with a certain fraction of sites serving as the tether points of the grafted polymer brush. We vary the grafting density and calculate the distribution of polymer beads and counterions around the nanoparticle. Our results indicate that charged chains adopt extended conformations because of their mutual repulsions. We further study the interactions between two polymer-coated nanoparticles and obtain the potential of mean force. We also find an interesting transition of a confined single layer of such polymer-coated nanoparticles into two layers when the confinement is removed. Results show that the brush-brush contact has a nonuniform distribution and the nanoparticles tend to form dipole-like structures.

  2. Dual-Functional Antifogging/Antimicrobial Polymer Coating.

    Science.gov (United States)

    Zhao, Jie; Ma, Li; Millians, William; Wu, Tiehang; Ming, Weihua

    2016-04-06

    Dual-functional antifogging/antimicrobial polymer coatings were prepared by forming a semi-interpenetrating polymer network (SIPN) of partially quaternized poly(2-(dimethylamino)ethyl methacrylate-co-methyl methacrylate) and polymerized ethylene glycol dimethacrylate network. The excellent antifogging behavior of the smooth coating was mainly attributed to the hydrophilic/hydrophobic balance of the partially quaternized copolymer, while the covalently bonded, hydrophobic quaternary ammonium compound (5 mol % in the copolymer) rendered the coating strongly antimicrobial, as demonstrated by the total kill against both Gram-positive Staphylococcus epidermidis and Gram-negative Escherichia coli. The antimicrobial action of the SIPN coating was based on contact killing, without leaching of bactericidal species, as revealed by a zone-of-inhibition test. This type of dual-functional coating may find unique applications where both antimicrobial and antifogging properties are desired.

  3. Polymer coatings as separator layers for microbial fuel cell cathodes

    KAUST Repository

    Watson, Valerie J.

    2011-03-01

    Membrane separators reduce oxygen flux from the cathode into the anolyte in microbial fuel cells (MFCs), but water accumulation and pH gradients between the separator and cathode reduces performance. Air cathodes were spray-coated (water-facing side) with anion exchange, cation exchange, and neutral polymer coatings of different thicknesses to incorporate the separator into the cathode. The anion exchange polymer coating resulted in greater power density (1167 ± 135 mW m-2) than a cation exchange coating (439 ± 2 mW m-2). This power output was similar to that produced by a Nafion-coated cathode (1114 ± 174 mW m-2), and slightly lower than the uncoated cathode (1384 ± 82 mW m-2). Thicker coatings reduced oxygen diffusion into the electrolyte and increased coulombic efficiency (CE = 56-64%) relative to an uncoated cathode (29 ± 8%), but decreased power production (255-574 mW m-2). Electrochemical characterization of the cathodes ex situ to the MFC showed that the cathodes with the lowest charge transfer resistance and the highest oxygen reduction activity produced the most power in MFC tests. The results on hydrophilic cathode separator layers revealed a trade off between power and CE. Cathodes coated with a thin coating of anion exchange polymer show promise for controlling oxygen transfer while minimally affecting power production. © 2010 Elsevier B.V. All rights reserved.

  4. Plasma Spray Forming of Nanostructured Composite Coatings

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The nanostructure composite coating is obtained via plasma spraying of Al2O3-13 wt pct TiO2 powder. Brittle and hard lamella results from melted nanostructured powder. Ductile nanostructured matrix forms from unmelted nanostructured particles. Through the adjustment of constituent and nanostructure, hardness/strength and toughness/ductility are balanced and overall properties of the structure composite are achieved.

  5. COMPOSITION AND STRUCTURAL STUDIES OF STRONG GLOW DISCHARGE POLYMER COATINGS

    Energy Technology Data Exchange (ETDEWEB)

    CZECHOWICZ, DG; CASTILLO, ER; NIKROO, A

    2002-04-01

    OAK A271 COMPOSITION AND STRUCTURAL STUDIES OF STRONG GLOW DISCHARGE POLYMER COATINGS. An investigation of the chemical composition and structure of strong glow discharge (GDP) polymer shells made for cryogenic experiments at OMEGA is described. The investigation was carried out using combustion and Fourier Transform Infrared Spectroscopy (FTIR) analysis. The strongest coatings were observed to have the lowest hydrogen content or hydrogen/carbon H/C ratio, whereas the weakest coatings had the highest hydrogen content or H/C ratio. Chemical composition results from combustion were used to complement FTIR analysis to determine the relative hydrogen content of as-fabricated coatings. Good agreement was observed between composition results obtained from combustion and FTIR analysis. FTIR analysis of coating structures showed the strongest coatings to have less terminal methyl groups and a more double bond or olefinic structure. Strong GDP coatings that were aged in air react more with oxygen and moisture than standard GDP coatings. In addition to a more olefinic structure, there may also be more free-radial sites present in strong GDP coatings, which leads to greater oxygen uptake.

  6. Photocatalytic TiO2 nanoparticles enhanced polymer antimicrobial coating

    Science.gov (United States)

    Wei, Xiaojin; Yang, Zhendi; Tay, See Leng; Gao, Wei

    2014-01-01

    Copper (Cu) containing coatings can provide sustainable protection against microbial contamination. However, metallic Cu coatings have not been widely used due to the relatively high cost, poor corrosion resistance, and low compatibility with non-metal substrates. Titanium dioxide (TiO2) possesses antibacterial functions by its photocatalytic properties which can destroy bacteria or suppress their reproduction. TiO2 also has the function of improving the mechanical properties through particle dispersion strengthening. We have recently developed an innovative polymer based coating system containing fine particles of Cu and TiO2 nanoparticles. These polymer based coatings simultaneously display excellent antimicrobial and good mechanical properties. The results showed that the addition of TiO2 has improved the antimicrobial property under sunlight, which provides extended applications in outdoor environment. The elimination of 106 bacterial by contacting the coatings without TiO2 needs 5 h, while contacting with the Cu/TiO2- 1 wt.% TiO2 took only 2 h to kill the same amount of bacteria. The coatings also presented enhanced hardness and wear resistance after adding TiO2. The width of wear track decreased from 270 μm of the Cu-polymer coating to 206 μm of Cu/TiO2-polymer coatings with 10 wt.% TiO2. Synchrotron Infrared Microscopy was used to in-situ and in-vivo study the bacteria killing process at the molecular level. The real-time chemical images of bacterial activities showed that the bacterial cell membranes were damaged by the Cu and TiO2 containing coatings

  7. Thermal Expansion of Vacuum Plasma Sprayed Coatings

    Science.gov (United States)

    Raj, S V.; Palczer, A. R.

    2010-01-01

    Metallic Cu-8%Cr, Cu-26%Cr, Cu-8%Cr-1%Al, NiAl and NiCrAlY monolithic coatings were fabricated by vacuum plasma spray deposition processes for thermal expansion property measurements between 293 and 1223 K. The corrected thermal expansion, (DL/L(sub 0) varies with the absolute temperature, T, as (DL/L(sub 0) = A(T - 293)(sup 3) + BIT - 293)(sup 2) + C(T - 293) + D, where, A, B, C and D are thermal, regression constants. Excellent reproducibility was observed for all of the coatings except for data obtained on the Cu-8%Cr and Cu-26%Cr coatings in the first heat-up cycle, which deviated from those determined in the subsequent cycles. This deviation is attributed to the presence of residual stresses developed during the spraying of the coatings, which are relieved after the first heat-up cycle. In the cases of Cu-8%Cr and NiAl, the thermal expansion data were observed to be reproducible for three specimens. The linear expansion data for Cu-8% Cr and Cu-26%Cr agree extremely well with rule of mixture (ROM) predictions. Comparison of the data for the Cu-8%Cr coating with literature data for Cr and Cu revealed that the thermal expansion behavior of this alloy is determined by the Cu-rich matrix. The data for NiAl and NiCrAlY are in excellent agreement with published results irrespective of composition and the methods used for processing the materials. The implications of these results on coating GRCop-84 copper alloy combustor liners for reusable launch vehicles are discussed.

  8. Heat Transfer Characteristics of Dropwise Condensation of Steam on Vertical Polymer Coated Plates

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The plasma polymerization method and dynamic ion-beam mixed implantation method were employed to coat ultra-thin polymer films on copper plates. Experiments indicated that steady dropwise condensation of steam at atmospheric pressure occurred. The condensation heat transfer coefficients increased by approximately 3 and 5-7 times for the polytrimethylvinylsilane film and polytetrafluoroethylene film respectively, compared with the value for film condensation under the same experimental conditions. The temperatures on the condensing surface and inside the test block were found to be rapidly and randomly fluctuated. The properties of the coated films and advantages of the methods used in this investigation were discussed briefly.

  9. Coating carbon nanotubes with polymer in supercritical carbon dioxide.

    Science.gov (United States)

    Wang, Jiawei; Khlobystov, Andrei N; Wang, Wenxin; Howdle, Steven M; Poliakoff, Martyn

    2006-04-21

    A facile and efficient method has been developed for coating MWNTs with solvent resistant polymer in scCO2, which permits the selective deposition of high molecular weight fluorinated graft poly(methyl vinyl ether-alt-maleic anhydride) polymer onto MWNTs in scCO2 under 100-170 bar at 40 degrees C and forms quasi one-dimensional nanostructures with conducting cores and insulating surfaces.

  10. Polymer Coated CaAl-Layered Double Hydroxide Nanomaterials for Potential Calcium Supplement

    Directory of Open Access Journals (Sweden)

    Tae-Hyun Kim

    2014-12-01

    Full Text Available We have successfully prepared layered double hydroxide (LDH nanomaterials containing calcium and aluminum ions in the framework (CaAl-LDH. The surface of CaAl-LDH was coated with enteric polymer, Eudragit®L 100 in order to protect nanomaterials from fast dissolution under gastric condition of pH 1.2. The X-ray diffraction patterns, Fourier transform infrared spectroscopy, scanning electron and transmission electron microscopy revealed that the pristine LDH was well prepared having hydrocalumite structure, and that the polymer effectively coated the surface of LDH without disturbing structure. From thermal analysis, it was determined that only a small amount (less than 1% of polymer was coated on the LDH surface. Metal dissolution from LDH nanomaterials was significantly reduced upon Eudragit®L 100 coating at pH 1.2, 6.8 and 7.4, which simulates gastric, enteric and plasma conditions, respectively, and the dissolution effect was the most suppressed at pH 1.2. The LDH nanomaterials did not exhibit any significant cytotoxicity up to 1000 μg/mL and intracellular calcium concentration significantly increased in LDH-treated human intestinal cells. Pharmacokinetic study demonstrated absorption efficiency of Eudragit®L 100 coated LDH following oral administration to rats. Moreover, the LDH nanomaterials did not cause acute toxic effect in vivo. All the results suggest the great potential of CaAl-LDH nanomaterials as a calcium supplement.

  11. Polymer coated CaAl-layered double hydroxide nanomaterials for potential calcium supplement.

    Science.gov (United States)

    Kim, Tae-Hyun; Lee, Jeong-A; Choi, Soo-Jin; Oh, Jae-Min

    2014-12-05

    We have successfully prepared layered double hydroxide (LDH) nanomaterials containing calcium and aluminum ions in the framework (CaAl-LDH). The surface of CaAl-LDH was coated with enteric polymer, Eudragit®L 100 in order to protect nanomaterials from fast dissolution under gastric condition of pH 1.2. The X-ray diffraction patterns, Fourier transform infrared spectroscopy, scanning electron and transmission electron microscopy revealed that the pristine LDH was well prepared having hydrocalumite structure, and that the polymer effectively coated the surface of LDH without disturbing structure. From thermal analysis, it was determined that only a small amount (less than 1%) of polymer was coated on the LDH surface. Metal dissolution from LDH nanomaterials was significantly reduced upon Eudragit®L 100 coating at pH 1.2, 6.8 and 7.4, which simulates gastric, enteric and plasma conditions, respectively, and the dissolution effect was the most suppressed at pH 1.2. The LDH nanomaterials did not exhibit any significant cytotoxicity up to 1000 μg/mL and intracellular calcium concentration significantly increased in LDH-treated human intestinal cells. Pharmacokinetic study demonstrated absorption efficiency of Eudragit®L 100 coated LDH following oral administration to rats. Moreover, the LDH nanomaterials did not cause acute toxic effect in vivo. All the results suggest the great potential of CaAl-LDH nanomaterials as a calcium supplement.

  12. Multi-source/component spray coating for polymer solar cells.

    Science.gov (United States)

    Chen, Li-Min; Hong, Ziruo; Kwan, Wei Lek; Lu, Cheng-Hsueh; Lai, Yi-Feng; Lei, Bao; Liu, Chuan-Pu; Yang, Yang

    2010-08-24

    A multi-source/component spray coating process to fabricate the photoactive layers in polymer solar cells is demonstrated. Well-defined domains consisting of polymer:fullerene heterojunctions are constructed in ambient conditions using an alternating spray deposition method. This approach preserves the integrity of the layer morphology while forming an interpenetrating donor (D)/acceptor (A) network to facilitate charge transport. The formation of multi-component films without the prerequisite of a common solvent overcomes the limitations in conventional solution processes for polymer solar cells and enables us to process a wide spectrum of materials. Polymer solar cells based on poly(3-hexylthiophene):[6,6]-phenyl C(61) butyric acid methyl ester spray-coated using this alternating deposition method deliver a power conversion efficiency of 2.8%, which is comparable to their blend solution counterparts. More importantly, this approach offers the versatility to independently select the optimal solvents for the donor and acceptor materials that will deliver well-ordered nanodomains. This method also allows the direct stacking of multiple photoactive polymers with controllable absorption in a tandem structure even without an interconnecting junction layer. The introduction of multiple photoactive materials through multisource/component spray coating offers structural flexibility and tenability of the photoresponse for future polymer solar cell applications.

  13. Polymer masks for structured surface and plasma etching

    Energy Technology Data Exchange (ETDEWEB)

    Vital, Alexane [Centre de Recherche sur la Matière Divisée (CRMD), 1b rue de la Férollerie, F45071 Orléans Cedex (France); Groupe de Recherches sur l’Énergétique des Milieux Ionisés (GREMI), Polytech’Orléans, 14 rue d’Issoudun, B.P. 6744, F45067 Orléans Cedex 2 (France); Vayer, Marylène, E-mail: marylene.vayer@univ-orleans.fr [Centre de Recherche sur la Matière Divisée (CRMD), 1b rue de la Férollerie, F45071 Orléans Cedex (France); Sinturel, Christophe [Centre de Recherche sur la Matière Divisée (CRMD), 1b rue de la Férollerie, F45071 Orléans Cedex (France); Tillocher, Thomas; Lefaucheux, Philippe; Dussart, Rémi [Groupe de Recherches sur l’Énergétique des Milieux Ionisés (GREMI), Polytech’Orléans, 14 rue d’Issoudun, B.P. 6744, F45067 Orléans Cedex 2 (France)

    2015-03-30

    Graphical abstract: - Highlights: • Sub-micrometric silicon structures were prepared by cryogenic plasma etching. • Polymer templates based on phase-separated films of PS/PLA were used. • Silica structured masks were prepared by filling the polymer templates. • Etching of underlying silicon through silica templates gave original structures. - Abstract: Silica and silicon structures have been prepared at the sub-micrometer length-scale, using laterally phase-separated thin films of poly(styrene) (PS) and poly(lactic acid) (PLA) homopolymer blends. The selective removal of one polymer and the filling of the released space by silica precursor solution led, after calcination, to silica structures on silicon such as arrays of bowl-shape features or pillars, layers with through or non-through cylindrical holes, which has not been observed for some of them. The control of the morphology of the initial polymer film was a key point to achieve such type of structures. Particularly relevant was the use of solvent vapor annealing (vs thermal annealing) of the initial spin-coated films that favored and stabilized laterally phase-separated morphologies. Characteristic dimension of the domains were shown to be coupled with the thickness of the film, thinner films giving smaller domain sizes. Despite a relatively high incompatibility of the two polymers, a macro-phase separation was prevented in all the studied conditions. Sub-micrometric domains were formed, and for the thinner films, nanometric domains as small as 74 nm in size can be obtained. The silica structures formed by the infiltration of the polymer templates were used as hard masks for the cryogenic etching of underlying silicon. New structured surfaces, arrays of silicon pillars which can be plain or hollow at the upper part or arrays of cylindrical holes were formed. A selectivity as high as 21 was obtained using this type of mask for 1.5 μm deep holes having a typical diameter of 200 nm.

  14. Recognition of Bread Key Odorants by Using Polymer Coated QCMs

    Science.gov (United States)

    Nakai, Takashi; Kouno, Shinji; Hiruma, Naoya; Shuzo, Masaki; Delaunay, Jean-Jacques; Yamada, Ichiro

    Polyisobutylene (PIB) polymer and methylphenylsiloxane (25%) diphenylsiloxane (75%) copolymer (OV25) were coated on Quartz Crystal Microbalance (QCM) sensors and used in recognition of bread key odorants. Representative compounds of key roasty odorants of bread were taken as 3-acetylpyridine and benzaldehyde, and representative key fatty odorants were hexanal and (E)-2-nonenal. Both OV25- and PIB-coated QCM fabricated sensors could detect concentration as low as 0.9 ppm of 3-acetylpyridine and 1.2 ppm of (E)-2-nonenal. The sensitivity to 3-acetylpyridine of the OV25-coated QCM was about 1000 times higher than that of ethanol, the major interference compound in bread key odorant analysis. Further, the OV25-coated QCM response was 5-6 times and 2-3 times larger than that of the PIB-coated QCM when exposed to roasty odorants and to fatty odorants, respectively. The difference in sensitivity of the OV25- and PIB-coated QCMs we fabricated made possible to discriminate roasty from fatty odorants as was evidenced by the odor recognition map representing the frequency shifts of the OV25-coated QCM against the frequency shift of the PIB-coated QCM. In conclusion, we found that the combination of an OV25-coated QCM and a PIB-coated QCM was successful in discriminating roasty odorants from fatty odorants at the ppm level.

  15. Safer Battery with Switchable Polymer Coating Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Physical Sciences Inc. (PSI) proposes to utilize a switchable polymer (SWP) to prevent catastrophic failure due to internal shorting or overdischarge in lithium-ion...

  16. PLASMA SPRAYED Ni-Al COATINGS FOR SAFE ENDING HEAT EXCHANGER TUBES

    Energy Technology Data Exchange (ETDEWEB)

    ALLAN,M.L.; OTTERSON,D.; BERNDT,C.C.

    1998-11-01

    Brookhaven National Laboratory (BNL) has developed thermally conductive composite liners for corrosion and scale protection in heat exchanger tubes exposed to geothermal brine. The liners cannot withstand roller expansion to connect the tubes to the tubesheet. It is not possible to line the ends of the tubes with the same material after roller expansion due to the nature of the current liner application process. It was requested that BNL evaluate plasma sprayed Ni-Al coatings for safe ending heat exchanger tubes exposed to geothermal brine. The tubes of interest had an internal diameter of 0.875 inches. It is not typical to thermal spray small diameter components or use such small standoff distances. In this project a nozzle extension was developed by Zatorski Coating Company to spray the tube ends as well as flat coupons for testing. Four different Ni-Al coatings were investigated. One of these was a ductilized Ni-AIB material developed at Oak Ridge National Laboratory. The coatings were examined by optical and scanning electron microscopy. In addition, the coatings were analyzed by X-ray diffraction and subjected to corrosion, tensile adhesion, microhardness and field tests in a volcanic pool in New Zealand. It was determined that the Ni-Al coatings could be applied to a depth of two inches on the tube ends. When sprayed on flat coupons the coatings exhibited relatively high adhesion strength and microhardness. Polarization curves showed that the coating performance was variable. Measured corrosion potentials indicated that the Ni-Al coatings are active towards steel coated with thermally conductive polymers, thereby suggesting preferential corrosion. Corrosion also occurred on the coated coupons tested in the volcanic pool. This may have been exacerbated by the difficulty in applying a uniform coating to the coupon edges. The Ni-Al coatings applied to the tubes had significant porosity and did not provide adequate corrosion protection. This is associated with

  17. Bioresponsive polymer coated drug nanorods for breast cancer treatment

    Science.gov (United States)

    Laemthong, Tunyaboon; Kim, Hannah H.; Dunlap, Kelly; Brocker, Caitlin; Barua, Dipak; Forciniti, Daniel; Huang, Yue-Wern; Barua, Sutapa

    2017-01-01

    Ineffective drug release at the target site is among the top challenges for cancer treatment. This reflects the facts that interaction with the physiological condition can denature active ingredients of drugs, and low delivery to the disease microenvironment leads to poor therapeutic outcomes. We hypothesize that depositing a thin layer of bioresponsive polymer on the surface of drug nanoparticles would not only protect drugs from degradation but also allow the release of drugs at the target site. Here, we report a one-step process to prepare bioresponsive polymer coated drug nanorods (NRs) from liquid precursors using the solvent diffusion method. A thin layer (10.3 ± 1.4 nm) of poly(ε-caprolactone) (PCL) polymer coating was deposited on the surface of camptothecin (CPT) anti-cancer drug NRs. The mean size of PCL-coated CPT NRs was 500.9 ± 91.3 nm length × 122.7 ± 10.1 nm width. The PCL polymer coating was biodegradable at acidic pH 6 as determined by Fourier transform infrared spectroscopy. CPT drugs were released up to 51.5% when PCL coating dissolved into non-toxic carboxyl and hydroxyl groups. Trastuzumab (TTZ), a humanized IgG monoclonal antibody, was conjugated to the NR surface for breast cancer cell targeting. Combination treatments using CPT and TTZ decreased the HER-2 positive BT-474 breast cancer cell growth by 66.9 ± 5.3% in vitro. These results suggest effective combination treatments of breast cancer cells using bioresponsive polymer coated drug delivery.

  18. Molecularly Imprinted Polymer Coated on Stainless Steel Fiber

    Institute of Scientific and Technical Information of China (English)

    Hu XiaoGang; Dai GuiMei; Huang JiaJing

    2009-01-01

    @@ With characteristics of specific selectivity,good chemical stability and easy preparation,molecularly imprinted polymer (MIP) has been used as the recognition materials m various fields ~([1,2]).Recently,the application of MIP in the sample pre-treatment techniques such as SPME was attractive ~([3,4]).For analysis of complicated samples,the interference matrix would be reduced obviously with the MIP-coated SPME fiber~([5-7]).Because MIPs were coated on the surface of silica fiber through chemical bonding,those fibers could be used for over 80 times without obvious losing of surface quality and extraction performance of MIP coatings.

  19. Plasma sprayed and electrospark deposited zirconium metal diffusion barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Hollis, Kendall J [Los Alamos National Laboratory; Pena, Maria I [Los Alamos National Laboratory

    2010-01-01

    Zirconium metal coatings applied by plasma spraying and electrospark deposition (ESD) have been investigated for use as diffusion barrier coatings on low enrichment uranium fuel for research nuclear reactors. The coatings have been applied to both stainless steel as a surrogate and to simulated nuclear fuel uranium-molybdenum alloy substrates. Deposition parameter development accompanied by coating characterization has been performed. The structure of the plasma sprayed coating was shown to vary with transferred arc current during deposition. The structure of ESD coatings was shown to vary with the capacitance of the deposition equipment.

  20. Moisture resistant and anti-reflection optical coatings produced by plasma polymerization of organic compounds

    Science.gov (United States)

    Hollahan, J. R.; Wydeven, T.

    1975-01-01

    The need for protective coatings on critical optical surfaces, such as halide crystal windows or lenses used in spectroscopy, has long been recognized. It has been demonstrated that thin, one micron, organic coatings produced by polymerization of flourinated monomers in low temperature gas discharge (plasma) exhibit very high degrees of moisture resistence, e.g., hundreds of hours protection for cesium iodide vs. minutes before degradation sets in for untreated surfaces. The index of refraction of these coatings is intermediate between that of the halide substrate and air, a condition for anti-reflection, another desirable property of optical coatings. Thus, the organic coatings not only offer protection, but improved transmittance as well. The polymer coating is non-absorbing over the range 0.4 to 40 microns with an exception at 8.0 microns, the expected absorption for C-F bonds.

  1. Optimized plasma-deposited fluorocarbon coating for dry release and passivation of thin SU-8 cantilevers

    DEFF Research Database (Denmark)

    Keller, Stephan Urs; Häfliger, Daniel; Boisen, Anja

    2008-01-01

    Plasma-deposited fluorocarbon coatings are introduced as a convenient method for the dry release of polymer structures. In this method, the passivation process in a deep reactive ion etch reactor was used to deposit hydrophobic fluorocarbon films. Standard photolithography with the negative epoxy......-based photoresist SU-8 was used to fabricate polymer structures such as cantilevers and membranes on top of the nonadhesive release layer. The authors identify the plasma density as the main parameter determining the surface properties of the deposited fluorocarbon films. They show that by modifying the pressure...

  2. Effect of polymer coating on leakage losses in Bragg fibers.

    Science.gov (United States)

    Uspenskii, Yu A; Uzorin, E E; Vinogradov, A V; Likhachev, M E; Semjonov, S L; Bubnov, M M; Dianov, E M; Jamier, R; Février, S

    2007-05-15

    It is found that the reflection of leaky radiation from the interface between the outer silica cladding and the coating polymer greatly modifies the loss spectrum of Bragg fibers. A simple model that describes this effect is proposed and confirmed by measurement and computation.

  3. Adhesion of polymer coatings studied by laser-induced delamination

    NARCIS (Netherlands)

    Fedorov, A; De Hosson, JTM

    2005-01-01

    This paper concentrates on the laser-induced delamination technique, aimed at measuring the practical work of adhesion of thin polymer coatings on metal substrates. In this technique an infrared laser-pulsed beam is used to create an initial blister. Upon increasing the pulse intensity, the size of

  4. Microsystem reliability: Polymer adhesive and coating materials for packaging

    DEFF Research Database (Denmark)

    Janting, Jakob

    aggressive surroundings. Focus is on how the adhesion of protective polymer adhesives and coatings can be characterized theoretically and practically and optimized regarding intrinsic properties, the surroundings and their mutual influences. The main conclusion is that the mutual influences make a system...

  5. Polymer coating, germination and vigor of broccoli seeds

    Directory of Open Access Journals (Sweden)

    Almeida Celina de

    2005-01-01

    Full Text Available Brassica oleracea var italica occupies a special place in the internal and external market of vegetables seeds. Vegetables producers demand seeds with high degree of purity, germination and vigor, since seeds' quality is the basis for the success of the production. In this work, broccoli seeds were coated in a spouted bed, by an aqueous suspension of hidroxy-ethyl-cellulose. Effects of the operating variables: spouting air temperature, atomizing air pressure and coating suspension flow rate over the dependent variables: seeds germination, seeds accelerated aging and the speed of seeds germination in soil, were investigated in a factorial scheme trial. The maximum processing time was 120 min. A totally randomized experiment evaluated and compared seeds germination and vigor of the coated and non-coated seeds. There was no identifiable, pronounced difference on germination of coated and non-coated seeds, accelerated aging of seeds, and speed of seeds germination in the soil. Coating with hidroxy-ethyl-cellulose in the spouted bed did not alter broccoli seeds physiologic quality. The surface of coated seeds presented satisfactory distribution and spreading of the polymer film, uniform and individual coating and homogeneous aspect.

  6. Thermal Protective Coating for High Temperature Polymer Composites

    Science.gov (United States)

    Barron, Andrew R.

    1999-01-01

    The central theme of this research is the application of carboxylate-alumoxane nanoparticles as precursors to thermally protective coatings for high temperature polymer composites. In addition, we will investigate the application of carboxylate-alumoxane nanoparticle as a component to polymer composites. The objective of this research was the high temperature protection of polymer composites via novel chemistry. The significance of this research is the development of a low cost and highly flexible synthetic methodology, with a compatible processing technique, for the fabrication of high temperature polymer composites. We proposed to accomplish this broad goal through the use of a class of ceramic precursor material, alumoxanes. Alumoxanes are nano-particles with a boehmite-like structure and an organic periphery. The technical goals of this program are to prepare and evaluate water soluble carboxylate-alumoxane for the preparation of ceramic coatings on polymer substrates. Our proposed approach is attractive since proof of concept has been demonstrated under the NRA 96-LeRC-1 Technology for Advanced High Temperature Gas Turbine Engines, HITEMP Program. For example, carbon and Kevlar(tm) fibers and matting have been successfully coated with ceramic thermally protective layers.

  7. Creation of hydrophilic nitric oxide releasing polymers via plasma surface modification.

    Science.gov (United States)

    Pegalajar-Jurado, A; Joslin, J M; Hawker, M J; Reynolds, M M; Fisher, E R

    2014-08-13

    Herein, we describe the surface modification of an S-nitrosated polymer derivative via H2O plasma treatment, resulting in polymer coatings that maintained their nitric oxide (NO) releasing capabilities, but exhibited dramatic changes in surface wettability. The poly(lactic-co-glycolic acid)-based hydrophobic polymer was nitrosated to achieve a material capable of releasing the therapeutic agent NO. The NO-loaded films were subjected to low-temperature H2O plasma treatments, where the treatment power (20-50 W) and time (1-5 min) were varied. The plasma treated polymer films were superhydrophilic (water droplet spread completely in plasma-treated materials; however, they still result in physiologically relevant NO fluxes. XPS, SEM-EDS, and ATR-IR characterization suggests the plasma treatment resulted in polymer rearrangement and implantation of hydroxyl and carbonyl functional groups. Plasma treated samples maintained both hydrophilic surface properties and NO release profiles after storage at -18 °C for at least 10 days, demonstrating the surface modification and NO release capabilities are stable over time. The ability to tune polymer surface properties while maintaining bulk properties and NO release properties, and the stability of those properties under refrigerated conditions, represents a unique approach toward creating enhanced therapeutic biopolymers.

  8. Initiated chemical vapor deposition of antimicrobial polymer coatings.

    Science.gov (United States)

    Martin, T P; Kooi, S E; Chang, S H; Sedransk, K L; Gleason, K K

    2007-02-01

    The vapor phase deposition of polymeric antimicrobial coatings is reported. Initiated chemical vapor deposition (iCVD), a solventless low-temperature process, is used to form thin films of polymers on fragile substrates. For this work, finished nylon fabric is coated by iCVD with no affect on the color or feel of the fabric. Infrared characterization confirms the polymer structure. Coatings of poly(dimethylaminomethyl styrene) of up to 540 microg/cm2 were deposited on the fabric. The antimicrobial properties were tested using standard method ASTM E2149-01. A coating of 40 microg/cm2 of fabric was found to be very effective against gram-negative Escherichia coli, with over a 99.99%, or 4 log, kill in just 2 min continuing to over a 99.9999%, or 6 log, reduction in viable bacteria in 60 min. A coating of 120 microg/cm2 was most effective against the gram-positive Bacillus subtilis. Further tests confirmed that the iCVD polymer did not leach off the fabric.

  9. On the Interaction of Adherent Cells with Thermoresponsive Polymer Coatings

    Directory of Open Access Journals (Sweden)

    Katja Uhlig

    2014-04-01

    Full Text Available Thermoresponsive polymer coatings allow the control of adhesion of cells on synthetic substrates. In particular, decreasing the temperature below the lower critical solution temperature (LCST of the polymer triggers the non-invasive detachment of cells from their cultivation substrate. Widening the range of applications of these coatings in cellular biotechnology requires a better understanding of their interaction with cells. By monitoring the morphological changes of cells during their detachment at various temperatures, we provide evidence that cell detachment is an active process. Analyses of cell residues that are left behind by the cells on the substrate during their detachment, further support this notion. In the second part of this work, we show that the kinetics of adhesion and the efficiency of detachment of cells can be controlled through the coadsorption of molecules bearing the peptide motif RGD (arginine-glycine-aspartic acid with the polymers.

  10. Fluorescent polymer coated capillaries as optofluidic refractometric sensors.

    Science.gov (United States)

    Rowland, Kristopher J; François, Alexandre; Hoffmann, Peter; Monro, Tanya M

    2013-05-06

    A capillary microresonator platform for refractometric sensing is demonstrated by coating the interior of thick-walled silica capillaries with a sub-wavelength layer of high refractive index, dye-doped polymer. No intermediate processing, such as etching or tapering, of the capillary is required. Side illumination and detection of the polymer layer reveals a fluorescence spectrum that is periodically modulated by whispering gallery mode resonances within the layer. Using a Fourier technique to calculate the spectral resonance shifts, the fabricated capillary resonators exhibited refractometric sensitivities up to approximately 30 nm/RIU upon flowing aqueous glucose through them. These sensors could be readily integrated with existing biological and chemical separation platforms such as capillary electrophoresis and gas chromatography where such thick walled capillaries are routinely used with polymer coatings. A review of the modelling required to calculate whispering gallery eigenmodes of such inverted cylindrical resonators is also presented.

  11. Static Corrosion Test of Porous Iron Material with Polymer Coating

    Science.gov (United States)

    Markušová-Bučková, Lucia; Oriňaková, Renáta; Oriňak, Andrej; Gorejová, Radka; Kupková, Miriam; Hrubovčáková, Monika; Baláž, Matej; Kováľ, Karol

    2016-12-01

    At present biodegradable implants received increased attention due to their use in various fields of medicine. This work is dedicated to testing of biodegradable materials which could be used as bone implants. The samples were prepared from the carbonyl iron powder by replication method and surface polymer film was produced through sol-gel process. Corrosion testing was carried out under static conditions during 12 weeks in Hank's solution. The quantity of corrosion products increased with prolonging time of static test as it can be concluded from the results of EDX analysis. The degradation of open cell materials with polyethylene glycol coating layer was faster compared to uncoated Fe sample. Also the mass losses were higher for samples with PEG coating. The polymer coating brought about the desired increase in degradation rate of porous iron material.

  12. Process optimization of ultrasonic spray coating of polymer films

    DEFF Research Database (Denmark)

    Bose, Sanjukta; Keller, Stephan Sylvest; Boisen, Anja

    2013-01-01

    In this work we have performed a detailed study of the influence of various parameters on spray coating of polymer films. Our aim is to produce polymer films of uniform thickness (500 nm to 1 μm) and low roughness compared to the film thickness. The coatings are characterized with respect...... these two regimes, where we obtain a film of desired quality. Both with increasing nozzle-substrate distance and temperature, the deposition moves from a wet state to a dry regime. Similar results are also achieved for solvents with low boiling points. Finally, we study film formation during spray coating...... to thickness, roughness (profilometer), and morphology (optical microscopy). Polyvinylpyrrolidone (PVP) is used to do a full factorial design of experiments with selected process parameters such as temperature, distance between spray nozzle and substrate, and speed of the spray nozzle. A mathematical model...

  13. Biodegradable polymer brush as nanocoupled interface for improving the durability of polymer coating on metal surface.

    Science.gov (United States)

    Bedair, Tarek M; Cho, Youngjin; Joung, Yoon Ki; Han, Dong Keun

    2014-10-01

    Metal-based drug-eluting stents (DESs) have severe drawbacks such as peeling-off and cracking of the coated polymer. To prevent the fracture of polymer-coated layer and improve the durability of DES, poly(l-lactide) (PLLA) brushes were synthesized onto cobalt-chromium (Co-Cr or CC) surface through atom transfer radical polymerization (ATRP) of 2-hydroxyethylmethacrylate (HEMA) followed by surface-initiated ring opening polymerization (SI-ROP) of l-lactide. The polymer brushes were then characterized by attenuated total reflection-Fourier transform infrared (ATR-FTIR), water contact angle, ellipsometry, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and scanning electron microscopy (SEM). All of the unmodified and modified Co-Cr surfaces were coated with a matrix of poly(d,l-lactide) (PDLLA) and sirolimus (SRL). The in vitro drug release profile was measured for 70 days. The PLLA-modified Co-Cr showed a biphasic release pattern in the initial burst followed by a slow release. On the other hand, the unmodified Co-Cr showed fast drug release and detachment of the coated polymer layer due to the instability of the polymer layer on Co-Cr surface. In comparison, the PLLA-modified Co-Cr preserved a uniform coating without detachment even after 6 weeks of degradation test. The platelet morphology and low density of platelet adhered on the modified layer and the SRL-in-PDLLA coated Co-Cr surfaces demonstrated that these samples would be blood compatible. Therefore, the introduction of PLLA brush onto Co-Cr surface is proved to dramatically improve the durability of the coating layer, and it is a promising strategy to prevent the coating defects found in DESs.

  14. Cell separation in microcanal coated with electrically charged phospholipid polymers.

    Science.gov (United States)

    Ito, Tomomi; Iwasaki, Yasuhiko; Narita, Tadashi; Akiyoshi, Kazunari; Ishihara, Kazuhiko

    2005-03-25

    To separate the cell population in whole blood using microcanal, the surface was covered with a polyion complex (PIC) composed of electrically charged phospholipid polymers. The phospholipids polymers were prepared by the polymerization of 2-methacryloyloxyethyl phosphorylcholine (MPC) and n-butyl methacrylate with 3-(methacryloyloxypropyl)-trimethyl ammonium iodide as the cationic unit or potassium 3-methacryloyloxypropyl sulfonate as the anionic unit. The PIC was formed at the solid-liquid interface, that is, first, the cationic polymer was coated on the substrate and an aqueous solution containing the anionic polymer with different concentrations was applied to the polymer-coated substrate. The formation of the PIC was followed using a quartz crystal microbalance (QCM), and the PIC surfaces were analyzed by both zeta-potential measurement and X-ray photoelectron spectroscopic measurement. The surface electrical potential on the PIC was controllable from +40 to -40 mV by increasing the amount of the adsorbed anionic polymer. The PIC surface was prepared in microcanal. The surface electrical potential was sequentially changed. When the whole blood was introduced into the microcanal, the cells adhered on the positively charged surface, but could not adhere to the negatively charged surface. Even when the cells adhere to the surface, the morphology of cells was maintained. This is due to MPC units at the surface, which show a good biocompatibility. These results indicated that the change in the surface electrical potential will be a useful method to separate the cells from whole blood.

  15. Interpenetrating phase ceramic/polymer composite coatings: Fabrication and characterization

    Science.gov (United States)

    Craig, Bradley Dene

    The goals of this thesis research were to fabricate interpenetrating phase composite (IPC) ceramic/polymer coatings and to investigate the effect of the interconnected microstructure on the physical and wear properties of the coatings. IPC coatings with an interpenetrating phase microstructure were successfully fabricated by first forming a porous ceramic with an interconnected microstructure using a chemical bonding route (mainly reacting alpha-alumina (0.3 mum) with orthophosphoric acid to form a phosphate bond). Porosity within these ceramic coatings was easily controlled between 20 and 50 vol. % by phosphoric acid addition, and was measured by a new porosity measurement technique (thermogravimetric volatilization of liquids, or TVL) which was developed. The resulting ceramic preforms were infiltrated with a UV and thermally curable cycloaliphatic epoxide resin and cured. This fabrication route resulted in composite coatings with thicknesses ranging from ˜1mum to 100 mum with complete filling of open pore space. The physical properties of the composite coatings, including microhardness, flexural modulus and wear resistance, were evaluated as a function of processing variables, including orthophosphoric acid content and ceramic phase firing temperature, which affected the microstructure and interparticulate bonding between particles in the coatings. For example, microhardness increased from ˜30 on the Vicker's scale to well over 200 as interparticulate bonding was increased in the ceramic phase. Additionally, Taber wear resistance in the best TPC coatings was found to approach that of fully-densified alumina under certain conditions. Several factors were found to influence the wear mechanism in the IPC coating materials. Forming strong connections between ceramic particles led to up to an order of magnitude increase in the wear resistance. Additionally, coating microhardness and ceramic/polymer interfacial strength were studied and found to be important in

  16. Release Kinetics of Urea from Polymer Coated Urea and Its Relationship with Coating Penetrability

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hai-jun; WU Zhi-jie; CHEN Li-jun; LIANG Wen-ju

    2003-01-01

    Four kinds of polymer coated urea (PCU) were put in distilled water at 30C to determine the variation of coating penetrability and give a precise description of the urea release kinetics. The urea release from PCU could be divided into four stages: lag stage, swell stage, steady stage and decay stage. The release rate coefficient K, a measure of coating penetrability, was linearly increased at swell stage, but almost not variable at steady stage. At decay stage, the relation of K to time t could be described by the equation K= mtn-1(where m and n are the coefficients). When n>1, the coating penetrability was gradually increased, and the urea release from PCU was accelerated; when n=1, the coating penetrability was steady, and the urea release from PCU obeyed the first-order kinetics; and when n<1, the coating penetrability was gradually decreased,and the urea release from PCU was delayed, resulting in a significant "tailing effect".

  17. Superhydrophobic Ceramic Coatings by Solution Precursor Plasma Spray

    Science.gov (United States)

    Cai, Yuxuan; Coyle, Thomas W.; Azimi, Gisele; Mostaghimi, Javad

    2016-04-01

    This work presents a novel coating technique to manufacture ceramic superhydrophobic coatings rapidly and economically. A rare earth oxide (REO) was selected as the coating material due to its hydrophobic nature, chemical inertness, high temperature stability, and good mechanical properties, and deposited on stainless steel substrates by solution precursor plasma spray (SPPS). The effects of various spraying conditions including standoff distance, torch power, number of torch passes, types of solvent and plasma velocity were investigated. The as-sprayed coating demonstrated a hierarchically structured surface topography, which closely resembles superhydrophobic surfaces found in nature. The water contact angle on the SPPS superhydrophobic coating was up to 65% higher than on smooth REO surfaces.

  18. Click Chemistry Immobilization of Antibodies on Polymer Coated Gold Nanoparticles.

    Science.gov (United States)

    Finetti, Chiara; Sola, Laura; Pezzullo, Margherita; Prosperi, Davide; Colombo, Miriam; Riva, Benedetta; Avvakumova, Svetlana; Morasso, Carlo; Picciolini, Silvia; Chiari, Marcella

    2016-07-26

    The goal of this work is to develop an innovative approach for the coating of gold nanoparticles (AuNPs) with a synthetic functional copolymer. This stable coating with a thickness of few nanometers provides, at the same time, stabilization and functionalization of the particles. The polymeric coating consists of a backbone of polydimethylacrylamide (DMA) functionalized with an alkyne monomer that allows the binding of azido modified molecules by Cu(I)-catalyzed azide/alkyne 1,3-dipolar cycloaddition (CuAAC, click chemistry). The thin polymer layer on the surface stabilizes the colloidal suspension whereas the alkyne functions pending from the backbone are available for the reaction with azido-modified proteins. The reactivity of the coating is demonstrated by immobilizing an azido modified anti-mouse IgG antibody on the particle surface. This approach for the covalent binding of antibody to a gold-NPs is applied to the development of gold labels in biosensing techniques.

  19. Polymer Coating of Carbon Nanotube Fibers for Electric Microcables

    Directory of Open Access Journals (Sweden)

    Noe T. Alvarez

    2014-11-01

    Full Text Available Carbon nanotubes (CNTs are considered the most promising candidates to replace Cu and Al in a large number of electrical, mechanical and thermal applications. Although most CNT industrial applications require macro and micro size CNT fiber assemblies, several techniques to make conducting CNT fibers, threads, yarns and ropes have been reported to this day, and improvement of their electrical and mechanical conductivity continues. Some electrical applications of these CNT conducting fibers require an insulating layer for electrical insulation and protection against mechanical tearing. Ideally, a flexible insulator such as hydrogenated nitrile butadiene rubber (HNBR on the CNT fiber can allow fabrication of CNT coils that can be assembled into lightweight, corrosion resistant electrical motors and transformers. HNBR is a largely used commercial polymer that unlike other cable-coating polymers such as polyvinyl chloride (PVC, it provides unique continuous and uniform coating on the CNT fibers. The polymer coated/insulated CNT fibers have a 26.54 μm average diameter—which is approximately four times the diameter of a red blood cell—is produced by a simple dip-coating process. Our results confirm that HNBR in solution creates a few microns uniform insulation and mechanical protection over a CNT fiber that is used as the electrically conducting core.

  20. Protecting polymers in space with atomic layer deposition coatings.

    Science.gov (United States)

    Minton, Timothy K; Wu, Bohan; Zhang, Jianming; Lindholm, Ned F; Abdulagatov, Aziz I; O'Patchen, Jennifer; George, Steven M; Groner, Markus D

    2010-09-01

    Polymers in space may be subjected to a barrage of incident atoms, photons, and/or ions. Atomic layer deposition (ALD) techniques can produce films that mitigate many of the current challenges for space polymers. We have studied the efficacy of various ALD coatings to protect Kapton polyimide, FEP Teflon, and poly(methyl methacrylate) films from atomic-oxygen and vacuum ultraviolet (VUV) attack. Atomic-oxygen and VUV studies were conducted with the use of a laser-detonation source for hyperthermal O atoms and a D2 lamp as a source of VUV light. These studies used a quartz crystal microbalance (QCM) to monitor mass loss in situ, as well as surface profilometry and scanning electron microscopy to study the surface recession and morphology changes ex situ. Al2O3 ALD coatings protected the underlying substrates from atomic-oxygen attack, and the addition of TiO2 coatings protected the substrates from VUV-induced damage. The results indicate that ALD coatings can simultaneously protect polymers from oxygen-atom erosion and VUV radiation damage.

  1. Anti-icing Behavior of Thermally Sprayed Polymer Coatings

    Science.gov (United States)

    Koivuluoto, Heli; Stenroos, Christian; Kylmälahti, Mikko; Apostol, Marian; Kiilakoski, Jarkko; Vuoristo, Petri

    2017-01-01

    Surface engineering shows an increasing potential to provide a sustainable approach to icing problems. Currently, several passive anti-ice properties adoptable to coatings are known, but further research is required to proceed for practical applications. This is due to the fact that icing reduces safety, operational tempo, productivity and reliability of logistics, industry and infrastructure. An icing wind tunnel and a centrifugal ice adhesion test equipment can be used to evaluate and develop anti-icing and icephobic coatings for a potential use in various arctic environments, e.g., in wind power generation, oil drilling, mining and logistic industries. The present study deals with evaluation of icing properties of flame-sprayed polyethylene (PE)-based polymer coatings. In the laboratory-scale icing tests, thermally sprayed polymer coatings showed low ice adhesion compared with metals such as aluminum and stainless steel. The ice adhesion strength of the flame-sprayed PE coating was found to have approximately seven times lower ice adhesion values compared with metallic aluminum, indicating a very promising anti-icing behavior.

  2. Anti-icing Behavior of Thermally Sprayed Polymer Coatings

    Science.gov (United States)

    Koivuluoto, Heli; Stenroos, Christian; Kylmälahti, Mikko; Apostol, Marian; Kiilakoski, Jarkko; Vuoristo, Petri

    2016-12-01

    Surface engineering shows an increasing potential to provide a sustainable approach to icing problems. Currently, several passive anti-ice properties adoptable to coatings are known, but further research is required to proceed for practical applications. This is due to the fact that icing reduces safety, operational tempo, productivity and reliability of logistics, industry and infrastructure. An icing wind tunnel and a centrifugal ice adhesion test equipment can be used to evaluate and develop anti-icing and icephobic coatings for a potential use in various arctic environments, e.g., in wind power generation, oil drilling, mining and logistic industries. The present study deals with evaluation of icing properties of flame-sprayed polyethylene (PE)-based polymer coatings. In the laboratory-scale icing tests, thermally sprayed polymer coatings showed low ice adhesion compared with metals such as aluminum and stainless steel. The ice adhesion strength of the flame-sprayed PE coating was found to have approximately seven times lower ice adhesion values compared with metallic aluminum, indicating a very promising anti-icing behavior.

  3. Water-thinnable polymers for durable coatings for different materials

    Energy Technology Data Exchange (ETDEWEB)

    Jankowski, Piotr, E-mail: piotr.jankowski@ichp.pl; Kijowska, Dorota, E-mail: piotr.jankowski@ichp.pl [Industrial Chemistry Research Institute, Department of Polyesters, Epoxides and Polyurethanes, 8 Rydygiera Str., 01-793 Warszawa (Poland)

    2014-05-15

    The methods of obtaining water-thinnable polymers - water-thinnable unsaturated polyester resins (WTUPR) - by polycondensation were elaborate and optimized. As hydrophilic monomers different types of sulfonate monomers were used. The monomers, with sulfonate groups and other reactive groups, were obtained by sulfonation of organic compounds with satisfactory yield. All products were analyzed by {sup 1}H NMR and {sup 13}C NMR spectra. WTUPR were used as polymeric binders for coatings applications. Coatings with relatively high pendulum hardness, good properties and durability, useful for practical applications, were obtained. Typical existing equipment for the production of unsaturated polyester resins can be applied for the industrial preparation of WTUPR.

  4. Bilayer polymer/oxide coating for electroluminescent organic semiconductors

    DEFF Research Database (Denmark)

    Tavares, Luciana

    Organic materials have been given much attention due to their intriguing properties that can be tailored via synthetic chemistry for specific applications combined with their low price and fairly straight-forward large-scale synthesis. Para-hexaphenylene (p6P) nanofibers emit polarized light...... of the fibers with oxygen. We have developed a bilayer coating that does not change significantly the p6P spectrum but strongly reduces bleaching. This bilayer coating consists of a first layer of a stable polymer (PMMA) on top of the organic nanofibers as a protecting layer for avoiding modifications of the p6...

  5. Handbook of polymer coatings for electronics chemistry, technology and applications

    CERN Document Server

    Licari, James J

    1990-01-01

    This completely revised edition remains the only comprehensive treatise on polymer coatings for electronics. Since the original edition, the applications of coatings for the environmental protection of electronic systems have greatly increased, largely driven by the competitive need to reduce costs, weight and volume. The demands for high-speed circuits for the rapid processing of signals and data, high-density circuits for the storage and retrieval of megabits of memory, and the improved reliability required of electronics for guiding and controlling weapons and space vehicles have triggered

  6. Bilayer polymer/oxide coating for organic semiconductors

    DEFF Research Database (Denmark)

    Tavares, Luciana; Kjelstrup-Hansen, Jakob; Rubahn, Horst-Günter

    of the nanofibers with oxygen. Operation of devices in vacuum is a solution but the equipment necessary makes impossible the manufacturing of the devices so we propose the use of a coating for reducing bleaching. It is observed that spin-coated PMMA do not damage the morphology of the fragile nanofibers and also do...... not interfere with the luminescence spectrum from the p6P but it is also not effective in stopping the bleaching. On the other hand, the use of a nonreactant and stable polymer (PMMA) as a direct contact layer on top of the organic nanofibers works as a protecting layer for avoiding modifications of the p6P...

  7. Leaky enteric coating on ranitidine hydrochloride beads: dissolution and prediction of plasma data.

    Science.gov (United States)

    Bendas, Ehab R; Ayres, James W

    2008-08-01

    The present research is based on the hypothesis that leaky enteric-coated pellets formulations are able to provide sustained input for drugs that have an absorption window, such as ranitidine hydrochloride, without jeopardizing their bioavailability. Leaky enteric-coated pellets formulations are defined as enteric-coated pellets that allow some of the drug to be released from the formulation in gastric fluid. Different approaches to making leaky enteric-coated pellets were investigated using extrusion-spheronization followed by spray coating. Leaky enteric coats were formulated using a commonly used enteric polymer, Eudragit L 30 D-55, combined with soluble compounds including lactose, PEG 8000 and surfactants (Span 60 (hydrophobic) or Tween 80 (hydrophilic)). The rate of drug release from the formulations in simulated gastric fluid can be tailored by varying the additive's amount or type. All leaky enteric-coated formulations studied completely released the drugs within 30 min after changing dissolution medium to phosphate buffer, pH 6. Predictions of plasma concentration-time profiles of the model drug ranitidine hydrochloride from leaky enteric-coated pellets in fasted conditions and from immediate-release formulations were performed using computer simulations. Simulation results are consistent with a hypothesis that leaky enteric-coated pellets formulations provide sustained input for drugs shown to have an absorption window without decreasing bioavailability. The sustained input results from the combined effects of the formulation and GI transit effects on pellets. The present research demonstrates a new application of knowledge about gastrointestinal transit effects on drug formulations. It also shows that enteric-coating polymers have new applications in areas other than the usual enteric-coated formulations. The hypothesis that a leaky enteric-coated pellets formulation may maintain or increase the bioavailability of drugs that have a window of absorption

  8. Superior Thermal Barrier Coatings Using Solution Precursor Plasma Spray

    Science.gov (United States)

    Jordan, E. H.; Xie, L.; Gell, M.; Padture, N. P.; Cetegen, B.; Ozturk, A.; Ma, X.; Roth, J.; Xiao, T. D.; Bryant, P. E. C.

    2004-03-01

    A novel process, solution precursor plasma spray (SPPS), is presented for depositing thermal barrier coatings (TBCs), in which aqueous chemical precursors are injected into a standard direct current plasma spray system. The resulting coatings microstructure has three unique features: (1) ultra fine splats (1 µm), (2) nanometer and micron-sized interconnected porosity, and (3) closely spaced, through-thickness cracks. Coatings over 3 mm thick can be readily deposited using the SPPS process. Coating durability is excellent, with SPPS coatings showing, in furnace cycling tests, 2.5 times the spallation life of air plasma coatings (APS) and 1.5 times the life of electron beam physical vapor deposited (EB-PVD) coatings. The conductivity of SPPS coatings is lower than EB-PVD coatings and higher than the best APS coatings. Manufacturing cost is expected to be similar to APS coatings and much lower than EB-PVD coatings. The SPPS deposition process includes droplet break-up and material arriving at the deposition surface in various physical states ranging from aqueous solution, gel phase, to fully-molten ceramic. The relation between the arrival state of the material and the microstructure is described.

  9. Preparation and properties of HA coating hydrothermally synthesized from plasma sprayed CaHPO4 coating

    Institute of Scientific and Technical Information of China (English)

    FU Tao; HAN Yong; ZHANG Yu-mei; XU Ke-wei

    2001-01-01

    @@ INTRODUCTION Hydroxyapatite (HA) biocoatings can form osseointegration at a shorter time than metallic implants, and plasma sprayed (PS) HA coating has received the widest studies and is now used clinically. However, due to the high temperature of plasma flame, soluble impurity phases and amorphous calcium phosphate were contained which declined the bonding strength of the coating, and spoiled the excellent biological properties of HA.

  10. Hydrophobic Coatings on Cotton Obtained by in Situ Plasma Polymerization of a Fluorinated Monomer in Ethanol Solutions.

    Science.gov (United States)

    Molina, Ricardo; Teixidó, Josep Maria; Kan, Chi-Wai; Jovančić, Petar

    2017-02-15

    Plasma polymerization using hydrophobic monomers in the gas phase is a well-known technology to generate hydrophobic coatings. However, synthesis of functional hydrophobic coatings using plasma technology in liquids has not yet been accomplished. This work is consequently focused on polymerization of a liquid fluorinated monomer on cotton fabric initiated by atmospheric plasma in a dielectric barrier discharge configuration. Functional hydrophobic coatings on cotton were successfully achieved using in situ atmospheric plasma-initiated polymerization of fluorinated monomer dissolved in ethanol. Gravimetric measurements reveal that the amount of polymer deposited on cotton substrates can be modulated with the concentration of monomer in ethanol solution, and cross-linking reactions occur during plasma polymerization of a fluorinated monomer even without the presence of a cross-linking agent. FTIR and XPS analysis were used to study the chemical composition of hydrophobic coatings and to get insights into the physicochemical processes involved in plasma treatment. SEM analysis reveals that at high monomer concentration, coatings possess a three-dimensional pattern with a characteristic interconnected porous network structure. EDX analysis reveals that plasma polymerization of fluorinated monomers takes place preferentially at the surface of cotton fabric and negligible polymerization takes place inside the cotton fabric. Wetting time measurements confirm the hydrophobicity of cotton coatings obtained although equilibrium moisture content was slightly decreased. Additionally, the abrasion behavior and resistance to washing of plasma-coated cotton has been evaluated.

  11. Ferromagnetic shadow mask for spray coating of polymer patterns

    DEFF Research Database (Denmark)

    Keller, Stephan Sylvest; Bosco, Filippo; Boisen, Anja

    2013-01-01

    We present the fabrication of a wafer-scale shadow mask with arrays of circular holes with diameters of 150–400 μm. Standard UV photolithography is used to define 700 μm thick SU-8 structures followed by electroplating of nickel and etching of the template. The ferromagnetic properties of the sha...... of the shadow mask allow magnetic clamping to the substrate and spray coating of well defined polymer patterns....

  12. Superhydrophobic Ceramic Coatings by Solution Precursor Plasma Spray

    Science.gov (United States)

    Cai, Yuxuan

    Superhydrophobic surfaces exhibit superior water repellent properties, and they have remarkable potential to improve current energy infrastructure. Substantial research has been performed on the production of superhydrophobic coatings. However, superhydrophobic coatings have not yet been adopted in many industries where potential applications exist due to the limited durability of the coating materials and the complex and costly fabrication processes. Here presented a novel coating technique to manufacture ceramic superhydrophobic coatings rapidly and economically. A rare earth oxide (REO) was selected as the coating material due to its hydrophobic nature and strong mechanical properties, and deposited on stainless steel substrates by solution precursor plasma spray (SPPS). The as-sprayed coating demonstrated a hierarchically structured coating topography, which closely resembles superhydrophobic surfaces in nature. Compared to smooth REO surfaces, the SPPS superhydrophobic coating improved the water contact angle by as much as 65° after vacuum treatment at 1 Pa for 48 hours.

  13. Liquid Crystal Alignment Control Using Polymer Filament and Polymer Layers Coated on Substrates

    Science.gov (United States)

    Murashige, Takeshi; Fujikake, Hideo; Sato, Hiroto; Kikuchi, Hiroshi; Kurita, Taiichiro; Sato, Fumio

    2005-04-01

    We investigated liquid crystal (LC) alignment in LC cells containing an aligned cellulose filament sandwiched by thin polymer layers coated on substrates. Three types of polymer material, namely polystyrene (PS), polyvinyl alcohol (PVA) and polyimide (PI), were used as polymer layers. LC alignment areas induced on both sides of the filament were large in the order of PS, PVA and PI. In the case of the PS layer, the average LC alignment area reached approximately 100 μm in the direction perpendicular to the polymer filament. The molecular interaction between the LC and the PS layer is thought to be weak and it does not disturb the LC alignment due to the polymer filament. On the other hand, rubbed PS layers were used as polymer layers of the LC cell, where the LC alignment direction induced by the rubbed PS layer was perpendicular to the polymer filament. It was found that the LC alignment near the polymer filament gradually bent in the cell plane. The result suggests that various three-dimensional LC alignments can be realized by the combination of the polymer filament and substrate surface.

  14. Fouling-resistant polymer brush coatings

    KAUST Repository

    Thérien-Aubin, Héloïse

    2011-11-01

    A major problem to be addressed with thin composite films used in processes such as coatings or water purification is the biofouling of the surface. To address this problem in a model system, functionalized polyaramide membranes containing an atom transfer radical polymerization (ATRP) initiator were synthesized as a versatile approach to easily modify the surface properties of the polyaramide. Poly(methacrylic acid) brushes were grown using surface initiated ATRP followed by the functionalization of the poly(methacrylic acid) brushes with different side-chains chosen to reduce adhesion between the membrane and foulant. The relation between membrane fouling and the physicochemical properties of the surface was investigated in detail. © 2011 Elsevier Ltd. All rights reserved.

  15. Process optimization of ultrasonic spray coating of polymer films.

    Science.gov (United States)

    Bose, Sanjukta; Keller, Stephan S; Alstrøm, Tommy S; Boisen, Anja; Almdal, Kristoffer

    2013-06-11

    In this work we have performed a detailed study of the influence of various parameters on spray coating of polymer films. Our aim is to produce polymer films of uniform thickness (500 nm to 1 μm) and low roughness compared to the film thickness. The coatings are characterized with respect to thickness, roughness (profilometer), and morphology (optical microscopy). Polyvinylpyrrolidone (PVP) is used to do a full factorial design of experiments with selected process parameters such as temperature, distance between spray nozzle and substrate, and speed of the spray nozzle. A mathematical model is developed for statistical analysis which identifies the distance between nozzle and substrate as the most significant parameter. Depending on the drying of the sprayed droplets on the substrate, we define two broad regimes, "dry" and "wet". The optimum condition of spraying lies in a narrow window between these two regimes, where we obtain a film of desired quality. Both with increasing nozzle-substrate distance and temperature, the deposition moves from a wet state to a dry regime. Similar results are also achieved for solvents with low boiling points. Finally, we study film formation during spray coating with poly (D,L-lactide) (PDLLA). The results confirm the processing knowledge obtained with PVP and indicate that the observed trends are identical for spraying of other polymer films.

  16. Polymer coating comprising 2-methoxyethyl acrylate units synthesized by surface-initiated atom transfer radical polymerization

    DEFF Research Database (Denmark)

    2011-01-01

    Source: US2012184029A The present invention relates to preparation of a polymer coating comprising or consisting of polymer chains comprising or consisting of units of 2-methoxyethyl acrylate synthesized by Surface-Initiated Atom Transfer Radical Polymerization (SI ATRP) such as ARGET SI ATRP...... or AGET SI ATRP and uses of said polymer coating....

  17. 21 CFR 888.3565 - Knee joint patellofemorotibial metal/polymer porous-coated uncemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint patellofemorotibial metal/polymer... Devices § 888.3565 Knee joint patellofemorotibial metal/polymer porous-coated uncemented prosthesis. (a) Identification. A knee joint patellofemorotibial metal/polymer porous-coated uncemented prosthesis is a...

  18. Corrosion Protection of Steels by Conducting Polymer Coating

    Directory of Open Access Journals (Sweden)

    Toshiaki Ohtsuka

    2012-01-01

    Full Text Available The corrosion protection of steels by conducting polymer coating is reviewed. The conducting polymer such as polyaniline, polypyrrole, and polythiophen works as a strong oxidant to the steel, inducing the potential shift to the noble direction. The strongly oxidative conducting polymer facilitates the steel to be passivated. A bilayered PPy film was designed for the effective corrosion protection. It consisted of the inner layer in which phosphomolybdate ion, PMo12O3−40 (PMo, was doped and the outer layer in which dodecylsulfate ion (DoS was doped. The inner layer stabilized the passive oxide and the outer possessed anionic perm-selectivity to inhibit the aggressive anions such as chloride from penetrating through the PPy film to the substrate steel. By the bilayered PPy film, the steel was kept passive for about 200 h in 3.5% sodium chloride solution without formation of corrosion products.

  19. Polymer-Coated Graphene Aerogel Beads and Supercapacitor Application.

    Science.gov (United States)

    Ouyang, An; Cao, Anyuan; Hu, Song; Li, Yanhui; Xu, Ruiqiao; Wei, Jinquan; Zhu, Hongwei; Wu, Dehai

    2016-05-01

    Graphene aerogels are highly porous materials with many energy and environmental applications; tailoring the structure and composition of pore walls within the aerogel is the key to those applications. Here, by freeze casting the graphene oxide sheets, we directly fabricated freestanding porous graphene beads containing radially oriented through channels from the sphere center to its surface. Furthermore, we introduced pseudopolymer to make reinforced, functional composite beads with a unique pore morphology. We showed that polymer layers can be coated smoothly on both sides of the pore walls, as well as on the junctions between adjacent pores, resulting in uniform polymer-graphene-polymer sandwiched structures (skeletons) throughout the bead. These composite beads significantly improved the electrochemical properties, with specific capacitances up to 669 F/g and good cyclic stability. Our results indicate that controlled fabrication of homogeneous hierarchical structures is a potential route toward high performance composite electrodes for various energy applications.

  20. Microstructure and Properties of Plasma Spraying Boron Carbide Coating

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Microstructure of plasma spray boron carbide coating was studied by SEM and TEM. Its physical,mechanical and electrical properties were measured. The results showed that high microhardness,modulus and Iow porosity of B4C coating were manufactured by plasma spray. It was lamellar packing and dense. The B4C coating examined here contained two principal structures and two impurity phase besides major phase. The relatively small value of Young′s modulus, comparing with that of the bulk materials, is explained by porosity. The Fe impurity phase could account for the relatively high electrical conductivity of boron carbide coating by comparing with the general boron carbide materials.

  1. Preparation of chitosan-coated polyethylene packaging films by DBD plasma treatment.

    Science.gov (United States)

    Theapsak, Siriporn; Watthanaphanit, Anyarat; Rujiravanit, Ratana

    2012-05-01

    Polyethylene (PE) packaging films were coated with chitosan in order to introduce the antibacterial activity to the films. To augment the interaction between the two polymers, we modified the surfaces of the PE films by dielectric barrier discharge (DBD) plasma before chitosan coating. After that the plasma-treated PE films were immersed in chitosan acetate solutions with different concentrations of chitosan. The optimum plasma treatment time was 10 s as determined from contact angle measurement. Effect of the plasma treatment on the surface roughness of the PE films was investigated by atomic force microscope (AFM) while the occurrence of polar functional groups was observed by X-ray photoelectron spectroscope (XPS) and Fourier transformed infrared spectroscope (FTIR). It was found that the surface roughness as well as the occurrence of oxygen-containing functional groups (i.e., C═O, C-O, and -OH) of the plasma-treated PE films increased from those of the untreated one, indicating that the DBD plasma enhanced hydrophilicity of the PE films. The amounts of chitosan coated on the PE films were determined after washing the coated films in water for several number of washing cycles prior to detection of the chitosan content by the Kjaldahl method. The amounts of chitosan coated on the PE films were constant after washing for three times and the chitosan-coated PE films exhibited appreciable antibacterial activity against Escherichia coli and Staphylococcus aureus. Hence, the obtained chitosan-coated PE films could be a promising candidate for antibacterial food packaging.

  2. Suspension plasma sprayed composite coating using amorphous powder feedstock

    Science.gov (United States)

    Chen, Dianying; Jordan, Eric H.; Gell, Maurice

    2009-03-01

    Al 2O 3-ZrO 2 composite coatings were deposited by the suspension plasma spray process using molecularly mixed amorphous powders. X-ray diffraction (XRD) analysis shows that the as-sprayed coating is composed of α-Al 2O 3 and tetragonal ZrO 2 phases with grain sizes of 26 nm and 18 nm, respectively. The as-sprayed coating has 93% density with a hardness of 9.9 GPa. Heat treatment of the as-sprayed coating reveals that the Al 2O 3 and ZrO 2 phases are homogeneously distributed in the composite coating.

  3. Plasma spray forming of tungsten coatings on copper electrodes

    Institute of Scientific and Technical Information of China (English)

    JIANG Xian-liang(蒋显亮); F.Gitzhofer; M.I.Boulos

    2004-01-01

    Both direct current dc plasma and radio frequency induction plasma were used to deposit tungsten coatings on copper electrodes. Fine tungsten powder with mean particle size of 5μm and coarse tungsten powder with particle size in the range from 45 μm to 75 μm were used as plasma spray feedstock. It is found that dc plasma is only applicable to spray the fine tungsten powder and induction plasma can be used to spray both the coarse powder and the fine powder. The tungsten coating deposited by the induction plasma spraying of the coarse powder is extremely dense. Such a coating with an interlocking structure and an integral interface with the copper substrate demonstrates high cohesion strength and adhesion strength.

  4. Atmospheric Pressure Plasma Processing for Polymer Adhesion: A Review

    DEFF Research Database (Denmark)

    Kusano, Yukihiro

    2014-01-01

    Atmospheric pressure plasma processing has attracted significant interests over decades due to its usefulness and a variety of applications. Adhesion improvement of polymer surfaces is among the most important applications of atmospheric pressure plasma treatment. Reflecting recent significant de...... development of the atmospheric pressure plasma processing, this work presents its fundamental aspects, applications, and characterization techniques relevant to adhesion.......Atmospheric pressure plasma processing has attracted significant interests over decades due to its usefulness and a variety of applications. Adhesion improvement of polymer surfaces is among the most important applications of atmospheric pressure plasma treatment. Reflecting recent significant...

  5. Influence of polymer structure on plasma-polymer interactions in resist materials

    Science.gov (United States)

    Bruce, Robert Lawson

    The controlled patterning of polymer resists by plasma plays an essential role in the fabrication of integrated circuits and nanostructures. As the dimensions of patterned structures continue to decrease, we require an atomistic understanding underlying the morphological changes that occur during plasma-polymer interactions. In this work, we investigated how plasma surface modifications and the initial polymer structure influenced plasma etch behavior and morphological changes in polymer resists. Using a prototypical argon discharge, we observed polymer modification by ions and vacuum ultraviolet (VUV) radiation from the plasma. A thin, highly dense modified layer was formed at the polymer surface due to ion bombardment. The thickness and physical properties of this ion-damaged layer was independent of polymer structure for the systems examined here. A relationship was observed that strongly suggests that buckling caused by ion-damaged layer formation on a polymer is the origin of roughness that develops during plasma etching. Our results indicate that with knowledge of the mechanical properties of the ion-damaged layer and the polymer being processed, plasma-induced surface roughness can be predicted and the surface morphology calculated. Examining a wide variety of polymer structures, the polymer poly(4-vinylpyridine) (P4VP) was observed to produce extremely smooth surfaces during high-ion energy plasma etching. Our data suggest that VUV crosslinking of P4VP below the ion-damaged layer may prevent wrinkling. We also studied another form of resists, silicon-containing polymers that form a SiO2 etch barrier layer during O2 plasma processing. In this study, we examined whether assisting SiO2 layer formation by adding Si-O bonds to the polymer structure would improve O2 etch behavior and reduce polymer surface roughness. Our results showed that while adding Si-O bonds decreased etch rates and silicon volatilization during O2 plasma exposure, the surface roughness

  6. Coating of zinc ferrite particles with a conducting polymer, polyaniline.

    Science.gov (United States)

    Stejskal, Jaroslav; Trchová, Miroslava; Brodinová, Jitka; Kalenda, Petr; Fedorova, Svetlana V; Prokes, Jan; Zemek, Josef

    2006-06-01

    Particles of zinc ferrite, ZnOFe2O3, were coated with polyaniline (PANI) phosphate during the in situ polymerization of aniline in an aqueous solution of phosphoric acid. The PANI-ferrite composites were characterized by FTIR spectroscopy. X-ray photoelectron spectroscopy was used to determine the degree of coating with a conducting polymer. Even a low content of PANI, 1.4 wt%, resulted in the 45% coating of the particles' surface. On the other hand, even at high PANI content, the coating of ferrite surface did not exceeded 90%. This is explained by the clustering of hydrophobic aniline oligomers at the hydrophilic ferrite surface and the consequent irregular PANI coating. The conductivity increased from 2 x 10(-9) to 6.5 S cm(-1) with increasing fraction of PANI phosphate in the composite. The percolation threshold was located at 3-4 vol% of the conducting component. In the absence of any acid, a conducting product, 1.4 x 10(-2) Scm(-1), was also obtained. As the concentration of phosphoric acid increased to 3 M, the conductivity of the composites reached 1.8 S cm(-1) at 10-14 wt% of PANI. The ferrite alone can act as an oxidant for aniline; a product having a conductivity 0.11 S cm(-1) was obtained after a one-month immersion of ferrite in an acidic solution of aniline.

  7. Sector spin coating for fast preparation of polymer libraries.

    Science.gov (United States)

    de Gans, Berend-Jan; Wijnans, Sanne; Woutes, Daan; Schubert, Ulrich S

    2005-01-01

    The feasibility of sector spin coating (or combinatorial spin-coating) is demonstrated (i.e., spin coating of various samples onto one single substrate using a metal template to divide the substrate into sectors). Film thickness increases in an angular direction against the sense of rotation. In the radial direction, the film thickness is constant within 2%. A library of 8 poly(methyl methacrylate)/polystyrene-blends with varying composition was spin coated and subsequently analyzed using automated atomic force microscopy: 24 measurements could be performed within 72 min. The contact angles of a library of 16 polyoxazoline diblock copolymers were measured using one substrate with 16 spin-coated sectors. Forty-eight measurements could be performed within 50 min. On the basis of the surface energies calculated using the Owens-Wendt-Rath-Kaeble method, the library can be divided into three groups of polymers: those containing a dispersive nonyloxazoline block, those containing a polar phenyloxazoline block, and those containing neither.

  8. Drastic modification of the piezoresistive behavior of polymer nanocomposites by using conductive polymer coatings

    KAUST Repository

    Ventura, Isaac Aguilar

    2015-07-21

    We obtained highly conductive nanocomposites by adding conductive polymer poly(3,4-ethylenedioxythiophene)poly(styrenesulfonate) (PEDOT/PSS)-coated carbon nanotubes (CNTs) to pristine insulating Polycarbonate. Because the PEDOT/PSS ensures efficient charge transfer both along and between the CNTs, we could attribute the improvement in electrical conductivity to coating. In addition to improving the electrical conductivity, the coating also modified the piezoresistive behavior of the nanocomposites compared to the material with pristine uncoated CNTs: whereas CNT/Polycarbonate samples exhibited a very strong piezoresistive effect, PEDOT/PSS-coated MWCNT/Polycarbonate samples exhibited very little piezoresistivity. We studied this change in piezoresistive behavior in detail by investigating various configurations of filler content. We investigated how this observation could be explained by changes in the microstructure and in the conduction mechanism in the interfacial regions between the nanofillers. Our study suggests that tailoring the piezoresistive response to specific application requirements is possible.

  9. Study of viscous flow during thin film polymer coating and drawing of continuum

    OpenAIRE

    Akter, Suraiya

    1997-01-01

    This study involves both theoretical and experimental thin polymer coating on wire as well as drawing of wire by hydrodynamic pressure technique. Hydrodynamic pressure technique is a relatively new and innovative technique for wire drawing and thin polymer coating. The wire submerged in polymer melt inside the pressure unit of different geometry, when pulled developed hydrodynamic pressure in the melt. This pressure is largely responsible for wire drawing or coating. Most of the theoretic...

  10. Influence of Polymer Coatings on the Carrier Life Time in Solar Silicon Crystals

    OpenAIRE

    L.P. Steblenko; A.O. Podolyan; O.O. Korotchenkov; L.M. Yashchenko; S.M. Naumenko; D.V. Kalinichenko; Yu.L. Kobzar; A.M. Kuryliuk; V.M. Kravchenko

    2014-01-01

    Influence of polymer coatings on the photovoltage drop kinetics in solar Si crystals exposed to magnetic field action and X-ray irradiation is studied. The features found in the behavior of the electrophysical parameters suggest slowing down the photovoltage drop in the presence of polymer coatings at the surface of solar Si crystals. These features may be due to the influence of polymer coatings to reduce the concentration of recombination centers in crystals solar-Si.

  11. Influence of Polymer Coatings on the Carrier Life Time in Solar Silicon Crystals

    Directory of Open Access Journals (Sweden)

    L.P. Steblenko

    2014-11-01

    Full Text Available Influence of polymer coatings on the photovoltage drop kinetics in solar Si crystals exposed to magnetic field action and X-ray irradiation is studied. The features found in the behavior of the electrophysical parameters suggest slowing down the photovoltage drop in the presence of polymer coatings at the surface of solar Si crystals. These features may be due to the influence of polymer coatings to reduce the concentration of recombination centers in crystals solar-Si.

  12. Nanostructured Sulfide Composite Coating Prepared by Atmospheric Plasma Spraying

    Institute of Scientific and Technical Information of China (English)

    关耀辉

    2006-01-01

    Nanostructured FeS-SiC coating was deposited by atmospheric plasma spraying (APS). The microstructure and phase composition of the coating were characterized with SEM and XRD, respectively. In addition, the size distribution of the reconstituted powders and the porosity of the coating have been measured. It was found that the reconstitiuted powers with sizes in the range of 20 to 80 μm had excellent flowability and were suitable for plasma spraying process. The assprayed FeS-SiC composite coating exhibited a bimodal distribution with small grains (30~80nm) and large grains (100~200nm). The coating was mainly composed of FeS and SiC, a small quantity of Fe1-x S and oxide were also found. The porosity of the coating was approximately 19 %.

  13. Plasma spray for forming nanostructured thermal barrier coatings

    Institute of Scientific and Technical Information of China (English)

    LIN; Feng; JIANG; Xian-liang; YU; Yue-guang; ZENG; Ke-li; REN; Xian-jing

    2005-01-01

    Nanocrystalline powders of yttrium partially stabilized zirconia (YPSZ) are reprocessed into agglomerated feedstocks for plasma spraying thermal barrier coatings (TBCs), using the methods of ball milling, slurry dispersion, spray drying, and heat treatment. Atmospheric plasma is used to spray the agglomerated nanocrystalline particle feedstocks and coatings were deposited on the substrate of Ni-based superalloy. Scanning electron microscopy (SEM) is used to examine the morphology and cross-section of the agglomerated feedstocks and the free-section and cross-section of the nanostructured TBCs. Experimental results show that the agglomerated nanocrystalline particles are spherical and dense. Unlike conventional plasma-sprayed coatings, the micron/nano/micron sandwich structure can be found in the nanostructured YPSZ coatings deposited by atmospheric plasma spraying.

  14. Effect of preliminary vacuum plasma treatment on coating adhesion

    Science.gov (United States)

    Slabodchikov, Vladimir A.; Borisov, Dmitry P.; Kuznetsov, Vladimir M.

    2016-11-01

    The paper presents research results on the adhesion properties of Si coatings synthesized by different methods and under different conditions of preliminary vacuum ion plasma treatment of substrates with subsequent magnetron sputtering. The substrate surface was pretreated with low-energy ion beams, high-energy ion beams, gas discharge plasma, and plasma produced by a magnetron sputtering system. The vacuum conditions (pump type, pressure, etc.), the ion current density, and the bias parameters (pulse repetition frequency and duration) were varied. The research results demonstrate a considerable effect of plasma immersion ion implantation on the adhesion of Si coatings to NiTi substrates.

  15. Platinum and Iridium Coatings Obtained by Double Glow Plasma Technology

    Institute of Scientific and Technical Information of China (English)

    WU Wangping; CHEN Zhaofeng; CHEN Zhou; CONG Xiangna; QIU Jinlian

    2012-01-01

    Pt and Ir coatings were produced by double glow plasma technology on the surface of Ti alloy substrates.The chemical compositions of the coatings were determined by X-ray diffraction and X-ray photoelectron spectroscopy.The microstructure and morphology of the coatings were observed by scanning electron microscopy.The hardness and elastic modulus of the coatings were estimated by nanoindentation.The measurements of adhesive forces of the coatings were performed with scratch tester.The results indicated that the Pt and Ir coatings displayed the preferred (220) orientation due to the initial nuclei with preferred growth on the surface of the substrates.The interface between the Pt coating and substrate exhibited no evidence of delamination.The Ir coating was composed of irregular columnar grains with many nanovoids at the interface between the coating and substrate.The mean values of hardness for Pt and Ir coatings were 0.9 GPa and 9 GPa,respectively.The elastic modulus of Pt and Ir coatings were 178 GPa and 339 GPa,respectively.The adhesive forces of the Pt and Ir coatings were about 66.4 N and 55 N,respectively.The Pt and Ir coatings adhered well to the Ti alloy substrates.

  16. Endurance and heat - transfer performance of polymer coatings for the promotion of dropwise condensation of steam.

    OpenAIRE

    Looney, Daniel J.

    1984-01-01

    Approved for public release; distribution is unlimited Ten polymer coatings were evaluated for the long term promotion of dropwise condensation of steam. Four of the coatings were experimental coatings developed by the Naval Research Laboratory and six were commercial coatings. Continuous dropwise condensation in excess of 10,000 hours was obtained for several of the coatings that were applied to rough surfaces. Three commercial coatings, in addition to an NRL fluoroac...

  17. Aging effects of plasma polymerized ethylenediamine (PPEDA) thin films on cell-adhesive implant coatings

    Energy Technology Data Exchange (ETDEWEB)

    Testrich, H., E-mail: holger.testrich@uni-greifswald.de [University of Greifswald, Institute of Physics, Felix-Hausdorff Str. 6, 17489 Greifswald (Germany); Rebl, H. [University of Rostock, Biomedical Research Center, Department of Cell Biology, Schillingallee 69, 18057 Rostock (Germany); Finke, B.; Hempel, F. [Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff Str. 2, 17489 Greifswald (Germany); Nebe, B. [University of Rostock, Biomedical Research Center, Department of Cell Biology, Schillingallee 69, 18057 Rostock (Germany); Meichsner, J. [University of Greifswald, Institute of Physics, Felix-Hausdorff Str. 6, 17489 Greifswald (Germany)

    2013-10-15

    Thin plasma polymer films from ethylenediamine were deposited on planar substrates placed on the powered electrode of a low pressure capacitively coupled 13.56 MHz discharge. The chemical composition of the plasma polymer films was analyzed by Fourier Transform Infrared Reflection Absorption Spectroscopy (FT-IRRAS) as well as by X-ray photoelectron spectroscopy (XPS) after derivatization of the primary amino groups. The PPEDA films undergo an alteration during the storage in ambient air, particularly, due to reactions with oxygen. The molecular changes in PPEDA films were studied over a long-time period of 360 days. Simultaneously, the adhesion of human osteoblast-like cells MG-63 (ATCC) was investigated on PPEDA coated corundum blasted titanium alloy (Ti-6Al-4V), which is applied as implant material in orthopedic surgery. The cell adhesion was determined by flow cytometry and the cell shape was analyzed by scanning electron microscopy. Compared to uncoated reference samples a significantly enhanced cell adhesion and proliferation were measured for PPEDA coated samples, which have been maintained after long-time storage in ambient air and additional sterilization by γ−irradiation. - Highlights: • Development of cell-adhesive nitrogen-rich coatings for biomedical applications. • Plasma polymer films from low pressure 13.56 MHz discharge in argon-ethylenediamine. • Enhanced osteoblast adhesion/proliferation on coated implant material (Ti-6Al-4V). • Despite film aging over 360 days the enhanced cell adhesion of the coating remains. • No influence of additional y-sterilization on the enhanced cell adhesion.

  18. Effect of Oxygen on Surface Properties and Drug Release Behavior of Plasma Polymer of n-Butyl Methacrylate

    Institute of Scientific and Technical Information of China (English)

    Yuan YUAN; Chang Sheng LIU; Yuan ZHANG; Min YIN; Jie XU

    2005-01-01

    The effects of oxygen on the chemical structure, morphology, hydrophilicity and drug release behavior of radio-frequency plasma poly n- butyl methacrylate (PPBMA) thin film were carried out for the first time. ATR-FTIR and XPS showed that oxygen had little influence on the chemical structure and composition of PPBMAs, which did not agree with the thought that the presence of oxygen gas would increase the oxidized carbon functionalities in the plasma polymer.SEM and static contact angle measurement indicated that in case of deposition with oxygen, the smoothness and hydrophilicity of PPBMA were dramatically improved. The drug release behavior showed that drug release from the PPBMA coating without oxygen was biphasic patterns,while from PPBMA coating with oxygen was Higuchi release. These results were helpful for the design and tailoring of the PPBMA polymer film and other of plasma polymers film, but could provide a new idea for the drug release controlled form.

  19. Sea water corrosion behavior of plasma sprayed abradable coatings

    Science.gov (United States)

    Parida, M.; Nanda, S. P.; Mishra, S. C.

    2017-02-01

    Aluminum based abradable coating is used for sealing purpose in compressor casing of aero engines to withstand up to a service temperature of 450°C. Al-BNSiO2 composite coating is deposited using thermal plasma spray technique. Coating thickness measured and porosity of the coating is evaluated.Coating morphology is observed and EDSanalysis is done with SEM (Jeol make). The effect of time on the sea water corrosion behavior of the coating is evaluated. It is observed that, there is a sharp increase in weight gain of the coating up to six weeks of immersion. This behavior is attributed to the adsorption/deposition of other elements/reactions taking place during interaction with sea water.

  20. Aqueous Polymer Dispersion Coating Used for Osmotic Pump Tablets: Membrane Property Investigation and IVIVC Evaluation.

    Science.gov (United States)

    Cheng, Lizhen; Gai, Xiumei; Wen, Haoyang; Liu, Dandan; Tang, Xin; Wang, Yanyan; Wang, Tuanjie; Pan, Weisan; Yang, Xinggang

    2017-07-10

    The objective of this study was to investigate the fundamental properties of propranolol hydrochloride osmotic pump tablets coated by aqueous polymer dispersion, simultaneously exploring the in vitro and in vivo correlation of the tablet. The physicochemical properties and parameters of aqueous polymer dispersion membranes (SEM, water uptake, and water vapor transmission coefficient) were investigated. In addition, the release behavior and the in vitro release and in vivo absorption profiles of the tablets coated by aqueous polymer dispersion were investigated by comparing with propranolol hydrochloride osmotic pump tablets coated by an organic solvent. Results showed that the similarity factor (f 2) between cellulose acetate-coated tablet and Eudragit-coated tablet was 78.1, and f 2 between cellulose acetate-coated tablet and Kollicoat-coated tablet was 77.6. The linear IVIVC of Eudragit-coated and Kollicoat-coated osmotic pump tablets was determined, which confirmed excellent correlation between the absorption in vivo and the drug release in vitro. Consequently, the membrane coated by aqueous polymer dispersion or organic solvent has similar in vitro release rates of controlled release. Also, compared with organic solvent coating, aqueous polymer dispersion has numerous advantages, such as reduced toxicity and no environmental damage. Therefore, the aqueous polymer dispersion technology has enormous potential as a replacement of organic solvent coating.

  1. Corrosion behavior of magnetic ferrite coating prepared by plasma spraying

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yi; Wei, Shicheng, E-mail: wsc33333@163.com; Tong, Hui; Tian, Haoliang; Liu, Ming; Xu, Binshi

    2014-12-15

    Graphical abstract: The saturation magnetization (M{sub s}) of the ferrite coating is 34.417 emu/g while the M{sub s} value of the ferrite powder is 71.916 emu/g. It can be seen that plasma spray process causes deterioration of the room temperature soft magnetic properties. - Highlights: • Spinel ferrite coatings have been prepared by plasma spraying. • The coating consists of nanocrystalline grains. • The saturation magnetization of the ferrite coating is 34.417 emu/g. • Corrosion behavior of the ferrite coating was examined in NaCl solution. - Abstract: In this study, spray dried spinel ferrite powders were deposited on the surface of mild steel substrate through plasma spraying. The structure and morphological studies on the ferrite coatings were carried out using X-ray diffraction, scanning electron microscope and Raman spectroscopy. It was showed that spray dried process was an effective method to prepare thermal spraying powders. The coating showed spinel structure with a second phase of LaFeO{sub 3}. The magnetic property of the ferrite samples were measured by vibrating sample magnetometer. The saturation magnetization (M{sub s}) of the ferrite coating was 34.417 emu/g. The corrosion behavior of coating samples was examined by electrochemical impedance spectroscopy. EIS diagrams showed three corrosion processes as the coating immersed in 3.5 wt.% NaCl solution. The results suggested that plasma spraying was a promising technology for the production of magnetic ferrite coatings.

  2. In vivo integrity of polymer-coated gold nanoparticles

    Science.gov (United States)

    Kreyling, Wolfgang G.; Abdelmonem, Abuelmagd M.; Ali, Zulqurnain; Alves, Frauke; Geiser, Marianne; Haberl, Nadine; Hartmann, Raimo; Hirn, Stephanie; de Aberasturi, Dorleta Jimenez; Kantner, Karsten; Khadem-Saba, Gülnaz; Montenegro, Jose-Maria; Rejman, Joanna; Rojo, Teofilo; de Larramendi, Idoia Ruiz; Ufartes, Roser; Wenk, Alexander; Parak, Wolfgang J.

    2015-07-01

    Inorganic nanoparticles are frequently engineered with an organic surface coating to improve their physicochemical properties, and it is well known that their colloidal properties may change upon internalization by cells. While the stability of such nanoparticles is typically assayed in simple in vitro tests, their stability in a mammalian organism remains unknown. Here, we show that firmly grafted polymer shells around gold nanoparticles may degrade when injected into rats. We synthesized monodisperse radioactively labelled gold nanoparticles (198Au) and engineered an 111In-labelled polymer shell around them. Upon intravenous injection into rats, quantitative biodistribution analyses performed independently for 198Au and 111In showed partial removal of the polymer shell in vivo. While 198Au accumulates mostly in the liver, part of the 111In shows a non-particulate biodistribution similar to intravenous injection of chelated 111In. Further in vitro studies suggest that degradation of the polymer shell is caused by proteolytic enzymes in the liver. Our results show that even nanoparticles with high colloidal stability can change their physicochemical properties in vivo.

  3. Surface dynamics and mechanics in liquid crystal polymer coatings

    Science.gov (United States)

    Liu, Danqing; Broer, Dirk J.

    2015-03-01

    Based on liquid crystal networks we developed `smart' coatings with responsive surface topographies. Either by prepatterning or by the formation of self-organized structures they can be switched on and off in a pre-designed manner. Here we provide an overview of our methods to generate coatings that form surface structures upon the actuation by light. The coating oscillates between a flat surface and a surface with pre-designed 3D micro-patterns by modulating a light source. With recent developments in solid state lighting, light is an attractive trigger medium as it can be integrated in a device for local control or can be used remotely for flood or localized exposure. The basic principle of formation of surface topographies is based on the change of molecular organization in ordered liquid crystal polymer networks. The change in order leads to anisotropic dimensional changes with contraction along the director and expansion to the two perpendicular directions and an increase in volume by the formation of free volume. These two effects work in concert to provide local expansion and contraction in the coating steered by the local direction of molecular orientation. The surface deformation, expressed as the height difference between the activated regions and the non-activated regions divided by the initial film thickness, is of the order of 20%. Switching occurs immediately when the light is switched `on' and `off' and takes several tens of seconds.

  4. DEVELOPMENT OF COMPLEX EQUIPMENT FOR PLASMA SPRAY CERAMIC COATINGS

    Directory of Open Access Journals (Sweden)

    V. V. Okovity

    2017-01-01

    Full Text Available Develop a set equipment for plasma forming ceramic coatings. The article presents characteristics and parameters of the developed complex equipment for formation of plasma ceramic coatings as well as results of its testing. Methods of research is based on studies of structural elements composite plasma coatings system ZrO2 – Y2O3  obtained  using  developed complex equipment. One of the most effective ways to protect the components from high temperature corrosion and oxidation is formation on the surface of plasma thermal barrier coatings. For thermal barrier coating has very strict requirements: сharacterized by a smooth change of physico-mechanical properties (porosity, microhardness, elastic modulus in the cross section of the metal substrate to the outer ceramic layer; to withstand multiple cycles of thermal cycling from room temperature to the operating temperature; to maintain gastightness under operating conditions and thus ensure a sufficiently high level of adhesive strength. For realization of new technological schemes applying thermal barrier coatings with high operational characteristics was developed, patented and manufactured a range of new equipment. The experiments show that authors developed PBG-1 plasmatron and powder feeder PPBG-04 have at least 2–3 times the service life during the deposition of ceramic materials compared to the standard equipment of the company "Plasma-Technik", by changing the structure of the cathode-anode plasma torch assembly and construction of the delivery unit of the feeder to facilitate the uniform supply of the powder into the plasma jet and the best of his penetration. The result is better plasma coatings with improved operational characteristics: adhesion strength is increased to 1.3–2 times, material utilization in 1.5–1.6 times microhardness 1.2–1.4 times the porosity is reduced by 2–2.5 times.

  5. Nanostructured yttria stabilized zirconia coatings deposited by air plasma spraying

    Institute of Scientific and Technical Information of China (English)

    ZHOU Hong; LI Fei; HE Bo; WANG Jun; SUN Bao-de

    2007-01-01

    Nanostructured yttria partially stabilized zirconia coatings were deposited by air plasma spraying with reconstituted nanosized powder. The microstructures and phase compositions of the powder and the as-sprayed nanostructured coatings were characterized by transmission electron microscopy(TEM), scanning electron microscopy(SEM) and X-ray diffraction(XRD). The results demonstrate that the microstructure of as-sprayed nanostructured zirconia coating exhibits a unique tri-modal distribution including the initial nanostructure of the powder, equiaxed grains and columnar grains. Air plasma sprayed nanostructured zirconia coatings consist of only the nontransformable tetragonal phase, though the reconstituted nanostructured powder shows the presence of the monoclinic, the tetragonal and the cubic phases. The mean grain size of the coating is about 42 nm.

  6. Plasma-sprayed ceramic coatings for molten metal environments.

    Energy Technology Data Exchange (ETDEWEB)

    Hollis, K. J. (Kendall J.); Peters, M. I. (Maria I.); Bartram, B. D. (Brian D.)

    2002-01-01

    Coating porosity is an important parameter to optimize for plasma-sprayed ceramics which are intended for service in molten metal environments. Too much porosity and the coatings may be infiltrated by the molten metal causing corrosive attack of the substrate or destruction of the coating upon solidification of the metal. Too little porosity and the coating may fail due to its inability to absorb thermal strains. This study describes the testing and analysis of tungsten rods coated with aluminum oxide, yttria-stabilized zirconia, yttrium oxide, and erbium oxide deposited by atmospheric plasma spraying. The samples were immersed in molten aluminum and analyzed after immersion. One of the ceramic materials used, yttrium oxide, was heat treated at 1000 C and 2000 C and analyzed by X-ray diffractography and mercury intrusion porosimetry. Slight changes in crysl nl structure and significant changes in porosity were observed after heat treatments.

  7. Erosion of marker coatings exposed to Pilot-PSI plasma

    NARCIS (Netherlands)

    Paris, P.; Hakola, A.; Bystrov, K.; De Temmerman, G.; Aints, M.; I. Jõgi,; Kiisk, M.; Kozlova, J.; Laan, M.; Likonen, J.; Lissovski, A.

    2013-01-01

    In this article, laser induced breakdown spectroscopy (LIBS) has been used to study plasma-induced erosion processes. Samples with ITER-relevant coatings were exposed to controlled plasma fluxes whose parameters were characteristic to those occurring in the reactor walls. After the experiments, eros

  8. Erosion of marker coatings exposed to Pilot-PSI plasma

    NARCIS (Netherlands)

    Paris, P.; Hakola, A.; Bystrov, K.; De Temmerman, G.; Aints, M.; I. Jõgi,; Kiisk, M.; Kozlova, J.; Laan, M.; Likonen, J.; Lissovski, A.

    2013-01-01

    In this article, laser induced breakdown spectroscopy (LIBS) has been used to study plasma-induced erosion processes. Samples with ITER-relevant coatings were exposed to controlled plasma fluxes whose parameters were characteristic to those occurring in the reactor walls. After the experiments,

  9. Fabrication and processing of polymer solar cells: A review of printing and coating techniques

    DEFF Research Database (Denmark)

    Krebs, Frederik C

    2009-01-01

    -forming techniques such as slot-die coating, gravure coating, knife-over-edge coating, off-set coating, spray coating and printing techniques such as ink jet printing, pad printing and screen printing. The former are used almost exclusively and are not suited for high-volume production whereas the latter are highly...... suited, but little explored in the context of polymer solar cells. A further distinction is made between printing and coating when a film is formed. The entire process leading to polymer solar cells is broken down into the individual steps and the available techniques and materials for each step...

  10. Gas Permeability of Porous Plasma-Sprayed Coatings

    Science.gov (United States)

    Wittmann-Ténèze, K.; Caron, N.; Alexandre, S.

    2008-12-01

    For different applications, such as solid oxide fuel cells, there is an interest in understanding the relationship between the microstructure and the gas permeability of plasma-sprayed coatings. Nevertheless, plasma spraying processes allow to elaborate coatings with singular microstructures, depending strongly on the initial material and plasma operating conditions. And so, the evolution of permeability is not directly linked to the porosity. In this work, coatings were manufactured using different initial feedstock and spray parameters to obtain various microporous structures. Measurements of their permeation with the pressure drop method and their open porosity just as the observation of the morphology and the structure by optical microscopy were achieved. The different data show that the evolution of the gas permeability with the open porosity follows the Kozeny-Carman equation. This result correlated with the microstructural observation highlights the relationship between the permeability and the physical properties of porous plasma-sprayed layers.

  11. Facile approach in fabricating superhydrophobic SiO{sub 2}/polymer nanocomposite coating

    Energy Technology Data Exchange (ETDEWEB)

    Chen Hengzhen [Laboratory of Special Functional Materials, Henan University, Kaifeng 475001 (China); Zhang Xia, E-mail: zhangxia0307@yahoo.com.cn [Laboratory of Special Functional Materials, Henan University, Kaifeng 475001 (China); Zhang Pingyu; Zhang Zhijun [Laboratory of Special Functional Materials, Henan University, Kaifeng 475001 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Fluorine-free superhydrophobic SiO{sub 2}/polymer composite coatings are fabricated by a simple spin-coating method without any surface chemical modification. Black-Right-Pointing-Pointer The SiO{sub 2}/polymer coatings show long-term stability in the condition of continuous contact with corrosive water. Black-Right-Pointing-Pointer The coating can be fabricated on various metal substrates to prevent metal from corrosion. - Abstract: We have developed a facile spin-coating method to prepare water-repellent SiO{sub 2}/polymer composite coating without any surface chemical modification. The wettability can be adjusted by controlling the content of SiO{sub 2} nanoparticles. The coating demonstrates sustainable superhydrophobicity in the condition of continuous contact with corrosive liquids. Importantly, the coating can be fabricated on various metal substrates to prevent metal from corrosion.

  12. Dynamics of polymer film formation during spin coating

    Energy Technology Data Exchange (ETDEWEB)

    Mouhamad, Y.; Clarke, N.; Jones, R. A. L.; Geoghegan, M., E-mail: geoghegan@sheffield.ac.uk [Department of Physics and Astronomy, The University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Mokarian-Tabari, P. [Materials Research Group, Department of Chemistry and the Tyndall National Institute, University College Cork, Cork (Ireland)

    2014-09-28

    Standard models explaining the spin coating of polymer solutions generally fail to describe the early stages of film formation, when hydrodynamic forces control the solution behavior. Using in situ light scattering alongside theoretical and semi-empirical models, it is shown that inertial forces (which initially cause a vertical gradient in the radial solvent velocity within the film) play a significant role in the rate of thinning of the solution. The development of thickness as a function of time of a solute-free liquid (toluene) and a blend of polystyrene and poly(methyl methacrylate) cast from toluene were fitted to different models as a function of toluene partial pressure. In the case of the formation of the polymer blend film, a concentration-dependent (Huggins) viscosity formula was used to account for changes in viscosity during spin coating. A semi-empirical model is introduced, which permits calculation of the solvent evaporation rate and the temporal evolution of the solute volume fraction and solution viscosity.

  13. Nano-Textured Fiber Coatings for Energy Absorbing Polymer Matrix Composite Materials

    Science.gov (United States)

    2004-12-01

    NANO-TEXTURED FIBER COATINGS FOR ENERGY ABSORBING POLYMER MATRIX COMPOSITE MATERIALS R. E. Jensen and S. H. McKnight Army Research Laboratory...Textured Fiber Coatings For Energy Absorbing Polymer Matrix Composite Materials 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6

  14. Study of Different Technologies for Film Coating of Drug Layered Pellets Using Ethylcellulose as Functional Polymer

    OpenAIRE

    Melegari, Cecilia

    2016-01-01

    The research project focused on the study of different technologies for film coating of pellets using ethylcellulose as barrier-membrane coating polymer. In particular, two different approaches were investigated: the conventional aqueous film coating and the dry powder coating methods. The research carried out during the first part of the PhD provided a comprehensive study of the conventional aqueous film coating process of guaifenesin-loaded pellets in order to understand the variables af...

  15. Continuous cellularization of calcium phosphate hybrid scaffolds induced by plasma polymer activation

    Energy Technology Data Exchange (ETDEWEB)

    Bergemann, Claudia [University Medical Center Rostock, Cell Biology, Schillingallee 69, D-18057 Rostock (Germany); Cornelsen, Matthias [University of Rostock, Fluid Technology and Microfluidics, Justus-von-Liebig Weg 6, D-18059 Rostock (Germany); Quade, Antje [Leibniz-Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, D-17489 Greifswald (Germany); Laube, Thorsten; Schnabelrauch, Matthias [INNOVENT e.V., Biomaterials Department, Pruessingstrasse 27B, D-07745 Jena (Germany); Rebl, Henrike [University Medical Center Rostock, Cell Biology, Schillingallee 69, D-18057 Rostock (Germany); Weißmann, Volker [Institute for Polymer Technologies (IPT) e.V., Alter Holzhafen 19, D-23966 Wismar (Germany); Seitz, Hermann [University of Rostock, Fluid Technology and Microfluidics, Justus-von-Liebig Weg 6, D-18059 Rostock (Germany); Nebe, Barbara, E-mail: barbara.nebe@med.uni-rostock.de [University Medical Center Rostock, Cell Biology, Schillingallee 69, D-18057 Rostock (Germany)

    2016-02-01

    The generation of hybrid materials based on β-tricalcium phosphate (TCP) and various biodegradable polymers like poly(L-lactide-co-D,L-lactide) (PLA) represents a common approach to overcoming the disadvantages of pure TCP devices. These disadvantages lie in TCP's mechanical properties, such as brittleness. The positive characteristic of PLA — improvement of compressive strength of calcium phosphate scaffolds – is diametrically opposed to its cell attractiveness. Therefore, the objective of this work was to optimize osteoblast migration and cellularization inside a three-dimensionally (3D) printed, PLA polymer stabilized TCP hybrid scaffold by a plasma polymer process depositing amino groups via allylamine. MG-63 osteoblastic cells inside the 10 mm hybrid scaffold were dynamically cultivated for 14 days in a 3D model system integrated in a perfusion reactor. The whole TCP/PLA hybrid scaffold was continuously colonized due to plasma polymerized allylamine activation inducing the migration potential of osteoblasts. - Highlights: • Mechanical stabilization of β-tricalcium phosphate scaffolds by PLA infiltration • Hybrid scaffolds with higher cell attraction due to plasma polymerized allylamine • 3D perfusion in vitro model for observation of cell migration inside scaffolds • Enhanced cell migration within plasma polymer coated TCP hybrid scaffolds.

  16. Plasma functionalized surface of commodity polymers for dopamine detection

    Science.gov (United States)

    Fabregat, Georgina; Osorio, Joaquin; Castedo, Alejandra; Armelin, Elaine; Buendía, Jorge J.; Llorca, Jordi; Alemán, Carlos

    2017-03-01

    We have fabricated potentially generalizable sensors based on polymeric-modified electrodes for the electrochemical detection of dopamine. Sensitive and selective sensors have been successfully obtained by applying a cold-plasma treatment during 1-2 min not only to conducting polymers but also to electrochemically inert polymers, such as polyethylene, polypropylene, polyvinylpyrrolidone, polycaprolactone and polystyrene. The effects of the plasma in the electrode surface activation, which is an essential requirement for the dopamine detection when inert polymers are used, have been investigated using X-ray photoelectron spectroscopy. Results indicate that exposure of polymer-modified electrodes to cold-plasma produces the formation of a large variety of reactive species adsorbed on the electrode surface, which catalyse the dopamine oxidation. With this technology, which is based on the application of a very simple physical functionalization, we have defined a paradox-based paradigm for the fabrication of electrochemical sensors by using inert and cheap plastics.

  17. Active screen plasma nitriding enhances cell attachment to polymer surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kaklamani, Georgia, E-mail: g.kaklamani@bham.ac.uk [University of Birmingham, College of Engineering and Physical Sciences, School of Metallurgy and Materials, Edgbaston, Birmingham B15 2TT (United Kingdom); Bowen, James; Mehrban, Nazia [University of Birmingham, College of Engineering and Physical Sciences, School of Chemical Engineering, Edgbaston, Birmingham B15 2TT (United Kingdom); Dong, Hanshan [University of Birmingham, College of Engineering and Physical Sciences, School of Metallurgy and Materials, Edgbaston, Birmingham B15 2TT (United Kingdom); Grover, Liam M. [University of Birmingham, College of Engineering and Physical Sciences, School of Chemical Engineering, Edgbaston, Birmingham B15 2TT (United Kingdom); Stamboulis, Artemis [University of Birmingham, College of Engineering and Physical Sciences, School of Metallurgy and Materials, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2013-05-15

    Active screen plasma nitriding (ASPN) is a well-established technique used for the surface modification of materials, the result of which is often a product with enhanced functional performance. Here we report the modification of the chemical and mechanical properties of ultra-high molecular weight poly(ethylene) (UHMWPE) using 80:20 (v/v) N{sub 2}/H{sub 2} ASPN, followed by growth of 3T3 fibroblasts on the treated and untreated polymer surfaces. ASPN-treated UHMWPE showed extensive fibroblast attachment within 3 h of seeding, whereas fibroblasts did not successfully attach to untreated UHMWPE. Fibroblast-coated surfaces were maintained for up to 28 days, monitoring their metabolic activity and morphology throughout. The chemical properties of the ASPN-treated UHMWPE surface were studied using X-ray photoelectron spectroscopy, revealing the presence of C-N, C=N, and C≡N chemical bonds. The elastic modulus, surface topography, and adhesion properties of the ASPN-treated UHMWPE surface were studied over 28 days during sample storage under ambient conditions and during immersion in two commonly used cell culture media.

  18. Synthesis and evaluation of rosin-based polymers as film coating materials.

    Science.gov (United States)

    Satturwar, P M; Mandaogade, P M; Fulzele, S V; Darwhekar, G N; Joshi, S B; Dorle, A K

    2002-04-01

    Rosin-based polymers (R-1 and R-2) were synthesized and characterized for physicochemical properties, molecular weight (Mw), polydispersity (Mw/Mn), glass transition temperature (Tg), and thermogravimetry (TGA). Films of the polymers were cast on a mercury substrate by solvent evaporation technique. Free films were characterized for surface topography by scanning electron microscopy (SEM), water vapor transmission rate (WVTR), tensile strength, percentage elongation, and modulus of elasticity. The polymers were further evaluated as film coating materials by evaluating drug release from coated pellets with diclofenac sodium as a model drug. Drug was loaded on non-pareil seeds by a solution-layering technique and coated with varying concentrations of polymer solutions. Sustained release of the drug was observed from coated pellets. The newly synthesized rosin-based polymers promise considerable utility for pharmaceutical coating.

  19. Revealing Amphiphilic Nanodornains of Anti-Biofouling Polymer Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Amadei, CA; Yang, R; Chiesa, M; Gleason, KK; Santos, S

    2014-04-09

    Undesired bacterial adhesion and biofilm formation on wetted surfaces leads to significant economic and environmental costs in various industries. Amphiphilic coatings with molecular hydrophilic and hydrophobic patches can mitigate such biofouling effectively in an environmentally friendly manner. The coatings are synthesized by copolymerizing (Hydroxyethyl)methacrylate and perfluorodecylacrylate via initiated chemical vapor deposition (iCVD). In previous studies, the size of the patches was estimated to be similar to 1.4-1.75 nm by fitting protein adsorption data to a theoretical model. However, no direct observations of the molecular heterogeneity exist and therefore the origin of the fouling resistance of amphiphilic coatings remains unclear. Here, the amphiphilic nature is investigated by amplitude modulation atomic force microscopy (AM-AFM). High-resolution images obtained by penetrating and oscillating the AFM tip under the naturally present water layer with sub-nanometer amplitudes reveal, for the first time, the existence of amphiphilic nanodomains (1-2 nm(2)). Compositional heterogeneity at the nanoscale is further corroborated by a statistical analysis on the data obtained with dynamic AM-AFM force spectroscopy. Variations in the long range attractive forces, responsible for water affinity, are also identified. These nanoscopic results on the polymers wettability are also confirmed by contact angle measurements (i.e., static and dynamic). The unprecedented ability to visualize the amphiphilic nanodomains as well as sub-nanometer crystalline structures provides strong evidence for the existence of previously postulated nanostructures, and sheds light on the underlying antifouling mechanism of amphiphilic chemistry.

  20. Protection of active implant electronics with organosilicon open air plasma coating for plastic overmolding

    Directory of Open Access Journals (Sweden)

    Zeppenfeld Matthias

    2016-09-01

    Full Text Available To overcome challenges for manufacturing of modern smart medical plastic parts by injection molding, e.g. for active implants, the optimization of the interface between electronics and the polymer component concerning adhesion and diffusion behavior is crucial. Our results indicate that a nano-sized SiOxCyHz layer formed by plasma-enhanced chemical vapour deposition (PE-CVD via open air atmospheric pressure plasma jet (APPJ and by use of a hexamthyldisiloxane (HMDSO precursor can form a non-corrosive, anti-permeable and biocompatible coating. Due to the open air character of the APPJ process an inline coating before overmolding could be an easy applicable method and a promising advancement.

  1. Plasma process control for improved PEO coatings on magnesium alloys

    Science.gov (United States)

    Hussein, Riyad Omran

    Plasma Electrolytic Oxidation (PEO) is a high voltage plasma-assisted oxidation process uses an environmentally-friendly aqueous electrolyte to oxidize the metal surfaces to form ceramic oxide coatings which impart a high corrosion and wear resistance. One of the main advantages of PEO process is that it can be applied to treat samples with complex shapes, and surfaces with different composition and microstructure. The PEO process of Mg alloys is strongly influenced by such parameters as electrolyte composition and concentration, current or voltage applied and substrate alloy. Generally, these parameters have a direct influence on the discharging behavior. The discharges play an essential role in the formation and resulting composition of the 3-layer oxide structure. A detailed knowledge of the coating mechanisms is extremely important in order to produce a desired coating quality to reach the best performance of the PEO coatings in terms of corrosion resistance and tribological properties (wear rate, COF). During PEO processing of magnesium, some of the metal cations are transferred outwards from the substrate and react with anions to form ceramic coatings. Also, due to the high electric field in the discharge channels, oxygen anions transfer towards the magnesium substrate and react with Mg2+ cations to form a ceramic coating. Although, in general, PEO coating of Mg alloys produces the three-layered structure, the relative proportions of the three-layers are strongly influenced by the PEO processing parameters. In PEO process, the ceramic coating grows inwards to the alloy substrate and outwards to the coating surface simultaneously. For the coating growth, there are three simultaneous processes taking place, namely the electrochemical, the plasma chemical reactions and thermal diffusion. Optical emission spectroscopy (OES) was employed for the discharge characterization by following the substrate and electrolyte element present in the plasma discharge during the

  2. Antireflection coatings on plastics deposited by plasma polymerization process

    Indian Academy of Sciences (India)

    K M K Srivatsa; M Bera; A Basu; T K Bhattacharya

    2008-08-01

    Antireflection coatings (ARCs) are deposited on the surfaces of optical elements like spectacle lenses to increase light transmission and improve their performance. In the ophthalmic industry, plastic lenses are rapidly displacing glass lenses due to several advantageous features. However, the deposition of ARCs on plastic lenses is a challenging task, because the plastic surface needs treatment for adhesion improvement and surface hardening before depositing the ARC. This surface treatment is usually done in a multi-stage process—exposure to energetic radiations, followed by deposition of a carbonyl hard coating by spin or dip coating processes, UV curing, etc. However, this treatment can also be done by plasma processes. Moreover, the plasma polymerization process allows deposition of optical films at room temperature, essential for plastics. The energetic ions in plasma processes provide similar effects as in ion assisted physical deposition processes to produce hard coatings, without requiring sophisticated ion sources. The plasma polymerization process is more economical than ion-assisted physical vapour deposition processes as regards equipment and source materials and is more cost-effective, enabling the surface treatment and deposition of the ARC in the same deposition system in a single run by varying the system parameters at each step. Since published results of the plasma polymerization processes developed abroad are rather sketchy and the techniques are mostly veiled in commercial secrecy, innovative and indigenous plasma-based techniques have been developed in this work for depositing the complete ARCs on plastic substrates.

  3. Probing properties of cold radiofrequency plasma with polymer probe

    Science.gov (United States)

    Bormashenko, E.; Chaniel, G.; Multanen, V.

    2015-01-01

    The probe intended for the characterization of cold plasma is introduced. The probe allows the estimation of Debye length of cold plasma. The probe is based on the pronounced modification of surface properties (wettability) of polymer films by cold plasmas. The probe was tested with the cold radiofrequency inductive air plasma discharge. The Debye length and the concentration of charge carriers were estimated for various gas pressures. The reported results coincide reasonably with the corresponding values established by other methods. The probe makes possible measurement of characteristics of cold plasmas in closed chambers.

  4. Probing Properties of Cold Radiofrequency Plasma with Polymer Probe

    CERN Document Server

    Bormashenko, Edward; Multanen, Victor

    2014-01-01

    The probe intended for the characterization of cold plasma is introduced. The probe allows estimation of the Debye length of the cold plasma. The probe is based on the pronounced modification of surface properties (wettability) of polymer films by cold plasmas. The probe was tested with the cold radiofrequency inductive air plasma discharge. The Debye length and the concentration of charge carriers were estimated for various gas pressures. The reported results coincide reasonably with the corresponding values established by other methods. The probe makes possible measurement of characteristics of cold plasmas in closed chambers.

  5. Reliability of plasma-sprayed coatings: monitoring the plasma spray process and improving the quality of coatings

    Science.gov (United States)

    Fauchais, P.; Vardelle, M.; Vardelle, A.

    2013-06-01

    As for every coating technology, the reliability and reproducibility of coatings are essential for the development of the plasma spraying technology in industrial manufacturing. They mainly depend on the process reliability, equipment and spray booth maintenance, operator training and certification, implementation and use of consistent production practices and standardization of coating testing. This paper deals with the first issue, that is the monitoring and control of the plasma spray process; it does not tackle the coating characterization and testing methods. It begins with a short history of coating quality improvement under plasma spray conditions over the last few decades, details the plasma spray torches used in the industry, the development of the measurements of in-flight and impacting particle parameters and then of sensors. It concludes with the process maps that describe the interrelations between the operating parameters of the spray process, in-flight particle characteristics and coating properties and with the potential of in situ monitoring of the process by artificial neural networks and fuzzy logic methods.

  6. Continuous preparation of polymer coated drug crystals by solid hollow fiber membrane-based cooling crystallization.

    Science.gov (United States)

    Chen, Dengyue; Singh, Dhananjay; Sirkar, Kamalesh K; Pfeffer, Robert

    2016-02-29

    A facile way to continuously coat drug crystals with a polymer is needed in controlled drug release. Conventional polymer coating methods have disadvantages: high energy consumption, low productivity, batch processing. A novel method for continuous polymer coating of drug crystals based on solid hollow fiber cooling crystallization (SHFCC) is introduced here. The drug acting as the host particle and the polymer for coating are Griseofulvin (GF) and Eudragit RL100, respectively. The polymer's cloud point temperature in its acetone solution was determined by UV spectrophotometry. An acetone solution of the polymer containing the drug in solution as well as undissolved drug crystals in suspension were pumped through the tube side of the SHFCC device; a cold liquid was circulated in the shell side to rapidly cool down the feed solution-suspension in the hollow-fiber lumen. The polymer precipitated from the solution and coated the suspended crystals due to rapid temperature reduction and heterogeneous nucleation; crystals formed from the solution were also coated by the polymer. Characterizations by scanning electron microscopy, thermogravimetric analysis, laser diffraction spectroscopy, X-ray diffraction, Raman spectroscopy, and dissolution tests show that a uniformly coated, free-flowing drug/product can be obtained under appropriate operating conditions without losing the drug's pharmaceutical properties and controlled release characteristics.

  7. Multilayer Coating Formation at the Deposition from Plasma

    OpenAIRE

    Shanin, Sergei Aleksandrovich; Knyazeva, Anna Georgievna

    2016-01-01

    The numerical experiment was carried out for the process of the coating composition formation during deposition from plasma. The chemical reactions between elements are taken into account. The nonuniform composition of the coating is determined by various transfer processes, including diffusion under stress action. To find the stress field the equilibrium problem was solved numerically because all physical and mechanical properties depend on composition. Stress field has been also obtained no...

  8. Preparation of thermal barrier coatings by ultrasonic plasma spraying

    Institute of Scientific and Technical Information of China (English)

    WEN Xiong-wei; LI Lu-ming; ZHANG Hua-tang; HAO Hong-wei; LU Zhi-qing

    2004-01-01

    Modulated plasma arc not only can heat the powder, but also can excite ultrasonic of different frequencies and different powers. The principles and characters of the plasma arc-excited ultrasonic were described, and the ultrasonic plasma spraying was compared with normal plasma spraying. Zirconia thermal barrier coatings (TBCs) were fabricated with two kinds of method. The TBCs were studied by the optical microscope observation, SEM observation and bonding strength experiment. The results show that suitable ultrasonic changes the performance and microstructure of TBCs in evidence. And the mechanism of ultrasonic influencing the TBCs was also discussed.

  9. Suspension plasma sprayed composite coating using amorphous powder feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Chen Dianying [Department of Chemical, Materials and Biomolecular Engineering, Institute of Materials Science, University of Connecticut, 97 N Eagleville Rd U-3136, Storrs, CT 06269 (United States)], E-mail: chendy@ims.uconn.edu; Jordan, Eric H. [Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269 (United States); Gell, Maurice [Department of Chemical, Materials and Biomolecular Engineering, Institute of Materials Science, University of Connecticut, 97 N Eagleville Rd U-3136, Storrs, CT 06269 (United States)

    2009-03-15

    Al{sub 2}O{sub 3}-ZrO{sub 2} composite coatings were deposited by the suspension plasma spray process using molecularly mixed amorphous powders. X-ray diffraction (XRD) analysis shows that the as-sprayed coating is composed of {alpha}-Al{sub 2}O{sub 3} and tetragonal ZrO{sub 2} phases with grain sizes of 26 nm and 18 nm, respectively. The as-sprayed coating has 93% density with a hardness of 9.9 GPa. Heat treatment of the as-sprayed coating reveals that the Al{sub 2}O{sub 3} and ZrO{sub 2} phases are homogeneously distributed in the composite coating.

  10. Monoclinic zirconia distributions in plasma-sprayed thermal barrier coatings

    Science.gov (United States)

    Lance, M. J.; Haynes, J. A.; Ferber, M. K.; Cannon, W. R.

    2000-03-01

    Phase composition in an air plasma-sprayed Y2O3-stabilized ZrO2 (YSZ) top coating of a thermal barrier coating (TBC) system was characterized. Both the bulk phase content and localized pockets of monoclinic zirconia were measured with Raman spectroscopy. The starting powder consisted of ˜15 vol.% monoclinic zirconia, which decreased to ˜2 vol.% in the as-sprayed coating. Monoclinic zirconia was concentrated in porous pockets that were evenly distributed throughout the TBC. The pockets resulted from the presence of unmelted granules in the starting powder. The potential effect of the distributed monoclinic pockets on TBC performance is discussed.

  11. Deposition of Nano-Scaled Coatings Using Inductively Coupled Plasma

    Institute of Scientific and Technical Information of China (English)

    D H Jung; B Park; J J Lee

    2004-01-01

    Nano-scaled Ti-B-N coatings could be produced by inductively coupled plasma (ICP) assisted magnetron spurtering. The properties and microstructure of the coating can be changed drastically by applying ICP to conventional magnetron sputtering. In this work, an internal type rf ICP process is used. The core of this technology is the efficient production and control of self-depositing ions and reactive gas ions by an induced electric field. Ti-B-N coatings were prepared by using a TiB2 target and a gas mixture of N2 and Ar at 200 ℃ and a pressure of 60 mTorr. In addition to ICP, the effect of the substrate bias voltage on the structure and properties of the coating was investigated. By applying ICP and a bias voltage to the substrate the hardness of the Ti-B-N coating is increased by more than 75 GPa, as a result of enhanced ionization in the plasma. The Ti-B-N coating, which has the highest hardness, shows the best surface uniformity and a very dense structure with a grain size of 3 nm. This sample also shows a high crystallinity compared to the coating prepared using other deposition parameters.

  12. NSTX Plasma Response to Lithium Coated Divertor

    Energy Technology Data Exchange (ETDEWEB)

    H.W. Kugel, M.G. Bell, J.P. Allain, R.E. Bell, S. Ding, S.P. Gerhardt, M.A. Jaworski, R. Kaita, J. Kallman, S.M. Kaye, B.P. LeBlanc, R. Maingi, R. Majeski, R. Maqueda, D.K. Mansfield, D. Mueller, R. Nygren, S.F. Paul, R. Raman, A.L. Roquemore, S.A. Sabbagh, H. Schneider, C.H. Skinner, V.A. Soukhanovskii, C.N. Taylor, J.R. Timberlak, W.R. Wampler, L.E. Zakharov, S.J. Zweben, and the NSTX Research Team

    2011-01-21

    NSTX experiments have explored lithium evaporated on a graphite divertor and other plasma facing components in both L- and H- mode confinement regimes heated by high-power neutral beams. Improvements in plasma performance have followed these lithium depositions, including a reduction and eventual elimination of the HeGDC time between discharges, reduced edge neutral density, reduced plasma density, particularly in the edge and the SOL, increased pedestal electron and ion temperature, improved energy confinement and the suppression of ELMs in the H-mode. However, with improvements in confinement and suppression of ELMs, there was a significant secular increase in the effective ion charge Zeff and the radiated power in H-mode plasmas as a result of increases in the carbon and medium-Z metallic impurities. Lithium itself remained at a very low level in the plasma core, <0.1%. Initial results are reported from operation with a Liquid Lithium Divertor (LLD) recently installed.

  13. Osteoblast response to oxygen functionalised plasma polymer surfaces

    CERN Document Server

    Kelly, J M

    2001-01-01

    Thin organic films with oxygen-carbon functionalities were deposited from plasmas containing vapour of the small organic compounds: allyI alcohol, methyl vinyl ketone and acrylic acid with octadiene. Characterisation of the deposits was carried out using X-ray photoelectron spectroscopy, in conjunction with chemical derivatisation, and this showed that plasma polymers retained high levels of original monomer functionality when the plasmas were sustained at low power for a given monomer vapour flow rate. High levels of attachment of rat osteosarcoma (ROS 17/2.8) cells were observed on surfaces that had high concentrations of hydroxyl and carbonyl functionalities and intermediate concentrations of carboxyl functionality. Cells did not attach to the octadiene plasma polymer. Cell attachment to carboxyl and methyl functionalised self-assembled monolayers increased with increasing concentration of surface carboxyl groups. Adsorption of the extracellular matrix protein fibronectin to acrylic acid/octadiene plasma c...

  14. Advanced polymer-inorganic hybrid hard coatings utilizing in situ polymerization method.

    Science.gov (United States)

    Takaki, Toshihiko; Nishiura, Katsunori; Mizuta, Yasushi; Itou, Yuichi

    2006-12-01

    Hard coatings are frequently used to give plastics high scratch resistance. Coating hardness and adhesion to the substrate are considered to be key factors influencing scratch resistance, but it is difficult to produce coatings that have both properties. Hybridization of polymers and inorganic materials is a promising approach for solving this problem. We prepared polymer-silica hybrid coatings by using in situ polymerization to carry out radical polymerization of vinyl monomers in a sol-gel solution of alkoxysilanes, and measured the abrasion resistance of the coatings. However, the expected properties were not obtained because the sol-gel reaction did not perfectly proceed on the surface of the coatings under the N2 conditions. We found that curing the hybrid coatings by UV irradiation in air promoted the sol-gel reaction on the surface, resulting in coatings having excellent abrasion resistance.

  15. Instability and morphology of polymer solutions coating a fiber

    CERN Document Server

    Boulogne, François; Giorgiutti-Dauphiné, Frédérique

    2013-01-01

    We report an experimental study on the dynamics of a thin film of polymer solution coating a vertical fiber. The liquid film has first a constant thickness and then undergoes the Rayleigh-Plateau instability which leads to the formation of sequences of drops, separated by a thin film, moving down at a constant velocity. Different polymer solutions are used, i.e. xanthan solutions and polyacrylamide (PAAm) solutions. These solutions both exhibit shear-rate dependence of the viscosity, but for PAAm solutions, there are strong normal stresses in addition of the shear-thinning effect. We characterize experimentally and separately the effects of these two non-Newtonian properties on the flow on the fiber. Thus, in the flat film observed before the emergence of the drops, only shear-thinning effect plays a role and tends to thin the film compared to the Newtonian case. The effect of the non-Newtonian rheology on the Rayleigh-Plateau instability is then investigated through the measurements of the growth rate and th...

  16. Vinyl polymer-coated lorazepam particles for drug delivery to the airways.

    Science.gov (United States)

    Traynor, Matthew J; Zhao, Yanjun; Brown, Marc B; Jones, Stuart A

    2011-05-30

    A particle engineering method that adsorbs a microfine vinyl polymer coat to crystalline drug microparticles has been shown to be an effective way to control delivery. However, the means by which the functional performance of such microparticles is altered by the behaviour of the polymers in the microparticle coat remains unclear. The aim of this study was to determine the influence of vinyl polymer coating on the in vitro delivery characteristics of intranasal lorazepam microparticles. A series of four, similarly sized (ca. 10 μm), lorazepam-rich microparticles with different polymer coats were generated. The absorption of the polymer coats appeared to disrupt lorazepam solid state dimer formation in the microparticles, which manifested in a reduction in drug melting point. Mildly cohesive particles (aerodynamic diameter of 32 μm) that allowed rapid drug release (ca. 80% in 5 min) were generated when partially hydrolysed PVA dominated the microparticle coat, whilst fully hydrolysed PVA reduced particle cohesion and retarded drug release (ca. 15% release in 5 min). Infrared analysis showed that the properties of the microparticles were dictated by the strength of the hydrogen bonding in the polymer coat and not the strength of coat adsorption that was facilitated by hydrogen bond formation between the hydroxyl groups of the PVA and the hydroxyl group at position C3 of the lorazepam diazepine ring.

  17. Enhanced photoluminescence of porous silicon nanoparticles coated by bioresorbable polymers

    Science.gov (United States)

    Gongalsky, Maxim B.; Kharin, Alexander Yu; Osminkina, Liubov A.; Timoshenko, Victor Yu; Jeong, Jinyoung; Lee, Han; Chung, Bong Hyun

    2012-08-01

    A significant enhancement of the photoluminescence (PL) efficiency is observed for aqueous suspensions of porous silicon nanoparticles (PSiNPs) coated by bioresorbable polymers, i.e., polylactic-co-glycolic acid (PLGA) and polyvinyl alcohol (PVA). PSiNPs with average size about 100 nm prepared by mechanical grinding of electrochemically etched porous silicon were dispersed in water to prepare the stable suspension. The inner hydrophobic PLGA layer prevents the PSiNPs from the dissolution in water, while the outer PVA layer makes the PSiNPs hydrophilic. The PL quantum yield of PLGA/PVA-coated PSiNPs was found to increase by three times for 2 weeks of the storage in water. The observed effect is explained by taking into account both suppression of the dissolution of PSiNPs in water and a process of the passivation of nonradiative defects in PSiNPs. The obtained results are interesting in view of the potential applications of PSiNPs in bioimaging.

  18. Zotarolimus-eluting durable-polymer-coated stent versus a biolimus-eluting biodegradable-polymer-coated stent in unselected patients undergoing percutaneous coronary intervention (SORT OUT VI)

    DEFF Research Database (Denmark)

    Raungaard, Bent; Jensen, Lisette Okkels; Tilsted, Hans-Henrik

    2015-01-01

    BACKGROUND: New-generation drug-eluting coronary stents have reduced the risk of coronary events, especially in patients with complex disease or lesions. To what extent different stent platforms, polymers, and antiproliferative drugs affect outcomes, however, is unclear. We investigated the safety...... and efficacy of a third-generation stent by comparing a highly biocompatible durable-polymer-coated zotarolimus-eluting stent with a biodegradable-polymer-coated biolimus-eluting stent. METHODS: This open-label, randomised, multicentre, non-inferiority trial was done at three sites across western Denmark. All....... The trial was powered to assess non-inferiority of durable-polymer zotarolimus-eluting stent compared with the biodegradable-polymer biolimus-eluting stent with a predetermined non-inferiority margin of 0·025. This trial is registered with ClinicalTrials.gov, number NCT01956448. FINDINGS: Of 7103 screened...

  19. Light wave interference during laser drilling of polymer coatings

    Science.gov (United States)

    Pargellis, A. N.; Au, D. T. W.; Kestenbaum, A.

    1988-12-01

    A CO2 laser has been used to drill holes in a 150-μm-thick, UV-curable, modified acrylate, polymer coating a copper substrate. A typical hole is 100-150 μm in diameter. The holes in this study were each made with a single laser pulse of 10.6-μm wavelength, duration 100 or 200 μs, and 4-20 mJ energy. Two superimposed sets of periodic ripples have been observed on the hole walls. The shorter wavelength varies from 4.0 μm at the top of the hole to 5.3 μm at the bottom of the hole. The longer wavelength appears to be 13.2 μm and is attenuated as the wave propagates towards the copper substrate. The experimental data are compared with values calculated using a model that considers the interference of a standing wave inside the hole with radiation propagating through the dielectric surrounding the hole. The amplitude (trough-to-peak distance) of the waves in the hole wall is about half the wavelength of the standing waves. The long-wavelength waves (13.2 μm) yield ripples in the wall of 6.5-μm amplitude. These ripples give 13.0 μm (0.5 mils) as an ultimate lower limit for laser drilling holes using the 10.6-μm wavelengths obtained with a CO2 laser. Chemical etching of the polymer causes all of the holes to have thin rims surrounding the top of the hole. This is due to accelerated etching of the less cured polymer material inside the hole. A chemical etching process etches away some of the ripple pattern, particularly near the top of the hole.

  20. Plasma sprayed rutile titania-nanosilver antibacterial coatings

    Science.gov (United States)

    Gao, Jinjin; Zhao, Chengjian; Zhou, Jingfang; Li, Chunxia; Shao, Yiran; Shi, Chao; Zhu, Yingchun

    2015-11-01

    Rutile titania (TiO2) coatings have superior mechanical properties and excellent stability that make them preferential candidates for various applications. In order to prevent infection arising from bacteria, significant efforts have been focused on antibacterial TiO2 coatings. In the study, titania-nanosilver (TiO2/Ag) coatings with five different kinds of weight percentages of silver nanoparticles (AgNPs) were prepared by plasma spray. The feedstock powders, which had a composition of rutile TiO2 powders containing 1-10,000 ppm AgNPs, were double sintered and deposited on stainless steel substrates with optimized spraying parameters. X-Ray diffraction and scanning electron microscopy were used to analysize the phase composition and surface morphology of TiO2/Ag powders and coatings. Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were employed to examine the antibacterial activity of the as-prepared coatings by bacterial counting method. The results showed that silver existed homogeneously in the TiO2/Ag coatings and no crystalline changed happened in the TiO2 structure. The reduction ratios on the TiO2/Ag coatings with 10 ppm AgNPs were as high as 94.8% and 95.6% for E. coli and S. aureus, respectively, and the TiO2/Ag coatings with 100-1000 ppm AgNPs exhibited 100% bactericidal activity against E. coli and S. aureus, which indicated the TiO2/Ag coatings with more than 10 ppm AgNPs had strong antibacterial activity. Moreover, the main factors influencing the antibacterial properties of TiO2/Ag coatings were discussed with grain size and the content of silver as well as the microstructure of the coatings.

  1. Ceramic Top Coats of Plasma-Sprayed Thermal Barrier Coatings: Materials, Processes, and Properties

    Science.gov (United States)

    Bakan, Emine; Vaßen, Robert

    2017-08-01

    The ceramic top coat has a major influence on the performance of the thermal barrier coating systems (TBCs). Yttria-partially-stabilized zirconia (YSZ) is the top coat material frequently used, and the major deposition processes of the YSZ top coat are atmospheric plasma spraying and electron beam physical vapor deposition. Recently, also new thermal spray processes such as suspension plasma spraying or plasma spray-physical vapor deposition have been intensively investigated for TBC top coat deposition. These new processes and particularly the different coating microstructures that can be deposited with them will be reviewed in this article. Furthermore, the properties and the intrinsic-extrinsic degradation mechanisms of the YSZ will be discussed. Following the TBC deposition processes and standard YSZ material, alternative ceramic materials such as perovskites and hexaaluminates will be summarized, while properties of pyrochlores with regard to their crystal structure will be discussed more in detail. The merits of the pyrochlores such as good CMAS resistance as well as their weaknesses, e.g., low fracture toughness, processability issues, will be outlined.

  2. Plasma sprayed rutile titania-nanosilver antibacterial coatings

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Jinjin [Key Lab of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Zhao, Chengjian [National Key Laboratory of Human Factors Engineering, Department of ECLSS, China Astronaut Researching and Training Center, Beijing, 100094 (China); Zhou, Jingfang [Ian Wark Research Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, SA, 5095 (Australia); Li, Chunxia [National Key Laboratory of Human Factors Engineering, Department of ECLSS, China Astronaut Researching and Training Center, Beijing, 100094 (China); Shao, Yiran; Shi, Chao [Key Lab of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Zhu, Yingchun, E-mail: yzhu@mail.sic.ac.cn [Key Lab of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China)

    2015-11-15

    Graphical abstract: - Highlights: • TiO{sub 2}/Ag feedstock powders containing 1–10,000 ppm silver nanoparticles were double sintered and deposited by plasma spray. • TiO{sub 2}/Ag coatings were composed of pure rutile phase and homogeneously-distributed metallic silver. • TiO{sub 2}/Ag coatings with more than 10 ppm silver nanoparticles exhibited strong antibacterial activity against E. coli and S. aureus. - Abstract: Rutile titania (TiO{sub 2}) coatings have superior mechanical properties and excellent stability that make them preferential candidates for various applications. In order to prevent infection arising from bacteria, significant efforts have been focused on antibacterial TiO{sub 2} coatings. In the study, titania-nanosilver (TiO{sub 2}/Ag) coatings with five different kinds of weight percentages of silver nanoparticles (AgNPs) were prepared by plasma spray. The feedstock powders, which had a composition of rutile TiO{sub 2} powders containing 1–10,000 ppm AgNPs, were double sintered and deposited on stainless steel substrates with optimized spraying parameters. X-Ray diffraction and scanning electron microscopy were used to analysize the phase composition and surface morphology of TiO{sub 2}/Ag powders and coatings. Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were employed to examine the antibacterial activity of the as-prepared coatings by bacterial counting method. The results showed that silver existed homogeneously in the TiO{sub 2}/Ag coatings and no crystalline changed happened in the TiO{sub 2} structure. The reduction ratios on the TiO{sub 2}/Ag coatings with 10 ppm AgNPs were as high as 94.8% and 95.6% for E. coli and S. aureus, respectively, and the TiO{sub 2}/Ag coatings with 100–1000 ppm AgNPs exhibited 100% bactericidal activity against E. coli and S. aureus, which indicated the TiO{sub 2}/Ag coatings with more than 10 ppm AgNPs had strong antibacterial activity. Moreover, the main factors influencing the

  3. Utilization of star-shaped polymer architecture in the creation of high-density polymer brush coatings for the prevention of platelet and bacteria adhesion

    Science.gov (United States)

    Totani, Masayasu; Terada, Kayo; Terashima, Takaya; Kim, Ill Yong; Ohtsuki, Chikara; Xi, Chuanwu; Tanihara, Masao

    2014-01-01

    We demonstrate utilization of star-shaped polymers as high-density polymer brush coatings and their effectiveness to inhibit the adhesion of platelets and bacteria. Star polymers consisting of poly(2-hydroxyethyl methacrylate) (PHEMA) and/or poly(methyl methacrylate) (PMMA), were synthesized using living radical polymerization with a ruthenium catalyst. The polymer coatings were prepared by simple drop casting of the polymer solution onto poly(ethylene terephthalate) (PET) surfaces and then dried. Among the star polymers prepared in this study, the PHEMA star polymer (star-PHEMA) and the PHEMA/PMMA (mol. ratio of 71/29) heteroarm star polymer (star-H71M29) coatings showed the highest percentage of inhibition against platelet adhesion (78–88% relative to noncoated PET surface) and Escherichia coli (94–97%). These coatings also showed anti-adhesion activity against platelets after incubation in Dulbecco's phosphate buffered saline or surfactant solution for 7 days. In addition, the PMMA component of the star polymers increased the scratch resistance of the coating. These results indicate that the star-polymer architecture provides high polymer chain density on PET surfaces to prevent adhesion of platelets and bacteria, as well as coating stability and physical durability to prevent exposure of bare PET surfaces. The star polymers provide a simple and effective approach to preparing anti-adhesion polymer coatings on biomedical materials against the adhesion of platelets and bacteria. PMID:25485105

  4. Development of mesalazine pellets coated with methacrylic-derived polymer

    Directory of Open Access Journals (Sweden)

    Simone Cristina Déo

    2011-03-01

    Full Text Available Mesalazine (5-ASA is the standard drug for the treatment of inflammatory bowel disease (IBD due to its local effect on intestinal and colonic mucosa. The effective and safe treatment of this disease requires more efficient delivery of the active substance to its site of action. The focus of this study was the use of multiparticulate systems, a modified release form in which the drug is divided into several functional subunits of release in the form of granules or pellets. When these forms are administered, they are rapidly disintegrated, distributing their content throughout the gastrointestinal tract. The aim of this study was to develop and evaluate a multiparticulate system consisting of pellets coated with polymer for pH-dependent release, derived from methacrylic acid and incorporated into the tablet dosage form of mesalazine as a model drug. The extrusion-spheronisation technique was used, resulting in smooth and spherical pellets with uniform size distribution, which were coated in fluidized bed using Opadry® Enteric 94K28327 containing Eudragit® S100 as the agent regulating drug release. The dissolution profile of coated pellets showed good control of drug release from the polymer at the two levels of coating evaluated (8% and 10%, but only the 10% coated pellets were statistically similar to Asalit® 400 mg.A mesalazina (5-ASA tem se apresentado como fármaco padrão para o tratamento da doença inflamatória intestinal (DII devido ao seu efeito local na mucosa intestinal e colônica. A terapia efetiva e segura desta doença requer a chegada da substância ativa ao seu local de ação com maior eficiência. Nessa busca, tem se destacado o uso de Sistemas Multiparticulados, forma farmacêutica de liberação modificada, em que o fármaco está dividido em várias subunidades funcionais de liberação, sob a forma de grânulos ou péletes, que quando administrados, são rapidamente desintegrados distribuindo seu conteúdo por todo trato

  5. Plasma cleaning of beryllium coated mirrors

    Science.gov (United States)

    Moser, L.; Marot, L.; Steiner, R.; Newman, M.; Widdowson, A.; Ivanova, D.; Likonen, J.; Petersson, P.; Pintsuk, G.; Rubel, M.; Meyer, E.; Contributors, JET

    2016-02-01

    Cleaning systems of metallic first mirrors are needed in more than 20 optical diagnostic systems from ITER to avoid reflectivity losses. Currently, plasma sputtering is considered as one of the most promising techniques to remove deposits coming from the main wall (mainly beryllium and tungsten). This work presents the results of plasma cleaning of rhodium and molybdenum mirrors exposed in JET-ILW and contaminated with typical tokamak elements (including beryllium and tungsten). Using radio frequency (13.56 MHz) argon or helium plasma, the removal of mixed layers was demonstrated and mirror reflectivity improved towards initial values. The cleaning was evaluated by performing reflectivity measurements, scanning electron microscopy, x-ray photoelectron spectroscopy and ion beam analysis.

  6. Development of Anticorrosive Polymer Nanocomposite Coating for Corrosion Protection in Marine Environment

    Science.gov (United States)

    Mardare, L.; Benea, L.

    2017-06-01

    The marine environment is considered to be a highly aggressive environment for metal materials. Steels are the most common materials being used for shipbuilding. Corrosion is a major cause of structural deterioration in marine and offshore structures. Corrosion of carbon steel in marine environment becomes serious due to the highly corrosive nature of seawater with high salinity and microorganism. To protect metallic materials particularly steel against corrosion occurrence various organic and inorganic coatings are used. The most used are the polymeric protective coatings. The nanostructured TiO2 polymer coating is able to offer higher protection to steel against corrosion, and performed relatively better than other polymer coatings.

  7. Plasma-sprayed ceramic coatings for protection against molten metal.

    Energy Technology Data Exchange (ETDEWEB)

    Hollis, K. J. (Kendall J.); Peters, M. I. (Maria I.); Bartram, B. D. (Brian D.)

    2002-01-01

    Molten metal environments pose a special demand on materials due to the high temperature corrosion effects and thermal expansion mismatch induced stress effects. A solution that has been successfully employed is the use of a base material for the mechanical strength and a coating material for the chemical compatibility with the molten metal. The work described here used such an approach coating tungsten rods with aluminum oxide, yttria-stabilized zirconia, yttrium oxide, and erbium oxide deposited by atmospheric plasma spraying. The ceramic materials were deposited under varying conditions to produce different structures. Measurement of particle characteristics was performed to correlate to material properties. The coatings were tested in a thermal cycling environment to simulate the metal melting cycle expected in service. Results of the testing indicate the effect of material composition and spray conditions on the thermal cycle crack resistance of the coatings.

  8. Controlled release from drug microparticles via solventless dry-polymer coating.

    Science.gov (United States)

    Capece, Maxx; Barrows, Jason; Davé, Rajesh N

    2015-04-01

    A novel solvent-less dry-polymer coating process employing high-intensity vibrations avoiding the use of liquid plasticizers, solvents, binders, and heat treatments is utilized for the purpose of controlled release. The main hypothesis is that such process having highly controllable processing intensity and time may be effective for coating particularly fine particles, 100 μm and smaller via exploiting particle interactions between polymers and substrates in the dry state, while avoiding breakage yet achieving conformal coating. The method utilizes vibratory mixing to first layer micronized polymer onto active pharmaceutical ingredient (API) particles by virtue of van der Waals forces and to subsequently mechanically deform the polymer into a continuous film. As a practical example, ascorbic acid and ibuprofen microparticles, 50-500 μm, are coated with the polymers polyethylene wax or carnauba wax, a generally recognized as safe material, resulting in controlled release on the order of seconds to hours. As a novelty, models are utilized to describe the coating layer thickness and the controlled-release behavior of the API, which occurs because of a diffusion-based mechanism. Such modeling would allow the design and control of the coating process with application for the controlled release of microparticles, particularly those less than 100 μm, which are difficult to coat by conventional solvent coating methods. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  9. Effect of vacuum conditions and plasma concentration on the chemical composition and adhesion of vacuum-plasma coatings

    Science.gov (United States)

    Borisov, D. P.; Kuznetsov, V. M.; Slabodchikov, V. A.

    2015-11-01

    The paper reports on the chemical composition of titanium nitride (TiN) and silicon (Si) coatings deposited with a new technological vacuum plasma setup which comprises magnetron sputtering systems, arc evaporators, and an efficient plasma generator. It is shown that due to highly clean vacuum conditions and highly clean surface treatment in the gas discharge plasma, both the coating-substrate interface and the coatings as such are almost free from oxygen and carbon. It is found that the coating-substrate interface represents a layer of thickness ≥ 60 nm formed through vacuum plasma mixing of the coating and substrate materials. The TiN coatings obtained on the new equipment display a higher adhesion compared to brass coatings deposited by industrial technologies via intermediate titanium oxide layers. It is concluded that the designed vacuum plasma equipment allows efficient surface modification of materials and articles by vacuum plasma immersion processes.

  10. Application of atmospheric pressure plasma in polymer and composite adhesion

    Science.gov (United States)

    Yu, Hang

    An atmospheric pressure helium and oxygen plasma was used to investigate surface activation and bonding in polymer composites. This device was operated by passing 1.0-3.0 vol% of oxygen in helium through a pair of parallel plate metal electrodes powered by 13.56 or 27.12 MHz radio frequency power. The gases were partially ionized between the capacitors where plasma was generated. The reactive species in the plasma were carried downstream by the gas flow to treat the substrate surface. The temperature of the plasm gas reaching the surface of the substrate did not exceed 150 °C, which makes it suitable for polymer processing. The reactive species in the plasma downstream includes ~ 1016-1017 cm-3 atomic oxygen, ~ 1015 cm-3 ozone molecule, and ~ 10 16 cm-3 metastable oxygen molecule (O2 1Deltag). The substrates were treated at 2-5 mm distance from the exit of the plasma. Surface properties of the substrates were characterized using water contact angle (WCA), atomic force microscopy (AFM), infrared spectroscopy (IR), and X-ray photoelectron spectroscopy (XPS). Subsequently, the plasma treated samples were bonded adhesively or fabricated into composites. The increase in mechanical strength was correlated to changes in the material composition and structure after plasma treatment. The work presented hereafter establishes atmospheric pressure plasma as an effective method to activate and to clean the surfaces of polymers and composites for bonding. This application can be further expanded to the activation of carbon fibers for better fiber-resin interactions during the fabrication of composites. Treating electronic grade FR-4 and polyimide with the He/O2 plasma for a few seconds changed the substrate surface from hydrophobic to hydrophilic, which allowed complete wetting of the surface by epoxy in underfill applications. Characterization of the surface by X-ray photoelectron spectroscopy shows formation of oxygenated functional groups, including hydroxyl, carbonyl, and

  11. Polymer coatings on plane and spherical surfaces obtained by plasma polymerization from trans-2-butene and hydrogen mixture; Depots de polymere sur surfaces planes et spheriques obtenus par polymerisation plasma a partir d`un melange de trans-2-butene et d`hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    Benardais, A

    1997-10-21

    This study of a low frequency plasma polymerization process was undertaken to be used in manufacturing of targets used in laser-matter interaction experiments. In this system, whether the sample is placed in the discharge or outside of the discharge, hydrocarbon coatings from a gaseous mixture of hydrogen and trans-2-butene are obtain. This study consists of two parts. We first dealt with the understanding of plasma polymerization mechanisms in the reactor which resulted in a better process optimization. The study of gas flow in the reactor allowed us to determine the species repartition in the vessel. With experiments performed on the electrical behavior in the reactor we were able to define the discharge type. Then, species present in the plasma were analysed by emission spectroscopy and mass spectrometry and then reaction mechanisms were proposed. Attention was paid to the role of hydrogen which in fact acted as a reagent like trans-2-butene. We also worked on the process optimization in order to obtain a good working point which produces coatings which are as transparent as possible, contain only carbon and hydrogen (and the least amount of oxygen), have a smooth surface finish (mean square root of roughness < 50 nm) and retain their qualities overtime. After the reactor characterization, the study of the effects of different parameters (inner or post-discharge coatings, pressure, total gas flow, composition of the mixture of trans-2-butene and hydrogen, power, frequency, interelectrode distance) on deposition rate, roughness and chemical composition of coatings led to the finding of optimal deposition conditions. (author) 103 refs.

  12. Polymer Derived Rare Earth Silicate Nanocomposite Protective Coatings for Nuclear Thermal Propulsion Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this Phase I SBIR program is to develop polymer derived rare earth silicate nanocomposite environmental barrier coatings (EBC) for providing...

  13. Novel Temperature-Independent FBG-type Pressure Sensor with Step-Coated Polymers

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In this paper, a novel technique is presented for an FBG with the step-coated polymers, which can be used for the measurement of the temperature-independent pressure in the temperature range between 5 and 50℃.

  14. Optimization of cardiovascular stent against restenosis: factorial design-based statistical analysis of polymer coating conditions.

    Directory of Open Access Journals (Sweden)

    Gayathri Acharya

    Full Text Available The objective of this study was to optimize the physicodynamic conditions of polymeric system as a coating substrate for drug eluting stents against restenosis. As Nitric Oxide (NO has multifunctional activities, such as regulating blood flow and pressure, and influencing thrombus formation, a continuous and spatiotemporal delivery of NO loaded in the polymer based nanoparticles could be a viable option to reduce and prevent restenosis. To identify the most suitable carrier for S-Nitrosoglutathione (GSNO, a NO prodrug, stents were coated with various polymers, such as poly (lactic-co-glycolic acid (PLGA, polyethylene glycol (PEG and polycaprolactone (PCL, using solvent evaporation technique. Full factorial design was used to evaluate the effects of the formulation variables in polymer-based stent coatings on the GSNO release rate and weight loss rate. The least square regression model was used for data analysis in the optimization process. The polymer-coated stents were further assessed with Differential scanning calorimetry (DSC, Fourier transform infrared spectroscopy analysis (FTIR, Scanning electron microscopy (SEM images and platelet adhesion studies. Stents coated with PCL matrix displayed more sustained and controlled drug release profiles than those coated with PLGA and PEG. Stents coated with PCL matrix showed the least platelet adhesion rate. Subsequently, stents coated with PCL matrix were subjected to the further optimization processes for improvement of surface morphology and enhancement of the drug release duration. The results of this study demonstrated that PCL matrix containing GSNO is a promising system for stent surface coating against restenosis.

  15. Plasmas and atom beam activation of the surface of polymers

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Santos, C; Yubero, F; Cotrino, J; Barranco, A; Gonzalez-Elipe, A R [Instituto de Ciencia de Materiales de Sevilla (CSIC-Univ. Sevilla), Avda Americo Vespucio 49, E-41092 Sevilla (Spain)], E-mail: arge@icmse.csic.es

    2008-11-21

    Wetting properties of polyethylene terephthalate (PET) and low-density polyethylene polymers have been investigated after treatment with a microwave (MW) plasma discharge at low pressure and a dielectric barrier discharge at atmospheric pressure. Experiments have also been carried out in situ with an atom source installed in an x-ray photoemission spectrometer (XPS). The water contact angle measured on both polymers experienced a significant decrease after activation, but a progressive recovery up to different values after ageing. Standard chemical analysis by XPS showed that the plasma and oxygen beam treatments produced an increase in the concentration of -C(O){sub x} functional groups at the outermost surface layers of the treated polymers. Besides, the oxygen distribution between the topmost surface layer and the bulk has been obtained by non-destructive XPS peak shape analysis. Atomic force microscopy analysis of the surface topography showed that, except for PET treated with the MW plasma and the atom beam, the surface roughness increased after the plasma treatments. Wetting angle variations, oxygen content and distribution, surface roughness and evolution of these properties with time are comparatively discussed by taking into account the basic processes that each type of activation procedure induces in the outmost surface layers of the treated polymers.

  16. Patterned Polymer Coatings Increase the Efficiency of Dew Harvesting.

    Science.gov (United States)

    Al-Khayat, Omar; Hong, Jun Ki; Beck, David M; Minett, Andrew I; Neto, Chiara

    2017-04-19

    Micropatterned polymer surfaces, possessing both topographical and chemical characteristics, were prepared on three-dimensional copper tubes and used to capture atmospheric water. The micropatterns mimic the structure on the back of a desert beetle that condenses water from the air in a very dry environment. The patterned coatings were prepared by the dewetting of thin films of poly-4-vinylpyridine (P4VP) on top of polystyrene films (PS) films, upon solvent annealing, and consist of raised hydrophilic bumps on a hydrophobic background. The size and density distribution of the hydrophilic bumps could be tuned widely by adjusting the initial thickness of the P4VP films: the diameter of the produced bumps and their height could be varied by almost 2 orders of magnitude (1-80 μm and 40-9000 nm, respectively), and their distribution density could be varied by 5 orders of magnitude. Under low subcooling conditions (3 °C), the highest rate of water condensation was measured on the largest (80 μm diameter) hydrophilic bumps and was found to be 57% higher than that on flat hydrophobic films. These subcooling conditions are achieved spontaneously in dew formation, by passive radiative cooling of a surface exposed to the night sky. In effect, the pattern would result in a larger number of dewy nights than a flat hydrophobic surface and therefore increases water capture efficiency. Our approach is suited to fabrication on a large scale, to enable the use of the patterned coatings for water collection with no external input of energy.

  17. Polymer Coating for Immobilizing Soluble Ions in a Phosphate Ceramic Product

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Dileep; Wagh, Arun S.; Patel, Kartikey D.

    1999-05-05

    A polymer coating is applied to the surface of a phosphate ceramic composite to effectively immobilize soluble salt anions encapsulated within the phosphate ceramic composite. The polymer coating is made from ceramic materials, including at least one inorganic metal compound, that wet and adhere to the surface structure of the phosphate ceramic composite, thereby isolating the soluble salt anions from the environment and ensuring long-term integrity of the phosphate ceramic composite.

  18. Study on electrolytic plasma discharging behavior and its influence on the plasma electrolytic oxidation coatings

    Science.gov (United States)

    Hussein, Riyad Omran

    In this study, aluminum oxide was deposited on a pure aluminum substrate to produce hard ceramic coatings using a Plasma Electrolytic Oxidation (PEO) process. The process utilized DC, unipolar pulsed DC in the frequency range (0.2 KHz -- 20 KHz) and bipolar pulsed DC current modes. The effects of process parameters (i.e., electrolyte concentration, current density and treatment time) on the plasma discharge behavior during the PEO treatment were investigated using optical emission spectroscopy (OES) in the visible and near ultraviolet (NUV) band (285 nm -- 900 nm). The emission spectra were recorded and plasma temperature profile versus processing time was constructed using the line intensity ratios method. Scanning Electron Microscopy (SEM) with energy dispersive x-ray analysis (EDS) was used to study the coating microstructure. It was found that the plasma discharge behavior significantly influenced the microstructure and the morphology of the oxide coatings. The main effect came from the strongest discharges which were initiated at the interface between the substrate and the coating. Through manipulation of process parameters to control or reduce the strongest discharge, the density and quality of the coating layers could be modified. This work demonstrated that by adjusting the ratio of the positive to negative pulse currents as well as their timing in order to eliminate the strongest discharges, the quality of the coatings was considerably improved.

  19. Synthesis of semiconductor polymers by inductive plasma; Sintesis de polimeros semiconductores por plasmas inductivos

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, G.; Cruz, G.; Olayo, M.G. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Morales, J. [UAM-I, 09340 Mexico D.F. (Mexico)

    2003-07-01

    When carrying out the synthesis of semiconductor polymers by plasma it is important to consider the electric arrangement of the discharge since this it influences in the distribution of the energy of the particles in the reactor. The main electric arrangements in those that are developed the brightness discharges of radio frequency are resistive, capacitive and inductive. In the Laboratory of Materials processing by plasma of the ININ its have been worked different synthesis of polymers with resistive arrangements with good results. In this work the results of the synthesis and characterization of poly aniline and chlorate polyethylene by inductive plasma are presented. (Author)

  20. [An investigation of HAP/organic polymer composite coatings prepared by electrochemical co-deposition technique].

    Science.gov (United States)

    Hu, Haobing; Lin, Changjian; Leng, Yang

    2003-03-01

    An electrochemical co-deposition technique has been developed to prepare a hydroxyapatite (HAP)/organic polymer composite coatings on Ti surface as new biomaterial of hard tissue. The composite coating of organic polymer and calcium phosphate is formed by adding a water soluble polymer of the ethylene series to NH4H2PO4-Ca (NO3)2 solution when conducting an appropriate electrochemical co-deposition experiment. The XRD, SEM, XPS, SIMS and nano indent measurements were performed to characterize the morphology, composition, structure and surface stiffness of the composite coating. It was found that the morphology and surface hardness of the coatings showed a remarkable modification when introducing a minor polymer to HAP coating, and the bonding force between the coating and metal substrate was distinctly increased. The incorporation of minor organic polymer into the HAP compound at molecular level will improve the mechanical properties and morphology of the composite coatings, and this may be helpful to raising its bio-activity.

  1. Inhibition of Staphylococcus epidermidis biofilm by trimethylsilane plasma coating.

    Science.gov (United States)

    Ma, Yibao; Chen, Meng; Jones, John E; Ritts, Andrew C; Yu, Qingsong; Sun, Hongmin

    2012-11-01

    Biofilm formation on implantable medical devices is a major impediment to the treatment of nosocomial infections and promotes local progressive tissue destruction. Staphylococcus epidermidis infections are the leading cause of biofilm formation on indwelling devices. Bacteria in biofilms are highly resistant to antibiotic treatment, which in combination with the increasing prevalence of antibiotic resistance among human pathogens further complicates treatment of biofilm-related device infections. We have developed a novel plasma coating technology. Trimethylsilane (TMS) was used as a monomer to coat the surfaces of 316L stainless steel and grade 5 titanium alloy, which are widely used in implantable medical devices. The results of biofilm assays demonstrated that this TMS coating markedly decreased S. epidermidis biofilm formation by inhibiting the attachment of bacterial cells to the TMS-coated surfaces during the early phase of biofilm development. We also discovered that bacterial cells on the TMS-coated surfaces were more susceptible to antibiotic treatment than their counterparts in biofilms on uncoated surfaces. These findings suggested that TMS coating could result in a surface that is resistant to biofilm development and also in a bacterial community that is more sensitive to antibiotic therapy than typical biofilms.

  2. 21 CFR 888.3358 - Hip joint metal/polymer/metal semi-constrained porous-coated uncemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... porous-coated uncemented prosthesis. 888.3358 Section 888.3358 Food and Drugs FOOD AND DRUG... Devices § 888.3358 Hip joint metal/polymer/metal semi-constrained porous-coated uncemented prosthesis. (a) Identification. A hip joint metal/polymer/metal semi-constrained porous-coated uncemented prosthesis is a...

  3. Influence of plasma discharge on the structure of polytetrafluoroethylene film and step coverage on polymer substrate

    Energy Technology Data Exchange (ETDEWEB)

    Grytsenko, K.P. [Institute of Semiconductor Physics, 45 Nauki pr., Kyiv, 03028 (Ukraine); Institute of Photonics, Laser and Plasma Technology, University of Applied Sciences Wildau, F.-Engels-Str. 63, 15745, Wildau (Germany)], E-mail: d_gryts@isp.kiev.ua; Lytvyn, P.M. [Institute of Semiconductor Physics, 45 Nauki pr., Kyiv, 03028 (Ukraine); Friedrich, J.; Schulze, R.D. [Federal Institute for Materials Research and Testing (BAM), Unter den Eichen 87, 12205 Berlin (Germany); Schrader, S. [Institute of Photonics, Laser and Plasma Technology, University of Applied Sciences Wildau, F.-Engels-Str. 63, 15745, Wildau (Germany)

    2007-09-15

    Polytetrafluoroethylene (PTFE) films have been deposited onto polycarbonate (PC) substrates from the products of PTFE evaporation, activated by a cloud of accelerated electrons. A 40.68 MHz glow discharge was used during the deposition process. The polymer films have been characterised by XPS, FTIR and AFM. The use of the low power plasma during film growth led to the formation of PTFE films with modified structure. Films are amorphous and contain more cross-links, but in general, the structure of their macromolecules is still linear. An increase of RF-power leads to the formation of films with large amount of double bonds and enhanced internal stresses. Deposition of PTFE on PC without plasma treatment led to the formation of PTFE clusters up to 50 nm in diameter. The RMS roughness of the films, deposited without plasma, was about 4 nm, while the films deposited with plasma treatment had a roughness of 1.5 nm. The use of plasma has an additional effect if a PTFE coating is deposited on the PC substrate with submicrometer-sized steps. Without plasma the steps retain a rectangular shape. Deposited with the RF-discharge the PTFE layers resemble plasma-polymerised films. Under certain conditions the deposited films can fill trenches in the substrate like a wetting liquid, while under other conditions they avoid trenches and grow in between them.

  4. Plasma polymer-functionalized silica particles for heavy metals removal.

    Science.gov (United States)

    Akhavan, Behnam; Jarvis, Karyn; Majewski, Peter

    2015-02-25

    Highly negatively charged particles were fabricated via an innovative plasma-assisted approach for the removal of heavy metal ions. Thiophene plasma polymerization was used to deposit sulfur-rich films onto silica particles followed by the introduction of oxidized sulfur functionalities, such as sulfonate and sulfonic acid, via water-plasma treatments. Surface chemistry analyses were conducted by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectroscopy. Electrokinetic measurements quantified the zeta potentials and isoelectric points (IEPs) of modified particles and indicated significant decreases of zeta potentials and IEPs upon plasma modification of particles. Plasma polymerized thiophene-coated particles treated with water plasma for 10 min exhibited an IEP of less than 3.5. The effectiveness of developed surfaces in the adsorption of heavy metal ions was demonstrated through copper (Cu) and zinc (Zn) removal experiments. The removal of metal ions was examined through changing initial pH of solution, removal time, and mass of particles. Increasing the water plasma treatment time to 20 min significantly increased the metal removal efficiency (MRE) of modified particles, whereas further increasing the plasma treatment time reduced the MRE due to the influence of an ablation mechanism. The developed particulate surfaces were capable of removing more than 96.7% of both Cu and Zn ions in 1 h. The combination of plasma polymerization and oxidative plasma treatment is an effective method for the fabrication of new adsorbents for the removal of heavy metals.

  5. Wear behavior of gas tunnel type plasma sprayed Zr-based metallic glass composite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Yugeswaran, S., E-mail: yugeswaran@gmail.com [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Kobayashi, A., E-mail: kobayasi@jwri.osaka-u.ac.jp [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Suresh, K., E-mail: ksureshphy@gmail.com [Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region (China); Rao, K.P., E-mail: mekprao@cityu.edu.hk [Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region (China); Subramanian, B., E-mail: subramanianb3@gmail.com [CSIR - Central Electrochemical Research Institute, Karaikudi 630 006 (India)

    2012-09-01

    Highlights: Black-Right-Pointing-Pointer Zr-based metallic glass composite coatings are prepared by gas tunnel plasma torch. Black-Right-Pointing-Pointer Increasing plasma current increases crystallinity amount and hardness of coatings. Black-Right-Pointing-Pointer Coating produced at 300 A plasma current gives minimum sliding wear rate. Black-Right-Pointing-Pointer Coating produced at higher plasma current gives lower erosive wear rate. - Abstract: Gas tunnel type plasma spraying is a prospective method to produce metallic glass composite coatings with high quality due to its noteworthy feature of process controllability. In this study, Zr{sub 55}Cu{sub 30}Al{sub 10}Ni{sub 5} metallic glass composite coatings were produced by gas tunnel type plasma spraying torch under optimum spraying conditions with selected plasma currents. The formation mechanism, sliding, and erosive wear behaviors of the coatings with respect to plasma current was examined. The phase and thermal analyses as well as microstructure of the plasma sprayed coatings produced at different plasma currents were characterized using X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX) techniques. The sliding and erosive wear behaviors of the coatings were studied using a pin-on-disc and a specially designed erosive wear tester, respectively. The results showed that an increase in plasma current increased the crystalline content in the metallic glass composite coatings, which enhanced the hardness and wear resistance of the coatings.

  6. Fibers coated with molecularly imprinted polymers for solid-phase microextraction

    NARCIS (Netherlands)

    Koster, E.H M; Crescenzi, C; den Hoedt, W; Ensing, K; de Jong, G.J.

    2001-01-01

    The simplicity and flexibility of solid-phase microextraction have been combined with the selectivity of molecularly imprinted polymers (MIPs), Silica fibers were coated reproducible with a 75-mum layer of methacrylate polymer either nonimprinted or imprinted with clenbuterol to compare their extrac

  7. Preparation of polymer-coated separators using an electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Joon-Yong; Gwon, Sung-Jin; Choi, Jae-Hak; Shin, Junhwa [Radiation Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of); Nho, Young-Chang [Radiation Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of)], E-mail: ycnho@kaeri.re.kr

    2008-12-15

    A polymer-coated polyethylene (PE) separator was prepared by a dip-coating of PVDF-HFP/PEGDMA on both sides of a PE separator followed by an electron beam irradiation. The thermal and electrochemical properties of the polymer-coated PE separator were investigated by using FT-IR, SEM, DSC and an impedance analyzer. The results showed that the coated PVDF-HFP/PEGDMA layer was covalently bound to the PE separator and also crosslinked by an electron beam irradiation. Thermal shrinkage dramatically decreased with an increase in the absorption dose and the PEGDMA content due to the crosslinking of the coated PVDF-HFP/PEGDMA by an irradiation. The PE separator coated with the composition of PVDF-HFP/PEGDMA (9.5/0.5) and irradiated to 150 kGy showed the highest electrolyte uptake of 125% and ionic conductivity of 3.82 x 10{sup -4} S/cm at room temperature.

  8. Preparation of polymer-coated separators using an electron beam irradiation

    Science.gov (United States)

    Sohn, Joon-Yong; Gwon, Sung-Jin; Choi, Jae-Hak; Shin, Junhwa; Nho, Young-Chang

    2008-12-01

    A polymer-coated polyethylene (PE) separator was prepared by a dip-coating of PVDF-HFP/PEGDMA on both sides of a PE separator followed by an electron beam irradiation. The thermal and electrochemical properties of the polymer-coated PE separator were investigated by using FT-IR, SEM, DSC and an impedance analyzer. The results showed that the coated PVDF-HFP/PEGDMA layer was covalently bound to the PE separator and also crosslinked by an electron beam irradiation. Thermal shrinkage dramatically decreased with an increase in the absorption dose and the PEGDMA content due to the crosslinking of the coated PVDF-HFP/PEGDMA by an irradiation. The PE separator coated with the composition of PVDF-HFP/PEGDMA (9.5/0.5) and irradiated to 150 kGy showed the highest electrolyte uptake of 125% and ionic conductivity of 3.82 × 10 -4 S/cm at room temperature.

  9. Simple roll coater with variable coating and temperature control for printed polymer solar cells

    DEFF Research Database (Denmark)

    Dam, Henrik Friis; Krebs, Frederik C

    2012-01-01

    the instrument by reinvestigating the well known effect of solvent on performance. We obtained a maximum power conversion efficiency of 1.6% for the reference cells, which compares well with reported roll-to-roll coated cells according to ProcessOne, with a relative deviation caused by solvent type nearing 40......A simple and low cost thin film solution processing system comprising a single roll coating machine has been developed to allow direct investigation of variable parameter effects in roll-to-roll processing. We present roll coating of the active layers in polymer solar cells and validate......% on roll coated cells, confirming the solvent to have a significant influence on the performance of the finished cell. We further present a slot-die coating head with an ultra low dead volume allowing for the preparation of roll coated polymer solar cells on flexible substrates with nearly no loss...

  10. Fabrication of polymer nanowires via maskless O2 plasma etching.

    Science.gov (United States)

    Du, Ke; Wathuthanthri, Ishan; Liu, Yuyang; Kang, Yong Tae; Choi, Chang-Hwan

    2014-04-25

    In this paper, we introduce a simple fabrication technique which can pattern high-aspect-ratio polymer nanowire structures of photoresist films by using a maskless one-step oxygen plasma etching process. When carbon-based photoresist materials on silicon substrates are etched by oxygen plasma in a metallic etching chamber, nanoparticles such as antimony, aluminum, fluorine, silicon or their compound materials are self-generated and densely occupy the photoresist polymer surface. Such self-masking effects result in the formation of high-aspect-ratio vertical nanowire arrays of the polymer in the reactive ion etching mode without the necessity of any artificial etch mask. Nanowires fabricated by this technique have a diameter of less than 50 nm and an aspect ratio greater than 20. When such nanowires are fabricated on lithographically pre-patterned photoresist films, hierarchical and hybrid nanostructures of polymer are also conveniently attained. This simple and high-throughput fabrication technique for polymer nanostructures should pave the way to a wide range of applications such as in sensors, energy storage, optical devices and microfluidics systems.

  11. Effect of acrylic polymers on physical parameters of spheronized pellets using an aqueous coating system

    Directory of Open Access Journals (Sweden)

    Akhter Afsana

    2009-01-01

    Full Text Available The aim of this study was to develop ambroxol hydrochloride sustained release pellets by an extrusion-spheronization technique and subsequent coating with acrylic polymers. Acrylic polymers like Eudragit RL 30 D, Eudragit RS 30 D and Eudragit NE 30 D were used as release retarding coating polymers. The release retarding capability of these polymers was also investigated. In each case, 10% polymer on dry basis was loaded. The flow property, surface roughness as well as the drug release behavior of the pellets was found to be the subject of types of polymers. About 35% drug was released at the first hour in 0.1N HCl media (pH 1.2 from Eudragit RL 30 D-coated pellets but from Eudragit RS 30 D and Eudragit NE 30 D-coated pellets, only 13.75 and 2.43% drug was released, respectively. In buffer media (pH 6.8, about 54% drug was released at the first hour from Eudragit RL 30 D-coated pellets but only 64% drug was released at 10 h. From Eudragit RL 30 D- and Eudragit NE 30 D-coated pellets only 7.28 and 1.14% drug was released at 1 h, respectively, but about 5.14 and 5.86 h was required for 50% drug release from these two polymers and about 80% drug was released at 10 h. The functional groups present in the polymeric films played a significant role on in vitro release kinetics of the drug from the coated pellets. Different kinetic models like zero order, first order and Higuchi were used for fitting the drug release pattern. The Higuchi model was the best fitted for ambroxol release from the coated pellets. The drug release mechanism was derived with Korsmeyer equation.

  12. Blanching resistant Cu-Cr coating by vacuum plasma spray

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, K.T. [Rockwell International Corp., Canoga Park, CA (United States). Rocketdyne Div.; Krotz, P.D. [Rockwell International Corp., Canoga Park, CA (United States). Rocketdyne Div.; Yuen, J.L. [Rockwell International Corp., Canoga Park, CA (United States). Rocketdyne Div.

    1995-11-01

    Copper alloy rocket engine combustion chamber linings have been found to deteriorate when exposed to cyclic reducing oxidizing (redox) environments, which are a consequence of the combustion process. The deterioration, known as blanching, can be characterized by increased roughness and burn-through sites in the wall of the combustion chamber lining and can seriously reduce the operational lifetime of the combustion chamber. A Cu-30 vol.%Cr coating produced by vacuum plasma spraying was effective in protecting the copper alloy substrate against blanching. The coating properties were characterized after cyclic oxidation exposure to 650 C in air followed by high pressure hydrogen charging. When exposed to an oxidizing environment at high temperatures, the coating formed a protective chromia scale that was substantially unreduced by high pressure hydrogen. (orig.)

  13. Plasma treatment of polymers for modifying haemocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, D.J

    2000-03-01

    The primary objective of this study was to investigate changes in the thrombogenicity of four materials, PTFE, PDMS, PEU and UHMW-PE induced by plasma treatments. In particular, correlations were sought between the chemical and topographical alterations to the materials surface caused by exposure to plasmas and the observed changes of blood response. Each material was treated in O{sub 2}, Ar, N{sub 2} and NH{sub 3} discharges, the system pressure, treatment times, gas flow rates and plasma power (< 1W) being the same in all cases. Evaluations were also carried out on plasma treated materials after being stored in PBS or air for periods of up to 1 month. The chemistry of surfaces was established using primarily XPS and SIMS, and topography by means of SEM and AFM, but auxiliary techniques such as FTIR, DSC and streaming potential determinations, where also used. It was also found that measurements of the wettability of the materials, using the Wilhelmy plate technique, provided a sensitive method for monitoring surface changes arising due to plasma treatment or storage. The chemical compositions of PTFE, PDMS and UHMW-PE surfaces were found to be closely similar to those of bulk material whereas PEU had a preponderance of soft segments at the solid-vacuum interface and an enhancement in concentration of nitrogen, indicative of the hard segments, towards the bulk. In addition, the topology of these materials was found to be influenced by the manufacturing process and is determined by conditions such as the operating temperature and cooling rate. Plasma treatment resulted in a significant increase in wettability and was attributed to major changes in surface chemistry combined with light etching. The principal chemical change observed was the removal of side groups which was concomitant with the incorporation of new functional groups and to a lesser extent, removal of surface contamination, chains scission and cross-linking. In addition, ageing of plasma treated

  14. Plasma and Ion Sources in Large Area Coatings: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Andre

    2005-02-28

    Efficient deposition of high-quality coatings often requires controlled application of excited or ionized particles. These particles are either condensing (film-forming) or assisting by providing energy and momentum to the film growth process, resulting in densification, sputtering/etching, modification of stress, roughness, texture, etc. In this review, the technical means are surveyed enabling large area application of ions and plasmas, with ion energies ranging from a few eV to a few keV. Both semiconductortype large area (single wafer or batch processing with {approx} 1000 cm{sup 2}) and in-line web and glass-coating-type large area (> 10{sup 7} m{sup 2} annually) are considered. Characteristics and differences between plasma and ion sources are explained. The latter include gridded and gridless sources. Many examples are given, including sources based on DC, RF, and microwave discharges, some with special geometries like hollow cathodes and E x B configurations.

  15. Non-thermal atmospheric pressure plasma jet and its application for polymer treatment

    OpenAIRE

    Sarani, Abdollah

    2010-01-01

    Non-thermal atmospheric pressure plasma jet is a suitable source for polymer treatment. The main characteristic of this plasma jet is the remote operation and its scalable dimension, thus, allowing local treatment of 3D surfaces. In this work an atmospheric pressure DBD plasma jet has been constructed and the application of the plasma jet for polymer treatment is investigated.

  16. Development of plasma spray coating using coal ash

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, S.C.; Sarkar, P.C.; Mishra, P.C.; Sreekumar, K.P.; Padmanabhan, P.V.A. [Regional Engineering College, Rourkela (India)

    2000-07-01

    In India about 70 million tonnes of fly ash is generated annually and the figure is growing at a faster rate due to industrial and urban demand. Worldwide, fly ash is being used to generate value added products. In India about 10% of fly ash generated is utilised and if feverish activity is not initiated the percent utilisation can go down. The present piece of work has been undertaken to use the fly ash and graphite (from the rejected electrodes of arc furnaces) for developing plasma spray composite coating on metal substrates. Fly ash and graphite powder (at 10% and 20% wt) mix was plasma sprayed at various operating conditions of the plasma torch on different metal substrate, viz. copper and stainless steel. The coating thus formed was characterised by X-ray diffraction analysis, electron microscopy, microhardness measurement and measurement of interface adhesion strength. A maximum coating thickness of {approximately} 220 micron is obtained with fly ash +20% graphite. The adherence strength is found to vary between 10-35 MNm{sup 2} and is maximum in case of copper substrates. 8 refs., 4 figs., 1 tab.

  17. Solid polymer electrolyte composite membrane comprising plasma etched porous support

    Science.gov (United States)

    Liu, Han; LaConti, Anthony B.

    2010-10-05

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 0.1 to 5 microns, are made by plasma etching and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  18. Transparent ultra water-repellent poly(ethylene terephthalate) substrates fabricated by oxygen plasma treatment and subsequent hydrophobic coating

    Science.gov (United States)

    Teshima, Katsuya; Sugimura, Hiroyuki; Inoue, Yasushi; Takai, Osamu; Takano, Atsushi

    2005-05-01

    Wettability of solid surfaces with water is well-known to be governed by chemical properties and nanotextures of the surfaces. A proper nanotexture of surfaces enhances their hydrophobicity. In this study, a novel method consisting of two dry process techniques, that is, nanotexturing by an oxygen plasma treatment and subsequent hydrophobic coating by means of low temperature chemical vapor deposition or plasma-enhanced chemical vapor deposition, was employed to form ultra water-repellent polymer sheets. A nanotexture was formed on a poly(ethylene terephthalate) substrate surface via selective oxygen plasma etching. This surface nanotexture remained after the hydrophobic coatings using organosilane precursors. The surface-modified substrate was transparent and ultra water-repellent, showing a water contact angle greater than 150°.

  19. Preparation and in-vitro Antibacterial Evaluation of Electroless Silver Coated Polymers.

    Science.gov (United States)

    Fazeli, Mohammad Reza; Hosseini, Vahid; Shamsa, Fazel; Jamalifar, Hossein

    2010-01-01

    Long-term use of indwelling medical catheters has often been hindered by catheter-associated nosocomial infections. In this study the effectiveness of silver coating of polystyrene and polyethylene polymers was investigated. Polymer pieces of 2 cm(2) each were coated with a thin layer of silver using electroless plating technique. Silver-coated polymers were challenged with cultures of four different microorganisms known for their involvement in nosocomial infections in both solid and broth media. The tested bacteria included Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli and Pseudomonas aeruginosa. Silver release from the coated polymers was 2-5 μg/cm(2) which was confirmed by chemical and biological methods. The silver coating thickness ranged between 20-450 nm. P. aeruginosa and S. aureus were the most adherent bacteria to polystyrene sheets while E. coli showed minimum adherence effect. The survival rate of different bacteria after 80 min in a time course experiment tended to dominate E. coli as the most sensitive bacteria to the effect of silver with zero survival rate while around 4% of P. aeruginosa were detected after same period. Silver coating of indwelling polymers by electroless technique seems promising in combating nosocomial infections due to long-term catheterization.

  20. Cotton Fabric Coated with Conducting Polymers and its Application in Monitoring of Carnivorous Plant Response

    Directory of Open Access Journals (Sweden)

    Václav Bajgar

    2016-04-01

    Full Text Available The paper describes the electrical plant response to mechanical stimulation monitored with the help of conducting polymers deposited on cotton fabric. Cotton fabric was coated with conducting polymers, polyaniline or polypyrrole, in situ during the oxidation of respective monomers in aqueous medium. Thus, modified fabrics were again coated with polypyrrole or polyaniline, respectively, in order to investigate any synergetic effect between both polymers with respect to conductivity and its stability during repeated dry cleaning. The coating was confirmed by infrared spectroscopy. The resulting fabrics have been used as electrodes to collect the electrical response to the stimulation of a Venus flytrap plant. This is a paradigm of the use of conducting polymers in monitoring of plant neurobiology.

  1. Effect of soluble polymer binder on particle distribution in a drying particulate coating.

    Science.gov (United States)

    Buss, Felix; Roberts, Christine C; Crawford, Kathleen S; Peters, Katharina; Francis, Lorraine F

    2011-07-01

    Soluble polymer is frequently added to inorganic particle suspensions to provide mechanical strength and adhesiveness to particulate coatings. To engineer coating microstructure, it is essential to understand how drying conditions and dispersion composition influence particle and polymer distribution in a drying coating. Here, a 1D model revealing the transient concentration profiles of particles and soluble polymer in a drying suspension is proposed. Sedimentation, evaporation and diffusion govern particle movement with the presence of soluble polymer influencing the evaporation rate and solution viscosity. Results are summarized in drying regime maps that predict particle accumulation at the free surface or near the substrate as conditions vary. Calculations and experiments based on a model system of poly(vinyl alcohol) (PVA), silica particles and water reveal that the addition of PVA slows the sedimentation and diffusion of the particles during drying such that accumulation of particles at the free surface is more likely.

  2. Nanoscale Plasma Coating Inhibits Formation of Staphylococcus aureus Biofilm.

    Science.gov (United States)

    Xu, Yuanxi; Jones, John E; Yu, Haiqing; Yu, Qingsong; Christensen, Gordon D; Chen, Meng; Sun, Hongmin

    2015-12-01

    Staphylococcus aureus commonly infects medical implants or devices, with devastating consequences for the patient. The infection begins with bacterial attachment to the device, followed by bacterial multiplication over the surface of the device, generating an adherent sheet of bacteria known as a biofilm. Biofilms resist antimicrobial therapy and promote persistent infection, making management difficult to futile. Infections might be prevented by engineering the surface of the device to discourage bacterial attachment and multiplication; however, progress in this area has been limited. We have developed a novel nanoscale plasma coating technology to inhibit the formation of Staphylococcus aureus biofilms. We used monomeric trimethylsilane (TMS) and oxygen to coat the surfaces of silicone rubber, a material often used in the fabrication of implantable medical devices. By quantitative and qualitative analysis, the TMS/O2 coating significantly decreased the in vitro formation of S. aureus biofilms; it also significantly decreased in vivo biofilm formation in a mouse model of foreign-body infection. Further analysis demonstrated TMS/O2 coating significantly changed the protein adsorption, which could lead to reduced bacterial adhesion and biofilm formation. These results suggest that TMS/O2 coating can be used to effectively prevent medical implant-related infections.

  3. Plasma spray deposition of graded metal-ceramic coatings

    Energy Technology Data Exchange (ETDEWEB)

    Musil, J. (Inst. of Tech. and Reliability of Structures, Czechoslovak Academy of Sciences, Plzen (Czechoslovakia)); Fiala, J. (Central Research Inst., Plzen (Czechoslovakia))

    1992-05-20

    Plasma spraying of graded coatings is described and the metal-ceramic interface of the graded intermediate zone is analysed in terms of a simple physical model. Special attention is devoted to the dominant deposition parameters, powder characteristics and the injector configuration for powder feeding, which play a fundamental role in graded coating deposition with controlled formation of a metal-ceramic intermediate zone. On the basis of a knowledge of these parameters, a new and original formula for the coefficient of homogeneity for simultaneous deposition of metal and ceramic particles at the same spot on the substrate is derived. Furthermore, very interesting topotactical relations are described for the metal-ceramic interface of the graded zone. Various techniques of structural analysis (X-ray diffraction, scanning electron microscopy, optical microscopy) and simple thermodynamic calculations allow a new interpretation to be given of the bonding between the metal and ceramic components. The cohesion of graded metal-ceramic coatings is predicted to be higher than that of ceramic coatings with a metallic bond layer. The results are illustrated by a NiCr-ZrO{sub 2}(MgO) graded coating. (orig.).

  4. Influence of the Discharge Voltage during Pulse-Plasma Process on the Durability of Edges coated with Superhard Coatings

    Institute of Scientific and Technical Information of China (English)

    Maciej Kupczyk

    2004-01-01

    In the paper the experimental results concerning the functional quality of thin, superhard coatings produced on cutting edges is described. Boron nitride coatings were deposited on insert cutting edges made cemented carbides by the pulse-plasma method. The comparative investigations of mentioned coatings have been concerned of tool life of edges during steel machining. In these investigations for the purpose of additional increase of coated edge durability an interfacial layers were applied. Presented investigations particularly pointed out to essential influence of the values of discharge voltage on the coating structure and durability of edges coated with boron nitride.

  5. Influence of the Discharge Voltage during Pulse-Plasma Process on the Durability of Edges coated with Superhard Coatings

    Institute of Scientific and Technical Information of China (English)

    MaciejKupczyk

    2004-01-01

    In the paper the experimental results concerning the functional quality of thin, superhard coatings produced on cutting edges is described. Boron nitride coatings were deposited on insert cutting edges made cemented carbides by the pulse-plasma method. The comparative investigations of mentioned coatings have been concerned of tool life of edges during steel machining. In these investigations for the purpose of additional increase of coated edge durability an interfacial layers were applied. Presented investigations particularly pointed out to essential influence of the values of discharge voltage on the coating structure and durability of edges coated with boron nitfide.

  6. Role of Cellulose Nanocrystals on the Microstructure of Maleic Anhydride Plasma Polymer Thin Films.

    Science.gov (United States)

    Brioude, Michel M; Roucoules, Vincent; Haidara, Hamidou; Vonna, Laurent; Laborie, Marie-Pierre

    2015-07-01

    Recently, it was shown that the microstructure of a maleic anhydride plasma polymer (MAPP) could be tailored ab initio by adjusting the plasma process parameters. In this work, we aim to investigate the ability of cellulose nanocrystals (CNCs) to induce topographical structuration. Thus, a new approach was designed based on the deposition of MAPP on CNCs model surfaces. The nanocellulosic surfaces were produced by spin-coating the CNC suspension on a silicon wafer substrate and on a hydrophobic silicon wafer substrate patterned with circular hydrophilic microsized domains (diameter of 86.9 ± 4.9 μm), resulting in different degrees of CNC aggregation. By depositing the MAPP over these surfaces, it was possible to observe that the surface fraction of nanostructures increased from 20% to 35%. This observation suggests that CNCs can act as nucleation points resulting in more structures, although a critical density of the CNCs is required.

  7. Effects of Bond Coating on NiCrBSi-Mo Composite Functional Coating Properties in Plasma Spraying NiCrBSi-Mo/Ni Coating

    Directory of Open Access Journals (Sweden)

    DU Ji-yu

    2017-09-01

    Full Text Available Nickel-based bond coating and composite functional coating were sprayed on leaf blade steel material FV520B successively by using air plasma spraying system. NiCrBSi-Mo powder deposition rate, coating porosity, bonding strength and surface hardness were tested. The results indicate that, for the NiCrBSi-Mo/Ni coating, bond coating with 180-220μm thickness can improve NiCrBSi-Mo powder deposition rate while the surface coating with lower porosity, higher bonding strength and high hardness is prepared; the increase of bond coating thickness can lead to increase of functional coating porosity in the bottom and speed up the process of porosity attenuating in the vertical direction.SEM analysis found that the increase of bond coating thickness results in the droplet deposition morphology change in the bending interface with the functional coating. The defects of bond coating have genetic influence on composite functional coating. Bond tensile test results show that excessive bond coating thickness will cause fracture in the interface between bond coating and functional coating during the stretching process; in different grinding surfaces, Vickers hardness of test blocks with a certain bood coating thickness attenuates slowly in the vertical direction. NiCrBSi-Mo/Ni coating not only maintains high surface hardness, but also increases the coating thickness to repair surface damage.

  8. Study on hydrophilicity of polymer surfaces improved by plasma treatment

    Science.gov (United States)

    Lai, Jiangnan; Sunderland, Bob; Xue, Jianming; Yan, Sha; Zhao, Weijiang; Folkard, Melvyn; Michael, Barry D.; Wang, Yugang

    2006-03-01

    Surface properties of polycarbonate (PC), polypropylene (PP), polyethylene terephthalate (PET) samples treated by microwave-induced argon plasma have been studied with contact angle measurement, X-ray photoelectron spectroscopy (XPS) and scanned electron microscopy (SEM). It is found that plasma treatment modified the surfaces both in composition and roughness. Modification of composition makes polymer surfaces tend to be highly hydrophilic, which mainly depended on the increase of ratio of oxygen-containing group as same as other papers reported. And this experiment further revealed that C dbnd O bond is the key factor to the improvement of the hydrophilicity of polymer surfaces. Our SEM observation on PET shown that the roughness of the surface has also been improved in micron scale and it has influence on the surface hydrophilicity.

  9. Study on hydrophilicity of polymer surfaces improved by plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Lai Jiangnan [Key Laboratory of Heavy Ion Physics, Peking University, MOE, Beijing (China); Sunderland, Bob [Gray Cancer Institute, Mount Vernon Hospital, Northwood, Middlesex (United Kingdom); Xue Jianming [Key Laboratory of Heavy Ion Physics, Peking University, MOE, Beijing (China); Yan, Sha [Key Laboratory of Heavy Ion Physics, Peking University, MOE, Beijing (China); Zhao Weijiang [Key Laboratory of Heavy Ion Physics, Peking University, MOE, Beijing (China); Folkard, Melvyn [Gray Cancer Institute, Mount Vernon Hospital, Northwood, Middlesex (United Kingdom); Michael, Barry D. [Gray Cancer Institute, Mount Vernon Hospital, Northwood, Middlesex (United Kingdom); Wang Yugang [Key Laboratory of Heavy Ion Physics, Peking University, MOE, Beijing (China)]. E-mail: ygwang@pku.edu.cn

    2006-03-15

    Surface properties of polycarbonate (PC), polypropylene (PP), polyethylene terephthalate (PET) samples treated by microwave-induced argon plasma have been studied with contact angle measurement, X-ray photoelectron spectroscopy (XPS) and scanned electron microscopy (SEM). It is found that plasma treatment modified the surfaces both in composition and roughness. Modification of composition makes polymer surfaces tend to be highly hydrophilic, which mainly depended on the increase of ratio of oxygen-containing group as same as other papers reported. And this experiment further revealed that C=O bond is Key factor to the improvement of the hydrophilicity of polymer surfaces. Our SEM observation on PET shown that the roughness of the surface has also been improved in micron scale and it has influence on the surface hydrophilicity.

  10. Plasma polymers deposited in atmospheric pressure dielectric barrier discharges: Influence of process parameters on film properties

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, Katja, E-mail: k.fricke@inp-greifswald.de [Leibniz Institute for Plasma Science and Technology e.V. (INP Greifswald), Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany); Girard-Lauriault, Pierre-Luc [Plasma Processing Laboratory, Department of Chemical Engineering, McGill University, 3610 rue University, Montreal, QC H3A 0C5 (Canada); Weltmann, Klaus-Dieter [Leibniz Institute for Plasma Science and Technology e.V. (INP Greifswald), Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany); Wertheimer, Michael R. [Department of Engineering Physics, École Polytechnique de Montréal, Box 6079, Station Centre-Ville, Montreal, QC H3C 3A7 (Canada)

    2016-03-31

    We present results on the deposition of plasma polymer (PP) films in a dielectric barrier discharge system fed with mixtures of argon or nitrogen carrier gas plus different hydrocarbon precursors, where the latter possess different carbon-to-hydrogen ratios: CH{sub 4} < C{sub 2}H{sub 6} < C{sub 2}H{sub 4} = C{sub 3}H{sub 6} < C{sub 2}H{sub 2}. The influence of precursor gas mixture and flow rate, excitation frequency, and absorbed power on PP film compositions and properties has been investigated. The discharge was characterized by electrical measurements, while the chemical compositions and structures of coatings were analysed by X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, total combustion, and elastic recoil detection analyses, the latter two for determining carbon-to-hydrogen ratios. Scanning electron microscopy was used to study the coatings' morphology, and profilometry for evaluating deposition rates. - Highlights: • Atmospheric pressure DBD is used to deposit organic hydrocarbon films. • High deposition rates can be achieved by varying the power and/or gas mixture ratio. • Process parameters affect the films' surface chemical composition and morphology. • Deposited films are not soluble in aqueous environment. • No delamination of coatings produced from argon plasma.

  11. Semi-permeable coatings fabricated from comb-polymers efficiently protect proteins in vivo

    Science.gov (United States)

    Liu, Mi; Johansen, Pål; Zabel, Franziska; Leroux, Jean-Christophe; Gauthier, Marc A.

    2014-11-01

    In comparison to neutral linear polymers, functional and architecturally complex (that is, non-linear) polymers offer distinct opportunities for enhancing the properties and performance of therapeutic proteins. However, understanding how to harness these parameters is challenging, and studies that capitalize on them in vivo are scarce. Here we present an in vivo demonstration that modification of a protein with a polymer of appropriate architecture can impart low immunogenicity, with a commensurably low loss of therapeutic activity. These combined properties are inaccessible by conventional strategies using linear polymers. For the model protein L-asparaginase, a comb-polymer bio-conjugate significantly outperformed the linear polymer control in terms of lower immune response and more sustained bioactivity. The semi-permeability characteristics of the coatings are consistent with the phase diagram of the polymer, which will facilitate the application of this strategy to other proteins and with other therapeutic models.

  12. Effect of sterilization procedures on properties of plasma polymers relevant to biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Artemenko, A. [Charles University in Prague, Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holesovickach 2, 180 00 Prague (Czech Republic); Kylian, O., E-mail: ondrej.kylian@gmail.com [Charles University in Prague, Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holesovickach 2, 180 00 Prague (Czech Republic); Choukourov, A.; Gordeev, I.; Petr, M. [Charles University in Prague, Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holesovickach 2, 180 00 Prague (Czech Republic); Vandrovcova, M. [Institute of Physiology, Academy of Sciences of the Czech Republic, Department of Growth and Differentiation of Cell Populations, Videnska 1083, 142 20, Prague 4 (Czech Republic); Polonskyi, O. [Charles University in Prague, Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holesovickach 2, 180 00 Prague (Czech Republic); Bacakova, L. [Institute of Physiology, Academy of Sciences of the Czech Republic, Department of Growth and Differentiation of Cell Populations, Videnska 1083, 142 20, Prague 4 (Czech Republic); Slavinska, D.; Biederman, H. [Charles University in Prague, Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holesovickach 2, 180 00 Prague (Czech Republic)

    2012-10-01

    This study is focused on the evaluation of resistance of plasma polymers toward common sterilization techniques, i.e. property important for possible use of such materials in biomedical applications. Three kinds of plasma polymers having different bioadhesive natures were studied: plasma polymerized poly(ethylene oxide), fluorocarbon plasma polymers, and nitrogen-rich plasma polymers. These plasma polymers were subjected to dry heat, autoclave and UV radiation treatment. Their physical, chemical and bioresponsive properties were determined by means of different techniques (ellipsometry, atomic force microscopy, wettability measurements, X-ray photoelectron spectroscopy and biological tests with osteoblast-like cells MG63). The results clearly show that properties of thin films of plasma polymers may be significantly altered by a sterilization process. Moreover, observed changes induced by selected sterilization methods were found to depend strongly on the sterilized plasma polymer. - Highlights: Black-Right-Pointing-Pointer Effect of common sterilization methods on three kinds of plasma polymers is studied. Black-Right-Pointing-Pointer Physical, chemical and bioresponsive properties of plasma polymers are analyzed. Black-Right-Pointing-Pointer Changes induced by sterilization depend strongly on type of the plasma polymer.

  13. Self-healing antimicrobial polymer coating with efficacy in the presence of organic matter

    Science.gov (United States)

    Bastarrachea, Luis J.; Goddard, Julie M.

    2016-08-01

    A method to prepare a self-healing, antimicrobial polymer coating that retains efficacy against Escherichia coli O157:H7 in the presence of organic matter is reported. A coating composed of branched polyethyleneimine (PEI) and styrene maleic anhydride copolymer (SMA) was applied to a maleic anhydride functionalized polypropylene support. The chemistry of the polymer coating was designed to impart hydrophobicity due to the styrene subunits, intrinsic antimicrobial character (>99.9% reduction) from the cationic primary amine groups, and enhanced antimicrobial character (> 99.99% reduction) after chlorination of N-halamine forming groups. Antimicrobial effectiveness was demonstrated under conditions of increasing organic load. Up to 500 ppm horse serum, chlorinated coatings retained full antimicrobial character (>99.99% reduction). Even at 50,000 ppm of horse serum, the coating provided ∼90% reduction as prepared, and between ∼75% and ∼80% reduction in the form of N-halamines. Microscopy confirmed no evidence of bacterial adhesion on the coating surface. Finally, the coating exhibited self-healing properties after exposure to acid and alkaline solutions and restoration by heat, as confirmed through spectroscopy from the rebuilding of characteristic chemical bonds. Such robust antimicrobial polymer coatings with efficacy under conditions of increasing organic load may support reducing microbial cross-contamination in food and biomedical industries.

  14. Study on Fe-Based Coating Produced by Plasma Surface Metallurgy

    Institute of Scientific and Technical Information of China (English)

    LI Hui-qi; LIU Bang-wu; LI Hui-dong; ZHANG Li-min; LI Min; SUN Yu-zong

    2004-01-01

    In the paper, plasma surface metallurgy was performed using Fe-based powder on steel substrate. The microstructure and microhardness of the coating have been analyzed. On the base of orthogonal comparison tests,influences of many factors on the cracking sensibility of plasma metallurgy coating have also been studied. The results indicate that substrate and its surface condition, processing parameters and components of plasma metallurgy coating have great effects on cracking sensibility of plasma metallurgy coating. Through changing these factors, it is possible to reduce cracks and promote the applications of this technology.Key Words: plasma surface metallurgy, microstructure, microhardness, cracking sensibility

  15. Application of hybrid organic/inorganic polymers as coatings on metallic substrates

    Science.gov (United States)

    Augustinho, T. R.; Motz, G.; Ihlow, S.; Machado, R. A. F.

    2016-09-01

    Acrylic polymers, particularly poly (methyl methacrylate) (PMMA), have certain specific properties, such as good film formation, transparency, and good mechanical properties, which have been widely used in paints, coatings and adhesives. However, the limited chemical and physical stability of these pure polymers limits their applications when exposed to hostile conditions, as in ship hulls, for example. A suitable way to enhance PMMA properties is the addition of silicon polymers with very good protective characteristics. In this study, a PMMA and HTT 1800 (commercial silazane) copolymer were applied on metallic substrate and compared to pure PMMA and HTT 1800. All the materials were applied as coatings. They were applied on stainless steel via dip-coating to investigate the coating properties. Thermal cycling was employed to analyze coating durability at high temperatures (50 °C to 600 °C). Optical microscopy (OM) and scanning electron microscopy (SEM) were used to characterize the coated surfaces, and the adhesion of pure PMMA, pure HTT 1800 and PMMA/HTT 1800 coatings on metallic substrate was investigated by Cross-Cut-Test (ASTM D 3359). The sessile drop method was used to determine the contact angle. PMMA coatings presented complete degradation from 250 °C, while hybrid coatings of PMMA and HTT 1800 have good protection until 400 °C. The adherence of the coating on metallic substrate showed improvement in all synthesized materials when compared to pure PMMA, obtaining the best adherence possible. The contact angle test showed that the hydrophobicity of the hybrid coatings is higher than that of the pure coatings.

  16. Surface modification of polyester fabric with plasma pretreatment and carbon nanotube coating for antistatic property improvement

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.X., E-mail: cxwang@mail.dhu.edu.cn [College of Textiles and Clothing, Yancheng Institute of Technology, Jiangsu 224051 (China); Collaborative Innovation Center for Ecological Building Materials and Environmental Protection Equipments, Jiangsu 224051 (China); Key Laboratory for Advanced Technology in Environmental Protection, Jiangsu 224051 (China); Lv, J.C. [College of Textiles and Clothing, Yancheng Institute of Technology, Jiangsu 224051 (China); Ren, Y. [School of Textile and Clothing, Nantong University, Jiangsu 226019 (China); Zhi, T.; Chen, J.Y.; Zhou, Q.Q. [College of Textiles and Clothing, Yancheng Institute of Technology, Jiangsu 224051 (China); Lu, Z.Q.; Gao, D.W. [College of Textiles and Clothing, Yancheng Institute of Technology, Jiangsu 224051 (China); Collaborative Innovation Center for Ecological Building Materials and Environmental Protection Equipments, Jiangsu 224051 (China); Key Laboratory for Advanced Technology in Environmental Protection, Jiangsu 224051 (China); Jin, L.M. [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204 (China)

    2015-12-30

    Graphical abstract: - Highlights: • PET was finished by plasma treatment and SWCNT coating to improve antistatic property. • Plasma modification had a positive effect on SWCNT coating on PET fiber surface. • O{sub 2} plasma was more effective in SWCNT coating than Ar plasma in the shorter time. • Antistatic enhanced and then declined with enhancing treatment time and output power. • Antistatic increased with increasing concentration, curing time, curing temperature. - Abstract: This study introduced a green method to prepare antistatic polyester (PET) fabrics by plasma pretreatment and single-walled carbon nanotube (SWCNT) coating. The influences of plasma conditions and SWCNT coating parameters on antistatic property of PET fabrics were investigated. PET fabrics were pretreated under various plasma conditions such as different treatment times, output powers and working gases, and then SWCNT coating on the plasma treated PET fabrics was carried out by coating-dry-cure using various coating parameters including different SWCNT concentrations, curing times and curing temperatures. PET fabrics were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and volume resistivity. SEM and XPS analysis of the plasma treated PET fabrics revealed the increase in surface roughness and oxygen/nitrogen containing groups on the PET fiber surface. SEM and XPS analysis of the plasma treated and SWCNT coated PET fabrics indicated the SWCNT coating on PET fiber surface. The plasma treated and SWCNT coated PET fabrics exhibited a good antistatic property, which increased and then decreased with the increasing plasma treatment time and output power. The antistatic property of the O{sub 2} plasma treated and SWCNT coated PET fabric was better and worse than that of N{sub 2} or Ar plasma treated and SWCNT coated PET fabric in the shorter treatment time and the longer treatment time, respectively. In addition, the antistatic property of the

  17. A novel, polymer-coated oncolytic measles virus overcomes immune suppression and induces robust antitumor activity

    Directory of Open Access Journals (Sweden)

    Kaname Nosaki

    2016-01-01

    Full Text Available Although various therapies are available to treat cancers, including surgery, chemotherapy, and radiotherapy, cancer has been the leading cause of death in Japan for the last 30 years, and new therapeutic modalities are urgently needed. As a new modality, there has recently been great interest in oncolytic virotherapy, with measles virus being a candidate virus expected to show strong antitumor effects. The efficacy of virotherapy, however, was strongly limited by the host immune response in previous clinical trials. To enhance and prolong the antitumor activity of virotherapy, we combined the use of two newly developed tools: the genetically engineered measles virus (MV-NPL and the multilayer virus-coating method of layer-by-layer deposition of ionic polymers. We compared the oncolytic effects of this polymer-coated MV-NPL with the naked MV-NPL, both in vitro and in vivo. In the presence of anti-MV neutralizing antibodies, the polymer-coated virus showed more enhanced oncolytic activity than did the naked MV-NPL in vitro. We also examined antitumor activities in virus-treated mice. Complement-dependent cytotoxicity and antitumor activities were higher in mice treated with polymer-coated MV-NPL than in mice treated with the naked virus. This novel, polymer-coated MV-NPL is promising for clinical cancer therapy in the future.

  18. Water Vapor Permeation of Metal Oxide/Polymer Coated Plastic Films

    Science.gov (United States)

    Numata, Yukihiro; Oya, Toshiyuki; Kuwahara, Mitsuru; Ito, Katsuya

    Barrier performance to water vapor permeation of ceramic coated layers deposited on flexible polymer films is of great interest to food packaging, medical device packaging and flat panel display industries. In this study, a new type film in which a ceramic layer is deposited on a polymer coated film was proposed for lower water vapor permeation. It is important how to control interfacial properties between each layer and film for good barrier performance. Several kinds of polymer coated materials were prepared for changing surface free energy of the films before and after depositing the ceramic layer. The ceramic layer, which is composed of mixed material of SiO2 and Al2O3, was adopted under the same conditions. The following results were obtained; 1) Water vapor permeation is not related to the surface energy of polymer coated films, 2) After depositing the ceramic layer, however, a strong correlation is observed between the water vapor permeation and surface free energy. 3) The phenomenon is considered that the polarity of the polymer layers plays a key role in changing the structure of ceramic coated layers.

  19. The Gridless Plasma Ion Source(GIS)for Plasma Ion Assisted Optical Coating

    Institute of Scientific and Technical Information of China (English)

    尤大伟; 李晓谦; 王宇; 林永昌

    2004-01-01

    High-quality optical coating is a key technology for modern optics. Ion-assisted deposition technology was used to improve the vaporized coating in 1980's. The GIS (gridless ion source), which is an advanced plasma source for producing a high-quality optical coating in large area, can produce a large area uniformity>1000 mm(diameter), a high ion current density ~ 0.5mA/cm2, 20 eV ~ 200 eV energetic plasma ions and can activate reactive gas and film atoms. Now we have developed a GIS system. The GIS and the plasma ion-assisted deposition technology are investigated to achieve a high-quality optical coating. The GIS is a high power and high current source with a power of I kW ~ 7.5 kW, a current of 10 A ~ 70 A and an ion density of 200μA/cm2 ~ 500μA/cm2. Because of the special magnetic structure, the plasma-ion extraction efficiency has been improved to obtain a maximum ion density of 500μA/cm2 in the medium power (~ 4 kW) level. The GIS applied is of a special cathode structure, so that the GIS operation can be maintained under a rather low power and the lifetime of cathode will be extended. The GIS has been installed in the LPSX-1200 type box coating system. The coated TiO2, SiO2 films such as antireflective films with the system have the same performance reported by Leybold Co, 1992, along with a controllable refractive index and film structure.

  20. Comparison between polyethylene glycol and zwitterionic polymers as antifouling coatings on wearable devices for selective antigen capture from biological tissue.

    Science.gov (United States)

    Robinson, Kye J; Coffey, Jacob W; Muller, David A; Young, Paul R; Kendall, Mark A F; Thurecht, Kristofer J; Grøndahl, Lisbeth; Corrie, Simon R

    2015-12-07

    Selective capture of disease-related proteins in complex biological fluids and tissues is an important aim in developing sensitive protein biosensors for in vivo applications. Microprojection arrays are biomedical devices whose mechanical and chemical properties can be tuned to allow efficient penetration of skin, coupled with highly selective biomarker capture from the complex biological environment of skin tissue. Herein, the authors describe an improved surface modification strategy to produce amine-modified polycarbonate arrays, followed by the attachment of an antifouling poly(sulfobetaine-methacrylate) (pSBMA) polymer or a linear polyethylene glycol (PEG) polymer of comparative molecular weight and hydrodynamic radius. Using a "grafting to" approach, pSBMA and linear PEG coatings yielded comparative antifouling behavior in single protein solutions, diluted plasma, or when applied to mouse flank skin penetrating into the vascularized dermal tissue. Interestingly, the density of immobilized immunoglobulin G (IgG) or bovine serum albumin protein on pSBMA surfaces was significantly higher than that on the PEG surfaces, while the nonspecific adsorption was comparable for each protein. When incubated in buffer or plasma solutions containing dengue non-structural protein 1 (NS1), anti-NS1-IgG-coated pSBMA surfaces captured significantly more NS1 in comparison to PEG-coated devices. Similarly, when wearable microprojection arrays were applied to the skin of dengue-infected mice using the same coatings, the pSBMA-coated devices showed significantly higher capture efficiency (>2-fold increase in signal) than the PEG-coated substrates, which showed comparative signal when applied to naïve mice. In conclusion, zwitterionic pSBMA polymers (of equivalent hydrodynamic radii to PEG) allowed detection of dengue NS1 disease biomarker in a preclinical model of dengue infection, showing significantly higher signal-to-noise ratio in comparison to the PEG controls. The results of

  1. Computational investigation of the delamination of polymer coatings during stent deployment.

    Science.gov (United States)

    Hopkins, C G; McHugh, P E; McGarry, J P

    2010-07-01

    Recent advances in angioplasty have involved the application of polymer coatings to stent surfaces for purposes of drug delivery. Given the high levels of deformation developed in the plastic hinge of a stent during deployment, the achievement of an intact bond between the coating and the stent presents a significant mechanical challenge. Problems with coating delamination have been reported in recent experimental studies. In this paper, a cohesive zone model of the stent-coating interface is implemented in order to investigate coating debonding during stent deployment. Simulations reveal that coatings debond from the stent surface in tensile regions of the plastic hinge during deployment. The critical parameters governing the initiation of delamination include the coating thickness and stiffness, the interface strength between the coating and stent surface, and the curvature of the plastic hinge. The coating is also computed to debond from the stent surface in compressive regions of the plastic hinge by a buckling mechanism. Computed patterns of coating delamination correlate very closely with experimental images. This study provides insight into the critical factors governing coating delamination during stent deployment and offers a predictive framework that can be used to improve the design of coated stents.

  2. Effect of substrate preheating temperature and coating thickness on residual stress in plasma sprayed hydroxyapatite coating

    Science.gov (United States)

    Tang, Dapei

    2015-07-01

    A thermal-mechanical coupling model was developed based on thermal-elastic- plastic theory according the special process of plasma spraying Hydroxyapatite (HA) coating upon Ti-6Al-4V substrate. On the one hand, the classical Fourier transient heat conduction equation was modified by introducing the effect item of deformation on temperature, on the other hand, the Johnson-Cook model, suitable for high temperature and high strain rate conditions, was used as constitutive equation after considering temperature softening effect, strain hardening effect and strain rate reinforcement effect. Based on the above coupling model, the residual stress field within the HA coating was simulated by using finite element method (FEM). Meanwhile, the substrate preheating temperature and coating thickness on the influence of residual stress components were calculated, respectively. The failure modes of coating were also preliminary analyzed. In addition, in order to verify the reliability of calculation, the material removal measurement technique was applied to determine the residual stress of HA coating near the interface. Some important conclusions are obtained.

  3. Polymer-coated fibrous materials as the stationary phase in packed capillary gas chromatography.

    Science.gov (United States)

    Saito, Yoshihiro; Tahara, Ai; Imaizumi, Motohiro; Takeichi, Tsutomu; Wada, Hiroo; Jinno, Kiyokatsu

    2003-10-15

    Synthetic polymer filaments have been introduced as the support material in packed capillary gas chromatography (GC). The filaments of the heat-resistant polymers, Zylon, Kevlar, Nomex, and Technora, were longitudinally packed into a short fused-silica capillary, followed by the conventional coating process for open-tubular GC columns. The separation of several test mixtures such as n-alkylbenzenes and n-alkanes was carried out with these polymer-coated fiber-packed capillary columns. With the coating by various polymeric materials on the surface of these filaments, the retentivity was significantly improved over the parent fiber-packed column (without polymer coating) as well as a conventional open-tubular capillary of the same length. The results demonstrated a good combination of Zylon as the support and poly(dimethylsiloxane)-based materials as the coating liquid-phase for the successful GC separation of n-alkanes and polycyclic aromatic hydrocarbons (PAHs), while successful applications for other separations such as poly(ethylene glycol) coating for the separation of alcohols were also obtained. From the results it has been suggested that the selectivity of the fiber-packed column could be tuned by selecting different coating materials, indicating the promising possibility for a novel usage of fine fibrous polymers as the support material that can be combined with newly synthesized coating materials specially designed for particular separations. Taking advantage of good thermal stability of the fibers, the column temperature could be elevated to higher than 350 degrees C with the combination of a short metallic capillary.

  4. Development of superhydrophobicity in fluorosilane-treated diatomaceous earth polymer coatings

    Energy Technology Data Exchange (ETDEWEB)

    Sedai, Bhishma R. [Department of Chemistry, Oklahoma State University, Stillwater, OK, 74078 (United States); Khatiwada, Bal K. [Department of Chemistry, Oklahoma State University, Stillwater, OK, 74078 (United States); Department of Chemistry, University of the Ozarks, Clarksville, AR, 72830 (United States); Mortazavian, Hamid [Department of Chemistry, Oklahoma State University, Stillwater, OK, 74078 (United States); Blum, Frank D., E-mail: fblum@okstate.edu [Department of Chemistry, Oklahoma State University, Stillwater, OK, 74078 (United States)

    2016-11-15

    Highlights: • Inexpensive superhydrophobic coatings can be made using fluorosilane treated diatomaceous earth (DE) in simple polymer-particle systems. • A minimum amount (1.2%) of fluorinated silane coupling agents was required to make diatomaceous earth particles superhydrophobic. • A minimum of 40% treated (DE) with high molecular mass polymer binders was required to make superhydrophobic coatings. • Untreated and treated diatomaceous earth behave differently in polymer coatings. • After achieving superhydrophobicity, the water contact angles became independent of the polymeric binder used. - Abstract: Superhydrophobic coatings were prepared using 3-(heptafluoroisopropoxy)- propyltrimethoxysilane (HFIP-TMS) treated diatomaceous earth (DE) particles with high molecular mass polystyrene or poly(vinyl acetate) as polymer binders. DE is a highly hydrophilic material and treatment of the DE with HFIP-TMS turned it into superhydrophobic diatomaceous earth (HFIP-DE). Thermogravimetric analysis (TGA) was used to determine the amount of grafted fluorosilane on the surface of the DE particles. The results showed that approximately 1.8% of HFIP-TMS grafted onto the surface of DE particles resulted in superhydrophobicity with contact angles as high as 164° for the particles themselves and also in coatings. Fourier transformed infrared spectroscopy (FTIR) was used to confirm the presence of HFIP-TMS on the surface of DE particles. The development of the hydrophobicity in the coatings with either polystyrene (PS) or poly(vinyl acetate) (PVAc) as binders was followed as a function of the particle loading using contact angle measurements and scanning electron microscopy. It was found that for these model DE-binder systems, the contact angles of the coatings were independent of the polymers used as long as the particle loading was greater than a minimum amount (∼40% treated DE particles). It was also found that more treated DE particles moved to the air interface as

  5. Improving the quality of polymer-coated urea with recycled plastic, proper additives, and large tablets.

    Science.gov (United States)

    Yang, Yue-Chao; Zhang, Min; Li, Yuncong; Fan, Xiao-Hui; Geng, Yu-Qing

    2012-11-14

    Polymer-coated urea (PCU) has great potential for increasing crop production and enhancing nitrogen (N) fertilizer use efficiency, benefiting the ecosystem. However, current PCUs are used only in a limited market, and the main obstacle to the wider use of PCUs is high cost compared to that of conventional N fertilizers. In this study, the low cost PCU and large tablet polymer-coated urea (LTPCU) were prepared by using recycling polystyrene foam and various sealants as the coating materials. The structural and chemical characteristics of the coating shells of the coated fertilizers were examined. The N release characteristics of coated fertilizers were determined in 25 °C water under laboratory conditions. The relationship between the N release longevity and the amount of coating material and the percentage of different sealants were evaluated. The results indicated that recycling polystyrene foam was the ideal coating material of the controlled release fertilizer. The polyurethane that was synthesized by the reaction of castor oil and isocyanate was better than the wax as the additive to delay the N release rate of coated urea. The coating material used for LTPCU was 70-80% less than those used for commercial PCUs under the same N release longevity. The cost of the recycling polystyrene foam used for coating one ton of pure N of the LTPCU was about one-seventh to one-eighth of the cost of the traditional polymer used for the commercial PCU. The experimental data showed that the LTPCU with good controlled-release capacities, being economical and eco-friendly, could be promising for wide use in agriculture and horticulture.

  6. Temperature Frequency Characteristics of Hexamethyldisiloxane (HMDSO Polymer Coated Rayleigh Surface Acoustic Wave (SAW Resonators for Gas-Phase Sensor Applications

    Directory of Open Access Journals (Sweden)

    Ekaterina I. Radeva

    2012-05-01

    Full Text Available Temperature induced frequency shifts may compromise the sensor response of polymer coated acoustic wave gas-phase sensors operating in environments of variable temperature. To correct the sensor data with the temperature response of the sensor the latter must be known. This study presents and discusses temperature frequency characteristics (TFCs of solid hexamethyldisiloxane (HMDSO polymer coated sensor resonators using the Rayleigh surface acoustic wave (RSAW mode on ST-cut quartz. Using a RF-plasma polymerization process, RSAW sensor resonators optimized for maximum gas sensitivity have been coated with chemosensitive HMDSO films at 4 different thicknesses: 50, 100, 150 and 250 nm. Their TFCs have been measured over a (−100 to +110 °C temperature range and compared to the TFC of an uncoated device. An exponential 2,500 ppm downshift of the resonant frequency and a 40 K downshift of the sensor’s turn-over temperature (TOT are observed when the HMDSO thickness increases from 0 to 250 nm. A partial temperature compensation effect caused by the film is also observed. A third order polynomial fit provides excellent agreement with the experimental TFC curve. The frequency downshift due to mass loading by the film, the TOT and the temperature coefficients are unambiguously related to each other.

  7. Structural Engineering Vacuum-plasma Coatings Interstitial Phases

    Directory of Open Access Journals (Sweden)

    O.V. Sobol'

    2016-06-01

    Full Text Available The analysis of possible structural conditions defined nonequilibrium processes in vacuum-plasma methods of obtaining interstitial phase coatings. It is shown that nonequilibrium conditions the deposition of ion-plasma flows significantly expands the range of possible structural states formed material from amorphous like to highly ordered crystalline. High speed determines the thermalization phase forming cubic crystal lattice (in most cases the structural type NaCl. On examples of W-C and Ta-N system with a hexagonal lattice type in equilibrium conditions and shows the mechanism of the transition from a metastable state with a cubic lattice in equilibrium with a hexagonal crystal lattice. The transition is performed by diffusion-shear transformation with the formation of stacking faults in the alternation of the most densely packed planes along the [111] axis. The formation of stacking faults contribute to a small area of the shift in nanocrystalline materials and the availability of jobs, and shift the conversion itself (through the formation of stacking faults is accompanied by a sudden relaxation of the structural stresses. Based on the atomic mobility criterion discussed mechanisms of structural transformations in the vacuum-plasma coatings and the necessary physical and technological conditions for structural changes aimed at the stage of precipitation and high temperature annealing.

  8. Graphene as a Coating for Plasma Facing Components

    Science.gov (United States)

    Navarro, Marcos; Rojas, Richard; Kulcisnki, Gerald; Lagally, Max; Santarius, John

    2016-10-01

    Graphene has been a source of interest for multiple applications because of its unusual electronic and mechanical properties. A number of experimental studies have established that defect-free graphene is an excellent chemical-barrier material, but there have been no reports of graphene proposed as a protective coating against ion and/or neutral interactions with material surfaces. In the presence of such irradiation, plasma facing components (PFC's) tend to develop ``fuzz/grass'' structures that lead to the sputtering of wall material, diminishing the lifetime of the PFC's and plasma performance. We have shown that graphene can reduce or eliminate changes on surface morphology due to energetic helium. In the case of graphene-covered tungsten, our results show that, compared to the uncovered W, graphene suppresses these morphologies that form on the surface of hot W. Using Raman spectroscopy as a diagnostic, the graphene coating shows little sign of damage after being irradiated, indicating that there is little to no sputtering of carbon impurities from the surface. We have also determined that the mass losses in W have been reduced significantly. Both decreases in impurities can lead to an improved plasma performance and longer lifetimes for PFC's. This work has been supported by GERS and TEAM-Science at the UW-Madison.

  9. Post-treatment of Plasma-Sprayed Amorphous Ceramic Coatings by Spark Plasma Sintering

    Science.gov (United States)

    Chraska, T.; Pala, Z.; Mušálek, R.; Medřický, J.; Vilémová, M.

    2015-04-01

    Alumina-zirconia ceramic material has been plasma sprayed using a water-stabilized plasma torch to produce free standing coatings. The as-sprayed coatings have very low porosity and are mostly amorphous. The amorphous material crystallizes at temperatures above 900 °C. A spark plasma sintering apparatus has been used to heat the as-sprayed samples to temperatures above 900 °C to induce crystallization, while at the same time, a uniaxial pressure of 80 MPa has been applied to their surface. After such post-treatment, the ceramic samples are crystalline and have very low open porosity. The post-treated material exhibits high hardness and significantly increased flexural strength. The post-treated samples have a microstructure that is best described as nanocomposite with the very small crystallites embedded in an amorphous matrix.

  10. Enhanced mechanical properties of low-surface energy thin films by simultaneous plasma polymerization of fluorine and epoxy containing polymers

    Energy Technology Data Exchange (ETDEWEB)

    Karaman, Mustafa, E-mail: karamanm@selcuk.edu.tr [Department of Chemical Engineering, Selçuk University, Konya, 42075 (Turkey); Advanced Technology Research & Application Center, Selçuk University, Konya, 42075 (Turkey); Uçar, Tuba [Department of Chemical Engineering, Selçuk University, Konya, 42075 (Turkey)

    2016-01-30

    Graphical abstract: - Highlights: • Thin films of poly(hexafluorobutyl acrylate-glycidyl methacrylate) can be deposited by PECVD. • The coated surfaces are hydrophobic due to the long fluorinated side chains. • The hydrophobicity of the coating is observed to be stable under harsh conditions. • Film durability is attributed to the mechanical strength of the films due to their epoxide functionality. - Abstract: Thin films of poly(2,2,3,4,4,4 hexafluorobutyl acrylate-glycidyl methacrylate) (P(HFBA-GMA) were deposited on different surfaces using an inductively coupled RF plasma reactor. Fluorinated polymer was used to impart hydrophobicity, whereas epoxy polymer was used for improved durability. The deposition at a low plasma power and temperature was suitable for the functionalization of fragile surfaces such as textile fabrics. The coated rough textile surfaces were found to be superhydrophobic with water contact angles greater than 150° due to the high retention of long fluorinated side chains. The hydrophobicity of the surfaces was observed to be stable after many exposures to ultrasonification tests, which is attributed to the mechanical durability of the films due to their epoxide functionality. FTIR and XPS analyses of the deposited films confirmed that the epoxide functionality of the polymers increased with increasing glycidyl methacrylate fraction in the reactor inlet. The modulus and hardness values of the films also increase with increasing epoxide functionality.

  11. Comparison of W–TiC composite coatings fabricated by atmospheric plasma spraying and supersonic atmospheric plasma spraying

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Qing Yu, E-mail: qingyuhou@hotmail.com [School of Material Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009 (China); Anhui Key Laboratory of Metal Materials and Processing, Maanshan, Anhui 243002 (China); Luo, Lai Ma [School of Material Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009 (China); Huang, Zhen Yi; Wang, Ping; Ding, Ting Ting [Anhui Key Laboratory of Metal Materials and Processing, Maanshan, Anhui 243002 (China); Wu, Yu Cheng, E-mail: ycwu@hfut.edu.cn [School of Material Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009 (China)

    2016-04-15

    Highlights: • W–TiC composite coatings were fabricated by APS and SAPS technologies. • TiC had filling effect on pores and coating/fixing effect on un-melted particles. • Porosity and oxygen content in SAPS coating were lower than that in APS coating. • Thermal conductivity of SAPS coating was higher than that of APS coating. • SAPS coating has better ability to resist to elastic fracture than APS coating does. - Abstract: Tungsten coatings with 1.5 wt.% TiC (W/TiC) were fabricated by atmospheric plasma spraying (APS) and supersonic atmospheric plasma spraying (SAPS) techniques, respectively. The results showed that the typical lamellar structure of plasma spraying and columnar crystalline grains formed in the coatings. Pores located mainly at lamellar gaps in association with oxidation were also observed. TiC phase, distributed at lamellar gaps filled the gaps; and that distributed around un-melted tungsten particles and splashed debris coated the particles or debris that were linked with the TiC at lamellar gaps. The coating and linking of the retained TiC phase prevented the tungsten particles to come off from the coatings. The porosity and the oxygen content of the SAPS-W/TiC were lower than those of the APS-W/TiC coating. The mechanical response of the coatings was strongly dependent on the H/E* ratio (H and E* are the hardness and effective Young’s modulus, respectively). The SAPS-W/TiC coating with a higher H/E* ratio had a better ability to resist to elastic fracture and better fracture toughness as compared with the APS-W/TiC coating with a smaller H/E* ratio. The thermal conductivity of the SAPS-W/TiC coating was greater than that of the APS-W/TiC coating.

  12. On the nature of interface of carbon nanotube coated carbon fibers with different polymers

    Science.gov (United States)

    Singh Bedi, Harpreet; Padhee, Srikant S.; Agnihotri, Prabhat K.

    2016-07-01

    Experimental investigations are carried out to analyse the wetting behaviour of carbon nanotube (CNT) coated carbon fiber to determine their suitability to process carbon nanotube coated carbon fiber/polymer multiscale composites for structural applications. To overcome the problem of agglomeration, CNTs are grown directly on the surface of carbon fibers as well as fabric using thermal chemical vapour deposition (CVD) technique. The term multiscale is used because different reinforcement mechanisms operate at the scale of long fibers and CNTs which are of few micrometers in length. The load carrying capacity of these multiscale composites critically depends on the efficiency and extent of load transfer from low strength matrix to high strength fiber which in turn depends on the interfacial strength between CNT coated carbon fiber and polymer matrix. A systematic analysis of wetting behaviour of CNT coated carbon fiber with epoxy and polyester matrix is carried out in this study. It is shown that CNT coated carbon fibers as well as fabric show better wettability with epoxy matrix as compared to polyester matrix. This results in stronger interface of CNT coated carbon fiber with epoxy as compared to polyester in multiscale composite system. A similar observation is made in nanoindentation testing of single fiber multiscale composites processed with epoxy and polyester matrix. In addition, it is observed that wettability, interfacial strength and average properties of CNT coated carbon fiber/polymer composites are a function of CNT density on the surface of carbon fibers.

  13. Effect of plasma fluorination variables on the deposition and growth of partially fluorinated polymer over PMMA films

    Directory of Open Access Journals (Sweden)

    Giovana da Silva Padilha

    2013-01-01

    Full Text Available In this work, an investigation was made of the modification of film surface of Poly(methylmethacrylate (PMMA using the plasma polymerization technique. PMMA films 10 µm thick were obtained by Spin-Coating starting from a chloroform solution (15.36% w/w. The films were exposed to the plasma of CHF3 at different gas pressures and exposure times to increase the thickness of fluorinated polymers onto PMMA films. The plasma fluorinated optical films were characterized by gravimetry, FTIR-ATR, contact angle of wetting, SEM and AFM. The surface fluorination of PMMA films can be inferred by the increase in contact angle under all experimental conditions, and confirmed with FTIR-ATR analysis. Gravimetry showed an increase of the fluorinated polymer layer over PMMA films, being 1.55 µm thick at 0.7 torr and 40 minutes of plasma exposure. The SEM analysis showed a well-defined layer of fluorinated polymer, with fluorine being detected in the EDS analysis. The film roughness for the fluorinated polymers was around of 200 Å, quite satisfactory for a 1.55 µm cladding.

  14. Evaluation of W-Si-C thick coating as a plasma facing material

    Energy Technology Data Exchange (ETDEWEB)

    Seok, Hyun Kwang [Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of)], E-mail: drstone@kist.re.kr; Jung, Kyung Ho; Kim, Yu Chan; Shim, Jae-Hyeok; Kim, Dong-Ik; Han, Seung-Hee [Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Baik, Kyeong Ho [ChungNam National University, Deajeon 305-764 (Korea, Republic of); Cha, Pil-Ryung [School of Advanced Materials Engineering, Kooknin University, Seoul 136-702 (Korea, Republic of)

    2009-04-30

    We present tungsten alloy coating of 150-200 {mu}m thickness with improved plasma erosion resistance fabricated by plasma spraying of granular W-SiC composite powders. During increasing the SiC concentration to 8 wt%, we observed the increase in the hardness of the coating from 250 to 440 Hv. The plasma erosion depth of the coating decreased by 10 times compared with pure tungsten in the same erosion environment.

  15. The interplay of plasma treatment and gold coating and ultra-high molecular weight polyethylene: On the cytocompatibility.

    Science.gov (United States)

    Novotná, Zdenka; Rimpelová, Silvie; Juřík, Petr; Veselý, Martin; Kolská, Zdenka; Hubáček, Tomáš; Ruml, Tomáš; Švorčík, Václav

    2017-02-01

    We have investigated the application of Ar plasma for creation of nanostructured ultra high molecular weight polyethylene (PE) surface in order to enhance adhesion of mouse embryonic fibroblasts (L929). The aim of this study was to investigate the effect of the interface between plasma-treated and gold-coated PE on adhesion and spreading of cells. The surface properties of pristine samples and its modified counterparts were studied by different experimental techniques (gravimetry, goniometry and X-ray photoelectron spectroscopy (XPS), electrokinetic analysis), which were used for characterization of treated and sputtered layers, polarity and surface chemical structure, respectively. Further, atomic force microscopy (AFM) was employed to study the surface morphology and roughness. Biological responses of cells seeded on PE samples were evaluated in terms of cell adhesion, spreading, morphology and proliferation. Detailed cell morphology and intercellular connections were followed by scanning electron microscopy (SEM). As it was expected the thickness of a deposited gold film was an increasing function of the sputtering time. Despite the fact that plasma treatment proceeded in inert plasma, oxidized degradation products were formed on the PE surface which would contribute to increased hydrophilicity (wettability) of the plasma treated polymer. The XPS method showed a decrease in carbon concentration with increasing plasma treatment. Cell adhesion measured on the interface between plasma treated and gold coated PE was inversely proportional to the thickness of a gold layer on a sample. Copyright © 2016. Published by Elsevier B.V.

  16. Preorganization of Nanostructured Inks for Roll-to-Roll-Coated Polymer Solar Cells

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Senkovskyy, Volodymyr; Kiriy, Anton

    2010-01-01

    The challenges associated with obtaining the desired nanomorphology of the active layer in polymer solar cells were addressed through preparation of conjugated polymer chains grown from the surface of seed nanoparticles with a well-defined size. Poly-3-hexylthiophene (P3HT) was thus polymerized......, a preorganized ink was obtained that was used to make polymer solar cell modules in a full roll-to-roll coating and printing process operating in ambient air. The polymer solar cells were thus prepared by a mixture of slot die and flat-bed screen printing. Various polymer solar cell modules were prepared ranging...... from single cells to two, three, and eight serially connected cells. The power conversion efficiency for the polymer solar cell modules were in the range of 0.8%-1.2% with an active area of up to 120 cm....

  17. Electroluminescence and photoluminescence of conjugated polymer films prepared by plasma enhanced chemical vapor deposition of naphthalene

    CERN Document Server

    Rajabi, Mojtaaba; Firouzjah, Marzieh Abbasi; Hosseini, Seyed Iman; Shokri, Babak

    2012-01-01

    Polymer light-emitting devices were fabricated utilizing plasma polymerized thin films as emissive layers. These conjugated polymer films were prepared by RF Plasma Enhanced Chemical Vapor Deposition (PECVD) using naphthalene as monomer. The effect of different applied powers on the chemical structure and optical properties of the conjugated polymers was investigated. The fabricated devices with structure of ITO/PEDOT:PSS/ plasma polymerized Naphthalene/Alq3/Al showed broadband Electroluminescence (EL) emission peaks with center at 535-550 nm. Using different structural and optical tests, connection between polymers chemical structure and optical properties under different plasma powers has been studied. Fourier transform infrared (FTIR) and Raman spectroscopies confirmed that a conjugated polymer film with a 3-D cross-linked network was developed. By increasing the power, products tended to form as highly cross-linked polymer films. Photoluminescence (PL) spectra of plasma polymers showed different excimerc ...

  18. Laser Remelting of Plasma Sprayed Thermal Barrier Coatings

    Institute of Scientific and Technical Information of China (English)

    Gang ZHANG; Yong LIANG; Yingna WU; Zhongchao FENG; Bingchun ZHANG; Fangjun LIU

    2001-01-01

    A CO2 continuous wave laser with defocused beam was used for remelting the surface of plasma sprayed ZrO2-8 wt pct Y2O3 (8YSZ)/Ni22Cr10AlY thermal barrier coatings (TBCs) on GH536 superalloy substrate. Two main laser processing parameters, power and travel speed, were adopted to produce a completely remelted layer, and their effects on remelted appearance,remelting depth, density and diameter of depression, space of segment crack and remelted microstructure were evaluated. With energy of 4.0 to 8.0 J.mm-2, an appropriate laser processing for applicable remelted layer was suggested.

  19. Statistical optimization of microencapsulation process for coating of magnesium particles with Viton polymer

    Energy Technology Data Exchange (ETDEWEB)

    Pourmortazavi, Seied Mahdi, E-mail: pourmortazavi@yahoo.com [Faculty of Material and Manufacturing Technologies, Malek Ashtar University of Technology, P.O. Box 16765-3454, Tehran (Iran, Islamic Republic of); Babaee, Saeed; Ashtiani, Fatemeh Shamsi [Faculty of Chemistry & Chemical Engineering, Malek Ashtar University of Technology, Tehran (Iran, Islamic Republic of)

    2015-09-15

    Graphical abstract: - Highlights: • Surface of magnesium particles was modified with Viton via solvent/non-solvent method. • FT-IR, SEM, EDX, Map analysis, and TG/DSC techniques were employed to characterize the coated particles. • Coating process factors were optimized by Taguchi robust design. • The importance of coating conditions on resistance of coated magnesium against oxidation was studied. - Abstract: The surface of magnesium particles was modified by coating with Viton as an energetic polymer using solvent/non-solvent technique. Taguchi robust method was utilized as a statistical experiment design to evaluate the role of coating process parameters. The coated magnesium particles were characterized by various techniques, i.e., Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and thermogravimetry (TG), and differential scanning calorimetry (DSC). The results showed that the coating of magnesium powder with the Viton leads to a higher resistance of metal against oxidation in the presence of air atmosphere. Meanwhile, tuning of the coating process parameters (i.e., percent of Viton, flow rate of non-solvent addition, and type of solvent) influences on the resistance of the metal particles against thermal oxidation. Coating of magnesium particles yields Viton coated particles with higher thermal stability (632 °C); in comparison with the pure magnesium powder, which commences oxidation in the presence of air atmosphere at a lower temperature of 260 °C.

  20. The relationship between the microstructure and thermal diffusivity of plasma-sprayed tungsten coatings

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, C. [National Research Council Canada, Boucherville, Quebec (Canada); Boire-Lavigne, S.; Saint-Jacques, R.G. [INRS-Energie et Materiaux, Varennes, Quebec (Canada)

    1994-12-31

    Tungsten and tungsten alloy coatings are candidate materials for plasma facing components of divertor plates in future fusion reactors. In normal operation, the sprayed coatings will be submitted to intense heat fluxes and particle bombardment. This work intends to investigate the relationship between the microstructure of plasma-sprayed tungsten coatings and their thermal diffusivity as determined by the laser flash method. The microstructural investigation was carried out on copper-infiltrated coatings. Such a preparation technique permitted the measurement of the total real contact area between the lamellae within the tungsten coatings. The spraying atmosphere was found to strongly influence the interfacial contact between lamellae and coating thermal diffusivity.

  1. Study on Fe-Based Coating Produced by Plasma Surface Metallurgy

    Institute of Scientific and Technical Information of China (English)

    LIHui-qi; LIUBang-wu; LIHui-dong; ZHANGLi-min; LIMin; SUNYu-zong

    2004-01-01

    In the paper, plasma surface metallurgy was performed using Fe-based powder on steel substrate. The microstructure and microhardness of the coating have been analyzed. On the base of orthogonal comparison tests, influences of many factors on the cracking sensibility of plasma metallurgy coating have also been studied. The results indicate that substrate and its surface condition, processing parameters and components of plasma metallurgy coating have great effects on cracking sensibility of plasma metallurgy coating. Through changing these factors, it is possible to reduce cracks and promote the applications of this technology.

  2. SU-8 photolithography on reactive plasma thin-films: coated microwells for peptide display.

    Science.gov (United States)

    Marchesan, Silvia; Easton, Christopher D; Styan, Katie E; Leech, Patrick; Gengenbach, Thomas R; Forsythe, John S; Hartley, Patrick G

    2013-08-01

    We have developed a technique to create 50μm-deep microwells coated with a reactive and robust thin film, which withstands photolithographic processing, and allows for subsequent chemical functionalisation with biological cues (i.e. peptides). First, plasma polymerisation of 1-bromopropane was used to generate a bromine-functionalised thin film (BrPP) on a substrate of silicon wafer. Second, an epoxy functionalised polymer UV photoresist, SU-8, was deposited and developed to create 50μm-deep patterned microwells that display the BrPP coating at their base. Third, amino acids or peptides were selectively attached to the bottom of the microwells through bromine displacement by an amine or thiol nucleophile. Each surface functionalisation step was monitored by XPS, AFM, and contact angle measurements. These functionalities were then used as linkers to immobilise enzymes (e.g. HRP), which retain activity at the end of the process as shown by a biochemical activity assay. Peptide promoters of cell attachment were also immobilised and their functionality was evaluated using an L929 fibroblast adhesion assay. In conclusion, this work describes an innovative combination of plasma thin film deposition and photolithography to create 50μm-deep functionalised microwells for peptide display in biological applications.

  3. Acrylic polymer nanocomposite resins for water borne coating applications

    NARCIS (Netherlands)

    Nobel, M.L.

    2007-01-01

    Due to environmental and safety regulations the use of volatile organic components (VOC's) containing lacquers for exterior automotive purposes is under growing pressure. As a consequence there is a demand for more environmentally friendly alternatives like water borne coatings, high solid coatings,

  4. Photocatalytic Anatase TiO2 Thin Films on Polymer Optical Fiber Using Atmospheric-Pressure Plasma.

    Science.gov (United States)

    Baba, Kamal; Bulou, Simon; Choquet, Patrick; Boscher, Nicolas D

    2017-04-06

    Due to the undeniable industrial advantages of low-temperature atmospheric-pressure plasma processes, such as low cost, low temperature, easy implementation, and in-line process capabilities, they have become the most promising next-generation candidate system for replacing thermal chemical vapor deposition or wet chemical processes for the deposition of functional coatings. In the work detailed in this article, photocatalytic anatase TiO2 thin films were deposited at a low temperature on polymer optical fibers using an atmospheric-pressure plasma process. This method overcomes the challenge of forming crystalline transition metal oxide coatings on polymer substrates by using a dry and up-scalable method. The careful selection of the plasma source and the titanium precursor, i.e., titanium ethoxide with a short alkoxy group, allowed the deposition of well-adherent, dense, and crystalline TiO2 coatings at low substrate temperature. Raman and XRD investigations showed that the addition of oxygen to the precursor's carrier gas resulted in a further increase of the film's crystallinity. Furthermore, the films deposited in the presence of oxygen exhibited a better photocatalytic activity toward methylene blue degradation assumedly due to their higher amount of photoactive {101} facets.

  5. Electrochemical deposition and evaluation of electrically conductive polymer coating on biodegradable magnesium implants for neural applications.

    Science.gov (United States)

    Sebaa, Meriam A; Dhillon, Shan; Liu, Huinan

    2013-02-01

    In an attempt to develop biodegradable, mechanically strong, biocompatible, and conductive nerve guidance conduits, pure magnesium (Mg) was used as the biodegradable substrate material to provide strength while the conductive polymer, poly(3,4-ethylenedioxythiophene) (PEDOT) was used as a conductive coating material to control Mg degradation and improve cytocompatibility of Mg substrates. This study explored a series of electrochemical deposition conditions to produce a uniform, consistent PEDOT coating on large three-dimensional Mg samples. A concentration of 1 M 3,4-ethylenedioxythiophene in ionic liquid was sufficient for coating Mg samples with a size of 5 × 5 × 0.25 mm. Both cyclic voltammetry (CV) and chronoamperometry coating methods produced adequate coverage and uniform PEDOT coating. Low-cost stainless steel and copper electrodes can be used to deposit PEDOT coatings as effectively as platinum and silver/silver chloride electrodes. Five cycles of CV with the potential ranging from -0.5 to 2.0 V for 200 s per cycle were used to produce consistent coatings for further evaluation. Scanning electron micrographs showed the micro-porous structure of PEDOT coatings. Energy dispersive X-ray spectroscopy showed the peaks of sulfur, carbon, and oxygen, indicating sufficient PEDOT coating. Adhesion strength of the coating was measured using the tape test following the ASTM-D 3359 standard. The adhesion strength of PEDOT coating was within the classifications of 3B to 4B. Tafel tests of the PEDOT coated Mg showed a corrosion current (I(CORR)) of 6.14 × 10(-5) A as compared with I(CORR) of 9.08 × 10(-4) A for non-coated Mg. The calculated corrosion rate for the PEDOT coated Mg was 2.64 mm/year, much slower than 38.98 mm/year for the non-coated Mg.

  6. Productive characteristics, nutrition and agronomic efficiency of polymer-coated MAP in lettuce crops

    Directory of Open Access Journals (Sweden)

    Wantuir Filipe Teixeira Chagas

    Full Text Available In contrast to enhanced-efficiency nitrogen fertilisers, principally urea, phosphate fertilisers have been little studied and the available information is limited. The aim of this work therefore was to evaluate the productive and nutritional characteristics and the agronomic efficiency of a polymer-coated MAP fertilizer on two subsequent lettuce crops. The experiment was carried out in a greenhouse, in pots with a capacity of 4 kg, filled with a dystrophic yellow Latosol of a clayey texture. The experimental design was completely randomised and the treatments arranged in a 2 x 5 factorial scheme: two sources of phosphorus (P (MAP and polymer-coated MAP, applied to the plots in five dosages (0, 100, 200, 400, 800 mg P2O5 kg-1 with three replications. The results showed that the polymer-coated MAP increased the efficiency of the phosphate fertilizer in both lettuce crops, improving utilisation of the residual phosphorus. The agronomic efficiency of fertilization decreases with the increases in applied phosphorus. The production and nutritional characteristics of the lettuce were influenced by the levels of P2O5 and the use of MAP with polymers. Higher values for dry and fresh weight and for the accumulation of P in the first crop occurred with the use of polymer-coated MAP at dosages of 506.9, 450.1 and 522.8 mg kg-1 P2O5.

  7. Agronomic efficiency of polymer-coated triple superphosphate in onion cultivated in contrasting texture soils

    Directory of Open Access Journals (Sweden)

    Wantuir Filipe Teixeira Chagas

    2016-09-01

    Full Text Available ABSTRACT Information related to phosphate fertilization and coated phosphate fertilizer in onion is scarce. Thus, this study was carried out to evaluate agronomic efficiency, production and nutritional characteristics of triple superphosphate coated with polymers in onion cultivated in contrasting texture soils. Two experiments were carried out under protected conditions in pots containing 5 kg soil. The experimental design was completely randomized with treatments arranged in a 2 x 5 factorial: triple superphosphate (TSP and polymer-coated triple superphosphate (TSP+P applied in five phosphorus rates: Dystroferric Red Latosol (LVdf (clayey = 0; 100; 200; 400; 800 mg P2O5 kg-1, and Quartzarenic Neosol (sandy = 0; 75; 150; 300; 600 mg P2O5 kg-1, with three replications. Results indicated that polymer-coated TSP showed no difference for bulb mass and agronomic efficiency for phosphorus fertilization. Agronomic efficiency of phosphorus fertilization decreased with the increase in the amount of phosphorus applied. Phosphorus accumulation for onion bulb cultivated in Dystroferric Red Latosol (LVdf was higher with the use of polymer-coated triple superphosphate. Growth, production and nutritional characteristics in onion were affected by phosphorus. The highest bulbs mass production and phosphorus accumulation occurred at the doses of 783; 629 mg kg-1 P2O5 (Dystroferric Red Latosol - LVdf, and of 406; 600 mg kg-1 P2O5 (Quartzarenic Neosol -RQ.

  8. Enhanced Physical Stability of Amorphous Drug Formulations via Dry Polymer Coating.

    Science.gov (United States)

    Capece, Maxx; Davé, Rajesh

    2015-06-01

    Although amorphous solid drug formulations may be advantageous for enhancing the bioavailability of poorly soluble active pharmaceutical ingredients, they exhibit poor physical stability and undergo recrystallization. To address this limitation, this study investigates stability issues associated with amorphous solids through analysis of the crystallization behavior for acetaminophen (APAP), known as a fast crystallizer, using a modified form of the Avrami equation that kinetically models both surface and bulk crystallization. It is found that surface-enhanced crystallization, occurring faster at the free surface than in the bulk, is the major impediment to the stability of amorphous APAP. It is hypothesized that a novel use of a dry-polymer-coating process referred to as mechanical-dry-polymer-coating may be used to inhibit surface crystallization and enhance stability. The proposed process, which is examined, simultaneously mills and coats amorphous solids with polymer, while avoiding solvents or solutions, which may otherwise cause stability or crystallization issues during coating. It is shown that solid dispersions of APAP (64% loading) with a small particle size (28 μm) could be prepared and coated with the polymer, carnauba wax, in a vibratory ball mill. The resulting amorphous solid was found to have excellent stability as a result of inhibition of surface crystallization.

  9. Characteristics and cytocompatibility of biodegradable polymer film on magnesium by spin coating.

    Science.gov (United States)

    Xu, Liping; Yamamoto, Akiko

    2012-05-01

    In recent years, magnesium and its alloys have been investigated as biodegradable metallic materials in cardiovascular stents and bone implants. However, rapid corrosion rate in the early stage of the degradation process greatly influences the cytocompatibility and hinters their application. In this research, biodegradable polymer films are prepared under same coating condition by spin coating in order to improve the early corrosion resistance and cytocompatibility of Mg. The results present that uniform, nonporous, amorphous PLLA and semi-crystalline PCL films are coated on Mg. PLLA film shows better adhesion strength to Mg substrate than that of PCL film. For both PLLA and PCL, low molecular weight (LMW) film is thinner and exhibits better adhesion strength than high molecular weight (HMW) one. SaOS-2 cells show significantly good attachment and high growth on the polymer-coated Mg, demonstrating that all the polymer films can significantly improve the cytocompatibility in the 7-day incubation. The pH measurement of the immersion medium and the quantification of released Mg(2+) during the cell culture clearly indicate that the corrosion resistance of Mg substrate is improved by the polymer films to different extents. It can be concluded that both PLLA and PCL films are promising protective coatings for improving the initial corrosion resistance and cytocompatibility.

  10. Fabricating Nanometer-Thick Simultaneously Oleophobic/Hydrophilic Polymer Coatings via a Photochemical Approach.

    Science.gov (United States)

    Wang, Yongjin; Dugan, Michael; Urbaniak, Brian; Li, Lei

    2016-07-05

    The simultaneously oleophobic/hydrophilic coatings are highly desirable in antifogging, oil-water separation, and detergent-free cleaning. However, such coatings require special chemical structure, i.e., perfluorinated backbone and polar end-groups, and are too expensive for real-life application. Here, we have developed an UV-based photochemical approach to make nanometer-thick perfluoropolyethers without polar end-groups, which are not intrinsically simultaneously oleophobic/hydrophilic but cost-effective, become simultaneously oleophobic/hydrophilic. The contact angle, ellipsometry, and X-ray photoelectron spectroscopy (XPS) results indicated that the UV irradiation results in the covalent bonding between the polymer and the substrate, which renders more ordered packing of polymer chains and thus the appropriately small interchain distance. As a result, the small water molecules penetrate the polymer network while large oil molecules do not. As a result, the oil contact angle is larger than the water contact angle and the coating shows the simultaneous oleophobicity/hydrophilicity. Moreover, we also demonstrated that this nanometer-thick simultaneously oleophobic/hydrophilic coating has improved long-term antifogging performance and detergent-free cleaning capability and is mechanically robust. The photochemical approach established here potentially can be applied on many other polymers and greatly accelerate the development and application of simultaneously oleophobic/hydrophilic coatings.

  11. EFFECT OF POLYMER SEED COATING WITH MICRONUTRIENTS ON SOYBEANS IN SOUTHEASTERN COASTAL PLAINS

    OpenAIRE

    Pawel Wiatrak

    2013-01-01

    Polymer seed coating with micronutrients may affect soybean (Glycine max (L.) Merr) growth and yields under dryland conditions. The objective of this study was to determine the effect of two seed application rates (265 and 395 mL 100 kg seeds-1) of polymer based mixture of Copper (Cu), Manganese (Mn) and Zinc (Zn) micronutrients on dryland soybeans near Blackville, SC from 2011 to 2012. Soybeans were evaluated for plant Normalized Difference Vegetation Index (NDVI), Leaf Area Index (LAI), pla...

  12. Layer-by-layer click deposition of functional polymer coatings for combating marine biofouling.

    Science.gov (United States)

    Yang, Wen Jing; Pranantyo, Dicky; Neoh, Koon-Gee; Kang, En-Tang; Teo, Serena Lay-Ming; Rittschof, Daniel

    2012-09-10

    "Click" chemistry-enabled layer-by-layer (LBL) deposition of multilayer functional polymer coatings provides an alternative approach to combating biofouling. Fouling-resistant azido-functionalized poly(ethylene glycol) methyl ether methacrylate-based polymer chains (azido-poly(PEGMA)) and antimicrobial alkynyl-functionalized 2-(methacryloyloxy)ethyl trimethyl ammonium chloride-based polymer chains (alkynyl-poly(META)) were click-assembled layer-by-layer via alkyne-azide 1,3-dipolar cycloaddition. The polymer multilayer coatings are resistant to bacterial adhesion and are bactericidal to marine Gram-negative Pseudomonas sp. NCIMB 2021 bacteria. Settlement of barnacle ( Amphibalanus (= Balanus ) amphitrite ) cyprids is greatly reduced on the multilayer polymer-functionalized substrates. As the number of the polymer layers increases, efficacy against bacterial fouling and settlement of barnacle cyprids increases. The LBL-functionalized surfaces exhibit low toxicity toward the barnacle cyprids and are stable upon prolonged exposure to seawater. LBL click deposition is thus an effective and potentially environmentally benign way to prepare antifouling coatings.

  13. Plasma Processes and Polymers: 16th International Symposium on Plasma Chemistry Taormina, Italy June 22-27, 2003

    Science.gov (United States)

    D'Agostino, Riccardo; Favia, Pietro; Oehr, Christian; Wertheimer, Michael R.

    2005-04-01

    This volume compiles essential contributions to the most innovative fields of Plasma Processes and Polymers. High-quality contributions cover the fields of plasma deposition, plasma treatment of polymers and other organic compounds, plasma processes under partial vacuum and at atmospheric pressure, biomedical, textile, automotive, and optical applications as well as surface treatment of bulk materials, clusters, particles and powders. This unique collection of refereed papers is based on the best contributions presented at the 16th International Symposium on Plasma Chemistry in Taormina, Italy (ISPC-16, June 2003). A high class reference of relevance to a large audience in plasma community as well as in the area of its industrial applications.

  14. Nanometer Polymer Latex and Its Application in Waterborne Coating

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ The nanometer materials have been attracting an increasing attention due to the wide applications of this kind of materials in the information technology, national defense, biotechnology, etc. The applications of nanotechnology have also injected impetus into the conventional industries such as coatings, plastics, rubber, adhesive, ceramics, cosmetics. As to coating industry, the nanotechnology has been providing the resulting coating with high performances as well as novel characteristics. The progress in this research field is raising the technology content and even promote the prosperity of this sector.

  15. Nanometer Polymer Latex and Its Application in Waterborne Coating

    Institute of Scientific and Technical Information of China (English)

    PENG; XuXing

    2001-01-01

    The nanometer materials have been attracting an increasing attention due to the wide applications of this kind of materials in the information technology, national defense, biotechnology, etc. The applications of nanotechnology have also injected impetus into the conventional industries such as coatings, plastics, rubber, adhesive, ceramics, cosmetics. As to coating industry, the nanotechnology has been providing the resulting coating with high performances as well as novel characteristics. The progress in this research field is raising the technology content and even promote the prosperity of this sector.  ……

  16. Atmospheric Plasma Deposition of Diamond-like Carbon Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Ladwig, Angela

    2008-01-23

    There is great demand for thin functional coatings in the semiconductor, optics, electronics, medical, automotive and aerospace industries [1-13]. As fabricated components become smaller and more complex, the properties of the materials’ surface take on greater importance. Thin coatings play a key role in tailoring surfaces to give them the desired hardness, wear resistance, chemical inertness, and electrical characteristics. Diamond-like carbon (DLC) coatings possess an array of desirable properties, including outstanding abrasion and wear resistance, chemical inertness, hardness, a low coefficient of friction and exceptionally high dielectric strength [14-22]. Diamond-like carbon is considered to be an amorphous material, containing a mixture of sp2 and sp3 bonded carbon. Based on the percentage of sp3 carbon and the hydrogen content, four different types of DLC coatings have been identified: tetrahedral carbon (ta-C), hydrogenated amorphous carbon (a-C:H) hard, a-C:H soft, and hydrogenated tetrahedral carbon (ta-C:H) [20,24,25]. Possessing the highest hardness of 80 GPa, ta-C possesses an sp3 carbon content of 80 to 88u%, and no appreciable hydrogen content whereas a-C:H soft possesses a hardness of less than 10 GPa, contains an sp3 carbon content of 60% and a hydrogen content between 30 to 50%. Methods used to deposit DLC coatings include ion beam deposition, cathodic arc spray, pulsed laser ablation, argon ion sputtering, and plasma-enhanced chemical vapor deposition [73-83]. Researchers contend that several advantages exist when depositing DLC coatings in a low-pressure environment. For example, ion beam processes are widely utilized since the ion bombardment is thought to promote denser sp3-bonded carbon networks. Other processes, such as sputtering, are better suited for coating large parts [29,30,44]. However, the deposition of DLC in a vacuum system has several disadvantages, including high equipment cost and restrictions on the size and shape of

  17. Water-Based Assembly of Polymer-Metal Organic Framework (MOF) Functional Coatings

    Energy Technology Data Exchange (ETDEWEB)

    De, Souvik [Artie McFerrin Department of Chemical Engineering, Texas A& M University, 77843-3122 TAMU College Station TX 77843-3122 USA; Nandasiri, Manjula I. [Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory, Richland WA 99352 USA; Schaef, Herbert T. [Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland WA 99352 USA; McGrail, Benard Peter [Energy & Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99352 USA; Nune, Satish K. [Energy & Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99352 USA; Lutkenhaus, Jodie L. [Artie McFerrin Department of Chemical Engineering, Texas A& M University, 77843-3122 TAMU College Station TX 77843-3122 USA; Department of Materials Science & Engineering, Texas A& M University, 3122 TAMU College Station TX 77843-3122 USA

    2016-12-27

    Metal organic frameworks (MOFs) have gained tremendous attention for their porosity, size selectivity, and structural diversity. There is a need for MOF-based coatings, particularly in applications such as separations, electronics and energy; yet forming thin, functional, conformal coatings is prohibitive because MOFs exist as a powder. Layer-by- layer assembly, a versatile thin film coating approach, offers a unique solution to this problem, but this approach requires MOFs that are water-dispersible and bear a surface charge. Here, we address these issues by examining water-based dispersions of MIL-101(Cr) that facilitate the formation of robust polymer-MOF hybrid coatings. Specifically, the substrate to be coated is alternately exposed to an aqueous solution of poly(styrene sulfonate) and dispersion MIL-101(Cr), yielding linear film growth and coatings with a MOF content as high as 77 wt%.This approach is surface-agnostic, in which the coating is successfully applied to silicon, glass, flexible plastic, and even cotton fabric, conformally coating individual fibers. In contrast, prior attempts at forming MOF-coatings were severely limited to a handful of surfaces, required harsh chemical treatment, and were not conformal. The approach presented here unambiguously confirms that MOFs can be conformally coated onto complex and unusual surfaces, opening the door for a wide variety of applications.

  18. Superiority of Graphene over Polymer Coatings for Prevention of Microbially Induced Corrosion

    Science.gov (United States)

    Krishnamurthy, Ajay; Gadhamshetty, Venkataramana; Mukherjee, Rahul; Natarajan, Bharath; Eksik, Osman; Ali Shojaee, S.; Lucca, Don A.; Ren, Wencai; Cheng, Hui-Ming; Koratkar, Nikhil

    2015-09-01

    Prevention of microbially induced corrosion (MIC) is of great significance in many environmental applications. Here, we report the use of an ultra-thin, graphene skin (Gr) as a superior anti-MIC coating over two commercial polymeric coatings, Parylene-C (PA) and Polyurethane (PU). We find that Nickel (Ni) dissolution in a corrosion cell with Gr-coated Ni is an order of magnitude lower than that of PA and PU coated electrodes. Electrochemical analysis reveals that the Gr coating offers ~10 and ~100 fold improvement in MIC resistance over PU and PA coatings respectively. This finding is remarkable considering that the Gr coating (1-2 nm) is ~25 and ~4000 times thinner than the PA (40-50 nm), and PU coatings (20-80 μm), respectively. Conventional polymer coatings are either non-conformal when deposited or degrade under the action of microbial processes, while the electro-chemically inert graphene coating is both resistant to microbial attack and is extremely conformal and defect-free. Finally, we provide a brief discussion regarding the effectiveness of as-grown vs. transferred graphene films for anti-MIC applications. While the as-grown graphene films are devoid of major defects, wet transfer of graphene is shown to introduce large scale defects that make it less suitable for the current application.

  19. Atmospheric pressure plasma polymers for tuned QCM detection of protein adhesion.

    Science.gov (United States)

    Rusu, G B; Asandulesa, M; Topala, I; Pohoata, V; Dumitrascu, N; Barboiu, M

    2014-03-15

    Our efforts have been concentrated in preparing plasma polymeric thin layers at atmospheric pressure grown on Quartz Crystal Microbalance-QCM electrodes for which the non-specific absorption of proteins can be efficiently modulated, tuned and used for QCM biosensing and quantification. Plasma polymerization reaction at atmospheric pressure has been used as a simple and viable method for the preparation of QCM bioactive surfaces, featuring variable protein binding properties. Polyethyleneglycol (ppEG), polystyrene (ppST) and poly(ethyleneglycol-styrene) (ppST-EG) thin-layers have been grown on QCM electrodes. These layers were characterized by Atomic Force Microscopy (AFM), Contact angle measurements, Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS). The plasma ppST QCM electrodes present a higher adsorption of Concanavalin A (ConA) and Bovine Serum Albumin (BSA) proteins when compared with the commercial coated polystyrene (ppST) ones. The minimum adsorption was found for ppEG, surface, known by their protein anti-fouling properties. The amount of adsorbed proteins can be tuned by the introduction of PEG precursors in the plasma discharge during the preparation of ppST polymers. © 2013 Elsevier B.V. All rights reserved.

  20. Generation of low-temperature plasma by low-pressure arcs for synthesis of nitride coatings

    Science.gov (United States)

    Krysina, O. V.; Koval, N. N.; Lopatin, I. V.; Shugurov, V. V.; Kovalsky, S. S.

    2016-01-01

    Experiments were performed to study gas, metal, and mixed metal-gas plasmas. The plasmas were generated with the use of an arc evaporator and a gas-plasma source with a hot filament and hollow cathode that were operated independently or simultaneously. It has been revealed that the arc current of gas-plasma source affects the parameters of the metal-gas plasma and the element concentrations in the coatings. It has been demonstrated that the characteristics of the nitride coatings produced by plasma-assisted vacuum-arc deposition can be controlled by varying the parameters of the arc in the gas-plasma source.

  1. Surface Modification of Conventional Polymers by Depositing Plasma Polymers of Trimethylsilane and of Trimethylsilane + O2.

    Science.gov (United States)

    Weikart; Miyama; Yasuda

    1999-03-01

    The static wetting properties of TMS (trimethylsilane) and TMS + O2 plasma deposited films on eleven low energy conventional polymers were investigated using the sessile droplet method. The static advancing contact angle is an excellent indication of the change in surface state properties from plasma surface modification. However, traditional contact angle measuring techniques possess a methodological limitation, which can leave a water droplet on the substrate surface for up to 3 min before a measurement is obtained. The static "advancing" contact angles of different size water droplets on teflon and nylon surfaces were observed to change significantly in 2 min while equilibrating with the surface and surroundings. A new quick image-capturing device enables static contact angle measurement 2 to 4 s after contact with the substrate. This technique virtually eliminates the time dependent effects of evaporation and surface state change, which are believed to be responsible for the change in static advancing contact angles. Furthermore, static contact angles independent of droplet volume and contact time may be taken as a surface characteristic property, which is denoted as the intrinsic static contact angle, θS. The static "advancing" contact angle, measured in this fashion, indicated that the wetting properties of TMS and TMS + O2 plasma polymer deposition on 10 conventional polymers were modified virtually independent of the underlying substrate. The average advancing contact angles on TMS and TMS + O2 modified polymers are θS = 94 +/- 2.2 (cos θS = -0.0645) and θS = 32 +/- 6.9 (cos θS = 0.8452), respectively. Copyright 1999 Academic Press.

  2. Plasma-modified and polyethylene glycol-grafted polymers for potential tissue engineering applications.

    Science.gov (United States)

    Svorcík, V; Makajová, Z; Kasálková-Slepicková, N; Kolská, Z; Bacáková, L

    2012-08-01

    Modified and grafted polymers may serve as building blocks for creating artificial bioinspired nanostructured surfaces for tissue engineering. Polyethylene (PE) and polystyrene (PS) were modified by Ar plasma and the surface of the plasma activated polymers was grafted with polyethylene glycol (PEG). The changes in the surface wettability (contact angle) of the modified polymers were examined by goniometry. Atomic Force Microscopy (AFM) was used to determine the surface roughness and morphology and electrokinetical analysis (Zeta potential) characterized surface chemistry of the modified polymers. Plasma treatment and subsequent PEG grafting lead to dramatic changes in the polymer surface morphology, roughness and wettability. The plasma treated and PEG grafted polymers were seeded with rat vascular smooth muscle cells (VSMCs) and their adhesion and proliferation were studied. Biological tests, performed in vitro, show increased adhesion and proliferation of cells on modified polymers. Grafting with PEG increases cell proliferation, especially on PS. The cell proliferation was shown to be an increasing function of PEG molecular weight.

  3. Improving the cycling stability of silicon nanowire anodes with conducting polymer coatings

    KAUST Repository

    Yao, Yan

    2012-01-01

    For silicon nanowires (Si NWs) to be used as a successful high capacity lithium-ion battery anode material, improvements in cycling stability are required. Here we show that a conductive polymer surface coating on the Si NWs improves cycling stability; coating with PEDOT causes the capacity retention after 100 charge-discharge cycles to increase from 30% to 80% over bare NWs. The improvement in cycling stability is attributed to the conductive coating maintaining the mechanical integrity of the cycled Si material, along with preserving electrical connections between NWs that would otherwise have become electrically isolated during volume changes. © 2012 The Royal Society of Chemistry.

  4. Non-Isocyanate Polymer Design and Coating Development

    Science.gov (United States)

    2012-09-11

    Allen - Manager of Coating Operations 3 Problem Statement ● 1.2 million gallons of Chemical Agent Resistant Coating (CARC) purchased in 2011  Up...Approach ● Project Management Principles  Frequent sample exchanges to ensure reproducibility and maintain program focus  Monthly team meetings...Maintenance Center (MDMC) Albany and a representative from that organization is included in the projet team. • Final field use will require introducing a

  5. Pigments, Paints, Polymer Coatings, Lacquers, and Printing Inks

    Science.gov (United States)

    Ryntz, Rose A.

    Change is constant in the coatings market. As mergers, acquisitions, and partnerships take shape, consolidation and globalization remain prominent. The 80/20 rule (20% of the firms accounting for 80% of business) takes effect as the need for regulatory and environmental compliance continues to plague the market. In 1975, the United States alone supported about 2000 coatings companies. Today, there are less than half that many.

  6. All polymer photovoltaics: From small inverted devices to large roll-to-roll coated and printed solar cells

    DEFF Research Database (Denmark)

    Liu, Yao; Larsen-Olsen, Thue Trofod; Zhao, Xingang

    2013-01-01

    Inverted all polymer solar cells based on a blend of a perylene diimide based polymer acceptor and a dithienosilole based polymer donor were fabricated from small area devices to roll-to-roll (R2R) coated and printed large area modules. The device performance was successfully optimized by using...... solution processibility and R2R coated and printed large area (4.2 cm 2) solar cells exhibited a PCE of 0.20%. © 2013 Elsevier B.V....

  7. Spray-coated carbon nanotube carpets for creeping reduction of conducting polymer based artificial muscles

    Science.gov (United States)

    Simaite, Aiva; Delagarde, Aude; Tondu, Bertrand; Souères, Philippe; Flahaut, Emmanuel; Bergaud, Christian

    2017-01-01

    During cyclic actuation, conducting polymer based artificial muscles are often creeping from the initial movement range. One of the likely reasons of such behaviour is unbalanced charging during conducting polymer oxidation and reduction. To improve the actuation reversibility and subsequently the long time performance of ionic actuators, we suggest using spray-coated carbon nanotube (CNT) carpets on the surface of the conducting polymer electrodes. We show that carbon nanotubes facilitate a conducting polymer redox reaction and improve its reversibility. Consequently, in the long term, charge accumulation in the polymer film is avoided leading to a significantly improved lifetime performance during cycling actuation. To our knowledge, it is the first time a simple solution to an actuator creeping problem has been suggested.

  8. Combined, Independent Small Molecule Release and Shape Memory via Nanogel-Coated Thiourethane Polymer Networks.

    Science.gov (United States)

    Dailing, Eric A; Nair, Devatha P; Setterberg, Whitney K; Kyburz, Kyle A; Yang, Chun; D'Ovidio, Tyler; Anseth, Kristi S; Stansbury, Jeffrey W

    2016-01-28

    Drug releasing shape memory polymers (SMPs) were prepared from poly(thiourethane) networks that were coated with drug loaded nanogels through a UV initiated, surface mediated crosslinking reaction. Multifunctional thiol and isocyanate monomers were crosslinked through a step-growth mechanism to produce polymers with a homogeneous network structure that exhibited a sharp glass transition with 97% strain recovery and 96% shape fixity. Incorporating a small stoichiometric excess of thiol groups left pendant functionality for a surface coating reaction. Nanogels with diameter of approximately 10 nm bearing allyl and methacrylate groups were prepared separately via solution free radical polymerization. Coatings with thickness of 10-30 μm were formed via dip-coating and subsequent UV-initiated thiol-ene crosslinking between the SMP surface and the nanogel, and through inter-nanogel methacrylate homopolymerization. No significant change in mechanical properties or shape memory behavior was observed after the coating process, indicating that functional coatings can be integrated into an SMP without altering its original performance. Drug bioactivity was confirmed via in vitro culturing of human mesenchymal stem cells with SMPs coated with dexamethasone-loaded nanogels. This article offers a new strategy to independently tune multiple functions on a single polymeric device, and has broad application toward implantable, minimally invasive medical devices such as vascular stents and ocular shunts, where local drug release can greatly prolong device function.

  9. Structural changes of polymer-coated microgranules and excipients on tableting investigated by microtomography using synchrotron X-ray radiation.

    Science.gov (United States)

    Kajihara, Ryusuke; Noguchi, Shuji; Iwao, Yasunori; Suzuki, Yoshio; Terada, Yasuko; Uesugi, Kentaro; Itai, Shigeru

    2015-03-15

    Multiple-unit tablets consisting of polymer-coated microgranules and excipients have a number of advantageous pharmaceutical properties. Polymer-coated microgranules are known to often lose their functionality because of damage to the polymer coating caused by tableting, and the mechanism of polymer coating damage as well as the structural changes of excipients upon tableting had been investigated but without in-situ visualization and quantitative analysis. To elucidate the mechanism of coating damage, the internal structures of multiple-unit tablets were investigated by X-ray computed microtomography using synchrotron X-rays. Cross sectional images of the tablets with sub-micron spatial resolution clearly revealed that void spaces remained around the compressed excipient particles in the tablets containing an excipient composed of cellulose and lactose (Cellactose(®) 80), whereas much smaller void spaces remained in the tablets containing an excipient made of sorbitol (Parteck(®) SI 150). The relationships between the void spaces and the physical properties of the tablets such as hardness and disintegration were investigated. Damage to the polymer coating in tablets was found mainly where polymer-coated microgranules were in direct contact with each other in both types of tablets, which could be attributed to the difference in hardness of excipient particles and the core of the polymer-coated microgranules. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Wear rate and surface coating optimization of coconut coir-based polymer using fuzzy logic

    Indian Academy of Sciences (India)

    SRINIVASAN S P; RAAJARAJAN L

    2017-03-01

    The use of fuzzy logic for modeling surface parameters of coconut coir-based composite is the focus of this research paper. Natural fiber–polymer composite has been developed by combining coconut coir as a stimulator and polyester as a fixative. This sturdy material is resistant to scratches in the coating process on the surface layer of composite material. The specimen of this composite material is fabricated by different coir fiber and resin content. A polyurethane coating is also applied with varied thickness to give better wear rate and surface coating properties. A fuzzy logic approach is adopted to invent the optimal wear rate and surface coating using coating thickness and fiber content properties. The results indicate the best combinations of coatingthickness and its surface roughness of the sandwiches. MATLAB 7 is used in this work.

  11. Investigation of the Effect of Plasma Polymerized Siloxane Coating for Enzyme Immobilization and Microfluidic Device Conception

    Directory of Open Access Journals (Sweden)

    Kalim Belhacene

    2016-12-01

    Full Text Available This paper describes the impact of a physical immobilization methodology, using plasma polymerized 1,1,3,3, tetramethyldisiloxane, on the catalytic performance of β-galactosidase from Aspergillus oryzae in a microfluidic device. The β-galactosidase was immobilized by a polymer coating grown by Plasma Enhanced Chemical Vapor Deposition (PEVCD. Combined with a microchannel patterned in the silicone, a microreactor was obtained with which the diffusion through the plasma polymerized layer and the hydrolysis of a synthetic substrate, the resorufin-β-d-galactopyranoside, were studied. A study of the efficiency of the immobilization procedure was investigated after several uses and kinetic parameters of immobilized β-galactosidase were calculated and compared with those of soluble enzyme. Simulation and a modelling approach were also initiated to understand phenomena that influenced enzyme behavior in the physical immobilization method. Thus, the catalytic performances of immobilized enzymes were directly influenced by immobilization conditions and particularly by the diffusion behavior and availability of substrate molecules in the enzyme microenvironment.

  12. THE POTENTIAL VALUE OF PHOTOTHERMAL IMAGING FOR THE TESTING OF PLASMA SPRAYED COATINGS

    OpenAIRE

    Almond, D.; Patel, P; Reiter, H.

    1983-01-01

    Measurements are presented which show that the photothermal technique may be used to evaluate plasma sprayed coatings. A photothermal image of a coating adhesion defect is shown and changes in photothermal signal with coating thickness are demonstrated. These measurements are compared directly with ultrasonic measurements of the same sample.

  13. Macro- and micro-nutrient release characteristics of three polymer-coated fertilizers: Theory and measurements

    Science.gov (United States)

    In spite of several published studies we have an incomplete understanding of the ion release mechanisms and characteristics of primary polymer-coated fertilizer (PCF) technologies. Here we extend current conceptual models describing release mechanisms and describe the critical effects of substrate m...

  14. Polymer-free Drug-Coated Coronary Stents in Patients at High Bleeding Risk

    DEFF Research Database (Denmark)

    Urban, Philip; Meredith, Ian T; Abizaid, Alexandre;

    2015-01-01

    BACKGROUND: Patients at high risk for bleeding who undergo percutaneous coronary intervention (PCI) often receive bare-metal stents followed by 1 month of dual antiplatelet therapy. We studied a polymer-free and carrier-free drug-coated stent that transfers umirolimus (also known as biolimus A9),...

  15. CHEMICALLY DEPOSITED SILVER FILM USED AS A SERS-ACTIVE OVER COATING LAYER FOR POLYMER FILM

    Institute of Scientific and Technical Information of China (English)

    Xiao-ning Liu; Gi Xue; Yun Lu; Jun Zhang; Fen-ting Li; Chen-chen Xue; Stephen Z.D. Cheng

    2001-01-01

    When colloidal silver particles were chemically deposited onto polymer film as an over-coating layer, surfaceenhanced Raman scattering (SERS) spectra could be collected for the surface analysis. SERS measurements of liquid crystal film were successfully performed without disturbing the surface morphology.

  16. Bioactive coating with low-fouling polymers for the development of biocompatible vascular implants

    Science.gov (United States)

    Thalla, Pradeep Kumar

    The replacement of occluded blood vessels and endovascular aneurysm repair (EVAR) are performed with the use of synthetic vascular grafts and stent grafts, respectively. Both implants lead to frequent clinical complications that are different but due to a similar problem, namely the inadequate surface properties of the polymeric biomaterials used (generally polyethylene terephthalate (PET) or expanded polytetrafluoroethylene (ePTFE)). Therefore the general objective of this thesis was to create a versatile bioactive coating on vascular biomaterials that reduce material-induced thrombosis and promote desired cell interactions favorable to tissue healing around implants. The use of low-fouling backgrounds was decided in order to reduce platelet adhesion as well as the non-specific protein adsorption and thus increase the bioactivity of immobilized biomolecules. As part of the preliminary objective, a multi-arm polyethylene glycol (PEG) was chosen to create a versatile low-fouling surface, since the current coating methods are far from being versatile and rely on the availability of compatible functional groups on both PEG and the host surface. This PEG coating method was developed by taking advantage of novel primary amine-rich plasma polymerized coatings (LP). As demonstrated by quartz crystal microbalance with dissipation (QCM-D), fluorescence measurements and platelet adhesion assays, our PEG coatings exhibited low protein adsorption and almost no platelet adhesion after 15 min perfusion in whole blood. Although protein adsorption was not completely abrogated and short-term platelet adhesion assay was clearly insufficient to draw conclusions for long-term prevention of thrombosis in vivo, the low-fouling properties of this PEG coating were sufficient to be exploited for further coupling of bioactive molecules to create bioactive coatings. Therefore, as a part of the second objective, an innovative and versatile bioactive coating was developed on PEG and

  17. Improvement of water barrier property of paperboard by coating application with biodegradable polymers.

    Science.gov (United States)

    Han, Jaejoon; Salmieri, Stéphane; Le Tien, Canh; Lacroix, Monique

    2010-03-10

    Biopolymeric coatings were prepared and applied onto paperboard to improve its water barrier property. To prepare whey protein isolate (WPI)/cellulose-based films, WPI and glycerol were dissolved in water with glutaraldehyde (cross-linking agent) and cellulose xanthate. The solution was cast, dried, and insolubilized by entrapment of WPI in regenerated cellulose. Films were combined with beeswax (BW) into a bilayer coating system and then applied onto paperboard by heating compression. Another coating solution consisting of poly(vinyl butyral) (PVB)/zein was prepared by dissolving poly(vinyl alcohol) (PVA) and zein in 70% ethanol with glutaraldehyde and butyraldehyde (functionalization agent). The PVB/zein solution was applied onto paperboard after BW was sprayed. The structure of the PVB/zein-based coatings was analyzed by Fourier transform infrared spectroscopy (FTIR). The water vapor barrier property of coated paperboards was evaluated by water vapor transmission rate (WVTR) measurements. From the FTIR spectra, PVA functionalization after cross-linking and efficient acetalization into PVB were confirmed. WPI/cellulose and PVB/zein coating treatments improved the water barrier properties of paperboard by decreasing the WVTR by 77-78%. Although the BW coating was more efficient (decrease of WVTR by 89%), bilayer coatings composed of BW and polymer coatings had a stronger barrier effect with a decrease of WVTR to 92-95%, hence approaching commercial attributes required to ensure water vapor barrier in paperboard-based food containers (10 g/m(2).day). These results suggest that surface coating by biodegradable polymers may be utilized for the manufacture of paperboard containers in industrial applications.

  18. Use of Atmospheric-Pressure Plasma Jet for Polymer Surface Modification: An Overview

    Energy Technology Data Exchange (ETDEWEB)

    Kuettner, Lindsey A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-16

    Atmospheric-pressure plasma jets (APPJs) are playing an increasingly important role in materials processing procedures. Plasma treatment is a useful tool to modify surface properties of materials, especially polymers. Plasma reacts with polymer surfaces in numerous ways thus the type of process gas and plasma conditions must be explored for chosen substrates and materials to maximize desired properties. This report discusses plasma treatments and looks further into atmospheric-pressure plasma jets and the effects of gases and plasma conditions. Following the short literature review, a general overview of the future work and research at Los Alamos National Laboratory (LANL) is discussed.

  19. Micro patterning of cell and protein non-adhesive plasma polymerized coatings for biochip applications

    DEFF Research Database (Denmark)

    Bouaidat, Salim; Berendsen, C.; Thomsen, P.;

    2004-01-01

    Micro scale patterning of bioactive surfaces is desirable for numerous biochip applications. Polyethyleneoxide-like (PEO-like) coating with non-fouling functionality has been deposited using low frequency AC plasma polymerization. The non-fouling properties of the coating were tested with human...... cells ( HeLa) and fluorescence labeled proteins (isothiocyanate-labeled bovine serum albumin, i.e. FITC-BSA). The PEO-like coatings were fabricated by plasma polymerization of 12-crown-4 (ppCrown) with plasma polymerized hexene (ppHexene) as adhesion layer. The coatings were micro patterned using...

  20. Direct morphological comparison of vacuum plasma sprayed and detonation gun sprayed hydroxyapatite coatings for orthopaedic applications.

    Science.gov (United States)

    Gledhill, H C; Turner, I G; Doyle, C

    1999-02-01

    Hydroxyapatite coatings on titanium substrates were produced using two thermal spray techniques vacuum plasma spraying and detonation gun spraying. X-ray diffraction was used to compare crystallinity and residual stresses in the coatings. Porosity was measured using optical microscopy in conjunction with an image analysis system. Scanning electron microscopy and surface roughness measurements were used to characterise the surface morphologies of the coatings. The vacuum plasma sprayed coatings were found to have a lower residual stress, a higher crystallinity and a higher level of porosity than the detonation gun coatings. It is concluded that consideration needs to be given to the significance of such variations within the clinical context.

  1. Atmosphere corrosion behavior of plasma sprayed and laser remelted coatings on copper

    Institute of Scientific and Technical Information of China (English)

    Gongying Liang; T. T. Wong; Geng An; J. M. K. MacAlpine

    2006-01-01

    Nickel and chromium coatings were produced using plasma spraying and laser remelting on the copper sheet. The corrosion test was carried out in an acidic atmosphere, and the corrosive behaviors of both coatings and original copper samples were investigated by using an impedance comparison method. Experimental results show that nickel and chromium coatings display better corrosion resistance properties relative to the original pure copper sample. The corrosion rate of chromium coating is less than that of nickel coating, and corrosion resistances of laser remelted nickel and chromium samples are better thanthose of plasma sprayed samples. The corrosion deposit film of copper is loose compared with nickel and chromium.

  2. Characterisation of the TiO2 coatings deposited by plasma spraying

    Science.gov (United States)

    Benea, M. L.; Benea, L. P.

    2016-02-01

    Plasma spraying of materials such as ceramics and non-metals, which have high melting points, has become a well-established commercial process. Such coatings are increasingly used in aerospace, automobile, textile, medical, printing and electrical industries to impart proprieties such as corrosion resistance, thermal resistance, wear resistance, etc. One of the most important characteristics of thermal barrier coatings is the ability to undergo fast temperature changes without failing, the so called thermal shock resistance. The formation of residual stresses in plasma sprayed ceramic and metallic coatings is a very complex process. Several factors, such as substrate material, substrate thickness, physical properties of both the substrate and the coating material, deposition rate, relative velocity of the plasma torch, etc. determine the final residual stress state of the coating at room temperature. Our objective is to characterize the titanium oxide and aluminium oxide coatings deposited by plasma spraying in structural terms, the resistance to thermal shock and residual stresses.

  3. Salicylic acid-releasing polyurethane acrylate polymers as anti-biofilm urological catheter coatings.

    Science.gov (United States)

    Nowatzki, Paul J; Koepsel, Richard R; Stoodley, Paul; Min, Ke; Harper, Alan; Murata, Hironobu; Donfack, Joseph; Hortelano, Edwin R; Ehrlich, Garth D; Russell, Alan J

    2012-05-01

    Biofilm-associated infections are a major complication of implanted and indwelling medical devices like urological and venous catheters. They commonly persist even in the presence of an oral or intravenous antibiotic regimen, often resulting in chronic illness. We have developed a new approach to inhibiting biofilm growth on synthetic materials through controlled release of salicylic acid from a polymeric coating. Herein we report the synthesis and testing of a ultraviolet-cured polyurethane acrylate polymer composed, in part, of salicyl acrylate, which hydrolyzes upon exposure to aqueous conditions, releasing salicylic acid while leaving the polymer backbone intact. The salicylic acid release rate was tuned by adjusting the polymer composition. Anti-biofilm performance of the coatings was assessed under several biofilm forming conditions using a novel combination of the MBEC Assay™ biofilm multi-peg growth system and bioluminescence monitoring for live cell quantification. Films of the salicylic acid-releasing polymers were found to inhibit biofilm formation, as shown by bioluminescent and GFP reporter strains of Pseudomonas aeruginosa and Escherichia coli. Urinary catheters coated on their inner lumens with the salicylic acid-releasing polymer significantly reduced biofilm formation by E. coli for up to 5 days under conditions that simulated physiological urine flow. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Preparation and Characterization of Plasma-Sprayed Ultrafine Chromium Oxide Coatings

    Institute of Scientific and Technical Information of China (English)

    LIN Feng; JIANG Xianliang; YU Yueguang; ZENG Keli; REN Xianjing; LI Zhenduo

    2007-01-01

    Ultrafine chromium oxide coatings were prepared by plasma spraying with ultrafine feedstock. Processing parameters of plasma spraying were optimized. Optical microscope (OM) was used to observe the microstructure of the ultrafine chromium oxide coatings. Scanning electron microscopy (SEM) was used to observe the morphology and particle size of ultrafine powder feedstock as well as to examine the microstructure of the chromium oxide coating. In addition, hardness and bonding strength of the ultrafine chromium oxide coatings were measured.The results showed that the optimized plasma spraying parameters were suitable for ultrafine chromium oxide coating and the properties and microstructure of the optimized ultrafine chromium oxide coating were superior compared to conventional chromium oxide wear resistant coatings.

  5. Wear and corrosion resistance of laser remelted and plasma sprayed Ni and Cr coatings on copper

    Institute of Scientific and Technical Information of China (English)

    梁工英; 黄俊达; 安耿

    2004-01-01

    Nickel and chromium coatings were produced on the copper sheet using plasma spraying and laser remelting. The sliding wear test was achieved on a block-on-ring tester and the corrosion test was carried out in an acidic atmosphere. The corrosive behaviors of both coatings and original copper samples were investigated by using an impedance comparison method. The experimental results show that the nickel and chromium coatings display better wear resistance and corrosion resistance relative to the original pure copper sample. The wear resistance of the coatings is 8 - 12 times as large as original samples, and the wear resistance of laser remelted samples is better than that of plasma sprayed ones. The corrosion resistance of laser remelted nickel and chromium samples is better than that of plasma sprayed samples respectively. The corrosion rate of chromium coatings is less than that of nickel coatings, and the laser remelted Cr coating exhibits the least corrosion rate.

  6. Dry particle coating of polymer particles for tailor-made product properties

    Energy Technology Data Exchange (ETDEWEB)

    Blümel, C., E-mail: karl-ernst.wirth@fau.de; Schmidt, J., E-mail: karl-ernst.wirth@fau.de; Dielesen, A., E-mail: karl-ernst.wirth@fau.de; Sachs, M., E-mail: karl-ernst.wirth@fau.de; Winzer, B., E-mail: karl-ernst.wirth@fau.de; Peukert, W., E-mail: karl-ernst.wirth@fau.de; Wirth, K.-E., E-mail: karl-ernst.wirth@fau.de [Institute of Particle Technology, University of Erlangen-Nuremberg (Germany)

    2014-05-15

    Disperse polymer powders with tailor-made particle properties are of increasing interest in industrial applications such as Selective Laser Beam Melting processes (SLM). This study focuses on dry particle coating processes to improve the conductivity of the insulating polymer powder in order to assemble conductive devices. Therefore PP particles were coated with Carbon Black nanoparticles in a dry particle coating process. This process was investigated in dependence of process time and mass fraction of Carbon Black. The conductivity of the functionalized powders was measured by impedance spectroscopy. It was found that there is a dependence of process time, respectively coating ratio and conductivity. The powder shows higher conductivities with increasing number of guest particles per host particle surface area, i.e. there is a correlation between surface functionalization density and conductivity. The assembled composite particles open new possibilities for processing distinct polymers such as PP in SLM process. The fundamentals of the dry particle coating process of PP host particles with Carbon Black guest particles as well as the influence on the electrical conductivity will be discussed.

  7. Enhanced corrosion resistance and hemocompatibility of biomedical NiTi alloy by atmospheric-pressure plasma polymerized fluorine-rich coating

    Energy Technology Data Exchange (ETDEWEB)

    Li, Penghui; Li, Limin [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Wang, Wenhao [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Division of Spine Surgery, Department of Orthopaedics and Traumatology, Pokfulam, Hong Kong (China); Jin, Weihong [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Liu, Xiangmei [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, Hubei 430062 (China); Yeung, Kelvin W.K. [Division of Spine Surgery, Department of Orthopaedics and Traumatology, Pokfulam, Hong Kong (China); Chu, Paul K., E-mail: paul.chu@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2014-04-01

    Highlights: • Fluoropolymer is deposited on NiTi alloy via atmospheric-pressure plasma polymerization. • The corrosion resistance of NiTi alloy in SBF and DMEM is evidently improved. • The adsorption ratio of albumin to fibrinogen is increased on the coated surface. • The reduced platelet adhesion number indicates better in vitro hemocompatibility. - Abstract: To improve the corrosion resistance and hemocompatibility of biomedical NiTi alloy, hydrophobic polymer coatings are deposited by plasma polymerization in the presence of a fluorine-containing precursor using an atmospheric-pressure plasma jet. This process takes place at a low temperature in air and can be used to deposit fluoropolymer films using organic compounds that cannot be achieved by conventional polymerization techniques. The composition and chemical states of the polymer coatings are characterized by fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The corrosion behavior of the coated and bare NiTi samples is assessed and compared by polarization tests and electrochemical impedance spectroscopy (EIS) in physiological solutions including simulated body fluids (SBF) and Dulbecco's Modified Eagle's medium (DMEM). The corrosion resistance of the coated NiTi alloy is evidently improved. Protein adsorption and platelet adhesion tests reveal that the adsorption ratio of albumin to fibrinogen is increased and the number of adherent platelets on the coating is greatly reduced. The plasma polymerized coating renders NiTi better in vitro hemocompatibility and is promising as a protective and hemocompatible coating on cardiovascular implants.

  8. Reduced bleaching in organic nanofibers by bilayer polymer/oxide coating

    DEFF Research Database (Denmark)

    Tavares, Luciana; Kjelstrup-Hansen, Jakob; Rubahn, Horst-Günter

    2010-01-01

    , and tunability through synthetic chemistry. Phenylene-based molecules such as para-hexaphenylene (p6P) are of particular interest due to their ability to self-assemble into elongated, nanoscale, crystalline aggregates or ‘nanofibers’ [1]. Such nanofibers can emit polarized light with a highly anisotropic....... These treatments caused a reduction of the bleaching reaction but in addition, the nanofiber luminescence spectrum was significantly altered. It was observed that some polymer coatings (P(TFE-PDD), and PMMA) do not interfere with the luminescence spectrum from the p6P but are not effective in stopping...... the bleaching. Bilayer coatings with first a polymer material, which should work as a protection layer to avoid modifications of the p6P luminescence spectrum, and second an oxide layer used as oxygen blocker were tested and it was found that a particular bilayer polymer/oxide combination results...

  9. Effect of Polymer Inclusion in Preparation of Thick LZO Buffer Layers for YBCO Coated Conductors

    Institute of Scientific and Technical Information of China (English)

    Vyshnavi Narayanan; Isabel Van Driessche

    2013-01-01

    In this work,water-based precursor solutions suitable for dip-coating of thick La2Zr2O7 (LZO) buffer layers for coated conductors on Ni-5%W substrates with an inclusion of polymeric polyvinyl pyrrolidone were developed.The effect of varying percentage of the polymer addition on the preparation of the deposited films with maximum crack-free thickness was investigated.This novel water-based chemical solution deposition method involving polymers in two different chelate-chemistry compositions revealed the possibility to grow single,crack-free layers with thicknesses ranging from 140 to 280 nm,with good crystallinity and epitaxial growth.The effect of increasing polymer concentrations on the morphology and the structure of the films was studied.The appropriate buffer layer action of the films in preventing Ni diffusion was studied by X-ray photoelectron spectroscopy.

  10. Stabilization of 2D assemblies of silver nanoparticles by spin-coating polymers

    Science.gov (United States)

    Hu, Longyu; Pfirman, Aubrie; Chumanov, George

    2015-12-01

    Silver nanoparticles self-assembled on poly(4-vinylpyridine) modified surfaces were spin-coated with poly(methyl methacrylate), poly(butyl methacrylate) and polystyrene from anisole and toluene solutions. The polymers filled the space between the particles thereby providing stabilization of the assemblies against particle aggregation when dried or chemically modified. The polymers did not coat the top surface of the nanoparticles offering the chemical accessibility to the metal surface. This was confirmed by converting the stabilized nanoparticles into silver sulfide and gold clusters. Etching the nanoparticles resulted in crater-like polymeric structures with the cavities extending down to the underlying substrate. Electrochemical reduction of silver inside the craters was performed. The approach can be extended to other nanoparticle assemblies and polymers.

  11. B4C protective coating under irradiation by QSPA-T intensive plasma fluxes

    Science.gov (United States)

    Buzhinskij, O. I.; Barsuk, V. A.; Begrambekov, L. B.; Klimov, N. S.; Otroshchenko, V. G.; Putric, A. B.

    2016-12-01

    The effect of the QSPA-T pulsed plasma irradiation on the crystalline boron carbide B4C coating was examined. The duration of the rectangular plasma pulses was 0.5 ms with an interval of 5-10 min between pulses. The maximum power density in the central part of plasma stream was 1 GW/m2. The coating thickness varied from 20 to 40 μm on different surface areas. Modification of the surface layers and transformation of the coating at elevated temperature under plasma pulse irradiation during four successive series of impulses are described. It is shown that the boron carbide coating withstood the full cycle of tests under irradiation with 100 plasma pulses with peak power density of 1GW/m2. Constitutive surface deterioration was not detected and the boron carbide coating kept crystal structure B4C throughout the irradiation zone at the surface depth no less 2 μm.

  12. Bonelike apatite coatings on plasma-sprayed porous titanium by biomimetic processing

    Institute of Scientific and Technical Information of China (English)

    SHI Jian-min; DING Chuan-xian

    2001-01-01

    @@ INTRODUCTION Hydroxyapatite (HA) has many biological benefits, such as direct bonding to bone and enhances new bone formation around it. It has been demonstrated that dental and orthopaedic implants coated with HA show superior histological results to the uncoated ones. Various methods as well as plasma spraying, which is commonly used, have been developed to coat HA on metals. However, Plasma-sprayed HA coatings are limited by specific drawbacks such as low crystallinity, weak bond strength to the substrate.

  13. Analysis of Residual Thermal Stress in CVD-W Coating as Plasma Facing Material

    Institute of Scientific and Technical Information of China (English)

    朱大焕; 王坤; 王先平; 陈俊凌; 方前锋

    2012-01-01

    Chemical vapor deposition-tungsten (CVD-W) coating covering the surface of the plasma facing component (PFC) is an effective method to implement the tungsten material as plasma facing material (PFM) in fusion devices. Residual thermal stress in CVD-W coating due to thermal mismatch between coating and substrate was successfully simulated by using a finite element method (ANSYS 10.0 code). The deposition parametric effects, i.e., coating thickness and deposition temperature, and interlayer were investigated to get a description of the residual thermal stress in the CVD-W coating-substrate system. And the influence of the substrate materials on the generation of residual thermal stress in the CVD-W coating was analyzed with respect to the CVD-W coating application as PFM. This analysis is beneficial for the preparation and application of CVD-W coating.

  14. Analysis of Residual Thermal Stress in CVD-W Coating as Plasma Facing Material

    Science.gov (United States)

    Zhu, Dahuan; Wang, Kun; Wang, Xianping; Chen, Junling; Fang, Qianfeng

    2012-07-01

    Chemical vapor deposition-tungsten (CVD-W) coating covering the surface of the plasma facing component (PFC) is an effective method to implement the tungsten material as plasma facing material (PFM) in fusion devices. Residual thermal stress in CVD-W coating due to thermal mismatch between coating and substrate was successfully simulated by using a finite element method (ANSYS 10.0 code). The deposition parametric effects, i.e., coating thickness and deposition temperature, and interlayer were investigated to get a description of the residual thermal stress in the CVD-W coating-substrate system. And the influence of the substrate materials on the generation of residual thermal stress in the CVD-W coating was analyzed with respect to the CVD-W coating application as PFM. This analysis is beneficial for the preparation and application of CVD-W coating.

  15. Highly efficient polymer solar cells with printed photoactive layer: rational process transfer from spin-coating

    KAUST Repository

    Zhao, K.

    2016-09-05

    Scalable and continuous roll-to-roll manufacturing is at the heart of the promise of low-cost and high throughput manufacturing of solution-processed photovoltaics. Yet, to date the vast majority of champion organic solar cells reported in the literature rely on spin-coating of the photoactive bulk heterojunction (BHJ) layer, with the performance of printed solar cells lagging behind in most instances. Here, we investigate the performance gap between polymer solar cells prepared by spin-coating and blade-coating the BHJ layer for the important class of modern polymers exhibiting no long range crystalline order. We find that thickness parity does not always yield performance parity even when using identical formulations. Significant differences in the drying kinetics between the processes are found to be responsible for BHJ nanomorphology differences. We propose an approach which benchmarks the film drying kinetics and associated BHJ nanomorphology development against those of the champion laboratory devices prepared by spin-coating the BHJ layer by adjusting the process temperature. If the optimization requires the solution concentration to be changed, then it is crucial to maintain the additive-to-solute volume ratio. Emulating the drying kinetics of spin-coating is also shown to help achieve morphological and performance parities. We put this approach to the test and demonstrate printed PTB7:PC71BM polymer solar cells with efficiency of 9% and 6.5% PCEs on glass and flexible PET substrates, respectively. We further demonstrate performance parity for two other popular donor polymer systems exhibiting rigid backbones and absence of a long range crystalline order, achieving a PCE of 9.7%, the highest efficiency reported to date for a blade coated organic solar cell. The rational process transfer illustrated in this study should help the broader and successful adoption of scalable printing methods for these material systems.

  16. The effects of plasma inhomogeneity on the nanoparticle coating in a low pressure plasma reactor

    Science.gov (United States)

    Pourali, N.; Foroutan, G.

    2015-10-01

    A self-consistent model is used to study the surface coating of a collection of charged nanoparticles trapped in the sheath region of a low pressure plasma reactor. The model consists of multi-fluid plasma sheath module, including nanoparticle dynamics, as well as the surface deposition and particle heating modules. The simulation results show that the mean particle radius increases with time and the nanoparticle size distribution is broadened. The mean radius is a linear function of time, while the variance exhibits a quadratic dependence. The broadening in size distribution is attributed to the spatial inhomogeneity of the deposition rate which in turn depends on the plasma inhomogeneity. The spatial inhomogeneity of the ions has strong impact on the broadening of the size distribution, as the ions contribute both in the nanoparticle charging and in direct film deposition. The distribution width also increases with increasing of the pressure, gas temperature, and the ambient temperature gradient.

  17. Elastic behaviour of plasma sprayed thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Steinbrech, R.W.; Frahm, J.; Herzog, R.; Schubert, F. [Inst. for Materials and Processes in Energy Systems, Forschungszentrum Juelich GmbH, Juelich (Germany)

    2002-07-01

    The elastic behaviour of air plasma sprayed (APS) thermal barrier coatings (TBCs) of 8 wt.% yttria stabilised zirconia was studied using various mechanical tests with global and local resolution. Results are presented, which reveal the complex relationship between lamellar APS-microstructure and stiffness and illustrate scaling aspects. Also the influence of residual stresses is addressed. The obtained stiffness values for as-sprayed TBCs show a systematic variation between 10 and 100 GPa. Typically results from bending tests of free-standing TBCs are at the low end, whereas results from depth sensitive indentation tests with TBCs bonded to a substrate are found at the high end. When heat treated above 950 C the TBCs exhibit a rapid increase in stiffness which can be attributed to defect healing within the spraying lamellae. Discussion of the results focuses on the implications of a non-uniform stiffness modulus for the mechanical characterisation of thermal barrier systems. (orig.)

  18. Phase Separation of Silicon-Containing Polymer/Polystyrene Blends in Spin-Coated Films.

    Science.gov (United States)

    Li, Yang; Hu, Kai; Han, Xiao; Yang, Qinyu; Xiong, Yifeng; Bai, Yuhang; Guo, Xu; Cui, Yushuang; Yuan, Changsheng; Ge, Haixiong; Chen, Yanfeng

    2016-04-19

    In this Article, two readily available polymers that contain silicon and have different surface tensions, polydimethylsiloxane (PDMS) and polyphenylsilsequioxane (PPSQ), were used to produce polymer blends with polystyrene (PS). Spin-coated thin films of the polymer blends were treated by O2 reactive-ion etching (RIE). The PS constituent was selectively removed by O2 RIE, whereas the silicon-containing phase remained because of the high etching resistance of silicon. This selective removal of PS substantially enhanced the contrast of the phase separation morphologies for better scanning electron microscope (SEM) and atomic force microscope (AFM) measurements. We investigated the effects of the silicon-containing constituents, polymer blend composition, concentration of the polymer blend solution, surface tension of the substrate, and the spin-coating speed on the ultimate morphologies of phase separation. The average domain size, ranging from 100 nm to 10 μm, was tuned through an interplay of these factors. In addition, the polymer blend film was formed on a pure organic layer, through which the aspect ratio of the phase separation morphologies was further amplified by a selective etching process. The formed nanostructures are compatible with existing nanofabrication techniques for pattern transfer onto substrates.

  19. Biocorrosion behavior and cell viability of adhesive polymer coated magnesium based alloys for medical implants

    Science.gov (United States)

    Abdal-hay, Abdalla; Dewidar, Montasser; Lim, Jae Kyoo

    2012-11-01

    The present study was ultimately aimed to design novel adhesive biodegradable polymer, poly(vinyl acetate) (PVAc), coatings onto Mg based alloys by the dip-coating technique in order to control the degradation rate and enhance the biocompatibility of magnesium alloys. The influence of various solvents on PVAc surface topography and their protection of Mg alloys were dramatically studied in vitro. Electrochemical polarization, degradation, and PVAc film cytocompatibility were also tested. Our results showed that the solvent had a significant effect on coating quality. PVAc/dichloromethane solution showed a porous structure and solution concentration could control the porous size. The coatings prepared using tetrahydrofuran and dimethylformamide solvents are exceptional in their ability to generate porous morphology even at low polymer concentration. In general, the corrosion performance appears to be different on different PVAc-solvent system. Immersion tests illustrated that the porous morphology on PVAc stabilized corrosion rates. A uniform corrosion attack in artificial simulation body fluid was also exhibited. The cytocompatibility of osteoblast cells (MC3T3) revealed high adherence, proliferation, and survival on the porous structure of PVAc coated Mg alloy, which was not observed for the uncoated samples. This novel PVAc coating is a promising candidate for biodegradable implant materials, which might widen the use of Mg based implants.

  20. In situ imaging and height reconstruction of phase separation processes in polymer blends during spin coating.

    Science.gov (United States)

    Ebbens, Stephen; Hodgkinson, Richard; Parnell, Andrew J; Dunbar, Alan; Martin, Simon J; Topham, Paul D; Clarke, Nigel; Howse, Jonathan R

    2011-06-28

    Spin coating polymer blend thin films provides a method to produce multiphase functional layers of high uniformity covering large surface areas. Applications for such layers include photovoltaics and light-emitting diodes where performance relies upon the nanoscale phase separation morphology of the spun film. Furthermore, at micrometer scales, phase separation provides a route to produce self-organized structures for templating applications. Understanding the factors that determine the final phase-separated morphology in these systems is consequently an important goal. However, it has to date proved problematic to fully test theoretical models for phase separation during spin coating, due to the high spin speeds, which has limited the spatial resolution of experimental data obtained during the coating process. Without this fundamental understanding, production of optimized micro- and nanoscale structures is hampered. Here, we have employed synchronized stroboscopic illumination together with the high light gathering sensitivity of an electron-multiplying charge-coupled device camera to optically observe structure evolution in such blends during spin coating. Furthermore the use of monochromatic illumination has allowed interference reconstruction of three-dimensional topographies of the spin-coated film as it dries and phase separates with nanometer precision. We have used this new method to directly observe the phase separation process during spinning for a polymer blend (PS-PI) for the first time, providing new insights into the spin-coating process and opening up a route to understand and control phase separation structures.

  1. The effect of composition and thermodynamics on the surface morphology of durable superhydrophobic polymer coatings

    Directory of Open Access Journals (Sweden)

    Nahum T

    2017-02-01

    Full Text Available Tehila Nahum,1 Hanna Dodiuk,2 Samuel Kenig,2 Artee Panwar,1 Carol Barry,1 Joey Mead,1 1Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, MA, USA; 2Department of Polymers and Plastics Engineering, Shenkar College of Engineering Design and Art, Ramat Gan, Israel Abstract: Durable superhydrophobic coatings were synthesized using a system of silica nanoparticles (NPs to provide nanoscale roughness, fluorosilane to give hydrophobic chemistry, and three different polymer binders: urethane acrylate, ethyl 2-cyanoacrylate, and epoxy. Coatings composed of different binders incorporating NPs in various concentrations exhibited different superhydrophobic attributes when applied on polycarbonate (PC and glass substrates and as a function of coating composition. It was found that the substrate surface characteristics and wettability affected the superhydrophobic characteristics of the coatings. Interfacial tension and spreading coefficient parameters (thermodynamics of the coating components were used to predict the localization of the NPs for the different binders’ concentrations. The thermodynamic analysis of the NPs localization was in good agreement with the experimental observations. On the basis of the thermodynamic analysis and the experimental scanning electron microscopy, X-ray photoelectron spectroscopy, profilometry, and atomic force microscopy results, it was concluded that localization of the NPs on the surface was critical to provide the necessary roughness and resulting superhydrophobicity. The durability evaluated by tape testing of the epoxy formulations was the best on both glass and PC. Several coating compositions retained their superhydrophobicity after the tape test. In summary, it was concluded that thermodynamic analysis is a powerful tool to predict the roughness of the coating due to the location of NPs on the surface, and hence can be used in the design of superhydrophobic coatings. Keywords

  2. Residual stresses determination in textured substrates for plasma sprayed coatings

    Science.gov (United States)

    Capek, J.; Pala, Z.; Kovarik, O.

    2015-04-01

    In this contribution, we have striven to respond to the desire of obtaining the residual stress tensor in the both cold-rolled and hot-rolled substrates designated for deposition of thermal coatings by plasma spraying. Residual stresses play an important role in the coating adhesion to the substrate and, as such, it is a good practice to analyse them. Prior to spraying, the substrate is often being grit blasted. Residual stresses and texture were quantitatively assessed in both virgin and grit blasted sample employing three attitudes. Firstly without taking preferred orientation into account, secondly from measurements of interplanar lattice spacings of planes with high Miller indices using MoKα radiation. And eventually, by calculating anisotropic elastic constants as a weighted average between single-crystal and X-ray elastic constants with weighting being done according to the amount of textured and isotropic material in the irradiated volume. In the ensuing verification analyses, it was established that the latter approach is suitable for materials with either very strong or very weak presence of texture.

  3. Young's Moduli of Cold and Vacuum Plasma Sprayed Metallic Coatings

    Science.gov (United States)

    Raj, S. V.; Pawlik, R.; Loewenthal, W.

    2009-01-01

    Monolithic metallic copper alloy and NiCrAlY coatings were fabricated by either the cold spray (CS) or the vacuum plasma spray (VPS) deposition processes. Dynamic elastic modulus property measurements were conducted on these monolithic coating specimens between 300 K and 1273 K using the impulse excitation technique. The Young's moduli decreased almost linearly with increasing temperature at all temperatures except in the case of the CS Cu-23%Cr-5%Al and VPS NiCrAlY, where deviations from linearity were observed above a critical temperature. It was observed that the Young's moduli for VPS Cu-8%Cr were larger than literature data compiled for Cu. The addition of 1%Al to Cu- 8%Cr significantly increased its Young's modulus by 12 to 17% presumably due to a solid solution effect. Comparisons of the Young s moduli data between two different measurements on the same CS Cu- 23%Cr-5%Al specimen revealed that the values measured in the first run were about 10% higher than those in the second run. It is suggested that this observation is due to annealing of the initial cold work microstructure resulting form the cold spray deposition process.

  4. Low Band Gap Polymers for Roll-to-Roll Coated Polymer Solar Cells

    DEFF Research Database (Denmark)

    2010-01-01

    We present the synthesis of a low band gap copolymer based on dithienothiophene and dialkoxybenzothiadiazole (poly(dithienothiophene-co-dialkoxybenzothiadiazole), PDTTDABT). The optical properties of the polymer showed a band gap of 1.6 eV and a sky-blue color in solid films. The polymer was expl......We present the synthesis of a low band gap copolymer based on dithienothiophene and dialkoxybenzothiadiazole (poly(dithienothiophene-co-dialkoxybenzothiadiazole), PDTTDABT). The optical properties of the polymer showed a band gap of 1.6 eV and a sky-blue color in solid films. The polymer...

  5. The application of plasma-sprayed ceramic coatings on lift roller in float glass

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Oxide ceramic was sprayed via high-energy plasma spray using MCrAlY manufactured with special technique as bond coating and oxide ceramic as top coating in this article. Investigation showed that the dense and highly adhesive coating could be obtained with optimized technique. After grinding and polishing, coating roughness was lower than 0. 2μm, which could meet the requirements of lift roller. After one year serv ice, molten Tin could not adhere to the ceramic coating,well it greatly alleviated its corrosion to the roller , kept the surface of oxide ceramic coating smooth and the improve the quality of glass due to the strengthened lift roll.

  6. Microstructure of Suspension Plasma Spray and Air Plasma Spray Al2O3-ZrO2 Composite Coatings

    Science.gov (United States)

    Chen, Dianying; Jordan, Eric H.; Gell, Maurice

    2009-09-01

    Al2O3-ZrO2 coatings were deposited by the suspension plasma spray (SPS) molecularly mixed amorphous powder and the conventional air plasma spray (APS) Al2O3-ZrO2 crystalline powder. The amorphous powder was produced by heat treatment of molecularly mixed chemical solution precursors below their crystallization temperatures. Phase composition and microstructure of the as-synthesized and heat-treated SPS and APS coatings were characterized by XRD and SEM. XRD analysis shows that the as-sprayed SPS coating is composed of α-Al2O3 and tetragonal ZrO2 phases, while the as-sprayed APS coating consists of tetragonal ZrO2, α-Al2O3, and γ-Al2O3 phases. Microstructure characterization revealed that the Al2O3 and ZrO2 phase distribution in SPS coatings is much more homogeneous than that of APS coatings.

  7. Experimental modeling of polymer latex spray coating for producing controlled-release urea

    Institute of Scientific and Technical Information of China (English)

    Rui Lan; Yonghui Liu; Guanda Wang; Tingjie Wang; Chengyou Kan; Yong Jin

    2011-01-01

    Spray coating of polymer latex onto fertilizer particles in a fluidized bed for producing controlled-release urea is an environment friendly technology as it does not need any toxic organic solvent.Since the spray coating process in a fluidized bed occurs in the presence of particle collisions,the coating of the particles is random,intermittent and multiple,thus making it difficult to investigate the film formation process.In this paper,an experimental model apparatus was designed and used to investigate the effects of the key factors in the spray coating process.This apparatus reasonably simplified the complex process to avoid particle collisions and randomness in the coating.The intermittent coating in the fluidized bed was modeled by periodic coating and dewatering in the experimental apparatus.A large area film was obtained,and the film permeability was measured.The effects of atomizing gas flow rate,spray rate of latex,solid content of latex and gas temperature on film structure and film permeability were investigated.It was found that water transfer played a dominant role in the spray coating process.

  8. The effect of composition and thermodynamics on the surface morphology of durable superhydrophobic polymer coatings.

    Science.gov (United States)

    Nahum, Tehila; Dodiuk, Hanna; Kenig, Samuel; Panwar, Artee; Barry, Carol; Mead, Joey

    2017-01-01

    Durable superhydrophobic coatings were synthesized using a system of silica nanoparticles (NPs) to provide nanoscale roughness, fluorosilane to give hydrophobic chemistry, and three different polymer binders: urethane acrylate, ethyl 2-cyanoacrylate, and epoxy. Coatings composed of different binders incorporating NPs in various concentrations exhibited different superhydrophobic attributes when applied on polycarbonate (PC) and glass substrates and as a function of coating composition. It was found that the substrate surface characteristics and wettability affected the superhydrophobic characteristics of the coatings. Interfacial tension and spreading coefficient parameters (thermodynamics) of the coating components were used to predict the localization of the NPs for the different binders' concentrations. The thermodynamic analysis of the NPs localization was in good agreement with the experimental observations. On the basis of the thermodynamic analysis and the experimental scanning electron microscopy, X-ray photoelectron spectroscopy, profilometry, and atomic force microscopy results, it was concluded that localization of the NPs on the surface was critical to provide the necessary roughness and resulting superhydrophobicity. The durability evaluated by tape testing of the epoxy formulations was the best on both glass and PC. Several coating compositions retained their superhydrophobicity after the tape test. In summary, it was concluded that thermodynamic analysis is a powerful tool to predict the roughness of the coating due to the location of NPs on the surface, and hence can be used in the design of superhydrophobic coatings.

  9. The effect of composition and thermodynamics on the surface morphology of durable superhydrophobic polymer coatings

    Science.gov (United States)

    Nahum, Tehila; Dodiuk, Hanna; Kenig, Samuel; Panwar, Artee; Barry, Carol; Mead, Joey

    2017-01-01

    Durable superhydrophobic coatings were synthesized using a system of silica nanoparticles (NPs) to provide nanoscale roughness, fluorosilane to give hydrophobic chemistry, and three different polymer binders: urethane acrylate, ethyl 2-cyanoacrylate, and epoxy. Coatings composed of different binders incorporating NPs in various concentrations exhibited different superhydrophobic attributes when applied on polycarbonate (PC) and glass substrates and as a function of coating composition. It was found that the substrate surface characteristics and wettability affected the superhydrophobic characteristics of the coatings. Interfacial tension and spreading coefficient parameters (thermodynamics) of the coating components were used to predict the localization of the NPs for the different binders’ concentrations. The thermodynamic analysis of the NPs localization was in good agreement with the experimental observations. On the basis of the thermodynamic analysis and the experimental scanning electron microscopy, X-ray photoelectron spectroscopy, profilometry, and atomic force microscopy results, it was concluded that localization of the NPs on the surface was critical to provide the necessary roughness and resulting superhydrophobicity. The durability evaluated by tape testing of the epoxy formulations was the best on both glass and PC. Several coating compositions retained their superhydrophobicity after the tape test. In summary, it was concluded that thermodynamic analysis is a powerful tool to predict the roughness of the coating due to the location of NPs on the surface, and hence can be used in the design of superhydrophobic coatings. PMID:28243071

  10. Retention and release mechanisms of tritium loaded in plasma-sprayed tungsten coatings by plasma exposure

    Energy Technology Data Exchange (ETDEWEB)

    Otsuka, T., E-mail: t-otsuka@nucl.kyushu-u.ac.jp [Kyushu University, Interdisciplinary Graduate School of Engineering and Sciences, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581 (Japan); Tanabe, T. [Kyushu University, Interdisciplinary Graduate School of Engineering and Sciences, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581 (Japan); Tokunaga, K. [Kyushu University, Research Institute for Applied Mechanics, Kasugakoen 6-1, Kasuga-shi, Fukuoka 816-8580 (Japan)

    2013-07-15

    Depth profiles of tritium (T) loaded by gas and plasma in tungsten (W) coatings on ferritic steels have been examined by using a tritium imaging plate technique and their changes during storage and after annealing have been monitored. The depth profiles of T consisted of 4 components, (I) T trapped at impurities and defects newly introduced in the near surface region of the coating by plasma loading, (II) T trapped at the inner surfaces of the grains and dissolved in the grains resulting in a flat depth profile throughout the whole coating, (III) T dissolved and diffused into the substrate giving a decaying profile, and (IV) T trapped at the backside surface of the substrate. The results support that retention of T is mainly caused by pore diffusion of gaseous T followed by dissolution and trapping in/at each W grain, and dissolution of T into the F82H substrate to allow permeation. Release of T proceeds in an opposite way of retention but each component desorbs independently.

  11. Modification of plasma polymer films by ion implantation

    Directory of Open Access Journals (Sweden)

    Santos Deborah Cristina Ribeiro dos

    2004-01-01

    Full Text Available In this work, thin polymer films were prepared from acetylene and argon radiofrequency (13.56 MHz, 80 W glow discharges. Post-deposition treatment was performed by plasma immersion ion implantation in nitrogen or helium glow discharges (13.56 MHz, 70 W. In these cases, samples were biased with 25 kV negative pulses. Exposure time to the bombardment plasma, t, ranged from 900 to 7200 s. Chemical composition of the film surfaces was investigated by X-ray Photoelectron Spectroscopy and the resistance to oxidation by the etching process, in reactive oxygen plasmas. Oxygen and nitrogen were detected in all the samples. While the concentration of the former continuously changed with t, that of N kept practically constant in small proportions. The film is predominantly formed by sp² states, but the proportion of sp³ hybridization slightly increased with t. The etching rate dropped under certain conditions of nitrogen bombardment whereas helium implantation has not significantly improved it. These results are ascribed to the crosslinking degree of the polymeric chains, ruled by the total amount of energy delivered to the film.

  12. Noteworthy impacts of polyurethane-urea ionomers as the efficient polar coatings on adhesion strength of plasma treated polypropylene

    Science.gov (United States)

    Chashmejahanbin, Mohammad. R.; Daemi, Hamed; Barikani, Mehdi; Salimi, Ali

    2014-10-01

    In present research, polypropylene (PP) was selected as a model nonpolar substrate for chemical modification using plasma. In the first step, the PP samples were treated using oxygen and argon atmospheres, individually. The prepared samples were analyzed using both FTIR and AFM techniques. The output of these techniques revealed that the carbonyl, carboxylic acid and its derivatives have been formed on the surface of PP. Afterward, a series of aqueous polyurethane-urea dispersions were synthesized as the novel polar coating for modified nonpolar polymers and characterized by different techniques including FTIR, DSC, TGA, mechanical properties and contact angle. Finally, the plasma treated samples were coated by prepared polyurethane ionomer. The results of pull-off analysis confirmed the significant role of the polyurethane as an extremely polar coating to create hydrogen bonding with functional groups on the surface of treated PP. The adhesion strength of polypropylenes increased from 0.04 MPa to 0.61 MPa for neat and oxygen-based plasma treated samples, respectively.

  13. High-temperature separation with polymer-coated fiber in packed capillary gas chromatography.

    Science.gov (United States)

    Saito, Yoshihiro; Ogawa, Mitsuhiro; Imaizumi, Motohiro; Ban, Kazuhiro; Abe, Akira; Takeichi, Tsutomu; Wada, Hiroo; Jinno, Kiyokatsu

    2005-06-01

    High-temperature gas chromatographic separation of several synthetic polymer mixtures with Dexsil-coated fiber-packed columns was studied. A bundle of heat-resistant filaments, Zylon, was longitudinally packed into a short metal capillary, followed by the conventional coating process with Dexsil 300 material. Prior to the packing process the metal capillary was deactivated by the formation of a silica layer. The typical size of the resulting column was 0.3-mm i.d., 0.5-mm o.d., 1-m length, and packed with about 170 filaments of the Dexsil-coated Zylon. The column temperature could be elevated up to 450 degrees C owing to the good thermal stability of the fiber, Dexsil coating, and metal capillary; furthermore, this allowed the separation of low-volatile compounds to be studied.

  14. Polymer Coated Electrodes in Ambient Temperature Molten Salts.

    Science.gov (United States)

    1983-08-01

    trotm Report) %.. A 1S. SUPPLEMENTARY NOTES Prepared for Publication in The Journal of the Electrochemical Society It. K(EY WORDS (Continue Ott rereree...Accepted for Publication in The Journal of the Electrochemical Society Department of Chemistry State University of New York at Buffalo Buffalo, New York...melt. This type of break-in behavior has been observed by other,* Electrochemical Society Actrve mer workers, using different polymers and more vol t e

  15. Ammonia volatilization and yield components after application of polymer-coated urea to maize

    Directory of Open Access Journals (Sweden)

    Eduardo Zavaschi

    2014-08-01

    Full Text Available A form of increasing the efficiency of N fertilizer is by coating urea with polymers to reduce ammonia volatilization. The aim of this study was to evaluate the effect of polymer-coated urea on the control of ammonia volatilization, yield and nutritional characteristics of maize. The experiment was carried out during one maize growing cycle in 2009/10 on a Geric Ferralsol, inUberlândia, MG, Brazil. Nitrogen fertilizers were applied as topdressing on the soil surface in the following urea treatments: polymer-coated urea at rates of 45, 67.5 and 90 kg ha-1 N and one control treatment (no N, in randomized blocks with four replications. Nitrogen application had a favorable effect on N concentrations in leaves and grains, Soil Plant Analysis Development (SPAD chlorophyll meter readings and on grain yield, where as coated urea had no effect on the volatilization rates, SPAD readings and N leaf and grain concentration, nor on grain yield in comparison to conventional fertilization.

  16. Improving the Performance of Lithium–Sulfur Batteries by Conductive Polymer Coating

    KAUST Repository

    Yang, Yuan

    2011-11-22

    Rechargeable lithium-sulfur (Li-S) batteries hold great potential for next-generation high-performance energy storage systems because of their high theoretical specific energy, low materials cost, and environmental safety. One of the major obstacles for its commercialization is the rapid capacity fading due to polysulfide dissolution and uncontrolled redeposition. Various porous carbon structures have been used to improve the performance of Li-S batteries, as polysulfides could be trapped inside the carbon matrix. However, polysulfides still diffuse out for a prolonged time if there is no effective capping layer surrounding the carbon/sulfur particles. Here we explore the application of conducting polymer to minimize the diffusion of polysulfides out of the mesoporous carbon matrix by coating poly(3,4-ethylenedioxythiophene)- poly(styrene sulfonate) (PEDOT:PSS) onto mesoporous carbon/sulfur particles. After surface coating, coulomb efficiency of the sulfur electrode was improved from 93% to 97%, and capacity decay was reduced from 40%/100 cycles to 15%/100 cycles. Moreover, the discharge capacity with the polymer coating was ∼10% higher than the bare counterpart, with an initial discharge capacity of 1140 mAh/g and a stable discharge capacity of >600 mAh/g after 150 cycles at C/5 rate. We believe that this conductive polymer coating method represents an exciting direction for enhancing the device performance of Li-S batteries and can be applicable to other electrode materials in lithium ion batteries. © 2011 American Chemical Society.

  17. Polymer-Silica nanoparticles composite films as protective coatings for stone-based monuments

    Energy Technology Data Exchange (ETDEWEB)

    Manoudis, P [Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124, Thessaloniki (Greece); Papadopoulou, S [Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124, Thessaloniki (Greece); Karapanagiotis, I [' Ormylia' Art Diagnosis Centre, Ormylia, Chalkidiki, 63071 (Greece); Tsakalof, A [Medical Department, University of Thessaly, Larissa, 41222 (Greece); Zuburtikudis, I [Department of Industrial Design Engineering, TEI of Western Macedonia, Kozani, 50100 (Greece); Panayiotou, C [Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124, Thessaloniki (Greece)

    2007-04-15

    The decrease of surface energy of mineral substrates similar to those used in many stone monuments of cultural heritage by the application of protective polymer coatings along with the simultaneous increase of their surface roughness can increase their ability to repel water substantially. In this work, the effect of artificially induced roughness on the water repellency of mineral substrates coated with protective polymer films was investigated. Natural marble samples or home made calcium carbonate blocks were tried as the mineral substrates. The roughness increase was achieved by mineral chemical etching or by creation of nanoscale binary composition film on the substrate surface. PMMA and PFPE were the polymers used, while different-sized silica nanoparticles were employed for the production of the nanocomposite films. Examination of the coated and uncoated surfaces with profilometry and AFM and measurements of water contact angles reveal a pronounced effect of the surface roughness on water repellency. Especially in the case of nanocomposite coatings, the surfaces become super-hydrophobic. This result indicates that the nanoscale binary composition film scheme, which is characterized by its simplicity and low cost, is a suitable candidate for the water protection of stone-based monuments on large scale.

  18. Plasto-hydrodynamic polymer coating of fine wires

    OpenAIRE

    Lamb, Roger E.

    1989-01-01

    This project outlines the design and commissioning of a multi-purpose drawing bench and pressure die chamber so as to coat fine wires. The pressure chamber was designed along similar lines to the pressure chambers used by previous researchers for Plasto-hydrodynamic die-less drawing of wire. The commissioning and future safe operation of the drawing bench have been described. The experimental proceedures and methods have been outlined. Investigations into a wide ra...

  19. Oxidation Control of Atmospheric Plasma Sprayed FeAl Intermetallic Coatings Using Dry-Ice Blasting

    Science.gov (United States)

    Song, Bo; Dong, Shujuan; Coddet, Pierre; Hansz, Bernard; Grosdidier, Thierry; Liao, Hanlin; Coddet, Christian

    2013-03-01

    The performance of atmospheric plasma sprayed FeAl coatings has been remarkably limited because of oxidation and phase transformation during the high-temperature process of preparation. In the present work, FeAl intermetallic coatings were prepared by atmospheric plasma spraying combined with dry-ice blasting. The microstructure, oxidation, porosity, and surface roughness of FeAl intermetallic coatings were investigated. The results show that a denser FeAl coating with a lower content of oxide and lower degree of phase transformation can be achieved because of the cryogenic, the cleaning, and the mechanical effects of dry-ice blasting. The surface roughness value decreased, and the adhesive strength of FeAl coating increased after the application of dry-ice blasting during the atmospheric plasma spraying process. Moreover, the microhardness of the FeAl coating increased by 72%, due to the lower porosity and higher dislocation density.

  20. Functionalization of PDMS modified and plasma activated two-component polyurethane coatings by surface attachment of enzymes

    Science.gov (United States)

    Kreider, Alexej; Richter, Katharina; Sell, Stephan; Fenske, Mandus; Tornow, Christian; Stenzel, Volkmar; Grunwald, Ingo

    2013-05-01

    This article describes a new strategy for coupling the enzyme horseradish peroxidase to a two-component polyurethane (2C-PUR) coating. A stable polymer conjugate was achieved by combining the enzyme and the 2C-PUR coating which was modified with poly(dimethylsiloxane) (PDMS), located at the surface. An atmospheric pressure plasma jet system was used to convert alkyl groups from the PDMS into polar silanol functionalities. This conversion was proven by X-ray photoelectron spectroscopy and dynamic contact angle measurements. In addition, the stability of the activated 2C-PUR surface containing silanol groups was determined by measuring the contact angle as a function of time. Compared to the non-modified 2C-PUR systems the one with PDMS displayed a higher stability over a time period over 28 h. In a silanization process the coating was treated with (3-aminopropyl) trimethoxysilane and the enzyme was subsequently immobilized to the coating via the cross linker glutaraldehyde to receive new biomimetic catalytic/enzymatic functions. The chemical immobilization (chemisorption) of the enzyme to the surface showed statistically significant higher biological activity as compared to references samples without using a cross linker (physisorption). The presented technique offers the opportunity to design new and smart multifunctional surface coatings which employ biomimetic capabilities.

  1. Functionalization of PDMS modified and plasma activated two-component polyurethane coatings by surface attachment of enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Kreider, Alexej; Richter, Katharina; Sell, Stephan; Fenske, Mandus; Tornow, Christian; Stenzel, Volkmar [Fraunhofer Institute for Manufacturing Technology and Advanced Materials - IFAM, Wiener Strasse 12, 28359 Bremen (Germany); Grunwald, Ingo, E-mail: ingo.grunwald@ifam.fraunhofer.de [Fraunhofer Institute for Manufacturing Technology and Advanced Materials - IFAM, Wiener Strasse 12, 28359 Bremen (Germany)

    2013-05-15

    This article describes a new strategy for coupling the enzyme horseradish peroxidase to a two-component polyurethane (2C-PUR) coating. A stable polymer conjugate was achieved by combining the enzyme and the 2C-PUR coating which was modified with poly(dimethylsiloxane) (PDMS), located at the surface. An atmospheric pressure plasma jet system was used to convert alkyl groups from the PDMS into polar silanol functionalities. This conversion was proven by X-ray photoelectron spectroscopy and dynamic contact angle measurements. In addition, the stability of the activated 2C-PUR surface containing silanol groups was determined by measuring the contact angle as a function of time. Compared to the non-modified 2C-PUR systems the one with PDMS displayed a higher stability over a time period over 28 h. In a silanization process the coating was treated with (3-aminopropyl) trimethoxysilane and the enzyme was subsequently immobilized to the coating via the cross linker glutaraldehyde to receive new biomimetic catalytic/enzymatic functions. The chemical immobilization (chemisorption) of the enzyme to the surface showed statistically significant higher biological activity as compared to references samples without using a cross linker (physisorption). The presented technique offers the opportunity to design new and smart multifunctional surface coatings which employ biomimetic capabilities.

  2. Bioactive Glass-Ceramic Coatings Synthesized by the Liquid Precursor Plasma Spraying Process

    Science.gov (United States)

    Xiao, Yanfeng; Song, Lei; Liu, Xiaoguang; Huang, Yi; Huang, Tao; Chen, Jiyong; Wu, Yao; Wu, Fang

    2011-03-01

    In this study, the liquid precursor plasma spraying process was used to manufacture P2O5-Na2O-CaO-SiO2 bioactive glass-ceramic coatings (BGCCs), where sol and suspension were used as feedstocks for plasma spraying. The effect of precursor and spray parameters on the formation and crystallinity of BGCCs was systematically studied. The results indicated that coatings with higher crystallinity were obtained using the sol precursor, while nanostructured coatings predominantly consisting of amorphous phase were synthesized using the suspension precursor. For coatings manufactured from suspension, the fraction of the amorphous phase increased with the increase in plasma power and the decrease in liquid precursor feed rate. The coatings synthesized from the suspension plasma spray process also showed a good in vitro bioactivity, as suggested by the fast apatite formation when soaking into SBF.

  3. Decreased Bacterial Attachment and Protein Adsorption to Coatings Produced by Low Enegy Plasma Polymerization

    DEFF Research Database (Denmark)

    Andersen, T.E.; Kingshott, Peter; Benter, M.

    with a surface less prone to the adsorption of biological matter. In the current study two different hydrophilic nanoscale coatings were produced by low energy plasma polymerization [3] and investigated· f()rl()w ... pr()tein adsorption and bacterial attachment properties. Methods were setup to enable...... and Methods: Coatings: Plasma polymerized poly(vinyl pyrrolidone) (PP-PVP), poly(2-methoxyethyl methacrylate) (PPPMEA) or an inorganic oxide (10) coating were applied onto medical grade silicon rubber sheets (Silopren LSR 2050, Momentive Performance Materials Inc.). Plasma polymerization chamber......-coated crystals were then treated with one of the plasma polymerized coatings. Adsorption of fibrinogen, human serum albumin or immunoglobulin G was measured using a QCM-D instrument [5] (model E4, Q-Sense AB, Vastra Frolunda, Sweden) using a solution of 50llg/1 protein in PBS buffer. Results and Discussion: Our...

  4. Surface characteristics of a self-polymerized dopamine coating deposited on hydrophobic polymer films.

    Science.gov (United States)

    Jiang, Jinhong; Zhu, Liping; Zhu, Lijing; Zhu, Baoku; Xu, Youyi

    2011-12-06

    This study aims to explore the fundamental surface characteristics of polydopamine (pDA)-coated hydrophobic polymer films. A poly(vinylidene fluoride) (PVDF) film was surface modified by dip coating in an aqueous solution of dopamine on the basis of its self-polymerization and strong adhesion feature. The self-polymerization and deposition rates of dopamine on film surfaces increased with increasing temperature as evaluated by both spectroscopic ellipsometry and scanning electronic microscopy (SEM). Changes in the surface morphologies of pDA-coated films as well as the size and shape of pDA particles in the solution were also investigated by SEM, atomic force microscopy (AFM), and transmission electron microscopy (TEM). The surface roughness and surface free energy of pDA-modified films were mainly affected by the reaction temperature and showed only a slight dependence on the reaction time and concentration of the dopamine solution. Additionally, three other typical hydrophobic polymer films of polytetrafluoroethylene (PTFE), poly(ethylene terephthalate) (PET), and polyimide (PI) were also modified by the same procedure. The lyophilicity (liquid affinity) and surface free energy of these polymer films were enhanced significantly after being coated with pDA, as were those of PVDF films. It is indicated that the deposition behavior of pDA is not strongly dependent on the nature of the substrates. This information provides us with not only a better understanding of biologically inspired surface chemistry for pDA coatings but also effective strategies for exploiting the properties of dopamine to create novel functional polymer materials.

  5. Biocorrosion behavior and cell viability of adhesive polymer coated magnesium based alloys for medical implants

    Energy Technology Data Exchange (ETDEWEB)

    Abdal-hay, Abdalla [Departmentt of Bionano System Engineering, College of Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Department of Mechanical Design Engineering, Advanced wind power system research institute, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Dewidar, Montasser [Department of Materials and Mechanical Design, Faculty of Energy Engineering, South Valley University, Aswan (Egypt); Lim, Jae Kyoo, E-mail: jklim@jbnu.ac.kr [Department of Mechanical Design Engineering, Advanced wind power system research institute, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer The corrosion behavior of magnesium for orthopedic applications is extremely poor. Black-Right-Pointing-Pointer The solvent (DCM, THF and DMF) had a strong effect on the coatings performance. Black-Right-Pointing-Pointer Mg bar alloy coated with PVAc/DCM layers provided an excellent bonding strength. Black-Right-Pointing-Pointer Treated samples indicated significant damping for the degradation rate. Black-Right-Pointing-Pointer Cytocompatibility on MC3T3 cells of the PVAc/DCM samples revealed a good behavior. - Abstract: The present study was ultimately aimed to design novel adhesive biodegradable polymer, poly(vinyl acetate) (PVAc), coatings onto Mg based alloys by the dip-coating technique in order to control the degradation rate and enhance the biocompatibility of magnesium alloys. The influence of various solvents on PVAc surface topography and their protection of Mg alloys were dramatically studied in vitro. Electrochemical polarization, degradation, and PVAc film cytocompatibility were also tested. Our results showed that the solvent had a significant effect on coating quality. PVAc/dichloromethane solution showed a porous structure and solution concentration could control the porous size. The coatings prepared using tetrahydrofuran and dimethylformamide solvents are exceptional in their ability to generate porous morphology even at low polymer concentration. In general, the corrosion performance appears to be different on different PVAc-solvent system. Immersion tests illustrated that the porous morphology on PVAc stabilized corrosion rates. A uniform corrosion attack in artificial simulation body fluid was also exhibited. The cytocompatibility of osteoblast cells (MC3T3) revealed high adherence, proliferation, and survival on the porous structure of PVAc coated Mg alloy, which was not observed for the uncoated samples. This novel PVAc coating is a promising candidate for biodegradable implant materials, which might

  6. Effect of Plasma Pretreatment on Thermal Durability of Thermal Barrier Coatings in Cyclic Thermal Exposure

    Directory of Open Access Journals (Sweden)

    Sang-Won Myoung

    2014-01-01

    Full Text Available Plasma pretreatment on the top and bond coats was performed and its influence on the thermal durability of thermal barrier coating (TBC system was investigated through cyclic thermal exposure. Two types of bond coat were prepared by different methods, namely, air plasma spray (APS and high-velocity oxy-fuel (HVOF, and two kinds of feedstock powder were employed for preparing the top coat in APS process. The better thermal durability was achieved in the vertically cracked TBC with the surface modified bond coat or with the bond coat prepared by APS process. The hardness and fracture toughness values of TBCs increased because of densification of the top coat during cyclic thermal exposure, and the bond coat prepared by HVOF process showed higher values than that by APS process. The TBCs with the surface modified bond coat were more efficient in improving adhesive strength than those without plasma pretreatment on the bond coat. The relationship between microstructure evolution and thermomechanical characteristics of TBCs with plasma pretreatment was discussed in cyclic thermal exposure.

  7. Cationic polymers for DNA origami coating - examining their binding efficiency and tuning the enzymatic reaction rates

    Science.gov (United States)

    Kiviaho, Jenny K.; Linko, Veikko; Ora, Ari; Tiainen, Tony; Järvihaavisto, Erika; Mikkilä, Joona; Tenhu, Heikki; Nonappa, Affc; Kostiainen, Mauri A.

    2016-06-01

    DNA origamis are fully tailored, programmable, biocompatible and readily functionalizable nanostructures that provide an excellent foundation for the development of sophisticated drug-delivery systems. However, the DNA origami objects suffer from certain drawbacks such as low cell-transfection rates and low stability. A great deal of studies on polymer-based transfection agents, mainly focusing on polyplex formation and toxicity, exists. In this study, the electrostatic binding between a brick-like DNA origami and cationic block-copolymers was explored. The effect of the polymer structure on the binding was investigated and the toxicity of the polymer-origami complexes evaluated. The study shows that all of the analyzed polymers had a suitable binding efficiency irrespective of the block structure. It was also observed that the toxicity of polymer-origami complexes was insignificant at the biologically relevant concentration levels. Besides brick-like DNA origamis, tubular origami carriers equipped with enzymes were also coated with the polymers. By adjusting the amount of cationic polymers that cover the DNA structures, we showed that it is possible to control the enzyme kinetics of the complexes. This work gives a starting point for further development of biocompatible and effective polycation-based block copolymers that can be used in coating different DNA origami nanostructures for various bioapplications.DNA origamis are fully tailored, programmable, biocompatible and readily functionalizable nanostructures that provide an excellent foundation for the development of sophisticated drug-delivery systems. However, the DNA origami objects suffer from certain drawbacks such as low cell-transfection rates and low stability. A great deal of studies on polymer-based transfection agents, mainly focusing on polyplex formation and toxicity, exists. In this study, the electrostatic binding between a brick-like DNA origami and cationic block-copolymers was explored. The

  8. Experimental beam system studies of plasma-polymer interactions

    Science.gov (United States)

    Nest, Dustin George

    Since the invention of the integrated circuit, the semiconductor industry has relied on the shrinking of device dimensions to increase device performance and decrease manufacturing costs. However, the high degree of roughening observed during plasma etching of current generation photoresist (PR) polymers can result in poor pattern transfer and ultimately decreased device performance or failure. Plasma-surface interactions are inherently difficult to study due to the highly coupled nature of the plasma enviroment. To better understand these interactions, a beam system approach is employed where polymers are exposed to beams of ions and vacuum ultraviolet (VUV) photons. Through the use of the beam system approach, simultaneous VUV radiation, ion bombardment, and moderate substrate heating have been identified as key elements, acting synergistically, as being responsible for roughening of current generation 193 nm PR during plasma processing. Sequential exposure is not adequate for the development of surface roughness, as observed through AFM and SEM. Ion bombardment results in the formation of a graphitized near-surface region with a depth of a few nanometers, the expected ion penetration depth of 150 eV argon ions. In contrast, VUV radiation results in the loss of carbon-oxygen bonds in the bulk PR as observed through Transmission FTIR. Based on the differing penetration depth of either ions or photons, their resulting chemical modifications, and the temperature dependence of the observed roughening, a mechanism is proposed based on stress relaxation resulting in surface buckling. The surface roughness of poly(4-methyl styrene) (P4MS) and poly(alpha-methyl styrene) (PalphaMS) have also been investigated under exposure to ions and VUV photons. PaMS degrades during VUV radiation above its ceiling temperature of ˜60°C. Despite having the same chemical composition as PalphaMS, P4MS does not degrade during VUV exposure at 70°C due to its relatively high ceiling

  9. Role of nano-range amphiphilic polymers in seed quality enhancement of soybean and imidacloprid retention capacity on seed coatings.

    Science.gov (United States)

    Adak, Totan; Kumar, Jitendra; Shakil, Najam A; Pandey, Sushil

    2016-10-01

    Nano-size and wide-range solubility of amphiphilic polymers (having both hydrophilic and hydrophobic blocks) can improve uniformity in seed coatings. An investigation was carried out to assess the positive effect of amphiphilic polymers over hydrophilic or hydrophobic polymers as seed coating agents and pesticide carriers. Amphiphilic polymers with 127.5-354 nm micelle size were synthesized in the laboratory using polyethylene glycols and aliphatic di-acids. After 6 months of storage, germination of uncoated soybean seeds decreased drastically from 97.80 to 81.55%, while polymer-coated seeds showed 89.44-95.92% germination. Similarly, vigour index-1 was reduced from 3841.10 to 2813.06 for control seeds but ranged from 3375.59 to 3844.60 for polymer-coated seeds after 6 months. The developed imidacloprid formulations retained more pesticide on soybean seed coatings than did a commercial formulation (Gaucho(®) 600 FS). The time taken for 50% release of imidacloprid from seed coatings in water was 7.12-9.11 h for the developed formulations and 0.41 h for the commercial formulation. Nano-range amphiphilic polymers can be used to protect soybean seeds from ageing. Formulations as seed treatments may produce improved and sustained efficacy with minimum environmental contamination. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  10. Deposition of wear-resistant steel surfaces by the plasma rotating electrode coating process

    Science.gov (United States)

    Kim, Michael Robert

    A high-deposition rate thermal spray method was investigated for the purpose of coating aluminum cylinder bores with a wear resistant surface. This method, the plasma rotating electrode coating system (PROTEC) utilized transferred-arc melting of a rapidly rotating consumable electrode to create a droplet stream via centrifugal atomization. A cylindrical substrate was placed around the rotating rod, in the flight path of the droplets, to deposit a coating onto the internal surface of the cylinder. Selected coatings of 1045 steel deposited by the PROTEC coating method exhibited lower wear loss in lubricated sliding than wire-arc sprayed carbon steel coatings and gray cast iron. Splat cohesion was shown to be a significant factor in the wear resistance of PROTEC coatings. The relationship between deposition enthalpy and cooling rate of the coating was found to have the greatest effect on coating microstructure, and the coating cohesion. The most rapidly solidified coatings showed inferior splat cohesion in comparison to coatings that cooled more slowly. The increase in splat cohesion with decreased cooling rate was accompanied by the formation of a directionally oriented coating microstructure, likely formed during cellular solidification of the coating. A model describing the thermal state of the deposition process was used to predict the deposition conditions that would result in a cellular structure, and the level of splat cohesion required to produce a wear resistant coating.

  11. Fabrication and Characterization of Conductive Conjugated Polymer-Coated Antheraea mylitta Silk Fibroin Fibers for Biomedical Applications.

    Science.gov (United States)

    Gh, Darshan; Kong, Dexu; Gautrot, Julien; Vootla, Shyam Kumar

    2017-02-27

    Conductive polymers are interesting materials for a number of biological and medical applications requiring electrical stimulation of cells or tissues. Highly conductive polymers (polypyrrole and polyaniline)/Antheraea mylitta silk fibroin coated fibers are fabricated successfully by in situ polymerization without any modification of the native silk fibroin. Coated fibers characterized by scanning electron microscopy confirm the silk fiber surface is covered by conductive polymers. Thermogravimetric analysis reveals preserved thermal stability of silk fiber after coating process. X-ray diffraction of degummed fiber diffraction peaks at around 2θ = 20.4 and 16.5 confirms the preservation of the β-sheet structure typical of degummed silk II fibers. This phenomenon implies that both polypyrrole and polyaniline chains form interactions with peptide linkages in degummed fiber macromolecules, without significantly disrupting protein assembly. Fourier transform infrared spectroscopy of coated fibers indicates hydrogen bonding and electrostatic interactions exist between silk fibroin macromolecules and conductive polymers. Resulting fibers display good conductive properties compared to corresponding conjugated polymers. In vitro analysis (live/dead assay) of the behavior of human immortalized keratinocytes (HaCaTs) on coated fibers demonstrates improved cell-adhesive properties and viability after polymers coating. Hence, polypyrrole- and polyaniline-coated A. mylitta silk fibers are suitable for application in cell culture and for tissue engineering, where electrical conduction properties are required.

  12. In vitro antibacterial and osteogenic properties of plasma sprayed silver-containing hydroxyapatite coating

    Institute of Scientific and Technical Information of China (English)

    RUAN HongJiang; FAN CunYi; ZHENG XueBin; ZHANG Yan; CHEN YiKai

    2009-01-01

    The objective of the present investigation was to characterize the antibacterial and osteogenic proper-ties of plasma sprayed silver-containing hydroxyapatite (HA/Ag) coating in vitro. HA/Ag coating was deposited via vacuum plasma spraying. The concentration of silver ions released from HA/Ag coating, the efficacy of the HA/Ag coating against bacterial biofilm development, the effect of the HA/Ag coating on early adhesion and ossification of osteoblast cells in vitro was measured. The silver ion concentra-tion released from the HA/Ag coating was between the minimum inhibitory concentration to bacteria and the cytotoxic concentration. Bacterial biofiim inhibition studies indicated an antibacterial activity on the HA/Ag coating surface when compared with hydroxyapatite (HA) coating alone. Moreover, it was demonstrated that osteoblast cell adhesion and mineralization occurred on the HA/Ag coating surface during the testing period. We conclude that the vacuum plasma sprayed HA/Ag coating possesses good antibacterial capability and osteogenic properties in vitro and represents a promising candidate for coating orthopedic implants.

  13. Impact of in situ polymer coating on particle dispersion into solid laser-generated nanocomposites.

    Science.gov (United States)

    Wagener, Philipp; Brandes, Gudrun; Schwenke, Andreas; Barcikowski, Stephan

    2011-03-21

    The crucial step in the production of solid nanocomposites is the uniform embedding of nanoparticles into the polymer matrix, since the colloidal properties or specific physical properties are very sensitive to particle dispersion within the nanocomposite. Therefore, we studied a laser-based generation method of a nanocomposite which enables us to control the agglomeration of nanoparticles and to increase the single particle dispersion within polyurethane. For this purpose, we ablated targets of silver and copper inside a polymer-doped solution of tetrahydrofuran by a picosecond laser (using a pulse energy of 125 μJ at 33.3 kHz repetition rate) and hardened the resulting colloids into solid polymers. Electron microscopy of these nanocomposites revealed that primary particle size, agglomerate size and particle dispersion strongly depend on concentration of the polyurethane added before laser ablation. 0.3 wt% polyurethane is the optimal polymer concentration to produce nanocomposites with improved particle dispersion and adequate productivity. Lower polyurethane concentration results in agglomeration whereas higher concentration reduces the production rate significantly. The following evaporation step did not change the distribution of the nanocomposite inside the polyurethane matrix. Hence, the in situ coating of nanoparticles with polyurethane during laser ablation enables simple integration into the structural analogue polymer matrix without additives. Furthermore, it was possible to injection mold these in situ-stabilized nanocomposites without affecting particle dispersion. This clarifies that sufficient in situ stabilization during laser ablation in polymer solution is able to prevent agglomeration even in a hot polymer melt.

  14. Versatile theranostics agents designed by coating ferrite nanoparticles with biocompatible polymers

    Science.gov (United States)

    Zahraei, M.; Marciello, M.; Lazaro-Carrillo, A.; Villanueva, A.; Herranz, F.; Talelli, M.; Costo, R.; Monshi, A.; Shahbazi-Gahrouei, D.; Amirnasr, M.; Behdadfar, B.; Morales, M. P.

    2016-06-01

    Three biocompatible polymers, polyethylene glycol (PEG), dextran and chitosan, have been used in this work to control the colloidal stability of magnetic nanoparticles (14 ± 5 nm in diameter) and to vary the aggregation state in order to study their effect on relaxometric and heating properties. Two different coating strategies have been deeply developed; one based on the formation of an amide bond between citric acid coated nanoparticles (NPs) and amine groups present on the polymer surface and the other based on the NP encapsulation. Relaxometric properties revealed that proton relaxation rates strongly depend on the coating layer hydrophilicity and the aggregation state of the particles due to the presence of magnetic interactions. Thus, while PEG coating reduces particle aggregation by increasing inter-particle spacing leading to reduction of both T1 and T2 relaxation, dextran and chitosan lead to an increase mainly in T2 values due to the aggregation of particles in bigger clusters where they are in close contact. Dextran and chitosan coated NPs have also shown a remarkable heating effect during the application of an alternating magnetic field. They have proved to be potential candidates as theranostic agents for cancer diagnosis and treatment. Finally, cytotoxicity of PEG conjugated NPs, which seem to be ideal for intravenous administration because of their small hydrodynamic size, was investigated resulting in high cell viability even at 0.2 mg Fe ml-1 after 24 h of incubation. This suspension can be used as drug/biomolecule carrier for in vivo applications.

  15. Improvement of transmission properties for a rugged polymer-coated silver hollow fiber

    Science.gov (United States)

    Iwai, Katsumasa; Takaku, Hiroyuki; Miyagi, Mitsunobu; Shi, Yi-Wei; Matsuura, Yuji

    2015-03-01

    An extremely rugged hollow fiber is fabricated by liquid-phase coating technique. A silica glass capillary is used as the substrate and vitreous film is firstly coated on the inner surface of the capillary to protect the glass tube from moisture. This protective coating keeps the thin-wall glass tube away from damage due to the following silver plating process. The additional transmission loss caused by the roughness of the protective film is decreased by limiting the length of the protective film. The whole length of 0.7-mm-bore hollow fiber was 1.2 m and the length of the rugged part which formed the protective film was only 30 cm. Transmission properties of the rugged polymer-coated silver hollow fibers for the Er:YAG laser and red pilot beam delivery have been improved. The loss for the 0.7-μm-bore size, 1.2-m-length rugged polymer-coated silver hollow fiber was 1 dB and 6.9 dB under straight condition, and 1.9 dB and 9.4 dB under the condition of a 270 degree bend with a 15-mm bending radius at the wavelength of 2.94 μm and 650 nm, respectively.

  16. Development of superhydrophobicity in fluorosilane-treated diatomaceous earth polymer coatings

    Science.gov (United States)

    Sedai, Bhishma R.; Khatiwada, Bal K.; Mortazavian, Hamid; Blum, Frank D.

    2016-11-01

    Superhydrophobic coatings were prepared using 3-(heptafluoroisopropoxy)- propyltrimethoxysilane (HFIP-TMS) treated diatomaceous earth (DE) particles with high molecular mass polystyrene or poly(vinyl acetate) as polymer binders. DE is a highly hydrophilic material and treatment of the DE with HFIP-TMS turned it into superhydrophobic diatomaceous earth (HFIP-DE). Thermogravimetric analysis (TGA) was used to determine the amount of grafted fluorosilane on the surface of the DE particles. The results showed that approximately 1.8% of HFIP-TMS grafted onto the surface of DE particles resulted in superhydrophobicity with contact angles as high as 164° for the particles themselves and also in coatings. Fourier transformed infrared spectroscopy (FTIR) was used to confirm the presence of HFIP-TMS on the surface of DE particles. The development of the hydrophobicity in the coatings with either polystyrene (PS) or poly(vinyl acetate) (PVAc) as binders was followed as a function of the particle loading using contact angle measurements and scanning electron microscopy. It was found that for these model DE-binder systems, the contact angles of the coatings were independent of the polymers used as long as the particle loading was greater than a minimum amount (∼40% treated DE particles). It was also found that more treated DE particles moved to the air interface as the particle loadings in the coatings increased and then levelled off.

  17. Double Glow Plasma Surface Alloying Antibacterial Silver Coating on Pure Titanium

    Science.gov (United States)

    Lin, Naiming; Guo, Junwen; Hang, Ruiqiang; Zou, Jiaojuan; Tang, Bin

    2014-12-01

    In order to endow the commercial pure titanium dental implant material with antibacterial property and aimed at avoiding the invalidation that is caused by bacterial adhesion on the surface, a silver coating was fabricated via double glow plasma surface alloying. The antibacterial property of the silver coating was assessed via in vitro estimation. The results showed that a continuous and compact coating was formed. The silver coating had absolute superiority in antibacterial property to raw commercial pure titanium. Double glow plasma surface alloying with silver on commercial pure titanium dental implant material could be considered as a potentially effective method for preventing bacterial adhesion.

  18. DNA Microspheres Coated with Bioavailable Polymer as an Efficient Gene Expression Agent in Yeasts

    Directory of Open Access Journals (Sweden)

    Irena Reytblat

    2016-01-01

    Full Text Available Gene delivery is one of the steps necessary for gene therapy and for genetic modification. However, delivering DNA into cells is challenging due to its negative charge that leads to repulsion by the negative cell membrane. In the current research, DNA spheres with a DNA encoding to a certain gene were coated with bioavailable polymers, polyethylene imine (PEI and polycaprolactone (PCL, in a short, one-step sonochemical reaction. The polymers were used in order to neutralize the negative charge of the DNA. Our study shows that the DNA nanospheres not only managed to penetrate the cell without causing it any damage, but also expressed the desired gene inside it.

  19. The effect of polymer coatings on proton transverse relaxivities of aqueous suspensions of magnetic nanoparticles.

    Science.gov (United States)

    Carroll, Matthew R J; Huffstetler, Phillip P; Miles, William C; Goff, Jonathon D; Davis, Richey M; Riffle, Judy S; House, Michael J; Woodward, Robert C; St Pierre, Timothy G

    2011-08-12

    Iron oxide magnetic nanoparticles are good candidates for magnetic resonance imaging (MRI) contrast agents due to their high magnetic susceptibilities. Here we investigate 19 polyether-coated magnetite nanoparticle systems comprising three series. All systems were synthesized from the same batch of magnetite nanoparticles. A different polyether was used for each series. Each series comprised systems with systematically varied polyether loadings per particle. A highly significant (p coatings used in this study, any changes in relaxivity from differences in water exclusion or diffusion rates caused by the polymer are minor in comparison with the changes in relaxivity resulting from variations in the degree of aggregation.

  20. Bilayer polymer/oxide coating for organic semiconductors

    DEFF Research Database (Denmark)

    Tavares, Luciana; Kjelstrup-Hansen, Jakob; Rubahn, Horst-Günter

    Organic materials have been given much attention due to their intriguing properties that can be tailored via synthetic chemistry for specific applications combined with their low price and fairly straight-forward large-scale synthesis. p6P nanofibers can emit polarized light with a highly...... not interfere with the luminescence spectrum from the p6P but it is also not effective in stopping the bleaching. On the other hand, the use of a nonreactant and stable polymer (PMMA) as a direct contact layer on top of the organic nanofibers works as a protecting layer for avoiding modifications of the p6P...

  1. Novel Electroactive Polymers as Environmentally Compliant Coatings for Corrosion Control

    Science.gov (United States)

    2006-02-03

    and Corrosion Inhibition of Poly(bis(dialkylamino)phenylene vinylenes),” ACS PMSE Preprints, 86, 7 (2002). 22. D. J. Irvin, N. Anderson, C. Webber, S...Fallis, and P. Zarras, “New Synthetic Routes to Poly(bis(dialkylamino)phenylene vinylenes)”, ACS PMSE Preprints, 86, 61 (2002). 23. N. Anderson...of Electroactive Polymers with Oligoaniline Side Chains,” ACS PMSE Preprints, 86, 42 (2002). 144 25. N. Anderson, J. D. Stenger-Smith, D.J. Irvin

  2. Engineered Polymer Composites Through Electrospun Nanofiber Coating of Fiber Tows

    Science.gov (United States)

    Kohlman, Lee W.; Bakis, Charles; Williams, Tiffany S.; Johnston, James C.; Kuczmarski, Maria A.; Roberts, Gary D.

    2014-01-01

    Composite materials offer significant weight savings in many aerospace applications. The toughness of the interface of fibers crossing at different angles often determines failure of composite components. A method for toughening the interface in fabric and filament wound components using directly electrospun thermoplastic nanofiber on carbon fiber tow is presented. The method was first demonstrated with limited trials, and then was scaled up to a continuous lab scale process. Filament wound tubes were fabricated and tested using unmodified baseline towpreg material and nanofiber coated towpreg.

  3. Novel Prospects for Plasma Spray-Physical Vapor Deposition of Columnar Thermal Barrier Coatings

    Science.gov (United States)

    Anwaar, Aleem; Wei, Lianglinag; Guo, Qian; Zhang, Baopeng; Guo, Hongbo

    2017-09-01

    Plasma spray-physical vapor deposition (PS-PVD) is an emerging coating technique that can produce columnar thermal barrier coatings from vapor phase. Feedstock treatment at the start of its trajectory in the plasma torch nozzle is important for such vapor-phase deposition. This study describes the effects of the plasma composition (Ar/He) on the plasma characteristics, plasma-particle interaction, and particle dynamics at different points spatially distributed inside the plasma torch nozzle. The results of calculations show that increasing the fraction of argon in the plasma gas mixture enhances the momentum and heat flow between the plasma and injected feedstock. For the plasma gas combination of 45Ar/45He, the total enthalpy transferred to a representative powder particle inside the plasma torch nozzle is highest ( 9828 kJ/kg). Moreover, due to the properties of the plasma, the contribution of the cylindrical throat, i.e., from the feed injection point (FIP) to the start of divergence (SOD), to the total transferred energy is 69%. The carrier gas flow for different plasma gas mixtures was also investigated by optical emission spectroscopy (OES) measurements of zirconium emissions. Yttria-stabilized zirconia (YSZ) coating microstructures were produced when using selected plasma gas compositions and corresponding carrier gas flows; structural morphologies were found to be in good agreement with OES and theoretical predictions. Quasicolumnar microstructure was obtained with porosity of 15% when applying the plasma composition of 45Ar/45He.

  4. Polymer-coated palladium nanoparticle catalysts for Suzuki coupling reactions.

    Science.gov (United States)

    Bortolotto, Tanize; Facchinetto, Sara Elisa; Trindade, Suelen Gauna; Ossig, Andreia; Petzhold, Cesar Liberato; Vargas, Josimar; Rodrigues, Oscar Endrigo Dorneles; Giacomelli, Cristiano; Schmidt, Vanessa

    2015-02-01

    A set of seven different palladium nanoparticle (PdNP) systems stabilized by small amounts (1.0mg/mL) of structurally related macromolecular capping agents were comparatively tested as catalyst in p-nitrophenol (Nip) reduction and Suzuki cross-coupling reactions. The observed rate constants (kobs) for Nip reduction were in the range of 0.052-3.120×10(-2)s(-1), and the variation reflected the effects of polymer chain conformation, ionic strength and palladium-polymer complex coordination. Macromolecules featuring pendant pyridyl moieties or inverse temperature-dependent solubility were found to be unsuitable capping agents for PdNPs catalysts, despite being active. The catalytic activity in Suzuki cross-coupling reactions followed the same behavior; the most active particles in the Nip reaction also mediated the cross-coupling reaction providing the expected products in quantitative yields under relatively mild conditions after only 4h at 50°C. Experiments involving the successive addition of reactants and catalyst recovery/re-use indicated that the recycling potential was comparable to those of the standards used in this field.

  5. Selective laser sintering of polymer-coated silicon carbide powders

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, J.C.; Vail, N.K.; Barlow, J.W.; Beaman, J.J.; Bourell, D.L.; Marcus, H.L. [Univ. of Texas, Austin, TX (United States)

    1995-05-01

    Selective Laser Sintering (SLS) produces three-dimensional objects directly from a computer-aided design (CAD) solid model, without part-specific tooling, by repeatedly depositing thin layers of fusible powder and selective sintering each layer to the next with a rastered, modulated, CO{sub 2} laser beam. This technology, originally intended to produce parts and patterns from powdered waxes and thermoplastics, can be extended through use of thermoplastic-coated inorganic powder to producing green shapes which contain metal or ceramic powder bound together with the thermoplastic. These shapes can be subsequently processed into metal, ceramic, or composite metal/ceramic parts by various methods. Generally, the strength of the green shape critically depends on the layer to layer fusion that is achieved. A model of the SLS process is presented that correctly estimates the sintering depths in poly(methyl methacrylate) (PMMA) and coated silicon carbide (SiC) powders that result from operating parameters including laser power, beam scanning speed, beam diameter, scan spacing, and temperature. Green part densities and strengths are found to correlate with a combination of parameters, termed the energy density, that arise naturally from consideration of the energy input to the powder bed.

  6. Study of photoconductor polymers synthesized by plasma; Estudio de polimeros fotoconductores sintetizados por plasma

    Energy Technology Data Exchange (ETDEWEB)

    Enriquez P, M.A

    2007-07-01

    In this work the photoconductivity in poly thiophene (PTh), poly pyrrole (PPy) and doped poly pyrrole with iodine (PPy/I) is studied, whose structures depend of the intensity of the electric field applied during the synthesis by plasma. The conjugated organic polymers possess double alternated bonds in its chemical structure that its allow the one movement of {pi} electrons through the polymeric chains. The plasma is produced by means of splendor discharges to 13.5 MHz, resistive coupling, at one pressure that oscillates in the interval from 2 to 3x10{sup -1} mbar, 180 min and powers of 10, 24, 40, {sup 60}, 80 and 100 W. Its were used heteroaromatic polymers like PTh and PPy/I, due to their potential applications in optoelectronics. The influence of the iodine is evaluated as dopant in PPy and it is compared with their similar one without doping in the light absorption/emission processes. The polymers synthesized by plasma can ramify or to intersect due to the energy applied during the synthesis. However, if the polymer intersects, the aromaticity can continue through the polymeric chains. The absorptions obtained by infrared spectroscopy, suggest that the polymer conserves the aromatic structure of the monomer fundamentally with substitutions that indicate inter crossing and partial fragmentation. The structure of most of the polymers spreads to be amorphous because they don't possess any classification. However, the PPy/I and PTh synthesized by this technique present crystalline segments whose intensity diminishes with the power of the discharge. In PTh, the average crystallinity diminishes from 19.8% to 9.9%, and in PPy/I of 15.9% to 13.3% in the interval of 10 to 100 W of power. In this work, however, its were crystalline arrangements in all the studied powers. The classification of the polymeric structure favors the formation of trajectories of transfer of electric loads among the chains, that which influences in the global electric conductivity of the

  7. Thermal Fatigue Behavior of Air-Plasma Sprayed Thermal Barrier Coating with Bond Coat Species in Cyclic Thermal Exposure

    Directory of Open Access Journals (Sweden)

    Ungyu Paik

    2013-08-01

    Full Text Available The effects of the bond coat species on the delamination or fracture behavior in thermal barrier coatings (TBCs was investigated using the yclic thermal fatigue and thermal-shock tests. The interface microstructures of each TBC showed a good condition without cracking or delamination after flame thermal fatigue (FTF for 1429 cycles. The TBC with the bond coat prepared by the air-plasma spray (APS method showed a good condition at the interface between the top and bond coats after cyclic furnace thermal fatigue (CFTF for 1429 cycles, whereas the TBCs with the bond coats prepared by the high-velocity oxygen fuel (HVOF and low-pressure plasma spray (LPPS methods showed a partial cracking (and/or delamination and a delamination after 780 cycles, respectively. The TBCs with the bond coats prepared by the APS, HVOF and LPPS methods were fully delaminated (>50% after 159, 36, and 46 cycles, respectively, during the thermal-shock tests. The TGO thickness in the TBCs was strongly dependent on the both exposure time and temperature difference tested. The hardness values were found to be increased only after the CFTF, and the TBC with the bond coat prepared by the APS showed the highest adhesive strength before and after the FTF.

  8. Fabricate Optical Microfiber by Using Flame Brushing Technique and Coated with Polymer Polyaniline for Sensing Application

    Science.gov (United States)

    Razak, N. A.; Hamida, B. A.; Irawati, N.; Habaebi, M. H.

    2017-06-01

    Adiabaticity is one of the essential criteria in producing good fabricated tapered fibers. Good tapered fibers can be use in sensor application such as humidity sensor, temperature sensor and refractive index sensor. In this paper, good tapering silica fiber is produced by using flame brushing technique and then, the microfiber is coated with polymer Polyaniline (PAni) to sense different type of alcohols with different concentrations. The outcome of this experiment gives excellent repeatability in the detection of alcohol sensing with a sensitivity of 0.1332 μW/% and a resolution of 3.764%. In conclusion, conducting polymer coated optical microfiber sensor for alcohol detection with low cost, effective and simple set-up was successfully achieved in this study.

  9. Simultaneous hyperthermia and doxorubicin delivery from polymer-coated magnetite nanoparticles

    Science.gov (United States)

    Iglesias, G. R.; Delgado, A. V.; González-Caballero, F.; Ramos-Tejada, M. M.

    2017-06-01

    In this work, the hyperthermia response, (i.e., heating induced by an externally applied alternating magnetic field) and the simultaneous release of an anti-cancer drug (doxorubicin) by polymer-coated magnetite nanoparticles have been investigated. After describing the setup for hyperthermia measurements in suspensions of magnetic nanoparticles, the hyperthermia (represented by the rate of suspension heating and, ultimately, by the specific absorption rate or SAR) of magnetite nanoparticles (both bare and polymer-coated as drug nanocarriers) is discussed. The effect of the applied ac magnetic field on doxorubicin release is also studied, and it is concluded that the field does not interfere with the release process, demonstrating the double functionality of the investigated particles.

  10. Effect of Suspension Plasma-Sprayed YSZ Columnar Microstructure and Bond Coat Surface Preparation on Thermal Barrier Coating Properties

    Science.gov (United States)

    Bernard, Benjamin; Quet, Aurélie; Bianchi, Luc; Schick, Vincent; Joulia, Aurélien; Malié, André; Rémy, Benjamin

    2017-08-01

    Suspension plasma spraying (SPS) is identified as promising for the enhancement of thermal barrier coating (TBC) systems used in gas turbines. Particularly, the emerging columnar microstructure enabled by the SPS process is likely to bring about an interesting TBC lifetime. At the same time, the SPS process opens the way to a decrease in thermal conductivity, one of the main issues for the next generation of gas turbines, compared to the state-of-the-art deposition technique, so-called electron beam physical vapor deposition (EB-PVD). In this paper, yttria-stabilized zirconia (YSZ) coatings presenting columnar structures, performed using both SPS and EB-PVD processes, were studied. Depending on the columnar microstructure readily adaptable in the SPS process, low thermal conductivities can be obtained. At 1100 °C, a decrease from 1.3 W m-1 K-1 for EB-PVD YSZ coatings to about 0.7 W m-1 K-1 for SPS coatings was shown. The higher content of porosity in the case of SPS coatings increases the thermal resistance through the thickness and decreases thermal conductivity. The lifetime of SPS YSZ coatings was studied by isothermal cyclic tests, showing equivalent or even higher performances compared to EB-PVD ones. Tests were performed using classical bond coats used for EB-PVD TBC coatings. Thermal cyclic fatigue performance of the best SPS coating reached 1000 cycles to failure on AM1 substrates with a β-(Ni,Pt)Al bond coat. Tests were also performed on AM1 substrates with a Pt-diffused γ-Ni/γ'-Ni3Al bond coat for which more than 2000 cycles to failure were observed for columnar SPS YSZ coatings. The high thermal compliance offered by both the columnar structure and the porosity allowed the reaching of a high lifetime, promising for a TBC application.

  11. Temperature Frequency Characteristics of Hexamethyldisiloxane (HMDSO) Polymer Coated Rayleigh Surface Acoustic Wave (SAW) Resonators for Gas-Phase Sensor Applications

    OpenAIRE

    Ekaterina I. Radeva; Esmeryan, Karekin D.; Avramov, Ivan D.

    2012-01-01

    Temperature induced frequency shifts may compromise the sensor response of polymer coated acoustic wave gas-phase sensors operating in environments of variable temperature. To correct the sensor data with the temperature response of the sensor the latter must be known. This study presents and discusses temperature frequency characteristics (TFCs) of solid hexamethyldisiloxane (HMDSO) polymer coated sensor resonators using the Rayleigh surface acoustic wave (RSAW) mode on ST-cut quartz. Using ...

  12. Preparation and Properties of Plasma Spraying Cu-Al2O3 Gradient Coatings

    Institute of Scientific and Technical Information of China (English)

    Ali LEI; Nan DONG; Lajun FENG

    2007-01-01

    In order to overcome the limitations of low adhesion strength and poor thermal-shock resistance of pure ceramic coatings, Cu-Al2O3 gradient coatings were fabricated by plasma spraying. The microstructure and distribution of Cu-Al2O3 gradient coatings were analyzed. The adhesion strength, thermal-shock resistance and porosity of the coatings were tested. The results show that the composition of the gradient coatings has a gradient distribution along the thickness of coatings. As copper has a relatively low melting point and the molten copper has good wettability on the surface of Al2O3, it can be melted sufficiently and could fill the interstices and pores among the spraying particles effectively, thus improves the adhesion strength, thermal shock resistance and reduces the porosity. The adhesion strength of the gradient coating is 15.2 MPa which is two times of that of the double-layer structure coating.

  13. Titanium carbonitride thick coating prepared by plasma spray synthesis and its tribological properties

    Institute of Scientific and Technical Information of China (English)

    ZHU Lin; HE JiNing; YAN DianRan; XIAO LiSong; DONG YanChun; XUE DingChuan; MENG DeLiang

    2007-01-01

    TiCN coating,owing to its superior wear-resistance,has been frequently applied in many fields. TiCN thick coating was first prepared by reactive plasma spraying. The phase composition,microstructure and tribological properties of the TiCN coating were investigated in this research. Experimental results show that the microstructure of the TiCN coating was quite dense,and there was also a little amount of titanium oxides within the coating. By XPS analysis,Ti-C and Ti-N bonds were detected in the coating. The TiCN coating exhibited superior wear-resistance. The failure mechanism was attributed to the adhesive wear,the grinding of TiCN hard-grain,as well as the coating failure by oxidation. There were more Fe,Cr,O,etc. in the failure zone,suggesting that the corrosion propagated gradually from surface to interior.

  14. Preparation and characterization of molybdenum disilicide coating on molybdenum substrate by air plasma spraying

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi [Key Laboratory of Ministry of Education for Non-ferrous Materials Science and Engineering, Central South University, Changsha 410083 (China); Key Laboratory of Hunan Province for Metallurgy and Material Processing of Rare Metals, Central South University, Changsha 410083 (China); School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Wang, Dezhi, E-mail: dzwang68@163.com [Key Laboratory of Ministry of Education for Non-ferrous Materials Science and Engineering, Central South University, Changsha 410083 (China); Key Laboratory of Hunan Province for Metallurgy and Material Processing of Rare Metals, Central South University, Changsha 410083 (China); School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Yan, Jianhui [Advanced Materials Synthesis and Application Technology Laboratory, Hunan University of Science and Technology, Xiangtan 411201 (China); Sun, Aokui [Key Laboratory of Ministry of Education for Non-ferrous Materials Science and Engineering, Central South University, Changsha 410083 (China); Key Laboratory of Hunan Province for Metallurgy and Material Processing of Rare Metals, Central South University, Changsha 410083 (China); School of Materials Science and Engineering, Central South University, Changsha 410083 (China)

    2013-11-01

    MoSi{sub 2} oxidation protective coatings on molybdenum substrate were prepared by air plasma spraying technique (APS). Microstructure, phase composition, porosity, microhardness and bonding strength of the coatings were investigated and determined. Oxidation behavior of the coating at high temperature was also examined. Results show that composition of the coatings is constituted with MoSi{sub 2} and Mo{sub 5}Si{sub 3}, the surface morphology is described as flattened lamellar features, insufficiently flattened protuberance with some degree of surface roughness, a certain quantity of spherical particles, microcracks and pores. Testing results reveal that microhardness and bonding strength of the coatings increase, and porosity decreases with increasing power or decreasing Ar gas flow rate. Moreover, with decreasing the porosity, the microhardness of the coatings increases. The bonding strength of the coatings also increases with increasing spray distance. The MoSi{sub 2} coated Mo substrate exhibited a good oxidation resistance at 1200 °C.

  15. Tungsten carbide coatings with different binders prepared by low power plasma spray system

    Institute of Scientific and Technical Information of China (English)

    GAO Yang; M.F.Morks; FU Ying-qing

    2004-01-01

    Thermal spraying of cermet coatings is widely used for protection of machining parts against wear and corrosion. These coatings consist of WC particles in metal binders such as Co, Cr and Ni. Three kinds of WC powders with different metal binders (Co, NiCr and CoCr) were sprayed by low power plasma spray system on Al-Si-Cu alloy substrate. Fundamental aspects of sprayed cermet coatings, including (i) the effects of binder type on the coating structure, (ii) the hardness and (iii) the microstructure, were investigated. All cermet coatings have the same phase structure such as WC and W2 C. However, the intensities of these phases are different in each coating, mainly due to the difference in solidification rate in each case. Moreover, the hardness measurements are found to be different in each coating. The results show that, binder type has a significant effect on the physical and mechanical properties of the sprayed coatings.

  16. Carbon nanotube/polymer composite coated tapered fiber for four wave mixing based wavelength conversion.

    Science.gov (United States)

    Xu, Bo; Omura, Mika; Takiguchi, Masato; Martinez, Amos; Ishigure, Takaaki; Yamashita, Shinji; Kuga, Takahiro

    2013-02-11

    In this paper, we demonstrate a nonlinear optical device based on a fiber taper coated with a carbon nanotube (CNT)/polymer composite. Using this device, four wave mixing (FWM) based wavelength conversion of 10 Gb/s Non-return-to-zero signal is achieved. In addition, we investigate wavelength tuning, two photon absorption and estimate the effective nonlinear coefficient of the CNTs embedded in the tapered fiber to be 1816.8 W(-1)km(-1).

  17. Coating carbon nanotubes with a polystyrene-based polymer protects against pulmonary toxicity

    Directory of Open Access Journals (Sweden)

    Rossi Michel J

    2011-01-01

    Full Text Available Abstract Background carbon nanotubes (CNT can have adverse effects on health. Therefore, minimizing the risk associated with CNT exposure is of crucial importance. The aim of this work was to evaluate if coating multi-walled CNT (MWCNT with polymers could modify their toxicity, thus representing a useful strategy to decrease adverse health effects of CNT. We used industrially-produced MWCNT uncoated (NT1 or coated (50/50 wt% with acid-based (NT2 or polystyrene-based (NT3 polymer, and exposed murine macrophages (RAW 264.7 cell line or Balb/c mice by intratracheal administration. Biological experiments were performed both in vitro and in vivo, examining time- and dose-dependent effects of CNT, in terms of cytotoxicity, expression of genes and proteins related to oxidative stress, inflammation and tissue remodeling, cell and lung tissue morphology (optical and transmission electron microscopy, and bronchoalveolar lavage fluid content analysis. Results extensive physico-chemical characterization of MWCNT was performed, and showed, although similar dimensions for the 3 MWCNT, a much smaller specific surface area for NT2 and NT3 as compared to NT1 (54.1, 34 and 227.54 m2/g respectively, along with different surface characteristics. MWCNT-induced cytotoxicity, oxidative stress, and inflammation were increased by acid-based and decreased by polystyrene-based polymer coating both in vitro in murine macrophages and in vivo in lung of mice monitored for 6 months. Conclusions these results demonstrate that coating CNT with polymers, without affecting their intrinsic structure, may constitute a useful strategy for decreasing CNT toxicity, and may hold promise for improving occupational safety and that of general the user.

  18. Mussel inspired coating of a biocompatible cyclodextrin based polymer onto CoCr vascular stents.

    Science.gov (United States)

    Sobocinski, Jonathan; Laure, William; Taha, Mariam; Courcot, Elisabeth; Chai, Feng; Simon, Nicolas; Addad, Ahmed; Martel, Bernard; Haulon, Stephan; Woisel, Patrice; Blanchemain, Nicolas; Lyskawa, Joel

    2014-03-12

    During the past decade, drug-eluting stents (DES) have been widely used for the treatment of occlusive coronary artery diseases. They are supposed to reduce the incidence of early in-stent restenosis by the elution of highly hydrophobic antiproliferative drugs. Nevertheless, the absence of long-term activity of these devices is responsible for late acute thrombosis probably due to the delayed re-endothelialization of the arterial wall over the bare metallic stent struts. Thus, a new generation of DES with a sustained release of therapeutic agents is required to improve long-term results of these devices. In this article, we report an original functionalization of CoCr vascular devices with a hydrophilic, biocompatible and biodegradable cyclodextrins based polymer which acts as a reservoir for lipophilic drugs allowing the sustained release of antiproliferative drugs. In this setting, polydopamine (PDA), a strong adhesive biopolymer, was applied as a first coating layer onto the surface of the metallic CoCr device in order to promote the strong anchorage of a cyclodextrin polymer. This polymer was generated "in situ" from the methylated cyclodextrins and citric acid as a cross-linking agent through a polycondensation reaction. After optimization of the grafting process, the amount of cyclodextrin polymer coated onto the CoCr device was quantified by colorimetric titrations and the resulting film was characterized by scanning electron microscopy (SEM) investigations. The cytocompatibility of the resulting coated film was assessed by cell proliferation and vitality tests. Finally, the ability of this coated device to act as a drug-eluting system was evaluated with paclitaxel, a strong hydrophobic antiproliferative drug, a reference drug used in current vascular drug-eluting stents.

  19. Polymer Coated Urea in Turfgrass Maintains Vigor and Mitigates Nitrogen's Environmental Impacts

    OpenAIRE

    LeMonte, Joshua J.; Jolley, Von D.; Summerhays, Jeffrey S.; Richard E Terry; Hopkins, Bryan G.

    2016-01-01

    Polymer coated urea (PCU) is a N fertilizer which, when added to moist soil, uses temperature-controlled diffusion to regulate N release in matching plant demand and mitigate environmental losses. Uncoated urea and PCU were compared for their effects on gaseous (N2O and NH3) and aqueous (NO3(-)) N environmental losses in cool season turfgrass over the entire PCU N-release period. Field studies were conducted on established turfgrass sites with mixtures of Kentucky bluegrass (Poa pratensis L.)...

  20. Nutrient Release, Plant Nutrition, and Potassium Leaching from Polymer-Coated Fertilizer

    OpenAIRE

    Henrique Bley; Clesio Gianello; Lenio da Silva Santos; Lisiane Priscila Roldão Selau

    2017-01-01

    ABSTRACT The increase in food consumption and limitations in food production areas requires improved fertilizer efficiency. Slow- or controlled-release fertilizers are an alternative for synchronizing nutrient availability with the plant demands, reducing losses to the environment. The aim of this study was to evaluate the efficacy of polymer-coated KCl compared with conventional KCl. The products were incubated in soil under controlled conditions to evaluate the time required for nutrient re...

  1. Thermomechanical behavior of plasma-sprayed zirconia thermal barrier coatings.

    Energy Technology Data Exchange (ETDEWEB)

    Singh, J. P.

    1998-04-01

    The effect of coating porosity and thickness on the resistance to damage of yttria stabilized zirconia thermal barrier coatings in an oxidizing environment by thermal cycling was evaluated. Hardness and elastic modulus of an as-processed porous coating were lower than those of a dense coating and the porous coating failed after fewer thermal cycles. Similarly, specimen with a thicker coating failed after fewer thermal cycles than specimen with a thinner coating. The earlier failure of the porous coating is due to lower fracture toughness and enhanced oxidation of the coating/substrate interface, whereas, the earlier failure of the thick coating is due to higher thermal transient stresses that developed in the coating during thermal cycling. Generally, an increase in coating density led to initial increase in both hardness and elastic modulus with increasing thermal cycles. However, hardness and density gradually decreased as the number of thermal cycles increase because of microcracks formation and growth. Microscopic observations indicated that the formation of multiple microcracks and their subsequent growth and coalescence led to final coating failure.

  2. Click Cross-Linking-Improved Waterborne Polymers for Environment-Friendly Coatings and Adhesives.

    Science.gov (United States)

    Hu, Jianqing; Peng, Kaimei; Guo, Jinshan; Shan, Dingying; Kim, Gloria B; Li, Qiyao; Gerhard, Ethan; Zhu, Liang; Tu, Weiping; Lv, Weizhong; Hickner, Michael A; Yang, Jian

    2016-07-13

    Waterborne polymers, including waterborne polyurethanes (WPU), polyester dispersions (PED), and polyacrylate emulsions (PAE), are employed as environmentally friendly water-based coatings and adhesives. An efficient, fast, stable, and safe cross-linking strategy is always desirable to impart waterborne polymers with improved mechanical properties and water/solvent/thermal and abrasion resistance. For the first time, click chemistry was introduced into waterborne polymer systems as a cross-linking strategy. Click cross-linking rendered waterborne polymer films with significantly improved tensile strength, hardness, adhesion strength, and water/solvent resistance compared to traditional waterborne polymer films. For example, click cross-linked WPU (WPU-click) has dramatically improved the mechanical strength (tensile strength increased from 0.43 to 6.47 MPa, and Young's modulus increased from 3 to 40 MPa), hardness (increased from 59 to 73.1 MPa), and water resistance (water absorption percentage dropped from 200% to less than 20%); click cross-linked PED (PED-click) film also possessed more than 3 times higher tensile strength (∼28 MPa) than that of normal PED (∼8 MPa). The adhesion strength of click cross-linked PAE (PAE-click) to polypropylene (PP) was also improved (from 3 to 5.5 MPa). In addition, extra click groups can be preserved after click cross-linking for further functionalization of the waterborne polymeric coatings/adhesives. In this work, we have demonstrated that click modification could serve as a convenient and powerful approach to significantly improve the performance of a variety of traditional coatings and adhesives.

  3. pH and redox responsive polymer for antifouling surface coating

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Seok [Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju, 380-702 (Korea, Republic of); In, Insik, E-mail: in1@ut.ac.kr [Department of Polymer Science and Engineering, Korea National University of Transportation, Chungju, 380-702 (Korea, Republic of); Department of IT Convergence, Korea National University of Transportation, Chungju, 380-702 (Korea, Republic of); Park, Sung Young, E-mail: parkchem@ut.ac.kr [Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju, 380-702 (Korea, Republic of); Department of IT Convergence, Korea National University of Transportation, Chungju, 380-702 (Korea, Republic of)

    2014-09-15

    Graphical abstract: Dual responsive surface with highly fouling resistance with the formation of a pH-dependent benzoic imine and redox-sensitive disulfide bond has been developed using a catechol/benzoic acid conjugated polymer and disulfide containing amine end-capped Pluronic. - Highlights: • Stimuli-responsive antifouling surface was prepared by layer-by-layer method. • The surface contact angle showed responsive behavior via pH and redox environments. • Simply coated polymer completely prevented cell adhesion onto surfaces. - Abstract: A dual environmentally responsive polymer with a highly fouling-resistant surface has been developed using poly[(hydroxyethyl methacrylate-g-benzoic acid)-co-(dimethylaminoethyl methacrylate-g-2-chloro-3′, 4′-dihydroxyacetophenone)] [poly[(HEMA-BA)-co-(DMAEMA-CCDP)], P1] as a coating material. The redox-sensitive disulfide containing amine end-capped Pluronic [(Plu-S-S-NH{sub 2}), P2] was then introduced over the P1 surface via the formation of a pH-dependent benzoic imine bond, where the polyethylene glycol (PEG) acts as an antifouling agent. The successful adhesion of P1 and the deposition of P2 onto the P1-coated substrate were ascertained with X-ray photoelectron spectroscopy (XPS). In vitro cell adhesion followed by scanning electron microscopy (SEM) indicated an excellent antifouling nature of the P2 layer. Consequently, the reattachment of Hela cells was strongly observed when P2 layered on P1-coated substrates (P1–P2) was pretreated at lower pH and high redox conditions. The P1–P2 bilayer-coated substrate has exhibited a great advantage in its effective antifouling behaviors with well-tuned cell attachment and detachment.

  4. Organic matter induced mobilization of polymer-coated silver nanoparticles from water-saturated sand.

    Science.gov (United States)

    Yang, Xinyao; Yin, Ziyi; Chen, Fangmin; Hu, Jingjing; Yang, Yuesuo

    2015-10-01

    Mobilization of polymer-coated silver nanoparticles (AgNPs) by anionic surfactant (sodium dodecylbenzenesulphonate: SDBS), amino acid derivative (N-acetylcysteine: NAC), and chelate (ethylenediaminetetraacetic acid: EDTA) in water-saturated sand medium was explored based on carefully designed column tests. Exposure experiments monitoring the size evolution of polyvinylpyrrolidone (PVP) coated AgNPs in organic solutions confirm the capacity of SDBS, NAC and EDTA to partly displace PVP. Single Pulse Column Experiment (SPCE) results show both the PVP polymer and the silver core controlled AgNP deposition while the effect of the PVP was dominant. Results of Co-injected Pulse Column Experiments (CPCEs) where AgNP and SDBS or NAC were co-injected into the column following a very short mixing (organic would mobilize irreversibly deposited particles from the uncoated sand, while surface charge modification by adsorbed NAC was identified as a potential mobilizing mechanism for AgNP from the iron-oxide-coated sand. Triple Pulse Column Experiment (TPCE) results confirm that such a charging effect of the adsorbed organic molecules may enable SDBS and NAC to mobilize AgNPs from the iron-oxide-coated sands. TPCE results with five distinct levels of SDBS indicate that concentration-stimulated change in the SDBS format from an individual to a micelle significantly increased the mobilizing efficiency and site blockage of SDBS. Although being an electrolyte, EDTA did not mobilize AgNPs, as the case with SDBS or NAC, as it dissolved the iron oxides which in turn prevented EDTA adsorption on sand. The findings have implications for better understanding the behavior of polymer-coated nanoparticles in organic-presented groundwater systems, i.e., detachment-associated uncertainty in exposure prediction of the nanomaterials.

  5. Deposition of stable amine coating onto polycaprolactone nanofibers by low pressure cyclopropylamine plasma polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Manakhov, Anton [Plasma Technologies, CEITEC — Central European Institute of Technology, Masaryk University, Kotlářská 2, Brno 61137 (Czech Republic); Nečas, David [Plasma Technologies, CEITEC — Central European Institute of Technology, Masaryk University, Kotlářská 2, Brno 61137 (Czech Republic); Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 2, Brno 61137 (Czech Republic); Čechal, Jan [CEITEC — Central European Institute of Technology, Brno University of Technology, Technická 3058/10, 616 00 Brno (Czech Republic); Pavliňák, David [Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 2, Brno 61137 (Czech Republic); Eliáš, Marek [Plasma Technologies, CEITEC — Central European Institute of Technology, Masaryk University, Kotlářská 2, Brno 61137 (Czech Republic); Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 2, Brno 61137 (Czech Republic); and others

    2015-04-30

    Amine-rich films are of high interest for the bio-applications including drug delivery and tissue engineering thanks to their high reactivity allowing the formation of the covalent linkages between biomolecules and a surface. However, the bio-applications of amine-rich films require their good stability in water which is often achieved at large expenses of the amine concentration. Recently, non-toxic cyclopropylamine (CPA) has been applied for the plasma polymerization of films bearing high NH{sub x} environment combined with the moderate thickness loss (20%) after water immersion for 48 h. In this work, the amine-rich film with the NH{sub x} concentration over 7 at.% was deposited on Si substrates and polycaprolactone nanofiber meshes by using CPA plasma polymerization (pulsed mode) in a vertically oriented stainless steel reactor. The substrates were placed at the radio frequency electrode and the ion bombardment caused by direct-current self-bias was suppressed by using high pressure of 50 Pa. Analysis of samples by scanning electron microscopy did not reveal any cracks in the deposited layer formed during a sample immersion in water. Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) confirmed a slight oxidation of amine groups in water but the film still contained 5 at.% of NH{sub x} (according to the N1s XPS fitting) after the immersion. The rapid oxidation of amine groups was observed during the aging experiment carried out in air at room temperature because FTIR revealed an increase of amide peaks that increased progressively with aging time. However, this oxidation was significantly reduced if the plasma polymer was stored at − 20 °C. Since the films exhibit high amine concentration and very good water stability they have great potential for applications as biocompatible functional coatings. - Highlights: • Cyclopropylamine plasma polymers deposited on polycaprolactone nanofibers • Amine-rich films with high

  6. Blood compatibility assessment of polymers used in drug eluting stent coatings.

    Science.gov (United States)

    Szott, Luisa Mayorga; Irvin, Colleen A; Trollsas, Mikael; Hossainy, Syed; Ratner, Buddy D

    2016-06-15

    Differences in thrombosis rates have been observed clinically between different drug eluting stents. Such differences have been attributed to numerous factors, including stent design, injury created by the catheter delivery system, coating application technologies, and the degree of thrombogenicity of the polymer. The relative contributions of these factors are generally unknown. This work focuses on understanding the thrombogenicity of the polymer by examining mechanistic interactions with proteins, human platelets, and human monocytes of a number of polymers used in drug eluting stent coatings, in vitro. The importance for blood interactions of adsorbed albumin and the retention of albumin was suggested by the data. Microscopic imaging and immunostaining enhanced the interpretation of results from the lactate dehydrogenase cell counting assay and provided insight into platelet interactions, total quantification, and morphometry. In particular, highly spread platelets may be surface-passivating, possibly inhibiting ongoing thrombotic events. In many of the assays used here, poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) showed a differentiated protein deposition pattern that may contribute to the explanation of the consistently thromboresistant blood-materials interaction for fluororpolymers cited in literature. These results are supportive of one of several possible factors contributing to the good thromboresistant clinical safety performance of PVDF-HFP coated drug eluting stents.

  7. The selective flow of volatile organic compounds in conductive polymer-coated microchannels

    Science.gov (United States)

    Hossein-Babaei, Faramarz; Hooshyar Zare, Ali

    2017-02-01

    Many gaseous markers of critical biological, physicochemical, or industrial occurrences are masked by the cross-sensitivity of the sensors to the other active components present at higher concentrations. Here, we report the strongly selective diffusion and drift of contaminant molecules in air-filled conductive polymer-coated microfluidic channels for the first time. Monitoring the passage of different target molecules through microchannels coated with Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) revealed that contaminants such as hexane, benzene, and CO pass through the channel unaffected by the coating while methanol, ethanol, and partly acetone are blocked. The observations are explained with reference to the selective interactions between the conductive polymer surface and target gas molecules amplified by the large wall/volume ratio in microchannels. The accumulated quantitative data point at the hydrogen bonding as the mechanism of wall adsorption; dipole-dipole interactions are relatively insignificant. The presented model facilitates a better understanding of how the conductive polymer-based chemical sensors operate.

  8. Impact of polymer-coated silver nanoparticles on marine microbial communities: a microcosm study.

    Science.gov (United States)

    Doiron, K; Pelletier, E; Lemarchand, K

    2012-11-15

    The use of silver nanoparticles (AgNPs) in consumer products is increasing drastically and their potential environmental impacts on aquatic organisms from bacterial communities to vertebrates are not well understood. This study reports on changes in marine bacterial richness using denaturing gradient gel electrophoresis (DGGE), and overall community abundance determined by flow cytometry in marine microcosms exposed to polymer-coated AgNPs (20±5 nm) and ionic silver (Ag(+)). Our study clearly demonstrated that at low concentrations (5 and 50 μg L(-1) total silver), un-aggregated polymer-coated AgNPs and dissolved Ag(+) contamination produced similar effects: a longer lag phase suggesting an adaptation period for microorganisms. As richness decreased in the treated samples, this longer lag phase could correspond to the selection of a fraction of the initial community that is insensitive to silver contamination. Polymer-coated AgNPs preserved their bactericidal properties even under the high ionic strength of estuarine waters.

  9. Determination of elastic modulus and residual stress of plasma-sprayed tungsten coating on steel substrate

    Energy Technology Data Exchange (ETDEWEB)

    You, J.H. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmann Street 2, 85748 Garching (Germany)]. E-mail: jeong-ha.you@ipp.mpg.de; Hoeschen, T. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmann Street 2, 85748 Garching (Germany); Lindig, S. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmann Street 2, 85748 Garching (Germany)

    2006-01-01

    Plasma-sprayed tungsten, which is a candidate material for the first wall armour, shows a porous, heterogeneous microstructure. Due to its characteristic morphology, the properties are significantly different from those of its dense bulk material. Measurements of the elastic modulus of this coating have not been reported in the literature. In this work Young's modulus of highly porous plasma-sprayed tungsten coatings deposited on steel (F82H) substrates was measured. For the fabrication of the coating system the vacuum plasma-spray process was applied. Measurements were performed by means of three-point and four-point bending tests. The obtained modulus values ranged from 53 to 57 GPa. These values could be confirmed by the test result of a detached coating strip, which was 54 GPa. The applied methods produced consistent results regardless of testing configurations and specimen sizes. The errors were less than 1%. Residual stress of the coating was also estimated.

  10. Determination of elastic modulus and residual stress of plasma-sprayed tungsten coating on steel substrate

    Science.gov (United States)

    You, J. H.; Höschen, T.; Lindig, S.

    2006-01-01

    Plasma-sprayed tungsten, which is a candidate material for the first wall armour, shows a porous, heterogeneous microstructure. Due to its characteristic morphology, the properties are significantly different from those of its dense bulk material. Measurements of the elastic modulus of this coating have not been reported in the literature. In this work Young's modulus of highly porous plasma-sprayed tungsten coatings deposited on steel (F82H) substrates was measured. For the fabrication of the coating system the vacuum plasma-spray process was applied. Measurements were performed by means of three-point and four-point bending tests. The obtained modulus values ranged from 53 to 57 GPa. These values could be confirmed by the test result of a detached coating strip, which was 54 GPa. The applied methods produced consistent results regardless of testing configurations and specimen sizes. The errors were less than 1%. Residual stress of the coating was also estimated.

  11. Synthesis by plasma of polymer-metal materials; Sintesis por plasma de materiales polimero-metal

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez R, G

    2004-07-01

    The objective of this work is the design of an experimental set-up to synthesize polymer- metal composites by plasma with versatility in the conditions of synthesis. The main components are a vacuum system capable to reach up to 10{sup -2} mbar and valves and accessories to control the pressure in the system. In order to generate the electrical discharges and the plasma, an electrical circuit with an inductive connection at 13.56 MHz of frequency was constructed. The electric field partially ionizes the reactor atmosphere where the polymer-metal composites were synthesized. The reactor has two metallic electrodes, one in front of the other, where the particles electrically charged collide against the electrodes producing ablation on them. The polymer-metal composites were synthesized by means of an inductive connection at 13.56 MHz. Aniline, 3-chlorine-ethylene and electrodes of silver (Ag) and copper (Cu) were used in a cylindrical reactor coupled with an external coil to generate glow discharges. The average pressures were 6.15 X 10{sup -1} and 5.2 X 10{sup -1} mbar for the synthesis of Poly aniline (P An) and Poly chloroethylene (PE-CI), respectively. The synthesis was performed during 60 and 180 minutes for P An and PE-CI, respectively. The polymers were formed, as films, with an average thickness of 6.42 {mu}m for P An and, in the case of PE-CI, with an approximately growing rate of 14 {eta}m/W. The power in the syntheses was 30, 50, 70 and 90 W for P An and 50, 100, 120, 140 170, and 200 W for PE-CI. The characterization of the polymer-metal composites was done by energy dispersive spectroscopy to study the composition and the relation of the elements involved in the synthesis. The morphology of the films was studied by means of scanning electron microscopy. The infrared analysis (IR) was done to study the chemicals bonds and the structure of these polymers. Another important study in these materials was the behavior of the electrical conductivity ({sigma

  12. Spherical and polygonal shape of Au nanoparticles coated functionalized polymer microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ting; Li, Yingzhi; Zhang, Junxian; Qi, Yalong; Zhao, Xin; Zhang, Qinghua, E-mail: qhzhang@dhu.edu.cn

    2015-08-01

    Highlights: • PS/PPy with well-defined core/shell structures was prepared in aqueous solution. • Au NPs were coated on PS/PPy by the fixation and continuous growth process. • Mercapto-groups played a role in the number and morphology of Au shell. • PS/PPy/Au had homogeneous and dense Au coatings with different shape. - Abstract: Uniform polystyrene (PS)/polypyrrole (PPy) composite microspheres with well-defined core/shell structures are synthesized by chemical oxidative polymerization. Gold nanoparticles (Au NPs) are successfully coated on the surface of PS/PPy microspheres by means of electrostatic interactions due to the functionalized PPy coatings supplying sufficient amino groups and the additive of mercapto acetic acid. Furthermore, the as-prepared PS/PPy/Au microspheres serving as seeds facilitate Au NPs further growth by in situ reduction in HAuCl{sub 4} solution to obtain PS/PPy/Au spheres with the core/shell/shell structure. Morphology observation demonstrates that the monodisperse PS/PPy/Au microspheres compose of uniform cores and the compact coatings containing distinct two layers. X-ray diffraction and X-ray photoelectron spectroscope confirm the existence of PPy and Au on the surface of the composite spheres. This facile approach to preparing metal-coated polymer spheres supplies the potential applications in biosensors, electronics and medical diagnosis.

  13. Reactive Plasma Sprayed TiN Coating and Its Thermal Stability

    Institute of Scientific and Technical Information of China (English)

    ZOU Dong-li; YAN Dian-ran; HE Ji-ning; LI Xiang-zhi; DONG Yan-chun; ZHANG Jian-xin

    2007-01-01

    TiN coating was prepared by reactive plasma spraying in the Ar and N2 containing plasma jet. The results of XRD show that the TiN coating consists of TiN and Ti3O, neither Ti2N nor TiO2 phases. The toughening mechanism was characterized by analyzing the SEM morphologies of the TiN coating's indentation of microhardness and fracture surfaces. The results indicate that the coating possesses a high toughness. The adhesion strength among the TiN layers is 25.88 MPa, which is slightly lower than that of the Ni/Al bonding coating. The oxidation process of the RPS TiN coating is TiN→Ti3O→TiO2.

  14. PHOTOCATALYTIC PERFORMANCE OF PLASMA SPRAYED TiO2-ZnFe2O4 COATINGS

    Institute of Scientific and Technical Information of China (English)

    Y. Zeng; J.T. Liu; W.J. Qian; J.H. Gao

    2005-01-01

    A novel TiO2-ZnFe2O4 coating is prepared by plasma spraying. The effects of spraying parameters and the composition of powders on the microstructure, surface morphology and photo-absorption of plasma sprayed coatings are studied. The photocatalytic efficiency of the as-sprayed coatings is evaluated through the photo mineralization of methylene blue. It was found that TiO2 coatings can decompose methylene blue under the illumination of ultraviolet rays, and the degrading efficiency is improved with an increase in the content of FeTiO3 in the coatings. However, the presence of large amount of ZnFe2O4 compound will substantially lower the photocatalytic efficiency of the TiO2-ZnFe2O4 coatings for the unfavorable photo-excited electron-hole transfer process.

  15. GISAXS study of Au-coated light-induced polymer gratings

    Energy Technology Data Exchange (ETDEWEB)

    Castro-Colin, M., E-mail: miguel.castro-colin@bruker.com; Korolkov, D. [Bruker AXS, Rheinbrueckenstr. 49, 76187 Karlsruhe (Germany); Yadavalli, N. S. [Nanostructured Materials Lab, The University of Georgia, 30602 Athens, Georgia (United States); Mayorova, M.; Kentzinger, M. [Research Center Juelich, 52425 Juelich (Germany); Santer, S. [Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam (Germany)

    2015-07-23

    Surface Relief Gratings (SRGs) are inscribed in the Au-coated azobenzene containing photosensitive polymer films on a glass substrate. The structures consist of micrometer-period sinusoidal patterns of sub-micron amplitudes, formed by photo-isomerization and molecular reorientation processes in the polymer film during exposure to the light interference pattern that drove the formation of a SRG; the precursor is a stack sequence of Au, polymer, and glass. The SRG structures were exposed in GISAXS geometry to high-intensity X-ray radiation from a liquid Ga source (0.134 nm). Scattered photons were registered by a 2D detector, and their intensity distribution enabled us to characterize the structures. Analysis of the 2D patterns yielded information about the pitch of the gratings as well as the thickness of the films forming the gratings. The GISAXS experiments were carried out at the Research Center Juelich.

  16. Surface-Mediated Solidification of a Semiconducting Polymer during Time-Controlled Spin-Coating.

    Science.gov (United States)

    Na, Jin Yeong; Kang, Boseok; Lee, Seung Goo; Cho, Kilwon; Park, Yeong Don

    2016-12-29

    Spin-casting a polymer semiconductor solution over a short period of only a few seconds dramatically improved the molecular ordering and charge transport properties of the resulting semiconductor thin films. In this process, it was quite important to halt spinning before the drying line propagation had begun. Here, we elucidated the effects of the substrate surface characteristics on the drying kinetics during spin-coating, systematically investigated the microstructural evolution during semiconducting polymer solidification, and evaluated the performances of the resulting polymer field-effect transistors. We demonstrated that the spin time required to enhance the molecular ordering and electrical properties of the polythiophene thin films was strongly correlated with the solidification onset time, which was altered by surface treatments introduced onto the substrate surfaces.

  17. Hyaluronan-Phosphatidylethanolamine Polymers Form Pericellular Coats on Keratinocytes and Promote Basal Keratinocyte Proliferation

    Directory of Open Access Journals (Sweden)

    Caitlin J. Symonette

    2014-01-01

    Full Text Available Aged keratinocytes have diminished proliferative capacity and hyaluronan (HA cell coats, which are losses that contribute to atrophic skin characterized by reduced barrier and repair functions. We formulated HA-phospholipid (phosphatidylethanolamine, HA-PE polymers that form pericellular coats around cultured dermal fibroblasts independently of CD44 or RHAMM display. We investigated the ability of these HA-PE polymers to penetrate into aged mouse skin and restore epidermal function in vivo. Topically applied Alexa647-HA-PE penetrated into the epidermis and dermis, where it associated with both keratinocytes and fibroblasts. In contrast, Alexa647-HA was largely retained in the outer cornified layer of the epidermis and quantification of fluorescence confirmed that significantly more Alexa647-HA-PE penetrated into and was retained within the epidermis than Alexa647-HA. Multiple topical applications of HA-PE to shaved mouse skin significantly stimulated basal keratinocyte proliferation and epidermal thickness compared to HA or vehicle cream alone. HA-PE had no detectable effect on keratinocyte differentiation and did not promote local or systemic inflammation. These effects of HA-PE polymers are similar to those reported for endogenous epidermal HA in youthful skin and show that topical application of HA-PE polymers can restore some of the impaired functions of aged epidermis.

  18. CREATION OF GRADIENT PLASMA-SPRAYED COATINGS ON BASIS OF ZIRCONIUM DIOXIDE STABILIZED WITH YTTERBIUM DIOXIDE

    Directory of Open Access Journals (Sweden)

    V. A. Okovity

    2011-01-01

    Full Text Available The process has been investigated and technological parameters for spraying gradient plasma coatings on the basis of zirconium dioxide stabilized with ytterbium dioxide have been optimized in the paper.

  19. Porcelain-coated antenna for radio-frequency driven plasma source

    Science.gov (United States)

    Leung, Ka-Ngo; Wells, Russell P.; Craven, Glen E.

    1996-01-01

    A new porcelain-enamel coated antenna creates a clean plasma for volume or surface-conversion ion sources. The porcelain-enamel coating is hard, electrically insulating, long lasting, non fragile, and resistant to puncture by high energy ions in the plasma. Plasma and ion production using the porcelain enamel coated antenna is uncontaminated with filament or extraneous metal ion because the porcelain does not evaporate and is not sputtered into the plasma during operation. Ion beams produced using the new porcelain-enamel coated antenna are useful in ion implantation, high energy accelerators, negative, positive, or neutral beam applications, fusion, and treatment of chemical or radioactive waste for disposal. For ion implantation, the appropriate species ion beam generated with the inventive antenna will penetrate large or small, irregularly shaped conducting objects with a narrow implantation profile.

  20. Mechanical, In Vitro Antimicrobial and Biological Properties of Plasma Sprayed Silver-Doped Hydroxyapatite Coating

    OpenAIRE

    Roy, Mangal; Fielding, Gary A.; BEYENAL, Haluk; Bandyopadhyay, Amit; Bose, Susmita

    2012-01-01

    Implant related infection is one of the key concerns in total joint hip arthroplasties. In order to reduce bacterial adhesion, silver (Ag) / silver oxide (Ag2O) doping was used in plasma sprayed hydroxyapatite (HA) coating on titanium substrate. HA powder was doped with 2.0, 4.0 and 6.0 wt% Ag, heat treated at 800 °C and used for plasma spray coating using a 30 kW plasma spray system, equipped with supersonic nozzle. Application of supersonic plasma nozzle significantly reduced phase decompos...

  1. Biocompatible hyaluronic acid polymer-coated quantum dots for CD44+ cancer cell-targeted imaging

    Science.gov (United States)

    Wang, Hening; Sun, Hongfang; Wei, Hui; Xi, Peng; Nie, Shuming; Ren, Qiushi

    2014-10-01

    The cysteamine-modified hyaluronic acid (HA) polymer was employed to coat quantum dots (QDs) through a convenient one-step reverse micelle method, with the final QDs hydrodynamic size of around 22.6 nm. The HA coating renders the QDs with very good stability in PBS for more than 140 days and resistant to large pH range of 2-12. Besides, the HA-coated QDs also show excellent fluorescence stability in BSA-containing cell culture medium. In addition, the cell culture assay indicates no significant cytotoxicity for MD-MB-231 breast cancer cells, and its targeting ability to cancer receptor CD44 has been demonstrated on two breast cancer cell lines. The targeting mechanism was further proved by the HA competition experiment. This work has established a new approach to help solve the stability and toxicity problems of QDs, and moreover render the QDs cancer targeting property. The current results indicate that the HA polymer-coated QDs hold the potential application for both in vitro and in vivo cancer imaging researches.

  2. Quantum dots coated with molecularly imprinted polymer as fluorescence probe for detection of cyphenothrin.

    Science.gov (United States)

    Ren, Xiaohui; Chen, Ligang

    2015-02-15

    A newly designed molecularly imprinted polymer (MIP) material was fabricated and successfully utilized as recognition element to develop a quantum dots (QDs) based MIP-coated composite for selective recognition of the template cyphenothrin. The MIP-coated QDs were characterized by fluorescence spectrophotometer, Fourier transform infrared spectroscopy, transmission electron microscope, dynamic light scattering and X-ray powder diffraction. The fluorescence of the coated QDs is quenched on loading the MIP with cyphenothrin, and the effect is much stronger for the MIP than for the non-imprinted polymer, which indicates the MIP could as a recognition template composite. This method can detect down to 9.0 nmol L(-1) of cyphenothrin in water, and a linear relationship has been obtained covering the concentration range of 0.1-80.0 μmol L(-1). The method has been used in the determination of cyphenothrin in water samples and gave recoveries in the range from 88.5% to 97.1% with relative standard deviations in the range of 3.1-6.2%. The present study provides a new and general strategy to fabricate inorganic-organic MIP-coated QDs with highly selective recognition ability in aqueous media and is desirable for chemical probe application.

  3. Polymer coating behavior of Rayleigh-SAW resonators with gold electrode structure for gas sensor applications.

    Science.gov (United States)

    Avramov, Ivan D; Länge, Kerstin; Rupp, Swen; Rapp, Bastian; Rapp, Michael

    2007-01-01

    Results from systematic polymer coating experiments on surface acoustic wave (SAW) resonators and coupled resonator filters (CRF) on ST-cut quartz with a corrosion-proof electrode structure entirely made of gold (Au) are presented and compared with data from similar SAW devices using aluminium (Al) electrodes. The recently developed Au devices are intended to replace their earlier Al counterparts in sensor systems operating in highly reactive chemical gas environments. Solid parylene C and soft poly[chlorotrifluoroethylene-co-vinylidene fluoride] (PCFV) polymer films are deposited under identical conditions onto the surface of Al and Au devices. The electrical performance of the Parylene C coated devices is monitored online during film deposition. The PCVF coated devices are evaluated after film deposition. The experimental data show that the Au devices can stand up to 40% thicker solid films for the same amount of loss increase than the Al devices and retain better resonance and phase characteristics. The frequency sensitivities of Au and Al devices to parylene C deposition are nearly identical. After coating with soft PCFV sensing film, the Au devices provide up to two times higher gas sensitivity when probed with cooling agent, octane, or tetrachloroethylene.

  4. Coating with spermine-pullulan polymer enhances adenoviral transduction of mesenchymal stem cells

    Science.gov (United States)

    Wan, Li; Yao, Xinglei; Faiola, Francesco; Liu, Bojun; Zhang, Tianyuan; Tabata, Yasuhiko; Mizuguchi, Hiroyuki; Nakagawa, Shinsaku; Gao, Jian-Qing; Zhao, Robert Chunhua

    2016-01-01

    Mesenchymal stem cells (MSCs) are adult stem cells with multilineage potential, which makes them attractive tools for regenerative medicine applications. Efficient gene transfer into MSCs is essential not only for basic research in developmental biology but also for therapeutic applications involving gene-modification in regenerative medicine. Adenovirus vectors (Advs) can efficiently and transiently introduce an exogenous gene into many cell types via their primary receptors, the coxsackievirus and adenovirus receptors, but not into MSCs, which are deficient in coxsackievirus and adenovirus receptors expression. To overcome this problem, we developed an Adv coated with a spermine-pullulan (SP) cationic polymer and investigated its physicochemical properties and internalization mechanisms. We demonstrated that the SP coating could enhance adenoviral transduction of MSCs without detectable cytotoxicity or effects on differentiation. Our results argue in favor of the potentiality of the SP-coated Adv as a prototype vector for efficient and safe transduction of MSCs. PMID:28008251

  5. Antiadhesive Polymer Brush Coating Functionalized with Antimicrobial and RGD Peptides to Reduce Biofilm Formation and Enhance Tissue Integration

    NARCIS (Netherlands)

    Muszanska, Agnieszka K.; Rochford, Edward T. J.; Gruszka, Agnieszka; Bastian, Andreas A.; Busscher, Hendrik; Norde, Willem; van der Mei, Henny C.; Herrmann, Andreas

    This paper describes the synthesis and characterization of polymer peptide conjugates to be used as infection-resistant coating for biomaterial implants and devices. Antiadhesive polymer brushes composed of block copolymer Pluronic F-127 (PF127) were functionalized with antimicrobial peptides (AMP),

  6. 21 CFR 888.3535 - Knee joint femorotibial (uni-compartmental) metal/polymer porous-coated uncemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint femorotibial (uni-compartmental) metal... Devices § 888.3535 Knee joint femorotibial (uni-compartmental) metal/polymer porous-coated uncemented prosthesis. (a) Identification. A knee joint femorotibial (uni-compartmental) metal/polymer...

  7. Characterization of functionally graded hydroxyapatite/titanium composite coatings plasma-sprayed on Ti alloys.

    Science.gov (United States)

    Chen, Chun-Cheng; Huang, Tsui-Hsien; Kao, Chia-Tze; Ding, Shinn-Jyh

    2006-07-01

    Bioceramic coatings like hydroxyapatite (HA) have shown promising bioactive properties in load-bearing implant applications. The aim of this work is to deposit functionally graded HA/Ti layers consisting of an underlying Ti bond coat, the alternating layer, and an HA top-layer on Ti6Al4V substrates using plasma spray to improve the coating-substrate interface properties. The alternating layers were created by means of changing the feeding rate and input power of Ti and HA powders, which gradually decrease Ti content with increasing depth from the Ti bond-coat. The major consideration is to examine the stability of the graded coatings. Experimental results indicated that surface chemistry and morphology of the graded coatings were similar to those of monolithic HA coatings. The bond strength values of the as-sprayed graded coatings were much superior to those of monolithic HA coatings. The cyclic fatigue did have a statistically significant effect on bond strength of monolithic HA coatings, with a decrease of 23%. However, the graded coatings were able to survive 1 million cycles of loading in air without significantly reduced bond strength. The in vitro electrochemical measurement results also indicated that the graded coatings had a more beneficial and desired behavior than monolithic HA coatings after fatigue.

  8. Probing individal subcells of fully printed and coated polymer tandem solar cells using multichromatic opto-electronic characterization methods

    DEFF Research Database (Denmark)

    Larsen-Olsen, Thue Trofod; Andersen, Thomas Rieks; Dam, Henrik Friis

    2015-01-01

    In this study, a method to opto-electronically probe the individual junctions and carrier transport across interfaces in fully printed and coated tandem polymer solar cells is described, enabling the identification of efficiency limiting printing/coating defects. The methods used are light beam...

  9. Synthesis of bio-active titanium oxide coatings stimulated by electron-beam plasma

    Directory of Open Access Journals (Sweden)

    Vasilieva Tatiana

    2014-11-01

    Full Text Available Advantages of the electron-beam plasma (EBP for production of bioactive titanium oxide coatings were experimentally studied. The coatings were synthesized in EBP of oxygen on the surface of plane titanium substrates. A number of analytical techniques were used to characterize morphology, chemical composition, and structure of the synthesized titanium oxide. The analysis showed the titanium oxide (IV in the rutile form to predominate in the coatings composition.

  10. Fatigue testing of plasma-sprayed thermal barrier coatings, volume 2

    Science.gov (United States)

    Cruse, T. A.; Nagy, A.; Popelar, C. F.

    1990-01-01

    A plasma sprayed thermal barrier coating for diesel engines were fatigue tested. Candidate thermal barrier coating materials were fatigue screened and a data base was generated for the selected candidate material. Specimen configurations are given for the bend fatigue tests, along with test setup, specimen preparation, test matrix and procedure, and data analysis.

  11. Fatigue testing of plasma-sprayed thermal barrier coatings, Volume 2. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cruse, T.A.; Nagy, A.; Popelar, C.F.

    1990-07-01

    A plasma sprayed thermal barrier coating for diesel engines were fatigue tested. Candidate thermal barrier coating materials were fatigue screened and a data base was generated for the selected candidate material. Specimen configurations are given for the bend fatigue tests, along with test setup, specimen preparation, test matrix and procedure, and data analysis.

  12. Deformation Behavior of Nanostructured Ceramic Coatings Deposited by Thermal Plasma Spray

    Institute of Scientific and Technical Information of China (English)

    Xianliang JIANG; Eric Jordan; Leon Shaw; Maurice Gell

    2004-01-01

    Al2O3-13 wt pct TiO2 coating deposited by direct current plasma spray consists of nanostructured region and microlamellae. Bend test shows that the ceramic coating can sustain some deformation without sudden failure. The deformation is achieved through the movement of nano-particles in the nanostructured region under tensile stress.

  13. Composite ion-plasma coatings with nanodisperse reinforced phase: scientific and practical aspects of synthesis

    Science.gov (United States)

    Brzhozovskii, B.; Martynov, V.; Zinina, E.; Brovkova, M.

    2016-02-01

    The article describes the main aspects of the synthesis of composite coatings in the surface layer of figurine-shaped product using low-temperature plasma of combined discharge. The example of cutting tools shows the benefits of using the coatings in extreme conditions that occur in machining of materials by cutting.

  14. D. C. Plasma-Sprayed Coatings of Nanostructured Alumina-Titania-Silica

    Institute of Scientific and Technical Information of China (English)

    蒋显亮; 刘敏

    2002-01-01

    Nanocrystalline powders of w(Al2O3) = 95%, w(TiO2) = 3%, and w(SiO2) = 2%,were reprocessed into agglomerated particles for plasma spraying, by using consecutive steps ofball milling, slurry forming, spray drying, and heat treatment. D. C. plasma was used to spraythe agglomerated nanocrystalline powders, and resultant coatings were deposited on the substrate of stainless steel. Scanning electron microscopy (SEM) was used to examine the morphology of the agglomerated powders and the cross section of the alumina-titania-silica coatings. Exper-imental results show that the agglomerated nanocrystalline particles are spherical, with a size from (10~90)μm. The flow ability of the nanocrystalline powders is greatly improved after the reprocessing. The coatings deposited by the plasma spraying are mainly of nanostructure. Un-like conventional plasma-sprayed coatings, no laminar layer could be found in the nanostructured coatings. Although the nanostructured coatings have a lower microhardness than conventional microstructured coatings, the toughness of the nanostructured ceramic coatings is significantly improved.

  15. BN coatings deposition by magnetron sputtering of B and BN targets in electron beam generated plasma

    Science.gov (United States)

    Kamenetskikh, A. S.; Gavrilov, N. V.; Koryakova, O. V.; Cholakh, S. O.

    2017-05-01

    Boron nitride coatings were deposited by reactive pulsed magnetron sputtering of B and BN targets (50 kHz, 10 µs for B; 13.56 MHz for BN) at 2-20 mA/cm2 ion current density on the substrate. The effect of electron beam generated plasma on characteristics of magnetron discharge and phase composition of coatings was studied.

  16. Composite implants coated with biodegradable polymers prevent stimulating tumor progression

    Energy Technology Data Exchange (ETDEWEB)

    Litviakov, N. V., E-mail: nvlitv72@yandex.ru; Tsyganov, M. M., E-mail: TsyganovMM@yandex.ru; Cherdyntseva, N. V., E-mail: nvch@oncology.tomsk.ru [Tomsk Cancer Research Institute, Tomsk, 634050 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Tverdokhlebov, S. I., E-mail: tverd@tpu.ru; Bolbasov, E. N., E-mail: ebolbasov@gmail.com [National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Perelmuter, V. M., E-mail: pvm@ngs.ru; Kulbakin, D. E., E-mail: kulbakin2012@gmail.com [Tomsk Cancer Research Institute, Tomsk, 634050 (Russian Federation); Zheravin, A. A., E-mail: zheravin2010@yandex.ru [Tomsk Cancer Research Institute, Tomsk, 634050 (Russian Federation); Academician E.N. Meshalkin Novosibirsk State Research Institute of Circulation Pathology, Novosibirsk (Russian Federation); Svetlichnyi, V. A., E-mail: v-svetlichnyi@bk.ru [National Research Tomsk State University, Tomsk, 634050 (Russian Federation)

    2016-08-02

    In this experiment we studied oncologic safety of model implants created using the solution blow spinning method with the use of the PURASORB PL-38 polylactic acid polymer and organic mineral filler which was obtained via laser ablation of a solid target made of dibasic calcium phosphate dihydrate. For this purpose the implant was introduced into the area of Wistar rats’ iliums, and on day 17 after the surgery the Walker sarcoma was transplanted into the area of the implant. We evaluated the implant’s influence on the primary tumor growth, hematogenous and lymphogenous metastasis of the Walker sarcoma. In comparison with sham operated animals the implant group demonstrated significant inhibition of hematogenous metastasis on day 34 after the surgery. The metastasis inhibition index (MII) equaled 94% and the metastases growth inhibition index (MGII) equaled 83%. The metastasis frequency of the Walker sarcoma in para aortic lymph nodes in the implant group was not statistically different from the control frequency; there was also no influence of the implant on the primary tumor growth noted. In case of the Walker sarcoma transplantation into the calf and the palmar pad of the ipsilateral limb to the one with the implant in the ilium, we could not note any attraction of tumor cells to the implant area, i.e. stimulation of the Walker sarcoma relapse by the implant. Thus, the research concluded that the studied implant meets the requirements of oncologic safety.

  17. Composite implants coated with biodegradable polymers prevent stimulating tumor progression

    Science.gov (United States)

    Litviakov, N. V.; Tverdokhlebov, S. I.; Perelmuter, V. M.; Kulbakin, D. E.; Bolbasov, E. N.; Tsyganov, M. M.; Zheravin, A. A.; Svetlichnyi, V. A.; Cherdyntseva, N. V.

    2016-08-01

    In this experiment we studied oncologic safety of model implants created using the solution blow spinning method with the use of the PURASORB PL-38 polylactic acid polymer and organic mineral filler which was obtained via laser ablation of a solid target made of dibasic calcium phosphate dihydrate. For this purpose the implant was introduced into the area of Wistar rats' iliums, and on day 17 after the surgery the Walker sarcoma was transplanted into the area of the implant. We evaluated the implant's influence on the primary tumor growth, hematogenous and lymphogenous metastasis of the Walker sarcoma. In comparison with sham operated animals the implant group demonstrated significant inhibition of hematogenous metastasis on day 34 after the surgery. The metastasis inhibition index (MII) equaled 94% and the metastases growth inhibition index (MGII) equaled 83%. The metastasis frequency of the Walker sarcoma in para aortic lymph nodes in the implant group was not statistically different from the control frequency; there was also no influence of the implant on the primary tumor growth noted. In case of the Walker sarcoma transplantation into the calf and the palmar pad of the ipsilateral limb to the one with the implant in the ilium, we could not note any attraction of tumor cells to the implant area, i.e. stimulation of the Walker sarcoma relapse by the implant. Thus, the research concluded that the studied implant meets the requirements of oncologic safety.

  18. Antibacterial activity of polymer coated cerium oxide nanoparticles.

    Directory of Open Access Journals (Sweden)

    Vishal Shah

    Full Text Available Cerium oxide nanoparticles have found numerous applications in the biomedical industry due to their strong antioxidant properties. In the current study, we report the influence of nine different physical and chemical parameters: pH, aeration and, concentrations of MgSO(4, CaCl(2, KCl, natural organic matter, fructose, nanoparticles and Escherichia coli, on the antibacterial activity of dextran coated cerium oxide nanoparticles. A least-squares quadratic regression model was developed to understand the collective influence of the tested parameters on the anti-bacterial activity and subsequently a computer-based, interactive visualization tool was developed. The visualization allows us to elucidate the effect of each of the parameters in combination with other parameters, on the antibacterial activity of nanoparticles. The results indicate that the toxicity of CeO(2 NPs depend on the physical and chemical environment; and in a majority of the possible combinations of the nine parameters, non-lethal to the bacteria. In fact, the cerium oxide nanoparticles can decrease the anti-bacterial activity exerted by magnesium and potassium salts.

  19. Bioresorbable polymer coated drug eluting stent: a model study.

    Science.gov (United States)

    Rossi, Filippo; Casalini, Tommaso; Raffa, Edoardo; Masi, Maurizio; Perale, Giuseppe

    2012-07-01

    In drug eluting stent technologies, an increased demand for better control, higher reliability, and enhanced performances of drug delivery systems emerged in the last years and thus offered the opportunity to introduce model-based approaches aimed to overcome the remarkable limits of trial-and-error methods. In this context a mathematical model was studied, based on detailed conservation equations and taking into account the main physical-chemical mechanisms involved in polymeric coating degradation, drug release, and restenosis inhibition. It allowed highlighting the interdependence between factors affecting each of these phenomena and, in particular, the influence of stent design parameters on drug antirestenotic efficacy. Therefore, the here-proposed model is aimed to simulate the diffusional release, for both in vitro and the in vivo conditions: results were verified against various literature data, confirming the reliability of the parameter estimation procedure. The hierarchical structure of this model also allows easily modifying the set of equations describing restenosis evolution to enhance model reliability and taking advantage of the deep understanding of physiological mechanisms governing the different stages of smooth muscle cell growth and proliferation. In addition, thanks to its simplicity and to the very low system requirements and central processing unit (CPU) time, our model allows obtaining immediate views of system behavior.

  20. Surface modification of poly(ethylene terephthalate) angioplasty balloons with a hydrophilic poly(acrylamide-co-ethylene glycol) interpenetrating polymer network coating.

    Science.gov (United States)

    Park, S; Bearinger, J P; Lautenschlager, E P; Castner, D G; Healy, K E

    2000-09-01

    An interpenetrating polymer network (IPN) of poly(acrylamide-co-ethylene glycol) (p(AAm-co-EG)) hydrogel was covalently grafted to polyethylene terephthalate (PET) angioplasty balloons to increase surface hydrophilicity and improve lubricity. A 2-step graft polymerization protocol was followed to first polymerize and cross-link acrylamide onto the substrate with a photosensitizer and/or oxygen plasma pretreatment. The effects of varying photo-initiation and plasma exposure times were investigated separately and conjunctively using water contact angles to obtain optimal coating deposition parameters. A poly(ethylene glycol) network was then grafted by swelling the preexisting polyacrylamide network to allow inter-diffusion of the monomer and cross-linker, which were then polymerized by photo-initiation. When the photo-initiation time was long enough to reach near gelation, pretreatment of PET with oxygen plasma did not offer significant benefit. X-ray photoelectron spectroscopy confirmed the presence of both polymer layers, and composition depth profiles supported the assessment that an interpenetrating network was formed. Tensile testing and application of Weibull statistics on unmodified and modified films indicated that the surface modification approach did not significantly alter the mechanical integrity of the material. These findings indicate that a p(AAm-co-EG) coating can be effectively deposited on PET surfaces without compromising the structural integrity of the substrate.

  1. Enhanced mechanical properties of low-surface energy thin films by simultaneous plasma polymerization of fluorine and epoxy containing polymers

    Science.gov (United States)

    Karaman, Mustafa; Uçar, Tuba

    2016-01-01

    Thin films of poly(2,2,3,4,4,4 hexafluorobutyl acrylate-glycidyl methacrylate) (P(HFBA-GMA) were deposited on different surfaces using an inductively coupled RF plasma reactor. Fluorinated polymer was used to impart hydrophobicity, whereas epoxy polymer was used for improved durability. The deposition at a low plasma power and temperature was suitable for the functionalization of fragile surfaces such as textile fabrics. The coated rough textile surfaces were found to be superhydrophobic with water contact angles greater than 150° due to the high retention of long fluorinated side chains. The hydrophobicity of the surfaces was observed to be stable after many exposures to ultrasonification tests, which is attributed to the mechanical durability of the films due to their epoxide functionality. FTIR and XPS analyses of the deposited films confirmed that the epoxide functionality of the polymers increased with increasing glycidyl methacrylate fraction in the reactor inlet. The modulus and hardness values of the films also increase with increasing epoxide functionality.

  2. Characteristics of Plasma-Sprayed Ceramic Coatings and Their Engineering Application

    Institute of Scientific and Technical Information of China (English)

    DENG Hua-ling; ZHANG Zhong-wen; WU Jun

    2004-01-01

    The microstructure, porosity, microhardness and adhesive strength of three plasma- sprayed ceramic coatings (Al2 O3, Cr2 O3 and Cr3 C2 + NiCr) were tested. The wear resistance of the coatings was characterized through sand blasting test. The results showed that the erosion resistance of Cr2 O3 coating was better than Al2 O3 and Cr3 C2 + NiCr coatings'.Through depositing the coating on the surface of boiler overheater tubes and on the surface of baffle- wall of carrying- coal grain blower to test its anti- erosion performance after a period of running, it was confirmed that the coatings present excellent wear resistance. Accordingly, it also demonstrates that ceramic coating has a promising prospects in surface protection in thermal power stations.

  3. Anisotropic Thermal Diffusivities of Plasma-Sprayed Thermal Barrier Coatings

    Science.gov (United States)

    Akoshima, Megumi; Takahashi, Satoru

    2017-09-01

    Thermal barrier coatings (TBCs) are used to shield the blades of gas turbines from heat and wear. There is a pressing need to evaluate the thermal conductivity of TBCs in the thermal design of advanced gas turbines with high energy efficiency. These TBCs consist of a ceramic-based top coat and a bond coat on a superalloy substrate. Usually, the focus is on the thermal conductivity in the thickness direction of the TBC because heat tends to diffuse from the surface of the top coat to the substrate. However, the in-plane thermal conductivity is also important in the thermal design of gas turbines because the temperature distribution within the turbine cannot be ignored. Accordingly, a method is developed in this study for measuring the in-plane thermal diffusivity of the top coat. Yttria-stabilized zirconia top coats are prepared by thermal spraying under different conditions. The in-plane and cross-plane thermal diffusivities of the top coats are measured by the flash method to investigate the anisotropy of thermal conduction in a TBC. It is found that the in-plane thermal diffusivity is higher than the cross-plane one for each top coat and that the top coats have significantly anisotropic thermal diffusivity. The cross-sectional and in-plane microstructures of the top coats are observed, from which their porosities are evaluated. The thermal diffusivity and its anisotropy are discussed in detail in relation to microstructure and porosity.

  4. Tailoring the heat transfer on the injection moulding cavity by plasma sprayed ceramic coatings

    Science.gov (United States)

    Bobzin, K.; Hopmann, Ch; Öte, M.; Knoch, M. A.; Alkhasli, I.; Dornebusch, H.; Schmitz, M.

    2017-03-01

    Inhomogeneous material shrinkage in injection moulding can cause warpage in thermoplastic components. To minimise the deformations of the injection moulding parts, the heat transfer during the cooling phase can be adjusted according to the local cooling demand on the surface of the mould cavity by means of plasma sprayed coatings with locally variable thermal resistance over the surface of the mould. Thermal resistance is a function of thermal conductivity and thickness of the coatings, where thermal conductivity of thermal barrier coatings can be adjusted by altering the chemical composition and the microstructure, which is depending on the thickness. This work evaluates the application of plasma sprayed coatings with variable thickness as thermal barrier coatings in the mould cavity. The thermal resistance of the coating and thereby the heat transfer from the melt into the mould will be influenced locally by varying the coating thickness over the cavity area according to the local cooling demand. Using the laser flash method, the thermal conduction of coatings with different thicknesses will be determined. On the basis of the experimentally determined thermal conduction, the effect of the coatings on the temperature field of the mould cavity will be numerically calculated and the required thickness distribution of the coating for an optimal temperature gradient will be determined.

  5. Studies on Nanocrystalline TiN Coatings Prepared by Reactive Plasma Spraying

    Directory of Open Access Journals (Sweden)

    Dong Yanchun

    2008-01-01

    Full Text Available Titanium nitride (TiN coatings with nanostructure were prepared on the surface of 45 steel (Fe-0.45%C via reactive plasma spraying (denoted as RPS Ti powders using spraying gun with self-made reactive chamber. The microstructural characterization, phases constitute, grain size, microhardness, and wear resistance of TiN coatings were systematically investigated. The grain size was obtained through calculation using the Scherrer formula and observed by TEM. The results of X-ray diffraction and electron diffraction indicated that the TiN is main phase of the TiN coating. The forming mechanism of the nano-TiN was characterized by analyzing the SEM morphologies of surface of TiN coating and TiN drops sprayed on the surface of glass, and observing the temperature and velocity of plasma jet using Spray Watch. The tribological properties of the coating under nonlubricated condition were tested and compared with those of the AISI M2 high-speed steel and Al2O3 coating. The results have shown that the RPS TiN coating presents better wear resistance than the M2 high-speed steel and Al2O3 coating under nonlubricated condition. The microhardness of the cross-section and longitudinal section of the TiN coating was tested. The highest hardness of the cross-section of TiN coating is 1735.43HV100 g.

  6. Performance Testing of Suspension Plasma Sprayed Thermal Barrier Coatings Produced with Varied Suspension Parameters

    Directory of Open Access Journals (Sweden)

    Nicholas Curry

    2015-07-01

    Full Text Available Suspension plasma spraying has become an emerging technology for the production of thermal barrier coatings for the gas turbine industry. Presently, though commercial systems for coating production are available, coatings remain in the development stage. Suitable suspension parameters for coating production remain an outstanding question and the influence of suspension properties on the final coatings is not well known. For this study, a number of suspensions were produced with varied solid loadings, powder size distributions and solvents. Suspensions were sprayed onto superalloy substrates coated with high velocity air fuel (HVAF -sprayed bond coats. Plasma spray parameters were selected to generate columnar structures based on previous experiments and were maintained at constant to discover the influence of the suspension behavior on coating microstructures. Testing of the produced thermal barrier coating (TBC systems has included thermal cyclic fatigue testing and thermal conductivity analysis. Pore size distribution has been characterized by mercury infiltration porosimetry. Results show a strong influence of suspension viscosity and surface tension on the microstructure of the produced coatings.

  7. Non-Vacuum Processed Polymer Composite Antireflection Coating Films for Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Abdullah Uzum

    2016-08-01

    Full Text Available A non-vacuum processing method for preparing polymer-based ZrO2/TiO2 multilayer structure antireflection coating (ARC films for crystalline silicon solar cells by spin coating is introduced. Initially, ZrO2, TiO2 and surface deactivated-TiO2 (SD-TiO2 based films were examined separately and the effect of photocatalytic properties of TiO2 film on the reflectivity on silicon surface was investigated. Degradation of the reflectance performance with increasing reflectivity of up to 2% in the ultraviolet region was confirmed. No significant change of the reflectance was observed when utilizing SD-TiO2 and ZrO2 films. Average reflectance (between 300 nm–1100 nm of the silicon surface coated with optimized polymer-based ZrO2 single or ZrO2/SD-TiO2 multilayer composite films was decreased down to 6.5% and 5.5%, respectively. Improvement of photocurrent density (Jsc and conversion efficiency (η of fabricated silicon solar cells owing to the ZrO2/SD-TiO2 multilayer ARC could be confirmed. The photovoltaic properties of Jsc, the open-circuit photo voltage (VOC, the fill factor (FF, and the η were 31.42 mA cm−2, 575 mV, 71.5% and 12.91%. Efficiency of the solar cells was improved by the ZrO2-polymer/SD-TiO2 polymer ARC composite layer by a factor of 0.8% with an increase of Jsc (2.07 mA cm−2 compared to those of fabricated without the ARC.

  8. Plasma-Sprayed ZnO/TiO2 Coatings with Enhanced Biological Performance

    Science.gov (United States)

    Zhao, Xiaobing; Peng, Chao; You, Jing

    2017-08-01

    Surface chemical composition and topography are two key factors in the biological performance of implants. The aim of this work is to deposit ZnO/TiO2 composite coatings on the surface of titanium substrates by plasma spraying technique. The effects of the amount of ZnO doping on the microstructure, surface roughness, corrosion resistance, and biological performance of the TiO2 coatings were investigated. The results indicated that the phase composition of the as-sprayed TiO2 coating was mainly rutile. Addition of 10% ZnO into TiO2 coating led to a slight shift of the diffraction peaks to lower angle. Anatase phase and Zn2TiO4 were formed in 20%ZnO/TiO2 and 30%ZnO/TiO2 coatings, respectively. Doping with ZnO changed the topography of the TiO2 coatings, which may be beneficial to enhance their biological performance. All coatings exhibited microsized surface roughness, and the corrosion resistance of ZnO/TiO2 coatings was improved compared with pure TiO2 coating. The ZnO/TiO2 coatings could induce apatite formation on their surface and inhibit growth of Staphylococcus aureus, but these effects were dose dependent. The 20%ZnO/TiO2 coating showed better biological performance than the other coatings, suggesting potential application for bone implants.

  9. Surface characterization of plasma treated polymers for applications as biocompatible carriers

    Directory of Open Access Journals (Sweden)

    L. Bacakova

    2013-06-01

    Full Text Available The objective of this work was to determine surface properties of polymer surfaces after plasma treatment with the aim of further cytocompatibility tests. Examined polymers were poly(ethyleneterephthalate (PET, high-density polyethylene (HDPE, poly(tetrafluoro-ethylene (PTFE and poly(L-lactic acid (PLLA. Goniometry has shown that the plasma treatment was immediately followed by a sharp decrease of contact angle of the surface. In the course of ageing the contact angle increased due to the reorientation of polar groups into the surface layer of polymer. Ablation of polymer surfaces was observed during the degradation. Decrease of weight of polymer samples was measured by gravimetry. Surface morphology and roughness was studied by atomic force microscopy (AFM. The PLLA samples exhibited saturation of wettability (aged surface after approximately 100 hours, while the PET and PTFE achieved constant values of contact angle after 336 hours. Irradiation by plasma leads to polymer ablation, the highest mass loss being observed for PLLA. The changes in the surface roughness and morphology were observed, a lamellar structure being induced on PTFE. Selected polymer samples were seeded with VSMC (vascular smooth muscle cells and the adhesion and proliferation of cells was studied. It was proved that certain combination of input treatment parameters led to improvement of polymer cytocompatibility. The plasma exposure was confirmed to significantly improve the PTFE biocompatibility.

  10. Conductivity and Activation Energy in Polymers Synthesized by Plasmas of Thiophene

    OpenAIRE

    Ma. Guadalupe Olayo; Cruz, Guillermo J.; Salvador López; Juan Morales; Roberto Olayo

    2010-01-01

    The electric conductivity, activation energy and morphology of polythiophene synthesized by radiofrequency resistive plasmas are studied in this work. The continuous collisions of particles in the plasma induce the polymerization of thiophene but also break some of the monomer molecules producing complex polymers with thiophene rings and aliphatic hydrocarbon segments. These multidirectional chemical reactions are more marked at longer reaction times in which the morphology of the polymers ev...

  11. Inverse gold photonic crystals and conjugated polymer coated opals for functional materials

    Energy Technology Data Exchange (ETDEWEB)

    Landon, P.B.; Gutierrez, Jose; Ferraris, John P.; Martinez, I.L.; Giridharagopal, Rajiv; Wu, Y.-C.; Lee, Sergey; Parikh, Kunjal; Gillespie, Jessica; Ussery, Geoffrey; Karimi, Behzad; Baughman, Ray; Zakhidov, Anvar; Glosser, R

    2003-10-01

    Inverse gold photonic crystals templated from synthetic opals with a face centered cubic (FCC) crystal lattice were constructed by heat converting gold chloride to metallic gold. Tetrahedral formations constructed of alternating large and small octahedrons oriented in the zinc sulfide structure were created by controlling the infiltration of gold chloride. Silica spheres were coated with polyanilinesulfonic acid, polypyrrole, poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) and 5 nm colloidal gold. Ordinary yeast cells were coated with polyanilinesulfonic acid, polypyrrole and 5 nm colloidal gold. Spheres coated with MEH-PPV were dispersed in H{sub 2}O and coated with polyelectrolytes which recharged and sterically stabilized the colloidal surfaces. The recharged spheres self-assembled by sedimentation with a FCC crystalline lattice possessing 500 {mu}m wide and 1 mm long crystallites. Silica spheres with diameters as large as 1500 {mu}m were self-assembled along the [1 0 0] direction of the FCC crystal lattice. Opals infiltrated with gold and opals constructed from polymer coated spheres were co-infiltrated with polypropylene yielding inverse polypropylene composite photonic crystals.

  12. Probing the adhesion of particles to responsive polymer coatings with hydrodynamic shear stresses

    Science.gov (United States)

    Toomey, Ryan; Efe, Gulnur

    2015-03-01

    Lower critical solution temperature (LCST) polymers in confined geometries have found success in applications that benefit from reversible modulation of surface properties, including drug delivery, separations, tissue cultures, and chromatography. In this talk, we present the adhesion of polystyrene microspheres to cross-linked poly(N-isopropylacrylamide), or poly(NIPAAm) coatings, as studied with a spinning disk method. This method applies a linear range of hydrodynamic shear forces to physically adsorbed microspheres along the radius of a coated disk. Quantification of detachment is accomplished by optical microscopy to evaluate the minimum shear stress to remove adherent particles. Experiments were performed to assess the relationship between the surface chemistry of the microsphere, the thickness and cross-link density of the poly(NIPAAm) coating, the adsorption (or incubation) time, and the temperature on the detachment profiles of the microspheres. Results show that both the shear modulus and slow dynamic processes in the poly(NIPAAm) films strongly influence the detachment shear stresses. Moreover, whether an adsorbed microsphere can be released (through a modulation in the swelling of the poly(NIPAAm) coating by temperature) depends on both the surface chemistry of the microsphere and the extent of the adsorption time. Finally, the results show that the structure of the poly(NIPAAm) coating can significantly affect performance, which may explain several of the conflicting findings that have been reported in the literature.

  13. INVESTIGATION OF MODIFICATION PROCESSES IN RESPECT OF WEAR-RESISTANT PLASMA COATINGS USING PULSE-PLASMA MACHINING

    Directory of Open Access Journals (Sweden)

    V. A. Okovity

    2009-01-01

    Full Text Available The paper contains information on the investigated processes and optimized technological parameters  of  highly-energy  machining of plasma  coatings  made  of  cladding  composite  powders obtained as a result of self-spreading high-temperature synthesis. Metallographic analysis has been carried out and coating properties machined at optimum regimes have been investigated in the paper

  14. The plasma footprint of an atmospheric pressure plasma jet on a flat polymer substrate and its relation to surface treatment

    Science.gov (United States)

    Onyshchenko, Iuliia; Nikiforov, Anton Yu.; De Geyter, Nathalie; Morent, Rino

    2016-08-01

    The aim of this work is to show the correlation between the plasma propagation in the footprint of an atmospheric pressure plasma jet on a flat polymer surface and the plasma treatment impact on the polymer properties. An argon plasma jet working in open air is used as plasma source, while PET thin films are used a substrates for plasma treatment. Light emission photographs are taken with an ICCD camera to have a close look at the generated structures in the plasma jet footprint on the surface. Water contact angle (WCA) measurement and X-ray photoelectron spectroscopy (XPS) analysis are also performed to obtain information about the impact of the plasma treatment on the PET surface characteristics. A variation in ICCD camera gate duration (1 µs, 100 µs, 50 ms) results in the photographs of the different plasma structures occurring during the plasma propagation on the flat PET surface. Contact angle measurements provide results on improvement of the PET hydrophilic character, while XPS analysis shows the distribution of atomic elements on the treated substrate surface. Light emission images help explaining the obtained WCA and XPS results. Contribution to the topical issue "6th Central European Symposium on Plasma Chemistry (CESPC-6)", edited by Nicolas Gherardi, Ester Marotta and Cristina Paradisi

  15. Zirconia coatings deposited by novel plasma-enhanced aerosol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Miszczak, Sebastian; Pietrzyk, Bozena; Kucharski, Daniel [Institute of Materials Science and Engineering, Lodz University of Technology (Poland)

    2016-05-15

    The sol-gel technique is well known and widely used for manufacturing coatings. An aerosol-gel method is a modification of the classic sol-gel process. Preparation of coatings by this technique involves the formation of an aerosol and its deposition on the coated surfaces, where the aerosol droplets merge into a continuous layer. In this work, an aerosol-gel routine, enhanced with a low-temperature plasma discharge, was used to produce zirconia coatings on different substrates. Low-temperature plasma was used for preactivation of substrate surfaces prior to the sol deposition, and for treatment of deposited layers. The obtained coatings were characterized using optical, electron (SEM), and atomic force (AFM) microscopes, a contact-angle device, a scratch tester, a grazing-incidence X-ray diffractometer (GIXRD), and an infrared spectrometer (FTIR). The results showed a significant influence of substrate plasma pretreatment on the formation and morphology of zirconia thin films. A noticeable effect of low-temperature plasma treatment on the structure and properties of the obtained coatings was also presented. These results allow possible applications of this method for the preparation of zirconia coatings on temperature-sensitive substrates to be predicted. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Plasma Spray-Physical Vapor Deposition (PS-PVD) of Ceramics for Protective Coatings

    Science.gov (United States)

    Harder, Bryan J.; Zhu, Dongming

    2011-01-01

    In order to generate advanced multilayer thermal and environmental protection systems, a new deposition process is needed to bridge the gap between conventional plasma spray, which produces relatively thick coatings on the order of 125-250 microns, and conventional vapor phase processes such as electron beam physical vapor deposition (EB-PVD) which are limited by relatively slow deposition rates, high investment costs, and coating material vapor pressure requirements. The use of Plasma Spray - Physical Vapor Deposition (PS-PVD) processing fills this gap and allows thin (coatings of less than 100 microns to be generated with the flexibility to tailor microstructures by changing processing conditions. Coatings of yttria-stabilized zirconia (YSZ) were applied to NiCrAlY bond coated superalloy substrates using the PS-PVD coater at NASA Glenn Research Center. A design-of-experiments was used to examine the effects of process variables (Ar/He plasma gas ratio, the total plasma gas flow, and the torch current) on chamber pressure and torch power. Coating thickness, phase and microstructure were evaluated for each set of deposition conditions. Low chamber pressures and high power were shown to increase coating thickness and create columnar-like structures. Likewise, high chamber pressures and low power had lower growth rates, but resulted in flatter, more homogeneous layers

  17. SOLID RADIOACTIVE WASTE STORAGE TECHNOLOGIES: PERFORMANCE OF A POLYMER SEALANT COATING IN AN ARCTIC MARINE ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    COWGILL,M.G.; MOSKOWITZ,P.D.; CHERNAENKO,L.M.; NAZARIAN,A.; GRIFFITH,A.; DIASHEV,A.; ENGOY,T.

    2000-06-14

    This first project, under the auspices of the Arctic Military Environmental Cooperation (AMEC) forum, Project 1.4-1 Solid Radioactive Waste Storage Technologies, successfully demonstrated the feasibility of using a polymer-based coating to seal concrete and steel surfaces from permanent radioactive contamination in an Arctic marine environment. A mobile, self-sufficient spraying device, was developed to specifications provided by the Russian Ministry of Defence Northern Navy and was deployed at the RTP Atomflot site, Murmansk, Russia. Demonstration coatings of Polibrid 705 were applied to concrete surfaces exposed to conditions ranging from indoor pedestrian usage to heavy vehicle passage and container handling in a loading bay. A large steel container was also coated with the polymer, filled with solid radwaste, sealed, and left out of doors and exposed to the full 12 month Arctic weather cycle. The field tests were accompanied by a series of laboratory qualification tests carried out at the research laboratory of ICC Nuclide in St. Petersburg. During the 12-month field tests, the sealant coating showed little sign of degradation except for a few chips and gouge marks on the loading bay surface that were readily repaired. Contamination resulting from radwaste handling was easily removed and the surface was not degraded by contact with the decontamination agents. In the laboratory testing, Polibrid 705 met all the Russian qualification requirements with the exception of flammability. In this last instance, it was decided to restrict application of the coating to land-based facilities. The Russian technical experts from the Ministry of Defence quickly familiarized themselves with the equipment and were able to identify several areas of potential improvement as deployment of the equipment progressed. The prime among these was the desirability of extending the range of the equipment through enlarged gasoline tanks (to permit extended operational times) and longer

  18. Surface Coating of NiTi Shape Memory Alloys with Calcium Phosphates by Dip-coating or Plasma-spraying-biological Characterization Examined by in vitro Testing Methods

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The influence of different surface coatings of NiTi shape memory alloys was examined using in vitro testing methods. Plates of superelastic nickel-titanium shape memory alloy (NiTi) were coated with calcium phosphates (hydroxyapatite) by high-temperature plasma-spraying or by dip-coating. The biocompatibility was tested in vitro by cultivation of isolated human granulocytes and whole blood cells. As substrates, pure NiTi,plasma-spray-coated NiTi and dip-coated NiTi were used. Isolated granulocytes showed an increased adhesion to both calcium phosphate-coated NiTi samples. Compared to non-coated NiTi or dip-coated NiTi, the number of dead granulocytes adherent to plasma-sprayed surfaces was significantly increased (p < 0.01). Whether the differences in apoptosis of granulocytes on dip-coated vs plasma-sprayed coatings observed are due to differences in material surface morphologies bas to be analyzed in further studies. Because of the cellular interactions with the coating layers, it is likely that the results obtained are not caused by the underlying NiTi but due to the coating itself.

  19. Microstructure and Oxidation Resistance of Laser Remelted Plasma Sprayed Nicraly Coating

    Directory of Open Access Journals (Sweden)

    Niemiec D.

    2016-06-01

    Full Text Available The article presents results of research relating to the impact of laser treatment done to the surface of plasma sprayed coatings NiCrAlY. Analysis consisted microstructure and oxidation resistance of coatings subjected to two different laser melting surfaces. The test were performed at a temperature 1000°C the samples were removed from the furnace after 25, 300, 500, 750 and 1000 hours. The investigations range included analysis of top surface of coatings by XRD characterization oxides formed types and microscopic investigations of coatings morphology

  20. In vitro fatigue behaviour of vacuum plasma and detonation gun sprayed hydroxyapatite coatings.

    Science.gov (United States)

    Gledhill, H C; Turner, I G; Doyle, C

    2001-06-01

    The fatigue behaviour of vacuum plasma sprayed (VPS) and detonation gun sprayed (DGUN) hydroxyapatite coatings on titanium substrates has been compared in air and in buffered Ringer's solution. There was an increase in the surface microcracking and bulk porosity of both types of coating tested in air. After 1 million cycles in Ringer's solution the VPS coatings had completely delaminated from their substrates. In contrast the DGUN coatings retained their integrity when tested up to 10 million cycles but were beginning to show signs of delamination at the interface.

  1. Friction of tungsten carbide-cobalt coatings obtained by means of plasma spraying

    Energy Technology Data Exchange (ETDEWEB)

    Cartier, M. (Hydromecanique et Frottement, Centre de Recherches, 42 - Andreziux-Boutheon (France)); McDonnell, L.; Cashell, E.M. (CRTC, Cork (Ireland))

    1991-11-29

    A study of the frictional properties of WC-Co-type coatings obtained by plasma spraying was carried out, the influence of the majority of the parameters involved in atmospheric spraying being analysed. This study of the correlations between the tribological behaviour and the compositionl of the coatings shows that friction is mainly determined by the method and degree of decomposition of the carbides. These in turn are linked to the effects of heat and/or oxidation, factors which can change considerably, not only as a function of the method used (plasma power, nature and flow rate of the plasma gases etc.) but also as a function of the coating process and the composition of the original powders. It has been possible to correlate the improvement in the frictional properties (resistance to seizure, reduction in the coefficient of friction) with the presence of free carbon in the coatings, associated with the carbide decomposition process. (orig.).

  2. Status of Plasma Physics Techniques for the Deposition of Tribological Coatings

    Science.gov (United States)

    Spalvins, T.

    1984-01-01

    The plasma physics deposition techniques of sputtering and ion-plating are reviewed. Their characteristics and potentials are discussed in terms of synthesis or deposition of tribological coatings. Since the glow discharge or plasma generated in the conventional sputtering and ion-plating techniques has a low ionization efficiency, rapid advances have been made in equipment design to further increase the ionization efficiency. The enhanced ionization favorably affects the nucleation and growth sequence of the coating. This leads to improved adherence and coherence, higher density, favorable morphological growth, and reduced internal stresses in the coatings. As a result, desirable coating characteristics can be precision tailored. Tribological coating characteristics of sputtered solid film lubricants such as MoS2, ion-plated soft gold and lead metallic films, and sputtered and ion-plated wear-resistant refractory compound films such as nitrides and carbides are discussed.

  3. The History, Technical Specifications and Efficacy of Plasma Spray Coatings Applied to Joint Replacement Prostheses

    Directory of Open Access Journals (Sweden)

    Andrew McCabe

    2016-12-01

    Full Text Available Thermal plasma sprayed coatings are designed to improve both the biocompatibility and durability of implantable medical devices, and include pure titanium, cobalt/chrome alloy and hydroxyapatite.  Coated joint replacements have now been in continuous clinical use for thirty years and are applied to products manufactured or used in Europe, North America, South America, Africa, Asia and Australasia. Prostheses incorporating such coatings have been successfully implanted into several million of patients worldwide and to date there have been very few reports of any failure of an implant which could be attributed to problems with, or failure of, the coating. This paper summarises the early history of cementless prostheses and subsequent development, specification, validation, regulatory requirements and clinical performance of thermal plasma spray coatings provided by Accentus Medical.

  4. Fabrication of Nanosized Lanthanum Zirconate Powder and Deposition of Thermal Barrier Coating by Plasma Spray Process

    Science.gov (United States)

    Mishra, S. K.; Jagdeesh, N.; Pathak, L. C.

    2016-07-01

    The present manuscript discusses our findings on fabrication of nanosized lanthanum zirconate powder for thermal barrier coating application and its coating by plasma spray on nickel-based superalloy substrate. Single-phase La2Zr2O7 coating of thickness of the order of 45 µm on the Ni-Cr-Al bond coat coated Ni-based superalloy substrate was deposited by plasma spray process. The layers at the interface did not show spallation and inter diffusion was very less. The microstructure, interface, porosity, and mechanical properties of different layers are investigated. The lanthanum zirconate hardness and modulus were 10.5 and 277 GPa, respectively. The load depth curve for lanthanum zirconate showed good elastic recovery around 74%.

  5. TiN coating on wall of holes and stitches by pulsed DC plasma enhanced CVD

    Institute of Scientific and Technical Information of China (English)

    马胜利; 徐可为; 介万奇

    2003-01-01

    TiN coating samples with narrow-stitch or deep-hole of different sizes and real dies with complex shape were processed by a larger-scale pulsed plasma enhanced CVD(PECVD) reactor. Scanning electron microscopy, optical microscopy, Vicker's hardness and interfacial adhesion tests were conducted to find the relation between the microstructure and properties of TiN coating on a flat and an inner surface. The results indicate that the inner-wall of holes (d>2 mm) and inner surface of narrow-stitches (d>3 mm) can be coated with the aid of pulsed DC plasma in an industrial-scale reactor. The quality of coatings on different surfaces is almost the same. The coating was applied to aluminum extrusion mould, and the mould life was increased at least by one time.

  6. Detection of Landmine Signature using SAW-based Polymer-coated Chemical Sensor

    Directory of Open Access Journals (Sweden)

    O. K. Kannan

    2004-07-01

    Full Text Available The explosive charge within a landmine is the source for a mixture of chemical vapours that form a distinctive chemical signature indicative of a landmine. The concentrations of these compounds in the air over landmines is extremely low (parts-per-trillion or lower, well below the minimum detection limits of most field-portable chemical sensors. This paper describes a portable  surface acoustic wave-based polymer-coated sensor for the detection of hidden explosives. The sensitivity and selectivity of polymer-based sensors depend on several factors including the chemo-selective coating used, the physical properties of the vapour(s of interest, the selected transducers, and the operating conditions. The polymer-based sensor was calibrated in the  laboratory using the explosive vapour generator. The preliminary results indicated that the carbowax 1000 could be a very good chemical interface to sense low levels of chemical signature of explosive material. Response for 50 ppb of TNT vapours was observed to be 400 Hz for an exposure of 2 min.

  7. The effect of polymer coatings on proton transverse relaxivities of aqueous suspensions of magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, Matthew R J; House, Michael J; Woodward, Robert C; St Pierre, Timothy G [School of Physics, University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009 (Australia); Huffstetler, Phillip P; Miles, William C; Goff, Jonathon D; Davis, Richey M; Riffle, Judy S, E-mail: stpierre@physics.uwa.edu.au [Macromolecules and Interfaces Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States)

    2011-08-12

    Iron oxide magnetic nanoparticles are good candidates for magnetic resonance imaging (MRI) contrast agents due to their high magnetic susceptibilities. Here we investigate 19 polyether-coated magnetite nanoparticle systems comprising three series. All systems were synthesized from the same batch of magnetite nanoparticles. A different polyether was used for each series. Each series comprised systems with systematically varied polyether loadings per particle. A highly significant (p < 0.0001) linear correlation (r = 0.956) was found between the proton relaxivity and the intensity-weighted average diameter measured by dynamic light scattering in the 19 particle systems studied. The intensity-weighted average diameter measured by dynamic light scattering is sensitive to small number fractions of larger particles/aggregates. We conclude that the primary effect leading to differences in proton relaxivity between systems arises from the small degree of aggregation within the samples, which appears to be determined by the nature of the polymer and, for one system, the degree of polymer loading of the particles. For the polyether coatings used in this study, any changes in relaxivity from differences in water exclusion or diffusion rates caused by the polymer are minor in comparison with the changes in relaxivity resulting from variations in the degree of aggregation.

  8. Ultrasonic spray coating polymer and small molecular organic film for organic light-emitting devices

    Science.gov (United States)

    Liu, Shihao; Zhang, Xiang; Zhang, Letian; Xie, Wenfa

    2016-11-01

    Ultrasonic spray coating process (USCP) with high material -utilization, low manufacture costs and compatibility to streamline production has been attractive in researches on photoelectric devices. However, surface tension exists in the solvent is still a huge obstacle to realize smooth organic film for organic light emitting devices (OLEDs) by USCP. Here, high quality polymer anode buffer layer and small molecular emitting layer are successfully realized through USCP by introducing extra-low surface tension diluent and surface tension control method. The introduction of low surface tension methyl alcohol is beneficial to the formation of poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) films and brings obvious phase separation and improved conductivity to PEDOT:PSS film. Besides, a surface tension control method, in which new stable tension equilibrium is built at the border of wetting layer, is proposed to eliminate the effect of surface tension during the solvent evaporation stage of ultrasonic spray coating the film consists of 9,9-Spirobifluoren-2-yl-diphenyl-phosphine oxide doped with 10 wt% tris [2-(p -tolyl) pyridine] iridium (III). A smooth and homogenous small molecular emitting layer without wrinkles is successfully realized. The effectiveness of the ultrasonic spray coating polymer anode buffer layer and small molecular emitting layer are also proved by introducing them in OLEDs.

  9. Studies on polymer-coated zinc oxide nanoparticles: UV-blocking efficacy and in vivo toxicity.

    Science.gov (United States)

    Girigoswami, Koyeli; Viswanathan, Meenakshi; Murugesan, Ramachandran; Girigoswami, Agnishwar

    2015-11-01

    Zinc oxide (ZnO) is explicitly used in sunscreens and cosmetic products; however, its effect in vivo is toxic in some cases. The UV blocking efficacy of ZnO nanoparticles is lost due to photocatalysis. To isolate a lower toxic species of sunblockers, ZnO nanoparticles were synthesized and coated with chitosan - a natural polymer (ZnO-CTS) and polyethylene glycol (PEG) - a synthetic polymer (ZnO-PEG). Coating with CTS and PEG circumvented the photocatalytic activity, increased the stability and improved the UV absorption efficacy. The effect of ZnO, ZnO-CTS and ZnO-PEG nanoparticles in vivo on zebrafish embryo revealed lower deposition of ZnO-CTS and ZnO-PEG nanoparticles atop the eggs compared to ZnO. The survival of zebrafish embryos was always found to be higher in case of ZnO-CTS with respect to ZnO-treated ones. PEG coating exhibited better UV attenuation, but, in vivo it induced delayed hatching. Thus, one of the reasons for better survival could be attributed to lower aggregation of ZnO-CTS nanoparticles atop eggs thereby facilitating the breathing of embryos.

  10. Nitrogen fertilization in corn with urea coated with different sources of polymers

    Directory of Open Access Journals (Sweden)

    Márcio Valderrama

    2014-02-01

    Full Text Available In view of theoretic increase in efficiency of nitrogen fertilizers for controlled release, this study aimed to evaluate the effect of nitrogen, using conventional urea and ureas coated by different polymers, in the leaf N content, leaf chlorophyll index, components production and grain yield of irrigated corn in growing season and second crop in the savannah region. The experiments were conducted at experimental area belonging to UNESP – Ilha Solteira, located in Selvíria – MS in a dystrophic Red Latosol (Haplustox, clayey texture. The statistical design was randomized blocks, with four repetitions, in a 4 x 4 factorial arrangement, being four nitrogen doses (0, 40, 80 and 120 kg ha-1 applied at sidedressing and four urea sources (a conventional urea and three coated with polymers in different compositions and concentrations. The coated ureas are not efficient under the soil and climate conditions studied of the savanna, because they provided results similar to the conventional urea for the production components and grain yield of corn in the first and second crop. The increment of nitrogen doses increase linearly the leaf N content and grain yield of corn in the first and second crop.

  11. Surface and Microstructural Failures of PET-Coated ECCS Plates by Salmon-Polymer Interaction

    Directory of Open Access Journals (Sweden)

    Ernesto Zumelzu

    2016-03-01

    Full Text Available The new types of knowledge-intensive, multilayer containers consist of steel plates protected against corrosion by nanometric electrolytic chromium (Cr0 and chromium oxide (Cr2O3 layers chemically bonded to polyethylene terephthalate (PET polymer coating to preserve food. It was observed that after emptying the cans, the salmon adhered to the polymer coating, changing its color, and that this adhesion increased with longer storage times. This work was aimed at determining the product-container interactions and their characterization by X-ray diffraction (XRD, confocal Raman and micro-Raman imaging and scanning electron microscopy (SEM analysis. The zones of adhesion showed surface changes, variations in crystallinity and microstructural degradation of the PET coating. In addition, localized damages altering the functional properties of the multilayer system were observed as microcracking in the chromium layers that protect the steel. The degradation undergone was evaluated and characterized at a surface and microstructural level to establish the failure mechanisms, which were mainly associated with the activity of the adhered muscle and its biochemical components. Finally, a recommendation is done to preserve the useful life and functionality of cans for the preservation and efficient use of resources with an impact on recycling and environmental conservancy.

  12. Neutral polymers as coatings for high resolution electrophoretic separation of Aβ peptides on glass microchips.

    Science.gov (United States)

    Mesbah, Kiarach; Verpillot, Romain; Chiari, Marcella; Pallandre, Antoine; Taverna, Myriam

    2014-12-21

    This study reports a comparison of the performances of two neutral polymers, poly ethylene-oxide (PEO) and poly(dimethylacrylamide-co-allyl glycidyl ether) (EpDMA), in glass microchips to achieve zone electrophoresis separation of several truncated forms of beta amyloid (Aβ) peptides, sharing very similar structures. The peptides were derivatized by FluoProbes 488 NHS to allow their fluorescence detection. Two protocols based either on PEO or EpDMA led to good pH stabilities in addition to a significant reduction of the electroosmotic flow. These two polymer coatings allowed repeatable analyses and high resolution for the simultaneous analysis of three Aβ peptides, Aβ 1-38, Aβ 1-40 and Aβ 1-42, considered as potential biomarkers of Alzheimer's disease. A recovery study showed that EpDMA was superior in reducing the adsorption of the Aβ peptides on the coated inner wall. Finally, the separation method relying on the EpDMA coated microchips was validated as linear using a calibration curve and the LOD was estimated to be close to 200 nM. Despite very short migration distances, different N-terminal or C-terminal truncated Aβ peptides, corresponding to promising biomarker combinations for the future diagnostic, were fully resolved. The method was successfully applied to detect these peptides in spiked cerebrospinal fluid and has provided a first achievement towards the development of a microsystem that would integrate preconcentration and separation steps.

  13. Ultrasonic spray coating polymer and small molecular organic film for organic light-emitting devices.

    Science.gov (United States)

    Liu, Shihao; Zhang, Xiang; Zhang, Letian; Xie, Wenfa

    2016-11-22

    Ultrasonic spray coating process (USCP) with high material -utilization, low manufacture costs and compatibility to streamline production has been attractive in researches on photoelectric devices. However, surface tension exists in the solvent is still a huge obstacle to realize smooth organic film for organic light emitting devices (OLEDs) by USCP. Here, high quality polymer anode buffer layer and small molecular emitting layer are successfully realized through USCP by introducing extra-low surface tension diluent and surface tension control method. The introduction of low surface tension methyl alcohol is beneficial to the formation of poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) films and brings obvious phase separation and improved conductivity to PEDOT:PSS film. Besides, a surface tension control method, in which new stable tension equilibrium is built at the border of wetting layer, is proposed to eliminate the effect of surface tension during the solvent evaporation stage of ultrasonic spray coating the film consists of 9,9-Spirobifluoren-2-yl-diphenyl-phosphine oxide doped with 10 wt% tris [2-(p -tolyl) pyridine] iridium (III). A smooth and homogenous small molecular emitting layer without wrinkles is successfully realized. The effectiveness of the ultrasonic spray coating polymer anode buffer layer and small molecular emitting layer are also proved by introducing them in OLEDs.

  14. Acoustic method of investigating the material properties and humidity sensing behavior of polymer coated piezoelectric substrates

    Science.gov (United States)

    Caliendo, Cinzia

    2006-09-01

    The relative humidity (RH) sensing behavior of a polymeric film was investigated by means of polymer coated surface acoustic wave (SAW) delay lines implemented on single crystal piezoelectric substrates, such as quartz and LiNbO3, and on thin piezoelectric polycrystalline films, such as ZnO and AlN, on Si and GaAs. The same SAW delay line configuration was implemented on each substrate and the obtained devices' operating frequency was in the range of 105-156MHz, depending on the type of the substrate, on its crystallographic orientation, and on the SAW propagation direction. The surface of each SAW device was covered by the same type RH sensitive film of the same thickness and the RH sensitivity of each polymer coated substrate, i.e., the SAW relative phase velocity shift per RH unit changes, was investigated in the 0%—80% RH range. The perturbational approach was used to relate the SAW sensor velocity response to the RH induced changes in the physical parameters of the sensitive polymer film: the incremental change in the mass density and shear modulus of the polymer film per unit RH change were estimated. The shift of the bare SAW delay lines operating frequency induced by the presence of the polymer film, at RH =0% and at T =-10°C, allowed the experimental estimation of the mass sensitivity values of each substrate. These values were in good accordance with those reported in the literature and with those theoretically evaluated by exact numerical calculation. The shift of the bare SAW delay lines propagation loss induced by the polymer coating of the device surface, at RH =0% and at ambient temperature, allowed the experimental estimation of the elastic sensitivity of each substrate. These values were found in good accordance with those available from the literature. The temperature coefficient of delay and the electromechanical coupling coefficient of the bare substrates were also estimated. The membrane sensitivity to ethanol, methanol and isopropylic

  15. Endothelial cell recovery, acute thrombogenicity, and monocyte adhesion and activation on fluorinated copolymer and phosphorylcholine polymer stent coatings.

    Science.gov (United States)

    Chin-Quee, Shawn L; Hsu, Steve H; Nguyen-Ehrenreich, Kim L; Tai, Julie T; Abraham, George M; Pacetti, Stephen D; Chan, Yen F; Nakazawa, Gaku; Kolodgie, Frank D; Virmani, Renu; Ding, Nadine N; Coleman, Leslie A

    2010-02-01

    This study compares the effects of two polymers currently being marketed on commercially available drug-eluting stents, PVDF-HFP fluorinated copolymer (FP) and phosphorylcholine polymer (PC), on re-endothelialization, acute thrombogenicity, and monocyte adhesion and activity. Rabbit iliac arteries were implanted with cobalt-chromium stents coated with FP or PC polymer (without drug) and assessed for endothelialization at 14 days by confocal and scanning electron microscopy (SEM). Endothelialization was equivalent and near complete for FP and PC polymer-coated stents (>80% by SEM). Acute thrombogenicity was assessed in a Chandler loop model using porcine blood. Thrombus adherence was similar for both polymers as assessed by clot weight, thrombin-antithrombin III complex, and lactate dehydrogenase expression. In vitro cell adhesion assays were performed on FP and PC polymer-coated glass coupon surfaces using HUVECs, HCAECs, and THP-1 monocytes. The number of ECs adhered to FP and control surfaces were equivalent and significantly greater than on PC surfaces (p<0.05). There were no differences in THP-1 monocyte adhesion and cytokine (MCP-1, RANTES, IL-6, MIP-1alpha, MIP-1beta, G-CSF) expression. The data suggests that biological responses to both FP and PC polymer are similar, with no mechanistic indication that these polymers would be causative factors for delayed vessel healing in an acute timeframe.

  16. Dynamic-template-directed multiscale assembly for large-area coating of highly-aligned conjugated polymer thin films

    Science.gov (United States)

    Mohammadi, Erfan; Zhao, Chuankai; Meng, Yifei; Qu, Ge; Zhang, Fengjiao; Zhao, Xikang; Mei, Jianguo; Zuo, Jian-Min; Shukla, Diwakar; Diao, Ying

    2017-07-01

    Solution processable semiconducting polymers have been under intense investigations due to their diverse applications from printed electronics to biomedical devices. However, controlling the macromolecular assembly across length scales during solution coating remains a key challenge, largely due to the disparity in timescales of polymer assembly and high-throughput printing/coating. Herein we propose the concept of dynamic templating to expedite polymer nucleation and the ensuing assembly process, inspired by biomineralization templates capable of surface reconfiguration. Molecular dynamic simulations reveal that surface reconfigurability is key to promoting template-polymer interactions, thereby lowering polymer nucleation barrier. Employing ionic-liquid-based dynamic template during meniscus-guided coating results in highly aligned, highly crystalline donor-acceptor polymer thin films over large area (>1 cm2) and promoted charge transport along both the polymer backbone and the π-π stacking direction in field-effect transistors. We further demonstrate that the charge transport anisotropy can be reversed by tuning the degree of polymer backbone alignment.

  17. Modeling controlled nutrient release from a population of polymer coated fertilizers: statistically based model for diffusion release.

    Science.gov (United States)

    Shaviv, Avi; Raban, Smadar; Zaidel, Elina

    2003-05-15

    A statistically based model for describing the release from a population of polymer coated controlled release fertilizer (CRF) granules by the diffusion mechanism was constructed. The model is based on a mathematical-mechanistic description of the release from a single granule of a coated CRF accounting for its complex and nonlinear nature. The large variation within populations of coated CRFs poses the need for a statistically based approach to integrate over the release from the individual granules within a given population for which the distribution and range of granule radii and coating thickness are known. The model was constructed and verified using experimentally determined parameters and release curves of polymer-coated CRFs. A sensitivity analysis indicated the importance of water permeability in controlling the lag period and that of solute permeability in governing the rate of linear release and the total duration of the release. Increasing the mean values of normally distributed granule radii or coating thickness, increases the lag period and the period of linear release. The variation of radii and coating thickness, within realistic ranges, affects the release only when the standard deviation is very large or when water permeability is reduced without affecting solute permeability. The model provides an effective tool for designing and improving agronomic and environmental effectiveness of polymer-coated CRFs.

  18. X-ray Computed Tomographic Investigation of the Porosity and Morphology of Plasma Electrolytic Oxidation Coatings.

    Science.gov (United States)

    Zhang, Xun; Aliasghari, Sepideh; Němcová, Aneta; Burnett, Timothy L; Kuběna, Ivo; Šmíd, Miroslav; Thompson, George E; Skeldon, Peter; Withers, Philip J

    2016-04-06

    Plasma electrolytic oxidation (PEO) is of increasing interest for the formation of ceramic coatings on metals for applications that require diverse coating properties, such as wear and corrosion resistance, low thermal conductivity, and biocompatibility. Porosity in the coatings can have an important impact on the coating performance. However, the quantification of the porosity in coatings can be difficult due to the wide range of pore sizes and the complexity of the coating morphology. In this work, a PEO coating formed on titanium is examined using high resolution X-ray computed tomography (X-ray CT). The observations are validated by comparisons of surface views and cross-sectional views of specific coating features obtained using X-ray CT and scanning electron microscopy. The X-ray CT technique is shown to be capable of resolving pores with volumes of at least 6 μm(3). Furthermore, the shapes of large pores are revealed and a correlation is demonstrated between the locations of the pores, nodules on the coating surface, and depressions in the titanium substrate. The locations and morphologies of the pores, which constitute 5.7% of the coating volume, indicate that they are generated by release of oxygen gas from the molten coating.

  19. Experimental investigation on erosive wear behaviour of plasma spray coated stainless steel

    Science.gov (United States)

    Girisha, K. G.; Sreenivas Rao, K. V.; Anil, K. C.; Sanman, S.

    2017-04-01

    Slurry erosion is an implicit problem in many engineering industrial components such as ore carrying pipelines, slurry pumps and extruders. Even the water turbine blades are subjected to erosive wear when the water contains considerable amount of silt. In the present study, Al2O3-40%TiO2 powder particles of average particle size of 50 micrometer were deposited on EN56B martenistic stainless steel by atmospheric plasma spray technique. Ni/Cr was pre coated to work as bond coat for good adhesion between coating and the substrate material. A coating thickness of 200 micrometer was achieved. Coated and un-coated substrates were subjected to slurry erosion test as per ASTM G-119 standard. Slurry erosion test rig was used to evaluate the erosion properties at room temperature condition by varying the spindle speed. Scanning electron microphotographs were taken before and after the slurry erosion test. Microstructures reveal uniform distribution of coating materials. Eroded surface shows lip, groove, and crater formation and dense coating resulting in less porosity. Micro hardness test was evaluated and reported. EDX analysis confirms the presence of Al, Ti and O2 particles. It was observed that, Al2O3-40%TiO2 coated substrates exhibit superior erosion resistance as compared to un-coated substrates due to higher hardness and less coating porosity.

  20. Salt spray corrosion test of micro-plasma oxidation ceramic coatings on Ti alloy

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Ceramic coatings were prepared on Ti-6Al-4V alloy in NaAlO2 solution by micro-plasma oxidation (MPO). The salt spray teste of tne coated samples and the substrates were carried out in a salt spray test machine. The phase composition and surface morphology of the coatings were investigated by XRD and SEM. Severe corrosion occurred on the substrate surface, while there were no obvious corrosion phenomena on the coated samples. The coatings were composed of Al2TiO5 and a little α-Al2O3 and rutile TiO2, and the salt spray test did not change the composition of the coatings. The weight loss rate of the coatings decreased with increasing MPO time because of the increase in density and thickness of the coatings. The surface morphology of the coatings was influenced by salt spray corrosion test Among the coated samples, the coating prepared for 2 h has the best corrosion resistance under salt spray test.

  1. Role of precursors and coating polymers in sol-gel chemistry toward enhanced selectivity and efficiency in solid phase microextraction.

    Science.gov (United States)

    Bagheri, Habib; Piri-Moghadam, Hamed; Ahdi, Tayebeh

    2012-09-12

    To evaluate the selectivity and efficiency of solid phase microextraction (SPME) fiber coatings, synthesized by sol-gel technology, roles of precursors and coating polymers were extensively investigated. An on-line combination of capillary microextraction (CME) technique and high performance liquid chromatography (HPLC) was set up to perform the investigation. Ten different fiber coatings were synthesized in which five of them contained only the precursor and the rests were prepared using both the precursor and coating polymer. All the coatings were chemically bonded to the inner surface of copper tubes, intended to be used as the CME device and already functionalized by self-assembly monolayers of 3-(mercaptopropyl)trimethoxysilane (3MPTMOS). The selected precursors included tetramethoxysilane (TMOS), 3-(trimethoxysilyl)propylmethacrylate (TMSPMA), 3-(triethoxysilyl)-propylamine (TMSPA), 3MPTMOS, [3-(2,3-epoxypropoxy)-propyl]-trimethoxysilane (EPPTMOS) while poly(ethyleneglycol) (PEG) was chosen as the coating polymer. The effects of different precursors on the extraction efficiency and selectivity, was studied by selecting a list of compounds ranging from non-polar to polar ones, i.e. polycyclic aromatic hydrocarbon, herbicides, estrogens and triazines. The results from CME-HPLC analysis revealed that there is no significant difference between precursors, except TMOS, in which has the lowest extraction efficiency. Most of the selected precursors have rather similar interactions toward the selected analytes which include Van der Walls, dipole-dipole and hydrogen bond while TMOS has only dipole-dipole interaction and therefore the least efficiency. TMOS is silica but the other sorbents are organically modified silica (ORMOSIL). Our investigation revealed that it is rather impossible to prepare a selective coating using conventional sol-gel methodologies. The comparison study performed among the fiber coatings contained only a precursor and those synthesized by a

  2. Microstructure and Tribological Properties of Plasma-sprayed Nanostructured Sulfide Coating

    Institute of Scientific and Technical Information of China (English)

    Yang XU; Yaohui GUAN; Zhongyu ZHENG; Xiaohui TONG

    2006-01-01

    The friction and wear properties of plasma-sprayed nanostructured FeS coating were investigated on an MHK-500 friction and wear tester under both oil lubrication and dry friction condition. The microstructure, worn surface morphology and phase composition of the coating were characterized by scanning electron microscopy(SEM)and X-ray diffraction(XRD). It was found that the coating was mainly composed of FeS, a small quantity of Fe1-xS and oxide were also found. The coating was formed by small particles of 50~100 nm in size. The thickness of the coating is approximately 150μm. The friction-reduction and wear-resistance properties of plasma-sprayed nanostructured FeS coating were superior to that of GCr15 steel substrate.Especially under oil lubrication condition, the friction coefficient of nanostructured FeS coating was 50% of that of GCr15 steel, the wear scar widths of the coating were also reduced to nearly 50% of that of GCr15 steel under high load. The failure of the coating was mainly attributed to plastic deformation under both oil lubrication and dry friction condition.

  3. Optical coating and nano-structuring on plastics

    Institute of Scientific and Technical Information of China (English)

    U.Schulz; P.Munzert; A.Kaless; N.Kaiser

    2005-01-01

    The coating of plastics for optical applications is intended to improve the mechanical durability of soft polymers and to serve an antireflection function. Usually a classic four-layer antireflection system is added on top of a single-layer hard coating. With needle optimisation,an alternative coating design has been developed. Plasma ion assisted deposition was used to deposit coatings upon polymers. Uniform antireflection and high scratch resistance have been achieved.

  4. Comparison of glow argon plasma-induced surface changes of thermoplastic polymers

    Science.gov (United States)

    Řezníčková, A.; Kolská, Z.; Hnatowicz, V.; Stopka, P.; Švorčík, V.

    2011-01-01

    Modification of high-density polyethylene (PE), polytetrafluoroethylene (PTFE), polystyrene (PS), polyethyleneterephthalate (PET) and polypropylene (PP) by Ar plasma was studied. The amount of the ablated material was determined by gravimetry. Wettability of polymers after the plasma treatment was determined from the contact angle measurement. The changes in the surface morphology of polymers were observed using atomic force microscopy (AFM). Chemical structure of modified polymers was characterized by X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR). Surface changes were also studied by the determination of electrokinetic potential ( ζ-potential). It was found that under the plasma treatment the polymers are ablated and their surface morphology and roughness are changed dramatically. XPS measurements indicate an oxidation of the polymer surface. The plasma treatment results in a dramatic increase of the ζ-potential. EPR data show different radical amount present on the treated surface of all polymers. Most significant changes due to the degradation of polymer chains are observed on PTFE.

  5. Plasma Electrolytic Oxidation (PEO) Coatings on an A356 Alloy for Improved Corrosion and Wear Resistance

    Science.gov (United States)

    Peng, Zhijing

    Plasma electrolytic oxidizing (PEO) is an advanced technique that has been used to deposit thick and hard ceramic coatings on aluminium (Al) alloys. This work was however to use the PEO process to produce thin ceramic oxide coatings on an A356 Al alloy for improving corrosion and wear resistance of the alloy. Effects of current density and treatment time on surface morphologies and thickness of the PEO coatings were investigated. The improvement of galvanic corrosion properties of the coated A356 alloy vs. steel and carbon fibre were evaluated in E85 fuel or NaCl environments. Tribological properties of the coatings were studied with comparison to the uncoated A356 substrate and other commercially-used engine bore materials. The research results indicated that the PEO coatings could have excellent tribological and corrosion properties for aluminium engine applications.

  6. NiCrSiB Coatings Deposited by Plasma Transferred Arc on Different Steel Substrates

    Science.gov (United States)

    Reinaldo, P. R.; D'Oliveira, A. S. C. M.

    2013-02-01

    Colmonoy 6 (NiCrSiB) is a Ni-based alloy recognized for its superior mechanical properties, attributed to the presence of a dispersion of hard carbides and borides, which is strongly dependent on processing technique. This work gathered microstructure data from the literature and analyzed Colmonoy 6 coatings deposited by plasma transferred arc hardfacing. The aim of the study was to determine the influence of PTA deposition parameters and substrate chemical composition on NiCrSiB coating characteristics. Coatings were characterized in terms of their hardness, dilution, and microstructure, as well as mass loss during abrasive sliding wear tests. The results showed that coating performance is strongly dependent on the chemical composition of the substrate. Carbon steel substrate yielded coatings with greater wear resistance. Processing parameters also alter the performance of coatings, and the lower current and lower travel speed result in reduced mass loss.

  7. Plasma-sprayed thermal barrier coatings: numerical study on damage localization and evolution

    Directory of Open Access Journals (Sweden)

    K. Slámečka

    2016-01-01

    Full Text Available Thermal barrier coatings (TBCs are advanced material systems used to enhance performance and in-service life of components operated at high temperatures in gas turbines and other power-generation devices. Because of complexity, numerical methods became important tools both for design of these coatings and for in-service life estimations and optimization. In this contribution, two main features that affect the TBCs’ performance, namely the roughness of the bond coat and the microstructure of the ceramic top coat, are discussed based on Finite Element Method (FEM and Finite Element Microstructure MEshfree (FEMME simulations that were used to calculate stresses and assess damage within the coating. Roughness data obtained from plasma-sprayed CoNiCrAlY + YSZ coated samples are supplemented to discuss assumptions and results of employed numerical models.

  8. Compositional dependence of microstructure and tribological properties of plasma sprayed Fe-based metallic glass coatings

    Institute of Scientific and Technical Information of China (English)

    YANG Qin; LI Ran; LIU ZengQian; SHI MinJie; LUO XueKun; ZHANG Tao

    2012-01-01

    Gas-atomized powders of three Fe-based glass-forming alloys were sprayed on mild steel substrates by atmospheric plasma spaying using the same spaying parameters.Microstructures,thermal stabilities and tribological properties of the sprayed coatings were analyzed.The coating performances showed a strong dependence on the intrinsic characters of the compositions,i,e.,glass-forming ability (GFA) and supercooled liquid region (ΔTx).The coatings tended to exhibit higher amorphous phase fraction for the composition with higher GFA and lower porosity for that with larger ΔTx.All the coatings exhibited superior wear resistance compared with the substrate.Higher wear resistance could be obtained in coatings with higher amorphous phase fraction,i.e.higher GFA of the composition.This study has important implications for composition selecting and optimizing in the fabrication of metallic glass coatings.

  9. Analysis of Plasma-Sprayed Thermal Barrier Coatings With Homogeneous and Heterogeneous Bond Coats Under Spatially Uniform Cyclic Thermal Loading

    Science.gov (United States)

    Arnold, Steven M.; Pindera, Marek-Jerzy; Aboudi, Jacob

    2003-01-01

    This report summarizes the results of a numerical investigation into the spallation mechanism in plasma-sprayed thermal barrier coatings observed under spatially-uniform cyclic thermal loading. The analysis focuses on the evolution of local stress and inelastic strain fields in the vicinity of the rough top/bond coat interface during thermal cycling, and how these fields are influenced by the presence of an oxide film and spatially uniform and graded distributions of alumina particles in the metallic bond coat aimed at reducing the top/bond coat thermal expansion mismatch. The impact of these factors on the potential growth of a local horizontal delamination at the rough interface's crest is included. The analysis is conducted using the Higher-Order Theory for Functionally Graded Materials with creep/relaxation constituent modeling capabilities. For two-phase bond coat microstructures, both the actual and homogenized properties are employed in the analysis. The results reveal the important contributions of both the normal and shear stress components to the delamination growth potential in the presence of an oxide film, and suggest mixed-mode crack propagation. The use of bond coats with uniform or graded microstructures is shown to increase the potential for delamination growth by increasing the magnitude of the crack-tip shear stress component.

  10. Multiscale design and life-cycle based sustainability assessment of polymer nanocomposite coatings

    Science.gov (United States)

    Uttarwar, Rohan G.

    In recent years, nanocoatings with exceptionally improved and new performance properties have found numerous applications in the automotive, aerospace, ship-making, chemical, electronics, steel, construction, and many other industries. Especially the formulations providing multiple functionalities to cured paint films are believed to dominate the coatings market in the near future. It has shifted the focus of research towards building sustainable coating recipes which can deliver multiple functionalities through applied films. The challenge to this exciting area of research arrives from the insufficient knowledge about structure-property correlations of nanocoating materials and their design complexity. Experimental efforts have been successful in developing certain types of nanopaints exhibiting improved properties. However, multifunctional nanopaint design optimality is extremely difficult to address if not impossible solely through experiments. In addition to this, the environmental implications and societal risks associated with this growing field of nanotechnology raise several questions related to its sustainable development. This research focuses on the study of a multiscale sustainable nanocoating design which can have the application from novel function envisioning and idea refinement point of view, to knowledge discovery and design solution derivation, and further to performance testing in industrial applications. The nanocoating design is studied using computational simulations of nano- to macro- scale models and sustainability assessment study over the life-cycle. Computational simulations aim at integrating top-down, goals/means, inductive systems engineering and bottom-up, cause and effect, deductive systems engineering approaches for material development. The in-silico paint resin system is a water-dispersible acrylic polymer with hydrophilic nanoparticles incorporated into it. The nano-scale atomistic and micro-scale coarse-grained (CG) level

  11. Permeation barrier coating and plasma sterilization of PET bottles and foils

    Science.gov (United States)

    Steves, Simon; Deilmann, Michael; Bibinov, Nikita; Awakowicz, Peter

    2009-10-01

    Modern packaging materials such as polyethylene terephthalate (PET) offer various advantages over glass or metal containers. Beside this they only offer poor barrier properties against gas permeation. Therefore, the shelf-live of packaged food is reduced. Additionally, common sterilization methods like heat, hydrogen peroxide or peracetic acid may not be applicable due to reduced heat or chemical resistance of the plastic packaging material. For the plasma sterilization and permeation barrier coating of PET bottles and foils, a microwave driven low pressure plasma reactor is developed based on a modified Plasmaline antenna. The dependencies of important plasma parameters, such as gas mixture, process pressure, power and pulse conditions on oxygen permeation through packaging foil are investigated. A residual permeation as low as J = 1.0 ±0.3 cm^3m-2day-1bar-1 for 60 nm thick silicon oxide (SiOx) coated PET foils is achieved. To discuss this residual permeation, coating defects are visualized by capacitively coupled atomic oxygen plasma etching of coated substrate. A defect density of 3000 mm-2 is revealed responsible for permeation. For plasma sterilization, optimized plasma parameters based on fundamental research of plasma sterilization mechanisms permit short treatment times of a few seconds.

  12. Wettability and Aging of Polymer Substrates after Atmospheric Dielectrical Barrier Discharge Plasma on Demand Treatment

    NARCIS (Netherlands)

    R.A.F. Verkuijlen; Dr Jan Bernards; R. Aben; ir Martijn van Dongen

    2013-01-01

    Plasma treatment is a commonly used technology to modify the wetting behavior of polymer films in the production process for, e.g., printed electronics. As the effect of the plasma treatment decreases in time, the so-called "aging effect", it is important to gain knowledge on how this effect impacts

  13. Wettability and Aging of Polymer Substrates after Atmospheric Dielectrical Barrier Discharge Plasma on Demand Treatment

    NARCIS (Netherlands)

    Dongen, M.H.A. van; Verkuijlen, R.A.F.; Aben, R.; Bernards, J.P.C.

    2013-01-01

    Plasma treatment is a commonly used technology to modify the wetting behavior of polymer films in the production process for, e.g., printed electronics. As the effect of the plasma treatment decreases in time, the so-called "aging effect", it is important to gain knowledge on how this effect impacts

  14. Physico Chemical Characteristics of High Performance Polymer Modified by Low and Atmospheric Pressure Plasma1

    NARCIS (Netherlands)

    Bhatnagar, N.; Jha, S.; Bhowmik, S.; Gupta, G.; Moon, J.B.; Kim, C.G.

    2012-01-01

    In this work, the effect of low pressure plasma and atmospheric-pressure plasma treatment on surface properties and adhesion characteristics of high performance polymer, Polyether Ether Ketone (PEEK) are investigated in terms of Fourier Transform Infrared Spectroscopy (FTIR), X-ray photoelectron

  15. Deposition of hybrid organic-inorganic composite coatings using an atmospheric plasma jet system.

    Science.gov (United States)

    Dembele, Amidou; Rahman, Mahfujur; Reid, Ian; Twomey, Barry; MacElroy, J M Don; Dowling, Denis P

    2011-10-01

    The objective of this study is to investigate the influence of alcohol addition on the incorporation of metal oxide nanoparticles into nm thick siloxane coatings. Titanium oxide (TiO2) nanoparticles with diameters of 30-80 nm were incorporated into an atmospheric plasma deposited tetramethylorthosilicate (TMOS) siloxane coatin