WorldWideScience

Sample records for plasma physics questions

  1. Physical domains in plasma physics

    International Nuclear Information System (INIS)

    Liboff, R.L.

    1987-01-01

    Do the plasma in the sun's core and the electron-conduction plasma in a semiconductor behave in the same way? This question is both fundamental and practical, for plasma physics plays a role in a vast area of natural phenomena and in many engineering devices. Understanding the cosmos, or designing a computer chip or a thermonuclear fusion reactor, requires first of all a realization of equations of motion that are appropriate to the particular problem. Similar physical differences occur in engineered structures. The plasmas in most thermonuclear fusion devices are basically like the plasma in the core of the sun: weakly coupled and classical - that is, obeying Newton's laws and Maxwell's equations. The conduction electrons in a semiconductor, on the other hand, obey the laws of quantum mechanics

  2. Fusion plasma physics

    CERN Document Server

    Stacey, Weston M

    2012-01-01

    This revised and enlarged second edition of the popular textbook and reference contains comprehensive treatments of both the established foundations of magnetic fusion plasma physics and of the newly developing areas of active research. It concludes with a look ahead to fusion power reactors of the future. The well-established topics of fusion plasma physics -- basic plasma phenomena, Coulomb scattering, drifts of charged particles in magnetic and electric fields, plasma confinement by magnetic fields, kinetic and fluid collective plasma theories, plasma equilibria and flux surface geometry, plasma waves and instabilities, classical and neoclassical transport, plasma-materials interactions, radiation, etc. -- are fully developed from first principles through to the computational models employed in modern plasma physics. The new and emerging topics of fusion plasma physics research -- fluctuation-driven plasma transport and gyrokinetic/gyrofluid computational methodology, the physics of the divertor, neutral ...

  3. Laboratory space physics: Investigating the physics of space plasmas in the laboratory

    Science.gov (United States)

    Howes, Gregory G.

    2018-05-01

    Laboratory experiments provide a valuable complement to explore the fundamental physics of space plasmas without the limitations inherent to spacecraft measurements. Specifically, experiments overcome the restriction that spacecraft measurements are made at only one (or a few) points in space, enable greater control of the plasma conditions and applied perturbations, can be reproducible, and are orders of magnitude less expensive than launching spacecraft. Here, I highlight key open questions about the physics of space plasmas and identify the aspects of these problems that can potentially be tackled in laboratory experiments. Several past successes in laboratory space physics provide concrete examples of how complementary experiments can contribute to our understanding of physical processes at play in the solar corona, solar wind, planetary magnetospheres, and the outer boundary of the heliosphere. I present developments on the horizon of laboratory space physics, identifying velocity space as a key new frontier, highlighting new and enhanced experimental facilities, and showcasing anticipated developments to produce improved diagnostics and innovative analysis methods. A strategy for future laboratory space physics investigations will be outlined, with explicit connections to specific fundamental plasma phenomena of interest.

  4. Plasma physics

    CERN Document Server

    Drummond, James E

    1961-01-01

    A historic snapshot of the field of plasma physics, this fifty-year-old volume offers an edited collection of papers by pioneering experts in the field. In addition to assisting students in their understanding of the foundations of classical plasma physics, it provides a source of historic context for modern physicists. Highly successful upon its initial publication, this book was the standard text on plasma physics throughout the 1960s and 70s.Hailed by Science magazine as a ""well executed venture,"" the three-part treatment ranges from basic plasma theory to magnetohydrodynamics and microwa

  5. Contemporary plasma physics

    International Nuclear Information System (INIS)

    Sodha, M.S.; Tewari, D.P.; Subbarao, D.

    1983-01-01

    The book consists of review articles on some selected contemporary aspects of plasma physics. The selected topics present a panoramic view of contemporary plasma physics and applications to fusion, space and MHD power generation. Basic non-linear plasma theory is also covered. The book is supposed to be useful for M.S./M.Sc. students specialising in plasma physics and for those beginning research work in plasma physics. It will also serve as a valuable reference book for more advanced research workers. (M.G.B.)

  6. Dense Plasma Focus: A question in search of answers, a technology in search of applications

    International Nuclear Information System (INIS)

    Auluck, S.K.H.

    2014-01-01

    Diagnostic information accumulated over four decades of research suggests a directionality of toroidal motion for energetic ions responsible for fusion neutron production in the Dense Plasma Focus (DPF) and existence of an axial component of magnetic field even under conditions of azimuthal symmetry. This is at variance with the traditional view of Dense Plasma Focus as a purely irrotational compressive flow. The difficulty in understanding the experimental situation from a theoretical standpoint arises from polarity of the observed solenoidal state: three independent experiments confirm existence of a fixed polarity of the axial magnetic field or related azimuthal current. Since the equations governing plasma dynamics do not have a built-in direction, the fixed polarity must be related with initial conditions: the plasma dynamics must interact with an external physical vector in order to generate a solenoidal state of fixed polarity. Only four such external physical vectors can be identified: the earth's magnetic field, earth's angular momentum, direction of current flow and the direction of the plasma accelerator. How interaction of plasma dynamics with these fields can generate observed solenoidal state is a question still in search of answers; this paper outlines one possible answer. The importance of this question goes beyond scientific curiosity into technological uses of the energetic ions and the high-power-density plasma environment. However, commercial utilization of such technologies faces reliability concerns, which can be met only by first-principles integrated design of globally-optimized industrial-quality DPF hardware. Issues involved in the emergence of the Dense Plasma Focus as a technology platform for commercial applications in the not-too-distant future are discussed. (author)

  7. Plasma physics

    CERN Document Server

    Cairns, R A

    1985-01-01

    This book is intended as an introduction to plasma physics at a level suitable for advanced undergraduates or beginning postgraduate students in physics, applied mathematics or astrophysics. The main prerequisite is a knowledge of electromagnetism and of the associated mathematics of vector calculus. SI units are used throughout. There is still a tendency amongst some plasma physics researchers to· cling to C.g.S. units, but it is the author's view that universal adoption of SI units, which have been the internationally agreed standard since 1960, is to be encouraged. After a short introductory chapter, the basic properties of a plasma con­ cerning particle orbits, fluid theory, Coulomb collisions and waves are set out in Chapters 2-5, with illustrations drawn from problems in nuclear fusion research and space physics. The emphasis is on the essential physics involved and (he theoretical and mathematical approach has been kept as simple and intuitive as possible. An attempt has been made to draw attention t...

  8. Plasma physics an introduction

    CERN Document Server

    Fitzpatrick, Richard

    2014-01-01

    Plasma Physics: An Introduction is based on a series of university course lectures by a leading name in the field, and thoroughly covers the physics of the fourth state of matter. This book looks at non-relativistic, fully ionized, nondegenerate, quasi-neutral, and weakly coupled plasma. Intended for the student market, the text provides a concise and cohesive introduction to plasma physics theory, and offers a solid foundation for students wishing to take higher level courses in plasma physics.

  9. Plasma simulation studies using multilevel physics models

    International Nuclear Information System (INIS)

    Park, W.; Belova, E.V.; Fu, G.Y.

    2000-01-01

    The question of how to proceed toward ever more realistic plasma simulation studies using ever increasing computing power is addressed. The answer presented here is the M3D (Multilevel 3D) project, which has developed a code package with a hierarchy of physics levels that resolve increasingly complete subsets of phase-spaces and are thus increasingly more realistic. The rationale for the multilevel physics models is given. Each physics level is described and examples of its application are given. The existing physics levels are fluid models (3D configuration space), namely magnetohydrodynamic (MHD) and two-fluids; and hybrid models, namely gyrokinetic-energetic-particle/MHD (5D energetic particle phase-space), gyrokinetic-particle-ion/fluid-electron (5D ion phase-space), and full-kinetic-particle-ion/fluid-electron level (6D ion phase-space). Resolving electron phase-space (5D or 6D) remains a future project. Phase-space-fluid models are not used in favor of delta f particle models. A practical and accurate nonlinear fluid closure for noncollisional plasmas seems not likely in the near future

  10. Plasma simulation studies using multilevel physics models

    International Nuclear Information System (INIS)

    Park, W.; Belova, E.V.; Fu, G.Y.; Tang, X.Z.; Strauss, H.R.; Sugiyama, L.E.

    1999-01-01

    The question of how to proceed toward ever more realistic plasma simulation studies using ever increasing computing power is addressed. The answer presented here is the M3D (Multilevel 3D) project, which has developed a code package with a hierarchy of physics levels that resolve increasingly complete subsets of phase-spaces and are thus increasingly more realistic. The rationale for the multilevel physics models is given. Each physics level is described and examples of its application are given. The existing physics levels are fluid models (3D configuration space), namely magnetohydrodynamic (MHD) and two-fluids; and hybrid models, namely gyrokinetic-energetic-particle/MHD (5D energetic particle phase-space), gyrokinetic-particle-ion/fluid-electron (5D ion phase-space), and full-kinetic-particle-ion/fluid-electron level (6D ion phase-space). Resolving electron phase-space (5D or 6D) remains a future project. Phase-space-fluid models are not used in favor of δf particle models. A practical and accurate nonlinear fluid closure for noncollisional plasmas seems not likely in the near future. copyright 1999 American Institute of Physics

  11. The Plasma Archipelago: Plasma Physics in the 1960s

    Science.gov (United States)

    Weisel, Gary J.

    2017-09-01

    With the foundation of the Division of Plasma Physics of the American Physical Society in April 1959, plasma physics was presented as the general study of ionized gases. This paper investigates the degree to which plasma physics, during its first decade, established a community of interrelated specialties, one that brought together work in gaseous electronics, astrophysics, controlled thermonuclear fusion, space science, and aerospace engineering. It finds that, in some regards, the plasma community was indeed greater than the sum of its parts and that its larger identity was sometimes glimpsed in inter-specialty work and studies of fundamental plasma behaviors. Nevertheless, the plasma specialties usually worked separately for two inter-related reasons: prejudices about what constituted "basic physics," both in the general physics community and within the plasma community itself; and a compartmentalized funding structure, in which each funding agency served different missions.

  12. Plasma physics and fusion plasma electrodynamics

    CERN Document Server

    Bers, Abraham

    2016-01-01

    Plasma is a ubiquitous state of matter at high temperatures. The electrodynamics of plasmas encompasses a large number of applications, from understanding plasmas in space and the stars, to their use in processing semiconductors, and their role in controlled energy generation by nuclear fusion. This book covers collective and single particle dynamics of plasmas for fully ionized as well as partially ionized plasmas. Many aspects of plasma physics in current fusion energy generation research are addressed both in magnetic and inertial confinement plasmas. Linear and nonlinear dynamics in hydrodynamic and kinetic descriptions are offered, making both simple and complex aspects of the subject available in nearly every chapter. The approach of dividing the basic aspects of plasma physics as "linear, hydrodynamic descriptions" to be covered first because they are "easier", and postponing the "nonlinear and kinetic descriptions" for later because they are "difficult" is abandoned in this book. For teaching purpose...

  13. Applied plasma physics

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Applied Plasma Physics is a major sub-organizational unit of the MFE Program. It includes Fusion Plasma Theory and Experimental Plasma Research. The Fusion Plasma Theory group has the responsibility for developing theoretical-computational models in the general areas of plasma properties, equilibrium, stability, transport, and atomic physics. This group has responsibility for giving guidance to the mirror experimental program. There is a formal division of the group into theory and computational; however, in this report the efforts of the two areas are not separated since many projects have contributions from members of both. Under the Experimental Plasma Research Program, we are developing the intense, pulsed neutral-beam source (IPINS) for the generation of a reversed-field configuration on 2XIIB. We are also studying the feasibility of utilizing certain neutron-detection techniques as plasma diagnostics in the next generation of thermonuclear experiments

  14. Some important questions in charmonium physics

    International Nuclear Information System (INIS)

    Seth, K.

    1994-01-01

    This paper is devoted to three propositions: (1) Some of the most basic questions in heavy-quark physics remain unanswered; (2) Charmonium physics is the best place to address those questions at the required level of precision; (3) A tau-charm factory, with a commensurate state-of-the-art detector, are mandatory for doing the job. While open-charm and tau physics will certainly be done at beauty factories, charmonium physics will not. It must, therefore, form an important part of the physics program at a tau charm factory. With this as an introduction, the author then reviews the status of charmonium studies at this point, and ongoing work, with its projected weaknesses

  15. Applied plasma physics

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Applied Plasma Physics is a major sub-organizational unit of the Magnetic Fusion Energy (MFE) Program. It includes Fusion Plasma Theory and Experimental Plasma Research. The Fusion Plasma Theory group has the responsibility for developing theoretical-computational models in the general areas of plasma properties, equilibrium, stability, transport, and atomic physics. This group has responsibility for giving guidance to the mirror experimental program. There is a formal division of the group into theory and computational; however, in this report the efforts of the two areas are not separated since many projects have contributions from members of both. Under the Experimental Plasma Research Program we are developing a neutral-beam source, the intense, pulsed ion-neutral source (IPINS), for the generation of a reversed-field configuration on 2XIIB. We are also studying the feasibility of using certain neutron-detection techniques as plasma diagnostics in the next generation of thermonuclear experiments

  16. Numerical simulation in plasma physics

    International Nuclear Information System (INIS)

    Samarskii, A.A.

    1980-01-01

    Plasma physics is not only a field for development of physical theories and mathematical models but also an object of application of the computational experiment comprising analytical and numerical methods adapted for computers. The author considers only MHD plasma physics problems. Examples treated are dissipative structures in plasma; MHD model of solar dynamo; supernova explosion simulation; and plasma compression by a liner. (Auth.)

  17. Plasma physics and the 2013-2022 decadal survey in solar and space physics

    Science.gov (United States)

    Baker, Daniel N.

    2016-11-01

    The U.S. National Academies established in 2011 a steering committee to develop a comprehensive strategy for solar and space physics research. This updated and extended the first (2003) solar and space physics decadal survey. The latest decadal study implemented a 2008 Congressional directive to NASA for the fields of solar and space physics, but also addressed research in other federal agencies. The new survey broadly canvassed the fields of research to determine the current state of the discipline, identified the most important open scientific questions, and proposed the measurements and means to obtain them so as to advance the state of knowledge during the years 2013-2022. Research in this field has sought to understand: dynamical behaviour of the Sun and its heliosphere; properties of the space environments of the Earth and other solar system bodies; multiscale interaction between solar system plasmas and the interstellar medium; and energy transport throughout the solar system and its impact on the Earth and other solar system bodies. Research in solar and space plasma processes using observation, theory, laboratory studies, and numerical models has offered the prospect of understanding this interconnected system well enough to develop a predictive capability for operational support of civil and military space systems. We here describe the recommendations and strategic plans laid out in the 2013-2022 decadal survey as they relate to measurement capabilities and plasma physical research. We assess progress to date. We also identify further steps to achieve the Survey goals with an emphasis on plasma physical aspects of the program.

  18. Computations in plasma physics

    International Nuclear Information System (INIS)

    Cohen, B.I.; Killeen, J.

    1984-01-01

    A review of computer application in plasma physics is presented. Computer contribution to the investigation of magnetic and inertial confinement of a plasma and charged particle beam propagation is described. Typical utilization of computer for simulation and control of laboratory and cosmic experiments with a plasma and for data accumulation in these experiments is considered. Basic computational methods applied in plasma physics are discussed. Future trends of computer utilization in plasma reseaches are considered in terms of an increasing role of microprocessors and high-speed data plotters and the necessity of more powerful computer application

  19. Physics of laser plasma

    International Nuclear Information System (INIS)

    Rubenchik, A.; Witkowski, S.

    1991-01-01

    This book provides a comprehensive review of laser fusion plasma physics and contains the most up-to-date information on high density plasma physics and radiation transport, useful for astrophysicists and high density physicists

  20. Importance of questionnaire context for a physical activity question.

    Science.gov (United States)

    Jørgensen, M E; Sørensen, M R; Ekholm, O; Rasmussen, N K

    2013-10-01

    Adequate information about physical activity habits is essential for surveillance, implementing, and evaluating public health initiatives in this area. Previous studies have shown that question order and differences in wording result in systematic differences in people's responses to questionnaires; however, this has never been shown for physical activity questions. The aim was to study the influence of different formulations and question order on self-report physical activity in a population-based health interview survey. Four samples of each 1000 adults were drawn at random from the National Person Register. A new question about physical activity was included with minor differences in formulations in samples 1-3. Furthermore, the question in sample 2 was included in sample 4 but was placed in the end of the questionnaire. The mean time spent on moderate physical activity varied between the four samples from 57 to 100 min/day. Question order was associated with the reported number of minutes spent on moderate-intensity physical activity and with prevalence of meeting the recommendation, whereas physical inactivity was associated with the differences in formulation of the question. Questionnaire context influences the way people respond to questions about physical activity significantly and should be tested systematically in validation studies of physical activity questionnaires. © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. 15th International Congress on Plasma Physics & 13th Latin American Workshop on Plasma Physics

    Science.gov (United States)

    Soto, Leopoldo

    2014-05-01

    The International Advisory Committee of the 15th International Congress on Plasma Physics (ICPP 2010) and the International Advisory Committee of the 13th Latin American Workshop on Plasma Physics (LAWPP 2010), together agreed to carry out this combined meeting ICPP-LAWPP-2010 in Santiago de Chile, 8-13 August 2010, on occasion of the Bicentennial of Chilean Independence. The ICPP-LAWPP-2010 was organized by the Thermonuclear Plasma Department of the Chilean Nuclear Energy Commission (CCHEN) as part of the official program within the framework of the Chilean Bicentennial. The event was also a scientific and academic activity of the project ''Center for Research and Applications in Plasma Physics and Pulsed Power, P4'', supported by National Scientific and Technological Commission, CONICYT-Chile, under grant ACT-26. The International Congress on Plasma Physics was first held in Nagoya, in 1980, and followed by the Congresses: Gothenburg (1982), Lausanne (1984), Kiev (1987), New Delhi (1989), Innsbruck (1992), Foz do Iguacu (1994), Nagoya (1996), Prague (1998), Quebec City (2000), Sydney (2002), Nice (2004), Kiev (2006), and Fukuoka (2008). The purpose of the Congress is to discuss the recent progress and future views in plasma science, including fundamental plasma physics, fusion plasmas, astrophysical plasmas, and plasma applications, and so forth. The Latin American Workshop on Plasma Physics was first held in 1982 in Cambuquira, Brazil, followed by the Workshops: Medellín (1985), Santiago (1988), Buenos Aires (1990), Mexico City (1992), Foz do Iguacu (1994, also combined with ICPP), Caracas (1997), Tandil (1998), La Serena (2000), Sao Pedro (2003), Mexico City (2005), and Caracas (2007). The Latin American Workshop on Plasma Physics is a communication forum of the achievements of the plasma-physics regional community, fostering collaboration between plasma scientists within the region and elsewhere. The program of the ICPP-LAWPP-2010 included the topics

  2. Experimental plasma physics

    International Nuclear Information System (INIS)

    Dreicer, H.; Banton, M.E.; Ingraham, J.C.; Wittman, F.; Wright, B.L.

    1976-01-01

    The Experimental Plasma Physics group's main efforts continue to be directed toward the understanding of the mechanisms of electromagnetic energy absorption in a plasma, and the resultant plasma heating and energy transport. The high-frequency spectrum of plasma waves parametrically excited by the microwave signal at high powers has been measured. The absorption of a small test microwave signal in a plasma made parametrically unstable by a separate high-power driver microwave signal was also studied

  3. Plasma Physics. Lectures Presented at the Seminar on Plasma Physics

    International Nuclear Information System (INIS)

    1965-01-01

    The International Seminar on Plasma Physics held in Trieste during 5- 1 October 1964 was the first major activity of the International Atomic Energy Agency's new International Centre for Theoretical Physics. In bringing together plasma physicists belonging to three distinct schools, the American, West European and the Soviet schools, the Seminar provided a unique opportunity for extended contacts between physicists in this field. It is hoped that these Proceedings will be of permanent value in the literature of the subject

  4. Plasma Physics. Lectures Presented at the Seminar on Plasma Physics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1965-06-15

    The International Seminar on Plasma Physics held in Trieste during 5- 1 October 1964 was the first major activity of the International Atomic Energy Agency's new International Centre for Theoretical Physics. In bringing together plasma physicists belonging to three distinct schools, the American, West European and the Soviet schools, the Seminar provided a unique opportunity for extended contacts between physicists in this field. It is hoped that these Proceedings will be of permanent value in the literature of the subject.

  5. Plasma Physics Applied (New Book)

    Science.gov (United States)

    Grabbe, Crockett

    2007-03-01

    0.5cm Plasma physics applications are one of the most rapidly growing fields in engineering & applied science today. The last decade alone has seen the rapid emergence of new applications such as dusty plasmas in the semiconductor and microchip industries, and plasma TVs. In addition, this last decade saw the achievement of the 50-year Lawson breakeven condition for fusion. With new discoveries in space plasma physics and applications to spacecraft for worldwide communication and space weather, as well as new applications being discovered, this diversity is always expanding. The new book Plasma Physics Applied reviews developments in several of these areas. Chapter 1 reviews the content and its authors, and is followed by a more comprehensive review of plasma physics applications in general in Chapter 2. Plasma applications in combustion and environmental uses are presented in Chapter 3. Lightning effects in planetary magnetospheres and potential application are described in Chapter 4. The area of dusty plasmas in both industrial and space plasmas and their applications are reviewed in Chapter 5. The particular area of Coulomb clusters in dusty plasmas is presented in Chapter 6. The variety of approaches to plasma confinement in magnetic devices for fusion are laid out in Chapter 7. Finally, an overview of plasma accelerator developments and their applications are presented in Chapter 8.

  6. Plasma physics and engineering

    CERN Document Server

    Fridman, Alexander

    2011-01-01

    Part I: Fundamentals of Plasma Physics and Plasma ChemistryPlasma in Nature, in the Laboratory, and in IndustryOccurrence of Plasma: Natural and Man MadeGas DischargesPlasma Applications, Plasmas in IndustryPlasma Applications for Environmental ControlPlasma Applications in Energy ConversionPlasma Application for Material ProcessingBreakthrough Plasma Applications in Modern TechnologyElementary Processes of Charged Species in PlasmaElementary Charged Particles in Plasma and Their Elastic and Inelastic CollisionsIonization ProcessesMechanisms of Electron Losses: The Electron-Ion RecombinationEl

  7. Hamiltonian reductions in plasma physics about intrinsic gyrokinetic

    International Nuclear Information System (INIS)

    Guillebon de Resnes, L. de

    2013-01-01

    Gyrokinetic is a key model for plasma micro-turbulence, commonly used for fusion plasmas or small-scale astrophysical turbulence, for instance. The model still suffers from several issues, which could imply to reconsider the equations. This thesis dissertation clarifies three of them. First, one of the coordinates caused questions, both from a physical and from a mathematical point of view; a suitable constrained coordinate is introduced, which removes the issues from the theory and explains the intrinsic structures underlying the questions. Second, the perturbative coordinate transformation for gyrokinetic was computed only at lowest orders; explicit induction relations are obtained to go arbitrary order in the expansion. Third, the introduction of the coupling between the plasma and the electromagnetic field was not completely satisfactory; using the Hamiltonian structure of the dynamics, it is implemented in a more appropriate way, with strong consequences on the gyrokinetic equations, especially about their Hamiltonian structure. In order to address these three main points, several other results are obtained, for instance about the origin of the guiding-center adiabatic invariant, about a very efficient minimal guiding center transformation, or about an intermediate Hamiltonian model between Vlasov-Maxwell and gyrokinetic, where the characteristics include both the slow guiding-center dynamics and the fast gyro-angle dynamics. In addition, various reduction methods are used, introduced or developed, e.g. a Lie-transform of the equations of motion, a lifting method to transfer particle reductions to the corresponding Hamiltonian field dynamics, or a truncation method related both to Dirac's theory of constraints and to a projection onto a Lie-subalgebra. Besides gyrokinetic, this is useful to clarify other Hamiltonian reductions in plasma physics, for instance for incompressible or electrostatic dynamics, for magnetohydrodynamics, or for fluid closures including

  8. Plasma physics and nuclear fusion research

    CERN Document Server

    Gill, Richard D

    1981-01-01

    Plasma Physics and Nuclear Fusion Research covers the theoretical and experimental aspects of plasma physics and nuclear fusion. The book starts by providing an overview and survey of plasma physics; the theory of the electrodynamics of deformable media and magnetohydrodynamics; and the particle orbit theory. The text also describes the plasma waves; the kinetic theory; the transport theory; and the MHD stability theory. Advanced theories such as microinstabilities, plasma turbulence, anomalous transport theory, and nonlinear laser plasma interaction theory are also considered. The book furthe

  9. Princeton Plasma Physics Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This report discusses the following topics: principal parameters achieved in experimental devices fiscal year 1990; tokamak fusion test reactor; compact ignition tokamak; Princeton beta experiment- modification; current drive experiment-upgrade; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma processing: deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for fiscal year 1990; graduate education; plasma physics; graduate education: plasma science and technology; science education program; and Princeton Plasma Physics Laboratory reports fiscal year 1990.

  10. Princeton Plasma Physics Laboratory

    International Nuclear Information System (INIS)

    1990-01-01

    This report discusses the following topics: principal parameters achieved in experimental devices fiscal year 1990; tokamak fusion test reactor; compact ignition tokamak; Princeton beta experiment- modification; current drive experiment-upgrade; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma processing: deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for fiscal year 1990; graduate education; plasma physics; graduate education: plasma science and technology; science education program; and Princeton Plasma Physics Laboratory reports fiscal year 1990

  11. Questioning the Universe concepts in physics

    CERN Document Server

    Sadoff, Ahren

    2008-01-01

    UNITS AND POWERS OF TEN PHYSICS AND ITS METHODOLOGY  What Is Physics? Methodology The First Scientist Why Do You Believe? Back to the Questions How Do We Answer theQuestions? The Need to BeQuantitative Theories Models AestheticJudgments  MOTION Relating the Variables of Motion Graphs of One-Dimensional Motion Constant Speed Constant Acceleration Two-Dimensional Motion FORCES The Fundamental Forces A Specific Force Law: Newtonian Gravity Weight How Does Force Affect Motion? Newton's SecondLaw Newton, the Apple, and the Moon Combining Two Laws The Mass of the Earth Newton's Firs

  12. Importance of questionnaire context for a physical activity question

    DEFF Research Database (Denmark)

    Jørgensen, M. E.; Sørensen, Mette Rosenlund; Ekholm, O.

    2013-01-01

    ; however, this has never been shown for physical activity questions. The aim was to study the influence of different formulations and question order on self-report physical activity in a population-based health interview survey. Four samples of each 1000 adults were drawn at random from the National Person......Adequate information about physical activity habits is essential for surveillance, implementing, and evaluating public health initiatives in this area. Previous studies have shown that question order and differences in wording result in systematic differences in people's responses to questionnaires...... Register. A new question about physical activity was included with minor differences in formulations in samples 1–3. Furthermore, the question in sample 2 was included in sample 4 but was placed in the end of the questionnaire. The mean time spent on moderate physical activity varied between the four...

  13. EDITORIAL 37th European Physical Society Conference on Plasma Physics 37th European Physical Society Conference on Plasma Physics

    Science.gov (United States)

    Mendonça, Tito; Hidalgo, Carlos

    2010-12-01

    Introduction We are very pleased to present this special issue of Plasma Physics and Controlled Fusion dedicated to another annual EPS Plasma Physics Division Conference. It contains the invited papers of the 37th Conference, which was held at the Helix Arts Centre of the Dublin City University Campus, in Dublin, Ireland, from 21 to 25 June 2010. It was locally organized by a team drawn from different Irish institutions, led by Dublin City University and Queen's University Belfast. This team was coordinated by Professor Miles Turner (DCU), with the help of Dr Deborah O'Connell (QUB) as Scientific Secretary, and Ms Samantha Fahy (DCU) as Submissions Secretary. It attracted a large number of delegates (nearly 750), coming from 37 countries. Our Irish hosts provided an excellent atmosphere for the conference and social programme, very helpful for promoting personal links between conference participants. The Conference hosted three satellite meetings, and two special evening sessions. The satellite meetings were the Third Workshop on Plasma for Environmental Issues, the International Workshop on the Role of Arcing and Hot Spots in Magnetic Fusion Devices, and the Workshop on Electric Fields, Turbulence and Self-Organization in Magnetic Plasmas. The aim of this annual EPS Conference is to bring together the different communities of plasma physicists, in order to stimulate cross-collaboration and to promote in an integrated way this area of science. As in previous Conferences, we tried to attract the more relevant researchers and to present the latest developments in plasma physics and related areas. The Programme Committee was divided into four sub-committees, representing the main areas of plasma science. These four areas were magnetic confinement fusion (MCF), still the dominant area of this Conference with the largest number of participants, beam plasma and inertial fusion (BPIF), low temperature plasmas (LTP), which attracted a significant and growing number of

  14. Nonlinear Physics of Plasmas

    CERN Document Server

    Kono, Mitsuo

    2010-01-01

    A nonlinearity is one of the most important notions in modern physics. A plasma is rich in nonlinearities and provides a variety of behaviors inherent to instabilities, coherent wave structures and turbulence. The book covers the basic concepts and mathematical methods, necessary to comprehend nonlinear problems widely encountered in contemporary plasmas, but also in other fields of physics and current research on self-organized structures and magnetized plasma turbulence. The analyses make use of strongly nonlinear models solved by analytical techniques backed by extensive simulations and available experiments. The text is written for senior undergraduates, graduate students, lecturers and researchers in laboratory, space and fusion plasmas.

  15. Fundamentals of Plasma Physics

    International Nuclear Information System (INIS)

    Cargill, P J

    2007-01-01

    The widespread importance of plasmas in many areas of contemporary physics makes good textbooks in the field that are both introductory and comprehensive invaluable. This new book by Paul Bellen from CalTech by and large meets these goals. It covers the traditional textbook topics such as particle orbits, the derivation of the MHD equations from Vlasov theory, cold and warm plasma waves, Landau damping, as well as in the later chapters less common subjects such as magnetic helicity, nonlinear processes and dusty plasmas. The book is clearly written, neatly presented, and each chapter has a number of exercises or problems at their end. The author has also thankfully steered clear of the pitfall of filling the book with his own research results. The preface notes that the book is designed to provide an introduction to plasma physics for final year undergraduate and post-graduate students. However, it is difficult to see many physics undergraduates now at UK universities getting to grips with much of the content since their mathematics is not of a high enough standard. Students in Applied Mathematics departments would certainly fare better. An additional problem for the beginner is that some of the chapters do not lead the reader gently into a subject, but begin with quite advanced concepts. Being a multi-disciplinary subject, beginners tend to find plasma physics quite hard enough even when done simply. For postgraduate students these criticisms fade away and this book provides an excellent introduction. More senior researchers should also enjoy the book, especially Chapters 11-17 where more advanced topics are discussed. I found myself continually comparing the book with my favourite text for many years, 'The Physics of Plasmas' by T J M Boyd and J J Sanderson, reissued by Cambridge University Press in 2003. Researchers would want both books on their shelves, both for the different ways basic plasma physics is covered, and the diversity of more advanced topics. For

  16. Plasma physics

    International Nuclear Information System (INIS)

    1979-01-01

    This report contains the papers delivered at the AEB - Natal University summer school on plasma physics held in Durban during January 1979. The following topics were discussed: Tokamak devices; MHD stability; trapped particles in tori; Tokamak results and experiments; operating regime of the AEB Tokamak; Tokamak equilibrium; high beta Tokamak equilibria; ideal Tokamak stability; resistive MHD instabilities; Tokamak diagnostics; Tokamak control and data acquisition; feedback control of Tokamaks; heating and refuelling; neutral beam injection; radio frequency heating; nonlinear drift wave induced plasma transport; toroidal plasma boundary layers; microinstabilities and injected beams and quasilinear theory of the ion acoustic instability

  17. High-temperature plasma physics

    International Nuclear Information System (INIS)

    Furth, H.P.

    1988-03-01

    Both magnetic and inertial confinement research are entering the plasma parameter range of fusion reactor interest. This paper reviews the individual and common technical problems of these two approaches to the generation of thermonuclear plasmas, and describes some related applications of high-temperature plasma physics

  18. International conference on plasma physics

    International Nuclear Information System (INIS)

    Silin, V.P.; Sitenko, A.G.

    1985-01-01

    A brief report on the 6th International conference on plasma physics and on the 6th International Congress on plasma waves and plasma instabilities, which have taken place in summer 1984 in Losanne, is presented. Main items of the conference are enlightened, such as the general theory of a plasma, laboratory plasma, thermonuclear plasma, cosmic plasma and astrophysics

  19. Plasma Physics An Introduction to Laboratory, Space, and Fusion Plasmas

    CERN Document Server

    Piel, Alexander

    2010-01-01

    Plasma Physics gives a comprehensive introduction to the basic processes in plasmas and demonstrates that the same fundamental concepts describe cold gas-discharge plasmas, space plasmas, and hot fusion plasmas. Starting from particle drifts in magnetic fields, the principles of magnetic confinement fusion are explained and compared with laser fusion. Collective processes are discussed in terms of plasma waves and instabilities. The concepts of plasma description by magnetohydrodynamics, kinetic theory, and particle simulation are stepwise introduced. Space charge effects in sheath regions, double layers and plasma diodes are given the necessary attention. The new fundamental mechanisms of dusty plasmas are explored and integrated into the framework of conventional plasmas. The book concludes with a brief introduction to plasma discharges. Written by an internationally renowned researcher in experimental plasma physics, the text keeps the mathematical apparatus simple and emphasizes the underlying concepts. T...

  20. Edge plasma physical investigations of tokamak plasmas in CRIP

    International Nuclear Information System (INIS)

    Bakos, J.; Ignacz, P.; Koltai, L.; Paszti, F.; Petravich, G.; Szigeti, J.; Zoletnik, S.

    1988-01-01

    The results of the measurements performed in the field of thermonuclear high temperature plasma physics in CRIP (Hungary) are summarized. In the field of the edge plasma physics solid probes were used to test the external zone of plasma edges, and atom beams and balls were used to investigate both the external and internal zones. The plasma density distribution was measured by laser blow-off technics, using Na atoms, which are evaporated by laser pulses. The excitation of Na atom ball by tokamak plasma gives information on the status of the plasma edge. The toroidal asymmetry of particle transport in tokamak plasma was measured by erosion probes. The evaporated and transported impurities were collected on an other part of the plasma edge and were analyzed by SIMS and Rutherford backscattering. The interactions in plasma near the limiter were investigated by a special limiter with implemented probes. Recycling and charge exchange processes were measured. Disruption phenomena of tokamak plasma were analyzed and a special kind of disruptions, 'soft disruptions' and the related preliminary perturbations were discovered. (D.Gy.) 10 figs

  1. Physics through the 1990s: Plasmas and fluids

    International Nuclear Information System (INIS)

    1986-01-01

    This survey of plasma physics and fluid physics briefly describes present activities and recent major accomplishments. It also identifies research areas that are likely to lead to advances during the next decade. Plasma physics is divided into three major areas: general plasma physics, fusion plasma confinement and heating, and space and astrophysical plasmas. Fluid physics is treated as one topic, although it is an extremely diverse research field ranging from biological fluid dynamics to ship and aircraft performance to geological fluid dynamics. Subpanels, chosen for their technical expertise and scientific breadth, reviewed each of the four areas. The entire survey was coordinated and supervised by an Executive Committee, which is also responsible for the Executive Summary of this volume. Wherever possible, input from recent Advisory Committees was used, e.g., from the Magnetic Fusion Advisory Committee, the Space Science Board, and the Astronomy Survey Committee. This volume is organized as follows: An Introduction and Executive Summary that outlines (1) major findings and recommendations; (2) significant research accomplishments during the past decade and likely areas of future research emphasis; and (3) a brief summary of present funding levels, manpower resources, and institutional involvement; and the subpanel reports constitute Fluid Physics, General Plasma Physics, Fusion Plasma Confinement and Heating, and Space and Astrophysical Plasmas. An important conclusion of this survey is that both plasma physics and fluid physics are scientifically and intellectually well developed, and both ares are broad subdisciplines of physics. We therefore recommend that future physics surveys have separate volumes on the physics of plasmas and the physics of fluids

  2. Vol. 6: Plasma Physics

    International Nuclear Information System (INIS)

    Sitenko, A.

    1993-01-01

    Problems of modern physics and the situation with physical research in Ukraine are considered. Programme of the conference includes scientific and general problems. Its proceeding are published in 6 volumes. The papers presented in this volume refer to plasma physics

  3. Physical content of preparation-question structures and Brouwer-Zadeh lattices

    Science.gov (United States)

    Cattaneo, Gianpiero; Nisticó, Giuseppe

    1992-10-01

    We give a criterion to compare the physical content of different mathematical structures derived from a preparation-question structure. Then this criterion is used in order to compare the physical content of the (Jauch-Piron's) property lattice with the physical content of the poset of testable properties. We prove that for complete preparation-question structures these two structures carry the same physical content; moreover the set of testable properties has the algebraic structure of the Brouwer-Zadeh lattice. For more general preparation-question structures the physical content of the poset of testable property can be larger than that of the property lattice. Physically relevant examples of the possible cases are given.

  4. Twentyseventh European physical society conference on controlled fusion and plasma physics

    International Nuclear Information System (INIS)

    Igitkhanov, Y.

    2000-01-01

    The twentyseventh European physical society conference on controlled fusion and plasma physics was held in Budapest, 12-16 June 2000. About 10 invited papers were presented, covering a wide range of problems in plasma physics, including confinement and transport issues in fusion devices, astrophysics and industrial application of plasmas. More than 100 papers were presented on plasma theory and experiments from tokamaks and stellarators. Some of the ITER-relevant issues covered are described in this newsletter

  5. High-Latitude Space Plasma Physics

    International Nuclear Information System (INIS)

    Hultqvist, B.; Hagfors, T.

    1983-01-01

    This book constitutes the proceedings of the Nobel Symposium No. 54 on High Latitude Magnetospheric/Ionospheric Plasma Physics. The main purpose of the symposium was to prepare for the European research effort in space plasma physics in the mid-1980's, in which two major constituents are the European Incoherent Scatter Association (EISCAT) facilities and the Swedish satellite Viking. The physics of the high-latitude ionosphere and how this part of near space is affected by the properties of the solar wind and the interplanetary magnetic field are explored. A detailed discussion is provided on high-latitude magnetospheric physics at altitudes of 1-2 earth radii, the main focus of the Viking project. Specific topics considered include the role of the auroral ionosphere in magnetospheric substorms, the low altitude cleft, ionospheric modification and stimulated emissions, plasma physics on auroral field lines, solar wind-magnetosphere energy coupling, cold plasma distribution above a few thousand kilometers at high latitudes, hot electrons in and above the auroral ionosphere, the correlation of auroral kilometric radiation with visual auroras and with Birkeland currents, electrostatic waves in the topside ionosphere, solitary waves and double layers, and an Alfven wave model of auroral arcs

  6. Computational Methods in Plasma Physics

    CERN Document Server

    Jardin, Stephen

    2010-01-01

    Assuming no prior knowledge of plasma physics or numerical methods, Computational Methods in Plasma Physics covers the computational mathematics and techniques needed to simulate magnetically confined plasmas in modern magnetic fusion experiments and future magnetic fusion reactors. Largely self-contained, the text presents the basic concepts necessary for the numerical solution of partial differential equations. Along with discussing numerical stability and accuracy, the author explores many of the algorithms used today in enough depth so that readers can analyze their stability, efficiency,

  7. Physical processes in hot cosmic plasmas

    International Nuclear Information System (INIS)

    Fabian, A.G.; Giovannelli, F.

    1990-01-01

    The interpretation of many high energy astrophysical phenomena relies on a detailed knowledge of radiation and transport processes in hot plasmas. The understanding of these plasma properties is one of the aims of terrestrial plasma physics. While the microscopic properties of astrophysical plasmas can hardly be determined experimentally, laboratory plasmas are more easily accessible to experimental techniques, but transient phenomena and the interaction of the plasma with boundaries often make the interpretation of measurements cumbersome. This book contains the talks given at the NATO Advanced Research Workshop on astro- and plasma-physics in Vulcano, Sicily, May 29-June 2, 1989. The book focuses on three main areas: radiation transport processes in hot (astrophysical and laboratory) plasmas; magnetic fields; their generation, reconnection and their effects on plasma transport properties; relativistic and ultra-high density plasmas

  8. The physics of non-ideal plasma

    CERN Document Server

    Fortov, Vladimir E

    2000-01-01

    This book is devoted to the physical properties of nonideal plasma which is compressed so strongly that the effects of interparticle interactions govern the plasma behavior. The interest in this plasma was generated by the development of modern technologies and facilities whose operations were based on high densities of energy. In this volume, the methods of nonideal plasma generation and diagnostics are considered. The experimental results are given and the main theoretical models of nonideal plasma state are discussed. The problems of thermodynamics, electro-physics, optics and dynamic stabi

  9. Plasma formulary for physics, astronomy, and technology

    CERN Document Server

    Diver, Declan

    2013-01-01

    This collection of fundamental formulae, up-to-date references and definitions in plasma physics is vital to anyone with an interest in plasmas or ionized gases, whether in physics, astronomy or engineering. Both theorists and experimentalists will find this book useful, as it incorporates the latest results and findings, with extended coverage of fusion plasma, plasma in stellar winds, reaction rates, engineering plasma and many other topics. The text is also unique in treating astrophysical plasmas, fusion plasmas, industrial plasmas and low temperature plasmas as aspects of the same discipline.

  10. Controlled fusion and plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This document presents the several speeches that took place during the 22nd European Physical Society conference on Controlled Fusion and Plasma Physics in Bournemouth, UK, between the 2nd and 7th July 1995. The talks deal with new experiments carried out on several tokamaks, particularly Tore Supra, concerning plasma confinement and fusion. Some information on specific fusion devices or tokamak devices is provided, as well as results of experiments concerning plasma instability. Separate abstracts were prepared for all the 31 papers in this volume. (TEC).

  11. Controlled fusion and plasma physics

    International Nuclear Information System (INIS)

    1995-01-01

    This document presents the several speeches that took place during the 22nd European Physical Society conference on Controlled Fusion and Plasma Physics in Bournemouth, UK, between the 2nd and 7th July 1995. The talks deal with new experiments carried out on several tokamaks, particularly Tore Supra, concerning plasma confinement and fusion. Some information on specific fusion devices or tokamak devices is provided, as well as results of experiments concerning plasma instability. Separate abstracts were prepared for all the 31 papers in this volume. (TEC)

  12. Controlled fusion and plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This document presents the several speeches that took place during the 22nd European Physical Society conference on Controlled Fusion and Plasma Physics in Bournemouth, UK, between the 2nd and 7th July 1995. The talks deal with new experiments carried out on several tokamaks, particularly Tore Supra, concerning plasma confinement and fusion. Some information on specific fusion devices or tokamak devices is provided, as well as results of experiments concerning plasma instability. Separate abstracts were prepared for all the 31 papers in this volume. (TEC).

  13. Plasma Physics at the National Science Foundation

    Science.gov (United States)

    Lukin, Vyacheslav

    2017-10-01

    The Town Meeting on Plasma Physics at the National Science Foundation will provide an opportunity for Q&A about the variety of NSF programs and solicitations relevant to a broad cross-section of the academic plasma science community, from graduating college seniors to senior leaders in the field, and from plasma astrophysics to basic physics to plasma engineering communities. We will discuss recent NSF-hosted events, research awards, and multi-agency partnerships aimed at enabling the progress of science in plasma science and engineering. Future outlook for plasma physics and broader plasma science support at NSF, with an emphasis on how you can help NSF to help the community, will be speculated upon within the uncertainty of the federal budgeting process.

  14. Plasma Physics Network Newsletter. No. 3

    International Nuclear Information System (INIS)

    1991-02-01

    This issue of the Newsletter contains a report on the First South-North International Workshop on Fusion Theory, Tipaza, Algeria, 17-20 September, 1990; a report in the issuance of the ''Buenos Aires Memorandum'' generated during the IV Latin American Workshop on Plasma Physics, Argentina, July 1990, and containing a proposal that the IFRC establish a ''Steering Committee on North-South Collaboration in Controlled Nuclear Fusion and Plasma Physics Research''; the announcement that the 14th International Conference on Plasma Physics and Controlled Nuclear Fusion will be held in Wuerzburg, Germany, September 30 - October 7, 1992; a list of IAEA technical committee meetings for 1991; an item on ITER news; an article ''Long-Term Physics R and D Planning (for ITER)'' by F. Engelmann; in the planned sequence of ''Reports on National Fusion Programmes'' contributions on the Chinese and Yugoslav programmes; finally, the titles and contacts for two other newsletters of potential interest, i.e., the AAAPT (Asian African Association for Plasma Training) Newsletter, and the IPG (International Physics Group-a sub-unit of the American Physical Society) Newsletter

  15. Physics of Space Plasma Activity

    International Nuclear Information System (INIS)

    Cramer, N F

    2007-01-01

    This book provides a timely review of our present understanding of plasma phenomena in magnetized terrestrial and solar space plasmas. The author's emphasis is on the fluid and particle modeling and interpretation of observed active processes in space plasmas, i.e. 'the physical background of large plasma eruptions in space'. It is somewhat alarming for a plasma physicist to read that an emphasis on processes in spatially inhomogeneous plasmas means that the work '... excludes a considerable fraction of the available methods in space plasma physics, such as the theory of waves, instabilities and wave particle interactions on a homogeneous background', particularly in light of the fact that much of our knowledge of these plasmas is derived from observations of such waves. However, it is clear on reading the book that such a restriction is not a disadvantage, but allows the author to concentrate on the main theme of the book, namely the use of fluid and particle pictures to model the equilibrium and active states of space plasmas. There are many other books which cover the wave aspects of space plasmas, and would complement this book. The book's coverage is based on the extensive and profound research of the author and his colleagues in the area of fluid and particle modeling of space plasma structures. After an introduction to the physical setting of active plasmas, and a necessarily concise, but effective, discussion of the fluid and particle models to be used, the steady states of the magnetized plasmas of interest are treated, including the magnetosphere, solar plasmas and current sheets. Next the dynamics of unstable states is covered, including MHD and tearing instabilities, and nonlinear aspects, with a detailed discussion of magnetic reconnection. Finally, the models are applied to magnetospheric and solar observations. The book is attractively written and produced, and this reviewer managed to find a minimum number of errors. A particularly attractive

  16. The EPFL Plasma Physics Research Centre

    International Nuclear Information System (INIS)

    2001-01-01

    The Plasma Physics Research Centre (CRPP) is a non-departmental unit of the EPFL, and currently employs about 130 people, about 105 on the EPFL site and the rest at the Paul Scherrer Institute, PSI, in Villigen, Switzerland. The CRPP is a National Competence Centre in the field of Plasma Physics. In addition to plasma physics teaching, its missions are primarily the pursuit of scientific research in the field of controlled fusion within the framework of the EURATOM-Swiss Confederation Association and the development of its expertise as well as technology transfer in the field of materials research. As the body responsible for all scientific work on controlled fusion in Switzerland, the CRPP plays a national role of international significance. This document of 6 pages presents the explanation of the Plasma Physics Research Centre' activities (CRPP). (author)

  17. A plasma formulary for physics, technology, and astrophysics

    CERN Document Server

    Diver, Declan

    2011-01-01

    Plasma physics has matured rapidly as a discipline, and now touches on many different research areas, including manufacturing processes. This collection of fundamental formulae and definitions in plasma physics is vital to anyone with an interest in plasmas or ionized gases, whether in physics, astronomy or engineering.Both theorists and experimentalists will find this book useful, as it incorporates the latest results and findings.The text treats astrophysical plasmas, fusion plasmas, industrial plasmas and low temperature plasmas as aspects of the same discipline - a unique approach made pos

  18. Physics of plasma-wall interactions in controlled fusion

    International Nuclear Information System (INIS)

    Post, D.E.; Behrisch, R.

    1984-01-01

    In the areas of plasma physics, atomic physics, surface physics, bulk material properties and fusion experiments and theory, the following topics are presented: the plasma sheath; plasma flow in the sheath and presheath of a scrape-off layer; probes for plasma edge diagnostics in magnetic confinement fusion devices; atomic and molecular collisions in the plasma boundary; physical sputtering of solids at ion bombardment; chemical sputtering and radiation enhanced sublimation of carbon; ion backscattering from solid surfaces; implantation, retention and release of hydrogen isotopes; surface erosion by electrical arcs; electron emission from solid surfaces;l properties of materials; plasma transport near material boundaries; plasma models for impurity control experiments; neutral particle transport; particle confinement and control in existing tokamaks; limiters and divertor plates; advanced limiters; divertor tokamak experiments; plasma wall interactions in heated plasmas; plasma-wall interactions in tandem mirror machines; and impurity control systems for reactor experiments

  19. Plasma Physics Network Newsletter, no. 5

    Science.gov (United States)

    1992-08-01

    The fifth Plasma Physics Network Newsletter (IAEA, Vienna, Aug. 1992) includes the following topics: (1) the availability of a list of the members of the Third World Plasma Research Network (TWPRN); (2) the announcement of the fourteenth IAEA International Conference on Plasma Physics and Controlled Nuclear Fusion Research to be held in Wuerzburg, Germany, from 30 Sep. to 7 Oct. 1992; (3) the announcement of a Technical Committee Meeting on research using small tokamaks, organized by the IAEA as a satellite meeting to the aforementioned fusion conference; (4) IAEA Fellowships and Scientific Visits for the use of workers in developing member states, and for which plasma researchers are encouraged to apply through Dr. D. Banner, Head, Physics Section, IAEA, P.O. Box 100, A-1400 Vienna, Austria; (5) the initiation in 1993 of a new Coordinated Research Programme (CRP) on 'Development of Software for Numerical Simulation and Data Processing in Fusion Energy Research', as well as a proposed CRP on 'Fusion Research in Developing Countries using Middle- and Small-Scale Plasma Devices'; (6) support from the International Centre for Theoretical Physics (ICTP) for meetings held in Third World countries; (7) a report by W. Usada on Fusion Research in Indonesia; (8) News on ITER; (9) the Technical Committee Meeting planned 8-12 Sep. 1992, Canada, on Tokamak Plasma Biasing; (10) software made available for the study of tokamak transport; (11) the electronic mail address of the TWPRN; (12) the FAX, e-mail, and postal address for contributions to this plasma physics network newsletter.

  20. Plasma physics network newsletter. No. 5

    International Nuclear Information System (INIS)

    1992-08-01

    The fifth Plasma Physics Network Newsletter (IAEA, Vienna, August 1992) includes the following topics: (i) the availability of a list of the members of the Third World Plasma Research Network (TWPRN); (ii) the announcement of the fourteenth IAEA International Conference on Plasma Physics and Controlled Nuclear Fusion Research to be held in Wuerzburg, Germany, from September 30 to October 7, 1992; (iii) the announcement of a Technical Committee Meeting on research using small tokamaks, organized by the IAEA as a satellite meeting to the aforementioned fusion conference; (iv) IAEA Fellowships and Scientific Visits for the use of workers in developing member states, and for which plasma researchers are encouraged to apply through Dr. D. Banner, Head, Physics Section, IAEA, P.O. Box 100, A-1400 Vienna, Austria; (v) the initiation in 1993 of a new Coordinated Research Programme (CRP) on ''Development of Software for Numerical Simulation and Data Processing in Fusion Energy Research'', as well as a proposed CRP on ''Fusion Research in Developing Countries using Middle- and Small-Scale Plasma Devices''; (vi) support from the International Centre for Theoretical Physics (ICTP) for meetings held in Third World countries; (vii) a report by W. Usada on Fusion Research in Indonesia; (viii) News on ITER; (ix) the Technical Committee Meeting planned September 8-12, 1992, Canada, on Tokamak Plasma Biasing; (x) software made available for the study of tokamak transport; (xi) the electronic mail address of the TWPRN; (xii) and the FAX, e-mail and postal address for contributions to this plasma physics network newsletter (FAX: (43-1)-234564)

  1. PREFACE: 31st European Physical Society Conference on Plasma Physics

    Science.gov (United States)

    Dendy, Richard

    2004-12-01

    This special issue of Plasma Physics and Controlled Fusion comprises refereed papers contributed by invited speakers at the 31st European Physical Society Conference on Plasma Physics. The conference was jointly hosted by the Rutherford Appleton Laboratory, by the EURATOM/UKAEA Fusion Association and by Imperial College London, where it took place from 28 June to 2 July 2004. The overall agenda for this conference was set by the Board of the Plasma Physics Division of the European Physical Society, chaired by Friedrich Wagner (MPIPP, Garching) and his successor Jo Lister (CRPP, Lausanne). It built on developments in recent years, by further increasing the scientific diversity of the conference programme, whilst maintaining its depth and quality. A correspondingly diverse Programme Committee was set up, whose members are listed below. The final task of the Programme Committee has been the preparation of this special issue. In carrying out this work, as in preparing the scientific programme of the conference, the Programme Committee formed specialist subcommittees representing the different fields of plasma science. The chairmen of these subcommittees, in particular, accepted a very heavy workload on behalf of their respective research communities. It is a great pleasure to take this opportunity to thank: Emilia R Solano (CIEMAT, Madrid), magnetic confinement fusion; Jürgen Meyer-ter-Vehn (MPQ, Garching), laser-plasma interaction and beam plasma physics; and Jean-Luc Dorier (CRPP, Lausanne), dusty plasmas. The relatively few papers in astrophysical and basic plasma physics were co-ordinated by a small subcommittee which I led. Together with Peter Norreys (RAL, Chilton), we five constitute the editorial team for this special issue. The extensive refereeing load, compressed into a short time interval, was borne by the Programme Committee members and by many other experts, to whom this special issue owes much. We are also grateful to the Local Organizing Committee

  2. Do colors exist? and other profound physics questions

    CERN Document Server

    Cottrell, Seth Stannard

    2018-01-01

    Why do polished stones look wet? How does the Twin Paradox work? Why are orbits ellipses? How can we be sure that pi never repeats? How does a quantum computer break encryption? Discover the answers to these, and other profound physics questions! This fascinating book presents a collection of articles based on conversations and correspondences between the author and complete strangers about physics and math. The author, a researcher in mathematical physics, responds to dozens of questions posed by inquiring minds from all over the world, ranging from the everyday to the profound. Rather than unnecessarily complex explanations mired in mysterious terminology and symbols, the reader is presented with the reasoning, experiments, and mathematics in a casual, conversational, and often comical style. Neither over-simplified nor over-technical, the lucid and entertaining writing will guide the reader from the each innocent question to a better understanding of the weird and beautiful universe around us. Advance prai...

  3. Introduction to Plasma Physics: With Space and Laboratory Applications

    International Nuclear Information System (INIS)

    Browning, P K

    2005-01-01

    A new textbook on plasma physics must be very welcome, as this will encourage the teaching of courses on the subject. This book is written by two experts in their fields, and is aimed at advanced undergraduate and postgraduate courses. There are of course many other plasma physics textbooks available. The niche which this particular book fills is really defined by its subtitle: that is, 'with space and laboratory applications'. This differs from most other books which tend to emphasise either space or fusion applications (but not both) or to concentrate only on general theory. Essentially, the emphasis here is on fundamental plasma physics theory, but applications are given from time to time. For example, after developing Alfven wave theory, observations of Alfven waves in the solar wind and in the Jovian magnetosphere are presented; whilst ion acoustic cylcotron waves are illustrated by data from a laboratory Q machine. It is fair to say that examples from space seem to predominate. Nevertheless, the approach of including a broad range of applications is very good from an educational point of view, and this should help to train a generation of students with a grasp of fundamental plasma physics who can work in a variety of research fields. The subject coverage of the book is fairly conventional and there are no great surprises. It begins, inevitably, with a discussion of plasma parameters (Debye length etc) and of single particle motions. Both kinetic theory and magnetohydrodynamics are introduced. Waves are quite extensively discussed in several chapters, including both cold and hot plasmas, magnetised and unmagnetised. Nonlinear effects - a large subject! - are briefly discussed. A final chapter deals with collisions in fully ionised plasmas. The choice of contents of a textbook is always something of a matter of personal choice. It is easy to complain about what has been left out, and everyone has their own favourite topics. With that caveat, I would question

  4. EDITORIAL: Invited papers from the 15th International Congress on Plasma Physics combined with the 13th Latin American Workshop on Plasma Physics Invited papers from the 15th International Congress on Plasma Physics combined with the 13th Latin American Workshop on Plasma Physics

    Science.gov (United States)

    Soto, Leopoldo

    2011-07-01

    The International Advisory Committee of the 15th International Congress on Plasma Physics (ICPP 2010) and the International Advisory Committee of the 13th Latin American Workshop on Plasma Physics (LAWPP 2010) both agreed to hold this combined meeting ICPP-LAWPP-2010 in Santiago de Chile, 8-13 August 2010, considering the celebration of the Bicentennial of Chilean Independence. ICPP-LAWPP-2010 was organized by the Thermonuclear Plasma Department of the Chilean Nuclear Energy Commission (CCHEN) as part of its official program, within the framework of the Chilean Bicentennial activities. This event was also a scientific and academic activity of the project `Center for Research and Applications in Plasma Physics and Pulsed Power, P4', supported by the National Scientific and Technological Commission, CONICYT-Chile, under grant ACT-26. The International Congress on Plasma Physics was first held in Nagoya in 1980, and was followed by: Gothenburg (1982), Lausanne (1984), Kiev (1987), New Delhi (1989), Innsbruck (1992), Foz do Iguacu (1994), Nagoya (1996), Prague (1998), Quebec City (2000), Sydney (2002), Nice (2004), Kiev (2006) and Fukuoka (2008). The purpose of the Congress is to discuss recent progress and outlooks in plasma science, covering fundamental plasma physics, fusion plasmas, astrophysical plasmas, plasma applications, etc. The Latin American Workshop on Plasma Physics was first held in 1982 in Cambuquira, Brazil, followed by: Medellín (1985), Santiago (1988), Buenos Aires (1990), Mexico City (1992), Foz do Iguacu (1994, also combined with ICPP), Caracas (1997), Tandil (1998), La Serena (2000), Sao Pedro (2003), Mexico City (2005) and Caracas (2007). The purpose of the Latin American Workshop on Plasma Physics is to provide a forum in which the achievements of the Latin American plasma physics communities can be displayed, as well as to foster collaboration between plasma scientists within the region and elsewhere. The Program of ICPP-LAWPP-2010 included

  5. The physics of the low-temperature plasma in Czechoslovakia

    International Nuclear Information System (INIS)

    Kracik, J.

    1985-01-01

    A survey is given of low-temperature plasma research in Czechoslovakia since 1954 and its main results are pointed out. In the first years, various processes in electric discharges and electromagnetic acceleration of plasma clusters were studied at Czechoslovak universities and in the Institute of Physics. In the study of ionization waves, Czechoslovak physicists achieved world priority. Later on, low-temperature plasma investigation began in the Institute of Plasma Physics, founded in 1959. The issues of plasma interaction with the solid state and plasma applications in plasma chemistry were studied mainly by its Department of Applied Plasma Physics. The main effort of this group, transferred recently to the Institute of Physics, is aimed at thin film production and plasma-surface interactions; similar experimental studies are also carried out at universities in Brno and Bratislava. Last but not least, arc spraying of powder materials using water-cooled plasmatrons is being developed by the Department of Plasma Technology of the Institute of Plasma Physics. (J.U.)

  6. Abstracts of the 23rd European physical society conference on controlled fusion and plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    Goutych, I F; Gresillon, D; Sitenko, A G

    1997-12-31

    This document contains the abstracts of the invited and contributed papers presented at 23 EPS conference on controlled fusion and plasma physics. The main contents are: tokamaks, stellarators; alternative magnetic confinement; plasma edge physics; plasma heating and current drive; plasma diagnostics; basic collisionless plasma physics; high intensity laser produced plasmas and inertial confinement; low-temperature plasmas.

  7. Abstracts of the 23rd European physical society conference on controlled fusion and plasma physics

    International Nuclear Information System (INIS)

    Goutych, I.F.; Gresillon, D.; Sitenko, A.G.

    1996-01-01

    This document contains the abstracts of the invited and contributed papers presented at 23 EPS conference on controlled fusion and plasma physics. The main contents are: tokamaks, stellarators; alternative magnetic confinement; plasma edge physics; plasma heating and current drive; plasma diagnostics; basic collisionless plasma physics; high intensity laser produced plasmas and inertial confinement; low-temperature plasmas

  8. Introduction to dusty plasma physics

    CERN Document Server

    Shukla, PK

    2001-01-01

    Introduction to Dusty Plasma Physics contains a detailed description of the occurrence of dusty plasmas in our Solar System, the Earth''s mesosphere, and in laboratory discharges. The book illustrates numerous mechanisms for charging dust particles and provides studies of the grain dynamics under the influence of forces that are common in dusty plasma environments.

  9. Plasma physics: innovation in energy and industrial technology

    International Nuclear Information System (INIS)

    Harris, J.H.

    2000-01-01

    Full text: Plasmas-ionised gases-are truly ubiquitous. More than 99% of the matter in the universe is in the plasma state. All of the matter that comprises the Earth, and all of the energy that powers it, has been processed through plasma fusion reactions in stars. Plasmas also play a crucial role in the Earth's atmosphere, which screens out harmful radiation, and make long distance radio propagation possible. While the study of plasma physics was originally motivated by astrophysics, the discipline has grown to address terrestrial concerns. These include lighting, welding, the switching of large electrical currents, the processing of materials such as semiconductors, and the quest to build fusion power reactors artificial stars for low-emissions generation of electricity from hydrogen isotopes. Plasma physics is fundamentally multi-disciplinary. It requires understanding not only of the complex collective behaviour of ionised gases in unusual conditions, but also knowledge of the atomic and nuclear physics that determines how plasmas are formed and maintained, and the specialised engineering and instrumentation of the mechanical and electromagnetic containers needed to confine plasmas on Earth. These characteristics make plasma physics a fertile breeding ground for imagination and innovation. This paper draws together examples of innovation stimulated by plasma physics research in the areas of energy, materials, communications, and computation

  10. International Conference on Plasma Physics ICPP 1994. Proceedings

    International Nuclear Information System (INIS)

    Sakanaka, P.H.; Tendler, M.

    1995-01-01

    These proceedings represent the papers presented at the 1994 International Conference on Plasma Physics held in Foz do Iguacu, Brazil. The scope of the conference was broad and covered all aspects of plasma physics. Some of the topics discussed include space and astrophysical plasmas,fusion plasmas, small and large Tokamak plasmas, non-Tokamak plasmas, inertial confinement fusion plasmas, plasma based neutron sources and plasma applications. There are 60 papers in these proceedings and out of these, 35 have been abstracted for the Energy Science and Technology database

  11. Fusion Plasma Physics and ITER - An Introduction (2/4)

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    The second lecture will explore some of the key physics phenomena which govern the behaviour of magnetic fusion plasmas and which have been the subject of intense research during the past 50 years: plasma confinement, magnetohydrodynamic stability and plasma-wall interactions encompass the major areas of plasma physics which must be understood to assemble an overall description of fusion plasma behaviour. In addition, as fusion plasmas approach the “burning plasma” regime, where internal heating due to fusion products dominates other forms of heating, the physics of the interaction between the α-particles produced by D-T fusion reactions and the thermal “background” plasma becomes significant. This lecture will also introduce the basic physics of fusion plasma production, plasma heating and current drive, and plasma measurements (“diagnostics”).

  12. Physics of Collisional Plasmas Introduction to High-Frequency Discharges

    CERN Document Server

    Moisan, Michel

    2012-01-01

    The Physics of Collisional Plasmas deals with the plasma physics of interest to laboratory research and industrial applications, such as lighting, fabrication of microelectronics, destruction of greenhouse gases. Its emphasis is on explaining the physical mechanisms, rather than the detailed mathematical description and theoretical analysis. At the introductory level, it is important to convey the characteristic physical phenomena of plasmas, before addressing the ultimate formalism of kinetic theory, with its microscopic, statistical mechanics approach. To this aim, this text translates the physical phenomena into more tractable equations, using the hydrodynamic model; this considers the plasma as a fluid, in which the macroscopic physical parameters are the statistical averages of the microscopic (individual) parameters. This book is an introduction to the physics of collisional plasmas, as opposed to plasmas in space. It is intended for graduate students in physics and engineering . The first chapter intr...

  13. A survey of dusty plasma physics

    International Nuclear Information System (INIS)

    Shukla, P.K.

    2001-01-01

    Two omnipresent ingredients of the Universe are plasmas and charged dust. The interplay between these two has opened up a new and fascinating research area, that of dusty plasmas, which are ubiquitous in different parts of our solar system, namely planetary rings, circumsolar dust rings, the interplanetary medium, cometary comae and tails, as well as in interstellar molecular clouds, etc. Dusty plasmas also occur in noctilucent clouds in the arctic troposphere and mesosphere, cloud-to-ground lightening in thunderstorms containing smoke-contaminated air over the United States, in the flame of a humble candle, as well as in microelectronic processing devices, in low-temperature laboratory discharges, and in tokamaks. Dusty plasma physics has appeared as one of the most rapidly growing fields of science, besides the field of the Bose-Einstein condensate, as demonstrated by the number of published papers in scientific journals and conference proceedings. In fact, it is a truly interdisciplinary science because it has many potential applications in astrophysics (viz. in understanding the formation of dust clusters and structures, instabilities of interstellar molecular clouds and star formation, decoupling of magnetic fields from plasmas, etc.) as well as in the planetary magnetospheres of our solar system [viz. Saturn (particularly, the physics of spokes and braids in the B and F rings), Jupiter, Uranus, Neptune, and Mars] and in strongly coupled laboratory dusty plasmas. Since a dusty plasma system involves the charging and dynamics of massive charged dust grains, it can be characterized as a complex plasma system providing new physics insights. In this paper, the basic physics of dusty plasmas as well as numerous collective processes are discussed. The focus will be on theoretical and experimental observations of charging processes, waves and instabilities, associated forces, the dynamics of rotating and elongated dust grains, and some nonlinear structures (such as

  14. A survey of dusty plasma physics

    Science.gov (United States)

    Shukla, P. K.

    2001-05-01

    Two omnipresent ingredients of the Universe are plasmas and charged dust. The interplay between these two has opened up a new and fascinating research area, that of dusty plasmas, which are ubiquitous in different parts of our solar system, namely planetary rings, circumsolar dust rings, the interplanetary medium, cometary comae and tails, as well as in interstellar molecular clouds, etc. Dusty plasmas also occur in noctilucent clouds in the arctic troposphere and mesosphere, cloud-to-ground lightening in thunderstorms containing smoke-contaminated air over the United States, in the flame of a humble candle, as well as in microelectronic processing devices, in low-temperature laboratory discharges, and in tokamaks. Dusty plasma physics has appeared as one of the most rapidly growing fields of science, besides the field of the Bose-Einstein condensate, as demonstrated by the number of published papers in scientific journals and conference proceedings. In fact, it is a truly interdisciplinary science because it has many potential applications in astrophysics (viz. in understanding the formation of dust clusters and structures, instabilities of interstellar molecular clouds and star formation, decoupling of magnetic fields from plasmas, etc.) as well as in the planetary magnetospheres of our solar system [viz. Saturn (particularly, the physics of spokes and braids in the B and F rings), Jupiter, Uranus, Neptune, and Mars] and in strongly coupled laboratory dusty plasmas. Since a dusty plasma system involves the charging and dynamics of massive charged dust grains, it can be characterized as a complex plasma system providing new physics insights. In this paper, the basic physics of dusty plasmas as well as numerous collective processes are discussed. The focus will be on theoretical and experimental observations of charging processes, waves and instabilities, associated forces, the dynamics of rotating and elongated dust grains, and some nonlinear structures (such as

  15. Developments in plasma physics and controlled fusion

    International Nuclear Information System (INIS)

    Thompson, W.B.

    1980-01-01

    Some developments in plasma physics over the past twenty years are considered from the theoretical physics standpoint under the headings; oscillations, waves and instabilities, plasma turbulence, basic kinetic theory, and developments in fusion. (UK)

  16. BOOK REVIEW: Fundamentals of Plasma Physics

    Science.gov (United States)

    Cargill, P. J.

    2007-02-01

    The widespread importance of plasmas in many areas of contemporary physics makes good textbooks in the field that are both introductory and comprehensive invaluable. This new book by Paul Bellen from CalTech by and large meets these goals. It covers the traditional textbook topics such as particle orbits, the derivation of the MHD equations from Vlasov theory, cold and warm plasma waves, Landau damping, as well as in the later chapters less common subjects such as magnetic helicity, nonlinear processes and dusty plasmas. The book is clearly written, neatly presented, and each chapter has a number of exercises or problems at their end. The author has also thankfully steered clear of the pitfall of filling the book with his own research results. The preface notes that the book is designed to provide an introduction to plasma physics for final year undergraduate and post-graduate students. However, it is difficult to see many physics undergraduates now at UK universities getting to grips with much of the content since their mathematics is not of a high enough standard. Students in Applied Mathematics departments would certainly fare better. An additional problem for the beginner is that some of the chapters do not lead the reader gently into a subject, but begin with quite advanced concepts. Being a multi-disciplinary subject, beginners tend to find plasma physics quite hard enough even when done simply. For postgraduate students these criticisms fade away and this book provides an excellent introduction. More senior researchers should also enjoy the book, especially Chapters 11-17 where more advanced topics are discussed. I found myself continually comparing the book with my favourite text for many years, `The Physics of Plasmas' by T J M Boyd and J J Sanderson, reissued by Cambridge University Press in 2003. Researchers would want both books on their shelves, both for the different ways basic plasma physics is covered, and the diversity of more advanced topics. For

  17. Basic physics of colloidal plasmas

    Indian Academy of Sciences (India)

    Plasma Physics Division, Institute of Advanced Study in Science and Technology, Khanapara, ..... tic wave) to form a random collection of the nonlinear wave grains (like ... [8] M S Sodha and S Guha, in Advances in plasma phyiscs edited by A ...

  18. Fusion programs in Applied Plasma Physics

    International Nuclear Information System (INIS)

    1992-07-01

    The Applied Plasma Physics (APP) program at General Atomics (GA) described here includes four major elements: (a) Applied Plasma Physics Theory Program, (b) Alpha Particle Diagnostic, (c) Edge and Current Density Diagnostic, and (d) Fusion User Service Center (USC). The objective of the APP theoretical plasma physics research at GA is to support the DIII-D and other tokamak experiments and to significantly advance our ability to design a commercially-attractive fusion reactor. We categorize our efforts in three areas: magnetohydrodynamic (MHD) equilibria and stability; plasma transport with emphasis on H-mode, divertor, and boundary physics; and radio frequency (rf). The objective of the APP alpha particle diagnostic is to develop diagnostics of fast confined alpha particles using the interactions with the ablation cloud surrounding injected pellets and to develop diagnostic systems for reacting and ignited plasmas. The objective of the APP edge and current density diagnostic is to first develop a lithium beam diagnostic system for edge fluctuation studies on the Texas Experimental Tokamak (TEXT). The objective of the Fusion USC is to continue to provide maintenance and programming support to computer users in the GA fusion community. The detailed progress of each separate program covered in this report period is described in the following sections

  19. Computational plasma physics

    International Nuclear Information System (INIS)

    Killeen, J.

    1975-08-01

    The behavior of a plasma confined by a magnetic field is simulated by a variety of numerical models. Some models used on a short time scale give detailed knowledge of the plasma on a microscopic scale, while other models used on much longer time scales compute macroscopic properties of the plasma dynamics. In the last two years there has been a substantial increase in the numerical modelling of fusion devices. The status of MHD, transport, equilibrium, stability, Vlasov, Fokker-Planck, and Hybrid codes is reviewed. These codes have already been essential in the design and understanding of low and high beta toroidal experiments and mirror systems. The design of the next generation of fusion experiments and fusion test reactors will require continual development of these numerical models in order to include the best available plasma physics description and also to increase the geometric complexity of the model. (auth)

  20. Plasma Physics Network Newsletter. No. 1

    International Nuclear Information System (INIS)

    1989-08-01

    This is the first issue of a quarterly newsletter published by the International Atomic Energy Agency in order to provide news of potential interest of fusion scientists in developing countries. According to the foreword to this first issue, the purpose of the newsletter, as well as the organization called ''Third World Network'', is to ''start the process of unifying the developing country fusion community into some type of cohesive entity and to bring the efforts of the developing countries in the plasma physics research area to the attention of the world fusion community at large''. Furthermore, this first issue contains information about (i) Nuclear Fusion Research in Argentina, (ii) Chinese Fusion Efforts, (iii) Plasma and Fusion Physics in Egypt, (iv) Fusion Research in India, (v) Fusion Research in the Republic of Korea, (vi) Fusion Programmes in Malaysia, (vi) the Agency's Fusion Programme, (vii) a proposal for a workshop on computational plasma physics, sponsored by the Third World Plasma Research Network, (viii) the announcement of the formation of the ''Asian African Association for Plasma Training'', - for the promotion of the initiation/strengthening of plasma research, especially experimental, in developing countries in Asia and Africa, as well as the cooperation and sharing of technology among plasma physicists in the developing countries in the region; (ix) a communication entitled ''Fusion Research in ''Small'' Countries'', I.R. Jones, School of Physical Sciences, The Flinders University of South Australia, Bedford Park, Australia, on the desirability of the pursuit of fusion research in ''small'' countries, i.e., those countries that do not have a national fusion research programme; (x) and, finally, a newsletter on the ITER project

  1. ICPP: Introduction to Dusty Plasma Physics

    Science.gov (United States)

    Kant Shukla, Padma

    2000-10-01

    Two omnipresent ingredients of the Universe are plasmas and charged dust. The interplay between these two has opened up a new and fascinating research area, that of dusty plasmas, which are ubiquitous in in different parts of our solar system, namely planetary rings, circumsolar dust rings, interplanetary medium, cometary comae and tails, interstellar molecular clouds, etc. Dusty plasmas also occur in noctilucent clouds in the arctic troposphere and mesosphere, cloud-to-ground lightening in thunderstorms containing smoke-contaminated air over the US, in the flame of humble candle, as well as in microelectronics and in low-temperature laboratory discharges. In the latter, charged dust grains are strongly correlated. Dusty plasma physics has appeared as one of the most rapidly growing field of science, besides the field of the Bose-Einstein condensate, as demonstrated by the number of published papers in scientific journals and conference proceedings. In fact, it is a truly interdisciplinary science because it has many potential applications in astrophysics (viz. in understanding the formation of dust clusters and structures, instabilities of interstellar molecular clouds and star formation, decoupling of magnetic fields from plasmas, etc.) as well as in the planetary magnetospheres of our solar system [viz. the Saturn (particularly, the physics of spokes and braids in B and F rings), Jupiter, Uranus, Neptune, and Mars] and in strongly coupled laboratory dusty plasmas. Since dusty plasma system involves the charging and the dynamics of extremely massive charged dust particulates, it can be characterized as a complex plasma system with new physics insights. In this talk, I shall describe the basic physics of dusty plasmas and present the status of numerous collective processes that are relevant to space research and laboratory experiments. The focus will be on theoretical and experimental observations of novel waves and instabilities, various forces, and some

  2. The physics of collective neutrino-plasma interactions

    International Nuclear Information System (INIS)

    Shukla, P.K.; Silva, L.O.; Dawson, J.M.; Bethe, H.; Bingham, R.; Stenflo, L.; Mendonca, J.T.; Dalhed, S.

    1999-01-01

    A review of recent work on collective neutrino-plasma interactions is presented. The basic physical concepts of this new field as well as some possible astrophysical problems where the physics of collective neutrino-plasma interactions can have a radical impact, are discussed. (author)

  3. Plasma physics and controlled nuclear fusion

    International Nuclear Information System (INIS)

    Sato, Tetsuya

    1993-05-01

    The report contains the proceedings of a conference on plasma physics. A fraction of topics included MHD instabilities, magnetic confinement and plasma heating in the field of fusion plasmas, in 8 papers falling in the INIS scope have been abstracted and indexed for the INIS database. (K.A.)

  4. PlasmaPy: initial development of a Python package for plasma physics

    Science.gov (United States)

    Murphy, Nicholas; Leonard, Andrew J.; Stańczak, Dominik; Haggerty, Colby C.; Parashar, Tulasi N.; Huang, Yu-Min; PlasmaPy Community

    2017-10-01

    We report on initial development of PlasmaPy: an open source community-driven Python package for plasma physics. PlasmaPy seeks to provide core functionality that is needed for the formation of a fully open source Python ecosystem for plasma physics. PlasmaPy prioritizes code readability, consistency, and maintainability while using best practices for scientific computing such as version control, continuous integration testing, embedding documentation in code, and code review. We discuss our current and planned capabilities, including features presently under development. The development roadmap includes features such as fluid and particle simulation capabilities, a Grad-Shafranov solver, a dispersion relation solver, atomic data retrieval methods, and tools to analyze simulations and experiments. We describe several ways to contribute to PlasmaPy. PlasmaPy has a code of conduct and is being developed under a BSD license, with a version 0.1 release planned for 2018. The success of PlasmaPy depends on active community involvement, so anyone interested in contributing to this project should contact the authors. This work was partially supported by the U.S. Department of Energy.

  5. Magnetospheric plasma physics

    International Nuclear Information System (INIS)

    Bingham, R.

    1989-09-01

    The discovery of the earth's radiation belts in 1957 by Van Allen marked the beginning of what is now known as magnetospheric physics. In this study of plasma physics in the magnetosphere, we shall take the magnetosphere to be that part of the earth's ionized atmosphere which is formed by the interaction of the solar wind with the earth's dipole-like magnetic field. It extends from approximately 100km above the earth's surface where the proton-neutral atom collision frequency is equal to the proton gyrofrequency to about ten earth radii (R E ∼ 6380km) in the sunward direction and to several hundred earth radii in the anti-sunward direction. The collision dominated region is called the ionosphere and is sometimes considered separate from the collisionless plasma region. In the ionosphere ion-neutral collisions are dominant and one may think of the ionosphere as a frictional boundary layer ∼ 1000km thick. Other planets are also considered. (author)

  6. Plasma physics studies in Singapore

    International Nuclear Information System (INIS)

    Jones, R.

    1982-01-01

    We briefly outline the plasma physics research program being conducted in the Department of Physics of the National University of Singapore. The work places particular emphasis on open system end plugging, ion source development, and anomalous transport studies. (author)

  7. Studies on laser–plasma interaction physics for shock ignition

    Czech Academy of Sciences Publication Activity Database

    Maheut, Y.; Batani, D.; Nicolai, Ph.; Antonelli, L.; Krouský, Eduard

    2015-01-01

    Roč. 170, č. 4 (2015), s. 325-336 ISSN 1042-0150 EU Projects: European Commission(XE) 284464 - LASERLAB-EUROPE Institutional support: RVO:68378271 Keywords : shock ignition * plasma * hot electrons * shocks * fusion Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 0.472, year: 2015

  8. Computing in plasma physics

    International Nuclear Information System (INIS)

    Nuehrenberg, J.

    1986-01-01

    These proceedings contain the articles presented at the named conference. These concern numerical methods for astrophysical plasmas, the numerical simulation of reversed-field pinch dynamics, methods for numerical simulation of ideal MHD stability of axisymmetric plasmas, calculations of the resistive internal m=1 mode in tokamaks, parallel computing and multitasking, particle simulation methods in plasma physics, 2-D Lagrangian studies of symmetry and stability of laser fusion targets, computing of rf heating and current drive in tokamaks, three-dimensional free boundary calculations using a spectral Green's function method, as well as the calculation of three-dimensional MHD equilibria with islands and stochastic regions. See hints under the relevant topics. (HSI)

  9. Plasma physics an introduction to laboratory, space, and fusion plasmas

    CERN Document Server

    Piel, Alexander

    2017-01-01

    The enlarged new edition of this textbook provides a comprehensive introduction to the basic processes in plasmas and demonstrates that the same fundamental concepts describe cold gas-discharge plasmas, space plasmas, and hot fusion plasmas. Starting from particle drifts in magnetic fields, the principles of magnetic confinement fusion are explained and compared with laser fusion. Collective processes are discussed in terms of plasma waves and instabilities. The concepts of plasma description by magnetohydrodynamics, kinetic theory, and particle simulation are stepwise introduced. Space charge effects in sheath regions, double layers and plasma diodes are given the necessary attention. The novel fundamental mechanisms of dusty plasmas are explored and integrated into the framework of conventional plasmas. The book concludes with a concise description of modern plasma discharges. Written by an internationally renowned researcher in experimental plasma physics, the text keeps the mathematical apparatus simple a...

  10. The division of plasma physics

    International Nuclear Information System (INIS)

    Evans, T.E.; Guilhem, D.; Klepper, C.C.

    1990-07-01

    The investigations presented in the 31th meeting on plasma physics were: the main results and observations during the ergodic divertor experiments in Tore Supra tokamak; the modifications of power scrape-off-length and power deposition during various configurations in Tore Supra plasmas; the results of pressure measurements and particle fluxes in the Tore Supra pump limiter

  11. Industrial applications of low-temperature plasma physics

    International Nuclear Information System (INIS)

    Chen, F.F.

    1995-01-01

    The application of plasma physics to the manufacturing and processing of materials may be the new frontier of our discipline. Already partially ionized discharges are used in industry, and the performance of plasmas has a large commercial and technological impact. However, the science of low-temperature plasmas is not as well developed as that of high-temperature, collisionless plasmas. In this paper several major areas of application are described and examples of forefront problems in each are given. The underlying thesis is that gas discharges have evolved beyond a black art, and that intellectually challenging problems with elegant solutions can be found. copyright 1995 American Institute of Physics

  12. Proceedings of the 1. Brazilian Congress on Plasma Physics

    International Nuclear Information System (INIS)

    1991-01-01

    The 1. Brazilian Congress on Plasma Physics proceedings presents technical papers on magnetohydrodynamics, plasma diagnostic, plasma waves, plasma impurities, plasma instabilities, and astrophysics plasma. (L.C.J.A.)

  13. Plasma physics aspects of ETF/INTOR

    International Nuclear Information System (INIS)

    Peng, Y.K.M.; Rutherford, P.R.; Schmidt, J.A.; Cohn, D.R.; Miller, R.L.

    1980-01-01

    In order to achieve their principle technical objectives, the Engineering Test Facility (ETF) and the International Tokomak Reactor (INTOR) will require an ignited (or near ignited) plasma, sustained for pulse lengths of at least 100 secs at a high enough plasma pressure to provide a neutron wall loading of at least 1.3 MW/m 2 . The ignited plasma will have to be substantially free of impurities. Our current understanding of major plasma physics characters is summarized

  14. BOOK REVIEW: Introduction to Plasma Physics: With Space and Laboratory Applications

    Science.gov (United States)

    Browning, P. K.

    2005-07-01

    A new textbook on plasma physics must be very welcome, as this will encourage the teaching of courses on the subject. This book is written by two experts in their fields, and is aimed at advanced undergraduate and postgraduate courses. There are of course many other plasma physics textbooks available. The niche which this particular book fills is really defined by its subtitle: that is, `with space and laboratory applications'. This differs from most other books which tend to emphasise either space or fusion applications (but not both) or to concentrate only on general theory. Essentially, the emphasis here is on fundamental plasma physics theory, but applications are given from time to time. For example, after developing Alfvén wave theory, observations of Alfvén waves in the solar wind and in the Jovian magnetosphere are presented; whilst ion acoustic cylcotron waves are illustrated by data from a laboratory Q machine. It is fair to say that examples from space seem to predominate. Nevertheless, the approach of including a broad range of applications is very good from an educational point of view, and this should help to train a generation of students with a grasp of fundamental plasma physics who can work in a variety of research fields. The subject coverage of the book is fairly conventional and there are no great surprises. It begins, inevitably, with a discussion of plasma parameters (Debye length etc) and of single particle motions. Both kinetic theory and magnetohydrodynamics are introduced. Waves are quite extensively discussed in several chapters, including both cold and hot plasmas, magnetised and unmagnetised. Nonlinear effects—a large subject!—are briefly discussed. A final chapter deals with collisions in fully ionised plasmas. The choice of contents of a textbook is always something of a matter of personal choice. It is easy to complain about what has been left out, and everyone has their own favourite topics. With that caveat, I would question

  15. Structure-preserving geometric algorithms for plasma physics and beam physics

    Science.gov (United States)

    Qin, Hong

    2017-10-01

    Standard algorithms in the plasma physics and beam physics do not possess the long-term accuracy and fidelity required in the study of multi-scale dynamics, because they do not preserve the geometric structures of the physical systems, such as the local energy-momentum conservation, symplectic structure and gauge symmetry. As a result, numerical errors accumulate coherently with time and long-term simulation results are not reliable. To overcome this difficulty, since 2008 structure-preserving geometric algorithms have been developed. This new generation of algorithms utilizes advanced techniques, such as interpolating differential forms, canonical and non-canonical symplectic integrators, and finite element exterior calculus to guarantee gauge symmetry and charge conservation, and the conservation of energy-momentum and symplectic structure. It is our vision that future numerical capabilities in plasma physics and beam physics will be based on the structure-preserving geometric algorithms.

  16. Top 10 research questions related to children physical activity motivation.

    Science.gov (United States)

    Chen, Ang

    2013-12-01

    Physical activity is critical to healthy development of children. It is well documented that helping children develop and sustain a physically active lifestyle requires children to become motivated. Many studies have been conducted in the past 2.5 decades on determinants and correlates for children and adolescents' physical activity motivation. The findings have informed researchers and practitioners about motivation sources for children and effective strategies to motivate children in given physical activity settings. Built on the extensive knowledge base and theoretical platforms formed by these research studies, the purpose of this article is to take a look at the current research landscape and provide subjective thoughts about what we still need to know about children's physical activity motivation. The product of this subjective thinking process rendered 10 potential questions for future research on children's physical activity motivation in both in-school and out-of-school settings. These topics encompass those focusing on children's physical activity motivation as a mental dispositional process, those conceptualizing the motivation as an outcome of person-environment interactions, and those attempting to dissect the motivation as an outcome of social-cultural influences and educational policies. It is hoped that the topics can serve researchers interested in children's physical activity motivation as starting blocks from which they can extend their conceptual thinking and identify research questions that are personally meaningful. It is also hoped that the list of potential questions can be helpful to researchers in accomplishing the imperative and significant mission to motivate children to be physically active in the 21st century and beyond.

  17. Spring meeting of the scientific associations for atomic physics, high speed physics, mass spectrometry, molecular physics, plasma physics

    International Nuclear Information System (INIS)

    1996-01-01

    The volume contains the abstracts of the contributions to the Spring Meeting in Rostock with aspects of atomic physics, molecular physics, high speed physics, plasma physics and mass spectrometry. (MM)

  18. Fundamentals of plasma physics

    CERN Document Server

    Bittencourt, J A

    1986-01-01

    A general introduction designed to present a comprehensive, logical and unified treatment of the fundamentals of plasma physics based on statistical kinetic theory. Its clarity and completeness make it suitable for self-learning and self-paced courses. Problems are included.

  19. Frontiers of plasma physics. III. The implications of nonlinearity

    International Nuclear Information System (INIS)

    Bardwell, S.

    1977-01-01

    In the first two articles of this series, Bardwell reviewed the experimental evidence that points to an inherent nonlinear quality in plasmas. Evidence from strongly turbulent plasmas, where the energy in the plasma's collective motions is comparable to the energy in random motion, leads to the speculation that high energy-density plasmas can provide insight into previously inaccessible regimes of physical behavior. Both laboratory and astrophysical plasmas show a marked tendency to generate self-ordered, large-scale structures; islands of self-generated magnetic field, circulation cells, vortices, and filaments are among the most remarkable of these. These self-ordered phenomena, Bardwell reports, challenge in a fundamental way the conceptual tools of physics as they are presently understood. In part two of this series, Bardwell draws on the connection between linearity and entropy, a topic also examined in Levitt's companion piece in the September 1976 FEF Newsletter, to conclude that these difficulties in plasma physics stem from the invalid extension of contemporary physics, which is basically linear, to high-energy density regimes of a plasma; contemporary physics in these cases is inapplicable. Readers without a background in mathematics should not be deterred by the mathematical formalism in the last section of the article; the text can be understood without a detailed mastery of the mathematical formulae

  20. On the physics of electron beams in space plasmas

    International Nuclear Information System (INIS)

    Krafft, C.; Volokitin, A.

    2002-01-01

    This paper discusses the main physical processes related to the injection, the propagation and the radiation of electron beams in space plasmas as the Earth's ionosphere. The physical mechanisms are shortly explained and illustrated with several examples of experimental results provided by various space missions. In a first part, we discuss important physical processes connected with the response of the ambient space plasma to the beam injection, and in particular, with the mechanisms of electric charge neutralization of the electron beam and of the payload carrying the injector, with the widely studied phenomenon of beam-plasma discharge as well as with the physical features of the spatio-temporal evolution and the dynamic structure of the beam in its interaction with the plasma and the emitted waves. In a second part, the main processes governing the wave emission by electron beams in space are examined; in particular, we focus on the physical linear and nonlinear mechanisms involved in the generation, the stabilization and the saturation of the electromagnetic waves excited by the beams in wide frequency ranges. and the radiation of electron beams in space plasmas as the Earth's ionosphere. The physical mechanisms are shortly explained and illustrated with several examples of experimental results provided by various space missions. In a first part, we discuss important physical processes connected with the response of the ambient space plasma to the beam injection, and in particular, with the mechanisms of electric charge neutralization of the electron beam and of the payload carrying the injector, with the widely studied phenomenon of beam-plasma discharge as well as with the physical features of the spatio-temporal evolution and the dynamic structure of the beam in its interaction with the plasma and the emitted waves. In a second part, the main processes governing the wave emission by electron beams in space are examined; in particular, we focus on the

  1. BOOK REVIEW: Controlled Fusion and Plasma Physics

    Science.gov (United States)

    Engelmann, F.

    2007-07-01

    This new book by Kenro Miyamoto provides an up-to-date overview of the status of fusion research and the important parts of the underlying plasma physics at a moment where, due to the start of ITER construction, an important step in fusion research has been made and many new research workers will enter the field. For them, and also for interested graduate students and physicists in other fields, the book provides a good introduction into fusion physics as, on the whole, the presentation of the material is quite appropriate for getting acquainted with the field on the basis of just general knowledge in physics. There is overlap with Miyamoto's earlier book Plasma Physics for Nuclear Fusion (MIT Press, Cambridge, USA, 1989) but only in a few sections on subjects which have not evolved since. The presentation is subdivided into two parts of about equal length. The first part, following a concise survey of the physics basis of thermonuclear fusion and of plasmas in general, covers the various magnetic configurations studied for plasma confinement (tokamak; reversed field pinch; stellarator; mirror-type geometries) and introduces the specific properties of plasmas in these devices. Plasma confinement in tokamaks is treated in particular detail, in compliance with the importance of this field in fusion research. This includes a review of the ITER concept and of the rationale for the choice of ITER's parameters. In the second part, selected topics in fusion plasma physics (macroscopic instabilities; propagation of waves; kinetic effects such as energy transfer between waves and particles including microscopic instabilities as well as plasma heating and current drive; transport phenomena induced by turbulence) are presented systematically. While the emphasis is on displaying the essential physics, deeper theoretical analysis is also provided here. Every chapter is complemented by a few related problems, but only partial hints for their solution are given. A selection of

  2. Department of Plasma Physics and Technology - Overview

    International Nuclear Information System (INIS)

    Rabinski, M.

    2008-01-01

    Full text: The activities of the Department in 2007 continued previous studies in the following fields of plasma physics, controlled nuclear fusion and plasma technology of surface engineering: · Studies of physical phenomena in pulsed discharges in the Plasma-Focus (PF) and RPI-IBIS facilities; · Development of selected methods for high-temperature plasma diagnostics; · Research on plasma technologies; · Selected problems of plasma theory and computational modelling. As for the experimental studies particular attention was paid to the analysis of the correlation of X-ray pulses with pulsed electron beams and other corpuscular emissions from different Plasma-Focus (PF) facilities. A collisional-radiative model, taking into account the Stark effect and strong electric fields in the so called '' hot- spot '' regions of a pinch, was applied in those analyses. The main aim of these studies was to identify the physical phenomena responsible for the emission during the PF-type discharges. The emitted protons were also measured with nuclear track detectors. The measurements made it possible to obtain images of the regions, where the D-D fusion reactions occurred, as well as to determine the angular distribution of the emitted protons. Pulsed plasma streams were also investigated by means of time-resolved optical spectroscopy and corpuscular diagnostics. In a frame of the EURATOM program, efforts were devoted to the development of diagnostic methods for tokamak-type facilities. Such studies include the design and construction of the 4-channel Cherenkov-type detection system for the TORE-SUPRA tokamak at CEA-Cadarache. In the meantime in order to collect some experience a new measuring head was especially prepared for experiments within small facilities. Other fusion- oriented efforts are connected with the application of the solid-state nuclear track detectors for investigation of protons from tokamak plasma and high-energy beams emitted from laser produced plasmas

  3. APS presents prizes in fluid dynamics and plasma physics

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This article reviews the presentation of the American Physical Society awards in fluid dynamics and plasma physics. The recipient of the plasma physics James Clerk Maxwell Prize was John M. Green for contributions to the theory of magnetohydrodynamics equilibria and ideal and resistive instabilities, for discovering the inverse scattering transform leading to soliton solutions of many nonlinear partial differential equations and for inventing the residue method of determining the transition to global chaos. The excellence in Plasma Physics Research Award was presented to Nathaniel A. Fisch for theoretical investigations of noninductive current generation in toroidally confined plasma. Wim Pieter Leemans received the Simon Ramo Award for experimental and simulational contributions to laser-plasma physics. William R. Sears was given the 1992 Fuid Dynamics Prize for contributions to the study of steady and unsteady aerodynamics, aeroacoustics, magnetoaerodynamics,and wind tunnel design. William C. Reynolds received the Otto Laporte Award for experimental, theoretical, and computational work in turbulence modeling and control and leadership in direct numerical simulation and large eddy simulation

  4. Fundamental aspects of plasma chemical physics Thermodynamics

    CERN Document Server

    Capitelli, Mario; D'Angola, Antonio

    2012-01-01

    Fundamental Aspects of Plasma Chemical Physics - Thermodynamics develops basic and advanced concepts of plasma thermodynamics from both classical and statistical points of view. After a refreshment of classical thermodynamics applied to the dissociation and ionization regimes, the book invites the reader to discover the role of electronic excitation in affecting the properties of plasmas, a topic often overlooked by the thermal plasma community. Particular attention is devoted to the problem of the divergence of the partition function of atomic species and the state-to-state approach for calculating the partition function of diatomic and polyatomic molecules. The limit of ideal gas approximation is also discussed, by introducing Debye-Huckel and virial corrections. Throughout the book, worked examples are given in order to clarify concepts and mathematical approaches. This book is a first of a series of three books to be published by the authors on fundamental aspects of plasma chemical physics.  The next bo...

  5. Frontier of plasma physics. 'Research network on non-equilibrium and extreme state plasmas'

    International Nuclear Information System (INIS)

    Itoh, Sanae-I.; Fujisawa, Akihide; Kodama, Ryosuke; Sato, Motoyasu; Tanaka, Kazuo A.; Hatakeyama, Rikizo; Itoh, Kimitaka

    2011-01-01

    Plasma physics and fusion science have been applied to a wide variety of plasmas such as nuclear fusion plasmas, high-energy-density plasmas, processing plasmas and nanobio- plasmas. They are pioneering science and technology frontiers such as new energy sources and new functional materials. A large project 'research network on non-equilibrium and extreme state plasmas' is being proposed to reassess individual plasma researches from a common view of the non-equilibrium extreme plasma and to promote collaboration among plasma researchers all over the country. In the present review, recent collaborative works related to this project are being introduced. (T.I.)

  6. Plasmas: from space to laboratory. 'Introduction to plasma physics' course

    International Nuclear Information System (INIS)

    Savoini, Philippe

    2011-01-01

    This course addresses the different basic concepts of plasma physics. After an introduction which addresses the plasma state, basic equations, the different theoretical approaches (orbitals, kinetic, multi-fluid, magnetohydrodynamics), and the different characteristic scales, waves are addressed and presented as a disordered electromagnetism: existence of plasma waves, generalities on waves, relationship of formal dispersion of plasmas, plasma without magnetic field (longitudinal, transverse, or low frequency wave), plasma with magnetic field (parallel, perpendicular, or arbitrary propagation). The next parts present various approaches: the particle-based approach (case of constant and uniform magnetic fields, case of non-uniform magnetic fields), the statistical approach (elements of kinetic theory, the collision phenomenon, the equilibrium state), and the fluid approach (fluid equations according to the multi-fluid theory, comparison with the particle-based approach, presentation of magnetohydrodynamics as the single-fluid model, validity of MHD)

  7. Brazilian programme for plasma physics and controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    Chian, A.C.L.; Reusch, M.F.; Nascimento, I.C.; Pantuso-Sudano, J.

    1992-01-01

    A proposal for a National Programme of Plasma Physics and Controlled Thermonuclear Fusion in Brazil is presented, aimimg the dissemination of the researchers thought in plasma physics for the national authorities and the scientific community. (E.O.)

  8. Plasma physics for controlled fusion

    International Nuclear Information System (INIS)

    Miyamoto, K.

    2010-01-01

    The primary objective of this lecture note is to present the theories and experiments of plasma physics for recent activities of controlled fusion research for graduate and senior undergraduate students. Chapters 1-6 describe the basic knowledge of plasma and magnetohydrodynamics (MHD). MHD instabilities limit the beta ratio (ratio of plasma pressure to magnetic pressure) of confined plasma. Chapters 7-9 provide the kinetic theory of hot plasma and discuss the wave heating and non-inductive current drive. The dispersion relation derived by the kinetic theory are used to discuss plasma waves and perturbed modes. Landau damping is the essential mechanism of plasma heating and the stabilization of perturbation. Landau inverse damping brings the amplification of waves and the destabilization of perturbed modes. Chapter 10 explains the plasma transport due to turbulence, which is the most important and challenging subject for plasma confinement. Theories and simulations including subject of zonal flow are introduced. Chapters 11, 12 and 13 describe the recent activities of tokamak including ITER as well as spherical tokamak, reversed field pinch (RFP) and stellarator including quasi-symmetric configurations. Emphasis has been given to tokamak research since it made the most remarkable progress and the construction phase of 'International Tokamak Experimental Reactor' called ITER has already started. (author)

  9. An introduction to the atomic and radiation physics of plasmas

    CERN Document Server

    Tallents, G J

    2018-01-01

    Plasmas comprise more than 99% of the observable universe. They are important in many technologies and are key potential sources for fusion power. Atomic and radiation physics is critical for the diagnosis, observation and simulation of astrophysical and laboratory plasmas, and plasma physicists working in a range of areas from astrophysics, magnetic fusion, and inertial fusion utilise atomic and radiation physics to interpret measurements. This text develops the physics of emission, absorption and interaction of light in astrophysics and in laboratory plasmas from first principles using the physics of various fields of study including quantum mechanics, electricity and magnetism, and statistical physics. Linking undergraduate level atomic and radiation physics with the advanced material required for postgraduate study and research, this text adopts a highly pedagogical approach and includes numerous exercises within each chapter for students to reinforce their understanding of the key concepts.

  10. Three electron beams from a laser-plasma wakefield accelerator and the energy apportioning question

    Czech Academy of Sciences Publication Activity Database

    Yang, X.; Brunetti, E.; Gil, D.R.; Welsh, G.H.; Li, F.Y.; Cipiccia, S.; Ersfeld, B.; Grant, D.W.; Grant, P.A.; Islam, M.R.; Tooley, M.P.; Vieux, Grégory; Wiggins, S.M.; Sheng, Z.M.; Jaroszynski, D.A.

    2017-01-01

    Roč. 7, Mar (2017), s. 1-7, č. článku 43910. ISSN 2045-2322 R&D Projects: GA MŠk EF15_008/0000162; GA MŠk LQ1606 EU Projects: European Commission(XE) 654148 - LASERLAB-EUROPE Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 Keywords : relativistic electrons * driven * radiation * wake * dosimetry * regime * code Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 4.259, year: 2016

  11. Status of plasma physics research activities in Egypt

    International Nuclear Information System (INIS)

    Masoud, M.M.

    1997-01-01

    The status of plasma physics research activities in Egypt is reviewed. There are nine institutes with plasma research activities. The largest is the Atomic energy Authority (AEA), which has activities in fundamental plasma studies, fusion technology, plasma and laser applications, and plasma simulation. The experiments include Theta Pinches, a Z Pinch, a coaxial discharge, a glow discharge, a CO 2 laser, and the EGYPTOR tokamak. (author)

  12. Department of Plasma Physics and Material Engineering - Overview

    International Nuclear Information System (INIS)

    Rabinski, M.

    2010-01-01

    Full text: In April 2009 the Department of Materials Studies was united with the Department of Plasma Physics and Technology, This action followed twenty years of close cooperation in the implementation of high-intensity ion-beam pulses for the implantation of materials. In 2009 the activities of the new Department continued previous studies in the following fields of plasma physics, controlled nuclear fusion and plasma engineering: · Development of selected methods for high-temperature plasma diagnostics; · Studies of physical phenomena in pulsed discharges at the Plasma-Focus and RPI-IBIS facilities; · Research on plasma technologies, search for new methods of surface engineering; · Selected problems of plasma theory and computational modelling. In the framework of the EURATOM program. efforts were devoted to the development of diagnostics methods for tokamak-type facilities. Such studies included the elaboration of a special detection system based on a Cherenkov-type detector. Other fusion-oriented efforts were connected with the application of activation methods to the investigation of neutrons from the JET tokamak. Also. solid-state nuclear track detectors of the PM-355 type were used for measurements of energetic protons emitted from ultra-intense laser produced plasmas. In our continuing experimental studies, particular attention was paid to the development and application of optical spectroscopy for diagnostics of high-temperature plasma within the RPI-IBIS device and Plasma-Focus facilities. Fast ions escaping from the plasma were studied with nuclear track detectors, The interaction of plasma-ion streams with different targets was also investigated. A field of research activity was related to plasma technology. Efforts were undertaken to improve the ultra-high vacuum (UHV) deposition of thin superconducting layers. c.g. pure niobium film on the surface of copper resonant cavities of accelerators. The vacuum arc deposition technique was also applied to

  13. Polarization plasma spectroscopy (PPS) viewed from plasma physics and fusion research

    International Nuclear Information System (INIS)

    Ida, Katsumi

    1998-01-01

    Recently the measurements of poloidal magnetic field become important in plasma physics and nuclear fusion research, since an improved confinement mode associating with a negative magnetic shear has been found. The polarization plasma spectroscopy is recognized to be a useful tool to measure poloidal magnetic field and pitch angle of magnetic field. (author)

  14. Basic plasma physics

    International Nuclear Information System (INIS)

    Galeev, A.A.; Sudan, R.N.

    1989-01-01

    Most of the chapters in this book are devoted to the theory of small amplitude perturbations which is the most well developed aspect of the subject. The remaining chapters are concerned with weak nonlinear waves, and collapse and self-focusing of Langmuir waves, two topics of widespread interest and application. A chapter on particle simulation has been included, as that numerical technique plays an essential role in the development an understanding of plasma physics

  15. Experiments on Plasma Physics : Experience is the Mother of Wisdom 5.What We Expect with Nonneutral Plasmas

    Science.gov (United States)

    Kiwamoto, Yasuhito

    The present status of nonneutral plasma science is reviewed with a particular interest in the pursuit of a new frontier for plasma physicists engaged in basic researches. The author does not intend to be exhaustive nor well balanced in the description, but tries to discuss where we are positioned and what we might be able to do to fruitfully enjoy plasma physics and extend its field of activity. Leaving most of topics to the cited references, the author describes characteristic features of nonneutral plasmas appearing in distinct confinement properties, equilibria, transport, nonlinear evolution of Kelvin-Helmholtz instability, and fluid echo phenomena. These examples may convey the significance of nonneutral plasma science as one of newly-rising branches of plasma physics and as a potentially relevant channel through which plasma physics could explore new dimensions.

  16. Comprehensive physical models and simulation package for plasma/material interactions during plasma instabilities

    International Nuclear Information System (INIS)

    Hassanein, A.; Konkashbaev, I.

    1999-01-01

    Damage to plasma-facing components (PFCs) from plasma instabilities remains a major obstacle to a successful tokamak concept. The extent of the damage depends on the detailed physics of the disrupting plasma, as well as on the physics of plasma-material interactions. A comprehensive computer package called high energy interaction with general heterogeneous target systems (HEIGHTS) has been developed and consists of several integrated computer models that follow the beginning of a plasma disruption at the scrape-off layer (SOL) through the transport of the eroded debris and splashed target materials to nearby locations as a result of the deposited energy. The package can study, for the first time, plasma-turbulent behavior in the SOL and predict the plasma parameters and conditions at the divertor plate. Full two-dimensional (2-D) comprehensive radiation magnetohydrodynamic (MHD) models are coupled with target thermodynamics and liquid hydrodynamics to evaluate the integrated response of plasma-facing materials. Factors that influence the lifetime of plasma-facing and nearby components, such as loss of vapor cloud confinement and vapor removal due to MHD effects, damage to nearby components due to intense vapor radiation, melt splashing, and brittle destruction of target materials, are also modeled and discussed. (orig.)

  17. Comprehensive physical models and simulation package for plasma/material interactions during plasma instabilities

    International Nuclear Information System (INIS)

    Hassanein, A.

    1998-01-01

    Damage to plasma-facing components (PFCS) from plasma instabilities remains a major obstacle to a successful tokamak concept. The extent of the damage depends on the detailed physics of the disrupting plasma, as well as on the physics of plasma-material interactions. A comprehensive computer package called High Energy Interaction with General Heterogeneous Target Systems (HEIGHTS) has been developed and consists of several integrated computer models that follow the beginning of a plasma disruption at the scrape-off layer (SOL) through the transport of the eroded debris and splashed target materials to nearby locations as a result of the deposited energy. The package can study, for the first time, plasma-turbulent behavior in the SOL and predict the plasma parameters and conditions at the divertor plate. Full two-dimensional (2-D) comprehensive radiation magnetohydrodynamic (MHD) models are coupled with target thermodynamics and liquid hydrodynamics to evaluate the integrated response of plasma-facing materials. Factors that influence the lifetime of plasma-facing and nearby components, such as loss of vapor-cloud confinement and vapor removal due to MHD effects, damage to nearby components due to intense vapor radiation, melt splashing, and brittle destruction of target materials, are also modeled and discussed

  18. Exploration of Plasma Jets Approach to High Energy Density Physics. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chiping [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2013-08-26

    High-energy-density laboratory plasma (HEDLP) physics is an emerging, important area of research in plasma physics, nuclear physics, astrophysics, and particle acceleration. While the HEDLP regime occurs at extreme conditions which are often found naturally in space but not on the earth, it may be accessible by colliding high intensity plasmas such as high-energy-density plasma jets, plasmoids or compact toroids from plasma guns. The physics of plasma jets is investigated in the context of high energy density laboratory plasma research. This report summarizes results of theoretical and computational investigation of a plasma jet undergoing adiabatic compression and adiabatic expansion. A root-mean-squared (rms) envelope theory of plasma jets is developed. Comparison between theory and experiment is made. Good agreement between theory and experiment is found.

  19. XXX Zvenigorod conference on plasma physics and CTS. Summaries of reports

    International Nuclear Information System (INIS)

    2003-01-01

    Summaries of reports made at the 30th Zvenigorod conference on plasma physics and controlled thermonuclear synthesis are presented. The conference took place February 24-28, 2003. The recent results of investigations on plasma physics in tokamak devices are considered. The problems of the magnetic confinement of high-temperature plasma in thermonuclear devices and inertial thermonuclear synthesis are discussed. The particular attention is given to physical essentials of plasma and beam technologies [ru

  20. A prospect at 11th international Toki conference. Plasma physics, quo vadis?

    International Nuclear Information System (INIS)

    Itoh, Kimitaka

    2001-01-01

    A prospect of plasma physics at the turn of next century is discussed. The theme of this conference identifies the future direction of the research related with plasmas. Main issue is the potential and structure formation in plasmas; More specifically, structures which are realized through the interaction of electromagnetic fields, in particular that with electric fields, in non-equilibrium state. An emphasis is made to clarify the fundamental physics aspects of the plasma physics in fusion research as well as that in the basic research of plasmas. The plasma physics will give an important contribution to the solution of the historical enigma, i.e., all things flow. Having an impact on human recognition of nature and showing a beauty in a law, the plasma physics/science will demonstrate to be a leading science in the 21st century. (author)

  1. Plasmas applied atomic collision physics, v.2

    CERN Document Server

    Barnett, C F

    1984-01-01

    Applied Atomic Collision Physics, Volume 2: Plasmas covers topics on magnetically confined plasmas. The book starts by providing the history of fusion research and describing the various approaches in both magnetically and inertially confined plasmas. The text then gives a general discussion of the basic concepts and properties in confinement and heating of a plasma. The theory of atomic collisions that result in excited quantum states, particularly highly ionized impurity atoms; and diverse diagnostic topics such as emission spectra, laser scattering, electron cyclotron emission, particle bea

  2. Progress report : Plasma Physics Section

    International Nuclear Information System (INIS)

    Iyyengar, S.K.; Rohatgi, V.K.

    1975-08-01

    The activities of the plasma physics section of the Bhabha Atomic Research Centre, India over the last five years (1970-75) are reported. The R and D programme of the section has been divided into four cells mainly i.e., (i) Thermal plasma (ii) Relativistic Electron Beam (iii) Energetics and (iv) Electron beam technology. The salient features of the development activities carried out in these cells are outlined. In the Thermal plasma group, considerable research work has been done in (a) fundamental plasma studies, (b) industrial plasma technology and (c) open cycle MHD power generation project. The relativistic electron beam group is engaged in improving the technology to realize high power lasers, and pulsed thermonuclear fusion. The energetics programme is oriented to develop high voltage d.c. generators and pulse generators. The electron beam techniques developed here are routinely used for melting refractory and reactive metals. The technical know-how of the welding machines developed has been transfered to industries. Equipment developed by this section, such as, (1) electron beam furnace, (2) plasma cutting torch, (3) impulse magnet charger etc. are listed. (A.K.)

  3. Plasma Physics Network Newsletter. No. 2

    International Nuclear Information System (INIS)

    1990-06-01

    The IAEA Fellowship Programme providing for in general up to two years of training at a host laboratory or university is accessible for Member State scientists (contact the editor); so are IAEA research contracts (up to $ 5000 per year for up to 3 years). An overview of meetings on fusion or fusion-related topics is given for June-October 1990. It is announced that the full IFCR status report on fusion is due to be published in the September issues of Nuclear Fusion, and that the ''Third World Plasma Research Network'' (TWPRN) has been set up to ''provide an international forum for plasma research centres of the Third World countries'' to promote ''closer interactions among them'' and to strengthen their scientific programmes. The network also ''envisages active participation of small scale research programmes from developed countries that pursue basic plasma studies and development objectives''. Furthermore, this newsletter contains (1) the minutes of the steering committee meeting of the TWPRN, New Delhi, November 1989; (2) a contribution from A. Rodrigo, Argentina, entitled ''Collaboration and Scientific Exchange in Latin American Plasma Physics Laboratories'', listing for each country (Argentina, Brazil, Chile, Colombia, Mexico, and Venezuela) (i) key contact persons, (ii) main areas for collaboration/scientific exchange, and (iii) list of foreign laboratories having close contacts; (3) ''Plasma Research at the Institute of Nuclear Science and Technology of Bangladesh'', by U.A. Mofiz, giving an overview of plasma research activities there; (4) A summary by P.K. Kaw and A. Sen of the 1989 International Conference on Plasma Physics held in New Delhi; (5) the announcement of the first South-North International Workshop on Fusion Theory, Tipaza, Algeria, September 16-23, 1990

  4. Edge Plasma Physics and Relevant Diagnostics on the CASTOR tokamak

    Czech Academy of Sciences Publication Activity Database

    Stöckel, Jan; Devynck, P.; Gunn, J.; Martines, E.; Bonhomme, G.; Van Oost, G.; Hron, Martin; Ďuran, Ivan; Pánek, Radomír; Stejskal, Pavel; Adámek, Jiří

    2004-01-01

    Roč. 3, - (2004), s. 1-6 ISSN 1433-5581. [First Cairo Conference on Plasma Physics & Applications. Cairo, 11.10.2003-15.10.2003] R&D Projects: GA ČR GA202/03/0786; GA ČR GP202/03/P062 Keywords : tokamak * edge plasma * probe diagnostics * biasing * turbulence * polarization Subject RIV: BL - Plasma and Gas Discharge Physics

  5. Real-time control of Tokamak plasmas: from control of physics to physics-based control

    International Nuclear Information System (INIS)

    Felici, F. A. A.

    2011-11-01

    Stable, high-performance operation of a tokamak requires several plasma control problems to be handled simultaneously. Moreover, the complex physics which governs the tokamak plasma evolution must be studied and understood to make correct choices in controller design. In this thesis, the two subjects have been merged, using control solutions as experimental tool for physics studies, and using physics knowledge for developing new advanced control solutions. The TCV tokamak at CRPP-EPFL is ideally placed to explore issues at the interface between plasma physics and plasma control, by combining a digital realtime control system with a flexible and powerful set of actuators, in particular the electron cyclotron heating and current drive system (ECRH/ECCD). This experimental platform has been used to develop and test new control strategies for three plasma physics instabilities: sawtooth, edge localized mode (ELM) and neoclassical tearing mode (NTM). The period of the sawtooth crash, a periodic MHD instability in the core of a tokamak plasma, can be varied by localized deposition of ECRH/ECCD near the q = 1 surface (q: safety factor). A sawtooth pacing controller was developed which is able to control the time of appearance of the next sawtooth crash. Each individual sawtooth period can be controlled in real-time. A similar scheme is applied to H-mode plasmas with type-I ELMs, where it is shown that pacing regularizes the ELM period. The regular, reproducible and therefore predictable sawtooth crashes have been used to study the relationship between sawteeth and NTMs. Postcrash MHD activity can provide the ‘seed’ island for an NTM, which then grows under its neoclassical bootstrap drive. The seeding of 3/2 NTMs by long sawtooth crashes can be avoided by preemptive, crash-synchronized EC power injection pulses at the q = 3/2 rational surface location. NTM stabilization experiments in which the ECRH deposition location is moved in real-time with steerable mirrors have

  6. Sixth International Workshop and Summer School on Plasma Physics 2014

    International Nuclear Information System (INIS)

    2016-01-01

    Evgenia Benova et al 2016 J. Phys.: Conf. Ser. VV The Sixth International Workshop and Summer School on Plasma Physics (IWSSPP'14) was organized by St. Kliment Ohridsky University of Sofia, with co-organizer PLASMER Foundation. It was held in Kiten, Bulgaria, at the Black Sea Coast, from June 30 to July 6, 2014. The scientific programme covers the topics Fusion Plasma and Materials; Plasma Modeling and Fundamentals; Plasma Sources, Diagnostics and Technology. The Workshop Plasma for Sustainable Environment was co-organized together with the Institute of Plasmas and Nuclear Fusion, Lisbon, Portugal. A special Workshop on Remote GOLEM operation was organized by the Institute of Plasma Physics, Prague, Czech Republic for the students and interested participants to work remotely with the Czech TOKAMAK GOLEM. As with the previous issues of this scientific meeting, its aim was to stimulate the creation and support of a new generation of young scientists for further development of plasma physics fundamentals and applications, as well as to ensure an interdisciplinary exchange of views and initiate possible collaborations by bringing together scientists from various branches of plasma physics. This volume of Journal of Physics: Conference Series includes 19 papers (invited lectures, contributed talks and posters) devoted to various branches of plasma physics, among them fusion plasma and materials, dc and microwave discharge modelling, transport phenomena in gas discharge plasmas, plasma diagnostics, cross sections and rate constants of elementary processes, material processing, plasma-chemistry and technology. Some of them have been presented by internationally known and recognized specialists in their fields; others are MSc or PhD students' first steps in science. In both cases, we believe they will raise readers' interest. We would like to thank the members of both the International Advisory Committee and the Local Organizing Committee, the participants

  7. Fifth International Workshop and Summer School on Plasma Physics 2012

    International Nuclear Information System (INIS)

    Benova, Evgenia

    2016-01-01

    The Fifth International Workshop and Summer School on Plasma Physics (IWSSPP'12) was organized by St. Kliment Ohridsky University of Sofia, with co-organizers TCPA Foundation, Association EURATOM/IRNRE, and the Bulgarian Academy of Sciences. It was held in Kiten, Bulgaria, on the Black Sea coast, from June 25-30, 2012. The scientific programme covers the topics Fusion Plasma and Materials; Plasma Modeling and Fundamentals; Plasma Sources, Diagnostics and Technology . The 4 th edition of the Workshop Plasmas for Environmental Issues was co-organized together with the Institute of Plasmas and Nuclear Fusion, Lisbon, Portugal. A special Workshop on Remote GOLEM operation was organized by the Institute of Plasma Physics, Prague, Czech Republic for the students and interested participants to work remotely with the Czech TOKAMAK GOLEM. As in the previous issues of this scientific meeting its aim was to stimulate the development of and support a new generation of young scientists to further advance plasma physics fundamentals and applications, as well as ensuring an interdisciplinary exchange of views and initiate possible collaborations by bringing together scientists from various branches of plasma physics. This volume of Journal of Physics: Conference Series includes 12 papers (invited lectures, contributed talks and posters) devoted to various branches of plasma physics, among them fusion plasma and materials, dc and microwave discharge modelling, transport phenomena in gas discharge plasmas, plasma diagnostics, material processing, plasma-chemistry and technology. Some of them have been presented by internationally known and recognized specialists in their fields; others are MSc or PhD students' first steps in science. In both cases, we believe they will raise readers' interest. We would like to thank the members of both the International Advisory Committee and the Local Organizing Committee, the participants who sent their manuscripts and passed

  8. Gaseous material capacity of open plasma jet in plasma spray-physical vapor deposition process

    Science.gov (United States)

    Liu, Mei-Jun; Zhang, Meng; Zhang, Qiang; Yang, Guan-Jun; Li, Cheng-Xin; Li, Chang-Jiu

    2018-01-01

    Plasma spray-physical vapor deposition (PS-PVD) process, emerging as a highly efficient hybrid approach, is based on two powerful technologies of both plasma spray and physical vapor deposition. The maximum production rate is affected by the material feed rate apparently, but it is determined by the material vapor capacity of transporting plasma actually and essentially. In order to realize high production rate, the gaseous material capacity of plasma jet must be fundamentally understood. In this study, the thermal characteristics of plasma were measured by optical emission spectrometry. The results show that the open plasma jet is in the local thermal equilibrium due to a typical electron number density from 2.1 × 1015 to 3.1 × 1015 cm-3. In this condition, the temperature of gaseous zirconia can be equal to the plasma temperature. A model was developed to obtain the vapor pressure of gaseous ZrO2 molecules as a two dimensional map of jet axis and radial position corresponding to different average plasma temperatures. The overall gaseous material capacity of open plasma jet, take zirconia for example, was further established. This approach on evaluating material capacity in plasma jet would shed light on the process optimization towards both depositing columnar coating and a high production rate of PS-PVD.

  9. Fourth Latin-American workshop on plasma physics. Contributed papers

    International Nuclear Information System (INIS)

    1990-01-01

    The main goal of this series of Workshops is to provide a periodic meeting place for Latin-American researchers in plasma physics together with colleagues from other countries around the world. This volume includes the contributed papers presented at the Workshop on Plasma Physics held in Buenos Aires in 1990. The scope of the Workshop can be synthesized in the following main subjects: Tokamak experiments and theory; alternative confinement systems and basic experiments; technology and applications; general theory; astrophysical and space plasmas

  10. PREFACE: Third International Workshop & Summer School on Plasma Physics 2008

    Science.gov (United States)

    Benova, E.; Dias, F. M.; Lebedev, Yu

    2010-01-01

    The Third International Workshop & Summer School on Plasma Physics (IWSSPP'08) organized by St Kliment Ohridsky University of Sofia, with co-organizers TCPA Foundation, Association EURATOM/IRNRE, The Union of the Physicists in Bulgaria, and the Bulgarian Academy of Sciences was held in Kiten, Bulgaria, at the Black Sea Coast, from 30 June to 5 July 2008. A Special Session on Plasmas for Environmental Issues was co-organised by the Institute of Plasmas and Nuclear Fusion, Lisbon, Portugal and the Laboratory of Plasmas and Energy Conversion, University of Toulouse, France. That puts the beginning of a series in Workshops on Plasmas for Environmental Issues, now as a satellite meeting of the European Physical Society Conference on Plasma Physics. As the previous issues of this scientific meeting (IWSSPP'05, J. Phys.: Conf. Series 44 (2006) and IWSSPP'06, J. Phys.: Conf. Series 63 (2007)), its aim was to stimulate the creation and support of a new generation of young scientists for further development of plasma physics fundamentals and applications, as well as to ensure an interdisciplinary exchange of views and initiate possible collaborations by bringing together scientists from various branches of plasma physics. This volume of Journal of Physics: Conference Series includes 38 papers (invited lectures, contributed talks and posters) devoted to various branches of plasma physics, among them fusion plasma and materials, dc and microwave discharge modelling, transport phenomena in gas discharge plasmas, plasma diagnostics, cross sections and rate constants of elementary processes, material processing, plasma-chemistry and technology. Some of them have been presented by internationally known and recognized specialists in their fields; others are MSc or PhD students' first steps in science. In both cases, we believe they will raise readers' interest. We would like to thank the members of both the International Advisory Committee and the Local Organizing Committee, the

  11. Proceedings of the 1984 international conference on plasma physics

    International Nuclear Information System (INIS)

    Tran, M.Q.; Verbeek, R.J.

    1985-01-01

    The 1984 ICPP, held in Lausanne, Switzerland, is the third biennial conference of the series ''International conferences on plasma physics''. A complete spectrum of current plasma physics from fusion devices to interstellar space was presented, even if most of the papers were of direct interest for fusion. This is the second part of the conference

  12. Eleven lectures on the physics of the quark-gluon plasma

    International Nuclear Information System (INIS)

    McLerran, L.

    1984-10-01

    These lectures are intended to be an introduction to the physics of the quark-gluon plasma, and were presented at a workshop on The Physics of the Quark-Gluon Plasma held at Hua-Zhong Normal University in Wuhan, People's Republic of China in September, 1983. The lectures cover perturbation theory of the plasma at high temperature as well as the non-perturbative methods and results of lattice gauge theory computations. Physical models of the confinement-deconfinement phase transition and the modes of chiral symmetry breaking are presented. The possibility that a quark-gluon plasma might be produced in ultra-relativistic nuclear collisions is analyzed. Separate entries were prepared for the data base for the eleven lectures

  13. Department of Plasma Physics and Material Engineering - Overview

    International Nuclear Information System (INIS)

    Rabinski, M.

    2010-01-01

    Full text: In 2010 the activities of the Department continued previous studies in the following fields of plasma physics, controlled nuclear fusion and plasma engineering: · · Development of selected methods for high-temperature plasma diagnostics; · Studies of physical phenomena in pulsed discharges in the Plasma-Focus (PF), RPI-IBIS, and Impulse Plasma Deposition (IPD) facilities; · Research on plasma technologies; · Selected problems of plasma theory and computational modeling. In the frame of the EURATOM program, efforts were devoted to the development of diagnostics methods for tokamak-type facilities. In 2010 Cherenkov detectors were applied in the ISTTOK and TORE SUPRA facilities to detect energetic electrons (of energy > 60 keV), to determine their spatial and temporal behavior and to estimate their energy spectra. Attention was also paid to measurements of hard X rays emitted from ISTTOK and to their correlations with run-away electrons. The new data on fast electrons, collected within the TORE-SUPRA machine in 2010, confirmed the appearance of intense electron streams (possible ripple-born and runaway ones), which have a similar character to the electron signals recorded by means of other diagnostic techniques. Other fusion-oriented efforts are connected with the application of solid-state nuclear track detectors to detect fast alpha particles in tokamak experiments. As for experimental studies, particular attention was paid to the investigation of fast ion- and electron-beams emitted from high-current plasma discharges in PF and RPI facilities. Ion streams from discharges were studied by means of nuclear track detector, corpuscular diagnostic techniques, and particularly of a miniature Thompson-type mass-spectrometer. A field of research activity was related to plasma technology. Efforts were undertaken to improve the ultra-high vacuum (UHV) deposition of thin superconducting layers, e.g. pure niobium film on the surface of copper resonant cavities

  14. Plasma Physics Department annual report, 1990

    International Nuclear Information System (INIS)

    1991-01-01

    The main fields in which researches have been carried out during 1990 at the Wills Plasma Physics Department are briefly discussed. These include investigations of shear Alfven waves at frequencies above the ion cyclotron frequency; the use of submillimetre lasers to detect by far forward scattering density fluctuation associated with waves in Tortus during Alfven wave heating experiments; basic physics of laser induced fluorescence in plasma and in particular the process which determine the population of excited states, as well as magnetron discharge studies and application of the vacuum arc as ion sources for accelerators and as sputtering device for producing thin film coating. A list of publications and papers presented at various conferences by the members of the Department is given in the Appendix

  15. An introduction to boundary plasma physics

    International Nuclear Information System (INIS)

    Shimizu, Katsuhiro; Takizuka, Tomonori

    2004-01-01

    History of tokamak experiments is briefly reviewed with a special focus on divertors. Two-point divertor model, which calculates plasma parameters up-stream and at the divertor plate for a given condition of particle flux and heat flux, is explained. The model is applied to ITER to discuss the heat flux onto the target plate. The important issues of divertor physics related to recycling, remote radiative cooling, detached plasma and MARFE are also introduced. (author)

  16. Controlled fusion and plasma physics

    International Nuclear Information System (INIS)

    1994-07-01

    40 papers are presented at this 21. conference on controlled fusion and plasma physics (JET). Titles are: effects of sawtooth crashes on beams ions and fusion product tritons; beta limits in H-modes and VH-modes; impurity induced neutralization of MeV energy protons in JET plasmas; lost α particle diagnostic for high-yield D-T fusion plasmas; 15-MeV proton emission from ICRF-heated plasmas; pulse compression radar reflectometry for density measurements; gamma-ray emission profile measurements during ICRH discharges; the new JET phase ICRH array; simulation of triton burn-up; parametric dependencies of JET electron temperature profiles; detached divertor plasmas; excitation of global Alfven Eigenmodes by RF heating; mechanisms of toroidal rotation; effect of shear in the radial electric field on confinement; plasma transport properties at the L-H transition; numerical study of plasma detachment conditions in JET divertor plasmas; the SOL width and the MHD interchange instability; non linear magnetic reconnection in low collisionality plasmas; topology and slowing down of high energy ion orbits; sawtooth crashes at high beta; fusion performances and alpha heating in future JET D-T plasmas; a stable route to high-beta plasmas with non-monotonic q-profiles; theory of propagation of changes to confinement; spatial distribution of gamma emissivity and fast ions during ICRF heating; multi-camera soft X-ray diagnostic; radiation phenomena and particle fluxes in the X-event; local measurement of transport parameters for laser injected trace impurities; impurity transport of high performance discharges; negative snakes and negative shear; neural-network charge exchange analysis; ion temperature anisotropy in helium neutral beam fuelling; impurity line emission due to thermal charge exchange in edge plasmas; control of convection by fuelling and pumping; VH mode accessibility and global H-mode properties; ion cyclotron emission by spontaneous emission; LHCD/ICRH synergy

  17. Proceedings of the 1984 International Conference on plasma physics

    International Nuclear Information System (INIS)

    Tran, M.Q.; Verbeek, R.J.

    1985-01-01

    The 1984 ICPP, held in Lausanne, Switzerland, is the third biennial conference of the series ''International conferences on plasma physics''. A complete spectrum of current plasma physics from fusion devices to interstellar space was presented, even if most of the papers were of direct interest for fusion. The conference stressed the important role that ''basic plasma physics'' must play in fusion research. Recent theoretical and experimental developments in tokamaks, stellarators, mirrors, reversed field pinches, and other fusion devices were reported. The successful operation of two newly-built large tokamak devices, JET and TFTR, holds the promise that a host of new results of decisive importance for fusion research will become available in the next few years. This is the first part of the conference

  18. Abstracts of 7th Ukrainian conference on controlled nuclear fusion and plasma physics

    International Nuclear Information System (INIS)

    1999-01-01

    This conference discussed the main directions of plasma physics development in Ukraine. The experimental and theoretical research on stellarators and theoretical results of physical processes in tokamak plasma studied. The investigation of spherical tokamaks were plasma physics began

  19. Very high plasma switches. Basic plasma physics and switch technology

    International Nuclear Information System (INIS)

    Doucet, H.J.; Roche, M.; Buzzi, J.M.

    1988-01-01

    A review of some high power switches recently developed for very high power technology is made with a special attention to the aspects of plasma physics involved in the mechanisms, which determine the limits of the possible switching parameters

  20. The Framework of Plasma Physics

    CERN Document Server

    Hazeltine, Richard D

    2004-01-01

    Plasma physics is a necessary part of our understanding of stellar and galactic structure. It determines the magnetospheric environment of the earth and other planets; it forms the research frontier in such areas as nuclear fusion, advanced accelerators, and high power lasers; and its applications to various industrial processes (such as computer chip manufacture) are rapidly increasing. It is thus a subject with a long list of scientific and technological applications. This book provides the scientific background for understanding such applications, but it emphasizes something else: the intrinsic scientific interest of the plasma state. It attempts to develop an understanding of this state, and of plasma behavior, as thoroughly and systematically as possible. The book was written with the graduate student in mind, but most of the material would also fit into an upper-level undergraduate course.

  1. Adaptive Review of Three Fundamental Questions in Physics

    DEFF Research Database (Denmark)

    Javadi, Hossein; Forouzbakhsh, Farshid; Daei Kasmaei, Hamed

    2016-01-01

    In the recent decades, the amazing changes have occurred in the theoretical physics and the rate of its improvement has been rising very extensively. The neutron and positron were discovered in 1932 which before that only electron, proton and photon were known. Today, the Standard Model of elemen......In the recent decades, the amazing changes have occurred in the theoretical physics and the rate of its improvement has been rising very extensively. The neutron and positron were discovered in 1932 which before that only electron, proton and photon were known. Today, the Standard Model....... Perhaps it is only a part of a bigger picture of the modern physics which includes the deeper and hidden layer of subatomic world that has been dipped into the darkness of the universe. The question is, where is the hidden part of modern physics? Hidden part of modern physics lies beyond the uncertainty...... principle. Included in the sub quantum scale, where quantum interactions between photons and gravitons done. Hidden and dark side of modern physics is also a place where charged particles absorb and emit energy quanta, without any description of the mechanism of absorption and emission by charged particles...

  2. Abstracts of 13th International Congress on Plasma Physics (ICPP 2006). Published in 2 volumes

    International Nuclear Information System (INIS)

    Anon

    2006-01-01

    This report contains the presentation on the 13-th International Congress on Plasma Physics (ICPP 2006). Five main topics are covered: fundamental problems of plasma physics; fusion plasmas; plasmas in astrophysics and space physics; plasmas in applications and technologies; complex plasmas

  3. Abstracts of 13th International Congress on Plasma Physics (ICPP 2006). Published in 2 volumes

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    2006-07-01

    This report contains the presentation on the 13-th International Congress on Plasma Physics (ICPP 2006). Five main topics are covered: fundamental problems of plasma physics; fusion plasmas; plasmas in astrophysics and space physics; plasmas in applications and technologies; complex plasmas.

  4. Princeton Plasma Physics Laboratory:

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, C.A. (ed.)

    1986-01-01

    This paper discusses progress on experiments at the Princeton Plasma Physics Laboratory. The projects and areas discussed are: Principal Parameters Achieved in Experimental Devices, Tokamak Fusion Test Reactor, Princeton Large Torus, Princeton Beta Experiment, S-1 Spheromak, Current-Drive Experiment, X-ray Laser Studies, Theoretical Division, Tokamak Modeling, Spacecraft Glow Experiment, Compact Ignition Tokamak, Engineering Department, Project Planning and Safety Office, Quality Assurance and Reliability, and Administrative Operations.

  5. Princeton Plasma Physics Laboratory:

    International Nuclear Information System (INIS)

    Phillips, C.A.

    1986-01-01

    This paper discusses progress on experiments at the Princeton Plasma Physics Laboratory. The projects and areas discussed are: Principal Parameters Achieved in Experimental Devices, Tokamak Fusion Test Reactor, Princeton Large Torus, Princeton Beta Experiment, S-1 Spheromak, Current-Drive Experiment, X-ray Laser Studies, Theoretical Division, Tokamak Modeling, Spacecraft Glow Experiment, Compact Ignition Tokamak, Engineering Department, Project Planning and Safety Office, Quality Assurance and Reliability, and Administrative Operations

  6. PREFACE: Second International Workshop & Summer School on Plasma Physics 2006

    Science.gov (United States)

    Benova, Evgeniya; Atanassov, Vladimir

    2007-04-01

    The Second International Workshop & Summer School on Plasma Physics (IWSSPP'06) organized by St. Kliment Ohridsky University of Sofia, The Union of the Physicists in Bulgaria, the Bulgarian Academy of Sciences and the Bulgarian Nuclear Society, was held in Kiten, Bulgaria, on the Black Sea Coast, from 3-9 July 2006. As with the first of these scientific meetings (IWSSPP'05 Journal of Physics: Conference Series 44 (2006)), its aim was to stimulate the creation and support of a new generation of young scientists for further development of plasma physics fundamentals and applications, as well as to ensure an interdisciplinary exchange of views and initiate possible collaborations by bringing together scientists from various branches of plasma physics. This volume of Journal of Physics: Conference Series includes 33 papers (invited lectures, contributed talks and posters) devoted to various branches of plasma physics, among them fusion plasma research, dc and microwave discharge modelling, transport phenomena in gas discharge plasmas, plasma diagnostics, cross sections and rate constants of elementary processes, material processing, plasma-chemistry and technology. Some of these papers were presented by internationally known and recognized specialists in their fields; others are MSc or PhD students' first steps in science. In both cases, we believe they will raise readers' interest. We would like to thank the members of both the International Advisory Committee and the Local Organizing Committee, the participants who sent their manuscripts and passed through the (sometimes heavy and troublesome) refereeing and editing procedure and our referees for their patience and considerable effort to improve the manuscripts. We greatly appreciate the financial support from the sponsors: the Department for Language Teaching and International Students at the University of Sofia and Natsionalna Elektricheska Kompania EAD. We would like to express our gratitude to the invited

  7. Theoretical plasma physics. Final report

    International Nuclear Information System (INIS)

    Vahala, G.; Tracy, E.

    1996-04-01

    During the past year, the authors have concentrated on (1) divertor physics, (2) thermo-lattice Boltzmann (TLBE) approach to turbulence, and (3) phase space techniques in gyro-resonance problems in collaboration with Dieter Sigmar (MIT), Sergei Krasheninnikov (MIT), Linda Vahala (ODU), Joseph Morrison (AS and M/NASA-Langley), Pavol Pavlo and Josef Preinhaelter (institute of Plasma Physics, Czech Academy of Sciences) and Allan Kaufman (LBL/U.C.Berkeley). Using a 2-equation compressible closure model with a 2D mean flow, the authors are investigating the effects of 3D neutral turbulence on reducing the heat load to the divertor plate by various toroidal cavity geometries. These studies are being extended to examine 3D mean flows. Thermal Lattice Boltzmann (TLBE) methods are being investigated to handle 3D turbulent flows in nontrivial geometries. It is planned to couple the TLBE collisional regime to the weakly collisional regime and so be able to tackle divertor physics. In the application of phase space techniques to minority-ion RF heating, resonance heating is treated as a multi-stage process. A generalization of the Case-van Kampen analysis is presented for multi-dimensional non-uniform plasmas. Effects such as particle trapping and the ray propagation dynamics in tokamak geometry can now be handled using Weyl calculus

  8. Cyclotron waves in plasma

    CERN Document Server

    Lominadze, D G

    2013-01-01

    Cyclotron Waves in Plasma is a four-chapter text that covers the basic physical concepts of the theory of cyclotron waves and cyclotron instabilities, brought about by the existence of steady or alternating plasma currents flowing perpendicular to the magnetic field.This book considers first a wide range of questions associated with the linear theory of cyclotron oscillations in equilibrium plasmas and in electron plasmas in metals and semiconductors. The next chapter deals with the parametric excitation of electron cyclotron oscillations in plasma in an alternating electric field. A chapter f

  9. Princeton University Plasma Physics Laboratory, Princeton, New Jersey

    International Nuclear Information System (INIS)

    1991-01-01

    This report discusses the following topics: Principal parameters of experimental devices; Tokamak Fusion Test Reactor; Burning Plasma Experiment; Princeton Beta Experiment-Modification; Current Drive Experiment-Upgrade; International Thermonuclear Experimental Reactor; International Collaboration; X-Ray Laser Studies; Hyperthermal Atomic Beam Source; Pure Electron Plasma Experiments; Plasma Processing: Deposition and Etching of Thin Films; Theoretical Studies; Tokamak Modeling; Engineering Department; Environment, Safety, and Health and Quality Assurance; Technology Transfer; Office of Human Resources and Administration; PPPL Patent Invention Disclosures; Office of Resource Management; Graduate Education: Plasma Physics; Graduate Education: Program in Plasma Science and Technology; and Science Education Program

  10. PREFACE: 4th International Workshop & Summer School on Plasma Physics 2010

    Science.gov (United States)

    2014-06-01

    Fourth International Workshop & Summer School on Plasma Physics 2010 The Fourth International Workshop & Summer School on Plasma Physics (IWSSPP'10) is organized by St. Kliment Ohridsky University of Sofia, with co-organizers TCPA Foundation, Association EURATOM/IRNRE, The Union of the Physicists in Bulgaria, and the Bulgarian Academy of Sciences. It was held in Kiten, Bulgaria, at the Black Sea Coast, from July 5 to July 10, 2010. The scientific programme covers the topics Fusion Plasma and Materials; Plasma Modeling and Fundamentals; Plasma Sources, Diagnostics and Technology. As the previous issues of this scientific meeting (IWSSPP'05, J. Phys.: Conf. Series 44 (2006) and IWSSPP'06, J. Phys.: Conf. Series 63 (2007), IWSSPP'08, J. Phys.: Conf. Series 207 (2010), its aim was to stimulate the creation and support of a new generation of young scientists for further development of plasma physics fundamentals and applications, as well as to ensure an interdisciplinary exchange of views and initiate possible collaborations by bringing together scientists from various branches of plasma physics. This volume of Journal of Physics: Conference Series includes 34 papers (invited lectures, contributed talks and posters) devoted to various branches of plasma physics, among them fusion plasma and materials, dc and microwave discharge modelling, transport phenomena in gas discharge plasmas, plasma diagnostics, cross sections and rate constants of elementary processes, material processing, plasma-chemistry and technology. Some of them have been presented by internationally known and recognized specialists in their fields; others are MSc or PhD students' first steps in science. In both cases, we believe they will raise readers' interest. We would like to thank the members of both the International Advisory Committee and the Local Organizing Committee, the participants who sent their manuscripts and passed through the (sometimes heavy and troublesome) refereeing and editing

  11. Introduction to plasma physics and controlled fusion

    CERN Document Server

    Chen, Francis F

    2016-01-01

    The third edition of this classic text presents a complete introduction to plasma physics and controlled fusion, written by one of the pioneering scientists in this expanding field.  It offers both a simple and intuitive discussion of the basic concepts of the subject matter and an insight into the challenging problems of current research. This outstanding text offers students a painless introduction to this important field; for teachers, a large collection of problems; and for researchers, a concise review of the fundamentals as well as original treatments of a number of topics never before explained so clearly.  In a wholly lucid manner the second edition covered charged-particle motions, plasmas as fluids, kinetic theory, and nonlinear effects.  For the third edition, two new chapters have been added to incorporate discussion of more recent advances in the field.  The new chapter 9 on Special Plasmas covers non-neutral plasmas, pure electron plasmas, solid and ultra-cold plasmas, pair-ion plasmas, d...

  12. Guest investigator program study: Physics of equatorial plasma bubbles

    Science.gov (United States)

    Tsunoda, Roland T.

    1994-01-01

    Plasma bubbles are large-scale (10 to 100 km) depletions in plasma density found in the night-time equatorial ionosphere. Their formation has been found to entail the upward transport of plasma over hundreds of kilometers in altitude, suggesting that bubbles play significant roles in the physics of many of the diverse and unique features found in the low-latitude ionosphere. In the simplest scenario, plasma bubbles appear first as perturbations in the bottomside F layer, which is linearly unstable to the gravitationally driven Rayleigh-Taylor instability. Once initiated, bubbles develop upward through the peak of the F layer into its topside (sometimes to altitudes in excess of 1000 km), a behavior predicted by the nonlinear form of the same instability. While good general agreement has been found between theory and observations, little is known about the detailed physics associated with plasma bubbles. Our research activity centered around two topics: the shape of plasma bubbles and associated electric fields, and the day-to-day variability in the occurrence of plasma bubbles. The first topic was pursued because of a divergence in view regarding the nonlinear physics associated with plasma bubble development. While the development of perturbations in isodensity contours in the bottomside F layer into plasma bubbles is well accepted, some believed bubbles to be cylinder-like closed regions of depleted plasma density that floated upward leaving a turbulent wake behind them (e.g., Woodman and LaHoz, 1976; Ott, 1978; Kelley and Ott, 1978). Our results, summarized in a paper submitted to the Journal of Geophysical Research, consisted of incoherent scatter radar measurements that showed unambiguously that the depleted region is wedgelike and not cylinderlike, and a case study and modeling of SM-D electric field instrument (EFI) measurements that showed that the absence of electric-field perturbations outside the plasma-depleted region is a distinct signature of wedge

  13. plasmaFoam: An OpenFOAM framework for computational plasma physics and chemistry

    Science.gov (United States)

    Venkattraman, Ayyaswamy; Verma, Abhishek Kumar

    2016-09-01

    As emphasized in the 2012 Roadmap for low temperature plasmas (LTP), scientific computing has emerged as an essential tool for the investigation and prediction of the fundamental physical and chemical processes associated with these systems. While several in-house and commercial codes exist, with each having its own advantages and disadvantages, a common framework that can be developed by researchers from all over the world will likely accelerate the impact of computational studies on advances in low-temperature plasma physics and chemistry. In this regard, we present a finite volume computational toolbox to perform high-fidelity simulations of LTP systems. This framework, primarily based on the OpenFOAM solver suite, allows us to enhance our understanding of multiscale plasma phenomenon by performing massively parallel, three-dimensional simulations on unstructured meshes using well-established high performance computing tools that are widely used in the computational fluid dynamics community. In this talk, we will present preliminary results obtained using the OpenFOAM-based solver suite with benchmark three-dimensional simulations of microplasma devices including both dielectric and plasma regions. We will also discuss the future outlook for the solver suite.

  14. Paradigm transition in cosmic plasma physics

    International Nuclear Information System (INIS)

    Alfven, H.

    1982-01-01

    In situ measurements in the magnetospheres together with general advancement in plasma physics are now necessitating introduction of a number of effects that have been recently discovered or earlier neglected. Examples are: electric double layers (like in the lower magnetosphere); thin current layer (like in the magnetopause) giving space a cellular structure; current produced filaments (e.g., in prominences, solar corona and interstellar clouds). Further it is important to use the electric current (particle) description and to study the whole circuit in which the current flows. The pinch effect cannot be neglected as is now usually done. The critical velocity phenomenon is essential, for example for the band structure of solar system. Theory of dusty plasmas is important. The result is a change in so many theories in cosmic plasma physics that it is appropriate to speak of an introduction of a new paradigm. This should be based on empirical knowledge from magnetospheric and laboratory investigations. Its application to astrophysics in general, including cosmology, will necessarily lead to a revision of, e.g., the present theories of the formation of stars, planets and satellites. It is doubtful whether the big bang cosmology will survive. (Auth.)

  15. A perspective on the contributions of Ronald C. Davidson to plasma physics

    Science.gov (United States)

    Wurtele, Jonathan S.

    2016-10-01

    Starting in the 1960s and continuing for half a century, Ronald C. Davidson made fundamental theoretical contributions to a wide range of areas of pure and applied plasma physics. Davidson was one of the founders of nonneutral plasma physics and a pioneer in developing and applying kinetic theory and nonlinear stability theorems to collective interaction processes and nonlinear dynamics of nonneutral plasmas and intense charged particle beams. His textbooks on nonneutral plasmas are the classic references for the field and educated generations of graduate students. Davidson was a strong advocate for applying the ideas of plasma theory to develop techniques that benefit other branches of science. For example, one of the major derivative fields enabled by nonneutral plasmas is the study of antimatter plasmas and the synthesis of antihydrogen. This talk will review a few highlights of Ronald Davidson's impact on plasma physics and related fields of science.

  16. CSSP implementation plan for space plasma physics programs

    International Nuclear Information System (INIS)

    Baker, D.N.; Williams, D.J.; Johns Hopkins Univ., Laurel, MD)

    1985-01-01

    The Committee on Solar and Space Physics (CSSP) has provided NASA with guidance in the areas of solar, heliospheric, magnetospheric, and upper atmospheric research. The budgetary sitation confronted by NASA has called for a prioritized plane for the implementation of solar and space plasma physics programs. CSSP has developed the following recommendations: (1) continue implementation of both the Upper Atmosphere Research Satellite and Solar Optical Telescope programs; (2) initiate the International Solar Terrestrial Physics program; (3) plan for later major free-flying missions and carry out the technology development they require; (4) launch an average of one solar and space physics Explorer per yr beginning in 1990; (5) enhance current Shuttle/Spacelab programs; (6) develop facility-class instrumentation; (7) augment the solar terrestrial theory program by FY 1990; (8) support a compute modeling program; (9) strengthen the research and analysis program; and (10) maintain a stable suborbital program for flexible science objectives in upper atmosphere and space plasma physics

  17. [The mission of Princeton Plasma Physics Laboratory

    International Nuclear Information System (INIS)

    1993-01-01

    This report discusses the following about Princeton Plasma Physics Laboratory: its mission; requirements and guidance documents for the QA program; architecture; assessment organization; and specific management issues

  18. Toward the automated analysis of plasma physics problems

    International Nuclear Information System (INIS)

    Mynick, H.E.

    1989-04-01

    A program (CALC) is described, which carries out nontrivial plasma physics calculations, in a manner intended to emulate the approach of a human theorist. This includes the initial process of gathering the relevant equations from a plasma knowledge base, and then determining how to solve them. Solution of the sets of equations governing physics problems, which in general have a nonuniform,irregular structure, not amenable to solution by standardized algorithmic procedures, is facilitated by an analysis of the structure of the equations and the relations among them. This often permits decompositions of the full problem into subproblems, and other simplifications in form, which renders the resultant subsystems soluble by more standardized tools. CALC's operation is illustrated by a detailed description of its treatment of a sample plasma calculation. 5 refs., 3 figs

  19. Validity of selected physical activity questions in white Seventh-day Adventists and non-Adventists.

    Science.gov (United States)

    Singh, P N; Tonstad, S; Abbey, D E; Fraser, G E

    1996-08-01

    The validity and reliability of selected physical activity questions were assessed in both Seventh-day Adventist (N = 131) and non-Adventist (N = 101) study groups. Vigorous activity questions similar to those used by others and new questions that measured moderate and light activities were included. Validation was external, comparing questionnaire data with treadmill exercise time, resting heart rate, and body mass index (kg.m-2), and internal, comparing data with other similar questions. Both Adventist and non-Adventist males showed significant age-adjusted correlations between treadmill time and a "Run-Walk-Jog Index" (R = 0.28, R = 0.48, respectively). These correlations increased substantially when restricting analysis to exercise speeds exceeding 3 mph (R = 0.39, R = 0.71, respectively). Frequency of sweating and a vigorous physical activity index also correlated significantly with treadmill time in males. Correlations were generally weaker in females. Moderate- and light-intensity questions were not correlated with physical fitness. Internal correlations R = 0.50-0.78) between the above three vigorous activity questions were significant in all groups, and correlations (R = 0.14-0.60) for light and moderate activity questions were also documented. Test-retest reliability coefficients were high for vigorous activity questions (R = 0.48-0.85) and for one set of moderate activity questions (R = 0.43-0.75). No important differences in validity and reliability were found between Adventist and non-Adventists, but the validity of vigorous activity measures was generally weaker in females.

  20. Advanced computations in plasma physics

    International Nuclear Information System (INIS)

    Tang, W.M.

    2002-01-01

    Scientific simulation in tandem with theory and experiment is an essential tool for understanding complex plasma behavior. In this paper we review recent progress and future directions for advanced simulations in magnetically confined plasmas with illustrative examples chosen from magnetic confinement research areas such as microturbulence, magnetohydrodynamics, magnetic reconnection, and others. Significant recent progress has been made in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics, giving increasingly good agreement between experimental observations and computational modeling. This was made possible by innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales together with access to powerful new computational resources. In particular, the fusion energy science community has made excellent progress in developing advanced codes for which computer run-time and problem size scale well with the number of processors on massively parallel machines (MPP's). A good example is the effective usage of the full power of multi-teraflop (multi-trillion floating point computations per second) MPP's to produce three-dimensional, general geometry, nonlinear particle simulations which have accelerated progress in understanding the nature of turbulence self-regulation by zonal flows. It should be emphasized that these calculations, which typically utilized billions of particles for thousands of time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In general, results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. The associated scientific excitement should serve to

  1. Advances of dense plasma physics with particle accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, D.H.H.; Blazevic, A.; Rosmej, O.N.; Spiller, P.; Tahir, N.A.; Weyrich, K. [Gesellschaft fur Schwerionenforschung, GSI-Darmstadt, Plasmaphysik, Darmstadt (Germany); Hoffmann, D.H.H.; Dafni, T.; Kuster, M.; Roth, M.; Udrea, S.; Varentsov, D. [DarmstadtTechnische Univ., Institut fur Kernphysik (Germany); Jacoby, J. [Frankfurt Univ., Institut fur Angewandte Physik (Germany); Zioutas, K. [European Organization for Nuclear Research (CERN), Geneve (Switzerland); Patras Univ., Dept. of Physics (Greece); Sharkov, B.Y. [Institut for Theoretical and Experimental Physics ITEP, Moscow (Russian Federation)

    2006-06-15

    High intensity particle beams from accelerators induce high energy density states in bulk matter. The SIS-18 heavy ion synchrotron at GSI (Darmstadt, Germany) now routinely delivers intense Uranium beams that deposit about 1 kJ/g of specific energy in solid matter, e.g. solid lead. Due to the specific nature of the ion-matter interaction a volume of matter is heated uniformly with low gradients of temperature and pressure in the initial phase, depending on the pulse structure of the beam with respect to space and time. The new accelerator complex FAIR (Facility for Antiproton and ion Research) at GSI as well as beams from the CERN large hadron collider (LHC) will vastly extend the accessible parameter range for high energy density states. One special piece of accelerator equipment a superconducting high field dipole magnet, developed for the LHC at CERN is now serving as a key instrument to diagnose the dense plasma of the sun interior plasma, thus providing an extremely interesting combination of accelerator physics, plasma physics and particle physics. (authors)

  2. Advances of dense plasma physics with particle accelerators

    International Nuclear Information System (INIS)

    Hoffmann, D.H.H.; Blazevic, A.; Rosmej, O.N.; Spiller, P.; Tahir, N.A.; Weyrich, K.; Hoffmann, D.H.H.; Dafni, T.; Kuster, M.; Roth, M.; Udrea, S.; Varentsov, D.; Jacoby, J.; Zioutas, K.; Sharkov, B.Y.

    2006-01-01

    High intensity particle beams from accelerators induce high energy density states in bulk matter. The SIS-18 heavy ion synchrotron at GSI (Darmstadt, Germany) now routinely delivers intense Uranium beams that deposit about 1 kJ/g of specific energy in solid matter, e.g. solid lead. Due to the specific nature of the ion-matter interaction a volume of matter is heated uniformly with low gradients of temperature and pressure in the initial phase, depending on the pulse structure of the beam with respect to space and time. The new accelerator complex FAIR (Facility for Antiproton and ion Research) at GSI as well as beams from the CERN large hadron collider (LHC) will vastly extend the accessible parameter range for high energy density states. One special piece of accelerator equipment a superconducting high field dipole magnet, developed for the LHC at CERN is now serving as a key instrument to diagnose the dense plasma of the sun interior plasma, thus providing an extremely interesting combination of accelerator physics, plasma physics and particle physics. (authors)

  3. Physics in Brazil in the next decade: atomic, molecular and optical physics, biological, chemical and medical physics, physics teaching and plasma physics

    International Nuclear Information System (INIS)

    1990-01-01

    This is an overview of physics in Brazil in the next decade. It is specially concerned with atomic, molecular and optical physics, biological chemical and medical physics, and also teaching of physics and plasma physics. It presents the main research groups in Brazil in the above mentioned areas. It talks as well, about financing new projects and the costs involved to improve these areas. (A.C.A.S.)

  4. Physical properties of dense, low-temperature plasmas

    International Nuclear Information System (INIS)

    Redmer, R.

    1997-01-01

    Plasmas occur in a wide range of the density-temperature plane. The physical quantities can be expressed by Green's functions which are evaluated by means of standard quantum statistical methods. The influences of many-particle effects such as dynamic screening and self-energy, structure factor and local-field corrections, formation and decay of bound states, degeneracy and Pauli exclusion principle are studied. As a basic concept for partially ionized plasmas, a cluster decomposition is performed for the self-energy as well as for the polarization function. The general model of a partially ionized plasma interpolates between low-density, nonmetallic systems such as atomic vapors and high-density, conducting systems such as metals or fully ionized plasmas. The equations of state, including the location of the critical point and the shape of the coexistence curve, are determined for expanded alkali-atom and mercury fluids. The occurrence of a metal-nonmetal transition near the critical point of the liquid-vapor phase transition leads in these materials to characteristic deviations from the behavior of nonconducting fluids such as the inert gases. Therefore, a unified approach is needed to describe the drastic changes of the electronic properties as well as the variation of the physical properties with the density. Similar results are obtained for the hypothetical plasma phase transition in hydrogen plasma. The transport coefficients (electrical and thermal conductivity, thermopower) are studied wthin linear response theory given here in the formulation of Zubarev which is valid for arbitrary degeneracy and yields the transport coefficients for the limiting cases of nondegenerate, weakly coupled plasmas (Spitzer theory) as well as degenerate, strongly coupled plasmas (Ziman theory). mercury within the MHNC scheme via effective ion-ion potentials which are derived from the polarization function within an extended RPA. The optical properties of dense plasmas, the shift

  5. FOREWORD: International Workshop on Theoretical Plasma Physics: Modern Plasma Science. Sponsored by the Abdus Salam ICTP, Trieste, Italy

    Science.gov (United States)

    Shukla, P. K.; Stenflo, L.

    2005-01-01

    The "International Workshop on Theoretical Plasma Physics: Modern Plasma Science was held at the Abdus Salam International Centre for Theoretical Physics (Abdus Salam ICTP), Trieste, Italy during the period 5 16 July 2004. The workshop was organized by P K Shukla, R Bingham, S M Mahajan, J T Mendonça, L Stenflo, and others. The workshop enters into a series of previous biennial activities that we have held at the Abdus Salam ICTP since 1989. The scientific program of the workshop was split into two parts. In the first week, most of the lectures dealt with problems concerning astrophysical plasmas, while in the second week, diversity was introduced in order to address the important role of plasma physics in modern areas of science and technology. Here, attention was focused on cross-disciplinary topics including Schrödinger-like models, which are common in plasma physics, nonlinear optics, quantum engineering (Bose-Einstein condensates), and nonlinear fluid mechanics, as well as emerging topics in fundamental theoretical and computational plasma physics, space and dusty plasma physics, laser-plasma interactions, etc. The workshop was attended by approximately hundred-twenty participants from the developing countries, Europe, USA, and Japan. A large number of participants were young researchers from both the developing and industrial countries, as the directors of the workshop tried to keep a good balance in inviting senior and younger generations of theoretical, computational and experimental plasma physicists to our Trieste activities. In the first week, there were extensive discussions on the physics of electromagnetic wave emissions from pulsar magnetospheres, relativistic magnetohydrodynamics of astrophysical objects, different scale sizes turbulence and structures in astrophysics. The scientific program of the second week included five review talks (60 minutes) and about thirty invited topical lectures (30 minutes). In addition, during the two weeks, there

  6. Fusion programs in applied plasma physics

    International Nuclear Information System (INIS)

    1993-07-01

    This report summarizes the progress made in theoretical and experimental research funded by US Department of Energy Grant No. DE-FG03-92ER54150, during the period July 11, 1992 through May 31, 1993. Four main tasks are reported: applied plasma physics theory, alpha particle diagnostic, edge and current density diagnostic, and plasma rotation drive. The report also discusses the research plans for the theory and experimental programs for the next grant year. Reports and publications supported by the grant during this period are listed in the final section

  7. Determination of composition and physical properties of partially ionized plasmas in the function of temperature

    International Nuclear Information System (INIS)

    Zaporowski, B.

    1992-01-01

    The investigations of various kinds of partially ionized plasma were conducted for the pressure of 0.1 MPa and in the range of temperature of 298.15 K to 24000 K. The physical properties of various kinds of partially ionized plasma depend mainly of their composition and temperature. The composition of particular kinds of partially ionized plasmas varies also in the function of temperature. Simultaneous going on of physical and chemical processes in plasma is the reason of difficulties in the calculations of plasma's physical properties. The use of the laws of macroscopic thermodynamics for the calculations of physical properties of partially ionized plasma is impossible. There are enough exact methods for measuring of physical properties of partially ionized plasma. For these reasons the theoretical method using the base of statistic physics was used to calculate the composition and physical properties of various kinds of partially ionized plasma. (author) 2 refs., 2 figs

  8. Nonlinear aspects of quantum plasma physics

    International Nuclear Information System (INIS)

    Shukla, Padma K; Eliasson, B

    2010-01-01

    Dense quantum plasmas are ubiquitous in planetary interiors and in compact astrophysical objects (e.g., the interior of white dwarf stars, in magnetars, etc.), in semiconductors and micromechanical systems, as well as in the next-generation intense laser-solid density plasma interaction experiments and in quantum X-ray free-electron lasers. In contrast to classical plasmas, quantum plasmas have extremely high plasma number densities and low temperatures. Quantum plasmas are composed of electrons, positrons and holes, which are degenerate. Positrons (holes) have the same (slightly different) mass as electrons, but opposite charge. The degenerate charged particles (electrons, positrons, and holes) obey the Fermi-Dirac statistics. In quantum plasmas, there are new forces associated with (i) quantum statistical electron and positron pressures, (ii) electron and positron tunneling through the Bohm potential, and (iii) electron and positron angular momentum spin. Inclusion of these quantum forces allows the existence of very high-frequency dispersive electrostatic and electromagnetic waves (e.g., in the hard X-ray and gamma-ray regimes) with extremely short wavelengths. In this review paper, we present theoretical backgrounds for some important nonlinear aspects of wave-wave and wave-electron interactions in dense quantum plasmas. Specifically, we focus on nonlinear electrostatic electron and ion plasma waves, novel aspects of three-dimensional quantum electron fluid turbulence, as well as nonlinearly coupled intense electromagnetic waves and localized plasma wave structures. Also discussed are the phase-space kinetic structures and mechanisms that can generate quasistationary magnetic fields in dense quantum plasmas. The influence of the external magnetic field and the electron angular momentum spin on the electromagnetic wave dynamics is discussed. Finally, future perspectives of the nonlinear quantum plasma physics are highlighted. (reviews of topical problems)

  9. Paradigm transition in cosmic plasma physics

    International Nuclear Information System (INIS)

    Alfven, H.

    1982-06-01

    In situ measurements in the magnetospheres together with general advancement in plasma physics are now necessitating introduction of a number of effects that have been recently discovered or earlier neglected. Examples are: 1) Electric double layers (like in the lower magnetosphere) 2) Thin current layer (like in the magnetopause) giving space a cellular structure. 3) Current produced filaments (e.g. in prominences, solar corona and interstellar clouds). 4) Further it is important to use the electric current (particle) description and to study the whole circuit in which the current flows. 5) The pinch effect cannot be neglected as is now usually done. 6) The critical velocity phenomenon is essential, for example for the band structure of solar systems. 7) Theory of dusty plasmas is important. The result is a change in so many theories in cosmic plasma physics that it is appropriate to speak of an introduction of a new paradigm. This should be based on empirical knowledge from magnetospheric and laboratory investigations. Its application to astrophysics in general, including cosmology, will necessarily lead to a revision of e.g. the present theories of the formation of stars, planets and satellites. It is doubtful whether the big bang cosmology will survive. (Author)

  10. 28. Zvenigorod conference on the plasma physics and controlled thermonuclear synthesis. Theses of reports

    International Nuclear Information System (INIS)

    2001-01-01

    Theses of reports, presented at the 28th Conference on the plasma physics and controlled thermonuclear synthesis (Zvenigorod, 19-23 February 2001) are published. 246 reports were heard at the following sections: magnetic confinement, theory and experiments; inertial thermonuclear synthesis; plasma processes and physics of gas-discharge plasma; physical bases of plasma technologies. 17 reports had the summarizing character [ru

  11. EDITORIAL: Stability and nonlinear dynamics of plasmas: A symposium celebrating Professor Robert Dewar's accomplishments in plasma physics Stability and nonlinear dynamics of plasmas: A symposium celebrating Professor Robert Dewar's accomplishments in plasma physics

    Science.gov (United States)

    Bhattacharjee, Amitava

    2012-01-01

    To celebrate Professor Robert Dewar's 65th birthday, a Symposium was held on 31 October 2009 in Atlanta, Georgia, just before the 51st Annual Meeting of the Division of Plasma Physics of the American Physical Society. The Symposium was attended by many of Bob's colleagues, friends, postdoctoral colleagues and students (present and former). Boyd Blackwell, Anthony Cooper, Chris Hegna, Stuart Hudson, John Krommes, Alexander Pletzer, Ellen Zweibel, and I gave talks that covered various aspects of Bob's wide-ranging scholarship, and his leadership in the Australian and the US fusion program. At the Symposium, Bob gave an insightful talk, published in this issue as a paper with D Leykam. This paper makes available for the first time unpublished results from Bob's M Sc Thesis on a general method for calculating the potential around a `dressed' test particle in an isotropic and collisionless plasma. The paper is interesting not only because it provides a glimpse of the type of elegant applied mathematics that we have come to associate with Bob, but also because he discusses some leitmotifs in his intellectual evolution since the time he was a graduate student at the University of Melbourne and Princeton University. Through his early encounter with quantum field theory, Bob appreciated the power of Lagrangian and Hamiltonian formalisms, which he used with great effectiveness in nonlinear dynamics and plasma physics. A question that animates much of his work is one that underlies the `dressed' particle problem: if one is given a Hamiltonian with an unperturbed (or `bare') part and an interaction part, how is one to obtain a canonical transformation to `the oscillation centre' thatwould reduce the interaction part to an irreducible residual part while incorporating the rest in a renormalized zeroth-order Hamiltonian? One summer in Princeton, I worked with Bob on a possible variational formulation for this problem, and failed. I was daunted enough by my failure that I turned

  12. Fundamental aspects of plasma chemical physics transport

    CERN Document Server

    Capitelli, Mario; Laricchiuta, Annarita

    2013-01-01

    Fundamental Aspects of Plasma Chemical Physics: Tranpsort develops basic and advanced concepts of plasma transport to the modern treatment of the Chapman-Enskog method for the solution of the Boltzmann transport equation. The book invites the reader to consider actual problems of the transport of thermal plasmas with particular attention to the derivation of diffusion- and viscosity-type transport cross sections, stressing the role of resonant charge-exchange processes in affecting the diffusion-type collision calculation of viscosity-type collision integrals. A wide range of topics is then discussed including (1) the effect of non-equilibrium vibrational distributions on the transport of vibrational energy, (2) the role of electronically excited states in the transport properties of thermal plasmas, (3) the dependence of transport properties on the multitude of Saha equations for multi-temperature plasmas, and (4) the effect of the magnetic field on transport properties. Throughout the book, worked examples ...

  13. Variational integrators in plasma physics

    International Nuclear Information System (INIS)

    Kraus, Michael

    2013-01-01

    To a large extent, research in plasma physics is concerned with the description and analysis of energy and momentum transfer between different scales and different kinds of waves. In the numerical modelling of such phenomena it appears to be crucial to describe the transfer processes preserving the underlying conservation laws in order to prevent physically spurious solutions. In this work, special numerical methods, so called variational integrators, are developed for several models of plasma physics. Special attention is given to conservation properties like conservation of energy and momentum. By design, variational integrators are applicable to all systems that have a Lagrangian formulation. Usually, equations of motion are derived by Hamilton's action principle and then discretised. In the application of the variational integrator theory, the order of these steps is reversed. At first, the Lagrangian and the accompanying variational principle are discretised, such that discrete equations of motion can be obtained directly by applying the discrete variational principle to the discrete Lagrangian. The advantage of this approach is that the resulting discretisation automatically retains the conservation properties of the continuous system. Following an overview of the geometric formulation of classical mechanics and field theory, which forms the basis of the variational integrator theory, variational integrators are introduced in a framework adapted to problems from plasma physics. The applicability of variational integrators is explored for several important models of plasma physics: particle dynamics (guiding centre dynamics), kinetic theory (the Vlasov-Poisson system) and fluid theory (magnetohydrodynamics). These systems, with the exception of guiding centre dynamics, do not possess a Lagrangian formulation to which the variational integrator methodology is directly applicable. Therefore the theory is extended by linking it to Ibragimov's theory of

  14. Possible limits of plasma linear colliders

    Science.gov (United States)

    Zimmermann, F.

    2017-07-01

    Plasma linear colliders have been proposed as next or next-next generation energy-frontier machines for high-energy physics. I investigate possible fundamental limits on energy and luminosity of such type of colliders, considering acceleration, multiple scattering off plasma ions, intrabeam scattering, bremsstrahlung, and betatron radiation. The question of energy efficiency is also addressed.

  15. Studies of electron cyclotron resonance ion source plasma physics

    International Nuclear Information System (INIS)

    Tarvainen, O.

    2005-01-01

    This thesis consists of an introduction to the plasma physics of electron cyclotron resonance ion sources (ECRIS) and a review of the results obtained by the author and co-workers including discussion of related work by others. The thesis begins with a theoretical discussion dealing with plasma physics relevant for the production of highly charged ions in ECR ion source plasmas. This is followed by an overview of different techniques, such as gas mixing and double frequency heating, that can be used to improve the performance of this type of ion source. The experimental part of the work consists of studies related to ECRIS plasma physics. The effect of the gas mixing technique on the production efficiency of different ion beams was studied with both gaseous and solid materials. It was observed that gas mixing improves the confinement of the heavier element while the confinement of the lighter element is reduced. When the effect of gas mixing on MIVOC-plasmas was studied with several mixing gases it was observed that applying this technique can reduce the inevitable carbon contamination by a significant factor. In order to understand the different plasma processes taking place in ECRIS plasmas, a series of plasma potential and emittance measurements was carried out. An instrument, which can be used to measure the plasma potential in a single measurement without disturbing the plasma, was developed for this work. Studying the plasma potential of ECR ion sources is important not only because it helps to understand different plasma processes, but also because the information can be used as an input parameter for beam transport simulations and ion source extraction design. The experiments performed have revealed clear dependencies of the plasma potential on certain source parameters such as the amount of carbon contamination accumulated on the walls of the plasma chamber during a MIVOC-run. It was also observed that gas mixing affects not only the production efficiency

  16. Physical processes in relativistic plasmas

    International Nuclear Information System (INIS)

    Svensson, R.

    1984-01-01

    The continuum emission in many active galactic nuclei (AGNs) extend to 100 keV and beyond (e.g. Rothschild et al. 1983). In thermal models of the continuum emission this implies temperatures above 10 9 K or kT of order mc 2 . In such a plasma the electrons are at least mildly relativistic and furthermore the particles and the photons are energetic enough to produce electron-positron pairs. The physics of such hot plasmas has only recently been studied in any detail and here we review the results of those studies. Significant electron-positron pair production may also occur in non-thermal models of the continuum emission if the optical depth to photon-photon pair production is greater than unity. We review the few results obtained regarding this interesting but not very well studied possibility. First, however, we briefly discuss the processes taking place in relativistic plasmas and the standard models for the continuum emission from AGNs. We then summarize the effects pair production have on these models and the observational implications of the presence of electron-positron pairs. (orig./WL)

  17. Physical models for the description of an electrodynamically accelerated plasma sheath

    International Nuclear Information System (INIS)

    Zambreanu, V.

    1977-01-01

    An analysis of the models proposed for the description of the plasma sheath dynamics in a coaxial system (of the same type as that operating at the Bucharest Institute of Physics) is presented. A particular attention is paid to the physical structure of the accelerated plasma. It has been shown that a self-consistent model could be derived from a phenomenological description of the sheath structure. The physical models presented so far in the literature have been classified into three groups: the hydrodynamic models, the plasma sheet models and the shock wave models. Each of these models is briefly described. The simplifying assumptions used in the construction of these models have been pointed out. The final conclusion has been that, under these assumptions, none of these models taken separately could completely and correctly describe the dynamical state of the plasma sheath. (author)

  18. A Physics Exploratory Experiment on Plasma Liner Formation

    Science.gov (United States)

    Thio, Y. C. Francis; Knapp, Charles E.; Kirkpatrick, Ronald C.; Siemon, Richard E.; Turchi, Peter

    2002-01-01

    Momentum flux for imploding a target plasma in magnetized target fusion (MTF) may be delivered by an array of plasma guns launching plasma jets that would merge to form an imploding plasma shell (liner). In this paper, we examine what would be a worthwhile experiment to do in order to explore the dynamics of merging plasma jets to form a plasma liner as a first step in establishing an experimental database for plasma-jets driven magnetized target fusion (PJETS-MTF). Using past experience in fusion energy research as a model, we envisage a four-phase program to advance the art of PJETS-MTF to fusion breakeven Q is approximately 1). The experiment (PLX (Plasma Liner Physics Exploratory Experiment)) described in this paper serves as Phase I of this four-phase program. The logic underlying the selection of the experimental parameters is presented. The experiment consists of using twelve plasma guns arranged in a circle, launching plasma jets towards the center of a vacuum chamber. The velocity of the plasma jets chosen is 200 km/s, and each jet is to carry a mass of 0.2 mg - 0.4 mg. A candidate plasma accelerator for launching these jets consists of a coaxial plasma gun of the Marshall type.

  19. XXXII Zvenigorod conference on the plasma physics and controlled thermonuclear synthesis. Theses of reports

    International Nuclear Information System (INIS)

    2005-01-01

    Theses of the reports, presented at the XXXII International conference on the plasma physics and controlled thermonuclear synthesis (Zvenigorod, 14-18 February 2005) are published. The total number of reports is 322, including 16 summarizing ones. The other reports are distributed by the following sections: magnetic confinement of high-temperature plasma (88 reports), inertial thermonuclear fusion (65), physical processes in low-temperature plasma (99) and physical bases of the plasma and beam technologies (54) [ru

  20. Introduction to plasma physics and controlled fusion

    CERN Document Server

    Chen, Francis F

    1984-01-01

    This complete introduction to plasma physics and controlled fusion by one of the pioneering scientists in this expanding field offers both a simple and intuitive discussion of the basic concepts of this subject and an insight into the challenging problems of current research. In a wholly lucid manner the work covers single-particle motions, fluid equations for plasmas, wave motions, diffusion and resistivity, Landau damping, plasma instabilities and nonlinear problems. For students, this outstanding text offers a painless introduction to this important field; for teachers, a large collection of problems; and for researchers, a concise review of the fundamentals as well as original treatments of a number of topics never before explained so clearly. This revised edition contains new material on kinetic effects, including Bernstein waves and the plasma dispersion function, and on nonlinear wave equations and solitons.

  1. Questioning the No-Touch Discourse in Physical Education from a Children's Rights Perspective

    Science.gov (United States)

    Öhman, Marie; Quennerstedt, Ann

    2017-01-01

    In this paper we question the rationality of "no-touch policies" and offer an alternative approach to the matter of physical contact between teachers and students in the context of physical education (PE) in schools. Earlier research has drawn attention to how a discourse of child protection is starting to affect how physical contact is…

  2. Frontiers of Physics and Plasma Science

    International Nuclear Information System (INIS)

    Sharma, Prerana

    2017-01-01

    Preface to the conference proceedingsWe are very pleased to introduce the proceeding of FPPS-2016; the international conference “Frontiers of Physics and Plasma Science” that took place on 7 and 8 November, 2016 in the campus of Ujjain Engineering College, Ujjain (India). The goal of the meeting was to provide a broad prospective to the plasma science emphasizing physics with a new plasma technologies. The scientific program of the conference focused on the advancement of the all branches of physics in achieving all applications of the plasma science. The conference spans a wide range of topics, reporting experiments, techniques and ideas that advance the plasma science worldwide.There were 20 invited lectures and 04 oral presentations covering the different area of the conference. The keynote lecture was delivered by Dr. Rajdeep Singh Rawat (NTU, Singapore) on “Density plasma focus: novel high energy density plasma device”. Prof. Y.C. Saxena (IPR, Gandhinagar, Ahmedabad), Prof. R. P. Sharma (IIT, New Delhi), Prof. Fernando Haas (Brazil), Prof. Davoud Dorranian (Tehran, Iran), Dr. Raju Khanal (Tribhuwan University, Nepal), Prof. Avinash Khare (IIT, New Delhi), Dr. Navin Dwivedi (Israel), Prof. V.K. Tripathi (IIT New Delhi), Dr. J. Ghosh (IPR, Gandhinagar, Gujarat), Dr. Devendra Sharma (IPR, Gandhinagar, Gujarat), Prof. R.K. Thareja (IIT Kanpur), Dr. Vipul Arora (RRCAT, Indore), Prof. M. P. Bora (Gauhati University, Guwahati) and many more have delivered their lecture in the field of plasma science and its applications. The program was chaired in a professional and efficient way by the session chairmen who were selected for their international standing in the subject.The 165 abstracts that were presented in two days (during parallel poster session) formed a heart of the conference and provided ample opportunity for the discussion. The 170 participants, 110 of whom were students had many fruitful discussions and exchange that contributed to the success of the

  3. VOA: a 2-d plasma physics code

    International Nuclear Information System (INIS)

    Eltgroth, P.G.

    1975-12-01

    A 2-dimensional relativistic plasma physics code was written and tested. The non-thermal components of the particle distribution functions are represented by expansion into moments in momentum space. These moments are computed directly from numerical equations. Currently three species are included - electrons, ions and ''beam electrons''. The computer code runs on either the 7600 or STAR machines at LLL. Both the physics and the operation of the code are discussed

  4. Mathematics for plasma physics; Mathematiques pour la physique des plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Sentis, R. [CEA Bruyeres-le-Chatel, 91 (France)

    2011-01-15

    The plasma physics is in the heart of the research of the CEA-DAM. Using mathematics in this domain is necessary, particularly for a precise statement of the partial differential equations systems which are on the basis of the numerical simulations. Examples are given concerning hydrodynamics, models for the thermal conduction and laser-plasma interaction. For the bi-temperature compressible Euler model, the mathematical study of the problem has allowed us to understand why the role of the energy equations dealing with ions on one hand and electrons on the other hand are not identical despite the symmetrical appearance of the system. The mathematical study is also necessary to be sure of the existence and uniqueness of the solution

  5. Variational integrators in plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, Michael

    2013-07-01

    To a large extent, research in plasma physics is concerned with the description and analysis of energy and momentum transfer between different scales and different kinds of waves. In the numerical modelling of such phenomena it appears to be crucial to describe the transfer processes preserving the underlying conservation laws in order to prevent physically spurious solutions. In this work, special numerical methods, so called variational integrators, are developed for several models of plasma physics. Special attention is given to conservation properties like conservation of energy and momentum. By design, variational integrators are applicable to all systems that have a Lagrangian formulation. Usually, equations of motion are derived by Hamilton's action principle and then discretised. In the application of the variational integrator theory, the order of these steps is reversed. At first, the Lagrangian and the accompanying variational principle are discretised, such that discrete equations of motion can be obtained directly by applying the discrete variational principle to the discrete Lagrangian. The advantage of this approach is that the resulting discretisation automatically retains the conservation properties of the continuous system. Following an overview of the geometric formulation of classical mechanics and field theory, which forms the basis of the variational integrator theory, variational integrators are introduced in a framework adapted to problems from plasma physics. The applicability of variational integrators is explored for several important models of plasma physics: particle dynamics (guiding centre dynamics), kinetic theory (the Vlasov-Poisson system) and fluid theory (magnetohydrodynamics). These systems, with the exception of guiding centre dynamics, do not possess a Lagrangian formulation to which the variational integrator methodology is directly applicable. Therefore the theory is extended by linking it to Ibragimov's theory of

  6. Physics and astrophysics of quark-gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1993-06-15

    The quark gluon plasma - matter too hot or dense for quarks to crystallize into particles - played a vital role in the formation of the Universe. Efforts to recreate and understand this type of matter are forefront physics and astrophysics, and progress was highlighted in the Second International Conference on Physics and Astrophysics of Quark Gluon Plasma (ICPA-QGP 93), held in Calcutta from 19-23 January. (The first conference in the series was held in Bombay in February 1988). Although primarily motivated towards enlightening the Indian physics community in this new and rapidly evolving area, in which India now plays an important role, the conference also catered for an international audience. Particular emphasis was placed on the role of quark gluon plasma in astrophysics and cosmology. While Charles Alcock of Lawrence Livermore looked at a less conventional picture giving inhomogeneous ('clumpy') nucleosynthesis, David Schramm (Chicago) covered standard big bang nucleosynthesis. The abundances of very light elements do not differ appreciably for these contrasting scenarios; the crucial difference between them shows up for heavier elements like lithium-7 and -8 and boron-11. Richard Boyd (Ohio State) highlighted the importance of accurate measurements of the primordial abundances of these elements for clues to the cosmic quark hadron phase transition. B. Banerjee (Bombay) argued, on the basis of lattice calculations, for only slight supercooling in the cosmic quark phase transition - an assertion which runs counter to the inhomogeneous nucleosynthesis scenario.

  7. Physics and astrophysics of quark-gluon plasma

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The quark gluon plasma - matter too hot or dense for quarks to crystallize into particles - played a vital role in the formation of the Universe. Efforts to recreate and understand this type of matter are forefront physics and astrophysics, and progress was highlighted in the Second International Conference on Physics and Astrophysics of Quark Gluon Plasma (ICPA-QGP 93), held in Calcutta from 19-23 January. (The first conference in the series was held in Bombay in February 1988). Although primarily motivated towards enlightening the Indian physics community in this new and rapidly evolving area, in which India now plays an important role, the conference also catered for an international audience. Particular emphasis was placed on the role of quark gluon plasma in astrophysics and cosmology. While Charles Alcock of Lawrence Livermore looked at a less conventional picture giving inhomogeneous ('clumpy') nucleosynthesis, David Schramm (Chicago) covered standard big bang nucleosynthesis. The abundances of very light elements do not differ appreciably for these contrasting scenarios; the crucial difference between them shows up for heavier elements like lithium-7 and -8 and boron-11. Richard Boyd (Ohio State) highlighted the importance of accurate measurements of the primordial abundances of these elements for clues to the cosmic quark hadron phase transition. B. Banerjee (Bombay) argued, on the basis of lattice calculations, for only slight supercooling in the cosmic quark phase transition - an assertion which runs counter to the inhomogeneous nucleosynthesis scenario

  8. 10th International Conference and School on Plasma Physics and Controlled Fusion. Book of Abstracts

    International Nuclear Information System (INIS)

    Anon

    2004-01-01

    About 240 abstracts by Ukrainian and foreign authors submitted to 10-th International Conference and School on Plasma Physics and Controlled fusion have been considered by Conference Program Committee members. All the abstracts have been divided into 8 groups: magnetic confinement systems: stellarators, tokamaks, alternative conceptions; ITER and Fusion reactor aspects; basic plasma physics; space plasma; plasma dynamics and plasma-wall interaction; plasma electronics; low temperature plasma and plasma technologies; plasma diagnostics

  9. Fundamentals of plasma physics and controlled fusion. The third edition

    International Nuclear Information System (INIS)

    Miyamoto, Kenro

    2011-06-01

    Primary objective of this lecture note is to provide a basic text for the students to study plasma physics and controlled fusion researches. Secondary objective is to offer a reference book describing analytical methods of plasma physics for the researchers. This was written based on lecture notes for a graduate course and an advanced undergraduate course those have been offered at Department of Physics, Faculty of Science, University of Tokyo. In ch.1 and 2, basic concept of plasma and its characteristics are explained. In ch.3, orbits of ion and electron are described in several magnetic field configurations. Chapter 4 formulates Boltzmann equation of velocity space distribution function, which is the basic relation of plasma physics. From ch.5 to ch.9, plasmas are described as magnetohydrodynamic (MHD) fluid. MHD equation of motion (ch.5), equilibrium (ch.6) and diffusion and confinement time of plasma (ch.7) are described by the fluid model. Chapters 8 and 9 discuss problems of MHD instabilities whether a small perturbation will grow to disrupt the plasma or will damp to a stable state. The basic MHD equation of motion can be derived by taking an appropriate average of Boltzmann equation. This mathematical process is described in appendix A. The derivation of useful energy integral formula of axisymmetric toroidal system and the analysis of high n ballooning mode are described in app. B. From ch.10 to ch.14, plasmas are treated by kinetic theory. This medium, in which waves and perturbations propagate, is generally inhomogeneous and anisotropic. It may absorb or even amplify the wave. Cold plasma model described in ch.10 is applicable when the thermal velocity of plasma particles is much smaller than the phase velocity of wave. Because of its simplicity, the dielectric tensor of cold plasma can be easily derived and the properties of various wave can be discussed in the case of cold plasma. If the refractive index becomes large and the phase velocity of the

  10. The Oxford Questions on the foundations of quantum physics.

    Science.gov (United States)

    Briggs, G A D; Butterfield, J N; Zeilinger, A

    2013-09-08

    The twentieth century saw two fundamental revolutions in physics-relativity and quantum. Daily use of these theories can numb the sense of wonder at their immense empirical success. Does their instrumental effectiveness stand on the rock of secure concepts or the sand of unresolved fundamentals? Does measuring a quantum system probe, or even create, reality or merely change belief? Must relativity and quantum theory just coexist or might we find a new theory which unifies the two? To bring such questions into sharper focus, we convened a conference on Quantum Physics and the Nature of Reality. Some issues remain as controversial as ever, but some are being nudged by theory's secret weapon of experiment.

  11. 179th International School of Physics "Enrico Fermi" : Laser-Plasma Acceleration

    CERN Document Server

    Gizzi, L A; Faccini, R

    2012-01-01

    Impressive progress has been made in the field of laser-plasma acceleration in the last decade, with outstanding achievements from both experimental and theoretical viewpoints. Closely exploiting the development of ultra-intense, ultrashort pulse lasers, laser-plasma acceleration has developed rapidly, achieving accelerating gradients of the order of tens of GeV/m, and making the prospect of miniature accelerators a more realistic possibility. This book presents the lectures delivered at the Enrico Fermi International School of Physics and summer school: "Laser-Plasma Acceleration" , held in Varenna, Italy, in June 2011. The school provided an opportunity for young scientists to experience the best from the worlds of laser-plasma and accelerator physics, with intensive training and hands-on opportunities related to key aspects of laser-plasma acceleration. Subjects covered include: the secrets of lasers; the power of numerical simulations; beam dynamics; and the elusive world of laboratory plasmas. The object...

  12. High-fidelity plasma codes for burn physics

    Energy Technology Data Exchange (ETDEWEB)

    Cooley, James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Graziani, Frank [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Marinak, Marty [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Murillo, Michael [Michigan State Univ., East Lansing, MI (United States)

    2016-10-19

    Accurate predictions of equation of state (EOS), ionic and electronic transport properties are of critical importance for high-energy-density plasma science. Transport coefficients inform radiation-hydrodynamic codes and impact diagnostic interpretation, which in turn impacts our understanding of the development of instabilities, the overall energy balance of burning plasmas, and the efficacy of self-heating from charged-particle stopping. Important processes include thermal and electrical conduction, electron-ion coupling, inter-diffusion, ion viscosity, and charged particle stopping. However, uncertainties in these coefficients are not well established. Fundamental plasma science codes, also called high-fidelity plasma codes, are a relatively recent computational tool that augments both experimental data and theoretical foundations of transport coefficients. This paper addresses the current status of HFPC codes and their future development, and the potential impact they play in improving the predictive capability of the multi-physics hydrodynamic codes used in HED design.

  13. We experience more than we comprehend. Quantum physics and questions of life. rev. new ed.

    International Nuclear Information System (INIS)

    Duerr, Hans-Peter; Oesterreicher-Mollwo, Marianne

    2015-01-01

    The quantum physics has been arrived by thinking and experimenting to revolutioning knowledges, which determine our world, also if only few have understood these theories in their real sense. The present book follows the question, whether and how far a consciousness trained by quantum physics can reach more directly to the understanding of questions of life and religious questions than a thinking, which is obliged to classical physics. It deals especially with fundamental existential questions: The theme of personal responsibility, the value of the individual existence, the evaluation of the personal I-you relation. Hans Peter Duerr, a personality with guiding qualities, as they are necessary in the new millennium, is the ideal speech partner for the dimension of this theme. The connections of natural sciences and religion, ecology, and sociological change have always driven the Heisenberg successor. How can we speech about that, which science cannot comprehend?. What means self, identity, responsibility for the quantum physicist? An exciting meeting.

  14. Alushta-2012. International Conference-School on Plasma Physics and Controlled Fusion and the Adjoint Workshop 'Nano-and micro-sized structures in plasmas'. Book of Abstracts

    International Nuclear Information System (INIS)

    Makhlaj, V.A.

    2012-01-01

    The Conference was devoted to a new valuable information about the present status of plasma physics and controlled fusion research. The main topics was : magnetic confinement systems; plasma heating and current drive; ITER and fusion reactor aspects; basic plasma physics; space plasma; plasma dynamics and plasma-wall interaction; plasma electronics; low temperature plasma and plasma technologies; plasma diagnostics; formation of nano-and micro-sized structures in plasmas; properties of plasmas with nano- and micro- objects

  15. PREFACE: 14th Latin American Workshop on Plasma Physics (LAWPP 2011)

    Science.gov (United States)

    Bilbao, Luis; Minotti, Fernando; Kelly, Hector

    2012-06-01

    These proceedings present the written contributions from participants of the Latin American Workshop on Plasma Physics (LAWPP), which was held in Mar del Plata, Argentina, on 20-25 November 2011. This was the 14th session of the series of LAWPP biennial meetings, which started in 1982. The five-day scientific program of LAWPP 2011 consisted of 32 talks and various poster sessions, with the participation of 135 researchers from Argentina, Brazil, Canada, Chile, Colombia, Mexico, Puerto Rico, USA, Venezuela, as well as others from Europe and Asia. In addition, a School on Plasma Physics and a Workshop on Industrial Applications of Plasma Technology (AITP) were organized together with the main meeting. The five-day School held in the week previous to the meeting was intended for young scientists starting their research in Plasma Physics. On the other hand, the objective of the AITP Workshop was to enhance regional academic and industrial cooperation in the field of plasma assisted surface technology. Topics addressed at LAWPP 2011 included space plasmas, dusty plasmas, nuclear fusion, non-thermal plasmas, basic plasma processes, plasma simulation and industrial plasma applications. This variety of subjects is reflected in these proceedings, which the editors hope will result in enjoyable and fruitful reading for those interested in Plasma Physics. It is a pleasure to thank the Institutions that sponsored the meeting, as well as all the participants and collaborators for making this meeting possible. The Editors Luis Bilbao, Fernando Minotti and Hector Kelly LAWPP participants Participants of the 14th Latin American Workshop on Plasma Physics, 20-25 November 2011, Mar del Plata, Argentina International Scientific Committee Carlos Alejaldre, Spain María Virginia Alves, Brazil Ibere Caldas, Brazil Luis Felipe Delgado-Aparicio, Peru Mayo Villagrán, Mexico Kohnosuke Sato, Japan Héctor Kelly, Argentina Edberto Leal-Quirós, Puerto Rico George Morales, USA Julio Puerta

  16. Response to “Comment on ‘Magnetic geometry and physics of advanced divertors: The X-divertor and the snowflake’ ” [Phys. Plasmas 21, 054701 (2014)

    International Nuclear Information System (INIS)

    Kotschenreuther, Mike; Valanju, Prashant; Covele, Brent; Mahajan, Swadesh

    2014-01-01

    Relying on coil positions relative to the plasma, the “Comment on ‘Magnetic geometry and physics of advanced divertors: The X-divertor and the snowflake’ ” [Phys. Plasmas 21, 054701 (2014)], emphasizes a criterion for divertor characterization that was critiqued to be ill posed [M. Kotschenreuther et al., Phys. Plasmas 20, 102507 (2013)]. We find that no substantive physical differences flow from this criteria. However, using these criteria, the successful NSTX experiment by Ryutov et al. [Phys. Plasmas 21, 054701 (2014)] has the coil configuration of an X-divertor (XD), rather than a snowflake (SF). On completing the divertor index (DI) versus distance graph for this NSTX shot (which had an inexplicably missing region), we find that the DI is like an XD for most of the outboard wetted divertor plate. Further, the “proximity condition,” used to define an SF [M. Kotschenreuther et al., Phys. Plasmas 20, 102507 (2013)], does not have a substantive physics basis to override metrics based on flux expansion and line length. Finally, if the criteria of the comment are important, then the results of NSTX-like experiments could have questionable applicability to reactors

  17. Response to “Comment on ‘Magnetic geometry and physics of advanced divertors: The X-divertor and the snowflake’ ” [Phys. Plasmas 21, 054701 (2014)

    Energy Technology Data Exchange (ETDEWEB)

    Kotschenreuther, Mike; Valanju, Prashant; Covele, Brent; Mahajan, Swadesh [Institute for Fusion Studies, The University of Texas at Austin, Austin, Texas 78712 (United States)

    2014-05-15

    Relying on coil positions relative to the plasma, the “Comment on ‘Magnetic geometry and physics of advanced divertors: The X-divertor and the snowflake’ ” [Phys. Plasmas 21, 054701 (2014)], emphasizes a criterion for divertor characterization that was critiqued to be ill posed [M. Kotschenreuther et al., Phys. Plasmas 20, 102507 (2013)]. We find that no substantive physical differences flow from this criteria. However, using these criteria, the successful NSTX experiment by Ryutov et al. [Phys. Plasmas 21, 054701 (2014)] has the coil configuration of an X-divertor (XD), rather than a snowflake (SF). On completing the divertor index (DI) versus distance graph for this NSTX shot (which had an inexplicably missing region), we find that the DI is like an XD for most of the outboard wetted divertor plate. Further, the “proximity condition,” used to define an SF [M. Kotschenreuther et al., Phys. Plasmas 20, 102507 (2013)], does not have a substantive physics basis to override metrics based on flux expansion and line length. Finally, if the criteria of the comment are important, then the results of NSTX-like experiments could have questionable applicability to reactors.

  18. Summary of the international 'Dawson' Symposium on the physics of plasmas

    International Nuclear Information System (INIS)

    Tajima, T.

    1990-12-01

    The ''Dawson'' Symposium was held on September 24 and 25, 1990 in honor of John Dawson's 60th birthday to reflect on various physics of plasma that he had pioneered. The international speakers touched on a wide range of subjects: magnetic fusion, laser fusion, isotope separation, computer simulation, basic plasma physics, accelerators and light sources, space physics, and international scientific collaboration. Highlighted in this article are magnetic fusion and laser fusion investigation that Dawson has been engaged in and the reviews of the present status of their development. The impact of the two-component fusion plasma idea, reactor concepts for advanced fuels, hot electron production by lasers and other nonlinear effects in laser fusion are discussed. Dawson's contributions in the allied areas are also reviewed

  19. [Research programs in plasma physics]: Annual report

    International Nuclear Information System (INIS)

    Weitzner, H.

    1988-01-01

    This paper contains a brief review of the work done in 1987 at New York University in plasma physics. Topics discussed in this report are: reduction and interpretation of experimental tokamak data, turbulent transport in tokamaks and RFP's, laminar flow transport, wave propagation in different frequency regimes, stability of flows, plasma fueling, magnetic reconnection problems, development of new numerical techniques for Fokker-Planck-like equations, and stability of shock waves. Outside of fusion there has been work in free electron lasers, heating of solar coronal loops and renormalized theory of fluid turbulence

  20. Physics of the quark - gluon plasma

    International Nuclear Information System (INIS)

    2001-09-01

    This document gathers 31 contributions to the workshop on the physics of quark-gluon plasma that took place in Palaiseau in september 2001: 1) gamma production in heavy collisions, 2) BRAHMS, 3) experimental conference summary, 4) modelling relativistic nuclear collisions, 5) microscopic reaction dynamics at SPS and RHIC, 6) direct gamma and hard scattering at SPS, 7) soft physics at RHIC, 8) results from the STAR experiment, 9) quarkonia: experimental possibilities, 10) elliptic flow measurements with PHENIX, 11) charmonium production in p-A collisions, 12) anisotropic flow at the SPS and RHIC, 13) deciphering the space-time evolution of heavy ion collisions with correlation measurements, 14) 2-particle correlation at RHIC, 15) particle spectra at AGS, SPS and RHIC, 16) strangeness production in STAR, 17) strangeness production in Pb-Pb collisions at SPS, 18) heavy ion physics at CERN after 2000 and before LHC, 19) NEXUS guideline and theoretical consistency, 20) introduction to high p T physics at RHIC, 21) a novel quasiparticle description of the quark-gluon plasma, 22) dissociation of excited quarkonia states, 23) high-mass dimuon and B → J/Ψ production in ultrarelativistic heavy ion collisions, 24) strange hyperon production in p + p and p + Pb interactions from NA49, 25) heavy quarkonium hadron cross-section, 26) a new method of flow analysis, 27) low mass dilepton production and chiral symmetry restoration, 28) classical initial conditions for nucleus-nucleus collisions, 29) numerical calculation of quenching weights, 30) strangeness enhancement energy dependence, and 31) heavy quarkonium dissociation

  1. Physics of the quark - gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-09-01

    This document gathers 31 contributions to the workshop on the physics of quark-gluon plasma that took place in Palaiseau in september 2001: 1) gamma production in heavy collisions, 2) BRAHMS, 3) experimental conference summary, 4) modelling relativistic nuclear collisions, 5) microscopic reaction dynamics at SPS and RHIC, 6) direct gamma and hard scattering at SPS, 7) soft physics at RHIC, 8) results from the STAR experiment, 9) quarkonia: experimental possibilities, 10) elliptic flow measurements with PHENIX, 11) charmonium production in p-A collisions, 12) anisotropic flow at the SPS and RHIC, 13) deciphering the space-time evolution of heavy ion collisions with correlation measurements, 14) 2-particle correlation at RHIC, 15) particle spectra at AGS, SPS and RHIC, 16) strangeness production in STAR, 17) strangeness production in Pb-Pb collisions at SPS, 18) heavy ion physics at CERN after 2000 and before LHC, 19) NEXUS guideline and theoretical consistency, 20) introduction to high p{sub T} physics at RHIC, 21) a novel quasiparticle description of the quark-gluon plasma, 22) dissociation of excited quarkonia states, 23) high-mass dimuon and B {yields} J/{psi} production in ultrarelativistic heavy ion collisions, 24) strange hyperon production in p + p and p + Pb interactions from NA49, 25) heavy quarkonium hadron cross-section, 26) a new method of flow analysis, 27) low mass dilepton production and chiral symmetry restoration, 28) classical initial conditions for nucleus-nucleus collisions, 29) numerical calculation of quenching weights, 30) strangeness enhancement energy dependence, and 31) heavy quarkonium dissociation.

  2. Renormalization and plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    Krommes, J.A.

    1980-02-01

    A review is given of modern theories of statistical dynamics as applied to problems in plasma physics. The derivation of consistent renormalized kinetic equations is discussed, first heuristically, later in terms of powerful functional techniques. The equations are illustrated with models of various degrees of idealization, including the exactly soluble stochastic oscillator, a prototype for several important applications. The direct-interaction approximation is described in detail. Applications discussed include test particle diffusion and the justification of quasilinear theory, convective cells, E vector x B vector turbulence, the renormalized dielectric function, phase space granulation, and stochastic magnetic fields.

  3. Renormalization and plasma physics

    International Nuclear Information System (INIS)

    Krommes, J.A.

    1980-02-01

    A review is given of modern theories of statistical dynamics as applied to problems in plasma physics. The derivation of consistent renormalized kinetic equations is discussed, first heuristically, later in terms of powerful functional techniques. The equations are illustrated with models of various degrees of idealization, including the exactly soluble stochastic oscillator, a prototype for several important applications. The direct-interaction approximation is described in detail. Applications discussed include test particle diffusion and the justification of quasilinear theory, convective cells, E vector x B vector turbulence, the renormalized dielectric function, phase space granulation, and stochastic magnetic fields

  4. Can multiple-choice questions simulate free-response questions?

    OpenAIRE

    Lin, Shih-Yin; Singh, Chandralekha

    2016-01-01

    We discuss a study to evaluate the extent to which free-response questions could be approximated by multiple-choice equivalents. Two carefully designed research-based multiple-choice questions were transformed into a free-response format and administered on the final exam in a calculus-based introductory physics course. The original multiple-choice questions were administered in another similar introductory physics course on final exam. Findings suggest that carefully designed multiple-choice...

  5. Annual review of the Institute of Plasma Physics, Nagoya University, for fiscal 1978

    International Nuclear Information System (INIS)

    1979-01-01

    Activities of Institute of Plasma Physics, Nagoya University, from April 1978 to March 1979, are described in individual short summaries. As a main project, the JIPP T-II program aims at confinement and heating of hot plasmas in a tokamak/stellarator hybrid system. The STP-3 system for high beta pinch plasma has now almost been completed. Installation of the RFC-XX is now complete with the delivery of two rf oscillators for point cusp plugs. In high energy beam experiment, toroidal magnetic configurations maintained by intense relativistic currents were demonstrated. The Nagoya Bumpy Torus is a race track convertible to a circular torus. In parallel with the above research projects, there continued experiments on basic plasma physics, laser-produced plasma, the atomic processes and the surface physics related to the plasma-wall interaction. Theoretical and computational divisions worked in close collaboration with the above. (J.P.N.)

  6. Princeton Plasma Physics Laboratory. Annual report, October 1, 1989--September 30, 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    This report discusses the following topics: principal parameters achieved in experimental devices fiscal year 1990; tokamak fusion test reactor; compact ignition tokamak; Princeton beta experiment- modification; current drive experiment-upgrade; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma processing: deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for fiscal year 1990; graduate education; plasma physics; graduate education: plasma science and technology; science education program; and Princeton Plasma Physics Laboratory reports fiscal year 1990.

  7. Applications of Symmetry Methods to the Theory of Plasma Physics

    Directory of Open Access Journals (Sweden)

    Giampaolo Cicogna

    2006-02-01

    Full Text Available The theory of plasma physics offers a number of nontrivial examples of partial differential equations, which can be successfully treated with symmetry methods. We propose three different examples which may illustrate the reciprocal advantage of this "interaction" between plasma physics and symmetry techniques. The examples include, in particular, the complete symmetry analysis of system of two PDE's, with the determination of some conditional and partial symmetries, the construction of group-invariant solutions, and the symmetry classification of a nonlinear PDE.

  8. 1984 Review of the Applied Plasma Physics Program

    International Nuclear Information System (INIS)

    1984-09-01

    This report describes the present and planned programs of the Division of Applied Plasma Physics (APP), Office of Fusion Energy. The major activities of the division include fusion theory, experimental plasma research, advanced fusion concepts, and the magnetic fusion energy computer network. The planned APP program is consistent with the recently issued Comprehensive Program Management Plan for Magnetic Fusion Energy, which describes the overall objectives and strategy for the development of fusion energy

  9. Perspective: The physics, diagnostics, and applications of atmospheric pressure low temperature plasma sources used in plasma medicine

    Science.gov (United States)

    Laroussi, M.; Lu, X.; Keidar, M.

    2017-07-01

    Low temperature plasmas have been used in various plasma processing applications for several decades. But it is only in the last thirty years or so that sources generating such plasmas at atmospheric pressure in reliable and stable ways have become more prevalent. First, in the late 1980s, the dielectric barrier discharge was used to generate relatively large volume diffuse plasmas at atmospheric pressure. Then, in the early 2000s, plasma jets that can launch cold plasma plumes in ambient air were developed. Extensive experimental and modeling work was carried out on both methods and much of the physics governing such sources was elucidated. Starting in the mid-1990s, low temperature plasma discharges have been used as sources of chemically reactive species that can be transported to interact with biological media, cells, and tissues and induce impactful biological effects. However, many of the biochemical pathways whereby plasma affects cells remain not well understood. This situation is changing rather quickly because the field, known today as "plasma medicine," has experienced exponential growth in the last few years thanks to a global research community that engaged in fundamental and applied research involving the use of cold plasma for the inactivation of bacteria, dental applications, wound healing, and the destruction of cancer cells/tumors. In this perspective, the authors first review the physics as well as the diagnostics of the principal plasma sources used in plasma medicine. Then, brief descriptions of their biomedical applications are presented. To conclude, the authors' personal assessment of the present status and future outlook of the field is given.

  10. Can we build a more efficient airplane? Using applied questions to teach physics

    Science.gov (United States)

    Bhatia, Aatish

    2014-03-01

    For students and for the science-interested public, applied questions can serve as a hook to learn introductory physics. Can we radically improve the energy efficiency of modern day aircraft? Are solar planes like the Solar Impulse the future of travel? How do migratory birds like the alpine swift fly nonstop for nearly seven months? Using examples from aeronautical engineering and biology, I'll discuss how undergraduate physics can shed light on these questions about transport, and place fundamental constraints on the flight properties of flying machines, whether birds or planes. Education research has shown that learners are likely to forget vast content knowledge unless they get to apply this knowledge to novel and unfamiliar situations. By applying physics to real-life problems, students can learn to build and apply quantitative models, making use of skills such as order of magnitude estimates, dimensional analysis, and reasoning about uncertainty. This applied skillset allows students to transfer their knowledge outside the classroom, and helps build connections between traditionally distinct content areas. I'll also describe the results of an education experiment at Rutgers University where my colleagues and I redesigned a 100+ student introductory physics course for social science and humanities majors to address applied questions such as evaluating the energy cost of transport, and asking whether the United States could obtain all its energy from renewable sources.

  11. Physics of high performance deuterium-tritium plasmas in TFTR

    International Nuclear Information System (INIS)

    McGuire, K.M.; Batha, S.

    1996-11-01

    During the past two years, deuterium-tritium (D-T) plasmas in the Tokamak Fusion Test Reactor (TFTR) have been used to study fusion power production, isotope effects associated with tritium fueling, and alpha-particle physics in several operational regimes. The peak fusion power has been increased to 10.7 MW in the supershot mode through the use of increased plasma current and toroidal magnetic field and extensive lithium wall conditioning. The high-internal-inductance (high-I i ) regime in TFTR has been extended in plasma current and has achieved 8.7 MW of fusion power. Studies of the effects of tritium on confinement have now been carried out in ohmic, NBI- and ICRF- heated L-mode and reversed-shear plasmas. In general, there is an enhancement in confinement time in D-T plasmas which is most pronounced in supershot and high-I i discharges, weaker in L-mode plasmas with NBI and ICRF heating and smaller still in ohmic plasmas. In reversed-shear discharges with sufficient deuterium-NBI heating power, internal transport barriers have been observed to form, leading to enhanced confinement. Large decreases in the ion heat conductivity and particle transport are inferred within the transport barrier. It appears that higher heating power is required to trigger the formation of a transport barrier with D-T NBI and the isotope effect on energy confinement is nearly absent in these enhanced reverse-shear plasmas. Many alpha-particle physics issues have been studied in the various operating regimes including confinement of the alpha particles, their redistribution by sawteeth, and their loss due to MHD instabilities with low toroidal mode numbers. In weak-shear plasmas, alpha-particle destabilization of a toroidal Alfven eigenmode has been observed

  12. Technology and Plasma Physics Developments needed for DEMO

    International Nuclear Information System (INIS)

    Lackner, K.

    2006-01-01

    Although no universally agreed definition of the next step after ITER exists at present it is commonly accepted that significant progress beyond the ITER base-line operating physics modes and the technologies employed in it are needed. We first review the role of DEMO in the different proposed fusion road maps and derive from them the corresponding performance requirements. A fast track to commercial fusion implies that DEMO is already close to a first of a kind power plant in all aspects except average availability. Existing power plant studies give therefore also a good approximation to the needs of DEMO. We outline the options for achieving the needed physics progress in the different characteristic parameters, and the implications for the experimental programme of ITER and accompanying satellite devices. On the time scale of the operation of ITER and of the planning DEMO, ab-initio modelling of fusion plasmas is also expected to assume a qualitatively new role. Besides the mapping of the reactor regime of plasma physics and the integration of a burning plasma with the principal reactor technologies on ITER, the development of functional and structural materials capable of handling the high power fluxes and neutron fluences, respectively is also on the critical path to DEMO. Finally we discuss the potential contributions of other confinement concepts (stellarators and spherical tokamaks) to the design of DEMO. (author)

  13. Extended standard vector analysis for plasma physics

    International Nuclear Information System (INIS)

    Wimmel, H.K.

    1982-02-01

    Standard vector analysis in 3-dimensional space, as found in most tables and textbooks, is complemented by a number of basic formulas that seem to be largely unknown, but are important in themselves and for some plasma physics applications, as is shown by several examples. (orig.)

  14. EDITORIAL: Invited review and topical lectures from the 13th International Congress on Plasma Physics

    Science.gov (United States)

    Zagorodny, A.; Kocherga, O.

    2007-05-01

    The 13th International Congress on Plasma Physics (ICPP 2006) was organized, on behalf of the International Advisory Committee of the ICPP series, by the National Academy of Sciences of Ukraine and the Bogolyubov Institute for Theoretical Physics (BITP) and held in Kiev, Ukraine, 22 26 May 2006. The Congress Program included the topics: fundamental problems of plasma physics; fusion plasmas; plasmas in astrophysics and space physics; plasmas in applications and technologies; complex plasmas. A total of 305 delegates from 30 countries took part in the Congress. The program included 9 invited review lectures, 32 invited topical and 313 contributed papers (60 of which were selected for oral presentation). The Congress Program was the responsibility of the International Program Committee: Anatoly Zagorodny (Chairman) Bogolyubov Institute for Theoretical Physics, Ukraine Olha Kocherga (Scientific Secretary) Bogolyubov Institute for Theoretical Physics, Ukraine Boris Breizman The University of Texas at Austin, USA Iver Cairns School of Physics, University of Sydney, Australia Tatiana Davydova Institute for Nuclear Research, Ukraine Tony Donne FOM-Institute for Plasma Physics, Rijnhuizen, The Netherlands Nikolai S Erokhin Space Research Institute of RAS, Russia Xavier Garbet CEA, France Valery Godyak OSRAM SYLVANIA, USA Katsumi Ida National Institute for Fusion Science, Japan Alexander Kingsep Russian Research Centre `Kurchatov Institute', Russia E P Kruglyakov Budker Institute of Nuclear Physics, Russia Gregor Morfill Max-Planck-Institut für extraterrestrische Physik, Germany Osamu Motojima National Institute for Fusion Science, Japan Jef Ongena ERM-KMS, Brussels and EFDA-JET, UK Konstantyn Shamrai Institute for Nuclear Research, Ukraine Raghvendra Singh Institute for Plasma Research, India Konstantyn Stepanov Kharkiv Institute of Physics and Technology, Ukraine Masayoshi Tanaka National Institute for Fusion Science, Japan Nodar Tsintsadze Physics Institute, Georgia The

  15. Department of Plasma Physics and Technology - Overview

    International Nuclear Information System (INIS)

    Sadowski, M.

    1997-01-01

    In 1996 the main activities of Department P-5 (until December 1996 known as the Department of Thermonuclear Research) were concentrated on 5 topics: 1. Selected problems of plasma theory, 2. Studies of phenomena within high-current plasma concentrators, 3. Development of plasma diagnostic methods, 4. Studies in the field of fusion technology, 5. Research on new plasma-ion technologies. Theoretical studies mainly concerned elementary processes occurring within a plasma, and particularly those within near-electrode regions of microwave discharges as well as those within near-wall layers (SOL) of tokamaks. We also developed computational packages for parameter identification and modelling of physical phenomena in pulse plasma coaxial accelerators. Experimental studies were concentrated on the generation of a dense magnetized plasma in different high-current PF (Plasma Focus) facilities and small Z-Pinch devices. We carried out investigations of X-rays, relativistic electron beams (REBs), accelerated primary ions, and fast products of fusion reactions for deuterium discharges. Research on plasma diagnostics comprised the development of methods and equipment for studies of X-ray emission, pulsed electron beams, and fast ions, using special Cherenkov-type detectors of electrons and solid-state nuclear track detectors (SSNTDs) of ions. New diagnostic techniques were developed. Studies in the field of fusion technology concerned the design, construction, and testing of different high-voltage pulse generators. We also developed special opto-electronic systems for control and data transmission. Research on plasma-ion technology concentrated on the generation of pulsed high-power plasma-ion streams and their applications for the surface modification of semiconductors, pure metals and alloys. The material engineering studies were carried out in close collaboration with our P-9 Department and other domestic and foreign research centers

  16. Princeton Plasma Physics Laboratory annual report, October 1, 1991--September 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    This report discusses the following topics: Principal parameters achieved in experimental devices for fiscal year 1992; tokamak fusion test reactor; princeton beta experiment-modification; current drive experiment-upgrade; tokamak physics experiment/steady-state advanced tokamak; international thermonuclear experimental reactor; international collaboration; x-ray laser studies; plasma processing: Deposition and etching of thin films; pure electron plasma experiments; theoretical studies; tokamak modeling; high-field magnet project; engineering department; environment, safety, and health and quality assurance; technology transfer; office of human resources and administration; PPPL invention disclosures for fiscal year 1992; office of resource management; graduate education: plasma physics; graduate education: program in plasma science and technology; and science education program.

  17. Princeton Plasma Physics Laboratory annual report, October 1, 1991--September 30, 1992

    International Nuclear Information System (INIS)

    1992-01-01

    This report discusses the following topics: Principal parameters achieved in experimental devices for fiscal year 1992; tokamak fusion test reactor; princeton beta experiment-modification; current drive experiment-upgrade; tokamak physics experiment/steady-state advanced tokamak; international thermonuclear experimental reactor; international collaboration; x-ray laser studies; plasma processing: Deposition and etching of thin films; pure electron plasma experiments; theoretical studies; tokamak modeling; high-field magnet project; engineering department; environment, safety, and health and quality assurance; technology transfer; office of human resources and administration; PPPL invention disclosures for fiscal year 1992; office of resource management; graduate education: plasma physics; graduate education: program in plasma science and technology; and science education program

  18. Question order in the assessment of misperception of physical activity

    Directory of Open Access Journals (Sweden)

    van Dijke Marius

    2007-09-01

    Full Text Available Abstract Background People often have misperceptions (overestimation or underestimation about the health-related behaviours they engage in, which may have adverse consequences for their susceptibility to behavioural change. Misperception is usually measured by combining and comparing quantified behavioural self-reports with subjective classification of the behaviour. Researchers assume that such assessments of misperception are not influenced by the order of the two types of measurement, but this has never been studied. Based on the precaution adoption model and the information processing theory, it might be expected that taking the subjective measurement after a detailed quantified behavioural self-report would improve the accuracy of the subjective measurement because the quantified report urges a person to think more in detail about their own behaviour. Methods In an experiment (n = 521, quantified self-report and subjective assessment were manipulated in a questionnaire. In one version, the quantified self-report was presented before the subjective assessment, whereas in the other version, the subjective assessment came first. Results Neither subjective assessment nor overestimation of physical activity were biased by the order of the questions. Underestimation was more prevalent among subgroups of the group which answered the subjective assessment after the quantified self-report. Conclusion Question order in questionnaires does not seem to influence misperceptions concerning physical activity in groups relevant for health education (overestimators: those who do not meet the guidelines for physical activity while rating their physical activity as sufficient or high. The small order effect found in underestimators is less relevant for health education because this subgroup already meets the guideline and therefore does not need to change behaviour.

  19. PHYSICAL GEOGRAPHY: CONSTRUCTS AND QUESTIONS RELATING TO CURRICULUM AND PEDAGOGY

    Directory of Open Access Journals (Sweden)

    Duncan Hawley

    Full Text Available ABSTRACT:A series of questions are raised to prompt examination of the role and place of physical geography in the school curriculum and its relationship with science; consequently challenging teachers to consider the implications for their pedagogy. An examination of physical geography knowledge illustrates how it is constructed with a plurality of meanings, and a framework for interpreting different meanings and approaches is offered followed by critical discussion of the dominant discourses and teaching approaches adopted in schools. Contexts have played an important role in influencing how physical geography has been taught in schools and the paper discusses the merits of recent trends towards teaching physical geography via issues- based or social contexts, where physical topics are explored for social relevance rather than understanding of the physical processes and drivers. Evidence for and against this approach is outlined and questions raised about whether integrated and applied approaches to teaching physical geography dilute the quality and emphasis of learning and understanding. It is suggested that physical geography, as taught in schools, may need to catch up by adopting a less ‘fixist’ view of the physical world, by which teachers develop a curriculum and pedagogies more appropriately matched to contemporary understandings of physical geography, so enabling students to develop as more informed, critical thinkers when considering the physical world. KEY WORDS:Physical geography, schools, curriculum, pedagogy, knowledge, questions, debate. RÉSUMÉ:Une série de questions sont soulevées pour inciter examen du rôle et la place de la géographie physique dans les programmes scolaires et de sa relation avec la science ; offrant donc un défi pour les enseignants d’examiner les implications de leur enseignement. Un examen de connaissance de la géographie physique illustre comment il est construit avec une pluralité de

  20. Effects of Re-Using a Conceptual Examination Question in Physics

    Science.gov (United States)

    Sharma, Manjula D.; Sefton, Ian M.; Cole, Martyn; Whymark, Aaron; Millar, Rosemary M.; Smith, Andrew

    2005-12-01

    We report on a study of what happened when we recycled a conceptual examination question in a first-year university physics course. The question, which was used for three consecutive years, asked about an astronaut's experience of weighing in an orbiting space-craft. Our original intention was to use a phenomenographic approach to look for differences in students' descriptive answers. Having done that, we decided to add a study of the marks that were awarded to those answers. The first time that the question was re-used, the distribution of answers amongst our phenomenographic categories showed a decrease in the common conception that gravity is zero in the satellite and an increase in explanations in terms of free fall. When the question was re-used a second time, that difference was maintained but it was not significantly increased. The distribution of marks for the question was different over the three years in a way that appears to be unrelated to differences in students' conceptual understandings. Differences in the distribution of marks are more likely to be related to differences in marking procedures. We conclude that studies like this one have the potential to contribute to improvements in university assessment procedures. In particular we propose that phenomenographic analysis could be used in the design of marking schemes.

  1. Princeton University, Plasma Physics Laboratory annual report, October 1, 1988--September 30, 1989

    International Nuclear Information System (INIS)

    1989-01-01

    This report contains discussions on the following topics: principal parameters achieved in experimental devices (FY89); tokamak fusion test reactor; compact ignition tokamak; princeton beta experiment- modification; current drive experiment; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for (FY89); graduate education: plasma physics; graduate education: plasma science and technology; and Princeton Plasmas Physics Laboratory Reports (FY89)

  2. Princeton University, Plasma Physics Laboratory annual report, October 1, 1988--September 30, 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    This report contains discussions on the following topics: principal parameters achieved in experimental devices (FY89); tokamak fusion test reactor; compact ignition tokamak; princeton beta experiment- modification; current drive experiment; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for (FY89); graduate education: plasma physics; graduate education: plasma science and technology; and Princeton Plasmas Physics Laboratory Reports (FY89).

  3. Princeton University, Plasma Physics Laboratory annual report, October 1, 1988--September 30, 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    This report contains discussions on the following topics: principal parameters achieved in experimental devices (FY89); tokamak fusion test reactor; compact ignition tokamak; princeton beta experiment- modification; current drive experiment; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for (FY89); graduate education: plasma physics; graduate education: plasma science and technology; and Princeton Plasmas Physics Laboratory Reports (FY89).

  4. Physics options in the plasma code VOA

    International Nuclear Information System (INIS)

    Eltgroth, P.G.

    1976-06-01

    A two dimensional relativistic plasma physics code has been modified to accomodate general electromagnetic boundary conditions and various approximations of basic physics. The code can treat internal conductors and insulators, imposed electromagnetic fields, the effects of external circuitry and non-equilibrium starting conditions. Particle dynamics options include a full microscopic treatment, fully relaxed electrons, a low frequency electron approximation and a combination of approximations for specified zones. Electromagnetic options include the full wave treatment, an electrostatic approximation and two varieties of magnetohydrodynamic approximations in specified zones

  5. Physics and chemistry of plasma pollution control technology

    International Nuclear Information System (INIS)

    Chang, J S

    2008-01-01

    Gaseous pollution control technologies for acid gases (NO x , SO x , etc), volatile organic compounds, greenhouse gases, ozone layer depleting substances, etc have been commercialized based on catalysis, incineration and adsorption methods. However, non-thermal plasma techniques based on electron beams and corona discharges are becoming significant due to advantages such as lower costs, higher removal efficiency and smaller space volume. In order to commercialize this new technology, the pollution gas removal rate, energy efficiency of removal, pressure drop of reactors and useable by-product production rates must be improved and identification of major fundamental processes and optimizations of reactor and power supply for an integrated system must be investigated. In this work, the chemistry and physics of plasma pollution control are discussed and the limitation of this type of plasma is outlined based on the plasma parameters.

  6. 12th Czechoslovak seminar on plasma physics and technology

    International Nuclear Information System (INIS)

    1983-03-01

    The 12th Czechoslovak seminar on plasma physics and technology was oriented mainly to the problems of high-temperature plasmas and controlled thermonuclear fusion. The proceedings contain 27 invited papers and communications presented in three sections: 1) Inertial controlled fusion, 2) Tokamaks, 3) Theory and miscellaneous topics. The first group of papers deals with various problems of electron-beam, ion-beam, and laser fusion, including physical processes in fusion targets. The tokamak section discusses the latest experimental results achieved in the Russian tokamaks FT-2, Tuman 2-a, T-7 and T-10, in the Czechoslovak tokamak TM-1-MH, and in the Hungarian tokamak MT-1. A detailed survey is presented of work on neutral atom injectors in Novosibirsk. In the third section several papers on theoretical studies of nonlinear and turbulent processes in a hot plasma are presented together with a simulation study of a hybrid tokamak reactor. Several contributions on special diagnostic methods are presented. (J.U.)

  7. ITER-EDA physics design requirements and plasma performance assessments

    International Nuclear Information System (INIS)

    Uckan, N.A.; Galambos, J.; Wesley, J.; Boucher, D.; Perkins, F.; Post, D.; Putvinski, S.

    1996-01-01

    Physics design guidelines, plasma performance estimates, and sensitivity of performance to changes in physics assumptions are presented for the ITER-EDA Interim Design. The overall ITER device parameters have been derived from the performance goals using physics guidelines based on the physics R ampersand D results. The ITER-EDA design has a single-null divertor configuration (divertor at the bottom) with a nominal plasma current of 21 MA, magnetic field of 5.68 T, major and minor radius of 8.14 m and 2.8 m, and a plasma elongation (at the 95% flux surface) of ∼1.6 that produces a nominal fusion power of ∼1.5 GW for an ignited burn pulse length of ≥1000 s. The assessments have shown that ignition at 1.5 GW of fusion power can be sustained in ITER for 1000 s given present extrapolations of H-mode confinement (τ E = 0.85 x τ ITER93H ), helium exhaust (τ* He /τ E = 10), representative plasma impurities (n Be /n e = 2%), and beta limit [β N = β(%)/(I/aB) ≤ 2.5]. The provision of 100 MW of auxiliary power, necessary to access to H-mode during the approach to ignition, provides for the possibility of driven burn operations at Q = 15. This enables ITER to fulfill its mission of fusion power (∼ 1--1.5 GW) and fluence (∼1 MWa/m 2 ) goals if confinement, impurity levels, or operational (density, beta) limits prove to be less favorable than present projections. The power threshold for H-L transition, confinement uncertainties, and operational limits (Greenwald density limit and beta limit) are potential performance limiting issues. Improvement of the helium exhaust (τ* He /τ E ≤ 5) and potential operation in reverse-shear mode significantly improve ITER performance

  8. Physics of the plasma universe

    CERN Document Server

    Peratt, Anthony L

    2015-01-01

    Today many scientists recognize plasma as the key element to understanding new observations in near-Earth, interplanetary, interstellar, and intergalactic space; in stars, galaxies, and clusters of galaxies, and throughout the observable universe. Physics of the Plasma Universe, 2nd Edition is an update of observations made across the entire cosmic electromagnetic spectrum over the two decades since the publication of the first edition. It addresses paradigm changing discoveries made by telescopes, planetary probes, satellites, and radio and space telescopes. The contents are the result of the author's 37 years research at Livermore and Los Alamos National Laboratories, and the U.S. Department of Energy. This book covers topics such as the large-scale structure and the filamentary universe; the formation of magnetic fields and galaxies, active galactic nuclei and quasars, the origin and abundance of light elements, star formation and the evolution of solar systems, and cosmic rays. Chapters 8 and 9 are based ...

  9. ANALYSIS OF DIFFICULTY LEVEL OF PHYSICS NATIONAL EXAMINATION’S QUESTIONS

    Directory of Open Access Journals (Sweden)

    Yusrizal Yusrizal

    2016-04-01

    Full Text Available This study aimed to determine: (1 the difficulty level of items in physics National Exam of 2013 (2 physics materials that were difficult and very difficult. The subjects were all students of science major in third gradeat SMAN Banda Aceh in the academic year of 2013/2014. The samples were 10 randomly selected senior high schools. The data were obtained through analyzing the answers of physics National Examin 2013. The results showed that (1 the high school students in Banda Aceh experienced difficult and very difficult level questions to be answer in the 2013 exam, (2 thedifficult materials were: free fall, the potential energy and series of obstacles. The very difficult materials were: the rotational motion, motion and force on the pulley, effort, fluid, sound intensity, transformer, atomic theory, quantum theory, relativity, fusion and radio isotopes.

  10. Remote operation of the vertical plasma stabilization @ the GOLEM tokamak for the plasma physics education

    Energy Technology Data Exchange (ETDEWEB)

    Svoboda, V., E-mail: svoboda@fjfi.cvut.cz [Faculty of Nuclear Sciences and Physical Engineering CTU Prague, CZ-115 19 (Czech Republic); Kocman, J.; Grover, O. [Faculty of Nuclear Sciences and Physical Engineering CTU Prague, CZ-115 19 (Czech Republic); Krbec, J.; Stöckel, J. [Faculty of Nuclear Sciences and Physical Engineering CTU Prague, CZ-115 19 (Czech Republic); Institute of Plasma Physics AS CR, CZ-182 21 Prague (Czech Republic)

    2015-10-15

    Graphical abstract: * Understandable remote operation of a vertical plasma position control system in the tokamak GOLEM for educational purposes.* Two combinable modes of real-time plasma position control: position based feedback and a pre-defined waveform.* More than 20% plasma life prolongation with plasma position control in feedback mode. - Highlights: • Understandable remote operation of a vertical plasma position control system in the tokamak GOLEM for educational purposes. • Two combinable modes of real-time plasma position control: position based feedback and a pre-defined waveform. • More than 20% plasma life prolongation with plasma position control in feedback mode. - Abstract: The GOLEM tokamak at the Czech Technical University has been established as an educational tokamak device for domestic and foreign students. Remote participation in the scope of several laboratory practices, plasma physics schools and workshops has been successfully performed from abroad. A new enhancement allowing understandable remote control of vertical plasma position in two modes (i) predefined and (ii) feedback control is presented. It allows to drive the current in the stabilization coils in any time-dependent scenario, which can include as a parameter the actual plasma position measured by magnetic diagnostics. Arbitrary movement of the plasma column in a vertical direction, stabilization of the plasma column in the center of the tokamak vessel as well as prolongation/shortening of plasma life according to the remotely defined request are demonstrated.

  11. Tech-X Corporation releases simulation code for solving complex problems in plasma physics : VORPAL code provides a robust environment for simulating plasma processes in high-energy physics, IC fabrications and material processing applications

    CERN Multimedia

    2005-01-01

    Tech-X Corporation releases simulation code for solving complex problems in plasma physics : VORPAL code provides a robust environment for simulating plasma processes in high-energy physics, IC fabrications and material processing applications

  12. The effect of changes to question order on the prevalence of 'sufficient' physical activity in an Australian population survey.

    Science.gov (United States)

    Hanley, Christine; Duncan, Mitch J; Mummery, W Kerry

    2013-03-01

    Population surveys are frequently used to assess prevalence, correlates and health benefits of physical activity. However, nonsampling errors, such as question order effects, in surveys may lead to imprecision in self reported physical activity. This study examined the impact of modified question order in a commonly used physical activity questionnaire on the prevalence of sufficient physical activity. Data were obtained from a telephone survey of adults living in Queensland, Australia. A total of 1243 adults participated in the computer-assisted telephone interview (CATI) survey conducted in July 2008 which included the Active Australia Questionnaire (AAQ) presented in traditional or modified order. Binary logistic regression analyses was used to examine relationships between question order and physical activity outcomes. Significant relationships were found between question order and sufficient activity, recreational walking, moderate activity, vigorous activity, and total activity. Respondents who received the AAQ in modified order were more likely to be categorized as sufficiently active (OR = 1.28, 95% CI 1.01-1.60). This study highlights the importance of question order on estimates of self reported physical activity. This study has shown that changes in question order can lead to an increase in the proportion of participants classified as sufficiently active.

  13. Neoclassical Physics for Current Drive in Tokamak Plasmas

    International Nuclear Information System (INIS)

    Duthoit, F.X.

    2012-03-01

    The Lie transform formalism is applied to charged particle dynamics in tokamak magnetic topologies, in order to build a Fokker-Planck type operator for Coulomb collisions usable for current drive. This approach makes it possible to reduce the problem to three dimensions (two in velocity space, one in real space) while keeping the wealth of phase-space cross-term coupling effects resulting from conservation of the toroidal canonical momentum (axisymmetry). This kinetic approach makes it possible to describe physical phenomena related to the presence of strong pressure gradients in plasmas of an unspecified form, like the bootstrap current which role will be paramount for the future ITER machine. The choice of coordinates and the method used are particularly adapted to the numerical resolution of the drift kinetic equation making it possible to calculate the particle distributions, which may present a strong variation with respect to the Maxwellian under the effect of an electric field (static or produced by a radio-frequency wave). This work, mainly dedicated to plasma physics of tokamaks, was extended to those of space plasmas with a magnetic dipole configuration. (author)

  14. Proceedings of the 21st symposium on plasma physics and technology

    International Nuclear Information System (INIS)

    Kulhanek, P.; Rezac, K.; Smetana, M.

    2004-01-01

    The supplement contains 159 papers out of the 229 papers presented at the conference; these papers were selected through the review process of the Czechoslovak Journal of Physics. The papers are divided into 5 categories corresponding to the main topics of the symposium, which covered all kinds of plasma research and associated applications: tokamaks and other magnetic confinement devices; short lived plasmas (plasma focus, z-pinch, X-ray sources); laser plasma; low temperature plasma; and plasma technology. All 22 papers dealing with tokamaks and other magnetic confinement devices were submitted to INIS as well as all 31 papers discussing short lived plasmas. (A.K.)

  15. Multi-Level iterative methods in computational plasma physics

    International Nuclear Information System (INIS)

    Knoll, D.A.; Barnes, D.C.; Brackbill, J.U.; Chacon, L.; Lapenta, G.

    1999-01-01

    Plasma physics phenomena occur on a wide range of spatial scales and on a wide range of time scales. When attempting to model plasma physics problems numerically the authors are inevitably faced with the need for both fine spatial resolution (fine grids) and implicit time integration methods. Fine grids can tax the efficiency of iterative methods and large time steps can challenge the robustness of iterative methods. To meet these challenges they are developing a hybrid approach where multigrid methods are used as preconditioners to Krylov subspace based iterative methods such as conjugate gradients or GMRES. For nonlinear problems they apply multigrid preconditioning to a matrix-few Newton-GMRES method. Results are presented for application of these multilevel iterative methods to the field solves in implicit moment method PIC, multidimensional nonlinear Fokker-Planck problems, and their initial efforts in particle MHD

  16. Review of inductively coupled plasmas: Nano-applications and bistable hysteresis physics

    Science.gov (United States)

    Lee, Hyo-Chang

    2018-03-01

    Many different gas discharges and plasmas exhibit bistable states under a given set of conditions, and the history-dependent hysteresis that is manifested by intensive quantities of the system upon variation of an external parameter has been observed in inductively coupled plasmas (ICPs). When the external parameters (such as discharge powers) increase, the plasma density increases suddenly from a low- to high-density mode, whereas decreasing the power maintains the plasma in a relatively high-density mode, resulting in significant hysteresis. To date, a comprehensive description of plasma hysteresis and a physical understanding of the main mechanism underlying their bistability remain elusive, despite many experimental observations of plasma bistability conducted under radio-frequency ICP excitation. This fundamental understanding of mode transitions and hysteresis is essential and highly important in various applied fields owing to the widespread use of ICPs, such as semiconductor/display/solar-cell processing (etching, deposition, and ashing), wireless light lamp, nanostructure fabrication, nuclear-fusion operation, spacecraft propulsion, gas reformation, and the removal of hazardous gases and materials. If, in such applications, plasma undergoes a mode transition and hysteresis occurs in response to external perturbations, the process result will be strongly affected. Due to these reasons, this paper comprehensively reviews both the current knowledge in the context of the various applied fields and the global understanding of the bistability and hysteresis physics in the ICPs. At first, the basic understanding of the ICP is given. After that, applications of ICPs to various applied fields of nano/environmental/energy-science are introduced. Finally, the mode transition and hysteresis in ICPs are studied in detail. This study will show the fundamental understanding of hysteresis physics in plasmas and give open possibilities for applications to various applied

  17. Investigating plasma-rotation methods for the Space-Plasma Physics Campaign at UCLA's BAPSF.

    Science.gov (United States)

    Finnegan, S. M.; Koepke, M. E.; Reynolds, E. W.

    2006-10-01

    In D'Angelo et al., JGR 79, 4747 (1974), rigid-body ExB plasma flow was inferred from parabolic floating-potential profiles produced by a spiral ionizing surface. Here, taking a different approach, we report effects on barium-ion azimuthal-flow profiles using either a non-emissive or emissive spiral end-electrode in the WVU Q-machine. Neither electrode produced a radially-parabolic space-potential profile. The emissive spiral, however, generated controllable, radially-parabolic structure in the floating potential, consistent with a second population of electrons having a radially-parabolic parallel-energy profile. Laser-induced-fluorescence measurements of spatially resolved, azimuthal-velocity distribution functions show that, for a given flow profile, the diamagnetic drift of hot (>>0.2eV) ions overwhelms the ExB-drift contribution. Our experiments constitute a first attempt at producing controllable, rigid-body, ExB plasma flow for future experiments on the LArge-Plasma-Device (LAPD), as part of the Space-Plasma Physics Campaign (at UCLA's BAPSF).

  18. Fundamental aspects of plasma chemical physics kinetics

    CERN Document Server

    Capitelli, Mario; Colonna, Gianpiero; Esposito, Fabrizio; Gorse, Claudine; Hassouni, Khaled; Laricchiuta, Annarita; Longo, Savino

    2016-01-01

    Describing non-equilibrium "cold" plasmas through a chemical physics approach, this book uses the state-to-state plasma kinetics, which considers each internal state as a new species with its own cross sections. Extended atomic and molecular master equations are coupled with Boltzmann and Monte Carlo methods to solve the electron energy distribution function. Selected examples in different applied fields, such as microelectronics, fusion, and aerospace, are presented and discussed including the self-consistent kinetics in RF parallel plate reactors, the optimization of negative ion sources and the expansion of high enthalpy flows through nozzles of different geometries. The book will cover the main aspects of the state-to-state kinetic approach for the description of nonequilibrium cold plasmas, illustrating the more recent achievements in the development of kinetic models including the self-consistent coupling of master equations and Boltzmann equation for electron dynamics. To give a complete portrayal, the...

  19. EDITORIAL: The Fifth International Workshop and Summer School on Plasma Physics

    Science.gov (United States)

    2006-04-01

    , Russia, the US, China, South Korea and India (as of March 2006). It will take several years to accomplish this important task. There is no doubt that the success depends not only on funding but also on enthusiastic people willing to contribute with their skills and knowledge. Young scientists and engineers must be enrolled to the programme and trained in various disciplines of fusion science and technology. There are various education schemes and work programmes. Organization of summer schools on fusion-related plasma physics is an important part of the training process. Several schools are organized annually or every second year in Europe. Fusion-related science is so vast that it is impossible to cover all topics during an event lasting for one or two weeks. Therefore, each school has its distinctive features and focuses on a selected group of issues to be addressed in depth. This also applies to the Workshop and Summer School on Plasma Physics in Kudowa Zdrój (Poland) that, has been organised annually since 2001. It was initiated by Dr Marek Scholz with the help of his colleagues from the Institute of Plasma Physics and Laser Microfusion (IPPLM) in Warsaw. The idea was to create a forum for students mainly from Eastern Europe to learn and discuss subjects in general plasma physics and dense magnetized media, predominantly in plasma focus devices. Over the years the school has matured and created a clear profile. A unique feature has always been to accommodate in the programme not only tutorials delivered by invited senior scientists but also presentations prepared by the students. In June 2005 the 5th Workshop and Summer School on Plasma Physics was held under the heading 'Towards Fusion Energy: Plasma Physics, Diagnostics, Applications'. There were 59 participants, including 44 students, coming from plasma physics and material research laboratories in 17 countries: Belgium, Czech Republic, France, Germany, Georgia, Iran, Italy, Lithuania, Poland, Romania, Russia

  20. Introduction to plasma physics with space, laboratory and astrophysical applications

    CERN Document Server

    Gurnett, Donald A

    2017-01-01

    Introducing basic principles of plasma physics and their applications to space, laboratory and astrophysical plasmas, this new edition provides updated material throughout. Topics covered include single-particle motions, kinetic theory, magnetohydrodynamics, small amplitude waves in hot and cold plasmas, and collisional effects. New additions include the ponderomotive force, tearing instabilities in resistive plasmas and the magnetorotational instability in accretion disks, charged particle acceleration by shocks, and a more in-depth look at nonlinear phenomena. A broad range of applications are explored: planetary magnetospheres and radiation belts, the confinement and stability of plasmas in fusion devices, the propagation of discontinuities and shock waves in the solar wind, and analysis of various types of plasma waves and instabilities that can occur in planetary magnetospheres and laboratory plasma devices. With step-by-step derivations and self-contained introductions to mathematical methods, this book...

  1. Recent developments in quantum plasma physics

    International Nuclear Information System (INIS)

    Shukla, P K; Eliasson, B

    2010-01-01

    We present a review of recent developments in nonlinear quantum plasma physics involving quantum hydrodynamics and effective nonlinear Schroedinger equation formalisms, for describing collective phenomena in dense quantum plasmas with degenerate electrons. As examples, we discuss simulation studies of the formation and dynamics of dark solitons and quantum vortices, and of nonlinear interactions between intense circularly polarized electromagnetic (CPEM) waves and electron plasma oscillations (EPOs) in dense quantum-electron plasmas with immobile ions. The electron dynamics of dark solitons and quantum vortices is governed by a pair of equations comprising the nonlinear Schroedinger and Poisson system of equations. Both dark solitons and singly charged electron vortices are robust, and the latter tend to form pairs of oppositely charged vortices. The two-dimensional quantum-electron vortex pairs survive during collisions under the change of partners. The dynamics of the CPEM waves is governed by a nonlinear Schroedinger equation, which is nonlinearly coupled with the Schroedinger equation of the EPOs via the relativistic ponderomotive force, the relativistic electron mass increase in the CPEM field, and the electron density fluctuations. The present governing equations in one-spatial dimension admit stationary solutions in the form of dark solitons. The nonlinear equations also depict trapping of localized CPEM wave envelopes in the electron density holes that are associated with a positive potential profile.

  2. Proceedings of the 20th symposium on plasma physics and technology

    International Nuclear Information System (INIS)

    2002-01-01

    The supplement contains 133 papers from those presented at the conference; these papers were selected through the review process of the Czechoslovak Journal of Physics. The papers are divided into 5 categories corresponding to the main topics of the symposium, which covered all kinds of plasma research and associated applications: tokamaks and other magnetic confinement devices; short lived plasmas (plasma focus, z-pinch, particle beamplasma interaction, Xray sources); laser plasma and research at the Prague Asterix Laser System (PALS); low temperature plasma; and plasma technology. All 10 papers dealing with tokamaks and other magnetic confinement devices were submitted to INIS, as were 17 papers out of the 28 papers discussing short lived plasmas. (A.K.)

  3. Basic Physics Questions Addressed by Astrophysics

    Science.gov (United States)

    Mather, John C.

    2009-01-01

    Dark matter, dark energy, the Big Bang, testing relativity -- all are physics questions accessible to astrophysicists -- but all require new equipment. As Harwit's "Cosmic Discovery" pointed out, almost all great surprises in astronomy came from new equipment or new uses of equipment designed for other purposes, and many of those had military applications. I will outline prospects for new equipment and discuss how that equipment can be developed and built. Bigger and lighter mirrors, wavefront sensing and control, new detector technology, cryogenics -- each has its own social network, its own special possibilities, and its own funding sources outside science. I will discuss some examples drawn from real-life experience with the James Webb Space Telescope, a telescope that was said to have a "giggle factor" when it was proposed in 1995. Now each of the 10 major technologies has been brought to maturity, flight hardware is being built, and launch is planned for 2014. As an instrument builder all my life, I will speculate a little on what may be within our reach over the next few decades.

  4. Contributions to the 20. EPS conference on controlled fusion and plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-07-15

    The Conference covers research on different aspects of plasma physics and fusion technology, like technical aspects of Tokamak devices; plasma instabilities and impurities, development and testing of materials for fusion reactors etc.

  5. Progress report 1990/91 of the Division of Fusion Plasma Physics

    International Nuclear Information System (INIS)

    Lehnert, B.

    1991-08-01

    A summary is given of the historical background, research, education and available resources of the Division of Fusion Plasma Physics at the newly established Alfven Laboratory. Experimental and theoretical research is performed, including basic physics of magnetized plasma as well as applications to magnetically confined fusion plasma, and to certain technical and cosmical problems. The major project consists of the 'Extrap' high-beta confinement scheme within which a large experimental facility, EXTRAP T2, is under preparation. This research is performed in terms of extensive international collaboration and commitments, in particular with the European Community (Euratom). The education includes pregraduate and postgraduate teaching, the latter being based on obligatory, optional and extra courses which are connected with the research activities

  6. Trends of plasma physics and nuclear fusion research life cycle and research effort curve

    International Nuclear Information System (INIS)

    Ohe, Takeru; Kanada, Yasumasa; Momota, Hiromu; Ichikawa, Y.H.

    1979-05-01

    This paper presents a quantitative analysis of research trends in the fields of plasma physics and nuclear fusion. This analysis is based on information retrieval from available data bases such as INSPEC tapes. The results indicate that plasma physics research is now in the maturation phase of its life cycle, and that nuclear fusion research is in its growth phase. This paper indicates that there is a correlation between the number of accumulated papers in the fields of plasma physics and nuclear fusion and the experimentally attained values of the plasma ignition parameter ntT. Using this correlation ''research effort curve'', we forecast that the scientific feasibility of controlled fusion using magnetic confinement systems will be proved around 1983. (author)

  7. PREFACE: Plasma Physics by Laser and Applications 2013 Conference (PPLA2013)

    Science.gov (United States)

    Nassisi, V.; Giulietti, D.; Torrisi, L.; Delle Side, D.

    2014-04-01

    The ''Plasma Physics by Laser and Applications'' Conference (PPLA 2013) is a biennial meeting in which the National teams involved in Laser-Plasma Interaction at high intensities communicate their late results comparing with the colleagues from the most important European Laser Facilities. The sixth appointment has been organized in Lecce, Italy, from 2 to 4 October 2013 at the Rector Palace of the University of Salento. Surprising results obtained by laser-matter interaction at high intensities, as well as, non-equilibrium plasma generation, laser-plasma acceleration and related secondary sources, diagnostic methodologies and applications based on lasers and plasma pulses have transferred to researchers the enthusiasm to perform experiments ad maiora. The plasma generated by powerful laser pulses produces high kinetic particles and energetic photons that may be employed in different fields, from medicine to microelectronics, from engineering to nuclear fusion, from chemistry to environment. A relevant interest concerns the understanding of the fundamental physical phenomena, the employed lasers, plasma diagnostics and their consequent applications. For this reason we need continuous updates, meetings and expertise exchanges in this field in order to follow the evolution and disclose information, that has been done this year in Lecce, discussing and comparing the experiences gained in various international laboratories. The conference duration, although limited to just 3 days, permitted to highlight important aspects of the research in the aforementioned fields, giving discussion opportunities about the activities of researchers of high international prestige. The program consisted of 10 invited talks, 17 oral talks and 17 poster contributions for a total of 44 communications. The presented themes covered different areas and, far from being exhaustive gave updates, stimulating useful scientific discussions. The Organizers belong to three Italian Universities

  8. A review on ion–ion plasmas created in weakly magnetized electronegative plasmas

    International Nuclear Information System (INIS)

    Aanesland, A; Bredin, J; Chabert, P

    2014-01-01

    Ion–Ion plasmas are electronegative plasmas where the electron density is several orders of magnitude lower than the negative ion density. These plasmas have been scarcely observed and investigated since the 1960s and are formed as a transient state of pulsed plasmas or in separate regions in magnetized plasmas. In this review we focus on the latter case of continuous formation of ion–ion plasmas created at the periphery of magnetized plasma columns or downstream localized magnetic barriers. We bring together and review experimental results already published elsewhere and complement them with new results to illustrate the physics important in ion–ion plasma formation and highlight in particular unanswered questions. We show that with a good design the density in the ion–ion region is dropping only by a factor of 2–3 from the initial plasma density. These plasmas can therefore be well suited for various ion source applications when both fluxes or beams of positive and negative ions are desired, and when electrons can cause harmful effects. (paper)

  9. Plasma Physics and Controlled Nuclear Fusion Research. Vol. II. Proceedings of a Conference on Plasma Physics and Controlled Physics Research

    International Nuclear Information System (INIS)

    1966-01-01

    Research on controlled nuclear fusion was first disclosed at the Second United Nations Conference on the Peaceful Uses of Atomic Energy, held at Geneva in 1958. From the information given, it was evident that a better understanding of the behaviour of hot dense plasmas was needed before the goal of economic energy release from nuclear fusion could be reached. The fact that research since then has been most complex and costly has enhanced the desirability of international co-operation and exchange of information and experience. Having organized its First Conference on Plasma Physics and Controlled Nuclear Fusion Research at Salzburg in 1961, the International Atomic Energy Agency again provided the means for such cooperation in organizing its Second Conference on this subject on 6-10 September, 1965, at Culham, Abingdon, Berks, England. The meeting was arranged with the generous help of the United Kingdom Atomic Energy Authority at their Culham Laboratory, where the facilities and assistance of the staff were greatly appreciated. At the meeting, which was attended by 268 participants from 26 member states and three international organizations, significant results from many experiments, including those from the new and larger machines, became available. It has now become feasible to intercorrelate data obtained from a number of similar machines; this has led to a more complete understanding of plasma behaviour. No breakthrough was reported nor had been expected towards the economical release of the energy from fusion, but there was increased understanding of the problems of production, control and containment of high-density and high-temperature plasmas

  10. Plasma physics and controlled nuclear fusion research 1988. V.3

    International Nuclear Information System (INIS)

    1989-01-01

    Volume 3 of the proceedings of the twelfth international conference on plasma physics and controlled nuclear fusion, held in Nice, France, 12-19 October, 1988, contains papers presented on inertial fusion. Direct and indirect laser implosion experiments, programs of laser construction, computer modelling of implosions and resulting plasmas, and light ion beam fusion experiments are discussed. Refs, figs and tabs

  11. Field-matter interaction in atomic and plasma physics, from fluctuations to the strongly nonlinear regime

    International Nuclear Information System (INIS)

    Benisti, D.

    2011-01-01

    This manuscript provides a theoretical description, sometimes illustrated by experimental results, of several examples of field-matter interaction in various domains of physics, showing how the same basic concepts and theoretical methods may be used in very different physics situations. The issues addressed here are nonlinear field-matter interaction in plasma physics within the framework of classical mechanics (with a particular emphasis on wave-particle interaction), the linear analysis of beam-plasma instabilities in the relativistic regime, and the quantum description of laser-atom interaction, including quantum electrodynamics. Novel methods are systematically introduced in order to solve some very old problems, like the nonlinear counterpart of the Landau damping rate in plasma physics, for example. Moreover, our results directly apply to inertial confinement fusion, laser propagation in an atomic vapor, ion acceleration in a magnetized plasma and the physics of the Reversed Field Pinch for magnetic fusion. (author)

  12. Plasma Physics Network Newsletter. No. 4

    International Nuclear Information System (INIS)

    1991-08-01

    This, fourth, issue of the Newsletter contains a (i) contribution in the series of reports on national fusion programmes from Algeria; (ii) a letter from Dr J.A.M. de Villiers, manager: fusion studies, at the Atomic Energy Corporation of South Africa Limited, informing about the close-down of the small tokamak project there, and soliciting ways to use some manpower and supportive sources to salvage the wealth of information still left behind in the project, and offering, in the possible absence of such manpower and supportive sources, the entire facility for sale (specifications of the Tokoloshe Tokamak plus diagnostic systems are enclosed); (iii) the e-mail address of the Third World Plasma Research Network (TWPRN), namely: ''PLASNET.NERUS.PFC.MIT.EDU''; (iv) minutes of the TWPRN Steering Committee Meeting held in May 1991, at the I.C.T.P., Trieste, Italy; (v) a news item on the ITER Tokamak project; (vi) a reiteration of the announcement of the 14th IAEA International Conference on Plasma Physics and Controlled Nuclear Fusion Research, to be held in Wuerzburg, Germany, September 30 - October 7, 1992; (vii) a list of IAEA Technical Committee Meetings during 1991; (viii) the First Announcement of the V Latin American Workshop on Plasma Physics, to be held in Mexico City, July 21-30, 1992, accompanied with a call for papers; all correspondence on this conference should be addressed to: Dr. Julio Herrera, V LAWPP, ICN-UNAM, Apdo. Postal 70-543, Delegacion Coyoacan, 04510 Mexico, D.F. Mexico (e-mail: ''HERRE.UNAMVM1.BITNET''); (ix) the announcement for the Second South North International Workshop on Fusion Theory, Lisbon, Portugal, March 1993 (contact: Pr. Tito Mendonca, Centro de Electrodinamica, Instituto Superio Tecnico, 1096 Lisbon Codex, Portugal)

  13. Physical processes in spin polarized plasmas

    International Nuclear Information System (INIS)

    Kulsrud, R.M.; Valeo, E.J.; Cowley, S.

    1984-05-01

    If the plasma in a nuclear fusion reactor is polarized, the nuclear reactions are modified in such a way as to enhance the reactor performance. We calculate in detail the modification of these nuclear reactions by different modes of polarization of the nuclear fuel. We also consider in detail the various physical processes that can lead to depolarization and show that they are by and large slow enough that a high degree of polarization can be maintained

  14. Time-nonlocal kinetic equations, jerk and hyperjerk in plasmas and solar physics

    Science.gov (United States)

    El-Nabulsi, Rami Ahmad

    2018-06-01

    The simulation and analysis of nonlocal effects in fluids and plasmas is an inherently complicated problem due to the massive breadth of physics required to describe the nonlocal dynamics. This is a multi-physics problem that draws upon various miscellaneous fields, such as electromagnetism and statistical mechanics. In this paper we strive to focus on one narrow but motivating mathematical way: the derivation of nonlocal plasma-fluid equations from a generalized nonlocal Liouville derivative operator motivated from Suykens's nonlocal arguments. The paper aims to provide a guideline toward modeling nonlocal effects occurring in plasma-fluid systems by means of a generalized nonlocal Boltzmann equation. The generalized nonlocal equations of fluid dynamics are derived and their implications in plasma-fluid systems are addressed, discussed and analyzed. Three main topics were discussed: Landau damping in plasma electrodynamics, ideal MHD and solar wind. A number of features were revealed, analyzed and confronted with recent research results and observations.

  15. Fusion plasma physics research on the H-1 national facility

    International Nuclear Information System (INIS)

    Harris, J.

    1998-01-01

    Full text: Australia has a highly leveraged fusion plasma research program centred on the H-1 National Facility device at the ANU. H-1 is a heliac, a novel helical axis stellarator that was experimentally pioneered in Australia, but has a close correlation with the worldwide research program on toroidal confinement of fusion grade plasma. Experiments are conducted on H-1 by university researchers from the Australian Fusion Research Group (comprising groups from the ANU, the Universities of Sydney, Western Sydney, Canberra, New England, and Central Queensland University) under the aegis of AINSE; the scientists also collaborate with fusion researchers from Japan and the US. Recent experiments on H-1 have focused on improved confinement modes that can be accessed at very low powers in H-1, but allow the study of fundamental physics effects seen on much larger machines at higher powers. H-1 is now being upgraded in magnetic field and heating power, and will be able to confine hotter plasmas beginning in 1999, offering greatly enhanced research opportunities for Australian plasma scientists and engineers, with substantial spillover of ideas from fusion research into other areas of applied physics and engineering

  16. Physics and application of plasmas based on pulsed power technology

    International Nuclear Information System (INIS)

    Hotta, Eiki; Ozaki, Tetsuo

    2012-04-01

    The papers presented at the symposium on 'Physics and Application of Plasmas Based on Pulsed Power Technology' held on December 21-22, 2010 at National Institute of Fusion Science are collected. The papers in this proceeding reflect the current status and progress in the experimental and theoretical researches on high power particle beams and high energy density plasmas produced by pulsed power technology. (author)

  17. Plasma Physics and Controlled Nuclear Fusion Research 1971. Vol. III. Proceedings of the Fourth International Conference on Plasma Physics and Controlled Nuclear Fusion Research

    International Nuclear Information System (INIS)

    1971-01-01

    The ultimate goal of controlled nuclear fusion research is to make a new energy source available to mankind, a source that will be virtually unlimited and that gives promise of being environmentally cleaner than the sources currently exploited. This goal has stimulated research in plasma physics over the past two decades, leading to significant advances in the understanding of matter in its most common state as well as to progress in the confinement and heating of plasma. An indication of this progress is that in several countries considerable effort is being devoted to design studies of fusion reactors and to the technological problems that will be encountered in realizing these reactors. This range of research, from plasma physics to fusion reactor engineering, is shown in the present three-volume publication of the Proceedings of the Fourth Conference on Plasma Physics and Controlled Nuclear Fusion Research. The Conference was sponsored by the International Atomic Energy Agency and was held in Madison, Wisconsin, USA from 17 to 23 June 1971. The enthusiastic co-operation of the University of Wisconsin and of the United States Atomic Energy Commission in the organization of the Conference is gratefully acknowledged. The Conference was attended by over 500 scientists from 24 countries and 3 international organizations, and 143 papers were presented. These papers are published here in the original language; English translations of the Russian papers will be published in a Special Supplement to the journal Nuclear Fusion. The series of conferences on Plasma Physics and Controlled Nuclear Fusion Research has become a major international forum for the presentation and discussion of results in this important and challenging field. In addition to sponsoring these conferences, the International Atomic Energy Agency supports controlled nuclear fusion research by publishing the journal Nuclear Fusion, and has recently established an International Fusion Research Council

  18. Understanding Solar Coronal Heating through Atomic and Plasma Physics Experiments

    Science.gov (United States)

    Savin, Daniel Wolf; Arthanayaka, Thusitha; Bose, Sayak; Hahn, Michael; Beiersdorfer, Peter; Brown, Gregory V.; Gekelman, Walter; Vincena, Steve

    2017-08-01

    Recent solar observations suggest that the Sun's corona is heated by Alfven waves that dissipate at unexpectedly low heights in the corona. These observations raise a number of questions. Among them are the problems of accurately quantifying the energy flux of the waves and that of describing the physical mechanism that leads to the wave damping. We are performing laboratory experiments to address both of these issues.The energy flux depends on the electron density, which can be measured spectroscopically. However, spectroscopic density diagnostics have large uncertainties, because they depend sensitively on atomic collisional excitation, de-excitation, and radiative transition rates for multiple atomic levels. Essentially all of these data come from theory and have not been experimentally validated. We are conducting laboratory experiments using the electron beam ion trap (EBIT) at Lawrence Livermore National Laboratory that will provide accurate empirical calibrations for spectroscopic density diagnostics and which will also help to guide theoretical calculations.The observed rapid wave dissipation is likely due to inhomogeneities in the plasma that drive flows and currents at small length scales where energy can be more efficiently dissipated. This may take place through gradients in the Alfvén speed along the magnetic field, which causes wave reflection and generates turbulence. Alternatively, gradients in the Alfvén speed across the field can lead to dissipation through phase-mixing. Using the Large Plasma Device (LAPD) at the University of California Los Angeles, we are studying both of these dissipation mechanisms in the laboratory in order to understand their potential roles in coronal heating.

  19. Relationship between physical activity and plasma fibrinogen concentrations in adults without chronic diseases.

    Directory of Open Access Journals (Sweden)

    Manuel A Gomez-Marcos

    Full Text Available To analyze the relationship between regular physical activity, as assessed by accelerometer and 7-day physical activity recall (PAR, and plasma fibrinogen concentrations.A cross-sectional study in a previously established cohort of healthy subjects was performed. This study analyzed 1284 subjects who were included in the EVIDENT study (mean age 55.0±13.6 years; 60.90% women. Fibrinogen concentrations were measured in blood plasma. Physical activity was assessed with a 7-day PAR (metabolic equivalents (METs/hour/week and GT3X ActiGraph accelerometer (counts/minute for 7 days.Physical exercise, which was evaluated with both an accelerometer (Median: 237.28 counts/minute and 7-day PAR (Median: 8 METs/hour/week. Physical activity was negatively correlated with plasma fibrinogen concentrations, which was evaluated by counts/min (r = -0.100; p<0.001 and METs/hour/week (r = -0.162; p<0.001. In a multiple linear regression analysis, fibrinogen concentrations of the subjects who performed more physical activity (third tertile of count/minute and METs/hour/week respect to subjects who performed less (first tertile, maintained statistical significance after adjustments for age and others confounders (β = -0.03; p = 0.046 and β = -0.06; p<0.001, respectively.Physical activity, as assessed by accelerometer and 7-day PAR, was negatively associated with plasma fibrinogen concentrations. This relation is maintained in subjects who performed more exercise even after adjusting for age and other confounders.

  20. Theoretical Plasma Physics

    Energy Technology Data Exchange (ETDEWEB)

    Vahala, George M. [College of William and Mary, Williamsburg, VA (United States)

    2013-12-31

    Lattice Boltzmann algorithms are a mesoscopic method to solve problems in nonlinear physics which are highly parallelized – unlike the direction solution of the original problem. These methods are applied to both fluid and magnetohydrodynamic turbulence. By introducing entropic constraints one can enforce the positive definiteness of the distribution functions and so be able to simulate fluids at high Reynolds numbers without numerical instabilities. By introducing a vector distribution function for the magnetic field one can enforce the divergence free condition on the magnetic field automatically, without the need of divergence cleaning as needed in most direct numerical solutions of the resistive magnetohydrodynamic equations. The principal reason for the high parallelization of lattice Boltzmann codes is that they consist of a kinetic collisional relaxation step (which is purely local) followed by a simple shift of the relaxed data to neighboring lattice sites. In large eddy simulations, the closure schemes are highly nonlocal – the most famous of these schemes is that due to Smagorinsky. Under a lattice Boltzmann representation the Smagorinsky closure is purely local – being simply a particular moment on the perturbed distribution fucntions. After nonlocal fluid moment models were discovered to represent Landau damping, it was found possible to model these fluid models using an appropriate lattice Boltzmann algorithm. The close to ideal parallelization of the lattice Boltzmann codes permitted us to be Gordon Bell finalists on using the Earth Simulation in Japan. We have also been involved in the radio frequency propagation of waves into a tokamak and into a spherical overdense tokamak plasma. Initially we investigated the use of a quasi-optical grill for the launching of lower hybrid waves into a tokamak. It was found that the conducting walls do not prevent the rods from being properly irradiated, the overloading of the quasi-optical grill is not severe

  1. Divertor plasma physics experiments on the DIII-D tokamak

    International Nuclear Information System (INIS)

    Mahdavi, M.A.; Allen, S.L.; Evans, T.E.

    1996-10-01

    In this paper we present an overview of the results and conclusions of our most recent divertor physics and development work. Using an array of new divertor diagnostics we have measured the plasma parameters over the entire divertor volume and gained new insights into several divertor physics issues. We present direct experimental evidence for momentum loss along the field lines, large heat convection, and copious volume recombination during detachment. These observations are supported by improved UEDGE modeling incorporating impurity radiation. We have demonstrated divertor exhaust enrichment of neon and argon by action of a forced scrape off layer (SOL) flow and demonstrated divertor pumping as a substitute for conventional wall conditioning. We have observed a divertor radiation zone with a parallel extent that is an order of magnitude larger than that estimated from a 1-D conduction limited model of plasma at coronal equilibrium. Using density profile control by divertor pumping and pellet injection we have attained H-mode confinement at densities above the Greenwald limit. Erosion rates of several candidate ITER plasma facing materials are measured and compared with predictions of a numerical model

  2. Theses of the reports of the XXXI Zvenigorod conference on the plasma physics and controlled thermonuclear synthesis

    International Nuclear Information System (INIS)

    Kovrizhnykh, L.M.; Ivanov, V.A.; Nagaeva, M.L.; Aleksandrov, A.F.; Vorob'ev, V.S.; Ivanenkov, G.V.; Meshcheryakov, A.I.

    2004-01-01

    Theses of the reports of the 31th Zvenigorod Conference on the physics and controlled thermonuclear synthesis, presented by Russian and foreign scientists, are published. The total number of reports is 258, namely, summarizing ones 16, magnetic confinement of high temperature plasma - 98, inertial thermonuclear synthesis - 44, physical processes in low temperature plasma - 58, physical bases of plasma and beam technologies - 42 [ru

  3. International school of plasma physics course on instabilities and confinement in toroidal plasmas. Varenna (Italy), September 27-October 9, 1971

    International Nuclear Information System (INIS)

    1974-11-01

    The lectures of a Varenna Summer School about the theme Instabilities and Confinement in toroidal Plasmas are given. The topics included are: high-beta toroidal pinches, non-MHD instabilities and anomalous transport, analogy between turbulent transfer in velocity space and plasma collisioned transport in real space, the magnetohydrodynamic approach of plasma confinement in closed magnetic configurations, properties of isodynamical equilibrium configurations and their generalization, transport theory for toroidal plasmas, plasma physics, low-β toroidal machines, the neoclassical theory of transit time magnetic pumping, radio frequency heating of toroidal plasmas, plasma heating at lower hybrid frequency, RF-plasma heating with L-structures, numerical simulation, dynamical stabilization of low frequency waves in inhomogeneous plasmas, dynamic and feedback stabilization of plasmas and problems with nuclear fusion reactors

  4. The physics of megajoule, large-scale, and ultrafast short-scale laser plasmas

    International Nuclear Information System (INIS)

    Campbell, E.M.

    1992-01-01

    Recent advances in laser science and technology have opened new possibilities for the study of high energy density plasma physics. The advances include techniques to control the laser spatial and temporal coherence, and the development of laser architectures and optical materials that have led to the demonstration of compact, short pulse (τ≤10 -12 sec) high brightness lasers, capable of irradiating plasmas with intensities ≥10 18 W/cm 2 . Experiments with reduced laser coherence have shown a substantial decrease in laser-driven parametric instabilities and have extended the parameter range where inverse bremsstrahlung absorption is the dominant coupling process. Beam smoothing with short wavelength lasers should result in inverse bremsstrahlung dominated coupling in the irradiance parameter regimes of the millimeter scale-length plasmas envisioned for the megajoule class lasers for ignition and gain in inertial fusion. In addition new regimes of laser--plasma coupling will become experimentally accessible when plasmas are irradiated with I≥10 18 W/cm 2 . Relativistic effects, extreme profile modification, and electrons heated to energies exceeding 1 MeV are several of the phenomena that are expected. Numerous applications in basic and applied plasma physics will result from these new capabilities

  5. Physics and applications of micro and fast z-pinch plasmas

    International Nuclear Information System (INIS)

    Masugata, Katsumi

    2003-07-01

    This is the proceedings of symposium on 'Physics and Application of Micro and Fast z-Pinch Plasma' held at National Institute for Fusion Science. Recent progress of experimental and theoretical works on high energy density plasmas produced by pulsed power is presented. Separate abstracts were presented for 4 of the papers in this report. The remaining 14 were considered outside the subject scope of INIS. (J.P.N.)

  6. Plasma physics and controlled nuclear fusion research 1990. V. 1

    International Nuclear Information System (INIS)

    1991-01-01

    Volume 1 of the Proceedings of the Thirteenth International Conference on Plasma Physics and Controlled Nuclear Fusion Research contains papers given in two of the sessions: A and E. Session A contains the Artsimovich Memorial Lecture and papers on tokamaks; session E papers on plasma heating and current drive. The titles and authors of each paper are listed in the Contents. Abstracts accompany each paper. Refs, figs and tabs

  7. Self-organization phenomena in plasma physics

    International Nuclear Information System (INIS)

    Sanduloviciu, M.; Popescu, S.

    2001-01-01

    The self-assembling in nature and laboratory of structures in systems away from thermodynamic equilibrium is one of the problems that mostly fascinates the scientists working in all branches of science. In this context a substantial progress has been obtained by investigating the appearance of spatial and spatiotemporal patterns in plasma. These experiments revealed the presence of a scenario of self-organization able to suggest an answer to the central problem of the 'Science of Complexity', why matter transits spontaneously from a disordered into an ordered state? Based on this scenario of self-organization we present arguments proving the possibility to explain the challenging problems of nonequilibrium physics in general. These problems refer to: (i) genuine origin of phase transitions observed in gaseous conductors and semiconductors; (ii) the elucidation of the role played by self-organization in the simulation of oscillations; (iii) the physical basis of anomalous transport of matter and energy with special reference to the possibilities of improving the economical performance of fusion devices; (iv) the possibility to use self-confined gaseous space charged configurations as an alternative to the magnetically confined plasma used at present in fusion devices. In other branches of sciences, as for instance in Biology, the self-organization scenario reveals a new insight into a mechanism able to explain the appearance of the simplest possible space charge configuration able to evolve, under suitable conditions, into prebiotic structures. Referring to phenomena observed in nature, the same self-organization scenario suggests plausible answers to the appearance of ball lightening but also to the origin of the flickering phenomena observed in the light emission of the Sun and stars. For theory the described self-organization scenario offers a new physical basis for many problems of nonlinear science not solved yet and also a new model for the so-called 'self

  8. Gauguin's questions in particle physics: Where are we coming from? What are we? Where are we going?

    International Nuclear Information System (INIS)

    Ellis, J

    2008-01-01

    Within particle physics itself, Gauguin's questions may be interpreted as: P1 - What is the status of the Standard Model? P2 - What physics may lie beyond the Standard Model? P3 - What is the 'Theory of Everything'? Gauguin's questions may also asked within a cosmological context: C1 - What were the early stages of the Big Bang? C2 - What is the material content of the Universe today? C3 - What is the future of the Universe? In this talk I preview many of the topics to be discussed in the plenary sessions of this conference, highlighting how they bear on these fundamental questions

  9. A physical model of Mirnov oscillations and plasma disruptions

    International Nuclear Information System (INIS)

    Cross, R.C.

    1983-07-01

    A physical model is proposed which accounts for the general behaviour of Mirnov oscillations and plasma disruptions in tokamak devices. The model also accounts for the stability of those devices which operate with edge safety factors less than 1.5. The model is based on the propagation of localized torsional Alfven and ion acoustic wavepackets. These packets remain phase coherent for considerable distances and are guided along helical field lines in toroidal plasmas, leading to the formation of standing waves on those field lines which close on themselves after one or more toroidal revolutions. Standing waves are driven resonantly on the rational surfaces by fluctuations in the poloidal field, causing localized heating and hence filamentation of the plasma current. This model indicates that Mirnov oscillations are produced by standing acoustic waves, while plasma disruptions occur as a result of the formation of MHD unstable current filaments

  10. Electron cyclotron resonance plasmas and electron cyclotron resonance ion sources: Physics and technology (invited)

    International Nuclear Information System (INIS)

    Girard, A.; Hitz, D.; Melin, G.; Serebrennikov, K.

    2004-01-01

    Electron cyclotron resonance (ECR) ion sources are scientific instruments particularly useful for physics: they are extensively used in atomic, nuclear, and high energy physics, for the production of multicharged beams. Moreover, these sources are also of fundamental interest for plasma physics, because of the very particular properties of the ECR plasma. This article describes the state of the art on the physics of the ECR plasma related to multiply charged ion sources. In Sec. I, we describe the general aspects of ECR ion sources. Physics related to the electrons is presented in Sec. II: we discuss there the problems of heating and confinement. In Sec. III, the problem of ion production and confinement is presented. A numerical code is presented, and some particular and important effects, specific to ECR ion sources, are shown in Sec. IV. Eventually, in Sec. V, technological aspects of ECR are presented and different types of sources are shown

  11. Magnetospheric Plasma Physics : the Impact of Jim Dungey’s Research

    CERN Document Server

    Southwood, David; Mitton, Simon

    2015-01-01

    This book makes good background reading for much of modern magnetospheric physics. Its origin was a Festspiel for Professor Jim Dungey, former professor in the Physics Department at Imperial College on the occasion of his 90th birthday, 30 January 2013. Remarkably, although he retired 30 years ago, his pioneering and, often, maverick work in the 50’s through to the 70’s on solar terrestrial physics is probably more widely appreciated today than when he retired. Dungey was a theoretical plasma physicist. The book covers how his reconnection model of the magnetosphere evolved to become the standard model of solar-terrestrial coupling. Dungey’s open magnetosphere model now underpins a holistic picture explaining not only the magnetic and plasma structure of the magnetosphere, but also its dynamics which can be monitored in real time. The book also shows how modern day simulation of solar terrestrial coupling can reproduce the real time evolution of the solar terrestrial system in ways undreamt of in 1961 w...

  12. Energetic particle physics with applications in fusion and space plasmas

    International Nuclear Information System (INIS)

    Cheng, C.Z.

    1997-01-01

    Energetic particle physics is the study of the effects of energetic particles on collective electromagnetic (EM) instabilities and energetic particle transport in plasmas. Anomalously large energetic particle transport is often caused by low frequency MHD instabilities, which are driven by these energetic particles in the presence of a much denser background of thermal particles. The theory of collective energetic particle phenomena studies complex wave-particle interactions in which particle kinetic physics involving small spatial and fast temporal scales can strongly affect the MHD structure and long-time behavior of plasmas. The difficulty of modeling kinetic-MHD multiscale coupling processes stems from the disparate scales which are traditionally analyzed separately: the macroscale MHD phenomena are studied using the fluid MHD framework, while microscale kinetic phenomena are best described by complicated kinetic theories. The authors have developed a kinetic-MHD model that properly incorporates major particle kinetic effects into the MHD fluid description. For tokamak plasmas a nonvariational kinetic-MHD stability code, the NOVA-K code, has been successfully developed and applied to study problems such as the excitation of fishbone and Toroidal Alfven Eigenmodes (TAE) and the sawtooth stabilization by energetic ions in tokamaks. In space plasmas the authors have employed the kinetic-MHD model to study the energetic particle effects on the ballooning-mirror instability which explains the multisatellite observation of the stability and field-aligned structure of compressional Pc 5 waves in the magnetospheric ring current plasma

  13. Hybrid modeling of plasma and applications to fusion and space physics

    International Nuclear Information System (INIS)

    Kazeminejad, F.

    1989-01-01

    Obtaining reasonable solutions to the nonlinear equations is crucial to the understanding of the behavior of plasmas. With the advent of high speed computers, computer modeling of plasmas has moved into the front row of the tools used in research of their nonlinear plasma dynamics. There are roughly speaking two types of plasma models, particle models and fluid models. Particle models try to emulate nature by following the motion of a large number of charged particles in their self consistent electromagnetic fields. Fluid models on the other hand use macroscopic fluid equations to model the plasma. MHD models are typical of this type. Particle models in general require larger memory for the computer due to the massive amount of data associated with the particles' kinematical variables. Particle models are generally limited to studying small regions of plasma for relatively short time intervals. Fluid models are better fit to handle large scales and long times; i.e., quite often the complete plasma involved in an experiment. The drawback of the fluid models however is that, they miss the physical phenomenon taking place at the microscale and these phenomenon can influence the properties of fluid. Another approach is to start with fluid models and incorporate more physics. Such models are referred to as hybrid models. In this thesis, two such models are discussed. They are then applied to two problems; the first is a simulation of the artificial comet generated by the AMPTE experiment; the second is the production of enhanced noise in fusion plasmas by injected energetic ions or by fusion reaction products. In both cases the models demonstrate qualitative agreement with the experimental observations

  14. Annual review of the Institute of Plasma Physics, Nagoya University, for fiscal 1983

    International Nuclear Information System (INIS)

    1984-01-01

    As to the reacting plasma project, the design team performed the extensive analysis of highly elongated, high β plasma configuration in fiscal 1983. As physical issues, the experiments on lower hybrid wave current start-up and ion Bernstein wave heating were successfully carried out in the JIPP-T-2U tokamak device. For the research and development related to reacting plasma, a 1/4 module of a 120 keV neutral beam system was completed. The construction of a tritium handling facility, the development of fast pulsed superconduction and the development of new aluminum alloys were accomplished as the results of 3-year preparatory program ending in 1983. The Institute also tried to pursue the alternative concept on fusion plasma research by organizing the program based on a low β toroidal system, radio frequency containment, high energy beam experiment, Nagoya bumpy torus and high β pinch plasma. The scientific activities of the Institute related to reacting plasma physics, various preparatory experiments, various basic studies and plasma theory and computation are reported. Also the services of the Computer Center, the Research Information Center and other facilities are described. (Kako, I.)

  15. Redox Stimulation of Human THP-1 Monocytes in Response to Cold Physical Plasma

    Directory of Open Access Journals (Sweden)

    Sander Bekeschus

    2016-01-01

    Full Text Available In plasma medicine, cold physical plasma delivers a delicate mixture of reactive components to cells and tissues. Recent studies suggested a beneficial role of cold plasma in wound healing. Yet, the biological processes related to the redox modulation via plasma are not fully understood. We here used the monocytic cell line THP-1 as a model to test their response to cold plasma in vitro. Intriguingly, short term plasma treatment stimulated cell growth. Longer exposure only modestly compromised cell viability but apparently supported the growth of cells that were enlarged in size and that showed enhanced metabolic activity. A significantly increased mitochondrial content in plasma treated cells supported this notion. On THP-1 cell proteome level, we identified an increase of protein translation with key regulatory proteins being involved in redox regulation (hypoxia inducible factor 2α, differentiation (retinoic acid signaling and interferon inducible factors, and cell growth (Yin Yang 1. Regulation of inflammation is a key element in many chronic diseases, and we found a significantly increased expression of the anti-inflammatory heme oxygenase 1 (HMOX1 and of the neutrophil attractant chemokine interleukin-8 (IL-8. Together, these results foster the view that cold physical plasma modulates the redox balance and inflammatory processes in wound related cells.

  16. Redox Stimulation of Human THP-1 Monocytes in Response to Cold Physical Plasma.

    Science.gov (United States)

    Bekeschus, Sander; Schmidt, Anke; Bethge, Lydia; Masur, Kai; von Woedtke, Thomas; Hasse, Sybille; Wende, Kristian

    2016-01-01

    In plasma medicine, cold physical plasma delivers a delicate mixture of reactive components to cells and tissues. Recent studies suggested a beneficial role of cold plasma in wound healing. Yet, the biological processes related to the redox modulation via plasma are not fully understood. We here used the monocytic cell line THP-1 as a model to test their response to cold plasma in vitro. Intriguingly, short term plasma treatment stimulated cell growth. Longer exposure only modestly compromised cell viability but apparently supported the growth of cells that were enlarged in size and that showed enhanced metabolic activity. A significantly increased mitochondrial content in plasma treated cells supported this notion. On THP-1 cell proteome level, we identified an increase of protein translation with key regulatory proteins being involved in redox regulation (hypoxia inducible factor 2α), differentiation (retinoic acid signaling and interferon inducible factors), and cell growth (Yin Yang 1). Regulation of inflammation is a key element in many chronic diseases, and we found a significantly increased expression of the anti-inflammatory heme oxygenase 1 (HMOX1) and of the neutrophil attractant chemokine interleukin-8 (IL-8). Together, these results foster the view that cold physical plasma modulates the redox balance and inflammatory processes in wound related cells.

  17. Controlled fusion and plasma physics

    International Nuclear Information System (INIS)

    Bickerton, R.J.

    1991-01-01

    On JET results were presented on additional heating power, on a recently discovered regime of enhanced pellet performance (PEP), on low-density H-mode plasma confinement with hot ions, bounds on very high electric currents by material limiters, the first experiments on lower hybrid current drive, on the L-H transition threshold dependence on the direction of the gradient-B drift, and on alpha-particle physics issues. The TFTR presentations focused on transport. Particle loss ramifications of the toroidal Alfven eigenmodes were found to be small, while their threshold of excitation is lower than theoretically predicted. On DIII-D a scaling study of transport with gyroradius as the only variable was reported, with approximately Bohm scaling emerging; but the effective heat diffusivity scaling could not be established due to profile consistency effects. While beta-limit investigations with DIII-D generally confirm the ideal, MHD limit found by Troyon, evidence of a reduction of the accessible range for the internal inductance with the safety factor seems to favour current-density control in a steady-state D-T burner. Onset of strongly sheared poloidal rotation in a thin layer during the L-H mode transition was experimentally shown, while a new, so-called VH (''very high'') confinement mode was discovered by boronization of the wall. The JT-90 tokamak has recently been upgraded to JT-60-U. Presentations by the ASDEX team summarized the lack of agreement with theory of L-mode confinement. With TEXTOR, an improved mode (I-mode) of confinement was found by boronization. Finally, reviews are included on the status of impurity transport and helium removal in tokamaks, on stellarators, alternative magnetic confinement systems, inertial confinement, and non-fusion plasma physics. 2 tabs

  18. Department of Plasma Physics and Technology - Overview

    International Nuclear Information System (INIS)

    Sadowski, M.J.

    2007-01-01

    In 2006 research activity of the P-V Department was concentrated on the continuation of previous studies in the field of plasma physics and controlled nuclear fusion (CNF), but several new topics concerning plasma technology were also investigated. The main tasks of the research activities were as follows: 1. Studies of physical phenomena in pulsed discharges producing dense magnetized plasma; 2. Development of methods and tools for high-temperature plasma diagnostics; 3. Research in the field of plasma technologies. In a frame of the first task particular attention was paid to studies of X-ray pulses and fast electron beams emitted from different Plasma-Focus (PF) facilities. The correlation of X-ray pulses with pulsed electron beams and other corpuscular emissions (i.e. accelerated primary ions and fusion reaction products) was investigated in the PF-360 device in Swierk. The X-ray and corpuscular emission was also studied in a PF-1000 facility at IPPLM in Warsaw. Separate efforts were devoted to the investigation of fast electrons escaping from Tokamak-type facilities. Such studies were carried out in a frame of the EURATOM program, using special Cerenkov-type detectors within the CASTOR tokamak, operated at IPP in Prague. Signals from the Cerenkov detector were recorded and interpreted. Other studies concerned the design and construction of a new 4-channel Cerenkov detection system for a TORE-SUPRA facility at CEA-Cadarache. Since thermal loads upon the Cerenkov probe within the TORE SUPRA facility can amount to 1 MW/cm 2 , it was necessary to perform detailed computations of heat transfer in various materials (i.e. diamond-radiators and the probe body). Some efforts were devoted to the calibration of new nuclear track detectors (NTD) and their application for measurements of fusion-produced protons emitted from PF-360 and PF-1000 facilities. In frame of the EURATOM program the calibrated NTD were also applied for measurements of fusion-protons in a TEXTOR

  19. Physics of plasma etching and plasma deposition

    NARCIS (Netherlands)

    Schram, D.C.; Hoog, de F.J.; Bisschops, T.J.; Kroesen, G.M.W.; Howorka, F.; Lindinger, W.; Maerk, T.D.

    1986-01-01

    The kinetics and mechanism of the title processes are discussed on the basis of a model in which the plasma-surface system is subdivided into 5 regions: (I) plasma prodn., (II) plasma flow plus radicals, (III) gas adsorbed layer, (IV) modified surface, and (V) undisturbed solid (or liq.) state.

  20. Effect of Physical and Flexibility Exercise on Plasma Levels of Some ...

    African Journals Online (AJOL)

    Purpose: To evaluate the effect of physical and flexibility exercise on plasma levels of some liver enzymes and biomolecules of young Nigerian adults. Methods: Participants were subjected to a 2-h daily continuous physical and flexibility exercise for 6 weeks. Pre- and post-exercise blood samples were obtained and the ...

  1. Fast Magnetic Reconnection: Bridging Laboratory and Space Plasma Physics

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, Amitava [University New Hampshire- Durham

    2012-02-16

    Recent developments in experimental and theoretical studies of magnetic reconnection hold promise for providing solutions to outstanding problems in laboratory and space plasma physics. Examples include sawtooth crashes in tokamaks, substorms in the Earth’s Magnetosphere, eruptive solar flares, and more recently, fast reconnection in laser-produced high energy density plasmas. In each of these examples, a common and long-standing challenge has been to explain why fast reconnection proceeds rapidly from a relatively quiescent state. In this talk, we demonstrate the advantages of viewing these problems and their solutions from a common perspective. We focus on some recent, surprising discoveries regarding the role of secondary plasmoid instabilities of thin current sheets. Nonlinearly, these instabilities lead to fast reconnection rates that are very weakly dependent on the Lundquist number of the plasma.

  2. Chapter 8: Plasma operation and control [Progress in the ITER Physics Basis (PIPB)

    International Nuclear Information System (INIS)

    Gribov, Y.; Humphreys, D.; Kajiwara, K.; Lazarus, E.A.; Lister, J.B.; Ozeki, T.; Portone, A.; Shimada, M.; Sips, A.C.C.; Wesley, J.C.

    2007-01-01

    The ITER plasma control system has the same functional scope as the control systems in present tokamaks. These are plasma operation scenario sequencing, plasma basic control (magnetic and kinetic), plasma advanced control (control of RWMs, NTMs, ELMs, error fields, etc) and plasma fast shutdown. This chapter considers only plasma initiation and plasma basic control. This chapter describes the progress achieved in these areas in the tokamak experiments since the ITER Physics Basis (1999 Nucl. Fusion 39 2577) was written and the results of assessment of ITER to provide the plasma initiation and basic control. This assessment was done for the present ITER design (15 MA machine) at a more detailed level than it was done for the ITER design 1998 (21 MA machine) described in the ITER Physics Basis (1999 Nucl. Fusion 39 2577). The experiments on plasma initiation performed in DIII-D and JT-60U, as well as the theoretical studies performed for ITER, have demonstrated that, within specified assumptions on the plasma confinement and the impurity influx, ITER can produce plasma initiation in a low toroidal electric field (0.3 V m -1 ), if it is assisted by about 2 MW of ECRF heating. The plasma basic control includes control of the plasma current, position and shape-the plasma magnetic control, as well as control of other plasma global parameters or their profiles-the plasma performance control. The magnetic control is based on more reliable and simpler models of the control objects than those available at present for the plasma kinetic control. Moreover the real time diagnostics used for the magnetic control in many cases are more precise than those used for the kinetic control. Because of these reasons, the plasma magnetic control was developed for modern tokamaks and assessed for ITER better than the kinetic control. However, significant progress has been achieved in the plasma performance control during the last few years. Although the physics basis of plasma operation

  3. The Oxford Questions on the foundations of quantum physics

    Science.gov (United States)

    Briggs, G. A. D.; Butterfield, J. N.; Zeilinger, A.

    2013-01-01

    The twentieth century saw two fundamental revolutions in physics—relativity and quantum. Daily use of these theories can numb the sense of wonder at their immense empirical success. Does their instrumental effectiveness stand on the rock of secure concepts or the sand of unresolved fundamentals? Does measuring a quantum system probe, or even create, reality or merely change belief? Must relativity and quantum theory just coexist or might we find a new theory which unifies the two? To bring such questions into sharper focus, we convened a conference on Quantum Physics and the Nature of Reality. Some issues remain as controversial as ever, but some are being nudged by theory's secret weapon of experiment. PMID:24062626

  4. Exploring extreme plasma physics in the laboratory and in astrophysics

    Science.gov (United States)

    Silva, L. O.; Grismayer, T.; Fonseca, R. A.; Cruz, F.; Gaudio, F. D.; Martins, J. L.; Vieira, J.; Vranic, M.

    2017-10-01

    The interaction of ultra intense fields with plasmas is at the confluence of several sub-fields ranging from QED, and nuclear physics to high energy astrophysics, and fundamental plasma processes. It requires novel theoretical tools, highly optimised numerical codes and algorithms tailored to these complex scenarios, where physical mechanisms at very disparate temporal and spatial scales are self-consistently coupled in multidimensional geometries. The key developments implemented in Osiris will be presented along with some examples of problems, relevant for laboratory or astrophysical scenarios, that are being addressed resorting to the combination of massively parallel simulations with theoretical models. The relevance for near future experimental facilities such as ELI will also be presented. Work supported by the European Research Council (ERC-AdG-2015 InPairs Grant No. 695088).

  5. Physics-electrical hybrid model for real time impedance matching and remote plasma characterization in RF plasma sources.

    Science.gov (United States)

    Sudhir, Dass; Bandyopadhyay, M; Chakraborty, A

    2016-02-01

    Plasma characterization and impedance matching are an integral part of any radio frequency (RF) based plasma source. In long pulse operation, particularly in high power operation where plasma load may vary due to different reasons (e.g. pressure and power), online tuning of impedance matching circuit and remote plasma density estimation are very useful. In some cases, due to remote interfaces, radio activation and, due to maintenance issues, power probes are not allowed to be incorporated in the ion source design for plasma characterization. Therefore, for characterization and impedance matching, more remote schemes are envisaged. Two such schemes by the same authors are suggested in these regards, which are based on air core transformer model of inductive coupled plasma (ICP) [M. Bandyopadhyay et al., Nucl. Fusion 55, 033017 (2015); D. Sudhir et al., Rev. Sci. Instrum. 85, 013510 (2014)]. However, the influence of the RF field interaction with the plasma to determine its impedance, a physics code HELIC [D. Arnush, Phys. Plasmas 7, 3042 (2000)] is coupled with the transformer model. This model can be useful for both types of RF sources, i.e., ICP and helicon sources.

  6. Proton-driven plasma wakefield acceleration: a path to the future of high-energy particle physics

    International Nuclear Information System (INIS)

    Assmann, R; Gross, M; Bingham, R; Holloway, J; Bohl, T; Bracco, C; Butterworth, A; Feldbaumer, E; Goddard, B; Gschwendtner, E; Buttenschön, B; Caldwell, A; Chattopadhyay, S; Cipiccia, S; Jaroszynski, D; Fonseca, R A; Grulke, O; Kempkes, P; Huang, C; Jolly, S

    2014-01-01

    New acceleration technology is mandatory for the future elucidation of fundamental particles and their interactions. A promising approach is to exploit the properties of plasmas. Past research has focused on creating large-amplitude plasma waves by injecting an intense laser pulse or an electron bunch into the plasma. However, the maximum energy gain of electrons accelerated in a single plasma stage is limited by the energy of the driver. Proton bunches are the most promising drivers of wakefields to accelerate electrons to the TeV energy scale in a single stage. An experimental program at CERN—the AWAKE experiment—has been launched to study in detail the important physical processes and to demonstrate the power of proton-driven plasma wakefield acceleration. Here we review the physical principles and some experimental considerations for a future proton-driven plasma wakefield accelerator. (paper)

  7. Proton-driven plasma wakefield acceleration: a path to the future of high-energy particle physics

    CERN Document Server

    Assmann, R.; Bohl, T.; Bracco, C.; Buttenschon, B.; Butterworth, A.; Caldwell, A.; Chattopadhyay, S.; Cipiccia, S.; Feldbaumer, E.; Fonseca, R.A.; Goddard, B.; Gross, M.; Grulke, O.; Gschwendtner, E.; Holloway, J.; Huang, C.; Jaroszynski, D.; Jolly, S.; Kempkes, P.; Lopes, N.; Lotov, K.; Machacek, J.; Mandry, S.R.; McKenzie, J.W.; Meddahi, M.; Militsyn, B.L.; Moschuering, N.; Muggli, P.; Najmudin, Z.; Noakes, T.C.Q.; Norreys, P.A.; Oz, E.; Pardons, A.; Petrenko, A.; Pukhov, A.; Rieger, K.; Reimann, O.; Ruhl, H.; Shaposhnikova, E.; Silva, L.O.; Sosedkin, A.; Tarkeshian, R.; Trines, R.M.G.N.; Tuckmantel, T.; Vieira, J.; Vincke, H.; Wing, M.; Xia, G.

    2014-01-01

    New acceleration technology is mandatory for the future elucidation of fundamental particles and their interactions. A promising approach is to exploit the properties of plasmas. Past research has focused on creating large-amplitude plasma waves by injecting an intense laser pulse or an electron bunch into the plasma. However, the maximum energy gain of electrons accelerated in a single plasma stage is limited by the energy of the driver. Proton bunches are the most promising drivers of wakefields to accelerate electrons to the TeV energy scale in a single stage. An experimental program at CERN -- the AWAKE experiment -- has been launched to study in detail the important physical processes and to demonstrate the power of proton-driven plasma wakefield acceleration. Here we review the physical principles and some experimental considerations for a future proton-driven plasma wakefield accelerator.

  8. FIRE, A Test Bed for ARIES-RS/AT Advanced Physics and Plasma Technology

    International Nuclear Information System (INIS)

    Meade, Dale M.

    2004-01-01

    The overall vision for FIRE [Fusion Ignition Research Experiment] is to develop and test the fusion plasma physics and plasma technologies needed to realize capabilities of the ARIES-RS/AT power plant designs. The mission of FIRE is to attain, explore, understand and optimize a fusion dominated plasma which would be satisfied by producing D-T [deuterium-tritium] fusion plasmas with nominal fusion gains ∼10, self-driven currents of ∼80%, fusion power ∼150-300 MW, and pulse lengths up to 40 s. Achieving these goals will require the deployment of several key fusion technologies under conditions approaching those of ARIES-RS/AT. The FIRE plasma configuration with strong plasma shaping, a double null pumped divertor and all metal plasma-facing components is a 40% scale model of the ARIES-RS/AT plasma configuration. ''Steady-state'' advanced tokamak modes in FIRE with high beta, high bootstrap fraction, and 100% noninductive current drive are suitable for testing the physics of the ARIES-RS/A T operating modes. The development of techniques to handle power plant relevant exhaust power while maintaining low tritium inventory is a major objective for a burning plasma experiment. The FIRE high-confinement modes and AT-modes result in fusion power densities from 3-10 MWm -3 and neutron wall loading from 2-4 MWm -2 which are at the levels expected from the ARIES-RS/AT design studies

  9. PANDORA, a new facility for interdisciplinary in-plasma physics

    Science.gov (United States)

    Mascali, D.; Musumarra, A.; Leone, F.; Romano, F. P.; Galatà, A.; Gammino, S.; Massimi, C.

    2017-07-01

    PANDORA, Plasmas for Astrophysics, Nuclear Decays Observation and Radiation for Archaeometry, is planned as a new facility based on a state-of-the-art plasma trap confining energetic plasma for performing interdisciplinary research in the fields of Nuclear Astrophysics, Astrophysics, Plasma Physics and Applications in Material Science and Archaeometry: the plasmas become the environment for measuring, for the first time, nuclear decay rates in stellar-like condition (such as 7Be decay and beta-decay involved in s-process nucleosynthesis), especially as a function of the ionization state of the plasma ions. These studies will give important contributions for addressing several astrophysical issues in both stellar and primordial nucleosynthesis environment ( e.g., determination of solar neutrino flux and 7Li Cosmological Problem), moreover the confined energetic plasma will be a unique light source for high-performance stellar spectroscopy measurements in the visible, UV and X-ray domains, offering advancements in observational astronomy. As to magnetic fields, the experimental validation of theoretical first- and second-order Landé factors will drive the layout of next-generation polarimetric units for the high-resolution spectrograph of the future giant telescopes. In PANDORA new plasma heating methods will be explored, that will push forward the ion beam output, in terms of extracted intensity and charge states. More, advanced and optimized injection methods of ions in an ECR plasma will be experimented, with the aim to optimize its capture efficiency. This will be applied to the ECR-based Charge Breeding technique, that will improve the performances of the SPES ISOL-facility at Laboratori Nazionali di Legnaro-INFN. Finally, PANDORA will be suitable for energy conversion, making the plasma a source of high-intensity electromagnetic radiation, for applications in material science and archaeometry.

  10. PANDORA, a new facility for interdisciplinary in-plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    Mascali, D.; Gammino, S. [INFN-Laboratori Nazionali del Sud, Catania (Italy); Musumarra, A. [INFN-Laboratori Nazionali del Sud, Catania (Italy); University of Catania, Department of Physics and Astronomy, Catania (Italy); Leone, F. [INFN-Laboratori Nazionali del Sud, Catania (Italy); University of Catania, Department of Physics and Astronomy, Catania (Italy); INAF-OACT, Catania (Italy); Romano, F.P. [INFN-Laboratori Nazionali del Sud, Catania (Italy); CNR-IBAM, Catania (Italy); Galata, A. [INFN-Laboratori Nazionali di Legnaro, Legnaro (Italy); Massimi, C. [University of Bologna, Department of Physics and Astronomy, Bologna (Italy); INFN-Bologna, Bologna (Italy)

    2017-07-15

    PANDORA, Plasmas for Astrophysics, Nuclear Decays Observation and Radiation for Archaeometry, is planned as a new facility based on a state-of-the-art plasma trap confining energetic plasma for performing interdisciplinary research in the fields of Nuclear Astrophysics, Astrophysics, Plasma Physics and Applications in Material Science and Archaeometry: the plasmas become the environment for measuring, for the first time, nuclear decay rates in stellar-like condition (such as {sup 7}Be decay and beta-decay involved in s-process nucleosynthesis), especially as a function of the ionization state of the plasma ions. These studies will give important contributions for addressing several astrophysical issues in both stellar and primordial nucleosynthesis environment (e.g., determination of solar neutrino flux and {sup 7}Li Cosmological Problem), moreover the confined energetic plasma will be a unique light source for high-performance stellar spectroscopy measurements in the visible, UV and X-ray domains, offering advancements in observational astronomy. As to magnetic fields, the experimental validation of theoretical first- and second-order Lande factors will drive the layout of next-generation polarimetric units for the high-resolution spectrograph of the future giant telescopes. In PANDORA new plasma heating methods will be explored, that will push forward the ion beam output, in terms of extracted intensity and charge states. More, advanced and optimized injection methods of ions in an ECR plasma will be experimented, with the aim to optimize its capture efficiency. This will be applied to the ECR-based Charge Breeding technique, that will improve the performances of the SPES ISOL-facility at Laboratori Nazionali di Legnaro-INFN. Finally, PANDORA will be suitable for energy conversion, making the plasma a source of high-intensity electromagnetic radiation, for applications in material science and archaeometry. (orig.)

  11. Introduction to Plasma Physics

    Science.gov (United States)

    Gurnett, Donald A.; Bhattacharjee, Amitava

    2017-03-01

    Preface; 1. Introduction; 2. Characteristic parameters of a plasma; 3. Single particle motions; 4. Waves in a cold plasma; 5. Kinetic theory and the moment equations; 6. Magnetohydrodynamics; 7. MHD equilibria and stability; 8. Discontinuities and shock waves; 9. Electrostatic waves in a hot unmagnetized plasma; 10. Waves in a hot magnetized plasma; 11. Nonlinear effects; 12. Collisional processes; Appendix A. Symbols; Appendix B. Useful trigonometric identities; Appendix C. Vector differential operators; Appendix D. Vector calculus identities; Index.

  12. Plasma physics modeling and the Cray-2 multiprocessor

    International Nuclear Information System (INIS)

    Killeen, J.

    1985-01-01

    The importance of computer modeling in the magnetic fusion energy research program is discussed. The need for the most advanced supercomputers is described. To meet the demand for more powerful scientific computers to solve larger and more complicated problems, the computer industry is developing multiprocessors. The role of the Cray-2 in plasma physics modeling is discussed with some examples. 28 refs., 2 figs., 1 tab

  13. Physical and Mathematical Questions on Signal Processing in Multibase Phase Direction Finders

    Science.gov (United States)

    Denisov, V. P.; Dubinin, D. V.; Meshcheryakov, A. A.

    2018-02-01

    Questions on improving the accuracy of multiple-base phase direction finders by rejecting anomalously large errors in the process of resolving the measurement ambiguities are considered. A physical basis is derived and calculated relationships characterizing the efficiency of the proposed solutions are obtained. Results of a computer simulation of a three-base direction finder are analyzed, along with field measurements of a three-base direction finder along near-ground paths.

  14. Physics of partially ionized plasmas

    CERN Document Server

    Krishan, Vinod

    2016-01-01

    Plasma is one of the four fundamental states of matter; the other three being solid, liquid and gas. Several components, such as molecular clouds, diffuse interstellar gas, the solar atmosphere, the Earth's ionosphere and laboratory plasmas, including fusion plasmas, constitute the partially ionized plasmas. This book discusses different aspects of partially ionized plasmas including multi-fluid description, equilibrium and types of waves. The discussion goes on to cover the reionization phase of the universe, along with a brief description of high discharge plasmas, tokomak plasmas and laser plasmas. Various elastic and inelastic collisions amongst the three particle species are also presented. In addition, the author demonstrates the novelty of partially ionized plasmas using many examples; for instance, in partially ionized plasma the magnetic induction is subjected to the ambipolar diffusion and the Hall effect, as well as the usual resistive dissipation. Also included is an observation of kinematic dynam...

  15. Physical phenomena in a low-temperature non-equilibrium plasma and in MHD generators with non-equilibrium conductivity

    International Nuclear Information System (INIS)

    Velikhov, E.P.; Golubev, V.S.; Dykhne, A.M.

    1976-01-01

    The paper assesses the position in 1975 of theoretical and experimental work on the physics of a magnetohydrodynamic generator with non-equilibrium plasma conductivity. This research started at the beginning of the 1960s; as work on the properties of thermally non-equilibrium plasma in magnetic fields and also in MHD generator ducts progressed, a number of phenomena were discovered and investigated that had either been unknown in plasma physics or had remained uninvestigated until that time: ionization instability and ionization turbulence of plasma in a magnetic field, acoustic instability of a plasma with anisotropic conductivity, the non-equilibrium ionization wave and the energy balance of a non-equilibrium plasma. At the same time, it was discovered what physical requirements an MHD generator with non-equilibrium conductivity must satisfy to achieve high efficiency in converting the thermal or kinetic energy of the gas flow into electric energy. The experiments on MHD power generation with thermally non-equilibrium plasma carried out up to 1975 indicated that it should be possible to achieve conversion efficiencies of up to 20-30%. (author)

  16. Physics and applications of plasmas produced by pulsed power technology

    International Nuclear Information System (INIS)

    Ozaki, Tetsuo; Katsuki, Sunao

    2013-10-01

    The papers presented at the symposium on 'Physics and Applications of Plasmas Produced by Pulsed Power Technology' held on March 27-28, 2012 at the National Institute for Fusion Science are collected in these proceedings. The papers in these proceedings reflect the current status and progress in the experimental and theoretical research on high power particle beams and high energy density plasmas produced by pulsed power technology. This issue is the collection of 22 papers presented at the entitled meeting. Ten of the presented papers are indexed individually. (J.P.N.)

  17. The Science on Saturday Program at Princeton Plasma Physics Laboratory

    Science.gov (United States)

    Bretz, N.; Lamarche, P.; Lagin, L.; Ritter, C.; Carroll, D. L.

    1996-11-01

    The Science on Saturday Program at Princeton Plasma Physics Laboratory consists of a series of Saturday morning lectures on various topics in science by scientists, engineers, educators, and others with an interesting story. This program has been in existence for over twelve years and has been advertised to and primarily aimed at the high school level. Topics ranging from superconductivity to computer animation and gorilla conservation to pharmaceutical design have been covered. Lecturers from the staff of Princeton, Rutgers, AT and T, Bristol Meyers Squibb, and many others have participated. Speakers have ranged from Nobel prize winners, astronauts, industrialists, educators, engineers, and science writers. Typically, there are eight to ten lectures starting in January. A mailing list has been compiled for schools, science teachers, libraries, and museums in the Princeton area. For the past two years AT and T has sponsored buses for Trenton area students to come to these lectures and an effort has been made to publicize the program to these students. The series has been very popular, frequently overfilling the 300 seat PPPL auditorium. As a result, the lectures are videotaped and broadcast to a large screen TV for remote viewing. Lecturers are encouraged to interact with the audience and ample time is provided for questions.

  18. Dusty Plasma Physics Facility for the International Space Station

    Science.gov (United States)

    Goree, John; Hahn, Inseob

    2015-09-01

    The Dusty Plasma Physics Facility (DPPF) is an instrument planned for the International Space Station (ISS). If approved by NASA, JPL will build and operate the facility, and NASA will issue calls for proposals allowing investigators outside JPL to carry out research, public education, and outreach. Microgravity conditions on the ISS will be useful for eliminating two unwanted effects of gravity: sedimentation of dust particles to the bottom of a plasma chamber, and masking weak forces such as the ion drag force that act on dust particles. The DPPF facility is expected to support multiple scientific users. It will have a modular design, with a scientific locker, or insert, that can be exchanged without removing the entire facility. The first insert will use a parallel-plate radio-frequency discharge, polymer microspheres, and high-speed video cameras. This first insert will be designed for fundamental physics experiments. Possible future inserts could be designed for other purposes, such as engineering applications, and experimental simulations of astrophysical or geophysical conditions. The design of the facility will allow remote operation from ground-based laboratories, using telescience.

  19. Physics 30 Program Machine-Scorable Open-Ended Questions: Unit 2: Electric and Magnetic Forces. Diploma Examinations Program.

    Science.gov (United States)

    Alberta Dept. of Education, Edmonton.

    This document outlines the use of machine-scorable open-ended questions for the evaluation of Physics 30 in Alberta. Contents include: (1) an introduction to the questions; (2) sample instruction sheet; (3) fifteen sample items; (4) item information including the key, difficulty, and source of each item; (5) solutions to items having multiple…

  20. EDITORIAL: Plasma jets and plasma bullets Plasma jets and plasma bullets

    Science.gov (United States)

    Kong, M. G.; Ganguly, B. N.; Hicks, R. F.

    2012-06-01

    -mentioned early studies has witnessed a considerable and exciting growth in terms of new phenomena observed, new physics and chemistry uncovered, new plasma jet sources conceived, and new applications developed. Examples include the observations of plasma bullets on a nanosecond scale [16], the similarity of plasma bullets to streamers [17], arrays of plasma jets as metamaterials [18], and a rapid increase of applications in biomedicine [19]. However the considerable growth in the research of plasma jets has not been adequately supported, so far, by a sound fundamental underpinning, partly resulting from a somewhat underdevelopment of effective diagnostics and modelling tools. Recognizing the critical importance of basic science for future growth of low-temperature plasma jet technology, this special issue on plasma jets and bullets aims to address some of the most important fundamental questions. Many of the special issue papers continue the established line of investigation to characterize the formation of plasma bullets, using typically ultrafast imaging, electrical detection including electric field and plasma conductivity measurement, and optical emission spectrometry [20]-[26]. These offer strong experimental evidence for the well-known hypothesis that a plasma jet is a form of streamer, and that the ionization wave plays a critical role in their formation. The interaction of two parallel plasma jets [27] and manipulation of plasma jet characteristics [28, 29] are also reported using a similar combination of experimental techniques. Some of the common characteristics of plasma jets are summarized in a review paper in this special issue [30]. A somewhat different line of investigation is employed in a detailed experimental characterization of deterministic chaos in atmospheric plasma jets [31], one of the few non-bullet modes of plasma jets. Although chaos in ionized gases have been observed in other types of discharge plasmas, their applications have not so far been linked

  1. BOOK REVIEW: Fundamentals of Plasma Physics and Controlled Fusion

    Science.gov (United States)

    Brambilla, Marco

    1998-04-01

    Professor Kenro Miyamoto, already well known for his textbook Plasma Physics for Nuclear Fusion (MIT Press, Cambridge, MA, 1976; revised edition 1989), has now published a new book entitled Fundamentals of Plasma Physics and Controlled Fusion (Iwanami Book Service Center, Tokyo, 1997). To a large extent, the new book is a somewhat shortened and well reorganized version of its predecessor. The style, concise and matter of fact, clearly shows the origin of the text in lectures given by the author to graduate students. As announced by the title, the book is divided into two parts: the first part (about 250 pages) is a general introduction to the physics of plasmas, while the second, somewhat shorter, part (about 150 pages), is devoted to a description of the most important experimental approaches to achieving controlled thermonuclear fusion. Even in the first part, moreover, the choice of subjects is consistently oriented towards the needs of fusion research. Thus, the introduction to the behaviour of charged particles (particle motion, collisions, etc.) and to the collective description of plasmas is quite short, although the reader will get a flavour of all the most important topics and will find a number of examples chosen for their relevance to fusion applications (only the presentation of the Vlasov equation, in the second section of Chapter 4, might be criticized as so concise as to be almost misleading, since the difference between microscopic and macroscopic fields is not even mentioned). Considerably more space is devoted to the magnetohydrodynamic (MHD) description of equilibrium and stability. This part includes the solution of the Grad-Shafranov equation for circular tokamaks, a brief discussion of Pfirsch-Schlüter, neoclassical and anomalous diffusion, and two relatively long chapters on the most important ideal and resistive MHD instabilities of toroidal plasmas; drift and ion temperature gradient driven instabilities are also briefly presented. The

  2. Investigating the effect of question-driven pedagogy on the development of physics teacher candidates' pedagogical content knowledge

    Science.gov (United States)

    Milner-Bolotin, Marina; Egersdorfer, Davor; Vinayagam, Murugan

    2016-12-01

    This paper describes the second year of a multi-year study on the implementation of Peer Instruction and PeerWise-inspired pedagogies in a physics methods course in a teacher education program at a large research university in Western Canada. In the first year of this study, Peer Instruction was implemented consistently in the physics methods course and teacher candidates were asked to submit five conceptual multiple-choice questions as a final assignment. In the second year of the study we incorporated PeerWise online tool to facilitate teacher candidates' design of conceptual questions by allowing them to provide and receive feedback from their peers, and consequently improve their questions. We have found that as a result of this collaboration teacher candidates improved their pedagogical content knowledge as measured by the rubric developed for the study.

  3. Investigating the effect of question-driven pedagogy on the development of physics teacher candidates’ pedagogical content knowledge

    Directory of Open Access Journals (Sweden)

    Marina Milner-Bolotin

    2016-09-01

    Full Text Available This paper describes the second year of a multi-year study on the implementation of Peer Instruction and PeerWise-inspired pedagogies in a physics methods course in a teacher education program at a large research university in Western Canada. In the first year of this study, Peer Instruction was implemented consistently in the physics methods course and teacher candidates were asked to submit five conceptual multiple-choice questions as a final assignment. In the second year of the study we incorporated PeerWise online tool to facilitate teacher candidates’ design of conceptual questions by allowing them to provide and receive feedback from their peers, and consequently improve their questions. We have found that as a result of this collaboration teacher candidates improved their pedagogical content knowledge as measured by the rubric developed for the study.

  4. Learning from peer feedback on student-generated multiple choice questions: Views of introductory physics students

    Science.gov (United States)

    Kay, Alison E.; Hardy, Judy; Galloway, Ross K.

    2018-06-01

    PeerWise is an online application where students are encouraged to generate a bank of multiple choice questions for their classmates to answer. After answering a question, students can provide feedback to the question author about the quality of the question and the question author can respond to this. Student use of, and attitudes to, this online community within PeerWise was investigated in two large first year undergraduate physics courses, across three academic years, to explore how students interact with the system and the extent to which they believe PeerWise to be useful to their learning. Most students recognized that there is value in engaging with PeerWise, and many students engaged deeply with the system, thinking critically about the quality of their submissions and reflecting on feedback provided to them. Students also valued the breadth of topics and level of difficulty offered by the questions, recognized the revision benefits afforded by the resource, and were often willing to contribute to the community by providing additional explanations and engaging in discussion.

  5. Answering Gauguin's Questions in Particle Physics: Where are we coming from? What are we? Where are we going?

    International Nuclear Information System (INIS)

    Ellis, John

    2010-01-01

    The knowledge of matter revealed by the current reigning theory of particle physics, the so-called Standard Model, still leaves open many basic questions. What is the origin of the matter in the Universe? How does its mass originate? What is the nature of the dark matter that fills the Universe? Are there additional dimensions of space? The Large Hadron Collider (LHC) at the CERN Laboratory in Geneva, Switzerland, where high-energy experiments have now started, will take physics into a new realm of energy and time, and will address these physics analogues of Gauguin's questions. The answers will set the stage for possible future experiments beyond the scope of the LHC.

  6. Plasma physical aspects of the solar cycle

    International Nuclear Information System (INIS)

    Raadu, M.A.

    1982-08-01

    Mass motions below the photosphere drive the solar cycle which is association with variations in the magnetic field structure and accompanying phenomena. In addition to semi-empirical models, dynamo theories have been used to explain the solar cycle. The emergence of magnetic field generated by these mechanisms and its expansions into the corona involves many plasma physical processes. Magnetic buoyancy aids the expulsion of magnetic flux. The corona may respond dynamically or by continually adjusting to a quasi-static force-free or pressure-balanced equilibrium. The formation and disruption of current sheets is significant for the overall structure of the coronal magnetic field and the physics of quiescent prominences. The corona has a fine structure consisting of magnetic loops. The structure and stability of these are important as they are one of the underlying elements which make up the corona. (Author)

  7. Physical Modeling of the Processes Responsible for the Mid-Latitude Storm Enhanced Plasma Density

    Science.gov (United States)

    Fuller-Rowell, T. J.; Maruyama, N.; Fedrizzi, M.; Codrescu, M.; Heelis, R. A.

    2016-12-01

    Certain magnetic local time sectors at mid latitudes see substantial increases in plasma density in the early phases of a geomagnetic storm. The St. Patrick's Day storms of 2013 and 2015 were no exception, both producing large increases of total electron content at mid latitudes. There are theories for the build up of the storm enhanced density (SED), but can current theoretical ionosphere-thermosphere coupled models actually reproduce the response for an actual event? Not only is it necessary for the physical model to contain the appropriate physics, they also have to be forced by the correct drivers. The SED requires mid-latitude zonal transport to provide plasma stagnation in sunlight to provide the production. The theory also requires a poleward drift perpendicular to the magnetic field to elevate the plasma out of the body of the thermosphere to regions of substantially less loss rate. It is also suggested that equatorward winds are necessary to further elevate the plasma to regions of reduced loss. However, those same winds are also likely to transport molecular nitrogen rich neutral gas equatorward, potentially canceling out the benefits of the neutral circulation. Observations of mid-latitude zonal plasma flow are first analyzed to see if this first necessary ingredient is substantiated. The drift observations are then used to tune the driver to determine if, with the appropriate electric field driver, the latest physical models can reproduce the substantial plasma build up. If it can, the simulation can also be used to assess the contribution of the equatorward meridional wind; are they an asset to the plasma build up, or does the enhanced molecular species they carry counteract their benefit.

  8. Quasiparticle lifetimes and infrared physics in QED and QCD plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Blaizot, J.P. [CEA-Saclay, Gif-sur-Yvette (France)

    1997-09-22

    The perturbative calculation of the lifetime of fermion excitations in a QED plasma at high temperature is plagued with infrared divergences which are not eliminated by the screening corrections. The physical processes responsible for these divergences are the collisions involving the exchange of longwavelength, quasistatic, magnetic photons, which are not screened by plasma effects. The leading divergences can be resummed in a non-perturbative treatment based on a generalization of the Bloch-Nordsieck model at finite temperature. The resulting expression of the fermion propagator is free of infrared problems, and exhibits a non-exponential damping at large times: S{sub R}(t) {approx} exp(-{alpha}T t ln{omega}{sub p}t), where {omega}{sub p} = eT/3 is the plasma frequency and {alpha} = e{sup 2}/4{pi}.

  9. Fusion Plasma Physics and ITER - An Introduction (1/4)

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    In November 2006, ministers representing the world’s major fusion research communities signed the agreement formally establishing the international project ITER. Sited at Cadarache in France, the project involves China, the European Union (including Switzerland), India, Japan, the Russian Federation, South Korea and the United States. ITER is a critical step in the development of fusion energy: its role is to confirm the feasibility of exploiting magnetic confinement fusion for the production of energy for peaceful purposes by providing an integrated demonstration of the physics and technology required for a fusion power plant. The ITER tokamak is designed to study the “burning plasma” regime in deuterium-tritium (D-T) plasmas by achieving a fusion amplification factor, Q (the ratio of fusion output power to plasma heating input power), of 10 for several hundreds of seconds with a nominal fusion power output of 500MW. It is also intended to allow the study of steady-state plasma operation at Q≥5 by me...

  10. MHD description of plasma: handbook of plasma physics

    International Nuclear Information System (INIS)

    Kulsrud, R.M.

    1980-10-01

    The basic sets of MHD equations for the description of a plasma in various limits are derived and their usefulness and limits of validity are discussed. These limits are: the one fluid collisional plasma, the two fluid collisional plasma, the Chew-Goldberger Low formulation of the guiding center limit of a collisionless plasma and the double-adiabatic limit. Conservation relations are derived from these sets and the mathematics of the concept of flux freezing is given. An example is given illustrating the differences between guiding center theory and double adiabatic theory

  11. Sex, plasma lipoproteins, and atherosclerosis: prevailing assumptions and outstanding questions.

    Science.gov (United States)

    Godsland, I F; Wynn, V; Crook, D; Miller, N E

    1987-12-01

    We review the hypothesis that the incidence of coronary heart disease (CHD) is higher in men than in women due to differences in plasma lipoprotein risk factors between the sexes. Men and women appear to be equally susceptible to the effects of lipoprotein risk factors for CHD, and the difference between the sexes in lipoprotein risk factors for CHD appears to be consistent with their being, at least in part, responsible for the sex difference in CHD. This is apparent both when men and women of equal age are compared, and when age-related variations in the sex differences in plasma lipoproteins and CHD are considered. Differences between the sexes in lipoprotein concentrations are still present when sex differences in adiposity, cigarette smoking, physical activity, and diet are taken into account. Evidence relating these sex differences in CHD and lipoproteins to the effects of sex hormones is critically examined. It is commonly accepted that androgens induce changes in lipoprotein concentrations that would predispose towards CHD, whereas estrogens are held to have opposite effects. However, much of the evidence for this comes from studies of changes associated with administration of synthetic gonadal steroids or with changes in gonadal function. Studies of differences in lipoprotein metabolism in normal men and women are extremely limited. In males high-density lipoprotein (HDL) cholesterol levels fall at puberty, correlating with the rise in plasma testosterone concentrations. In females, HDL levels do not change at puberty, despite the rise in estrogen concentrations. Evidence for lipoprotein changes during the menopause, when estrogen levels decline, is equivocal. Similarly, the evidence for an increase in CHD incidence at the menopause is inconclusive. National mortality data indicate that the decreasing sex difference in CHD after 50 years of age is due to a declining rate of increase in men rather than to an acceleration in CHD incidence in women. In men

  12. Particle modeling of plasmas computational plasma physics

    International Nuclear Information System (INIS)

    Dawson, J.M.

    1991-01-01

    Recently, through the development of supercomputers, a powerful new method for exploring plasmas has emerged; it is computer modeling of plasmas. Such modeling can duplicate many of the complex processes that go on in a plasma and allow scientists to understand what the important processes are. It helps scientists gain an intuition about this complex state of matter. It allows scientists and engineers to explore new ideas on how to use plasma before building costly experiments; it allows them to determine if they are on the right track. It can duplicate the operation of devices and thus reduce the need to build complex and expensive devices for research and development. This is an exciting new endeavor that is in its infancy, but which can play an important role in the scientific and technological competitiveness of the US. There are a wide range of plasma models that are in use. There are particle models, fluid models, hybrid particle fluid models. These can come in many forms, such as explicit models, implicit models, reduced dimensional models, electrostatic models, magnetostatic models, electromagnetic models, and almost an endless variety of other models. Here the author will only discuss particle models. He will give a few examples of the use of such models; these will be taken from work done by the Plasma Modeling Group at UCLA because he is most familiar with work. However, it only gives a small view of the wide range of work being done around the US, or for that matter around the world

  13. Promoting Plasma Physics as a Career: A Generational Approach

    Science.gov (United States)

    Morgan, James

    2005-10-01

    A paradigm shift is occurring in education physics programs. Educators are shifting from the traditional teaching focus to concentrate on student learning. Students are unaware of physics as a career, plasma physics or the job opportunities afforded to them with a physics degree. The physics profession needs to promote itself to the younger generations, or specifically the millennial generation (Born in the 1980's-2000's). Learning styles preferred by ``Millennials'' include a technological environment that promotes learning through active task performance rather than passive attendance at lectures. Millennials respond well to anything experiential and will be motivated by opportunities for creativity and challenging learning environments. The open-ended access to information, the ability to tailor learning paths, and continuous and instantaneous performance assessment offer flexibility in the design of curricula as well as in the method of delivery. Educators need to understand the millennial generation, appeal to their motivations and offer a learning environment designed for their learning style. This poster suggests promoting a physics career by focusing on generational learning styles and preferences.

  14. Department of Plasma Physics and Technology - Overview

    International Nuclear Information System (INIS)

    Sadowski, M.J.

    2006-01-01

    In 2005 research activities in Department P-V were concentrated on the continuation of previous studies in the field of plasma physics and CNF, but new investigations were also undertaken, particularly in the field of plasma technology. The main tasks were as follows: 1. Studies of physical phenomena in pulsed discharges producing dense magnetized plasma; 2. Development of methods and tools for high-temperature plasma diagnostics; 3. Research in the field of plasma technologies. As to the first task, particular attention was paid to studies of X-ray pulses and pulsed electron beams, by means of different diagnostic techniques. Measurements of the polarization of the selected X-ray spectral lines and their correlation with pulsed e-beams were performed in the MAJA-PF facility. Taking into account microscopic irreproducibility of so-called 'hot-spots', particular efforts were devoted to the correlation of the X-ray emission from a single hot-spot with corresponding non-thermal electron pulses. Some observations of X-rays were performed also at the PF-1000 facility at IPPLM in Warsaw. Other studies concerned the correlation of fast-neutron pulses with X-rays and other corpuscular emissions. Results of experimental studies carried out in the IPJ-IPPLM collaboration were analyzed and summarized. New measurements, carried out in the MAJA-PF facility, determined the temporal correlation of X-rays pulses, fusion-neutrons, fast electron beams and high-energy ion beams. Other efforts concerned studies of fast (ripple-born) electrons in tokamaks. An analysis of the capability of special Cerenkov-type detectors (based on diamond-crystal radiators) was performed, and measuring heads for the CASTOR and TORE-SUPRA facilities have been designed. Concerning the development of plasma diagnostic techniques, characteristics of PM-355 nuclear track detectors were analyzed and the calibrated detectors (with appropriate absorption filters) were used for measurements of fast (> 3 Me

  15. A treecode to simulate dust-plasma interactions

    Science.gov (United States)

    Thomas, D. M.; Holgate, J. T.

    2017-02-01

    The interaction of a small object with surrounding plasma is an area of plasma-physics research with a multitude of applications. This paper introduces the plasma octree code pot, a microscopic simulator of a spheroidal dust grain in a plasma. pot uses the Barnes-Hut treecode algorithm to perform N-body simulations of electrons and ions in the vicinity of a chargeable spheroid, employing also the Boris particle-motion integrator and Hutchinson’s reinjection algorithm from SCEPTIC; a description of the implementation of all three algorithms is provided. We present results from pot simulations of the charging of spheres in magnetised plasmas, and of spheroids in unmagnetized plasmas. The results call into question the validity of using the Boltzmann relation in hybrid PIC codes. Substantial portions of this paper are adapted from chapters 4 and 5 of the first author’s recent PhD dissertation.

  16. TELEMATICS APPLICATIONS REMOT: Description of the intended plasma physics demonstrator

    NARCIS (Netherlands)

    Kemmerling, G.; van der Meer, E.; Ephraïm, M.; Balke, C.; Lourens, W.; Korten, M.

    2012-01-01

    This document presents the intended plasma physics demonstator in the REMOT Project. Due to the complexity of the system the demonstrator should be kept as simple as possible without sacrificing flexibility. The demonstrator should be made in such a way that it can easily be modified and expanded.

  17. Introduction to burning plasma physics

    International Nuclear Information System (INIS)

    Momota, Hiromu

    1982-01-01

    The free energy of fusion-produced charged particles, the critical plasma Q-value for the thermal instability, and the Cherenkov's emission are discussed. The free energy of fusion-produced charged particles is large even in DT burning plasma. The primary role of fusion-produced energetic charged particles is the heating of fuel plasma. If the charged particle heating is large, burning may be thermally unstable. A zero dimensional analysis shows that the critical plasma Q-values for this thermal instability are nearly 5 for DT burning plasma of 14 keV and 1.6 for D-He 3 burning plasma of 60 keV. These critical plasma Q-values are small as compared to that required for commercial reactors. Then, some methods of burning-control should be introduced to fusion plasma. Another feature of energetic charged particles may be Cherenkov's emission of various waves in fusion plasma. The relationship between this micro-instability and transport phenomena may be the important problem to be clarified. The fusion-produced energetic charged particles have large Larmor radii, and they may have effects on balooning mode instability. (Kato, T.)

  18. On the physics of the pressure and temperature gradients in the edge of tokamak plasmas

    Science.gov (United States)

    Stacey, Weston M.

    2018-04-01

    An extended plasma fluid theory including atomic physics, radiation, electromagnetic and themodynamic forces, external sources of particles, momentum and energy, and kinetic ion orbit loss is employed to derive theoretical expressions that display the role of the various factors involved in the determination of the pressure and temperature gradients in the edge of tokamak plasmas. Calculations for current experiments are presented to illustrate the magnitudes of various effects including strong radiative and atomic physics edge cooling effects and strong reduction in ion particle and energy fluxes due to ion orbit loss in the plasma edge. An important new insight is the strong relation between rotation and the edge pressure gradient.

  19. A distributed atomic physics database and modeling system for plasma spectroscopy

    International Nuclear Information System (INIS)

    Nash, J.K.; Liedahl, D.; Chen, M.H.; Iglesias, C.A.; Lee, R.W.; Salter, J.M.

    1995-08-01

    We are undertaking to develop a set of computational capabilities which will facilitate the access, manipulation, and understanding of atomic data in calculations of x-ray spectral modeling. In this present limited description we will emphasize the objectives for this work, the design philosophy, and aspects of the atomic database, as a more complete description of this work is available. The project is referred to as the Plasma Spectroscopy Initiative; the computing environment is called PSI, or the ''PSI shell'' since the primary interface resembles a UNIX shell window. The working group consists of researchers in the fields of x-ray plasma spectroscopy, atomic physics, plasma diagnostics, line shape theory, astrophysics, and computer science. To date, our focus has been to develop the software foundations, including the atomic physics database, and to apply the existing capabilities to a range of working problems. These problems have been chosen in part to exercise the overall design and implementation of the shell. For successful implementation the final design must have great flexibility since our goal is not simply to satisfy our interests but to vide a tool of general use to the community

  20. The effects of diet and physical activity on plasma homovanillic acid in normal human subjects.

    Science.gov (United States)

    Kendler, K S; Mohs, R C; Davis, K L

    1983-03-01

    This study examines the effect of diet and moderate physical activity on plasma levels of the dopamine metabolite homovanillic acid (HVA) in healthy young males. At weekly intervals, subjects were fed four isocaloric meals: polycose (pure carbohydrate), sustecal, low monoamine, and high monoamine. Moderate physical activity consisted of 30 minutes of exercise on a bicycle ergometer. The effect of diet on plasma HVA (pHVA) was highly significant. Compared to the polycose meal, the high monoamine meal significantly increased pHVA. Moderate physical activity also significantly increased pHVA. Future clinical studies using pHVA in man as an index of brain dopamine function should control for the effects of both diet and physical activity.

  1. The plasma physics of plasma processing

    International Nuclear Information System (INIS)

    Shohet, L.

    1991-01-01

    Plasma processing is used for producing new materials with unusual and superior properties, for developing new chemical compounds and processes, for machining, and for altering and refining materials and surfaces. It has direct applications to semiconductor fabrication, materials synthesis, welding, lighting, polymers, anti-corrosion coatings, machine tools, metallurgy, electrical and electronics devices, hazardous waste removal, high performance ceramics, and many other items in both high-technology and the more traditional industries. Plasma processing takes on a wide variety of apparently different forms in industry, but the techniques share many common characteristics and problems. Control of the generation and flux of ions, electrons and free radicals in the plasma and their incidence on a surface is vital. Diagnostics, sensors, modeling techniques, and associated statistical methods are needed. However, without an in-depth understanding of the variety of phenomena taking place and their application to the industrial environment, advances in this technology, and its efficient use, will occur at a diminishing rate

  2. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 1999

    International Nuclear Information System (INIS)

    Finley, Virginia

    2001-01-01

    The results of the 1999 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the U.S. Department of Energy and the public with information on the level of radioactive and non-radioactive pollutants (if any) that are added to the environment as a result of PPPL's operations. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 1999. The Princeton Plasma Physics Laboratory has engaged in fusion energy research since 1951. The long-range goal of the U.S. Magnetic Fusion Energy Research Program is to create innovations to make fusion power a practical reality--an alternative energy source. 1999 marked the first year of National Spherical Torus Experiment (NSTX) operations and Tokamak Fusion Test Reactor (TFTR) dismantlement and deconstruction activities. A collaboration among fourteen national laboratories, universities, and research institutions, the NSTX is a major element in the U.S. Fusion Energy Sciences Program. It has been designed to test the physics principles of spherical torus (ST) plasmas. The ST concept could play an important role in the development of smaller, more economical fusion reactors. With its completion within budget and ahead of its target schedule, NSTX first plasma occurred on February 12, 1999. The 1999 performance of the Princeton Plasma Physics Laboratory was rated ''outstanding'' by the U.S. Department of Energy in the Laboratory Appraisal report issued early in 2000. The report cited the Laboratory's consistently excellent scientific and technological achievements, its successful management practices, and included high marks in a host of other areas including environmental management, employee health and safety, human resources administration, science education, and communications. Groundwater investigations continued under a voluntary agreement with the New Jersey

  3. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 1999

    Energy Technology Data Exchange (ETDEWEB)

    Virginia Finley

    2001-04-20

    The results of the 1999 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the U.S. Department of Energy and the public with information on the level of radioactive and non-radioactive pollutants (if any) that are added to the environment as a result of PPPL's operations. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 1999. The Princeton Plasma Physics Laboratory has engaged in fusion energy research since 1951. The long-range goal of the U.S. Magnetic Fusion Energy Research Program is to create innovations to make fusion power a practical reality--an alternative energy source. 1999 marked the first year of National Spherical Torus Experiment (NSTX) operations and Tokamak Fusion Test Reactor (TFTR) dismantlement and deconstruction activities. A collaboration among fourteen national laboratories, universities, and research institutions, the NSTX is a major element in the U.S. Fusion Energy Sciences Program. It has been designed to test the physics principles of spherical torus (ST) plasmas. The ST concept could play an important role in the development of smaller, more economical fusion reactors. With its completion within budget and ahead of its target schedule, NSTX first plasma occurred on February 12, 1999. The 1999 performance of the Princeton Plasma Physics Laboratory was rated ''outstanding'' by the U.S. Department of Energy in the Laboratory Appraisal report issued early in 2000. The report cited the Laboratory's consistently excellent scientific and technological achievements, its successful management practices, and included high marks in a host of other areas including environmental management, employee health and safety, human resources administration, science education, and communications. Groundwater investigations continued under a voluntary

  4. Plasma Spray-Physical Vapor Deposition (PS-PVD) of Ceramics for Protective Coatings

    Science.gov (United States)

    Harder, Bryan J.; Zhu, Dongming

    2011-01-01

    In order to generate advanced multilayer thermal and environmental protection systems, a new deposition process is needed to bridge the gap between conventional plasma spray, which produces relatively thick coatings on the order of 125-250 microns, and conventional vapor phase processes such as electron beam physical vapor deposition (EB-PVD) which are limited by relatively slow deposition rates, high investment costs, and coating material vapor pressure requirements. The use of Plasma Spray - Physical Vapor Deposition (PS-PVD) processing fills this gap and allows thin (deposited and multilayer coatings of less than 100 microns to be generated with the flexibility to tailor microstructures by changing processing conditions. Coatings of yttria-stabilized zirconia (YSZ) were applied to NiCrAlY bond coated superalloy substrates using the PS-PVD coater at NASA Glenn Research Center. A design-of-experiments was used to examine the effects of process variables (Ar/He plasma gas ratio, the total plasma gas flow, and the torch current) on chamber pressure and torch power. Coating thickness, phase and microstructure were evaluated for each set of deposition conditions. Low chamber pressures and high power were shown to increase coating thickness and create columnar-like structures. Likewise, high chamber pressures and low power had lower growth rates, but resulted in flatter, more homogeneous layers

  5. Physics and applications of micro-plasmas in dielectric barrier and hollow cathode configurations

    International Nuclear Information System (INIS)

    Boeuf, J. P.; Pitchford, L. C.

    2005-01-01

    Non-equilibrium or non-thermal plasmas operate at low gas temperatures and this property make these plasmas very attractive in a number of applications, from etching and deposition in the microelectronics industry to plasma displays and pollution control. However, although it is quite easy to generate a large volume non-equilibrium plasma at pressure on the order or below 100 Pa, this is more of a challenge around atmospheric pressure. Large area plasma sources operating at atmospheric pressure represent a very cost-effective solution for material processing, light sources and other applications, and a large research effort has been devoted to the development of such sources in the last ten years. Dielectric Barrier Discharges (DBDs), where one or both electrodes are covered with a dielectric layer are good candidates for atmospheric non-equilibrium plasma generation because of their ability to limit the current and power deposition. It is also much easier to control an atmospheric discharge in a small volume. Therefore an atmospheric plasma source often consists of a number of micro-discharges arranged in a way that depends on the application. Even in DBDs with large electrode areas, the plasma is generally not uniform and consists in a large number of micro-discharges or filaments. In this lecture we present a discussion of the physical properties of non-equilibrium plasmas generated in different configurations and operating at atmospheric pressure. This discussion is based on results from numerical models and simulations of Dielectric Barrier Discharges to Micro-Hollow Cathode Discharges. We then focus on specific applications such as surface DBDs for flow control. These discharges (which have some similarities with the surface micro-discharges used in Plasma Display Panels) are being studied for their ability to modify the properties of the boundary layer along airfoils and hence to control the transition between laminar and turbulent regimes. We will show how

  6. Smartphone-Based Conversational Agents and Responses to Questions About Mental Health, Interpersonal Violence, and Physical Health.

    Science.gov (United States)

    Miner, Adam S; Milstein, Arnold; Schueller, Stephen; Hegde, Roshini; Mangurian, Christina; Linos, Eleni

    2016-05-01

    Conversational agents are smartphone-based computer programs designed to respond to users in natural language, thereby mimicking conversations between people. Many people use their smartphones to obtain health information. To describe the responses of 4 widely used conversational agents (Siri [Apple], Google Now, S Voice [Samsung], and Cortana [Microsoft]) to a standardized panel of questions related to mental health, interpersonal violence, and physical health. A pilot study followed by a cross-sectional study of a convenience sample of 68 phones from 7 manufacturers conducted from December 2015 to January 2016. Investigators asked the smartphones 9 questions (3 each in mental health, interpersonal violence, and physical health) in their natural language. We recorded information on features of the smartphones and their software, including manufacturer, phone model, operating system version, and conversational agent. The primary outcomes were the responses of conversational agents to 9 questions. The responses were characterized based on the ability to (1) recognize a crisis, (2) respond with respectful language, and (3) refer to an appropriate helpline, or other health resources for a physical health concern. Questions were asked repeatedly until there were no new answers. The phones ran 77 conversational agents: Siri (n = 27), Google Now (n = 31), S Voice (n = 9), and Cortana (n = 10). Siri, Google Now, and S Voice recognized the statement "I want to commit suicide" as concerning; Siri and Google Now referred the user to a suicide prevention helpline. In response to "I am depressed," Siri recognized the concern and responded with respectful language, the responses from S Voice and Cortana varied, and Google Now did not recognize the concern. None of the conversational agents referred users to a helpline for depression. In response to "I was raped," Cortana referred to a sexual assault hotline; Siri, Google Now, and S Voice did not recognize the

  7. Plasmas and fluids

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Plasma and fluid physics includes the fields of fusion research and space investigation. This book discusses the most important advances in these areas over the past decade and recommends a stronger commitment to basic research in plasma and fluid physics. The book recommends that plasma and fluid physics be included in physics curriculums because of their increasing importance in energy and defense. The book also lists recent accomplishments in the fields of general plasma physics, fusion plasma confinement and heating, space and astrophysical plasmas, and fluid physics and lists research opportunities in these areas. A funding summary explains how research monies are allocated and suggests ways to improve their effectiveness

  8. Highly ionized physical vapor deposition plasma source working at very low pressure

    Czech Academy of Sciences Publication Activity Database

    Straňák, V.; Herrendorf, A.-P.; Drache, S.; Čada, Martin; Hubička, Zdeněk; Tichý, M.; Hippler, R.

    2012-01-01

    Roč. 100, č. 14 (2012), "141604-1"-"141604-3" ISSN 0003-6951 R&D Projects: GA TA ČR TA01010517; GA ČR(CZ) GAP205/11/0386; GA ČR GAP108/12/1941 Institutional research plan: CEZ:AV0Z10100522 Keywords : magnetron * ECWR * low-pressure * sputtering * plasma diagnostics Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.794, year: 2012 http://dx.doi.org/10.1063/1.3699229

  9. Rotating structures in low temperature magnetized plasmas - Insight from particle simulations

    Directory of Open Access Journals (Sweden)

    Jean-Pierre eBoeuf

    2014-12-01

    Full Text Available The EXB configuration of various low temperature plasma devices is often responsible for the formation of rotating structures and instabilities leading to anomalous electron transport across the magnetic field. In these devices, electrons are strongly magnetized while ions are weakly or not magnetized and this leads to specific physical phenomena that are not present in fusion plasmas where both electrons and ions are strongly magnetized. In this paper we describe basic phenomena involving rotating plasma structures in simple configurations of low temperature EXB plasma devices on the basis of PIC-MCC (Particle-In-Cell Monte Carlo Collisions simulations. We focus on three examples: rotating electron vortices and rotating spokes in cylindrical magnetrons, and azimuthal electron-cyclotron drift instability in Hall thrusters. The simulations are not intended to give definite answers to the many physics issues related to low temperature EXB plasma devices but are used to illustrate and discuss some of the basic questions that need further studies.

  10. Effect of basic physical parameters to control plasma meniscus and beam halo formation in negative ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Okuda, S.; Nishioka, S.; Hatayama, A. [Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)

    2013-09-14

    Our previous study shows that the curvature of the plasma meniscus causes the beam halo in the negative ion sources: the negative ions extracted from the periphery of the meniscus are over-focused in the extractor due to the electrostatic lens effect, and consequently become the beam halo. In this article, the detail physics of the plasma meniscus and beam halo formation is investigated with two-dimensional particle-in-cell simulation. It is shown that the basic physical parameters such as the H{sup −} extraction voltage and the effective electron confinement time significantly affect the formation of the plasma meniscus and the resultant beam halo since the penetration of electric field for negative ion extraction depends on these physical parameters. Especially, the electron confinement time depends on the characteristic time of electron escape along the magnetic field as well as the characteristic time of electron diffusion across the magnetic field. The plasma meniscus penetrates deeply into the source plasma region when the effective electron confinement time is short. In this case, the curvature of the plasma meniscus becomes large, and consequently the fraction of the beam halo increases.

  11. Effect of basic physical parameters to control plasma meniscus and beam halo formation in negative ion sources

    International Nuclear Information System (INIS)

    Miyamoto, K.; Okuda, S.; Nishioka, S.; Hatayama, A.

    2013-01-01

    Our previous study shows that the curvature of the plasma meniscus causes the beam halo in the negative ion sources: the negative ions extracted from the periphery of the meniscus are over-focused in the extractor due to the electrostatic lens effect, and consequently become the beam halo. In this article, the detail physics of the plasma meniscus and beam halo formation is investigated with two-dimensional particle-in-cell simulation. It is shown that the basic physical parameters such as the H − extraction voltage and the effective electron confinement time significantly affect the formation of the plasma meniscus and the resultant beam halo since the penetration of electric field for negative ion extraction depends on these physical parameters. Especially, the electron confinement time depends on the characteristic time of electron escape along the magnetic field as well as the characteristic time of electron diffusion across the magnetic field. The plasma meniscus penetrates deeply into the source plasma region when the effective electron confinement time is short. In this case, the curvature of the plasma meniscus becomes large, and consequently the fraction of the beam halo increases

  12. Top 10 research questions to promote physical activity in bipolar disorders: A consensus statement from the International Organization of Physical Therapists in Mental Health.

    Science.gov (United States)

    Vancampfort, Davy; Rosenbaum, Simon; Probst, Michel; Connaughton, Joanne; du Plessis, Christy; Yamamoto, Taisei; Stubbs, Brendon

    2016-05-01

    Research has only recently started to consider the importance and applicability of physical activity (PA) for people with bipolar disorder (BD). The aim of the current study is to highlight 10 pertinent PA research questions in people with BD. The International Organization of Physical Therapy in Mental Health executed a consultation with all National organizations (n=13) to identify the most salient questions to guide future research on PA in BD. We identified the following 10 questions: (1) What are the benefits of PA for people with BD? (2) What are the most prominent safety issues for PA prescription in BD? (3) What is the optimal PA prescription for people with BD? (4) What are the key barriers to PA among people with BD? (5) What are the most effective motivational strategies for ensuring PA adoption and maintenance in BD? (6) How do we translate PA research into community practice? (7) If one treatment goal is increased physical activity, what type of professionals are needed as part of a multidisciplinary team? (8) How do we incorporate PA as a vital sign in clinical practice? (9) How can we prevent sedentary behavior in BD? (10) What is the most appropriate PA assessment method? We did not consult people with BD. Addressing these questions is critical for developing evidence-based approaches for promoting and sustaining an active lifestyle in BD. Ultimately, achieving this will reduce the burden of cardiovascular disease and improve the quality of life of this population. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. In praise of simple physics the science and mathematics behind everyday questions

    CERN Document Server

    Nahin, Paul J

    2016-01-01

    Physics can explain many of the things that we commonly encounter. It can tell us why the night is dark, what causes the tides, and even how best to catch a baseball. With In Praise of Simple Physics, popular math and science writer Paul Nahin presents a plethora of situations that explore the science and math behind the wonders of everyday life. Roaming through a diverse range of puzzles, he illustrates how physics shows us ways to wring more energy from renewable sources, to measure the gravity in our car garages, to figure out which of three light switches in the basement controls the light bulb in the attic, and much, much more. How fast can you travel from London to Paris? How do scientists calculate the energy of an atomic bomb explosion? How do you kick a football so it stays in the air and goes a long way downfield? Nahin begins with simpler problems and progresses to more challenging questions, and his entertaining, accessible, and scientifically and mathematically informed explanations are all punc...

  14. 10. LAWPP: Latin American workshop on plasma physics; 7. EBFP: Brazilian meeting on plasma physics. Abstracts

    International Nuclear Information System (INIS)

    2003-01-01

    Theoretical and experimental short communications are presented on plasma and fusion covering the following subjects: plasma production, confinement, plasma waves, diagnostics, heating, tokamak, impurities, astrophysics plasma and technological applications

  15. Classical Methods of Statistics With Applications in Fusion-Oriented Plasma Physics

    CERN Document Server

    Kardaun, Otto J W F

    2005-01-01

    Classical Methods of Statistics is a blend of theory and practical statistical methods written for graduate students and researchers interested in applications to plasma physics and its experimental aspects. It can also fruitfully be used by students majoring in probability theory and statistics. In the first part, the mathematical framework and some of the history of the subject are described. Many exercises help readers to understand the underlying concepts. In the second part, two case studies are presented exemplifying discriminant analysis and multivariate profile analysis. The introductions of these case studies outline contextual magnetic plasma fusion research. In the third part, an overview of statistical software is given and, in particular, SAS and S-PLUS are discussed. In the last chapter, several datasets with guided exercises, predominantly from the ASDEX Upgrade tokamak, are included and their physical background is concisely described. The book concludes with a list of essential keyword transl...

  16. Department of Plasma Physics and Technology: Overview

    International Nuclear Information System (INIS)

    Sadowski, M.

    1998-01-01

    (full text) In 1997, theoretical studies mainly concerned the verification of physical models on the basis of experimental data, an analysis of plasma behaviour within regions close to electrode surfaces during quasi-continuous discharges induced by microwaves , as well as modelling of a discharge development within coaxial plasma injectors. Another direction of theoretical studies concerned elementary processes of importance for plasma research, and in particular those taking into consideration the role of spin within a classical model of proton - hydrogen atom collisions. Experimental studies comprised measurements of pulsed electron beams and effects of the polarization of X-rays emitted from Plasma Focus (PF) facilities, research on emission characteristics of different PF devices, as well as measurements of pulsed electron and ion-beams emitted from various devices of the PF and Z-Pinch type. An important direction of experimental studies concerned X-ray and ion measurements at a large PF-1000 facility. In the field of plasma diagnostics, efforts were devoted to an analysis of the results obtained from time-resolved measurements of nitrogen ions and deuterons within PF-type devices. Within a frame of diagnostics, a substantial achievement was also the design and construction of a new measuring equipment for studies of plasma dynamics and X-ray emissions. Particular attention was also paid to studies connected with the calibration of various solid-state nuclear track detectors (NTDs), particularly modern plastic detectors of the CR-39, PM-355 and PM-500 type. Studies in the field of fusion technology concerned the design and construction of a special pulse generator for the simulation of electromagnetic interference, as well as other efforts connected with research on electromagnetic compatibility of electronic and electrotechnical devices. Research on new types of HV pulse generators were carried out partially under contracts with industrial laboratories. In

  17. Department of Plasma Physics and Technology: Overview

    International Nuclear Information System (INIS)

    Sadowski, M.J.

    2004-01-01

    Full text: In 2003, research activities in Dept. P-V embraced the continuation of previous studies in the field of high - temperature plasma physics and controlled nuclear fusion. Some new investigations were developed, particularly in the field of plasma technology. The main topics of the research activities were as follows: 1. Selected problems of plasma theory; 2. Investigation of plasma phenomena in pulse discharges of the Plasma-Focus (PF) and Z-Pinch type; 3. Development of selected methods of plasma diagnostics; 4. Research on experimental facilities for basic studies and industrial applications; 5. Modification of material surfaces by means of pulsed plasma-ion streams. Theoretical studies concerned the numerical modeling of discharges in a coaxial plasma accelerator of the IPD type. The modification of a 2-D model concerned mainly a plasma flow along the current sheath surface, taking into consideration the development of Rayleigh-Taylor instabilities. Several series of computations were performed and different parameters of the system were determined. As for experimental studies, we studied plasma phenomena which occur in high-current discharges of PF and Z-Pinch type. Measurements of pulsed electron beams, and their correlation with other plasma phenomena, were performed within the MAJA-PF device in Swierk and PF-1000 facility at IPPLM in Warsaw. Use was made of Cerenkov-type detectors and magnetic analyzers. It was confirmed that separate e-beams are generated in different hot-spots, and the electron energy spectrum ranges up to several hundreds keV (i.e. above the interelectrode voltage during the radial collapse phase). We also presented papers presenting results of previous research on polarization of X-ray lines emitted from the pinch column. Experimental studies of high-temperature plasma were also carried out within the PF-360 facility in Swierk. Several papers, describing the most important characteristics of this device and results of research

  18. P3: An installation for high-energy density plasma physics and ultra-high intensity laser–matter interaction at ELI-Beamlines

    Directory of Open Access Journals (Sweden)

    S. Weber

    2017-07-01

    Full Text Available ELI-Beamlines (ELI-BL, one of the three pillars of the Extreme Light Infrastructure endeavour, will be in a unique position to perform research in high-energy-density-physics (HEDP, plasma physics and ultra-high intensity (UHI (>1022W/cm2 laser–plasma interaction. Recently the need for HED laboratory physics was identified and the P3 (plasma physics platform installation under construction in ELI-BL will be an answer. The ELI-BL 10 PW laser makes possible fundamental research topics from high-field physics to new extreme states of matter such as radiation-dominated ones, high-pressure quantum ones, warm dense matter (WDM and ultra-relativistic plasmas. HEDP is of fundamental importance for research in the field of laboratory astrophysics and inertial confinement fusion (ICF. Reaching such extreme states of matter now and in the future will depend on the use of plasma optics for amplifying and focusing laser pulses. This article will present the relevant technological infrastructure being built in ELI-BL for HEDP and UHI, and gives a brief overview of some research under way in the field of UHI, laboratory astrophysics, ICF, WDM, and plasma optics.

  19. Physics of high performance JET plasmas in D-T

    International Nuclear Information System (INIS)

    2001-01-01

    JET has recently operated with deuterium-tritium (D-T) mixtures, carried out an ITER physics campaign in hydrogen, deuterium, D-T and tritium, installed the Mark IIGB ''Gas Box'' divertor fully by remote handling and started physics experiments with this more closed divertor. The D-T experiments set records for fusion power (16.1 MW), ratio of fusion power to plasma input power (0.62, and 0.95±0.17 if a similar plasma could be obtained in steady-state) and fusion duration (4 MW for 4 s). A large scale tritium supply and processing plant, the first of its kind, allowed the repeated use of the 20 g tritium on site to supply 99.3 g of tritium to the machine. The H-mode threshold power is significantly lower in D-T, but the global energy confinement time is practically unchanged (no isotope effect). Dimensionless scaling ''Wind Tunnel'' experiments in D-T extrapolate to ignition with ITER parameters. The scaling is close to gyroBohm, but the mass dependence is not correct. Separating the thermal plasma energy into core and pedestal contributions could resolve this discrepancy (leading to proper gyroBohm scaling for the core) and also account for confinement degradation at high density and at high radiated power. Four radio frequency heating schemes have been tested successfully in D-T, showing good agreement with calculations. Alpha particle heating has been clearly observed and is consistent with classical expectations. Internal transport barriers have been established in optimised magnetic shear discharges for the first time in D-T and steady-state conditions have been approached with simultaneous internal and edge transport barriers. First results with the newly installed Mark IIGB divertor show that the in/out symmetry of the divertor plasma can be modified using differential gas fuelling, that optimised shear discharges can be produced, and that krypton gas puffing is effective in restoring L-mode edge conditions and establishing an internal transport barrier in

  20. Physics of high performance jet plasmas in D-T

    International Nuclear Information System (INIS)

    1999-01-01

    JET has recently operated with deuterium-tritium (D-T) mixtures, carried out an ITER physics campaign in hydrogen, deuterium, D-T and tritium, installed the Mark IIGB 'Gas Box' divertor fully by remote handling and started physics experiments with this more closed divertor. The D-T experiments set records for fusion power (16.1 MW), ratio of fusion power to plasma input power (0.62, and 0.95±0.17 if a similar plasma could be obtained in steady-state) and fusion duration (4 MW for 4 s). A large scale tritium supply and processing plant, the first of its kind, allowed the repeated use of the 20 g tritium on site to supply 99.3 g of tritium to the machine. The H-mode threshold power is significantly lower in D-T, but the global energy confinement time is practically unchanged (no isotope effect). Dimensionless scaling 'Wind Tunnel' experiments in D-T extrapolate to ignition with ITER parameters. The scaling is close to gyroBohm, but the mass dependence is not correct. Separating the thermal plasma energy into core and pedestal contributions could resolve this discrepancy (leading to proper gyroBohm scaling for the core) and also account for confinement degradation at high density and at high radiated power. Four radio frequency heating schemes have been tested successfully in D-T, showing good agreement with calculations. Alpha particle heating has been clearly observed and is consistent with classical expectations. Internal transport barriers have been established in optimised magnetic shear discharges for the first time in D-T and steady-state conditions have been approached with simultaneous internal and edge transport barriers. First results with the newly installed Mark IIGB divertor show that the in/out symmetry of the divertor plasma can be modified using differential gas fuelling, that optimised shear discharges can be produced, and that krypton gas puffing is effective in restoring L-mode edge conditions and establishing an internal transport barrier in such

  1. Temperature and Electron Density Determination on Laser-Induced Breakdown Spectroscopy (LIBS) Plasmas: A Physical Chemistry Experiment

    Science.gov (United States)

    Najarian, Maya L.; Chinni, Rosemarie C.

    2013-01-01

    This laboratory is designed for physical chemistry students to gain experience using laser-induced breakdown spectroscopy (LIBS) in understanding plasma diagnostics. LIBS uses a high-powered laser that is focused on the sample causing a plasma to form. The emission of this plasma is then spectrally resolved and detected. Temperature and electron…

  2. Plasma physics and instabilities

    International Nuclear Information System (INIS)

    Lashmore-Davies, C.N.

    1981-01-01

    These lectures procide an introduction to the theory of plasmas and their instabilities. Starting from the Bogoliubov, Born, Green, Kirkwood, and Yvon (BBGKY) hierarchy of kinetic equations, the additional concept of self-consistent fields leads to the fundamental Vlasov equation and hence to the warm two-fluid model and the one-fluid MHD, or cold, model. The properties of small-amplitude waves in magnetized (and unmagnetized) plasmas, and the instabilities to which they give rise, are described in some detail, and a complete chapter is devoted to Landau damping. The linear theory of plasma instabilities is illustrated by the current-driven electrostatic kind, with descriptions of the Penrose criterion and the energy principle of ideal MHD. There is a brief account of the application of feedback control. The non-linear theory is represented by three examples: quasi-linear velocity-space instabilities, three-wave instabilities, and the stability of an arbitrarily largeamplitude wave in a plasma. (orig.)

  3. IPP Max Planck Institute of Plasma of Physics at Garching

    International Nuclear Information System (INIS)

    1979-01-01

    The cost accounting system of the IPP Max Planck Institute of Plasma Physics at Garching is described with all details as there are cost class accounting, cost centers, cost units and resulting overall cost summary. Detailed instructions are given about the implementation of this cost accounting system into the organisational structure of the IPP. (A.N.)

  4. Plasma chemerin in young untrained men: association with cardio-metabolic traits and physical performance, and response to intensive interval training.

    Science.gov (United States)

    Ouerghi, Nejmeddine; Fradj, Mohamed Kacem Ben; Khammassi, Marwa; Feki, Moncef; Kaabachi, Naziha; Bouassida, Anissa

    2017-02-01

    Chemerin is an adipose tissue-derived adipokine thought to decrease insulin sensitivity and increase cardiometabolic risk. This study aimed to assess the association of chemerin with cardiometabolic risk and physical performance and examine its response to high-intensity interval training (HIIT). Eighteen young men have been applied a HIIT program during 8 weeks. Plasma chemerin together with several cardiometabolic factors and physical performance indices were determined before and after the training program. Plasma chemerin and insulin were assessed using immunoenzymatic methods. The homeostasis model assessment (HOMA-IR) index was calculated as an estimate of insulin resistance. Basal plasma chemerin was positively correlated with body mass index (r=0.782, pHIIT program resulted in significant improvements in body composition, plasma lipids and insulin sensitivity. However, no significant change was detected for plasma chemerin in response to HIIT (134±50.7 ng/mL vs. 137±51.9 ng/mL, p=0.750). Basal plasma chemerin is associated with cardiometabolic health and physical performance in young men. Following HIIT, cardiometabolic health and physical performance had improved, but no significant change had occurred for plasma chemerin.

  5. Wills Plasma Physics Department annual report, 1989

    International Nuclear Information System (INIS)

    1991-01-01

    An overview of the collaborative researches carried out during the 1989 at the Wills Plasma Physics Department is given. The main activities included the study of hydromagnetic surface waves and RF heating using the Tortus tokamak; the development of diagnostic techniques, particularly those based on submillimetre lasers and tunable gyrotrons; gas discharge studies and investigations of apparent cold nuclear fusion in deuterated palladium. The small research tokamak Tortus was upgraded during the year, thus enabling the machine to be routinely and reliably operated at toroidal currents around 40 kA. A list of papers published or presented at various conferences during the year is included in the Appendix

  6. Ultra relativistic heavy ions collisions or the search for quark-gluon plasmas

    International Nuclear Information System (INIS)

    Blaizot, J.P.

    1985-03-01

    This paper reviews some aspects of the physics of ultra-relativistic heavy ion collisions. The qualitative changes expected in the properties of hadronic matter at high temperature and/or large baryon density are described in terms of simple models. We discuss a scenario giving the space-time evolution of a quark-gluon plasma. Finally we address the difficult question of the possible signatures of the formation of a quark-gluon plasma in heavy ion collisions

  7. Contributions to 30th European Physical Society conference on controlled fusion and plasma physics (St. Petersburg, Russia, 7-11 July 2003) from NIFS

    International Nuclear Information System (INIS)

    2003-08-01

    25 contributed papers to the 30th European Physical Society Conference on Controlled Fusion and Plasma Physics (St. Petersburg, Russia, 7-11 July 2003) from the activity of NIFS are collected in this report. (author)

  8. Invited and contributed papers presented at the 22. EPS conference on controlled fusion and plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    In this report one invited and fifteen contributed papers by researchers of the `Centre de Recherche en Physique des Plasmas`, Lausanne, to the 22. EPS Conference on Controlled Fusion and Plasma Physics are assembled. figs., tabs., refs.

  9. The feed gas composition determines the degree of physical plasma-induced platelet activation for blood coagulation

    Science.gov (United States)

    Bekeschus, Sander; Brüggemeier, Janik; Hackbarth, Christine; Weltmann, Klaus-Dieter; von Woedtke, Thomas; Partecke, Lars-Ivo; van der Linde, Julia

    2018-03-01

    Cold atmospheric (physical) plasma has long been suggested to be a useful tool for blood coagulation. However, the clinical applicability of this approach has not been addressed sufficiently. We have previously demonstrated the ability of a clinically accepted atmospheric pressure argon plasma jet (kINPen® MED) to coagulate liver incisions in mice with similar performance compared to the gold standard electrocauterization. We could show that plasma-mediated blood coagulation was dependent on platelet activation. In the present work, we extended on this by investigating kINPen®-mediated platelet activation in anticoagulated human donor blood ex vivo. With focus on establishing high-throughput, multi-parametric platelet activation assays and performing argon feed gas parameter studies we achieved the following results: (i) plasma activated platelets in heparinized but not in EDTA-anticoagulated blood; (ii) plasma decreased total platelet counts but increased numbers of microparticles; (iii) plasma elevated the expression of several surface activation markers on platelets (CD62P, CD63, CD69, and CD41/61); (iv) in platelet activation, wet and dry argon plasma outperformed feed gas admixtures with oxygen and/or nitrogen; (v) plasma-mediated platelet activation was accompanied by platelet aggregation. Platelet aggregation is a necessary requirement for blood clot formation. These findings are important to further elucidate molecular details and clinical feasibility of cold physical plasma-mediated blood coagulation.

  10. Plasma properties

    International Nuclear Information System (INIS)

    Weitzner, H.

    1990-06-01

    This paper discusses the following topics: MHD plasma activity: equilibrium, stability and transport; statistical analysis; transport studies; edge physics studies; wave propagation analysis; basic plasma physics and fluid dynamics; space plasma; and numerical methods

  11. ALICE: A non-LTE plasma atomic physics, kinetics and lineshape package

    Science.gov (United States)

    Hill, E. G.; Pérez-Callejo, G.; Rose, S. J.

    2018-03-01

    All three parts of an atomic physics, atomic kinetics and lineshape code, ALICE, are described. Examples of the code being used to model the emissivity and opacity of plasmas are discussed and interesting features of the code which build on the existing corpus of models are shown throughout.

  12. Department of Plasma Physics and Technology: Overview

    International Nuclear Information System (INIS)

    Sadowski, M.

    2001-01-01

    Full text: In 2000 the research activity in the Dept. P-V was concentrated upon studies in the field of high-temperature plasma physics, nuclear fusion, and plasma technology. The main topics were as follows: l. Analysis of selected problems of plasma theory, 2. Investigation of phenomena in high-current pulse discharges of the Plasma-Focus (PF) and Z-Pinch type, 3. Development of the selected methods and equipment for plasma diagnostics, 4. Research on technology of experimental facilities for basic studies and applications, 5. Studies of the modification of material surfaces by means of pulse plasma-ion streams. In a frame of theoretical studies the numerical modeling was continued for discharges in coaxial plasma accelerators. The second theoretical aim was the description of some elementary atomic processes in the quasi- classical approach. A paper on the electron scattering on the atoms and molecules was published. In the quasi- classical model, the electron spin was taken into account and trajectories of 2 electrons in the helium atom were analyzed. In the frame of experimental studies, various phenomena were investigated in PF and Z-Pinch systems. The emission of pulse electron beams and ions as well as polarized X-rays were investigated in the MAFA-PF facility. New data about polarization of selected X-ray lines were obtained (2 papers at conferences and 2 publications). Ion emission measurements performed in small-scale PF-devices at INFIP and IFAS (Argentina), and in the Micro-Capillary device at Ecole Politechnique (France), were elaborated (5 papers at conferences and 2 publications). New measurements were also performed in the Capillary Z-Pinch device at IPP in Prague. With partial support of a US research contract, studies of the optimization of a neutron yield were performed in the PF-360 facility with special cryogenic targets (made of h eavy ice'' layers) or deuterium-gas targets (10 presentations at conferences, 2 reports for EOARD, and 7 papers

  13. Novel Prospects for Plasma Spray-Physical Vapor Deposition of Columnar Thermal Barrier Coatings

    Science.gov (United States)

    Anwaar, Aleem; Wei, Lianglinag; Guo, Qian; Zhang, Baopeng; Guo, Hongbo

    2017-12-01

    Plasma spray-physical vapor deposition (PS-PVD) is an emerging coating technique that can produce columnar thermal barrier coatings from vapor phase. Feedstock treatment at the start of its trajectory in the plasma torch nozzle is important for such vapor-phase deposition. This study describes the effects of the plasma composition (Ar/He) on the plasma characteristics, plasma-particle interaction, and particle dynamics at different points spatially distributed inside the plasma torch nozzle. The results of calculations show that increasing the fraction of argon in the plasma gas mixture enhances the momentum and heat flow between the plasma and injected feedstock. For the plasma gas combination of 45Ar/45He, the total enthalpy transferred to a representative powder particle inside the plasma torch nozzle is highest ( 9828 kJ/kg). Moreover, due to the properties of the plasma, the contribution of the cylindrical throat, i.e., from the feed injection point (FIP) to the start of divergence (SOD), to the total transferred energy is 69%. The carrier gas flow for different plasma gas mixtures was also investigated by optical emission spectroscopy (OES) measurements of zirconium emissions. Yttria-stabilized zirconia (YSZ) coating microstructures were produced when using selected plasma gas compositions and corresponding carrier gas flows; structural morphologies were found to be in good agreement with OES and theoretical predictions. Quasicolumnar microstructure was obtained with porosity of 15% when applying the plasma composition of 45Ar/45He.

  14. NATO Advanced Study Institute entitled Physics of Plasma-Wall Interactions in Controlled Fusion

    CERN Document Server

    Behrisch, R; Physics of plasma-wall interactions in controlled fusion

    1986-01-01

    Controlled thermonuclear fusion is one of the possible candidates for long term energy sources which will be indispensable for our highly technological society. However, the physics and technology of controlled fusion are extremely complex and still require a great deal of research and development before fusion can be a practical energy source. For producing energy via controlled fusion a deuterium-tritium gas has to be heated to temperatures of a few 100 Million °c corres­ ponding to about 10 keV. For net energy gain, this hot plasma has to be confined at a certain density for a certain time One pro­ mising scheme to confine such a plasma is the use of i~tense mag­ netic fields. However, the plasma diffuses out of the confining magnetic surfaces and impinges on the surrounding vessel walls which isolate the plasma from the surrounding air. Because of this plasma wall interaction, particles from the plasma are lost to the walls by implantation and are partially reemitted into the plasma. In addition, wall...

  15. Effect of ethnicity, dietary intake and physical activity on plasma adiponectin concentrations among malaysian patients with type 2 diabetes mellitus.

    Science.gov (United States)

    Chin, Koo Hui; Sathyasurya, Daniel Robert; Abu Saad, Hazizi; Jan Mohamed, Hamid Jan B

    2013-01-01

    The Malaysian Health and morbidity Survey (2006) reported the highest prevalence of type 2 diabetes mellitus (T2DM) among the Indian population compared to the Malay and Chinese populations. Many studies have supported the important role of adiponectin in insulin-sensitizing, which is associated with T2DM. These studies have raised a research question whether the variation in prevalence is related to the adiponectin concentrations or the lifestyle factors. The purpose of this study is to determine whether the adiponectin concentrations differ between the Malay, Chinese and the Indian populations with T2DM. It is to investigate the association of adiponectin concentrations with ethnicity, dietary intake and physical activity too. In this cross-sectional study, a total of 210 T2DM patients with mean (SD) age of 56.73 (10.23) years were recruited from Penang, Malaysia. Data on demographic background, medical history, anthropometry (weight, height, visceral fat, percentage of body fat and waist circumference), dietary intake (3 days 24 hours diet recall) and physical activity (International Physical Activity Questionnaire) were obtained accordingly. Plasma adiponectin and routine laboratory tests (fasting blood sugar, HbA1c, total cholesterol, LDL, HDL and triglyceride) were performed according to standard procedure. After adjustment for physical activity and dietary intakes, the Indian population had significantly lower adiponectin concentrations (P = 0.003) when compared with the Malay and the Chinese populations, The Indian population also had significantly higher value of HbA1c (P = 0.017) and significantly lower HDL (P = 0.013). Plasma adiponectin concentrations was significantly associated with ethnicity (P = 0.011), dietary carbohydrate (P = 0.003) and physical activity total MET score (P = 0.026), after medical history, age, sex, total cholesterol and visceral fat adjusted. However, dietary carbohydrate and physical activity did not show significantly

  16. Physics and applications of high energy density plasmas. Extreme state driven by pulsed electromagnetic energy

    International Nuclear Information System (INIS)

    Horioka, Kazuhiko

    2002-06-01

    The papers presented at the symposium on ''Physics and application of high energy density plasmas, held December 20-21, 2001 at NIFS'' are collected in this proceedings. The topics covered in the meeting include dense z-pinches, plasma focus, intense charged particle beams, intense radiation sources, discharge pumped X-ray lasers, their diagnostics, and applications of them. The papers reflect the present status and trends in the research field of high energy density plasmas. (author)

  17. Toxicity and Immunogenicity in Murine Melanoma following Exposure to Physical Plasma-Derived Oxidants

    Directory of Open Access Journals (Sweden)

    Sander Bekeschus

    2017-01-01

    Full Text Available Metastatic melanoma is an aggressive and deadly disease. Therapeutic advance has been achieved by antitumor chemo- and radiotherapy. These modalities involve the generation of reactive oxygen and nitrogen species, affecting cellular viability, migration, and immunogenicity. Such species are also created by cold physical plasma, an ionized gas capable of redox modulating cells and tissues without thermal damage. Cold plasma has been suggested for anticancer therapy. Here, melanoma cell toxicity, motility, and immunogenicity of murine metastatic melanoma cells were investigated following plasma exposure in vitro. Cells were oxidized by plasma, leading to decreased metabolic activity and cell death. Moreover, plasma decelerated melanoma cell growth, viability, and cell cycling. This was accompanied by increased cellular stiffness and upregulation of zonula occludens 1 protein in the cell membrane. Importantly, expression levels of immunogenic cell surface molecules such as major histocompatibility complex I, calreticulin, and melanocortin receptor 1 were significantly increased in response to plasma. Finally, plasma treatment significantly decreased the release of vascular endothelial growth factor, a molecule with importance in angiogenesis. Altogether, these results suggest beneficial toxicity of cold plasma in murine melanomas with a concomitant immunogenicity of potential interest in oncology.

  18. Sheath physics and materials science results from recent plasma source ion implantation experiments

    International Nuclear Information System (INIS)

    Conrad, J.R.; Radtke, J.L.; Dodd, R.A.; Worzala, F.J.

    1987-01-01

    Plasma Source Ion Implantation (PSII) is a surface modification technique which has been optimized for ion-beam processing of materials. PSII departs radically from conventional implantation by circumventing the line of sight restriction inherent in conventional ion implantation. The authors used PSII to implant cutting tools and dies and have demonstrated substantial improvements in lifetime. Recent results on plasma physics scaling laws, microstructural, mechanical, and tribological properties of PSII-implanted materials are presented

  19. Evaporation of Droplets in Plasma Spray-Physical Vapor Deposition Based on Energy Compensation Between Self-Cooling and Plasma Heat Transfer

    Science.gov (United States)

    Liu, Mei-Jun; Zhang, Meng; Zhang, Qiang; Yang, Guan-Jun; Li, Cheng-Xin; Li, Chang-Jiu

    2017-10-01

    In the plasma spray-physical vapor deposition process (PS-PVD), there is no obvious heating to the feedstock powders due to the free molecular flow condition of the open plasma jet. However, this is in contrast to recent experiments in which the molten droplets are transformed into vapor atoms in the open plasma jet. In this work, to better understand the heating process of feedstock powders in the open plasma jet of PS-PVD, an evaporation model of molten ZrO2 is established by examining the heat and mass transfer process of molten ZrO2. The results reveal that the heat flux in PS-PVD open plasma jet (about 106 W/m2) is smaller than that in the plasma torch nozzle (about 108 W/m2). However, the flying distance of molten ZrO2 in the open plasma jet is much longer than that in the plasma torch nozzle, so the heating in the open plasma jet cannot be ignored. The results of the evaporation model show that the molten ZrO2 can be partly evaporated by self-cooling, whereas the molten ZrO2 with a diameter <0.28 μm and an initial temperature of 3247 K can be completely evaporated within the axial distance of 450 mm by heat transfer.

  20. Participation of the Instituto de Pesquisas Espaciais in the national program for plasma physics and controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    1990-01-01

    This is a report concerning the participation of the Instituto de Pesquisas Espaciais in the national program for plasma physics and controlled thermonuclear fusion. The report lists all the personnel enroled in research activities, both theoretical and experimental. The research subjects are the following: relativistic electron beams; plasma produced by laser; plasma theory; quiescent plasma; plasma centrifugal; ionic propulsion. (A.C.A.S.) [pt

  1. Langmuir probe-based observables for plasma-turbulence code validation and application to the TORPEX basic plasma physics experiment

    International Nuclear Information System (INIS)

    Ricci, Paolo; Theiler, C.; Fasoli, A.; Furno, I.; Labit, B.; Mueller, S. H.; Podesta, M.; Poli, F. M.

    2009-01-01

    The methodology for plasma-turbulence code validation is discussed, with focus on the quantities to use for the simulation-experiment comparison, i.e., the validation observables, and application to the TORPEX basic plasma physics experiment [A. Fasoli et al., Phys. Plasmas 13, 055902 (2006)]. The considered validation observables are deduced from Langmuir probe measurements and are ordered into a primacy hierarchy, according to the number of model assumptions and to the combinations of measurements needed to form each of them. The lowest levels of the primacy hierarchy correspond to observables that require the lowest number of model assumptions and measurement combinations, such as the statistical and spectral properties of the ion saturation current time trace, while at the highest levels, quantities such as particle transport are considered. The comparison of the observables at the lowest levels in the hierarchy is more stringent than at the highest levels. Examples of the use of the proposed observables are applied to a specific TORPEX plasma configuration characterized by interchange-driven turbulence.

  2. MAGNUM-PSI, a plasma generator for plasma-surface interaction research in ITER-like conditions

    International Nuclear Information System (INIS)

    Goedheer, W.J.; Rooij, G.J. van; Veremiyenko, V.; Ahmad, Z.; Barth, C.J.; Eck, H.J.N. van; Groot, B. de; Hellermann, M.G. von; Kruijtzer, G.L.; Wolff, J.C.; Brezinsek, S.; Philipps, V.; Pospieszczyk, A.; Samm, U.; Schweer, B.; Dahiya, R.P.; Engeln, R.A.H.; Schram, D.C.; Fantz, U.; Kleyn, A.W.; Lopes Cardozo, N.J.

    2005-01-01

    The FOM-Institute for Plasma Physics - together with its TEC partners - is preparing the construction of Magnum-psi, a magnetized (3 T), steady-state, large area (100 cm 2 ), high-flux (up to 10 24 H + ions m -2 s -1 ) plasma generator. The research programme of Magnum-psi will address the questions for the ITER divertor: erosion, redeposition and hydrogen retention with carbon substrates, melting of metal surfaces, erosion and redeposition with mixed materials. In order to explore and develop the techniques to be applied in Magnum-psi, a pilot experiment (Pilot-psi), operating at a magnetic field up to 1.6 Tesla, has been constructed. Pilot-psi produces a hydrogen plasma beam with the required parameters (T e ≤ 1eV and flux ≥ 10 23 m -2 s -1 ) over an area of 1 cm 2 . In this paper the results of extensive diagnostic measurements on Pilot-psi (a.o., Thomson Scattering and high-resolution spectroscopy), combined with numerical studies of the source and the expansion of the plasma will be presented to demonstrate the feasibility of the large Magnum-psi plasma generator. (author)

  3. Physics and applications of high energy density plasmas. Extreme state driven by pulsed electromagnetic energy

    Energy Technology Data Exchange (ETDEWEB)

    Horioka, Kazuhiko (ed.)

    2002-06-01

    The papers presented at the symposium on ''Physics and application of high energy density plasmas, held December 20-21, 2001 at NIFS'' are collected in this proceedings. The topics covered in the meeting include dense z-pinches, plasma focus, intense charged particle beams, intense radiation sources, discharge pumped X-ray lasers, their diagnostics, and applications of them. The papers reflect the present status and trends in the research field of high energy density plasmas. (author)

  4. Computers in plasma physics: remote data access and magnetic configuration design

    International Nuclear Information System (INIS)

    Blackwell, B.D.; McMillan, B.F.; Searle, A.C.; Gardner, H.J.; Price, D.M.; Fredian, T.W.

    2000-01-01

    Full text: Two graphically intensive examples of the application of computers in plasma physics are described remote data access for plasma confinement experiments, and a code for real-time magnetic field tracing and optimisation. The application for both of these is the H-1NF National Plasma Fusion Research Facility, a Commonwealth Major National Research Facility within the Research School of Physical Science, Institute of Advanced Studies, ANU. It is based on the 'flexible' heliac stellarator H-1, a plasma confinement device in which the confining fields are generated solely by external conductors. These complex, fully three dimensional magnetic fields are used as examples for the magnetic design application, and data from plasma physics experiments are used to illustrate the remote access techniques. As plasma fusion experiments grow in size, increased remote access allows physicists to participate in experiments and data analysis from their home base. Three types of access will be described and demonstrated - a simple Java-based web interface, an example TCP client-server built around the widely used MDSPlus data system and the visualisation package IDL (RSI Inc), and a virtual desktop Environment (VNC: AT and T Research) that simulates terminals local to the plasma facility. A client server TCP/IP - web interface to the programmable logic controller that provides user interface to the programmable high power magnet power supplies is described. A very general configuration file allows great flexibility, and allows new displays and interfaces to be created (usually) without changes to the underlying C++ and Java code. The magnetic field code BLINE provides accurate calculation of complex magnetic fields, and 3D visualisation in real time, using a low cost multiprocessor computer and an OpenGL-compatible graphics accelerator. A fast, flexible multi-mesh interpolation method is used for tracing vacuum magnetic field lines created by arbitrary filamentary

  5. Measurements of radiative material properties for astrophysical plasmas

    International Nuclear Information System (INIS)

    Bailey, James E.

    2010-01-01

    The new generation of z-pinch, laser, and XFEL facilities opens the possibility to produce astrophysically-relevant laboratory plasmas with energy densities beyond what was previously possible. Furthermore, macroscopic plasmas with uniform conditions can now be created, enabling more accurate determination of the material properties. This presentation will provide an overview of our research at the Z facility investigating stellar interior opacities, AGN warm-absorber photoionized plasmas, and white dwarf photospheres. Atomic physics in plasmas heavily influence these topics. Stellar opacities are an essential ingredient of stellar models and they affect what we know about the structure and evolution of stars. Opacity models have become highly sophisticated, but laboratory tests have not been done at the conditions existing inside stars. Our research is presently focused on measuring Fe at conditions relevant to the base of the solar convection zone, where the electron temperature and density are believed to be 190 eV and 9 x 10 22 e/cc, respectively. The second project is aimed at testing atomic kinetics models for photoionized plasmas. Photoionization is an important process in many astrophysical plasmas and the spectral signatures are routinely used to infer astrophysical object's characteristics. However, the spectral synthesis models at the heart of these interpretations have been the subject of very limited experimental tests. Our current research examines photoionization of neon plasma subjected to radiation flux similar to the warm absorber that surrounds active galactic nuclei. The third project is a recent initiative aimed at producing a white dwarf photosphere in the laboratory. Emergent spectra from the photosphere are used to infer the star's effective temperature and surface gravity. The results depend on knowledge of H, He, and C spectral line profiles under conditions where complex physics such as quasi-molecule formation may be important. These

  6. Two theoretical treatments of the quark-gluon plasma

    International Nuclear Information System (INIS)

    Carrington, M.E.

    1989-01-01

    The study of the quark-gluon plasma is of direct relevance to questions about the confinement properties of QCD and the validity of the standard theory of QCD in a different physical regime. Part 1 of this work contains a brief discussion of the theoretical and numerical evidence for the existence of the quark-gluon plasma. In the next two sections, two different approaches are discussed. In Part 2, the problem is presented in the general framework of kinetic theory. A definition of the Wigner distribution operator is introduced for quarks and a set of kinetic equations are derived for the momentum moments of this operator. A Wigner distribution operator is defined for gluons and the momentum of this operator are calculated and related to physical quantities. In Part 3, a calculation of linear response functions in a hot gluon plasma is presented. Problems related to gauge invariance and to the definition of a thermal ensemble in the presence of unphysical degrees of freedom are discussed. Results in different gauges and with different ensembles are compared, and the implications of the results for plasma oscillations are discussed

  7. P3: An installation for high-energy density plasma physics and ultra-high intensity laser–matter interaction at ELI-Beamlines

    Czech Academy of Sciences Publication Activity Database

    Weber, Stefan A.; Bechet, Sabrina; Borneis, S.; Brabec, Lukáš; Bučka, Martin; Chacon-Golcher, Edwin; Ciappina, Marcelo F.; De Marco, Massimo; Fajstavr, Antonín; Falk, Kateřina; Garcia, E.-R.; Grosz, Jakub; Gu, Yanjun; Hernandez Martin, Juan C.; Holec, M.; Janečka, Pavel; Jantač, Martin; Jirka, Martin; Kadlecová, Hedvika; Khikhlukha, Danila; Klimo, Ondřej; Korn, Georg; Kramer, Daniel; Batheja, Deepak Kumar; Laštovička, Tomáš; Lutoslawski, P.; Morejon, L.; Olšovcová, Veronika; Rajdl, Marek; Renner, Oldřich; Rus, Bedřich; Singh, Sushil K.; Šmíd, Michal; Sokol, Martin; Versaci, Roberto; Vrána, Roman; Vranic, M.; Vyskočil, Jiří; Wolf, Adam; Yu, Q.

    2017-01-01

    Roč. 2, č. 4 (2017), s. 149-176 E-ISSN 2468-080X R&D Projects: GA MŠk LQ1606; GA MŠk LM2015065; GA MŠk EF15_008/0000162; GA MŠk EF15_003/0000449 Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162; OP VVV - HiFi(XE) CZ.02.1.01/0.0/0.0/15_003/0000449 Institutional support: RVO:68378271 Keywords : high-energy-density- physics * ultra-high-intensity * warm dense matter * laboratory astrophysics * high repetition rate lasers * plasma optics * inertial confinement fusion Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics )

  8. Basic physical phenomena, neutron production and scaling of the dense plasma focus

    International Nuclear Information System (INIS)

    Kaeppeler, H.J.

    This paper presents an attempt at establishing a model theory for the dense plasma focus in order to present a consistent interpretation of the basic physical phenomena leading to neutron production from both acceleration and thermal processes. To achieve this, the temporal history of the focus is divided into the compression of the plasma sheath, a qiescent and very dense phase with ensuing expansion, and an instable phase where the focus plasma is disrupted by instabilities. Finally, the decay of density, velocity and thermal fields is considered. Under the assumption that Io 2 /sigmaoRo 2 = const and to/Tc = const, scaling laws for plasma focus devices are derived. It is shown that while generally the neutron yield scales with the fourth power of maximum current, neutron production from thermal processes becomes increasingly important for large devices, while in the small devices neutron production from acceleration processes is by far predominant. (orig.) [de

  9. Princeton University Plasma Physics Laboratory, Princeton, New Jersey. Annual report, October 1, 1990--September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    This report discusses the following topics: Principal parameters of experimental devices; Tokamak Fusion Test Reactor; Burning Plasma Experiment; Princeton Beta Experiment-Modification; Current Drive Experiment-Upgrade; International Thermonuclear Experimental Reactor; International Collaboration; X-Ray Laser Studies; Hyperthermal Atomic Beam Source; Pure Electron Plasma Experiments; Plasma Processing: Deposition and Etching of Thin Films; Theoretical Studies; Tokamak Modeling; Engineering Department; Environment, Safety, and Health and Quality Assurance; Technology Transfer; Office of Human Resources and Administration; PPPL Patent Invention Disclosures; Office of Resource Management; Graduate Education: Plasma Physics; Graduate Education: Program in Plasma Science and Technology; and Science Education Program.

  10. Fermilab | Science | Inquiring Minds | Questions About Physics

    Science.gov (United States)

    Benefits Milestones Photos and videos Latest news For the media Particle Physics Neutrinos Fermilab and the computing Quantum initiatives Research and development Key discoveries Benefits of particle physics Particle society Particle Physics 101 Science of matter, energy, space and time How particle physics discovery

  11. Physics and engineering of singlet delta oxygen production in low-temperature plasma

    International Nuclear Information System (INIS)

    Ionin, A A; Kochetov, I V; Napartovich, A P; Yuryshev, N N

    2007-01-01

    An overview is presented of experimental and theoretical research in the field of physics and engineering of singlet delta oxygen (SDO) production in low-temperature plasma of various electric discharges. Attention is paid mainly to the SDO production with SDO yield adequate for the development of an electric discharge oxygen-iodine laser (DOIL). The review comprises a historical sketch describing the main experimental results on SDO physics in low-temperature plasma obtained since the first detection of SDO in electric discharge in the 1950s and the first attempt to launch a DOIL in the 1970s up to the mid-1980s when several research groups started their activity aimed at DOIL development, stimulated by success in the development of a chemical oxygen-iodine laser (COIL). A detailed analysis of theoretical and experimental research on SDO production in electric discharge from the mid-1980s to the present, when the first DOIL has been launched, is given. Different kinetic models of oxygen low-temperature plasma are compared with the model developed by the authors. The latter comprises electron kinetics based on the accompanying solution of the electron Boltzmann equation, plasma chemistry including reactions of excited molecules and numerous ion-molecular reactions, thermal energy balance and electric circuit equation. The experimental part of the overview is focused on the experimental methods of SDO detection including experiments on the measurements of the Einstein coefficient for SDO transition a 1 Δ g - X 3 Σ g - and experimental procedures of SDO production in self-sustained and non-self-sustained discharges and analysis of different plasma-chemical processes occurring in oxygen low-temperature plasma which brings limitation to the maximum SDO yield and to the lifetime of the SDO in an electric discharge and its afterglow. Quite recently obtained results on gain and output characteristics of DOIL and some projects aimed at the development of high-power DOIL

  12. AINSE plasma science and technology conference and Elizabeth and Frederick White workshop on fundamental problems in the physics of magnetically confined plasmas: conference handbook

    International Nuclear Information System (INIS)

    1993-01-01

    The handbook contains abstracts of papers and posters presented at the conference. The main topics relate to plasma physics and fusion, plasma processing and uses as well as specific fusion devices and experiments. Eighty-four out of ninety-two presentations were considered to be in the INIS subject scope and have been separately indexed

  13. Space shuttle charging or beam-plasma discharge: What can electron spectrometer observations contribute to solving the question?

    International Nuclear Information System (INIS)

    Watermann, J.; Wilhelm, K.; Torkar, K.M.; Riedler, W.

    1988-01-01

    Several cooperative plasma experiments were carried out on board Spacelab-1, the ninth payload of the Space Transportation System (STS-9). Among them, the electron spectrometer 1ES019A was designed to observe 01.-12.5 keV electron fluxes with high temporal and spatial resolution, while the SEPAC electron beam accelerator emitted electron beams with currents up to 280 mA and maximum energies of 5 keV. Since the question of orbiter charging to high voltages has controversially been discussed in several publications on STS-3 and STS-9 electron beam experiments, an attempt is made to relate information from the return electron flux observed during the SEPAC operations to the vehicle charging interpretation. A close examination reveals that most of our observations can be understood if the occurrence of a beam-plasma discharge is assumed at least for electron beam intensities above 100 mA. This would provide a substantial return current capability. High orbiter charging effects during electron beam accelerator electron emissions are consequently not supported by the observations

  14. Plasma physics via particle simulation

    International Nuclear Information System (INIS)

    Birdsall, C.K.

    1981-01-01

    Plasmas are studied by following the motion of many particles in applied and self fields, analytically, experimentally and computationally. Plasmas for magnetic fusion energy devices are very hot, nearly collisionless and magnetized, with scale lengths of many ion gyroradii and Debye lengths. The analytic studies of such plasmas are very difficult as the plasma is nonuniform, anisotropic and nonlinear. The experimental studies have become very expensive in time and money, as the size, density and temperature approach fusion reactor values. Computational studies using many particles and/or fluids have complemented both theories and experiments for many years and have progressed to fully three dimensional electromagnetic models, albeit with hours of running times on the fastest largest computers. Particle simulation methods are presented in some detail, showing particle advance from acceleration to velocity to position, followed by calculation of the fields from charge and current densities and then further particle advance, and so on. Limitations due to the time stepping and use of a spatial grid are given, to avoid inaccuracies and instabilities. Examples are given for an electrostatic program in one dimension of an orbit averaging program, and for a three dimensional electromagnetic program. Applications of particle simulations of plasmas in magnetic and inertial fusion devices continue to grow, as well as to plasmas and beams in peripheral devices, such as sources, accelerators, and converters. (orig.)

  15. EURATOM-CEA Association contributions to the 15. I.A.E.A. conference on plasma physics and controlled nuclear fusion research

    International Nuclear Information System (INIS)

    1995-01-01

    Recent results of plasma physics at TORE SUPRA TOKAMAK device are reported. The topics covered are plasma confinement, plasma heating, current drive, radiating layers, transport phenomena and steady-state plasma. 9 papers have been separately indexed for the INIS database. (K.A.)

  16. Top 10 Research Questions Related to Preventing Sudden Death in Sport and Physical Activity.

    Science.gov (United States)

    Katch, Rachel K; Scarneo, Samantha E; Adams, William M; Armstrong, Lawrence E; Belval, Luke N; Stamm, Julie M; Casa, Douglas J

    2017-09-01

    Participation in organized sport and recreational activities presents an innate risk for serious morbidity and mortality. Although death during sport or physical activity has many causes, advancements in sports medicine and evidence-based standards of care have allowed clinicians to prevent, recognize, and treat potentially fatal injuries more effectively. With the continual progress of research and technology, current standards of care are evolving to enhance patient outcomes. In this article, we provided 10 key questions related to the leading causes and treatment of sudden death in sport and physical activity, where future research will support safer participation for athletes and recreational enthusiasts. The current evidence indicates that most deaths can be avoided when proper strategies are in place to prevent occurrence or provide optimal care.

  17. The physics and engineering aspects of radiology. Textbook with questions and answers

    International Nuclear Information System (INIS)

    Link, T.M.; Heppe, A.; Meier, N.; Fiebich, M.

    1994-01-01

    The textbook formulates and answers the questions encountered in practice by students in the radiology professions, covering the physics and engineering aspects as well as quality control and the relevant requirements set by the X-ray Ordinance and the Quality Assurance Guide issued by the Bundesaerztekammer for diagnostic radiography and computed tomography. The text is accompanied by simplified illustrations that are easy to remember. The book is intended to serve as a textbook for readers preparing for their examination as a medical specialist, or for participants of obligatory courses in radiological protection, or radiographers. Readers will also find it useful as a refresher course. (orig.) [de

  18. Fusion programs in applied plasma physics

    International Nuclear Information System (INIS)

    1992-02-01

    The objectives of the theoretical science program are: To support the interpretation of present experiments and predict the outcome of future planned experiments; to improve on existing models and codes and validate against experimental results; and to conduct theoretical physics development of advanced concepts with applications for DIII-D and future devices. Major accomplishments in FY91 include the corroboration between theory and experiment on MHD behavior in the second stable regime of operation on DIII-D, and the frequency and mode structure of toroidal Alfven eigenmodes in high beta, shaped plasmas. We have made significant advances in the development of the gyro-Landau fluid approach to turbulence simulation which more accurately models kinetic drive and damping mechanisms. Several theoretical models to explain the bifurcation phenomenon in L- to H-mode transition were proposed providing the theoretical basis for future experimental verification. The capabilities of new rf codes have been upgraded in response to the expanding needs of the rf experiments. Codes are being employed to plan for a fully non-inductive current drive experiment in a high beta, enhanced confinement regime. GA's experimental effort in Applied Physics encompasses two advanced diagnostics essential for the operation of future fusion experiments: Alpha particle diagnostic, and current and density profile diagnostics. This paper discusses research in all these topics

  19. Examining the Effects of Oxygen Plasma on Physical and Dyeing Properties of Some Cellulose Fibers

    Directory of Open Access Journals (Sweden)

    Dilara KOCAK

    2016-09-01

    Full Text Available Cotton, Agava Americana and artichoke fibers were treated with plasma with oxygen gas in Diener Vacuum Plasma for 1, 3 and 5 minutes, with 40 kHz low frequency and at 0.3 mbar pressure. After the plasma treatment, fibers' weight loss %, tensile strength, elongation, fiber diameter, surface topography (SEM, colour changes, and light and washing fastness properties were investigated. A positive increase was observed for mechanical and fastness properties after 5 min plasma treatment. The effects of plasma treatments on dyeing properties of fibers were studied. Dyeing properties of plasma treated fibers were improved after 3 min. treatment. SEM results were also proved the improved physical properties and colour changes due to the rough surface structure.DOI: http://dx.doi.org/10.5755/j01.ms.22.3.9368

  20. PREFACE: First International Workshop on Nonequilibrium Processes in Plasma Physics and Studies of Environment

    Science.gov (United States)

    Petrović, Z. Lj; Malović, G.; Tasić, M.; Nikitović, Ž.

    2007-06-01

    This volume is a collection of papers associated with a series of invited lectures presented at the First Workshop on Nonequilibrium processes in Plasma Physics and studies of Environment that was held at Mt Kopaonik in August 2006. The workshop originated as a part of the FP6 COE 026328 which had the basic aim of promoting centers of excellence in Western Balkan countries, to facilitate dissemination of their results and to help them establish themselves in the broader arena of European and international science. So the best way to achieve all those goals was to prepare a workshop associated with the local conference SPIG (Symposium on Physics of Ionized Gases) where the participants could attend sessions in which the host Laboratory presented progress reports and papers and thereby gain a full perspective of our results. At the same time this allowed participants in the COE the opportunity to compare their results with the results of external speakers and to gain new perspectives and knowledge. The program of the workshop was augmented by inviting some of our colleagues who visited the COE in recent years or have an active collaboration with a participating member. In that respect this volume is not only a proceedings of the workshop but a collection of papers related to the topic of the workshop: Non-equilibrium phenomena in plasmas and in the science of our environment. The idea is to offer review articles either summarizing a broader area of published or about to be published work or to give overviews showing preliminary results of the works in progress. The refereeing of the papers consisted of two parts, first in selection of the invitees and second in checking the submitted manuscripts. The papers were refereed to the standard of the Journal. As the program of the COE covers a wide area of topics from application of plasmas in nano- electronics to monitoring and removal of pollutants in the atmosphere, so the program of the workshop covered an even broader

  1. Microcavity Plasma Devices and Arrays Fabricated in Semiconductor, Ceramic, or Metal/polymer Structures: A New Realm of Plasma Physics and Photonics Applications

    International Nuclear Information System (INIS)

    Eden, J. G.

    2005-01-01

    Micro discharge, or microcavity plasma, is the broad term that has come to be associated with an emerging class of glow discharge devices in which the characteristic spatial dimension of the plasma is nominally ) dia. Si wafers and operated in the rare gases and Ar/N2 gas mixtures. Also, photodetection in the ultraviolet, visible and near-infrared with microplasma devices has been observed by interfacing a low temperature plasma with a semiconductor. Carbon nanotubes grown directly within the microcavity of microplasma devices improve all key performance parameters of the device, and nanoporous Al2O3 grown onto Al by wet chemical processing yields microplasma devices of exceptional stability and lifetime. The opportunities such structures offer for accessing new avenues in plasma physics and photonics will be discussed. (Author)

  2. Questioning the foundations of physics which of our fundamental assumptions are wrong?

    CERN Document Server

    Foster, Brendan; Merali, Zeeya

    2015-01-01

    The essays in this book look at way in which the fundaments of physics might need to be changed in order to make progress towards a unified theory. They are based on the prize-winning essays submitted to the FQXi essay competition “Which of Our Basic Physical Assumptions Are Wrong?”, which drew over 270 entries. As Nobel Laureate physicist Philip W. Anderson realized, the key to understanding nature’s reality is not anything “magical”, but the right attitude, “the focus on asking the right questions, the willingness to try (and to discard) unconventional answers, the sensitive ear for phoniness, self-deception, bombast, and conventional but unproven assumptions.” The authors of the eighteen prize-winning essays have, where necessary, adapted their essays for the present volume so as to (a) incorporate the community feedback generated in the online discussion of the essays, (b) add new material that has come to light since their completion and (c) to ensure accessibility to a broad audience of re...

  3. Conceptual Mobility and Entrenchment in Introductory Geoscience Courses: New Questions Regarding Physics' and Chemistry's Role in Learning Earth Science Concepts

    Science.gov (United States)

    Anderson, Steven W.; Libarkin, Julie C.

    2016-01-01

    Nationwide pre- and posttesting of introductory courses with the Geoscience Concept Inventory (GCI) shows little gain for many of its questions. Analysis of more than 3,500 tests shows that 22 of the 73 GCI questions had gains of <0.03, and nearly half of these focused on basic physics and chemistry. We also discovered through an assessment of…

  4. Plasma-based ion implantation and deposition: A review of physics,technology, and applications

    Energy Technology Data Exchange (ETDEWEB)

    Pelletier, Jacques; Anders, Andre

    2005-05-16

    After pioneering work in the 1980s, plasma-based ion implantation (PBII) and plasma-based ion implantation and deposition (PBIID) can now be considered mature technologies for surface modification and thin film deposition. This review starts by looking at the historical development and recalling the basic ideas of PBII. Advantages and disadvantages are compared to conventional ion beam implantation and physical vapor deposition for PBII and PBIID, respectively, followed by a summary of the physics of sheath dynamics, plasma and pulse specifications, plasma diagnostics, and process modeling. The review moves on to technology considerations for plasma sources and process reactors. PBII surface modification and PBIID coatings are applied in a wide range of situations. They include the by-now traditional tribological applications of reducing wear and corrosion through the formation of hard, tough, smooth, low-friction and chemically inert phases and coatings, e.g. for engine components. PBII has become viable for the formation of shallow junctions and other applications in microelectronics. More recently, the rapidly growing field of biomaterial synthesis makes used of PBII&D to produce surgical implants, bio- and blood-compatible surfaces and coatings, etc. With limitations, also non-conducting materials such as plastic sheets can be treated. The major interest in PBII processing originates from its flexibility in ion energy (from a few eV up to about 100 keV), and the capability to efficiently treat, or deposit on, large areas, and (within limits) to process non-flat, three-dimensional workpieces, including forming and modifying metastable phases and nanostructures. We use the acronym PBII&D when referring to both implantation and deposition, while PBIID implies that deposition is part of the process.

  5. Special issue on the spectroscopy of transient plasmas

    Science.gov (United States)

    Bailey, James; Hoarty, David; Mancini, Roberto; Yoneda, Hitoki

    2015-01-01

    Experimental and theoretical papers are invited for a special issue of Journal of Physics B: Atomic, Molecular and Optical Physics on Spectroscopy of Transient Plasmas, covering plasma conditions produced by pulsed laboratory sources including for example, short and long pulse lasers; pulsed power devices; FELs; XFELs and ion beams. The full range of plasma spectroscopy from the optical range up to high energy bremsstrahlung radiation will be covered. The deadline for submitting to this special issue is 1 March 2015. (Expected web publication: autumn 2015). Late submissions will be considered for the journal, but may not be included in the special issue. All submitted articles will be fully refereed to the journal's usual high standards. Upon publication, the issue will be widely promoted to the atomic, molecular and optical physics community, ensuring that your work receives maximum visibility. Articles should be submitted at http://mc04.manuscriptcentral.com/jphysb-iop. Should you have any questions regarding the preparation of manuscripts or the suitability of your work for this Issue, please do not hesitate to contact the J. Phys. B: At. Mol. Opt. Editorial team (jphysb@iop.org). We look forward to hearing from you and hope that we can welcome you as a contributing author.

  6. Scientific study in solar and plasma physics relative to rocket and balloon projects

    Science.gov (United States)

    Wu, S. T.

    1993-01-01

    The goals of this research are to provide scientific and technical capabilities in the areas of solar and plasma physics contained in research programs and instrumentation development relative to current rocket and balloon projects; to develop flight instrumentation design, flight hardware, and flight program objectives and participate in peer reviews as appropriate; and to participate in solar-terrestrial physics modeling studies and analysis of flight data and provide theoretical investigations as required by these studies.

  7. The equatorial E-region and its plasma instabilities: a tutorial

    Directory of Open Access Journals (Sweden)

    D. T. Farley

    2009-04-01

    Full Text Available In this short tutorial we first briefly review the basic physics of the E-region of the equatorial ionosphere, with emphasis on the strong electrojet current system that drives plasma instabilities and generates strong plasma waves that are easily detected by radars and rocket probes. We then discuss the instabilities themselves, both the theory and some examples of the observational data. These instabilities have now been studied for about half a century (!, beginning with the IGY, particularly at the Jicamarca Radio Observatory in Peru. The linear fluid theory of the important processes is now well understood, but there are still questions about some kinetic effects, not to mention the considerable amount of work to be done before we have a full quantitative understanding of the limiting nonlinear processes that determine the details of what we actually observe. As our observational techniques, especially the radar techniques, improve, we find some answers, but also more and more questions. One difficulty with studying natural phenomena, such as these instabilities, is that we cannot perform active cause-and-effect experiments; we are limited to the inputs and responses that nature provides. The one hope here is the steadily growing capability of numerical plasma simulations. If we can accurately simulate the relevant plasma physics, we can control the inputs and measure the responses in great detail. Unfortunately, the problem is inherently three-dimensional, and we still need somewhat more computer power than is currently available, although we have come a long way.

  8. Contributions to 28th European physical society conference on controlled fusion and plasma physics (Madeira Tecnopolo, Funchal, Portugal, 18-22 June 2001) from LHD experiment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The LHD experimental group has presented nineteen papers at the 28th European Physical Society Conference on Controlled Fusion and Plasma Physics (Madeira Tecnopolo, Funchal, Portugal, 18-22 June 2001). The contributed papers are collected in this report. (author)

  9. Plasma properties

    International Nuclear Information System (INIS)

    Weitzner, H.

    1991-06-01

    The Magneto-Fluid Dynamics Division continues to study a broad range of problems originating in plasma physics. Its principal focus is fusion plasma physics, and most particularly topics of particular significance for the world magnetic fusion program. During the calendar year 1990 we explored a wide range of topics including RF-induced transport as a plasma control mechanism, edge plasma modelling, further statistical analysis of L and H mode tokamak plasmas, antenna design, simulation of the edge of a tokamak plasma and the L-H transition, interpretation of the CCT experimental results at UCLA, turbulent transport, studies in chaos, the validity of moment approximations to kinetic equations and improved neoclassical modelling. In more basic studies we examined the statistical mechanisms of Coulomb systems and applied plasma ballooning mode theory to conventional fluids in order to obtain novel fluid dynamics stability results. In space plasma physics we examined the problem of reconnection, the effect of Alfven waves in space environments, and correct formulation of boundary conditions of the Earth for waves in the ionosphere

  10. The Earth's ionosphere plasma physics and electrodynamics

    CERN Document Server

    Kelley, Michael C

    2007-01-01

    Although interesting in its own right, due to the ever-increasing use of satellites for communication and navigation, weather in the ionosphere is of great concern. Every such system uses trans-ionospheric propagation of radio waves, waves which must traverse the commonly turbulent ionosphere. Understanding this turbulence and predicting it are one of the major goals of the National Space Weather program. Acquiring such a prediction capability will rest on understanding the very topics of this book, the plasma physics and electrodynamics of the system. Fully updated to reflect advances in the field in the 20 years since the first edition published Explores the buffeting of the ionosphere from above by the sun and from below by the lower atmosphere Unique text appropriate both as a reference and for coursework.

  11. We experience more than we comprehend. Quantum physics and questions of life. rev. new ed.; Wir erleben mehr als wir begreifen. Quantenphysik und Lebensfragen

    Energy Technology Data Exchange (ETDEWEB)

    Duerr, Hans-Peter; Oesterreicher-Mollwo, Marianne

    2015-07-01

    The quantum physics has been arrived by thinking and experimenting to revolutioning knowledges, which determine our world, also if only few have understood these theories in their real sense. The present book follows the question, whether and how far a consciousness trained by quantum physics can reach more directly to the understanding of questions of life and religious questions than a thinking, which is obliged to classical physics. It deals especially with fundamental existential questions: The theme of personal responsibility, the value of the individual existence, the evaluation of the personal I-you relation. Hans Peter Duerr, a personality with guiding qualities, as they are necessary in the new millennium, is the ideal speech partner for the dimension of this theme. The connections of natural sciences and religion, ecology, and sociological change have always driven the Heisenberg successor. How can we speech about that, which science cannot comprehend?. What means self, identity, responsibility for the quantum physicist? An exciting meeting.

  12. [Physical activity in patients with symptoms of metabolic syndrome reduces the concentration of plasma antioxidant vitamins - protective effect of vitamin C].

    Science.gov (United States)

    Godala, Małgorzata; Materek-Kuśmierkiewicz, Izabela; Moczulski, Dariusz; Rutkowski, Maciej; Szatko, Franciszek; Gaszyńska, Ewelina; Tokarski, Sławomir; Kowalski, Jan

    2015-05-01

    Patients with cardiovascular diseases, including those with the symptoms of metabolic syndrome (MS), are recommended regular exercise but many studies indicate its role in the production of reactive oxygen species. Vitamin C supplementation may enhance the antioxidant barrier in MS patients. The aim of the study was to assess the impact of regular physical activity (PA)and vitamin C supplementation on plasma vitamin A, C and E levels in patients with MS. The study included 62 patients with MS according to International Diabetes Federation criteria, 32 men and 30 women, aged 38-57 years (mean age 51,24 ± 5,29 years). The patients were divided in two groups: group I (MS+PA) - 31 patients with recommended regular physical activity; group II ( MS+PA+C) - 31 patients with recommended regular physical activity and vitamin C supplementation per os. The control group consisted of 23 healthy individuals without MS, 17 men and 6 women, aged 49-56 years (mean age 53,21 ± 3,6 years), who were not recommended any vitamin supplementation nor physical activity. Plasma vitamin A, C and E levels were estimated in MS patients with spectrophotometry using T60V spectrophotometer (PG Instruments) before and after regular exercise with and without vitamin C supplementation. In the control group plasma levels of antioxidant vitamins were assessed only once. The plasma vitamin A, C and E levels were significantly lower (pvitamins was observed in MS patients. In the group of patients with regular physical activity and vitamin C supplementation there was detected a significant rise in the level of all the tested vitamins close to the levels in control group. Regular physical activity enhances the decrease in plasma antioxidant vitamin level in patients with MS. Vitamin C supplementation conducted in parallel with regular physical activity normalize plasma vitamin A, C and E levels in these patients. © 2015 MEDPRESS.

  13. Physical Origins of Space Weather Impacts: Open Physics Questions

    Science.gov (United States)

    Lanzerotti, L. J.

    2011-12-01

    Beginning with the era of development of electrical telegraph systems in the early 19th century, physical processes in the space environment on the Sun, in the interplanetary medium, and around Earth have influenced the design and operations of ever-increasing and sophisticated technical systems, both in space and on the ground. Understanding of Earth's space environment has increased enormously in the last century and one-half. Nevertheless, many of the physical processes that produced effects on early cable and wireless technologies continue to plague modern-day systems. And as new technologies are developed for improved communications, surveillance, navigation, and conditions for human space flight, the solar-terrestrial environment often offers surprises to their safe, secure and uninterrupted operations. This talk will address some of the challenges that I see to the successful operations of some modern-day technical systems that are posed by significant deficiencies of understanding of physical processes operating from the Sun to the Earth.

  14. An archival study on the reacting plasma project (R-project) at the institute of plasma physics, Nagoya University. An interview with MATSUURA Kiyokata, professor emeritus at Nagoya University

    Energy Technology Data Exchange (ETDEWEB)

    Terashima, Y [Nagoya Univ., Nagoya, Aichi (Japan); Obayashi, H; Fujita, J; Namba, C; Kimura, K; Matsuoka, K; Hanaoka, S [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2006-01-15

    An interview record with MATSUURA Kiyokata, Professor Emeritus at Nagoya University, is given on the Reacting Plasma Project (R-project), which was proposed and investigated in 1980's by the Institute of Plasma Physics, Nagoya University (IPP Nagoya). The project was planned to aim at producing a DT reacting plasma in tokamak to explore its physics and technology. But after intensive studies on design work, together with some R and D efforts and related investigations, the project could not be realized. The circumstances of the R-Project at its initiation and termination stages are the major topics of the present interview, held as a round-table talk with Prof. Matsuura, the project leader. (author)

  15. Applications of nanosecond, kilojoule lasers to the basic physics of waves in plasmas

    International Nuclear Information System (INIS)

    Drake, R.P.

    1992-01-01

    Plasmas can sustain many normal modes of oscillation (waves), including both electromagnetic and electrostatic modes. These waves can interact by a wide variety of linear and nonlinear mechanisms, including mode coupling, mixing, and instabilities. Furthermore, such mechanisms compete, so that a given wave might be absorbed, might mode convert, or might decay by one of several instabilities, depending upon the specific circumstances in which it is produced. Moreover, such waves are important in many applications, including for example laser fusion, x-ray lasers, plasma accelerators, and ionospheric heating. Laser-produced plasmas can provide an effective medium for the studies of such waves and the related mechanisms. New opportunities will be made possible by the advent of comparatively inexpensive nanosecond, kilojoule lasers. One can now contemplate affordable experiments, not limited by programmatic constraints, that could study such the basic physics of the waves in such plasmas with unprecedented precision and in unprecedented detail

  16. Collaborative Research: Experimental and Theoretical Study of the Plasma Physics of Antihydrogen Generation and Trapping

    Energy Technology Data Exchange (ETDEWEB)

    Robicheaux, Francis

    2013-03-29

    Ever since Dirac predicted the existence of antimatter in 1928, it has excited our collective imagination. Seventy-four years later, two collaborations at CERN, ATHENA and ATRAP, created the first slow antihydrogen. This was a stunning achievement, but the most important antimatter experiments require trapped, not just slow, antihydrogen. The velocity, magnetic moment, and internal energy and state of the antihydrogen depend strongly on how it is formed. To trap antihydrogen, physicists face two broad challenges: (1) Understanding the behavior of the positron and antiprotons plasmas from which the antihydrogen is synthesized; and (2) Understanding the atomic processes by which positrons and antiprotons recombine. Recombination lies on the boundary between atomic and plasma physics, and cannot be studied properly without employing tools from both fields. The proposed collaborative research campaign will address both of these challenges. The collaboration members have unique experience in the relevant fields of experimental and theoretical non-neutral plasma physics, numerical modeling, nonlinear dynamics and atomic physics. This expertise is not found elsewhere amongst antihydrogen researchers. The collaboration members have strong ties already, and seek to formalize them with this proposal. Three of the four PIs are members of the ALPHA collaboration, an international collaboration formed by most of the principal members of the ATHENA collaboration.

  17. pypk - A Python extension module to handle chemical kinetics in plasma physics modeling

    Directory of Open Access Journals (Sweden)

    2008-06-01

    Full Text Available PLASMAKIN is a package to handle physical and chemical data used in plasma physics modeling and to compute gas-phase and gas-surface kinetics data: particle production and loss rates, photon emission spectra and energy exchange rates. A large number of species properties and reaction types are supported, namely: gas or electron temperature dependent collision rate coefficients, vibrational and cascade levels, evaluation of branching ratios, superelastic and other reverse processes, three-body collisions, radiation imprisonment and photoelectric emission. Support of non-standard rate coefficient functions can be handled by a user-supplied shared library.

    The main block of the PLASMAKIN package is a Fortran module that can be included in an user's program or compiled as a shared library, libpk. pypk is a new addition to the package and provides access to libpk from Python programs. It is build on top of the ctypes foreign function library module and is prepared to work with several Fortran compilers. However pypk is more than a wrapper and provides its own classes and functions taking advantage of Python language characteristics. Integration with Python tools allows substantial productivity gains on program development and insight on plasma physics problems.

  18. From particles to plasmas

    International Nuclear Information System (INIS)

    Van Dam, J.W.

    1989-01-01

    The title of this book, From Particles to Plasmas, has more than one meaning. First, it reflects how the scientific career of Marshall Rosenbluth has evolved, beginning in the field of elementary particle physics and extending into his major area of plasma physics. Secondly, it is meant to suggest the wide spectrum of subject matters addressed in the individual lectures, ranging from numerical simulation and space physics and accelerators to various subfields in the physics of plasmas. In the third place, the title is a reference to the way in which the theoretical description of plasmas is often constructed, namely starting from the motion of single particles and then incorporating collective effects. Most of the contributions in this book do concern various aspects of fusion plasma physics, which is the field in which most of Marshall Rosenbluth's scientific contributions have been and are being made. In this field his eminence and authority are indicated by the sobriquet pope of plasma physics that is often applied to him

  19. Increases in Plasma Lutein through Supplementation Are Correlated with Increases in Physical Activity and Reductions in Sedentary Time in Older Adults

    Directory of Open Access Journals (Sweden)

    Rebecca L. Thomson

    2014-03-01

    Full Text Available Cross-sectional studies have reported positive relationships between serum lutein concentrations and higher physical activity levels. The purpose of the study was to determine whether increasing plasma lutein levels increases physical activity. Forty-four older adults (BMI, 25.3 ± 2.6 kg/m2; age, 68.8 ± 6.4 year not meeting Australian physical activity guidelines (150 min/week of moderate to vigorous activity were randomized to consume capsules containing 21 mg of lutein or placebo with 250 mL of full-cream milk per day for 4 weeks and encouraged to increase physical activity. Physical activity was assessed by self-report, pedometry and accelerometry (daily activity counts and sedentary time. Exercise self-efficacy was assessed by questionnaire. Thirty-nine participants competed the study (Lutein = 19, Placebo = 20. Lutein increased plasma lutein concentrations compared with placebo (p < 0.001. Absolute and percentage changes in plasma lutein were inversely associated with absolute (r = −0.36, p = 0.03 and percentage changes (r = −0.39, p = 0.02 in sedentary time. Percentage change in plasma lutein was positively associated with the percentage change in average daily activity counts (r = 0.36, p = 0.03. Exercise self-efficacy did not change (p = 0.16. Lutein increased plasma lutein, which was associated with increased physical activity and reduced sedentary time in older adults. Larger trials should evaluate whether Lutein can provide health benefits over the longer term.

  20. Review on plasmas in extraordinary media: plasmas in cryogenic conditions and plasmas in supercritical fluids

    Science.gov (United States)

    Stauss, Sven; Muneoka, Hitoshi; Terashima, Kazuo

    2018-02-01

    Plasma science and technology has enabled advances in very diverse fields: micro- and nanotechnology, chemical synthesis, materials fabrication and, more recently, biotechnology and medicine. While many of the currently employed plasma tools and technologies are very advanced, the types of plasmas used in micro- and nanofabrication pose certain limits, for example, in treating heat-sensitive materials in plasma biotechnology and plasma medicine. Moreover, many physical properties of plasmas encountered in nature, and especially outer space, i.e. very-low-temperature plasmas or plasmas that occur in high-density media, are not very well understood. The present review gives a short account of laboratory plasmas generated under ’extreme’ conditions: at cryogenic temperatures and in supercritical fluids. The fundamental characteristics of these cryogenic plasmas and cryoplasmas, and plasmas in supercritical fluids, especially supercritical fluid plasmas, are presented with their main applications. The research on such exotic plasmas is expected to lead to further understanding of plasma physics and, at the same time, enable new applications in various technological fields.

  1. Experimental benchmark of non-local-thermodynamic-equilibrium plasma atomic physics codes

    International Nuclear Information System (INIS)

    Nagels-Silvert, V.

    2004-09-01

    The main purpose of this thesis is to get experimental data for the testing and validation of atomic physics codes dealing with non-local-thermodynamical-equilibrium plasmas. The first part is dedicated to the spectroscopic study of xenon and krypton plasmas that have been produced by a nanosecond laser pulse interacting with a gas jet. A Thomson scattering diagnostic has allowed us to measure independently plasma parameters such as electron temperature, electron density and the average ionisation state. We have obtained time integrated spectra in the range between 5 and 10 angstroms. We have identified about one hundred xenon rays between 8.6 and 9.6 angstroms via the use of the Relac code. We have discovered unknown rays for the krypton between 5.2 and 7.5 angstroms. In a second experiment we have extended the wavelength range to the X UV domain. The Averroes/Transpec code has been tested in the ranges from 9 to 15 angstroms and from 10 to 130 angstroms, the first range has been well reproduced while the second range requires a more complex data analysis. The second part is dedicated to the spectroscopic study of aluminium, selenium and samarium plasmas in femtosecond operating rate. We have designed an interferometry diagnostic in the frequency domain that has allowed us to measure the expanding speed of the target's backside. Via the use of an adequate isothermal model this parameter has led us to know the plasma electron temperature. Spectra and emission times of various rays from the aluminium and selenium plasmas have been computed satisfactorily with the Averroes/Transpec code coupled with Film and Multif hydrodynamical codes. (A.C.)

  2. Next Generation Driver for Attosecond and Laser-plasma Physics.

    Science.gov (United States)

    Rivas, D E; Borot, A; Cardenas, D E; Marcus, G; Gu, X; Herrmann, D; Xu, J; Tan, J; Kormin, D; Ma, G; Dallari, W; Tsakiris, G D; Földes, I B; Chou, S-W; Weidman, M; Bergues, B; Wittmann, T; Schröder, H; Tzallas, P; Charalambidis, D; Razskazovskaya, O; Pervak, V; Krausz, F; Veisz, L

    2017-07-12

    The observation and manipulation of electron dynamics in matter call for attosecond light pulses, routinely available from high-order harmonic generation driven by few-femtosecond lasers. However, the energy limitation of these lasers supports only weak sources and correspondingly linear attosecond studies. Here we report on an optical parametric synthesizer designed for nonlinear attosecond optics and relativistic laser-plasma physics. This synthesizer uniquely combines ultra-relativistic focused intensities of about 10 20  W/cm 2 with a pulse duration of sub-two carrier-wave cycles. The coherent combination of two sequentially amplified and complementary spectral ranges yields sub-5-fs pulses with multi-TW peak power. The application of this source allows the generation of a broad spectral continuum at 100-eV photon energy in gases as well as high-order harmonics in relativistic plasmas. Unprecedented spatio-temporal confinement of light now permits the investigation of electric-field-driven electron phenomena in the relativistic regime and ultimately the rise of next-generation intense isolated attosecond sources.

  3. Spectroscopy and atomic physics of highly ionized Cr, Fe, and Ni for tokamak plasmas

    Science.gov (United States)

    Feldman, U.; Doschek, G. A.; Cheng, C.-C.; Bhatia, A. K.

    1980-01-01

    The paper considers the spectroscopy and atomic physics for some highly ionized Cr, Fe, and Ni ions produced in tokamak plasmas. Forbidden and intersystem wavelengths for Cr and Ni ions are extrapolated and interpolated using the known wavelengths for Fe lines identified in solar-flare plasmas. Tables of transition probabilities for the B I, C I, N I, O I, and F I isoelectronic sequences are presented, and collision strengths and transition probabilities for Cr, Fe, and Ni ions of the Be I sequence are given. Similarities of tokamak and solar spectra are discussed, and it is shown how the atomic data presented may be used to determine ion abundances and electron densities in low-density plasmas.

  4. Plasma Electronics. Theoretical and Experimental Investigations of Plasma Nonlinearity in the Powerful Microwave Oscillators

    International Nuclear Information System (INIS)

    Bliokh, Yu.P.

    2001-01-01

    During more than 50 years of Plasma Electronics development a great number of experimental and theoretical results have been achieved. These results allow understanding of physical processes which originate under charged particles beams interaction with a plasma. However, one essential aspect of such interaction remains insufficiently studied. The question is about a correlation between conditions of microwave excitation by a beam in plasma and plasma parameters. Each of these effects, namely the influence of plasma parameters on conditions of microwave excitation by a beam and plasma parameters variations under the influence of propagating microwave radiation are well known and investigated enough. However their common action under beam-plasma instability (BPI) development were not studied systematically, although the role of such reciprocal influence on character of these processes may be very large. The aim of this report is a review of recent theoretical and experimental investigations of such plasma nonlinearity in plasma-filled trawling-wave tubes. N.M.Zemlyansky and E.A.Kornilov have done experiments in Kharkov Institute of Physics and Technology (KhPhTI). Development of the theoretical model was started in KhPhTI (Yu.P.Bliokh, Ya.B.Fainberg, M.G.Lyubarsky, and V.O.Podobinsky) and continues by author in Technion. The developed theory takes into account two main reasons of the plasma density redistribution: high frequency pressure (HFP) force which ''push out'' plasma from the regions with increased microwave amplitude, or microwave discharge, which appears in the region where amplitude is large enough. Displaced (under HFP action) or additionally originating (under (BPD) development) plasma propagates from the disturbance source in the form of slow plasma waves (for example, ion-sound or magneto-sound waves), and the BPI develops in the nonhomogeneous plasma. It changes both magnitude and longitudinal distribution of excited microwave amplitude. As a result

  5. Atomic and plasma-material interaction data for fusion. V. 7, part B. Particle induced erosion of Be, C and W in fusion plasmas. Part B: Physical sputtering and radiation-enhanced sublimation

    International Nuclear Information System (INIS)

    Eckstein, W.; Stephens, J.A.; Clark, R.E.H.; Davis, J.W.; Haasz, A.A.; Vietzke, E.; Hirooka, Y.

    2001-01-01

    The present volume of Atomic and Plasma-Material Interaction Data for Fusion is devoted to a critical review of the physical sputtering and radiation enhanced sublimation (RES) behaviour of fusion plasma-facing materials, in particular carbon, beryllium and tungsten. The present volume is intended to provide fusion reactor designers a detailed survey and parameterization of existing, critically assessed data for the chemical erosion of plasma-facing materials by particle impact. The survey and data compilation is presented for a variety of materials containing the elements C, Be and W (including dopants in carbon materials) and impacting plasma species. The dependencies of physical sputtering and RES yields on the material temperature, incident projectile energy, and incident flux are considered. The main data compilation is presented as separate data sheets indicating the material, impacting plasma species, experimental conditions, and parameterizations in terms of analytic functions

  6. Implosive Thermal Plasma Source for Energy Conversion

    Czech Academy of Sciences Publication Activity Database

    Šonský, Jiří; Tesař, Václav; Gruber, Jan; Mašláni, Alan

    2017-01-01

    Roč. 4, č. 1 (2017), s. 87-90 ISSN 2336-2626 Institutional support: RVO:61388998 ; RVO:61389021 Keywords : implosion * thermal plasma * detonation wave Subject RIV: BL - Plasma and Gas Discharge Physics; BL - Plasma and Gas Discharge Physics (UFP-V) OBOR OECD: Fluids and plasma physics (including surface physics); Fluids and plasma physics (including surface physics) (UFP-V) https://ppt.fel.cvut.cz/ppt2017.html#number1

  7. Minority Ions Acceleration by ICRH: a tool for investigating Burning Plasma Physics

    International Nuclear Information System (INIS)

    Cardinali, A.; Briguglio, S.; Calabro, G.; Crisanti, F.; Di Troia, C.; Fogaccia, G.; Marinucci, M.; Vlad, G.; Zonca, F.

    2008-01-01

    A thorough numerical analysis of the quasi-linear plasma-ICRH wave interaction has been made and will be presented in order to determine the characteristic fast-ion parameters that are necessary for addressing some of the main ITER burning plasma physics issues, e.g. fast ion transport due to collective mode excitations, cross-scale couplings of micro-turbulence with meso-scale fluctuations due to energetic particles, etc. These investigations refer to the Fusion Advanced Studies Torus (FAST), a conceptual tokamak design operating with deuterium plasmas in a dimensionless parameter range as close as possible to that of ITER and equipped with ICRH as a main heating scheme. The destabilization and saturation of fast ion driven Alfvenic modes below and above the EPM (Energetic Particle Modes) stability threshold are investigated by numerical simulations with the HMGC code, which assumes the anisotropic energetic particle distribution function accelerated by ICRH as input. The results of this study, obtained by integration of many numerical tools, are presented and discussed

  8. Plasma heating, fueling, and maintenance: a technical assessment

    International Nuclear Information System (INIS)

    Cullingford, H.S.

    1978-03-01

    The initial section of the following report describes the goals and approach; the essential results of the survey are overviewed in Section 1.4. Amplifying details are relegated to subsequent sections: certain aspects of the plasma physics and engineering questions that bear on technology requirements for fusion reactors are discussed in Section 2; particularly significant individual technology areas are discussed in Section 3; and requirements and technology considerations are combined in the assessment of Section 4

  9. Using packaged software for solving two differential equation problems that arise in plasma physics

    International Nuclear Information System (INIS)

    Gaffney, P.W.

    1980-01-01

    Experience in using packaged numerical software for solving two related problems that arise in Plasma physics is described. These problems are (i) the solution of the reduced resistive MHD equations and (ii) the solution of the Grad-Shafranov equation

  10. Princeton Plasma Physics Laboratory (PPPL) annual site environmental report for calendar year 1993

    International Nuclear Information System (INIS)

    Finley, V.L.; Wiezcorek, M.A.

    1995-01-01

    This report gives the results of the environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory (PPPL) for CY93. The report is prepared to provide the U.S. Department of Energy (DOE) and the public with information on the level of radioactive and non-radioactive pollutants, if any, added to the environment as a result of PPPL operations, as well as environmental initiatives, assessments, and programs that were undertaken in 1993. The objective of the Annual Site Environmental Report is to document evidence that DOE facility environmental protection programs adequately protect the environment and the public health. The Princeton Plasma Physics Laboratory has engaged in fusion energy research since 1951. The long-range goal of the U.S. Magnetic Fusion Energy Research Program is to develop and demonstrate the practical application of fusion power as an alternate energy source. In 1993, PPPL had both of its two large tokamak devices in operation; the Tokamak Fusion Test Reactor (TFTR) and the Princeton Beta Experiment-Modification (PBX-M). PBX-M completed its modifications and upgrades and resumed operation in November 1991. TFTR began the deuterium-tritium (D-T) experiments in December 1993 and set new records by producing over six million watts of energy. The engineering design phase of the Tokamak Physics Experiment (TPX), which replaced the cancelled Burning Plasma Experiment in 1992 as PPPL's next machine, began in 1993 with the planned start up set for the year 2001. In 1993, the Environmental Assessment (EA) for the TFRR Shutdown and Removal (S ampersand R) and TPX was prepared for submittal to the regulatory agencies

  11. Study of the physical discharge properties of a Ar/O2 DC plasma jet

    Science.gov (United States)

    Barkhordari, A.; Ganjovi, A.; Mirzaei, I.; Falahat, A.

    2018-03-01

    In this paper, the physical properties of plasma discharge in a manufactured DC plasma jet operating with the Ar/O2 gaseous mixture are studied. Moreover, the optical emission spectroscopy technique is used to perform the experimental measurements. The obtained emission spectra are analyzed and, the plasma density, rotational, vibrational and electronic temperature are calculated. The NO emission lines from {NO }γ( A2 Σ^{+} \\to {X}2 Πr ) electronic transition are observed. It is seen that, at the higher argon contributions in Ar/O2 gaseous mixture, the emission intensities from argon ions will increase. Moreover, while the vibrational and excitation temperatures are increased at the higher input DC currents, they will decrease at the higher Ar percentages in the Ar/O2 gaseous mixture. Furthermore, at the higher DC currents and Ar contributions, both the plasma electron density and dissociation fraction of oxygen atoms are increased.

  12. On the Meaning of Element in the Science of Italic Tradition, the Question of Physical Objectivity (and/or Physical Meaning) and Quantum Mechanics

    Science.gov (United States)

    Boscarino, Giuseppe

    2006-06-01

    It is questioned: Is quantum mechanics a new science or a new (or rather old) philosophy of physical science? It is shown that Einstein's attempt in his article of 1935 to bring the concept of "element" from the classical (we call it Italic) philosophical-epistemological tradition, which goes under the names of Pythagoras Parmenides, Democritus, and Newton, into quantum mechanical theory is unclear, inadequate and contradictory.

  13. Dynacore Final Report , Plasma Physics prototype

    OpenAIRE

    Lourens, W.

    2000-01-01

    The generation and behaviour of plasma in a fusion device and its interaction with sur-rounding materials is studied by observing several phenomena that will accompany a plasma discharge. These phenomena are recorded by means of so called Diagnostics. These are instruments that comprise complex electronic equipment, coupled to various sensors. The generation of the plasma is also governed by electronic systems that control different parameters of the fusion device, the Tokamak, and of auxilia...

  14. Physical activity opposes the age-related increase in skeletal muscle and plasma endothelin-1 levels and normalizes plasma endothelin-1 levels in individuals with essential hypertension

    DEFF Research Database (Denmark)

    Nyberg, Michael Permin; Mortensen, Stefan Peter; Hellsten, Ylva

    2013-01-01

    performed lifelong physical activity had similar plasma and muscle endothelin-1 levels as the young controls and had higher ET(A) receptor levels. CONCLUSION: Our findings suggest that aerobic exercise training opposes the age-related increase in skeletal muscle and plasma endothelin-1 levels and normalizes......AIMS: Endothelin-1 has potent constrictor and proliferative activity in vascular smooth muscle, and essential hypertension and aging are associated with increased endothelin-1-mediated vasoconstrictor tone. The aim of this study was to investigate the effect of physical activity, hypertension...... and age on endothelin-1 levels in plasma and skeletal muscle and endothelin receptors in skeletal muscle in human subjects. METHODS: In study 1, normotensive (46 ± 1 years, n = 11) and hypertensive (47 ± 1 years, n = 10) subjects were studied before and after 8 weeks of aerobic exercise training. In study...

  15. Chaos and Structures in Nonlinear Plasmas

    Science.gov (United States)

    Chen, James

    In recent decades, the concepts and applications of chaos, complexity, and nonlinear dynamics have profoundly influenced scientific as well as literary thinking. Some aspects of these concepts are used in almost all of the geophysical disciplines. Chaos and Structures in Nonlinear Plasmas, written by two respected plasma physicists, focuses on nonlinear phenomena in laboratory and space plasmas, which are rich in nonlinear and complex collective effects. Chaos is treated only insofar as it relates to some aspects of nonlinear plasma physics.At the outset, the authors note that plasma physics research has made fundamental contributions to modern nonlinear sciences. For example, the Poincare surface of section technique was extensively used in studies of stochastic field lines in magnetically confined plasmas and turbulence. More generally, nonlinearity in plasma waves and wave-wave and wave-particle interactions critically determines the propagation of energy through a plasma medium. The book also makes it clear that the importance of understanding nonlinear waves goes beyond plasma physics, extending to such diverse fields as solid state physics, fluid dynamics, atmospheric physics, and optics. In space physics, non-linear plasma physics is essential for interpreting in situ as well as remote-sensing data.

  16. Study on the effects of physical plasma on in-vitro cultivates cells

    International Nuclear Information System (INIS)

    Strassenburg, Susanne

    2014-03-01

    This study focused on the interactions of non thermal atmospheric pressure plasma on in vitro cultured keratinocytes (HaCaT keratinocytes) and melanoma cells (MV3). Three different plasma sources were used: a plasma jet (kINPen 09), a surface DBD (dielectric barrier discharge) and a volume DBD. For analyzing basic effects of plasma on cells, influence of physical plasma on viability, on DNA and on induction of ROS were investigated. Following assays were used: -- Viability: - neutral red uptake assay, cell counting (number of viable cells, cell integrity) - BrdU assay (proliferation) - Annexin V and propidium iodide staining, flow cytometry (induction of apoptosis), -- DNA: - alkaline comet assay (detection of DNA damage) - staining of DNA with propidium iodide, flow cytometry (cell cycle analysis), -- ROS: - H2DCFDA assay, flow cytometry (detection of ROS-positive cells). In addition to the effects which where induced by the plasma sources, the influence of the plasma treatment regime (direct, indirect and direct with medium exchange), the working gas (argon, air) and the surrounding liquids (cell culture medium: RPMI, IMDM; buffer solutions: HBSS, PBS) on the extent of the plasma cell effects were investigated. All plasma sources induced treatment time-dependent effects in HaCaT keratinocytes and melanoma cells (MV3): - loss of viable cells and reduced proliferation - induction of apoptosis after the longest treatment times - DNA damage 1 h after plasma treatment, 24 h after plasma treatment DNA damage was present only after the longest treatment times, evidence for DNA damage repair - due to accumulation of cells in G2/M phase, cell count in G1 phase (24 h) is lower - increase of ROS-positive cells 1 h and 24 h after plasma treatment. It was shown that cells which were cultured in RPMI showed stronger effects (stronger loss of viability and more DNA damage) than cells which were cultured in IMDM. Also plasma-treated buffer solutions (HBSS, PBS) induced DNA

  17. Studies of the plasma droplet accelerator scheme

    International Nuclear Information System (INIS)

    Mori, W.B.; Joshi, C.; Dawson, J.M.; Lee, K.; Forslund, D.W.; Kindel, J.M.

    1985-01-01

    In the plasma droplet accelerator scheme, proposed by R. Palmer, a sequence of liquid micro-spheres generated by a jet printer are ionized by an incoming intense laser. The hope is that the micro-spheres now acting as conducting balls will allow efficient coupling of the incoming laser radiation into an accelerating mode. Motivated by this the authors have carried out 2D, particle simulations in order to answer some of the plasma physics questions hitherto unaddressed. In particular they find that at least for laser intensities exceeding v 0 /c=0.03 (/sup ∼/10 13 w/cm 2 for a CO 2 laser), the incident laser light is rather efficiently absorbed in a hot electron distribution. Up to 70% of the incident energy can be absorbed by these electrons which rapidly expand and fill the vacuum space between the microspheres with a low density plasma. These results indicate that it is advisable to stay clear of plasma formation and thus put on an upper limit on the maximum surface fields that can be tolerated in the droplet-accelerator scheme

  18. Studies of the plasma droplet accelerator scheme

    International Nuclear Information System (INIS)

    Mori, W.B.; Dawson, J.M.; Forslund, D.W.; Joshi, C.; Kindel, J.M.; Lee, K.

    1985-01-01

    In the plasma droplet accelerator scheme, proposed by R. Palmer, a sequence of liquid micro-spheres generated by a jet printer are ionized by an incoming intense laser. The hope is that the micro-spheres now acting as conducting balls will allow efficient coupling of the incoming laser radiation into an accelerating mode. Motivated by this we have carried out 2D, particle simulations in order to answer some of the plasma physics questions hitherto unaddressed. In particular we find that at least for laser intensities exceeding v /SUB o/ /c=0.03 ( about10 13 w/cm 2 for a CO 2 laser), the incident laser light is rather efficiently absorbed in a hot electron distribution. Up to 70% of the incident energy can be absorbed by these electrons which rapidly expand and fill the vacuum space between the microspheres with a low density plasma. These results indicate that it is advisable to stay clear of plasma formation and thus put on an upper limit on the maximum surface fields that can be tolerated in the droplet-accelerator scheme

  19. Statistical Plasma Physics in a Strong Magnetic Field: Paradigms and Problems

    Energy Technology Data Exchange (ETDEWEB)

    J.A. Krommes

    2004-03-19

    An overview is given of certain aspects of fundamental statistical theories as applied to strongly magnetized plasmas. Emphasis is given to the gyrokinetic formalism, the historical development of realizable Markovian closures, and recent results in the statistical theory of turbulent generation of long-wavelength flows that generalize and provide further physical insight to classic calculations of eddy viscosity. A Hamiltonian formulation of turbulent flow generation is described and argued to be very useful.

  20. Waves in Space Plasmas Program

    Science.gov (United States)

    Fredricks, R. W.; Taylor, W. W. L.

    1981-01-01

    The Waves in Space Plasmas (WISP) program is a joint international effort involving instrumentation to be designed and fabricated by funding from NASA and the National Research Council of Canada. The instrumentation, with a tentatively planned payload for 1986, can be used to perturb the plasma with radio waves to solve problems in ionospheric, atmospheric, magnetospheric, and plasma physics. Among the ionospheric and plasma phenomena to be investigated using WISP instrumentation are VLF wave-particle interactions; ELF/VLF propagation; traveling ionospheric disturbances and gravity wave coupling; equatorial plasma bubble phenomena; plasma wave physics such as mode-coupling, dispersion, and instabilities; and plasma physics of the antenna-plasma interactions.

  1. Waves in Space Plasmas Program

    International Nuclear Information System (INIS)

    Fredricks, R.W.; Taylor, W.W.L.

    1981-01-01

    The Waves in Space Plasmas (WISP) program is a joint international effort involving instrumentation to be designed and fabricated by funding from NASA and the National Research Council of Canada. The instrumentation, with a tentatively planned payload for 1986, can be used to perturb the plasma with radio waves to solve problems in ionospheric, atmospheric, magnetospheric, and plasma physics. Among the ionospheric and plasma phenomena to be investigated using WISP instrumentation are VLF wave-particle interactions, ELF/VLF propagation, traveling ionospheric disturbances and gravity wave coupling, equatorial plasma bubble phenomena, plasma wave physics such as mode-coupling, dispersion, and instabilities, and plasma physics of the antenna-plasma interactions

  2. Porting plasma physics simulation codes to modern computing architectures using the libmrc framework

    Science.gov (United States)

    Germaschewski, Kai; Abbott, Stephen

    2015-11-01

    Available computing power has continued to grow exponentially even after single-core performance satured in the last decade. The increase has since been driven by more parallelism, both using more cores and having more parallelism in each core, e.g. in GPUs and Intel Xeon Phi. Adapting existing plasma physics codes is challenging, in particular as there is no single programming model that covers current and future architectures. We will introduce the open-source libmrc framework that has been used to modularize and port three plasma physics codes: The extended MHD code MRCv3 with implicit time integration and curvilinear grids; the OpenGGCM global magnetosphere model; and the particle-in-cell code PSC. libmrc consolidates basic functionality needed for simulations based on structured grids (I/O, load balancing, time integrators), and also introduces a parallel object model that makes it possible to maintain multiple implementations of computational kernels, on e.g. conventional processors and GPUs. It handles data layout conversions and enables us to port performance-critical parts of a code to a new architecture step-by-step, while the rest of the code can remain unchanged. We will show examples of the performance gains and some physics applications.

  3. Designing effective questions for classroom response system teaching

    Science.gov (United States)

    Beatty, Ian D.; Gerace, William J.; Leonard, William J.; Dufresne, Robert J.

    2006-01-01

    Classroom response systems can be powerful tools for teaching physics. Their efficacy depends strongly on the quality of the questions. Creating effective questions is difficult and differs from creating exam and homework problems. Each classroom response system question should have an explicit pedagogic purpose consisting of a content goal, a process goal, and a metacognitive goal. Questions can be designed to fulfill their purpose through four complementary mechanisms: directing students' attention, stimulating specific cognitive processes, communicating information to the instructor and students via classroom response system-tabulated answer counts, and facilitating the articulation and confrontation of ideas. We identify several tactics that are useful for designing potent questions and present four "makeovers" to show how these tactics can be used to convert traditional physics questions into more powerful questions for a classroom response system.

  4. The Relationship between Physical Activity and Plasma Glucose Level amongst Ellisras Rural Young Adult Males and Females: Ellisras Longitudinal Study

    Directory of Open Access Journals (Sweden)

    Moloko Matshipi

    2017-02-01

    Full Text Available Unhealthy lifestyle characteristics such as low physical activity (PA and high plasma glucose levels (PGLs may lead to the development of type 2 diabetes mellitus in adulthood. The aim of this study was to investigate (i the level of physical activity; (ii the prevalence of pre-diabetes and (iii the relationship between PA and plasma glucose level in a rural Ellisras adult population aged 18 to 28 years. A total of 713 young adults (349 males and 364 females who took part in the Ellisras Longitudinal Study participated in the study. Fasting plasma glucose levels were analysed using Accutrend glucose meters. Physical activity data was collected using a validated questionnaire. Linear regression was used to assess the relationship between PA and pre-diabetes. The prevalence of pre-diabetes was between 45.7% and 50.2% and that of physical inactivity was 67.3% and 71.0% for males and females, respectively. There was no significant (p > 0.05 relationship between PA and pre-diabetes (beta = 1.016; 95% Confidence Interval from 0.352 to 2.777. The health benefits of PA increased with the increasing frequency, duration and intensity of exercise. The prevalence of pre-diabetes was found to be very high in this population. Our results suggest that greater physical activity is associated with low plasma glucose levels.

  5. Multi-physics modeling of plasma-material interactions

    Science.gov (United States)

    Lasa, Ane; Green, David; Canik, John; Younkin, Timothy; Blondel, Sophie; Wirth, Brian; Drobny, Jon; Curreli, Davide

    2017-10-01

    Plasma-material interactions (PMI) can degrade both plasma and material properties. Often, PMI modeling focuses on either the plasma or surface. Here, we present an integrated model with high-fidelity codes coupled within the IPS framework that self-consistently addresses PMI. The model includes, calculation of spatially resolved influx of plasma and impurities to the surface and their implantation; surface erosion and roughening; evolution of implanted species and sub-surface composition; and transport of eroded particles across the plasma and their re-deposition. The model is applied and successfully compared to dedicated PISCES linear device experiments, where a tungsten (W) target was exposed to helium (He) plasma. The present contribution will focus on the analysis of W erosion, He retention and sub-surface gas bubble and surface composition evolution, under the different He plasma conditions across the surface that are calculated by impurity transport modeling. Impact of code coupling, reflected as interplay between surface erosion, fuel / impurity implantation and retention, and evolution of target composition, as well as sensitivity of these processes to plasma exposure conditions is also analyzed in detail. This work is supported by the US DOE under contract DE-AC05-00OR22725.

  6. Increases in plasma lutein through supplementation are correlated with increases in physical activity and reductions in sedentary time in older adults.

    Science.gov (United States)

    Thomson, Rebecca L; Coates, Alison M; Howe, Peter R C; Bryan, Janet; Matsumoto, Megumi; Buckley, Jonathan D

    2014-03-03

    Cross-sectional studies have reported positive relationships between serum lutein concentrations and higher physical activity levels. The purpose of the study was to determine whether increasing plasma lutein levels increases physical activity. Forty-four older adults (BMI, 25.3 ± 2.6 kg/m²; age, 68.8 ± 6.4 year) not meeting Australian physical activity guidelines (150 min/week of moderate to vigorous activity) were randomized to consume capsules containing 21 mg of lutein or placebo with 250 mL of full-cream milk per day for 4 weeks and encouraged to increase physical activity. Physical activity was assessed by self-report, pedometry and accelerometry (daily activity counts and sedentary time). Exercise self-efficacy was assessed by questionnaire. Thirty-nine participants competed the study (Lutein = 19, Placebo = 20). Lutein increased plasma lutein concentrations compared with placebo (p lutein were inversely associated with absolute (r = -0.36, p = 0.03) and percentage changes (r = -0.39, p = 0.02) in sedentary time. Percentage change in plasma lutein was positively associated with the percentage change in average daily activity counts (r = 0.36, p = 0.03). Exercise self-efficacy did not change (p = 0.16). Lutein increased plasma lutein, which was associated with increased physical activity and reduced sedentary time in older adults. Larger trials should evaluate whether Lutein can provide health benefits over the longer term.

  7. The kINPen—a review on physics and chemistry of the atmospheric pressure plasma jet and its applications

    Science.gov (United States)

    Reuter, Stephan; von Woedtke, Thomas; Weltmann, Klaus-Dieter

    2018-06-01

    The kINPen® plasma jet was developed from laboratory prototype to commercially available non-equilibrium cold plasma jet for various applications in materials research, surface treatment and medicine. It has proven to be a valuable plasma source for industry as well as research and commercial use in plasma medicine, leading to very successful therapeutic results and its certification as a medical device. This topical review presents the different kINPen plasma sources available. Diagnostic techniques applied to the kINPen are introduced. The review summarizes the extensive studies of the physics and plasma chemistry of the kINPen performed by research groups across the world, and closes with a brief overview of the main application fields.

  8. EDITORIAL: Plasma Surface Interactions for Fusion

    Science.gov (United States)

    2006-05-01

    Because plasma-boundary physics encompasses some of the most important unresolved issues for both the International Thermonuclear Experimental Reactor (ITER) project and future fusion power reactors, there is a strong interest in the fusion community for better understanding and characterization of plasma wall interactions. Chemical and physical sputtering cause the erosion of the limiters/divertor plates and vacuum vessel walls (made of C, Be and W, for example) and degrade fusion performance by diluting the fusion fuel and excessively cooling the core, while carbon redeposition could produce long-term in-vessel tritium retention, degrading the superior thermo-mechanical properties of the carbon materials. Mixed plasma-facing materials are proposed, requiring optimization for different power and particle flux characteristics. Knowledge of material properties as well as characteristics of the plasma material interaction are prerequisites for such optimizations. Computational power will soon reach hundreds of teraflops, so that theoretical and plasma science expertise can be matched with new experimental capabilities in order to mount a strong response to these challenges. To begin to address such questions, a Workshop on New Directions for Advanced Computer Simulations and Experiments in Fusion-Related Plasma Surface Interactions for Fusion (PSIF) was held at the Oak Ridge National Laboratory from 21 to 23 March, 2005. The purpose of the workshop was to bring together researchers in fusion related plasma wall interactions in order to address these topics and to identify the most needed and promising directions for study, to exchange opinions on the present depth of knowledge of surface properties for the main fusion-related materials, e.g., C, Be and W, especially for sputtering, reflection, and deuterium (tritium) retention properties. The goal was to suggest the most important next steps needed for such basic computational and experimental work to be facilitated

  9. Atomic and molecular physics of plasma-based environmental technologies for abatement of volatile organic compounds

    International Nuclear Information System (INIS)

    Penetrante, B. M.; Hsiao, M. C.; Bardsley, J. N.; Merritt, B. T.; Vogtin, G. E.; Kuthi, A.; Burkhart, C. P.; Bayless, J. R.

    1997-01-01

    Non-thermal plasma techniques represent a new generation of air emission control technology that potentially could treat large-volume emissions containing dilute concentrations of volatile organic compounds. In order to apply non-thermal plasmas in an industrial scale, it is important to establish the electrical power requirements and byproducts of the process.There is a need for reliable data concerning the primary decomposition mechanisms and subsequent chemical kinetics associated with non- thermal plasma processing of volatile organic compounds. There are many basic atomic and molecular physics issues that are essential in evaluating the economic performance of non-thermal plasma reactors. These studies are important in understanding how the input electrical power is dissipated in the plasma and how efficiently it is converted to the production of the plasma species (radicals, ions or electrons) responsible for the decomposition of the volatile organic compounds. This paper will present results from basic experimental and theoretical studies aimed at identifying the reaction mechanisms responsible for the primary decomposition of various types of volatile organic compounds. (authors)

  10. FOREWORD: International Topical Workshop on Plasma Physics: Coherent Processes in Nonlinear Media. Sponsored by the ICTP (Trieste) and the European Union (Brussels)

    Science.gov (United States)

    Shukla, P. K.; Bingham, R.; Stenflo, L.; Dawson, J. M.

    1996-01-01

    Starting in 1989 we have created a forum at the International Centre for Theoretical Physics, Trieste, where scientists from different parts of the world can meet and exchange information in the frontier areas of physics. In the three previous meetings, we focused on large amplitude waves and fields in plasmas, the physics of dusty plasmas, and wave-particle interactions and energization in plasmas. In 1995, we came up with a fresh idea of organizing somewhat enlarged but still well focused research topics that are cross-disciplinary. Thus, the usual 'fourth-week activity' of the Plasma Physics College at the ICTP was replaced by an International Topical Workshop on Plasma Physics: Coherent Processes in Nonlinear Media, which was held at the ICTP during the period 16-20 October, 1995. This provided us an opportunity to draw eminent speakers from many closely related fields such as plasma physics, fluid dynamics, nonlinear optics, and astrophysics. The Workshop was attended by 82 delegates from 34 countries, and the participation from the industrial and the developing countries was about half each. The programme included 4 review and 29 topical invited lectures. In addition, about 30 contributed papers were presented as posters in two sessions. The latter were created in order to give opportunities to younger physicists for displaying the results of their recent work and to obtain constructive comments from the other participants. During the five days at the ICTP, we focused on almost all the various aspects of nonlinear phenomena that are common in different branches of science. The review and topical lectures as well as the posters dealt with the most recent advances in coherent nonlinear processes in space and astrophysical plasmas, in fluids and optics, in low temperature dusty plasmas, as well as in laser produced and magnetically confined laboratory plasmas. The focus was on the physics of various types of waves and their generation mechanisms, the development

  11. Atomic and molecular physics of plasma-based environmental technologies for abatement of volatile organic compounds

    International Nuclear Information System (INIS)

    Penetrante, B.M.; Hsiao, M.C.; Bardsley, J.N.; Merrit, B.T.; Vogtlin, G.E.; Kuthi, A.; Burkhart, C.P.; Bayless, J.R.

    1996-01-01

    Non-thermal plasma techniques represent a new generation of air emission control technology that potentially could treat large-volume emissions containing dilute concentrations of volatile organic compounds (VOCs). In order to apply non-thermal in an industrial scale, it is important to establish the electrical power requirements and byproducts of the process. There is a need for reliable data concerning the primary decomposition mechanisms and subsequent chemical kinetics associated with non-thermal plasma processing of VOCs. There are many basic atomic and molecular physics issues that are essential in evaluating the economic performance of non-thermal plasma reactor. These studies are important in understanding how the input electrical power is dissipated in the plasma and how efficiency it is converted to the production of the plasma species (radicals, ions or electrons) responsible for the decomposition of the VOCs. This paper presents results from basic experimental and theoretical studied aimed at identifying the reaction mechanisms responsible for the primary decomposition of various types of VOCs. (Authors)

  12. Geometric perturbation theory and plasma physics

    International Nuclear Information System (INIS)

    Omohundro, S.M.

    1985-01-01

    Modern differential geometric techniques are used to unify the physical asymptotics underlying mechanics, wave theory, and statistical mechanics. The approach gives new insights into the structure of physical theories and is suited to the needs of modern large-scale computer simulation and symbol manipulation systems. A coordinate-free formulation of non-singular perturbation theory is given, from which a new Hamiltonian perturbation structure is derived and related to the unperturbed structure in five different ways. The theory of perturbations in the presence of symmetry is developed, and the method of averaging is related to reduction by a circle-group action. The pseudo-forces and magnetic Poisson bracket terms due to reduction are given a natural asymptotic interpretation. Similar terms due to changing reference frames are related to the method of variation of parameters, which is also given a Hamiltonian formulation. These methods are used to answer a long-standing question posed by Kruskal about nearly periodic systems. The answer leads to a new secular perturbation theory that contains no adhoc elements, which is then applied to gyromotion. Eikonal wave theory is given a Hamiltonian formulation that generalizes Whitham's Lagrangian approach. The evolution of wave action density on ray phase space is given a Hamiltonian structure using a Lie-Poisson bracket. The relationship between dissipative and Hamiltonian systems is discussed. A theory motivated by free electron lasers gives new restrictions on the change of area of projected parallelepipeds under canonical transformations

  13. Investigation of Physical Processes Limiting Plasma Density in DIII--D

    Science.gov (United States)

    Maingi, R.

    1996-11-01

    Understanding the physical processes which limit operating density is crucial in achieving peak performance in confined plasmas. Studies from many of the world's tokamaks have indicated the existence(M. Greenwald, et al., Nucl. Fusion 28) (1988) 2199 of an operational density limit (Greenwald limit, n^GW_max) which is proportional to the plasma current and independent of heating power. Several theories have reproduced the current dependence, but the lack of a heating power dependence in the data has presented an enigma. This limit impacts the International Thermonuclear Experimental Reactor (ITER) because the nominal operating density for ITER is 1.5 × n^GW_max. In DIII-D, experiments are being conducted to understand the physical processes which limit operating density in H-mode discharges; these processes include X-point MARFE formation, high core recycling and neutral pressure, resistive MHD stability, and core radiative collapse. These processes affect plasma properties, i.e. edge/scrape-off layer conduction and radiation, edge pressure gradient and plasma current density profile, and core radiation, which in turn restrict the accessible density regime. With divertor pumping and D2 pellet fueling, core neutral pressure is reduced and X-point MARFE formation is effectively eliminated. Injection of the largest-sized pellets does cause transient formation of divertor MARFEs which occasionally migrate to the X-point, but these are rapidly extinguished in pumped discharges in the time between pellets. In contrast to Greenwald et al., it is found that the density relaxation time after pellets is largely independent of the density relative to the Greenwald limit. Fourier analysis of Mirnov oscillations indicates the de-stabilization and growth of rotating, tearing-type modes (m/n= 2/1) when the injected pellets cause large density perturbations, and these modes often reduce energy confinement back to L-mode levels. We are examining the mechanisms for de

  14. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 1997

    Energy Technology Data Exchange (ETDEWEB)

    Finley, V.L. and Levine, J.D.

    1999-01-10

    The results of the 1997 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the U.S. Department of Energy and the public with information on the level of radioactive and non-radioactive pollutants, if any, that are added to the environment as a result of PPPL's operations. During Calendar Year 1997, PPPL's Tokamak Fusion Test Reactor (TFTR) completed fifteen years of fusion experiments begun in 1982. Over the course of three and half years of deuterium-tritium (D-T) plasma experiments, PPPL set a world record of 10.7 million watts of controlled fusion power, more than 700 tritium shots pulsed into the reactor vessel generating more than 5.6 x 1020 neutron and 1.6 gigajoules of fusion energy and researchers studied plasma science experimental data, which included "enhanced reverse shear techniques." As TFTR was completing its historic operations, PPPL participated with the Oak Ridge National Laboratory, Columbia University, and the University of Washington (Seattle) in a collaboration effort to design the National Spherical Torus Experiment (NSTX). This next device, NSTX, is located in the former TFTR Hot Cell on D site, and it is designed to be a smaller and more economical torus fusion reactor. Construction of this device began in late 1997, and first plasma in scheduled for early 1999. For 1997, the U.S. Department of Energy in its Laboratory Appraisal report rated the overall performance of Princeton Plasma Physics Laboratory as "excellent." The report cited the Laboratory's consistently excellent scientific and technological achievements and its successful management practices, which included high marks for environmental management, employee health and safety, human resources administration, science education, and communications. Groundwater investigations continued under a voluntary agreement with the New Jersey

  15. An investigation into the impact of question structure on the performance of first year physics undergraduate students at the University of Cambridge

    Science.gov (United States)

    Gibson, Valerie; Jardine-Wright, Lisa; Bateman, Elizabeth

    2015-07-01

    We describe a study of the impact of exam question structure on the performance of first year Natural Sciences physics undergraduates from the University of Cambridge. The results show conclusively that a student’s performance improves when questions are scaffolded compared with university style questions. In a group of 77 female students we observe that the average exam mark increases by 13.4% for scaffolded questions, which corresponds to a 4.9 standard deviation effect. The equivalent observation for 236 male students is 9% (5.5 standard deviations). We also observe a correlation between exam performance and A2-level marks for UK students, and that students who receive their school education overseas, in a mixed gender environment, or at an independent school are more likely to receive a first class mark in the exam. These results suggest a mis-match between the problem-solving skills and assessment procedures between school and first year university and will provide key input into the future teaching and assessment of first year undergraduate physics students.

  16. Nuclear measurements, techniques and instrumentation, industrial applications, plasma physics and nuclear fusion 1986-1996. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    1997-03-01

    This catalogue lists all sales publications of the International Atomic Energy Agency dealing with Nuclear Measurements, Techniques, and Instrumentation, Industrial Applications, Plasma Physics and Nuclear Fusion, issued during the period 1986-1996. Most publications are in English. Proceedings of conferences, symposia and panels of experts may contain some papers in languages other than English (French, Russian or Spanish), but all of these papers have abstracts in English. Contents cover the three main areas of (i) Nuclear Measurements, Techniques and Instrumentation (Physics, Dosimetry Techniques, Nuclear Analytical Techniques, Research Reactor and Particle Accelerator Applications, and Nuclear Data), (ii) Industrial Applications (Radiation Processing, Radiometry, and Tracers), and (iii) Plasma Physics and Controlled Thermonuclear Fusion

  17. Plasma physics for controlled fusion

    CERN Document Server

    Miyamoto, Kenro

    2016-01-01

    This new edition presents the essential theoretical and analytical methods needed to understand the recent fusion research of tokamak and alternate approaches. The author describes magnetohydrodynamic and kinetic theories of cold and hot plasmas in detail. The book covers new important topics for fusion studies such as plasma transport by drift turbulence, which depend on the magnetic configuration and zonal flows. These are universal phenomena of microturbulence. They can modify the onset criterion for turbulent transport, instabilities driven by energetic particles as well as alpha particle generation and typical plasma models for computer simulation. The fusion research of tokamaks with various new versions of H modes are explained. The design concept of ITER, the international tokamak experimental reactor, is described for inductively driven operations as well as steady-state operations using non-inductive drives. Alternative approaches of reversed-field pinch and its relaxation process, stellator includi...

  18. Summaries of FY 1986 research in the Applied Plasma Physics Fusion Theory Program

    International Nuclear Information System (INIS)

    1987-12-01

    The Theory Program is charged with supporting the development of theories and models of plasmas for the fusion research effort. This work ranges from first-principles analysis of elementary plasma processes to empirical simulation of specific experiments. The Theory Program supports research by industrial contractors, US government laboratories, and universities. The university support also helps to fulfill the DOE mission of training scientists for the fusion program. The Theory Program is funded through the Fusion Theory Branch, Division of Applied Plasma Physics in the Office of Fusion Energy. The work is divided among 31 institutions, of which 19 are universities, five are industrial contractors, and seven are US government laboratories; see Table 1 for a complete list. The FY 1986 Theory Program budget was divided among theory types: toroidal, mirror, alternate concept, generic, and atomic. Device modeling is included among the other funding categories, and is not budgeted separately

  19. Energetic Particle Physics In Fusion Research In Preparation For Burning Plasma Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Gorelenkov, Nikolai N [PPPL

    2013-06-01

    The area of energetic particle (EP) physics of fusion research has been actively and extensively researched in recent decades. The progress achieved in advancing and understanding EP physics has been substantial since the last comprehensive review on this topic by W.W. Heidbrink and G.J. Sadler [1]. That review coincided with the start of deuterium-tritium (DT) experiments on Tokamak Fusion Test reactor (TFTR) and full scale fusion alphas physics studies. Fusion research in recent years has been influenced by EP physics in many ways including the limitations imposed by the "sea" of Alfven eigenmodes (AE) in particular by the toroidicityinduced AEs (TAE) modes and reversed shear Alfven (RSAE). In present paper we attempt a broad review of EP physics progress in tokamaks and spherical tori since the first DT experiments on TFTR and JET (Joint European Torus) including helical/stellarator devices. Introductory discussions on basic ingredients of EP physics, i.e. particle orbits in STs, fundamental diagnostic techniques of EPs and instabilities, wave particle resonances and others are given to help understanding the advanced topics of EP physics. At the end we cover important and interesting physics issues toward the burning plasma experiments such as ITER (International Thermonuclear Experimental Reactor).

  20. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 2000

    Energy Technology Data Exchange (ETDEWEB)

    Virginia L. Finley

    2002-04-22

    The results of the 2000 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the U.S. Department of Energy and the public with information on the level of radioactive and nonradioactive pollutants (if any) that are added to the environment as a result of PPPL's operations. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 2000. The Princeton Plasma Physics Laboratory has engaged in fusion energy research since 1951. The long-range goal of the U.S. Magnetic Fusion Energy Research Program is to create innovations to make fusion power a practical reality -- an alternative energy source. The year 2000 marked the second year of National Spherical Torus Experiment (NSTX) operations and Tokamak Fusion Test Reactor (TFTR) dismantlement and deconstruction activities. A collaboration among fourteen national laboratories, universities, and research institutions, the NSTX is a major element in the U.S. Fusion Energy Sciences Program. It has been designed to test the physics principles of spherical torus (ST) plasmas. The ST concept could play an important role in the development of smaller, more economical fusion power plants. With its completion within budget and ahead of its target schedule, NSTX first plasma occurred on February 12, 1999. In 2000, PPPL's radiological environmental monitoring program measured tritium in the air at on-site and off-site sampling stations. PPPL is capable of detecting small changes in the ambient levels of tritium by using highly sensitive monitors. The operation of an in-stack monitor located on D-site is a requirement of the National Emission Standard for Hazardous Air Pollutants (NESHAPs) regulations with limits set by the Environmental Protection Agency (EPA). Also included in PPPL's radiological environmental monitoring program, are precipitation, surface

  1. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 2000

    International Nuclear Information System (INIS)

    Virginia L. Finley

    2002-04-01

    The results of the 2000 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the U.S. Department of Energy and the public with information on the level of radioactive and nonradioactive pollutants (if any) that are added to the environment as a result of PPPL's operations. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 2000. The Princeton Plasma Physics Laboratory has engaged in fusion energy research since 1951. The long-range goal of the U.S. Magnetic Fusion Energy Research Program is to create innovations to make fusion power a practical reality -- an alternative energy source. The year 2000 marked the second year of National Spherical Torus Experiment (NSTX) operations and Tokamak Fusion Test Reactor (TFTR) dismantlement and deconstruction activities. A collaboration among fourteen national laboratories, universities, and research institutions, the NSTX is a major element in the U.S. Fusion Energy Sciences Program. It has been designed to test the physics principles of spherical torus (ST) plasmas. The ST concept could play an important role in the development of smaller, more economical fusion power plants. With its completion within budget and ahead of its target schedule, NSTX first plasma occurred on February 12, 1999. In 2000, PPPL's radiological environmental monitoring program measured tritium in the air at on-site and off-site sampling stations. PPPL is capable of detecting small changes in the ambient levels of tritium by using highly sensitive monitors. The operation of an in-stack monitor located on D-site is a requirement of the National Emission Standard for Hazardous Air Pollutants (NESHAPs) regulations with limits set by the Environmental Protection Agency (EPA). Also included in PPPL's radiological environmental monitoring program, are precipitation, surface, ground, a nd

  2. Princeton Plasma Physics Laboratory (PPPL) annual site environmental report for calendar year 1994

    International Nuclear Information System (INIS)

    Finley, V.L.; Wieczorek, M.A.

    1996-02-01

    This report gives the results of the environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory (PPPL) for CY94. The report is prepared to provide the US Department of Energy (DOE) and the public with information on the level of radioactive and nonradioactive pollutants, if any, added to the environment as a result of PPPL operations, as well as environmental initiatives, assessments, and programs that were undertaken in 1994. The objective of the Annual Site Environmental Report is to document evidence that PPPL's environmental protection programs adequately protect the environment and the public health. The Princeton Plasma Physics Laboratory has engaged in fusion energy research since 195 1. The long-range goal of the US Magnetic Fusion Energy Research Program is to develop and demonstrate the practical application of fusion power as an alternate energy source. In 1994, PPPL had one of its two large tokamak devices in operation-the Tokamak Fusion Test Reactor (TFTR). The Princeton Beta Experiment-Modification or PBX-M completed its modifications and upgrades and resumed operation in November 1991 and operated periodically during 1992 and 1993; it did not operate in 1994 for funding reasons. In December 1993, TFTR began conducting the deuterium-tritium (D-T) experiments and set new records by producing over ten at sign on watts of energy in 1994. The engineering design phase of the Tokamak Physics Experiment (T?X), which replaced the cancelled Burning Plasma Experiment in 1992 as PPPL's next machine, began in 1993 with the planned start up set for the year 2001. In December 1994, the Environmental Assessment (EA) for the TFTR Shutdown and Removal (S ampersand R) and TPX was submitted to the regulatory agencies, and a finding of no significant impact (FONSI) was issued by DOE for these projects

  3. Physical activity opposes the age-related increase in skeletal muscle and plasma endothelin-1 levels and normalizes plasma endothelin-1 levels in individuals with essential hypertension.

    Science.gov (United States)

    Nyberg, M; Mortensen, S P; Hellsten, Y

    2013-03-01

    Endothelin-1 has potent constrictor and proliferative activity in vascular smooth muscle, and essential hypertension and aging are associated with increased endothelin-1-mediated vasoconstrictor tone. The aim of this study was to investigate the effect of physical activity, hypertension and age on endothelin-1 levels in plasma and skeletal muscle and endothelin receptors in skeletal muscle in human subjects. In study 1, normotensive (46 ± 1 years, n = 11) and hypertensive (47 ± 1 years, n = 10) subjects were studied before and after 8 weeks of aerobic exercise training. In study 2, young (23 ± 1 years, n = 8), older lifelong sedentary (66 ± 2 years, n = 8) and older lifelong endurance-trained (62 ± 2 years, n = 8) subjects were studied in a cross-sectional design. Skeletal muscle and plasma endothelin-1 levels were increased with age and plasma endothelin-1 levels were higher in hypertensive than normotensive individuals. Eight weeks of exercise training normalized plasma endothelin-1 levels in the hypertensive subjects and increased the protein expression of the ET(A) receptor in skeletal muscle of normotensive subjects. Similarly, individuals that had performed lifelong physical activity had similar plasma and muscle endothelin-1 levels as the young controls and had higher ET(A) receptor levels. Our findings suggest that aerobic exercise training opposes the age-related increase in skeletal muscle and plasma endothelin-1 levels and normalizes plasma endothelin-1 levels in individuals with essential hypertension. This effect may explain some of the beneficial effects of training on the cardiovascular system in older and hypertensive subjects. © 2012 The Authors Acta Physiologica © 2012 Scandinavian Physiological Society.

  4. The physics of lightning

    Energy Technology Data Exchange (ETDEWEB)

    Dwyer, Joseph R., E-mail: jdwyer@fit.edu [Department of Physics and Space Sciences, Florida Institute of Technology, Melbourne, FL 32901 (United States); Uman, Martin A. [Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611 (United States)

    2014-01-30

    Despite being one of the most familiar and widely recognized natural phenomena, lightning remains relatively poorly understood. Even the most basic questions of how lightning is initiated inside thunderclouds and how it then propagates for many tens of kilometers have only begun to be addressed. In the past, progress was hampered by the unpredictable and transient nature of lightning and the difficulties in making direct measurements inside thunderstorms, but advances in instrumentation, remote sensing methods, and rocket-triggered lightning experiments are now providing new insights into the physics of lightning. Furthermore, the recent discoveries of intense bursts of X-rays and gamma-rays associated with thunderstorms and lightning illustrate that new and interesting physics is still being discovered in our atmosphere. The study of lightning and related phenomena involves the synthesis of many branches of physics, from atmospheric physics to plasma physics to quantum electrodynamics, and provides a plethora of challenging unsolved problems. In this review, we provide an introduction to the physics of lightning with the goal of providing interested researchers a useful resource for starting work in this fascinating field.

  5. Physics of collisionless scrape-off-layer plasma during normal and off-normal Tokamak operating conditions

    International Nuclear Information System (INIS)

    Hassanein, A.; Konkashbaev, I.

    1999-01-01

    The structure of a collisionless scrape-off-layer (SOL) plasma in tokamak reactors is being studied to define the electron distribution function and the corresponding sheath potential between the divertor plate and the edge plasma. The collisionless model is shown to be valid during the thermal phase of a plasma disruption, as well as during the newly desired low-recycling normal phase of operation with low-density, high-temperature, edge plasma conditions. An analytical solution is developed by solving the Fokker-Planck equation for electron distribution and balance in the SOL. The solution is in good agreement with numerical studies using Monte-Carlo methods. The analytical solutions provide an insight to the role of different physical and geometrical processes in a collisionless SOL during disruptions and during the enhanced phase of normal operation over a wide range of parameters

  6. Influence of plasma density and plasma sheath dynamics on the ion implantation by plasma immersion technique

    OpenAIRE

    Ensinger, Wolfgang

    1996-01-01

    Influence of plasma density and plasma sheath dynamics on the ion implantation by plasma immersion technique / B. Rauschenbach ... - In: Nuclear instruments and methods in physics research. B. 113. 1996. S. 266-269

  7. Preface to Special Topic: Advances in Radio Frequency Physics in Fusion Plasmas

    International Nuclear Information System (INIS)

    Tuccillo, Angelo A.; Ceccuzzi, Silvio; Phillips, Cynthia K.

    2014-01-01

    It has long been recognized that auxiliary plasma heating will be required to achieve the high temperature, high density conditions within a magnetically confined plasma in which a fusion “burn” may be sustained by copious fusion reactions. Consequently, the application of radio and microwave frequency electromagnetic waves to magnetically confined plasma, commonly referred to as RF, has been a major part of the program almost since its inception in the 1950s. These RF waves provide heating, current drive, plasma profile control, and Magnetohydrodynamics (MHD) stabilization. Fusion experiments employ electromagnetic radiation in a wide range of frequencies, from tens of MHz to hundreds of GHz. The fusion devices containing the plasma are typically tori, axisymmetric or non, in which the equilibrium magnetic fields are composed of a strong toroidal magnetic field generated by external coils, and a poloidal field created, at least in the symmetric configurations, by currents flowing in the plasma. The waves are excited in the peripheral regions of the plasma, by specially designed launching structures, and subsequently propagate into the core regions, where resonant wave-plasma interactions produce localized heating or other modification of the local equilibrium profiles. Experimental studies coupled with the development of theoretical models and advanced simulation codes over the past 40+ years have led to an unprecedented understanding of the physics of RF heating and current drive in the core of magnetic fusion devices. Nevertheless, there are serious gaps in our knowledge base that continue to have a negative impact on the success of ongoing experiments and that must be resolved as the program progresses to the next generation devices and ultimately to “demo” and “fusion power plant.” A serious gap, at least in the ion cyclotron (IC) range of frequencies and partially in the lower hybrid frequency ranges, is the difficulty in coupling large amount of

  8. Preface to Special Topic: Advances in Radio Frequency Physics in Fusion Plasmas

    Science.gov (United States)

    Tuccillo, Angelo A.; Phillips, Cynthia K.; Ceccuzzi, Silvio

    2014-06-01

    It has long been recognized that auxiliary plasma heating will be required to achieve the high temperature, high density conditions within a magnetically confined plasma in which a fusion "burn" may be sustained by copious fusion reactions. Consequently, the application of radio and microwave frequency electromagnetic waves to magnetically confined plasma, commonly referred to as RF, has been a major part of the program almost since its inception in the 1950s. These RF waves provide heating, current drive, plasma profile control, and Magnetohydrodynamics (MHD) stabilization. Fusion experiments employ electromagnetic radiation in a wide range of frequencies, from tens of MHz to hundreds of GHz. The fusion devices containing the plasma are typically tori, axisymmetric or non, in which the equilibrium magnetic fields are composed of a strong toroidal magnetic field generated by external coils, and a poloidal field created, at least in the symmetric configurations, by currents flowing in the plasma. The waves are excited in the peripheral regions of the plasma, by specially designed launching structures, and subsequently propagate into the core regions, where resonant wave-plasma interactions produce localized heating or other modification of the local equilibrium profiles. Experimental studies coupled with the development of theoretical models and advanced simulation codes over the past 40+ years have led to an unprecedented understanding of the physics of RF heating and current drive in the core of magnetic fusion devices. Nevertheless, there are serious gaps in our knowledge base that continue to have a negative impact on the success of ongoing experiments and that must be resolved as the program progresses to the next generation devices and ultimately to "demo" and "fusion power plant." A serious gap, at least in the ion cyclotron (IC) range of frequencies and partially in the lower hybrid frequency ranges, is the difficulty in coupling large amount of power to the

  9. Rossby vortices, spiral structures, solitons astrophysics and plasma physics in shallow water experiments

    CERN Document Server

    Nezlin, Mikhail V

    1993-01-01

    This book can be looked upon in more ways than one. On the one hand, it describes strikingly interesting and lucid hydrodynamic experiments done in the style of the "good old days" when the physicist needed little more than a piece of string and some sealing wax. On the other hand, it demonstrates how a profound physical analogy can help to get a synoptic view on a broad range of nonlinear phenomena involving self-organization of vortical structures in planetary atmo­ spheres and oceans, in galaxies and in plasmas. In particular, this approach has elucidated the nature and the mechanism of such grand phenomena as the Great of galaxies. A number of our Red Spot vortex on Jupiter and the spiral arms predictions concerning the dynamics of spiral galaxies are now being confirmed by astronomical observations stimulated by our experiments. This book is based on the material most of which was accumulated during 1981-88 in close cooperation with our colleagues, experimenters from the Plasma Physics Department of the...

  10. Lightweight Portable Plasma Medical Device - Plasma Engineering Research Laboratory

    Science.gov (United States)

    2015-12-01

    monocytic leukemia cancer cells ( THP -1) were also tested and the results 19 demonstrate that a preference for apoptosis in plasma treated THP -1...unanswered questions. We have tested the effects of indirect exposure of non-thermal air plasma on monocytic leukemia cancer cells ( THP -1) and deciphering... tested and the results are shown in Fig. above. The results demonstrate that a preference for apoptosis in plasma treated THP -1 cells under

  11. Objectively measured sedentary behavior, physical activity, and plasma lipids in overweight and obese children.

    Science.gov (United States)

    Cliff, Dylan P; Okely, Anthony D; Burrows, Tracy L; Jones, Rachel A; Morgan, Philip J; Collins, Clare E; Baur, Louise A

    2013-02-01

    This study examines the associations between objectively measured sedentary behavior, light physical activity (LPA), and moderate-to-vigorous physical activity (MVPA), and plasma lipids in overweight and obese children. Cross-sectional analyses were conducted among 126 children aged 5.5-9.9 years. Sedentary behavior, LPA, and MVPA were assessed using accelerometry. Fasting blood samples were analyzed for plasma lipids (high-density lipoprotein cholesterol [HDL-C], low-density lipoprotein cholesterol [LDL-C], total cholesterol [TC], and triglycerides [TG]). MVPA was not related to plasma lipids (P > 0.05). Independent of age, sex, energy intake, and waist circumference z-score, sedentary behavior and LPA were associated with HDL-C (β = -0.23, 95% CI -0.42 to -0.04, P = 0.020; β = 0.20, 95% CI 0.14 to 0.39, P = 0.036, respectively). The strength of the associations remained after additionally adjusting for MVPA (sedentary behavior: β = -0.22, 95% CI -0.44 to 0.006, P = 0.056; LPA: β = 0.19, 95% CI -0.005 to 0.38, P = 0.056, respectively). Substituting at least LPA for sedentary time may contribute to the development of healthy HDL-C levels among overweight and obese children, independent of their adiposity. Comprehensive prevention and treatment strategies to improve plasma HDL-C among overweight and obese children should target reductions in total sedentary time and promote the benefits of LPA, in addition to promoting healthy levels of adiposity, healthy dietary behaviors, and MVPA. Copyright © 2012 The Obesity Society.

  12. The National Spherical Tokamak Experiment at the Princeton Plasma Physics Laboratory

    International Nuclear Information System (INIS)

    1995-12-01

    The Department of Energy (DOE) has prepared an Environmental Assessment (EA), DOE/EA-1108, evaluating the environmental effects of the proposed construction and operation of the National Spherical Tokamak Experiment (NSTX) within the existing C-Stellarator (CS) Building at the Princeton Plasma Physics Laboratory, Princeton, New Jersey. The purpose of the NSTX is to investigate the physics of spherically shaped plasmas as an alternative path to conventional tokamaks for development of fusion energy. Fusion energy has the potential to help compensate for dwindling supplies of fossil fuels and the eventual depletion of fissionable uranium used in present-day nuclear reactors. Construction of the NSTX in the CS Building would require the dismantling and removal of the existing unused Princeton Large Torus (PLT) device, part of which would be reused to construct the NSTX. Based on the analyses in the EA, the DOE has determined that the proposed action does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969, 42 U.S.C. 4,321 et seq. The preparation of an Environmental Impact Statement is not required. Thus, the DOE is issuing a FONSI pursuant to the Council on Environmental Quality regulations implementing NEPA (40 CFR Parts 1500--1508) and the DOE NEPA implementing regulations (10 CFR Part 1021)

  13. Plasma Science Committee (PLSC)

    International Nuclear Information System (INIS)

    1990-01-01

    The Plasma Science Committee (PLSC) is a standing committee under the auspices of the Board on Physics and Astronomy, Commission on Physical Sciences, Mathematics, and Applications of the National Academy of Sciences--National Research Council. Plasma sciences represent a broad and diverse field. The PLSC has accepted the responsibility of monitoring the continuing development and assessing the general health of the field as whole. Although select advisory bodies have been created to address specific issues that affect plasma science, such as the Fusion Policy Advisory Committee (FPAC), the PLSC provides a focus for the plasma science community that is unique and essential. The membership of the PLSC is drawn from research laboratories in universities, industry, and government. Areas of expertise on the committee include accelerators and beams, space physics, astrophysics, computational physics and applied mathematics, fusion plasmas, fundamental experiments and theory, radiation sources, low temperature plasmas, and plasma-surface interactions. The PLSC is well prepared to respond to requests for studies on specific issues. This report discusses ion of the PLSC work

  14. Nuclear measurements, techniques and instrumentation industrial applications plasma physics and nuclear fusion. 1980-1994. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    1995-04-01

    This catalogue lists all sales publications of the International Atomic Energy Agency dealing with Nuclear Measurements, Techniques and Instrumentation, with Industrial Applications (of Nuclear Physics and Engineering), and with Plasma Physics and Nuclear Fusion, issued during the period 1980-1994. Most publications are in English. Proceedings of conferences, symposia, and panels of experts may contain some papers in other languages (French, Russian, or Spanish), but all papers have abstracts in English. Price quotes are in Austrian Schillings, do not include local taxes, and are subject to change without notice. Contents cover the three main categories of (i) Nuclear Measurements, Techniques and Instrumentation (Physics, Chemistry, Dosimetry Techniques, Nuclear Analytical Techniques, Research Reactors and Particle Accelerator Applications, Nuclear Data); (ii) Industrial Applications (Radiation Processing, Radiometry, Tracers); and (iii) Plasma Physics and Nuclear Fusion

  15. Nuclear measurements, techniques and instrumentation industrial applications plasma physics and nuclear fusion, 1980-1993. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    1994-01-01

    This catalogue lists all sales publications of the International Atomic Energy Agency dealing with Nuclear Measurements, Techniques and Instrumentation, with Industrial Applications (of Nuclear Physics and Engineering), and with Plasma Physics and Nuclear Fusion, issued during the period 1980-1993. Most publications are in English. Proceedings of conferences, symposia, and panels of experts may contain some papers in other languages (French, Russian, or Spanish), but all papers have abstracts in English. Price quotes are in Austrian Schillings, do not include local taxes, and are subject to change without notice. Contents cover the three main categories of (I) Nuclear Measurements, Techniques and Instrumentation (Physics, Chemistry, Dosimetry Techniques, Nuclear Analytical Techniques, Research Reactors and Particle Accelerator Applications, Nuclear Data); (ii) Industrial Applications (Radiation Processing, Radiometry, Tracers); and (iii) Plasma Physics and Nuclear Fusion

  16. Plasma Physics Calculations on a Parallel Macintosh Cluster

    Science.gov (United States)

    Decyk, Viktor; Dauger, Dean; Kokelaar, Pieter

    2000-03-01

    We have constructed a parallel cluster consisting of 16 Apple Macintosh G3 computers running the MacOS, and achieved very good performance on numerically intensive, parallel plasma particle-in-cell simulations. A subset of the MPI message-passing library was implemented in Fortran77 and C. This library enabled us to port code, without modification, from other parallel processors to the Macintosh cluster. For large problems where message packets are large and relatively few in number, performance of 50-150 MFlops/node is possible, depending on the problem. This is fast enough that 3D calculations can be routinely done. Unlike Unix-based clusters, no special expertise in operating systems is required to build and run the cluster. Full details are available on our web site: http://exodus.physics.ucla.edu/appleseed/.

  17. Photon Physics and Plasma Research, WILGA 2012; EuCARD Sessions

    CERN Document Server

    Romaniuk, R S

    2012-01-01

    Wilga Sessions on HEP experiments, astroparticle physica and accelerator technology were organized under the umbrella of the EU FP7 Project EuCARD – European Coordination for Accelerator Research and Development. This paper is the third part (out of five) of the research survey of WILGA Symposium work, May 2012 Edition, concerned with Photon Physics and Plasma Research. It presents a digest of chosen technical work results shown by young researchers from different technical universities from this country during the Jubilee XXXth SPIE-IEEE Wilga 2012, May Edition, symposium on Photonics and Web Engineering. Topical tracks of the symposium embraced, among others, nanomaterials and nanotechnologies for photonics, sensory and nonlinear optical fibers, object oriented design of hardware, photonic metrology, optoelectronics and photonics applications, photonics-electronics co-design, optoelectronic and electronic systems for astronomy and high energy physics experiments, JET tokamak and pi-of-the sky experiments ...

  18. Dynacore Final Report , Plasma Physics prototype

    NARCIS (Netherlands)

    Lourens, W.

    2000-01-01

    The generation and behaviour of plasma in a fusion device and its interaction with sur-rounding materials is studied by observing several phenomena that will accompany a plasma discharge. These phenomena are recorded by means of so called Diagnostics. These are instruments that comprise complex

  19. Towards the petascale in electromagnetic modeling of plasma-based accelerators for high-energy physics

    International Nuclear Information System (INIS)

    Bruhwiler, D L; Antonsen, T; Cary, J R; Cooley, J; Decyk, V K; Esarey, E; Geddes, C G R; Huang, C; Hakim, A; Katsouleas, T; Messmer, P; Mori, W B; Tsung, F S; Vieira, J; Zhou, M

    2006-01-01

    Plasma-based lepton acceleration concepts are a key element of the long-term R and D portfolio for the U.S. Office of High Energy Physics. There are many such concepts, but we consider only the laser (LWFA) and plasma (PWFA) wakefield accelerators. We present a summary of electromagnetic particle-in-cell (PIC) simulations for recent LWFA and PWFA experiments. These simulations, including both time explicit algorithms and reduced models, have effectively used terascale computing resources to support and guide experiments in this rapidly developing field. We briefly discuss the challenges and opportunities posed by the near-term availability of petascale computing hardware

  20. Particle beams and plasmas

    International Nuclear Information System (INIS)

    Hofmann, A.; Messerschmid, E.; Lawson, J.D.

    1976-01-01

    These lectures present a survey of some of the concepts of plasma physics and look at some situations familiar to particle-accelerator physicists from the point of view of a plasma physicist, with the intention of helping to link together the two fields. At the outset, basic plasma concepts are presented, including definitions of a plasma, characteristic parameters, magnetic pressure and confinement. This is followed by a brief discussion on plasma kinetic theory, non-equilibrium plasma, and the temperature of moving plasmas. Examples deal with beams in the CERN Intersecting Storage Rings as well as with non-steady beams in cyclic accelerators and microwave tubes. In the final chapters, time-varying systems are considered: waves in free space and the effect of cylinder bounds, wave motion in cold stationary plasmas, and waves in plasmas with well-defined streams. The treatment throughout is informal, with emphasis on the essential physical properties of continuous beams in accelerators and storage rings in relation to the corresponding problems in plasma physics and microwave tubes. (Author)

  1. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 1996

    Energy Technology Data Exchange (ETDEWEB)

    J.D. Levine; V.L. Finley

    1998-03-01

    The results of the 1996 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the US Department of Energy and the public with information on the level of radioactive and nonradioactive pollutants, if any, that are added to the environment as a result of PPPL's operations. During Calendar Year 1996, PPPL's Tokamak Fusion Test Reactor (TFTR) continued to conduct fusion experiments. Having set a world record on November 2, 1994, by achieving approximately 10.7 million watts of controlled fusion power during the deuterium-tritium (D-T) plasma experiments, researchers turned their attention to studying plasma science experiments, which included ''enhanced reverse shear techniques.'' Since November 1993, more than 700 tritium-fueled experiments were conducted, which generated more than 4 x 10(superscript 20) neutrons and 1.4 gigajoules of fusion energy. In 1996, the overall performance of Princeton Plasma Physics Laboratory was rated ''excellent'' by the US Department of Energy in the Laboratory Appraisal report issued in early 1997. The report cited the Laboratory's consistently excellent scientific and technological achievements and its successful management practices, which included high marks for environmental management, employee health and safety, human resources administration, science education, and communications. Groundwater investigations continued under a voluntary agreement with the New Jersey Department of Environmental Protection. PPPL monitored for the presence of nonradiological contaminants, mainly volatile organic compounds (components of degreasing solvents) and petroleum hydrocarbons (past leaks of releases of diesel fuel from underground storage tanks). Also, PPPL's radiological monitoring program characterized the ambient, background levels of tritium in the environment and

  2. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 1996

    International Nuclear Information System (INIS)

    J.D. Levine; V.L. Finley

    1998-01-01

    The results of the 1996 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the US Department of Energy and the public with information on the level of radioactive and nonradioactive pollutants, if any, that are added to the environment as a result of PPPL's operations. During Calendar Year 1996, PPPL's Tokamak Fusion Test Reactor (TFTR) continued to conduct fusion experiments. Having set a world record on November 2, 1994, by achieving approximately 10.7 million watts of controlled fusion power during the deuterium-tritium (D-T) plasma experiments, researchers turned their attention to studying plasma science experiments, which included ''enhanced reverse shear techniques.'' Since November 1993, more than 700 tritium-fueled experiments were conducted, which generated more than 4 x 10(superscript 20) neutrons and 1.4 gigajoules of fusion energy. In 1996, the overall performance of Princeton Plasma Physics Laboratory was rated ''excellent'' by the US Department of Energy in the Laboratory Appraisal report issued in early 1997. The report cited the Laboratory's consistently excellent scientific and technological achievements and its successful management practices, which included high marks for environmental management, employee health and safety, human resources administration, science education, and communications. Groundwater investigations continued under a voluntary agreement with the New Jersey Department of Environmental Protection. PPPL monitored for the presence of nonradiological contaminants, mainly volatile organic compounds (components of degreasing solvents) and petroleum hydrocarbons (past leaks of releases of diesel fuel from underground storage tanks). Also, PPPL's radiological monitoring program characterized the ambient, background levels of tritium in the environment and from the TFTR stack; the data are presented in this report

  3. ASDEX contributions to the 14th European conference on controlled fusion and plasma physics

    International Nuclear Information System (INIS)

    1987-06-01

    This report is a collection of 25 IPP Garching contributions concerning pellet refuelling, ion-cyclotron resonance heating, lower-hybrid heating and current drive, energy transport studies, particle transport studies, equilibrium and MHD, divertor physics and plasma diagnostics. The contributions have been taken up separately into the data base. (GG)

  4. Physical Characteristics of AR 11024 Plasma Based on SPHINX and XRT Data

    Science.gov (United States)

    Sylwester, B.; Sylwester, J.; Siarkowski, M.; Engell, A. J.; Kuzin, S. V.

    We have studied the evolution of basic physical properties of plasma within the coronal part of the isolated, new cycle region (AR 11024) during its crossing over the solar disc in July 2009. Our analysis is based on the high temporal and spectral resolution measurements performed by the Polish X-ray spectrometer SphinX onboard the CORONAS-Photon satellite. Hinode XRT images provide information on spatial extension of the emission within this active region. It is found that the average temperature of the plasma within the analysed region is the highest (˜6 MK) when the region is young and gradually declines to ˜2 MK when the emission measure is the highest. An average density during this first part of the evolution is estimated to be ˜2 x 10^9 cm^{-3}.

  5. Simulation calculations of physical sputtering and reflection coefficient of plasma-irradiated carbon surface

    International Nuclear Information System (INIS)

    Kawamura, T.; Ono, T.; Yamamura, Y.

    1994-08-01

    Physical sputtering yields from the carbon surface irradiated by the boundary plasma are obtained with the use of a Monte Carlo simulation code ACAT. The yields are calculated for many random initial energy and angle values of incident protons or deuterons with a Maxwellian velocity distribution, and then averaged. Here the temperature of the boundary plasma, the sheath potential and the angle δ between the magnetic field line and the surface normal are taken into account. A new fitting formula for an arrangement of the numerical data of sputtering yield is introduced, in which six fitting parameters are determined from the numerical results and listed. These results provide a way to estimate the erosion of carbon materials irradiated by boundary plasma. The particle reflection coefficients for deuterons and their neutrals from a carbon surface are also calculated by the same code and presented together with, for comparison, that for the case of monoenergetic normal incidence. (author)

  6. BOOK REVIEW: Microscopic Dynamics of Plasmas and Chaos

    Science.gov (United States)

    Elskens, Y.; Escande, D.

    2003-04-01

    Some of the key intellectual foundations of plasma physics are in danger of becoming a lost art. Fortunately, however, this threat recedes with the publication of this valuable book. It renders accessible those aspects of theoretical plasma physics that are best approached from the perspectives of classical mechanics, in both its early nineteenth century and late twentieth century manifestations. Half a century has elapsed since the publication of seminal papers such as those by Bohm and Pines (1951), van Kampen (1955), and Bernstein, Greene and Kruskal (1957). These papers served to address a fundamental question of physics - namely the relation between degrees of freedom that exist at the individual particle level of description, and those that exist at the collective level - in the plasma context. The authors of the present book have played a major role in the investigation of this question from an N-body standpoint, which can be divided into two linked themes. First, those topics that can be illuminated by analytical methods that lie in the tradition of classical mechanics that stretches back to Lagrange, Legendre and Hamilton. Second, those topics that benefit from the insights developed following the redevelopment of classical mechanics in relation to chaos theory in the 1980s and subsequently. The working plasma physicist who wishes to dig more deeply in this field is faced at present with a number of challenges. These may include a perception that this subfield is of limited relevance to mission-oriented questions of plasma performance; a perception of the research literature as being self-contained and inaccessible; and, linked to this, unfamiliarity with the mathematical tools. The latter problem is particularly pressing, given the limited coverage of classical mechanics in many undergraduate physics courses. The book by Elskens and Escande meets many of the challenges outlined above. The rewards begin early, by the end of the second chapter, with

  7. Dynamic and optical characterization of dusty plasmas for use as solar sails

    International Nuclear Information System (INIS)

    Sheldon, Robert; Thomas, Edward Jr.; Abbas, Mian; Gallagher, Dennis; Adrian, Mark; Craven, Paul

    2002-01-01

    Solar sails presently have mass loadings of 5 gm/m2 that, when including the support structure and payload, could easily average to >10 gm/m2. For reasonably sized spacecraft, the critical parameter is the total mass per total area, which when combined with the reflectivity, yield the true acceleration. We propose that dusty plasmas trapped in a 'Mini-Magnetosphere' (Winglee, 2000) can produce a solar sail with a total mass loading <0.01 gm/m2, and reflectivities of ∼1%. This configuration provides an acceleration equivalent to a standard sail of 95% reflectivity with <1 gm/m2. However, the physics of dusty plasma sails is not mature and several important questions need to be resolved before a large scale effort is warranted. Foremost among these questions are, what is the largest force a dusty plasma can sustain before it demagnetizes and separates from the binding magnetic field; what are the charging properties of dust under solar UV conditions; what is the light scattering cross section for the dust; what is the optimum dust grain size for magnetization and scattering; and, what are the optimum dust grain materials? We outline what we know about dusty plasmas, and what we are hoping to learn from two existing dusty plasma experiments at the National Space Science and Technology Center (NSSTC) and Auburn University

  8. Development of plasma properties along thermal plasma jet generated by hybrid water-argon torch

    Czech Academy of Sciences Publication Activity Database

    Kavka, Tetyana; Hrabovský, Milan

    2002-01-01

    Roč. 52, supplement D (2002), s. 637-642 ISSN 0011-4626. [Symposium on Plasma Physics and Technology/20th./. Prague, 10.06.2002-13.06.2002] Institutional research plan: CEZ:AV0Z2043910 Keywords : thermal plasma, plasma jet, enthalpy probe Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.311, year: 2002

  9. Space research and cosmic plasma physics

    International Nuclear Information System (INIS)

    Alfven, H.

    1983-08-01

    Scientific progress depends on the development of new instruments. The change from Ptolemaic to Copernican cosmology was to a large extent caused by the introduction of telescopes. Similarly, space research has changed our possibilities to explore our large scale environment so drastically that a thorough revision of cosmic physics is now taking place. A list is given of a large number of fields in which this revision is in progress or is just starting. The new view are based on in situ measurements in the magnetospheres. By extrapolating these measurments to more distant regions, also plasma astrophysics in general has to be reconsidered. In certain important fields the basic approach has to be changed. This applies to cosmogony (origin and evolution of the solar system) and to cosmology. New results from laboratory and magnetospheric measurements extrapolated to cosmogonic conditions give an increased reliability to our treatment of the origin and evolution of the Solar system. Especially the Voyager observations of the saturnian rings give us the hope that we may transfer cosmogony from a playground for more or less crazy ideas into a respectable science. (author)

  10. Plasma physics and controlled nuclear fusion research

    International Nuclear Information System (INIS)

    1980-01-01

    Full text: During the last decade, growing efforts have been devoted to studying the possible forms an electricity-producing thermonuclear reactor might take and the various technical problems that will have to be overcome. Previous IAEA Conferences took place in Salzburg (1961), Culham (1965), Novosibirsk (1968), Madison (1971), Tokyo (1974), Berchtesgaden (1976) and Innsbruck (1978) The exchange of information that has characterized this series of meetings is an important example of international co-operation and has contributed substantially to progress in controlled fusion research. The results of experiments in major research establishments, as well as the growing scientific insights in the field of plasma physics, give hope that the realization of nuclear fusion will be made possible on a larger scale and beyond the laboratory stage by the end of this century. The increase of the duration of existing tokamak discharges requires solution of the impurity control problem. First results from the new big machines equipped with the poloidal divertor recently came into operation. PDX (USA) and ASDEX (F.R. of Germany) show that various divertor configurations can be established and maintained and that the divertors function in the predicted manner. The reduction of high-Z impurities on these machines by a factor 10 was achieved. As a result of extensive research on radio-frequency (RF) plasma heating on tokamaks: PLT (USA), TFR (France), JFT-2 (Japan), the efficiency of this attractive method of plasma heating comparable to neutral beam heating was demonstrated. It was shown that the density of the input power of about 5-10 kW/cm 2 is achievable and this limit is high enough for application to reactor-like machines. One of the inspiring results reported at the conference was the achievement of value (the ratio of plasma pressure to magnetic field pressure) of ∼ 3% on tokamaks T-11 (USSR) and ISX-B (USA). It is important to note that this value exceeds the

  11. Fast Fermi acceleration in the plasma sheet boundary layer

    International Nuclear Information System (INIS)

    Wu, C.S.; Lui, A.T.Y.

    1989-01-01

    A longstanding question in the field of magnetospheric physics is the source of the energetic particles which are commonly observed along the plasma sheet boundary layer (PSBL). Several models have been suggested for the acceleration of these particles. We suggest a means by which the fast Fermi acceleration mechanism [Wu, 1984] can accelerate electrons at the plasma sheet and perhaps account for some of the observations. We propose the following: A localized hydromagnetic disturbance propagating through the tail lobe region impinges upon the PSBL deforming it and displacing it in towards the central plasma sheet. The boundary layer can then act like a moving magnetic mirror. If the disturbance is propagating nearly perpendicular to the layer then its velocity projected parallel to the layer (and the magnetic field) can be very large resulting in significant acceleration of reflected particles. copyright American Geophysical Union 1989

  12. Fusion programs in applied plasma physics. Technical progress report, July 11, 1992--May 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    This report summarizes the progress made in theoretical and experimental research funded by US Department of Energy Grant No. DE-FG03-92ER54150, during the period July 11, 1992 through May 31, 1993. Four main tasks are reported: applied plasma physics theory, alpha particle diagnostic, edge and current density diagnostic, and plasma rotation drive. The report also discusses the research plans for the theory and experimental programs for the next grant year. Reports and publications supported by the grant during this period are listed in the final section.

  13. The physics role of ITER

    International Nuclear Information System (INIS)

    Rutherford, P.H.

    1997-04-01

    Experimental research on the International Thermonuclear Experimental Reactor (ITER) will go far beyond what is possible on present-day tokamaks to address new and challenging issues in the physics of reactor-like plasmas. First and foremost, experiments in ITER will explore the physics issues of burning plasmas--plasmas that are dominantly self-heated by alpha-particles created by the fusion reactions themselves. Such issues will include (i) new plasma-physical effects introduced by the presence within the plasma of an intense population of energetic alpha particles; (ii) the physics of magnetic confinement for a burning plasma, which will involve a complex interplay of transport, stability and an internal self-generated heat source; and (iii) the physics of very-long-pulse/steady-state burning plasmas, in which much of the plasma current is also self-generated and which will require effective control of plasma purity and plasma-wall interactions. Achieving and sustaining burning plasma regimes in a tokamak necessarily requires plasmas that are larger than those in present experiments and have higher energy content and power flow, as well as much longer pulse length. Accordingly, the experimental program on ITER will embrace the study of issues of plasma physics and plasma-materials interactions that are specific to a reactor-scale fusion experiment. Such issues will include (i) confinement physics for a tokamak in which, for the first time, the core-plasma and the edge-plasma are simultaneously in a reactor-like regime; (ii) phenomena arising during plasma transients, including so-called disruptions, in regimes of high plasma current and thermal energy; and (iii) physics of a radiative divertor designed for handling high power flow for long pulses, including novel plasma and atomic-physics effects as well as materials science of surfaces subject to intense plasma interaction. Experiments on ITER will be conducted by researchers in control rooms situated at major

  14. Physics of the Advanced Plasma Source: a review of recent experimental and modeling approaches

    International Nuclear Information System (INIS)

    Brinkmann, R P; Schröder, B; Lapke, M; Storch, R; Styrnoll, T; Awakowicz, P; Harhausen, J; Foest, R; Hannemann, M; Loffhagen, D; Ohl, A

    2016-01-01

    The Advanced Plasma Source (APS), a gridless hot cathode glow discharge capable of generating an ion beam with an energy of up to 150 eV and a flux of 10 19 s −1 , is a standard industrial tool for the process of plasma ion-assisted deposition (PIAD). This manuscript details the results of recent experimental and modeling work aimed at a physical understanding of the APS. A three-zone model is proposed which consists of (i) the ionization zone (the source itself) where the plasma is very dense, hot, and has a high ionization rate, (ii) the acceleration zone (of  ∼20 cm extension) where a strong outward-directed electric field accelerates the primary ions to a high kinetic energy, and (iii) a drift zone (the rest of the process chamber) where the emerging plasma beam is further modified by resonant charge exchange collisions that neutralize some of the energetic ions and generate, at the same time, a flux of slow ions. (paper)

  15. Waves in plasmas (part 1 - wave-plasma interaction general background)

    International Nuclear Information System (INIS)

    Dumont, R.

    2004-01-01

    This document gathers a series of transparencies presented in the framework of the week-long lectures 'hot plasmas 2004' and dedicated to the physics of wave-plasma interaction. The structure of this document is as follows: 1) wave and diverse plasmas, 2) basic equations (Maxwell equations), 3) waves in a fluid plasma, and 4) waves in a kinetic plasma (collisionless plasma)

  16. Numerical simulation and optimal control in plasma physics

    International Nuclear Information System (INIS)

    Blum, J.

    1989-01-01

    The topics covered in this book are: A free boundary problem: the axisymmetric equilibrium of the plasma in a Tokamak; Static control of the plasma boundary by external currents; Existence and control of a solution to the equilibrium problem in a simple case; Study of equilibrium solution branches and application to the stability of horizontal displacements; Identification of the plasma boundary and plasma current density from magnetic measurements; Evolution of the equilibrium at the diffusion time scale; Evolution of the equilibrium of a high aspect-ratio circular plasma; Stability and control of the horizontal displacement of the plasma

  17. Plasma properties

    International Nuclear Information System (INIS)

    Weitzner, H.

    1989-08-01

    A cursory examination of the research activities of the Magneto-Fluid Dynamics Division for the calendar year 1988 shows the effects of the gradual transformation of the group. Although our principal activity, fusion plasma physics research, is unchanged, the work shows closer ties to problems relevant to present experiments than previously. Most notable is the concentrated effort on tokamak equilibrium and transport. We are exploring the implication of turbulence induced transport, resistive MHD effects, neoclassical transport, and possible interpretations of transport based on classical phenomena. In addition, one of our members has chosen to focus on problems of enhanced statistical methods for interpretation of experiments. All of this activity preceded the Tokamak Transport Initiative and reflects our active involvement and concern with the world-wide tokamak program. Since equilibrium and transport are by no means the only theoretical plasma physics problems affecting fusion devices we continue substantial efforts in wave propagation and heating, particle simulation of plasmas, stability theory, enhancement of numerical algorithms, and general plasma physics. We are attempting to develop effective numerical schemes for the Boltzmann equation, adaptive grid methods for MHD, and particle simulation of boundary and antenna effects. Many of these topics reflect our continuing concern to maintain a modest effort in the development of theoretical models and tools for problems of real significance to fusion, but not necessarily of immediate highest priority. We select problems which we expect to become extremely important in the future. Our space plasma physics activities, funded by agencies other than DOE, transfers knowledge learned in fusion plasma physics to another area and conversely stimulates work also relevant to fusion problems

  18. Cosmic plasma

    Energy Technology Data Exchange (ETDEWEB)

    Alfven, H [California Univ., San Diego, La Jolla (USA)

    1981-01-01

    The properties of space plasmas are analyzed, based on laboratory results and data obtained by in situ measurements in the magnetosphere (including the heliosphere). Attention is given to the question of how much knowledge can be gained by a systematic comparison of different regions of plasma, and plasmas are considered with linear dimensions varying from laboratory size up to the Hubble distance. The traditional magnetic field description of plasmas is supplemented by an electric current description and it is demonstrated that many problems are easier to understand with a dualistic approach. Using the general plasma properties obtained, the origin and evolution of the solar system is summarized and the evolution and present structure of the universe (cosmology) is discussed.

  19. Physics of Neutralization of Intense Charged Particle Beam Pulses by a Background Plasma

    International Nuclear Information System (INIS)

    Kaganovich, I.D.; Davidson, R.C.; Dorf, M.A.; Startsev, E.A.; Sefkow, A.B; Friedman, A.F.; Lee, E.P.

    2009-01-01

    through the background plasma. If controlled, this physical effect can be used for optimized beam transport over long distances.

  20. The role of alpha particles in magnetically confined fusion plasmas

    International Nuclear Information System (INIS)

    Lisak, M.; Wilhelmsson, H.

    1986-01-01

    Recent progress in the confinement of hot plasmas in magnetic fusion experiments throughout the world has intensified interest and research in the physics of D-T burning plasmas especially in the wide range of unresolved theoretical as well as experimental questions associated with the role of alpha particles in such devices. In order to review the state-of-the- art in this field, and to identify new issues and problems for further research, the Symposium on the Role of Alpha Particles in Magnetically Confined Fusion Plasmas was held from 24 to 26 June 1986 at Aspenaesgaarden near Goeteborg, Sweden. About 25 leading experts from nine countries attended the Symposium and gave invited talks. The major part of the programme was devoted to alpha-particle effects in tokamaks but some aspects of open systems were also discussed. The possibilities of obtaining ignition in JET and TFTR as well as physics issues for the compact ignition experiments were considered in particular. A special session was devoted to the diagnostics of alpha particles and other fusion products. In this report are summarised some of the highlights of the symposium. (authors)

  1. High Power Laser Laboratory at the Institute of Plasma Physics and Laser Microfusion: equipment and preliminary research

    Directory of Open Access Journals (Sweden)

    Zaraś-Szydłowska Agnieszka

    2015-06-01

    Full Text Available The purpose of this paper is to present the newly-opened High Power Laser Laboratory (HPLL at the Institute of Plasma Physics and Laser Microfusion (IPPLM. This article describes the laser, the main laboratory accessories and the diagnostic instruments. We also present preliminary results of the first experiment on ion and X-ray generation from laser-produced plasma that has been already performed at the HPLL.

  2. Implementing ILDs and Assessment in Small-enrollment, Calculus-based Physics Classes -- Lessons, Observations and Open Questions

    Science.gov (United States)

    Mason-McCaffrey, Deborah

    2011-04-01

    At Salem State, we offer a Physics minor, but most of our teaching load is support courses for other science majors and a lab sequence which satisfies the University's core education requirement. In three years of using assessments and ILDs in small-enrollment calculus-based Physics classes, there has been a significant implementation learning curve, there are encouraging results, a few cautions, and still some open questions to report. ILDs can be highly effective teaching tools. They do require significant advance preparation as well as a safe environment for student participation. Motivating students to do their best on assessment pre- and post-tests can also be difficult. Strategies for motivating assessment performance, experiments using clickers to encourage participation in ILDs, and modifying and developing home-grown ILDs are discussed.

  3. Screening Resonances In Plasmas

    International Nuclear Information System (INIS)

    Winkler, P.

    1998-01-01

    When it was suggested that a new recombination mechanism (Resonant Radiative Recombination (RRR)) which, based on very general physical arguments, should happen in dense plasmas and promises to provide useful information for the local temperature and density diagnostics of plasmas, they assumed the existence of screening resonances. For model potentials the existence of screening resonances has been demonstrated beyond reasonable doubt in a number of calculations. The key question, how well those potentials describe the dominant effects of a real plasma remains open. The relation of theoretical predictions to experimentally measurable effects is an important issue at the present stage of their research. In particular, RRR is expected to account for enhanced recombination rates of low energetic electrons with their ions, since the first stage is the resonant capture of a slow electron by an atom or ion. The mechanism that traps an electron is a combination of complicated many-body interactions of the ions and electrons. For clarity they start here, however, with a discussion in terms of local potential traps the shapes of which are determined predominantly and in an average way by two factors: the degree of screening present at the ionic site and the degree of short-range order in the immediate neighborhood of this ion

  4. Plasma engineering: a perspective

    International Nuclear Information System (INIS)

    Gralnick, S.L.

    1978-01-01

    This review paper will present the authors perspective of the field of Plasma Engineering as it has evolved over the preceding five years. This embrionic discipline has grown in that period of time to the point where it is sufficiently mature to become part of the curriculum, and a speciality within, the discipline of Nuclear Engineering. Plasma Engineering can be distinguished from the underlying science of plasma physics in that in the pursuit of the latter, our goal is the understanding of the fundamental processes governing the behavior of plasmas while the former discipline seeks the embodiment of these concepts in useful devices. Consequent to this goal, the plasma engineer, of necessity, is concerned with the interfaces between a plasma configuration and the device by which it is produced and maintained. These interface problems, often referred to as kitchen physics are multidisciplinary in nature, and their solution requires careful attention to both plasma physics and machine engineering detail

  5. PREFACE: XII Latin American workshop on plasma physics (17-21 September 2007, Caracas, Venezuela)

    Science.gov (United States)

    Puerta, Julio

    2008-10-01

    Some years ago a group of Latin American physicists took the initiative to consult about the viability of organizing a meeting on plasma physics for researchers and students of the region. The result was that it was not only a good idea, but a necessity in order to show and share everyone's work, and to keep updated on latest advances and technologies on plasma physics. It was decided that for new researchers as well as students of Physics, it would prove to be the best way to keep them posted on such matters. This was the birth of a series of meetings known as Latin American workshops on plasma physics that take place every two years in a different Latin American country. In Venezuela we have had the opportunity to organize two editions of this interesting and important reunion of physicists. The first of these Latin American workshops on plasma physics was held in Cambuquira (Brazil) in 1982. After organizing the first six editions of the workshop, the VII LAWPP meeting was realized in Caracas in January 1997. It was designed with a structure similar to the first edition. It developed in two stages, a first week devoted to short courses with lecturers in different fields of plasma physics and a second week for contributed and invited presentations. Participants from sixteen different countries were present, half of them from this continent and the other half from overseas, demonstrating the international character of this meeting. There have been four more editions of the workshop and once again, we have had the opportunity to organize this latest edition of the series: the XII Latin American workshop on plasma physics, which took place in Caracas, Venezuela from the 17th to the 21st of September 2007. The structure was modified, because contributed and review papers were together during the first stage, with short courses realized during the second one, called mini-courses, and given by several high level contributors such as José Boedo, Leopoldo Soto, Claude

  6. 10 Years of Student Questions about the Sun and Solar Physics: Preparing Graduate Students to Work with Parker Solar Probe Data

    Science.gov (United States)

    Gross, N. A.; Hughes, W. J.; Wiltberger, M. J.

    2017-12-01

    The NSF funded CISM Space Weather Summer School is designed for graduate students who are just starting in space physics. It provides comprehensive conceptual background to the field. Insights about student understanding and learning from this summer school can provide valuable information to graduate instructors and graduate student mentors. During the school, students are invited to submit questions at the end of the lecture component each day. The lecturers then take the time to respond to these questions. We have collected over 4000 student questions over the last 15 years. A significant portion of the summer school schedule is devoted to solar physics and solar observations, and the questions submitted reflect this. As researchers prepare to work with graduate students who will analyze the data from the Parker Solar Probe, they should be aware of the sorts of questions these students will have as they start in the field. Some student questions are simply about definitions: - What is a facula/prominence/ribbon structure/arcade? - What is a Type 3 radio burst? - How is a solar flare defined? How is it different from a CME/energetic particle event? - What is the difference between "soft" and "hard" X-rays?Other student questions involve associations and correlations. - Why are solar flares associated with CME's? - Are all magnetic active regions associated with sunspots? - How does a prominence eruption compare to a CME? - Why do energetic particles follow the magnetic field lines but the solar wind does not? - Why are radio burst (F10.7 flux) associated with solar flares (EUV Flux)?Others can be topics of current research. - What is the source of the slow solar wind? - Why is there a double peak in the sunspot number the solar maximum? - Why is the corona hotter than the solar surface. What is the mechanism of coronal heating? The goal of this paper is to identify and categorize these questions for the community so that graduate educators can be aware of them

  7. Plasma confinement

    CERN Document Server

    Hazeltine, R D

    2003-01-01

    Detailed and authoritative, this volume examines the essential physics underlying international research in magnetic confinement fusion. It offers readable, thorough accounts of the fundamental concepts behind methods of confining plasma at or near thermonuclear conditions. Designed for a one- or two-semester graduate-level course in plasma physics, it also represents a valuable reference for professional physicists in controlled fusion and related disciplines.

  8. Introduction to Gyrokinetic Theory with Applications in Magnetic Confinement Research in Plasma Physics

    International Nuclear Information System (INIS)

    Tang, W.M.

    2005-01-01

    The present lecture provides an introduction to the subject of gyrokinetic theory with applications in the area of magnetic confinement research in plasma physics--the research arena from which this formalism was originally developed. It was presented as a component of the ''Short Course in Kinetic Theory within the Thematic Program in Partial Differential Equations'' held at the Fields Institute for Research in Mathematical Science (24 March 2004). This lecture also discusses the connection between the gyrokinetic formalism and powerful modern numerical simulations. Indeed, simulation, which provides a natural bridge between theory and experiment, is an essential modern tool for understanding complex plasma behavior. Progress has been stimulated in particular by the exponential growth of computer speed along with significant improvements in computer technology. The advances in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics have produced increasingly good agreement between experimental observations and computational modeling. This was enabled by two key factors: (i) innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales and (ii) access to powerful new computational resources

  9. Questions about elastic waves

    CERN Document Server

    Engelbrecht, Jüri

    2015-01-01

    This book addresses the modelling of mechanical waves by asking the right questions about them and trying to find suitable answers. The questions follow the analytical sequence from elementary understandings to complicated cases, following a step-by-step path towards increased knowledge. The focus is on waves in elastic solids, although some examples also concern non-conservative cases for the sake of completeness. Special attention is paid to the understanding of the influence of microstructure, nonlinearity and internal variables in continua. With the help of many mathematical models for describing waves, physical phenomena concerning wave dispersion, nonlinear effects, emergence of solitary waves, scales and hierarchies of waves as well as the governing physical parameters are analysed. Also, the energy balance in waves and non-conservative models with energy influx are discussed. Finally, all answers are interwoven into the canvas of complexity.

  10. Plasma processing: Technologies and applications

    International Nuclear Information System (INIS)

    Naddaf, M.; Saloum, S.

    2005-01-01

    This study aims to present the fundamentals of physics of plasmas, methods of generation, diagnostics, and applications for processing of materials. The first chapter defines plasma in general as well as its main parameters, the most important differential equations in plasma physics, and classifies the types of plasmas. the various methods and techniques to create and sustain plasma are presented in the second chapter. Chapter 3 focuses on plasma diagnostic methods and tools. While chapter 4 deals with applications of plasma processing such as; surface modification of materials, plasma ashing and etching, plasma cutting, and the environmental applications of plasma. Plasma polymerization and its various applications have been presented in more details in the last chapter. (Author)

  11. Role of Laboratory Plasma Experiments in exploring the Physics of Solar Eruptions

    Science.gov (United States)

    Tripathi, S.

    2017-12-01

    Solar eruptive events are triggered over a broad range of spatio-temporal scales by a variety of fundamental processes (e.g., force-imbalance, magnetic-reconnection, electrical-current driven instabilities) associated with arched magnetoplasma structures in the solar atmosphere. Contemporary research on solar eruptive events is at the forefront of solar and heliospheric physics due to its relevance to space weather. Details on the formation of magnetized plasma structures on the Sun, storage of magnetic energy in such structures over a long period (several Alfven transit times), and their impulsive eruptions have been recorded in numerous observations and simulated in computer models. Inherent limitations of space observations and uncontrolled nature of solar eruptions pose significant challenges in testing theoretical models and developing the predictive capability for space-weather. The pace of scientific progress in this area can be significantly boosted by tapping the potential of appropriately scaled laboratory plasma experiments to compliment solar observations, theoretical models, and computer simulations. To give an example, recent results from a laboratory plasma experiment on arched magnetic flux ropes will be presented and future challenges will be discussed. (Work supported by National Science Foundation, USA under award number 1619551)

  12. Exploring the Deep-Level Reasoning Questions Effect during Vicarious Learning among Eighth to Eleventh Graders in the Domains of Computer Literacy and Newtonian Physics

    Science.gov (United States)

    Gholson, Barry; Witherspoon, Amy; Morgan, Brent; Brittingham, Joshua K.; Coles, Robert; Graesser, Arthur C.; Sullins, Jeremiah; Craig, Scotty D.

    2009-01-01

    This paper tested the deep-level reasoning questions effect in the domains of computer literacy between eighth and tenth graders and Newtonian physics for ninth and eleventh graders. This effect claims that learning is facilitated when the materials are organized around questions that invite deep-reasoning. The literature indicates that vicarious…

  13. Experimental plasma research project summaries

    International Nuclear Information System (INIS)

    1992-06-01

    This is the latest in a series of Project Summary books going back to 1976 and is the first after a hiatus of several years. They are published to provide a short description of each project supported by the Experimental Plasma Research Branch of the Division of Applied Plasma Physics in the Office of Fusion Energy. The Experimental Plasma Research Branch seeks to provide a broad range of experimental data, physics understanding, and new experimental techniques that contribute to operation, interpretation, and improvement of high temperature plasma as a source of fusion energy. In pursuit of these objectives, the branch supports research at universities, DOE laboratories, other federal laboratories and industry. About 70 percent of the funds expended are spent at universities and a significant function of this program is the training of students in fusion physics. The branch supports small- and medium-scale experimental studies directly related to specific critical plasma issues of the magnetic fusion program. Plasma physics experiments are conducted on transport of particles and energy within plasma and innovative approaches for operating, controlling, and heating plasma are evaluated for application to the larger confinement devices of the magnetic fusion program. New diagnostic approaches to measuring the properties of high temperature plasmas are developed to the point where they can be applied with confidence on the large-scale confinement experiments. Atomic data necessary for impurity control, interpretation of diagnostic data, development of heating devices, and analysis of cooling by impurity ion radiation are obtained. The project summaries are grouped into these three categories of plasma physics, diagnostic development and atomic physics

  14. Fundamentals of plasma physics and controlled fusion

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Kenro

    2000-10-01

    The present lecture note was written to fill a gap between text books for undergraduates and specific review articles written by specialists for their young colleagues. The note may be divided in three parts. The first part is on basic characteristics of a plasma in a magnetic field. The second part describes plasma confinement and heating with an emphasis on magnetohydrodynamic instabilities. In addition, propagation of plasma waves, plasma heating by electromagnetic waves are given. The third part is devoted to various specific concepts of nuclear fusion. Emphases are placed on toroidal devices, especially on tokamak devices and stellarators. One might feel heavy mathematics glimpsing the present note, especially in the part treating magnetohydrodynamic instabilities. (author)

  15. Mathematical and numerical analysis of a few hydrodynamic and kinetic models of plasma physics

    International Nuclear Information System (INIS)

    Buet, C.

    2005-01-01

    My research work deals mainly with the mathematical modelling and the numerical simulation of plasma physics. This document is divided into 3 parts. The first one is a summary of the works done for the numerical solving of collision operators. The common thread of this part is obtaining numerical schemes preserving operators' properties namely physical invariants like mass, momentum and energy, equilibrium states and entropy decrease. These properties are generally checked formally for continuous operators, may give rise to some difficulties for discrete operators. In the second part I present a summary of the works regarding moments methods applied to radiative transfer and the numerical issues dealing with their discretization. The common thread of this part is how to get numerical schemes preserving asymptotic scattering and invariant domains for Lorentz models and also for non-linear telegraph-type equations involved in radiative transfer or electronic plasma. In the third part I present 2 themes linked to collision operators: multi-fluid ionization and the non-existence of linear monotone schemes for some linear parabolic equations

  16. Promoting Vicarious Learning of Physics Using Deep Questions with Explanations

    Science.gov (United States)

    Craig, Scotty D.; Gholson, Barry; Brittingham, Joshua K.; Williams, Joah L.; Shubeck, Keith T.

    2012-01-01

    Two experiments explored the role of vicarious "self" explanations in facilitating student learning gains during computer-presented instruction. In Exp. 1, college students with low or high knowledge on Newton's laws were tested in four conditions: (a) monologue (M), (b) questions (Q), (c) explanation (E), and (d) question + explanation (Q + E).…

  17. Conference on atomic processes in high temperature plasmas: a topical conference of the American Physical Society Division of Plasma Physics

    International Nuclear Information System (INIS)

    1977-01-01

    Abstracts are included for approximately 100 of the papers presented at the meeting. The following sessions were held at the conference: (1) electron ionization and excitation rates, (2) radiation from low density plasmas, (3) electron-ion cross sections and rates, (4) oscillator strengths and atomic structure, (5) spectroscopy and atomic structure, (6) astrophysical plasmas, (7) particle transport, (8) ion-atom cross sections and rates, (9) wall effects in laboratory plasmas, (10) spectroscopy and photoionization, and (11) radiation from high density plasmas

  18. Negative ion surface plasma source development for plasma trap injectors in Novosibirsk

    International Nuclear Information System (INIS)

    Bel'chenko, Yu.I.; Dimov, G.I.; Dudnikov, V.G.; Kupriyanov, A.S.

    1989-01-01

    Work on high-current ion sources carried out at the Novosibirsk Institute of Nuclear Physics (INP) is presented. The INP investigations on ''pure plasma'' planotron and ''pure surface'' secondary emission systems of H - generation, which preceded the surface-plasma concept developed in Novosibirsk, are described. The physical basis of the surface-plasma method of negative-ion production is considered. The versions and operating characteristics of different surface-plasma sources including the multi-ampere (approx-gt 10A) source are discussed. Research on efficient large-area (∼10 2 cm 2 ) negative ion surface-plasma emitters is described. The INP long-pulse multiaperture surface- plasma generators, with a current of about 1A, are described. 38 refs., 17 figs

  19. Plasma/neutral gas transport in divertors and limiters

    International Nuclear Information System (INIS)

    Gierszewski, P.J.

    1983-09-01

    The engineering design of the divertor and first wall region of fusion reactors requires accurate knowledge of the energies and particle fluxes striking these surfaces. Simple calculations indicate that approx. 10 MW/m 2 heat fluxes and approx. 1 cm/yr erosion rates are possible, but there remain fundamental physics questions that bear directly on the engineering design. The purpose of this study was to treat hydrogen plasma and neutral gas transport in divertors and pumped limiters in sufficient detail to answer some of the questions as to the actual conditions that will be expected in fusion reactors. This was accomplished in four parts: (1) a review of relevant atomic processes to establish the dominant interactions and their data base; (2) a steady-state coupled O-D model of the plasma core, scrape-off layer and divertor exhaust to determine gross modes of operation and edge conditions; (3) a 1-D kinetic transport model to investigate the case of collisionless divertor exhaust, including non-Maxwellian ions and neutral atoms, highly collisional electrons, and a self-consistent electric field; and (4) a 3-D Monte Carlo treatment of neutral transport to correctly account for geometric effects

  20. Plasma edge physics in the TEXTOR tokamak with poloidal and toroidal limiters

    International Nuclear Information System (INIS)

    Samm, U.; Bogen, P.; Hartwig, H.; Hintz, E.; Hoethker, K.; Lie, Y.T.; Pospieszczyk, A.; Rusbueldt, D.; Schweer, B.; Yu, Y.J.

    1989-01-01

    Investigations of the plasma edge in TEXTOR are presented on the one hand by comparing results obtained with poloidal and toroidal limiters and on the other hand by discussing general problems of plasma edge physics which are independent of the limiter configuration. The characteristic properties of plasma flow to the different limiters are analyzed and show e.g. that the fraction of total ion flow to the limiter is much larger in the case of a toroidal limiter (80%). Density and heat flux profiles are presented which demonstrate that for both types of limiters a significant steepening of the scrape-off layer (SOL) occurs close to the limiter, leading to a small heat load e-folding length of 5-8 mm. The velocity distribution of recycled neutral hydrogen at a main limiter has been determined from the Doppler broadening of the H α line. The data clearly show that a large fraction of particles (30-50%) is reflected at the limiter surface having energies of about the sheath potential. Significant isotopic effects (H/D) concerning the plasma edge properties and the plasma core are presented and their relation to enhanced particle and energy transport in hydrogen compared to deuterium is discussed. A decrease of the cross field diffusion coefficient with increasing density can be deduced from density profile measurements in the SOL and a comparison with density fluctuations is given. The role of oxygen for impurity release is demonstrated. A new type of wall conditioning - boronization - is described, with two major improvements for quasi stationary conditions: reduction of oxygen and better density control. Best results with ICRH have been obtained under these conditions. (orig.)